




“Successful companies embrace risk, and Schneier shows how to bring
that thinking to the Internet.”

–Mary Meeker, Managing Director and Internet Analyst, Morgan
Stanley, Dean Witter

“Bruce shows that concern for security should not rest in the IT
department alone, but also in the business office . . . Secrets and Lies is the
breakthrough text we’ve been waiting for to tell both sides of the story.”

–Steve Hunt, Vice President of Research, Giga Information Group

“Good security is good business. And security is not (just) a technical
issue; it’s a people issue! Security expert Bruce Schneier tells you why and
how. If you want to be successful, you should read this book before
the competition does.”

–Esther Dyson, Chairman, EDventure Holdings

“Setting himself apart, Schneier navigates rough terrain without being
overly technical or sensational—two common pitfalls of writers who take
on cybercrime and security. All this helps to explain Schneier’s long-
standing cult-hero status, even—indeed especially—among his
esteemed hacker adversaries.”

–Industry Standard

“All in all, as a broad and readable security guide, Secrets and Lies should
be near the top of the IT required-reading list.”

–eWeek

“Secrets and Lies should begin to dispel the fog of deception and special
pleading around security, and it’s fun.”

–New Scientist

“This book should be, and can be, read by any business executive, no spe-
cialty in security required . . . At Walker Digital, we spent millions of
dollars to understand what Bruce Schneier has deftly explained here.”

–Jay S. Walker, Founder of Priceline.com

Praise for Secrets and Lies
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“Just as Applied Cryptography was the bible for cryptographers in the 90’s,
so Secrets and Lies will be the official bible for INFOSEC in the new mil-
lennium. I didn’t think it was possible that a book on business security
could make me laugh and smile, but Schneier has made this subject very
enjoyable.”

–Jim Wallner, National Security Agency

“The news media offer examples of our chronic computer security woes
on a near-daily basis, but until now there hasn’t been a clear, comprehen-
sive guide that puts the wide range of digital threats in context. The
ultimate knowledgeable insider, Schneier not only provides definitions,
explanations, stories, and strategies, but a measure of hope that we can
get through it all.”

–Steven Levy, author of Hackers and Crypto

“In his newest book, Secrets and Lies: Digital Security in a Networked World,
Schneier emphasizes the limitations of technology and offers managed
security monitoring as the solution of the future.”

–Forbes Magazine
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Introduction to the
Paperback Edition

It’s been over three years since the first edition of Secrets and Lies was
published.  Reading through it again after all this time, the most
amazing thing is how little things have changed.  Today, two years

after 9/11 and in the middle of the worst spate of computer worms and
viruses the world has ever seen, the book is just as relevant as it was when
I wrote it.  

The attackers and attacks are the same.  The targets and the risks are
the same.  The security tools to defend ourselves are the same, and they’re
just as ineffective as they were three years ago.  If anything, the problems
have gotten worse.  It’s the hacking tools that are more effective and more
efficient.  It’s the ever-more-virulent worms and viruses that are infecting
more computers faster.  Fraud is more common.  Identity theft is an epi-
demic.  Wholesale information theft—of credit card numbers and
worse—is happening more often.  Financial losses are on the rise.  The
only good news is that cyberterrorism, the post-9/11 bugaboo that’s scar-
ing far too many people, is no closer to reality than it was three years ago.

The reasons haven’t changed.  In Chapter 23, I discuss the problems
of complexity.  Simply put, complexity is the worst enemy of security.  As
systems get more complex, they necessarily get less secure.  Today’s
computer and network systems are far more complex than they were
when I wrote the first edition of this book, and they’ll be more complex
still in another three years.  This means that today’s computers and net-
works are less secure than they were earlier, and they will be even less

xi
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secure in the future.  Security technologies and products may be
improving, but they’re not improving quickly enough.  We’re forced to
run the Red Queen’s race, where it takes all the running you can do just
to stay in one place.

As a result, today computer security is at a crossroads.  It’s failing,
regularly, and with increasingly serious results.  CEOs are starting to
notice.  When they finally get fed up, they’ll demand improvements.
(Either that or they’ll abandon the Internet, but I don’t believe that is a
likely possibility.)  And they’ll get the improvements they demand; cor-
porate America can be an enormously powerful motivator once it gets
going.  

For this reason, I believe computer security will improve eventually.
I don’t think the improvements will come in the short term, and I think
they will be met with considerable resistance.  This is because the engine
of improvement will be fueled by corporate boardrooms and not com-
puter-science laboratories, and as such won’t have anything to do with
technology.  Real security improvement will only come through liability:
holding software manufacturers accountable for the security and, more
generally, the quality of their products.  This is an enormous change,
and one the computer industry is not going to accept without a fight.

But I’m getting ahead of myself here.  Let me explain why I think the
concept of liability can solve the problem.

It’s clear to me that computer security is not a problem that technol-
ogy can solve.  Security solutions have a technological component, but
security is fundamentally a people problem.  Businesses approach security
as they do any other business uncertainty: in terms of risk management.
Organizations optimize their activities to minimize their cost–risk prod-
uct, and understanding those motivations is key to understanding com-
puter security today.  It makes no sense to spend more on security than
the original cost of the problem, just as it makes no sense to pay liability
compensation for damage done when spending money on security is
cheaper.  Businesses look for financial sweet spots—adequate security for
a reasonable cost, for example—and if a security solution doesn’t make
business sense, a company won’t do it.

This way of thinking about security explains some otherwise puzzling
security realities. For example, historically most organizations haven’t
spent a lot of money on network security.  Why?  Because the costs have
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been significant: time, expense, reduced functionality, frustrated end-
users.  (Increasing security regularly frustrates end-users.)  On the other
hand, the costs of ignoring security and getting hacked have been, in the
scheme of things, relatively small.  We in the computer security field like
to think they’re enormous, but they haven’t really affected a company’s
bottom line.  From the CEO’s perspective, the risks include the possibil-
ity of bad press and angry customers and network downtime—none of
which is permanent.  And there’s some regulatory pressure, from audits or
lawsuits, which adds additional costs.  The result: a smart organization
does what everyone else does, and no more.  Things are changing; slowly,
but they’re changing.  The risks are increasing, and as a result spending is
increasing.

This same kind of economic reasoning explains why software vendors
spend so little effort securing their own products.  We in computer secu-
rity think the vendors are all a bunch of idiots, but they’re behaving com-
pletely rationally from their own point of view.  The costs of adding good
security to software products are essentially the same ones incurred in
increasing network security—large expenses, reduced functionality,
delayed product releases, annoyed users—while the costs of ignoring
security are minor: occasional bad press, and maybe some users switching
to competitors’ products.  The financial losses to industry worldwide due
to vulnerabilities in the Microsoft Windows operating system are not
borne by Microsoft, so Microsoft doesn’t have the financial incentive to
fix them. If the CEO of a major software company told his board of
directors that he would be cutting the company’s earnings per share by a
third because he was going to really—no more pretending—take security
seriously, the board would fire him.  If I were on the board, I would fire
him.  Any smart software vendor will talk big about security, but do as
little as possible, because that’s what makes the most economic sense.

Think about why firewalls succeeded in the marketplace.  It’s not
because they’re effective; most firewalls are configured so poorly that
they’re barely effective, and there are many more effective security prod-
ucts that have never seen widespread deployment (such as e-mail encryp-
tion).  Firewalls are ubiquitous because corporate auditors started
demanding them.  This changed the cost equation for businesses.  The
cost of adding a firewall was expense and user annoyance, but the cost of
not having a firewall was failing an audit.  And even worse, a company
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without a firewall could be accused of not following industry best
practices in a lawsuit.  The result: everyone has firewalls all over their net-
work, whether they do any actual good or not.

As scientists, we are awash in security technologies.  We know how
to build much more secure operating systems.  We know how to build
much more secure access control systems.  We know how to build much
more secure networks.  To be sure, there are still technological problems,
and research continues.  But in the real world, network security is a busi-
ness problem.  The only way to fix it is to concentrate on the business
motivations.  We need to change the economic costs and benefits of
security.  We need to make the organizations in the best position to fix
the problem want to fix the problem.

To do that, I have a three-step program.  None of the steps has
anything to do with technology; they all have to do with businesses,
economics, and people.

STEP ONE: ENFORCE LIABILITIES 

This is essential.  Remember that I said the costs of bad security are not
borne by the software vendors that produce the bad security.  In eco-
nomics this is known as an externality: a cost of a decision that is borne by
people other than those making the decision.  Today there are no real
consequences for having bad security, or having low-quality software of
any kind.  Even worse, the marketplace often rewards low quality.  More
precisely, it rewards additional features and timely release dates, even if
they come at the expense of quality.  If we expect software vendors to
reduce features, lengthen development cycles, and invest in secure soft-
ware development processes, they must be liable for security vulnerabili-
ties in their products.  If we expect CEOs to spend significant resources
on their own network security—especially the security of their cus-
tomers—they must be liable for mishandling their customers’ data.  Basi-
cally, we have to tweak the risk equation so the CEO cares about actually
fixing the problem.  And putting pressure on his balance sheet is the best
way to do that.

This could happen in several different ways.  Legislatures could
impose liability on the computer industry by forcing software manufac-
turers to live with the same product liability laws that affect other indus-
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tries.  If software manufacturers produced a defective product, they would
be liable for damages.  Even without this, courts could start imposing lia-
bility-like penalties on software manufacturers and users.  This is starting
to happen.  A U.S. judge forced the Department of Interior to take its
network offline, because it couldn’t guarantee the safety of American
Indian data it was entrusted with.  Several cases have resulted in penalties
against companies that used customer data in violation of their privacy
promises, or collected that data using misrepresentation or fraud.  And
judges have issued restraining orders against companies with insecure net-
works that are used as conduits for attacks against others.  Alternatively,
the industry could get together and define its own liability standards.

Clearly this isn’t all or nothing.  There are many parties involved in a
typical software attack.  There’s the company that sold the software with
the vulnerability in the first place.  There’s the person who wrote the
attack tool.  There’s the attacker himself, who used the tool to break into
a network.  There’s the owner of the network, who was entrusted with
defending that network.  One hundred percent of the liability shouldn’t
fall on the shoulders of the software vendor, just as 100 percent shouldn’t
fall on the attacker or the network owner.  But today 100 percent of the
cost falls on the network owner, and that just has to stop.

However it happens, liability changes everything.  Currently, there is
no reason for a software company not to offer more features, more com-
plexity, more versions.  Liability forces software companies to think twice
before changing something.  Liability forces companies to protect the data
they’re entrusted with.

STEP TWO: ALLOW PARTIES TO TRANSFER LIABILITIES

This will happen automatically, because CEOs turn to insurance compa-
nies to help them manage risk, and liability transfer is what insurance
companies do.  From the CEO’s perspective, insurance turns variable-
cost risks into fixed-cost expenses, and CEOs like fixed-cost expenses
because they can be budgeted.  Once CEOs start caring about security—
and it will take liability enforcement to make them really care—they’re
going to look to the insurance industry to help them out.  Insurance com-
panies are not stupid; they’re going to move into cyberinsurance in a big
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way.  And when they do, they’re going to drive the computer security
industry...just as they drive the security industry in the brick-and-mortar
world.

A CEO doesn’t buy security for his company’s warehouse—strong
locks, window bars, or an alarm system—because it makes him feel safe.
He buys that security because the insurance rates go down.  The same
thing will hold true for computer security.  Once enough policies are
being written, insurance companies will start charging different premiums
for different levels of security.  Even without legislated liability, the CEO
will start noticing how his insurance rates change.  And once the CEO
starts buying security products based on his insurance premiums, the
insurance industry will wield enormous power in the marketplace.  They
will determine which security products are ubiquitous, and which are
ignored.  And since the insurance companies pay for the actual losses, they
have a great incentive to be rational about risk analysis and the effective-
ness of security products.  This is different from a bunch of auditors decid-
ing that firewalls are important; these are companies with a financial
incentive to get it right.  They’re not going to be swayed by press releases
and PR campaigns; they’re going to demand real results.

And software companies will take notice, and will strive to increase
the security in the products they sell, in order to make them competitive
in this new “cost plus insurance cost” world. 

STEP THREE: PROVIDE MECHANISMS 
TO REDUCE RISK  

This will also happen automatically.  Once insurance companies start
demanding real security in products, it will result in a sea change in the
computer industry.  Insurance companies will reward companies that pro-
vide real security, and punish companies that don’t—and this will be
entirely market driven.  Security will improve because the insurance
industry will push for improvements, just as they have in fire safety,
electrical safety, automobile safety, bank security, and other industries.

Moreover, insurance companies will want it done in standard models
that they can build policies around.  A network that changes every month
or a product that is updated every few months will be much harder to
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insure than a product that never changes.  But the computer field natu-
rally changes quickly, and this makes it different, to some extent, from
other insurance-driven industries.   Insurance companies will look to
security processes that they can rely on: processes of secure software
development before systems are released, and the processes of protection,
detection, and response that I talk about in Chapter 24.  And more and
more, they’re going to look toward outsourced services.

For over four years I have been CTO of a company called Counter-
pane Internet Security, Inc.  We provide outsourced security monitoring
for organizations.  This isn’t just firewall monitoring or IDS monitoring
but full network monitoring.  We defend our customers from insiders,
outside hackers, and the latest worm or virus epidemic in the news.  We
do it affordably, and we do it well.  The goal here isn’t 100 percent per-
fect security, but rather adequate security at a reasonable cost.  This is the
kind of thing insurance companies love, and something I believe will
become as common as fire-suppression systems in the coming years.

The insurance industry prefers security outsourcing, because they can
write policies around those services.  It’s much easier to design insurance
around a standard set of security services delivered by an outside vendor
than it is to customize a policy for each individual network.  Today, net-
work security insurance is a rarity—very few of our customers have such
policies—but eventually it will be commonplace.  And if an organization
has Counterpane—or some other company—monitoring its network, or
providing any of a bunch of other outsourced services that will be pop-
ping up to satisfy this market need, it’ll easily be insurable.

Actually, this isn’t a three-step program.  It’s a one-step program with
two inevitable consequences.  Enforce liability, and everything else will
flow from it.  It has to.  There’s no other alternative.

Much of Internet security is a common: an area used by a community
as a whole.  Like all commons, keeping it working benefits everyone, but
any individual can benefit from exploiting it.  (Think of the criminal jus-
tice system in the real world.)  In our society we protect our commons—
environment, working conditions, food and drug practices, streets,
accounting practices—by legislating those areas and by making companies
liable for taking undue advantage of those commons.  This kind of think-
ing is what gives us bridges that don’t collapse, clean air and water, and
sanitary restaurants.  We don’t live in a “buyer beware” society; we hold
companies liable when they take advantage of buyers.
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There’s no reason to treat software any differently from other prod-
ucts.  Today Firestone can produce a tire with a single systemic flaw and
they’re liable, but Microsoft can produce an operating system with multi-
ple systemic flaws discovered per week and not be liable.  Today if a home
builder sells you a house with hidden flaws that make it easier for burglars
to break in, you can sue the home builder; if a software company sells you
a software system with the same problem, you’re stuck with the damages.
This makes no sense, and it’s the primary reason computer security is so
bad today.  I have a lot of faith in the marketplace and in the ingenuity of
people.  Give the companies in the best position to fix the problem a
financial incentive to fix the problem, and fix it they will.

ADDITIONAL BOOKS

I’ve written two books since Secrets and Lies that may be of interest to
readers of this book:

Beyond Fear: Thinking Sensibly About Security in an Uncertain World is a
book about security in general.  In it I cover the entire spectrum of
security, from the personal issues we face at home and in the office to the
broad public policies implemented as part of the worldwide war on
terrorism.  With examples and anecdotes from history, sports, natural
science, movies, and the evening news, I explain to a general audience
how security really works, and demonstrate how we all can make
ourselves safer by thinking of security not in absolutes, but in terms of
trade-offs—the inevitable cash outlays, taxes, inconveniences, and dimin-
ished freedoms we accept (or have forced on us) in the name of enhanced
security.  Only after we accept the inevitability of trade-offs and learn to
negotiate accordingly will we have a truly realistic sense of how to deal
with risks and threats.

http://www.schneier.com/bf.html

Practical Cryptography (written with Niels Ferguson) is about cryptog-
raphy as it is used in real-world systems: about cryptography as an engi-
neering discipline rather than cryptography as a mathematical science.
Building real-world cryptographic systems is vastly different from the
abstract world depicted in most books on cryptography, which assumes a
pure mathematical ideal that magically solves your security problems.
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Designers and implementers live in a very different world, where nothing
is perfect and where experience shows that most cryptographic systems
are broken due to problems that have nothing to do with mathematics.
This book is about how to apply the cryptographic functions in a real-
world setting in such a way that you actually get a secure system.

http://www.schneier.com/book-practical.html

FURTHER READING

There’s always more to say about security.  Every month there are new
ideas, new disasters, and new news stories that completely miss the point.
For almost six years now I’ve written Crypto-Gram¸ a free monthly e-mail
newsletter that tries to be a voice of sanity and sense in an industry filled
with fear, uncertainty, and doubt.  With more than 100,000 readers,
Crypto-Gram is widely cited as the industry’s most influential publication.
There’s no fluff.  There’s no advertising.  Just honest and impartial
summaries, analyses, insights, and commentaries about the security stories
in the news.

To subscribe, visit:

http://www.schneier.com/crypto-gram.html

Or send a blank message to:

crypto-gram-subscribe@chaparraltree.com

You can read back issues on the Web site, too.  Some specific articles
that may be of interest are:

Risks of cyberterrorism:
http://www.schneier.com/crypto-gram-0306.html#1

Militaries and cyberwar:
http://www.schneier.com/crypto-gram-0301.html#1

The “Security Patch Treadmill”:
http://www.schneier.com/crypto-gram-0103.html#1

Full disclosure and security:
http://www.schneier.com/crypto-gram-0111.html#1

How to think about security:
http://www.schneier.com/crypto-gram-0204.html#1
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What military history can teach computer security (parts 1 and 2):
http://www.schneier.com/crypto-gram-0104.html#1
http://www.schneier.com/crypto-gram-0105.html#1

Thank you for taking the time to read Secrets and Lies. I hope you
enjoy it, and I hope you find it useful.

Bruce Schneier
January 2004
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Preface

Ihave written this book partly to correct a mistake.

xxi

Seven years ago I wrote another book: Applied Cryptography. In 
it I described a mathematical utopia: algorithms that would keep your

deepest secrets safe for millennia, protocols that could perform the most
fantastical electronic interactions—unregulated gambling, undetectable
authentication, anonymous cash—safely and securely. In my vision
cryptography was the great technological equalizer; anyone with a cheap
(and getting cheaper every year) computer could have the same security
as the largest government. In the second edition of the same book, writ-
ten two years later, I went so far as to write: “It is insufficient to protect
ourselves with laws; we need to protect ourselves with mathematics.” 

It’s just not true. Cryptography can’t do any of that.
It’s not that cryptography has gotten weaker since 1994, or that the

things I described in that book are no longer true; it’s that cryptography
doesn’t exist in a vacuum.

Cryptography is a branch of mathematics. And like all mathematics, it
involves numbers, equations, and logic. Security, palpable security that
you or I might find useful in our lives, involves people: things people
know, relationships between people, people and how they relate to
machines. Digital security involves computers: complex, unstable, buggy
computers.

Mathematics is perfect; reality is subjective. Mathematics is defined;
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computers are ornery. Mathematics is logical; people are erratic, capri-
cious, and barely comprehensible.

The error of Applied Cryptography is that I didn’t talk at all about the
context. I talked about cryptography as if it were The Answer™. I was
pretty naïve.

The result wasn’t pretty. Readers believed that cryptography was a
kind of magic security dust that they could sprinkle over their software
and make it secure. That they could invoke magic spells like “128-bit
key” and “public-key infrastructure.” A colleague once told me that the
world was full of bad security systems designed by people who read
Applied Cryptography.

Since writing the book, I have made a living as a cryptography con-
sultant: designing and analyzing security systems. To my initial surprise, I
found that the weak points had nothing to do with the mathematics.
They were in the hardware, the software, the networks, and the people.
Beautiful pieces of mathematics were made irrelevant through bad pro-
gramming, a lousy operating system, or someone’s bad password choice.
I learned to look beyond the cryptography, at the entire system, to find
weaknesses. I started repeating a couple of sentiments you’ll find through-
out this book: “Security is a chain; it’s only as secure as the weakest link.”
“Security is a process, not a product.”

Any real-world system is a complicated series of interconnections.
Security must permeate the system: its components and connections. And
in this book I argue that modern systems have so many components and
connections—some of them not even known by the systems’ designers,
implementers, or users—that insecurities always remain. No system is
perfect; no technology is The Answer™.

This is obvious to anyone involved in real-world security. In the real
world, security involves processes. It involves preventative technologies,
but also detection and reaction processes, and an entire forensics system to
hunt down and prosecute the guilty. Security is not a product; it itself is a
process. And if we’re ever going to make our digital systems secure, we’re
going to have to start building processes.

A few years ago I heard a quotation, and I am going to modify it here:
If you think technology can solve your security problems, then you don’t
understand the problems and you don’t understand the technology.

This book is about those security problems, the limitations of tech-
nology, and the solutions.

xxii Preface
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HOW TO READ THIS BOOK

Read this book in order, from beginning to end.
No, really. Many technical books are meant to skim, bounce around

in, and use as a reference. This book isn’t. This book has a plot; it tells a
story. And like any good story, it makes less sense telling it out of order.
The chapters build on each other, and you won’t buy the ending if you
haven’t come along on the journey.

Actually, I want you to read the book through once, and then read it
through a second time. This book argues that in order to understand the
security of a system, you need to look at the entire system—and not at any
particular technologies. Security itself is an interconnected system, and it
helps to have cursory knowledge of everything before learning more
about anything. But two readings is probably too much to ask; forget I
mentioned it.

This book has three parts. Part 1 is “The Landscape,” and gives con-
text to the rest of the book: who the attackers are, what they want, and
what we need to deal with the threats. Part 2 is “Technologies,” basically
a bunch of chapters describing different security technologies and their
limitations. Part 3 is “Strategies”: Given the requirements of the landscape
and the limitations of the technologies, what do we do now?

I think digital security is about the coolest thing you can work on
today, and this book reflects that feeling. It’s serious, but fun, too. Enjoy
the read.

Preface xxiii
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1

Introduction

During March 2000, I kept a log of security events from various
sources. Here are the news highlights:

Someone broke into the business-to-business Web site for SalesGate.com
and stole about 3,000 customer records, including credit card numbers
and other personal information. He posted some of them on the
Internet.

For years, personal information has “leaked” from Web sites (such as
Intuit) to advertisers (such as DoubleClick). When visitors used vari-
ous financial calculators on the Intuit site, a design glitch in the Web
site’s programming allowed information they entered to be sent to
DoubleClick. This happened without the users’ knowledge or con-
sent, and (more surprising) without Intuit’s knowledge or consent.

Convicted criminal hacker Kevin Mitnick testified before Congress. He
told them that social engineering is a major security vulnerability:
He can often get passwords and other secrets just by pretending to be
someone else and asking.

A Gallup poll showed that a third of online consumers said that they might
be less likely to make a purchase from a Web site, in light of recent
computer-security events.

Personal data from customers who ordered the PlayStation 2 from the
Sony Web site were accidentally leaked to some other customers.
(This is actually a rampant problem on all sorts of sites. People try to

1
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check out, only to be presented with the information of another ran-
dom Web customer.)

Amazon.com pays commissions to third-party Web sites for referrals.
Someone found a way to subvert the program that manages this,
enabling anyone to channel information to whomever. It is unclear
whether Amazon considers this a problem.

The CIA director denied that the United States engages in economic
espionage, but did not go on to deny the existence of the massive
intelligence-gathering system called ECHELON. 

Pierre-Guy Lavoie, 22, was convicted in Quebec of breaking into several
Canadian and U.S. government computers. He will serve 12 months
in prison.

Japan’s Defense Agency delayed deployment of a new defense computer
system after it discovered that the software had been developed by the
members of the Aum Shinrikyo cult.

A new e-mail worm, called Pretty Park, spread across the Internet. It’s a
minor modification of one that appeared last year. It spreads automati-
cally, by sending itself to all the addresses listed in a user’s Outlook
Express program. 

Novell and Microsoft continued to exchange barbs about an alleged secu-
rity bug with Windows 2000’s Active Directory. Whether or not this
is a real problem depends on what kind of security properties you
expect from your directory. (I believe it’s a design flaw in Windows,
and not a bug.)

Two people in Sicily (Giuseppe Russo and his wife, Sandra Elazar) were
arrested after stealing about 1,000 U.S. credit card numbers on 
the Internet and using them to purchase luxury goods and lottery
tickets.

A hacker (actually a bored teenager) known as “Coolio” denied launching
massive denial-of-service attacks in February 2000. He admitted to
hacking into about 100 sites in the past, including cryptography com-
pany RSA Security and a site belonging to the U.S. State Department.

Attackers launched a denial-of-service attack against Microsoft’s Israeli
Web site.

Jonathan Bosanac, a.k.a. “The Gatsby,” was sentenced to 18 months in
prison for hacking into three telephone company sites.

2 C H A P T E R  O N E

453803_Ch01_3.qxd:453803_Ch01_3.qxd  4/11/13  1:25 PM  Page 2



The military of Taiwan announced that it discovered more than 7,000
attempts by Chinese hackers to enter the country’s security systems.
This tantalizing statistic was not elaborated on.

Here are some software vulnerabilities reported during March 2000: 

A vulnerability was reported in Microsoft Internet Explorer 5.0 (in Windows
95, 98, NT 4.0, and 2000) that allows an attacker to set up a Web page
giving him the ability to execute any program on a visitor’s machine. 

By modifying the URL, an attacker can completely bypass the authentica-
tion mechanisms protecting the remote-management screens of the
Axis StarPoint CD-ROM servers.

If an attacker sends the Netscape Enterprise Server 3.6 a certain type of
long message, a buffer overflow crashes a particular process. The
attacker can then execute arbitrary code remotely on the server.

It is possible to launch some attacks (one denial-of-service attack, and
another attack against a CGI script) that Internet Security Systems’s
RealSecure Network Intrusion Detection software does not detect.

By sending a certain URL to a server running Allaire’s ColdFusion prod-
uct, an attacker can receive an error message giving information about
the physical paths to various files.

Omniback is a Hewlett-Packard product that performs system backup rou-
tines. An attacker can manipulate the product to cause a denial-of-ser-
vice attack.

There is a vulnerability in the configuration of Dosemu, the DOS emula-
tor shipped with Corel Linux 1.0, that allows users to execute
commands with root privileges.

By manipulating the contents of certain variables, an attacker can exploit a
vulnerability in DNSTools 1.0.8 to execute arbitrary code.

SGI has a package called InfoSearch that automatically converts text docu-
mentation to HTML Web content. A bug in the CGI script allows
attackers to execute commands on the server at the Web server privi-
lege level.

Several vulnerabilities were discovered in the e-mail client The Bat!,
allowing an attacker to steal files from users’ computers.

Introduction 3
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Microsoft’s Clip Art Gallery lets users download clip art files from the
Web. Under certain conditions, a malformed clip art file can let arbi-
trary code execute on the user’s computer.

If you send a long login name and password (even an incorrect one) to
BisonWare’s FTP Server 3.5, it will crash.

An intruder can crash Windows 95 and 98 computers using specially
coded URLs.

Here is a list of the 65 Web sites known to be defaced during the
month, as listed at the attrition.org Web site. In this context, “defaced”
means that someone broke into the Web site and modified the home
page: 

Tee Plus; Suede Records; Masan City Hall; The Gallup Organization;
Wired Connection; Vanier College; Name Our Child; Mashal Books;
Laboratório de Matemática Aplicada da Universidade Federal do Rio de
Janeiro; Elite Calendar; Centro de Processamento de Dados do Rio de
Janeiro; Parliament of India; United Network for Organ Sharing; UK
Jobs; Tennessee State University; St. Louis Metropolitan Sewer District;
College of the Siskiyous; Russian Scientific Center for Legal Informa-
tion, Ministry of Justice; RomTec Plc; Race Lesotho; Monmouth Col-
lege; University of St. Thomas Library; Int Idea Sweden; Goddard
College; Association of EDI Users; Bitstop, Inc; Custom Systems; Clas-
sic Amiga; 98 Skate; CU Naked; Korea National University of Educa-
tion; PlayStation 2; Association for Windows NT System Professionals;
K.Net Telecomunicações Ltda.; CyberCT Malaysia; Birmingham
Windows NT User Group; Bloem S.A.; Aware, Inc.; Ahmedabad
Telephone Online Directory, Ahmedabad Telecom District; Fly Pak-
istan; Quality Business Solutions; Out; Internet Exposure; Belgium
Province de Hainaut; Glen Cove School District; Germantown Acad-
emy; Federatie van Wervings en Selectiebureaus; Engineering Export
Promotion Council, Ministry of Commerce, India; AntiOnline’s Anti-
Code; Pigman; Lasani; What Online; Weston High School; Vasco
Boutique; True Systems; Siemens Italy; Progress Korea; Phase Devices
Ltd.; National Treasury Employees Union; National Postal Mail
Handlers Union; Metricks; Massachusetts Higher Education Network;
The London Institute; Fort Campbell School System; and MaxiDATA
Tecnologia e Informatica Ltda.
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And finally, attacks against a home computer, attached to the Internet via
a cable modem, belonging to a random friend of mine:

• Twenty-six scans, looking for vulnerabilities to exploit.
• Four particularly determined attempts at breaking into the computer, includ-

ing basic vulnerability scans and piles of other crafty hacker tricks.

Actually, the lists only run through March 7, 2000. I got tired of keeping
records after that.

Looking over this list, what strikes me is the wide array of problems,
vulnerabilities, and attacks. Some of these vulnerabilities are in supposedly
secure software products; one is even in a security product. Some of them
are in e-commerce systems that were probably designed with security in
mind. Some of them are in new products, others are in products that have
been sold for years. Sometimes the vendor doesn’t even agree that there
is a problem.

The first seven days of March 2000 were not exceptional. Other
weeks would have similar logs; some would have much worse. In fact,
data portend that things are getting worse: The number of security vul-
nerabilities, breaches, and disasters is increasing over time. Even as we
learn more about security—how to design cryptographic algorithms, how
to build secure operating systems—we build things with less security.
Why this is so, and what can be done about it, is the subject of this book.

SYSTEMS

The notion of a “system” is relatively new to science. Eastern philoso-
phers have long seen the world as a single system with various compo-
nents, but Westerners have segmented the world into separate things that
interact in different ways. 

Machines have only recently become systems. A pulley is a machine;
an elevator is a complex system with many different machines. Systems
interact: An elevator interacts with the building’s electrical system, its fire-
control system, and probably even its environmental control system.
Computers interact to form networks, and networks interact to form
even larger networks, and . . . you get the idea.

Introduction 5
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Admiral Grace Hopper said: “Life was simple before World War II.
After that, we had systems.” This is an insightful comment.

Once you start conceptualizing systems, it’s possible to design and
build on a more complex scale. It’s the difference between a building and
a skyscraper, a cannon and a Patriot missile, a landing strip and an airport.
Anyone can build a traffic light, but it takes a different mindset to
conceive of a citywide traffic control system.

The Internet is probably the most complex system ever developed. It
contains millions of computers, connected in an inconceivably complex
physical network. Each computer has hundreds of software programs run-
ning on it; some of these programs interact with other programs on the
computer, some of them interact with other programs on other comput-
ers across the network. The system accepts user input from millions of
people, sometimes all at the same time.

As the man said: “Sir, it is like a dog standing upon his hind legs, you
are not surprised to see it not done well, you are surprised to see it done
at all.” 

Systems have several interesting properties relevant to this book.
First, they are complex. Machines are simple: a hammer, a door

hinge, a steak knife. Systems are much more complicated; they have com-
ponents, feedback loops, mean times between failure, infrastructure.
Digital systems are daedal; even a simple computer program has hundreds
of thousands of lines of computer code doing all sorts of different things.
A complex computer program has thousands of components, each of
which has to work by itself and in interaction with all the other
components. This is why object-oriented programming was developed:
to deal with the complexity of digital systems.

Second, systems interact with each other, forming even larger sys-
tems. This can happen on purpose—programmers use objects to deliber-
ately break large systems down into smaller systems, engineers break large
mechanical systems into smaller subsystems, and so on—and it can happen
naturally. The invention of the automobile led to the development of the
modern system of roads and highways, and this in turn interacted with
other systems in our daily lives to produce the suburb. The air-
traffic control system interacts with the navigation systems on aircrafts,
and the weather prediction system. The human body interacts with other
human bodies and with the other systems on the planet. The Internet has
intertwined itself with almost every major system in our society.

6 C H A P T E R  O N E
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Third, systems have emergent properties. In other words, they do
things that are not anticipated by the users or designers. The telephone
system, for example, changed the way people interact. (Alexander
 Graham Bell had no idea that a telephone was a personal communications
device; he thought you could use it to call ahead to warn that a telegram
was coming.) Automobiles changed the way people meet, date, and fall in
love. Environmental-control systems in buildings have effects on people’s
health, which affects the health care system. Word processing systems
have changed the way people write. The Internet is full of emergent
properties; think about eBay, virtual sex, collaborative authoring.

And fourth, systems have bugs. A bug is a particular kind of failure.
It’s an emergent property of a system, one that is not desirable. It’s differ-
ent from a malfunction. When something malfunctions, it no longer
works properly. When something has a bug, it misbehaves in a particular
way, possibly unrepeatable, and possibly unexplainable. Bugs are unique
to systems. Machines can break, or fail, or not work, but only a system can
have a bug.

SYSTEMS AND SECURITY

These properties all have profound effects on the security of systems.
Finessing the precise definition of secure for now, the reason that it is so
hard to secure a complex system like the Internet is, basically, because it’s
a complex system. Systems are hard to secure, and complex systems are
that much more operose.

For computerized systems, the usual coping mechanism is to ignore
the system and concentrate on the individual machines . . . the technolo-
gies. This is why we have lots of work on security technologies like cryp-
tography, firewalls, public-key infrastructures, and tamper-resistance.
These technologies are much easier to understand and to discuss, and
much easier to secure. The conceit is that these technologies can mysti-
cally imbue the systems with the property of <reverence type =

“hushed”> Security </reverence>.
This doesn’t work, and the results can be seen in my security log from

seven days of March 2000. Most of the security events can be traced to
one or more of the four system properties previously listed.

Introduction 7
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Complex. The security problem with Windows 2000’s Active Directory can
be directly traced to the complexity of any computer-based directory
system. This is why I believe it is a design flaw; Microsoft made a design
decision that facilitated usability, but hurt security.

Interactive. An interaction between the software on Intuit’s Web site and
the software that DoubleClick uses to display ads to Web users resulted in
information leaking from one to the other.

Emergent. According to the news story, Sony programmers had no idea
why credit card information leaked from one user to another. It just hap-
pened. 

Bug Ridden. The vulnerability in Netscape Enterprise Server 3.6 was
caused by a programming bug. An attacker could exploit the bug to cause
a security problem.

Many pages of this book (Part 3 in particular) are devoted to explaining in
detail why security has to be thought of as a system within larger systems,
but I’d like you to keep two things in mind from the beginning.

The first is the relationship between security theory and security
practice. There has been a lot of work on security theory: the theory of
cryptography, the theory of firewalls and intrusion detection, the theory
of biometrics. Lots of systems are fielded with great theory, but fail in
practice.

Yogi Berra once said, “In theory there is no difference between the-
ory and practice. In practice there is.”

Theory works best in ideal conditions and laboratory settings. A
common joke from my college physics class was to “assume a spherical
cow of uniform density.” We could only make calculations on idealized
systems; the real world was much too complicated for the theory. Digital
system security is the same way: We can design idealized operating sys-
tems that are provably secure, but we can’t actually build them to work
securely in the real world. The real world involves design trade-offs,
unseen variables, and imperfect implementations.

Real-world systems don’t lend themselves to theoretical solutions;
thinking they do is old-school reductionist. It only works if the spherical
cow has the same emergent properties as the real Holstein. It often
doesn’t, and that’s why scientists are not engineers.

The second thing to keep in mind is the relationship between pre-
vention, detection, and reaction. Good security encompasses all three: a
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vault to protect the lucre, alarms to detect the burglars trying to open the
vault, and police that respond to the alarms and arrest the burglars.
Digital security tends to rely wholly on prevention: cryptography, fire-
walls, and so forth. There’s generally no detection, and there’s almost
never any response or auditing. A prevention-only strategy only works if
the prevention mechanisms are perfect; otherwise, someone will figure
out how to get around them. Most of the attacks and vulnerabilities listed
in this chapter were the result of bypassing the prevention mechanisms.
Given this reality, detection and response are essential. 
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PART 1

THE LANDSCAPE
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Computer security is often advertised in the abstract: “This system is
secure.” A product vendor might say: “This product makes your network
secure.” Or: “We secure e-commerce.” Inevitably, these claims are naïve
and simplistic. They look at the security of the product, rather than the
security of the system. The first questions to ask are: “Secure from
whom?” and “Secure against what?”

They’re real questions. Imagine a vendor selling a secure operating
system. Is it secure against a hand grenade dropped on top of the CPU?
Against someone who positions a video camera directly behind the key-
board and screen? Against someone who infiltrates the company?
Probably not; not because the operating system is faulty, but because
someone made conscious or unconscious design decisions about what
kinds of attacks the operating system was going to prevent (and could pos-
sibly prevent) and what kinds of attacks it was going to ignore.

Problems arise when these decisions are made without consideration.
And it’s not always as palpable as the preceding example. Is a secure
telephone secure against a casual listener, a well-funded eavesdropper, or
a national intelligence agency? Is a secure banking system secure against
consumer fraud, merchant fraud, teller fraud, or bank manager fraud?
Does that other product, when used, increase or decrease the security of
whatever needs to be secured? Exactly what a particular security technol-
ogy does, and exactly what it does not do, is just too abstruse for many
people.

Security is never black and white, and context matters more than
technology. Just because a secure operating system won’t protect against
hand grenades doesn’t mean that it is useless; it just means that we can’t
throw away our walls and door locks and window bars. Different security
technologies have important places in an overall security solution. A sys-
tem might be secure against the average criminal, or a certain type of
industrial spy, or a national intelligence agency with a certain skill set. A
system might be secure as long as certain mathematical advances don’t
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occur, or for a certain period of time, or against certain types of attacks.
Like any adjective, “secure” is meaningless out of context.

In this section, I attempt to provide the basis for this context. I talk
about the threats against digital systems, types of attacks, and types of
attackers. Then I talk about security desiderata. I do this before discussing
technology because you can’t intelligently examine security technologies
without an awareness of the landscape. Just as you can’t understand how
a castle defended a region without immersing yourself in the medieval
world in which it operated, you can’t understand a firewall or an
encrypted Internet connection outside the context of the world in which
it operates. Who are the attackers? What do they want? What tools are at
their disposal? Without a basic understanding of these things, you can’t
reasonably discuss how secure anything is.

The Landscape 13
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2

Digital Threats

The world is a dangerous place. Muggers are poised to jump you
if you walk down the wrong darkened alley, con artists are
scheming to relieve you of your retirement fund, and co-work-

ers are out to ruin your career. Organized crime syndicates are spreading
corruption, drugs, and fear with the efficiency of Fortune 500 companies.
There are crazed terrorists, nutty dictators, and uncontrollable remnants
of former superpowers with more firepower than sense. And if you
believe the newspapers at your supermarket’s checkout counter, there are
monsters in the wilderness, creepy hands from beyond the grave, and evil
space aliens carrying Elvis’s babies. Sometimes it’s amazing that we’ve
survived this long, let alone built a society stable enough to have these
discussions.

The world is also a safe place. While the dangers in the industrialized
world are real, they are the exceptions. This can sometimes be hard to
remember in our sensationalist age—newspapers sell better with the
headline “Three Shot Dead in Random Act of Violence” than “Two
Hundred and Seventy Million Americans have Uneventful Day”—but it
is true. Almost everyone walks the streets every day without getting
mugged. Almost no one dies by random gunfire, gets swindled by flim-
flam men, or returns home to crazed marauders. Most businesses are not
the victims of armed robbery, rogue bank managers, or workplace vio-
lence. Less than one percent of eBay transactions—unmediated long-
 distance deals between strangers—result in any sort of complaint.
People are, on the whole, honest; they generally adhere to an implicit
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social contract. The general lawfulness in our society is high; that’s why it
works so well.

(I realize that the previous paragraph is a gross oversimplification of a
complex world. I am writing this book in the United States at the turn of
the millennium. I am not writing it in Sarajevo, Hebron, or Rangoon.
I have no experiences that can speak to what it is like to live in such a
place. My personal expectations of safety come from living in a stable
democracy. This book is about the security from the point of view of the
industrialized world, not the world torn apart by war, suppressed by secret
police, or controlled by criminal syndicates. This book is about the
relatively minor threats in a society where the major threats have been
dealt with.)

Attacks, whether criminal or not, are exceptions. They’re events that
take people by surprise, that are “news” in its real definition. They’re
disruptions in the society’s social contract, and they disrupt the lives of the
victims.

THE UNCHANGING NATURE OF ATTACKS

If you strip away the technological buzzwords and graphical user inter-
faces, cyberspace isn’t all that different from its flesh-and-blood, bricks-
and-mortar, atoms-not-bits, real-world counterpart. Like the physical
world, people populate it. These people interact with others, form com-
plex social and business relationships, live and die. Cyberspace has com-
munities, large and small. Cyberspace is filled with commerce. There are
agreements and contracts, disagreements and torts.

And the threats in the digital world mirror the threats in the physical
world. If embezzlement is a threat, then digital embezzlement is also a
threat. If physical banks are robbed, then digital banks will be robbed.
Invasion of privacy is the same problem whether the invasion takes
the form of a photographer with a telephoto lens or a hacker 
who can eavesdrop on private chat sessions. Cyberspace crime includes
everything you’d expect from the physical world: theft, racketeering,
vandalism, voyeurism, exploitation, extortion, con games, fraud. There is
even the threat of physical harm: cyberstalking, attacks against the air
traffic control system, etc. To a first approximation, online society is the
same as offline society. And to the same first approximation, attacks
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against digital systems will be the same as attacks against their analog ana-
logues.

This means we can look in the past to see what the future will hold.
The attacks will look different—the burglar will manipulate digital con-
nections and database entries instead of lockpicks and crowbars, the ter-
rorist will target information systems instead of airplanes—but the
motivation and psychology will be the same. It also means we don’t need
a completely different legal system to deal with the future. If the future is
like the past—except with cooler special effects—then a legal system that
worked in the past is likely to work in the future.

Willie Sutton robbed banks because that was where the money was.
Today, the money isn’t in banks; it’s zipping around computer networks.
Every day, the world’s banks transfer billions of dollars among themselves
by simply modifying numbers in computerized databases. Meanwhile, the
average physical bank robbery grosses a little over fifteen hundred dollars.
And cyberspace will get even more enticing; the dollar value of electronic
commerce gets larger every year.

Where there’s money, there are criminals. Walking into a bank or a
liquor store wearing a ski mask and brandishing a .45 isn’t completely
passé, but it’s not the preferred method of criminals drug-free enough to
sit down and think about the problem. Organized crime prefers to attack
large-scale systems to make a large-scale profit. Fraud against credit cards
and check systems has gotten more sophisticated over the years, as
defenses have gotten more sophisticated. Automatic teller machine
(ATM) fraud has followed the same pattern. If we haven’t seen wide-
spread fraud against Internet payment systems yet, it’s because there isn’t
a lot of money to be made there yet. When there is, criminals will be
there trying. And if history is any guide, they will succeed.

Privacy violations are nothing new, either. An amazing array of legal
paperwork is public record: real estate transactions, boat sales, civil and
criminal trials and judgments, bankruptcies. Want to know who owns
that boat and how much he paid for it? It’s a matter of public record. Even
more personal information is held in the 20,000 or so (in the United
States) personal databases held by corporations: financial details, medical
information, lifestyle habits.

Investigators (private and police) have long used this and other data to
track down people. Even supposedly confidential data gets used in this
fashion. No TV private investigator has survived half a season without a
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friend in the local police force willing to look up a name or a license plate
or a criminal record in the police files. Police routinely use industry
databases. And every few years, some bored IRS operator gets caught
looking up the tax returns of famous people.

Marketers have long used whatever data they could get their hands on
to target particular people and demographics. In the United States, per-
sonal data do not belong to the person whom the data are about, they
belong to the organization that collected it. Your financial information
isn’t your property, it’s your bank’s. Your medical information isn’t yours,
it’s your doctor’s. Doctors swear oaths to protect your privacy, but insur-
ance providers and HMOs do not. Do you really want everyone to know
about your heart defect or your family’s history of glaucoma? How about
your bout with alcoholism, or that embarrassing brush with venereal
disease two decades ago?

Privacy violations can easily lead to fraud. In the novel Paper Moon,
Joe David Brown wrote about the Depression-era trick of selling bibles
and other merchandise to the relatives of the recently deceased. Other
scams targeted the mothers and widows of overseas war dead—“for only
pennies a day we’ll care for his grave”—and people who won sweep-
stakes. In many areas in the country, public utilities are installing
telephone-based systems to read meters: water, electricity, and the like.
It’s a great idea, until some enterprising criminal uses the data to track
when people go away on vacation. Or when they use alarm monitoring
systems that give up-to-the-minute details on building occupancy.
Wherever data can be exploited, someone will try it, computers or no
computers.

Nothing in cyberspace is new. Child pornography: old hat. Money
laundering: seen it. Bizarre cults offering everlasting life in exchange for
your personal check: how déclassé. The underworld is no better than
businesspeople at figuring out what the Net is good for; they’re just
repackaging their old tricks for the new medium, taking advantage of the
subtle differences and exploiting the Net’s reach and scalability.

THE CHANGING NATURE OF ATTACKS

The threats may be the same, but cyberspace changes everything.
Although attacks in the digital world might have the same goals and share
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a lot of the same techniques as attacks in the physical world, they will be
very different. They will be more common. They will be more wide-
spread. It will be harder to track, capture, and convict the perpetrators.
And their effects will be more devastating. The Internet has three new
characteristics that make this true. Any one of them is bad; the three
together are horrifying.

Automation

Automation is an attacker’s friend. If a sagacious counterfeiter invented a
method of minting perfect nickels, no one would care. The counterfeiter
couldn’t make enough phony nickels to make it worth the time and
effort. Phone phreaks were able to make free local telephone calls from
payphones pretty much at will from 1960 until the mid-1980s. Sure, the
phone company was annoyed, and it made a big show about trying to
catch these people—but they didn’t affect its bottom line. You just can’t
steal enough 10-cent phone calls to affect the earnings-per-share of a
multibillion-dollar company, especially when the marginal cost of goods
is close to zero.

In cyberspace, things are different. Computers excel at dull, repetitive
tasks. Our counterfeiter could mint a million electronic nickels while he
sleeps. There’s the so-called salami attack of stealing the fractions of
pennies, one slice at a time, from everyone’s interest-bearing accounts;
this is a beautiful example of something that just would not have been
possible without computers.

If you had a great scam to pick someone’s pocket, but it only worked
once every hundred thousand tries, you’d starve before you robbed any-
one. In cyberspace, you can set your computer to look for the one-in-a-
hundred-thousand chance. You’ll probably find a couple dozen every
day. If you can enlist other computers, you might get hundreds.

Fast automation makes attacks with a minimal rate of return prof-
itable. Attacks that were just too marginal to notice in the physical world
can quickly become a major threat in the digital world. Many commer-
cial systems just don’t sweat the small stuff; it’s cheaper to ignore it than to
fix it. They will have to think differently with digital systems.

Cyberspace also opens vast new avenues for violating someone’s pri-
vacy, often simply a result of automation. Suppose you have a marketing
campaign tied to rich, penguin-loving, stamp-collecting Elbonians with
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children. It’s laborious to walk around town and find wealthy Elbonians
with children, who like penguins, and are interested in stamps. On the
right computer network, it’s easy to correlate a marketing database of zip
codes of a certain income with birth or motor vehicle records, posts to
rec.collecting.stamps, and penguin-book purchases at Amazon.com. The
Internet has search tools that can collect every Usenet posting a person
ever made. Paper data, even if it is public, is hard to search and hard to
correlate. Computerized data can be searched easily. Networked data can
be searched remotely and correlated with other databases.

Under some circumstances, looking at this kind of data is illegal.
People, often employees, have been prosecuted for peeking at confiden-
tial police or IRS files. Under other circumstances, it’s called data mining
and is entirely legal. For example, the big credit database companies,
Experian (formerly TRW), TransUnion, and Equifax, have mounds of
data about nearly everyone in the United States. These data are collected,
collated, and sold to anyone willing to pay for it. Credit card databases
have a mind-boggling amount of information about individuals’ spending
habits: where they shop, where they eat, what kind of vacations they
take—it’s all there for the taking. DoubleClick is trying to build a database
of individual Web-surfing habits. Even grocery stores are giving out fre-
quent shopper cards, allowing them to collect data about the food-buying
proclivities of individual shoppers. Acxiom is a company that specializes
in the aggregation of public and private databases.

The news here is not that the data are out there, but how easily they
can be collected, used, and abused. And it will get worse: More data are
being collected. Banks, airlines, catalog companies, medical insurers are all
saving personal information. Many Web sites collect and sell personal
data. And why not? Data storage is cheap, and maybe it will be useful
some day. These diverse data archives are moving onto the public
networks. And more and more data are being combined and cross-refer-
enced. Automation makes it all easy.

Action at a Distance

As technology pundits like to point out, the Internet has no borders or
natural boundaries. Every two points are adjacent, whether they are across
the hall or across the planet. It’s just as easy to log on to a computer in
Tulsa from a computer in Tunisia as it is from one in Tallahassee. Don’t
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like the censorship laws or computer crime statutes in your country? Find
a country more to your liking. Countries like Singapore have tried to
limit their citizens’ abilities to search the Web, but the way the Internet is
built makes blocking off parts of it unfeasible. As John Gilmore opined,
“The Internet treats censorship as damage and routes around it.”

This means that Internet attackers don’t have to be anywhere near
their prey. An attacker could sit behind a computer in St. Petersburg and
attack Citibank’s computers in New York. This has enormous security
implications. If you were building a warehouse in Buffalo, you’d only
have to worry about the set of criminals who would consider driving to
Buffalo and breaking into your warehouse. Since on the Internet every
computer is equidistant from every other computer, you have to worry
about all the criminals in the world.

The global nature of the Internet complicates criminal investigation
and prosecution, too. Finding attackers adroit at concealing their where-
abouts can be near impossible, and even if you do find them, what do you
do then? And crime is only defined with respect to political borders. But
if the Internet has no physical “area” to control, who polices it?

So far, every jurisdiction that possibly can lay a claim to the Internet
has tried to. Does the data originate in Germany? Then it is subject to
German law. Does it terminate in the United States? Then it had better
suit the American government. Does it pass through France? If so, the
French authorities want a say in qu’il s’est passé. In 1994, the operators of
a computer bulletin board system (BBS) in Milpitas, California—where
both the people and the computers resided—were tried and convicted in
a Tennessee court because someone in Tennessee made a long-distance
telephone call to California and downloaded dirty pictures that were
found to be acceptable in California but indecent in Tennessee. The bul-
letin board operators never set foot in Tennessee before the trial. In July
1997, a 33-year old woman was convicted by a Swiss court for sending
pornography across the Internet—even though she had been in the
United States since 1993. Does this make any sense?

In general, though, prosecuting across jurisdictions is incredibly diffi-
cult. Until it’s sorted out, criminals can take advantage of the confusion as
a shield. In 1995, a 29-year-old hacker from St. Petersburg, Russia, made
$12 million breaking into Citibank’s computers. Citibank eventually dis-
covered the break and recovered most of the money, but had trouble
extraditing the hacker to stand trial.
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This difference in laws among various states and countries can even
lead to a high-tech form of jurisdiction shopping. Sometimes this can
work in the favor of the prosecutor, because this is exactly what the Ten-
nessee conviction of the California BBS was. Other times it can work in
the favor of the criminal: Any organized crime syndicate with enough
money to launch a large-scale attack against a financial system would do
well to find a country with poor computer crime laws, easily bribable
police officers, and no extradition treaties.

Technique Propagation

The third difference is the ease with which successful techniques can
propagate through cyberspace. HBO doesn’t care very much if someone
can build a decoder in his basement. It requires time, skill, and some
money. But what if that person published an easy way for everyone to get
free satellite TV? No work. No hardware. “Just punch these seven digits
into your remote control, and you never have to pay for cable TV again.”
That would increase the number of nonpaying customers to the millions,
and could significantly affect the company’s profitability.

Physical counterfeiting is a problem, but it’s a manageable problem.
Over two decades ago, we sold the Shah of Iran some of our old intaglio
printing presses. When Ayatollah Khomeini took over, he realized that it
was more profitable to mint $100 bills than Iranian rials. The FBI calls
them supernotes, and they’re near perfect. (This is why the United States
redesigned its currency.) At the same time the FBI and the Secret Service
were throwing up their hands, the Department of the Treasury did some
calculating: The Iranian presses can only print so much money a minute,
there are only so many minutes in a year, so there’s a maximum to the
amount of counterfeit money they can manufacture. Treasury decided
that the amount of counterfeit currency couldn’t affect the money supply,
so it wasn’t a serious concern to the nation’s stability.

If the counterfeiting were electronic, it would be different. An elec-
tronic counterfeiter could automate the hack and publish it on some Web
site somewhere. People could download this program and start unde-
tectably counterfeiting electronic money. By morning it could be in the
hands of 1,000 first-time counterfeiters; another 100,000 could have it in
a week. The U.S. currency system could collapse in a week.
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Instead of there being a maximum limit to the damage this attack can do,
in cyberspace, damage could grow exponentially.

The Internet is also a perfect medium for propagating successful attack
tools. Only the first attacker has to be skilled; everyone else can use his
software. After the initial attacker posts it to an archive—conveniently
located in some backward country—anyone can download and use it.
And once the tool is released, it can be impossible to control.

We’ve seen this problem with computer viruses: Dozens of sites let
you download computer viruses, computer virus construction kits, and
computer virus designs. And we’ve seen the same problem with hacking
tools: software packages that break into computers, bring down servers,
bypass copy protection measures, or exploit browser bugs to steal data
from users’ machines. Internet worms are already making floppy-disk-
borne computer viruses look like quaint amusements. It took no skill to
launch the wave of distributed denial-of-service attacks against major
Web sites in early 2000; all it took was downloading and running a script.
And when digital commerce systems are widespread, we’ll see automated
attacks against them too.

Computer-based attacks mean that criminals don’t need skill to
succeed.

PROACTION VS. REACTION

Traditionally, commerce systems have played catch-up in response to
fraud: online credit card verification in response to an increase in credit
card theft, other verification measures in response to check fraud. This
won’t work on the Internet, because Internet time moves too quickly.
Someone could figure out a successful attack against an Internet credit
card system, write a program to automate it, and within 24 hours it could
be in the hands of half a million people all over the world—many of them
impossible to prosecute. I can see a security advisor walking into the
CEO’s office and saying: “We have two options. We can accept every
transaction as valid, both the legitimate and fraudulent ones, or we can
accept none of them.” The CEO would be stuck with this Hobson’s
choice.
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3

Attacks

I’m going to discuss three broad classes of attacks. Criminal attacks are
the most obvious, and the type that I’ve focused on. But the
others—publicity attacks and legal attacks—are probably more

damaging.

CRIMINAL ATTACKS

Criminal attacks are easy to understand: “How can I acquire the maxi-
mum financial return by attacking the system?” Attackers vary, from lone
criminals to sophisticated organized crime syndicates, from insiders
looking to make a fast buck to foreign governments looking to wage war
on a country’s infrastructure.

Fraud

Fraud has been attempted against every commerce system ever invented.
Unscrupulous merchants have used rigged scales to shortchange their cus-
tomers; people have shaved silver and gold off the rims of coins. Every-
thing has been counterfeited: currency, stock certificates, credit cards,
checks, letters of credit, purchase orders, casino chips. Modern financial
systems—checks, credit cards, and automatic teller machine networks—
each rack up multi-million-dollar fraud losses per year. Electronic com-
merce will be no different; neither will the criminals’ techniques.
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Scams

According to the National Consumers League, the five most common
online scams are sale of Internet services, sale of general merchandise,
auctions, pyramid and multilevel marketing schemes, and business oppor-
tunities. People read some enticing e-mail or visit an enticing Web site,
send money off to some post office box for some reason or another, and
end up either getting nothing in return or getting stuff of little or no
value. Sounds just like the physical world: Lots of people get burned.

Destructive Attacks

Destructive attacks are the work of terrorists, employees bent on revenge,
or hackers gone over to the dark side. Destruction is a criminal attack—
it’s rare that causing damage to someone else’s property is legal—but there
is often no profit motive. Instead, the attacker asks: “How can I cause the
most damage by attacking this system?”

There are many different kinds of destructive attacks. In 1988, some-
one wrote a computer virus specifically targeted against computers owned
by Electronic Data Systems. It didn’t do too much damage (actually, it did
more damage to NASA), but the idea was there. In early 2000, we
watched distributed denial-of-service attacks against Yahoo!, Ama-
zon.com, E*Trade, Buy.com, CNN, and eBay. A deft attacker could
probably keep an ISP down for weeks. In fact, a hacker with the right
combination of skills and morals could probably take down the Internet.

At the other end of the spectrum, driving a truck bomb through a
company’s front window works too. The United States’ attacks against
Iraqi communications systems in the Persian Gulf are probably the best
example of this. The French terrorist group Comité Liquidant ou
Détournant les Ordinateurs (Computer Liquidation and Deterrence
Committee) bombed computer centers in the Toulouse region in the
early 1980s. More spectacular was the burning of the Library of Alexan-
dria in 47 B.C. (by Julius Caesar), in A.D. 391 (by the Christian emperor
Theodosius I), and in A.D. 642 (by Omar, Caliph of Baghdad): All excel-
lent lessons in the importance of off-site backups.

Intellectual Property Theft

Intellectual property is more than trade secrets and company databases. It’s
also electronic versions of books, magazines, and newspapers; digital
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videos, music, and still images; software; and private databases available to
the public for a fee. The difficult problem here is not how to keep private
data private, but how to maintain control and receive appropriate
compensation for proprietary data while making it public.

Software companies want to sell their software to legitimate buyers
without pirates making millions of illegal copies and selling them (or
giving them away) to others. In 1997, the Business Software Alliance had
a counter on its Web page that charted the industry’s losses due to piracy:
$482 a second, $28,900 a minute, $1.7 million an hour, $15 billion a year.
These numbers were inflated, since they make the mendacious assump-
tion that everyone who pirates a copy of (for example) Autodesk’s 3D
Studio MAX would have otherwise paid $2,995—or $3,495 if you use
the retail price rather than the street price—for it. The prevalence of
software piracy greatly depends on the country: It is thought that 95
percent of the software in the People’s Republic of China is pirated, while
only 50 percent of the software in Canada is pirated. (Vietnam wins, with
98 percent pirated software.) Software companies, rightfully so, are miffed
at these losses.

Piracy happens on different scales. There are disks shared between
friends, downloads from the Internet (search under warez to find out more
about this particular activity), and large-scale counterfeiting operations
(usually run in the Far East).

Piracy also happens to data. Whether it’s pirated CDs of copyrighted
music hawked on the backstreets of Bangkok or MP3 files of copyrighted
music peddled on the Web, digital intellectual property is being stolen all
the time. (And, of course, this applies to digital images, digital video, and
digital text just as much.)

The common thread here is that companies want to control the dis-
semination of their intellectual property. This attitude, while perfectly
reasonable, is contrary to what the digital world is all about. The physics
of the digital world is different: Unlike physical goods, information can be
in two places at once. It can be copied infinitely. Someone can both give
away a piece of information and retain it. Once it is dispersed hither and
thither, it can be impossible to retrieve. If a digital copy of The Lion King
ever gets distributed over the Internet, Disney will not be able to delete
all the copies.

Unauthorized copying is not a new problem; it’s as old as the
recording industry. In school, I had cassette tapes of music I couldn’t
afford to buy; so did everyone else I knew. Taiwan and Thailand have
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long been a source of counterfeit CDs. The Russian Mafia has become a
player in the pirated video industry, and the Chinese triads are becoming
heavily involved in counterfeit software. Industry losses were estimated to
be $11 billion per year, although the number is probably based on some
imaginative assumptions, too.

Digital content has no magic immunity from counterfeiters. In fact,
it’s unique in that it can be copied perfectly. Unlike my cassette tapes, an
illegal DVD of The Lion King or a software product isn’t degraded in
quality; it’s another original. Counteracting that is like trying to make
water not wet; it just doesn’t work.

Identity Theft

Why steal from someone when you can just become that person? It’s far
easier, and can be much more profitable, to get a bunch of credit cards in
someone else’s name, run up large bills, and then disappear. It’s called
identity theft, and it’s a high-growth area of crime. One Albuquerque,
New Mexico, criminal ring would break into homes specifically to col-
lect checkbooks, credit card statements, receipts, and other financial mail,
looking for Social Security numbers, dates of birth, places of work, and
account numbers.

This is scary stuff, and it happens all the time. There were thousands
of cases of identity theft reported in the United States during 1999 alone.
Dealing with the aftermath can be an invasive and exhaustive experience.

It’s going to get worse. As more identity recognition goes electronic,
identity theft becomes easier. At the same time, as more systems use
electronic identity recognition, identity theft becomes more profitable
and less risky. Why break into someone’s house if you can collect the
necessary identity information online?

And people are helpful. They give out sensitive information to any-
one who asks; many print their driver’s license numbers on their checks.
They throw away bills, bank statements, and so forth. They’re too trust-
ing.

For a long time, we’ve gotten by with an ad hoc system of remote
identity. “Mother’s maiden name” never really worked as an identifica-
tion system (especially now, given the extensive public databases on
genealogical Web sites). Still, the fiction worked as long as criminals
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 didn’t take too much advantage of it. That’s history now, and we’ll never
get back to that point again.

Brand Theft

Virtual identity is vital to businesses as well as individuals. It takes time and
money to develop a corporate identity. This identity is more than logos
and slogans and catchy jingles. It’s product, bricks-and-mortar buildings,
customer service representatives—things to touch, people to talk to.
Brand equals reputation.

On the Internet, the barrier to entry is minimal. Anyone can have a
Web site, from Citibank to Fred’s Safe-Money Mattress. And everyone
does. How do users know which sites are worth visiting, worth book-
marking, worth establishing a relationship with? Thousands of companies
sell PCs on the Web. Who is real, and who is fly-by-night?

Branding is the only answer to this question. When the Web first
entered the public eye, pundits claimed that it heralded the end of the big
brand. Because anyone could go on the Web and compete with the big
names, brands were meaningless. The reality is exactly the opposite. Since
anyone can go on the Web and compete with the big names, the only
way to tell products apart is by their brands. Users look at brands, and they
return to the sites they trust. A brand has real value, and it’s worth
stealing.

An example: A Malaysian company wanted to market condoms using
the “Visa” brand. They claimed that it had nothing to do with the credit
card company, but was a pun on “permit to entry.” Visa was unamused,
and sued. It won, and I believe this ruling has profound implications for
brand ownership.

Cyberspace has many opportunities for brand theft. In 1998, someone
forged a domain-name transfer request to Network Solutions and stole
sex.com; the original owner is still trying to get it back. Another recent
case involved a plumber who rerouted customer phone calls for another
plumber to his own number. Organized crime syndicates in Las Vegas
have done the same thing with escort-service phone numbers. This kind
of attack is nothing new. Almon Strowger was an undertaker in Kansas
City. He was convinced that telephone operators were rerouting tele-
phone calls to rival businesses, so he invented the dial telephone in 1887
to bypass the operators.
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Some merchants have designed their Web sites to steal traffic away
from other Web sites; this is known as page-jacking. Also on the net are
typo pirates, who register a domain name just a typo away from legitimate
Web sites. Many porn sites do that. Big companies are not above these
kinds of tactics: when MCI’s 1-800-COLLECT became popular, AT&T
set up a collect-calling service on 1-800-C0LLECT, with a zero instead
of the letter O, the most common misdial. MCI stooped to the same
tactic, registering 1-800-0PERATOR, with a zero instead of AT&T’s O.
Some of these tactics are illegal today; I expect more will be in the future.

Prosecution

Unfortunately, prosecution can be difficult in cyberspace. On the one
hand, the crimes are the same. Theft is illegal, whether analog or digital,
online or offline. So is trespassing, counterfeiting, racketeering, swindling,
stalking, and a criminal-code worth of other things. The laws against these
practices, complete with the criminal justice infrastructure to enforce
them, are already in place. Some new laws have been passed, specifically
for the digital world, but we don’t know the full ramifications of those
laws. The court system doesn’t work on Internet time. In the United
States, it can take a decade to erase a bad law, or to figure out how a law
should really be applied.

Over time, the laws will better reflect the reality of the digital world.
A few years ago, when a group of German hackers was caught breaking
into U.S. computer systems, the German government had no criminal
laws to charge them with. Today, some criminal statutes specifically make
it a crime to break into remote computer systems, because the old tres-
passing statues didn’t deal well with trespassers sitting comfortably in their
bedrooms while their computer commands “trespassed” via the tele-
phone network. Likewise, statutes on stalking, invasions of privacy, copy-
right, and solicitation are being modified for a world where things don’t
work exactly like they used to.

Eventually, people will realize that it doesn’t make sense to write laws
that are specific to a technology. Fraud is fraud, whether it takes place
over the U.S. mail, the telephone, or the Internet. A crime is no more or
less of a crime if cryptography is involved. (The New York sales clerk
who, in 1999, used a Palm Pilot to copy customers’ credit card numbers
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would be no less guilty if he used a pen and paper.) And extortion is no
better or worse if carried out using computer viruses or old-fashioned
compromising photos. Good laws are written to be independent of
technology. In a world where technology advances much faster than
con gressional sessions, this is what can work today. Faster and more
responsive mechanisms for legislation, prosecution, and adjudication . . .
maybe someday.

PRIVACY VIOLATIONS

Privacy violations are not necessarily criminal, but they can be. (They can
be a prelude to identity theft, for example.) In the United States, most
privacy violations are legal. People do not own their own data. If a credit
bureau or a marketing research firm collects data about you—your per-
sonal habits, your buying patterns, your financial status, your physical
health—it can sell it to anyone who wants it without your knowledge or
consent. It’s different elsewhere. Privacy laws in much of Europe (includ-
ing the European Union), Taiwan, New Zealand, and Canada are more
restrictive.

Other types of privacy violations are legal, too. Hiring a private inves-
tigator to collect information on a person or a company is legal, as long as
the investigator doesn’t use any illegal methods. All sorts of privacy viola-
tions by the police are legal with a warrant, and many are legal without.
(Did you know that in the United States police don’t need a warrant to
demand a copy of the photographs you dropped off for developing?)

There are two types of privacy violations—targeted attacks and data
harvesting—and they are fundamentally different. In a targeted attack, an
attacker wants to know everything about Alice. If “Alice” is a person, it’s
called stalking. If “Alice” is a company, it’s called industrial espionage.
If “Alice” is a government, it’s called national intelligence or spying.
All of these will get you thrown in jail if you use some techniques, but not
if you use others.

Computer security can protect Alice against a targeted attack, but
only up to a point. If attackers are well enough funded, they can always
get around computer security measures. They can install a bug in Alice’s
office, rummage through Alice’s trash, or spy with a telescope. Informa-
tion is information, and computer security only protects the information

Attacks 29

453803_Ch03.qxd:453803_Ch03.qxd  4/11/13  3:05 PM  Page 29



while it is on computers. What computer security protects against are
non-invasive attacks. It forces the attacker to get close to Alice and makes
privacy violations riskier, more expensive, and subject to different laws.

Data harvesting is the other type of privacy violation. This attack har-
nesses the power of correlation. Suppose an attacker wants a list of every
widow, 70 years or older, with more than $1 million in the bank, who has
given to more than eight charities in the past year, and who subscribes to
an astrological magazine. Or a list of everybody in the United States who
has been prescribed AZT. Or who views a particular socialist Web site.
Although con artists have collected names of people who might be sus-
ceptible to particular scams for over a century, the prevalence of databases
on the Internet allows them to automate and better target their searches.

Good cryptography and computer security can help protect against
data-harvesting attacks (assuming it is illegal to simply buy the data from
those who own the various databases) by making the collection problem
intractable. Data harvesting is worthwhile only because it can be auto-
mated; it makes no sense to sort through an entire neighborhood’s trash-
cans to cull a demographic. If all computerized data is protected, an
attacker doesn’t even know where to look. Even moderate levels of
cryptography can protect absolutely against data harvesting.

Surveillance

One hundred years ago, everyone could have personal privacy. You and
a friend could walk into an empty field, look around to see that no one
else was nearby, and have a level of privacy that has forever been lost. As
Whitfield Diffie has said: “No right of private conversation was enumer-
ated in the Constitution. I don’t suppose it occurred to anyone at the time
that it could be prevented.” The ability to have a private conversation,
like the ability to keep your thoughts in your head and the ability to fall
to the ground when pushed, was a natural consequence of how the world
worked.

Technology has demolished that world view. Powerful directional
microphones can pick up conversations hundreds of yards away. In the
aftermath of the MRTA terrorist group’s takeover of the Japanese
embassy in Peru (1997), news reports described audio bugs being hidden
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in shirt buttons that allowed police to pinpoint everyone’s location. Van
Eck devices can read what’s on your computer monitor from halfway
down the street. (Right now this is an expensive and complicated attack,
but just wait until wireless LANs become popular.) Pinhole cameras—
now being sold in electronics catalogs—can hide in the smallest cracks;
satellite cameras can read your license plate from orbit. And the Depart-
ment of Defense is prototyping micro air vehicles, the size of small birds
or butterflies, that can scout out enemy snipers, locate hostages in occu-
pied buildings, or spy on just about anybody.

The ability to trail someone remotely has existed for a while, but it is
only used in exceptional circumstances (except on TV). In 1993, Colom-
bian drug lord Pablo Escobar was identified partly by tracking him
through his cellular phone usage: a technique known as pinpointing. In
1996, the Russian Army killed Chechnyan leader Dzholar Dudayev with
an air-to-surface missile after pinpointing his location from the trans -
missions of his personal satellite phone. The FBI found the truck
belonging to the Oklahoma City federal building’s bomber because
agents collected the tapes from every surveillance camera in the city,
correlated them by time (the explosion acted as a giant synch pulse), and
looked for it. Invisible identification tags are printed on virtually all color
xerographic output, from all of the manufacturers. (These machines also
include anticounterfeiting measures, such as dumping extra cyan toner
onto images when the unit detects an attempt to copy U.S. currency.)
Explosives have embedded taggants.

The technology to automatically search for drug negotiations in ran-
dom telephone conversations, for suspicious behavior in satellite images,
or for faces on a “wanted list” of criminals in on-street cameras isn’t com-
monplace yet, but it’s just a matter of time. Face recognition will be able
to pick individual people out of a crowd. Voice recognition will be able
to scan millions of telephone calls listening for a particular person; it can
already scan for suspicious words or phrases and pick conversations out of
a crowd. Moore’s Law, which predicts the industry can double the
computing power of a microchip every 18 months, affects surveillance
computing just as it does everything else: The next generation will be
smaller, faster, a lot cheaper, and more easily available. As soon as the
recognition technologies isolate the people, the computers will be able to
do the searching.
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Storage is getting cheaper, too. We’re only a few generations away
from being able to record our entire lives—in audio and video—and save
the data. It could be introduced as a preemptive defense mechanism, “in
case you ever need to prove an alibi,” or a public-good mechanism,
because “you never know when you’ll be the witness to a crime.” Some-
day not wearing your life recorder may be cause for suspicion.

The surveillance infrastructure is being installed in our country under
the guise of “customer service.” Who hasn’t heard the ubiquitous message
that “this conversation may be monitored or recorded for quality assur-
ance purposes”? Some hotels track guest preferences in international data-
bases, so that customers will feel at home even if it is their first stay in a
particular city. High-end restaurants now have video cameras in the din-
ing room, to study diners’ eating habits and meal progress, and databases
of customer preferences. Amazon.com tracks the buying behavior of dif-
ferent demographic groups. Melissa virus writer David Smith was identi-
fied because Microsoft Word automatically embeds identity information
in all documents. Automatic toll-collection systems keep records of what
cars went through different tollbooths. In 2000, some cities started mea-
suring highway congestion by tracking motorists by their cell phones.
There’s a fine line between good customer service and stalking.

Sometimes there’s no customer-service spin: Credit card companies
keep detailed purchasing records so they can reduce fraud. Companies
monitor employee Web site surfing to limit abuse and liability. Many air-
ports record the license plates of everyone who uses the parking lot—
Denver International Airport records the plates of everyone who enters
airport grounds—as a security measure.

GPS, the satellite-based Global Positioning System, is a dream tech-
nology for surveillance. At least two companies are marketing a smart
automobile locator, based on GPS. One company is selling an automatic
warehouse inventory system, using GPS and affixable transmitters on
objects. The transmitters broadcast their location, and a central computer
keeps track of where everything is. Spies have probably been able to use
this kind of stuff for years, but it’s now a consumer item so Dad knows
where Junior is taking the car.

Individual privacy is being eroded from a variety of directions. Most
of the time, the erosions are small, and no one kicks up a fuss. But less and
less privacy is available, and most people are completely oblivious of it.
Surveillance devices are getting cheaper and smaller and more ubiquitous.
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It is plausible that we could soon be living in a world without expectation
of privacy, anywhere or at any time.

Databases

Historically, privacy was only about surveillance. Then, in the 1960s,
society reached a watershed. Computers with large databases entered
business, and organizations started keeping databases on individuals.
Recently, we’ve reached a second watershed: Networked computers are
allowing disparate databases to be shared, correlated, and combined. The
effects of these databases on personal privacy are still to be felt. We’ve
managed to successfully beat back Big Brother, only to lose to a network
of Little Brothers. For the first time, someone can be unsurveillably
surveilled.

Recently, more and more data is being collected and saved, both
because data collection is cheaper and because people leave more
electronic footprints in their daily lives. More of it is being collected and
cross-correlated. And more of it is available online. The upshot is that it is
not difficult to collect a detailed dossier on someone.

Many of these databases are commercial: large credit databases owned
by Experian, TransUnion, and Equifax; telephone databases of individual
calls made; credit card databases of individual purchases. The information
can be used for its original intent or sold for other purposes. Those legit-
imately allowed to can access it, and it is potentially available to those
adroit enough to break into the computers. This can be correlated with
other databases: your health information, your financial details, any
lifestyle information you’ve made public. In 1999, there was a small press
flare-up because some public television stations traded donor lists with the
Democratic Party. In 2000, public furor forced DoubleClick to reverse its
plans to correlate Web-surfing records with individual identities.

The Web provides even more potential for invasions of privacy.
Online stores can, in theory, keep records of everything you buy. (Block-
buster, for example, has a database of every video you’ve rented.)
They can also keep records of everything you look at: every item you ask
to see more information about, every topic you search for, how long you
spend looking at each item . . . not just what you buy, but what you look
at and don’t buy.
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Online law enforcement databases are a great boon to the police—it
really helps to be able to automatically download a criminal record or
mugshot directly to a squad car—but privacy fears remain. Police data-
bases are not much more secure than any other commercial database, and
the information is a lot more sensitive.

Traffic Analysis

Traffic analysis is the study of communication patterns. Not the content of
the messages themselves, but characteristics about them. Who communi-
cates with whom? When? How long are the messages? How quickly are
the replies sent, and how long are they? What kinds of communications
happen after a certain message is received? These are all traffic analysis
questions, and their answers can reveal a lot of information.

For example, if each time Alice sends a long message to Bob, Bob
sends a short reply back to Alice and a long message to five other people,
this indicates a chain of command. Alice is clearly sending orders to Bob,
who is relaying them to his subordinates. If Alice sends regular short
messages to Bob, and suddenly sends a series of long ones, this indicates
that something (what?) has changed.

Often the patterns of communication are just as important as the con-
tents of communication. For example, the simple fact that Alice
telephones a known terrorist every week is more important than the
details of their conversation. The Nazis used the traffic-analysis data in
itemized French phone bills to arrest friends of the arrested; they didn’t
really care what the conversations were about. Calls from the White
House to Monica Lewinsky were embarrassing enough, even without a
transcription of the conversation. In the hours preceding the U.S. bomb-
ing of Iraq in 1991, pizza deliveries to the Pentagon increased one hun-
dredfold. Anyone paying attention certainly knew something was up.
(Interestingly enough, the CIA had the same number of pizzas delivered
as any other night.) Some studies have shown that even if you encrypt
your Web traffic, traffic analysis based on the size of the encrypted Web
pages is more than enough to figure out what you’re browsing.

While militaries have used traffic analysis for decades, it is still a new
area of study in the academic world. We don’t really know how vulner-
able our communications—especially our Internet communications—are
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to traffic analysis, and what can be done to reduce the risks. Expect this to
be an important area of research in the future.

Massive Electronic Surveillance

ECHELON is a code word for an automated global interception system
operated by the intelligence agencies of the United States, the United
Kingdom, Canada, Australia, and New Zealand, and led by the National
Security Agency (NSA). I’ve seen estimates that ECHELON intercepts as
many as 3 billion communications everyday, including phone calls, 
e-mail messages, Internet downloads, satellite transmissions, and so on.
The system gathers all of these transmissions indiscriminately, then sorts
and distills the information through artificial intelligence programs. Some
sources have claimed that ECHELON sifts through 90 percent of the
Internet’s traffic, although that seems doubtful.

This kind of massive surveillance effort is daunting, and provides
some unique problems. Surveillance data is only useful when it is distilled
to a form that people can understand and act upon. The United States
intercepted a message to the Japanese ambassador in Washington, D.C.,
discussing the Pearl Harbor bombing, but the information only made
sense in retrospect and never made it past the low-level clerks. But as dif-
ficult as analysis is, even more difficult is the simple decision of what to
record.

Potential ECHELON intercepts are an unending firehose of data:
more than any group of human analysts can ever analyze. The intercep-
tion equipment must decide, in real time, whether or not any piece of
data is worth recording for later analysis. And the system cannot afford to
do much “later analysis”; there’s always more data being recorded.
I’m sure much valuable intelligence has been recorded that a human will
never scrutinize.

To build a system like this, you would have to invest in two tech-
nologies: diagnostic capabilities and traffic analysis. Interception equip-
ment must to be able to quickly characterize a piece of data: who the
sender and receiver are, the topic of conversation, how it fits in any larger
pattern of communication. (If you think this is hard for Internet e-mail,
think how hard it is for voice conversations.) Much of this technology is
similar to what you might find in a search engine.
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Traffic analysis is even more important. Traffic patterns reveal a lot
about any organization and are much easier to collect and analyze than
actual communications data. They also provide additional information to
a diagnostic engine. Elaborate databases of traffic patterns are un doubtedly
the heart of any ECHELON-like system.

One last note: In a world where most communications are unen-
crypted, encrypted communications are probably routinely recorded. The
mere indication that the conversers do not want to be overheard would
be enough to raise an alarm.

PUBLICITY ATTACKS

The publicity attack is conceptually simple: “How can I get my name in
the newspapers by attacking the system?” This type of attack is relatively
new in the digital world: A few years ago, computer hacks weren’t con-
sidered newsworthy, and I can’t think of any other technology in history
that people would try to break simply to get their names in the paper. In
the physical world, this attack is ancient: The man who burned down the
Temple of Artemis in ancient Greece did so because he wanted his name
to be remembered forever. (His name was Herostratus, by the way.)
More recently, the kids who shot up Columbine High School wanted
infamy.

Most attackers of this type are hackers: skilled individuals who know
a lot about systems and their security. They often have access to significant
resources, either as students of large universities or as employees of large
companies. They usually don’t have a lot of money, but sometimes have
a lot of time. Furthermore, they are not likely to do anything that will put
them in jail; the idea is publicity, not incarceration.

The canonical example of this is the breaking of Netscape Navigator’s
encryption scheme by two Berkeley graduate students in 1995. These
students didn’t use the weakness for ill-gotten gain; they called the
New York Times. Netscape’s reaction was something on the order of “We
did some calculations, and thought it would take umpteen dollars of com-
puting power; we didn’t think it was worth anyone’s trouble to break it.”
They were right; it wasn’t worth anyone’s trouble . . . anyone who was
interested in the money. The grad students had all sorts of skills, access to
all the unused computer time at their university, and no social lives.
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What’s important for system designers to realize is that publicity
seekers don’t fall into the same threat model that criminals do. Criminals
will only attack a system if there’s a profit to be made; publicity seekers
will attack a system if there is a good chance the press will cover it. Attacks
against large-scale systems and widely fielded products are best.

Sometimes these attacks are motivated by a desire to fix the problems.
Many companies ignore security vulnerabilities unless they are made pub-
lic. Once the researcher announces the attack, the victim company will
scurry to fix the problem. In this way, attacks increase the security of
systems.

Publicity attacks can be costly. Customers may desert one system in
favor of another after a publicity attack, as has happened in the wake of
several attacks against banking systems. And investors might desert the
victim’s stock. This has happened in the digital cellular industry after pub-
licity attacks exposed weaknesses in various privacy and antitheft mea-
sures. Citibank lost several high-profile accounts after the St. Petersburg
hack. The DVD security break delayed a Sony product launch past the
1999 Christmas season. In 2000, CD Universe lost a lot of customers after
a hacker stole 300,000 credit card numbers off of its Web site. Sometimes
the bad press is more costly than the actual theft.

Publicity attacks have other dangers. One is that criminals will learn
about these attacks and exploit them. Another is that public confidence in
the systems will be eroded by the announcements. This could be a major
problem in electronic commerce systems in particular. Banks like to keep
successful criminal attacks against their systems quiet, so as not to alarm
the public. But hackers and academics are much harder to keep quiet and
are going to be all over commerce systems once they’re fielded. If there are
security holes anywhere, someone is going to find them and call a press
conference. Maybe not the first person who finds them, but someone will.
Companies need to be prepared.

Defacing someone’s Web page is one form of publicity attack. It used
to be big news. The 1996 hack of the Department of Justice Web site
made the news. So did the 1997 hack of the AirTran site, and the 1998
hack of the New York Times main page.

In those days, the publicity was such that some sites didn’t wait to be
hacked. MGM/Universal Studios was thrilled when the Web site for its
movie Hackers was hacked in 1995. And in 1997, Universal Pictures
hacked its own Web site for Jurassic Park: The Lost World as a publicity
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stunt. (They tried to pretend it was hackers, but the parody site looked
too professional, and the hacked page was uploaded to the site three days
before the legitimate site came online.)

These days it happens so often that it barely rates a mention in the
news. Probably every major U.S. government Web site was hacked in
1999, as were the Web sites of many local and foreign governments. I
listed 65 Web site defacements in the first week of March 2000 in Chap-
ter 1. Sysadmins have become inured to the problem.

Denial-of-Service Attacks

More recently, denial-of-service attacks have become the publicity attack
du jour. This is only because of their massive press coverage, and will
hopefully become old news, too. The idea is simply to stop something
from working. And as anyone who has had to deal with the effects of
striking workers—bus drivers, air traffic controllers, farm laborers, and so
forth—can tell you, these attacks are effective.

There are other denial-of-service attacks in the physical world: boy-
cotts and blockades, for example. These attacks all have analogues in
cyberspace. Someone with enough phone connections can tie up all the
modem connections of a local ISP. The analog cell phone networks had
trouble freeing connections when a mobile user went from cell to cell; it
was possible to sit on a hill with a directional antenna and, by spinning it
around and around slowly, tie up all the channels in the nearby cells.

Denial-of-service attacks work because computer networks are there
to communicate. Some simple attack, like saying hello, can be automated
to the point where it becomes a denial-of-service attack. This is basically
the SYN flood attack that brought down several ISPs in 1996.

Here’s another denial-of-service attack: In the mid-1980s, Jerry Fal-
well’s political organization set up a toll-free number for something or
other. One guy programmed his computer to repeatedly dial the number
and then hang up. This did two things: It busied the phone lines so that
legitimate people could not call the number, and it cost Falwell’s organi-
zation money every time a call was completed. Nice denial-of-service
attack.

Denial-of-service attacks can be preludes to criminal attacks. Burglars
approach a warehouse at 1:00 A.M. and cut the connection between the
burglar alarm and the police station. The alarm rings, and the police are
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alerted that the connection has been broken. Burglars retreat a safe dis-
tance and wait for the police to arrive. Police arrive and find nothing.
(If the burglars are inventive, they cut the connection in some way that
isn’t obvious.) Police decide that it’s a problem with the system, and the
warehouse owner decides to deal with it in the morning. Police leave.
Burglars reappear and steal everything.

A variant on this, which insurers have noted on several occasions, is
to attack the telephone exchange that routes the alarm signals. Many
alarms have a heartbeat back to the monitoring station, and call the police
if the signal is interrupted. By attacking the exchange, every alarm is
triggered and the police don’t know which alarm to respond to.

Here’s another example: a military base protected by a fence and
motion sensors. The attackers take a rabbit and throw it over the fence;
then they leave. The motion sensors go off. The guards respond, find
nothing, and return to their posts. The attackers do this again, and the
guards respond again. After a few nights of this, the guards turn the
motion sensors off. And the attackers drive a jeep right through the fence.
This kind of thing was done repeatedly against the Russian military bases
in Afghanistan, and in tests against several U.S. military bases. It’s surpris-
ingly successful.

A similar attack was supposedly done against the Soviet embassy in
Washington, D.C. The Americans fired a Canada Mint (basically, a sugar
pellet) against the window. The rattle set off an alarm, but the sugar ball
disintegrated and there was nothing to respond to. Then another ball.
Thwap. Alarm. Nothing. Eventually the alarms were modified so that
banging against the window didn’t trigger them. (I don’t know if any
actual penetration resulted from this attack, or if it was just to nettle the
Soviets.)

Closer to home, it’s a common auto-theft technique to set a car alarm
off at 2:00 A.M., 2:10, 2:20, 2:30 . . . until the owner turns the alarm off to
appease the angry neighbors. In the morning, the car is gone.

Warfare uses denial-of-service attacks all the time. Each side tries to
jam the other’s radar systems and missile guidance systems, disrupt com-
munications systems, and blow up bridges. One of the characteristics of
denial-of-service attacks is that low-tech is often better than high-tech:
Blowing up a computer center works much better than exploiting a
Windows 2000 vulnerability.

Internet denial-of-service attacks are discussed in detail in Chapter 11.
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LEGAL ATTACKS

In 1994, in the United Kingdom, a man found his bank account emptied.
When he complained about six withdrawals he did not make, he was
arrested and charged with attempted fraud. The British bank claimed that
the security in the ATM system was infallible, and that the defendant was
unequivocally guilty. When the defense attorney examined the evidence,
he found (1) that the bank had no security management or quality
assurance for its software, (2) that there was never any external security
assessment, and (3) that the disputed withdrawals were never investigated.
In fact, the bank’s programmers claimed that since the code was written
in assembly language, it couldn’t possibly be the problem (because if there
was a bug, it would cause a system crash). The man was convicted
anyway. On appeal, the bank provided the court a huge security assess-
ment by an auditing firm. When the defense demanded equal access to
their systems in order to evaluate the security directly, the bank refused
and the conviction was overturned.

Attacks that use the legal system are the hardest to protect against. The
aim here isn’t to exploit a flaw in a system. It isn’t even to find a flaw in a
system. The aim here is to persuade a judge and jury (who probably aren’t
technically savvy) that there could be a flaw in the system. The aim here is
to discredit the system, to put enough doubt in the minds of the judge and
jury that the security isn’t perfect, to prove a client’s innocence.

Here’s a hypothetical example. In a major drug case, the police are
using data from a cellular phone that pinpoints the defendant’s phone at a
particular time and place. The defense attorney finds some hacker expert
who testifies that it is easy to falsify that kind of data, that it isn’t reliable,
that it could have been planted, and should not be counted as evidence.
The prosecution has its own set of experts that say the opposite, and one
possible outcome is that they cancel each other out and the trial goes on
without the cellular-phone evidence.

The same thing can happen to audit data being used to prosecute
someone who broke into a computer system, or signature data that is
being used to try to enforce a contract. “I never signed that,” says the
defendant. “The computer told me to enter my passphrase and then push
this button. That’s what I did.” A jury of the defendant’s peers—probably
just as befuddled by technology as the accused is claiming to be—is likely
to sympathize.

40 C H A P T E R  T H R E E

453803_Ch03.qxd:453803_Ch03.qxd  4/11/13  3:05 PM  Page 40



The other side of the coin can be just as damaging. The police can use
experts to convince a jury that a decrypted conversation is damning even
though it is not 100 percent accurate, or that the computer intrusion
detection is infallible and therefore the defendant is guilty.

When used to its fullest effect, the legal attack is potent. The attack-
ers are likely to be extremely skilled—in high-profile cases, they can
afford the best security researchers—and well-funded. They can use the
discovery process to get all the details of the target system that they need.
And the attack doesn’t even have to work operationally; the attackers
only have to find enough evidence to adduce a flaw. Think of it as a
publicity attack with a bankroll and more relaxed victory conditions.
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4

Adversaries

So who is threatening the digital world anyway? Hackers? Crimi-
nals? Child pornographers? Governments? The adversaries are the
same as they are in the physical world: common criminals looking

for financial gain, industrial spies looking for a competitive advantage,
hackers looking for secret knowledge, military-intelligence agencies look-
ing for, well, military intelligence. People haven’t changed; it’s just that
cyberspace is a new place to ply their trades.

We can categorize adversaries in several ways: objectives, access, re -
sources, expertise, and risk.

Adversaries have varying objectives: raw damage, financial gain,
information, and so on. This is important. The objectives of an industrial
spy are different from the objectives of an organized-crime syndicate, and
the countermeasures that stop the former might not even faze the latter.
Understanding the objectives of likely attackers is the first step toward
figuring out what countermeasures are going to be effective.

Adversaries have different levels of access; for example, an insider has
much more access than someone outside the organization. Adversaries
also have access to different levels of resources: some are well funded;
others operate on a shoestring. Some have considerable technical
expertise; others have none.

Different adversaries are willing to tolerate different levels of risk.
Terrorists are often happy to die for their cause. Criminals are willing to
risk jail time, but probably don’t want to sacrifice themselves to the higher
calling of bank robbery. Publicity seekers don’t want to go to jail.
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A wealthy adversary is the most flexible, since he can trade his
resources for other things. He can gain access by paying off an insider, and
expertise by buying technology or hiring experts (maybe telling them the
truth, maybe hiring them under false pretenses). He can also trade
money for risk by executing a more sophisticated—and therefore more
expensive—attack.

The rational adversary—not all adversaries are sane, but most are
rational within their frames of reference—will choose an attack that gives
him a good return on investment, considering his budget constraints:
expertise, access, manpower, time, and risk. Some attacks require a lot of
access but not much expertise: a car bomb, for example. Some attacks
require a lot of expertise but no access: breaking an encryption algorithm,
for example. Each adversary is going to have a set of attacks that is
affordable to him, and a set of attacks that isn’t. If the adversary is paying
attention, he will choose the attack that minimizes his cost and maximizes
his benefits. 

HACKERS

The word hacker has several definitions, ranging from a corporate system
administrator adept enough to figure out how computers really work to
an ethically inept teenage criminal who cackles like Beavis and Butthead
as he trashes your network. The word has been co-opted by the media
and stripped of its meaning. It used to be a compliment; then it became
an insult. Lately, people seem to like “cracker” for the bad guys, and
“hacker” for the good guys. I define a hacker as an individual who exper-
iments with the limitations of systems for intellectual curiosity or sheer
pleasure; the word describes a person with a particular set of skills and not
a particular set of morals. There are good hackers and bad hackers, just as
there are good plumbers and bad plumbers. (There are also good bad
hackers, and bad good hackers . . . but never mind that.)

Hackers are as old as curiosity, although the term itself is modern.
Galileo was a hacker. Mme. Curie was one, too. Aristotle wasn’t. (Aristo-
tle had some theoretical proof that women had fewer teeth than men.
A hacker would have simply counted his wife’s teeth. A good hacker
would have counted his wife’s teeth without her knowing about it, while
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she was asleep. A good bad hacker might remove some of them, just to
prove a point.)

When I was in college, I knew a group similar to hackers: the key
freaks. They wanted access, and their goal was to have a key to every lock
on campus. They would study lockpicking and learn new techniques,
trade maps of the steam tunnels and where they led, and exchange copies
of keys with each other. A locked door was a challenge, a personal affront
to their ability. These people weren’t out to do damage—stealing stuff
wasn’t their objective—although they certainly could have. Their hobby
was the power to go anywhere they wanted to.

Remember the phone phreaks of yesteryear, the ones who could
whistle into payphones and make free phone calls. Sure, they stole phone
service. But it wasn’t like they needed to make eight-hour calls to Manila
or McMurdo. And their real work was secret knowledge: The phone
network was a vast maze of information. They wanted to know the
system better than the designers, and they wanted the ability to modify it
to their will. Understanding how the phone system worked—that was
the true prize. Other early hackers were ham-radio hobbyists and
model-train enthusiasts.

Richard Feynman was a hacker; read any of his books.
Computer hackers follow these evolutionary lines. Or, they are the

same genus operating on a new system. Computers, and networks in
particular, are the new landscape to be explored. Networks provide the
ultimate maze of steam tunnels, where a new hacking technique becomes
a key that can open computer after computer. And inside is knowledge,
understanding. Access. How things work. Why things work. It’s all out
there, waiting to be discovered.

Today’s computer hackers are stereotypically young (twenty-some-
thing and younger), male, and socially on the fringe. They have their own
counterculture: hacker names or handles, lingo, rules. And like any sub-
culture, only a small percentage of hackers are actually smart. The real
hackers have an understanding of technology at a basic level, and are
driven by a desire to understand. The rest are talentless poseurs and hang-
ers-on, either completely inept or basic criminals. Sometimes they’re
called lamers or script kiddies.

Hackers can have considerable expertise, often greater than that of the
system’s original designers. I’ve heard lots of security lectures, and the
most savvy speakers are the hackers. For them, it’s a passion. Hackers look
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at a system from the outside as an attacker, not from the inside as a
designer. They look at the system as an organism, as a coherent whole.
And they often understand the attacks better than the people who
designed the systems. The real hackers, that is.

Hackers generally have a lot of time, but few financial resources. (Put
one of them to work at a big company, and that will change.) Some of
them are risk averse and tread gingerly around the edges of the law, but
others have no fear of prosecution and engage in illegal activities with no
consideration of the risk involved.

There are hacker newsgroups, hacker Web sites and hacker conven-
tions. Hackers often trade attacks and automated attacking tools among
themselves. There are different hacker groups (or gangs, if you are less
kind), but there is no hierarchy. You can’t galvanize the hacker commu-
nity against a particular target; hackers go after what they can. Often
they’ll hack something because it’s widely deployed, interesting, or
because the target “deserves” it.

Unfortunately, much of what hackers do is illegal. I’m not talking
about the few who work in research environments, who evaluate the
security of systems in laboratory settings, and who publish analyses of
products and systems. I’m talking about the hackers who break into other
people’s networks, deface Web pages, crash computers, spread viruses,
and write automatic programs that let other people do these things. These
people are criminals, and society needs to treat them as such.

I don’t buy the defense that a hacker just broke in a system to look
around, and didn’t do any damage. Some systems are frangible, and sim-
ply looking around can inadvertently cause damage. And once an unau-
thorized person has been inside a system, you can’t trust its integrity.
You don’t know that the intruder didn’t touch anything.

Imagine that you come home to find a note on your refrigerator door
saying: “Hi. I noticed that you had a lousy front door lock, so I broke in.
I didn’t touch anything. You really should get a better security system.”
How would you feel?

The problem starts with the hackers who write hacking tools. These
are programs—sometimes called exploits—that automate the process of
breaking into systems. An example is the Trin00 distributed denial-of-ser-
vice tool. Thousands of servers have been brought down because of this
attack, and it’s caused legitimate companies millions of dollars in time and
effort to recover from. It’s one thing to research the vulnerability of the
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Internet against this type of attack, and to write a research paper about
defending against it. It’s another thing entirely to write a program that
automates the attack.

The Trin00 exploit serves no conceivable purpose other than to
attack systems. Gun owners can argue self-defense, but Internet servers
don’t break into anyone’s house at night. It’s actually much worse,
because once an exploit is written and made available, any wannabe
hacker can download it and attack computers on the Internet. He  doesn’t
even have to know how it works. (See why they’re called “script kid-
dies”?) Trin00 attacks were popular in early 2000 because the exploit was
available. If it weren’t—even if a research paper were available—none of
the script kiddies would be able to exploit the vulnerability.

Certainly the lamers that use Trin00 to attack systems are criminals. I
believe the person who wrote the exploit is, too. A fine line exists
between writing code to demonstrate research and publishing attack
tools; between hacking for good and hacking as a criminal activity. I will
get back to this in Chapter 22.

Most organizations are wary about hiring hackers, and rightfully so.
There are exceptions—the NSA offering scholarships to hackers willing
to work at Fort Meade, Israeli intelligence hiring Jewish hackers from the
United States, Washington offering security fellowships—and some hack-
ers have gone on to form upstanding and professional security
companies. Recently, a handful of consulting companies have sprung up
to whitewash hackers and present them in a more respectable light.
And sometimes this works, but for many people it can be hard to tell the
ethical hackers from the criminals.

LONE CRIMINALS

In April 1993, a small group of criminals wheeled a Fujitsu model 7020
automated teller machine into the Buckland Hills Mall in Hartford,
Connecticut, and turned it on. The machine was specially programmed
to accept ATM cards from customers, record their account numbers and
PINs, and then tell the unfortunate consumers that no transactions were
possible. A few days later, the gang encoded the stolen account numbers
and PINs onto counterfeit ATM cards, and started withdrawing cash
from ATMs in midtown Manhattan. They were eventually caught when
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the bank correlated the use of the counterfeit ATM cards with routine
surveillance films.

It was a shrewd attack, and much higher tech than most banking
crimes. One innovative criminal in New Jersey attached a fake night
deposit box to a bank wall, and took it away early in the morning. 
It’s worse elsewhere. A few years ago, an ATM was stolen in South
Africa . . . from inside police headquarters in broad daylight.

Lone criminals cause the bulk of computer-related crimes. Sometimes
they are insiders who notice a flaw in a system and decide to exploit it;
other times they work outside the system. They usually don’t have much
money, access, or expertise, and they often get caught be cause of stupid
mistakes. Someone might be smart enough to install a fake ATM and col-
lect account numbers and PINs, but if he brags about his cleverness in a
bar and gets himself arrested before cleaning out all the accounts . . . well,
it’s hard to have any sympathy for him. Look at the two public Internet
attacks of early 2000. Someone manages to gain access to over ten
thousand credit card numbers, with names and addresses. The best crime
he can think of to do: extortion. Someone else manages to control a large
number of distributed computers, ready to do his bidding. The best crime
he can think of: irritate major Web sites.

Lone criminals will target commerce systems because that’s where the
money is. Their techniques may lack elegance, but they will steal money,
and they will cost even more money to catch and prosecute. And there
will be a lot of them.

MALICIOUS INSIDERS

A malicious insider is a dangerous and insidious adversary. He’s already
inside the system he wants to attack, so he can ignore any perimeter
defenses around the system. He probably has a high level of access, and
could be considered trusted by the system he is attacking. Remember the
Russian spy Aldrich Ames? He was in a perfect position within the CIA
to sell the names of U.S. operatives living in Eastern Europe to the KGB;
he was trusted with their names. Think about a programmer writing
malicious code into the payroll database program to give himself a raise
every six months. Or the bank vault guard purposely missetting the time
lock to give his burglar friends easy access. Insiders can be impossible to
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stop because they’re the exact same people you’re forced to trust.
Here’s a canonical insider attack. In 1978, Stanley Mark Rifkin was a

consultant at a major bank. He used his insider knowledge of (and access
to) the money transfer system to move several million dollars into a Swiss
account, and then to convert that money into diamonds. He also pro-
grammed the computer system to automatically erase the backup tapes
that contained evidence of his crime. (He would have gotten away with
it, except that he bragged to his lawyer, who turned him in.)

Insiders don’t always attack a system; sometimes they subvert a system
for their own ends. In 1991, employees at Charles Schwab in San Fran-
cisco used the company’s e-mail system to buy and sell cocaine. A con-
victed child rapist working in a Boston-area hospital stole a co-worker’s
password, paged through confidential patient records, and made obscene
phone calls.

Insiders are not necessarily employees. They can be consultants and
contractors. During the Y2K scare, many companies hired programmers
from China and India to update old software. Rampant xenophobia aside,
any of those programmers could have attacked the systems as an insider.

Most computer security measures—firewalls, intrusion detection sys-
tems, and so on—try to deal with the external attacker, but are pretty
much powerless against insiders. Insiders might be less likely to attack a
system than outsiders are, but systems are far more vulnerable to them.

An insider knows how the systems work and where the weak points
are. He knows the organizational structure, and how any investigation
against his actions would be conducted. He may already be trusted by the
system he is going to attack. An insider can use the system’s own resources
against itself. In extreme cases the insider might have considerable exper-
tise, especially if he was involved in the design of the systems he is now
attacking.

Revenge, financial gain, institutional change, or even publicity can
motivate insiders. They generally also fit into another of the categories: a
hacker, a lone criminal, or a national intelligence agent. Malicious insid-
ers can have a risk tolerance ranging from low to high, depending on
whether they are motivated by a “higher purpose” or simple greed.

Of course, insider attacks aren’t new, and the problem is bigger than
cyberspace. If the e-mail system hadn’t been there, the Schwab employ-
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ees might have used the telephone system, or fax machines, or maybe
even paper mail. 

INDUSTRIAL ESPIONAGE

Business is war. Well, it’s kind of like war, but it has referees. The refer-
ees establish the rules—what is legal and what isn’t—and do their best to
enforce them. Sometimes, if a business has enough money and clout, it
can petition to the referees and get the rules changed. Usually, it just plays
within them.

The line where investigative techniques stop being legal and start
being illegal is where competitive intelligence stops and industrial espi-
onage starts. The line moves from jurisdiction to jurisdiction, but there
are gross generalities. Breaking into a competitor’s office and stealing files
is always illegal (even for Richard Nixon); looking them up in a news
article database is always legal. Bribing their senior engineers is illegal; hir-
ing them is legal. Hiring them and having them bring a copy of the com-
petitor’s source code is illegal. Pretending to want to hire their senior
engineers so that you can interview them . . . that’s legal, pretty sleazy,
and really clever.

Industrial espionage attacks have precise motivations: to gain an
advantage over the competition by stealing competitors’ trade secrets. In
one public example, Borland accused Symantec of stealing trade secrets
via a departing executive. In another case, Cadence Design Systems filed
suit against competitor Avant! for, among other things, stealing source
code. In 1999, online bookseller Alibris pled guilty to eavesdropping on
Amazon.com corporate e-mail. Companies from China, France, Russia,
Israel, the United States, and elsewhere have stolen technology secrets
from foreign competitors.

Industrial espionage can be well-funded; an amoral but rational com-
pany will devote enough resources toward industrial espionage to achieve
an acceptable return on investment. Even if stealing a rival’s technology
costs you half a million dollars, it could be one-tenth the cost of develop-
ing the technology yourself. (Ever wonder why the Russian Space
Shuttle looks a whole lot like the U.S. Space Shuttle?) This kind of
adversary has a medium risk tolerance because a company’s reputation (an
intangible but valuable item) will be damaged considerably if it is caught
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spying on the competition—but desperate times can bring desperate mea-
sures.

PRESS

Think of the press as a subspecies of industrial spy, but with different
motivations. The press isn’t interested in a competitive advantage over its
targets; it is interested in a “newsworthy” story. This would be the Wash-
ington City Pages publishing the video rental records of Judge Bork
(which led to the Video Privacy Protection Act of 1988), the British
tabloids publishing private phone conversations between Prince Charles
and Camilla Parker Bowles, or a newspaper doing an exposé on this
company or that government agency.

It can be worth a lot of newspaper sales to get pictures of a presiden-
tial candidate like Gary Hart with a not-his-wife on his lap. Even margin-
ally compromising photographs of Princess Di were worth over half a
million dollars. Some reporters have said that they would not think twice
about publishing national security secrets; they believe the public’s right
to know comes first.

In many countries, the free press is viewed as a criminal. In such
countries, the press is usually not well funded, and generally more the
victim of attack than the attacker. Journalists have gone to jail, been tor-
tured, and have even been killed for daring to speak against the ruling
government. This is not what I mean by the press as an attacker.

In industrial countries with reasonable freedoms, the press can bring
considerable resources to bear on attacking a particular system or target.
They can be well funded; they can hire experts and gain access. And if
they believe their motivations are true, they can tolerate risk. (Certainly
the reporters who broke the Watergate story fall into this category.)
Reporters in the United States and other countries have gone to jail to
protect what they believe is right. Some have even died for it.

ORGANIZED CRIME

Organized crime is a lot more than Italian Mafia families and Francis Ford
Coppola movies. It’s a global business. Russian crime syndicates operate
both in Russia and in the United States. Asian crime syndicates operate
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both at home and abroad. Colombian drug cartels are also international.
Nigerian and other West African syndicates have captured 70 percent of
the Chicago heroin market. Polish gangsters run an elaborate car theft
operation, stealing cars in the United States and shipping them back to
Poland. Of course, there are turf battles between rival gangs, but there is
a lot of international cooperation, too.

Organized crime’s core competencies haven’t changed much this
century: drugs, prostitution, loan sharking, extortion, fraud, and gam-
bling. And they use technology in two ways. First, it’s a new venue for
crime. They use hacking tools to break into bank computers and steal
money; they steal cell phone IDs and resell them; they engage in com-
puter fraud. Identity theft is a growth area; Chinese gangs are industry
leaders here. Certainly electronic theft is more profitable: One big
Chicago bank lost $60,000 in 1996 to bank robbers, and $60 million to
check-related fraud.

The mob also uses computers to assist its core businesses. Illegal gam-
bling is easier to run: Cell phones allow bookies to operate from any-
where, and hair-trigger computers can erase all evidence within seconds
of a raid. And money laundering is increasingly a business of computers
and electronic funds transfers: moving money from one account to
another to a third, changing ownership of accounts, disguising the
money’s origins, moving it through countries that keep less detailed
records.

In terms of risk, organized crime is what you get when you combine
lone criminals with a lot of money and organization. These guys know
that you have to spend money to make money, and are willing to invest
in profitable attacks against a financial system. They have minimal exper-
tise, but can purchase it. They have minimal access, but they can purchase
it. They often have a higher risk tolerance than lone criminals; the peck-
ing order of the crime syndicate often forces those in the lower ranks to
take greater risks, and the protection afforded by the syndicate makes the
risks more tolerable.

POLICE

You can think of the police as kind of like a national intelligence organi-
zation, except that they are less well funded, less technically savvy, and
focused on crimefighting. Understand, though, that depending on how
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benevolent the country is and whether or not they hold occasional
democratic elections, “crimefighting” could cover a whole lot of things
not normally associated with law enforcement. Maybe they’re more like
the press, but with better funding and a readership that only cares about
true crime stories. Or maybe you can think of them as organized crime’s
industrial competitor.

In any case, police have a reasonable amount of funding and exper-
tise. They’re pretty risk averse—no cop wants to die for his beliefs—but
since they have the laws on their side, things that are risks to some groups
can be less risky to the police. (Having a warrant issued, for example, turns
eavesdropping from a risky attack to a valid evidence-gathering tool.)
Their primary goal is information gathering, with information that stands
up in court being more useful than information that doesn’t.

But police aren’t above breaking the law. The fundamental assump-
tion is that we trust the individual or some government to respect our
privacy and to only use their powers wisely. While this is true most of the
time, abuses are regular and can be pretty devastating. A spate of illegal
FBI wiretaps in Florida and a subsequent cover-up got some press in
1992; the 150 or so illegal wiretaps by the Los Angeles Police Department
have gotten more. (Drugs were involved, of course; more than one per-
son has pointed out that the war on drugs seems to be the root password
to the U.S. Constitution.) J. Edgar Hoover regularly used illegal wiretaps
to keep tabs on his enemies. And 25 years ago a sitting president used
illegal wiretaps in an attempt to stay in power.

Things seem to have improved since the days of Hoover and Nixon,
and I have many reasons to hope we won’t be back there again. But the
risk remains. Technology moves slowly, but intentions change quickly.
Even if we are sure today that the police will follow all privacy legislation,
eavesdrop only when necessary, obtain all necessary warrants, follow
proper minimization procedures, and generally behave like upstanding
public servants, we don’t know about tomorrow. The same kind of reac-
tive crisis thinking that led us to persecute suspected Communists during
the McCarthy era could again sweep across the country. Census data is,
by law, not supposed to be used for any other purpose. Even so, it was
used during World War II to round up Japanese Americans and put them
in concentration camps. The eerily named “Mississippi Sovereignty
Commission” spied on thousands of civil rights activists in the 1960s. The
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FBI used illegal wiretaps to spy on Martin Luther King, Jr. A national
public-key infrastructure could be a precursor to national registration of
cryptography. Once the technology is in place, there will always be the
temptation to use it. And it is poor civic hygiene to install technologies
that could someday facilitate a police state.

TERRORISTS

This category is a catchall for a broad range of ideological groups and indi-
viduals, both domestic and international. There’s no attempt to make
moral judgments here: One person’s terrorist is another person’s freedom
fighter. Terrorist groups are usually motivated by geopolitics or (even
worse) ethnoreligion—Hezbollah, Red Brigade, Shining Path, Tamil
Tigers, IRA, ETA, FLNC, PKK, UCK—but can also be motivated by
moral and ethical beliefs, such as those of Earth First and radical
antiabortion groups.

These groups are generally more concerned with causing harm than
gathering information, so their techniques run more along the lines of
denial of service and outright destruction. While their long-term goals are
usually something vaguely reasonable, like the reunification of Gond-
wanaland or the return of all cows to the wild, their near-term goals are
things like revenge, chaos, and blood-soaked publicity. Bombings are a
favorite; kidnappings also work well. It makes a big international splash
when a DC-10 falls out of the sky or an abortion clinic is blown to bits,
but eventually these guys will figure out that a lot more damage is done
when O’Hare air traffic control starts vectoring planes into each other. Or
that if they can hack the airline reservation system to find out which 747
is taking the congressional delegation to the south of France this summer,
their bombing will be all that much more effective.

There are actually very few terrorists. Their attacks are acts of war
more than anything else, and probably should be in the “infowarrior” cat-
egory. And since terrorists generally consider themselves to be personally
in a state of war, they have a very high risk-tolerance.

Unless they have a rich idealist funding their actions, most terrorists
operate on a shoestring budget. Most of them are unskilled: “You there.
Carry this bag. Walk into the middle of that busy market. Push this but-
ton. See you in the glorious afterlife.” There are exceptions (some of the
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organizations in the first paragraph are well-organized, well-trained, and
well-supported—it is believed that the counterfeit TV descramblers sold
in Ireland helped finance the IRA, for example), but the majority of
groups don’t have good organization or access. And they tend to make
stupid mistakes.

NATIONAL INTELLIGENCE ORGANIZATIONS

These are the big boys. The CIA, NSA, DIA, and NRO in the United
States (there are others), the KGB (now FAPSI for counter-intelligence
and FSB for foreign intelligence) and GRU (military intelligence) in Rus-
sia, MI5 (counter-intelligence), MI6 (like the CIA), and GCHQ (like the
NSA) in the United Kingdom, DGSE in France, BND in Germany,
Ministry of National Security in China (also called the “Technical
Department”), Mossad in Israel, CSE in Canada. For most of the other
adversaries, this is all a game: break into a Web site, gain some competi-
tive intelligence, steal some money, cause a little mayhem, whatever. For
these guys, it’s very real.

A major national intelligence organization is the most formidable
adversary around. It is extremely well funded, since it is usually considered
a branch of the military. (Although the exact number is a secret, the press
reports that “congressional sources” put the combined budgets of the
CIA, Defense Intelligence Agency, NSA, the National Reconnaissance
Office, and other federal intelligence agencies as $33.5 billion in 1997.) It
is a dedicated and capable adversary, with the funding to buy a whole lot
of research, equipment, expertise, and plain old skilled manpower.

On the other hand, a major national intelligence organization is usu-
ally highly risk averse. National intelligence organizations don’t like to see
their names on the front page of the New York Times, and generally don’t
engage in risky activities. (Exceptions, of course, exist; they’re the ones
you read about on the front page of the New York Times.) Exposed oper-
ations cause several problems. One, they expose the data. National intel-
ligence is based on gathering information that the country should not
know. It’s eavesdropping on a negotiating position, sneaking a peek
at a new weapons system, knowing more than the adversary does.
If the adversary learns what the intelligence organization knows, some of
the benefit of that knowledge is lost.
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Two, and probably more important, botched operations expose tech-
niques, capabilities, and sources. For many years the NSA eavesdropped
on Soviet car phones as the Politburo drove around Moscow. Someone
leaked information about Khrushchev’s health in the news papers, and
suddenly the car phones were encrypted. The newspapers didn’t say any-
thing about car phones, but the KGB wasn’t stupid. The leak here wasn’t
that we knew about Khrushchev’s health, but that we were listening to
their communications. The same thing happened after some terrorists
bombed a Berlin disco in 1986. Reagan announced that we had proof of
Libya’s involvement, compromising the fact that we were able to eaves-
drop on their embassy traffic to and from Tripoli. During World War II,
the Allies couldn’t use much of the intelligence gleaned from decrypting
German Enigma traffic out of fear that the Germans would change their
codes.

Intelligence objectives include everything you’d normally think
about—military information, weapons designs, diplomatic information—
and a lot of things you wouldn’t. The telephone system is probably a gold
mine of intelligence information; so is the Internet. Several national intel-
ligence organizations are actively engaged in industrial espionage (the FBI
estimates “up to 20” are targeting U.S. companies) and passing the infor-
mation gained to rival companies in their own countries. China is the
world’s worst offender, France and Japan are also bad, and there are
others.

The United States is not above this. A 1999 EU report gives several
examples, including the following:

• In 1994, the Brazilian government awarded a $1.4 billion contract to
Raytheon Corporation, rather than two French companies. Raytheon sup-
posedly altered its bid when it learned of details of the French proposals.

• In 1994, McDonnell Douglas Corporation won a Saudi Arabia contract over
Airbus Industrie, supposedly based on inside information passed from U.S.
intelligence. 

Former CIA director R. James Woosley has admitted using ECHELON
information about foreign companies using bribes to win foreign
contracts to help “level the playing field,” passing the information to U.S.
companies and pressuring the foreign governments to stop the bribes.
None of this is proven, though. Certainly any company that loses a bid is
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going to look for reasons why it wasn’t its fault, and none of the “victims”
have said anything in public. Still, the possibilities are disturbing.

And this kind of stuff is even worse in cyberspace. ECHELON is not
the only program that targets the Internet. Singapore and China eaves-
drop on Internet traffic in their countries (China uses its national firewall,
the Great Wall). Internet service providers across Russia are helping the
main KGB successor agencies to read private e-mails and other Internet
traffic, as part of an internal espionage program called SORM-2.

National intelligence organizations are not above using hacker tools,
or even hackers, to do their work. The Israeli and Japanese governments
both have programs to bring hackers into their country, feed them pizza
and Jolt Cola, and have them do intelligence work. Other governments
go onto the Net and taunt hackers, trying to get them to work for free.
“If you’re so good you’ll have the password to this government com-
puter”—that sort of thing works well if directed against a talented
teenager with no self-esteem. The Cuckoo’s Egg by Clifford Stoll is about
the exploits of three hackers who worked for the KGB in exchange for
cash and cocaine.

The techniques of national security agencies are varied and, with the
full weight of a nation behind them, can be very effective. British com-
munications security companies have been long rumored to build
exploitable features into their encryption products, at the request of
British intelligence. In 1997, CIA director George Tenet mentioned (in
passing, without details) using hacker tools and techniques to disrupt
international money transfers and other financial activities of Arab
businessmen who support terrorists. The possibilities are endless.

INFOWARRIORS

Yes, it’s a buzzword. But it’s also real. An infowarrior is a military
adversary who tries to undermine his target’s ability to wage war by
attacking the information or network infrastructure. Specific attacks range
from subtly modifying systems so that they don’t work (or don’t work
correctly) to blowing up the systems completely. The attacks could be
covert, in which case they might resemble terrorist attacks (although a
good infowarrior cares less about publicity than results). If executed via
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the Internet, the attacks could originate from foreign soil, making detec-
tion and retaliation much more difficult.

This adversary has all the resources of a national intelligence organi-
zation, but differs in two important areas. One, he focuses almost exclu-
sively on the short-term goal of affecting his target’s ability to wage war.
And two, he is willing to tolerate risks that would be intolerable to long-
term intelligence interests. His objectives are military advantage and,
more generally, chaos. Some of the particular targets that might interest
an infowarrior include military command and control facilities,
telecommunications, logistics and supply facilities and infrastructure
(think “commercial information systems”), and transportation lines (think
“commercial aviation”). These kinds of targets are called critical infrastruc-
ture.

In 1999, NATO targeted Belgrade’s electric plants; this had profound
effects on its computing resources. In retaliation, Serbian hackers attacked
hundreds of U.S. and NATO computer sites. Chinese hackers crashed
computers in the Department of the Interior, the Department of Energy,
and the U.S. embassy in Beijing in retaliation for our accidental bombing
of their embassy in Belgrade. China and Taiwan engaged in a little cyber-
war through most of 1999, attacking each other’s computers over the
Internet (although this was probably not government coordinated on
either side).

In the past, military and civilian systems were separate and distinct:
different hardware, different communications protocols, different every-
thing. Over the past decade, this has shifted; advances in technology are
coming too fast for the military’s traditional multiyear procurement cycle.
More and more, commercial computer systems are being used for military
applications. This means that all of the vulnerabilities and attacks that
work against commercial computers may work against militaries. And
both sides of a conflict may be using the same equipment and protocols:
TCP/IP, Windows operating systems, GPS satellite receivers. The U.S.
Air Force’s Strategic Air Command (SAC) recently switched to Windows
NT on its external networks.

Militaries have waged war on infrastructure ever since they started
waging war. Medieval knights killed serfs, Napoleonic armies burned
crops, Allied bombers targeted German factories during World War II.
(Ball bearing factories were a favorite.) Today, information is infra -
structure. During Desert Storm, the Americans systematically destroyed
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Iraq’s command and control infrastructure. Communications systems
were jammed; individual communications cables were bombing targets.
Without command and control, the ground troops were all but useless.
The media hype surrounding infowar is embarrassing, but the militaries of
the world are taking this seriously. Here is a quote from the Chinese
Army newspaper, Jiefangjun Bao, a summary of speeches delivered in May
1996:

After the Gulf War, when everyone was looking forward to eternal
peace, a new military revolution emerged. This revolution is essentially
a transformation from the mechanized warfare of the industrial age to
the information warfare of the information age. Information warfare is
a war of decisions and control, a war of knowledge, and a war of intel-
lect. The aim of information warfare will be gradually changed from
“preserving oneself and wiping out the enemy” to “preserving oneself
and controlling the opponent.” Information warfare includes electronic
warfare, tactical deception, strategic deterrence, propaganda warfare,
psychological warfare, network warfare, and structural sabotage. Under
today’s technological conditions, the “all conquering stratagems” of Sun
Tzu more than two millennia ago—“vanquishing the enemy without
fighting” and subduing the enemy by “soft strike” or “soft destruc-
tion”—could finally be truly realized.

War isn’t necessarily a major conflict like World War II or the oft-
feared United States versus USSR, Armageddon. More likely, it is a
“low-intensity conflict”: Desert Storm, the Argentine invasion of the
Falklands, civil war in Rwanda. In The Transformation of War, Martin van
Creveld points out that so-called low-intensity conflicts have been the
dominant form of warfare since World War II, killing over 20 million
people worldwide. This shift is a result of two main trends. One, it is eas-
ier for smaller groups to lay their hands on weapons of mass destruction:
chemical weapons, biological weapons, long-range missiles, and so forth.
Two, more nonnation states are capable of waging war. In fact, the dis-
tinction between nation and nonnation states is blurring. Organized crime
groups are merging with government at various levels in countries such as
Mexico, Colombia, and Russia. Infowarriors don’t all work for major
industrial nations. Increasingly, they work for minor political powers.
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5

Security Needs

What kinds of security do we need, anyway? Before examin-
ing (and often dismissing) specific countermeasures against
the threats we’ve already talked about, let’s stop and talk

about needs. In today’s computerized, international, interconnected,
interdependent world, what kind of security should we expect?

PRIVACY

People have a complicated relationship with privacy. When asked to pay
for it, they often don’t want to. Businesses also have a complicated rela-
tionship with privacy. They want it—they know the importance of not
having their dirty laundry spread all over the newspapers—and are even
willing to pay for it: with locks, alarms, firewalls, and corporate security
policies. But when push comes to shove and work needs to get done,
security is the first thing that gets thrown out the window. Governments
are comfortable with privacy: They know the importance of not having
their military secrets in the hands of their enemies. They know they need
it, and know that they are going to have to pay dearly for it. And they
accept the burden that privacy puts on them. Governments often get the
details wrong, but they grok the general idea.

Almost no one realizes exactly how important privacy is in his or her
life. The Supreme Court has insinuated that it is a right guaranteed by the
Constitution. Democracy is built upon the notion of privacy; you can’t

59

453803_Ch05.qxd:453803_Ch05.qxd  4/12/13  9:48 AM  Page 59



have a secret ballot without it. Businesses can’t function without some
notion of privacy; multiple individuals within a company need to know
proprietary information that people outside the company don’t. People
want to be secure in their conversations, their papers, and their homes.

In the United States, individuals don’t own the data about themselves.
Customer lists belong to the businesses that collect them. Personal data-
bases belong to the database owner. Only in rare instances do individuals
have any rights or protections about the data that are collected about
them.

Most countries have laws protecting individual privacy. The EU, for
example, has the Data Protection Act of 1998. Organizations that collect
personal data must register with the government, and take precautions
against misuse of that data. They are also prohibited from the collection,
use, and dissemination of personal information without the consent of the
person. Organizations also have the duty to tell individuals about the rea-
son for the information collection, to provide access and correct inaccu-
rate information, and to keep that information secure from access by
unauthorized parties. Individuals have a right to see their own personal
data that has been collected and have inaccuracies corrected. Individuals
also have the right to know what their data is being collected for, and to
be sure that their data isn’t being sold for other purposes. They also have
the right to “opt out” of any data collection that doesn’t appeal to them.
Data collectors have the responsibility to protect individual data to a
reasonably high degree, and to not share the data with anyone who does
not adhere to these rules.

That last clause has caused a contretemps between the EU and the
United States, since the United States does not enforce any controls on
personal data and allows companies to buy and sell it at will. At this writ-
ing, the United States and the EU have tentatively agreed on safe-harbor
provisions for American companies that meet “adequate” levels of privacy
by July 2001. Some members of Congress have tried several times to pass
pro-privacy legislation (although nothing as encompassing as what the EU
does), but have been blocked through industry pressure. The lobbying
group NetCoalition.com, which includes AOL, Amazon.com, Yahoo!,
eBay, and DoubleClick, believes in self-regulation, which is the equiva-
lent of no privacy protection. Unfortunately, much of the industry feels
that privacy is bad for business; invading personal privacy is sometimes the
only way some companies see to make money.
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On to business privacy. Businesses don’t generally need long-term
privacy. (Trade secrets—the formula for Coke, for example—are the
exceptions.) Customer databases might need to remain confidential for a
few years. Product development data, only a few years—and for
computer-related businesses, a lot less than that. Information about gen-
eral financial health, business negotiations, and tactical maneuvers: weeks
to months. Marketing and product plans, strategies, long-range negotia-
tions: months to years. Detailed financial information might need to be
secure for a few years, but probably not more. Even corporate five-year
plans are obsolete after nine months. We live in a world where informa-
tion diffuses rapidly. Last week’s business secrets have been supplanted by
this week’s new business secrets. And this week’s business secrets are next
week’s Wall Street Journal headlines.

Governments need short-term privacy as well. Often the interests of
one country run counter to the interests of another country, and govern-
ments need to keep certain pieces of information secret from that other
country. Unfortunately, countries are a lot bigger than companies.
It’s impossible to tell everyone in the United States a secret without it
leaking to the government of China. Therefore, if the United States wants
to keep a secret from the Chinese, it has to keep it a secret from almost all
Americans as well.

These secrets are usually military in nature: strategy and tactics,
weapons capabilities, designs and procurements, troop strengths and
movements, research and development. Military secrets often broaden
into state secrets: negotiating positions on treaties and the like. And they
often overlap into corporate secrets: military contracts, bargaining posi-
tions, import and export dealings, and so forth.

The exceptions to this short-term privacy need are embarrassments:
personal, political, or business. Union Carbide would have been happier
if information about Bhopal stayed secret for longer than it did. Govern-
ments don’t want their political embarrassments leaking into the press.
(Think Watergate. Think Iran-Contra. Think almost any political scandal
uncovered by the media.) People don’t want their personal pasts made
public. (Think Bill Clinton. Think Bob Livingston, the Congressman and
Speaker of the House nominee who resigned in 1999, after a 20-year-old
affair was made public. Think Arthur Ashe, whose AIDS condition was
discovered by the press.) In about two decades, we’re going to have
elections where candidates are going to have to try to explain e-mail that
they wrote when they were adolescents.
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The few instances of very long privacy requirements I know of are
government related. U.S. census data—the raw data, not the compila-
tions—must remain secret for 72 years. The CIA mandates that the
identities of spies remain secret until the spy is dead and all the spy’s
children are dead. Canadian census data remains secret forever.

MULTILEVEL SECURITY

Militaries have a lot of information that needs to be kept secret, but some
pieces of information are more secret than others. The locations of Navy
ships might be of moderate interest to the enemy, but the launch codes
for the missiles on those ships are much more important. The number of
bedrolls in the supply chain is of marginal interest; the number of rifles is
of greater interest.

To deal with this kind of thing, militaries have invented multiple lev-
els of security classifications. In the U.S. military, data is either Unclassi-
fied, Confidential, Secret, or Top Secret. Rules govern what kind of data
falls into what classification, and different classifications have different
rules for storage, dissemination, and so forth. For example, different
strength safes are required for different classifications of data. Top Secret
data might only be stored in certain guarded, windowless, rooms without
photocopiers, and might need to be signed out.

People working with this data need security clearances commensurate
with the highest classification of information they are working with.
Someone with a Secret clearance, for example, can see information that is
Unclassified, Confidential, and Secret. Someone with a Confidential
clearance can only see Unclassified and Confidential data. (Of course,
clearance is not a guarantee of trustworthiness. The CIA’s head Russian
counterintelligence officer, Aldrich Ames, had a Top Secret security
clearance; he also was a Russian spy.)

Data at the Top Secret level or above is sometimes divided by topic,
or compartment. The designation “TS/SCI,” for “Top Secret/Special
Compartmented Intelligence,” indicates these documents. Each compart-
ment has a codeword. TALENT and KEYHOLE, for example, are the
keywords associated with the KH-11 spy satellites. SILVER, RUFF,
TEAPOT, UMBRA, and ZARF are others. (UMBRA applies to com-
munications intelligence, and RUFF applies to imagery intelligence.)
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Compartments are topical access barriers; someone who has a Top Secret
clearance with an additional KEYHOLE clearance (sometimes called a
“ticket”) is not authorized to see Top Secret COBRA data.

These compartments are a formal codification of the notion of “need
to know.” Just because someone has a certain level of clearance doesn’t
mean he automatically gets to see every piece of data at that clearance
level. He only gets to see the data that he needs to know to do his job.
And there are other designations that modify classifications: NOFORN is
“No Foreign Nationals,” WNINTEL is “Warning Notice, Intelligence
Sources and Methods,” LIMDIS is “Limited Dissemination.”

Other countries have similar rules. The United Kingdom has one
additional classification level, Restricted, which falls between Unclassified
and Confidential. The United States has something similar called
FOUO—For Official Use Only—which means “Unclassified, but don’t
tell anyone anyway.” 

Two points are salient here. One, this kind of thing is much easier to
implement on paper than on computer. Chapter 8 talks about some of the
multilevel security systems that have been built and used, but none of
them have ever worked on a large scale. And two, this kind of thing is
largely irrelevant outside a military setting. Corporate secrets just don’t
work this way; neither do individuals’ secrets. Security in the real world
doesn’t fit into little hierarchical boxes.

ANONYMITY

Do we need anonymity? Is it a good thing? The whole concept of
anonymity on the Internet has been hotly debated, with people weighing
in on both sides of the issue.

Anyone who works on the receiving end of a crisis telephone line—
suicide, rape, whatever—knows the power of anonymity. Thousands of
people on the Internet discuss their personal lives in newsgroups for abuse
survivors, AIDS sufferers, and so on, that are only willing to do so
through anonymous remailers. This is social anonymity, and it is vital for
the health of the world, because it allows people to talk about things they
are unwilling to sign their name to. For example, some people posting
to alt.religion.scientology do so anonymously, and would not do so
otherwise.
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Political anonymity is important, too. There is not, and should not
be, any requirement that all political speech be signed. Just as someone
can do a mass political mailing with no return address, they can do 
the same over the Internet. This matters more in certain parts of the
world: In 1999, online anonymity allowed Kosovars, Serbs, and others
caught up in the Balkan war to send news about the conflict to the rest of
the world without taking the life-threatening risk of revealing their
identities.

On the other hand, people are using the anonymity of the Internet to
send threatening e-mail, publish hate speech and other obloquies, disperse
computer viruses and worms, and otherwise roil the good citizens of
cyberspace.

There are two different types of anonymity. The first is complete
anonymity: a letter without a return address, a message in a bottle, a
phone call in a world without Caller ID or phone tracing. The person ini-
tiating the communication is completely anonymous: No one can figure
out who it is, and more importantly, if the person initiates another com-
munication, the recipient doesn’t know it came from the same person.

The second type of anonymity is more properly called pseudonymity.
Think of a Swiss bank account (although the Swiss actually stopped doing
this in 1990), a Post Office box rented with cash under an assumed name
(although this is no longer possible in the United States without a fake
ID), an Alcoholics Anonymous meeting where you’re just known as
“Bob.” It’s anonymous in that no one knows who you are, but it is pos-
sible to link different communications from the same pseudonym. This is
exactly what a Swiss bank needs: It doesn’t care who you are, only that
you’re the same person that deposited the money last week. A merchant
doesn’t need to know your name, but it does need to know that you
legitimately bought the merchandise you are now trying to return.

Both types of anonymity are hard in cyberspace, because so much of
the infrastructure is identifying. The new Intel Pentium III–class micro-
processors have unique serial numbers that can be tracked, as do
Ethernet network cards. Microsoft Office documents automatically con-
tain information identifying the author. Cookies track people on the
Web; even anonymous e-mail addresses can theoretically be linked back
to the real person by tracking IP addresses. And many flaws have been
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found in the various products that promise anonymous browsing.
Superficial anonymity is easy, but true anonymity is probably not possible
on today’s Internet.

Commercial Anonymity

The notion of pseudonymity brings us nicely to anonymity in financial
transactions. What about it? A small group is a vocal proponent of
fi nancial anonymity. It’s no one’s business—not the government’s, not
the merchants’, not the marketers’—what people buy, whether it be 
X-rated videos or surprise birthday presents. Unfortunately, there is also a
large group of nonvocal proponents of financial anonymity: drug dealers
and other maleficent elements. Can these two sides reconcile?

Obviously they can, because cash exists. The real question is whether
we will ever get an electronic version of cash. I don’t believe we will,
except for low-value transactions.

Anonymity is more expensive because extra risks are associated with
an anonymous system. (Government regulations also affect things.) Banks
aren’t stupid; they prefer a less risky system. And choosing an anonymous
system is more expensive than a system based on accounts and relation-
ships. Banks could build the extra costs into the system, but customers
aren’t willing to pay for it. If you are a merchant, try this experiment. Put
a sign up in your store with the words “5 percent discount if you give us
your name and address and let us track your buying habits.” See how
many customers prefer anonymity. People talk as if they don’t want
megadatabases tracking their every spending move, but they are willing to
get a frequent-flyer affinity card and give all that data away for one
thousandth of a free flight to Hawaii. If McDonald’s offered three free
Big Macs for a DNA sample, there would be lines around the block.

On the other hand, put up a sign saying “5 percent discount if you
give us the name and address of your child’s daycare center” and you’re
likely to get a different reaction. There are some things most people want
to keep private, and there are people who want to keep most things pri-
vate. There will always be the Swiss-bank style anonymous payment sys-
tems for the rich, who are willing to pay a premium for their privacy.
But the average consumer isn’t one of those people. Average consumers
will have personal exceptions, but in general they don’t care about

Security Needs 65

453803_Ch05.qxd:453803_Ch05.qxd  4/12/13  9:48 AM  Page 65



anonymity. Banks have no reason to give it to them, especially while the
government is pressuring them not to.

Medical Anonymity

And then there are medical databases. On the one hand, medical data
are only useful if shared. Doctors need to know the medical history of
their patients, and aggregate medical data is useful for all sorts of
research. On the other hand, medical information is about as personal as
it gets: genetic predisposition to disease, abortions and reproductive
health, emotional health and psychiatric care, drug abuse, sexual behav-
iors, sexually transmitted diseases, HIV status, physical abuse. People have
a right to keep their medical information private. People have been
harassed, threatened, and fired after personal medical information was
made public.

And it’s not hard to get this information. Nicole Brown Simpson’s
medical records were leaked to the press within a week after her 1994
murder. In 1995, the Sunday Times of London reported that the going
price for anyone’s medical record in England was £200. And these cases
are from wealthy countries; just imagine what kinds of abuses are possible
in countries like India or Mexico, where a $10 bill can tempt even the
most virtuous civil servant.

Computerized patient data is bad for privacy. But it’s good for just
about everything else, so it’s inevitable. HIPAA (the Health Insurance
Portability and Accessibility Act) now has standards for computerized
medical records. It makes it easier to provide information when and
where it is needed, for a population that is less likely to have a family doc-
tor and more likely to move around the country, visiting different doctors
and hospitals when necessary. Specialists can easily call up vital data. Insur-
ance companies like it because it allows more automation, greater stan-
dardization, and cheaper processing: If all the data are electronic, then it
will be cheaper to process claims. And researchers like it because it allows
them to make better use of the available data: For the first time they can
look at everything, in standard form.

This is a big deal, probably as important as the financial and credit
databases mentioned previously. We as a society are going to have to
balance the need for access (which is much more evident for
medical information than financial information) with the need for pri-
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vacy. Computerization is coming to the medical profession, like it or not.
We need to make sure it’s done correctly.

PRIVACY AND THE GOVERNMENT

The government, and the FBI in particular, likes to paint privacy (and the
systems that achieve it) as a flagitious tool of the Four Horsemen of the
Information Apocalypse: terrorists, drug dealers, money launderers, and
child pornographers. In 1994, the FBI pushed the Digital Telephony Bill
through Congress, which tried to force telephone companies to install
equipment in their switches to make it easier to wiretap people. In the
aftermath of the World Trade Center bombing, they pushed the
Omnibus Counterterrorism Bill, which gave them the power to do rov-
ing wiretaps and the President the power to unilaterally and secretly clas-
sify political groups as terrorist organizations. Thankfully, it didn’t pass.
After TWA Flight 800 fell out of the sky in 1996 because of a fuel-tank
explosion, the FBI played on rumors that it was a missile attack and passed
another series of measures that further eroded privacy. They’re continu-
ing to lobby for giving the government access to all cryptographic keys
that protect privacy, or weakening the security so that it doesn’t matter.

For the past few decades, computer privacy in the United States has
been limited by what are called export laws. Export laws limit what kind of
encryption U.S. companies can export. Since most software products are
global, this effectively limited the strength of the cryptography in mass
products like Internet browsers and operating systems.

Since 1993, the U.S. government has been advocating something
called key escrow, which I discuss in detail in Chapter 16. This is the sys-
tem that gives the police access to your encryption keys.

The debate is ongoing. The FBI has been pushing for stronger anti-
privacy measures: the right to eavesdrop on broad swaths of the telephone
network, the right to install listening devices on people’s computers—
without warrants wherever possible. At the time of writing (early 2000),
we have new export rules for mass-market software, a variety of encryp-
tion liberalization bills are in Congress, and several court cases about export
controls are working their way to the Supreme Court. Changes happen all
the time; anything I say here could be obsolete by the time this book is
published.
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Also interesting (and timeless) are the philosophical issues. First, is the
government correct when it implies that the social ills of privacy out-
weigh the social goods? I argued in the previous section that the benefits
of anonymity outweigh the problems. It is the same with privacy. It has
many positive uses, and the positive uses are much more common than
the negative ones.

Second, can a government take a technology that clearly does an
enormous amount of social good and, because they perceive that it hin-
ders law enforcement in some way, limit its use? The FBI shibboleth is
that encryption is a great hindrance to criminal investigations, and that
they are only asking for the same eavesdropping capabilities they had ten
years ago. However, they offer no evidence, and the historic record con-
vincingly shows that wiretaps are not cost-effective crimefighting
techniques. Widespread cryptography may be a step back for law enforce-
ment’s desires, but it may not be a step back in convicting criminals.

I don’t know the answers. A balance exists between privacy and
safety. Laws about search and seizure and due process hinder law enforce-
ment, and probably result in some criminals going free. On the other
hand, they protect citizens against abuse by the police. We as a society
need to decide what particular balance is right for us, and then create laws
that enforce that balance. Warrants are a good example of this balance;
they give police the right to invade privacy, but add some judicial over-
sight. I don’t necessarily object to invasions of privacy in order to aid law
enforcement, but I vociferously object to the FBI trying to ram them
through without public debate or even public awareness.

In any case, the future does not look good. Privacy is the first thing
jettisoned in a crisis, and already the FBI is trying to manufacture crises in
an attempt to seize more powers to invade privacy. A war, a terrorist
attack, a police action . . . would cause a sea change in the debate. And
even now, in an environment that is most conducive to a reasoned debate
on privacy, we’re losing more and more of our privacy.

AUTHENTICATION

Privacy and anonymity might be important for our social and business
well-being, but authentication is essential for survival. Authentication is
about the continuity of relationships, knowing who to trust and who not
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to trust, making sense of a complex world. Even nonhumans need
authentication: smells, sounds, touch. Arguably, life itself is an authenti-
cating molecular pit of enzymes, antibodies, and so on.

People authenticate themselves zillions of times a day. When you log
on to a computer system, you authenticate yourself to the computer. In
1997, the Social Security Administration tried to put people’s data up on
the Web; they shut down after complaints that Social Security number
and mother’s maiden name weren’t good enough authentication means,
that people would be able to see other people’s data. The computer also
needs to authenticate itself to you; otherwise, how to do you know it’s
your computer and not some impostor’s?

Consider the average man on the street going to buy a bratwurst. He
examines storefront after storefront, looking for one that sells bratwurst.
Or maybe he already knows his favorite bratwurst store, and just goes
there. In any case, when he gets to the store he authenticates that it is the
correct store. The authentication is sensory: He sees bratwurst on the
menu, he smells it in the air, the store looks like the store did the last time
he was there.

Our man talks to the deli man and asks for a bratwurst. To some
degree, both authenticate each other. The deli man wants to know if the
customer is likely to pay. If the customer is dressed in rags, the deli man
might ask him to leave (or at least to pay beforehand). If the customer is
wearing a balaclava and brandishing an AK-47, the deli man might
simply run away.

The customer, too, is authenticating the deli man. Is he a real deli
man? Will he deliver me my bratwurst, or will he just give me a pile of
sawdust on my bun? What about the restaurant? There’s probably some
kind of certificate of cleanliness, signed by the local health inspector, on
the wall somewhere if the customer cares to check. More often, the
customer trusts his instincts. We’ve all walked out of restaurants because
we didn’t like the “feel” of the place.

The deli man hands over the bratwurst, and the customer hands over
a $5 bill. More authentication. Is this bill authentic? Is this bratwurst-
looking thing food? We’re so good at visual (and olfactory) authentication
that we don’t think about it, but we do it all the time. The customer gets
his change, checks to make sure it is legal tender, and puts it in his pocket.

If the customer paid using a credit card, there would be lot of behind-
the-scenes authentication. The deli man would swipe the card through a

Security Needs 69

453803_Ch05.qxd:453803_Ch05.qxd  4/12/13  9:48 AM  Page 69



VeriFone reader, which would dial into a central server and make sure the
account was valid and had enough credit for the purchase. The deli man
would be expected to examine the card to make sure it isn’t a forgery, and
check the signature against the one on the back of the card. (Most
merchants don’t bother, especially for low-value transactions.)

If the customer paid by check, there would be another authentication
dance. The deli man would look at the check, and possibly ask the
customer for some identification. Then he might write the customer’s
driver’s license number and phone number on the back of the check, or
maybe the customer’s credit card number. None of this will actually help
the deli man collect on a bad check, but it does help him track the
customer down in the event of a problem.

Attacking authentication can be very profitable. In 1988, Thompson
Sanders was convicted of defrauding the Chicago Board of Trade. He
synthesized a nonexistent trader, complete with wig, beard, and fake cre-
dentials. This fake trader would place large risky orders, then claim those
that were profitable and walk away from those that were not. The brokers
on the other side of the losing transactions, unable to prove who they
made the trade with, would be responsible for the losses.

Back to the deli. Another customer walks in. She and the deli man are
old friends. They recognize each other—authenticating each other by
face. This is a robust authentication system; people recognize each other
even though she has a new hairstyle and he is wearing a new toupee and
glasses. Superheroes realize this, and wear masks to hide their secret iden-
tity. That works better in comic books than in real life, because face-to-
face authentication isn’t only face recognition (otherwise the blind would
never recognize anyone). People remember each other’s voice, build,
mannerisms, and so forth. If the deli man called his friend on the phone,
they could authenticate each other without any visual cues at all.
Commissioner Gordon ought to figure out that Bruce Wayne is really
Batman, simply because they talk on the phone so often.

In any case, our bratwurst-filled customer finishes eating. He says
goodbye to the deli man, sure in the knowledge that he is saying good-
bye to the same deli man who served him his bratwurst. He leaves
through the same door that he came in by, and goes home.
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Easy enough, because everyone involved was there . . . in the deli.
Plato (and Hume) distrusted writing because you couldn’t know what
was true if the person wasn’t right there in front of you. What would he
say about the World Wide Web: no handwriting, no voice, no face . . .
nothing but bits.

The same customer who bought the bratwurst is now surfing the
Net, and he wants to buy something a little less perishable: a painting of a
bratwurst, for example. He fires up his trusty search engine and finds a few
Web sites that sell bratwurst paintings. They all take credit cards over the
Internet, or let him mail a check in. They all promise delivery in three to
four days. Now what?

How does the poor customer know whether to trust them? It takes
some doing to put up a storefront; on the Web, anyone can do it in a few
hours. Which of these merchants are honest, and which are scams? The
URL might be that of a trusted name in the bratwurst-painting business,
but who’s to say that the URL is owned by that same trusted name?
Northwest Airlines has a Web site where you can purchase  tickets:
www.nwa.com. Until recently, a travel agent had the Web site
www.northwest-airlines.com. How many people bought from the latter,
thinking they were buying from the former? (Many companies do not
own their namesake domain name.) Some companies embed their com-
petitors’ names in their Web site (usually hidden) in an effort to trick
search engines to point to them instead of their competitors. Internic.net,
which is where you go to register domain names, is not the same as Inter-
nic.com. The latter started out as a spoof, morphed into Internic Soft-
ware, and now registers domain names as well. They probably get a
considerable business from the confused. And there’s an even more
sinister thought: Who’s to say that some illicit hacker hasn’t convinced the
browser to display one URL while pointing to another?

The customer finds a Web site that looks reasonable and chooses a
bratwurst painting. He then has to pay the merchant. If he’s buying any-
thing of value, we are going to need some serious authentication here.
(If he’s spending 25 cents for a virtual newspaper, it’s a little easier to let
this slide.) Is this digital cash valid? Is this credit card valid, and is the
customer authorized to use it? Is the customer authorized to write a digi-
tal check? Some face-to-face merchants ask to see a driver’s license before
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accepting a check; what can a digital merchant examine before accepting
a digital check?

This is the most important security problem to solve: authentication
across digital networks. And there are going to be as many different solu-
tions as there are different requirements. Some solutions are going to have
to be robust, protecting values in the millions of dollars. Some won’t have
to be strong: authentication for a merchant’s discount card, for example.
Some solutions are going to be anonymous—cash, or a card that lets you
in to a particular area of the Net without necessarily revealing your
name—while others will need strong audit trails. Most will have to be
international: a Net-based passport, commerce systems used for interna-
tional commerce (which is all of them, these days), digital signatures on
international contracts and agreements.

Often computer authentication is invisible to the user. When you use
your cell phone (or your pay-TV system), it authenticates itself to the net-
work so the network knows who to bill. Military aircraft have IFF (iden-
tification friend or foe) systems to authenticate themselves to allied aircraft
and antiaircraft batteries. Burglar alarms include authentication, to detect
someone splicing a rogue alarm (that will never go off) into the circuit.
Tachographs, used in trucks throughout Europe to enforce driving rules,
such as mandatory rest periods, use authentication techniques to prevent
fraud. Prepaid electricity meters in the United Kingdom are another
example.

When thinking about authentication, keep in mind these two differ-
ent types. They might feel the same, but the techniques used are very dif-
ferent. The first one is session authentication: a conversation, either face
to face, over the telephone, or via an IRC (Internet Relay Chat) link.
Sessions can also be a single shopping expedition at an online store. What
is authenticated here is the continuity of the particular conversation: Is the
person who said this the same person who said the previous thing? (That’s
easy to do on the phone or face to face—the person sounds or looks the
same, so it’s probably the same person. On the Net, it’s a lot harder.)

The other is transaction authentication: a credit card purchase, a piece
of currency. The authentication here is whether or not the transaction is
valid: whether the parties should accept the transaction or call the cops.
The issues surrounding this kind of authentication are the same whether
the transaction is done over the Net, over the telephone, or face to face.
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Think of a merchant checking a $100 bill to make sure it’s not counter-
feit, or comparing the signature on a credit card with the signature on the
sales slip.

INTEGRITY

Sometimes when we think of authentication, we really mean integrity.
The two concepts are distinct but sometimes confused. Authentication
has to do with the origin of the data: who signed the license to practice
medicine, who issued the currency, who authorized this purchase order
for 200 pounds of fertilizer and five gallons of diesel fuel? Integrity has to
do with the validity of data. Are these the correct payroll numbers? Has
this environmental test data been tampered with since I last looked at it?
Integrity isn’t concerned with the origin of the data—who created it,
when, or how—but whether it has been modified since its creation.

Integrity is not the same as accuracy. Accuracy has to do with a
datum’s correspondence to the flesh-and-blood world; integrity is about a
datum’s relation to itself over time. They are often closely related.

In any society where computerized data are going to be used to make
decisions, the integrity of the data is important. Sometimes it is important
on an aggregate scale: if that faulty statistic about children below the
poverty line is accepted as fact, it could change the amount of federal aid
spent. Someone who fiddles with the closing prices for a handful of NAS-
DAQ stocks could make a killing on the resultant confusion. Sometimes
it is important to an individual: You can really mess up someone’s day
tampering with his DMV records and marking his license as suspended.
(This was accidentally done in 1985 in Anchorage, Alaska, to 400 people,
at least one of whom had to spend the night in jail. Think of the fun
someone could have doing it on purpose.)

There have been several integrity incidents regarding stocks. In 1997,
a company called Swisher that makes toilet bowl deodorizers got a big
boost to its stock prices because the news services kept mixing up its stock
symbol with that of another company called Swisher, which makes cigars.
Swisher(1) was a much smaller company than Swisher(2), so when you
plugged in the mistaken earnings figures, it looked like an incredibly
undervalued stock. Some guys on the Motley Fool Web site figured out
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what had happened and sold Swisher(1)’s stock short, figuring it would
come back down when investors realized their mistake.

In 1999, an employee of PairGain Technologies posted fake takeover
announcements designed to look like they came from the Bloomberg
news service, running the stock up 30 percent before the hoax was
exposed.

These attacks are not about authentication—it doesn’t matter who
collected the census data, who compiled the closing stock prices, or who
input the motor vehicle records—they’re about integrity. There are many
other databases where integrity is important: telephone books, medical
records, financial records, and so on.

If there’s a mystery writer in the audience, I always thought that a
cool way to murder someone would be to modify the drug dosage data-
base 
in a hospital. If the physician isn’t paying close enough attention—he’s
tired, the drug is an obscure one, some MacGuffin is distracting him—
he might just prescribe what the computer tells him to. This might be far-
fetched today—there’s still a lot of reliance on hard-copy documentation
like the Physician’s Desk Reference and AHFS Drug Information—but it
won’t be soon. Millions of people are getting medical information on line.
For example, drugemporium.com queries another site, drkoop.com, 
to search for any harmful drug interactions among the products in your
order (which can include prescription drugs). Users are admonished not
to rely on this information alone, but most of them probably will anyway.
Someone playing with the integrity of that data can cause a lot of harm.

And even if no malice is involved, any online system that deals with
prescriptions and treatments had better implement integrity checking
against random errors: No one wants a misplaced byte to result in an acci-
dental hospital death, neither the patient nor the software company who
is going to have to deal with the lawsuits.

In the physical world, people use the physical instantiation of an
object as proof of integrity. We trust the phone book, the Physician’s Desk
Reference, and the U.S. Statistical Abstracts because they are bound books
that look real. If they are fake, someone is spending a lot of money mak-
ing them look real. If you pull a Dickens novel off the shelf and start read-
ing it, you don’t think twice about whether it is real or not. The same
with a clipping from Business Week; it’s just a piece of paper, but it looks
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and feels like a page from the magazine. If you get a photocopy of the
clipping, then it just looks like a page from the magazine. If someone
retypes the article (or downloads it from LEXIS-NEXIS) and e-mails it to
you . . . then who knows.

On August 1, 1997, I received an e-mail from a friend; in it was a
copy of Kurt Vonnegut’s 1997 MIT commencement address. At least, I
assumed it was Vonnegut’s 1997 MIT commencement address. My friend
mailed it to me in good faith. But it wasn’t Kurt Vonnegut’s 1997 MIT
commencement address. Vonnegut didn’t deliver the 1997 commence-
ment address at MIT. He never wrote the speech, or delivered it any-
where. The words were written by Mary Schmich, and published in her
June 1, 1997, Chicago Tribune column.

Contrast that with another piece of alleged Vonnegut writing I
received, about 15 years previous. This was before the World Wide Web,
before I even had an e-mail address (but not before the Internet). This was
an essay entitled “A Dream of the Future (Not Excluding Lobsters)”; a
friend sent a photocopy in the mail. The copy was clearly from a publica-
tion. Yes, it could have been faked, but it would have been a lot of work.
This was before the era of desktop publishing, and making something
look like it was photocopied out of Esquire magazine was difficult and
expensive. Today it’s hard to tell the difference between the real thing and
a canard.

I’ve been e-mailed articles from magazines and newspapers many
times. What kind of assurance do I have that those articles are really from
the newspapers and magazines they are claimed to be from? How do I
know that they haven’t been subtly modified, a word here and a sentence
there? What if I make this book available online, and some hacker comes
in and changes my words? Maybe you’re reading this book online; did
you ever stop to think that these might not be my actual words, that
you’re trusting the server you downloaded the book from? Is there a
mechanism that you can use to verify that these are my words? If enough
years go by, more people will have read the altered version of the book
than my original words. Will anyone ever notice? How long before the
modified version becomes the “real” version? When will Vonnegut’s
denial be forgotten and his commencement address become history?

The temptation to falsify, or modify, data remains. A rune-covered
stone discovered in Minnesota supposedly described a visit by the Vikings
in 1362; never mind that it contained a word only found in modern
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Swedish. Paul Schliemann (Heinrich Schliemann’s grandson) claimed to
have discovered the secret of Atlantis in the ancient Mayan Troano
Codex, which he read in the British Museum. Never mind that no one
could read Mayan, and that the Codex was stored in Madrid. Bismarck’s
rewrite of the 1870 Ems telegram effectively started the Franco-Prussian
War. In 1996, when David Selbourne tried to pass off his translation of a
thirteenth-century Italian traveler’s visit to China (beating Marco Polo by
three years); he used the “owner of the manuscript allowed him to
translate it only if he swore himself to secrecy” trick to avoid having to
produce a suitable forgery.

The problem is that the digital world makes this kind of thing easier,
because it is so easy to produce a forgery and so hard to verify the accu-
racy of anything. In May 1997, a 13-year-old Brooklynite won a national
spelling bee. When the New York Post published the Associated Press
photo of her jumping for joy, it erased the name of her sponsoring news-
paper, the New York Daily News, from a sign around her neck. Video, too:
When CBS covered the 2000 New Year celebration, they digitally
superimposed their own logo over the 30-by-40-foot NBC logo in
Times Square. And fake essays and speeches, like the Vonnegut speech,
are posted on the Internet all the time.

Images can have powerful effects on people. They can change minds
and move foreign policy. Desert Storm pictures of trapped Iraqis being
shot up by Coalition airpower played a large part in the quick cease-fire:
Americans didn’t like seeing the lopsided carnage. And remember Soma-
lia? All it took was a 30-second video clip of a dead Marine being dragged
through the streets of Mogadishu to undermine the American will to
fight. Information is power. And next time, the video clip could be a fake.

It sounds spooky, but unless we pay attention to this problem we will
lose the ability to tell the real thing from a fake. Throughout human
history, we’ve used context to verify integrity; the electronic world has no
context. In the movie The Sting, Newman and Redford hired a cast of
dozens and built an entire fake horseracing-betting parlor in order to con
one person. A more recent movie, The Spanish Prisoner, had a similar big
con. Cons this involved were popular around the time of the Depression;
for all I know it’s still done today. The mark is taken because he can’t
imagine that what he’s seeing—the rooms, the people, the noise, the
action—is really only a performance enacted solely for his benefit.
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On the Net, this is easy to do. In a world without physical cues, people
need some new way to verify the integrity of what they see.

AUDIT

Double-entry bookkeeping was codified by 1497 by Luca Pacioli of
Borgo San Sepolcro, although the concept is as much as 200 years older.
The basic idea is that every transaction will affect two or more accounts.
One account is debited by an amount exactly equal to what the other is
credited. Thus, all transactions are always transfers between two accounts,
and since they always appear with a plus sign in one account and a minus
sign in the other, the total over all accounts will always be zero.

This system had two main purposes. The two books would be kept
by two different clerks, reducing the possibility of fraud. But more impor-
tantly, the two books would be routinely balanced against each other
(businesses would balance their books every month; banks, every day).
This balancing process was an audit: If one clerk tried to commit fraud—
or simply made a mistake—it would be caught in the balancing process,
because someone other than the clerk would be checking the work.
Additionally, there would be outside audits, where accountants would
come in and check the books over again . . . just to make sure.

Audit is vital wherever security is taken seriously. Double-entry
bookkeeping is just the beginning; banks have complex and comprehen-
sive audit requirements. So do prisons, nuclear missile silos, and grocery
stores. A prison might keep a record of everyone who goes in and out the
doors, and balance the record regularly to make sure that no one unex-
pectedly left (or unexpectedly stayed). A missile silo might go even further
and audit every box and package that enters and leaves, comparing ship-
ping and receiving records with another record of what was expected. A
grocery store keeps a register tape of all transactions that happen at the
register, and compares how much money the register thinks is in the
drawer with what is actually in the drawer.

These are not preventive security measures (although they may dis-
suade attacks); audit is designed to aid forensics. Audit is there so that you
can detect a successful attack, figure out what happened after the fact, and
then prove it in court. A system’s particular needs for audit depend on the
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application and its value. You don’t need much of an audit trail for a
stored-value card system for photocopy machines at a university; you
need a much stronger audit trail if the cards are going to be used to make
high-value purchases that can be converted back to cash.

Auditing can be difficult on computers. Register tapes make good
audit records because the clerk cannot change them: Transactions are
printed sequentially on a single sheet of paper, and it is impossible to add
or delete a transaction without raising some suspicion. (Well, there are
some attacks: blocking the writing, simulating running out of ink,
disabling the writing for a single transaction, forging an entire tape, and so
forth.) On the other hand, computer files can easily be erased or modified;
this makes the job of verifying audit records more difficult. And most sys-
tem designers don’t think about audit when building their systems. Recall
the built-in audit property of double-entry bookkeeping. That auditabil-
ity fails when both books are stored on the same computer system, with
the same person having access to both. But this is exactly how all
computer bookkeeping programs work.

ELECTRONIC CURRENCY

Back in the old days (1995 or so), everyone thought that we would have
to develop new forms of money to deal with electronic commerce. Many
companies died, trying to redefine money. Some companies tried to
create an electronic equivalent of cash; others tried to create electronic
equivalents of checks and credit cards. One of the last vestiges of this, the
joint Visa/MasterCard SET protocol, is designed to use existing credit
cards together with an Internet-specific system to make credit cards safe
for e-commerce.

It turns out that it doesn’t matter. Credit cards are fine for the Inter-
net, and most everyone uses them with alacrity to buy books, clothing,
pay-per-porn, and everything else. Still, security breaches like the series of
credit card number thefts in 2000 make you wonder. Is there ever going
to be an Internet-specific form of payment?

This is more of a regulatory question than a security question. The
security needs for electronic commerce can be cobbled together from 
the previous sections: authentication, privacy, integrity, nonrepudiation,
audit. The requirements are pretty simple: We need the ability to transfer
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monetary value over computer networks. Looking closer, there are
several ways to achieve this. We can take any of the existing commerce
metaphors—cash, checks, debit cards, credit cards, letters of credit—and
move them to cyberspace. Different metaphors have different rules and
requirements.

Some requirements depend on who has what liability. Merchants and
credit card companies hold most of the liabilities for stolen credit cards
and fraudulent credit card transactions, so electronic versions of those
systems are generally designed to make their lives easier, and not the
consumers’.

Different physical implementations also have different requirements.
Is this an online system or an offline system? Things are simpler if you can
assume an online connection with a bank (such as ATMs require). If
you’re building a commerce system for use in parts of the world where
telephone lines are scarce (like parts of Africa), you can’t make that
assumption. Does the system have to work in a software environment, or
can we assume a secure-hardware token like a smart card? And does this
system have to be anonymous, like cash, or include identities, like credit
cards? Finally, what government regulations does this system have to
meet? This depends not only on the metaphor chosen, but also the
regulations of the particular government or governments who have
jurisdiction over the system.

We’re already seeing some of this. We’re not seeing digital cash, but
we’re seeing alternative “points” systems that are the same thing as
currency. Flooz.com created a specialized currency for gift giving. Flooz
can be given away as gift certificates, which makes them usable as money.
Beenz.com does something similar; beenz are not real currency, but they
can be used and traded as such. Other companies are following suit.

I expect this to become a big deal, and potentially dangerous, because
these pseudocurrencies don’t have the same regulatory rules as real
money.

PROACTIVE SOLUTIONS

Traditionally, fraud prevention has been reactive. Criminals find a flaw in
a commerce system and exploit it. They keep going while the system’s
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designers figure out how to fix the flaw, or at least minimize the risk. The
criminals learn that their attack doesn’t work, and then go on to some
other attack. And the process continues.

You can see this in credit cards. Originally, card verification was
offline. Merchants were given books of bad credit card numbers every
week, and they had to manually check the number against the book.
Now, card verification is done online, in real time. People were stealing
new cards out of mailboxes, so the credit card companies started requir-
ing you to call in to activate your card. Now, the card and the activation
notice are mailed from different points. Companies also have artificial
intelligence programs checking for irregular spending patterns. (“Good
morning, sir, sorry to bother you. You’ve been a good customer for years.
We’d like to confirm that you suddenly moved to Hong Kong and spent
your entire credit limit on Krugerands.”)

When ATMs were first introduced by Citicorp in 1971, you would
put your card into a slot and type in your PIN. The machine would ver-
ify your PIN, spit the card back out at you, and then you could finish your
transaction. Enterprising New York criminals would dress up in suits and
wait near these machines. After a customer’s PIN was verified, she would
be approached by a suited criminal and be told that this machine was bro-
ken, or being tested, or just out of money, and  wouldn’t she please use the
machine over there. People in suits can be trusted, after all. After the cus-
tomer left, the suit would finish the first transaction and pocket the cash.

The work-around was to hold the card until the end of the transac-
tion, but that required rebuilding the hardware. The banks needed a solu-
tion fast, and they figured out a fix that could be quickly installed at the
ATMs: They had the nearby machines communicate with each other. As
they installed the fix throughout the branches, they could watch the crim-
inals migrate across the city looking for machines where the attack still
worked. They then retrofitted the ATMs to hold the card until the end of
the transaction. The long-term solution was to modify the back-end net-
work to make sure that only one transaction per card is active at any time.
This has been done, so now it doesn’t matter if the card is held by the
machine anymore. Now many ATMs have you swipe your card instead
of inserting it, but back then there was considerable fraud while the
problem was being fixed.
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This notion of fixing a security flaw after it becomes a problem won’t
work on the Internet. Attacks can be automated, and they can propagate
to unskilled attackers quickly and easily. A similar attack on whatever
turns out to be the Internet equivalent of an ATM could demolish the
banking system. It’s not enough to react to fraud after it’s been
demonstrated to work; we have to be proactive and deal with fraud
before it happens.
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Security is layered like an onion. On the outside are the users: How they
use the system, who they trust, what they do when the system fails. Inside
that are the security relationships between the user and the system, and
between different systems. Further inside is the software, those bug-rid-
dled pieces of code that are expected to enforce whatever security rules
we have. That software works on networks and computers. Looking
further in toward the theoretical are the idealized protocols that the
computers run. And in the center (sometimes) is the cryptography: the
mathematical equations that enforce security.

Security is a process, not a product. As a process, it has many compo-
nents. And like any process, some of these components are sturdier, more
reliable, more oiled, more secure. Moreover, the components have to fit
together. The better they fit together, the better the process works. Often
it’s the interfaces between components that are the least secure.

Security is also like a chain. It is composed of many links, and each
one of them is essential to the strength of the chain. And like a chain,
security is only as strong as the weakest link. In this part, we look at the
different security technologies that make up a chain, looking from the
inside of the onion to the outside.

And we try not to mix metaphors quite so badly anymore.
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6

Cryptography

Cryptography is pretty amazing. On one level, it’s a bunch of
complicated mathematics. It’s cryptographers designing ever
more complicated mathematical transformations and cryptana-

lysts countering with ever more ingenious ways of breaking the mathe-
matics. It also has a long and proud history: confidants, lovers, secret
societies, and governments have been using cryptography to protect their
secrets for millennia.

On another level, cryptography is a core technology of cyberspace. It
lets us take all of the business and social constructs we’re used to in the
physical world, and move them to cyberspace. It’s the technology that lets
us build security into cyberspace, to deal with the attacks and attackers dis-
cussed in Part 1. Without cryptography, e-commerce could never enter
the mainstream. Cryptography is not a panacea—you need a lot more
than cryptography to have security—but it is essential.

In order to understand security in cyberspace, you need to understand
cryptography. You don’t have to understand the math, but you have to
understand its ramifications. You need to know what cryptography can
do, and more importantly, what cryptography cannot do. You need to
know how to think about cryptography in the context of computer and
network security. These two chapters won’t turn you into a cryptogra-
pher, only an intelligent consumer of cryptography.

To the consumer, cryptography is a shadowy protective entity—
something like Batman—kind of menacing but on the side of justice, and
endowed with mystic powers. If the consumer is paying attention, cryp-
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tography is a boatload of acronyms that accomplish various security tasks.
IPsec, for example, secures IP traffic across the Internet. It secures virtual
private networks (VPNs). Secure Sockets Layer (SSL) secures WWW
connections. Pretty Good Privacy (PGP) and S/MIME secure e-mail;
they prevent others from reading e-mail that isn’t addressed to them, and
from forging e-mail to look like it came from someone else. SET secures
Internet credit card transactions. These are all protocols. There are proto-
cols for digital content protection (music, movies, etc.), cell phone
authentication (to stop fraud), electronic commerce, and just about every-
thing else. To build these protocols, cryptographers use different algo-
rithms: encryption algorithms, digital signature algorithms, and so forth.

SYMMETRIC ENCRYPTION

Historically, cryptography has been used for one thing: to keep secrets.
Written language itself has been used as a form of cryptography—in
ancient China only the upper classes were allowed to learn to read and
write—but the first documented use of cryptography was around 1900
B.C. in Egypt: A scribe used nonstandard hieroglyphs in an inscription.
There were other examples: a Mesopotamian tablet from 1500 B.C. con-
taining an enciphered formula for making pottery glazes, the Hebrew
ATBASH cipher from 500–600 B.C., the Greek skytale from 486 B.C.,
and Julius Caesar’s simple substitution cipher from 50–60 B.C. The Kama
Sutra of Vatsyayana even lists secret writing as the 44th, and secret talking
as the 45th, of 64 arts (yogas) men and women should know and practice.

The main idea behind cryptography is that a group of people can use
private knowledge to keep written messages secret from everyone else.
There is a message, sometimes called the plaintext, that someone wants to
keep secure. Maybe the someone (we’ll call her Alice) wants to send it to
someone else (we’ll call him Bob); maybe she wants to be able to read it
herself at some later date. What she doesn’t want is for anyone other than
(possibly) Bob to be able to read the message.

So Alice encrypts the message. She invents some transformation,
called an algorithm, of the plaintext message into a ciphertext message.
This ciphertext message is gibberish, so that an eavesdropper (we’ll call
her Eve) who gets her hands on this ciphertext cannot figure out the
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plaintext, and therefore cannot figure out what the message means. Bob
knows how to reverse the transformation—how to turn the ciphertext
message back into plaintext.

This works, more or less. Alice can use an algorithm of her own
devising to keep her pottery glazes secret. Alice and Bob can agree on an
algorithm to share their thoughts on the Kama Sutra. And an entire class
of Chinese nobles (even though none of them is called Bob) can use their
written language to keep state secrets safe from the peasants.

But there are complications. First, the algorithm has to be good. Eve
isn’t going to look at the ciphertext message, shrug her shoulders, and
wander off. She’s going to try to figure out what the plaintext is. If she’s
the World War II British government, she is going to hire the best math-
ematicians, linguists, and chess players in the country, stick them and
10,000 others in a secret compound at Bletchley Park, and invent the
computer—just so she can break the algorithm and recover the plaintexts.
Even today, the National Security Agency (NSA) is the single largest
consumer of computer hardware and the single largest employer of math-
ematicians in the world. Alice had better be a pretty smart cryptographer
if she is going to outsmart these sorts of Eves. I’ll talk more about this later.

Second, it’s hard to bring people in and out of the fold. To exchange
secret messages with Chinese noblemen, you had to learn how to become
literate. This took time. If you later fell out of favor with the government,
there was no way for them to prevent you from reading all the messages.
You knew how the encryption worked, and they had to kill you if they
didn’t want you reading their messages. (During World War II, the
American military used the Navajo language as a code. These Navajo
code talkers kept their language secret from the Japanese in World War II,
but the whole system would have collapsed if a single Navajo switched
allegiances.) 

These two problems, left unsolved, would make cryptography almost
useless today. You’re one of the whatever-million people on the Internet,
and you want to communicate securely with 100 of your closest friends.
You don’t want to share a common secret language with the 100 people;
you want 100 separate secure algorithms. (You need security pairwise.)
And so do all the other whatever-million Internet users. This means that
you have to invent 100 different encryption algorithms, exchange one
with each of your close friends, program them all into your computers
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yourself (you wouldn’t trust anyone else to do it), and hope you’re
smarter than everyone who might try to break your algorithm.

Not bloody likely.
Such is the beauty of a key. Your front door lock is mass-produced by

some faceless company that hasn’t the faintest idea how valuable your
vintage PEZ collection is, but you don’t have to trust them. They don’t
say: “Remember, anyone else who has the same brand lock can open the
lock.” You have a key. The pin settings inside your lock, which match
your key, make your lock different from all the other locks in the neigh-
borhood, even though they might be exactly the same make and model
number. (Actually, the example is simplistic. You do have to trust them
to install the lock correctly, and not to pocket an extra copy of the key.
But never mind that.)

This is the same security model that Leon Battista Alberti, the famous
Italian Renaissance architect, brought to cryptography in 1466 when he
invented the cryptographic key. Everyone can have the same brand lock,
but everyone has a different key. The design of the lock is public—lock-
smiths have books with detailed diagrams, and most of the good designs
are described in public patents—but the key is secret. You have a key, so
you can get in your front door. If you give a key to your friend, he can
get in your front door. Someone without a key cannot. (The locksmiths
are the cryptanalysts; we’ll get to them later.)

Applying this model to cryptography solves both of the preceding
problems. Algorithms, like locks, can be standardized. The Data Encryp-
tion Standard (also called DES) has been a standard cryptographic algo-
rithm, worldwide, since 1977. It’s been used in thousands of different
products for all sorts of applications. The innermost workings of DES
have been public from day one; they were published even before it was
adopted as a standard. The public nature of the algorithm doesn’t affect
security, because each different group of users chooses its own secret key.
Alice and Bob share the same key, so they can communicate. Eve doesn’t
know the key, so she can’t read their communications—even though she
has a copy of the exact same encryption software that Alice and Bob have.

Keys solve the problem of people moving in and out of a private
group. If Alice and Bob share a key, and they want to let Kim Philby join
their conversations, they just give him a copy of the key. If they later learn
that Philby is passing secrets to the Soviet Union, they can simply agree
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on a new key and not tell Philby. From that moment forward, he is cut
out of the system and can no longer read newly encrypted messages. (Of
course, he can still read the old ones.)

This is the way conventional cryptography works today. The algo-
rithms are designed for computers instead of pencil and paper—they
operate on binary bits instead of alphabetic characters, they’re designed
with the efficiencies of microprocessors and integrated circuits in mind—
but the philosophy is the same. The algorithm is public, and the commu-
nicating parties agree on a shared secret key to use with the algorithm.

These algorithms are called symmetric because the sender and receiver
must share the same key. The key is a string of random bits of some
length: in the year 2000, 128 bits is a good key length. Different symmet-
ric algorithms have different key lengths.

Symmetric algorithms can be found in encryption systems all over the
computerized world. Common algorithms are DES and triple-DES, RC4
and RC5, IDEA, and Blowfish. AES is the Advanced Encryption
Standard; it will soon be the U.S. government standard encryption algo-
rithm. These algorithms secure private e-mail, personal computer files,
electronic banking transactions, and nuclear launch codes. They protect
privacy.

But they’re not perfect.
The problem is distributing the keys. For this system to work, Alice

and Bob need to agree on a secret key before exchanging any secret
messages. If Alice and Bob are smart, they are going to change their key
routinely: daily, perhaps. They need to agree on these daily keys in some
secure manner, since anyone who eavesdrops on the key can eavesdrop
on all communications encrypted with that key. And assuming you want
pairwise security, the number of keys needed grows with the square of the
number of users: Two users need just one key, but a ten-user network
needs 45 keys to allow every pair of users to communicate securely. And
a 100-user network needs 4,950 different keys. In the 1980s, U.S. Navy
ships would often sail with a forklift-full of NSA- distributed keys—each
printed on paper tape or punch cards or whatever—enough for all of their
communications circuits for the entire length of their missions.

And it isn’t enough to disseminate these keys securely: They have to
be stored securely, used securely, and then destroyed securely. Alice and
Bob need to keep their keys secret until they need to talk with one
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another and they need to make sure that no one gets their keys, either
before they use them, while they are using them, or after they have used
them.

This means that destruction is critical. Alice and Bob can’t just toss
their key in the Dumpster in the back and hope no one finds it. Eaves-
droppers are not above storing encrypted communications that they can’t
read, hoping that they will find the key at some later date. The NSA’s
decryption of the Russian VENONA traffic (look up the story; it’s cool
beans) was possible only because the Soviets reused keys that should have
been thrown away, and because the NSA stored the Soviet encrypted
messages for over a decade.

There are many historical examples of poor key management break-
ing otherwise strong encryption. John Walker was in the U.S. Navy, but
he had a second career photocopying U.S. Navy key material before it
was used and then mailing it to the Russians—and he was a security
officer entrusted with keeping the keys secure. The Japanese death cult
Aum Shinrikyo encrypted their computer records, but they were careless
enough to leave a copy of the key on a floppy disk for the police to find.
And this was in 1995; you’d think death cults would have learned a thing
or two by then.

TYPES OF CRYPTOGRAPHIC ATTACKS

What does it mean to break an algorithm? Obviously, it means that some-
one can read the message without the key. But it’s more complicated than
that.

If an attacker can take a ciphertext message and recover the plaintext,
this is called a ciphertext-only attack. This almost never occurs anymore;
modern algorithms are just too good to fall to this kind of attack.

A known-plaintext attack is more likely: The analyst has a copy of the
plaintext and the ciphertext, and can then recover the key. This might
sound useless, but it in fact can be very useful. If other texts are encrypted
with the same key, the attacker can take the key and read more plaintext
encrypted with it. For example, almost all computer files have known
headers. All Microsoft Word files, for example, start with the same
hundreds of bytes. (These are not the characters you see; these bytes are

90 C H A P T E R  S I X

453803_Ch06.qxd:453803_Ch06.qxd  4/12/13  10:20 AM  Page 90



internal to the program and are not displayed on the screen.) If an analyst
can use that known plaintext to recover the key, then she can read the
entire Word file. Known-plaintext attacks were used to great effect
against the German Enigma. Analysts would have a single known plain-
text: Sometimes it was the daily weather report; for a while, one German
outpost in Norway would dutifully send the same message every day:
“Nothing to report.” (Probable known plaintexts are also called cribs.)
They would use that to break the day’s key, and then use the key to read
the rest of the day’s encrypted messages.

Even more powerful is a chosen-plaintext attack. Here the analyst gets
to choose the message that will be encrypted. Then she gets the encrypted
message and recovers the key. This kind of attack worked against the
German codes: Allies would deliberately introduce certain messages into
the system in order to learn the ciphertext, or create events in cities with
obscure names that are particularly useful cribs. It also works well against
some smart card systems, where the attacker can feed arbitrary messages
onto the card. It works in a lot of instances.

The one thing that is constant in all of these attacks is that the analyst
knows the details of the algorithm. (The only modern exception I know
of is the Japanese PURPLE code.) This is not just an academic shortcut;
this is good design. If an algorithm is used in products, it will be reverse
engineered. Once-secret algorithms that have been reverse engineered
include RC4, all the digital cellular encryption algorithms, the DVD and
DIVX video-encryption algorithms, and the Firewire encryption algo-
rithm. Even algorithms buried deep in military hardware will be captured
and reverse engineered: the Enigma during World War II, and just about
every NATO and Warsaw Pact algorithm during the Cold War.
(We don’t know those, but the respective militaries do.) It is good design
to assume the enemy knows the details of your algorithm, because even-
tually they will. Auguste Kerckhoffs first stated this thesis in 1883:
There is no secrecy in the algorithm, it’s all in the key.

RECOGNIZING PLAINTEXT

One question that often comes up about attacks is: How does the
cryptanalyst recognize plaintext? The answer is simple: Because it looks
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like plaintext. It’s an English-language message, or a data file from a com-
puter application, a JPEG movie, or a database in a reasonable format.
When you look at a decrypted file, it looks like something understand-
able. When you look at a ciphertext file, or a file decrypted with the
wrong key, it looks like gibberish. A person, or a computer, can see the
difference.

In the 1940s, Claude Shannon invented a concept called the unicity
distance. Among other things, the unicity distance measures the amount
of ciphertext required such that there is only one reasonable plaintext.
This number depends both on the characteristics of the plaintext and the
key length of the encryption algorithm.

For example, the RC4 algorithm encrypts data in bytes. Imagine a
single ASCII letter as the plaintext. There are 26 possible plaintexts out of
256 possible decryptions. Any random key, when used to decrypt the
ciphertext, has a 26/256 chance of producing a valid plaintext. The
analyst has no way to tell the wrong plaintext from the correct plaintext.

Now imagine a 1K e-mail message. The analyst tries random keys,
and eventually a plaintext emerges that looks like an e-mail message:
words, phrases, sentences, grammar. The odds are infinitesimal that this is
not the correct plaintext.

For a standard English message, the unicity distance is K/6.8 charac-
ters, where K is the key length in bits. (The 6.8 is a measure of the natural
redundancy of English. For other plaintexts, it will be more or less, but
not that much more or less.) For DES-encrypted ASCII, the unicity dis-
tance is 8.2 bytes. For 128-bit ciphers, it is about 19 bytes. This means that
for English messages longer than 19 bytes, a decryption that looks like
English is most likely the correct plaintext. It’s about the same for spread-
sheet files, word processor files, and database files. (Actually, it can be a lot
less because the file formats have standardized beginnings.) Compressed
files might have unicity distance two or three times as large (but again,
standardized beginnings can reduce it considerably).

The moral here is that it is easy to recognize plaintext, and it  doesn’t
take much data to do so.

MESSAGE AUTHENTICATION CODES

Message authentication codes, or MACs, are the next primitive we’ll talk
about. They don’t protect privacy; they ensure authentication and
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integrity. They ensure that the message came from the person from
whom it purports to have come from (authentication), and that the
message was not altered in transit (integrity).

You can think of a MAC as a tamperproof coating on a message.
Anyone can read the message; the coating doesn’t provide privacy. But
someone who knows the MAC key can verify that the message has not
been altered. More specifically, a MAC is a number that is appended to a
digital message.

MACs use a shared secret key, just like symmetric encryption algo-
rithms. First, Alice shares a key with Bob. Then, when she wants to send
a message to Bob, she computes the MAC of the message (using the secret
key) and appends it to the message. Every message has a unique MAC for
each possible key.

When Bob receives the message, he computes its MAC (again, using
the same shared secret key) and compares it with the MAC he received
from Alice. If they match, then he knows two things: The message really
does come from Alice (or someone who knows the secret of the shared
key), because only that key could be used to compute the MAC; and that
the message is complete and unaltered, because the MAC could only be
computed from the entire and exact message. If Eve (remember our
eavesdropper?) was listening in on the communications, she could read
the message. However, if she tried to modify either the message or the
MAC, then Bob’s calculated MAC would not equal the MAC he
received. Eve would have to modify the message and then modify the
MAC to be correct for the new message, but she can’t do that because she
doesn’t know the key. Banks have used this simple authentication system
for decades.

Alice can use this same trick to authenticate information stored in a
database. When she adds the information to the database, she calculates
the MAC and stores it with the information. When she retrieves the
information, she again calculates the MAC and compares it with the
MAC stored in the database. If they match, she knows that no one has
modified the information.

MACs are used on the Internet all the time. They’re used in the IPsec
protocol, for example, to ensure that IP packets have not been modified
between when they are sent and when they reach their final destination.
They’re used in all sorts of interbank transfer protocols to authenticate
messages. Most MACs are constructed using symmetric algorithms or
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one-way hash functions. CBC-MAC, for example, uses a symmetric
algorithm. HMAC and NMAC use hash functions.

ONE-WAY HASH FUNCTIONS

One-way hash functions are like digital fingerprints: small pieces of data
that can serve to identify much larger digital objects. They are public
functions; no secret keys are involved.

They are called one-way because of their mathematical nature. Any-
one can compute the one-way hash of anything (a text representation of
this book, for example). However, given the hash of this book, it is com-
putationally unfeasible to create another book that hashes to the same
value or to derive the book’s original text.

Hash functions can also provide a measure of authentication and
integrity. If you were to download this book over the Internet, you
would have no way of knowing if these are my words or if some other
party changed them. However, if I handed you the hash value of this
book (typically just a 20-byte code), you could hash the book and com-
pare the result with the hash I gave you. If they match, it’s my book, unal-
tered.

Hash functions have an enormous range of applications in cryptogra-
phy and computer security. Almost every Internet protocol uses them to
process keys, chain a sequence of events together, or authenticate events.
They are essential for digital signature algorithms (more about that later).
They are probably the single most useful tool in a cryptographer’s tool-
box.

A bunch of one-way hash functions are in use today. SHA-1 is the
U.S. government’s standard hash function. The acronym stands for
Secure Hash Algorithm, and is specified in the Secure Hash Standard
(SHS). RIPEMD-160 is a European algorithm. MD4 is obsolete
(although you still see it used occasionally), and MD5 is showing some
cracks and is not used for anything new.

PUBLIC-KEY ENCRYPTION

Remember the key-distribution problem I talked about with symmetric
encryption? How do two people make sure that they have the same key,
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so they can use a symmetric encryption algorithm or a MAC function?
Public-key cryptography (a.k.a. asymmetric encryption) solves this. It allows you
to send secret messages to people you haven’t met yet, and with whom
you haven’t agreed on a secret key. It allows two people to engage in a
publicly visible data exchange and, at the end of that exchange, compute
a shared secret that someone listening in on the discussion can’t learn. In
real-world terms, it allows you and a friend to shout numbers at each
other across a crowded coffeehouse filled with mathematicians so that
when you are done, both you and your friend know the same random
number, and everyone else in the coffeehouse is completely clueless.

If this sounds ridiculous, it should. It sounds impossible. If you were
to survey the world’s cryptographers in 1975, they would all have told
you it was impossible. So you can imagine the surprise in 1976, when
Whitfield Diffie and Martin Hellman explained how to do it. Or the sur-
prise in the British intelligence community when James Ellis, Clifford
Cocks, and M.J. Williamson figured out the same thing a few years
before.

The basic idea is to use a mathematical function that is easy to com-
pute in one direction and hard to compute in the other. Integer factoriza-
tion is one. Given two prime numbers, it’s easy to multiply them together
to find the product. But given a single product, it can be impracticable to
factor the number and recover the two factors. This is the kind of math
that can be used to create public-key cryptography; it involves modular
arithmetic, exponentiation, and large prime numbers thousands of bits
long, but you can elide the details. Today, there are a good half-dozen
algorithms, with names like RSA, ElGamal, and elliptic curves. (Algo-
rithms based on something called the knapsack problem were another
early contender, but over the course of about 20 years they were broken
every which way.) The mathematicals are different for each algorithm,
but conceptually they are all the same.

Instead of a single key that Alice and Bob share, there are two keys:
one for encryption and the other for decryption. The keys are different,
and it is not possible to compute one key from the other. That is, if you
have the encryption key, you can’t figure out what the decryption key is.

Now, here’s the cool part. Bob can create a pair of these keys. He can
take the encryption key and publish it. He can send it to his friends, post
it on his Web site, publish it in a phone book, whatever. Alice can find
this key. She can take it and encrypt a message to Bob. Then, she can send
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the message to him. Bob can use his decryption key (which he astutely did
not post on his Web site) to decrypt and read Alice’s message. Notice that
Alice did not have to meet Bob in some dark alley and agree on 
a shared secret. Bob doesn’t even have to know Alice. Actually, Alice
 doesn’t even have to know Bob. If Alice can find Bob’s public key, she
can send him a secret message that can’t be read by anyone but Bob. This
happens to PGP users all the time; one of their keys is uploaded to a server
somewhere, and then a perfect stranger sends them an encrypted message.
Even if you understand the mathematics, it can be startling.

The particulars are a whole lot more subtle. For example, I left out
how Bob creates his public and private keys, and how Bob keeps his
private key secret. (He can’t remember it; it’s over a thousand random
digits long.) And I skipped over the incredibly complicated problem of
how Alice knows that she has Bob’s key and not some old key or, worse
yet, some impostor’s key. We’ll get back to this later.

For now, I just want to point out that no one uses public key encryp-
tion to encrypt messages. All operational systems use a hybrid approach
that uses both kinds of cryptography. The reason is performance. What
Alice really does, when she wants to send a message to Bob, is to use a
symmetric algorithm to encrypt the message with a random key that she
creates out of thin air (called a session key). She encrypts that random key
with Bob’s public key, and then sends both the encrypted key and the
encrypted message to Bob. When Bob receives the encrypted message
and key, he does the reverse. He uses his private key to decrypt the ran-
dom symmetric key, and then uses the random symmetric key to decrypt
the message.

This might sound weird, but it isn’t. It’s perfectly normal. Nobody
uses public-key cryptography to directly encrypt messages. Everyone uses
this hybrid approach. It’s in every e-mail security program: PGP, PEM,
S/MIME, whatever. It’s how encryption works with Web security,
TCP/IP security, secure telephones, and everything else.

DIGITAL SIGNATURE SCHEMES

Public-key encryption was amazing enough, but digital signatures are
even more splendiferous—and more important. Digital signatures
provide a level of authentication for messages, similar to MACs. And in
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modern business, authentication is far more important than secrecy.
Like public-key encryption, digital signatures use a pair of keys, the

public key and the private key. You still can’t derive one key from the
other. But this time we’re going to reverse them.

Alice has a plaintext message. Using her private key, she encrypts the
message. Because her private key is only hers, only Alice’s key can encrypt
the message in precisely this way. Thus, the encrypted message becomes
Alice’s signature on the message. Alice’s public key is public. Anyone can
get Alice’s public key and decrypt the message, thereby verifying that
Alice signed (i.e., encrypted) it. The signature is a function of the message,
so it is unique to the message: A malicious forger can’t lift Alice’s signa-
ture from one document and paste it onto another. And it’s a function of
Alice’s private key, so it is unique to Alice.

Of course, real systems are more complicated. Just as Alice doesn’t
encrypt messages with public-key encryption algorithms (she encrypts a
message key), she also doesn’t sign messages directly. Instead, she takes a
one-way hash of a message and then signs the hash. Again, signing the
hash is a few orders of magnitude faster, and there are mathematical secu-
rity problems with signing messages directly.

Also, most digital signature algorithms don’t actually encrypt the
messages that are signed. The idea is the same, but the mathematics is dif-
ferent. Alice makes some calculation based on the message and her private
key to generate the signature. This signature is appended to the message.
Bob makes another calculation based on the message, the signature, and
Alice’s public key to verify the signature. Eve, who doesn’t know Alice’s
private key, can verify the signature but cannot forge the message and a
valid signature.

Several digital signature algorithms are currently in use. RSA is the
most popular. The U.S. government’s Digital Signature Algorithm
(DSA), used in the Digital Signature Standard (DSS), sees a lot of use, too.
ElGamal signatures are another you’ll see occasionally. And there are sig-
nature algorithms based on elliptic curve cryptography, which are similar
to all the others but are more efficient in some situations.

Although public-key digital signature algorithms are similar to
MACs, they are better in one important respect. With a MAC, Alice and
Bob share a secret key that they use to authenticate messages. If Alice
receives a message that she verifies, she knows it came from Bob. But she
cannot convince a judge of that fact. All a judge can be convinced of is
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that the message came from either Bob or Alice; after all, both of them
knew the MAC key. MACs can be used to convince the receiver that the
message came from the sender, but it cannot be used to convince a third
party. Digital signatures can be used to convince a third party, which
solves the nonrepudiation problem: Alice cannot send a message to Bob,
and then later deny ever sending it.

The unfortunate reality is that this stuff about signatures is not as black
and white as the math implies. Digital signature laws are on the books in
many states and countries, but I worry that they won’t survive litigation.
Digital signatures are not analogues of handwritten signatures. I will talk
more about this in Chapter 15.

RANDOM NUMBER GENERATORS

Random numbers are the least-talked-about cryptographic primitive, but
are no less important than the others. Almost every computer security sys-
tem that uses cryptography needs random numbers—for keys, unique val-
ues in protocols, and so on—and the security of those systems is often
dependent on the randomness of those random numbers. If the random
number generator is insecure, the entire system breaks.

Depending on who you talk to, generating random numbers from a
computer is either trivial or impossible. Theoretically, it’s impossible.
John von Neumann, the father of computers, said: “Anyone who consid-
ers arithmetic methods of producing random digits is, of course, in a state
of sin.” What he means is that it is impossible to get something truly
random out of a deterministic beast like a computer. This is true, but
luckily we can get by anyway. What we really need out of a random
number generator is not that the numbers be truly random, but that they
be unpredictable and irreproducible. If we can get those two things, we
can get security.

On the other hand, if we mess those two things up, we get insecurity.
In 1994, the Casino Montreal used a computer’s random number gener-
ator for its keno drawings. One observant gambler who spent way too
much time in the casino noticed that the winning numbers were the same
every day. He successfully picked three successive jackpots and won
$600,000. (After much wringing of hands, gnashing of teeth, and investi-
gations, the casino paid up.)
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Several broad classes of random number generators are out there.
Some random number generators make use of physical processes that
seem pretty random. The NSA likes to use electrically noisy diodes in its
hardware circuits to create random numbers. Other possibilities are
Geiger counters and radio-noise receivers. One system on the Internet
uses a digital camera focused on a choir of lava lamps. Other systems use
the air turbulence in disk drives, or the seemingly random arrival time of
successive network packets.

Some random number generators use random movements from the
user. A program might ask the user to type a large string of random char-
acters on the keyboard; it might use the sequence of characters, or even
the timing between successive keystrokes, to create random numbers.
Another program might ask the user to make random mouse movements,
or to gargle into a microphone.

Some random number generators use these inputs directly. Others
use them as seeds for mathematical random number generators. This
process works best when the system needs more random numbers than
the input provides. Whatever the source of randomness, the generator
will then generate a series of random bits. These can then be used as cryp-
tographic keys, and for whatever else the system needs.

KEY LENGTH

One of the easiest ways to compare cryptographic algorithms is key
length. The press likes to focus on this because it’s easy to describe and
compare. Like most of security, the reality is more complicated. A short
key is bad, but a long key is not automatically good. In the next chapter I
discuss why, but it’s worth explaining key length and its importance.

Let’s start at the beginning. A cryptographic key is a secret value that
makes a cryptographic algorithm unique for those who share the key. If
Alice and Bob share a key, they can use the algorithm to communicate
securely. If Eve, an eavesdropper, does not know the key, she is forced to
try and break the algorithm.

One obvious thing she can do is try every possible key. This is called
a brute-force attack. If the key is n bits long, then there are 2n possible keys.
So, if the key is 40 bits long, there are about a trillion possible keys. This
would be impossibly boring for Eve, but computers are indefatigable;
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they excel at impossibly boring tasks. On the average, a computer would
have to try about half the possible keys before finding the correct one, so
a computer capable of trying a billion keys per second would average 18
minutes to find the correct 40-bit key. In 1998, the Electronic Frontier
Foundation built a machine that could brute-force the DES algorithm.
The machine, called DES Deep Crack, tried 90 billion keys per second; it
could find a 56-bit DES key in an average of 4.5 days. In 1999, a distrib-
uted Internet keysearch project to break a DES key, called distributed.net
(which included Deep Crack), was able to test 250 billion keys per
second.

All of these brute-force cracks scale linearly; twice the computers can
try twice the number of keys. But the difficulty of a brute-force crack is
exponential with respect to the key length: Add one key bit, and a brute-
force crack is twice as hard. Add two bits, and it’s four times as hard. Add
ten bits, and it’s a thousand times as hard.

The nice thing about brute-force attacks is that they work against any
algorithm. Since the attack doesn’t involve the inner workings of the
mathematics, the attack doesn’t care what they are. Some algorithms may
be faster than others, and hence the brute-force attacks might be faster;
but this is more than overshadowed by the key length. It’s easy to com-
pare the key lengths of different algorithms, and to figure out which ones
are more vulnerable to brute-force attacks.

In 1996, a clutch of cryptographers (including me) researched the var-
ious technologies one could use to build brute-force cryptanalytic
machines, and recommended a minimal key length of 90 bits to provide
security through 2016. Triple-DES has a 112-bit key, and most modern
algorithms have at least a 128-bit key. (The U.S. government’s new
Advanced Encryption Standard supports key lengths of 128 bits, 192 bits,
and 256 bits.) Even a machine a billion times as fast as Deep Crack would
take a million years to try all 2112 keys and recover the plaintext; over a
thousand times longer for a 128-bit key. This will be secure for a millen-
nium.

These numbers should be looked at with some skepticism. I’m not
prescient; I have no idea how future advances in computing will affect
things. And the real security depends on several things: how valuable your
data is, how long you need to keep it secure, and so forth. But these are
meant to be conservative numbers. The key lengths are for symmetric
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algorithms and MACs. Hash functions should have a length equal to
twice the key length in the table.

Key lengths for public-key algorithms are more complicated. The
most efficient attack against RSA, for example, is to factor the large num-
ber. The most efficient attack against ElGamal, Diffie-Hellman, DSA, and
the others, is to compute something called the discrete logarithm.
(They’re basically the same problem.) Elliptic-curve algorithms are even
more complicated.

These days experts are recommending 1,024-bit keys, or longer, for
public-key algorithms. Paranoids use longer keys. Systems that don’t care
too much about long-term secrecy use 768-bit keys. (Elliptic-curve
algorithms have different key lengths.)

Estimates of future difficulty of factoring and calculating discrete log-
arithms are harder to make, since there is no mathematical proof that these
problems have a set degree of difficulty. (On the other hand, we know
how difficult trying every possible key is.) So again, treat all these
recommendations as intelligent guesses, nothing more.
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7

Cryptography in Context

If cryptography is so powerful, why do security breaches occur? Why
are there electronic theft, fraud, privacy violations, and all of the
other security problems discussed in the previous chapters? Why isn’t

cryptography the perfect answer to all our security needs? Why am I
bothering with the rest of this book?

Surprisingly enough, it’s not because of bad cryptography. (Enough
of that is out there, but the problems are even more serious.) The answer
lies in the difference between theory and practice.

Cryptography is a branch of mathematics. Mathematics is theoretical;
mathematics is logical. Good mathematics starts with sound premises, fol-
lows a single road—proof after proof—over complex terrain, and ends
with unassailable conclusions. By its nature, it looks good on paper.

Security is rooted in the physical world. The physical world is not
logical. It is not orderly. There is no single road. There are theories and
conclusions, but in order to accept the conclusions you have to accept the
premises, the models, and the relationship between the theories and the
world. And that’s not easy. People don’t play along. They do the unex-
pected; they break the rules. Hardware is the same way: It breaks down,
it misbehaves once in a while. Software, too. Software should be logical
and orderly—it’s only ones and zeros, after all—but it is often so complex
that it behaves more like an organism than a piece of mathematics. No
matter how good the cryptographic theory is, when it is used in a system,
it intersects with practice.

I often talk about products being “buzzword compliant.” Their mar-
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keting literature proclaims that “We use RSA,” or triple-DES, or
whatever cryptographic algorithms are in vogue. It’s like advertising a
house as completely safe just because it has a certain brand of door lock.
It’s just not enough.

KEY LENGTH AND SECURITY

Despite what I said last chapter, key length has almost nothing to do with
security.

The lock on the front door of your house has a series of pins in it.
Each of the pins has multiple possible positions. When someone inserts a
key into the lock, the pins are each moved to specific positions. If the
positions dictated by the key are the ones that the lock needs to open, it
does. Otherwise, it doesn’t.

Most residential locks have five pins, each of which can be in one of
ten different positions. That means that there are 100,000 possible keys. A
burglar with a gargantuan key ring can try every possible key, one after
the other, and eventually he will get in. He had better be patient, because
even if he can try a new key every five seconds, it will take him an
average of 69 hours to find the correct key—and that doesn’t include
bathroom, meal, or sleep breaks.

One day a salesman knocks on your door, and offers to sell you a new
lock. His lock has seven pins with twelve positions each. A burglar, he
tells you, will have to try different keys for almost three years, nonstop,
before he will be able to open your door. Do you feel more secure with
this lock?

Probably not. No burglar would ever stand at your doorstep for 69
hours anyway. He’s more likely to pick the lock, drill it out, kick the door
down, break a window, or just hide in the bushes until you saunter up the
front walk. A lock with more pins and positions won’t make your house
more secure, because the specific attack it makes more difficult—trying
every possible key—isn’t one you’re particularly worried about. As long
as there are enough pins to make that attack infeasible, you don’t have to
worry about it.

The same is true for cryptographic keys. If they are long enough,
brute-force attacks are simply beyond the capabilities of human engineer-
ing. But there are two worries. The first is the quality of the encryption
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algorithm, and the second is the quality of the keys. How long is “long
enough” is more complicated than a simple number; it depends on both
of these things.

But first I need to explain about entropy.
Entropy is a measure of disorder; or, more specifically in the context

of cryptography, it is a measure of uncertainty. The more uncertain some-
thing is, the more entropy in that thing. For example, if a random person
from the general population is either male or female, the variable “gen-
der” has one bit of entropy. If a random person prefers one of the four
Beatles, and each is equally likely, that corresponds to two bits of entropy.
The sex of someone on a women’s Olympic running team has no
entropy; everyone is female. The entropy of the Beatle-preference at a
John Lennon fan club meeting has much less than two bits, because it is
more likely that a random person will prefer John. The more certainty in
the variable, the less the entropy.

The same is true for cryptographic keys. Just because an algorithm
accepts 128-bit keys does not mean it has 128 bits of entropy in the key.
Or, more exactly, the best way to break a given implementation of a 128-
bit encryption algorithm might not be to try every possible key. The “128
bits” is simply a measure of the maximum amount of work required to
break the algorithm and recover the key; it says nothing about the mini-
mum.

The first worry is the source of the keys. All the key-length calcula-
tions I just made assume that each key has maximum entropy when it is
generated. In other words, I assumed that each key is equally likely: that
the random number generator that created the keys was perfect. This just
isn’t true.

Many keys are generated from passwords or passphrases. A system that
accepts 10-character ASCII passwords might require 80 bits to represent,
but has much less than 80 bits of entropy. High-order ASCII bits won’t
appear at all, and passwords that are real words (or close to real words) are
much more likely than random character strings. I’ve seen entropy esti-
mates of standard English at less than 1.3 bits per character; passwords
have less than 4 bits of entropy per character. This means that an 8-char-
acter password is about the same as a 32-bit key, and if you want a
128-bit key, you are going to need a 98-character English passphrase.

You see, a smart brute-force password-cracking engine isn’t going to
try every possible key in order. It’s going to try the most likely ones first,

104 C H A P T E R  S E V E N

453803_Ch07.qxd:453803_Ch07.qxd  4/12/13  10:33 AM  Page 104



and then try the rest in some likelihood order. It will try common pass-
words like “password” and “1234,” then the entire English dictionary,
and then varied capitalization and extra numbers, and so on. This is called
a dictionary attack. L0phtcrack is a password-cracking program that does
this; on a 400-MHz Quad Pentium II, it can test an encrypted password
against an 8-megabyte dictionary of popular passwords in seconds.

This is why it is laughable when companies like Microsoft tout 
128-bit encryption and then base the key on the password. (This de scribes
pretty much all of Windows NT security.) The algorithms they use might
accept a 128-bit key, but the entropy in the password is far, far less. In fact,
it doesn’t matter how good the cryptography is or what the key length is;
weak passwords will break this system. (The obvious solution, preventing
people from trying lots of passwords,  doesn’t work. I talk about this more
in Chapter 9.)

This is a big deal. I see complex systems where the private key is pro-
tected with a password. Almost every hard-disk encryption product bases
its security on a user-remembered key. Almost all the security of Win-
dows NT collapses because it is all built on user-remembered passwords.
Even PGP falls apart if the user chooses a bad passphrase. It  doesn’t mat-
ter what the algorithms are or how large the keys they use; user-remem-
bered secrets are not secure by themselves.

Randomly generated keys are much better, but problems remain.
Now the random number generator must produce keys with maximum
entropy. A flaw in the random number generator is what broke the
encryption in Netscape Navigator 1.1. While the random number gener-
ator was used to generate 128-bit keys, the maximum entropy was around
20 bits. So the algorithm was no better than if it had a 20-bit key.

The second worry is the quality of the encryption algorithm. All of
the preceding calculations assumed that the algorithms took the keys they
were given and used them perfectly. If flaws in the algorithm allow for
attacks, this effectively reduces the entropy in the keys. For example, the
A5/1 algorithm, used in European GSM cell phones, has a 64-bit key, but
can be broken in the time it takes to brute-force a 30-bit key. This means
that even though the algorithm is given a cryptographic 
key with 64 bits of entropy, it only makes use of 30 bits of entropy in the
key. You might as well use a good algorithm with a 30-bit key.

This is the reason why it takes so long before cryptographers are will-
ing to trust a new algorithm. When someone proposes a new algorithm,
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it has a particular key length. But does the algorithm actually deliver the
entropy that it claims to? It might take years of analysis before we trust that
it does. And even then we could easily be wrong; new mathematics could
be invented that reduce the algorithm’s entropy and break it. This is also
why products that advertise thousand-bit keys are hard to take seriously;
their promoters don’t understand how keys and entropy work.

A similar issue exists with physical keys and locks. I used to know a
locksmith who would carry large key rings around in his truck. It might
require 10,000 keys to open all the locks, but in reality a few dozen keys
would open all the locks of a particular manufacturer. Sometimes he
would have to slide the keys around a bit—note the combination of
analysis and a brute-force attack—but it would work. Tedious yes, but
nowhere near as tedious as trying all 10,000 possible keys (older cars have
four-pin locks). The actual security of door locks was nowhere near the
theoretical maximum.

It’s the same with combination locks. You can try every possible
combination—and there are brute-force safecracking machines that do
that—or you can be smarter about it. Modern safecracking machines use
a microphone to listen to the dials as they turn, and can open a safe much
faster than brute force.

This makes choosing an encryption algorithm very important. I
discuss this in more detail at the end of the chapter.

ONE-TIME PADS

One-time pads are the simplest of all algorithms, and were invented early
on in the 20th century. The basic idea is that you have a pad of key let-
ters. You add one key letter to each plaintext letter, and never repeat the
key letters. (That’s the “one-time” part.) For example, you add B (2) to
C (3) to get E (5), or T (20) to L (12) to get F (6). 20 + 12 = 6 mod 26.
This system works with any alphabet, including a binary one. And it’s the
only provably secure algorithm we’ve got.

Recall the concept of unicity distance. The unicity distance grows
with the length of the key. As the key length approaches the length of the
message, the unicity distance approaches infinity. This means that it is
impossible to recognize plaintext, and why a one-time pad is provably
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secure.
It’s also pretty much useless. Because the key has to be as long as the

message, it doesn’t solve the security problem. One way to look at
encryption is that it takes very long secrets—the message—and turns them
into very short secrets: the key. With a one-time pad, you haven’t shrunk
the secret any. It’s just as hard to courier the pad to the recipient as it is to
courier the message itself. Modern cryptography encrypts large things—
for example, digital movies, Internet connections, and telephone conver-
sations—dealing with one-time pads that large is just impracticable.

One-time pads have been used in the physical world, in specialized
circumstances. Russian spies used pencil and paper one-time pads to com-
municate. The NSA broke the system because the Russians reused the
same one-time pads. An early Teletype hotline between Washington and
Moscow was encrypted using a one-time pad system.

Any product that claims to use a one-time pad is almost certainly
lying. And if they’re not, the product is almost certainly unusable and/or
insecure.

PROTOCOLS

The six tools I discussed in the previous chapter—symmetric encryption,
message authentication codes, public-key encryption, one-way hash
functions, digital signature schemes, and random number generators—
comprise the cryptographer’s toolbox. This is what we use to build cryp-
tographic solutions to actual problems: How can I send anonymous
e-mail? How can I prevent cell phone fraud? How can I implement a
secure Internet voting system? By combining these tools into things called
protocols, we can solve these security problems. There are other minor
tools that we have to use, but essentially those six primitives are at the core
of any cryptographic protocol.

For example, assume that Alice wants to keep some data files private.
Here’s a protocol that does this. Alice chooses a password, or better yet, a
passphrase. The cryptography software hashes that passphrase to obtain a
secret key, and then uses a symmetric algorithm to encrypt the data file.
The result is a file that can only be accessed by Alice, or someone else who
knows the password.
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Want to build a secure telephone? Use public-key cryptography to
generate a random session key, and then use symmetric cryptography and
that session key to encrypt the conversation. A hash function provides
added security against man-in-the-middle attacks. (More about those
later.) To secure e-mail, use public-key cryptography for privacy and dig-
ital signature schemes for authentication. Electronic commerce? Usually
nothing more than digital signatures and sometimes encryption for
privacy. A secure audit log: combine a hash function, encryption, maybe
a MAC, and stir.

What we’re doing here is building protocols. A protocol is nothing
more than a dance. It’s a series of predetermined steps, completed by two
or more people, designed to complete a task. Think of the protocol used
by a merchant and a customer for purchasing a tangerine. Here are the
steps:

1. The customer asks the merchant for a tangerine.
2. The merchant gives the customer a tangerine.
3. The customer gives the merchant money.
4. The merchant gives the customer change.

Everyone involved in the protocol must know the steps. For exam-
ple, the customer knows he has to pay for the tangerine. All steps must be
unambiguous; neither the merchant nor the customer can reach a step
where they don’t know what to do. And the protocol has to terminate;
there can be no endless loops.

There’s also a certain amount of processing by the parties. For exam-
ple, step 2 won’t work properly unless the merchant understands the
semantic content of step 1. The merchant won’t complete step 4 unless
she recognizes the money as real in step 3. Try buying a tangerine in the
United States with Polish zlotny and see how far you get.

The particular protocols we’re concerned about are secure protocols.
In addition to the preceding requirements, we don’t want either the cus-
tomer or the merchant to be able to cheat (whatever “cheat” means in this
context). We don’t want the merchant to be able to peek into the
customer’s wallet in step 3. We don’t want the merchant to be able to not
give the customer change in step 4. We don’t want the customer to be
able to shoot the merchant dead in step 3 and walk away with a stolen
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tangerine. These cheats are possible in the physical world, and the
anonymity of cyberspace exacerbates the risks.

Even in the physical world, more complex protocols have been
designed to mitigate the risks of different types of fraud. Think of the basic
car-purchase protocol:

1. Alice gives the title and keys to Bob.
2. Bob gives a check for the purchase price to Alice.
3. Alice deposits the check.

In this protocol, Bob can easily cheat. He can give Alice a bad check.
She won’t know the check is bad, and won’t find out until the bank tells
her that the check bounced. By then, Bob is long gone with Alice’s car.

When I sold my car a few years ago, I used this modified protocol to
prevent that attack:

1. Bob writes a check and gives it to the bank.
2. After putting enough of Bob’s money on hold to cover the check, the bank

“certifies” the check and gives it back to Bob.
3. Alice gives the title and keys to Bob.
4. Bob gives the certified check for the purchase price to Alice.
5. Alice deposits the check.

What’s going on here? The bank is acting as a trusted third party in
this scrap of street commerce. Alice trusts the certification on the check,
that the bank will honor the check for its full amount. Bob trusts that the
bank will keep the money for the check on hand, and not spend it on
risky loans in Third World countries. Alice and Bob can complete their
transaction, even though they don’t trust each other, because they both
trust the bank.

This system works not because the bank is a solid institution backed
by impressive-looking buildings and a solid advertising campaign, but
because the bank has no interest in Alice and Bob’s transaction and has a
reputation to uphold. It will follow the protocol for a certified check no
matter what. If Bob has enough money in his account, the bank will issue
the check. If Alice presents the check for payment, the bank will pay. If it
did abscond with the money, there wouldn’t be much of a bank left. (This
is the essence of reputation.)
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This protocol works to protect Alice, but the bank does not protect
Bob against buying a forged title and a stolen car. For that, we need
another protocol:

1. Alice gives the title and keys to a lawyer.
2. Bob gives the check to the lawyer.
3. The lawyer deposits the check.
4. After waiting a specified time period for the check to clear and for Bob to

register the car, the lawyer gives the title to Bob. If the check does not
clear within a specified time period, the lawyer returns the title to Alice. If
Bob cannot get a clean title for the car (because Alice gave him a bad title),
Bob shows proof of this to the lawyer and gets his money back.

As in the previous protocol, a trusted third party gets involved. In this
case, the trusted third party is a lawyer. Alice does not trust Bob and Bob
does not trust Alice, but both trust the lawyer to act fairly in the final step.
The lawyer is completely disinterested in the transaction; he does not care
whether he gives the title to Bob or Alice. He will keep the money in
escrow and do whatever is required, based on the agreement between
Alice and Bob.

Other protocols are more mundane, and might not involve compli-
cated exchanges. For example, here’s a protocol a bank can use to verify
that a check was signed by Alice:

1. Alice signs the check.
2. The bank compares the signature on the check with the signature it has on

file for Alice.
3. If they match, the bank gives Alice her money. If they don’t match, the

bank doesn’t.

In theory, the protocol is secure against Bob cheating and getting
Alice’s money, but of course reality is more complicated. Bob could learn
forgery. The bank could make risky loans in Paraguay and go under. Alice
could pull a gun. There are probably hundreds of ways to break this pro-
tocol, but given a reasonable set of assumptions on people’s behavior, the
protocol works.

Protocols in the digital world are much the same as the preceding
examples. Digital protocols use cryptography to do the same sorts of
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things: keep secrets, authenticate things, enforce fairness, provide audit,
whatever.

The Internet is full of security protocols, which I discuss in the next
section. Other digital networks have their own security protocols. The
cell phone industry uses a bunch of protocols, both for privacy and fraud
prevention, with varying degrees of success. Set-top television boxes have
security protocols. Smart cards do, too.

Protocols involving digital signatures can be particularly useful in
different authentication situations. For example, digital signature schemes
can produce signatures that only the designated recipient can authenticate.
This is useful for informants or whistle-blowers, since the receiver of the
message can verify who sent it, but cannot prove this fact to a third party.
(Think of a secret whispered in your ear. You know who said it, but
there’s nothing you can do to prove to someone else who said it.) Digital
signature protocols can be used to sign software so that only a person who
buys the software package legitimately can verify the signature and know
that it is authentic; anyone who pirates a copy can’t be sure of this. We
can create group signatures, so that outside the group each signature
appears to come from the group as a whole, but people inside the group
can determine who signed what.

More complex protocols can make cryptography jump through all
sorts of hoops. We can do something called zero-knowledge proofs,
where Alice can prove to Bob that she knows something without reveal-
ing to him what it is. Cryptographic protocols can also support a system
for simultaneous contract signing over the Internet, such that neither
party is bound by the contract unless the other is. We can create the
digital equivalent of certified mail, where Alice can’t read the mail unless
she sends back a receipt.

Using a protocol called secret sharing, we can enforce requirements
for collusion in access: secrets that cannot be revealed unless multiple people
act in concert. This is a really neat notion. Think of a nuclear missile silo.
In order to launch the missile, two people have to simultaneously turn
keys and unlock the system. And the keyholes (or in this case, the digital
equivalent) are far enough apart that a single rogue soldier can’t kill every-
one else and turn all the keys himself: At least two people must act in
concert to launch the missile. Or think of a corporate checking account
that requires two signatures on high-value checks: Any two of the five
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corporate officers need to sign the check. We can do this kind of thing
with cryptography.

It gets even better. We can create protocols for secure voting over the
Internet, such that only registered voters can vote, no one can vote more
than once, no one can learn anyone else’s vote, and everyone can be sure
that the election is fair. We can even create digital cash: digital money that
is completely anonymous, unless someone copies the bits and tries to
spend the same money twice.

Honestly . . . if you want it, we can do it.
The “but” is most of the rest of this book.

INTERNET CRYPTOGRAPHIC PROTOCOLS

Cryptography is relatively new to the Internet, and is only here because
of the Net’s commercialization. The Internet is insecure, so cryptography
is needed to secure it. Hence, you’re seeing cryptographic protocols
stapled onto almost every Internet protocol. These examples are current
in 2000; they will definitely change in the future.

E-mail was the first use of cryptography on the Internet. There are
two competing protocols: S/MIME and OpenPGP. OpenPGP is the
protocol in PGP (Pretty Good Privacy) and variants; S/MIME is the
Internet standard protocol in just about everything else.

Netscape invented SSL during the early days of the Web, as people
wanted to do secure electronic commerce with their Web browsers. SSL
has gone through a few incarnations (it was a battleground during the
Netscape/Microsoft browser wars, and will eventually be called TLS).
(SSL stands for “Secure Sockets Layer” and TLS stands for “Transport
Layer Security” . . . if anyone asks.) These protocols are embedded in
browsers, and allow people to encrypt sensitive information being sent to
various Web sites.

Newer cryptographic protocols have been developed to secure IP
packets. These include Microsoft Point-to-Point Tunneling Protocol
(PPTP, which is badly flawed), Layer Two Tunneling Protocol (L2TP),
and IPsec (which is a lot better, although too complicated). IKE is Inter-
net Key Exchange, which is the key-exchange protocol for IPsec. Today
these protocols are being used primarily to implement another Internet
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buzzword called a virtual private network (VPN). IP security protocols
can do a lot more than VPNs, though. They have the potential to secure
most of the traffic on the Internet. Eventually, maybe they will.

There are other Internet protocols, too. SET is a protocol designed by
Visa and MasterCard for securing credit card transactions on the Web.
(This protocol never really saw significant public use.) SSH is the “Secure
Shell” protocol, and is used to encrypt and authenticate remote com-
mand-line connections. Other protocols deal with public-key certificates
and certificate infrastructure: PKIX, SPKI, and their relatives. Microsoft
has several protocols used to secure Windows NT.

Much of this work is done under the auspices of the Internet Engi-
neering Task Force (IETF), the standards body that deals with much of
the Internet’s infrastructure. The process works more or less by consen-
sus, which means that things take longer than they ought to, and end up
being more complicated than they ought to. As we’ll see later, this
complexity isn’t a good thing.

TYPES OF PROTOCOL ATTACKS

Just as there are different attacks against algorithms, there are different
attacks against protocols. The simplest are passive attacks: Just listen to the
protocol going by, and see what you can learn. Often, you can learn a lot
by eavesdropping.

There are many Web-based e-mail sites. To use one, you point your
browser at that site, and type your username and password. In general, this
protocol is vulnerable to an eavesdropping attack. Another set of proto-
cols vulnerable to an eavesdropping attack are the protocols that prevent
analog cell phone fraud. Someone with a scanner can eavesdrop on the
communications between the cell phone and the base station and then
make calls on that cell phone’s account. (This is called phone cloning.
Digital cell phones are better, but not much.)

What’s tricky with eavesdropping attacks is that it is not always clear
what information is valuable. You could imagine an encrypted telephone
network, where it is impossible (assuming the security of the cryptogra-
phy) to eavesdrop on the phone conversations. However, the switching
information is still sent in the clear. This information, basically a record of
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who calls whom and how long they talk, is often just as valuable. In a
military setting, for example, you can learn a lot from traffic analysis: who
talks to whom, at what time, and for how long.

More complex attacks are known as active attacks: inserting, deleting,
and changing messages. These can be much more powerful.

Consider a smart card digital cash system. People put money onto the
cards, and then use the cards to buy things. This system will have a lot of
different protocols: protocols for adding money onto the card, protocols
for transferring money from the card to another device, protocols for
querying the card, and so on.

Active attacks can do a lot of damage here. Maybe you can manipu-
late the protocol between the bank and the card that adds money onto the
card. If you can replay old messages, you can add more money onto the
card. Or maybe you can delete a message in the protocol for transferring
money out of the card when you buy something, so that the money never
gets decremented from the card.

One powerful attack is the man-in-the-middle attack. Alice wants to
talk securely with Bob, using some public-key algorithm to establish 
a key. Eve, the eavesdropper, intercepts Alice’s communication. She pre-
tends to be someone named Bob to Alice, completing the key-exchange
protocol. Then she contacts Bob and pretends to be Alice, completing a
second key-exchange protocol with Bob. Now she can eavesdrop on the
communications. When Alice sends a message to Bob, Eve intercepts it,
decrypts it, re-encrypts it, and sends it on to Bob. When Bob sends a mes-
sage to Alice, Eve performs a similar procedure. This is a powerful attack.

Of course, good protocol designers take these attacks into account
and try to prevent them. Better communications protocols don’t permit
man-in-the-middle attacks, and certainly don’t allow eavesdropping of
passwords. Better electronic commerce protocols don’t allow malicious
users to arbitrarily add cash to smart cards. But people make mistakes, and
lots of protocols have problems.

And again, it’s not always apparent what kinds of attacks need to 
be prevented. There was a public-key authentication protocol that
appeared in the literature, designed so users could authenticate themselves
to hosts. The protocol was made secure against passive eavesdropping
attacks and against active insertion/deletion attacks. As it turned out, the
protocol was not secure against a malicious host. Alice could authenticate
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herself to a host, and no eavesdropper could masquerade as Alice. But the
host could.

This is an interesting attack. In some circumstances, the host is
assumed to be trusted and this is not a problem. In others, it is. We can
certainly imagine malicious hosts on the Web. If an online bank used this
protocol (as far as I know, none does), a criminal could set up a phony
bank Web site with a slightly different URL. An unsuspecting user could
authenticate himself to this phony site, which could then masquerade as
the user to the bank.

A lot of this has been formalized. There are automatic tools for
analyzing protocols: formal logics, computer programs that examine the
details of protocols, and others. These tools are useful, and regularly find
security problems in existing protocols, but cannot be used to “prove” the
security of a protocol.

CHOOSING AN ALGORITHM OR PROTOCOL

Choosing a cryptographic algorithm or protocol is difficult because there
are no absolutes. We can’t compare encryption algorithms the way we
can compare compression algorithms. Compression is easy: You can
demonstrate that one algorithm compresses better—faster, smaller, what-
ever—than another. Security is hard; while you can show that a particu-
lar algorithm is weak, you can’t show that one algorithm you don’t know
how to break is more secure than another. In the absence of absolutes, we
use the evidence we have: expert consensus.

The problem can be best illustrated with a story. Suppose your
doctor said, “I realize we have antibiotics that are good at treating your
kind of infection without harmful side effects, and that decades of research
support this treatment. But I’m going to give you a pulverized pretzel
instead, because, um, it might work.” You’d get a new doctor.

Practicing medicine is difficult. The profession doesn’t rush to
embrace new drugs; it takes years of testing before benefits can be proven,
dosages established, and side effects cataloged. A good doctor won’t treat
a bacterial infection with a medicine she just invented when proven
antibiotics are available. And a smart patient wants the same drug that
cured the last person, not something different.
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Cryptography is difficult, too. It combines several branches of math-
ematics with computer science. It requires years of practice. Even smart,
knowledgeable, experienced people invent bad cryptography. In the
cryptographic community, people aren’t even all that embarrassed when
their algorithms and protocols are broken. That’s how hard it is.

The problem is this: Anyone, no matter how unskilled, can design a
cryptographic primitive that he himself cannot break. This is an important
point. What this means is that anyone can sit down and create a crypto-
graphic primitive, try to break it and fail, and then announce: “I have
invented a secure algorithm/protocol/whatever.” What he is really saying
is: “I cannot break this; therefore it is secure.” The first question to ask in
response is: “Well, who the hell are you?” Or in more detail: “Why
should I believe something is secure because you can’t break it? What
credentials do you have to support the belief that your inability to break
something means that no one else can break it either?”

What the cryptographic community has found is that no one person
has those sorts of credentials. (Maybe there’s someone inside the NSA, but
that person’s not talking.) There’s no way to prove the security of
a primitive; it’s only possible to either demonstrate insecurity or fail try-
ing. This is called proving the null hypothesis. The best any security com -
pany can say is: “I don’t know how to break this algorithm/protocol/
whatever, and neither does anyone else.” Peer review, long periods of
peer review, are the only evidence of security that we have.

Even worse, it doesn’t do any good to have a bunch of random peo-
ple review the primitive; the only way to tell good cryptography from bad
cryptography is to have it examined by experts. Analyzing cryptography
is hard, and there is a paucity of people who can do it competently. Before
a primitive can really be considered secure, it needs to be examined by
many experts over the course of years.

This is why cryptographers prefer the old and public over the new
and proprietary. Public cryptography is what cryptographers study, and
write papers about. Older primitives have more papers written about
them. If there were flaws there, they would have been found already (or
so the reasoning goes). The new is riskier precisely because it is new, and
not enough people have studied it.

Look at these three alternatives for IP security:

IPsec. Beginning in 1992, it was designed in the open by committee and was
the subject of considerable public scrutiny from the start. Everyone knew it
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was an important protocol and people spent a lot of effort trying to get it
right. Security technologies were proposed, broken, and then modified.
Versions were codified and analyzed. The first draft of the standard was
published in 1995. Aspects were debated on security merits and on
performance, ease of implementation, upgradability, and use. In 1998, the
committee published a revised version of the protocol. And anyone and
everyone interested are still studying it, in public.

PPTP. Microsoft developed its own Point-to-Point Tunneling Protocol
(PPTP) to do much the same thing. They invented their own authentica-
tion protocol, their own hash functions, and their own key-generation algo-
rithm. Every one of these items turned out to be badly flawed. They used a
known encryption algorithm, but they used it in such a way as to dilute its
security. They made implementation mistakes that weakened the system
even further. But since they did all this work internally, no one noticed that
their PPTP was weak. Microsoft fielded PPTP in Windows NT, 95, and
98, and used it in their virtual private network (VPN) products. It wasn’t
until 1998 that a paper describing the flaws was published. Microsoft
quickly posted a series of fixes, which have since been evaluated and still
found wanting.

Proprietary. Some companies claim their own security solutions to this
problem. They don’t reveal details, either because they’re proprietary or
patent pending. You have to trust them. They may claim a new algorithm
or a new protocol that is much better than any that exist today. They may
claim mathematical breakthroughs. They may claim all sorts of things. The
odds of them being true are slim. And even if they make their systems pub-
lic, the fact that they’ve patented them and retain proprietary control means
that many cryptographers won’t bother analyzing their claims. The compa-
nies certainly won’t wait the requisite years even if the cryptographers did
bother.

You can choose any of these three systems to secure your virtual
private network. Although it’s possible for any of them to be flawed, you
want to minimize your risk. If you go with IPsec, you have a much
greater assurance that the algorithms and protocols are strong. Of course,
this is no guarantee of security—the implementation could be flawed (see
Chapter 13), or a new attack could be discovered—but at least you know
that the algorithms and protocols have withstood a level of analysis and
review that the other options have not.

Another example: consider symmetric encryption algorithms. There
are literally hundreds to choose from, but let’s limit it to five:
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• Triple-DES, which has been analyzed by pretty much everyone in the
cryptographic community since the mid-1970s.

• AES, which (when it is chosen) will be the result of a three-year public
selection process that involved pretty much everyone in the cryptographic
community.

• Algorithm X, which was published at an academic conference two years
ago; there’s been one analysis paper published that seems to imply that it is
strong.

• Algorithm Y, which someone recently posted on the Internet and assures
you is strong.

• Algorithm Z, which a company is keeping secret until the patent issues;
maybe they paid a couple of cryptographers to analyze it for three weeks.

This isn’t a hard choice. There may be performance constraints that
prevent you from choosing the algorithm you want (the primary reason
AES exists is that triple-DES is too slow for many environments), but the
choice is acutely clear.

It continuously amazes me how often people don’t make the obvious
choice. Instead of using public algorithms, the digital cellular companies
decided to create their own proprietary ones. Over the past few years, all
the algorithms have become public. And once they became public, they
have been broken. Every one of them. The same thing has happened to
the DVD encryption algorithm, the Firewire encryption algorithm, vari-
ous Microsoft encryption algorithms, and countless others. Anyone who
creates his or her own cryptographic primitive is either a genius or a fool.
Given the genius/fool ratio for our species, the odds aren’t very good.

The counter-argument you sometimes hear is that secret cryptogra-
phy is stronger because it is secret, and public cryptography is riskier
because it is public. This sounds plausible, but when you think about it for
a minute, the dissonance becomes obvious. Public primitives are designed
to be secure even though they are public; that’s how they’re made. So
there’s no risk in making them public. If a primitive is only secure if it
remains secret, then it will only be secure until someone reverse engineers
and publishes it. Proprietary primitives that have been “outed” include all
the algorithms in the preceding paragraph, various smart card electronic-
commerce protocols, the secret hash function in SecurID cards, and the
protocol protecting Motorola’s mobile MDC-4800 Police Data Termi-
nal.

118 C H A P T E R  S E V E N

453803_Ch07.qxd:453803_Ch07.qxd  4/12/13  10:33 AM  Page 118



This doesn’t mean that everything new is lousy. What it does mean is
that everything new is suspect. New cryptography belongs in academic
papers, and then in demonstration systems. If it is truly better, then even-
tually cryptographers will come to trust it. And only then does it make
sense to use it in real products. This process can take five to ten years for
an algorithm, less for protocols or source-code libraries.

Choosing a proprietary system is like going to a doctor who has no
medical degree and whose novel treatments (which he refuses to explain)
have no support by the American Medical Association. Sure, it’s possible
(although highly unlikely) that he’s discovered a totally new branch of
medicine, but do you want to be the guinea pig? The best security meth-
ods leverage the collective analytical ability of the cryptographic commu-
nity. No single company (outside the military) has the financial resources
necessary to evaluate a new cryptographic algorithm or shake the design
flaws out of a complex protocol.

In cryptography, security comes from following the crowd. A home-
grown algorithm can’t possibly be subjected to the hundreds of thousands
of hours of cryptanalysis that DES and RSA have seen. A company, or
even an industry association, can’t begin to mobilize the resources that
have been brought to bear against the Kerberos authentication protocol
or IPsec. No proprietary e-mail encryption protocol can duplicate the
confidence that PGP or S/MIME offers. By following the crowd, you
can leverage the cryptanalytic expertise of the worldwide community, not
just a few weeks of some unnoteworthy analyst’s time.

It’s hard enough making strong cryptography work in a new system;
it’s just plain lunacy to use new cryptography when viable, long-studied
alternatives exist. Yet most security companies, and even otherwise smart
and sensible people, exhibit acute neophilia and are easily blinded by
shiny new pieces of cryptography.

And beware the doctor who says, “I invented and patented this totally
new treatment that consists of pulverized pretzels. It has never been tried
before, but I’m sure it is much better.” There’s a good reason new cryp-
tography is often called snake oil.
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8

Computer Security

Computer security is different from cryptography. It often uses
cryptography, but its scope is much broader. General computer
security includes such diverse things as controlling authorized

(and unauthorized) computer access, managing computer accounts and
user privileges, copy protection, virus protection, software metering, 
and database security. More generally, it also includes defenses against
computers across network connections, password sniffers, and network
worms, but we’ll discuss those sorts of things in the chapters on network
security. In the age of the Internet, computer security and network secu-
rity have blurred considerably; but for the purposes of this book, I’ll draw
the somewhat arbitrary line between computer and network security as
“whether or not the security problem affects any computer, as opposed to
just a computer attached to networks.” General computer security, which
can be defined as the prevention and/or detection of unauthorized actions
by users of a computer system, seems a whole lot harder than the simple
mathematics of cryptography. And it is.

Philosophically, the problem is that the defender doesn’t have math-
ematics on his side. The mathematics of cryptography gives the defender
an enormous advantage over the attacker. Add one bit to the key, double
the work to break the algorithm. Add ten bits, multiply the work by a
thousand. Computer security is more balanced: attackers and defenders
can get similar advantages from technology. What this means is that if
you can rely on cryptography for security, you’re in great shape.
Unfortunately, most of the time you can’t.
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Most of the early computer security research was devoted to private
access in shared systems. How could Alice and Bob use the same com-
puter—and the same computer programs—such that Alice couldn’t see
what Bob was doing and Bob couldn’t see what Alice was doing? Or,
more generally: If lots of users share a system, each of whom has certain
permissions—permissions to use certain programs and permissions to
view certain data—how can we enforce those access control rules? This
isn’t really a problem that cryptography can solve, although cryptog raphy
might help here and there. It’s a new problem.

There’s a plethora of other new problems in computer security: How
can a company maintain a large database where people have different
access privileges? This problem can quickly get overly complicated. Only
some people can view salary data, even fewer people can change salary
data, other people can view health benefit data, and some people can only
view aggregate data: average salary, health statistics, and so forth.

How can users be sure that the computer programs they use are cor-
rect, and have not been modified? How can they be sure that their data
have not been modified? How can a company enforce its licensing rules:
Software cannot be copied from machine to machine, the software can
run only on five computers at any one time, only ten users can use the
software at any one time, the software can only run for one thousand
hours?

These are all complex requirements, and computer security provides
complex solutions for them.

DEFINITIONS

A surprising amount of effort has gone into trying to define computer
security. Historically, computer security has three aspects: confidentiality,
integrity, and availability.

Confidentiality is not much more than the privacy we talked about in
Chapter 5. Computer security has to stop unauthorized users from read-
ing sensitive information. This has changed somewhat with the advent of
electronic commerce and business processes on the Net—integrity is
much more important—but this bias remains in most  computer-security
products. The bulk of computer-security research has centered around
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confidentiality, primarily because the military funded much of the early
research. In fact, I’ve seen confidentiality and security used as synonyms.

Integrity is harder to precisely define. The best definition I’ve seen is:
“Every piece of data is as the last authorized modifier left it.” Within the
context of computer security, integrity is about the security of writing
data. Data integrity: ensuring that the data has not been deleted or altered
by someone without permission. Software integrity: ensuring that the
software programs have not been altered, whether by an error, a malicious
user, or a virus.

This definition of integrity illustrates how closely it is related to con-
fidentiality. The latter is about unauthorized reading of data (and pro-
grams); the former is about unauthorized writing. And, in fact, the same
sorts of security techniques (cryptographic and otherwise) achieve both
goals.

Availability is the third traditional pillar of computer security, but in
reality it is much broader than computer security. Availability has been
defined by various security standards as “the property that a product’s
services are accessible when needed and without undue delay,” or “the
property of being accessible and usable upon demand by an authorized
entity.” These definitions have always struck me as being somewhat cir-
cular. We know intuitively what we mean by availability with respect to
computers: We want the computer to work when we expect it to as we
expect it to.

Lots of software doesn’t work when and as we expect it to, and there
are entire areas of computer science research in reliability and fault-
 tolerant computing and software quality . . . none of which has anything
to do with security. In the context of security, availability is about ensur-
ing that an attacker can’t prevent legitimate users from having reasonable
access to their systems. For example, availability is about ensuring that
denial-of-service attacks are not possible.

ACCESS CONTROL

Confidentiality, availability, and integrity all boil down to access control.
We want to make sure that authorized people are able to do whatever
they are authorized to do, and that everyone else is not.
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Access control is really a problem much bigger than computers: How
do I limit access to something? How do I control access to a shared
resource? How do I limit the type of access that different people have? It’s
a hard problem to solve in a large building—locks on outside doors and
inside offices and keys given to specific people, badges worn by everyone
and guards to check the badges, and so forth—and it’s a hard problem to
solve on a computer system.

It’s also a problem that’s waxed and waned over the years. In the
beginning, computers didn’t need access control because everyone trusted
each other. As more people started using the large mainframes, access
control was required both to protect privacy and to audit usage for billing.
Access control was easy in a batch-processing world.

When personal computers appeared, they didn’t need to provide
access control: Every person had his own computer. If someone wanted
to prevent others from accessing his files, he just locked his office door.
Now we’re back using shared systems, shared network resources, remote
systems, and the like. Access control is a big deal for almost everyone,
whether they’re using a shared computer at work or an account on a Web
site. And access control is difficult to do properly.

Before talking about different types of access control, we need a
couple of definitions. First, there is some “subject” that has access to some
“object.” Often the subject is a user and the object is a computer file, but
not always. The subject could be a computer program or process, and the
object another computer program: a plug-in, for example. The object
could be a database record. The object could be a certain resource, maybe
a piece of computer hardware, or a printer, or a chunk of computer mem-
ory. Depending on the circumstance, the same computer program can be
a subject in one access-control relationship and an object in another.

There are two ways to define access control. You can define what dif-
ferent subjects are allowed to do, or you can define what can be done to
different objects. Really these are two ways of looking at the same thing,
but they have their pluses and minuses. Traditionally, operating systems
managed resources and files, so access control was defined in terms of
these objects. More modern systems are application-oriented. These offer
services to end users, like large database management systems. Often these
systems have access-control mechanisms that control subjects.
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Access isn’t all or nothing; there are different types of access permis-
sions. UNIX, for example, has three possible access permissions: read,
write, and execute. These permissions are all independent. Someone who
has only read permission for a file, for example, cannot modify that file.
Someone who has only write permission can change the file but cannot
read it; think of a “drop box” directory. Someone who has both read and
write permission can do both.

“Execute” is an interesting permission. It makes sense only for com-
puter programs: executable files. Someone who has only execute permis-
sion for a certain file can run the program, but cannot read the code nor
modify the file. This is an odd permission—how is it possible for a com-
puter to execute a program without first reading it?—and for most file
systems it is not a real security distinction. But in some circumstances this
makes sense: imagine a program stored in secure memory—a digital sig-
nature engine in a tamperproof module—where it is indeed possible to
execute a command without reading the code.

These permissions make the implicit assumption that someone is
there to decree who has access. In UNIX, this person is known as the
owner of the file. Someone who owns a file is allowed to set the permis-
sions: who is allowed to read, write, and execute that file. In UNIX,
ownership is per file, and is usually determined by which directory the file
is in.

Windows NT has a more complicated set of permissions: There’s
read, write, and execute, and also delete, change permission, and change
ownership. The owner of a file can determine who is allowed to change
the permissions on the file, and who is allowed to change the ownership.

You can think of the complete set of access controls on a computer as
a matrix. On one axis is the list of all possible users; on the other is the list
of all possible files. The entries in the matrix are the different permissions.
Alice might have read permission for FileA, read/write permission for
FileB, and no access to FileC. Bob might have a similarly complicated set
of permissions.

For any reasonable-sized computer system, this matrix gets compli-
cated very quickly. So most systems have a shorthand. It’s possible to set
up permissions so that only the file’s owner can read, write, and execute.
It’s possible to set up permissions so that the file’s owner can write, but
that anyone can read. It’s possible to set up something called a “group,”
which is a bunch of people with the same set of permissions. So, for
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example, if a group of people are all working on the same project and
need access to a particular set of files, permissions can be set to give them
access and no one else. UNIX implements these kinds of things pretty
efficiently; a single user can belong to many groups.

One way to manage the complexity of the access control matrix is to
split it up. In some systems, the list of who has access to a particular object
is stored with the object itself. This is often called an access control list
(ACL). This is a common way of doing things, and many secure operat-
ing systems implement ACLs. There are problems, though. They work
well in simple environments where users define their own access permis-
sions, but less well in environments where management defines access
permissions. There’s no easy way, for example, for someone to delegate
access authority for a period of time. Also, these kinds of systems don’t
deal well with run-time permission checking. And because access is tied
to objects and not to subjects, it can be hard to turn off access for a par-
ticular subject. If someone working for a company gets fired, the system
has to go through every object and take that person off each ACL. Finally,
considerable work is required to manage an ACL-based system. Many
products are sold specifically to manage ACLs.

SECURITY MODELS

There’s a plethora of theoretical models to explain security, many of them
funded by the Department of Defense in the 1970s and 1980s. Since these
were military systems, they formalized the military’s system of classifica-
tion discussed in Chapter 5. They’re called multilevel security (MLS)
systems, since they were designed to handle multiple levels of classifica-
tion in a single system. (The alternatives are clunky. One computer sys-
tem for Unclassified data, another completely separate one for
Confidential data, a third for Secret data, and so forth. Or system high,
where the entire computer is classified at the highest level of information.)

The most famous is the Bell-LaPadula model, which defined most of
the access control concepts in the previous section. This model defined
subjects, objects, and access operations, and a mathematics for talking
about them. It was a failure in leading to the development of useful and
cost-effective systems, but the theory has had lasting effects on system
design.
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Bell-LaPadula has two main security rules: one regarding the reading
of data and the other regarding the writing of data. If users have Secret
clearance, they can read Unclassified, Confidential, and Secret docu-
ments, but not Top Secret documents. If users are working with Secret
data, they can create Secret or Top Secret documents, but not Confiden-
tial or Unclassified ones. (This is important. Imagine someone—a person
or maybe a computer virus—trying to steal documents. His computer, of
course, prevents him from e-mailing Confidential documents outside the
computer. But if he can take a Confidential document and copy the text
into an Unclassified document, he can then e-mail the new document.
Controls were put in place to prevent this kind of thing.) Basically, users
cannot read documents higher than their clearance, nor can they write
documents lower than the clearance of their sessions. And yes, it is theo-
retically possible for users to write documents that they cannot read.

These are mandatory access controls in the language of Bell-LaPadula,
because they are required by the system. This is in contrast to the “discre-
tionary access controls” in operating systems like UNIX or NT, described
in the previous section, that allow the users to make their own decisions
about who can read or write to what file. (Although most UNIX versions
can have some mandatory access controls: Someone with root access has
mandatory read, write, and execute access to all files on the computer.)

The Bell-LaPadula model was a big deal, but it had limitations. One,
it concentrates on confidentiality at the expense of pretty much every-
thing else, and that confidentiality is based on a military model of security
classifications. Two, it ignores the problem of how to manage classifica-
tions. The model assumes that someone, magically, gives every piece of
data a classification, and that classification never changes. In the physical
world, classifications change: Someone notices that it is important and
classifies it, then someone else declassifies it. Data sometimes have a higher
classification in aggregate than each datum does individually: An individ-
ual telephone number at the NSA is Unclassified, but the entire NSA
phone book is classified Confidential. What this means is that data natu-
rally migrates up toward higher classifications, requiring trusted down-
grades. And three, sometimes users need to work with data that they are
not authorized to see. The fact that an aircraft is carrying a cargo of Q
bombs might be classified at a level above a dispatcher, but the dispatcher
still needs to know the weight of the cargo.
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Many other security models were proposed in the academic literature.
The Chinese Wall model, for example, explicitly looked at computer sys-
tems with data from mutually distrustful users and how to ensure separa-
tion. (Think of a computerized brokerage system, with customers able to
access their accounts. The broker wants to prevent Customer A from see-
ing Customer B’s portfolio, even though both portfolios might be
classified at the same level.)

The Clark-Wilson model was designed more for commercial applica-
tions and less for military hierarchies. Commercial security requirements
are predominantly about data integrity, and their model formalizes that.
They defined two types of integrity: internal consistency, which refers to
properties of the internal state of the system and can be enforced by the
system, and external consistency, which refers to properties of the system
in relation to the outside world and which can only be enforced through
audit. Then they built a formal security model that codified these princi-
ples, as well as principles about confidentiality.

The Clark-Wilson model centers around the notion of “constrained”
data: data that can only be operated on in prescribed ways. For example,
the model can enforce double-entry bookkeeping requirements: Every
credit must be matched with an equal debit, and everything must be writ-
ten to a specific audit file. The model prohibits any of these actions from
occurring on its own; it is forbidden to credit an account without posting
a debit.

SECURITY KERNELS AND TRUSTED 
COMPUTING BASES

Many operating systems have some built-in security. This makes sense;
often the best place to put security is at the lower system layers: the hard-
ware layer or the operating system layer. This is a good idea for several
reasons.

One, it is often possible to compromise security at a given layer by
attacking a layer below. For example, the built-in encryption functions in
a word processor don’t matter if an attacker can compromise the under-
lying operating system. So putting security at the lowest software level is
more secure.
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Two, it’s simpler. At the core of a system, it’s often easier to add secu-
rity measures. This makes these measures easier to implement and to ana-
lyze. And, it is hoped, results in a more secure system.

Three, it’s often faster. Everything has better performance when it is
embedded into the operating system, and security is no different.
Cryptography can eat up a lot of cycles, for example; it makes sense to
make it as efficient as possible.

Hence, operating system security has been a research topic for
decades. As such, it has developed its own set of concepts:

Reference monitor. A piece of software that mediates all accesses to
objects by subjects. When some process makes an operating system call, the
reference monitor halts the process and figures out whether the call should
be allowed or forbidden. For example, it will not permit a user with a
Confidential login account to read a Secret document or write to an
Unclassified document.

Trusted computing base. All the protection mechanisms inside the com-
puter—hardware, firmware, operating system, software applications, every-
thing—that are responsible for enforcing the security policy. That is, some
administrator somewhere tells the computer what is supposed to be secured
from whom in what way (that’s the security policy), and the trusted com-
puting base enforces it.

Secure kernel. The hardware, firmware, operating system, software applica-
tions, and everything else of the trusted computing base that implements the
reference monitor concept.

The reference monitor is an abstract machine that is secure; it handles
things like file management and memory management. The security ker-
nel implements the reference monitor. The trusted computing base con-
tains all the security measures, including the secure kernel. And the whole
thing implements some security model—perhaps Bell LaPadula, perhaps
something else—and enforces security. All the while being as simple as
possible, and as efficient as possible. And, of course, the trusted comput-
ing base is by definition trusted—you don’t want users able to modify it,
or you can lose security.

Implementing these concepts in a real operating system is difficult.
Computers are complex beasts, and everything has to be secure. Zillions
of little things can go wrong. If everyone has read/write access to the hard
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disk, how do we prevent one user reading what another user writes?
What if one user wants another user to read what she writes? Is it possible
for a user to use interrupts to do something he shouldn’t? How can we
secure access to the printer? Can one person eavesdrop on another via the
keyboard? What if the trusted computing base crashes? How do you
implement a disk defragmenter if you can only access your own files?

The historical example that got this the most nearly correct is an oper-
ating system called Multics, developed in the late 1960s by MIT, Bell
Labs, and Honeywell. Multics implemented the Bell-LaPadula model
from the ground up. (In fact, the Multics project was the impetus for the
Bell-LaPadula model.) The designers used the mathematical formalism of
the model to show the security of the system, and then mapped the con-
cepts of the model into the operating system. No code was ever written
until specifications had been approved. Multics worked, although the
security was way too cumbersome. By now, almost everyone has forgot-
ten Multics and the lessons learned from that project.

One of the lessons people have forgotten is that the kernel needs to
be simple. (Even the Multics kernel, with only 56,000 lines of code, was
felt to be too complex.) The kernel is defined as the software that is
trusted. Chapter 13 talks about software reliability, the moral being that it
is unreasonable to expect software not to have security bugs. The simpler
the software is, the fewer bugs it will have.

Unfortunately, modern operating systems are infected with a disease
known as “kernel bloat.” This means that a lot of code is inside the ker-
nel instead of outside. When UNIX was first written, it made a point of
pushing nonessential code outside the kernel. Since then, everyone has
forgotten this lesson. All current flavors of UNIX have some degree of
kernel bloat: more commands inside the kernel, inexplicable utilities
running with root permissions, and so forth.

Windows NT is much worse. The operating system is an example of
completely ignoring security lessons from history. Things that are in the
kernel are defined as secure, so smart engineering says to make the kernel
as small as possible, and make sure everything in it is secure. Windows
seems to take the position that since things in the kernel are defined as
secure, than you should put everything in the kernel. When they can’t
figure out how to secure something, they just put it into the kernel and
define it as secure. Obviously, this doesn’t work in the long run.
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In Windows, the printer drivers are part of the kernel. Users down-
load printer drivers all the time and install them, probably not realizing
that a rogue (or faulty) printer driver can completely compromise the
security of their systems. It would be a lot smarter to put the printer dri-
ver outside the kernel, so it wouldn’t have to be trusted, but it would also
be harder. And the Windows NT philosophy always chooses ease—both
ease of use and ease of development—over security.

Windows 2000 is worse yet.

COVERT CHANNELS

Covert channels are a way to mess with the minds of people working in
security-model research. Remember that one of the two main security
rules was that a user or process could not write data to a lower clearance.
Covert channels are a way to bypass those controls.

A covert channel is a way for a subject at a higher-level clearance to
send a message to a lower-level clearance, generally through some shared
resource. So the rogue Top Secret program could send a message by
manipulating network packet transmission—two packets in quick succes-
sion indicates a one and two packets with a space between them indicates
a zero—CPU usage, memory allocation, hard-drive access, print queuing,
or just about anything else. The white space in a document could be a
covert channel, as could “random” padding at the end of database entries.
It’s not fast, but messages can be sent from a high-clearance process to a
low-clearance process, defeating the security model.

Creating covert channels is easy, and fun. The threat is not users
copying Top Secret data off the screen and mailing it to China, it’s users
writing programs to surreptitiously collect the data in the background
while they’re not around.

System designers spent a lot of time on this: closing off specific covert
channels, or at least minimizing the amount of information that could be
sent across them. Maybe CPU cycles were shared at fixed rates, making
that particular covert channel unusable. Or maybe a system of random
noise was added to the packet-transmission program, making that covert
channel much less useful. But it is virtually impossible to close all covert
channels, and many systems got by with severely limiting their band-
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width. Still, if the piece of information you want to leak is a tiny 128-bit
cryptographic key, you will find a covert channel that can do it.

EVALUATION CRITERIA

If you’re going to purchase a computer system with a certain security
model, or with a certain kernel type, you are going to need some kind of
assurance that the model was adhered to. Or, more generally, some assur-
ance that the system provides adequate security.

There are two basic ways you can do this. The first is IVV, which
stands for “independent verification and validation.” The basic idea is that
one team designs and builds the system and another team evaluates that
design, sometimes going so far as to build an identical system to compare
it with. This is an expensive way of doing things, and you see it in things
like nuclear command and control systems and computers on the Space
Shuttle.

The cheaper way is to evaluate the system against some independent
set of criteria, and give it a security rating of some sort.

The Orange Book was the first set of evaluation criteria to gain accep-
tance. It’s more or less obsolete, but it did have a major effect on com-
puter security in the 1980s, and you still hear Orange Book terms like
“C2-level security” bandied about.

The Orange Book is really called U.S. Department of Defense Trusted
Computer System Evaluation Criteria, but that was a mouthful to say and the
book had an orange cover. It was published in 1985 by the National
Computer Security Center, which is more or less a branch of the NSA.
The point of the Orange Book was to define security requirements and
standardize government procurement requirements. It gave computer
manufacturers a way to measure the security of their systems, and told
them what to build into their secure products. It also offered a system of
classifying different levels of computer security, and ways of testing if a
certain system met any given level.

The levels ranged from low to high: D (minimal security), C (discre-
tionary protection), B (mandatory protection), and A (verified design).
Within some of the levels were sublevels. There’s C1 and C2, for exam-
ple: discretionary security protection and controlled access protection,
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with the latter being more secure. C1 isn’t secure; it’s basically what you
get with out-of-the-box UNIX. (You don’t see many systems boasting
about their C1 security rating.) C2 is better; this is probably the most rea-
sonable security level for commercial products. Much of the access con-
trol procedures were based on the Bell-LaPadula model, which starts at
the B1 level. B1, B2, B3, and A were thought to be more suited to mili-
tary systems.

The main problem with these levels was that they did not mean that
the system was secure. Purchasing a B1 system, for example, did not guar-
antee a secure computer. All it meant was that the manufacturer put in the
mandatory access controls, and had the required documentation, to get a
B1 security rating. Certainly mandatory access controls makes B1 a lot
better than C2, but security bugs are just as likely in either system. What
it did mean was that the designers tried harder.

Also, the Orange Book only applied to stand-alone systems, and com-
pletely ignored what could happen when computers were networked
together. Several years ago Microsoft made a big deal about Windows
NT getting a C2 security rating. They were much less forthcoming with
the fact that this rating only applied if the computer was not attached to a
network and had no network card, had its floppy drive epoxied shut, and
was running on a Compaq 386. Solaris’s C2 rating was just as silly. Recent
modifications to the Orange Book tried to deal with networked comput-
ers, with mixed success.

And the ratings were notoriously restricted. Systems would get ratings
only in particular configurations, with only certain types of software
installed. If version 1.0 of an operating system had a certain security level,
there was no guarantee that version 1.1 had the same level. If a computer’s
security rating applied to a particular configuration—with a particular set
of installed software—that said nothing about the computer’s security
with a different configuration.

In today’s world of everything interconnected all the time, the
Orange Book has fallen into disuse. There have been some attempts, by
different national and international organizations, to modernize it. The
Canadians came up with something called the Canadian Trusted Com-
puter Products Evaluation Criteria. The EU came up with the Informa-
tion Technology Security Evaluation Criteria, ITSEC, formerly endorsed
in 1995. Another U.S. proposal was called the Federal Criteria.

Recently everyone has gotten together to try to stop this madness.
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The Common Criteria is designed to satisfy everyone, and to combine
the good ideas of the various other criteria. It’s an ISO standard (15408,
version 2.1). The general idea is that the Common Criteria provides a cat-
alog of security concepts that users can include in a protection profile, which
is basically a statement of users’ security needs. Then individual products
can be tested against that protection profile. The government is supposed
to oversee that the Common Criteria methodology is executed properly,
but commercial laboratories are supposed to provide the actual testing and
certification.

The Common Criteria has a Mutual Recognition Agreement, which
means that different countries agree to recognize each other’s certifica-
tions. So far Australia, Canada, France, Germany, New Zealand, the
United Kingdom, and the United States have signed on.

This is a giant step in the right direction. The Common Criteria is
designed to provide common security (not functional) evaluation of com-
mercially available products against different requirements. The smart card
industry has spent a lot of time developing their own protection profile
under the Common Criteria. I have high hopes for this program.

FUTURE OF SECURE COMPUTERS

Formal models make for nice theory, but are much less useful in practice.
They have theoretical limits; just because there’s a security model doesn’t
mean that you can prove the system has certain security properties. They
can result in unusable systems; forcing a system to adhere to a model can
result in some bizarre designs. They can take forever to design and build.
And even worse, they don’t even prove security. If a system conforms to
a formal security model, the best it can prove is that it is secure against an
attacker who follows the model. The best attackers think of something
new; they cheat. And again and again, attackers who don’t follow the
designers’ model break security.

Almost nothing in use today is built on a formal security model. Sys-
tems have cribbed ideas from formal security—all operating systems have
a trusted computing base, for example—but in order to be useful and
usable, they make compromises. This only makes sense.

A secure operating system, and hence a secure computer, has several
key components. One is a strong mandatory security mechanism of a
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more general type than the formal models discuss. This mandatory secu-
rity mechanism enforces a policy that is controlled by a policy administra-
tor, who is not necessarily the user. Moreover, this policy must control
the use of both access and encryption. That is, the policy must enforce
who (person or process) is allowed to access what data (or other process),
and what kinds of encryption controls must be placed on that data. This
kind of policy cannot prevent covert channels (nothing can), but will go
a long way toward stopping the kinds of abuses we’re seeing today.

The second key component is a trusted path. This is a mechanism by
which a user (or a process) can interact with a piece of trusted software,
which can be initiated by either the user or the trusted software, and can-
not be impersonated by another piece of software. For example, would-
n’t it be nice if when a user saw a login screen he could be sure that it was
a real login screen, and not a Trojan horse trying to capture his password?
Mechanisms for implementing a trusted path will also go a long way
toward limiting the damage malicious software can do.

There are secure oeprating systems on the market that implement
some of these components, but they are still niche products. I would like
to see more of these ideas flow into mainstream operating systems such as
Microsoft Windows. It doesn’t look like it will happen anytime soon.
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9

Identification 
and Authentication

No matter what kind of computer security system you’re using,
the first step is often identification and authentication: Who are
you, and can you prove it? Once a computer knows that, it can

figure out what you are and are not allowed to do. In other words, access
control can’t start until identification and authentication is finished.

Let’s talk about the problem. Alice has some ability on a computer,
and we want to make sure that only she has that ability. Sometimes the
ability is access to some information: files, account balances, and so forth.
Sometimes the ability is access to the entire computer; no one else can
turn the computer on and use her data or programs. Sometimes the abil-
ity is more explicit: withdraw money from an ATM, use a cell phone,
stop a burglar alarm from ringing. Sometimes the ability is on a Web site:
access to her calendar or her brokerage account, for example. Sometimes
the ability is access to a cryptographic key that is just too large for her to
remember. (PGP uses access control measures to protect private keys.) It
doesn’t matter what the ability is; what’s important is that some access
control measure is required to identify Alice.

Actually, the access control measure has to do two things. One, it has
to allow Alice in. And two, it has to keep others out. Doing only one is
easy—an open door will let Alice, and everyone else, in; a bricked-over
door will keep others, as well as Alice, out—but doing both is harder. We
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need something that will recognize Alice and let her in, but will be hard
for others to duplicate. We need to be able to identify Alice and then
authenticate that identification. (Actually, the access control measure has
to do a third thing: keep a good audit record of what happened.)

Traditionally, identification and authentication measures have cen-
tered on one of three things: something you know, something you are, or
something you have. These roughly translate to “passwords,” “biomet-
rics,” and “access tokens.” Sometimes systems use two of these things
together. Paranoid systems use all three.

PASSWORDS

The traditional approach to authentication is a password. You see it
everywhere. When you log on to a computer system, you type in a user-
name and password. To make a telephone call using a calling card, you
type in your account number and password (often, it is given as a single
string). To withdraw money from an ATM, you put your card in the slot
and type in your PIN (a password).

The two steps in each of those examples mirror the title of this chap-
ter. The first step is called identification: You tell the computer who you
are (the username). The second step is called authentication: You prove
to the computer that you are who you say you are (the password).

The computer at the other end of these transactions has a list of user-
names and passwords. Once you have entered in your username and pass-
word (or your account number and PIN), the computer compares your
input against the entries stored on the list. If you enter a valid username
and the correct corresponding password, you’re in. If you don’t, you’re
out. Sometimes the system will again prompt you for a username and
password. Sometimes the system will lock up after a certain number of
bad attempts. (You wouldn’t want someone to be able to steal an ATM
card and then try all 10,000 possible PINs, one after another, in an
attempt to find the correct one.)

Unfortunately the system of username and password works less well
than people believe.

The whole notion of passwords is based on an oxymoron. The idea is
to have a random string that is easy to remember. Unfortunately, if it’s
easy to remember, it’s something nonrandom like “Susan.” And if it’s
random, like “r7U2*Qnp,” then it’s not easy to remember.
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In Chapter 7, where I talked about key length and security, I
discussed the problems of user-generated and user-remembered keys. A
password is a form of user-remembered key, and dictionary attacks against
passwords are surprisingly effective.

How does this attack work? Think about an access control system for
a computer or Web site. The computer has a file of usernames and pass-
words. If an attacker got her hands on that file, she would learn every
password. In the mid-1970s, computer security experts came up with a
better solution: Instead of storing all the passwords in a file, they would
store a cryptographic hash of the password. Now, when Alice types her
password into the computer or Web site, the software computes the hash
of the password and compares that hash with the hash stored in a file. If
they match, Alice is allowed in. Now there is no file of passwords to steal;
there is only a file of hashed passwords to steal. And since a hash function
prevents someone from going backward, the attacker can’t recover the
passwords from the hashed passwords.

Here’s where dictionary attacks come in. Assume that an attacker has
a copy of the hashed password file. He takes a dictionary, and computes
the hash of every word in the dictionary. If the hashed word matches any
of the password entries, then he has found a password. After he tries all
words, he tries reversed dictionary words, dictionary words with some
letters capitalized, and so forth. Eventually he tries all character combina-
tions shorter than some length.

Dictionary attacks used to be hard, because computers were slow.
They’re much easier now, because computers are a lot faster. L0phtcrack
is an example of a password recovery hacker tool that is optimized for
Windows NT passwords. Windows NT contains two password func-
tions: a stronger one designed for NT, and a weaker one that is backward-
compatible with older networking login protocols. The weaker one is
case-insensitive, and passwords can’t be much stronger than seven charac-
ters (even though they may be longer). L0phtcrack makes easy work of
this password space. On a 400-MHz Quad Pentium II, L0phtcrack can
try every alphanumeric password in 5.5 hours, every alphanumeric pass-
word with some common symbols in 45 hours, and every possible
keyboard password in 480 hours. This is not good.

Some have dealt with this problem by requiring stronger and stronger
passwords. What this means is that the password is harder to guess, and less
likely to appear in a password dictionary. The old RACF mainframe sys-
tem required users to change passwords monthly, and wouldn’t permit
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words. (Microsoft Windows has no such controls, and helpfully offers to
remember your passwords for you.) Some systems generate passwords
randomly for users, by concatenating random syllables to create pro-
nounceable passwords (e.g., “talpudmox”) or mixing in numbers or sym-
bols and changing case: for example, “FOT78hif#elf.” PGP uses
passphrases, which are recommended to be complex sentences with non-
sense thrown in: for example, “33333Telephone,, it must be YOU
speaking sweetly to me1958???!telephone.” (Admittedly, that’s not as easy
to remember and type as you might want.)

These techniques are becoming less and less effective. Over the past
several decades, Moore’s law has made it possible to brute-force larger and
larger entropy keys. At the same time, there is a maximum to the entropy
that the average computer user (or even the above-average computer
user) is willing to remember. You can’t expect him to memorize a 32-
character random hexadecimal string, but that’s what has to happen if he
is to memorize a 128-bit key. You can’t really expect him to type the
PGP passphrase in the previous paragraph. These two numbers have
crossed; password crackers can now break anything that you can reason-
ably expect a user to memorize.

There are exceptions to this, of course. You could imagine high-
security applications—nuclear launch computers, secure diplomatic chan-
nels, systems that communicate with spies living deep in enemy
territory—where users will take the time to memorize long and compli-
cated passphrases. These applications have nothing to do with modern
computer networks and passwords for commodity e-commerce applica-
tions. The problem is that the average user can’t, and won’t even try to,
remember complex enough passwords to prevent dictionary attacks.
Attacking a basic password-protected system is often easier than attacking
a cryptographic algorithm with a 40-bit key. Passwords are insecure,
unless you can stop dictionary attacks.

As bad as passwords are, users will go out of the way to make it worse.
If you ask them to choose a password, they’ll choose a lousy one. If you
force them to choose a good one, they’ll write it on a Post-it and stick it
on their computer monitor. If you ask them to change it, they’ll change
it back to the password they changed it from last month. One study of
actual passwords found that 16 percent of them were three characters or
less, and 86 percent of them were easily crackable. Other studies have
confirmed these statistics.
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And they’ll choose the same password for multiple applications. Want
to steal a bunch of passwords? Put up a Web site with something interest-
ing on it: porn, hockey scores, stock tips, or whatever will appeal to the
demographic you’re after. Don’t charge for it, but make people register a
username and password in order to see the information. Then, sit back
and collect usernames and passwords. Most of the time you’ll get the same
username and password that the user chose last time, maybe the one that
lets you into his bank or brokerage accounts. Save incorrect passwords as
well; people sometimes enter the password for System A into System B by
mistake. Make the user fill out a little questionnaire during registration:
“What other systems do you use regularly? Bank X? Brokerage FirmY?
News Service Z?” A researcher I know did something like this in 1985;
he got dozens of system administrator passwords.

And even when they choose good passwords and change them regu-
larly, people are much too willing to share their passwords with others in
and out of the organization, especially when they need help to get the
work done. Clearly this represents one of the greatest security risks of all,
but, in people’s minds, the risk is minimal and the need to get work done
imperative.

This is not to say that there are not better or worse passwords. The
preceding example PGP passphrase is still secure against dictionary attacks.
Generally, the easier a password is to remember, the worse it is. Dictio-
nary attacks generally try common passwords before uncommon ones:
dictionary words, reversed dictionary words, dictionary words with some
letters capitalized, dictionary words with minor modifications—like the
number “1” instead of the letter “l”—and so forth.

Unfortunately, many systems are only as secure as the weakest pass-
word. When an attacker wants to gain entry into a particular system, she
might not care which account she gets access to. In operational tests,
L0phtcrack recovers about 90 percent of all passwords in less than a day,
and 20 percent of all passwords in a few minutes. If there are 1,000
accounts, and 999 users choose amazingly complicated passwords that
L0phtcrack just can’t possibly recover, it will break the system by recov-
ering that last weak ordinary password.

On the other hand, from the user’s point of view this can be an exam-
ple of “not having to outrun the bear; only having to outrun the people
you’re with.” Any dictionary attack will succeed against so many accounts
whose passwords are “Susan” that if your password is “hammerbutterfly,”
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while it’s pretty vulnerable to dictionary attacks, it’s not likely to actually
succumb to one.

Depending on the type of attacker you’re worried about, a system
with long and strong passwords can be secure. But this is changing all the
time; Moore’s law means that today’s strong password is tomorrow’s
weak password. In general, if a system is based on passwords and an
attacker can mount a dictionary attack, then the system is vulnerable.
Period.

There are fixes. This is all predicated on the attacker stealing the file
of hashed passwords. Prevent dictionary attacks, and passwords are again
good. This is possible, although not easy, for general-access machines.
The UNIX password file, for example, is world readable. These days,
UNIX has something called a shadow password file; it contains the actual
hashed passwords, and the world-readable password file contains nothing
useful. The hashed password file in NT is well-protected and difficult to
steal; you either need administrator access to sniff the hashed passwords
across the network (although the latest NT version and Windows 2000
prevent this); or you need to pick up the passwords when they are used
by other network applications. 

Systems can also lock up after some number of bad passwords, for
example, ten. What this means is that after someone fails to log in ten
times, the system freezes the account. So if someone tries to log in to
Alice’s account and starts guessing passwords, he only gets ten guesses
before the system freezes. This will, of course, annoy Alice, but it’s better
than compromising Alice’s account. And the exact definition of “freeze”
can depend on the circumstance. Maybe it will freeze Alice’s account for
five minutes, or 24 hours. Maybe it will freeze Alice’s account until she
talks with some administrator. High-security devices might freeze perma-
nently, destroying the information inside, after a certain number of incor-
rect passwords.

Another solution is to require a noncomputer interface. Your ATM
cash card is protected by a four-digit PIN. That would be trivial for a
computer to break—it would take a few milliseconds to try all 10,000
possible PINs—but it’s hard for a computer to attach itself to the user
interface. A person has to stand at the ATM and try PINs, one after the
other. At a brisk ten seconds per attempt it would take 28 hours, nonstop,
to try 10,000 PINs.
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There are people sufficiently desperate to try this attack, so ATMs will
swallow cards if you enter in too many bad passwords. Still, this security
measure works for a lot of systems: physical combination locks, deactiva-
tion codes for burglar alarms (sure, you can try all 10,000 possible codes,
but you’ve only got 30 seconds), electronic door locks, telephone calling
cards, and so on. These systems work because the attack cannot be auto-
mated; if you can figure out how to have a computer brute-force all the
PINs (or passwords) for these systems, you can break them.

The majority of systems designers don’t realize the difference
between a system with a manual interface, which can be secure with a
four-digit PIN, and a system that has a computer interface. This is why we
see weak PIN-like passwords on so many Web systems (including, at the
time of writing, several Internet brokerage sites).

What’s the solution if you can’t prevent dictionary attacks? One trick
is to find a bigger dictionary. Another is to add random numbers to the
passwords, a trick known as salting. There has been some work on differ-
ent types of visual and graphical passwords; the idea being that there are a
lot more possible passwords, and hence it is much harder to mount a dic-
tionary attack. Still, these are limited by the memory of the user.

Passwords are something the user knows. Other authentication tech-
niques are based on something the user is—a biometric—or something
the user has—an access token.

BIOMETRICS

It’s a simple idea: You are your authenticator. Your voiceprint unlocks
the door of your house. Your retinal scan lets you in the corporate offices.
Your thumbprint logs you on to your computer. It’s even used in Star
Trek; Captain Picard “signs” those electronic memo pads with his
thumbprint.

Biometrics are the oldest form of identification. Physical recognition
is a biometric; our ancestors used that even before they evolved into
humans. Cats spray to mark their territory. Dolphins have individual “sig-
nature” calls. 

Biometrics are also used for identification in communications systems.
On the telephone, your voice identifies you to the person on the other
end of the line. On a contract, your signature identifies you as the person
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who signed it. Your photograph identifies you as the person who owns a
particular passport.

For most applications, biometrics need to be stored in a database like
passwords. Alice’s voice only works as a biometric identification on the
telephone if you already know who she is; if she is a stranger, it doesn’t
help. It’s the same with Alice’s handwriting; you can recognize it only if
you already know it. To solve this problem, banks keep signature cards on
file. Alice signs her name on a card when she opens her account, and it is
stored in the bank (the bank needs to maintain its secure perimeter in
order for this to work right). When Alice signs a check, the bank verifies
Alice’s signature against the stored signature to ensure that the check is
valid. (In practice, that rarely happens. Manual signature checking is so
costly that the bank doesn’t bother checking for amounts less than about
$1,000. If there is a problem, they assume, someone will complain. And
making good on the occasional problem is cheaper than paying someone
to do the checking.) You could do the same thing with Alice’s voice—
compare her voiceprint to the one stored in some central database.

The exceptions are situations where the biometric is only verified as
part of an involved and uncommon protocol. When Alice signs a con-
tract, for example, Bob does not have a copy of her signature on file. The
protocol still works because Bob knows that he can verify the signature at
some later time, if necessary.

There are many different types of biometrics. I’ve mentioned hand-
writing, voiceprints, face recognition, and fingerprints. There is also hand
geometry, typing patterns, retinal scans, iris scans, signature geometry (not
just the look of the signature, but the pen pressure, signature speed, and
so forth), and others. The technologies behind some of them are more
reliable than others—fingerprints are much more reliable than face recog-
nition—but that may change as technology improves. Some are more
intrusive than others; one failed technology was based on lip pattern, and
required the user to kiss the computer. As a whole, biometrics will only
get better and better.

“Better and better” means two different things. First, it means that it
will not incorrectly identify an impostor as Alice. The whole point of the
biometric is to prove that the claimant Alice is the actual Alice, so if an
impostor can successfully fool the system, it isn’t working very well. This
is called a false positive. Second, it means that the system will not incor-
rectly identify Alice as an impostor. Again, the point of the biometric is to
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prove that Alice is Alice, and if Alice can’t persuade the system that she is
herself, then it’s not working very well, either. This is called a false
negative.

Over the years, biometric identification systems have gotten better at
detecting both false positives and false negatives. For example, they
include checks for liveness, so that neither a plastic finger nor a severed
real finger fools the fingerprint reader. They do a better job of correcting
for day-to-day variations in an individual’s biometric better. They’re just
easier to use.

In general, you can tune a biometric system to err on the side of a false
positive or a false negative. This is all shades of gray here; if the system gets
a fingerprint that it is pretty sure belongs to Alice, does it let the finger in?
It depends on whether the system is more concerned with false positives
or false negatives. If the system is authorizing Alice to take pencils out of
a stockroom, then it should err on the side of false negatives; it’s much
worse to annoy a legitimate user than to lose a few pencils. If the system
is protecting large amounts of money, then false positives are preferable:
Keeping unauthorized users out is more important than occasionally
denying access to a legitimate user. If the system initiates a launch
sequence for nuclear missiles, both are dire.

Biometrics are great because they are really hard to forge: It’s hard to
put a false fingerprint on your finger, or make your retina look like some-
one else’s. Some people can do others’ voices (performers who do imita-
tions, for example), and Hollywood can make people’s faces look like
someone else, but in general those biometrics are hard to forge, too.

On the other hand, biometrics are lousy because they are so easy to
forge: It’s easy to steal a biometric after the measurement is taken. In all of
the applications discussed previously, the verifier needs to verify not only
that the biometric is accurate but that it has been input correctly. Imagine
a remote system that uses face recognition as a biometric. “In order to
gain authorization, take a Polaroid picture of yourself and mail it in. We’ll
compare the picture with the one we have in file.” What are the attacks
here?

Easy. To masquerade as Alice, take a Polaroid picture of her when
she’s not looking. Then, at some later date, use it to fool the system. This
attack works because while it is hard to make your face look like Alice’s,
it’s easy to get a picture of Alice’s face. And since the system does not ver-
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ify that the picture is of your face, only that it matches the picture of
Alice’s face on file, we can fool it.

Similarly, we can fool a signature biometric using a photocopier or a
fax machine. It’s hard to forge the vice president’s signature on a letter
giving you a promotion, but it’s easy to cut his signature out of another
letter, paste it on the letter giving you a promotion, and fax it to the
human resources department. They won’t be able to tell that the signature
was cut from another document.

The moral is that biometrics work great only if the verifier can verify
two things: one, that the biometric came from the person at the time of
verification, and two, that the biometric matches the master biometric on
file. If the system can’t do both, it is insecure.

Here’s another possible biometric system: thumbprints for remote
login authorizations. Alice puts her thumbprint on a reader embedded
into the keyboard (don’t laugh, a lot of companies want to make this hap-
pen, and the technology already exists). The computer sends the digital
thumbprint to the host. The host verifies the thumbprint and lets Alice in
if it matches the thumbprint on file. This won’t work because it’s so easy
to steal Alice’s digital thumbprint, and once you have it, it’s easy to fool
the host, again and again.

Tamper-resistant hardware helps (within the limitations of Chapter
14), as long as the tamper-resistant hardware includes both the biometric
reader and the verification engine. It doesn’t work if a tamper-resistant
fingerprint reader sends the fingerprint data across an insecure network.
Encryption can help, too, though.

Anyway, this brings us to the second major problem with biometrics:
It doesn’t handle failure well. Imagine that Alice is using her thumbprint
as a biometric, and someone steals it. Now what? This isn’t a digital cer-
tificate (we’ll get to those in Chapter 15), where some trusted third party
can issue her another one. This is her thumb. She only has two. Once
someone steals your biometric, it remains stolen for life; there’s no getting
it back.

This is why biometrics don’t work as cryptographic keys (even if you
could solve the fuzzy biometric logic versus absolute mathematical logic
problem). Occasionally I see systems that use cryptographic keys gener-
ated from biometrics. This works great, until the biometric is stolen. And
I don’t mean that the person’s finger is physically cut off, or the fingerprint
is mimicked on someone else’s finger; I mean that someone else steals the
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digital fingerprint. Once that happens, the system does not work any-
more. (Well, maybe it will work until all ten fingers are stolen. . . .)

Biometrics can be good authentication mechanisms, but they need to
be used properly.

ACCESS TOKENS

The third solution to proving identity is to use something you have: a
physical token of some sort. This is an old form of access control: a phys-
ical key restricted access to a chest, a room, a building. Possession of the
king’s seal authorized someone to act on his behalf. More modern systems
can be automated—electronic hotel room keys—or manual—corporate
badges that allow access into buildings. The basic idea is the same; a phys-
ical token serves to authenticate the holder of it.

There are several basic ways this can be done. Most simply, the holder
can simply prove that he is holding the token. Computers that require a
physical key to turn them on work in this manner; so do computers that
require a smart card. The basic idea is that you insert the token into some
slot somewhere, and then the computer verifies that it is really there. If it
is, you’re in.

The most serious problem with this system is that tokens can be
stolen. If someone steals your house keys, for example, she can unlock
your house. So the system doesn’t really authenticate the person; it
authenticates the token. Most computer systems combine access tokens
with passwords—sometimes called PINs—to overcome this vulnerability.
You can think of bank ATM cards. The ATM authenticates the card, and
also asks for a PIN to authenticate the user. The PIN is useless without the
access token. Some cellular phone systems work the same way: You need
the physical phone and an access code to make calls on a particular cellu-
lar account.

In addition to stealing a token, someone can copy it. Some tokens can
be easily copied—physical keys, for example—so they can be stolen,
copied, and replaced without the owner knowing about it.

Another problem is that there needs to be some authenticated way of
determining that the token is really there. Think of a token as a remov-
able, changeable biometric, and you’ve got all the problems of a secure
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verification path from the previous section. At least the token can be
changed if necessary.

This problem can be illustrated using credit cards. It’s difficult to forge
a physical credit card, which makes it risky to use a forged credit card to
purchase things at a store. The clerk might notice that the card is forged.
It’s far easier to use a forged credit card over the telephone, however. At
the store, the clerk authenticates both the account number on the credit
card and the credit card itself—the token. Over the phone, the operator
cannot authenticate the physical token, only the account number.

There’s another, relatively minor, problem that shows up with some
tokens. If users can leave the token in the slot, they often do. If the users
need to have a smart card inserted in a slot before it will boot, they’re
likely to leave the smart card there all day and night . . . even when
they’re not there. So much for authentication.

All of this discussion assumes that there’s some kind of reader associ-
ated with the token, and the user can insert the token into the reader. This
often isn’t the case: Most computers don’t have the required reader, or the
system might have to work for mobile users who could be sitting some-
where other than at their normal computers. Two different technologies
deal with this situation.

The first is challenge/reply. The token is a pocket calculator, with a
numeric keypad and small screen. When the user wants to log in, the
remote host presents him with a challenge. He types that challenge into
his token. The token calculates the appropriate reply, which he types into
the computer and sends to the host. The host does the same calculation;
if they match, he is authenticated. The second technology is time-based.
This token is the same pocket calculator, with just a screen. The numbers
on the screen change regularly, generally once per minute. The host asks
the user to type in what is showing on his screen. If it matches what the
host expects, he is authenticated. The SecurID token works this way.

Of course, the full system also includes a password—the challenge/
reply token might even require a second password to get it working—and
there are other, ancillary, security measures. The basic idea, though, is that
some secret calculation is going on inside the token that can’t be imper-
sonated. An attacker can’t pretend to have the token, because she doesn’t
know how to calculate replies based on challenges, or doesn’t know how
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to calculate values based on the time. The only way to do this is to actu-
ally have the token.

This works, more or less. Cryptographic techniques, encrypting or
hashing, provide the security. The host knows how to do the calculations,
so the system is only as secure as the host’s source code. Anyone who can
reverse engineer the token can figure out how to do the calculations, so
the system is only as secure as the tokens (see Chapter 14). But it’s pretty
good, and certainly a lot better than passwords alone. The security prob-
lems arise in the network, and the authenticating computer.

One last token needs discussion: the password, written down. There
is a knee-jerk reaction to writing passwords down in the security com-
munity, but if done properly this can improve security considerably.
Someone who writes his password down turns something he knows (the
password) into something he has (the piece of paper). This trick does
allow him to use longer passwords, which can make passwords actually
secure again. It does have all the problems of a simple token: It can be
copied or stolen. It doesn’t work if Alice writes her password on a yellow
sticky attached to her monitor. Much better is for her to put her pass-
words in her wallet; this can be secure. Probably the best solution is to
have two parts to the password: one part remembered by Alice, and the
other part written down in her wallet.

Similarly, there are systems of one-time passwords. The user has a list
of passwords, written down, and uses each one once. This is certainly a
good authentication system—the list of passwords is the token—as long as
the list is stored securely.

AUTHENTICATION PROTOCOLS

Authentication protocols are cryptographic ways for Alice to authenticate
herself across a network. The basic authentication protocol is pretty sim-
ple:

1. Alice types in her username and password on the client. The client sends
this information to the server.

2. The server looks up Alice’s username in a database and retrieves the corre-
sponding password. If that password matches the password Alice typed,
Alice is allowed in.
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The problem with this is that the password database has to be pro-
tected. The solution is to not store the passwords, but to store hashes of
the passwords:

1. Alice types in her username and password on the client. The client sends
this information to the server.

2. The server hashes Alice’s typed-in password.
3. The server looks up Alice’s username in a database and retrieves the corre-

sponding password hash. If that password hash matches the hash of the
password Alice typed, Alice is allowed in. 

Better. The main problem with the second protocol is that passwords
are sent over the network in the clear. Anyone sniffing the network can
collect usernames and passwords. Solutions involved hashing passwords
before sending them (older versions of Windows NT did this), but dic-
tionary attacks can deal with that as well.

As dictionary attacks became more powerful, systems started adding
salt to their passwords. (Actually, they did this very early, a good example
of designer foresight.) A salt is a known random constant hashed with the
password. The effect is to make dictionary attacks harder; instead of a sin-
gle hash for the password “cat,” there would be 4,096 different hashes for
“cat” plus 12 bits of random salt. Dictionaries of prehashed passwords
would have to be four thousand times larger. But the ability to do fast dic-
tionary attacks in real time makes this countermeasure obsolete; the dic-
tionary simply includes all possible salt values.

Kerberos is a more complicated authentication protocol. To make
this work, Alice has to share a long-term key with a secure server on the
network, called a Kerberos server. To log on to a random server on the
network, which we’ll call the Bob server, the following procedure is car-
ried out:

1. Alice requests permission from the Kerberos server to log on to the Bob
server.

2. The Kerberos server checks to make sure Alice is allowed to log on to the
Bob server. (Note that the Kerberos server does not need to know that
Alice is who she says she is. If she isn’t, the protocol will fail in step 6.)

3. The Kerberos server sends Alice a “ticket” that she is supposed to give to
the Bob server, and a session key she can use to prove to Bob that she is
Alice.

4. Alice uses the session key from the Kerberos server to create an “authenti-
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cator” that she will use to prove to Bob that she is Alice.
5. Alice sends Bob both the ticket and the authenticator.
6. Bob validates everything. If it all checks out, he lets Alice in. (Bob also

shares a long-term key with the Kerberos server. The ticket is a message
from the server encrypted in Bob’s long-term key.) 

This protocol is secure in the same way that physical ticket protocols are
secure. The Kerberos server prints tickets. It gives Alice a ticket that she
can present to Bob. Bob can validate the ticket, so he knows that Alice
received it from the Kerberos server.

This protocol has some nice properties. The long-term secrets of
Alice and Bob, which are kind of like passwords, are never sent through
the network. On the minus side, this system needs a Kerberos server to
operate; the Kerberos server is a trusted third party. This can mean a bot-
tleneck in the system at 9:00 in the morning, when everyone is trying to
log on to their computer.

Kerberos was invented at MIT in 1988, and has been used in the
UNIX world ever since. Kerberos is part of Windows 2000, but
Microsoft’s implementation differs from the standard and is incompatible
with the rest of the Kerberos world. I can only assume this was done for
deliberate marketing reasons (at this writing, Microsoft only allowed you
to open the file with the modification details if you first clicked on a
screen agreeing to treat the information as proprietary, so third-party
developers can’t build interoperable systems), but it makes for bad secu-
rity. You can’t just modify a security protocol and assume that the modi-
fied protocol is also secure.

Other, more Byzantine, login authentication protocols use public-
key cryptography. IPsec and SSL, for example, use public-key authenti-
cation protocols. Some systems use simple, but esoteric, protocols. The
protocol by which a cell phone proves that it should be allowed to make
telephone calls in a particular network is one of these.

SINGLE SIGN-ON

One thing that has annoyed computer users in large secure environments
is the large number of passwords. Users might have to type in one pass-
word to log on to their computers, another to log on to the network, a
third to log on to a particular server on the network, and so on and on and
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on. Wouldn’t it be better, people asked, if users could sign on once, with
one password, and then have the computers handle all of that other
logging in?

Single sign-on is the solution to this usability problem: the Holy Grail
of network security. Unfortunately, it doesn’t work very well. First,
there’s the morass of legacy applications and security measures that just
don’t play well with each other. It’s not a matter of choosing the same
password for everything—that’s a bad idea—it involves a lot of interface
programming. Second, there’s the additional security risk of a single point
of failure. It’s the difference between losing a single credit card and losing
your entire wallet.

There are single sign-on products out there, and they work in some
situations. But it will never be the panacea vendors claim.
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10

Networked-Computer
Security

In this chapter I want to talk about attacks on computers on the Inter-
net. You could think of these attacks as attacks against computers,
which should be part of Chapter 8. You could also think of these

attacks as network attacks, which should be part of Chapter 11. I think
they are a different kind of attack, and am separating them in their own
chapter.

MALICIOUS SOFTWARE

Malicious software is probably the first interaction most of us had with
computer security. Even if no one has access to your computer but you,
and it is not attached to a network, you have to worry about viruses. The
reason is that you don’t really know what is going on in your computer,
and trust the software you are running to behave itself. If you run an
untrusted piece of software, you are taking a risk.

Malicious software includes viruses, Trojan horses, and worms.
Together these are called malware. Malware generally has two compo-
nents: a payload and a propagation mechanism. The payload is the part
that does damage. Traditionally, payloads have been boring; a prototypi-
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cal virus might display an annoying message on the screen, reformat the
victim’s hard drive, or do absolutely nothing. It could also do much
sneakier things: modify the access control permissions on the computer,
steal a secret key and send it via e-mail to someone, and so on. Payloads
can be malign, and I expect that we’ll see more devious payloads over the
next few years. More interesting for this book are the propagation mech-
anisms, and this is how we classify malware.

Computer Viruses

A biological virus is a simple submicroscopic infectious agent that often
causes disease in plants, animals, and bacteria. It consists essentially of a
core of RNA or DNA surrounded by a protein coat. Viruses are unable
to replicate without a host cell, and are typically not considered living
organisms. For once, the metaphor is accurate. A computer virus is a
string of computer code that attaches itself to another computer program
(it can’t live on its own). Once attached, it replicates by co-opting the
program’s resources to make copies of itself and attach them to other
programs. And so on.

In 1983, USC student Fred Cohen wrote the first computer virus. He
did it to demonstrate the concept (a surprising number of people didn’t
believe it was possible). Gaggles of people copied him, many just to annoy
the world. Today there are anywhere from 10,000 to 60,000 different
viruses (depending on how you count), most of them written for IBM-
compatible PCs. I’ve seen estimates that six more are created daily,
although that’s mendacious and alarmist. Only a few hundred are ever
seen “in the wild”—meaning “on the hard drive of someone not actively
engaged in computer-virus research”—but those that are can be particu-
larly devastating.

There are three primary categories of viruses: file infectors, boot-sec-
tor viruses, and macro (interpreted) viruses.

For a long time file infectors were the most common. They work by
attaching themselves to program files, such as word processors and com-
puter games. When a user runs an infected application, the virus installs
itself in memory so that it can infect other applications the user runs. It
spreads on the user’s machine, and if the user gives someone else a disk
with an infected application (or sends it across the network), another user
gets infected.
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Most file infectors are extinct in the wild. Changes in the underlying
computers can make viruses not able to run, just as commercial software
often needs to be updated for new operating systems and processors.
Many file infectors died out around 1992 when Windows 3.1 was
released; they simply crashed the operating system and could not spread.

Boot-sector viruses are less common. They reside in a special part of
a disk (either diskette or hard disk) that is loaded into memory when the
computer first boots up. Once loaded, a boot-sector virus can infect all
hard disks and any diskette that is placed in the drive, and then can spread
to other systems. Boot-sector viruses are particularly effective, and even
though there are far fewer strains, they were, for a time, far more preva-
lent than file infectors.

Boot-sector viruses can coexist peacefully with Windows 3.1, but
they saw a major die-off when Windows 95 became popular. Boot
incompatibilities and alerts made it much harder for them to spread.
We’ve seen viruses specifically designed for Windows 95, although none
have become widespread since no one boots from a floppy anymore.

The final virus category is macro viruses. These are written in script-
ing languages and infect data files rather than programs. Many word
processors, spreadsheets, and database programs have scripting languages.
These scripts, sometimes called macros, are used to automate tasks and are
stored with the data. People have written viruses using these scripting
languages. The first Microsoft Word macro virus, “Concept,” was first
observed in the wild in 1995; they existed in the Emacs text editor as early
as 1992.

These viruses can spread much more quickly than the others can,
because people exchange data more often than they exchange programs.
And as e-mail, collaboration, and file transfer software become easier 
to use, they will spread even faster. Macro viruses can also exist cross-plat-
form: Some Microsoft Office macro viruses can infect both Windows and
Macintosh machines.

Macro viruses are the future. All the fast-spreading Internet viruses are
macro viruses. The good ones even have a social-engineering compo-
nent; they try to trick the user into installing, running, or spreading them.

Antivirus software is a bigger business than writing viruses. (I guess
that’s obvious; no one pays for viruses.) Most antivirus programs scan files
looking for viruses. They keep a database of virus footprints—bits of code
that are known to be parts of viruses—and when they find the same foot-
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print on a file, they know it has been infected. These programs can then
disinfect the file by removing the viral code. Fingerprint scanning only
works after the antivirus company has isolated the virus in its lab and
updated its software to include the new fingerprint: hence the brisk busi-
ness in antiviral software updates.

In some ways we’ve been fortuitous with respect to computer viruses;
all the ones we’ve seen are targeted against large computers, not periph-
erals or embedded systems. It’s possible to write a virus in the PostScript
printing language. It could propagate from document to document. It
could affect printers. It’s possible to write a virus that infects cell phones,
and propagates via the cellular network. It’s possible to write a virus that
affects almost any computerized system; we’ve seen one that’s specific to
WebTV devices. If we haven’t seen it yet, it’s be cause no one with the
requisite knowledge and lack of morals has bothered making one.

To catch unknown viruses, polymorphic viruses (which mutate with
every infection), and encrypted viruses (which use cryptography to hide
their footprints), some antiviral products monitor the computer system
looking for “suspicious” virus-like behavior. (Normal virus checkers are
pretty brain-dead; sometimes just changing variable names is enough to
fool them.) These systems work moderately well, although they rely on
users to make security decisions: Is this a virus or a false alarm?

Viruses have no “cure.” It’s been mathematically proven that it is
always possible to write a virus that any existing antivirus program can’t
stop. (Even the Bell-LaPadula model does not prevent virus attacks.) I’ll
elide the details, but the basic idea is that if the virus writer knows what
the antivirus program is looking for, he can always design his virus not to
be noticed. Of course, the antivirus programmers can always create an
update to their software to detect the new virus after the fact.

Worms

A worm is a piece of malware particular to networked computers. It’s a
self-replicating program that does not hide in another program, like a
virus does. Instead it exists on its own, meandering through computer
networks as best it can, doing whatever damage it is programmed to do.

Robert T. Morris released the most famous worm in 1988. It was an
Internet worm, and crashed about 6,000 computers: 10 percent of the
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Internet’s computers. The worm started out on one machine. Then it
tried breaking into other machines on the network, using a couple of
basic techniques. When it was successful, it sent a copy of itself to the new
machine. And then the copy replicated the process, trying to break into
yet more machines. This is the way a worm works. The worm would
have been more devastating had it not been for a lucky bug. It was not
supposed to crash 6,000 computers; it was supposed to quietly infect
them. A bug in the worm program caused it to crash computers it
infected. I’ll talk more about the details of how it infected and the bug in
Chapter 13.

PrettyPark is another worm. It’s a Windows executable that arrives as
an attachment to an e-mail message. (Its name comes from the fact that
the program’s icon is a South Park character named Kyle.) If you run the
program, it sends itself to everyone in your Outlook Express address
book. It also attempts to connect to an Internet relay chat (IRC) server
and send messages to chat users. The author of the worm can then use the
connection to collect information from your computer. ILOVEYOU
and all its variants are worms, too.

Trojan Horses

A Trojan horse is a piece of malware embedded in some “normal” piece
of software, designed to fool the user into thinking that it is benign.
Remember the original Trojan horse? The Greeks besieged Troy for ten
years, and it was showing no sign of falling. Out of desperation—and
probably boredom—Odysseus had the Greek soldiers build a large
wooden horse and put some of them inside. He left it for the Trojans as
an admission of defeat and then told his army to pretend to sail away, try-
ing not to giggle as they did. The Trojans took the wooden horse inside
the walls—every artist’s rendition puts the horse on a wheeled platform—
despite the better judgment of one of their priests. That night, the Greeks
crept out of the horse, opened the gates, and let the rest of the Greek army
inside. The Greeks then massacred the Trojans, looted their wealth, and
burned the city. (At least, that’s the story. No one knows if it’s true or not.
Troy itself was considered a myth until Heinrich Schliemann discovered
it in the late 1800s.)

Following that analogy, a digital Trojan horse is code deliberately
placed in your system, that does things you don’t expect or want while
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pretending to do something useful. (Technically, a Trojan horse is code
that you deliberately place on your system, while a logic bomb is code that
someone else places on your system.) It’s a piece of code that a program-
mer writes into a large software application that starts misbehaving if, for
example, the programmer is ever deleted from the payroll file. Timothy
Lloyd, a network manager at Omega Engineering, set a logic bomb in
1996 that crippled his former employers’ manufacturing capabilities and
cost them more than $12 million in damages.

A Trojan horse, on the other hand, is a program that secretly installs
itself in your machine, watches your keyboard buffer until it detects what
appears to be a credit card number—right number of digits, checksum
matches—and sends that number via TCP/IP to someone. It’s a Java
application that disconnects your modem connection and connects you to
a 900 number in Moldavia (this Trojan horse actually happened).

A Trojan horse is a particularly insidious attack because you may not
know what it’s doing. Back Orifice is a popular Trojan horse for
Microsoft Windows. If it is installed on your computer, a remote user can
effectively take it over across the Internet. He can upload and download
files, delete files, run programs, change configurations, take control of the
keyboard and mouse, see whatever is on the server’s screen. He can also
do more subversive things: reboot the computer, display arbitrary dialog
boxes, turn the microphone or camera on and off, capture keystrokes (and
passwords). And there is an extensible plug-in language for others to write
modules. (I’m waiting for someone to disseminate a module that auto-
matically sniffs for, and records, PGP private keys or Web login
sequences.) 

In addition to Back Orifice and other hacker-written tools, many
remote administration programs can serve as Trojan horses. DIRT (Data
Interception by Remote Transmission) is a Trojan horse developed by
the U.S. government and available to police.

These are the Swiss army knives of Trojan horses, but others are
much subtler. Several Trojan horses collect usernames and passwords, and
send them back to the creator. Trojans can also subtly modify your
encryption program to choose keys from a small random pool, effectively
weakening the keyspace. (I have seen Trojaned versions of PGP that do
this.) They can drop a fake certificate into your computer and fool you
into trusting someone. (Lab demonstrations of attacks against Microsoft’s
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code-signing system have used this idea.) They can do just about anything
you can think of, and a lot of things you’d never think of. The distributed
denial-of-service attacks on the Internet first use Trojan horses to infect
intermediate computers.

The hard part of these attacks is getting the Trojan horse onto the
computer of some unsuspecting victim. You can break into the victim’s
office and install it on her computer; in the next chapter, we’ll talk about
some defenses against that sort of attack. You can cajole her to install the
Trojan herself; we’ll talk about social engineering in Chapter 17. You can
attack the victim’s computer via the network; we’ll talk about that in
Chapter 11. Or you can use the malicious software itself to attack the
computer, creating a virus.

Modern Malicious Code

The year 1999 was a pivotal year for malicious software. The different
strains—viruses, worms, and Trojan horses—blurred and amalgamated.
And malware has gotten nastier. Malware that automatically propagates
over e-mail is not new—Christma.exec in 1987 (through the PROFS 
e-mail system) and ShareFun in 1997—but 1999 was the first year that 
e-mail-propagating malware infected large swaths of the Internet. This
strain of malware ignores corporate defenses and tunnels right through
firewalls. This is a really big deal.

Viruses survive by reproducing on new computers. Before the Inter-
net, computers communicated mostly through floppy disks. Hence, most
viruses propagated on floppy disks, and occasionally on computer bulletin
board systems.

There are some ramifications of floppies as a vector. First, malware
propagates relatively slowly. One computer shares a disk with another,
which shares a disk with five more, and over the course of weeks or
months a virus turns into an epidemic. Or maybe someone puts a virus-
infected program on a bulletin board, and thousands get infected in a
week or two.

Second, it’s easy to block disk-borne malware. Most antivirus pro-
grams can automatically scan all floppy disks. Malware is blocked at the
gate. Bulletin boards can still be a problem, but many computer users are
trained never to download software from an untrusted bulletin board.
Even so, antivirus software can automatically scan new files for malware.
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And third, antiviral software can easily deal with the problem. It’s easy
to write software to block malware you know about. You simply have the
antivirus scanner search for bit strings that signify the virus (called a “sig-
nature”) and then execute the automatic program to delete the virus and
restore normalcy. This deletion routine is unique per virus, but it is not
hard to develop. Antiviral software has tens of thousands of signatures,
each tuned to a particular virus. Companies release them within days of
learning of a new virus. And as long as viruses propagate slowly, this is
good enough. Most antivirus software automatically updates itself once a
month. Until 1999, that was good enough.

E-mail propagation changed everything. The year 1999 gave us the
Melissa Microsoft Word macro virus and the Worm.ExploreZip worm,
and 2000 gave us the ILOVEYOU worm and its dozens of variants, but
there are many others. This type of malware arrives via e-mail and uses
automatic e-mail features in software to replicate itself across the network.
They mail themselves to people known to the infected host, enticing the
recipients to open or run them. They don’t propagate over weeks and
months; they propagate in seconds.

The antivirus companies release updates that catch particular viruses as
soon as they can, but if a virus can infect 10 million computers (one esti-
mate of ILOVEYOU infections) in the hours before a fix is released,
that’s a lot of damage. What if the code took pains to hide itself, so that a
virus wasn’t discovered for a couple of days? What if a worm just targeted
an individual, and deleted itself off any computer whose userID didn’t
match a certain reference? How long would it take before that one is dis-
covered? What if it e-mailed a copy of the user’s login script (most con-
tain passwords) to an anonymous e-mail box before self-erasing? What if
it could automatically update itself in the field? What if it automatically
encrypted outgoing copies of itself with PGP? What if it mutated, frus-
trating antivirus software? Or hid for weeks on systems? Even a few min-
utes of thinking about this yields some pretty scary possibilities.

And because e-mail is everywhere, e-mail-borne malware can get
everywhere. It can get over Internet connections that block everything
else. It cannot be stopped at the firewall; it tunnels through and then pops
up on the inside and does damage. The effectiveness of firewalls will
diminish as we open up more services (e-mail, Web, etc.), as we add
increasingly complex applications on the internal net, and as malware
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writers catch on. This “tunnel-inside-and-play” technique will only get
worse.

Current research on malware protection tries to mimic the biological
approach to fighting viruses. I’m skeptical, though, for two reasons. The
first is that biological viruses evolve slowly: a lucky mutation here and
there, and eventually they are a problem. And then they propagate
through a species slowly. Biological immune systems are designed to deal
with that kind of random threat. Computer viruses, by contrast, are
created deadly on purpose.

The second reason is that biological immune systems are designed to
protect the species at the expense of the individual. This is a great strategy
for a gene pool, but is less effectual if you are trying to protect your own
computer from malware.

More interesting solutions involve connecting computers to auto-
matic virus-detection centers. When a computer notices something fishy,
it sends the code off to be analyzed. This has some promise, but also a
bunch of new security risks. And it still won’t be fast enough. Any large,
distributed system that communicates is going to have to accept the real-
ity of viral infections. Unless security is designed into the system from the
bottom up, we’re constantly going to be fighting a holding action.

It’s easy to excoriate Microsoft for exacerbating the problem.
Microsoft scripting languages are very powerful, and basically assume that
everything is trusted. These languages allow access to all operating-system
resources (compare with the Java security model). They allow malware to
use features in Microsoft Outlook to automatically e-mail themselves to
friends of the user. Microsoft is certainly to blame for creating the power-
ful macro capabilities of Word and Excel, blurring the distinction
between executable files (which can be dangerous) and data files (which,
before now, were safe). They will be to blame when Outlook 2000’s
integrated HTML support makes it possible for users to be attacked by
HTML-based malware simply by downloading an e-mail (it automatically
opens in preview mode). Or when malware takes advantage of Internet
Explorer 5.0’s ActiveX integration to spread without the user having to
open an attachment. They built an operating environment where it is easy
to write malware, where malware can spread easily, and where malware
can do a lot of damage. But the fundamental problem—the inability to
trust mobile code—is subtler.
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MODULAR CODE

In the old days (the 1970s), computer programs were large hulking things:
difficult to write, and even more difficult to maintain. Then someone got
the idea of dividing large programs into smaller, easier-to-understand,
components. Object-oriented programming, C++, modules, plug-ins:
These are all examples of that idea. The problem is that modern compo-
nent-based software is a lot harder to secure.

Figure 10.1 shows the old paradigm: large applications on top of a
small operating system. Today’s software looks more like App 1 in Figure
10.2—applications with components—or App 2—applications with
components that have components. Think of your browser. One com-
ponent is the Java Virtual Machine. Java applets run on top of that. Some
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Java applets even have plug-ins. All sorts of macros exist for your word
processor and spreadsheet. You can download a PGP plug-in for Eudora.
It seems like every other week you’re downloading some plug-in or
another for your browser.

And actually, even though your browser is sold as one program, it
actually consists of many different components working together. Your
word processor and spreadsheet are also like this; over one thousand com-
ponents are in Microsoft Word 97. What you really have is App 3: a small
base application with components upon components. Even your operat-
ing system looks like this; Figure 10.3 is a picture of Windows NT: com-
ponents on top of components.

Making matters worse is the practice of dynamic linking. In the old
paradigm, pieces of the program were glued together—called linking, in
programming-speak—by the manufacturer before you bought it. Pro-
grammers would link the program together, and would test it to make
sure everything was operating properly. Today components are often
linked dynamically, when you launch the application. Windows users will
have heard of dynamic linked libraries (DLLs); UNIX and Macintosh
users know them as shared libraries.

The security problems come from several directions. First, you can’t
assume that all the modules are trustworthy. In the previous section I
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talked about malicious software; it is possible that one or more of the
modules are malicious or simply inept. Second, you can’t assume that all
the modules are written well enough to work in every possible configu-
ration. The nice thing about big hulking computer programs is that they
were tested as one piece. The browser running on your computer, with
all the particular plug-ins you downloaded in the particular order you did,
might be unique. It is unlikely that it has ever been tested before.

And third, the operating system isn’t there to deal with the other two
problems. In the old paradigm, different pieces of software communicated
through the operating system. The operating system, if it was designed
well, would mediate these communications and prevent one program
from damaging another. Modern components talk to each other directly,
not through the operating system, so those built-in safety features just
don’t apply.

Several general methods for dealing with this security problem have
been tried, some with more success than others. They all look better in
theory than they work in practice:

Isolation and memory safety. The problem is that a component can,
either maliciously or accidentally, affect the rest of the system. It could read,
or change, the memory of another component. It could step outside its own
memory and cause the system to crash, or do any number of annoying
things. By isolating a component’s use of memory, the hope is to avoid all
these problems. The component is given its own area of memory, and is not
allowed to read or write anywhere else. Sometimes program checkers on
the user’s machine go through the component’s code to verify that it does-
n’t do anything noisome. The Java sandbox is an example of this idea:
Components get to play in their own sandbox where they can’t hurt one
another. This works fine when it does, but this kind of model doesn’t catch
some things, and there’s a price paid in speed.

Access control at the interfaces. It’s not enough to have a component
completely isolated; it has to communicate with other components (and the
screen, keyboard, mouse, etc.) In Figure 10.2, many of the components
touch each other. This indicates communications paths between compo-
nents. By enforcing access control rules at those communication points, 
the hope is to ensure that the components play nicely with each other. 
The problem is that you have to set some kind of access control policy,
which tends to be too inflexible to be really useful. The Java sandbox also
does this, but its policy ends up being either too restrictive or overly permis-
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sive; there’s no real middle ground. (Java 2 has fine-grained control, but it
isn’t used very well.)

Code signing. Think of a private party. The host decides who to let in and
who to keep out, based only on some unforgeable document they have (a
driver’s license, for example). That way, only friends of the host are allowed
in his home. Code signing is the same thing. The programmer signs com-
ponents. The user decides, based on the signatures, which components to
allow on his computer and which not to. (ActiveX uses code signing as its
primary security against hostile code.) Code signing, as it is currently done,
sucks. There are all sorts of problems. First, users have no idea how to
decide if a particular signer is trusted or not. Second, just because a compo-
nent is signed doesn’t mean that it is safe. Third, just because two compo-
nents are individually signed does not mean that using them together is safe;
lots of accidental harmful interactions can be exploited. Fourth, “safe” is not
an all-or-nothing thing; there are degrees of safety. And fifth, the fact that
the evidence of attack (the signature on the code) is stored on the computer
under attack is mostly useless: The attacker could delete or modify the sig-
nature during the attack, or simply reformat the drive where the signature is
stored. Code signing makes less and less sense the more you think about it.

Nascent technologies gestating in university laboratories may someday
result in better solutions, but they are some years away. In the meantime,
modular code is likely to become an even bigger security problem. More
and more software packages are building in live update features, allowing
them to download new modules regularly. For example, Internet
Explorer 4.0 and later versions have a “subscription” feature that, if the
user turns it on, will automatically update itself with new modules from
Microsoft’s Web page. This is a fine feature, unless you turn it on acci-
dentally. Then, in the middle of the night, you can find your computer
automatically dialing the Internet. One reaction from a news report:

“I had my head in the refrigerator very early in the morning and discovered
my computer had connected itself to the Internet,” said one beta tester who
requested anonymity for fear that his working relationship with Microsoft
would be damaged. “I was completely freaking out. I pulled the phone plug
right out of the wall.” 

There was nothing nefarious here; the user just didn’t realize what was
going on. But most computer users have no idea what is going on inside
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their computers. If they get used to their computer making telephone calls
in the middle of the night, they may be surprised when some rogue appli-
cation has been running up their phone bill by calling 900 numbers or
computers in Moldavia.

MOBILE CODE

If you think about it, using programs written by someone else is always a
risky thing to do. You’re trusting that the programmer isn’t malicious,
and that the programs you’re running do what they are supposed to do
and nothing else. (I talk about this human problem again in Chapter 17.)
In the earliest days of computing, users just didn’t do that. They wrote, or
at least compiled, programs specifically for each new computer.

The advent of personal computers and programs like VisiCalc took
computers out of the hands of engineers and onto the desks of users.
These users came to trust shrink-wrapped software, and wouldn’t think
twice about running programs even though they had no understanding of
the internals; they didn’t have the expertise to understand the internals
anyway.

I’ve already talked about viruses and Trojan horses; these became
popular because people traded copies of shrink-wrapped software (some-
times illegally) without wondering whether they should trust the copies.
But antivirus software took care of that problem, and people have spent
the last 20 years implicitly trusting software.

With the rise of the Internet, this ingrained trust is suddenly a major
problem.

In a previous section, I talked about how networks make malicious
code more dangerous. Those are both examples of mobile code and their
problems. Unfortunately, there are even more serious problems.

With the rise of modular code, more program fragments are being
delivered over the Internet. Whether it is a new plug-in for your browser,
a new printer driver, a slick utility program, or a Java applet that does
some small cool thing, you’re more likely than not to get this code from
a Web site. Important questions to ask include the following: Is this code
trusted, is this Web site trusted, can this code be trusted to interact safely
with the rest of my computer, and what defenses do I have in case this
code turns out to be malicious? Finding users who ask those questions is
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rare, and finding people who can answer those questions is even more
rare.

JavaScript, Java, and ActiveX

JavaScript, Java, ActiveX, and downloadable plug-ins all have different
models for securing themselves. I’ll talk about them each in turn.

JavaScript is Netscape’s scripting language that allows bits of code to
be embedded in Web pages, and all major browsers support it. It is simi-
lar to Java only in its first four letters. JavaScript code can be used for
simple things: opening and closing windows, manipulating forms on Web
pages, adjusting browser settings, and so forth. All of those annoying
things that some Web sites do when you try to close their pages: That’s
JavaScript.

JavaScript is basically pretty tame, but all sorts of JavaScript-based
attacks have appeared over the past few years. These bugs have all been
fixed. A few random examples: 1997, monitor what sites the user visits;
1998, read arbitrary files on the user’s machine; 1998, intercept the user’s
e-mail address. A lot of these attacks depend on fooling the user into
doing something marginally stupid, but that’s not hard. These sorts of
security flaws show up in browsers, and are fixed pretty quickly. But new
ones are regularly discovered.

ActiveX uses a code-signing defense. Basically, every piece of
ActiveX code, called a “control,” is checked for a digital signature.
(Microsoft has defined something called Authenticode to do this.) Then
the browser puts up a dialog box, and shows the user the name of the pro-
grammer or company that signed the control. If the user agrees to accept
the control, it is downloaded to the browser. Otherwise, it is not.

Any teenager who’s let the wrong sorts of guests into his party knows
the problem: The system is only as good as the judgment of the user.
Once an ActiveX control is on a user’s machine, it can do anything it
wants: reformat your hard drive, change all your $1 spreadsheet entries to
$100, collect all your steamy love letters and send them to a movie pro-
ducer in Los Angeles, whatever.

Microsoft has countered that the signatures will identify authors, but
knowing who wrote the malicious control is little consolation to some-
one who just had his computer trashed. It’s like forcing criminals to wear
name badges and then not bothering to put locks on people’s doors: “I’m
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sorry they came into your house, ate all your food, broke all your furni-
ture, and stole all your valuables. But at least we know who they are.”
Except that on the Web you can add: “They’re two teenagers from a
country that has no extradition treaty with the United States. Feel better
now?” And this assumes you can isolate the particular malicious control
among the dozens on your hard drive. One researcher showed how two
benign ActiveX controls could combine to become malicious; whom do
you blame there?

This idea has even more serious problems. Chapter 17 talks all about
how ridiculous it is to expect users to make good security decisions, but
for now, suffice it to say that most people aren’t going to have a clue
about which ActiveX controls to trust and which not to. And this assumes
the existence of a public-key infrastructure to support the signatures,
something I will complain bitterly about in Chapter 15. Lots of opportu-
nities exist to trick the infrastructure into believing a control is signed
when it is not.

ActiveX is really an extension of an old Microsoft system of compo-
nents (it used to be called DCOM). This is what allows Internet Explorer
to open up and display Excel spreadsheets (for example). Most of the
DLLs that programs use are actually just vehicles for DCOM objects.
Explorer is just picking up Excel’s guts through DCOM and ActiveX.
This is an incredibly powerful system, which is way more flexible, way
more accessible, way more architecturally interesting, and just unimagin-
ably more dangerous than anything similar in any other operating system.

Java uses a completely different model. It’s the only programming
language specially designed for mobile code, and with security in mind.
Java programs run by a Web browser are called applets, and run within a
sandbox that tries to limit the damage it can do. Three mechanisms protect
the sandbox.

First, there is something called a byte code verifier. Whenever a browser
downloads a Java applet, the byte code verifier checks over the code first.
The verifier ensures that the byte code is correctly formatted, and doesn’t
have any of several common problems.

Second, there is the class loader. This component determines how and
when an applet can add itself to the Java environment, and makes sure that
the applet doesn’t replace anything important that already exists.

And third, there is the security manager. The security manager is like
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the reference monitor discussed in Chapter 8; it is consulted whenever the
Java applet tries to do something questionable: opening a file, opening a
network connection, and so forth. Depending on how the applet was
installed, these operations will either be allowed or denied. (For example,
applets downloaded over the network have more restrictions than applets
loaded onto your computer at purchase.)

The sandbox model is too complex, but it’s the best we’ve got so far.
Later versions of Java had two modifications, one good and one bad. Java
1.1 implemented a code-signing feature similar to ActiveX. Applets
trusted by the users can leave the sandbox and run unrestricted on the
user’s machine. Needless to say, this opens up all the security problems of
the ActiveX model.

Java 2 improved on the sandbox model. Instead of making it all or
nothing—in the sandbox or out of it—Java 2 provides more flexibility in
the security model. Applets only get the privileges they need to do their
jobs. For example, one applet might have access to the computer’s file sys-
tem but not network access. Another might have network access but no
access to the file system. A third applet might only have access to certain
parts of the file system. It’s as if each applet has its own customized sand-
box. This works much better, but has proven too complicated to use.

Plug-ins are the worst because they are automatically trusted. These
are code modules that you can add to your browser to give it additional
functionality: PDF file viewers, media players, and others. These have no
security. When you download them and install them, you’re trusting
them. Period.

WEB SECURITY

Like most information moving across the Internet, HTTP (that’s the pro-
tocol used for Web pages) is unencrypted and unauthenticated. Many
people are afraid to send their credit card numbers across an unencrypted
Web connection. (I don’t think this is a big deal, but some things I
wouldn’t send unencrypted across the Web.) To solve this problem, early
versions of Netscape Navigator included a protocol called SSL. This pro-
tocol, which will eventually be renamed TLS, provides encryption and
authentication of Web connections. SSL is pretty good, and its problems
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all revolve around the certificates and how they are used (see Chapter 15
for an explanation). Basically, some Web sites give you the option of set-
ting up an SSL-secured browsing session. (The Web page has to have the
option; the browser cannot demand to use SSL if the server is not set up
for it.) The browser and the Web server use public-key cryptography to
exchange a key and then symmetric cryptography to encrypt the data
going back and forth. A green key or a yellow padlock appears on the
bottom of the browser, and the user feels much better.

The main problem is that unless the user manually checks the certifi-
cate the server sent, he has no idea whom he went secure with. Let me
repeat this. SSL establishes a secure connection between the browser and
whomever is at the other end of the connection. If the user does not ver-
ify who is at the other end of the connection, he has no idea who he is
speaking securely with. It’s as if two strangers enter a pitch-black sound-
proof room. The two people know that their conversation is secure, that
no one is eavesdropping. But who would tell his secrets to the stranger?
This is only one problem with SSL certificates as they are used.

Also, SSL does nothing to protect the data at the server. In early 2000,
there were many cases of hackers breaking into Web sites and stealing
information: credit card numbers, personal account information, and
more. SSL does nothing to prevent this.

URL Hacking

A bunch of attacks target URLs, some relying on user error and some just
on user ignorance. The first class of attacks consists of ways different
servers steal traffic from each other. You might not think this is a big
deal—why would a Web site that sells plumbing supplies want to steal
traffic from a financial news Web site—but some sites, like porn sites, just
want people to look at their home pages.

One of the ways to try to get traffic is to try to fool the search engines.
Search engines are mostly pretty stupid: ask for sites on plumbing supplies,
and they respond with all the Web pages that have the words “plumbing
supplies” somewhere in the text. (Actually, the newer search engines are
a smidge smarter, but that’s the general idea.) What some sites do is to put
text on the pages to act as bait for the search engines. This text is not
shown on the screen—sometimes it’s hidden by other things (white text
on a white background, for example) and sometimes it’s in the form of
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keywords or meta tags in a nonprintable area of the page—but it is looked
at by the search engines. So, a particular porn site might embed the words
“stock quotes Beanie Babies weather presidential election Grover Cleve-
land cooking gardening head lice,” just to show up on people’s searches.

Some Web sites take this kind of thing to an extreme. Called page-
jacking, they carefully tune their keywords and meta tags (embedded com-
mands in Web pages that tell search engines what the pages are about) so
that to a search engine they look exactly like a popular Web site, and then
show up on the search engine results just above that popular site. Unsus-
pecting users click on this faked site instead of the real site. Mostly, this has
been used by porn sites to get traffic, but you could imagine a page-jack-
ing hack where the faked site also looks like the real site. This could be a
nasty problem.

These attacks are not limited to Web pages and search engines. Press
releases for small companies will sometimes include the name and stock
symbol of a larger company, so that people searching on that larger com-
pany will find the press release. Called ticker symbol smashing, it looks like
this: “SmallCompany.com has announced that its new product has
nothing do with Microsoft (MSFT).” Even eBay auction descriptions
include words to attract their search function: “This cheap sweater (not
Prada, not Armani) is red.”

Back on the Web, similar attacks are possible by registering sites that
are close in name to popular sites. People who do this are known as typo
pirates. For example, “wwwpainewebber.com” (without the period, as
opposed to “www.painewebber.com”) once pointed to a porn site.
People who mistyped the name of the insurance company “Geico” as
“Geigo” ended up at a site owned by Progressive Insurance. (These typo-
pirate attacks probably don’t work anymore; at the time of writing, sev-
eral court cases involve this sort of thing.)

Similar incidents arise more or less by chance. The company eToys
tried suing the artist group etoy, even though etoy.com had its domain
name two years before eToys.com existed. (Although their domain name
was indeed a coincidence, etoy did practice page-jacking on sites like
Playboy.)

Neither of these attacks are what’s known as cyber-squatting. (Aren’t
there cool names for all this Web-related stuff?) This is the practice of
sneaking in and registering domain names that may be valuable to some-
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one else. For example, someone other than me owns applied-cryptogra-
phy.com and applied-cryptography.com, the title of my first book.

Web spoofing is kind of an Internet con game. By manipulating the
URL addresses on a client’s site, an attacker can force a victim to do all its
browsing through a particular site. This site, owned by the attacker, can
eavesdrop on the victim’s entire browsing session. The attacker can keep
records of where the victim visits, what his different account names and
passwords are, anything. The attacker can also subtly modify different
pages—maybe change the “ship to” address for products that the victim
buys.

This attack works even if the victim has an SSL connection. As I
mentioned previously, SSL only guarantees that the user is secure with
someone. In the case of this attack, the user has a secure connection with
the attacker—not very helpful. Several other tricks facilitate the attack;
turning off JavaScript provides some defense. Some Web sites—AskJeeves
is an example—exacerbate the problem by putting other people’s Web
pages in their own frames, and present that information as their own. At
the time of writing, this attack has not been reported in the wild.

Cookies

Cookies are an inventive programming trick built into WWW browsers.
Basically, a cookie is a scrap of data that a Web server gives to a browser.
The browser stores the data on the user’s computer, and returns it to the
server whenever the browser returns to the server. Cookies can do all
sorts of useful and good things. Unfortunately, they can also do all sorts of
useful and bad things. First, I’ll explain how they work; then I’ll talk about
the problems.

HTTP is basically a stateless protocol. This means that the server
doesn’t know who you are from one click to the next. All the server does
is serve up Web pages. A browser asks for a Web page; the server gives it
to it. The server has no idea if this is the same browser as before or a
different browser, nor does it care. This works great for simple, static,
Web sites that just contain informational pages.

Complex Web sites are dynamic. Retail Web sites have shopping
carts, which travel with you as you browse the site. Paid-access informa-
tional sites have usernames and passwords, which travel with you as you
go from page to page. (I would find it annoying to have to type my user-
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name and password in every time I wanted to see another article from the
New York Times Web site.) Cookies are a way to handle this.

By giving the browser a cookie and then asking for it back, the server
can remember who you are. “Oh, yes, you’re user 12345657; this is your
shopping cart.” Cookies allow the browser to add state to the WWW
protocols. You can think of them as a large distributed database, with
pieces stored on millions of browsers throughout userland.

So far, so good. And mostly, cookies are good, if the server placing
the cookie plays by the rules. The server can set how long the cookie lasts
before it expires: a few days seems like a good number. A server can 
set restrictions on who can access the cookie. The server can limit access
to other servers in the same domain; this means that if your cookie 
comes from inchoate-merchant.com, then only inchoate-merchant.com
can access the cookie. 

The problems come when they are abused. Some servers use cookies
to track users from site to site, and some use them to uncover the identity
of the user. Here’s an easy example: Some companies resell advertising
space on popular sites. DoubleClick is a company that does that; Dou-
bleClick places many of the ads you see on commercial sites. If you’re
browsing on sex-site.com, you’re going to see a portion of that window
that comes from DoubleClick.com. DoubleClick.com gives you a
cookie. Later (that day, or maybe another day), when you’re browsing on
CDnow.com, there might be another DoubleClick-placed ad. Dou-
bleClick can request the cookie from your browser and, because the
cookie says that it was created while you were visiting a sex site, send you
targeted ads while you’re browsing CDnow. Because DoubleClick is on
a bunch of commerce sites, its cookies can be used to track you across all
of those sites.

Even worse, if you type your e-mail address in at any of those sites
and they pass that information to DoubleClick, DoubleClick can now
attach an e-mail address to your browsing habits. All it needs is for you to
type that address in once—that’s ordering only one thing—and it has it
forever. (Or, for as long as that cookie has not expired, which can be
years.)

This isn’t a big secret. DoubleClick freely admits they collect data,
and use that data to target ads to particular users. Until 2000, they denied
building an identity database, but finally admitted it when a USA Today
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story outed them. Since then, they backed down on their plan to link
cookies to names and addresses. (This will probably change again by pub-
lication.) The implications for private Web browsing are profound.

There’s more. Sites can send you a cookie in e-mail which they can
use to identify you if you later visit that site with your browser. Here’s
how it works: The site sends you a piece of HTML e-mail. (This implies
you’re using an e-mail program that supports HTML messages; those
include Microsoft’s Outlook and Outlook Express, Netscape Messenger,
and Eudora.) The message contains a unique URL to a graphic, which
the site can use to send you a cookie. If the URL 
is something like www.gotcha.com/track-cgi=schneier@counterpane
.com/pixels.gif, then they have your e-mail address in a cookie. Now,
when you browse the site at some later date, the site can use the cookie
to link the browsing with the e-mail, and hence the e-mail address.
Supposedly this has been used by some sites to track Web surfers.

Cookies cannot do anything. Cookies cannot steal information from
your computer. A cookie is simply some data that the server gives the
browser, and the browser later returns. A cookie cannot grab your pass-
words or files. (ActiveX, Java, and JavaScript are much more dangerous in
this regard.) Cookies cannot steal your credit card numbers, although a
really dumb site may put your credit card number in a cookie.

The lesson here is that cookies are not bad, but they have malevolent
uses. They are a lazy way for Web programmers to manage relationships.
Most browsers provide ways to turn cookies off completely, and you can
buy third-party programs to help you manage them better. But some
sites—Hotmail and Schwab Online, for example—refuse to connect with
browsers that don’t accept cookies.

Web Scripts

The preceding attacks are targeted against the client; this attack victimizes
the server.

The common gateway interface (CGI) is the standard way for a Web
server to pass a user’s request to some back-end application, and send it
back to the user. For example, when you send a search query to a Web
site—at an online retailer, for example—the Web server passes the request
to a database application and then formats the result to display to the user.
Or when a user fills out a Web page form, this information is passed to an

172 C H A P T E R  T E N

453803_Ch10.qxd:453803_Ch10.qxd  4/12/13  11:04 AM  Page 172



application for processing. Sometimes CGI commands are those weird
commands and numbers at the end of a URL; other times they’re invisi-
ble to the user. It’s part of HTTP; everyone uses it. CGI scripts are the lit-
tle computer programs on the Web server that deal with CGI data. It’s
how the Web page forms get processed, for example.

The problem with CGI scripts is that each one is potentially a secu-
rity hole. And over the past few years, CGI hacking has resulted in quite
a few public security breaches. By manipulating CGI scripts, it is possible
to do all sorts of unanticipated things. Examples (these are all real) include
downloading files from the Web server, viewing the entire contents of
databases, downloading customer lists and their personal records, stealing
money from customers at an online bank, trading someone else’s stock
portfolio, and viewing log files from a Web server showing customer
transactions. And bizarrely enough, you can query Internet search engines
with different vulnerability signatures and get a list of Web sites vulnera-
ble to certain attacks.

Other similar attacks work by putting executable code (actually, Perl
scripts, JavaScript code, or shell commands) in text fields. These can cause
the Web server to modify its own homepage, display the SSL private key,
or do all sorts of other interesting things from the previous paragraph.
These techniques can also be used to exploit buffer overflows and other
programming errors (see Chapter 13) to crash the Web server or, better
yet, to take it over.

One example: A 1998 attack against Hotmail allowed people to see
other people’s e-mail accounts. eBay was also attacked; the attackers put a
JavaScript Trojan horse in the description field of a product. This descrip-
tion field was viewed by anyone looking at the product up for auction,
and resulted in the attackers collecting login information for thousands of
accounts.

One CGI vulnerability allowed attackers to download secret personal
information from various sites. Other popular CGI scripts have been used
to break into the computer the Web server is running on. Two from late
1999: the Poison Null attack that allowed hackers to see and modify files
on Web servers, and the Upload Bombing attack that filled Web servers
with useless files, crashing them. These, of course, were quickly turned
into attack scripts so that anyone could use them.

Server Side Includes (SSIs) are directives to the Web server embed-
ded in the HTML pages. Right before sending a page, the Web server
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executes all SSIs on a page and puts the results back in the page. These
can be attacked just as profitably as everything else can.

Other attacks target vulnerabilities in third-party software: the specific
Web servers and applications running on them. This includes database
applications, shopping cart software, transaction servers, and others. These
attacks don’t depend on how the site is using the application, but on the
application itself (the Oracle database, for example). Attackers have been
able to download source code from the Web server, crash the server, get
root login privileges on the server, run an arbitrary program on the server,
and so forth. Unlike problems with the CGI scripts, fixing these vulnera-
bilities is not under the site’s control; it’s the job of the third-party soft-
ware vendors.

There are many similar attacks. By making changes in the hidden
fields on some Web pages (you can view these fields by viewing a page’s
source), it is possible to hack CGI scripts and force some shopping cart
software to change the prices of items sold. (This is “name your own
price” at its best.) Some attacks target cookies: cookie poisoning. Attackers
log in to a server, and then manually change their authentication cookie
to that of another user. Sometimes these cookies are encrypted, but often
not very well.

Some of these attacks are called cross-site scripting. It’s a lousy name: It’s
not just about scripting, and there’s nothing cross-site about it. The name
is a historical accident that stuck. The gist of the problem is that the Web
hides multitudes of security subtleties; when you mix CGI scripts,
JavaScript, frames, cookies, and SSL, bad things can happen. It is an issue
that is truly cross-platform and is the result of unforeseen and unexpected
interactions between various components of a set of interconnected com-
plex systems. 

These attacks are prevalent against CGI scripts for several reasons.
Most CGI scripts are hastily written, and they are commonly shared
among users. You get a pile of scripts with your hosting software, or from
your ISP. Often the people writing these scripts have no other experience
with programming. They don’t appreciate the potential security problems
with scripts, or with the ways the scripts can interact with other parts of
the Web server software. And a Web server can’t control how a CGI
script is run. Sometimes it is created for one purpose, but breaks security
when used for another.
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CGI attacks are powerful, and the vulnerabilities are common. Sure it
is possible to write secure CGI scripts, but hardly anyone does. One com-
pany that audits Web sites for application-level bugs like this has never
found a Web site they could not hack. That’s 100 percent vulnerabilities.

Web Privacy

Nominally, Web browsing is anonymous. In reality, there are a lot of
ways to learn the identity of the user. I’ve already talked about cookies
and how they can track users from site to site, and even attach an e-mail
address or identity to a cookie (if the user enters the information in a form
or responds to an e-mail).

Additionally, most Web servers log every access. This log usually
includes the IP address of the user, the time of the Web request, the Web
page requested, and the user’s name (if known by some login protocol).
Most Web sites just throw these logs away, though.

Of course, the IP address of the user is not the same as the name of
the user, but many Web browsers come from single-user machines
directly connected to the Web. People dialing in are more anonymous
than users on cable modems or DSL connections, but often just knowing
the ISP is enough. For example, in 1999 someone sent a bomb threat
from a Hotmail account. E-mail from Hotmail includes the IP address of
the Web browser that sent the mail. The IP address was owned by Amer-
ica Online, and the police were able to correlate Hotmail’s records with
America Online’s records, and trace the e-mail to a particular AOL user.

That is an example of extreme measures to breach privacy, but most
of it can be done automatically. And most commercial Web sites do little
to protect users’ privacy. In fact, many of them make money on an adver-
tising model. Other sites deliberately invade users’ privacy to sell targeted
advertising: many of the digital wallets or shopping assistants, the
Web-based mailing list software companies, and others. Many companies
see targeted advertising as the way to make money on the Internet.
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Network Security

Network security goes hand in hand with computer security,
and these days it’s hard to separate the two. Everything, from
electronic hotel door locks to cellular telephones to desktop

computers, is attached to networks. As difficult as it is to build a secure
stand-alone computer, it is much more difficult to build a computer that
is secure when attached to a network. And networked computers are
even more pregnable; instead of an attacker needing to be in front of the
computer he is attacking, he can be halfway across the planet and attack
the computer using the network. A networked world may be more con-
venient, but it is also much more insecure.

These days it’s pretty much impossible to talk about computer secu-
rity without talking about network security. Even something as special-
ized as the credit card clearing system works using computer networks. So
do cellular telephones and burglar alarm systems. Slot machines in casinos
are networked, as are some vending machines. The computers in your
kitchen appliances will soon be networked, as will the ones in your car.
All computers will eventually be networked.

Lots of different types of networks are out there, but I’m going to
spend the most time talking about the Internet protocol: TCP/IP. Net-
working protocols seem to be converging on the Internet, so it makes the
most sense to talk about the Internet. This is not to imply that the Inter-
net protocols are more insecure than others—although certainly they
were never designed with security in mind—only that there are more
good examples. Later in the book, I talk about the fundamental dilemma
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of choosing a common protocol that is widely attacked by hackers, and
hence whose security is constantly improving, or one that is obscure and
little-known, and is possibly even less secure. Keep that question in mind
while reading this chapter.

HOW NETWORKS WORK

Computer networks are bunches of computers connected to each other.
That is, either physical wires run between computers—wires in an office
LAN, dedicated phone lines (possibly ISDN or DSL), dial-up connec-
tions, fiber optic, or whatever—or there is an electromagnetic connec-
tion: radio links, microwaves, and so forth.

Simply, when one computer wants to talk to another, it creates a
message, called a packet, with the destination computer’s name on it and
sends it to the computer over this network. This is fundamentally unlike
telephone conversations. When Alice wants to call Bob, she tells the
phone company’s computer network Bob’s network name (commonly
known as his telephone number) and the network hooks up different
communications circuits—copper wire, satellite, cellular, fiber, what-
ever—to make an unbroken connection. Alice and Bob talk through this
circuit until one of them hangs up. Then, the telephone network disas-
sembles this connection and lets other people use the same pieces for
other phone calls. The next time Alice calls Bob, they will be connected
through a completely different set of links. (Well, mostly different; the
line between the telephones and the first switches will be the same.)

Computers don’t use circuits to talk to each other. They don’t have
conversations like people do—they send short data packets back and
forth. These packets are broken-up pieces of anything: e-mail messages,
GIFs of naked ladies, streaming audio or video, Internet telephone calls.
Computers divide large files into packets for easier transmission. (Think of
a ten-page letter being divided up and mailed in ten different envelopes.
At the recipient’s end, someone opens all the envelopes and reassembles
the letter in its proper order. The packets don’t have to arrive in order,
and they don’t have to travel along the same route to their destination.)

These packets are sent through the network by routers. There are
bunches of protocols—Ethernet, TCP, whatever—but they all work
basically (for large values of “basically”) the same way. Routers look at the
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addresses on packets, and then send them toward their destination. They
may not know where the destination is, but they know something about
where it should go. It’s sort of like the postal system. A letter carrier visits
your house, takes all of your outgoing mail, and brings it to the local post
office. The post office might not know where 173 Pitterpat Lane,
Fingerbone, ID, is, but it knows that it should put the envelope on the
truck to the airport. The airport postal workers don’t know either, but
they know to put the letter on a plane to Chicago. The Chicago post
office knows to put the letter on a plane to Boise. The Boise post office
knows to put the letter on a train to Fingerbone. And finally, the local
Fingerbone post office knows where the address is, and a letter carrier
delivers it.

IP SECURITY

It’s not hard to see that any network built on this model is terribly inse-
cure. Consider the Internet. As those packets pass from router to router,
their data, sometimes called their payload, is open to anyone who wants
to read it. The routers are only supposed to look at the destination address
in the packet header, but there’s nothing to stop them from peeking at the
contents. Most IP packets in the world go over just a handful of high-
speed connections between lightning-fast routers, known as the Internet
backbone. All packets between distant points, the United States and
Japan, for example, go through only a few routers.

It’s hard for an individual hacker to monitor the entire Internet, but
it’s easy for him to monitor a small piece of it. All he has to do is to gain
access to some computer on the network. Then he can watch all the
packets going through, looking for interesting ones. If he gets access to a
machine close to Company A, he will probably be able to monitor all the
traffic in and out of that company. (Of course, by “close to” I mean “near
on the network,” and not necessarily physically near.) If he gets a machine
nowhere near Company A, he might see little (or none) of that com-
pany’s traffic. If he’s a quintessential hacker and doesn’t care what com-
pany he eavesdrops on, then it doesn’t really matter.

Packets with passwords in them are particularly interesting. Password
sniffing is easy, and a common Internet attack. An attacker installs a packet
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sniffer designed to steal usernames and passwords. All the program does is
collect the first two dozen (or so) characters of every session that requires
a login and save them for the attacker. These characters almost certainly
contain the username and password (usually the unencrypted password).
Then the attacker runs a password cracker on the encrypted passwords,
and uses those passwords to break into other computers. It’s difficult to
spot because password sniffers are small and inconspicuous. And it can
snowball. Once you’ve broken into one machine, you can install a pass-
word sniffer on it and get even more passwords. Maybe you can use those
passwords to break into other machines. And so on.

Not only is eavesdropping possible, but active attacks are also possible
. . . easier, actually. In most communications systems, it is far easier to pas-
sively eavesdrop on a network than it is to actively insert and delete mes-
sages. On the Internet, it is reversed. It’s difficult to eavesdrop. However,
it’s easy to send messages; any self-respecting hacker can do that. Because
communications are packet-based, and they travel along many different
paths and are reassembled at the destination, it’s easy to slip another packet
in with the rest of them. Many, many attacks are based on blindly insert-
ing packets into existing communications channels.

It’s called IP spoofing, and it’s easy. Packets have source and destination
information, but an attacker can modify them at will. An attacker can cre-
ate packets that seem to come from one site, but don’t really. Computers
on the Internet assume that the “from” and “to” information is accurate,
so if a computer sees a packet from a computer it trusts, it assumes that the
packet is trusted. An attacker can take advantage of this trusting relation-
ship to break into a machine: He sends a packet purporting to come from
a trusted computer in the hope that the target computer will trust the
packet.

There are routing attacks, where an attacker tells two points on the
Internet that the shortest route between them goes through his comput-
ers. This makes eavesdropping on a particular node easier. This section
could go on and on; whole books have been written about attacks against
the Internet.

The solutions to these problems are obvious in theory, but harder in
practice. If you encrypt packets, no one can read them in transit. If you
authenticate packets, no one can insert packets that pretend to come from
somewhere else, and deleted packets will be noticed and reacted to.
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In fact, several solutions encrypt packets on the Internet. Programs
like SSH encrypt and authenticate shell connections from a user on one
machine to a computer across the network. Protocols like SSL can
encrypt and authenticate Web traffic across the Internet. Protocols like
IPsec promise to be able to encrypt and authenticate everything.

DNS SECURITY

The Domain Name Service (DNS) is basically a large distributed database.
Most computers on the Internet—nodes, routers, and hosts—have a
domain name like “brokenmouse.com” or “anon.penet.fi”. These names
are designed to be remembered by people, and are used to build things
like URLs and e-mail addresses. Computers don’t understand domain
names; they understand IP addresses like 208.25.68.64. IP addresses are
then used to route packets around the network.

Among other things, the DNS converts domain names to IP
addresses. When a computer is handed a domain name, it queries a DNS
server to translate that domain name into an IP address. Then it knows
where to send the packet.

The problem with this system is that there’s no security in the DNS
system. So when a computer sends a query to a DNS server and gets a
reply, it assumes that the reply is accurate and that the DNS server is hon-
est. In fact, the DNS server does not have to be honest; it could have been
hacked. And the reply that the computer gets from the DNS server might
not have even come from the DNS server; it could have been a faked
reply from somewhere else. If an attacker makes changes in the DNS
tables (the actual data that translates domains to IP addresses and vice
versa), computers will implicitly trust the modified tables.

It’s not hard to imagine the kinds of attacks that could result. An
attacker can convince a computer that he is coming from a trusted com-
puter (change the DNS tables to make it look like the attacker’s computer
is a trusted IP address). An attacker can hijack a network connection
(change the DNS tables so that someone wanting to connect to legiti-
mate.company.com actually makes a connection with evil.hacker.com).
An attacker can do all sorts of things. And DNS servers have a viral update
procedure; if one DNS server records a change, it tells the other DNS
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servers and they believe it. So if an attacker can make a change at a few
certain points, that change can propagate across the Internet.

In one attack in 1999, someone hacked the DNS system so that 
traffic to Network Solutions—they’re one of the companies that register
domain names—was redirected to other domain-name registration com-
panies. A similar attack, from 1997, was a publicity attack. This was before
domain registration was opened up for competition. Eugene Kashpureff,
owner of the alternative AlterNIC, redirected Network Solutions traffic
to his site as a protest. He was arrested and convicted, and received two
years’ probation.

In 2000, RSA Security’s homepage was hijacked by spoofing the
DNS tables. This is not the same as breaking into the Web site and defac-
ing the page. The attacker created a fake home page, and then redirected
legitimate traffic to that faked page by manipulating the DNS records.
The hacker did this not by cracking RSA’s DNS server, but the DNS
server upstream in the network. Clever, and very easy. DNS record
spoofing is a trivial way to spoof a real Web site crack. And to make mat-
ters worse for the hijacked site, the hijacking misleads people into
thinking intruders cracked the Web site at Company A, when intruders
actually cracked the DNS server at Company B.

These problems are serious, and cannot easily be fixed. Cryptographic
authentication will eventually solve this problem, because no longer will
computers implicitly trust messages that claim to come from a DNS
server. Currently people are working on a secure version of the DNS
system that will deal with these issues, but it’s going to be a long wait.

DENIAL-OF-SERVICE ATTACKS

In September 1996, an unknown hacker or group of hackers attacked the
computers of Public Access Networks Corporation (a.k.a. Panix), a New
York ISP. What they did was to send hello messages (SYN packets) to the
Panix computers. What’s supposed to happen is for a remote computer to
send Panix this hello message, for Panix to respond, and then for the
remote computer to continue the conversation. What the attackers did
was to manipulate the return address of the remote computers, so Panix
ended up trying to synchronize with computers that essentially did not
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exist. The Panix computers waited 75 seconds after responding for the
remote computer to acknowledge the response before abandoning the
attempt. The hackers flooded Panix with as many as 50 of these wake-up
messages per second. This was too much for the Panix computers to han-
dle, and they caused the computers to crash. This is called SYN flooding.

This was the first publicized example of a denial-of-service attack
against an Internet host. Since then, there have been many others. Denial
of service is a particularly noxious attack against communication systems,
because communications systems are designed for communications. On
the Net, flooding a computer with requests to communicate is a good
way to bring it crashing down. And often the technology doesn’t exist to
trace who originated the attack.

Here’s a denial-of-service attack against someone’s paper mail: An
attacker signs the victim up for every mail-order catalog, credit card solic-
itation, and everything else he can think of. The victim gets so much mail,
maybe 200 pieces a day, that the real mail gets lost among the junk mail.
Theoretically, this attack will work. The only thing preventing this attack
is the limit of the amount of junk mail in the world. On the Internet,
though, the mail system always delivers the mail. In 1995, the Internet
Liberation Front (it’s just a made up name; they’ve never been heard from
since) sent a flood of e-mail messages to author Joshua Quittner and Wired
magazine. The flood was so great the computers just crashed.

This is known as mail bombing, and is an effective attack. Send enough
mail to someone and that person’s system will fill until the computer
crashes. The easiest way to do this is to subscribe the victim to thousands
of mailing lists. Victims’ disks might run out of space, their network con-
nections might go down, or their computers might crash. And if you dis-
guise the origin of the e-mail, no one will catch you.

There are other denial-of-service attacks. Some target computers, like
the preceding mail-server attack. Some target routers. Some target Web
servers. The basic idea is the same: flood the target with so much stuff that
it shuts down. WinNuke can crash older Windows 95 computers; some-
one, in a single attack, brought down 6,000 Windows 95 computers on
the Internet in April 1999. Denial-of-service attacks against Web sites are
common, and remote-cache services like Akamai will make them easier
to mount and harder to detect.
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Sometimes it can be hard to tell a denial-of-service attack from abnor-
mal operations. Think about highways around a city. During normal
hours, they run well. During the rush hours, they clog up. During a
demonstration, they don’t run at all. In 1999, demonstrations against the
World Trade Organization tied up traffic in downtown Seattle; that was
unambiguously a denial-of-service attack. Earlier that year, when Ameri-
can Airlines pilots started calling in sick more often than usual and finding
more maintenance problems with the planes than usual, that was less
obviously a denial-of-service attack. After the television special Who
Wants to Marry a Multimillionaire aired in 2000, their Web site crashed due
to the volume of people logging on and trying to sign up to be on the
show. Is that a denial-of-service attack? 

Some researchers have proposed defenses that force the client to per-
form an expensive calculation to make a connection. The idea is that if
the client has to spend computation time to make a connection, then it
can’t flood the target with as many connections. This is a good idea, but
won’t work against the distributed denial-of-service attacks we’ll talk
about in the next section.

I’ve seen suggestions that a lack of authentication on the Internet is to
blame. This makes no sense. Denial-of-service attacks do harm just by the
attempt to deliver packets; whether or not the packets would authenticate
properly is completely irrelevant. Mandatory authentication would do
nothing to prevent these attacks, or to track down the attackers. It would
help if the authentication could be checked at every point in the network.
This would be a change in the way the Internet works, and would reduce
network bandwidth considerably: Instead of merely routing packets, all
switches and routers would have to authenticate them.

Large-scale filtering at the ISPs can help; if the network can block the
denial-of-service attack, it will never reach the target. Here, authentica-
tion can do some good. But ISP filtering requires a lot of effort and will
reduce network bandwidth noticeably. Similarly, widespread modifica-
tions to how the Internet’s switches and routers work could alleviate this
problem; they could refuse to forward packets that are apparently forged.
Again, it’s a major change.

In the end, though, denial-of-service attacks that simply flood the tar-
get with traffic can’t be dealt with. Some particular attacks combine
flooding with exploiting a specific vulnerability; these can be prevented
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by closing the vulnerability. But if the attacker has a bigger fire hose than
you do, he can flood your connection.

Denial-of-service attacks are not intrusions. They do not affect the
data on the Web sites. These attacks cannot steal credit card numbers or
proprietary information. They cannot transfer money out of bank
accounts or trade stocks in someone else’s name. Attackers cannot directly
profit from these attacks. (They can sell the stock short and then attack the
company.)

This is not to say that denial-of-service attacks are not real, or not
important. For most big corporations, the biggest risk of a security breach
is loss of income or loss of reputation, either of which is achieved
elegantly by a conspicuous denial-of-service attack. And for companies
with more mission- or life-critical data online, a denial-of-service attack
can literally put a person’s life at risk.

DISTRIBUTED DENIAL-OF-SERVICE ATTACKS

Distributed denial-of-service attacks are just a virulent strain of denial-of-
service attacks. The first automatic tools for these attacks were released in
1999—the University of Minnesota was the first public target in August
1999—but the spate of high-profile attacks in early 2000 put them on the
front pages of newspapers everywhere.

These attacks are the same as traditional denial-of-service attacks, only
this time there is no single source of the attack. The attacker first breaks
into hundreds or thousands of insecure computers, called zombies, on the
Internet and installs an attack program. Then he coordinates them all to
attack the target at the same time. The target is attacked from many places
at once; its traditional defenses just don’t work, and it falls over dead.

It’s much like the pizza delivery attack: Alice doesn’t like Bob, so she
calls a hundred pizza delivery parlors and, from each one, has a pizza
delivered to Bob’s house at 11:00 P.M. At 11, Bob’s front porch is filled
with 100 pizza deliverers all demanding their money. It looks to Bob like
the pizza Mafia is out to get him, but the pizza parlors are victims, too.
The real attacker is nowhere to be seen.

These attacks are incredibly difficult, if not impossible, to defend
against. In a traditional denial-of-service attack, the victim computer
might be able to figure out where the attack is coming from and shut
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down those connections. But in a distributed attack, there is no single
source. The computer should shut down all connections except for the
ones it knows to be trusted, but that doesn’t work for a public Internet
site.

There have been several academic conferences on distributed denial-
of-service attacks in recent years, and the consensus is that no general
defense exists. Continuously monitoring your network connections
helps, as does the ability to switch to backup servers and routers. Some-
times the particular bugs exploited in the attacks can be patched, but
many cannot. The Internet was not designed to withstand this class of
attacks.

These attacks are likely to get worse. Current distributed denial-of-
service tools require the attacker to break into a large number of
machines, install the zombie programs, keep those zombie programs from
being discovered, and coordinate the attack . . . all without getting
caught. Neoteric tools are likely to use a virus, worm, or Trojan horse
program to propagate the zombie tools, and then to automatically launch
the attack with some code word from a public forum.

There has already been one denial-of-service attack that worked this
way. In 1999, someone posted a fake Internet Explorer update from
Microsoft. It was really a Trojan horse that caused the infected computer
to send packets to hosts belonging to the Bulgarian Telecommunications
Company, causing denial-of-service problems for them for a long time.

Tracing the attacker is also incredibly difficult. Returning to the pizza
delivery example, the only thing the victim could do is to ask the pizza
parlors to help him catch the attacker. If everyone coordinated their
phone logs, maybe they could figure out who ordered all the pizzas in the
first place. Something similar is possible on the Internet, but it is unlikely
that the intermediate sites kept good logs. Additionally, it is easy to dis-
guise your location on the Internet. And if the attacker is in some Eastern
European country with minimal computer crime laws, a bribable police,
and no extradition treaties, there’s nothing you can do anyway. 

The real problem is the hundreds of thousands, possibly millions, of
nescient computer users who are vulnerable to attack. They’re using DSL
or cable modems, they’re always on the Internet with static IP addresses,
and they can be taken over and used as launching pads for these (and
other) attacks. The media is focusing on the mega e-corporations that are
under attack, but the real story is the individual systems.

Network Security 185

453803_Ch11.qxd:453803_Ch11.qxd  4/12/13  1:03 PM  Page 185



Similarly, the real solutions are of the “civic hygiene” variety. Just as
malaria was defeated in Washington, D.C., by draining all the swamps,
the only real way to prevent these attacks is to protect those millions of
individual computers on the Internet. Unfortunately, we are building
swampland at an incredible rate, and securing everything is impracticable.
Even if personal firewalls had a 99 percent market penetration, and even
if they were all installed and operated perfectly, there would still be
enough insecure computers on the Internet to use for these attacks.

THE FUTURE OF NETWORK SECURITY

Back in the 1960s, people figured out that you can whistle, click, belch,
or whatever into a telephone and make the phone switches do things.
This was the era of phone phreaking: black boxes, blue boxes, Captain
Crunch whistles. The phone company did their best to defend against
these attacks—they blocked certain tones, traced attackers, and started
keeping their design specifications secret—but the basic problem was that
the phone system was built with in-band signaling: The control signal and
the data signal traveled along the same wires. This meant that the switches
within the phone system were listening to the voice channel for control
codes, and this is what the phone phreakers exploited.

The solution was to completely redesign the phone system. Modern
phone switching protocols—for example, SS7, or Signaling System 7—
were designed with out-of-band signaling. The voice path and data path
were separated, and traveled along separate paths along the network.
Now it doesn’t matter how hard you whistle into the phone system: The
switch isn’t listening. Entire classes of attacks simply don’t work, because
attackers at the end points don’t have access to the switches in the middle.

(This isn’t entirely true. Red boxes still work against payphones.
These boxes mimic the tones that record the coins deposited in the
phones. Note that this is the remaining in-band signaling portion in the
phone system: The tones are sent from the payphones to the switches 
in band.)

In the long term, out-of-band signaling is the best way to deal with
many of the vulnerabilities of the Internet. It’s not a panacea—insecure
nodes will still cause problems—but it will go a long way.
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Unfortunately, there are several problems. The Internet is designed as
an egalitarian network: Anyone can get on the Internet simply by
connecting with another Internet computer. An out-of-band system will
have to be centrally managed, like the phone system. There will be end
points and there will be internal routers, and they will be different. It will
be nothing like the Internet is today.

At this point there are no plans to redesign the Internet in this way,
and any such undertaking might be just too complicated to even consider.
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Network Defenses

FIREWALLS

The first firewalls were on trains. Coal-powered trains had a large furnace
in the engine room, along with a pile of coal. The engineer would shovel
coal into the engine. This process created coal dust, which was highly
flammable. Occasionally the coal dust would catch fire, causing an engine
fire that sometimes spread into the passenger cars. Since dead passengers
reduced revenue, train engines were built with iron walls right behind the
engine compartment. This stopped fires from spreading into the passen-
ger cars, but didn’t protect the engineer between the coal pile and the
furnace. (There’s a lesson for sysadmins in this somewhere.)

In the digital world, a firewall is a machine that protects a company’s
internal network from the malicious hackers, ravenous criminals, and
desultory evildoers who lurk throughout the Internet. It keeps intruders
out.

The definitions don’t parallel well, and that’s because the term “fire-
wall” has changed meaning since it was first used in computer networks.
The original networks were buggy and would inveterately crash. Fire-
walls were installed to prevent bad networking software in one part of the
network from taking the rest of the network down with it. They were,
like physical firewalls, machines designed to contain problems within a
small area of a network.
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Today’s firewalls act as boundaries between private networks and the
vast public network. They keep intruders out, and only allow authorized
users in. They might be more accurately called “castle walls,” but the term
“firewall” has already become established.

I’m not going to talk about the details of firewalls and how they work;
shelvesful of books do that. Instead, I am going to talk about the general
philosophies of firewalls, how good they are at countering the threats, and
what the future of firewalls is likely to be.

First point: Recognize that a firewall is a boundary, a perimeter
defense. Like a castle wall, it serves to repel invaders. Also like a castle
wall, it is useless against an armed insurrection inside the castle. Bill
Cheswick describes a firewall as a “hard crunchy shell around a soft chewy
center.” Once the attacker is inside the firewall, the firewall is useless. And
since about 70 percent of all computer attacks come from the inside
(according to a Computer Security Institute study in 1998), this is defi-
nitely something worth thinking about. Of course, it is possible to install
internal firewalls to further protect sections of the network. Think of cas-
tles with outer baileys and inner baileys.

Second point: Until the invention of cannon, a good castle was pretty
much invulnerable; there was no way to scale, breach, or tunnel under the
walls. However, a patient general could always besiege a castle. By deny-
ing the inhabitants food, water, and anyone interesting to talk to, the gen-
eral hoped that the defenders would give up. Sometimes this worked
quickly, but some sieges lasted years. If the castle had a well inside, it
helped. If the castle had a secret tunnel to the outside, it helped a lot. If
the inhabitants of the castle caught the plague or something, it didn’t help.
(Poor sanitation defeated many a valiant defender.) Similarly, it is possible
to starve a network by severing its connections to the outside.

Third point: A castle needs to be secure on all sides. It makes no sense
to put up a freestanding wall; attackers will go around it. Remember the
Maginot Line? The French built it in the 1930s to prevent German inva-
sion. Against the trench-warfare fighting of World War I, it was thought
to be impregnable. But the technology of tanks improved significantly in
the ensuing years, and the Germans invented blitzkrieg as a style of war-
fare. They simply went around the Maginot Line, invading France
through Belgium. And by the same token, a firewall has to act as a barrier
between the internal network and all external access points. Otherwise, an
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attacker will just go around the firewall and attack some undefended
connection.

And fourth point: Castles need gates. It’s futile and absurd to build a
castle that can’t be penetrated by anyone under any circumstances: Even
kings need to go outside and perambulate sometimes. Merchants, mes-
sengers, even common townsfolk need to be able to go in and out regu-
larly. Hence, castles had gatekeepers whose job it was to admit or turn
away people who wanted to enter the castle.

The Great Wall of China didn’t impress Genghis Khan. “The
strength of a wall depends on the courage of those who defend it,” he
supposedly said. Letting the good stuff in while keeping the bad stuff out
is the central problem that any computer firewall needs to solve. It has to
act as gatekeeper. It has to figure out which bits are harmful and deny
them entry. It has to do this without unreasonably delaying traffic. (And
to your average Internet user, an unreasonable delay is defined as one that
is noticeable.) It has to do this without irritating legitimate users. (Your
average Internet user will not tolerate not being able to do something, like
downloading a new Internet game from Suspicious Software™ or con-
necting remotely and reading e-mail from an untrusted machine.) But if
the firewall’s gatekeeper makes a mistake, some hacker can sneak in and
own the network.

There are three basic ways to defeat a firewall. The first I talked about:
go around it. A large network has lots of connections. Large photocopiers
often come with Internet connections, and some network equipment
comes with dial-up maintenance ports. Companies often hook their net-
works to the networks of suppliers, customers, and so forth; sometimes
those networks are much less protected. Employees will hook personal
modems up to their computers so they can work at home. There’s a story
of a married couple in Silicon Valley who occasionally worked from
home. He was checking his e-mail while his wife was doing some pro-
gramming, both of them on their small home network. Suddenly, his
company’s computers started showing up on her company’s network and
vice versa.

The second, and more complicated attack, is to sneak something
through the firewall. To do this, you have to fool the firewall into think-
ing you are good, honorable, and authorized. Depending on how good
the firewall is and how well it has been installed, this is either easy,
difficult, or next to impossible. 
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The basic idea is to create a piece of code that the firewall lets inside
the network. The code is designed to exploit some kind of bug in the
computer system that will open a connection between the hacker outside
the firewall and the computer inside the firewall. If it all works, the hacker
gets inside.

The third attack is to take over the firewall. This is akin to bribing or
blackmailing the gatekeeper. Since he is now in your employ, he’ll do
what you want. Again, how easy this is depends on the firewall. Some
firewalls run buggy software, which helps. Some run on top of insecure
operating systems, which helps a lot.

Anyway, firewall design today is all about designing smart gatekeep-
ers. At the simplest level, a firewall is a router with a consistent rule set that
it tests network traffic against, and then passes traffic that meets the rules
and drops all other traffic. Examples might be to restrict traffic based on
source or destination address or protocol type.

This was relatively easy in early networks, but today’s firewalls have
to deal with multimedia traffic, downloadable programs, Java applets, and
all sorts of weird things. A firewall has to make decisions with only partial
information: It might have to decide whether or not to let a packet
through before seeing all the packets in a transmission.

Early firewalls were something called packet filters. The firewall would
look at each packet and either admit or drop it, depending on a bunch of
rules about the packet header. The first packet filters were pretty dumb,
and let a whole lot of things in that were better left out. Eventually they
got smarter. Today they are stateful: Instead of looking at each packet indi-
vidually, the firewall keeps information about the state of the network and
what types of packets are expected. Still, firewalls only have so long a
memory, and slow attacks can often get through.

Some good packet-filtering firewalls are out there, but they still dis-
play a number of weaknesses. First and foremost, they are a pain to con-
figure properly, and improper configuration often leads to security
vulnerabilities. Lots of things are allowed in by default that should be
blocked. And the firewall doesn’t modify packets, so if a packet gets
through, it can do whatever it wants. And there are a bunch of more eso-
teric attacks against packet filters; just imagine fooling a guard who tries to
stop the flow of dangerous letters into a castle by looking at the envelopes.
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Another type of firewall is a proxy, or application gateway. Think of two
guards, one inside the walls and the other outside the walls. The guard
outside knows nothing about the insides of the castle. The guard inside
knows nothing about the world outside the castle. But the guards pass
packets to each other. Proxy firewalls try to implement this “two guard”
metaphor. Some proxy firewalls just act as go-betweens: Someone inside
the firewall wants a document, the client software asks the firewall (inside
guard) for it, and the firewall (outside guard) connects to the Web site and
gets it. Other proxy firewalls understand the applications and what kinds
of protocols they use. Still other proxy firewalls are store-and-forward
proxies; they store data chunks before passing them on, and can filter data
based on a bunch of rules. And the better proxy firewalls are becoming
aware of their environment, and are therefore able to make smarter deci-
sions about packets.

The weaknesses of proxy firewalls are mostly too subtle to talk about
here. They also have a longer latency, and lower throughput, than packet
filters. (Actually, since firewalls have to examine every packet, they all
slow down fast network connections.) Proxy firewalls have to be config-
ured securely to work correctly, just as packet filters do, and proxies are
much harder to configure and maintain than packet filters; the tendency
is to just stop bothering with them.

About 100 different firewall products are on the market, and more
show up every month. Most are IP only, and don’t secure other proto-
cols. Most of them don’t implement just one approach, but are hybrids to
some degree. Advances in firewall technology are happening all the time,
and it’s hard to compare and evaluate them. Some organizations give fire-
walls seals of approval, but most hackers regard this as laughable; firewalls
that pass are secure against only the most basic attacks. (Still, many fail test-
ing the first time through.) In general, the best firewall is one that has been
configured correctly, and has all the current patches and updates.

I’ve heard firewalls referred to as “a router with an attitude.” That’s a
true statement. Some of the best firewall professionals I know don’t even
bother with firewalls; they believe that a well-configured router with
strong security at the end points is more secure than a firewall. They may
have a point. Certainly firewalls have given the corporate world a false
sense of security on the Internet.

Firewalls are an important part of any company’s network security,
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but they can’t do it all. Their security model reflects an earlier time in net-
work security, when organizations needed to keep their assets inside and
the bad guys outside. Today, with organizations needing to open their
networks up to customers, partners, sales prospects—the public—they
seem anachronistic. Important, yes. A panacea, no.

DEMILITARIZED ZONES

A DMZ is a demilitarized zone. It’s the no-man’s-land between North
Korea and South Korea that neither side is supposed to be in.

In firewall talk, a DMZ is a place on your network where you put
your public services. In Chapter 10 I talked about all the attacks against
Web servers. You don’t want to put the Web servers inside the firewall,
because they are vulnerable to attack. You can’t put the Web servers out-
side the firewall, because then they’re vulnerable to even more attacks.
The solution is to put them in a DMZ.

This idea is a good one, and one with a lot of historical precedent.
Castles were often built with inner walls and outer walls. Inside the outer
walls were the stables, the servants’ quarters: things that you could afford
to lose in an assault. Inside the inner walls were the noble residences: the
important stuff. In the event of attack, soldiers would try to defend the
outer walls but would retreat to the inner walls if their defense failed.

To build a DMZ, you need two logical firewalls. One firewall pro-
tects the DMZ from the outside world. Another firewall, configured with
more restrictions, protects the internal network from the DMZ. The
result is a semipublic part of the network and a more private part of the
network. This kind of idea works.

VIRTUAL PRIVATE NETWORKS

A virtual private network (VPN) is simply a secure connection over a public
network. In the old days, if Alice and Bob wanted to communicate, they
had to lease an expensive private line and run their own private network.
Today, the cheaper solution is for Alice and Bob to use the public net-
work. But the Internet is insecure; for Alice and Bob to communicate
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securely on the Internet, they need to secure that connection. They need
to create a virtual private network on top of the physical public network.
A VPN does that.

VPNs have two main uses. The first is to connect disjoint pieces of
the same network. A corporation might have two offices on different
sides of the planet. Each office has its own physical network, and the two
networks are connected by a VPN running over the Internet. A VPN is
more private than a “private line” provided by the telephone company.

The second use is to connect mobile users: users working from home
and users working out of hotel rooms. The old way to bring these users
into the large network was to have them dial in directly, often long
distance. This is expensive, and forces the company to maintain a large
bank of modems. The modern way is to have the users dial in locally to
an ISP, and then connect from the ISP to the company over the Internet.
To secure this connection, a VPN runs from the user’s computer to the
network.

Different VPNs provide security through different cryptographic pro-
tocols. The most common protocol is IPsec, although you’ll still find
protocols that implement PPTP and L2TP. Some VPNs don’t have any
cryptography at all.

One way to think of a VPN is as a hole in the firewall. Someone with
a VPN is allowed to tunnel through the firewall into the network. For this
reason, a lot of security permeates the ways in which VPN connections
are authenticated and allowed in. And a lot of hacker attacks exploit holes
in this security.

INTRUSION DETECTION SYSTEMS

Intrusion detection systems (IDSs) are network monitors. They watch your
network, looking for suspicious behavior. Think of them as autonomous
police detectives wandering around town: They know what suspicious
behavior looks like—probing a system for access, poking around for bugs
to exploit, or whatever—and they keep an eye out for it. They know
what an attack looks like. They know what a crime looks like. Marcus
Ranum describes a firewall as the helmet and flak jacket you wear into
battle, and an IDS as the medic who looks over your bleeding body, say-
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ing: “That looks like a sucking chest wound. I’d get that checked if I were
you.” An IDS is not a substitute for good proactive security.

Okay then, what do IDSs do? They alert you of a successful attack, or
maybe even an attack in progress. The good ones are accurate in both
senses: They don’t cry wolf and claim an attack where there is none, and
they don’t miss real attacks. The good ones are timely: They alert you of
the attack while it is still going on. The good ones give some kind of diag-
nosis—what the attack is and where it is coming from—and suggest some
kind of remedial action.

Current product offerings fall far short in every dimension, but
they’re trying. The hardest problem is the false alarms. To explain it, I’m
going to have to digress into statistics and explain the base rate fallacy.

Suppose a doctor had a disease test that was 99 percent accurate. That
is, if someone has the disease, there is a 99 percent chance that the test
would signify “disease,” and if someone does not have the disease, there
is a 99 percent chance that the test would signify “healthy.” Assume that
one in ten thousand people, on average, have the disease. Is the test any
good?

No. If the doctor administers the test to a random person and she tests
positive, there is only a one percent chance she actually has the disease.
Because the population of healthy people is so much larger than the num-
ber of diseased, the test is useless. (It’s not as simple as retesting the person.
Assume false positives are consistent for a particular person.) This result is
counterintuitive and surprising, but it is correct.

What this means is that if you assume that network attacks are com-
paratively rare, the base rate fallacy implies that your tests have to be really
good to screen out all of the false positives. An IDS that habitually pages
you at 3:00 A.M. with a problem that turns out not to be a problem—an
all-night Quake game, or a new Internet application, or whatnot—is
going to get turned off pretty quickly.

There are other problems. Timely notification is one. I mentioned
slow attacks in the previous section. When does an IDS decide that it’s an
attack and notify you? What if the IDS thinks something looks like an
attack, sort of? Does it notify you? When? Again, remember the false pos-
itive problem. If it guesses wrong too often, you’re going to stop listening
to it.

And will you even know what to do when the alarm goes off? Hor-
tatory messages of the general form “you’re under attack” are useless
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unless you have some way to respond, and the time to deal with it. Dur-
ing the 22-hour eBay outage of 1999, the IDS system set off alarms con-
stantly, but everyone was too busy to respond. This is the biggest problem
with IDSs: intelligently reacting to their output.

IDSs are still really in their infancy, and different ideas are vying for
supremacy. I’m just going to touch on some of them; many books out
there go into detail.

There are two basic ways to build an IDS. The easiest is misuse detec-
tion. The IDS knows what an attack looks like, and looks for it. Think of
a virus detector for network packets. Just as the virus detector scans every
file looking for particular bit strings indicating a virus, the IDS scans every
packet looking for bit strings that signify a certain attack. They’re easy to
implement and deploy, they have low false positives, and they can be
relatively fast (considering that they have to touch each packet).

On the other hand, they miss more. Just as a virus detector can’t find
viruses it has never seen before, a misuse-detection IDS can’t find attacks
it isn’t programmed to find. This makes them easy to fool. Sometimes it’s
as easy as taking an existing attack and mixing up the order of commands.
Sometimes it’s taking the attack and breaking up the packets differently.
Just as antivirus software needs to be constantly updated with new signa-
tures, this type of IDS needs a constantly updated database of attack
signatures. It’s unclear whether such a database can ever keep up with the
hacker tools.

The other IDS paradigm is anomaly detection. The IDS does some sta-
tistical modeling of your network and figures out what is normal. Then,
if anything abnormal happens, it sounds an alarm. This kind of thing can
be done with rules (the system knows what’s normal and flags anything
else), statistics (the system figures out statistically what’s normal and flags
anything else), or with artificial-intelligence techniques.

This has a plethora of problems. What if you’re being hacked as you
train the system? Then, being hacked is considered normal. New things
happen on computer networks all the time. Does the IDS know the dif-
ference between a normal abnormality, and an abnormality indicating an
attack? And if all it knows is what is normal, how is it going to categorize
attacks? The false positives for this kind of system are much higher, and
attacking these kinds of IDSs involves figuring out how to sneak past
them.
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Some early virus detectors used this sort of paradigm, and they would
generate all kinds of alarms if you did something like install a new piece
of software. They fell out of favor as the misuse-detection-based virus
checkers got better signature dictionaries; I expect the same thing to
happen with IDSs.

Other IDS ideas can work with either of the preceding paradigms.
Inline IDS works on network data in real time, while audit-based IDS
looks at audit information after the fact. There’s also host-based IDSs ver-
sus network-based IDSs.

This latter distinction has been the subject of a raging debate in the
IDS community. Basically, network-based IDS products are built on the
wiretapping concept: Sensors sit on the network and examine packets as
they go by. These systems have the advantages of stealth—they can be
deployed without affecting the rest of the network—and operating-
 system independence. Host-based IDSs look at system, audit, and event
logs from individual systems. These systems have a different set of pluses
and minuses, the most apparent being that they are product-specific.

What you’re eventually going to find in the marketplace are hybrid
systems: a combination of host-based and network-based IDSs, doing
some expert-system-based anomaly detection and some signature-based
misuse detection. You’re also going to find managed security monitoring
companies, who actually watch the output of these things and respond to
their alarms. Like firewalls, IDSs will get better and better as developers
get more experience building them. And also like firewalls, their security
will eventually depend on how well they are configured and how up-to-
date the versions are. And there will always be attacks that get through
them.

HONEY POTS AND BURGLAR ALARMS

Network burglar alarms and honey pots are a form of intrusion detection,
but they deserve a separate section. Burglar alarms are specific things on
your network designed to go off if an attacker touches them. Honey pots
are burglar alarms dressed up to look particularly attractive to attackers.
Burglar alarms are easy to understand: A particular network command
that no one is supposed to use sounds an alarm if used; a dummy network
account sounds an alarm if activated; and so forth. Marcus Ranum has
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taken this idea even further, and suggested that when a security vulnera-
bility is patched in a product, it should also be alarmed. 

Honey pots are more involved: entire dummy computers and sub-
networks designed to look inviting to attackers. You can have fun with
these; name the computers something like transactions.bigcompany.com
or accounting.bank.com, dress them up with impressive-sounding
accounts and files, and protect them on your network. When an attacker
breaks into the network, he gravitates toward the honey pot because it
looks like an interesting place to explore. Then an alarm goes off, and the
honey pot monitors the hacking activity and gathers data for prosecution.
Some companies sell premade honey pots; just add enticing names.

What’s interesting about both of these measures is that they exploit
the one advantage the network administrator has over an attacker: knowl-
edge of the network. The administrator knows how the network is
supposed to look and what is supposed to happen. He can set burglar
alarms—just as a homeowner can set window alarms because he knows
that no one is supposed to open the windows, and motion sensors because
he knows that no one is supposed to be walking around in the living
room—using that knowledge. He can deploy honey pots with the
knowledge that no legitimate user will ever access those systems. He can
set up all sort of burglar alarms, turn them on and off at different times of
the day, move them around once in a while, do anything he wants. These
measures are effective precisely because the attacker doesn’t know if they
are there or where they would be. Unlike a firewall or IDS—an attacker
often knows what brand firewall is installed—burglar alarms and honey
pots are tailored specifically for the network being alarmed.

VULNERABILITY SCANNERS

The intent of vulnerability scanning is to have an automated program scan
your network (or computer) for a huge laundry list of known weaknesses.
It does the work, and then you get a tidy report of which weaknesses the
network has. Then it’s up to you to fix them (or, I suppose, exploit them).

The reality of vulnerability scanners is not nearly so clean, and all vul-
nerability scanners on the market are massively flawed. If they worked the
way you expect them to work, they would all crash your computers and
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damage your network. No one would use such a tool, so they all fake it.
Imagine a vulnerability scanner for your house. One of the things it

checks is whether your windows are vulnerable to attack by a rock. The
obvious way to test this is to throw a rock against the window and watch
the results. But this would cause damage to the house, so the scanner fakes
it. It looks at the glass to see if it is single pane or double pane. Maybe it
taps on it, to see if it is actually glass or a stronger plastic. Maybe it tries to
read the part number on the window, and makes some assumptions about
the glass based on that. This is the same sort of thing that network vul-
nerability scanners have to do.

It gets worse. Sometimes it’s hard to tell whether or not a particular
attack is successful. The same home vulnerability scanner now tests the
power reliability by trying to cut the power lines into the house. It cuts
the power line, and the lights stay on. Does this mean that the scanner
failed to cut the power line, and the house is not vulnerable, or does it
mean that the house has a backup power system? Or maybe the scanner
cuts the power lines and the power goes off. Does this mean that the scan-
ner cut the power line, or that it did something else that, through some
contorted chain of events, resulted in the power being shut off? The scan-
ner doesn’t know, and most of the time has no way of figuring it out.
Networks are unreliable; they don’t fail in neat ways.

Even though vulnerability scanners can’t actually scan for vulnerabil-
ities, nor can they accurately measure the effects of their actions when
they can scan for vulnerabilities, they are not useless. They can scan for,
or at least fake scanning for, some vulnerabilities. They do produce a list
of vulnerabilities that a conscientious system administrator will close (and
a nefarious attacker will exploit). They work okay.

SATAN (Security Administrator Tool for Analyzing Networks)
made a big press splash when it was released in 1995. It was portrayed in
the media as worse than its namesake, and its author was fired from his job
at SGI. Since then vulnerability scanners have achieved respectability as a
component of a security administrator’s toolkit. Several commercial prod-
ucts, with respectable names, are in the marketplace. Think of these tools
as another audit technique: a private investigator that reports on your
security vulnerabilities. You can hire the P.I. to examine your own
system, but an attacker can hire the same P.I. to examine a target system.
But understand the limitations of the technology.
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E-MAIL SECURITY

These days, e-mail is everywhere. Anyone who has any presence at all 
in cyberspace has an e-mail address, and probably receives far too many
e-mail messages every day. E-mail has no built-in security.

Like any network packet, any machine between the source and the
destination can read e-mail. (You can even see the names of some of those
machines in the headers of your received mail.) The common metaphor
used for Internet e-mail is postcards: Anyone—letter carriers, mail sorters,
nosy delivery truck drivers—who can touch the postcard can read what’s
on the back. And there’s no way of verifying the signature on a letter or
the return address (you do know that the “From” field in your mail
header can easily be forged?), so there’s no way of knowing where a mes-
sage really came from. (Spammers use this feature to hide the origin of
their mass mailings.) If an attacker wants to be subtle, he can actually con-
nect (without an account) to the forged machine of origin and send the
mail from there. If he doesn’t care, he can just forge the “from” line.

We want two things for e-mail. One, we want to make sure that no
one other than the intended recipient can read the message. Two, we
want to make sure that an e-mail message came from the person it
purports to have come from, and that no one can forge e-mail messages.

The cryptography to protect e-mail is simple and straightforward, and
dozens of products on the market deal with the problem. Here’s the basic
protocol:

1. Alice gets Bob’s public key.
2. Alice signs her message with her private key.
3. Alice encrypts her message with Bob’s public key.
4. Alice sends the encrypted and signed message to Bob.
5. Bob decrypts the message using his private key.
6. Bob verifies Alice’s signature using her public key.

Where you’re going to see difficulties is in the public keys: how you
get them, store them, verify them. I’ll talk about this a lot more in
Chapter 15.
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ENCRYPTION AND NETWORK DEFENSES

Defending against network attacks isn’t as simple as incorporating cryp-
tography into the systems. Often the realities of the systems prevent cryp-
tography from being used. For example, one part of the DNS record
constantly changes, so it is impractical to use digital signatures with DNS
records. Cryptographic authentication just won’t work.

Or imagine a world where every packet is encrypted with IPsec.
Since the packets are encrypted, they can’t be analyzed. Network engi-
neers can no longer perform traffic analysis. Address-translation systems
can’t deal with the packets. Performance-optimizing systems—for exam-
ple, a system that tinkers with packet size to optimize traffic for satellite
transmission—no longer work.

Another example: A lot of network defenses rely on examining
packets and making sure they’re not malicious. Encryption can deny a
defender access to the packets, and to the defenses.

Consider antivirus software that sits at the firewall, automatically scan-
ning all incoming e-mail looking for malware. In large corporations these
programs can find over 1,000 viruses a day infecting e-mail attachments.
If that corporation encrypted all of its e-mail, the anti virus software would
not be able to find anything at the firewall (unless it had the keys).

Consider firewalls that scan incoming packets, looking for network
attacks. If that network employed IPsec throughout, the firewall  couldn’t
examine anything.

There are no good solutions to this problem. One solution is to give
the firewall the decryption keys. This has lots of potential security
problems. Another solution is a distributed firewall: pushing the network
defenses away from the perimeter of the network and onto every host in
the network. This has its own set of problems, but is probably the future
of firewalls.

The Internet boffins are hard at work on this problem; I don’t have
an answer for you.

Network Defenses 201

453803_Ch12.qxd:453803_Ch12.qxd  4/12/13  1:17 PM  Page 201



202

13

Software Reliability

Between system security measures (security kernels, access control
measures, strong cryptography, etc.) and good network security
measures (firewalls, intrusion detection systems, auditing mecha-

nisms), it seems as if computer security is pretty much done. Why then,
are computers and networks so insecure? Why are we seeing more
computer security vulnerabilities in the media, and not less? Why aren’t
things getting better?

The problem is that security measures such as cryptography, secure
kernels, firewalls, and everything else work much better in theory than
they do in practice. In other words: Security flaws in the implementation
are much more common, and much more serious, than security flaws in
the design. So far, Part 2 has talked about design. This chapter is about
implementation.

FAULTY CODE

In June 1996, the European Space Agency’s Ariane 5 rocket exploded
after launch because of a software error: The program tried to stick a 
64-bit number into a 16-bit space, causing an overflow. Its lessons are
 particularly relevant to computer security.

Basically, there was a piece of code written for the Ariane 4 rocket that
dealt with the rocket’s sideways velocity. At 36.7 seconds after launch, the
guidance system’s computer tried to convert this velocity measurement
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from a 64-bit format to a 16-bit format. The number was too big, which
caused an error. Normally, there would be extra code that watches for
these sorts of errors and recovers gracefully. But the original programmers
decided not to bother with the code in this case, since the velocity figure
would never be large enough to cause trouble. That may have been true
in the Ariane 4, but the Ariane 5 was a faster rocket. Even worse, the cal-
culation containing the bug served no purpose once the rocket was in the
air. Its only function was to align the system before launch. So it should
have been turned off. But engineers chose long ago, in an even earlier
version of the Ariane, to leave this function running for the first 40 sec-
onds of flight—a “special feature” meant to make it easy to restart the
system in the event of a brief hold in the countdown. There was a backup
system designed to take over in case of failure, but it was running the same
software and suffered the same error.

The resulting chain of events shut down the guidance system, which
completely confused the onboard steering computer, which caused the
rocket to make an unneeded course correction, which forced the rocket
to self-destruct.

Three years later, NASA’s Mars planet orbiter disappeared during a
tricky maneuver not because of Martian Air Defense, but because of a
data conversion bug. The NASA engineers failed to convert English mea-
sures of rocket thrusts (in pounds) to newtons, a metric unit. There’s a
4.45 times difference between the units; and that was enough to send the
probe 50 miles lower into the Martian atmosphere, where it burned up.

These two disasters are not related to computer security, but they
serve to illustrate how hard it is to design and implement bug-free code.
Both the European Space Agency and NASA had a strong incentive, and
a suitably large budget, to ensure quality software. And they still failed.

Others don’t do any better. In 1999, eBay went down for 22 hours
due to software-related errors in code supplied by Sun Microsystems. Bug
chasing delayed the release of the Visor palm computer. And in 1998, a
bug in Cisco switches knocked out AT&T’s Interspan frame relay net-
work, affecting 6,600 customers.

The unfortunate reality is that software bugs like these are every-
where. Most don’t have such efficiently devastating consequences
(re booting a spreadsheet after it crashes is just a minor annoyance), but as
complex software moves into more critical systems (e.g., automobile crash
avoidance, aircraft takeoff and landing, nuclear power plant control),
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we’re likely to see more of these kinds of failures. A lot of work is going
into error recovery, failure avoidance, and what is called a fail-safe strat-
egy: For example, if the crash-avoidance system fails in a car, it is supposed
to behave more or less like a pre-computer car, instead of deciding to
swerve into the nearest tree. The idea is to make sure that little failures
don’t get out of hand, like what happened on Ariane 5.

Squashing software bugs that affect performance is hard; finding
software flaws that affect security is even harder.

Reliability means that the computer—generally, the software, but any
specialized hardware as well—has to work even in the presence of ran-
dom faults. These faults could be design faults (running identical software
on both the primary and backup systems), implementation faults (not
doing error checking on a data conversion), programming faults (remem-
ber the mathematics bug in the Intel Pentium chip?), or usage faults.
These faults happen occasionally, randomly. Think of it as programming
Murphy’s Computer: a computer where things go wrong . . . rarely but
consistently. A computer where mistakes happen once in a while, but
rarely become severe enough for any user to notice. 

The underlying problem is that in any complex system—rocketry
software, a large database, an operating system, networking software, a
complex microprocessor—many, many things could possibly go wrong.
And complexity is going through the roof. It is just impracticable to
design or test for everything. Inevitably, something goes wrong.

Computer security is more like programming Satan’s computer.
(Ross Anderson is responsible for that beautiful turn of phrase.) In order
to be secure, software has to work in the presence of subtle and malicious
faults deliberately introduced by an intelligent attacker bent on defeating
the security of the system. Secure software has to survive the same random
faults when exploited by an intelligent hacker trying to defeat the security
of the system. (Think of a hacker forcing the Ariane 5 software to make
the overflow error occur at the worst possible time.) Mistakes occur ran-
domly, and most mistakes will never be encountered under normal use.
But attackers will seek potential mistakes out and deliberately use them to
their advantage.

The general strategy used to find random faults is beta testing: give the
software to a large group of users and let them bang on it. The people will
use the software in all sorts of configurations, on various types of hard-
ware, and do different things with it (some of which the designers never
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even thought of). If they can’t crash the system, it’s probably mistake-free.
It’s hard to beta test rocketry software in anything but a simulated envi-
ronment, but any large commercial software application you buy has
(hopefully) been put through thousands of hours of beta testing designed
to find and fix programming mistakes.

The previous paragraph should give you pause. Given how buggy
most commercial software is, you might not trust that beta testing, or any
testing for that matter, works. Testing does work, but complications
remain. One, the rush to market means that some companies are pushing
poorly tested software on the populace. (Most Internet software is released
in beta; some even argue that the Internet itself is still in beta.) Two, the
same rush to market means that some companies are pushing software on
the populace before fixing the long list of bugs that they have already
identified. (And while they fix bugs found in beta, they don’t do a second
beta cycle to test the fixed code.)

ATTACKS ON FAULTY CODE

Most of the computer security problems we see are the result of faulty
code. Here are some examples:

• In 1988, the Morris worm used a bug in the UNIX fingered program to
gain root access to computers running the program. This is a buffer
overflow, explained in the next section.

• In 1999, someone discovered a bug in a Hotmail CGI script that allowed
one user to access the e-mail account of another user. This kind of flaw was
discussed in Chapter 10.

Traditionally, faulty code has been the wedge used to break into
computers. Flaws in the sendmail program, for example, have been
responsible for a huge number of break-ins to UNIX computers. The
goal of these attacks is to exploit the flaws so that the attacker can take
control of the system. The specific attacks are obscure—exploiting the
debug option to get root access, or using a loophole in the error message
header in order to read password files—but there are a lot of them. For a
while it seemed like every month a new attack against sendmail was dis-
covered and patched. (Whether the patches ever got out to the commer-
cial users is another question.)
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A more recent example is the Java security model. Java has a complex
security model to shield computers from malicious Java applets. A pro-
gramming error anywhere in the protection mechanisms can potentially
render them all useless, and since its inception, a steady stream of imple-
mentation-specific Java attacks have exploited a variety of different flaws.

What makes all these examples more troublesome than the Ariane
flaw (although less incandescent) is that the bugs that were used to break
security did not affect performance. They were there, undetected, until
they were found and exploited. This is a big deal, and why security is
harder than reliability. The Ariane bug is one that affects performance.
Once a performance bug is found—and beta testing can find them—it
can be fixed. Security bugs don’t affect performance, and don’t show up
in beta test results. I’ll talk more about testing security in Chapter 22, but
the moral is that while people can sometimes stumble onto security flaws,
only experienced experts can reliably discover them.

This kind of thing happens all the time. When someone skilled per-
forms a security analysis of a piece of security software, he always finds
random flaws that compromise security. Always. The more complex the
code, the more security flaws.

Security problems, once discovered, will be exploited until they are
fixed. Assume an attacker finds a security flaw in a commerce protocol
that allows him to steal credit card numbers or, even worse, money. If he’s
in it for the publicity, he’ll announce his exploit to the press and it will be
fixed. (Hopefully, he’ll alert the company first.) If he’s in it for the money,
he will make use of the flaw, again and again. He’ll steal as much as he can
until someone else notices the flaw and fixes it. This is an important dif-
ference: Flaws that affect performance are noticed, while security flaws
can remain invisible for a long time.

These flaws are not necessarily in the security portion of the code,
either. They can be anywhere in the code: the user interface, the error-
handling routines, anything. And as we saw in Chapter 10, even programs
that don’t have anything to do with computer security can affect the secu-
rity of networked computers. Flaws in your word processor, your printer
driver, or your multimedia player can all compromise the security of your
computer.

The other moral is that software bugs (and therefore, security flaws)
are inevitable. Just as it is inconceivable that the Ariane 5 software could
be completely bug-free—the unfortunate accident is that the bug had
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such catastrophic effects—it is inconceivable that a large Internet applica-
tion will be bug-free.

We’ve seen this kind of thing with Windows NT. Hardly a day goes
by without some new announcement about a security hole in this pro-
gram. We’re already seeing the same trend with Windows 2000.

BUFFER OVERFLOWS

Buffer overflows (sometimes called stack smashing) are the most common
form of security vulnerability in the last ten years. They’re also the easiest
to exploit; more attacks are the result of buffer overflows than any other
problem. And they can be devastating; attacks that exploit this vulnerabil-
ity often result in the complete takeover of the host. Many high-profile
attacks exploit buffer overflows. Since they show no sign of abating, it’s
worth explaining in some detail what they are and how they work.

Let’s start with an analogy. In order to steal something from your local
7-11, you’re going to have to get past the sales clerk. This clerk isn’t a cre-
ative thinker. In fact, she will only do what her employee manual says
she’s supposed to do. This employee manual is a big binder filled with
protocols. Things like “Dealing with Someone Claiming to Be an
Employee”: 

Step 1: Ask to see the person’s badge. 
Step 2: Make sure the badge is not a forgery. 
Step 3: Compare the picture on the badge with the face of the person. 
Step 4: If they match, let the person in. If they don’t, don’t. 

Or “Dealing with a Federal Express Driver”: 

Step 1: Take the package. 
Step 2: Sign for the package. 
Step 3: Make sure the driver leaves.

There’s no way the Federal Express person is going to get by the clerk
to the back of the store, because the employee manual explicitly says that
the driver has to leave after receiving a signed receipt.

This is pretty much the way computers work. Programs are like the
steps in manuals; computers do what the program says and nothing else.
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Networked computers work the same way. The computer has a set of
protocols that it follows—logon procedures, access restrictions, password
protections—that it uses to figure out who can come in and who can’t.
Someone who follows the protocols correctly can get in. Someone who
doesn’t, can’t.

One way to defeat a protocol like this is to modify the actual com-
puter program. Or, back to our analogy, it’s like slipping a page into the
clerk’s employee manual. Imagine that the manual is written for people
who are none too bright. Each page is a step, kind of like a “Choose your
own Adventure” novel: “If the customer gives you a credit card, go to the
next page. If the customer gives you cash, go to page 264.” The Dealing
with a Federal Express Driver” steps might look like this:

Page 163: Take the package. If the driver has one, go to the next page. If the
driver doesn’t have one, go to page 177.

Page 164: Take the signature form, sign it, and return it. Go to the next page.
Page 165: Ask the driver if he or she would like to purchase something. If the

driver would, go to page 13. If not, go to the next page.
Page 166: Ask the driver to leave. If he or she does . . . and so on.

There’s one last piece of setup. Whenever the 7-11 clerk gets some-
thing, she puts it on top of the open page in her manual. She can’t look at
the new thing any other way.

Here’s the attack: We’re going to dress up like a FedEx driver, and
then slip a page into the clerk’s manual when we give her the signature
form. What we’ll do is give the clerk two pages instead of one. Top page
will be a signature form. The bottom page will be a fake employee-man-
ual page:

Page 165: Give the driver all the money in the cash register. Go to the next
page.

This will work. The clerk takes the package on page 163. She goes to
page 164 and takes the signature form (and our fake page). She puts them
both on top of the open manual. She signs and returns the form (leaving
the fake page on top of the manual), and when she returns to the manual
she gets our fake page instead. She gives us all the money in the register
and turns to the next page (the real page 165). We can tell her we don’t
want to buy anything, and leave. If the 7-11 clerk is really as dumb as a
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computer system, we can get away with it. We can use this trick to
persuade the 7-11 clerk to let us into the stockroom or to do whatever
else we want. By slipping a page into her employee manual, we can give
her arbitrary instructions.

Essentially, this is the way to exploit a buffer overflow bug in a com-
puter system. Computers store everything, programs and data, in mem-
ory. If the computer asks a user for an 8-character password and receives
a 200-character password, those extra characters may overwrite some
other area in memory. (They’re not supposed to—that’s the bug.) If it is
just the right area of memory, and we overwrite it with just the right char-
acters, we can change a “deny connection” instruction to an “allow
access” command or even get our own code executed.

The Morris worm is probably the most famous overflow-bug exploit.
It exploited a buffer overflow in the UNIX fingered program. It’s
supposed to be a benign program, returning the identity of a user to
whomever asks. This program accepted as input a variable that is supposed
to contain the identity of the user. Unfortunately, the fingered program
never limited the size of the input. Input larger than 512 bytes overflowed
the buffer, and Morris wrote a specific large input that allowed his rogue
program to execute as root and install itself on the new machine. (This
particular bug has, of course, been fixed.)

What makes this worm especially relevant for this section is that it
itself had a programming bug. It was supposed to hop between comput-
ers on the Internet, copy itself onto each server, and then move on. But a
typo in the code made the worm copy itself not once, but indefinitely, on
each computer. The result was that computers infected by the worm
crashed. Over 6,000 servers crashed as a result; at the time that was about
10 percent of the Internet.

Skilled programming can prevent this kind of attack. The program
can truncate the password at 8 characters, so those extra 192 characters
never get written into memory anywhere. It’s easy to do, but it’s hard to
do everywhere. The problem is that with any piece of modern, large,
complex code, there are just too many places where buffer overflows 
are possible (and they’re not all as simple as this example) that it is difficult
to squash them all. It’s very difficult to guarantee that there are no over-
flow problems, even if you take the time to check. The larger and more
complex the code is, the more likely the attack.
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Windows 2000 has somewhere between 35 and 60 million lines of
code, and no one outside the programming team has ever seen them.

THE UBIQUITY OF FAULTY CODE

This chapter has centered on the Internet, and security bugs there. This is
not to imply that the Internet somehow has more security flaws than
other networks. Internet flaws make the news more often simply because
more people are looking at the software, and more people are finding
bugs. Software in other areas of cyberspace—the phone network, the
electronic banking network—is just as buggy.

Estimates from Carnegie Mellon University show that a thousand
lines of code typically has five to fifteen bugs. Most of these bugs are
minor and do not affect performance, and are never noticed. All have the
potential of compromising security.

In the short run, Internet code seems to be getting better. Security
bugs are found all the time. Several computer magazines have weekly 
e-mail security newsletters, and they will contain a dozen or so security-
related bugs a week. Manufacturers are usually pretty good about fixing
these bugs once they become public, although most won’t bother until
then. If dozens of flaws are being reported and fixed per week, the rea-
soning goes, then there are always fewer security flaws to worry about.

This, of course, assumes you always implement the latest patches.
What usually happens is that a vulnerability is reported and a patch is
issued. If you believe the news reports, that’s the end of the story. But in
most cases patches never get installed. A major problem on the Internet is
that these bug fixes don’t necessarily flow downstream to the software in
the field. “Internet time” affects system administrators, too.

So, even though the patches are available, the vulnerability remains.
I’ve seen estimates that over 99 percent of all Internet attacks could be
prevented if the system administrators would just use the most current
versions of their system software. This is one reason vulnerability scanners
are such good security tools: for both the good guys and the bad guys.

Even assuming everyone always runs the latest versions of all software,
things are getting worse in the long run. All of these bugs are implemen-
tation-specific, and recidivism is high among software vendors. If version
1.0 is released and then over the years dozens, or hundreds, of security
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bugs are found and fixed, this says nothing about the security of version
2.0. Version 2.0 is probably larger and has more features; version 2.0 has
all sorts of new code. Not only are all of those bug fixes for version 1.0
irrelevant, but version 2.0 probably has even more bugs.
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Secure Hardware

This is an ancient idea. It began when the first person drew a line
across his cave entrance, proclaimed that what was on one side 
of the line was his, and then proceeded to defend his cave against

all who disagreed with him. The notion covers a lot of different things:
computer rooms behind locked doors and armed guards, tamper- resistant
set-top boxes for pay-TV, secure tokens for access control, smart card
chips for electronic commerce applications, and a bomb that blows up if
you try to defuse it. The physical instantiation of the secure perimeter is
different in each of these cases, but the fundamental benefit of the idea is
the same: “It’s a whole lot easier to design a computer security system if
we can leverage the innate physical security of a device, and assume that
parts of the system cannot be accessed by large classes of people.”

And that’s true. It’s easier to design a secure pay-for-parking system if
you assume that crooks can’t empty the parking meters into their pockets.
It’s easier to design a secure library if you assume that people can’t sneak
books out of the building inside their overcoats. And it’s easier to design
an electronic wallet if you assume that people can’t arbitrarily modify the
amount of money they have.

Here’s a perfect cashless monetary system: Everyone carries around a
piece of paper with a number on it representing the number of ducats in
his wallet. When someone spends money, he crosses out the number and
writes the lower number. When he receives money, he does the oppo-
site. If everyone is honest, this system works. As soon as someone notices
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that he can write whatever number he wants on the paper, the system falls
apart.

However, this was almost exactly the system that precomputer banks
used to keep track of depositors’ accounts. Each depositor had a bank-
book stored in a file cabinet in the bank, and another in his possession.
The bankbooks had a number that represented the amount of money the
person had stored in the bank. When he deposited or withdrew money,
the bank wrote a new number in both books. The system  didn’t fall apart,
because one of the books was kept within the secure perimeter of the
bank. And that was the real book; the book the depositor got was just a
copy for his mollification. If a depositor forged a line in his bankbook, it
would not match with the book stored in the bank. The bank teller
would notice the discrepancy, presumably check other records to make
sure there actually was attempted fraud, and prosecute accordingly. The
customer could not modify the book in the bank because he could not get
through the secure perimeter. (The teller, of course, had many more
opportunities to commit fraud.)

This example illustrates the benefit of a secure perimeter; the security
wouldn’t work without one.

We can build an anonymous cash card system the same way. Cus-
tomers walk around with smart cards in their wallets. The smart card con-
tains a memory location with a dollar amount stored in it, much the same
as the bankbook. Smart cards talk to each other through some kind of
point-of-sale terminal. When a customer buys something, her smart card
subtracts the amount of purchase from the amount in memory and writes
the lower number back into memory. When a merchant sells something,
his smart card adds the amount of purchase into the memory location.
The cards only do this in pairs (secret keys in the cards can easily enforce
this), so that everything balances out at the end. And to stop someone
from just going into the card and changing his balance, the cards are tam-
perproof.

Wasn’t that easy? The secure perimeter around the card—secrets
within the card stay within the card, and people outside the card can’t
affect those secrets—makes a lot of security problems go away. Without
it, the only way to make a system like this work is through a tedious back-
end processing system.

Checks work rather like the first example I talked about: people
keeping a paper in their wallet listing their current account balance. Peo-
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ple keep a paper tally of their current account balances, if they bother to
balance their checkbooks at all. People can write checks for any arbitrary
amount: No system forces them to write checks for less than their balance.
Merchants accept these checks pretty much on faith; they have no idea if
the person has enough money in the account to cover the check. But
since there is no secure perimeter to enforce honesty, there is a compli-
cated interbank check-clearing system: The merchant deposits the check,
but doesn’t get credit for the money yet. The merchant’s bank uses iden-
tification information on the bank—account number, bank name, and so
forth—to figure out which account is liable for the amount of payment.
Then it goes to the customer’s bank and requests payment. The
customer’s bank checks the person’s account. It deducts the money from
its “secure” record of the customer’s account and gives it to the mer-
chant’s bank. Finally, the merchant’s bank credits the merchant’s account.

Of course, the actual check-clearing system works a little differ-
ently—optimizations have been made for speed and efficiency—but the
basic idea is the same. Checking account holders—and anyone else, for
that matter—can’t be trusted not to write bad checks, so the banks have
to enforce honesty.

TAMPER RESISTANCE

Tamperproofing would help solve a plethora of computer security prob-
lems. Think how much easier it would be to enforce copy protection if
there were a tamperproof processor in your computer that accepted
encrypted instructions. (Not that this is a good idea, mind you.) Or how
much easier it would be to design a key escrow system (see Chapter 16) if
tamperproof hardware could enforce the police eavesdropping require-
ments. With tamperproof hardware, I could build an Internet “meter”
that can charge for data access much like an electric meter charges for
power access.

In general, tamperproof hardware is perfect for complex trust rela-
tionships, where one party wants to put a secure device in the hands of
another, with the assurance that the second party can’t modify the innards
of the secure device. For example, when a bank wants to keep a secure
account balance on a device in the hands of its customers. Or when the
police want to keep copies of encryption keys, so that they can eavesdrop
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on private conversations even when people use encryption devices. Or
for a cable TV decoder.

The basic problem is that tamperproof hardware does not exist. You
can’t make a device that cannot be tampered with. You can make a
device that most people can’t tamper with. You might possibly even
make a device that can’t be tampered with given a level of technology.
But you can’t make a device that’s absolutely tamperproof.

I could spend an entire book on the details, but they change so regu-
larly that it would be pointless. Suffice it to say that there are several ded-
icated laboratories in the United States that can defeat any tamperproof
technology that they’ve ever seen. Many more laboratories in various cor-
porations can be used to defeat tamper resistance, even though the labs
were created for other purposes. The chip laboratories at Intel, for exam-
ple, have equipment that could be used to reverse engineer pretty much
any tamperproof chip on the market.

In response to this reality, many companies implemented the seman-
tic fix of calling their technology tamper resistant, which is something like
“tamperproof for almost everybody.” I suppose this is reasonable: A letter
sealed in an envelope could be viewed as tamper resistant, even though
the CIA and others have a surprising amount of expertise in tampering
with the mail.

The problem with tamper-resistant hardware is figuring out exactly
how tamper resistant it really is. Imagine that you are implementing a
smart card commerce system that uses a tamper-resistant chip for its secu-
rity. And it’s an anonymous system, so the tamper resistance is all the pro-
tection you have against widespread counterfeiting. How much tamper
resistance do you need? How do you know when you’ve gotten that?
What do you do when technology marches on?

Figuring out how much tamper resistance you need might be doable.
Maybe you can estimate the value of a break: how much money some-
one could counterfeit if she were able to defeat the tamper resistance. If
you’ve designed a good system, maybe you can cap the amount of money
that can be stolen from a single smart card: let’s say $100. The next prob-
lem is harder: How do you know when you’ve implemented enough
tamper-resistance measures so that the cost to defeat them is more than
$100?

Nobody really knows how effective different tamper-resistance mea-
sures are. Sure, a laboratory can tell you how much time they spent
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defeating it or how much money it would cost to buy the equipment they
used, but someone at a lab across town could use different techniques and
come up with a different figure. And remember the publicity attack:
Some grad student somewhere could borrow equipment and defeat your
tamper resistance just for fun. Or maybe a criminal could buy the equip-
ment and expertise. This is nowhere near as straightforward as estimating
the time and money it would cost to implement a brute-force attack
against a cryptographic algorithm.

And even if it were possible to figure out how effective a tamper-
resistance technique is today, that says nothing about how effective it
would be tomorrow, or next year, or five years from now. Advances in
this field happen all the time. Advances come from a variety of technolo-
gies, and they interact in really interesting ways. What was difficult to
defeat one year might be trivial to defeat the next. It’s naïve to rely on
tamper resistance for any long-term security.

Another option is to make the system tamper evident. This is easier to
do than making it tamper resistant: We don’t care if someone can tamper
with the system, we just care that he can’t do it undetectably. Imagine a
tamper-evident hand-held gambling device. A player can take it home
with him and win or lose money. Because we are going to let the player
take the device home with him, and we know that he can potentially win
thousands of dollars, we do our best to make it tamper resistant. But
because we know that true tamper resistance is impossible, we actually
rely on tamper evidence. When he returns the gambling device to collect
his winnings, we are going to inspect it up one side and down the other.
We’re going to install seals that have to be broken, coatings that have to
be removed, wires that have to be cut. Sure, the best attackers can do all
of that, but they can’t do it all and then undo it all after they’re done.

Better, but still not good enough. I believe that no system can be
absolutely tamper evident, although there are different degrees. Relying
on it as a sole security measure is a mistake.

None of this stops the physical world from using these concepts.
Many systems make use of antitampering devices, from aspirin bottles to
NSA-designed cryptographic chips. This is not necessarily a bad thing:
Tamper resistance protects systems from most people and most attacks. I
worry when systems rely on tamper resistance for security, instead of
using it as just one aspect of a more comprehensive security system.
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One system that uses tamper resistance effectively as part of a larger
control mechanism is the U.S. system for controlling nuclear weapons.
The risk is real: Some rogue commander could launch weapons without
permission, or tactical nuclear weapons could be stolen or (if they were
stored at an American base overseas) seized by an ally during a crisis.
There was a need to ensure that nuclear weapons could only be launched
in the event of a directive from Washington. The solution uses something
called a PAL, a permissive action link, details of which are still secret. We
do know that PALs are only considered useful if they are buried deep
within a large and complex weapon system. Simpler weapons are stored
in special containers, PAPS (prescribed action protective systems), that
provide an extra tamper-resistant barrier.

The tamper resistance in nuclear weapons includes various booby
traps: chemicals that render the nuclear material useless, small explosives
that destroy critical components of the weapon and the attacker, and so
forth. Only cryptographic codes transmitted from Washington will disarm
these tamper-resistance mechanisms and arm the nuclear weapon itself.

These protection mechanisms are extreme, but this is an extreme sit-
uation. There are extreme situations in the commercial world—root CA
keys (see Chapter 15), keys used by banks to secure interbank wire trans-
fers—but the security measures come from carefully crafted systems, not
mass-produced products. In the normal commercial world, the protection
measures are much more pedestrian.

And there is a fundamental difference of control. The nuclear weapon
is under extreme physical control; this makes tamper-resistance measures
more effective.

Think of a slot machine. A slot machine has a secure perimeter. If you
can open up the slot machine, you can take all the money out or, more
dangerously, modify the ROMs so that it pays a jackpot. But that slot
machine is on a casino floor. There are lights, cameras, guards, people . .
. if someone goes anywhere near that slot machine with a drill or a screw-
driver, he is going to get arrested. Now imagine the casino says something
like this: “Here’s a slot machine. Take it home. Play all you want. Bring
it back in a few months. Whatever is on the pay line, we’ll pay.”

This is now a different situation. The attacker can take the slot
machine home to his basement lab. He can study the machine all he
wants. He can X-ray it. He can even buy several identical machines from
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the manufacturer and take them apart. In the end, he is much more likely
to be able to attack the system in his basement than the one sitting on the
casino floor. And this holds true not only for slot machines, but ATMs,
bank safe deposit boxes, and anything with a similar security model.

(This is not to say that slot machines on a casino floor are invulnera-
ble. Dennis Nikrasch made a good living—about $16 million total—rip-
ping off slot machines. He practiced on slot machines at home, and
learned how to open a machine up on the casino floor—without setting
off the alarms—and swap firmware chips. Blockers stood between him
and the cameras. Then he would leave, and an accomplice would play the
rigged machines for the jackpot.)

The morals of this section are simple. One, tamper resistance is largely
a myth, but it does provide a barrier to entry. Two, tamper resistance
should be augmented by other countermeasures. And three, any system
where the device and the secrets within the device are under the control
of different people has a fundamental security flaw. It’s possible to design
a secure system that includes this flaw, but it must be recognized as a flaw.

SIDE-CHANNEL ATTACKS

In the last few years, new kinds of cryptanalytic attacks have begun to
appear in the literature: attacks that target specific implementation details.
The timing attack made a big press splash in 1995: RSA private keys could
be recovered by measuring the relative times cryptographic operations
took. This attack has been successfully implemented against smart cards
and other security tokens, and against electronic commerce servers across
the Internet.

Researchers have generalized these methods to include attacks on a
system by measuring power consumption, radiation emissions, and other
side channels, and have implemented them against a variety of public-key
and symmetric algorithms in tamper-resistant tokens. Related research has
looked at fault analysis: deliberately introducing faults into cryptographic
processors in order to determine the secret keys. The effects of this attack
can be devastating.

Let’s assume that an attacker wants to learn the secret keys inside a
tamperproof module: a smart card, a PCMCIA card, or something like
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that. He can’t cryptanalyze the algorithms or protocols (they’re too good),
and he can’t defeat the tamper resistance. But the attacker is clever; instead
of just looking at the inputs and outputs, he’s going to look at the speed
in which the module does things. The critical observation in the timing
attack is that many implementations of cryptography do things at different
speeds for different keys. Knowing what speed a certain operation takes
yields information about the key. Knowing a lot of different speeds for
different operations can yield the entire key.

Imagine the attack working against a stockroom; you want to know
about its contents. You can’t look in the stockroom to see how things are
arranged. However, you can ask the clerk to get stuff for you. By timing
how long it takes him to get different things, you can learn a lot about the
stockroom. Does he always take a long time to get toner cartridges? Then
they must be in the back of the room. Does he take longer to get reams
of paper every ten requests? Then they must come in boxes of ten. Does
he take longer to get pencils if you’ve just asked him to get erasers? That
tells you something about what boxes get stacked on top of each other.

Here’s a timing attack against a password checker. Try a random pass-
word, but vary the first character. So if there are 26 letters, capital and
lowercase, ten numbers, and a handful of punctuation marks, try about 70
passwords. Just possibly, one will take longer to be rejected than the
others. Just possibly, this is the first correct character. Repeat with the rest
of the characters. If you are attempting to attack an eight-character pass-
word, you only have to try 560 passwords and measure their timings.

The attacker doesn’t have to limit himself to timing. He can look at
how much power is dissipated for different operations. (The module can
use different amounts of power to do the same operation, depending on
the key.) He can look at how much heat is radiated, and even where on
the module it radiates from. For example, power attacks have been used to
pry secrets out of almost all smart cards on the market.

These attacks are possible because the module is in the attacker’s
hands. If the module were sitting in a locked vault, he couldn’t perform
these kinds of attacks. (Although he might be able to attack another copy
of the same product, which might provide some interesting information.)
But precisely because the system’s designers relied on tamperproof hard-
ware and were willing to give the attacker a copy of the module, he can
perform these systemic attacks.
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Sometimes it is possible to perform some of these attacks remotely,
over a network. You can’t look at heat dissipation or power consump-
tion, but you can look at timing. Sure, there will be some noise created
by the network, but you can factor it out mathematically. Or you can
look at radiation (the military calls this TEMPEST ).

TEMPEST is worth explaining more thoroughly, if for no other rea-
son than various militaries spend a lot of money defending against it. It
turns out that electronic equipment radiates information, and that a sensi-
tive radio receiver tuned to just the right channel can pick up that infor-
mation. (This is also called van Eck radiation.) Video monitors are probably
the worst offenders—with the right equipment you can read someone
else’s computer screen from down the block—but everything leaks to
some degree. Cell phones, fax machines, and computer switches leak
information. It doesn’t matter if these devices encrypt the data; both the
encrypted and the unencrypted data radiates, and a resourceful attacker
can separate the two. Cables act as antennas and leak information. Power
lines act as conduits for leaked information. This is a nontrivial attack, and
can require a lot of special equipment. Sometimes it’s easy—reading
someone else’s computer monitor—but other times, it is complicated and
laborious.

The government solution to this problem is shielding. The military
buys computer equipment that is TEMPEST shielded. When they build
cryptographic equipment, they spend extra money to ensure that the
plaintext doesn’t leak over to the ciphertext data lines, or out of the box.
They buy shielded cables for both power and data. They’ll even build
rooms that are TEMPEST shielded or, in extreme cases, entire buildings:
These are called Secure Compartmented Information Facilities, or SCIFs.

There are other side-channel attacks. Sometimes heating or cooling
the module can have interesting results; other times varying the input
voltage does the trick. One security processor, for example, unlocks secret
data if the input voltage drops for an instant. Another has a random num-
ber generator that produces all ones if the voltage is slightly lowered.
Other modules fail when you tweak the clock input.

Think of all of this as noninvasive biological experimentation. You
can learn a lot about an organism by just watching it: what it eats, what it
excretes, when it sleeps, how long it takes to do certain tasks at different
times, whether it is warm or cold, wet or dry. There’s no reason to cut it
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open; there’s a lot to be learned while it is still working properly.
Cutting it open is always interesting, though, especially if you can cut

it open without killing it. If we defeat the tamper resistance and do this to
the module, we can learn a lot about its security.

Fault analysis is another powerful attack, because cryptography is sen-
sitive to small changes. In Chapter 7, I talked about how easy it is to
incorrectly implement cryptography, destroying its security in the
process. In fault analysis, an analyst purposely introduces flaws into the
cryptographic implementation—in specific places designed to maximize
the amount of information leaked. Combining this with defeating the
tamper resistance—cutting a lead here and a lead there (not at random,
but specific ones)—is a devastating attack against secure modules.

Systemic attacks are not low-budget attacks. You aren’t likely to see
them carried out by lone criminals or common terrorists. They are attacks
for well-funded adversaries: organized crime, some industrial competitors,
military intelligence organizations, and academic laboratories. They work,
and work well. Systems such as smart cards would do well to assume that
systemic attacks are possible, and ensure that even if successful they can-
not defeat the security of the system.

Side-channel attacks don’t necessarily generalize to other systems. A
fault-analysis attack just isn’t possible against an implementation that does-
n’t permit an attacker to create and exploit the required faults. But these
attacks can be much more powerful than standard cryptanalytic attacks
against algorithms. For example, a published differential-fault-analysis
attack against DES requires between 50 and 200 ciphertext blocks (no
plaintext) to recover a key. It only works on certain tokens implementing
DES in a certain way. Contrast this with the best non-side-channel attack
against DES, which requires just under 64 terabytes of plaintext and
ciphertext encrypted under a single key.

Some researchers have claimed that this is cheating. True, but in real-
world systems, attackers cheat. Their job is to recover the key, not to fol-
low some arbitrary rules of conduct. Prudent engineers of secure systems
anticipate this and adapt to it. It is our belief that most operational crypt-
analysis makes use of side-channel information. Sound as a side channel—
listening to the rotation of electromechanical rotor machines—was
alluded to in David Kahn’s book The Codebreakers. The U.S. military has
long made a big deal about TEMPEST. And in his book Spycatcher, Peter
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Wright discussed secret data leaking onto a transmission line as a side
channel (the vulnerability is known by the military as HIJACK) used to
break a French cryptographic device. 

Defenses are hard. You can either reduce the amount of side-channel
information that leaks, or make the leakage irrelevant. Both have prob-
lems, although researchers are working on them. More expensive devices
have sensors that detect tampering with the inputs—regulators that detect
drops in voltage, thermometers that detect attempts to freeze the device,
clocks that are immune to glitches from outside—and erase their secrets.
Other devices sense when they are being dissected and do the same thing.
But these kinds of defensive measures tend only to be in devices that the
military buys, and often can’t be implemented in low-end secure devices
such as smart cards.

Side-channel attacks are very powerful, and it will be a while before
there is a good defensive theory. In the meantime, any system in which a
device is held by one person, and the secrets within the device are held by
another, is at risk.

ATTACKS AGAINST SMART CARDS

Smart cards are viewed by some as the magic bullets of computer secu-
rity—multipurpose tools that can be used for access control, e-commerce,
authentication, privacy protection, and a variety of other applications.
Basically, designers use their properties as a secure perimeter: The proces-
sor and memory inside is (supposedly) invulnerable against attack. They’re
also small, portable, cheap, and flexible. This makes them attractive, but
the lack of direct input and output on a smart card makes them more vul-
nerable to attack.

What’s most interesting about smart cards is that there are often a
large number of parties involved in any smart card–based system. This
means smart cards are susceptible to many classes of attacks. Most of these
attacks are not possible in conventional, self-contained computer systems,
since they would take place within a traditional computer’s secure
perimeter. But in the smart card world, the following attacks all pose a
legitimate threat. And this is an example of looking at smart cards from a
systems point of view:
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Attacks by the terminal against the cardholder or data owner.
These are the easiest attacks to understand. When a cardholder puts her card
into a terminal, she trusts the terminal to relay any input and output from
the card accurately. Security in most smart card systems centers around the
fact that the terminal only has access to a card for a short period of time.
The real security, though, has nothing to do with the smart card/terminal
exchange; it is the back-end processing systems that monitor the cards and
terminals and flag suspicious behavior.

Attacks by the cardholder against the terminal. More subtle are
attacks by the cardholder against the terminal. These involve fake or modi-
fied cards running rogue software with the intent of subverting the protocol
between the card and the terminal. Good protocol design mitigates the risk
of these kinds of attacks. The threat is further reduced when the card con-
tains hard-to-forge physical characteristics (e.g., the hologram on a Visa
card) that can be manually checked by the terminal owner.

Attacks by the cardholder against the data owner. In many smart
card–based commerce systems, data stored on a card must be protected from
the cardholder. In some cases, the cardholder is not allowed to know that
data. If the card is a stored-value card, and the user can change the value,
she can effectively mint money. There have been many successful attacks
against the data inside a card.

Attacks by the cardholder against the issuer. Many financial attacks
appear to be targeting the issuer, but in fact are targeting the integrity and
authenticity of data or programs stored on the card. If card issuers choose to
put bits that authorize use of the system in a card, they should not be sur-
prised when those bits are attacked. These systems rest on the questionable
assumption that the security perimeter of a smart card is sufficient for their
purposes.

Attacks by the cardholder against the software manufacturer.
Generally, in systems where the card is issued to an assumed hostile user, the
assumption is that the user will not load new software onto the card. This
turns out not to be the case.

Attacks by the terminal owner against the issuer. In some systems,
the terminal owner and card issuer are different parties. This split introduces
several new attack possibilities. The terminal controls all communication
between the card and card issuer, and can always falsify records or fail to
complete one or more steps of a transaction in an attempt to facilitate fraud
or create customer service difficulties for the issuer.

Attacks by the issuer against the cardholder. In general, most systems
presuppose that the card issuer has the best interests of the cardholder at
heart. But this is not necessarily the case. These attacks are typically privacy
invasions of one kind or another. Smart card systems that serve as a substi-
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tute for cash must be carefully designed to maintain the essential properties
of cash money: anonymity and unlinkability.

Attacks perpetuated by the manufacturer against the data owner.
Certain designs by manufacturers may have substantial and detrimental
effects on the data owners in a system. If the manufacturer provides an oper-
ating system that allows (or even encourages) multiple users to run programs
on the same card, a number of new security issues are opened up, such as
subversion of the operating system, intentionally poor random number
generators, or one application on a smart card subverting another applica-
tion running on the same card.

This is not to say that smart cards are useless as a security device. A
smart card that accesses a credit or debit financial system, for example, is
very different than a smart card that accesses a stored value system. Smart
card systems that allow for identification and auditability are also safer.
Smart cards are useful, but they come with new risks. Securing smart card
systems means recognizing these attacks and designing them into a system.
In the best systems, it doesn’t matter if (for example) the user can hack the
card. It’s very Zen: Work with the security model, not against it.
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15

Certificates 
and Credentials

The notions of a public-key certificate and a public-key infrastructure are
central to much of modern Internet cryptography. Before get-
ting into that, though, it is worth recalling what a digital signa-

ture is. A digital signature is a mathematical operation on a bucket of bits
that only a certain key can do. This operation can be verified with
another, corresponding, key. The signing key is only known by Alice.
Hence, the argument goes, only Alice could have performed the mathe-
matical operation and therefore Alice “signed” the bucket of bits.

The problem with this model is that it assumes that the signing key is
a secret only known by Alice. All we can really stipulate by verifying the
signature is that Alice’s key signed the message; we cannot say anything
about whether or not Alice did. We don’t know if Alice’s key was stolen
by someone else. We don’t know if a Trojan horse snuck into Alice’s
computer and fooled her into signing something else. We don’t know
anything about Alice’s intentions. When we see Alice’s handwritten sig-
nature on a paper document, we can make statements about her volition:
She read and signed the document, she understood the terms. When we
get a document signed with Alice’s private key, we don’t even know if
Alice ever saw the document in the first place. “Digital signature” is a ter-
rible name for what is going on, because it is not a signature.
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This will become important later in this chapter. But first, let’s talk
about trusted third parties.

TRUSTED THIRD PARTIES

Cryptographers define a trusted third party as someone trusted by every-
one involved in a protocol to help complete the protocol fairly and
securely. A friend at the NSA once said (with remarkable perspicuity):
“Someone whom you know can violate your security policy without get-
ting caught.” Oddly enough, these definitions are basically the same.

Remember the various trusted third party protocols from Chapter 7?
All commerce, with the exception of direct barter, uses trusted third par-
ties in some way. Even cash transactions: The seller is trusting the gov-
ernment to back the currency he is accepting. When the transaction
involves an interesting financial instrument—a check, a credit card, a
debit card, a traveler’s check—both the buyer and the seller are relying on
the bank or financial company to behave properly. The merchant and the
customer don’t necessarily trust each other, but the trusted third party is
able to successfully mediate a transaction between them. Things would
fall apart pretty quickly if a credit card company started capriciously refus-
ing to accept merchant slips for certain cardholders.

Lawyers act as trusted third parties in more personal roles: executors
of wills, that sort of thing. When someone announces to her captors, “If
you kill me, my lawyer will mail a copy of the evidence to the FBI,
CNN, and the New York Times,” she is using her attorney as a trusted
third party. Lawyer jokes aside, the profession makes a pretty good trusted
third party.

The entire civil court system can be viewed as a trusted third party,
ensuring that contracts are fulfilled and that business is conducted prop-
erly. Here’s the fair contract protocol: Alice and Bob negotiate and sign a
contract. If one of them feels that the other is not upholding his or her end
of the contract, he or she calls in the trusted third party: the judge. The
judge listens to the evidence from both sides, and then makes a ruling.

This works because both Alice and Bob believe that the judge will be
fair. In jurisdictions where the legal system is corrupt or incompetent, you
see a much smaller reliance on contracts and a radically different set of
rules for conducting commerce.
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Many other trusted third parties populate everyday life. Consignment
shops, either storefront or over the Net, are trusted third parties. So are
auction houses. Ever buy something to be delivered COD? The delivery
service is acting as a trusted third party. They do the same thing for certi-
fied mail. Notary publics act as trusted record keepers, verifying the iden-
tities of people signing legal documents and providing audit evidence in
the event of a dispute. The UN sends “observers” to act as trusted third
parties in parts of the world where the parties involved don’t trust each
other (and have way too many guns). On the Net, auction escrow ser-
vices have appeared, acting as trusted third parties between buyers and
sellers for high-priced items.

In the United States, an entire industry of trusted third parties medi-
ates real estate transactions: title companies. These companies act as
trusted third parties between the various parties involved in buying and
selling a house: the buyer, the seller, the buyer’s bank, the seller’s bank,
the buyer’s real estate agent, and the seller’s real estate agent. All of these
parties rely on the title company to complete the transaction fairly.

Trusted third parties will become more important in the electronic
world. In a world without face-to-face (or even voice-to-voice) transac-
tions, in one of mediocre cryptography and horrible computer security,
they are the only real certification anyone is likely to have.

Remember the whole system of public keys that I talked about in
Chapter 6? Alice wants to send an encrypted message using Bob’s public
key, so she goes to a public-key database to find it. She gets Bob’s public-
key certificate. This is a message, signed by someone else, that certifies
that the particular key belongs to Bob. The person who signed that
certificate: That’s a trusted third party.

Secure systems leverage the trusted third parties that are inherent in
the systems that they are securing. Badly designed systems introduce
trusted third parties without understanding the security ramifications.
Awfully designed systems mandate trusted third parties by law.

CREDENTIALS

Open up your wallet. Inside you will see all sorts of credentials. You have
a bank card. This is a credential issued to you by your bank; you use it to
prove your identity to an ATM so that it dispenses cash. You have credit
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cards, credentials issued to you by a bank so that you can borrow money
through one of the credit card systems. You have a driver’s license, issued
to you by the government. It proves that you possess the privilege to
drive. Rental car companies in foreign countries use that credential as
proof that you have the ability to drive, but police usually just use it as a
handy way of getting your name and address: They verify your license in
a police database. (Some stores use a driver’s license as a credential before
they let you pay by check, a trusted third-party relationship based on the
premise that accurate identification information aids prosecution.) You
also have airline frequent-flyer cards, library cards, membership cards to
places like gyms, and whatnot. If you have a passport, that’s another cre-
dential.

Each of these credentials is issued by a different third party, and each
of them operates in transactions where that third party is trusted. Creden-
tials are not interchangeable. The bank is trusted to issue ATM cards to
those people with accounts. The card, together with a PIN and a real-
time database lookup to your account balance, allows you to withdraw
money from your account. The driver’s license, because it is a credential
issued by the government, is often used as proof of age in bars. The bar is
treating the state as a trusted third party for age verification. (I’ve seen bars
that accept driver’s licenses, state ID cards, and foreign passports as proof
of age, but not U.S. passports. This makes no sense.) If you wanted to run
a tab at the bar, a driver’s license wouldn’t be a useful credential. The bar
might trust the state to certify your date of birth, but not your fiscal sol-
vency.

Each trusted third party has its own rules that it follows before it issues
a credential. To get a passport, you must provide proof of citizenship and
proof of identity. To get a driver’s license, you have to pass an exam and
provide proof that you live in the state in which you’re applying for the
license. A credit card company collects a lot of personal information about
you, runs a background check in some large database somewhere, and
then issues you the credential. The credential might have a low credit
limit at first, but as you build up your relationship as a customer, it might
go up.

These physical credentials also illustrate the problem with revocation.
What happens when your credential is revoked? When MasterCard
revokes your credit card, they can’t reach into your wallet and cut it in
half. So they “revoke” it in a database somewhere; they simply record the
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card number as invalid. This works, as long as anyone who might accept
the credential checks the database. If you are in a remote jungle retreat
with no phones, there might be no way to verify the validity of the cre-
dential.

The other way to deal with revoked credentials is to limit the amount
of time they can be used without being reissued. Almost all credentials
have an expiration date, even pretty dorky ones like library cards. (The
only counterexample I can think of is corporate identity badges. This, I
think, is just plain dumb. It’s much more likely that you’ll change jobs
than you’ll forget how to drive.) A credential is no good after the expira-
tion date, as anyone who has inadvertently tried to pay for something
with an expired credit card, or (oops) to get back into the United States
with an expired passport, knows. If you have an expired credential, you
have to get a new one. Sometimes you have to get it yourself, like a new
passport, and sometimes a new one is sent to you automatically, like a new
credit card.

Expirations provide a safety net. A bad credential can be out there for
only so long, because it will expire eventually. A credit card company has
to keep a record of a bad credit card number for only so long, because
after it expires, it’s obviously no good. The third parties that issue these
credentials can tune their expiration dates to suit the applications. Your
first credit card might expire after six months or a year, just in case you
don’t prove reliable. After a while, your credit card might expire every
three years. Driver’s licenses (at least in Illinois) expire after four years.
U.S. passports are good for ten years. We can imagine a credential in an
application where fraud is rampant that would expire every week, or
every day, or every hour. It would be a royal pain to deal with in the pen-
and-paper world, but it works just fine in cyberspace.

And we want credentials to work in cyberspace. We want the digital
equivalent of credit cards, age-verification cards, corporate identity
badges, library cards, membership cards, and the like.

CERTIFICATES

A certificate is a credential . . . sort of. It’s sort of your identity, but not
really. And it’s signed by someone everyone trusts . . . maybe. It’s defi-
nitely not the same as a public key.

I think I should start at the beginning.
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Remember Chapter 6 and public-key cryptography? Alice uses pub-
lic-key cryptography to digitally sign things. She signs documents with
her private key, and sends the signed document to Bob. Now Bob needs
Alice’s public key to verify the signature. Where does he get it and how
is he sure it’s Alice’s?

In the early days of public-key cryptography, people envisioned vast
databases of public keys, kind of like telephone books. Bob could look
Alice’s name up in the online database of public keys, and then retrieve
the public key associated with that name.

Well, if everyone’s public key is going to be stored in a vast database
somewhere, what about the security of that database? An attacker can do
lots of malicious things if he can substitute one public key for another. He
can create a new public key, sign a bunch of checks with it, and then slip
it in the database next to Alice’s name. Suddenly, Alice signed all of those
checks. If Bob is using Alice’s public key to encrypt a message to her, the
attacker can swap his public key for Alice’s; now Bob’s secret message to
Alice can be decrypted by the attacker, and not by Alice.

We might be able to secure the public-key database, but the whole
idea was to have public keys freely and widely available. This just isn’t
going to work.

Certificates were the solution. A certificate is a binding between a
public key and an identity. A mutually trusted entity—call him God for
now—takes Alice’s name and Alice’s public key, sticks them together,
and then signs the whole mess. Now Bob has no worries. He gets Alice’s
public-key certificate from somewhere—he doesn’t much care where—
and verifies God’s signature on it. Bob trusts God, so if the signature is
valid he knows that the public key belongs to Alice and not to some
imposter. Problem solved; the world is now safe for electronic commerce.

Well, not exactly. Note that we haven’t actually solved the problem.
All we’ve done is taken the original problem, “How does Bob know that
Alice’s public key is really hers?” And changed it to: “How does Bob
know that God’s public key is really his?” Bob has to verify God’s signa-
ture on the certificate before he can use Alice’s key, so he needs God’s
public key. And where is he going to get that?

But we did solve something. Bob presumably wants to communicate
with a lot of people, not just with Alice. And if God has signed everyone’s
certificate, we’ve reduced Bob’s problem from verifying everyone’s pub-
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lic key to verifying just one public key: God’s. But let’s save that problem
for later.

A real certificate is a little more complicated. It contains information
about the person (his name, possibly his job title, possibly his e-mail
address, and other things about him), information about the certificate
(when it was issued, when it expires), information about the issuer or
signer (who he is, what algorithm he used to sign the certificate), and
information about the public key (what algorithm it is for) . . . as well as
the public key itself.

The basic idea is that Alice gets a public key certificate signed by God
somehow. Either she generates her own public-key/private-key key pair
and sends the public key to God, who returns the public-key certificate,
or God generates a public-key/private-key key pair for Alice and sends
her both the private key and the public-key certificate. (Now we have the
problem of securing this exchange, but never mind that for now.)

This all works great, until Alice loses her private key. Maybe some-
one stole it. Maybe she just forgot it. (Or, more likely, her computer
crashed and didn’t have a backup.) Bob is going to try to send her
encrypted 
e-mail in that lost key. Or, worse yet, Bob is going to try to verify signa-
tures created after someone stole the key. What do we do now?

We tell God, and he revokes Alice’s certificate. He declares it no
longer valid, no longer good, no longer correct. How does he do this? He
can’t go through every nook and cranny of the Net and erase every copy
of the certificate. (Well, maybe God can, but this is only an analogy.) He
probably doesn’t even know Bob has a copy of it.

So, God puts Alice’s certificate on the certificate revocation list, or CRL.
The CRL is a list of revoked certificates. (Remember 20 years ago when
merchants had newsprint books listing bad credit card numbers? That’s a
CRL.) God issues a CRL at regular intervals (the credit card companies
did it once a week), and it is Bob’s job to make sure that Alice’s certificate
is not on the current CRL before he uses it. He should also make sure that
it hasn’t expired, and that the certificate really does belong to Alice.

How does he do that last one? He compares Alice’s name with the
name on the certificate. If they match, then the certificate is hers. It
sounds simple, except that it doesn’t work.

This idea has several problems. First, there is no one to act as God.
Or, more properly, there is no one organization or entity that everyone
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can agree on and whose judgment is unassailable. The second is that Alice
has no single name that everyone can agree on.

First problem first. Remember, for this whole system to work, Alice
has to have her certificate issued by someone that both she and Bob trust.
In reality, we use hierarchies of trust to establish the validity of certificates.
A military organization is probably the best example of this. The platoon
leader signs the certificates of everyone in his platoon. The division com-
mander signs the certificate of every platoon leader under him. The army
general signs the certificates of his divisional commanders. And so on, up
to the commander-in-chief.

Alice now has a chain of certificates, from the commander-in-chief to
the army general to the divisional commander to the platoon leader to
her. She keeps them all, and presents them to Bob. If she and Bob are in
the same platoon, then Bob also has the platoon leader’s certificate. He
knows that it is valid, so he can verify Alice’s certificate directly. If Bob is
in the same division as Alice but in a different platoon, they share the same
divisional commander certificate. Bob can use it to verify Alice’s platoon
leader’s certificate, and then Alice’s certificate. Since Alice and Bob are in
the same military, someone is in both of their chains of command. It
might even be the commander-in-chief, who is “God” in this example.

This system works great in the military, but less well in the civilian
world. The Internet uses certificates to fuel a lot of protocols: IPsec and
various VPN systems, SSL, a few electronic commerce protocols, some
login protocols. These certificates are issued to users by someone called a
certificate authority (CA). A CA can be a corporate security office. It can be
a government. It can be a private company that is in the business of issu-
ing certificates to Internet users.

These CAs also need certificates. (Remember, there’s a hierarchy
here.) These CA certificates are issued by other CAs (probably VeriSign).
Eventually you get to the God in this system, or in reality a pantheon of
Gods. The highest-level CAs have what are known as root certificates;
they are not signed by anyone else. These certificates are embedded in the
software you buy: your browser, your VPN software, and so forth. This
is all called a public-key infrastructure (PKI). It works, but only sort of.

Second problem: Alice’s name.
Back in ancient times (the mid-1980s), someone dreamed about a

world where every individual, every process, every computer, every
communications device—anything connected to digital communica-
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tions—had a unique name. These names would be held in a vast distrib-
uted database, held by multiple people in multiple locations. This was
called X.500.

Certificates generally associate a public key with a unique name
(called a distinguished name in X.500 talk), but few people talk about how
useful that association is. Imagine that you receive the certificate belong-
ing to Joan Robinson. You may know only one Joan Robinson person-
ally, but how many does the CA know? How do you find out if the
particular Joan Robinson certificate you received is your friend’s certifi-
cate? You could have received her public key in person or verified it in
person (PGP allows this), but more likely you received a certificate in e-
mail and are simply trusting that it is the correct Joan Robinson. The cer-
tificate’s Common Name will probably be extended with some other
information, in order to make it unique among names issued by that one
CA.

Do you know that other information about your friend? Do you
know what CA her certificate should come from?

Remember the phone directory metaphor for public keys. If you
wanted to find Joan Robinson’s public key you would look her up in the
directory, get her public key, and send her a message for her eyes only
using that public key. This might have worked with the Stanford Com-
puter Science Department phone directory in 1976, but how many Joan
Robinsons are in the New York City phone book, much less in a hypo-
thetical phone book for the global Internet?

We grow up in small families where names work as identifiers. By the
time we’re five years old, we know that lesson. Names work. That is false
in the bigger world, but things we learn as toddlers we never forget. In
this case, we need to think carefully about names and not blindly accept
their value by the five-year-old’s lessons locked into our memories.

The idea also assumes that Alice and Bob have an existing relationship
in the physical world, and want to transfer that relationship into cyber-
space. Remember back when “cyberspace” was just a science  fiction
term, and any relationship worth talking about—business, social, banking,
commercial—was formed in the flesh-and-blood world? Today, people
are meeting on the Net and forming relationships all the time. Sometimes
they meet in person long after they’ve become friends; sometimes they
never meet in person. In this brave new world, a system designed to map
relationships from the physical world into cyberspace seems limiting.
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PROBLEMS WITH TRADITIONAL PKIs

PKIs and CAs have a raft of other problems. For example, what does it
mean when a CA claims that it is trusted? In the cryptographic literature,
this only means that it handles its own private keys well. This  doesn’t
mean you can necessarily trust a certificate from that CA for a particular
purpose: making a small payment or signing a million-dollar purchase
order.

Who gave the CA the authority to grant such authorizations? Who
made it trusted? Many CAs sidestep the question of having no authority
to delegate authorizations by issuing identity certificates. Anyone can
assign names. We each do that all the time. This leaves the risk in the
hands of the verifier of the certificate, if he uses an identity certificate as if
it implied some kind of authorization. Basically, certificates only protect
you from those that the PKI vendor refuses to do business with.

And “authority” has several meanings. The CA may be an authority
on making certificates, but is it an authority on what the certificate con-
tains? For example, an SSL server certificate contains two pieces of data of
potential security interest: the name of the keyholder (usually a corporate
name) and the DNS name for the server. There are authorities on DNS
name assignments, but none of the SSL CAs listed in the popular browsers
is such an authority. That means that the DNS name in the certificate is
not an authoritative statement. There are authorities on corporate names.
These names need to be registered when one gets a business license.
However, none of the SSL CAs listed in the browsers is such an author-
ity. In addition, when some server holds an SSL server certificate, it has
permission to do SSL. Who granted the authority to an SSL CA to con-
trol that permission? Is the control of that permission even necessary?
What harm would be done if an uncertified server were allowed to use
encryption? None.

Some CAs, in response to the fact that they are not authorities on the
certificate contents, have created a two-part certification structure: a Reg-
istration Authority (RA), run by the authority on the contents. The idea is
that the RA is responsible for validating what’s in the certificate, and the
CA is responsible for issuing it.

The RA+CA model is categorically less secure than a system with a
CA at the authority’s (i.e., the RA’s) desk. The RA+CA model allows
some entity (the CA) that is not an authority on the contents to forge a
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certificate with those contents. Of course, the CA would sign a contract
promising not to do so, but that does not remove the capability. Mean-
while, since security of this model depends on the security of both pieces
and the interaction between them (they have to communicate somehow),
the RA+CA is less secure than either the RA or the CA, no matter how
strong the CA or how good the contract with the CA. Of course, the
model with a CA at the authority’s desk (not at the vendor’s site) violates
some PKI vendors’ business models.

Another problem involves the protection of the private key. Re -
member, for the whole digital-signature system to work, you have to be
sure that only you know your private key. Okay then, how do you pro-
tect it? You almost certainly don’t own a secure computing system with
physical access controls, TEMPEST shielding, “air wall” network secu-
rity, and other protections; you store your private key on a conventional
computer. There, it’s subject to attack by viruses and other malicious pro-
grams. Even if your private key is safe on your computer, is your com-
puter in a locked room, with video surveillance, so that you know no one
but you ever uses it? If it’s protected by a password, how hard is it to guess
that password? If your key is stored on a smart card, how attack-resistant
is the card? If it is stored in a truly attack-resistant device, can an infected
computer convince the trustworthy device to sign something you didn’t
intend to sign?

This matters mostly because of the term nonrepudiation. Like
“trusted,” this term is taken from the literature of academic cryptography.
There it has a specific meaning: that the digital-signature algorithm is not
breakable, so a third party cannot forge your signature. PKI vendors have
latched onto the term and used it in a legal sense, lobbying for laws to the
effect that if someone uses your private signing key, then you are not
allowed to repudiate the signature. In other words, under some digital sig-
nature laws (e.g., Utah’s and Washington’s), if your signing key has been
certified by an approved CA, then you are responsible for whatever that
private key does. It does not matter who was at the computer keyboard
or what virus did the signing; you are legally responsible.

The way it’s supposed to work is that when you know your key is
compromised, you put it on a CRL. Anything signed after that time is
automatically repudiated. This sounds plausible, but the system is funda-
mentally flawed. Bob wants to know that Alice’s key hasn’t been com-
promised before he accepts her digital signature. The attacker is not going
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to announce the compromise to Alice. So, Alice’s first clue that her key
was compromised will come when she gets some notice from Bob show-
ing evidence of the fraudulent signature. In most schemes, this will hap-
pen only after Bob accepts the signature.

Contrast this with the practice regarding credit cards. Under mail-
order/telephone-order (MOTO) rules, if you object to a line item on
your credit card bill, you have the right to repudiate it—to say you  didn’t
buy that—and the merchant is required to prove that you did.

There are similar vulnerabilities in the computer that does the verifi-
cation. Certificate verification does not use a secret key, only public keys.
But to verify a certificate, you need one or more “root” public keys: the
public keys of the CAs. If the attacker can add his own public key to that
list, then he can issue his own certificates, which will be treated exactly
like the legitimate certificates. They can even match legitimate certificates
in every other field except that they would contain a public key of the
attacker instead of the correct one.

Some PKI vendors claim that these keys are in root certificates, and
hence secure. Such a certificate is self-signed and offers no increased secu-
rity. The only answer is to do all certificate verification on a computer sys-
tem that is invulnerable to penetration by hostile code or to physical
tampering.

And finally, how did the CA identify the certificate holder? Whether
a certificate holds just an identifier or some specific authorization, the CA
needs to identify the applicant before issuing the certificate.

Several credit bureaus thought they would get into the CA business.
After all, they had a vast database on people, so, the thinking ran, they
should be able to establish someone’s identity online with ease. If you
want to establish identity online, you can do that provided you have a
shared secret with the subject and a secure channel over which to reveal
that secret. SSL provides the secure channel.

The trouble with a credit bureau serving this role is that they don’t
have a secret shared only with the subject. In other words, there isn’t a
secure offline ID that can be used to bootstrap the process. This is because
credit bureaus are in the business of selling their information to people
other than the subject. Worse, because credit bureaus do such a good job
at collecting and selling facts about people, others who might have infor-
mation about a subject are probably hard pressed to find any datum shared
with the subject that is not already available through some credit bureau.
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This puts at risk commercial CAs that use credit bureau information to
verify identity online; the model just doesn’t work.

Meanwhile, having identified the applicant somehow, how did the
CA verify that the applicant really controlled the private key correspond-
ing to the public key being certified? Some CAs don’t even consider that
to be part of the application process. Others might demand that the appli-
cant sign some challenge right there on the spot, while the CA watches.

Certificates aren’t like some magic security elixir, where you can just
add a drop to your system and it will become secure. Certificates must be
used properly if you want security. Are these practices designed with solid
security reasons, or are they just rituals or imitations of the behavior of
someone else? Many such practices and even parts of some standards are
just imitations which, when carefully traced back, started out as arbitrary
choices by people who didn’t try to get a real answer.

How is key lifetime computed? Does the vendor use one year, just
because that’s common? A key has a cryptographic lifetime. It also has a
theft lifetime, as a function of the vulnerability of the subsystem storing it,
the rate of physical and network exposure, attractiveness of the key to an
attacker, and so forth. From these, one can compute the probability of loss
of key as a function of time and usage. Does the vendor do that compu-
tation? What probability threshold is used to consider a key invalid?

Does the vendor support certificate or key revocation? CRLs are built
into some certificate standards, but many implementations avoid them.
But if CRLs are not used, how is revocation handled? If revocation is sup-
ported, how is compromise of a key detected in order to trigger that revo-
cation? Can revocation be retroactive? That is, can a certificate holder
deny having made some signature in the past? If so, are signatures dated so
that one knows good signatures from suspect ones? Is that dating done by
a secure timestamp service?

How long are the generated public keys and why was that length
chosen? Does the vendor support shorter, and weaker, RSA keys just
because they’re fast or longer keys because someone over there in the cor-
ner said he thought it was secure?

Does the proper use of these certificates require user actions? Do users
perform those actions? For example, when you establish an SSL connec-
tion with your browser, there’s a visual indication that the SSL protocol
worked and the link is encrypted. But who are you talking securely with?
Unless you take the time to read the certificate that you received, you
don’t know.

Certificates and Credentials 237

453803_Ch15.qxd:453803_Ch15.qxd  4/12/13  1:36 PM  Page 237



PKIS ON THE INTERNET

Most people’s only interaction with a PKI is using SSL. SSL secures Web
transactions, and sometimes PKI vendors point to it as enabling technol-
ogy for electronic commerce. This argument is disingenuous; no one is
turned away at an online merchant for not using SSL.

SSL does encrypt credit card transactions on the Internet, but it is not
the source of security for the participants. That security comes from credit
card company procedures, allowing a consumer to repudiate any line item
charge before paying the bill. SSL protects the consumer from eavesdrop-
pers, it does not protect against someone breaking into the Web site and
stealing a file full of credit card numbers, nor does it protect against a
rogue employee at the merchant harvesting credit card numbers. Credit
card company procedures protect against those threats.

PKIs are supposed to provide authentication, but they don’t even do
that.

Example one: The company F-Secure (formerly Data Fellows) sells
software from its Web site at www.datafellows.com. If you click to buy
software, you are redirected to the Web site www.netsales.net, which
makes an SSL connection with you. The SSL certificate was issued to
“NetSales, Inc., Software Review LLC” in Kansas. F-Secure is headquar-
tered in Helsinki and San Jose. By any PKI rules, no one should 
do business with this site. The certificate received is not from the same
company that sells the software. This is exactly what a man-in-the-
middle attack looks like, and exactly what PKI is supposed to prevent.

Example two: I visited www.palm.com to purchase something for
my PalmPilot. When I went to the online checkout, I was redirected to
https://palmorder.modusmedia.com/asp/store.asp. The SSL certificate
was registered to Modus Media International; clearly a flagrant attempt to
defraud Web customers, which I deftly uncovered because I carefully
checked the SSL certificate. Not.

Has anyone ever sounded the alarm in these cases? Has anyone not
bought online products because the name of the certificate didn’t match
the name on the Web site? Has anyone but me even noticed?

I doubt it. It’s true that VeriSign has certified this man-in-the-
middle attack, but no one cares. I made my purchases anyway, because
the security comes from credit card rules, not from the SSL. My maxi-
mum liability from a stolen card is $50, and I can repudiate a transaction

238 C H A P T E R  F I F T E E N

453803_Ch15.qxd:453803_Ch15.qxd  4/12/13  1:36 PM  Page 238



if a fraudulent merchant tries to cheat me. As it is used, with the average
user not bothering to verify the certificates exchanged and no revocation
mechanism, SSL is just simply a (very slow) Diffie-Hellman key-exchange
method. Digital certificates provide no actual security for electronic com-
merce; it’s a complete sham.
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Security Tricks

This chapter is an orderless collection of computer security tricks
and techniques that don’t really fit anywhere else.

GOVERNMENT ACCESS TO KEYS

“All right; here’s the deal: We’re the government, and we’re here to pre-
vent crime. It’s not easy, criminals being as devious as they are. These
criminals, scary criminals like drug dealers, terrorists, child pornographers,
and money launderers, are using cryptography to protect their communi-
cations. We’re worried that all of our court-authorized wiretaps won’t be
effective anymore; all of these scary criminals will get away. So we want
to be able to decrypt everyone’s stuff, just in case they turn out to be crim-
inals. We want you, all of you, to make copies of all of your encryption
keys and send them to the police (or someone the police trusts), just in
case you turn out to be a criminal. And no, we don’t trust you to do
that—so we’re going to make it automatic in the cryptography products
you buy.”

Admittedly, that’s not a kind picture of the FBI’s position on key
escrow, but it’s accurate. Since 1993, the Clinton administration and the
FBI have tried to force the American public to accept the idea that they
should give some government-approved party access to their privacy.
They’ve tried to cajole corporations into putting it in their products, per-
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suade users that it is in their best interest, and, when they met resistance in
the United States, obdurately pressured other countries to adopt the same
policies. They’ve even threatened to make secure cryptography illegal. It’s
a very contentious issue.

On the surface, the FBI has a legitimate complaint. Criminals are
using cryptography to hide evidence that could be used against them in a
court of law: They encrypt computer files, they use encrypted telephones
and radios to communicate. But the positive uses of cryptography far out-
weigh the negative uses, and pervasive cryptography does a lot more to
prevent crime than it does to aid it. Ron Rivest once compared cryptog-
raphy to gloves. It’s true, by making gloves legal society has made it eas-
ier for criminals to hide their fingerprints. But no one has ever suggested
outlawing gloves.

There have been a lot of names for this idea. The government’s first
euphemism was key escrow, since a master key in the Clipper Chip would
hold the session key “in escrow” for later release to law enforcement.
When people didn’t buy escrowed encryption, they changed the name to
make it more palatable. Today, the terms include “key recovery,”
“trusted third-party encryption,” “exceptional access,” “message recov-
ery,” and “data recovery.” I like GAK: government access to keys.

GAK systems have a back door. In other words, they provide some
form of access to encrypted data aside from the normal process of decryp-
tion. The Clipper proposal called this back door the Law Enforcement
Access Field (LEAF). (It was originally called the Law Enforcement
Exploitation Field, until someone pointed out that the name wasn’t
 exactly mellifluous.)

The GAK back door is for government agencies (such as police) to
use. They work in a variety of ways: Early GAK systems relied on the
storage of private keys by the U.S. government or, more recently, by des-
ignated private entities with proper clearances. Other systems have escrow
agents or key recovery agents, sometimes employees of large corpora-
tions, that maintain the ability to recover the keys for a particular
encrypted communication session or stored file. Some systems split the
ability to recover keys among several agents. There are variations, but all
GAK systems share two essential elements. First, a mechanism, external to
the primary system, by which a third party can obtain covert access to the
plaintext of encrypted data. And second, the existence of a highly sensi-
tive secret recovery key (or collection of keys) that must be secured for an
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extended period of time. On the policy side, GAK systems need to give
police timely access to plaintext, without notifying the user. Systems of
this type, according to the Clinton administration and the FBI, solve the
problem of criminals encrypting their incriminating evidence.

Unfortunately, the solution is worse than the problem. Data recovery
is easy to do, because it is in the best interest of the user. Users like auto-
matic backup; they don’t have to remember to make backups. (Pause
while I back up this manuscript.) But GAK is also often tied to commu-
nications—phone conversations and e-mail—that have no corresponding
data backup requirement. Data in storage have enormous value; if lose
you it, there’s no way to replace it. Data in communications have no
value; if you lose it, you can always retransmit.

GAK is different, and much more difficult, because it has to work in
spite of a hostile user. The requirements stated by the FBI for access—
speed of access, surreptitiousness of access, comprehensiveness of access—
force users to give up a lot of security. If I encrypt an e-mail message, I
have to trust the cryptography on my end and that on the receiver’s end.
Adding GAK in the middle means that I would also have to trust the
entire key escrow infrastructure: the cryptography, the databases, the poli-
cies, the people. The cost to build this infrastructure would be enormous,
as would the risks.

These risks are intrinsic to the idea of GAK, and are not dependent on
the particular technology. All GAK systems require the existence of a
highly sensitive and highly available secret key or collection of keys that
must be maintained in a secure manner over an extended time period.
These systems must make decryption information quickly accessible to
law enforcement agencies without notice to the key owners. These basic
requirements make the problem of general key recovery difficult and
expensive—and potentially too insecure and too costly for many applica-
tions and many users. 

With many GAK alternatives, you can choose between higher cost
and higher risk. While it may be possible to field a particular GAK system
in a relatively secure way, this often results in tremendous costs to the
user. On the other hand, simple and inexpensive GAK systems can jeop-
ardize security. For example, a poorly run key recovery agent, employing
untrained and low-paid personnel, with a low level of physical security,
and without liability insurance, could be expected to be less expensive to
operate than a well-run center. It will also be sloppier with the keys.
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Interestingly, security and cost can also be traded off with respect to
the design itself. For example, imagine a design in which session keys are
sent to the recovery center by encrypting them with the center’s globally
known public key. Such a system is relatively simple to design and imple-
ment, but it is about the worst possible design from a security point of
view. It has a single point of failure, the key of the recovery agent, with
which all keys are encrypted. If this key is compromised (or a corrupt ver-
sion distributed), all the recoverable keys in the system could be compro-
mised. Of course, several commercial systems are based on almost exactly
this design.

Essentially, GAK systems are inherently less secure, more costly, and
more difficult to use than similar systems without a recovery feature.
Making them work requires the criminalization of non-GAK security
products. Furthermore, building a secure infrastructure of the breathtak-
ing scale and complexity that would be required for such a scheme is
beyond the experience and current competency of the field, and may well
introduce ultimately unacceptable risks and costs.

DATABASE SECURITY

Database security is harder than you might think. The simple stuff is easy:
Alice has access to the personnel database, and Bob doesn’t. The harder
stuff is harder—Alice has access to the parts of the personnel database per-
taining to health insurance, and Bob has access to the parts of the person-
nel database pertaining to salary—but commercial database products
manage that pretty well. The difficult stuff—enforcing anonymity in data-
bases while allowing people to use summary information—is surprisingly
difficult.

The harder stuff first. Databases can be set to only show certain fields
to certain users. All users might be allowed to see a set of common fields
(employee name, employee number), whereas only certain users might be
allowed to see specific fields (health insurance information, salary). This is
all a conventional computer security problem, solved by authentication
protocols and access control lists.

Much more difficult is dealing with the situation where Alice is
allowed to make queries and see aggregate information, but is not allowed
to see individual entries. The problem is one of “inference;” Alice can
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often infer information about individuals by making queries about groups.
One example: Alice queries the database for summary information on

detailed groups. If she can ask the database queries like this—summary
information on every narcoleptic female, between ages 35 and 45, with
one diabetic parent, and living in a particular zip code—then Alice is
likely to be able to isolate individuals.

A possible solution to this problem is to scrub the data beforehand.
Data from the 1960 U.S. census, for example, was secured in this manner.
Only one record in a thousand was made available for statistical analysis,
and those records had names, addresses, and other sensitive data deleted.
The Census Bureau also used a bunch of other tricks: data with extreme
values were suppressed, and noise was added to the system. These sorts of
protections are complicated, and subtle attacks often remain. If you want
to know the income of the one wealthy family in a neighborhood, it
might still be possible to infer it from the data if you make some reason-
able assumptions.

The other possible solution is to limit the types of queries that some-
one can make to the database. This is also difficult to get right. In one
famous research paper, the author calculated her boss’s salary based on
legitimate queries to the 1970 census database, despite controls that were
put in place precisely to stop this kind of thing. The New Zealand
National Health Information System tries to defeat these kinds of attacks
by not providing summary information on groups smaller than six people.
(A technique known to be insufficient.)

Attacks are still possible. Alice is going to know the kinds of queries
that are allowed, and will do her best to figure out some mathematical
way of inferring the information she wants from the information she’s
allowed to get. And things are exacerbated further if Alice is allowed to
add and delete data from the database. If she wants to learn about a par-
ticular person, she might be able to add a couple hundred records into the
database and then make general queries about the population she added
plus her target. Since she knows all the data she added, she can infer data
about her target. A whole set of related attacks follow from this idea.

This was an active research area in the 1980s, but less so today.
(Although the new medical privacy regulations may bring about a resur-
gence.) The problems are not solved, though.
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STEGANOGRAPHY

Steganography is the science of hiding messages in messages. Herodotus
talks of the ancient Greek practice of tattooing a secret message on the
shaved head of a messenger, and letting his hair grow back before sending
him through enemy territory. (The latency of this communications sys-
tem was measured in months.) Invisible ink is a more modern technique.
Microdots were invented by the Germans during World War I, and
stayed in vogue for many years. Spies would photograph an image such
that the image on the negative was small enough to cut out and place over
a period of a book. The spy would carry the book around, secure that no
one would find the microdot hidden on one of its many pages.

In the computer world, steganography has come to mean hiding
secret messages in graphics, pictures, movies, or sound. The sender hides
the message in the low-order bits of one of these file types—the quality
degrades slightly, but if you do it right it will hardly be noticeable—and
the receiver extracts it at the other end. Several commercial and freeware
programs offer steganography, either by themselves or as part of a com-
plete communications security package.

Steganography offers a measure of privacy beyond that provided by
encryption. If Alice wants to send Bob an e-mail message securely, she
can use any of several popular e-mail encryption programs. However, an
eavesdropper can intercept the message and, while she might not be able
to read it, she will know that Alice is sending Bob a secret message.
Steganography allows Alice to communicate with Bob secretly; she can
take her message and hide it in a GIF file of a pair of giraffes. When the
eavesdropper intercepts the message, all she sees is a picture of two
giraffes. She has no idea that Alice is sending Bob a secret message. Alice
can even encrypt it before hiding it, for extra protection.

So far, so good. But that’s not how the system really works. The
eavesdropper isn’t stupid; as soon as she sees the giraffe picture she’s going
to get suspicious. Why would Alice send Bob a picture of two giraffes?
Does Bob collect giraffes? Is he a graphics artist? Have Alice and Bob been
passing this same giraffe picture back and forth for weeks on end? Do they
even mention the picture in their other correspondence?

The point here is that steganography isn’t enough. Alice and Bob
must hide the fact that they are communicating anything other than
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innocuous photographs. This only works when steganography can be
used within existing communications patterns. I’ve never sent or received
a GIF in my life. If someone suddenly sends me one, it won’t take a
rocket scientist to realize that there might be a steganographic message
hidden somewhere in it. If Alice and Bob already regularly exchange suit-
able files, then an eavesdropper won’t know which messages—if any—
contain the messages. If Alice and Bob change their communications
patterns to hide the messages, it won’t work. An eavesdropper will figure
it out.

This is important. I’ve seen steganography recommended for secret
communications in oppressive regimes, where the simple act of sending
an encrypted e-mail could be considered subversive. This is bad advice.
The threat model assumes that you are under suspicion and want to look
innocent in the face of an investigation. This is hard. You are going to be
using a steganography program that is available to your eavesdropper. She
will have a copy. She will be on the alert for steganographic messages.
Don’t use the sample image that came with the program when you
downloaded it; your eavesdropper will quickly recognize that one. Don’t
use the same image over and over again; your eavesdropper will look for
the differences that indicate the hidden message. Don’t use an image that
you’ve downloaded from the Net; your eavesdropper can easily compare
the image you’re sending with the reference image you downloaded.
(You can assume she monitored the download, or that she searched the
Net and found the same image.) And you’d better have a damn good
cover story to explain why you’re sending giraffes back and forth. And
that cover story should exist before you start sending steganographic mes-
sages, or you haven’t really gained anything.

Steganography programs exist to hide files on your hard drive. This
can work, but you still need a good cover story. Still, there’s some advan-
tage here over straight encryption—at least in free countries you can
argue that the police have no real evidence—but you have to think it out
carefully.

SUBLIMINAL CHANNELS

One issue with steganography is bandwidth. It’s easy to hide a few bits of
information; hiding an entire e-mail message is a lot harder. Here, for
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example, is a perfectly reasonable stenographic data channel: Alice and
Bob need to tell each other whether a particular action is either “safe” or
“dangerous.” That’s one bit of information. They regularly exchange
recipes over e-mail, and agree that the key phrase “double the recipe” will
be the message indicator. If the e-mail says that the recipe can be doubled,
then the action is safe. If the e-mail says that the recipe cannot be doubled,
then the action is dangerous. Any recipe without the phrase does not con-
tain a message.

This kind of system works because the secret message is much, much
smaller than the overt message, and is generally called a subliminal channel
(similar to a covert channel from Chapter 8). Subliminal channels are as
old as computers, and have been used by unscrupulous programmers to
leak information without the user’s consent. Imagine that you’re a pro-
grammer designing a report on banking customers, and you want to get
your hands on the customers’ PINs. You’re not authorized to examine
the real data, but you’ve been trusted to write the code to produce the
report from the database that contains the PINs. And you can see the real
reports after they are produced. Program the report generator to add
spaces after each customer’s entry, 0 through 9, corresponding to one
digit of the customer’s PIN. Have the report generator use the first digit
one day, the second digit the second day, and so forth until it is done, and
then cycle back to the first digit. That’s it. If the programmer can get his
hands on the electronic report for four consecutive days, he can recover
everyone’s PIN. (Actually, he has four possibilities for each PIN, depend-
ing on which digit the report generator used when, but that’s easy to deal
with.) No one else reading the reports will see anything unusual, and
unless they examine the code that generates the reports (and how often
will that happen?) they will never know that the PINs are being leaked.

There is the story of a soldier who was not allowed to say where he
was stationed. He didn’t have a middle initial, and sent a series of letters to
his girlfriend with a different middle initial in each; over time he spelled
out where he was stationed.

Once you get the general idea, you can think of all sorts of ways to
embed subliminal channels in documents: the choice of fonts and font
sizes, the placement of data and graphics on a page, the use of different
synonyms in text, and so on. Many cryptographic protocols allow for sub-
liminal channels in the choice of parameters, in the random bits used for
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padding, and in unused bit fields. As long as you’re not too greedy, and
are willing to leak the information a teaspoon at a time, it’s not hard to
add a subliminal channel to a system.

You can leak all sorts of things. PINs are a good example. Crypto-
graphic keys are another. Building a cryptographic device that leaks key
bits through a subliminal channel is a pretty duplicitous way to attack
someone.

Subliminal channels have been discovered in all sorts of software over
the years, put in by unscrupulous programmers. Intelligence agencies like
the NSA have long been suspected of embedding subliminal channels to
leak key bits in cryptographic hardware sold to foreign governments. A
recent scandal involving the Swiss cryptographic company Crypto AG
involved this very allegation. Side channels, discussed in the context of
tamper-resistant hardware in Chapter 14, can be viewed as accidental
subliminal channels.

Note that subliminal channels have the same problem as steganogra-
phy in that someone who examines the underlying software will notice
the subliminal channel. But embedded in a complex piece of software or,
better yet, a piece of embedded hardware, it can go unnoticed for a long
time.

DIGITAL WATERMARKING

We talked about intellectual property in Chapter 3. To review, compa-
nies like Disney are going to want to peddle their intellectual property—
music, videos, still images, whatever—in digital form. They don’t want
people copying The Little Mermaid and distributing it free over the Inter-
net. They don’t want people stealing pieces of images—even a single
image of Mickey Mouse—and using them without paying royalties. They
want to keep control over their property.

Digital watermarks are one way of accomplishing this goal. Think of
it as a subliminal channel or an application of steganography. The idea is
to embed secret information in the stuff to identify who the legal owner
is. Kind of like a paper watermark: The watermarked paper can be passed
around from person to person, but someone can always hold it up to the
light and see the watermark.

There are actually two related terms, here. Watermarking identifies
unchanging information, while fingerprinting identifies a particular buyer.
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For example, a watermark on The Little Mermaid would say something
like “Property of Disney,” while a fingerprint on the same digital movie
would say something like: “Purchased by Alice, 1/1/01.”

Digital watermarks (and fingerprints) go one better, though. Copy
the paper, and the watermark disappears. Copy the digital file, and the
watermark goes with the copy. Maybe we can’t stop copying, Disney rea-
sons, but we can at least point the finger at whoever copied it in the first
place. And I’ve seen watermarks proposed for a lot of things: graphics,
images, video, audio . . . even stock ticker data and computer programs.

So, depending on what data you put into the watermark, they can do
one of two things. First, they can identify the original copyright holder.
Second, they can identify both the original copyright holder and the per-
son who bought the copy: If every copy of The Little Mermaid is water-
marked with the name and address of the person who bought it, then
when a copy appears on the Internet, Disney can identify the culpable
party.

Great idea, but it just won’t work.
The problem is that in order for Disney to be able to take a copy of

The Little Mermaid and find the embedded watermark, it has to be find-
able. And if Disney can find it, a pirate can find it, too. Companies that
market this stuff try to tell you that their watermarking schemes can’t be
removed for this or that technobabble reason.

It just isn’t true. As with a subliminal channel, it is virtually impossi-
ble to find a good watermark unless you know exactly where to look. But
unlike a subliminal channel, the detection mechanism will eventually be
made public. Either it will leak into the hacking community like every-
thing else does, or it will be made public the first time a court case turns
on watermarking evidence. The mechanisms for watermarking will even-
tually become public, and when they do, they can be reverse engineered
and removed from the image.

Reversal might not be easy. Ingenious tricks can make it difficult, but
they can’t make it impossible. And a sagacious hacker can write an
automatic tool to strip the watermark, once he knows how it works.

Another vulnerability is that watermarking doesn’t solve the underly-
ing problem. What watermarking does is allow a company to point to its
unaltered digital property and say: “That’s mine.” This is hardly enough
to be useful because digital property is so easy to alter, and watermarking
doesn’t prevent someone from altering the digital property. It also does-
n’t guarantee that the person identified by the watermark is the culprit.
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Imagine that every copy of The Little Mermaid is watermarked with the
identity of the buyer. How does the merchant verify the buyer’s identity?
Unless we have hard-to-forge identity documents—either real or vir-
tual—this system won’t work. And there’s nothing to stop a counterfeiter
from paying $10 to a homeless drunk to walk into the video store and buy
the movie for him. He now has a movie with the embedded watermark
of someone who probably doesn’t care if Disney knows his identity, and
who doesn’t have any assets if Disney tries to sue.

Watermarking can help convict grandma when she duplicates a single
copy of The Little Mermaid for all her grandchildren, but it can’t stop the
Taiwanese pirates from ripping out the watermarks and selling half a mil-
lion pirate copies on the black market. Or someone using a fictitious
identity to purchase the legitimate copy and then not worrying about it.

COPY PROTECTION

This problem is easy to describe, and much more difficult to solve. Soft-
ware companies want people to buy their products; they hate it when
someone makes a copy of a business program that costs hundreds of dol-
lars and gives it to a friend. (Actually, these days they kind of like it. They
realize that the friend probably wouldn’t have bought it anyway, that he’ll
use the software and get “hooked,” and when he eventually goes legit,
either he or his boss will buy a legal copy of the same program—and not
a competitor’s. WordPerfect used this scheme to increase its popularity.)
This is especially important with computer games and in countries with
little respect for intellectual property: In these cases, lots of users will pirate
rather than buy a legitimate copy. (This same problem applies to people
who want to distribute content—books, movies, videos, and so forth—
that they don’t want copied.)

There are all sorts of solutions—embedded code in the software that
disables copying, code that makes use of non-copyable aspects of the orig-
inal disk, hardware devices that the software needs to run—and I’m not
going to talk about them in detail. They all suffer from the same basic
conceptual flaw: It is impossible to copy-protect software on a  general-
purpose computer.

In the hands of Joe Average computer user, any copy protection sys-
tem works. He can copy ordinary files by following the directions, but has
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no idea how to defeat a reasonably sophisticated copy protection scheme.
In the hands of Jane Hacker, no copy protection system works.

The problem is that Jane controls her computer. She can run debug-
gers, reverse engineer code, analyze the protected program. If she’s smart
enough, she can go into the software and disable the copy protection
code. The manufacturer can’t do a thing to stop her; all it can do is make
her task harder. But to Jane, the challenge entices her even more.

There are a bunch of Janes out there who break copy protection
schemes as a hobby. They hang out on the Net, trading illegal software.
There are also those who do it for profit. They work in China, Taiwan,
and elsewhere, removing copy protection code and reselling the software
on CD-ROM for less than a tenth of the retail price. They can disable the
most sophisticated copy protection mechanisms. The lesson from these
people is that any copy protection scheme can be broken.

The dongle is the current state of the art in copy protection. It’s a piece
of hardware that plugs into the computer, usually into the parallel port.
(Conflicts with other devices using the port, and other dongles, are only
problems occasionally.) The protected software calls the dongle at various
points during execution; for example, every thousand keypresses or
mouseclicks, when a user tries to save, or every time he selects the nail
gun as his weapon. If the dongle doesn’t respond to a call, or responds
incorrectly, the software stops running. Or, more effectively, it keeps run-
ning but gives subtly wrong answers. (A 1992 version of Autodesk’s 3D
Studio used the dongle to create a table in memory that was required to
correctly mirror three-dimensional geometry. Removing the dongle
caused the program to fail over the course of a few hours, imperceptibly
at first, but eventually dramatically. Autodesk had to field a lot of calls
from unregistered users complaining about a strange bug in their version
of 3D Studio.)

Calls to the dongle are all encrypted, and the dongle itself is protected
from hardware reverse engineering by a variety of tricks. Still, programs
that use dongles are routinely broken without attacking either the
cryptography or the tamper resistance.

How? Instead of defeating the dongle, hackers go through the code
and remove all calls to it. It’s painstaking work: Hackers have to go
through the code line by line, function by function, call by call. They may
have to hook a logic analyzer up to the dongle and correlate execution
addresses to dongle accesses. A sophisticated program could contain tens
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of megabytes of code. But remember Chapter 2 and my first reason why
the Internet is different from the physical world: Only one smart pirate
has to succeed; everyone else can just use that person’s unprotected
version of the software.

The success of software pirates doesn’t stop companies from trying to
copy-protect their programs. The 1996 Quake release came on an
encrypted CD-ROM: You could try it for free, but had to call the com-
pany and buy the password to unlock the entire game. It was eventually
cracked, along with every other popular copy-protected program ever
released.

Hacked programs are called warez, and you can amass a collection of
the stuff yourself just by looking around the Internet. You won’t find
manuals, but that’s what all the computer books are for. Just about every-
thing is available, usually for trade.

Copy protection gurus like to point to new technologies to save their
industry. They call for a unique serial number on the computer’s micro-
processor, so that every legitimate copy of a program could be pro-
grammed to work only on one particular computer. They talk about
encryption capabilities on the motherboard. None of this will work. All
of it will keep Joe Average from copying his software, but none will stop
Jane Hacker from dismantling the program and posting a cracked warez
version for everyone to download.

This duality of risks is no different from the watermarking problem.
Look at the videotape industry: Piracy is much lower than when VCRs
were new because of two reasons. One, the dinky copy protection is
respected by all VCRs, thwarting Joe Average. And two, the retail price
of videotapes is so cheap that the economic incentive to Jane Hacker has
lessened.

What’s really interesting about the problem of copy protection and
software piracy is that the solution is to pretend that there’s not a problem:
There is little to no copy protection in business software. In the compet-
itive software application industry, market share and product loyalty—
however they are achieved—are crucial. Many companies reason as
follows: People who pirate my software cost my company next to
nothing, since my marginal cost of goods is zero. It’s not like they are
stealing televisions off my assembly line. Almost all people who pirate my
software can’t afford to pay for it, so I’m not losing many sales. And when
these pirates eventually get into a situation where they need to buy the
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software legitimately, they will already be hooked on my software, not
my competitors’. Piracy is just another way of boosting market share.

Microsoft had exactly this in mind when they made a big push to get
their products translated into Chinese and distributed across that country.
They knew they would be pirated; they knew that they would make less
than one sale for every ten copies used. Microsoft’s Steve Ballmer has
been quoted as saying: “If you’re going to get pirated, you want them to
pirate your stuff, not your competitors’ stuff. In developing countries, it is
important to have a high share of the piracy software.” When China
enters the free world, they will already be Microsoft compatible. Until
then, Microsoft isn’t losing anything. It’s a perceptive business strategy.

ERASING DIGITAL INFORMATION

There are lots of times when we want to completely erase digital infor-
mation. If you have a confidential file on your computer and you erase it,
you want to make sure that no one can come by later and recover that file.
If you are using a secret key to encrypt a communications line—a phone
call, for example—you want to be able to erase that key at the end of the
phone call and be sure that no one can recover it later.

Erasing digital information turns out to be harder than you might
think.

On a normal computer system, when you delete a file on a magnetic
disk (hard disk, floppy, or anything in between), the data isn’t really
erased. (This is why unerase utilities work.) The file is simply marked as
deleted, and then the bits are overwritten with new data eventually. The
way to truly erase a file from a magnetic disk is to overwrite it with a new
file. And some file erasure utilities do this.

What is less well known is that technologies can recover erased data
even after it has been overwritten. I’ll spare you the science, but you can
think of overwriting a bit as simply writing on top of it. Some of the data
underneath remains. And when you overwrite again, some of the previ-
ous two data bits remain. And so on. There’s a technique called magnetic
force microscopy that can be used to recover data even after it has been
overwritten multiple times. Exactly how many is not known; I’ve heard
estimates as high as ten. (The U.S. government specs on this kind of thing
are classified, which itself should tell you something.)
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These microscopes are expensive (although amateur versions are
getting cheaper), and these attacks are probably only feasible for govern-
ments. If you are worried about a government, the only real way to erase
a magnetic disk is to shred or burn it.

Data is also hard to erase in hardware. Both SRAM and DRAM
retain some remnants of the data after losing power. Bits in RAM can be
recovered by electronically detecting changes in cell thresholds based on
previous cell content. Modifying the temperature and voltage can affect a
chip’s ability to erase data. There’s a lot of physics that can be applied to
the problem of recovering data after it has been erased.

U.S. military cryptography equipment is built to erase, or zeroize, all
keys if tampered with. This is hard for two reasons: It is hard to erase data,
and it is hard to know when to erase data. There has to be some set of sen-
sors that determines when a box is being tampered with. There are obvi-
ous sensors: voltage, current, light, temperature. But if an attacker knows
what the sensors are, he can probably defeat all of them. (He can work in
a room lit by a wavelength that the sensor misses, or can vary the temper-
ature slowly enough as to fool the sensor, or whatever.) Again, this is a
problem mostly for government systems and government attackers, but it
is a very difficult one.

Part of the difficulty is that the device needs to reliably retain the key
under normal circumstances, and entirely obliterate it under abnormal
circumstances. The very technology used to reliably retain key bits makes
it difficult to obliterate the key bits. Conflicting goals are hard to handle
well.

Where this problem affects commercial systems is in things like smart
cards, pay-TV boxes, and any other device with secrets inside that the
device owner should not know. I talked about tamper resistance and ways
to defeat it. Zeroization techniques are a way to defend against those sorts
of attacks. But there are ways to attack zeroization. Basically, commercial
systems don’t get this right—I only know of one commercial device with
the government FIPS 140-3 zeroization certification—because it’s just
too expensive to do so.
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17

The Human Factor

Computer security is difficult (maybe even impossible), but imag-
ine for a moment that we’ve achieved it. Strong cryptography is
where required; secure protocols are doing whatever needs to

be done. The hardware is secure; the software is secure. Even the network
is secure. It’s a miracle.

Unfortunately, this still isn’t enough. For this miraculous computer
system to do anything useful, it is going to have to interact with users in
some way, at some time, for some reason. And this interaction is the
biggest security risk of them all. People often represent the weakest link in
the security chain and are chronically responsible for the failure of secu-
rity systems.

When I started doing cryptographic consulting for companies, I
would tell prospective clients that I could secure their digital data more or
less perfectly, but that securing the interaction between the data and the
people would be a problem. Now I am more cynical. Now I tell prospec-
tive clients that the mathematics are impeccable, the computers are vinci-
ble, the networks are lousy, and the people are abysmal. I’ve learned a lot
about the problems of securing computers and networks, but none of that
really helps solve the people problem. Securing the interaction between
people and just about anything is a big problem.

People don’t understand computers. Computers are magical boxes
that do things. People believe what computers tell them. People just want
to get their jobs done.

People don’t understand risks. They may, in a general sense, when the
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risk is immediate. People lock their doors and latch their windows. They
check to make sure no one is following them when they walk down a
darkened alley. People don’t understand subtle threats. They don’t think
that a package could be a bomb, or that the nice convenience store clerk
might be selling credit card numbers to the mob on the side. And why
should they? It almost never happens.

Computer security works in the digital realm. Moving information
into the digital realm is problematic; keeping it there is downright impos-
sible. Remember the “paperless office” of yesteryear? Information never
stays in computers; it moves onto paper all the time. Information is infor-
mation and, for an attacker, information in paper files is just as good as
information in computer files. Many times paper in trash is more valuable
than the same data in a computer: It’s easier to steal and less likely to be
missed. A company that encrypts all of its data on computers, but doesn’t
lock its file cabinets or shred its trash is leaving itself open to attack.

I am going to look at six aspects of the human problem:

How people perceive risks.
How people deal with things that happen very rarely.
The problem of users trusting computers, and why that can be so dangerous.
The futility of asking people to make intelligent security decisions.
The dangers of malicious insiders.
Social engineering, and why it is so easy for an attacker to simply ask for secret

information.

It’s not going to be pretty.

RISK

People do not know how to analyze risk. They can’t look at a vulnerabil-
ity and make an intelligent decision about how bad it is. They can’t look
at an attack and make an intelligent decision about how likely it is. They
can’t look at a security situation and make an intelligent decision about
what to do.

The problem is not just one of not having enough information; peo-
ple have trouble evaluating risks even with adequate information. Study
after study shows that people misestimate the risks of earthquakes, air-
plane disasters, automobile disasters, food poisoning, skydiving accidents,
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etc., etc., etc. They overestimate risks for things that are (1) out of their
control (getting poisoned in restaurants), and (2) sensationalized in the
media (being the victim of a terrorist attack). They underestimate risks for
things that are mundane and ordinary (falling off a ladder, being in a car
accident). Certainly not having enough information exacerbates the
problem.

Probabilities permeate cryptography, computer security, risk assess-
ment, countermeasures . . . everything this book is about. Risk is a
probability. Security is a probability.

To illustrate probability, let’s play a gambling game with Alice. It’s a
simple game: heads she wins, and tails you win. But you’d like to check
out the coin first, just to make sure that it is fair. Sure, she says, look at it
all you want.

You flip the coin once, and it comes out tails. This is a single event,
so it gives you no real information except that “tails” is on at least one of
the faces. So, you flip it ten times. The coin comes up heads on six of
them. Does this mean the coin is unfair? Maybe. Alice is quick to point
out that flipping a fair coin ten times would result in at least six heads 38
percent of the time. This means that if you took 100 fair coins, flipped
them each ten times, then 38 of them would come up heads six or more
times. Hardly evidence of fraud.

So you flip the coin 100 times and get 60 heads. Alice reminds you
that a fair coin will show at least 60 heads in 100 flips 2.3 percent of the
time. The coin could still be fair.

So you flip the coin 1,000 times. The most likely outcome would be
500,000 heads and 500,000 tails, but you come up with 600,000 heads
and 400,000 tails. Despite Alice’s assertion that there is a 1 in 10 billion
chance that a fair coin would produce this biased an outcome, you choose
to believe that the coin is weighted. But your belief is based on probabil-
ity; the likelihood that the coin is fair is de minimis.

At this point you probably decide not to use this coin to bet with
Alice, despite Alice’s protests that the coin is fair. Your decision is wise,
even though technically she is right. In fact, you can never prove that the
coin is not fair without cutting it into pieces and weighing them. All you
can do is collect evidence that the coin is not fair that is more and more
convincing.

A lot of beliefs work this way. You believe that the sun rises in the
east because it has done so for the last few trillion mornings. The odds of
this happening without some explanation other than random chance are
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infinitesimal. (Now we have solid astronomical evidence, but people
believed in the sun’s daily eastern rise well before the Copernican model
replaced the Ptolemaic one.) You believe that the water you drink is not
poisonous, because you probably can’t think of a time when it was. (In
some Third World countries, however, this is not a normal belief.) You
believe that the waiter will bring back your credit card without ringing up
any phony charges because that’s what has happened every other time
you’ve given a waiter your card. And you believe a piece of e-mail came
from the person whose name is on the “From” line because that’s been
your experience.

And a lot of cryptography works this way, too. Much of the math is
probabilistic. Public-key cryptography uses numbers that are probably
prime; there is a one in a billion chance that the number is not really
prime. One-way hash functions are only probably unique; there is a 1 in
280 chance that two random documents will have the same SHA hash
value. The AES encryption algorithm has 2128 different keys; there is a 1
in 2128 chance that an attacker will correctly guess the key on the first try.
Some people get worried seeing these numbers, but that’s only because
they think they live in a world of absolute certainty. But something that
happens 1 in 280 times is less likely to occur than walking up to a roulette
wheel, putting your money on a number, and winning 15 times in a row,
or being dealt two perfect bridge hands in a row, or being dealt four royal
flushes in a row.

Security works this way, too. Most burglar alarms have a four-digit
access code; there is a 1 in 10,000 chance that a burglar will guess it cor-
rectly and stop the alarm. One brand of combination lock has 3 times 36
different combinations; there is a 1 in 47,000 chance that someone can
guess the combination on the first try. Fingerprints are not necessarily
unique: Biometric identification systems might have a 0.1 percent chance
that an unauthorized person will be recognized as having an authorized
fingerprint. It’s all about probabilities.

EXCEPTION HANDLING

One danger of computerized systems is that they make mistakes so rarely
that people don’t know how to deal with them. It’s the “this computer
never makes a mistake, so you must be lying” mentality. The fact is that
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computers make all sorts of mistakes all the time, and malicious hackers
are happy to lead computers down a mistake-riddled garden path, and to
take advantage of those mistakes.

A friend installed a burglar alarm system in his home. The alarm was
wired into the burglar alarm company’s switchboard; when it went off,
the company was automatically alerted, and then they would call the
police. My friend had a secret code that he could use to call the alarm
company and register a false alarm (the police didn’t want to send a squad
car out whenever someone accidentally tripped the alarm). He also had a
second secret code, a duress code. This code meant: “There is a gun being
held to my head, and I am being forced to call you and claim that this is a
false alarm. It isn’t. Help!”

One day my friend accidentally tripped the burglar alarm, and he
dutifully called the alarm company to register it as a false alarm. Acciden-
tally, he gave them the duress code instead of the false alarm code. Almost
immediately he realized his mistake and corrected it. The woman on the
other end gave a huge sigh of relief and said: “Thank God. I had no idea
what I was supposed to do.”

When an alarm condition, or even an error condition, appears a few
times a week, people know what to do. If it only happens once every few
years, there could be an entire office that has never seen the alarm, and
hence has no idea what to do. Many attacks target complacent users. Dur-
ing the attack, those involved can’t imagine that the system is failing, and
attribute the problem to something else. Remember Chernobyl? “I’ve
never seen that red blinking light before. I wonder what it means. . . .”

This is why we all went through fire drills in primary school. We had
to practice the failure conditions, less so we would be prepared for what
happened—drills can only prepare someone so well for a panic situa-
tion—but as a constant reminder that the failure could occur. I’ve never
been in a real fire, but I’ve been drilled so often in what to do, I’ll proba-
bly be all right. It’s the same with airplanes. When oxygen masks drop
from the ceiling, you don’t want the passengers glancing up from their
novels, wondering what those silly things are, and then going back to
their reading. Nor do you want bank tellers ignoring warning signs. “The
bank computer said that I should give him one million dollars in cash.
Who am I to second-guess the computer?” Or a nuclear power plant
operator wondering what that flashing red light means.
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Unfortunately, if there are too many aleatory alarms, the operators
will learn to ignore them. “I’ve never seen that flashing red light before. .
. . I wonder what it means.” Or, even worse: “That red light is always
flashing and there’s never a problem. I’ll just ignore it again.” (Read “The
Boy Who Cried Wolf.”) Or even worse, they’ll unplug the flashing light.
It’s an effective form of denial-of-service attack, and I gave some scenar-
ios in Chapter 3.

If an attacker can take down a firewall and deny network access to
legitimate users—a denial-of-service attack—they will complain and
demand that the firewall be taken away until it is fixed. If someone is
using a secure telephone, and an attacker can make that phone drop the
connection repeatedly, eventually the conversers will give up on the
secure phone and have the conversation on an open line.

This is just human nature. People want to communicate, and the
security system is at best something that doesn’t hinder that want. It’s hard
to imagine people not having a phone conversation just because the
encrypted phone doesn’t work. Even the military doesn’t have the disci-
pline not to communicate if they cannot communicate securely; if they
can’t do it, you can’t expect anyone else to.

HUMAN–COMPUTER INTERFACE

It has been said that the most insecure system is the one that isn’t used.
And more often than not, a security system isn’t used because it’s just too
irritating.

Recently I did some work for the security group in a major multina-
tional corporation. They were concerned that their senior management
was doing business on insecure phones—land lines and cellular—some-
times in a foreign country. Could I help? There were several secure-voice
products, and we talked about them and how they worked. The voice
quality was not as good as normal phones. There was a several-second
delay at the start of the call while the encryption algorithm was initialized.
The phones were a little larger than the smallest and sexiest cellular
phones. But their conversations would be encrypted.

Not good enough, said the senior executives. They wanted a secure
phone, but they were unwilling to live with inferior voice quality, or
longer call setup time. And in the end, they continued talking over
insecure phones.
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People want security, but they don’t want to see it working. It is
instructive to talk with people who remember when a front door lock
was first installed on their house. There are some of these people still alive,
usually in rural areas. (City houses have had door locks for centuries; rural
areas went without them for a long time.) These people talk about what
an imposition a front door lock was. They didn’t think it was right that
they had to fish around for a key, put it in a lock, and then turn the key .
. . just to get into their own home. And the first time they forgot or lost
their key—the shame of it all. Sure, crime was a problem and front door
locks were a good thing, but people fought the change. I still know peo-
ple who leave their doors unlocked. (Note the flawed “it’s never hap-
pened to me” reasoning in a lot of these cases.)

Computer security is no different. Find someone who used comput-
ers before there were passwords and permissions and limitations. Ask
them how much they liked it when security measures were added. Ask
them if they tried to get around the security, just because it was easier.
Even today, when the deadline approaches and you have to get the job
done, people don’t even think twice about bypassing security. They’ll
prop the fire door open so that someone can get into the building more
easily, and they’ll give out their password or take down a firewall because
work has to get done. John Deutch, the former director of the CIA,
brought classified files home with him on his insecure laptop—because it
was easier.

It’s a trade-off. Security is easiest when it is visible to the user, when
the user has to interact with the security and make decisions based on it:
that is, checking the name on a digital certificate. On the other hand, users
don’t want to see security. And a smart security designer doesn’t want
users to see security. A smart security designer knows that users find secu-
rity measures intrusive, that they will work around them whenever possi-
ble, that that they will screw with the system at every turn. People can’t
be trusted to implement computer security policies, just as they can’t be
trusted to lock their car doors, not lose their wallets, and not tell anyone
their mother’s maiden name.

They can’t be trusted to do things properly. In a 1999 usability study
at Carnegie Mellon University, researchers found that most people could
not use the PGP e-mail encryption program correctly. Of the 12 people
who participated in a CMU experiment, eight never managed to figure
out how PGP 5.0 worked. Four of them accidentally sent out unen-
crypted messages that revealed confidential information. And this is with
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the program’s easy-to-use graphical interface (although, to be fair, the
PGP versions 6.0 or later have a better user interface).

And they can’t be trusted to make intelligent security decisions. After
the Melissa and Worm.ExploreZip scares of 1999, you might think peo-
ple learned not to open attachments they weren’t expecting. But the
infection rate from the ILOVEYOU worm (and its dozens of variants)
taught us that no, people cannot be trained not to open attachments . . .
especially when so many companies are trying to make a business getting
users to send each other interesting attachments.

Browsers use digital certificates in order to make secure SSL connec-
tions. When they accept the certificates, they optionally display the iden-
tification of the certificate on the other end. This is essential to the
security; it makes no sense to have a secure connection unless you are sure
who is on the other end of that connection. Most people don’t bother
looking at the certificates, and don’t even know they should (or how to).

The same browsers have an option to display warnings when down-
loading Java applets. The user is asked whether he trusts the particular
Web site that is sending the applet. The user has no idea whether or not
he trusts the Web site. Nor does he care. If J. Random Websurfer clicks
on a button that promises dancing pigs on his computer monitor, and
instead gets a hortatory message describing the potential dangers of the
applet—he’s going to choose dancing pigs over computer security any
day. If the computer prompts him with a warning screen like: “The applet
DANCING PIGS could contain malicious code that might do perma-
nent damage to your computer, steal your life’s savings, and impair your
ability to have children,” he’ll click “OK” without even reading it. Thirty
seconds later he won’t even remember that the warning screen even
existed.

HUMAN–COMPUTER TRANSFERENCE

When I introduced cryptography in Chapter 6, I wrote about Alice and
Bob encrypting, decrypting, signing, and verifying messages and docu-
ments. I wrote, for example, that Alice could use public-key cryptogra-
phy to send a message to Bob by finding Bob’s key in a phone book, and
then encrypting a message to Bob using this key. This is actually a
complete lie. Alice never encrypts messages to Bob. She never decrypts
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messages, or signs messages. She never does any cryptography at all. What
Alice does is click a button on her computer, and the computer signs or
encrypts or does whatever Alice wants. This is a critical distinction.

Imagine the future, when we all habitually sign digital documents.
How might this work? Alice will write a digital document in some appli-
cation—a word processor, an e-mail program, or whatever—and click on
some icon to indicate that she is ready to sign it. The application will call
whatever signature software program is standard business practice, and
that software will create the signature. Alice will type in her password (or
passphrase), put her finger down on some fingerprint reader, and do
whatever else is required to prove to the software that she is Alice. The
signature software will calculate the digital signature on the document,
and hand the application a signature string to append to the document.
Voilà—it will appear. Alice can probably even verify the signature herself
(again, using the computer), just to make sure it is genuine.

This is what I call human–computer transference. Alice knows what
she wants to do: sign a particular document. She has to securely transfer
this volition to the computer with some assurance that the computer will
actually do what Alice wants it to do. But secure human–computer trans-
ference is not so easy to do.

Our goal is to get Alice to sign something she doesn’t want to sign.
Since Alice is accepting the computer’s word that she is actually signing
the document on the screen, this should be easy. All we have to do is get
the computer to lie to Alice.

We write a Trojan horse to sit inside the digital signature software.
This Trojan horse will contain the document that we want Alice to
sign—something either embarrassing or profitable, no doubt—and code
to sign it. The only thing the Trojan horse needs is Alice’s key. When
Alice types in her passphrase to sign a different message to us—the Trojan
horse feeds the digital signature software the embarrassing document
instead. The digital signature software returns a signature, and the original
application places that signature on the document Alice thinks she is sign-
ing. If Alice tries to verify the signature, the Trojan horse feeds the embar-
rassing document to the digital signature software. The signature software
returns the fact that the signature is correct; that is, the Trojan horse forces
the computer to lie to her. Then, Alice sends us her document with the
wrong signature; that is, the signature calculated for the other document.
We take the signature, attach it to a copy of the embarrassing document,
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and call the Washington Post. Meanwhile, the Trojan horse erases itself and
everything is back to normal.

There’s an easy implementation in Windows: A malicious macro
could simply watch for PGP’s “open file” dialog, see what file Alice is
about to sign, and copy its own file to that filename, then restore the old
file afterward. Word’s macro language can do this, so it could easily be a
payload for a Word macro virus.

And that’s just one example. The Trojan horse could sign both doc-
uments and transmit the embarrassing signature at some opportune time.
Or it could just steal Alice’s private key.

Nothing here is difficult; the programming is easy. In any case, if we
are successful we could have possession of a damaging document, signed
by Alice. We could wave it around in court or pass it to a reporter, cor-
rectly claiming that Alice’s valid digital signature is on the bottom of the
document. What is more likely to happen is the reverse. As soon as some-
one writes a fake signature Trojan horse, it will be assumed to be every-
where. Whenever a document appears in court, one side or the other will
find an expert witness that will testify as to the existence of the Trojan
horse and how easy it would be to get someone to unknowingly sign just
about anything. Can the court trust this digital signature? It doesn’t
depend on the mathematics; it depends on the circumstances.

The fundamental problem is that you have no idea what the com-
puter is actually doing when you tell it to do something. When you tell
the computer to save a document, or encrypt a file, or calculate the sum
of a column of numbers, you really have no assurance that the computer
did it correctly, or even at all. You’re making a leap of faith. Just as it is
hard to catch a thieving employee, it’s hard to catch a malicious computer
program. Actually, it’s worse. Think of it as a malicious employee who
works alone, with no one watching. All of the monitoring equipment
you might install to catch the employee—hidden cameras, hidden micro-
phones—are controlled by the malicious employee. All you can do is look
at what inputs the employee accepts and what outputs he produces. And
even then you can’t be sure.

If Alice can’t trust the computer she is working on, then she can’t
trust it to do what she asks. Just because she asked it to sign a particular
document doesn’t mean that it can’t sign another document. The meta-
solution is for Alice to only sign documents on a trusted computer, but
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that’s hard to do. If Alice is working on a general-purpose computer, I do
not believe it can ever be trusted enough to avoid this problem.

If Alice is using a small, single-purpose, digital signature computer,
then there is hope. I can imagine a hand-held device with a small key-
board and screen. The document can be downloaded into this device by
a general-purpose computer. Alice will be able to view the document
from the small screen—there’s no guarantee that the computer will
download what you ask it to—and enter her passphrase on the small key-
board. The device will sign the document and upload the signature back
to the general-purpose computer. We have a prayer of making that sys-
tem secure. We can design it so that only factory software is ever installed
on the computer, and we can have some independent auditing company
certify that the software is correct and behaves well.

But if you are working on an insecure computer—which will be
almost all of the time—there is no assurance that what you see is what you
get, or that what you get actually works as you expect.

MALICIOUS INSIDERS

In Chapter 4 I talked about malicious insiders. It’s worth recalling the
problems with them. The main problem is that they are often implicitly
trusted. They can steal money out of the cash register, mess with the audit
logs to cover their tracks, photocopy military secrets and send them to the
Chinese, steal stacks of blank credit cards, pocket casino chips, look the
other way when the crooks drive off with the truck full of goods, and
anything else they can think of. Often, no amount of computer security
can prevent these attacks (although good audit mechanisms can often
determine the guilty parties after the fact).

Cyberspace is particularly susceptible to insiders, because it is rife with
insider knowledge. The person who writes a security program can put a
back door in it. The person who installs a firewall can leave a secret open-
ing. The person whose job it is to audit a security system can deliberately
overlook a few things.

One example: Chicago’s transit system used both tokens and passes.
Riders would either give the clerk a token or show their pass, and the
clerk would let them onto the subway platform. For years, clerks would
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take tokens from riders, and ring them up as passholders. Eventually man-
agement figured this out and arrested the clerks (1991); low estimates
were that hundreds of thousands of dollars was stolen. Once honest clerks
started working at some stations, daily receipts doubled. This problem
remained unfixed for years.

Companies try to reduce the risk of malicious insiders in many ways.
“Hire honest people” is the best solution, although it’s easier said than
done. Some companies go so far as to conduct integrity screening—pre-
employment honesty tests—for some positions. Others try to diffuse trust,
to limit the amount of damage one person can do. Think of public code
reviews. Audit is vital: for being able to determine what damage an insider
did, and for being able to convict him in court. In the end, though, an
organization is at the mercy of its people.

SOCIAL ENGINEERING

In 1994, a French hacker named Anthony Zboralski called the FBI office
in Washington, pretending to be an FBI representative working at the
U.S. embassy in Paris. He persuaded the person at the other end of the
phone to explain how to connect to the FBI’s phone-conferencing sys-
tem. Then he ran up a $250,000 phone bill in seven months.

Similarly, it’s a common hacker trick to telephone unsuspecting em -
ployees and pretend to be a network system administrator or security
manager. If the hacker knows enough about the company’s network to
sound convincing, he can get passwords, account names, and other sensi-
tive information from the employee. In one instance a hacker posted fly-
ers on a company bulletin board announcing a new help-desk phone
number: his own. Employees would call him regularly, and he would col-
lect their passwords and account data in exchange for help.

Social engineering is the hacker term for a con game: persuade the other
person to do what you want. It’s very effective. Social engineering
bypasses cryptography, computer security, network security, and every-
thing else technological. It goes straight to the weakest link in any secu-
rity system: the poor human being trying to get his job done, and wanting
to help out if he can.

Sadly, this is easier than you think. Showing up at a computer room
with some hardware in hand and an appropriate vendor’s badge is often
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enough to give someone free rein. Wandering around and asking if there
is a place to “park and work” for a while will often result in a desk and a
network connection; that person is obviously a corporate visitor.

Most social engineering is done on the telephone, which makes the
perpetrator harder to catch. One attacker called people and said, “This is
the operator. I have a collect call from <insert name> in <insert city>.” If
the victim accepted the call, the operator continued: “Your collect call
option is blocked. Please give me your calling card number and I will con-
nect the call.” This really happened. The attacker found people on Usenet
newsgroups and invented collect calls from people they corresponded
with in the newsgroup, an extra touch of verisimilitude.

When Kevin Mitnick testified before Congress in 2000 he talked
about social engineering: “I was so successful in that line of attack that I
rarely had to resort to a technical attack,” he said. “Companies can spend
millions of dollars toward technological protections and that’s wasted if
somebody can basically call someone on the telephone and either con-
vince them to do something on the computer that lowers the computer’s
defenses or reveals the information they were seeking.”

Another social-engineering attack, this one against credit cards: Alice
steals Bob’s credit card number. She could charge purchases to Bob’s
account, but she’s wilier than that. She advertises merchandise—cameras,
computers, whatever—at a very cheap price. Carol sees the advertisement
and buys a product from Alice. Alice orders the product from a legitimate
retailer, using Bob’s credit card number. The retailer ships the product to
Carol—there’s so much drop-shipping going on that the packing slip
doesn’t have the price—and is stuck when Bob notices the charge. Even
worse: Carol is inculpated, not Alice.

Automated social engineering can work against large groups; you can
fool some of the people all the time. In 1993, subscribers to the New
York ISP Phantom Access received this portentous, forged, e-mail mes-
sage: “It has been brought to my attention that your account has been
‘hacked’ by an outside source. The charges added were significant, which
is how the error was caught. Please temporarily change your password to
‘DPH7’ so that we can judge the severity of the intrusion. I will notify
you when the problem has been taken care of. Thank you for your help
in this matter. —System Administrator.” And in 1999, AOL users were
persistently receiving messages like: “A database error has deleted the
information for over 25,000 accounts, and yours is one. In order for us to
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access the backup data, we do need your password. Without your pass-
word, we will NOT be able to allow you to sign onto America Online
within the next 24 hours after your opening of this letter.”

Plausibility plus dread plus novelty equals compromise.
Modern e-mail-borne viruses and worms use automatic social engi-

neering to entice people to open them. The ILOVEYOU worm cloaked
itself in e-mail from people the recipient knew. It had a plausible subject
line and message body, enticing the recipient to open the attachment. It
hid the fact that it was a VBScript file, and pretended to be a harmless text
file. I talked about this in Chapter 10; people don’t stand a chance against
these social-engineered viruses.

In some of these instances, technology can help. If the helpful
employees had access tokens (or biometric readers) in addition to pass-
words, they couldn’t give everything away to the nice man on the tele-
phone. If the computers had biometric fingerprint readers, there would be
no passwords to give away. If the computer system were smart enough to
recognize that someone was logging in from a remote location when the
job description states that he only works in the office, maybe someone
could have been alerted.

Sometimes simple procedures can prevent social engineering. The
U.S. Navy has safes with two locks (with different combinations, of
course); each combination is known by a different person. It’s much
harder to social engineer those combinations. There are probably other
tricks that the computers could have done, all designed to limit what a
duped legitimate user could give to a social engineer. Technology can
certainly make the job of the social engineer harder, in some cases a lot
harder.

In the end, social engineering will probably always work. Look at it
from the view of the victim, Bob. Bob is a good guy. He works at this
company, doing whatever low-level or mid-level job he was hired to do.
He’s not a corporate security officer. Sure, he’s gotten some security
training, and might even know to be on the watch for those churlish
hackers. But Bob is basically clueless. He doesn’t understand the security
of the system. He doesn’t understand the subtleties of an attack. He just
wants to get his job done. And he wants to be helpful.

The social engineer, Alice, comes to Bob with a problem. Alice is just
like Bob, a cog in the big company machine. She needs to get her job
done, too. All she wants is for Bob to tell her his username and password,
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or give her information about a phone number, let her install this hard-
ware box, or do one of any number of perfectly reasonable things. Sure,
it might not be technically allowed, but Alice has her butt on the line and
just has to do this one thing. Everyone bypasses security procedures once
in a while in order to get the job done. Won’t Bob help? Isn’t he a team
player? Doesn’t he know what it’s like to have to get something done and
for there to be a stupid corporate rule in the way? Of course he does. He’s
human.

And this is why social engineering works. People are basically helpful.
And they are easily duped. By appealing to Bob’s natural tendencies, Alice
will always be able to cozen what she wants. She can persuade Bob that
she is just like him. She can telephone Bob when he least expects it. She
knows that security just gets in the way of Bob doing the job he was hired
for, and she can play to that. And if she gets it wrong, and Bob doesn’t fall
for it, she can call on the tens or hundreds of other Bobs in the organiza-
tion that can give her what she wants.
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Up to now, we’ve only looked at pieces of the problem. We’ve looked at
general threats. We’ve looked at different types of attacks and different
types of attackers. We’ve looked at different technologies and how they
prevent attacks (and how they don’t). It’s time to put all of these things
together to try to solve some security problems.

Upper-management security perspectives usually fall into one of three
categories. Category 1: “It’s too scary out there.” This is the perspective
that security is so bad that we can’t possibly trade stocks with our PDAs,
bank over the Internet, or play the lottery on our cell phones. Category 2
is “I’ve bought security.” This is the perspective that security is just a
check box on a purchase order, and if you have a firewall you’re auto-
matically safe. Both of these categories are extreme positions, and both are
simplistic. Category 3 is even stranger: “We’re too small to be attacked.”
This perspective is no less simplistic.

We can do better. Business can be conducted securely in the digital
world, just as it is conducted in the real world. At first blush, the way to
provide this security is to pile on defenses: adding more locks to a door,
or heaping more encryption, firewalls, intrusion detection systems, and
PKI systems onto a computer network. Unfortunately, things don’t often
work out that way. First, security budgets are limited. And second, some-
times the pile is not very secure.

The problem is that you have to look at the entire system, and how
security affects the system. You can’t just look at technologies.

Security is a chain; the weakest link breaks it. If you’re building an
encrypted telephone, you have to worry about the encryption algorithm
that secures the voice conversation, the key-exchange mechanism that
allows the phones to communicate, the key-generation process, the soft-
ware security of the firmware in the phone, the physical security of the
phone, and so forth. A flaw in any of those pieces breaks the security of
the phone.

It’s the same with computer systems. If you have a network with a
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firewall, then you have to worry about the security of that firewall. If you
have a network with a firewall and a VPN, then you have to worry about
the security of both those devices . . . and a flaw in either one can com-
promise your network.

Security is a process, not a product. This section talks about the
process of security: attacks, defenses, and the relationships between them.
It talks about how attacks work in the real world, and how to design sys-
tems to deal with those attacks. This section talks about the current state
of security products, the future of security products, and the need for
security processes.
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Vulnerabilities and the
Vulnerability Landscape

In Part 1 we looked at attacks in theory: what kinds of attacks there
are and what kinds of attackers there are. But as I have said elsewhere,
there is a difference between theory and practice. As anyone who

reads mystery novels or newspaper crime reports knows, there is a lot
more to an attack than simply finding a vulnerability. In order to success-
fully make use of that vulnerability, the attacker has to find a target, plan
the attack, do the deed, and get away. A vulnerability in a safe’s locking
mechanism, if that safe is hidden in a secret location, is not as serious as the
same vulnerability in a bank’s night-deposit box.

It’s no different in the digital world. It’s not enough for a potential
criminal to find a flaw in the encryption algorithm for the ATM network.
He has to get access to the communications line, know enough about the
protocols to create a bogus message letting him steal money, actually steal
the money, and get away with the crime. Without those other steps, the
encryption flaw is just of theoretical value. 

Similarly, there is a lot more to a countermeasure than simply throw-
ing a piece of technology at the problem. That vulnerability in the safe
could be fixed by installing a stronger lock, or putting alarms on the doors
and windows of the room the safe is in and keeping a phalanx of guards
nearby. The encryption vulnerability could be fixed with a better encryp-
tion algorithm, or by keeping the protocols secret, encapsulating the
messages in a private network, or simply changing the keys every five
minutes.
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ATTACK METHODOLOGY

Generally, there are five steps to a successful attack:

1. Identify the specific target that will be attacked and collect information
about that target.

2. Analyze the information and identify a vulnerability in the target that will
accomplish the attack objectives.

3. Gain the appropriate level of access to the target.
4. Perform the attack on the target.
5. Complete the attack, which may include erasing the evidence of the attack,

and avoid retaliation.

You can think of this as figuring out what to attack, figuring out how
to attack it, getting in, performing the attack, and getting out. The first
two steps are research. You can do them in the safety of your own lab;
you can often do them on simulations of the actual target. If you’re an
academic, you can stop after the second step and publish. The last three
steps carry the risk; it’s where the actual or virtual breaking and entering
happens. It’s where people either get away with the attack or get caught.

Remember Star Wars? In order to blow up the Death Star, the rebels
first had to get the information that Princess Leia stuffed into R2-D2.
That was the whole reason Luke had to get the droids off Tatooine in the
first place. Rescuing the princess was just a MacGuffin. That was step one.

Step two was off-camera. We see the result when the rebel engineer
announces that he’s studied the information from the droid and found a
weakness in the station’s defense systems: The janitorial system designers
never bothered having their system designs audited by security profes-
sionals, and now the Death Star’s multi-billion-credit defense systems can
be breached through a ventilation shaft.

Step three was the special-effects laden space dogfight between the
rebel X-wing fighters (you have to admire rebels with their own defense
contractors) and the station’s TIE fighters. The job of the X-wing fight-
ers was to distract everyone so that the Y-wing pilots could fly along the
trench and shoot down the ventilation shaft. Access to the target was the
whole point.

It took young master Luke to complete step four, after Han Solo got
Darth Vader off his tail, and Alec Guiness’s disembodied voice cajoled
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him to turn off his targeting computer (probably still in beta) and use the
Force.

Blowing the Death Star to bits (step five) effectively eliminated any
chance of retaliation, at least until the sequel. After that, getting away was
easy. Our heroes get medals from a rebel alliance whose cash balance was
high enough to afford new uniforms, and the universe is saved for a new
series of themed PEZ dispensers. Roll credits.

It’s not much different to attack a company’s computers via the Inter-
net. Step 1 is to identify the target and gather information. This is surpris-
ingly easy. The target’s Web site will contain all sorts of information, as do
various Internet databases like the one run by Network Solutions. War
dialers can find dial-up connections. There are many techniques an
attacker can use to figure out what is running on the target network: ping
scans, port scans, service listings, and others. Network sniffers can find
more information, as can vulnerability assessment tools. A lot of this is the
Internet equivalent of door rattling, although computers often tell perfect
strangers a lot about what kind of hardware they are, what kind of soft-
ware they are running, and what kind of services they allow. All this is
information an attacker can use.

Step 2 is to find a vulnerability. Here, the attacker goes through all the
information he collected looking for a place to attack. Maybe one of the
computers is running a particular version of sendmail, or the Solaris oper-
ating system, or Windows NT, with a known bug. Maybe he can exploit
FTP, or rlogin, or something else. Maybe the target has left a maintenance
port on some piece of equipment unsecured. Maybe the attacker could
exploit the target’s PBX. The more the attacker knows about different
vulnerabilities of different systems, the better he can plan his attack.

Step 3 is to gain some kind of access to the computer. On the Inter-
net this is trivial, since every computer is on the network and therefore
accessible. (Of course, some computers are behind a firewall and inacces-
sible, but the firewall will be accessible.)

Step 4 is to perform the attack. This can be either complicated or easy.
If the attacker is good, this step is surprisingly easy.

Note that some attacks involve multiple iterations of this process. An
attacker might perform Steps 1 through 4 many times: breaking into the
Web server, gaining root access on the Web server, using that access to
break into another server inside the corporate firewall, gaining root access
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on that server, and so forth. Each step involves its own information gath-
ering, target and method identification, access, and execution.

Step 5 is to complete the attack. If he is looking for a particular file,
get it and leave. He can erase audit logs and otherwise obscure his trail. He
can also leave modified system files so that he can more easily gain access
next time. And if he is looking to do a particular piece of damage, do it
and leave. But get out quickly. Hanging around is the sign of an amateur.

In his “FAQ and Guide to Cracking,” Mixter describes the same
steps. Here’s what he says are the first things to do after you get root.
(Getting root privileges on the target computer constitutes a completion
of Step 4.):

“1. Discretely [sic] remove traces of the root compromise
2. Gather some general info about the system
3. Make sure you can get back in
4. Disable or patch the vulnerable daemon(s)”

Specifically, he suggests turning off logging and deleting log records
of the compromise, and figuring out how often the system is maintained
and administered, and how often the log files are analyzed.

Hacker tools can automate a lot of the process. They’re not nearly as
good as a virtuoso hacker, but they can turn an inept teenager into a for-
midable adversary.

Another example: an attack against a smart card payment system. Step
1 is to gather whatever information is available on the payment system:
design specifications, public interface documents, public information on
the various algorithms and protocols used, and so forth. There is probably
a lot of information out there, if you know where to look.

Step 2 is to study the documentation, looking for a weakness. Part 2
of this book talks about all sorts of weaknesses that can affect a system like
this. Maybe there’s a weakness in the cryptographic algorithms and pro-
tocols. Maybe there’s a weakness in the smart card, and it’s not as tamper-
resistant as the designers thought it was. Maybe there’s a weakness in how
the card is used that you can exploit. Whatever it is, you need to find a
weakness in order to attack this system.

Step 3 is to gain whatever access is needed for the attack. You might
have to become a registered user of this smart card payment system (per-
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haps under an assumed name). You might have to steal someone’s card.
You might have to collude with a merchant who accepts the smart card
as payment. Getting access is not always easy.

Step 4 is to perform the attack: clone the smart card and use the clone,
alter the smart card’s memory and use it to make purchases, change the
balance and demand a cash refund, whatever. The point here is that it’s
not enough to break the smart card payment system, you need to convert
that break into cash.

Step 5 is cleaning up. You may want to destroy physical evidence of
your attack. If you have equipment at home you used to complete the
attack, throw it away. If you have computer evidence of your attack,
delete the files. Maybe you can break into the payment system’s comput-
ers and destroy audit-log entries that could be damaging. Whatever it is,
try to cover your tracks.

Some attacks short-circuit these steps. For some publicity attacks,
there are no Steps 2, 3, or 5. Here’s a publicity attack against the encryp-
tion algorithms used in digital cell phones: Step 1, get information on the
cell phones’ cryptographic algorithms. Steps 2 and 3, not applicable. (You
already know the target, and all the access you need are the algorithm
descriptions.) Step 4, perform the cryptanalysis and alert the media. Step
5, not applicable—you’ve done nothing illegal. This attack has been suc-
cessfully done against every digital cellular encryption algorithm used to
date, with amazing success.

Throughout this book, I argue that security is a chain, and a system is
only as secure as the weakest link. Vulnerabilities are these weak links.
Finding a security vulnerability is only one step toward exploiting it,
though. Getting in a position to exploit the vulnerability, actually exploit-
ing that vulnerability, and then making a getaway are also important—
you can’t have a successful attack without them.

COUNTERMEASURES

Countermeasures are methods to reduce vulnerabilities. They can be sim-
ple, such as building a wall around a city to reduce the vulnerability to an
enemy army marching in and taking control, or complex: devising a
secure back-end auditing system to detect attempted fraud by credit card
merchants and identify the culprits.
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Basically, countermeasures can be implemented to thwart any of the
five steps of a successful attack.

Most of Part 2 discusses technical countermeasures applicable to com-
puters and computer networks. I tried to talk about these in context: what
they do, what they don’t do, how they work in relation to each other,
and so forth. No technology is a security panacea; the trick is using each
of them effectively.

The security of a system may be no better than its weakest link, but
that generally refers to the individual technologies. In a smart system, these
technologies can be layered in depth, and the overall security is the sum
of the links. Cryptography can be defeated by brute-forcing the key,
cryptanalyzing the algorithm, or (the weak link) social-engineering the
password from an oblivious secretary. But protecting the computer
behind a locked door, or a well-configured firewall, provides defense in
depth.

Remember the opening scenes of Raiders of the Lost Ark? Indiana
Jones had to get past the spiders, the wall-of-spikes trap, the pit, the poi-
son darts released by stepping on the wrong floor stones, and the self-
destruct mechanism tied to moving the statue. This is defense in depth.
He bypassed the wall-of-spikes trap by avoiding the triggering mecha-
nism, but he might have dodged the wall, jammed the mechanism, or
done half a dozen other things. The security of the trap depends on the
easiest way to avoid it.

But just as attacking a system is more complicated than simply finding
a vulnerability, defending a system is more complicated than dropping in
a countermeasure. There are three parts to an effective set of counter-
measures:

• Protection
• Detection
• Reaction

In a military office, classified documents are stored in a safe. The safe
provides protection against attack, but so does the system of alarms and
guards. Assume the attacker is an outsider: someone who does not work
in the office. If he is going to steal the documents inside the safe, he is not
only going to have to break into the safe, he is also going to have to defeat
the system of alarms and guards. The safe—both the lock and the walls—
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are protective countermeasures, the alarms are detection countermea-
sures, and the guards are reactive countermeasures.

If guards patrol the offices every 15 minutes, then the safe only has to
withstand attack for a maximum of 15 minutes. If the safe is in an obscure
office that is only staffed during the day, then the safe has to withstand 16
hours of attack: from 5 P.M. until 9 A.M. the next day (much longer if the
office is closed during holiday weekends). If the safe has an alarm on it,
and the guards come running as soon as the safe is jostled, then the safe
only has to survive attack for as long as it takes for the guards to respond.

What this all means is that the strength of the safe is based on the
detection and reaction mechanisms in place. And safes are sold this way.
One safe might be rated as TL-15; this means that it can resist a profes-
sional safecracker, with tools, for at least 15 minutes. Another might be
rated TRTL-60, meaning that it can resist the same safecracker, with tools
and an oxyacetylene torch, for 60 minutes. These time ratings are for a
sustained attack, meaning that the clock was running only when the safe
was being attacked: rest and planning time is not counted. And the tests
are conducted by professionals with access to the safe’s engineering draw-
ings: no security by obscurity allowed. (Sounds a lot like cryptographic
attacks, doesn’t it?)

Protection, detection, and reaction countermeasures work in tandem.
Strong protection mechanisms mean that you don’t need good detection
and reaction mechanisms. Weak protection mechanisms—or even no
protection mechanisms—mean that you need better protection and
detection mechanisms.

The safe ratings show this clearly. What a safe buys you is time: 15
minutes, 30 minutes, 24 hours. This time is for the various alarms to
sound (detection) and for the guards to come arrest the safecrackers
(response). Without detection and response, it actually doesn’t matter
whether your safe is rated TL-30 or TRTL-60.

Most computer-security countermeasures are prophylactic: cryptog-
raphy, firewalls, passwords. Some are detection mechanisms: intrusion
detection systems. Even rarer are reaction mechanisms—a login system
that locks users out after three failed login attempts is an example—even
though detection mechanisms are useless without them. Think about an
intrusion detection system that has just detected an attack. It alerts a sys-
tem administrator, maybe by e-mailing his pager. If that administrator
won’t respond for hours—maybe he’s at lunch—then it really doesn’t
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matter what the IDS detected. There’s no reaction to deal with the prob-
lem.

Similarly, burglar alarms are detection countermeasures. If an attacker
trips the alarm, it only makes a difference if there’s someone to respond.
If the attacker knows that the alarm is being ignored, it might as well not
be there in the first place.

Sometimes, detection and reaction mechanisms are impossible to
deploy. Think of a traditional eavesdropping attack: Alice and Bob are
communicating over an insecure channel, and Eve is listening. Neither
Alice nor Bob has any way to detect the eavesdropping, and hence no
way to react. The protection mechanism—encryption—has to be secure
enough to protect the communications until they are no longer valuable
to Eve.

Contrast this with a system that encrypts access codes for ATMs.
Assume that the only way for an attacker to get these codes would be to
break into an ATM. If there is an alarm on all ATMs (detection), and the
access codes can be changed in 15 seconds (reaction), then the encryption
algorithm can be weak. Of course, there are probably lots of ways for an
attacker to get the encrypted access codes that don’t sound alarms. Still, if
the codes are changed every week regardless of any detection mechanism
(automatic reaction), then the encryption algorithm only has to secure the
codes for a week.

Digital security’s singular reliance on protection mechanisms is
wrong, and is the primary reason we see attack after attack against digital
systems today. Protection mechanisms alone can only work if the tech-
nologies are perfect. The Platonic ideal of a tamperproof smart card is per-
fect; there would be no need for detection and reaction countermeasures.
A real-world tamper-resistant smart card fails occasionally, and a well-
designed system has detection and reaction mechanisms
in place to deal with those failures. One of the theses of this book, how-
ever, is that no technology is perfect. Detection and reaction are essential.

Think of a computer network. If the firewalls, operating systems,
server software packages, and so forth were perfectly secure, then there
would be no need for any alarm services. No one could ever break in, so
there would be no alarms. In the real world, we’ve never fielded any of
those products without vulnerabilities. There is always a way to break
through the firewall, subvert the operating system, and attack the server
software. The only countermeasures that can work in the face of imper-
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fect security barriers are detection and reaction: detection to notice when
security has been breached, and reaction to do something about it.

THE VULNERABILITY LANDSCAPE

Real systems have many different vulnerabilities, and there are many dif-
ferent ways to launch an attack. A terrorist wanting to blow up an aircraft
could smuggle a bomb onboard, shoot it down with a missile, or sneak
onboard, hijack the controls, and fly it into a mountain. A computer
hacker intent on penetrating a corporate network could attack the fire-
wall, attack the Web server, exploit a dial-up modem, and so forth.

Real systems can also have many different countermeasures. Airlines
have metal detectors, chemical analyzers, and X-ray machines to detect
bombs, and bag-matching systems to ensure that someone doesn’t stay on
the ground while his bag flies alone. (This system of countermeasures
assumes that fewer terrorists are willing to blow themselves up on an air-
craft than are willing to stay on the ground while an aircraft blows up.)
Military aircraft also have assorted antimissile defenses. Corporate net-
works can have firewalls, intrusion detection systems, procedures for rou-
tinely updating passwords, and encrypted file servers.

This can get tortuous pretty fast.
I use the term vulnerability landscape to limn this imaginary, compli-

cated world of attacks and countermeasures. The metaphor is supposed to
evoke a vast expanse of possible attacks—pulling a gun on a bank teller,
blackmailing a programmer to put a Trojan horse in a piece of software,
drilling through the bank wall, calling up an unsuspecting clerk and ask-
ing for his password—and countermeasures: bulletproof glass protecting
the tellers, running background checks on all employees, cameras watch-
ing the outside of the building, biometric verification. Different parts of
the landscape represent different types of attacks. Computer attacks are, of
course, only a small area of the landscape.

Each system has its own vulnerability landscape, although different
systems will have common landscape features. (Every computerized sys-
tem has to deal with the threat of a power shutdown, for example. And
almost every system uses threat of arrest as a countermeasure.) A filled
vulnerability landscape is rough terrain, made up of peaks and valleys of
varying heights and depths. The higher the peak, the better the counter-
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measure: the “use passwords” peak is pretty low, but the “turn the com-
puter off and bury it in a smelly bog” peak is much higher. The valleys,
on the other hand, represent the vulnerabilities: the adversaries’ opportu-
nities for attack. The lower the valley, the more serious the vulnerability.

Vulnerabilities are not the same as goals. Goals are what I talked about
in Chapter 3: criminal goals of stealing money, marketer goals of violat-
ing privacy, bored grad student goals of gaining notoriety. Vulnerabilities
can be used to achieve goals. Stealing money is a goal; an unguarded cash
register is a vulnerability. Besmirching someone’s reputation is a goal; his
unencrypted hard drive is a vulnerability. Some vulnerabilities are irrele-
vant with respect to certain goals. In an anonymous newsgroup, an
attacker’s goal might be to learn the identity of the posters. A lack of
authentication wouldn’t be a vulnerability. If the newsgroup were based
on a paid subscription model, then another goal of an attacker might be
to post without paying. Then, vulnerabilities in the authentication system
would be germane.

The vulnerability landscape can be organized in several ways. I break
it down into four broad categories: the physical world, the virtual world,
the trust model, and the system’s life cycle. They’re related. An adversary
may choose to attack in the physical world—breaking and entering, set-
ting off bombs, taking human life, and so on. Using the Internet, the same
adversary could choose to attack virtually—shutting down computer and
phone systems, hacking the police computers and putting out fake arrest
warrants against the entire board of directors, and the like. Attacks against
a physical infrastructure from the virtual world can often be conducted
instantaneously and remotely, without warning. They are often much
nastier than attacks in the physical world.

Physical Security

Physical security is a problem the world has been trying to solve since the
beginning of time: the notion of ownership. Walls, locks, and armed
guards are all tools of physical security. Vulnerabilities are things like
unalarmed skylights, guards that fall asleep at night, and locks that can be
broken open with a crowbar. Organizations have been dealing with this
stuff for a long time; most of them have learned how to install physical
security measures commensurate with the physical threat. They know,
more or less, who their adversaries are and what kinds of countermeasures
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are sufficient to protect their assets.
When building digital security systems, designers often forget physi-

cal security. Laptop computers with corporate secrets are stolen all the
time. In a particularly bad month in 2000, MI5 and MI6 (both British
intelligence organizations) had laptops with classified information stolen.
Maybe the thieves didn’t care about the data, and maybe the data was
encrypted, but no one knows. (The British military seems to have a lot of
problems keeping hold of their laptops. In 1991, a computer containing a
secret briefing on the Gulf War was stolen from a car belonging to the
Royal Air Force. After a very public police manhunt, the computer was
returned with the message: “I’m a thief. Not a bloody traitor.”) A sur-
prising number of laptop computers are stolen at airport metal detectors,
by teams of thieves working in concert.

Physical countermeasures are often layered to reinforce each other
and, in general, the sum is greater than the parts. Behind the fence, guards
patrol the perimeter of a locked building. A bank has guards, alarms, cam-
era, and a time-lock safe.

When everything works together, no single solution has to bear the
total responsibility for deterring an attacker. And the required strength of
each individual countermeasure depends on the others. A $5 door lock
may be sufficient given the fence and guards. A $50 door lock may be
wasteful given the open window nearby. Poisoned punji sticks might be
superfluous given the whirling steel blades.

Virtual Security

Countermeasures have also been developed against virtual threats to com-
puter targets. Installing a firewall is analogous to building walls and lock-
ing doors. Putting in authentication systems is analogous to hiring guards
and checking badges. Encryption creates a “private room” in cyberspace
for a confidential conversation or an electronic safe for stored informa-
tion.

Again, a good system uses several different countermeasures in con-
cert: firewalls protecting outsiders from accessing the systems, strong
authentication to make sure only authorized users log on, and end-to-end
data encryption.
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The Trust Model

The trust model represents how an organization determines who to trust
with its assets or pieces of its assets. For instance, applicants might have
their résumés verified, their references interviewed, and their criminal
records checked. Once they’ve been hired, picture identifications and
parking stickers might be issued. Only certain people are given permission
to enter certain rooms, open certain file cabinets, or attend certain meet-
ings. Only certain people have the ability to sign checks, enter into con-
tracts, or perform other financial dealings. In extreme circumstances,
additional security comes from segregation of duties; for example, the
person who has the physical possession of the checks doesn’t have the
machine that embosses the signatures. This trust is often a complex rela-
tionship. Someone might be trusted to make changes in the personnel
records but not the engineering specifications. Another person might be
trusted to change the engineering specs but wouldn’t be allowed any-
where near the personnel records.

In the physical world, it is relatively easy to identify those individuals
who are trusted and those who are not. You know what someone looks
like. If a stranger walks into an office and starts taking out petty cash,
someone will get suspicious. As long as the organization is small enough
so that everyone knows everyone, physical penetration attacks aren’t
really possible. It’s the larger organizations that get infiltrated by spies;
employees are used to seeing people they don’t recognize, so they think
nothing of yet another one. (People in any size organization, of course,
are vulnerable to threats, bribery, blackmail, seduction, and other kinds of
unsavory persuasion.)

The challenge is how to extend the same level of trust in individuals
from the physical world to the virtual world—without the physical pres-
ence of the individual to draw upon. For example, in the physical world,
an adversary who wishes to masquerade as a trusted member of a com-
munity takes the personal risk of being found out and apprehended. In the
virtual world, a spy can come across the border and impersonate a trusted
member of the organization with less risk of being detected or physically
apprehended.
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The Life Cycle of a System

An industrial spy might choose to bug the telephones in his competitor’s
offices. He then must choose when and where to conduct this attack. The
office equipment is vulnerable during its entire life cycle: on the drawing
board, in the manufacturing plant, on the loading dock, in the competi-
tor’s offices, or even after disposal. Depending on access afforded to him,
the adversary may choose to alter or swap the equipment during produc-
tion, shipment, installation, normal operations, or maintenance. At some
point during the equipment’s life cycle, Soviet spies bugged typewriters in
the U.S. embassy in Moscow. Did they install the bugs at the factory in
the U.S., while the typewriters were being shipped to the embassy, or
after they were sitting on desks inside the embassy? We don’t know, but
each option represents a possible point of attack. And depending on how
good the audit systems were, they may have been able to figure it out.

Similarly, a criminal who wants to steal money from a slot machine
has the same array of choices: He can introduce a flaw into the design,
modify it during installation, or break into it when it is on the casino floor.
Each of these attacks has different characteristics—difficulty, success prob-
ability, profitability—but they are all possible.

The work environment of the virtual world is software running on
network computers. Attackers can attack this software anywhere during
its life cycle. A malicious software developer could intentionally leave a
back door in the latest release of the operating system. An adversary could
put a Trojan horse in an already popular Net browser and distribute it
for free over the Internet. He could write a virus that attacks accounting
software and delivers it in an executable attachment to an 
e-mail message. He could analyze the software and exploit an accidental
vulnerability. The possibilities are staggering.

RATIONALLY APPLYING COUNTERMEASURES

The vulnerability landscape is a vast expanse of potential attacks, and it
makes the most sense to apply countermeasures evenly across the land-
scape. The idea is to protect against those threats that pose the greatest
risk, instead of protecting against the most manifest threats while ignoring
all the others.
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The idea is also to make rational investment decisions in applying
countermeasures. That is, it doesn’t make sense to spend more money
improving the locks on the front door when the adversary is apt to break
through the glass window. It also doesn’t make sense to spend $100 on
bulletproof glass to protect $10 worth of assets. The cable TV industry
described adding strong cryptography to their analog set-top boxes as
“putting a Yale lock on a paper bag.”

Value is often dependent on context, and is not always the same for
attackers and defenders. In the days before hard drives, teenagers would
sometimes walk into offices and steal floppy disks . . . for the value of the
disks. Some companies lost some pretty important data that way. And at
the other extreme, shopping carts worth over $100 are much less likely to
be stolen if there’s a $0.25 deposit. Smart cost analysis means more ratio-
nal countermeasures for phone fraud and software piracy.

Also remember that some adversaries don’t even see value in mone-
tary terms. How else can you explain a hacker spending hundreds of
hours breaking into a useless computer system? Some attackers are look-
ing for publicity, revenge, or some other intangible; remember that when
you look at values.

Also, keep in mind that blocking just one of the first four attack steps
is enough to block an attack. Simple countermeasures, education, policy,
and procedures are often rational, cost-effective means of mitigating the
risks posed by the vulnerability landscape. These simple steps can signifi-
cantly raise the risk and sophistication needed by the adversary to conduct
a successful attack.

The next several chapters deal with this process of modeling threats,
assessing risk, and determining which countermeasures to implement.
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19

Threat Modeling and
Risk Assessment

Threat modeling is the first step in any security solution. It’s a way
to start making sense of the vulnerability landscape. What are the
real threats against the system? If you don’t know that, how do

you know what kind of countermeasures to employ?
Threat modeling is hard to do, and a skill that only comes with expe-

rience. It involves thinking about a system and imagining the vast vulner-
ability landscape. Just how can you attack this system? I find that true
hackers are masterful at this kind of thing, which is probably why they’re
drawn to computers in the first place. Hackers enjoy thinking about sys-
tems and their limitations: how they fail, when they fail, what happens
when they fail. They delight in making systems do things they weren’t
intended to. It’s the same whether the hacker is modifying the engine in
his car to work how he wants it to and not how the manufacturer wants
it to, or whether he is poking at an Internet firewall to see if he can “own”
the computer it is running on. 

I find that the best security analysts are people who go through life
finding the limitations of systems; they can’t help it. They can’t walk into
a polling place without thinking about the security measures and figuring
out ways that they can vote twice. They can’t use a telephone calling card
without thinking about the possible antifraud mechanisms and how to get
around them. These people don’t necessarily act on these thoughts—just
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because they found the blind spot in the store’s video surveillance system
doesn’t mean they start shoplifting—but they can’t help looking.

Threat modeling is a lot like this, and the only way to learn it is to do
it. So let’s start by stealing some pancakes.

Our goal is to eat, without paying, at the local restaurant. And we’ve
got a lot of options. We can eat and run. We can pay with a fake credit
card, a fake check, or counterfeit cash. We can persuade another patron
to leave the restaurant without eating and eat his food. We can imperson-
ate (or actually become) a cook, a waiter, a manager, or the restaurant
owner (who might be someone that few workers have ever met). We
could snatch a plate off someone’s table before he eats it, or from under
the heat lamps before the waiters can get to it. We can wait at the Dump-
ster for the busboy to throw away the leftovers. We can pull the fire alarm
and sneak in after everyone evacuates. We can even try to persuade the
manager that we’re some kind of celebrity who deserves a free breakfast,
or maybe we can find a gullible patron and talk her into paying for our
food. We could mug someone, nowhere near the restaurant, and buy the
pancakes. We can forge a coupon for free pancakes. And there’s always
the time-honored tradition of pulling a gun and shouting, “Give me all
your pancakes.”

There are probably even more possibilities, but you get the idea.
Looking at this list, most of the attacks have nothing to do with the point
where money changes hands. This is interesting, because it means that
securing the payment system does not prevent illicit pancake stealing.

It’s similar in the digital world. If this were a Web-based digital pan-
cake store, most of the attacks would have nothing to do with the
electronic payment scheme. There are many other areas of vulnerability.
(Remember the beautiful Web page hack against shopping cart software
from Chapter 10, where an attacker could change the price of an item to
an arbitrary amount. This brings up another possible attack: change the
menu so the pancakes cost $0.00.) The most fruitful attacks are rarely the
physical ones.

FAIR ELECTIONS

Let’s move on to bigger and better things. Let’s rig an election. It’s a local
election—mayor of a town. Cheating in elections is almost as old as elec-
tions themselves. How hard could it be?
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Assume a dozen different voting precincts, each with its own polling
place. Each polling place has three election judges who monitor the
process. Voters get paper ballots from these judges, blacken a circle corre-
sponding to the candidate of their choice, and then drop the ballot into a
large box. At the end of the day, all the ballots are fed into an automatic
vote-counting machine. The judges at each of the 12 polling places phone
their results in to a central office. Then the results are summed together,
and the winner gets to declare victory over the sound of a noisy band
while dodging confetti.

The system has many attack points. We can attack the voters, the
election judges, the ballot boxes, the vote-counting machines, the phone
calls, or the central office. Let’s examine each in turn.

Bribing voters is a time-honored way of rigging an election. This isn’t
just something that happened in the dim history of the developed world,
or in Third World countries. In Dodge County, Georgia (population
17,000), 21 people were indicted for a variety of illegal voting practices,
vote buying included; the election was in 1996. In most jurisdictions
(including Georgia) it’s illegal to pay cash for votes, so politicians are usu-
ally forced to resort to other bribes: tax breaks, public works projects,
friendly legislation, and White House sleepovers. We can do this, but it’s
expensive.

And we can’t rely on it. The whole point of having private voting
booths is so that people can’t reliably buy and sell votes. We can pay vot-
ers $100 each to vote for a particular candidate, but when they go into the
polling place, they can mark their ballots however they please. (Tax
breaks work better in this regard, especially for incumbents; the voters
think that by voting a certain way they can get more of them.) There’s an
old Chicago story about a politician who bought votes. He had his
henchmen smear black gunk on the mechanical voting pulls associated
with a vote for him, and was then able to confirm if the bribed voter
delivered the goods.

This avenue of fraud is returning due to the prevalence of mail-in bal-
lots. Somewhere between a third and a half of all ballots cast in Silicon
Valley elections are mail-in. In Oregon today every election (except pres-
idential) is mail-in only. Arizona experimented with an Internet voting
scheme for the 2000 Democratic primary. The risk is there—someone
could walk into a poor section of town and buy a pile of blank ballots for
$10 each (Arizona used PINs, equally fungible)—but the locals feel that it
is worth it.
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The Singapore ruling party subverts the privacy of ballots by having
small election districts, maybe a single apartment block. They can’t iden-
tify voters individually, but they are very public about denying govern-
ment money to districts that voted for the opposition. Think of it as group
bribery.

Anyway, let’s assume that bribery is beyond our financial means, and
even more worrisome, that someone will call the newspaper and expose
our scheme. How about intimidation? A trick of Mexico’s Institutional
Revolutionary Party was to ensure that voting booths in remote places,
supposedly impervious to prying eyes, were placed under a tree—with a
hired thug hiding in the branches making sure voters voted “properly.”

We can try fooling the election judges. We could hire a bunch of
actors to pretend to be eligible voters. We could make it so that selected
people vote more than once. These are good attacks, but there are
defenses. In the United States the election judges keep a list of eligible
voters; they check identification and keep records. In the first multiracial
South African elections (1994), voters had their hands stamped with
indelible ink to prevent them from voting twice. In Latvia’s first post-
USSR election (1990), people’s identity papers were checked and then
stamped. During Indonesia’s 1999 elections, voters dipped their fingers in
ink to prevent double voting. (The ink was supposed to last for the three-
day election period, but some people noticed that some of the ink was
washable.)

We could attack the election judges themselves. With the coopera-
tion of the judges, we can do what we want. We can slip ineligible voters
onto the list—in the early 1900s, dead Chicagoans voted in many elec-
tions—or simply invent eligible voters. During the 1960 presidential elec-
tion, the Chicago Democratic machine, led by Mayor Richard Daley (the
scary one), is widely believed to have initiated enough voter fraud to tip
the Illinois vote to Kennedy and cost Nixon the election. (When the
Republicans demanded a recount in the state, the Democrats demanded
a similar recount in a few other states and then both sides capitulated.)
This kind of thing is still going on: In the 1996 Louisiana Senate election,
the Democratic political organization was accused of buying votes, get-
ting people to vote multiple times, and even tampering with voting
machines.

Aside from widespread corruption of election judges, attacks get
harder. We could try to bribe judges to look the other way, but three of
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them are at each polling place. We can probably bribe one random judge,
but it is really hard to also bribe the two other judges at the same precinct.
Election judges are more expensive than voters, and more likely to alert
the media.

How about the ballot boxes? We can fill them with already-
completed ballots, the original ballot-stuffing idea. We’ll have to make
sure we don’t overdo it; the last thing we want is for a precinct to regis-
ter a 130 percent voter turnout. And we have to make sure nobody
notices; some Third World elections use transparent ballot boxes to foil
this attack.

Attacking the vote-counting machine is easier. It’s a computerized
device, so chances are no one will notice if a malicious vote-counting
program inflates one candidate’s votes. We could try to get a Trojan horse
into the machine while the software is being written (assuming software
is involved, and it is not simply a mechanical counting machine). Or
maybe we have to intercept the machine when it is delivered and slip the
bogus code in. Maybe we could cajole the election judges to install our
software “upgrade.” There are a lot of avenues for attack here.

Maybe we can misprint the paper ballots so that the machines some-
times just don’t register a vote for the opposition; move the box a fraction
of an inch to the side and no one would notice. Or we can somehow
force the machines to jam, forcing the judges to count manually. Then
one bribed election judge could possibly slip a fake result past the other
two. In the 1988 Mexican presidential election, the computers “failed”
when the challenger was ahead. When they were working again, the
incumbent had won . . . and the ballot papers were swiftly burned. I don’t
want to cast aspersions on the Mexican electoral system, but it all sounded
fishy.

The central tabulating office is the hardest place to attack, because it’s
so public. Maybe we could get away with misreporting precincts, but one
of the judges is likely to notice. The phone calls between the precincts
and the office . . . possibly.

So, how did we do? It looks as though our best avenue of attack is to
persuade the vast majority of election judges to do our bidding. They can
add or delete votes, swap ballot boxes in transit, and do lots of other
underhanded things. We might be able to rig the vote-counting
machines, and getting fake voters past the judges and fake ballots into the
boxes might work. The moral is that this is hard. Unless the people run-
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ning the election are in the back pocket of one of the candidates—which
is sometimes true in Third World elections, but rarer in the United
States—it’s just not going to happen.

The point of this thought experiment was to show the many avenues
of attack against a system, and how few of them involve the computerized
portion of the process. We can attack the tabulation software, and we can
mount a denial-of-service attack by making the automatic system fail and
forcing the election judges to fall back on an older, more insecure, proce-
dure for accomplishing the same task. In the end, elections are about trust.
If the election judges are trustworthy and competent, the election will be
fair. If the election judges are not trustworthy, there are so many ways to
rig the election that it isn’t even worth worrying about which one is most
likely.

The Internet adds new twists to this already tangled skein, and the
risks increase significantly. All the old attacks remain, and there are all the
new attacks against the voting computers, the network, and the 
voters’ computers (which are not trusted in any way). And denial-of-ser-
vice attacks that don’t exist against centralized systems. Even worse, mod-
ern elections have no graceful way to fail. The 2000 Democratic primary
in Arizona allowed Internet voting. If there was a problem, or even sus-
picion of a problem, what could Arizona do? Reboot the election and try
again the following week? This reason alone is enough to convince any
psephologist to eschew Internet voting.

SECURE TELEPHONES

This one should be easy. An organization—government, corporation,
human rights advocacy group—needs to make phone calls that can’t be
overheard. The solution is an encrypted telephone, of course. But what
are the threats?

The adversary could be a corporate competitor or a government,
someone with both the resources and access to carry out highly sophisti-
cated attacks. To solve this problem, the organization will build or buy
encrypted phones.

How can we attack this system? We might be able to break the
encryption, but let’s assume that we can’t.
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We could modify the phones so that they don’t work properly. There
are lots of options: We can force the encryption algorithm to be weak, we
can mess with the key generation system, we can make the phones radi-
ate the unencrypted phone call, or we can add a subliminal channel to
make the phones leak the keys onto the voice circuit (this is known as
“Clipper” when it is done openly). All of these attacks could be put into
place during product design and development, while the phones are being
shipped to the organization, or during maintenance. They could be done
by sneaking into the manufacturing facility at night, bribing someone
who works there, or simply designing the surreptitious feature in from the
start.

This might seem far-fetched, but if we have the resources of a
national intelligence organization, they’re perfectly reasonable methods of
attack. Crypto AG, a Swiss company, sells encryption hardware to a lot of
Third World governments. In 1994, one of their senior executives was
arrested by the Iranian government for selling bad cryptographic hard-
ware. When he was released from jail a few years later, he went public
with the news that his company had been modifying their equipment for
years at the request of the U.S. intelligence community. In the 1950s,
Xerox modified photocopiers sold to the Russians so that they also had a
little camera inside; copier repairmen would periodically remove and
replace the film.

The Soviets weren’t any less wily; they modified all sorts of office
equipment, including IBM Selectric typewriters, in the American
embassy in Moscow to broadcast data. British encryption companies are
rumored to add exploitable features into products they sell to foreign gov-
ernments. Even if they didn’t hear the rumor, you’d think that the Argen-
tine government would think twice before using British-supplied
encryption devices during the Falklands War.

There are a lot of things we can do that don’t directly involve the
secure telephone: installing bugs inside the secure phones (or the rooms
where the phones are), bribing the people making and receiving the calls,
and so forth. But the organization can’t reasonably expect the phones to
be able to deal with that.

One of the best attacks is to simply force the phones not to work.
This is easier if the attacker owns the phone system: for example, the
phones are being used by a human rights organization in a questionable
Third World country, or by a multinational corporation calling a field
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office in an industrial country known for economic espionage. The attack
is to eavesdrop on the phone line, and when the secure telephones try to
work, force enough errors that they fail. What will happen, more likely
than not, is that the two parties will just stop trying to use the secure
phone and say what they were going to say over the unprotected phone
line.

SECURE E-MAIL

Secure e-mail is a little more interesting. In Chapter 12, I briefly outlined
how secure e-mail programs work. The cryptography does two things:
provides a digital signature for authenticity, and encryption for privacy.
(The envelope is a curious security device. The Babylonians first thought
of protecting clay tablets by enclosing them in clay “envelopes” baked
hard around their contents. The Chinese were the first to use paper
envelopes—often with wax seals to make them tamper-
evident—and they eventually hit Europe. Louis XIV of France popular-
ized them.)

In any case, there are lots of ways to attack this system. There’s the
cryptography: Do the algorithms and protocols work like the designers
think they do? There’s the implementation: Are there any software bugs
that can be exploited? There are all the same back doors that work against
the secure telephones: Can we modify the program in design, develop-
ment, or on the user’s desktop? What about the passwords that users use
to read their encrypted mail or to sign their outgoing mail? 
E-mail programs use certificates to validate public keys; Chapter 15 talks
about the potential vulnerabilities in the trust model of certificate systems.
And don’t forget about all the other vulnerabilities that have nothing to
do with the e-mail system: monitor the computer and read the e-mail
either before it is sent or after it is received, get a copy of a printout, attack
whatever key escrow mechanism the government (or corporation) was
dumb enough to enforce.

Encrypting e-mail is riskier than encrypting phone calls. For phones,
the information is at risk only for the duration of the call. For e-mail,
which may be stored at both ends for considerable lengths of time, the
information is at risk also while at rest. Moreover, the adversary can sub-
vert the operating system of the underlying computers to attack the infor-
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mation, while phone calls are made on dedicated hardware, which is
much harder to attack. The adversary can introduce the attack at a dis-
tance, with little physical risk, and can possibly obtain all of the target’s
information, not just a single message. Finally, the attack can be auto-
mated to rapidly exploit a wide range of targets or to just bide its time
waiting.

I’ll return to this example in Chapter 21.

STORED-VALUE SMART CARDS

Next, a more complicated example: an electronic payment system based
on smart cards that store a balance on them. (These are often called stored-
value cards.) There are several of these being tested: Mondex’s (and Mas-
terCard’s) system, VisaCash (tested during the 1996 Summer Olympics in
Atlanta), Banksys’s Proton. The analysis here is general, and doesn’t nec-
essarily reflect the details of any of these systems. We’ll call our hypothet-
ical system Plasticash.

The basic idea behind Plasticash is that people are issued smart cards
to use for cash transactions. Terminals litter the commercial landscape: in
banks, in stores, attached to computers attached to the World Wide Web.
When a customer wants to buy something from a merchant (or, more
generally, transfer money to someone else), they both put their Plasticash
cards into a reader/writer and transfer the money. (Merchants will prob-
ably have special cards that always remain in the readers.) People can also
take cards to banks or ATMs to either load them up with more Plasticash,
or deposit Plasticash into their bank accounts. Note that the two cards
don’t have to be right next to each other; they can be separated by phone
lines or modem.

In general, stored-value cards have the advantage that they don’t have
to be online—in contact with some central server somewhere—in order
to work. (For debit cards to work, the ATM has to connect to a bank
computer in real time.) They have the disadvantage that loss or destruc-
tion of the card means losing the money.

Plasticash, like any electronic payment system, will have all sorts of
security features: cryptography, computer security, tamper resistance,
audit, and whatever. It could provide varying degrees of integrity, pri-
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vacy, anonymity, and so forth. We’re not going to get detailed. Let’s just
look at possible attacks against the most general formulation of the system.

There are three different parties involved in the Plasticash system: the
customer, the merchant, and the bank. And there are three protocols:

Bank/customer. The customer loads Plasticash onto his card.
Customer/merchant. The customer transfers Plasticash from his card to

the merchant’s card.
Bank/merchant. The merchant deposits Plasticash from his card into his

bank account.

Part 1 of this book talks about the possible attacks: monetary theft,
framing, privacy violations, vandalism and terrorism, or publicity. Plasti-
cash might also have to worry about ancillary crimes: An attacker may
wish to use the system to carry out some other crime, such as money
laundering. Ancillary crimes are hard to define clearly, since they can
change at each border crossing, and even at each election. It’s also not
clear to what extent different countries’ laws and customs may be in con-
flict. For example, in an international arena, U.S. financial reporting
requirements may run afoul of Swiss banking secrecy laws.

When we talk about attacks by the bank, we are not necessarily
postulating a malefic banking empire. These attacks can be mounted by
rogue employees of venerable banks. In general, we are more concerned
with attacks by customers and merchants (rogue employees of merchants),
on the theory that banks can afford better security mechanisms and mea-
sures, and have greater potential losses to reputation if they attack their
own systems. Still, it’s prudent to be careful.

The first type of attack is theft. There are several ways to mount an
attack to steal money from Plasticash. These attacks can be mounted by
customers or merchants:

Modify the card so that is has more value than it should. This can be done in
several ways; the most obvious is to find the data register inside the card that
records the value of the card and change it.

Alter records to reflect either a larger or smaller payment amount.
Learn to create or emulate new cards. This attack is creating a fake Plasticash

card that can act like a real card. The fake card doesn’t have to look like a
real card; an attacker can use it only for purchases over the Internet, or he
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can transfer money from his fake card to a real card and then spend with the
real card.

Learn how to clone cards. The attacker would need to steal a legitimate card,
make a clone, and then return it. (This attack succeeded against Canadian
bank cards; several arrests were made in 1999. A rogue merchant could
clone a card in seconds, while a customer used the card to make a legitimate
purchase.)

These are customer attacks:

Repudiate a set of valid card transactions. This is the old “buy an expensive
something with your card, and then report the card stolen and deny the
transaction.” There’s a new variant—using stupidity as an excuse—for
example: “Visa forced me to lose all my money gambling online; it’s not my
fault.” This attack should be dealt with at an administrative and legal level.
Whether you’re dealing with checks, credit cards, traveler’s checks, or
whatever, some people will decide they wish they hadn’t spent all that
money and try to avoid paying the charges.

Report another user’s card stolen and arrange to intercept his replacement
card. Again, this attack is bigger than the Plasticash system.

And attacks that can only be mounted by merchants:

Accept a transaction and refuse to deliver the goods. This is outside the scope
of what the card can resist, but administrative and legal procedures need to
exist to handle it.

Get access to some stolen customer cards, and alter data. Or generate a bunch
of apparently valid checks to deposit. This is an obvious attack. The attacker
will probably try to deposit the money and then quickly withdraw it all.

Replay valid transactions. A merchant could somehow charge a customer
twice for the same transaction.

Finally, these attacks can be mounted by banks:

Refuse to load value into a Plasticash card that a customer has paid for. This
can be resisted only by administrative procedures and logging. The cus-
tomer will have evidence enough to prove to a neutral third party what has
happened if the protocol is designed competently.

Pocket the cash and never credit the customer’s account, when someone tries
to deposit money from his Plasticash card into his account. Again, this can
be defended against only through administrative procedures.

298 C H A P T E R  N I N E T E E N

453803_Ch19.qxd:453803_Ch19.qxd  4/12/13  2:20 PM  Page 298



All of these attacks can be mounted by pairs (or the trio) as well. I
can’t think of any different sort of attack that a merchant and customer
can mount, but depending on the security characteristics of the system,
the pair could be successful where either one acting alone might not be.
Additionally, think about attacks by people pretending to service the ter-
minal. Or repair the phone lines.

The second type of attack is framing. First, customer or merchant
attacks:

A customer can claim that a merchant has an invalid Plasticash card (or termi-
nal). A merchant can claim the same thing about a customer card. This has
to be resolved by administrative means.

Then, bank attacks:

Forge customer cards (or merchant cards, for that matter) and frame the cus-
tomer. Presumably, if the bank can issue Plasticash cards, it could also forge
them. Wouldn’t a customer hate to see his itemized Plasticash record
include a prostitute visit?

The third type of attack is a privacy violation. Privacy violations hap-
pen whenever some user’s personal information is given without that per-
son’s consent to some third party. Depending on the jurisdiction, a
privacy violation may be legal. Since the developers of Plasticash want to
their product to propagate worldwide, it makes sense to list the attacks
and then later ignore them if they are legal (and harmless).

Unless the system is specifically designed to prevent this, the bank is
in a position to collect unlimited information about customer spending.
(“I know what you bought last summer.”) It is possible to avoid some of
this (but only some) by having users buy precharged stored-value cards in
fixed denominations, like some prepaid telephone cards.

The merchant can’t directly get the customer’s name and such data,
but it can collect and share information about this card’s ID with other
merchants, and try to link this back to the user’s identity.

And we also have to worry about eavesdroppers: people not involved
in the protocol at all listening in on transactions and collecting informa-
tion.
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The fourth category of attack we have to worry about includes van-
dalism and terrorism. These attacks are prevalently aimed at the system as
a whole, though they could be aimed at users, merchants, or banks. The
general idea behind all such attacks, though, is that they are intended to
prevent the system from working properly. Denial-of-
service attacks can be so much fun. Watch.

First, denial-of-service attacks on a merchant:

Interfere with communications with bank or customers.
Report the merchant’s card as stolen or compromised.
Physically damage or destroy the merchant’s card.
Tamper with the power to the terminal, or the phone connection to the ter-

minal.

Denial-of-service attacks on a customer:

Interfere with communications with bank or merchants.
Report the customer’s card as stolen or compromised.
Physically damage or destroy the customer’s card.

Denial-of-service attacks on a bank:

Interfere with communications with customers or merchants.
Physically damage or destroy the bank’s secure hardware.

And systemwide denial-of-service attacks:

Somehow force the system to upgrade itself, before anyone knows how to
deal with it. (You can think of this attack as Y2K.)

Deny service to many or all banks.
Interfere with communications with customers or merchants.
Destroy top-level certifying public key in PKI-based systems.

We can also use criminal attacks to destabilize the system:

Start mass-producing counterfeit cards.
Use massive, widespread fraud to bring down system.

Finally, let’s talk about using the system to commit a crime. In the
context of this system, crime means violating the laws by using the system.
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For now, we’ll only consider money-laundering laws, since other laws are
too plentiful and variable to discuss here. (Note that most crimes involve
a transfer of money somewhere along the line. Nothing a stored-value
card can do will get rid of the drug trade, illegal gambling, prostitution,
and so forth.)

Some people get cards under false names, or even under their own
names if they can be convinced to do so. (There are no doubt many peo-
ple in the world who will go open a bank account that they know will be
used for money laundering, and hand over control to someone else, if
they are offered a few thousand dollars, or in some cases, a few days’ or
weeks’ worth of alcohol or drugs.) If these cards are charged up once and
used as compact currency, then there isn’t an obvious way to stop this.

Note that some ethical and legal issues here are not obviously fixable.
Providing financial data to the U.S. or U.K. governments about their cit-
izens raises some potential problems, but this data will probably not be
abused too often. Providing the same kind of data to many other govern-
ments, such as China, Turkey, Mexico, or Syria, seems like a rather dif-
ferent matter. The latter could cause political and legal problems for the
companies that provide that data, and is also likely to lead to much higher
levels of fraud in those countries.

RISK ASSESSMENT

It’s not enough to simply list a bunch of threats, you need to know how
much to worry about each of them. This is where risk assessment comes
in. The basic idea is to take all the threats, estimate the expected loss per
incident and the expected number of incidents per year, and then calcu-
late the annual loss expectancy (ALE).

For example, if the risk is a network intrusion by hackers looking for
something to do, the expected loss per incident might be $10,000 (cost of
hiring someone to figure out what happened, restore things to their nor-
mal state, etc.) and the number of incidents per year might be three per
day, or 1,000. This means that the ALE is 10 million. (You can see where
this is heading. If the ALE is $10 million, then buying, installing, and
maintaining a firewall for $25,000 a year is a bargain. Buying a $40 mil-
lion super whiz-bang whatever is a waste of money. This analysis implies
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that both the firewall and the super whiz-bang whatever actually counter
the threat. We’ll come back to that point later.)

Some risks have a very low probability of incidence. If the risk is a
network intrusion by an industrial competitor out to steal the new design
plans, the expected loss per incident might be $10,000,000, but the num-
ber of incidents per year might be 0.001: there’s a 0.1 percent chance of
this happening per year. This means that the ALE is $10,000, and a coun-
termeasure costing $25,000 isn’t such a bargain anymore.

The insurance industry does this kind of thing all the time; it’s how
they calculate premiums. They figure out the ALE for a given risk, tack
on some extra for their operational costs plus some profit, and use the
result as the cost of an insurance premium against that risk.

Of course there’s going to be a lot of guesswork in any of these; the
particular risks we’re talking about are just too new and too poorly under-
stood to be better quantized. For one thing, it might take a really sharp
eye to spot the potential for a cascade failure: a small error that could
eventually result in the loss of millions of dollars.

For computer-related risk analysis, a bunch of commercial tools pro-
vide templates and methodologies for doing risk analysis. They tend to
look at large risks, like industrial espionage, rather than small risks, such as
someone recovering the private key used to secure your e-mail.

Risk analysis is important because it gives perspective to this whole
exercise. Large gaping security holes are okay if the probability of attack is
zero. (Tokyo is still vulnerable to attacks by giant fire-breathing lizards,
for example.) Tiny holes need to be closed if they’re the target of 10 mil-
lion attacks a day.

THE POINT OF THREAT MODELING

When designing a security system, it is vital to do this kind of threat mod-
eling and risk assessment. Too many system designers think of security
design as a cookbook thing: mix in particular countermeasures—encryp-
tion and firewalls are good examples—and magically you’re secure.

This never happens. Yogi Berra said: “You’ve got to be careful if you
don’t know where you’re going ’cause you might not get there.” Often
security systems don’t protect against the threats that matter. Encrypting
e-mail may protect the contents from eavesdropping, but does nothing to
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hide the fact that two people are communicating. In some threat models,
that traffic-analysis data is more important than the contents of the mes-
sage. In other threat models, the fact that someone is using encryption is
something to keep secret.

Good engineering proceeds seriatim from requirement to solution,
not from cool technology to product. In security engineering, this means
that you first need to define the threat model, then create a security pol-
icy, and only then choose security technologies that suit. The threats are
what determine the policy, and the policy is what determines the design.
In detail:

Understand the real threats to the system and assess the risk of
these threats. It’s easiest to understand this if you can draw on real-world
experience with actual attacks against similar systems.

Describe the security policy required to defend against the
threats. This will be a series of statements like: “only authorized banks are
allowed to modify the balance on Plasticash cards,” or “all Plasticash transac-
tions must be auditable.”

Design the countermeasures that enforce the previously
described policy. These countermeasures will be a mixture of protec-
tion, detection, and reaction mechanisms.

Of course, this “waterfall” model is ideal, and the real world  doesn’t
often cooperate. More likely your engineering path is going to look more
like a spiral, where you iterate the preceding three steps multiple times,
each time getting closer and closer to real security. This happens most
often with new systems and with new technologies, where the real threats
remain abstruse until you field the system and see who attacks what. This
is why all good systems have contingency plans and disaster recovery
plans.

GETTING THE THREAT WRONG

Looking at the goals and methodologies of attackers seems obvious, but
many otherwise smart organizations have been blindsided for failing to do
just this. The NSA has spent many good years defending the U.S. military
communications systems against a well-funded organization with a single
goal: “eavesdrop on U.S. communications systems of military impor-
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tance.” They were good at this, but completely missed the hacker threat.
Hackers aren’t interested in eavesdropping. They aren’t particularly well
funded. They aren’t even organized. They don’t want to collect military
intelligence; they want to poke at systems for fun and see how they fall
over. They want to brag to their friends and maybe even get their names
in the newspaper. An AT&T Bell Labs researcher found a flaw in the
NSA’s Clipper Chip implementation and caused all sorts of bad publicity
for the NSA. Why? The frisson at catching the NSA in a mistake.

If you do enough threat modeling, you start noticing all kinds of
instances where people get the threat profoundly wrong:

The cell phone industry spent a lot of money designing their systems to detect
fraud, but they misunderstood the threat. They thought the criminals would
steal cell phone service to avoid paying the charges. Actually, what the
criminals wanted was anonymity; they didn’t want cell phone calls traced
back to them. Cell phone identities are stolen off the air, used a few times,
and then thrown away. The antifraud system wasn’t designed to catch this
kind of fraud.

The same cell phone industry, back in the analog days, didn’t bother securing
the connection because (as they said): “scanners are expensive, and rare.”
Over the years, scanners became cheap and plentiful. Then, in a remarkable
display of not getting it, the same industry didn’t bother securing digital cell
phone connections because “digital scanners are expensive, and rare.” Guess
what? They’re getting cheaper, and more plentiful.

Hackers often trade hacking tools on Web sites and bulletin boards. Some of
those hacking tools are themselves infected with Back Orifice, giving the
tool writer access to the hacker’s computer. Aristotle called this kind of
thing “poetic justice.”

When a vulnerability is found in an Internet security protocol, the vendor
generally revises the protocol to eliminate the vulnerability. But, because
backwards compatibility is so important, the vendor often makes the new
protocol compatible with the old, insecure, protocol. Smart attackers simply
force the old protocol and then exploit the vulnerability. This is called a ver-
sion-rollback attack.

Some years ago, the coin slots in many Japanese pachinko machines were
replaced with magnetic card readers. Many anticounterfeiting measures
were included in the system, but the designers made the mistaken assump-
tion that the pachinko parlor owners were the good guys. In fact, some of
them are involved in organized crime. And the trust model was designed
badly: The pachinko parlors were reimbursed whether or not the cards
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were real, so they had no incentive to police for forgeries. (The designers
also thought that a $100 limit per card would cap their losses.) The attack
was subtle—it involved reconditioning real cards, a bunch of pachinko
machines that “disappeared” after the Kobe earthquake, and multiple
pachinko parlors—but the total amount of fraud was about $600 million.
Rumor is that the money was funneled into North Korea.

Manufacturers of slot machines have long anticipated attacks by players manip-
ulating physical devices. Cheating attempts have included holes drilled into
the machine so as to manipulate the reel mechanisms, and devices used to
interfere with the sensors that track the number of coins that have been paid
out. Years ago, one video poker machine manufacturer was surprised by a
completely unanticipated attack: static electricity. Some payers discovered,
probably by accident, that after building up a large static charge from the
plush casino carpets they could shock the machine, causing it to empty its
hopper of all stored coins.

In late 1999, the encryption used to encrypt DVDs was broken. Even though
the discs were encrypted, the decryption key had to be in the players.
There’s no way around it. This worked fine as long as the players were tam-
per-resistant hardware, but as soon as someone built a software player, the
decryption keys were in software. Someone simply reverse engineered the
software and recovered the key, allowing them to freely copy and distribute
DVD data over the Internet. 

In 1980, the host of the Pennsylvania lottery drawing, an official with the
Pennsylvania lottery, and some assorted stagehands rigged the ping-pong
balls used in the drawing and won a $1.2 million jackpot. No one expected
that complex a collusion. These days, KPMG audits the drawings much
more carefully. (A similar flaw—this time a random error—occurred in the
Arizona lottery. In 1998, someone noticed that no winning number in its
Pick 3 game had ever included a single numeral 9. It turned out that the
pseudorandom number generator algorithm had an elementary program-
ming error. Ping-pong balls are safer than computers, it seems.) 

Most European countries enforce trucking regulations with something called a
tachograph: a device attached to the truck’s speedometer that logs the vehi-
cle’s speed, distance, and other information. These devices would record
this data on a waxed paper tape that the driver had to sign and date, and
keep with him for a period of time. These were hard to forge, and attacks
tended to exploit procedural weaknesses instead of technological weak-
nesses. Recently the EU funded the Tachosmart project, designed to build
an all-digital replacement. Any such system will open itself to all the attacks
described in this book (even worse, it is likely to be based on smart cards),
and will be much less secure.
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These attacks are interesting not because of flaws in the countermeasures,
but because of flaws in the threat model. In all of these cases, there were
countermeasures in place; they just didn’t solve the correct problem.
Instead, they solved some problem near the correct problem. And in
some cases, the solutions created worse problems than they solved.
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20

Security Policies and
Countermeasures

Spend enough time doing threat modeling, and it becomes plain that
the phrase “secure system” has different meanings depending on
context. Some examples:

Business computers need to be secure against hackers, criminals, and industrial
competitors. Military computers need to be secure against all those threats
plus enemy militaries. Some business computers, those that run the tele-
phone service are a good example, need to be secure against military threats
as well.

Many urban transportation systems use prepaid farecards instead of cash. Simi-
lar prepaid phone card systems are used throughout Europe and Asia. These
systems need to be secure against forgery in all of its forms. Of course,
forgeries that cost the forgers more than legitimate use are not a problem.

E-mail security programs need to ensure that e-mail is secure against eaves-
dropping and alteration by any type of attacker. Of course, the program
cannot protect against manipulation at the end points: a Trojan horse in the
computer, a TEMPEST attack against the computer, a video camera that
can read the screen, and so forth. Encrypted telephones are the same; they
can secure the voice conversation in transit, but can do nothing about room
bugs.

The trick is to design systems that are secure against the real threats, and
not to haphazardly use security technologies with the belief that some-
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thing good will come of it. The way to do that is to build a security policy
(sometimes called a trust model ) based on the threat analysis, and then to
design protection mechanisms that implement the security policy and deal
with the threats.

SECURITY POLICIES

A security policy for a system is like a foreign policy for a government: It
defines the aims and goals. When a government is accused of not having
a coherent foreign policy, it’s because there is no consistency in its actions:
no overall strategy. Similarly, a digital system without a security policy is
likely to have a hodge-podge of countermeasures. The policy is what ties
everything together.

Good policies talk to the threats. If there were no threats, there would
be no policy: Everyone could do everything. The United States needs a
foreign policy because of threats from other nations. Pennsylvania does
not need a foreign policy, because there are no threats from other states.
It’s the same with security policies; they’re needed because threat model-
ing didn’t result in an empty page. The security policy provides a frame-
work for selecting and implementing countermeasures against the threats.

Most of this book is about tactics; policy is about strategy. You can’t
decide what kinds of antifraud countermeasures you need for your cell
phone unless you have a policy you want those countermeasures to
enforce. Or, more realistically, you can’t expect the dozen or so engi-
neers, each of whom is in charge of security for a small portion of the sys-
tem, to behave coherently unless there is a unified policy that they are all
trying to implement. Everyone has a security policy in mind when they
define and implement countermeasures. A single policy written down
forces everyone to follow the same one.

It’s common wisdom that every organization needs a security policy
for its computer network. The policy should outline who is responsible
for what (implementation, enforcement, audit, review), what the basic
network security policies are, and why they are the way they are. The last
one is important; arbitrary policies brought down from on high with no
explanation are likely to be ignored. A clear, concise, coherent, and con-
sistent policy is more likely to be followed.
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The security policy is how you determine what countermeasures to
use. Do you need a firewall? How should you configure your firewall?
Do you need access tokens, or are passwords good enough? Should users
be allowed to access streaming video from their Web browsers?
If there’s no policy, there’s no basis for consistently answering these ques-
tions.

Unfortunately, most organizations don’t have a network security pol-
icy. Or they do, but no one follows it. I know of one network audit
where there was a firewall protecting a boundary between two halves of
an internal network. “Which side is inside the firewall and which is out-
side?” the auditor asked. No one knew. That’s an example of an organi-
zation without a useful security policy.

In any case, the security policy needs to outline “why” and not
“how.” The hows are tactics: the countermeasures. As hard as it is to fig-
ure out what the policy should be, it’s even harder to find a set of coun-
termeasures that implement the policy.

TRUSTED CLIENT SOFTWARE

We’ve touched on various aspects of this problem in the sections on soft-
ware copy protection, intellectual property theft, and digital watermark-
ing. Some companies sell rights-management software: audio and video
files that can’t be copied or redistributed, data that can be read but cannot
be printed, software that can’t be copied. Other companies market e-mail
security solutions where the e-mail cannot be read after a certain date,
effectively “deleting” it. Still other companies have software e-commerce
technologies that enforces rights of various kinds.

The common thread in all of these “solutions” is that they postulate a
situation where Alice can send Bob a file, and then can control what hap-
pens to that file after Bob receives it. In the e-mail product, Alice wants
to control when the file is deleted on Bob’s computer. In the various
rights-management products, Alice wants to send Bob a file but limit
when and if Bob can view, copy, modify, and retransmit the file.

This doesn’t work. Controlling what Bob can do with a piece of data
assumes a trusted (by Alice) piece of software running on Bob’s computer.
There’s no such thing, so these solutions don’t work.
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As an example, look at the online gaming community. Many games
allow for multiplayer interaction over the Internet, and some even have
tournaments for cash prizes. Hackers have written computer bots that assist
play for some of these games, particularly Quake and NetTrek. The idea
is that the bots can react much quicker than a human, so that the player
becomes much more effective when using these bots. An arms race has
ensued, as game designers try to disable these bots and force fairer play,
and the hackers make the bots cleverer and harder to disable.

These games are trying to rely on trusted client software, and the
hacker community has managed to break every trick the game designers
have thrown at them. I am continuously amazed by the efforts hackers
will go through to break the security. The lessons are twofold: not only is
there no reasonable way to trust a client-side program in real usage, but
there’s no possible way to ever achieve that level of protection. 

Against all of these systems—disappearing e-mail, rights management
for music and videos, fair game playing—there are two types of attackers:
the average user and the skilled attacker. Against the average user, any-
thing works. This is Uncle Steve, who just wants a single copy of Norton
Utilities, The Lion King, or Robin Hitchcock’s latest CD, and doesn’t
want to pay for it. There’s no analogue for him in the physical world;
Uncle Steve couldn’t make a single copy of a Chanel handbag, even if he
wanted one. On the one hand, he’s more elusive; on the other hand, he’s
much less of a financial threat. Uncle Steve isn’t an organized criminal;
he’s not going to have a criminal network and he’s not going to leave
much in the way of a trail. He might not even have bought the software,
video, or CD if he couldn’t get a free pirated copy. Against Uncle Steve,
almost any countermeasure works; there’s no need for complex security
software.

Against the skilled user, no countermeasure works. In Chapter 16, 
I talked about the heroic lengths some hackers go to to disable copy
protection schemes. Earlier in this section I talked about the specially
designed bots to subvert the user interface in computer games. Because
breaking the countermeasure can have so much value, building a system
that is secure against these attackers is futile. And even worse, most sys-
tems need to be secure against the smartest attacker. If one person hacks
Quake (or Intertrust or Disappearing Inc.), he can write a point-and-click
software tool that anyone can use. Suddenly a security system that is
secure against almost everyone can now be compromised by everyone.
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The only possible solution is to put the decryption mechanism in
secure hardware, and then hope that this slows the professionals down by
a few years. But as soon as someone wants a software player, it will be bro-
ken within weeks. This is what the DVD industry learned in 1999. This
is what Glassbook learned in 2000, when unprotected copies of Stephen
King’s “Riding the Bullet” materialized two days after the eBook version
(supposedly secured against this kind of thing) was released.

Any rational security policy will recognize that the professional pirates
cannot be defended against with technology. Professional digital pirates
are no different than people who counterfeit Chanel handbags, and soci-
ety has ways of catching these people (noncomputer detection and reac-
tion mechanisms). They may or may not be effective ways, but that has
nothing to do with the digital nature of the forgery. The same security
policy would recognize that Uncle Steve is an amateur, and that almost any
countermeasure—as long as it could not be broken completely or triv-
ially—will work in this case.

Note that this analysis implies that content providers would be smart
to find alternate ways to make money. Selling physical copies of a book
doesn’t work as well in the digital world. Better is to sell real-time
updates, subscriptions, and additional reasons to buy a paper copy. I like
buying CDs instead of copying them because I get the liner notes. I like
buying a physical book instead of printing a digital copy because I want
the portability and the binding. I’m willing to pay for stock information
because I want its timeliness.

You can see alternate models in the public financing of good works:
public television, public art, and street performers. The performance is
free, but individual contributions make it happen. Instead of charging
each of you $29.99 for this book, maybe I should have put up a Web page
asking for contributions. I would write the book and put it in the public
domain, but only after I received $30,000 in contributions. (This idea was
used to fund some anti-Bush campaign ads in 2000. People would pledge
contributions on their credit card, but would only be charged if the target
total was reached. Notice that the credit card company acted as the trusted
third party in this transaction.)

Other industries have different solutions. The smarter game compa-
nies dealt with this by specifically allowing bots in some tournaments, and
having final rounds of other tournaments live at trade shows, where the
computer is trusted by the game company. The smarter self-distrusting e-
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mail companies emphasize the liability reduction installing such a system
brings, rather than the absolute reliability of the software. There the threat
is not malicious users copying and distributing e-mail, but honest employ-
ees accidentally leaving e-mail undeleted and malicious lawyers subpoe-
naing the e-mail years later. But trying to limit the abilities of a user on a
general purpose computer is doomed to failure. It keeps the honest hon-
est, and provides a nice false sense of security. But sometimes that’s good
enough.

AUTOMATIC TELLER MACHINES

ATMs are an interesting example, because the trust and security models
are more convoluted than it seems at first. The ATM is basically a safe that
dispenses money when told to do so by some external device. The
machine takes data from the user (both the information on the magnetic
stripe and the PIN the user types in), sends it to some central server some-
where, and gets a message in return (dispense cash, don’t dispense cash,
don’t return the card, etc.). The ATM needs to be secure against some-
one spoofing the communications link, and from someone either cutting
the safe open or hauling it away. It also needs audit records in the event
of disputes (those bill counters are not perfect).

Lots of people need access to the ATM. Guards in armored cars come
around routinely to fill the thing with cash. Maintenance personnel need
to have access, both at defined times for scheduled maintenance and ad
hoc in the event of a problem. And remember that maintenance and
guard contracts can change; the bank that owns the ATM needs to be able
to turn off access for one set of maintenance personnel and turn on access
for another.

Also, there’s an easy financial equation. An ATM is only worth the
cost of replacement plus the cash inside. Spending $10 million on defenses
just doesn’t make sense.

The cryptography is pretty easy. The communications link does not
need to be encrypted, only authenticated. This can be done with either
MACs or digital signatures. Audit logs, secured with hash functions,
should be stored both at the ATM and at the server.

The computer security is straightforward. The machine should strive
for auditability above all. In the event of failure it should shut down rather
than heedlessly hand out money. The software should be hard to change,
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to avoid the problem of maintenance personnel injecting Trojan horses
into the system. And so on.

The physical security is also straightforward. The money should be
kept in a safe. There should be audit records of anyone opening the safe
(perhaps each person can have his own combination, or a unique token).
Any long-term cryptographic keys should be erased at the first sign of
tampering. 

It’s interesting to note that ATM owners only recently got the phys-
ical countermeasures correct. Until a few years ago, ATMs were built into
bank walls and other secure locations. Elsewhere in this book I mentioned
attackers who stole entire machines; that was the concern. Then, some-
one reached the conclusion that these attacks were rare, and that there was
a lot more money to be made by putting ATMs in every bus terminal,
bar, shopping mall, and gas station. These are small, freestanding ATMs:
much less secure, but that doesn’t matter. These ATMs are in public
places, so there’s some basic detection and reaction. There’s less cash in
them, so the risk is less. And the fees are high, so they’re profitable. If the
occasional ATM disappears, it’s still worth it.

Even more recently there was another change in the security policy.
Someone finally realized that an ATM has two parts: a physical vault with
money in it, and a networked computer that tells the vault how much to
dispense and when. There’s no reason for these two parts to be in the
same physical housing. A retail store already has a secure money vault: the
cash register. Now some ATMs have no money in them; they’re just a
computer. The computer goes through the authentication process and
prints a slip of paper. The user takes the slip of paper to the cash register
and gets his money. These are only good for small amounts, but they
work. This is a beautiful example of thinking about security correctly . . .
until someone successfully forges the paper slips.

COMPUTERIZED LOTTERY TERMINALS

Computerized lottery terminals are used in most keno-style lotteries.
Basically, lottery vendors get a secure computer/printer that prints out
and validates lottery picks. This “validation” consists of a printed ticket
with the chosen numbers plus some authenticating information. Once or
twice a week there is a public drawing. There are small winners and large
jackpot winners.
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The threats are obvious. Attackers are most likely the lottery vendors
themselves, possibly in cahoots with people working inside the lottery
system. They can attack the system in one of two ways: “buying” tickets
after the results are known, or altering already-purchased tickets after the
results are known. More subtle, but also damaging, is operating a phony
terminal that collects money but doesn’t pay out any prizes (actually, they
would be smarter to pay out small prizes and disappear if any of their
phony tickets won a large prize).

These threats imply a straightforward security policy. The lottery ter-
minals should be online, and register all picks with a central server. This
server keeps good audit logs, with timestamps, and sends the terminals
audit information that is printed on the ticket. This server needs to be
secured prior to the drawing. And there needs to be some way of identi-
fying bogus vendors: The obvious one is to allow low-value tickets to be
redeemed at any vendor, not just the one the ticket was purchased at.
Regular audits also help.

There are still a lot of details to work out, but you get the idea.

SMART CARDS VS. MEMORY CARDS

As a final example, let’s look at two different protection mechanisms:
smart cards and magnetic stripe memory cards. In Chapter 14, I talked
about tamper resistance, secure perimeters, and attacks against smart cards.
In Chapter 19, I did a basic threat model of a hypothetical digital cash sys-
tem based on smart cards. Now let’s apply all that knowledge and ask the
following question: Is it more secure to have a smart card (a card with a
microprocessor on it) than a memory card (either a card with just a mem-
ory chip on it, or a magnetic stripe card) for a given application.

To someone who can reverse engineer the smart card, there’s no dif-
ference. He can recover the data from both types of cards, and both types
of cards can encrypt their secrets to protect against this. To someone who
cannot reverse engineer the smart card, there is a big difference. That
someone can read the magnetic stripe card, but he cannot read the mem-
ory on the smart card. On the other hand, if the information is encrypted
anyway, what does it matter if he can read the magnetic stripe? Maybe
there’s less of a difference than we thought.
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Let’s look at the process of using the two different cards.

Magnetic stripe cards. The user puts his card into a reader, and then types
a PIN or password or code into the reader. The reader reads the data off the
magnetic stripe and uses the PIN to decrypt the data. This data is then used
by the reader to do whatever the system is supposed to do: log in to the sys-
tem, sign an electronic check, pay for parking, or whatever.

Smart cards. The user puts his card into a different reader, and types the
same PIN into this reader. The reader sends the PIN into the smart card,
which decrypts the data. The data is then used by the card, not the reader,
to do whatever the system is supposed to do. The reader just acts as the
input/output device for the system.

What’s the difference? In both cases, a malicious reader can subvert
the system. The reader is the only contact the card has with the outside
world. Once the magnetic stripe card gives up its secrets, the reader can
do whatever it wants. Once the smart card has been fed the correct PIN
by the reader, the reader can make the smart card believe any reality that
it wants.

The primary difference between the two cards is that the smart card
can exert some control, because it is secure within itself. If someone steals
a magnetic stripe card, for example, he can do a brute-force search against
the secrets stored on the card. He can do this brute-force search offline,
on a computer, without the user even knowing. (A canny attacker can
steal the card, read the data off the magnetic stripe, and then slip it back
into the victim’s wallet.) Smart cards can’t be attacked this way. Smart
cards can be programmed to shut down after ten (or so) invalid password
attempts in a row. So if someone steals a smart card, he won’t be able to
brute-force the password. He’s only got ten guesses. (Again, this assumes
that he can’t just reverse engineer the card. If he can, he can do an offline
attack just like a magnetic stripe card.)

Another major difference is that the smart card doesn’t have to give
up its secrets. If, for example, the cards are used to sign documents, the
smart card may be more secure than a magnetic stripe card. The magnetic
stripe card has to rely on the reader to do the actual signing; it gives up its
secret to the reader and hopes for the best. A malicious reader can steal the
signing key. The smart card does the signing itself. A malicious reader can
feed the card bogus things to sign, but the reader cannot learn the signing
key.
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And there are other, more subtle, differences. The smart card might
have some basic rules that it follows with regards to its actions. Generally,
these can be mirrored by a back-end system and magnetic stripe cards, but
the implementation is cleaner with smart cards.

You see smart cards used as credit cards all over Europe, but not in the
United States. Why? Because of the phone system. To combat fraud, U.S.
credit cards went to an online verification system. When you buy some-
thing, the merchant checks the validity of your card (and the availability
of your credit) via modem. In Europe 15 years ago that type of system
would not have worked in every country. Phones were expensive; many
stores didn’t even have one, and the average wait time for installation in
Italy was one or two years. Phone calls were expensive, and the connec-
tions were unreliable. Fielding an online system in Europe was expensive,
so the credit card industry went with smart cards to give some measure of
security for the transaction. It wasn’t that smart cards were more secure
than magnetic stripe cards, it was that the U.S. solution to the problem of
fraud—online verification—was less practical. Some intense lobbying by
the European smart card vendors (Bull SA, Gemplus, and Schlumberger)
didn’t hurt, either.

In summary, there is some difference between magnetic stripe cards
and smart cards, but how important it is depends on the application. The
smart card’s tamper resistance is always breakable, given enough time and
money, so systems should not be built whose security relies on the tam-
per resistance. Most people can’t reverse engineer a smart card, so they are
secure enough against most attackers. Both cards assume that the reader is
trusted, and can be defeated by a malicious reader. The smart card,
though, is more secure against offline attacks. And, as long as the tamper
resistance is not broken, a smart card can keep secrets inside itself.

RATIONAL COUNTERMEASURES 

Good countermeasures not only protect against the threats, but protect
against unforeseen problems. Given that it’s so hard to get security right,
isn’t it smart to make sure it’s not a disaster if you get it wrong?

Too many security systems are brittle: They fall apart at the slightest
mistake. Some examples:
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Most of the systems used to secure European pay-TV systems over the past
decade have put a global secret in the customer set-top boxes. This means
that as soon as one person defeats the tamper-resistance and recovers the
key, the entire system is compromised.

The New York MetroCard, the magnetic stripe farecard that lets you purchase
rides on subways and buses, could (this was back in 1998) be bypassed sim-
ply by folding the card at precisely the right point. 

DVD security.

Compare this with credit cards. The cards are hard to forge, and
include things like holograms, microprinting, and UV watermarks. You
can steal a credit card number, but as soon as it’s reported as stolen, the
card number is put on a hot list. Even if the card isn’t registered as stolen,
computer programs scan the transaction database, looking for anomalous
spending patterns. Even if the attacker manages to bypass all of those
countermeasures, the card has a credit limit that triggers automatically.
And as a final countermeasure, the card eventually expires.

Other security systems have unforeseen consequences. Expensive cars
now come with ignitions that can’t be hotwired; it’s an antitheft device.
While they reduce car theft somewhat, they also change the threat model
from one threat (stealing a car from a parking lot) to a more dangerous
one (carjacking). Ouch. It turns out that the preventive countermeasures
aren’t the most effective ones; detection and reaction countermeasures
like Lojack are simply better at countering the threat.

Or another example: A version of Trend Micro’s OfficeScan (it’s
probably fixed by now), a product that scans for viruses and denial-of-ser-
vice vulnerabilities, actually contains new security (denial-of-service and
other) vulnerabilities.

The NSA is really good at this sort of thing. They build countermea-
sures on top of countermeasures, and constantly ask “what would happen
if this fails?” What if the cryptography fails at the same time the secure
perimeter fails, leaving the alarm system as the only countermeasure?
What if the guards who should be alerted by the alarm are busy with other
things, or what if the machine that generates the keys for the cryptogra-
phy fails? What if the backup machine fails as well? What if the person in
charge of fixing the backup machine is successfully bribed? Okay, maybe
you can do too much of this kind of thing.
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21

Attack Trees

Danaë was the daughter of Acrisius. An oracle warned Acrisius
that Danaë’s son would someday kill him, so Acrisius shut
Danaë in a bronze room, away from anything even remotely

masculine. Zeus had the hots for Danaë, so he penetrated the bronze
room through the roof, in the form of a shower of gold that poured down
into her lap. Danaë gave birth to Perseus, and you can probably guess the
end of the story. 

Threat modeling is, for the most part, ad hoc. You think about the
threats until you can’t think of any more, then you stop. And then you’re
annoyed and surprised when some attacker thinks of an attack you did-
n’t. My favorite example is a band of California art thieves that would
break into people’s houses by cutting a hole in their walls with a chain-
saw. The attacker completely bypassed the threat model of the defender.
The countermeasures that the homeowner put in place were door and
window alarms; they didn’t make a difference to this attack.

To help the process, I invented something called an attack tree. Attack
trees provide a methodical way of describing threats against, and counter-
measures protecting, a system. By extension, attack trees provide a
methodical way of representing the security of systems. They allow you
to make calculations about security, compare the security of different sys-
tems, and do a whole bunch of other cool things.

Basically, you represent attacks against a system in a tree structure,
with the goal as the root node and different ways of achieving that goal as
leaf nodes. By assigning values to the nodes, you can do some basic cal-
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culations with the tree (it’s called an and/or tree, if you’re interested) to
make statements about different attacks against the goal.

I’ll start with a simple attack tree for a noncomputer security system,
and build the concepts up slowly.

BASIC ATTACK TREES

Figure 21.1 is a simple attack tree against a physical safe. Each attack tree
has a goal, represented by the root node in the tree. The goal in this
example is opening the safe. That’s the root node; trees in computer sci-
ence grow upside down. To open the safe, an attacker can pick the lock,
learn the combination, cut open the safe, or install the safe improperly so
that he can easily open it later. To learn the combination, the attacker
either has to find the combination written down or get the combination
from the safe owner. And so on. Each node becomes a subgoal, and chil-
dren of that node are ways to achieve that subgoal. (Of course, this is just
a sample attack tree, and an incomplete one at that.)

Note the AND nodes and OR nodes (in the figures, everything that
isn’t explicitly an AND node is an OR node). OR nodes are alternatives:
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Figure 21.1 Attack nodes. 
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the four different ways to open a safe, for example. AND nodes represent
different steps toward achieving the same goal. To eavesdrop on someone
saying the safe combination, attackers have to eavesdrop on the conversa-
tion AND get safe owners to say the combination. Attackers can’t achieve
the goal unless both subgoals are satisfied.

That’s the basic attack tree. Once you have it completed, you can
assign values—I (impossible) and P (possible) in Figure 21.1—to the var-
ious leaf nodes. (Again, this is only an illustrative example; do not take the
values as an indication of how secure my office safe really is.) Once you
assign these values—presumably this assignment will be the result of
painstaking research on the safe itself—you can calculate the security of
the goal. The value of an OR node is possible if any of its children are
possible, and impossible if all of its children are. The value of an AND
node is possible only if all children are possible, and impossible otherwise;
see Figure 21.2.

The dotted lines in Figure 21.2 show all possible attacks: a hierarchy
of possible nodes, from a leaf to the goal. This sample system has two pos-
sible attacks: cutting open the safe, or learning the combination by brib-
ing the owner of the safe. With this knowledge, you know exactly how
to defend this system against attack.

Assigning values like “possible” and “impossible” to the nodes is just
one way to look at the tree. Any yes/no value can be assigned to the leaf
nodes and then propagated up the tree structure in the same manner: easy
versus difficult, expensive versus inexpensive, intrusive versus nonintru-
sive, legal versus illegal, special equipment required versus no special
equipment. Figure 21.3 shows the same tree with “no special equipment”
and “special equipment required” node values.

Assigning “expensive” and “not expensive” to nodes is useful, but it
would be better to show exactly how expensive. You can assign numeri-
cal values to nodes. Figure 21.4 shows the tree with different costs
assigned to the leaf nodes. Like yes/no node values, these can propagate
up the tree as well. OR nodes have the value of their cheapest child;
AND nodes have the value of the sum of their children. In Figure 21.4,
the costs have propagated up the tree, and the cheapest attack has been
highlighted.
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Figure 21.5 All attacks less than $100,000. 
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Again, this tree can be used to determine where a system is vulnera-
ble. Figure 21.5 shows all attacks that cost less than $100,000. If you are
only concerned with attacks that are less expensive (maybe the contents of
the safe are only worth $100,000), then you should only concern yourself
with those attacks.

There are many other possible continuous node values, including
probability of success of a given attack, likelihood that an attacker will try
a given attack, and so on.

In any real attack tree, nodes will have many different values corre-
sponding to many different variables, both Boolean and continuous. Dif-
ferent node values can be combined to learn more about a system’s
vulnerabilities. Figure 21.6, for instance, determines the cheapest attack
requiring no special equipment. You can also find the cheapest low-risk
attack, most likely nonintrusive attack, best low-skill attack, cheapest
attack with the highest probability of success, most likely legal attack, and
so on. Every time you query the attack tree about a certain characteristic
of attack, you learn more about the system’s security.
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Figure 21.6 Cheapest attack requiring no special equipment. 
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To make this work, you must marry attack trees with knowledge
about attackers. Different attackers have different levels of skill, access, risk
aversion, money, and so on. If you’re worried about organized crime, you
have to worry about expensive attacks and attackers who are willing to go
to jail. If you are worried about terrorists, you also have to worry about
attackers who are willing to die to achieve their goal. If you’re worried
about bored graduate students studying the security of your system, you
usually don’t have to worry about illegal attacks such as bribery and black-
mail. The characteristics of your attacker determine which parts of the
attack tree you have to worry about.

Attack trees also let you play “what if” games with potential counter-
measures. In Figure 21.6, for example, the goal has a cost of $20,000. This
is because the cheapest attack requiring no special equipment is bribing
the person who knows the combination. What if you implemented a
countermeasure—paying that person more so that he or she is less sus-
ceptible to bribes? If you assume that the cost to bribe that person is now
$80,000 (again, this is an example; in the real world you’d be expected to
research exactly how a countermeasure affects the node value), then the
cost increases to $60,000 (presumably to hire the thugs to do the threat-
ening).

PGP ATTACK TREE

Figure 21.7 is an attack tree for the PGP e-mail security program. Since
PGP is a complex program, this is a complex tree, and it’s easier to write
it in outline form than graphically. PGP has several security features, so
this is only one of several attack trees for PGP. This particular attack tree
has “read a message encrypted with PGP” as its goal. Other goals might
be: “forge someone else’s signature on a message,” “change the signature
on a message,” “undetectably modify a PGP-signed or PGP-encrypted
message,” and so on.

If software can be modified (Trojan horse) or corrupted (virus), it can
be used to have PGP generate an insecure public/private key pair (e.g.,
with a modulus whose factorization is known to the attacker). 

What immediately becomes apparent from the attack tree is that
breaking the RSA or IDEA encryption algorithms is not the most prof-
itable attack against PGP. There are many ways to read someone’s PGP-
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Figure 21.7 PGP attack tree

Goal: Read a message encrypted with PGP (OR)
1. Read a message encrypted with PGP 

1.1. Decrypt the message itself (OR) 
1.1.1. Break asymmetric encryption (OR) 

1.1.1.1. Brute-force break asymmetric encryption (OR) 

It is possible to encrypt all possible keys with the recipient’s
(known) public key, until a match is found. The effective-
ness of this attack is greatly reduced by the random padding
introduced in the encryption of the symmetric key.

1.1.1.2. Mathematically break asymmetric encryption (OR) 
1.1.1.2.1 Break RSA (OR) 

It is not currently known whether breaking RSA is
equivalent to factoring the modulus.

1.1.1.2.2 Factor RSA modulus/calculate ElGamal dis-
crete log 

Either of these would require solving number theoretic
problems currently conjectured to be very difficult.

1.1.1.3. Cryptanalyze asymmetric encryption 
1.1.1.3.1. General cryptanalysis of RSA/ElGamal (OR) 

No techniques are currently known for general crypt-
analysis of RSA or ElGamal. Cryptanalysis of one
cipher text would imply a general method to break
RSA/ElGamal.

1.1.1.3.2. Exploiting weaknesses in RSA/ElGamal
(OR)

There are a few weaknesses known to exist in RSA;
however, PGP implementation has mostly eliminated
these threats.

continues
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1.1.1.3.3. Timing attacks on RSA/ElGamal 

Timing attacks have been reported on RSA; they
should also be feasible on ElGamal. Such an attack,
however, requires low-level monitoring of the recipi-
ent’s computer while he is decrypting the message.

1.1.2. Break symmetric-key encryption 
1.1.2.1. Brute-force break symmetric-key encryption (OR) 

All symmetric-key algorithms supported for use by PGP
have key sizes of at least 128 bits. This is currently infeasi-
ble for brute-force searching.

Brute-force searching is made somewhat easier by the
redundancy included at the beginning of all encrypted mes-
sages. See the OpenPGP RFC.

1.1.2.2. Cryptanalysis of symmetric-key encryption 

The symmetric-key algorithms supported by PGP 5.x are
IDEA, 3-DES, CAST-5, Blowfish, and SAFER-SK128.
No efficient methods are currently known for general
cryptanalysis of these algorithms.

1.2. Determine symmetric key used to encrypt the message via other
means 
1.2.1. Fool sender into encrypting message using public key

whose private key is known (OR) 
1.2.1.1. Convince sender that a fake key (with known pri-

vate key) is the key of the intended recipient 
1.2.1.2. Convince sender to encrypt using more than one

key—the real key of the recipient, one a key whose pri-
vate key is known 

1.2.1.3. Have the message encrypted with a different public
key in the background, unknown to the sender 

This could be done by running a program that fools the
user into believing that the correct key is being used, while
actually encrypting with a different key.

Figure 21.7 (Continued)
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1.2.2. Have the recipient sign the encrypted symmetric key (OR) 

If the recipient blindly signs the encrypted key, he unwittingly
reveals the unencrypted key. The key is short enough so that
hashing should not be necessary before signing. Or, if a mes-
sage can be found that hashes to the value of the encrypted key,
the recipient can be asked to sign the (hash of the) message.

1.2.3. Monitor sender’s computer memory (OR)
1.2.4. Monitor receiver’s computer memory (OR) 

The (unencrypted) symmetric key must be stored somewhere
in memory at some point during the encryption and decryp-
tion. If memory can be accessed, this gives a way to capture the
key and get at the message.

1.2.5. Determine key from random number generator (OR) 
1.2.5.1. Determine state of the random number generator

when message was encrypted (OR) 
1.2.5.2. Implant software (virus) that deterministically alters

the state of random number generator (OR) 
1.2.5.3. Implant software that directly affects the choice of

symmetric key 
1.2.6. Implant virus that exposes the symmetric key 

1.3. Get recipient to (help) decrypt message (OR) 
1.3.1. Chosen ciphertext attack on symmetric key (OR) 

The cipher feedback mode used by PGP is completely insecure
under a chosen ciphertext attack. By sending the (encryption
of the) same key to the recipient, along with a modified body
of the message, the entire contents of the message can be
obtained.

1.3.2. Chosen ciphertext attack on public key (OR) 

Since RSA and ElGamal are malleable, known changes can be
made to the symmetric key which is encrypted. This modified

continues

Figure 21.7 (Continued)
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(encrypted) key can then be sent along with the original message.
This opens up the possibility of related-key attacks on the sym-
metric algorithms. Or, a weak ciphertext can be found whose
decryption under the symmetric key algorithm reveals informa-
tion about the modified key, which then leads directly to infor-
mation about the original key.

1.3.3. Send the original message to the recipient (OR) 

If the recipient decrypts and replies to this message automati-
cally, the plaintext message is immediately revealed.

1.3.4. Monitor outgoing mail of recipient (OR) 

If the receiver replies to the original message in a nonencrypted
manner, information about the original message may be gleaned

1.3.5. Spoof reply to: or from: field of original message (OR) 

In this case, the receiver may reply directly to the forged e-mail
address, and even if the reply is encrypted, it will be with a key
whose private key is known.

1.3.6. Read message after it has been decrypted by recipient 
1.3.6.1. Copy message off user’s hard drive or virtual memory

(OR)
1.3.6.2. Copy message off backup tapes (OR) 
1.3.6.3. Monitor network traffic (OR) 
1.3.6.4. Use electromagnetic snooping techniques to read

message as it is displayed on the screen (OR) 
1.3.6.5. Recover message from printout 

1.3.6.5.1 Recover message from a paper printout
1.3.6.5.2 Recover message from the photo-sensitive
drum in the printer
1.3.6.5.3 Eavesdrop on the communications between
the computer and the printer
1.3.6.5.4 Recover message from the printer’s memory

1.4. Obtain private key of recipient 
1.4.1. Factor RSA modulus/calculate ElGamal discrete log (OR) 

Figure 21.7 (Continued)
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Either of these would require solving number theoretic prob-
lems currently conjectured to be very difficult.

1.4.2. Get private key from recipient’s key ring (OR) 
1.4.2.1. Obtain encrypted private key ring (AND) 

1.4.2.1.1. Copy it from user’s hard drive (OR) 
1.4.2.1.2. Copy it from disk backups (OR) 
1.4.2.1.3. Monitor network traffic (OR) 
1.4.2.1.4. Implant virus/worm to expose copy of the

encrypted private key 

Given the recent Melissa virus incident, something like
this is feasible. Other options include making the file
publicly readable, or posting it to the Web.

1.4.2.2. Decrypt private key 
1.4.2.2.1. Break IDEA encryption (OR) 

1.4.2.2.1.1. Brute-force break IDEA (OR) 

IDEA uses 128-bit keys. This is currently infeasible
for brute-force searching.

1.4.2.2.1.2. Cryptanalysis of IDEA 

No efficient methods are currently known for general
cryptanalysis of IDEA.

1.4.2.2.2. Learn passphrase 
1.4.2.2.2.1. Monitor keyboard when user types

passphrase (OR) 
1.4.2.2.2.2. Convince user to reveal passphrase

(OR)
1.4.2.2.2.3. Use keyboard-logging software to

record passphrase when typed by user (OR) 
1.4.2.2.2.4. Guess passphrase 

1.4.3. Monitor recipient’s memory (OR) 

The private key must be stored somewhere in memory when
the user decrypts any messages sent to him.

continues
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encrypted messages without breaking the cryptography. You can capture
the person’s screen when he decrypts and reads the messages (using a Tro-
jan horse like Back Orifice, a TEMPEST receiver, or a secret camera),
grab the person’s private key after he enters a passphrase (Back Orifice, or
a dedicated computer virus), recover the person’s passphrase (a keyboard
sniffer that simply captures user keystrokes, TEMPEST receiver, or Back
Orifice again), or simply try to brute-force the person’s passphrase (it will
have much less entropy than the 128-bit IDEA keys that it generates). In
the scheme of things, the choice of algorithm and the key length is prob-
ably the least important thing that affects PGP’s overall security. PGP not
only has to be secure, but it has to be used in an environment that lever-
ages that security without creating any new insecurities.

Figure 21.8 is a more general attack tree: reading a specific message,
either in transit or on one of two computers.

330 C H A P T E R  T W E N T Y - O N E

Goal: Read a specific message that has been sent from one Win-
dows 98 computer to another.

1. Convince sender to reveal message (OR)
1.1. Bribe user
1.2. Blackmail user
1.3. Threaten user
1.4. Fool user

2. Read message when it is being entered into the computer (OR)
2.1. Monitor electromagnetic emanations from computer screen

(Countermeasure: use a TEMPEST computer)

Figure 21.8 Attack tree for reading a specific e-mail message. 

1.4.4. Implant virus to expose private key 

Really a more sophisticated version of 1.4.2.1.4. in which the
virus waits for the private key to be decrypted before exposing it.

1.4.5. Generate insecure public/private key pair for recipient.

Figure 21.7 (Continued)
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Figure 21.8 (Continued)

2.2. Visually monitor computer screen
2.3. Monitor video memory
2.4. Monitor video cables

3. Read message when it is being stored on sender’s disk (Counter-
measure: use SFS to encrypt hard drive) (AND)
3.1. Get access to hard drive (Countermeasure: Put physical locks

on all doors and windows)
3.2. Read a file protected with SFS

4. Read message when it is being sent from sender to recipient (Coun-
termeasure: use PGP) (AND)
4.1. Intercept message in transit (Countermeasure: Use transport-

layer encryption program)
4.2. Read message encrypted with PGP

5. Convince recipient to reveal message (OR)
5.1. Bribe user
5.2. Blackmail user
5.3. Threaten user
5.4. Fool user

6. Read message when it is being read (OR)
6.1. Monitor electromagnetic emanations from computer screen

(Countermeasure: use a TEMPEST computer)
6.2. Visually monitor computer screen

7. Read message when it is being stored on receiver’s disk (OR)
7.1. Get stored message from user’s hard drive after decryption

(Countermeasure: use SFS to encrypt hard drive) (AND)
7.1.1. Get access to hard drive. (Countermeasure: Put physical

locks on all doors and windows)
7.1.2. Read a file protected with SFS

7.2. Get stored message from backup media after decryption
8. Get paper printout of message (Countermeasure: store paper copies

in safe) (AND)
8.1. Get physical access to safe
8.2. Open the safe

9. Steal sender’s computer and try to recover message
10. Steal recipient’s computer and try to recover message
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CREATING AND USING ATTACK TREES

How do you create an attack tree? First, you identify the possible attack
goals. Each goal forms a separate tree, although they might share subtrees
and nodes. Then, think of all attacks against each goal. Add them to the
tree. Repeat this process down the tree until you are done. Give the tree
to someone else, and have him think about the process and add any nodes
he thinks of. Repeat as necessary, possibly over the course of several
months.

The process still requires creativity, but the structure takes an ad hoc
brainstorming process and replaces it with a repeatable methodology.
Remember to look for attacks throughout the vulnerability landscape,
and at every step of the attack process. Of course there’s always the chance
that you forgot about an attack, but you’ll get better with time. Like any
security analysis, creating attack trees requires a certain mindset and takes
practice.

Once you have the attack tree, and have researched all the node val-
ues (these values will change over time, both as attacks become easier and
as you get more exact information on the values), you can use the attack
tree to make security decisions. You can look at the values of the root
node to see if the system’s goal is vulnerable to attack. You can determine
if the system is vulnerable to a particular kind of attack; distributed denial-
of-service, for instance. You can use the attack tree to delineate the secu-
rity assumptions of a system; for example, the security of PGP might
assume that no one could successfully bribe the programmers. You can
determine the impact of a system modification or a new vulnerability dis-
covery; recalculate the nodes based on the new information and see how
the goal node is affected. And you can compare and rank attacks: which
are cheaper, which are more likely to succeed, and so on.

One of the surprising things that comes out of this kind of analysis is
that the areas people think of as vulnerable usually aren’t. With PGP, for
example, people generally worry about key length. Should they use 1024-
bit RSA or 2048-bit RSA? The attack tree shows that the RSA key
length doesn’t really matter. There are all sorts of other attacks—installing
a keyboard sniffer, modifying the program on the victim’s hard drive—
that are much easier than breaking the public key. Increasing the key
length from 1024 bits to 2048 bits doesn’t affect any of the overall diffi-
culty of the attack tree; it’s the computer-security attacks that are much
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more troublesome. Attack trees give you perspective on the whole sys-
tem.

Another thing that makes attack trees valuable is that they capture
knowledge in a reusable form. Once you’ve completed the PGP attack
tree, you can use it in any situation that uses PGP. The attack tree against
PGP becomes part of a larger attack tree. For example, Figure 21.8 shows
an attack tree whose goal is to read a specific message that has been sent
from one Windows 98 computer to another. If you look at the leaf nodes
of the tree, the entire attack trees for PGP and for opening a safe fit into
this attack tree.

This scalability means that you don’t have to be an expert in every-
thing. If you’re using PGP in a system, you don’t have to know the details
of the PGP attack tree; all you need to know are the values of the root
node. If you’re a computer-security expert, you don’t have to know the
details about how difficult a particular model of safe is to crack; you just
need to know the values of the root node. Once you build up a library of
attack trees against particular computer programs, door and window
locks, network security protocols, or whatever, you can reuse them
whenever you need to. For a national security agency concerned about
compartmentalizing attack expertise, this kind of system is very useful.

Attack Trees 333

453803_Ch21.qxd:453803_Ch21.qxd  4/12/13  2:52 PM  Page 333



22

Product Testing 
and Verification

We’ve touched on security testing repeatedly in this book. In
Chapter 7 we talked about choosing a cryptographic primi-
tive, and how the best way to test cryptography is years of

public cryptanalysis. In Chapter 8 we talked about assurance levels for
secure computers—the Orange Book, the Common Criteria—and test-
ing to verify compliance. Chapter 13 discussed software reliability, and
how bugs turn into security vulnerabilities. Testing is where the rubber
meets the road: It’s one thing to model the threats, design the security
policy, and build the countermeasures, but do those countermeasures
actually work? Sure, you’ve got a pretty firewall/antivirus pack-
age/VPN/pay-TV antifraud system/biometric authentication sys-
tem/smart card–based digital cash system/e-mail encryption product, but
is it actually secure? Most security products on the market are not, and the
reason is a failure of testing.

Normal security testing fails for several reasons. First, security flaws
can appear anywhere. They can be in the trust model, the system design,
the algorithms and protocols, the implementation, the source code, the
human–computer interface, the procedures, or the underlying computer
system (hardware, operating system, or other software). Second, a single
flaw can break the security of the entire product. Remember that security
is a chain, and only as secure as the weakest link. Real products have a lot

334
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of links. Third and most important, these flaws cannot be found through
normal beta testing. Security has nothing to do with functionality. A
cryptography product can function normally and be completely insecure.
Flaws remain undiscovered until someone looks for them explicitly.

Throughout this book I have maintained that security is difficult to
get right. It’s one thing to design a secure system, another to implement
it properly, and quite another to implement it without iatrogenic
effects . . . but it’s a completely different thing to test and verify that you
got it right.

In a previous life I was president of Counterpane Systems, a cryptog-
raphy and security consulting company. Much of my time was spent eval-
uating computer security products. Generally, I was called in at the end of
product development to verify that the product was indeed secure.
Smarter companies called me in earlier—during the design phase—to
make sure that the design was secure; sometimes I evaluated the actual
product built to the design I previously analyzed. This chapter is the dis-
tillation of that experience.

THE FAILURE OF TESTING

Reread Chapter 13 on software reliability. Recall the phrase “Satan’s
computer,” and how security products need to work in the presence of a
malicious adversary. Now think about functional testing.

Functional testing won’t find security flaws. Unlike almost all other
design criteria, security is independent of functionality. If you’re coding a
word processor, and you want to test the print functionality, you can
hook up a printer and see if it prints. If you’re smart, you hook up several
kinds of printers and print different kinds of documents. That’s easy; if the
software functions as specified, then you know it works.

Security is different. Imagine that you are building an encryption
function into that same word processor. You test it the same way: You
encrypt a series of documents, and you decrypt them again. The decryp-
tion recovers the plaintext; the ciphertext looks like gibberish. It all works
great. Unfortunately, the test indicates nothing about the security of the
encryption.

Functional testing is good at finding random flaws that, when they
happen, will cause the computer program to behave weirdly (generally, to
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crash). Security flaws have much less spectacular effects; unless they fall
into the wrong hands, they’re usually invisible. Security testing is not
about randomly using the software and seeing if it works. Security testing
is about deliberately searching out problems that compromise security.
Functional testing would never figure out that an attacker can create a
Web page that, when viewed with certain versions of Microsoft Internet
Explorer 3.0 and 3.0.1, can run an arbitrary program on the viewer’s
machine. That’s just not something a beta tester can look for.

Imagine a vendor shipping a software product without any functional
testing at all: no in-house testing, no outside beta testing. All the vendor
does is ensure that the program compiles, and then they ship. The odds of
this software not having any bugs is zero. Even if it is a simple product, it
will have thousands of bugs. It will crash all the time, and fail in unimag-
inably bizarre ways. It won’t work.

Now imagine the same vendor shipping a software security product
without any security testing at all: no in-house security testing, no outside
analysis. All the vendor does is go through their normal functional test
program, and then they ship. The odds of this software not having any
security bugs is zero.

Unfortunately, far too much software, even security software, has
exactly this problem.

Even a moderately comprehensive security analysis won’t help much.
I’ve already used the figure of 5 to 15 bugs per thousand lines of code.
And that’s in final products, after all testing. We’ve all seen the enormous
number of bugs in Microsoft operating systems, and that’s after hundreds
of man-years of testing. Similarly, a few days, weeks, or even months of
security analysis will not do any better.

Another problem is that security can only be analyzed by experienced
security testers. Remember that the best thing you can say about security
products is: “I can’t break it, and all these other smart people can’t break
it either.” Only experienced security experts can reliably discover security
flaws, so the quality of any security test effort depends on the quality of
the testers.

Sometimes security flaws are discovered by accident. A good exam-
ple is the password protection flaw in Microsoft Bob: It let you reset the
password if you entered the wrong one three times. These are the excep-
tions, though. The probability of stumbling on a security flaw randomly
is very low, sometimes approaching zero. Explicitly checking for them is
much more efficient.
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Unfortunately, there is no such thing as a comprehensive security
checklist. Those of us who do this kind of thing frequently have devel-
oped our own security checklists: lists of attacks and potential vulnerabil-
ities that we’ve either seen in commercial products, read about in
academic papers, or thought of on our own. These lists are huge—a cou-
ple of years ago I had 759 separate attacks on my list—but they are not
comprehensive.

It is easy to test for any given weakness. Some are easier to test for
than others. Testing for every weakness on my list is time-consuming, but
straightforward. Testing for every known weakness is harder still; it means
that I have to keep my list up to date. It takes time, but I can do it. But
here’s the rub: Testing for all possible weaknesses is impossible.

Note that I didn’t say “very hard” or “incredibly difficult.” I said
“impossible.”

Testing for all possible weaknesses means testing for weaknesses that
you haven’t thought of yet. It means testing for weaknesses that no one
has thought of yet: weaknesses that haven’t even been invented yet. It’s
like building a bridge. You might be able to say that the bridge cannot
collapse as a result of natural causes. More likely, you will be able list the
conditions that cannot be the proximal cause of a collapse. You might
even be able to delineate the sorts of terrorist attacks that the bridge can
withstand. But you can never say that the bridge will stand in the face of
technology that hasn’t been invented yet.

Nothing here is meant to imply that this holds true for mass-market
software only. This discussion applies equally to security hardware, large
proprietary systems, military hardware and software, and everything else.
It even applies to security technologies having nothing to do with com-
puters. The problems are there regardless.

So what is a system developer to do? Ideally, he has to stop relying on
his in-house developers and beta testers. He has to hire security experts to
do his security testing. He has to spend a lot of money on this; assume it
takes the same level of effort to test the security of a system as it did to
design and implement it in the first place.

No one is going to do that, with the exception of the military. And
even the military is probably not even going to do that, with the excep-
tion of things like nuclear command and control systems.

What companies are going to do is what they’ve done all along.
They’re going to release insecure products and fix security problems that
are discovered, and published, after the fact. They’re going to make out-
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landish claims and hope nobody calls them on it. They’re going to hold
cracking contests and other publicity stunts. They’ll issue new versions so
fast that by the time someone bothers to complete a security analysis,
they’ll say “but that was three versions ago.” But the products will be
insecure nonetheless.

DISCOVERING SECURITY FLAWS AFTER THE FACT

Every day, new security flaws are discovered in shipping software prod-
ucts. They’re discovered by customers, researchers (academics and hack-
ers), and criminals. How frequently depends on the prominence of the
product, the doggedness of the researchers, the complexity of the prod-
uct, and the quality of the company’s own internal security testing. In the
case of a popular operating system, it might happen several times per
week. In the case of an obscure encryption program that no one’s heard
of, it might happen once a lifetime.

Anyway, someone finds a security vulnerability. Now what?
There are several things he can do. He can keep quiet and tell no one.

He can tell his confidants. He can alert the product vendor. He can just
tell his customers, trying to keep the bug obscure so that only his products
protect the user. (I’ve seen companies do this.) Or he can tell the world.
(Of course he can always try to commit a crime using the vulnerability,
but let’s assume that he is an honest bloke.) The practice of telling the
world is known as full disclosure, and it has become popular over the past
several years. And it is the subject of a violent debate.

But first a soupçon of history.
In 1988, after the Morris worm illustrated how susceptible the Inter-

net is to attack, the Defense Advanced Research Projects Agency
(DARPA) funded a group that was supposed to coordinate security
response, increase security awareness, and generally do good things. The
group is known as CERT—more formally, the Computer Emergency
Response Team—and its response center is in Pittsburgh at Carnegie
Mellon University.

Over the years CERT has acted as kind of a clearinghouse for secu-
rity vulnerabilities. People are supposed to send vulnerabilities they find to
CERT. CERT then verifies that the vulnerability is real, quietly alerts the
vendor, and publishes the details (and the fix) once the vendor fixes the
vulnerability.
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This sounds good in theory, but worked less well in practice. There
were three main complaints. First, CERT was slow about confirming
vulnerabilities. CERT got a lot of vulnerabilities reported to it, and they
had a backlog of vulnerabilities to deal with. Second, the vendors were
slow about fixing the vulnerabilities once CERT told them. CERT
wouldn’t publish until there was a fix, so there was no real urgency to fix
anything. And third, CERT was slow about publishing reports even after
the fixes were implemented.

The full-disclosure movement was born out of frustration with this
process. Internet mailing lists like Bugtraq (begun in 1993) and NT Bug-
traq (begun in 1997) became forums for people who believed that quietly
alerting the vendor was futile, and the only way to improve security is to
publicize bad security. It was a backlash against the academic ivory tower
and its secret knowledge. As one hacker wrote: “No more would the
details of security problems be limited to closed mailing lists of so-called
security experts or detailed in long, overwrought papers from academia.
Instead, the information would be made available to the masses to do with
as they saw fit.”

Today, many researchers publish vulnerabilities they discover on
these mailing lists, sometimes accompanied by press releases. The press
troll these mailing lists and write about the vulnerabilities, augmented by
the usual flurry of factoids, in both the computer and mainstream press.
(This is why there have been so many more press stories about computer
vulnerabilities over the past few years.) The vendors scramble to patch
these vulnerabilities as soon as they are publicized, so they can write their
own press releases about how quickly and thoroughly they fixed things.
Security is getting better a lot faster because of full disclosure.

At the same time, hackers use these mailing lists to learn about vul-
nerabilities and write attack programs. Some attacks are complicated, but
those that can understand them can write point-and-click programs that
allow those who don’t to exploit the vulnerability. Those opposing full
disclosure argue that publishing vulnerability details does more harm than
good by arming the criminal hackers with tools they can use to break into
systems. Security is much better served, they counter, by not publishing
vulnerabilities in all their gory details.

Full-disclosure proponents retort that this assumes that the researcher
who publicizes the vulnerability is always the first one to discover it,
which simply isn’t true. Sometimes, vulnerabilities have been known by
attackers (sometimes passed about quietly in the hacker underground) for
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months or years before the vendor ever found out. The exploits are didac-
tic, they say. The sooner a vulnerability is publicized and fixed, the better
it is for everyone.

Muddying the waters is the sobering reality that patching a vulnera-
bility does not equal fixing the problem; many system administrators
don’t implement the patches from the vendors. Companies finesse this,
saying things like: “We issued a patch. What else can we do?” In the real
world, defective products are often recalled. This never happens in the
computer world. So even after the vendor releases the vulnerability fix
and the press furor dies down, many systems are still vulnerable.

An example might make this clearer. In April 1999, someone discov-
ered a vulnerability in Microsoft Data Access Components that could let
an attacker take control of a remote Windows NT system. This vulnera-
bility was initially reported on a public mailing list. Although the list mod-
erator withheld the details of that risk from the public for more than a
week, some hacker reverse engineered the available details to create an
exploit based on the vulnerability.

At about the same time, Microsoft issued a patch to prevent attackers
from exploiting the vulnerability on users’ systems. Microsoft also pub-
lished a security bulletin on the topic, as did several other security news
outlets.

But Microsoft’s patch didn’t magically fix the vulnerability. Over
Halloween weekend of that same year, hackers used the vulnerability to
attack and deface more than 25 NT-based Web sites, all owned by secu-
rity administrators who didn’t bother (or didn’t even know to bother)
updating their configurations in the intervening six months.

That’s the debate in a nutshell.
Microsoft would never have fixed the vulnerability if the exploit

script hadn’t existed. In other instances, they have gone so far as to com-
pletely ignore the problem, dismiss the vulnerability as “completely theo-
retical” and therefore not worth worrying about, or claim the researcher
was lying. Microsoft treats security vulnerabilities as public relations prob-
lems. When an exploit exists, they do something, but usually not before.
So publicizing the vulnerability caused it to be fixed.

Publishing also caused the exploit script to be written, enabling a
bunch of criminal hackers to take advantage of the vulnerability (1) dur-
ing the window between when the vulnerability was announced and
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when Microsoft published the patch, and (2) afterward, because many sys-
tem administrators didn’t implement Microsoft’s patch.

Was publishing better, or would it have been better to keep quiet?
Sometimes it depends on the vendor. Most companies react well to

attacks against their systems. They acknowledge and fix the problem, post
the fix on their Web sites, and everything goes back to normal. Some
vendors react less well; the various digital cellular companies responded
with all sorts of lies, insults, and misdirection in response to the published
breaks of their encryption algorithms. The entertainment industry
responded by initiating legal action against the people who exposed the
DVD player’s lousy security (and the people who subsequently talked
about it). Generally, exposed vulnerabilities that can’t be fixed easily—it’s
a lot harder to modify 10 million fielded cellular telephones than it is to
post a software fix on the Internet—aggravate companies more.

Sometimes the researcher has no choice. One NSA employee, speak-
ing off the record, claimed that his colleagues have discovered several new
Internet attacks but have been prohibited from publishing them. Some
have been later discovered by other researchers; others remain secret.
Sometimes he has a choice, but chooses to remain silent. Steve Bellovin
suppressed a paper he wrote on attacks against the DNS system for several
years. Bellovin and Cheswick purposely didn’t talk about the SYN flood
attack in their firewalls book.

Netscape used to offer $1,000 (and a free T-shirt) rewards to anyone
who found a security bug in their software. They wrote quite a few
checks, except for a 1997 incident when Danish hacker found a security
hole and demanded more money. As it turned out, he didn’t get his
money: His description of the effects of the bug enabled Netscape engi-
neers to reproduce and fix it without his help. In 2000, a French
researcher figured out how to break the security in the CB (Groupement
des Cartes Bancaires) smart card system. Then, depending on whom you
believe, he offered his services to Groupement or tried to blackmail them.
He was arrested, and eventually received a suspended sentence.

Security is by nature adversarial, even in the ivory towers of academia.
Someone proposes a new scheme: an algorithm, a protocol, a technique.
Someone else breaks it. A third person repairs it. And so on. It’s all part of
the fun. But when it comes to fielded systems, it can get a lot trickier. Is
the benefit of publicizing an attack worth the increased threat of the
enemy learning about it? (In NSA’s language, this is known as the equities
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issue.) Why should the company profit from the work of the researcher?
Will the company ignore the problem unless the researcher calls the press?
Does the researcher even care about the public’s reaction? What’s the
researcher’s agenda anyway?

This last question isn’t discussed as much as it should be. Publishing a
security vulnerability is a publicity attack; the researcher is looking to get
his own name in the newspaper by successfully bagging his prey. Some-
times the publicizer is a security consultant, or an employee of a company
that offers vulnerability assessments or defensive network security prod-
ucts. This is especially true if the vulnerability is publicized in a press
release; sending something out on PR Newswire or Business Wire is
expensive, and no one would do it unless he thought he was getting
something in return.

In general, I am in favor of the full-disclosure movement, and think
it has done a lot more to increase security than it has to decrease it. The
act of writing this book, which can be read by both the good guys and the
bad guys, does not cause the insecurities I talk about. Similarly, publiciz-
ing a vulnerability doesn’t cause it to come into existence. Given that
vendors don’t bother fixing vulnerabilities that are not published—this is
not just a jeremiad against Microsoft, we’ve seen this from almost every
major software company—publicizing is the first step toward closing that
vulnerability. Punishing the publicizer feels a lot like shooting the mes-
senger; the real blame belongs to the vendor that released software with
the vulnerability in the first place.

There are exceptions to this rule.
First, I am opposed to publicity that primarily sows fear. Publishing

vulnerabilities for which there’s no real evidence is bad. (An example of
this is when someone found a variable containing the three letters “NSA”
in Microsoft’s cryptography API and announced that the National Secu-
rity Agency had installed a trap door in Microsoft products, solely on the
basis of the variable name.) Publishing security vulnerabilities in critical
systems that cannot be easily fixed and whose exploitation will cause seri-
ous harm (the air traffic control software, for example) is bad. I believe it
is the researchers’ responsibility to balance disclosing the vulnerability ver-
sus endangering the public.

Second, I believe in giving the vendor advance notice. CERT took
this to an extreme, sometimes giving the vendor years to fix the problem.
The result is that many vendors didn’t take the notifications seriously. But
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if the researcher tells the vendor that the vulnerability will be published in
a month, then the vulnerability announcement can occur at the same time
as the patch announcement. This benefits everybody.

And third, I believe that disseminating exploits is often going too far.
Writing research papers on vulnerabilities benefits research, and makes us
smarter at designing secure systems. Writing demonstration code is often
a necessary part of research. Distributing attack tools to the masses, on the
other hand, is a bad idea. It serves no good to create attack tools with
point-and-click interfaces that any novice hacker can use. They assist
criminals. They make networks less secure. They are part of the problem,
not part of the solution.

There is a large gray area here between what is good and what is bad.
Vulnerability assessment tools can be used both to increase security and to
break into systems. Remote administration tools look a lot like Back Ori-
fice. If a company like Microsoft lies to the press and denies that a pub-
lished vulnerability is real, is it then okay for the researcher to publish an
attack script? I try to follow the “be part of the solution, not part of the
problem” rule. Full disclosure is part of the solution. Fixing problems and
improving network security is part of the solution. I’m willing to live with
tools that have both good and bad uses, but I don’t like tools that have
only bad uses.

There’s a quotation etched in stone in the CIA lobby: “And ye shall
know the truth, and the truth shall set ye free.” (It’s from the New Tes-
tament: John 8:32.) Those who know the truth are able to use that
knowledge to win out over those who do not know it (or who refuse to
believe it). Full disclosure gets us closer to the truth than anything else.

OPEN STANDARDS AND OPEN 
SOURCE SOLUTIONS

In Chapter 7, I talked about the security benefits of public cryptography
over proprietary cryptography. Since the only evidence we have that a
cryptographic primitive is secure is for many experts to evaluate it over a
long period of time, making a cryptographic primitive public is the most
cost-effective way of doing that. The exact same reasoning leads any smart
security engineer to demand public solutions for anything related to secu-
rity, including open source software.
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Let’s review: Security has nothing to do with functionality. There-
fore, no amount of beta testing can ever uncover a security flaw. The only
way to have any confidence in the security of a system is over time,
through expert evaluation. And the only way to get that expert evaluation
is if the details of a system are public.

A good security design has no secrets in its details. In other words, all
of the security is in the product itself and its changeable secret: the cryp-
tographic keys, the passwords, the tokens, and so forth. The an tith esis is
security by obscurity: The details of the system are part of the security. If a
system is designed with security by obscurity, then that security is delicate.
As the designers of the once-proprietary digital cellular security systems,
the DVD encryption scheme, and the Firewire interface learned, sooner
or later the details will be released. A bad system design is secure as long
as the details remain secret, but quickly breaks once they are released. A
good system design is secure even if the details are public.

So, given that good security design does not use obscurity, and that so
much can be gained by publishing the details of the security system, it
makes a lot of sense to do so. And systems that are public are likely to be
better scrutinized, and more secure, than systems that are not.

This reasoning applies directly to software. The only way to find
security flaws in a piece of code is to evaluate it. This is true for all code,
whether it is open source or proprietary. And you can’t just have anyone
evaluate the code, you need experts in security software evaluating the
code. You need them evaluating it multiple times and from different
angles, over the course of years. It’s possible to hire this kind of expertise,
but it is much cheaper and more effective to let the community at large
do this. And the best way to facilitate that is to publish the source code.

The counter argument is that publishing source code only gives
attackers the information they need to find and exploit vulnerabilities.
Keeping the source code secret, they say, denies attackers this intelligence.

Other than croggle at its naïveté, I’m not sure how to respond to this.
Making source code public does not increase the number of vulnerabili-
ties, only the awareness of them by the general public. Vendors who keep
their source code secret are more likely to be sloppy. Vendors who make
their source code public are more likely to have their vulnerabilities dis-
covered, so they can fix them. Secret software is fragile; it’s like steganog-
raphy. Publishing source code provides a much more robust security than
keeping it secret ever can.
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However, open source software does not guarantee security. There
are two caveats to keep in mind.

First, simply publishing the code does not automatically mean that
people will examine it for security flaws, and it certainly doesn’t mean that
experts will examine it for security flaws. Researchers found buffer over-
flows in the MIT code for Kerberos ten years after the code was released.
Another open-source package, the Mailman program for managing mail-
ing lists, had glaring security problems for over three years . . . until the
original author looked at the code again and found them.

Security researchers are fickle and busy people. They do not have the
time, nor the inclination, to examine every piece of source code that is
published. So while opening up source code is a good thing, it is not a
guarantee of security. I could name a dozen open source security libraries
that no one has ever heard of, and no one has ever evaluated. On the
other hand, the security code in the various open source secure UNIX
flavors has been looked at by a lot of crackerjack security engineers.

Second, simply publishing the code does not automatically mean that
security problems are fixed promptly when found. There’s no reason to
believe that a two-year-old piece of open source code has fewer security
flaws than a two-year-old piece of proprietary code. If the open source
code has been well examined, this is likely to be true. But just because a
piece of source code has been open source for several years does not, by
itself, mean anything.

I’m a fan of open source, and believe it has the potential to improve
security. But software isn’t automatically secure because it is open source,
just as it isn’t automatically insecure because it is proprietary. Others have
pointed out that open source code is believed to be more secure, and this
unfounded belief causes people to trust open source code more than they
should. This is a bad thing.

Also note that this analysis completely sidesteps the relevant question
of which process is more likely to produce secure software, by design, in
the first place. Open source is a business model first, and a security strat-
egy second. Unfortunately, the traditional proprietary software method-
ologies are probably more likely to produce high-quality large software.
Maybe the best thing for security is to create proprietary software and
then, after the fact, turn it into open source (which is what Netscape did
with its browser code).
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REVERSE ENGINEERING AND THE LAW

In a perverse twist on the full-disclosure and open source movements,
some companies have attempted to defend themselves by making it ille-
gal to reverse engineer their software. In the United States, the Digital
Millennium Copyright Act (DMCA) criminalizes reverse engineering,
and there are similar provisions in the Uniform Computer Information
Transactions Act (UCITA)—currently becoming law in several states.

We’ve already seen some effects of this. The DVD Copy Control
Association has loosed a barrage of legal proceedings against those who
reverse engineered their DVD security scheme, and against those who
wrote public-domain tools that exploit the miserable security. People 
have been arrested. Mattel successfully sued the hackers who reverse 
engineered the poor security in CyberPatrol, their surf-blocking software.

This sets a dangerous precedent. The laws don’t increase the security
of systems, or prevent attackers from finding flaws. What they do is allow
product vendors to hide behind lousy security, blaming others for their
own ineptitude. It’s certainly easier to implement bad security and make
it illegal for anyone to notice than it is to implement good security. While
these laws have the side effect of helping stem the dissemination of hacked
software—both the DVD and Mattel cases are examples—the laws will
reduce security in the long run.

CRACKING AND HACKING CONTESTS

You see them all the time: “Company X offers $10,000 to anyone who
can break through their firewall/crack their algorithm/make a fraudulent
transaction using their protocol/do whatever.” These are cracking con-
tests, and they’re supposed to show how strong and secure the targets of
the contests are. The logic goes something like this: “We offered a prize
to break the target, and no one did. This means that the target is secure.”

It doesn’t.
Contests are a terrible way to demonstrate security. A product (or sys-

tem, protocol, or algorithm) that has survived a contest unbroken is not
obviously more trustworthy than one that has not been the subject of a
contest. Contests generally don’t produce useful data. There are four basic
reasons why this is so.
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One, the contests are generally unfair. Cryptanalysis assumes that the
attacker knows everything except the secret. He has access to the algo-
rithms and protocols, the source code, everything. He knows the cipher-
text and the plaintext. He may even know something about the key. And
a cryptanalytic result can be anything. It can be a complete break: a result
that breaks the security in a reasonable amount of time. It can be a theo-
retical break: a result that doesn’t work “operationally,” but still shows
that the security isn’t as good as advertised. It can be anything in between.
Most cracking contests have arbitrary rules. They define what the attacker
has to work with, and how a successful break looks. Some don’t disclose
the algorithms.

Computer-security hacking contests are generally no better. They
don’t disclose how the products are being used, so that you can’t tell
whether a particular attack is a result of a product failure or an implemen-
tation failure. They don’t clearly delineate between the various pieces of
the system: If the contest is to test a firewall, what about vulnerabilities of
the operating system that compromise the firewall?

These tests have arbitrary rules of winning. In 1999, Microsoft set up
a Windows 2000 Web server and dared hackers to try and break in. The
server soon disappeared from the Internet, only to reappear later with
Microsoft claiming a power failure as the reason for the disappearance.
(Oddly enough, this power failure only affected the test system, and they
seemed to have forgotten to install an uninterruptible power supply.)

Unfair contests aren’t new. Back in the mid-1980s, the authors of an
encryption algorithm called FEAL issued a contest. They provided a
ciphertext file, and offered a prize to the first person to recover the plain-
text. Since then, the algorithm has been repeatedly broken by cryptogra-
phers. Everyone agrees that the algorithm is fundamentally flawed. Still,
no one won the contest.

Two, the analysis is not controlled. Contests are random tests. Do ten
people, each working 100 hours to win the contest, count as 1,000 hours
of analysis? Or did they all try the same dozen attacks? Are they even
competent analysts, or are they just random people who heard about the
contest and wanted to try their luck? Just because no one wins a contest
doesn’t mean the target is secure . . . it just means that no one won.

In 1999, PC Magazine set up both a Windows NT and a Linux box,
and announced a hacking contest. The Linux box was the first one
hacked. Does that mean that Linux is less secure? Of course not; it just
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means that the people who bothered playing the game broke into the
Linux box first.

Three, contest prizes are rarely good incentives. Security analysis is a
lot of work. People who are good at it are going to do the work for a vari-
ety of reasons—money, prestige, boredom—but trying to win a contest is
rarely one of them. Security professionals are much better off analyzing
systems where they are being paid for their analysis work, or systems for
which they can publish a paper explaining their results.

Just look at the economics. Taken at a conservative $200 an hour for
a competent cryptanalyst or computer-security guru, a $10K prize pays
for just over a week of work—not enough time to even dig through the
code. A $100K prize sounds impressive, but reverse engineering the prod-
uct is boring and that still might not be enough time to do a thorough job.
A prize of $1 million starts to become interesting, but most companies
can’t afford to offer that. And the analyst has no guarantee of getting paid:
He may not find anything, he may get beaten to the attack and lose out
to someone else, or the company might change the rules and not pay.
Why should someone donate his time (and good name) to the company’s
publicity campaign?

And four, contents can never end with a positive security result. If
something is broken in a contest, you know that it is insecure. But if
something isn’t broken in a contest, it doesn’t mean that it is secure.

The preceding four reasons are generalizations. There are exceptions,
but they are few and far between. The RSA challenges, both their factor-
ing challenges and their symmetric brute-force challenges, are fair and
good contests. These contests are successful not because the prize money
is an incentive to factor numbers or build brute-force cracking machines,
but because researchers are already interested in factoring and brute-force
cracking. The contests simply provide a spotlight for what was already an
interesting endeavor. The AES contest, although more a competition
than a cryptanalysis contest, was also fair.

Contests, if implemented correctly, can provide useful information
and reward particular areas of research. They can help find flaws and cor-
rect them. But they are not useful metrics to judge security. A home-
owner can offer $10,000 to the first person who successfully breaks in and
steals a book on a certain shelf. If no one does so before the contest ends,
that doesn’t mean the home is secure. Maybe no one with any burgling
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ability heard about the contest. Maybe they were too busy doing other
things. Maybe they weren’t able to break into the home, but they figured
out how to forge the real estate title to put the property in their name.
Maybe they did break into the home, but took a look around and decided
to come back when there was something more valuable than a $10,000
prize at stake. The contest proved nothing. 

Cryptanalysis contests are generally nothing more than a publicity
tool. Sponsoring a contest, even a fair one, is no guarantee that people will
analyze the target. Surviving a contest is no guarantee of no flaws in the
target.

EVALUATING AND CHOOSING SECURITY PRODUCTS

It’s generally not possible for average people—or the average company, or
the average government, for that matter—to create their own security
products. Most often they’re forced to choose between an array of off-
the-shelf solutions and hope for the best. The lessons of this book, that it’s
practically impossible to design secure products and that most commercial
products are insecure, aren’t heartening. What can the harried system
administrator, charged with securing his embassy’s e-mail system or his
company’s network, do? What about the average citizen, concerned
about the security of different electronic commerce systems or the privacy
of her personal medical information?

The first question to ask is whether or not it really matters. Or, more
exactly, whose security problem is this anyway? I care about my personal
privacy. I don’t really care about Visa’s credit card fraud problems. They
limit my liability to $50, and will even waive that if I complain. I do care
about the PIN on my ATM card; if someone cleans out my account, it’s
my problem and not the bank’s.

Similarly, some systems matter but are not within my control. I can’t
control what kind of firewalls and database security measures the IRS uses
to protect my tax information, or my medical insurer uses to protect my
health records. Maybe I can change insurers, but generally I don’t have
that kind of freedom. (I suppose that if I were wealthy enough, I could
choose banks in better regulatory environments—Switzer  land, for exam-
ple—but that option is out of reach of most people.) Even if laws demand

Product Testing and Verification 349

453803_Ch22.qxd:453803_Ch22.qxd  4/15/13  9:22 AM  Page 349



a certain amount of security—privacy, authentication, ano nym ity,
integrity, whatever—there’s no guarantee that those in charge of imple-
menting the security measures did a good job. I can’t audit my govern-
ment’s security practices just because I want to make sure they are good.
The sad truth is that most security problems are just not under the control
of most people.

For the purposes of making this section interesting, let’s assume a
security system under your control. Moreover, you have a financial liabil-
ity for the system’s security: You will lose money if the authentication
scheme is broken, you will get sued if the privacy protections are
breached, and so forth. You have gone through the threat modeling and
risk assessment, and have decided that you need a certain type of product.
How do you go about choosing one? How do you go about evaluating
the options?

The problem with bad security is that it looks exactly the same as
good security. I can hold two products up: a pair of VPNs, for example.
They have the same capabilities and the same features. They use the same
buzzwords: triple-DES, IPsec, and so on. They make the same security
claims. One is secure and one is broken. The average user has absolutely
no way to tell the difference. A security expert can, but it might take him
half a man-year of work to give you a useful opinion. It’s just not worth
the user’s money.

I’m continuously amazed by magazine comparison articles evaluating
security products. I saw one on firewalls recently. They tried to compare
security: Their labs installed the various firewalls and exposed them to a
barrage of 300 attacks. Interesting, yes, but only marginally related to how
secure the firewall is, against real-world adversaries, in real-world config-
urations. All the article talked about was whether the firewall, as config-
ured in the laboratory, could withstand attack X, not whether the firewall
increased the security of the network inside. Functional comparisons are
easy; security problems are hard. I’ve seen even scarier reviews, where
security products were rated only on the user interface. Presumably the
reviewers had to measure something, and the user interface was the only
thing they could see.

But even if they did rate security, does the rating match to the way
you use the product? For example, I don’t care how secure you can make
a particular operating system. I care how secure it is 90 percent of the
time, in real-world situations. I care how secure it is when you buy it,
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with the default out-of-the-box settings. Or how secure it is after the
average sysadmin installs it. That’s what matters.

It can be easy to spot products that are obviously bad. Products that
make obviously wrong claims—“guaranteed unhackable security,”
“impossible-to-break encryption”—are almost certainly insecure. Prod-
ucts that make bizarre pseudoscientific claims of amazing new break-
throughs in technology (generally you see this applied to encryption
technology) are almost certainly snake oil. Other warning signs include
appealing to nebulous “security experts,” using ludicrous key lengths,
bucking conventional wisdom without good reason (in security, a lot of
benefit comes from following the crowd), and staging weird security con-
tests. In this book I outline a number of good security practices: using
known and published cryptography, using public protocols, recognizing
the limitations of different technologies. Companies that display igno-
rance of these principles in their marketing literature should be immedi-
ately suspect. It is possible, of course, that a product that exhibits some of
these warning signs is good; it’s just not likely. Just remember that there
are far fewer geniuses than fools.

But those are the easy ones. Once you’ve eliminated the products
from companies who evidently have no clue what they’re doing, it gets a
lot harder. All the remaining products are buzzword compliant; they all
say the right things. One might be older than the other; does that mean
it’s more secure? One might have more published vulnerabilities than the
other. Does that mean that it is less secure because more vulnerabilities
have been found and even more are likely still to be found, or is it more
secure because more vulnerabilities have been found and fixed? There’s
no way to know. (This is why so many security companies use ambu-
lance-chasing-like advertising: sowing fear, uncertainty, and doubt.)

Unfortunately, it’s not good enough to simply throw up your hands
and refuse to make a decision. There are security products out there that
claim to protect against threats, and consumers have to choose between
them. It makes no sense to not install a firewall because you don’t know
which is the best. The internal network exists. It has to connect to the
outside world. You can either choose a firewall, or not have one at all.
There’s a saying: “Mediocre security now is better than perfect security
never.”

While it’s true that security testing can only show the presence of
flaws and not their absence, it’s also true that nothing can establish the
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absence of flaws: not provable security, not formal security models, not
detailed attack trees. We’re back to where we were when choosing a
cryptographic algorithm or protocol: Testing, by many people over the
course of time, is how we come to trust a security product.

The only thing left to do is to implement a process that assumes the
fallibility of the products, and provides security anyway. I’ll return to this
point in Chapter 24. 
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23

The Future of Products

One question to ask is what future technologies are likely to help
security products. Surely cryptography is always getting better.
Surely we’re always building better and better firewalls. Won’t

that help? The answer is both yes and no. Yes, specific technologies are
getting better. But no, the fundamental problems aren’t being solved.

Technologies improve. CPUs are much faster than they were ten
years ago, making it possible to add cryptography almost everywhere.
Digital cell phones, for example, could encrypt everything with strong
algorithms without perceptibly reducing performance.

The technologies of computer and network security are getting bet-
ter. Today’s firewalls are much better than the ones designed ten years
ago. Intrusion detection systems are still in their infancy, but they are get-
ting better.

And the same is true for almost every technology discussed in Part 2.
Tamper-resistance technologies are improving; biometric technologies
are improving. We’re even getting smarter digital copy protection mech-
anisms (the DVD debacle notwithstanding).

What aren’t changing are the fundamentals of the technologies and
the people using them. Cryptography will always be nothing more than
mathematics. Security flaws will always litter software. People will (in
general) never be willing to remember passwords longer than a certain
length. People will always be vulnerable to social engineering.

It’s worse yet. Things are getting more complex, and that complexity
more than makes up for improvements in any other area. The future of
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digital systems is complexity, and complexity is the worst enemy of secu-
rity. Security is not getting better; it’s getting worse.

SOFTWARE COMPLEXITY AND SECURITY

Digital technology has been an unending series of innovations, unin-
tended consequences, and surprises, and there’s no reason to believe that
will stop anytime soon. But one thing has held constant through it all, and
it’s that digital systems have gotten more complicated.

We’ve seen it over the past several years. Microprocessors have got-
ten more complex. Operating systems and programs have gotten more
complex. (Sometimes for no good reason: There’s an entire flight simula-
tor hidden in every copy of Microsoft Excel 97.) Computers have gotten
more complex. Networks have gotten more complex. There are complex
network services, downloadable modules, intelligent agents, and distrib-
uted computing. Individual networks have combined, further increasing
the complexity. The Internet is probably the most complex machine
humanity has ever built. And it’s not getting any simpler anytime soon.

The global financial system has gotten more complex. The digital sys-
tems in your car, dishwasher, and toaster have gotten more complex. The
smart cards in your wallet have gotten more complex, as have the net-
works they talk with. The locks on your hotel room doors have gotten
more complex, as have your burglar alarms, cell phones, and building
environmental control systems. Buckingham Fountain in Chicago is
remotely controlled by a computer in Atlanta.

As a consumer, I think this complexity is great. There are more
choices, more options, more things I can do. As a security professional, I
think it’s terrifying. Complexity is the worst enemy of security. This has
been true since the beginning of computers, and is likely to be true for the
foreseeable future. And as cyberspace continues to get more complex, it
will continue to get less secure. There are several reasons why this is true.

The first reason is the number of security bugs. In Chapter 13, I talked
about software reliability and how it affects security. Just as the number of
performance bugs goes up with complexity, so does the number of secu-
rity flaws. This is uniformly true. As the complexity of the software goes
up, the number of bugs goes up. And a percentage of these bugs will affect
security, and not always in tangible ways.
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The second reason is the modularity of complex systems. In Chapter
10, I talked about modular code and the security problems associated with
it. Complex systems are necessarily modular; there’s no other way to han-
dle the complexity than breaking it up into manageable pieces. We could
never have made the Internet as complex and interesting as it is today
without modularity. But increased modularity means increased security
flaws, because security often fails where two modules interact.

The third reason is the interconnectedness of complex systems. Dis-
tributed and networked systems are inherently risky. Complexity leads to
the coupling of systems, which can lead to butterfly effects (minor prob-
lems getting out of hand). We’ve already seen examples of this as every-
thing becomes Internet-aware. For years we knew that Internet
applications like sendmail and rlogin had to be secure, but the recent epi-
demic of macro viruses shows that Microsoft Word and Excel need to be
secure. Java applets not only need to be secure for the uses they are
intended for, but they also need to be secure for any other use an attacker
might think of. Cross-site scripting exploits subtle interactions among
CGI scripts, HTML, frames, Web server software, and cookies. In 2000,
a bug in Internet Explorer 5.0 locked up Windows 2000 when it was
installed with 128-bit cryptography. Photocopiers, maintenance ports on
routers, mass storage units: These can all be made Internet-aware, with
the associated security risks. Rogue printer drivers can compromise Win-
dows NT; PostScript files can have viruses. Malicious e-mail attachments
can tunnel through firewalls. Remember the version of Windows NT
that had a C2 security rating, but only if it was unconnected to a network
and had no floppy drive? Remember the WebTV virus? How long
before someone writes a virus that infects cell phones?

The fourth reason is that the more complex a system is, the more
recondite it is. In Chapter 17, I talked about social engineering and the
poor interactions between people and security. These problems are exac-
erbated by complex systems. The people running the actual system typi-
cally do not have a thorough understanding of the system and the security
issues involved. And if someone doesn’t understand a system, he is more
likely to be taken advantage of by someone who does. Complexity not
only makes it virtually impossible to create a secure system, it also makes
the system extremely hard to manage. 

The fifth reason is the difficulty of analysis. In Chapters 18 through
21, I outlined a procedure for designing and analyzing secure systems:
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understanding the threat model, defining the protection mechanisms, and
designing the security. The more complex a system is, the harder it is to
do this kind of analysis. Everything is more tortuous: the specification, the
design, the implementation, the use. The attack tree for any complex sys-
tem is gargantuan. And, as we’ve seen again and again in this book, every-
thing is relevant to security analysis.

The sixth (and final) reason is the increased testing requirements for
complex systems. In Chapter 22, I talked about security and failure test-
ing. I argued that the only reasonable way to test the security of a system
is to perform security evaluations on it. However, the more complex the
system is, the harder a security evaluation becomes. A more complex sys-
tem will have more security-related errors in the specification, design, and
implementation. And unfortunately, the number of errors and difficulty
of the evaluation does not grow in step with the complexity, but in fact
grows much faster.

For the sake of simplicity, let’s assume the system has ten different set-
tings, each with two possible choices. Then, 45 different pairs of choices
could interact in unexpected ways, and there are 1,024 different configu-
rations altogether. Each possible interaction can lead to a security weak-
ness, and should be explicitly tested. Now, assume that the system has 20
different settings. This means 190 different pairs of choices, and about a
million different configurations. Thirty different settings means 435 dif-
ferent pairs and a billion different configurations. Even slight increases in
the complexity of systems means an explosion in the number of different
configurations . . . any one of which could hide a security weakness.

The increased number of possible interactions creates more work
during the security evaluation. For a system with a moderate number of
options, checking all the two-option interactions becomes a huge amount
of work. Checking every possible configuration is a Herculean task. Thus,
the difficulty of performing security evaluations also grows very rapidly
with increasing complexity. The combination of additional (potential)
weaknesses and a more difficult security analysis unavoidably results in
insecure systems.

In actual systems, the situation is not quite so bad; often options are
orthogonal, in that they have no relation to or interaction with each
other. (Of course, as systems get more complex you get more couplings.)
This occurs, for example, if the options are on different layers in the com-
munication system and the layers are separated by a well-defined inter-
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face. For this reason, such a separation of a system into relatively indepen-
dent modules with clearly defined interfaces is a hallmark of good design.
Good modularization can dramatically reduce the effective complexity of
a system without the need to eliminate important features. Options
within a single module can, of course, still have interactions that need to
be analyzed, so the number of options per module should be minimized.
Modularization works well when used properly, but most actual systems
still include cross-dependencies that allow options in different modules to
affect each other.

A more complex system is less secure on all fronts. It contains more
weaknesses to start with, its modularity exacerbates those weaknesses, it’s
harder to test, it’s harder to understand, and it’s harder to analyze.

It gets worse. This increase in the number of security weaknesses
interacts destructively with the weakest-link property of security: The
security of the overall system is limited by the security of its weakest link.
Any single weakness can destroy the security of the entire system.

Real systems show no signs of becoming less complex. In fact, they
are becoming more complex faster and faster. Microsoft Windows is a
poster child for this trend to complexity. Windows 3.1, released in 1992,
has 3 million lines of code. In 1998, Windows NT 5.0 was estimated to
have 20 million lines of code; by the time it was renamed Windows 2000
(in 1999), it had between 35 million and 60 million lines of code, depend-
ing on whom you believe. See Table 23.1.

TABLE 23.1 TREND TO COMPLEXITY IN SOURCE CODE

Operating System Year Lines of Code

Windows 3.1 1992 3 million
Windows NT 1992 4 million
Windows 95 1995 15 million
Windows NT 4.0 1996 16.5 million
Windows 98 1998 18 million
Windows 2000 2000 35–60 million (estimate)

The size of Windows 2000 is absolutely amazing, and it will have
even more security bugs than Windows NT 4.0 and Windows 98 com-
bined. In its defense, Microsoft has claimed that it spent 500 people-years
to make Windows 2000 reliable. I only reprint this number because it
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serves to illustrate how inadequate 500 people-years are. 
You can also see this complexity increase in the number of system

calls an operating system has. The 1971 version of UNIX had 33. By the
early 1990s, operating systems had about 150. Windows NT 4.0 SP3 has
3,433. See Table 23.2.

TABLE 23.2 TREND TO COMPLEXITY IN OPERATING SYSTEMS

Operating System Year System Calls

UNIX 1ed 1971 33
UNIX 2ed 1979 47
SunOS 4.1 1989 171
4.3 BSD Net 2 1991 136
Sun OS 4.5 1992 219
HP UX 9.05 1994 163
Line 1.2 1996 211
Sun OS 5.6 1997 190
Linux 2.0 1998 229
Windows NT 4.0 SP3 1999 3,433

Early firewalls had to deal with FTP, telnet, SMTP, NNTP, and
DNS. That’s all. Modern firewalls have to handle hundreds of protocols,
and a labyrinthine set of network-access rules. Some neoteric protocols
are designed to look like HTTP, in order to “work with” (i.e., avoid)
firewalls. And dial-in users didn’t used to have to be concerned with fire-
walls; now home broadband users, on DSL and cable modems, do. Even
worse, there’s software available that lets home users set themselves up as
Web servers. More features, more complexity, more insecurity.

Public-key certificates in X.509 version 1 were specified in 20 lines of
ASN.1 notation. X.509 version 3 certificates took about 600 lines. SET
certificates: about 3,000 lines. 

The entire SET standard is 254 pages long. And that’s just the formal
protocol specification; there’s also a 619-page programmer’s guide and a
72-page business description. For various reasons it seems that SET will
never see widespread use, but in any case I believe that we are not capa-
ble of implementing something this labyrinthine without bugs. The per-
formance bugs will be (for the most part) fixed during beta testing; the
security bugs will lie dormant. But they will be there. If the right person
finds one, he will announce his findings to the press. If the wrong person
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finds one, he will use it to attack the online credit card system: maybe to
mint money, maybe to create valid-looking but phantom credit card
accounts, maybe just to screw with credit card processing and bring the
system to its knees.

Complexity is creeping into everything. The 2000 Mercedes 500 has
more computing power than a 747-200. My old thermostat had one dial;
it was easy to set the temperature. My new thermostat has a digital inter-
face and a programming manual. I guarantee that most people will have
no idea how to set it. Thermostats based on Sun Microsystems’s “Home
Gateway” system come with an Internet connection, so you can conve-
niently contract with some environmental control company to operate
your too-complicated thermostat. Sun is envisioning Internet connec-
tions for all your appliances and your door locks. Do you think anyone
will have checked the refrigerator software for security bugs? I’ve talked
about modern malicious code, and the interactions among Java, HTML,
CGI scripts, and Web browsers. Isn’t anyone else worried that the new
cell phones, equipped with the Wireless Access Protocol, will be able to
download Java applets? It’s only a matter of time before we have a cell
phone virus.

Computer games used to be simple. Now they’re networked. Any-
one can go to a Web site and set himself up for multiplayer play. Now
anyone else can log in to his machine across the Internet. Presto, he’s a
server. Mom and Dad might keep some proprietary information on their
computer—work secrets, financial information—and suddenly Junior has
invited the world to log on. Has anyone checked these games for security
bugs? A vulnerability in the automatic update feature in the game
Quake3Arena allows an attacker to update any file on the user’s com-
puter. Napster also opens your computer up as a server, and overflow
bugs have already been found in the software.

It gets worse. The current generation of video game machines—the
Sega Dreamcast, Sony PlayStation 2—comes with features like 56K
modems, IP stacks, and Web browsers. Millions of these have been sold.
Maybe the browsers and operating systems will be secure; if they are,
they’ll be the first ever. It’ll be big fun; you’re playing Sonic over modem
with some other kid, and he’ll get root on your game machine and win.
If it’s just a game console: woo hoo! It doesn’t matter. But remember that
the game companies are going to want you to do all your e-shopping with
your game console. There’ll be credit card numbers, electronic wallets,
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who knows what. Welcome to a world where a buffer overflow in
Tekken 3 can compromise your financial security.

This kind of function creep happens everywhere: Today’s toys are
tomorrow’s critical applications. Mass-market software is good at adding
features and functionality, but much less good at reliability. Despite this,
and despite the fact that the software and networks have not been
designed for critical applications, they’re being used for such anyway.
We’ve become dependent on systems of unknown trustworthiness.
Quick-and-dirty “ship the damn thing already” solutions have become
part of our critical infrastructure. The Internet is probably the biggest
example of this; PC operating systems are another.

Sure, security bugs are found and fixed, but the process is Sisyphean.
A software product is released. Over time, security bugs are found and
fixed; security is improving. Then the manufacturer comes out with ver-
sion 2.0—with new code, added features, more complexity—and we’re
back where we started from. Maybe even worse.

In the military, this is called a “target-rich environment.”
The networked systems of the future, necessarily more complex, will

be less secure. The technology industry is driven by demand for features,
for options, for speed. There are no standards for quality or security, and
there is no liability for insecure software. Hence, there is no economic
incentive to create high quality. Instead, there is an economic incentive to
create the lowest quality the market will bear. And unless customers
demand higher quality and better security, this will never change.

I see two alternatives. The first is to slow down, to simplify, and to try
to add security. Customers won’t demand this—the issues are too com-
plex for them to understand—so a consumer advocacy group is required.
I can easily imagine an FDA-like organization for the Internet, but in an
environment where it can take a decade to approve a new prescription
drug, this solution is not economically viable.

The other choice is to recognize that the digital world will be one of
ever-expanding features and options, of ever-faster product releases, of
ever-increasing complexity, and of ever-decreasing security. If we can
accept this reality, we can try to work with it instead of sticking our heads
in the sand and denying it.

I repeat: Complexity is the worst enemy of security. Secure systems
should be cut to the bone and made as simple as possible. There is no sub-
stitute for simplicity. Unfortunately, simplicity goes against everything
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our digital future stands for.

TECHNOLOGIES TO WATCH

There are technologies on the horizon that may profoundly change secu-
rity products, both for good and for bad. Since this isn’t supposed to be a
book that predicts the future, I will just mention a few of the more inter-
esting ones.

Cryptographic breakthroughs. Pretty much no cryptography is based on
mathematical proofs; the best that we can say is that we can’t break it, and all
the other smart people who tried can’t break it either. There is always the
possibility that someday we will learn new techniques that allow us to break
what we can’t break today. (There’s a saying inside the NSA: “Attacks always
get better; they never get worse.”) We’ve seen this in the past, where once-
secure algorithms fell to new techniques, and we’re likely to see it in the
future. Some people even assume that the NSA already knows much of this
new mathematics, and is quietly and profitably breaking even our strongest
encryption algorithms. I just don’t think so; they may have some secret tech-
niques, but not many.

Factoring breakthroughs. One worry is that all of the different public-key
algorithms are fundamentally based on the same two mathematical prob-
lems: the problem of factoring large numbers or the discrete logarithm
problem. Factoring is getting easier, and it’s getting easier faster than anyone
ever thought it would. These problems are not mathematically proven to be
hard, and it is certainly possible (although mathematicians don’t think it
likely) that within our lifetime someone will come up with a way to effi-
ciently solve these problems. If this happens, we could be in a world where
public-key cryptography does not work and parts of this book are a quaint
historical oddity. This won’t be terrible; authentication infrastructure
schemes based on symmetric cryptography can do much of the same job.
Even so, I don’t think it’s likely.

Quantum computers. Someday, quantum mechanics may fundamentally
change the way computers work. Right now people can barely figure out
how to make quantum computers add two 1-bit numbers, but who knows
what will happen? Quantum computation techniques will render most pub-
lic-key algorithms obsolete (see the preceding item), but will only force us
to double the key lengths for symmetric ciphers, hash functions, and MACs.
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Tamperproof hardware. A lot of security problems magically get a lot eas-
ier if you assume tamperproof hardware and put things inside of it. Break-
throughs in tamper-resistance technologies, especially breakthroughs in the
cost of different tamper-resistance measures, could make a lot of security
problems easier.

Artificial intelligence. Many computer-security countermeasures can be
reduced to a simple problem: letting the good stuff in while keeping the bad
stuff out. This is the way antivirus software, firewalls, intrusion detection
systems, VPNs, credit card antifraud systems, digital cell phone authentica-
tion, and a whole lot of other things work. There are two ways to do this.
You can be dumb about it—if you see any of these ten thousand bit pat-
terns in the file, that means the file has a virus—or smart about it: If the pro-
gram starts doing suspicious things to the computer, it’s probably a virus and
you should investigate further. The latter sounds an awful lot like AI. This
kind of thing was tried as an antivirus mechanism, and ended up being less
effective than the dumb pattern checkers. Similar ideas are in some intrusion
detection products, and it is still unclear whether they do a better job than
methodically looking for bit patterns that signify an attack. Still, this could
someday be a big deal: If fundamental advances ever occur in the field of AI
(a big “if”), it has the potential to revolutionize computer security.

Automatic program checkers. Many security bugs, such as buffer over-
flows, are the result of sloppy programming. Good automatic tools that can
scan computer code for potential security-related bugs would go a long way
to making software more secure. Good language compilers, and good syn-
tax checkers, would go a long way to preventing programmers from making
security-related mistakes in the first place. We’d have to persuade program-
mers to use them, which is probably another matter entirely. (There are a
bunch of good tools out there, and almost no one uses them.) And they’re
never going to catch all problems.

Secure networking infrastructures. The Internet is not secure because
security was never designed into the system. People who are working on
the Internet-II (and whatever follows that) should be thinking about secu-
rity first. These new networks should assume that people will be eavesdrop-
ping, that they will attempt to hijack sessions, and that packet headers lie.
They should assume mutually distrustful users, and all sorts of business and
personal applications. There are a lot of problems that can’t be solved with
better network protocols, but a lot can.

Traffic analysis. The science of traffic analysis is still in its infancy, and I
expect interesting new technologies in the coming decade. Good ways of
preventing traffic analysis will go a long way to improving privacy on any
public network.
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Assurance. Assurance means that a system does what it is supposed to do,
and doesn’t do anything else. A technology that could somehow provide
strong assurance in software would do amazing things for computer  security.

Most of these technologies are being worked on today. Practical
advances in most of them are far in the future, some of them on the
lunatic horizon. I wouldn’t discount any of them, though. If there’s any-
thing the twentieth century has taught us, it’s to be parsimonious with the
word “impossible.”

WILL WE EVER LEARN?

Consider buffer overflow attacks. These were first talked about in the
security community as early as the 1960s—time-sharing systems suffered
from that problem—and were probably known by the security literati
even earlier. Early networked computers in the 1970s had the problem,
and it was often used as a point of attack against systems. The Morris
worm, in 1988, exploited a buffer overflow in the UNIX fingerd com-
mand: a public use of this type of attack. Now, over a decade after Mor-
ris and about 35 years after they were first discovered, you’d think the
security community would have solved the problem of security vulnera-
bilities based on buffer overflows. Think again. In 1998, over two-thirds
of all CERT advisories were for vulnerabilities caused by buffer over-
flows. During a particularly bad fortnight in 1999, 18 separate security
flaws, all caused by buffer overflows, were reported in Windows
NT–based applications. During the first-week-of-March stretch I opened
this book with, there were three buffer overflows reported. And buffer
overflows are just the low-hanging fruit. If we ever manage to eradicate
the problem, others—just as bad—will replace them.

Consider encryption algorithms. Proprietary secret algorithms are
regularly exposed and then trivially broken. Again and again, the market-
place learns that proprietary secret algorithms are a bad idea. But compa-
nies and industries continue to choose proprietary algorithms over public,
free alternatives.

Or look at fixable problems. One particular security hole in
Microsoft’s Internet Information Server was used by hackers to steal thou-
sands of credit card numbers from a variety of e-commerce sites in early
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2000. Microsoft issued a patch that fixed the vulnerability in July 1998,
and reissued a warning in July 1999 when it became clear that many users
never bothered installing the patch.

Isn’t anyone paying attention?
Not really. Or, at least, far fewer people are paying attention than

should be. And the enormous need for digital security products necessi-
tates experts to design, develop, and implement them. This resultant
dearth of experts means that the percentage of people paying attention
will get even smaller.

Here is a paradigmatic scenario for the design of most products with
security in them. The manager finds some guy who thinks security is cool
and designates him as the person in charge of that part of the system. This
person might know something about security, or he might not. He might
read a book or two on the subject, or he might not. Designing security is
fun—cat and mouse, Spy vs. Spy, just like in the movies—so he does.
Implementing it is just like implementing anything else in the product:
Make it work and meet your deadline. Everything works great—after all,
security has nothing to do with functionality—so the manager is happy.

However, due to the general lack of security expertise, the security
features are completely ineffective. No one has any reason to believe that
this is so, so no one knows.

It’s a little better if the product being designed is a security product.
It’s more likely that the designers will understand security. But they can’t
do everything. Someone who designed a firewall product once told me
about buffer overflows in his code. He said that he did all he could to
ensure that there were none—and I believe that he was thorough—but
he said that he couldn’t control the rest of the programmers on the team.
He tried, but he couldn’t. Several serious vulnerabilities due to buffer
overflows in the code have been discovered, and fixed, over the years. No
one believes there aren’t more, waiting to be discovered.

I’ve been constantly amazed by the kinds of things that break security
products. I’ve seen a file encryption product with a user interface that
accidentally saves the key in the clear. I’ve seen VPNs where the tele-
phone configuration file accidentally allows untrusted persons to authen-
ticate themselves to the server, or where one VPN client can see the files
of all other VPN clients. There are a zillion ways to make a product inse-
cure, and manufacturers manage to stumble on a lot of those ways again
and again.
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They don’t learn because they don’t have to.
Computer security products, like software in general, have an odd

product quality model. It’s unlike an automobile, a skyscraper, or a box of
fried chicken. If you buy a physical product, and get harmed because of a
manufacturer’s defect, you can sue . . . and you’ll win. Car makers can’t
get away with building cars that explode on impact; lunch counters can’t
get away with selling strawberry tarts with the odd rat mixed in. It just
wouldn’t do for building contractors to say things like: “Whoops. There
goes another one. But just wait for Skyscraper 1.1; it’ll be 100 percent col-
lapse-free.” These companies are liable for their actions.

Software is different. It is sold without any liability whatsoever. For
example, here’s the language in the Windows 98 licensing agreement: “In
no event shall Manufacturer or its suppliers be liable for any damages
whatsoever—arising out of the use or of inability to use this product, even
if Manufacturer has been advised of the possibility of such damages.”

Your accounts receivable database could crash, taking your company
down with it, and you have no claim against the software company. Your
word processor could corrupt your entire book manuscript (something I
spend way too much time worrying about while writing), wasting years
of work, and you have no recourse. Your firewall could turn out to be
completely ineffectual, hardly better than having nothing . . . and it’s your
fault. Microsoft could field Hotmail with a bug that allowed anyone to
read the accounts of 40 or so million subscribers, password or no pass-
word, and not even bother to apologize.

Software manufacturers don’t have to produce a quality product
because they face no consequences if they don’t. (Actually, product liabil-
ity does exist, but it is limited to replacing a physically defective diskette
or CD-ROM.) And the effect of this for security products is that manu-
facturers don’t have to produce products that are actually secure, because
no one can sue them if they make a bunch of false claims of security.

The upshot of this is that the marketplace does not reward real secu-
rity. Real security is harder, slower, and more expensive to design and
implement. The buying public has no way to differentiate real security
from bad security. The way to win in this marketplace is to design soft-
ware as insecure as you can possibly get away with.

Smart software companies know this, and that reliable software is not
cost-effective. According to studies, 90 to 95 percent of all bugs are harm-
less; they’re never found by users and they don’t affect performance. It’s
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much cheaper for a company to release buggy software and fix the 5 to 10
percent of bugs after people complain.

They also know that real security is not cost-effective. They get
whacked with a new security vulnerability several times a week. They fix
the ones they can, write deceptive press releases about the ones they can’t;
then they wait for the press furor to die down (which it always does).
Then they issue a new version of their software with new features that add
all sorts of new insecurities, because users prefer cool features to security.

And users always will. Until companies have some legal incentive to
produce secure products, they won’t bother.
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24

Security Processes

In 1996, a lab full of researchers cloned a Scottish sheep named Dolly.
In the media circus that followed, both Time and Newsweek opined
that since cloning humans is immoral we need laws to prevent it.

They missed the point completely. Someone will attempt to clone
humans, somewhere on the planet, law or no law. What we need is to
accept this inevitability, and then figure out how to deal with the
inevitable.

Computer insecurity is inevitable. Technology can foil most of the
casual attackers. Laws can deter, or at least prosecute, most criminals. But
attacks will fall through the cracks. Networks will be hacked. Fraud will
be committed. Money will be lost. People will die.

Technology alone cannot save us. Products have problems, and they
are getting worse. The only thing reasonable to do is to create processes
that accept this reality, and allow us to go about our lives the best we can.
It’s no different from any other aspect of our society. No technological
security measures can protect us from terrorist attacks. We use products as
best as we can, and implement processes—security checkpoints at bor-
ders, intelligence gathering on known terrorist groups, counterterrorist
activities, vigilant prosecution—to get as much safety as possible.

PRINCIPLES

Compartmentalize

Smart travelers put some money in their wallet, and the rest of their
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money in a pouch hidden under their clothing. That way, if they’re pick-
pocketed, the thief doesn’t get everything. Smart espionage or terrorist
organizations divide themselves up into small cells; people know others in
their own cell, but not those in other cells. That way, if someone is cap-
tured or turned in, he can only damage those in his own cell. Compart-
mentalization is smart security, because it limits the damage from a
successful attack. It’s common sense, and there are lots of examples: Users
get individual accounts, office doors are locked with different keys, access
is based on clearance plus need to know, individual files are encrypted
with unique keys. Security is not all-or-nothing; security breaches should
not be, either.

A similar precept is the one of least privilege. Basically, this means that
you should only give someone (or, by extension, some computer
processes) the privileges needed to accomplish the task. You see this all
the time in everyday life: You have the key to your office, but not every
office in the building. Only authorized armored-car delivery people can
unlock ATMs and put money inside. Even if you have a particular secu-
rity clearance, you are only told things that you “need to know.” 

Computers offer many more examples. Users only have access to the
servers they need to do their job. Only the system administrator has the
root password to the entire computer; users have individual passwords to
their own files. Sometimes group passwords protect shared files; only
those who need access to those files know the group password. Certainly
it’s easier to give everyone the root password, but it’s more secure to only
give people the privileges they need. The whole UNIX and NT permis-
sions system is based on this idea.

Many Internet attacks can be traced to breaking this principle 
of least privilege. Once an attacker gets access to a user account—by
breaking a password or something—he tries a bunch of attacks in order to
get root privileges. Many of the attacks against Java try to break out of the
Java sandbox—a way of enforcing minimal privileges—and into a mode
where the attacker can get privileged status. Attacks against the DVD
security system, security systems in some transit farecard systems, and
many pay-TV security systems can all be traced to the system having a
global secret in each of the consumer devices: a violation of least privilege.

Compartmentalization is also important because a system’s security
degrades in proportion to its use. The larger, more popular, more integral
a computer is, the less secure it is. This is one reason why the Internet—
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the most widely used network ever—is so insecure. A computer, pow-
ered down, in a locked bomb shelter, and surrounded by guards, is more
secure than a Web server is. Compartmentalization moves systems closer
to the former.

Secure the Weakest Link

The best place to direct countermeasures is at the weakest link. This is
obvious, but again and again I see systems that ignore it. You can’t just
plant a mile-high pole in front of your castle and hope the enemy runs
right into it; you have to look at the whole landscape and build earth-
works and a palisade. Similarly, just because you’re using an encryption
algorithm with a 256-bit key doesn’t mean you’re secure; the enemy is
likely to find some avenue of attack that ignores the encryption algorithm
completely.

I’m continually amazed by the number of commercial security sys-
tems with gaping holes that the designers never noticed, because they
spent all their efforts securing the pieces they understood well. Look at the
entire vulnerability landscape, create an attack tree: find the weakest link
and secure it. Then worry about the next weakest link. You’ll end up
with a much more secure system that way.

Use Choke Points

A choke point forces users into a narrow channel, one that you can more
easily monitor and control. Think of turnstiles at a train station, checkout
lanes at a supermarket, and doors to your house. Think of firewalls,
routers, login screens, and Web sites that force you go to the homepage
first. Think of the single back-end processing system that credit card sys-
tems use to detect fraud. Choke points make good security sense.

Choke points only work if there’s no way to get around them. One
of the common ways to defeat a firewall is to go around it: find an unse-
cured dial-up connection into the network, for example. People some-
times leave dial-up connections running on their computers. Sometimes
routers, large storage devices, and even printers can have unsecured main-
tenance dial-up ports. These all allow attackers to bypass choke points.

Networks have more subtle breaches of this type. Sometimes a com-
pany has strong network security in place, and for whatever reason links
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its network to that of another company. That other company may not be
as secure. This both violates the choke points, and means that the network
has a new weakest link that needs securing.

Provide Defense in Depth

Defense in depth is another universal security principle that applies to com-
puters just as it applies to everything else.

A good perimeter defense—door locks and window alarms—is more
effective when combined with motion sensors inside the house. Forgery-
resistant credit cards work better when combined with online verification
and a back-end expert system that looks for suspicious spending patterns.
A firewall, combined with an intrusion detection system and strong cryp-
tography protecting the applications, is more secure than a firewall alone.

Throughout this book, I’ve inculcated you with the principle that
security is only as strong as the weakest link, and this seems to go against
that philosophy. In reality, it depends on the implementation. Recall the
attack trees: a series of OR nodes are only as secure as the weakest, while
a series of AND nodes are as strong as their combination. In general, the
security of a particular technology depends on the easiest way to break
that technology: the weakest link. The security of several security coun-
termeasures depends on the easiest way to defeat all those countermea-
sures: defense in depth.

For example, a network protected by two firewalls, one each at two
different network ingresses, is not defense in depth. This system is only as
secure as the weakest link: An attacker can attack either firewall. A net-
work protected by two firewalls, one behind the other, is defense in
depth: An attacker has to penetrate one firewall and then the other in
order to attack the network. (It always amazes me when I see complex
networks with different brands of firewalls protecting different access
points, or even the same brand of firewall with different configurations. It
just makes no sense.)

Fail Securely

Many systems have a property that I call default to insecure. This means that
if the system fails, then the user reverts to a less-secure backup system. For
example, in the United States, VeriFone processes credit card transactions
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using a live database terminal. When the clerk takes your card and swipes
it through the VeriFone terminal, that terminal calls back to a database
and confirms that the card is not stolen, that you have available credit, and
so forth. Think back to a time when, for whatever reason, the terminal
didn’t work: it was broken, the phone line was down, whatever. Did the
merchant tell you that he wouldn’t accept your credit card? Of course
not. He pulled out the old system of paper slips and did the transaction
manually.

This cavalier approach to security is pervasive, and it’s the reason
denial-of-service attacks can become invasive attacks. I already talked
about attackers tripping burglar alarms until they are turned off. Other
attacks are subtler. Few people have the discipline not to communicate if
they cannot communicate securely. Even the military, which you think
would take this seriously, has screwed this up again and again.

What you want is for systems to fail securely; that is, fail in such a way
as to be more secure, not less. If an ATM’s PIN verification system does
not work, it should fail in such a way as to not spit money out the slot. If
a firewall crashes, it should crash in such a way as to not let any packets in.
If a slot machine fails, it should not send coins pouring into the payout
tray.

This same principle is used in safety engineering, and is called fail-safe.
If a microprocessor in an automobile fails, you don’t want it failing by
forcing maximum throttle. If a nuclear missile fails, you don’t want it fail-
ing by launching. Fail-safe is a good design principle.

Leverage Unpredictability

Again and again in this book I rail against security by obscurity: proprietary
cryptography, closed source code, secret operating systems. Obscurity has
its uses: not in products, but in how products are used. I call this unpre-
dictability.

One of the strengths a defender has against an attacker is knowledge
of the terrain. Just as an army doesn’t broadcast the location of its tanks,
antiaircraft batteries, and battalions to the enemy, there’s no reason to
broadcast your network topology to everyone that asks. Too many com-
puters respond to any query with their operating system and version
number; there’s no reason to give out this information. Much better
would be a login screen that reads: “Warning: Proprietary Computer. Use
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of this system constitutes consent to security monitoring. All user activity
is logged, including the hostname and IP address.” Let attackers wonder
if you can trace them.

If you’re building a proprietary security system—for an electronic
banking application, for example—it’s important to use a strong, public,
trusted encryption algorithm. Assuming you’ve chosen one, there’s no
real benefit in announcing its name.

This is one of the principles behind proxy firewalls; there’s no point
in broadcasting to the world valid hostnames and usernames. This is also
the principle behind bespoke network countermeasures—network bur-
glar alarms, honey pots, and similar countermeasures—the network
administrator knows how the network works, and what people should be
doing. When someone pokes around in a fake dormant account, for
example, the administrator should know that it is an attacker. An attacker
shouldn’t know what types of equipment are running where, what pro-
tocols are allowed under what conditions, and what ports are open under
what conditions. I am amazed by the number of servers, applications, and
protocols that announce themselves to the world: “Hello! I am random-
serviceV2.05.” Many hacking tools scan for particular versions of software
running on particular machines . . . known to have particular vulnerabil-
ities. If networks are unpredictable, attackers won’t be able to wander
around so freely. Without this kind of information, it’s much harder to
profile a target and determine what attacks to try. It’s the difference
between walking in a sunny meadow at midday and a briar patch at mid-
night.

This unpredictability also extends to response. The Patriot missile
actually wasn’t that good at knocking incoming Iraqi Scuds out of the sky,
but you would never know that from the official Pentagon reports. Just
because the United States knew how ineffective its antimissile defenses
were, that was no reason to let the enemy know.

Unpredictability is a powerful tool, used by terrorists, authoritarian
brainwashers, and those who just want to dominate others. It works well
in digital security, too.

Embrace Simplicity

I said this a chapter ago: Complexity is the worst enemy of security. A
system is only as secure as the weakest link, so a system with fewer links is
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easier to secure. Complex systems are less secure than simple ones, guar-
anteed. To quote Einstein: “Everything should be as simple as possible,
but no simpler.”

Folk sayings often disagree, and contrarians could easily reply with:
“Don’t put all your eggs in one basket.” This is true, and the defense in
depth principle supports this. But remember that guarding several baskets
is harder than guarding one. Where security is concerned, it is smarter to
follow Mark Twain’s advice in Pudd’nhead Wilson: “Put all your eggs in
the one basket and—WATCH THAT BASKET.”

Enlist the Users

Security is a lot easier if you assume trusted and intelligent users, and a lot
harder if you assume malicious and ignorant users. Security measures that
aren’t understood and agreed to by everyone don’t work. Remember that
the hardest security problems to solve are the ones that involve people;
the easiest are the ones that involve bits. Sure, you have to protect against
insider attacks, but for the most part, insiders are your allies. Enlist their
support as much as possible and as often as possible.

Assure

What we really need is assurance: assurance that our systems work prop-
erly, that they possess the properties we want and only those properties.
Most attacks in the real world result in failures of assurance—the products
doing something unintended—rather than function: the products failing
to do what they were intended to do.

Assurance is hard, something that we don’t really know how to pro-
vide in complex systems. It involves a structured design process, detailed
documentation, and extensive testing. The NSA has detailed assurance
projects; similar processes would make our systems more secure as well.

Question

Constantly question security. Question your assumptions. Question your
decisions. Question your trust and threat models. Keep looking at your
attack trees. Trust no one, especially yourself.

It’s amazing what you’ll find.
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DETECTION AND RESPONSE

Detection is much more important than prevention. As I have said
repeatedly in this book, it is fundamentally impossible to prevent attacks.
We can do demonstrably better than we are, but everything we know
about complex systems tells us that we cannot find and fix every vulnera-
bility. There will always be attackers; we just have to catch and punish
them.

I’m continuously amazed by how many computer-security vendors
are oblivious to this. You never see a door lock with the advertising slo-
gan: “This lock prevents burglaries.” But computer-security vendors
make those kinds of claims all the time: “Firewalls prevent unauthorized
traffic from entering your internal network.” “Authentication mecha-
nisms prevent unauthorized people from logging on to your computers.”
“Encryption prevents unauthorized people from reading files.” All of
these claims are spurious. Prevention mechanisms are good, but preven-
tion is only one part of a security solution—and the most fragile part.
Effective security also includes detection and response.

In the real world, people understand this. Banks don’t say: “We have
a vault, so we don’t need an alarm system.” Museums don’t fire their
night guards because they have door and window locks. In the best of
worlds, all prevention buys you is time. In the real world, prevention can
often be bypassed completely.

In a few isolated cases, all you can rely on is prevention. Against
eavesdropping attacks against a radio circuit, encryption (a prevention
countermeasure) has to work perfectly. There’s no way to detect the
eavesdropping, so no response is possible. Most of the time, though,
detection and reaction are possible.

And they provide much more security. Most home-security sys-
tems—door locks—can be defeated by a brick through a window. Why
are more houses not robbed, then? Why isn’t the public clamoring for
polycarbonate windows? Because of detection and response.

Detect Attacks

Modern society doesn’t prevent crime. It’s a myth. If Alice wanted to kill
Bob, she could. The police couldn’t stop her (unless she were a complete
idiot, I suppose). They can’t protect every Bob in the world; they don’t
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have the manpower. He’s on his own. He can hire a bodyguard if he can
afford it, but that doesn’t guarantee anything either.

What society does is detect crime after the fact. “Hmm, officer, we
just found Bob’s bullet-riddled body buried in the end zone at Giants Sta-
dium. I think I detect a crime here.” We investigate crimes that we have
detected, collect evidence that can be used (here’s the critical piece) to
convince a group of neutral parties that the defendant is guilty, and then
punish that person. This punishment process is supposed to act as some
kind of back channel into society at large and have a preventive effect on
copycat criminals. (Yes, the point of sentencing is to punish the guilty, but
the real benefit to society is in preventing more crime.) Even better, the
mere threat of the whole process is supposed to have a preventive effect.

And it’s a good thing that the whole complicated system works, more
or less, because preventing crime is a whole lot harder than detecting
crime. In the digital world, the same truth holds. Credit card companies
do what they can to prevent criminals from committing fraud, but mostly
they rely on detection and, in extreme cases, prosecution. Cell phones can
be cloned, but detection mechanisms limit financial losses.

Think of antishoplifting technologies. You can make things hard to
steal by bolting them down, attaching cables to them, locking them in
glass cases, or putting them behind the counter. This works, but reduces
sales because the consumer likes to touch the merchandise. In response,
industry has developed many theft detection technologies: tags attached to
the merchandise that cause an alarm to sound if they are removed from
the building. (There’s another interesting antishoplifting technology used
for garments: tags attached to the garment that spread colored dye if
removed improperly. This is known as benefit denial.)

On the Internet, detection can be a lot of work. It’s not enough to
put up a firewall and be done with it; you need to detect attacks against
the network. This means reading, understanding, and interpreting the
reams of audit logs that the firewall produces. This means reading, under-
standing, and interpreting the reams of audit logs that the routers, servers,
and other devices on the networks produce—we have to assume that
some attacks will bypass the firewall. These bypass attacks always leave
footprints somewhere; detection means finding them.

Good detection means finding intruders in something approaching
real time, while they are still engaged in the attack. (Responding after the
attack appears in the morning newspapers is often too late.) This neces-
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sarily means a real-time monitoring system, whether it is a security-
conscious network operations center monitoring your computer net-
work, an AI program looking for anomalous Visa spending patterns or
phone calling card usage patterns, or the NORAD ballistic missile track-
ing systems. The sooner you detect something, the sooner you can
respond.

Analyze Attacks

Simple detection isn’t enough; you need to understand the attack and
what it means. Traditionally, the military breaks the process down into
four generic steps:

Detection. Perceiving that you’re under attack. Imagine that three key
servers on your network crash at the same time. Is that an attack, or just a
problem with your networking software? Or maybe a freak coincidence? If
you don’t even know you’re under attack, it’s impossible to respond. 

Localization. Determining where the attack is. Just because you know that
your network is under attack, it doesn’t necessarily mean that you know
which computers or ports are under attack. You might know that the server
crashes are the result of an attack, but have no idea what the attacker has
done to cause the crashes, and what other things he is doing. 

Identification. Determining who the attacker is and where he is working
from. Each attacker has different strengths and weaknesses, depending on
who he is and where he is working from. An attacker in the United States,
for example, can be dealt with differently than an attacker in Moldavia.
(This step is more important in a traditional military process than in net-
work security.)

Assessment. Understanding the attacker, his strategy and tactics, his capabili-
ties, and maybe even his vulnerabilities. This information is critical to deter-
mining a suitable response. A script kiddie deserves a very different reaction
than an industrial spy. The kiddie is likely to just go away if you respond at
all; a more tenacious attacker won’t be dissuaded so easily. 

Each of these steps is more difficult than the previous one, and each
requires more detailed information and expertise of analysis. And often
this analysis requires human expertise; a computer alone is going to fail
sooner or later (although an automatic program may do a pretty good job
most of the time).
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Each step also gives you more information about the situation, and
the more information you have (and the sooner you have it), the better
armed you are. Unfortunately, most network administrators never know
they’re under attack, or if they do, they don’t understand where the attack
is coming from. Identification and assessment is particularly hard on the
Internet, where it is easy for an attacker to disguise his location.

Speed is of the essence. The faster you can analyze an attack, the faster
you can respond.

Respond to Attacks

It’s all about response. A burglar alarm that rings and rings, with no one
to respond to it, is no better than no burglar alarm at all. It’s like a car
alarm sounding in a bad neighborhood; no one pays attention. Response
is what makes detection valuable.

Sometimes the response is easy: An attacker has stolen someone’s
phone calling card number, so don’t allow that number to be used any-
more. Sometimes it’s more complicated: “Someone has broken into our
electronic commerce server. We can shut the server down, but we’ll lose
$10 million for every hour we’re down. Now what?”

Response is complicated, and often involves intelligent people mak-
ing split-second decisions without a lot of time to fully think things
through. “He’s over the wall and approaching the skylight. What do we
do now?” It depends a lot on the situation. You can do nothing. You can
shoo him away. You can shoo him away and try to make sure he can
never get back. You can shoo him away, try to figure out how he got in,
and close the vulnerability.

That’s only one half of response: making the problem go away.
Equally important is the other half: tracking down and finding the attack-
ers. This can be very difficult on some systems; on the Internet an attacker
can engage in what is called connection laundering: hopping from one com-
puter to another to disguise the origin of a connection. The police don’t
have a lot of investigative time for this, unless lives or a lot of money is
involved, and I expect private companies to offer this kind of forensic ser-
vice. A company that has a broad view of the entire Internet can even start
collecting dossiers on particular attackers.

Prosecution opens a can of worms that is completely foreign to most
computer people: the legal system. Identifying an attacker isn’t enough;
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you also need to be able to prove it in court. There have been cases in
England where people have been accused of this or that ATM fraud. The
defense attorney requests details about the bank’s security mechanisms:
the technologies, the audit logs, the procedures . . . everything he can
think of. The bank turns to the judge and says: “We can’t show them that,
it would compromise security.” The judge throws out the case. The secu-
rity system might be the paragon of detection—it might correctly finger
the criminals—but if it can’t survive the discovery process, it’s not suffi-
ciently useful.

When John Walker was put on trial for spying, the NSA carefully
weighed the risks of making information about the cryptography devices
he compromised public versus keeping the full extent of the damage he
caused secret. Good detective security measures need to be able to go
through the legal process—including inquisitional cross-examinations
with the help of expert witnesses—without losing their effectiveness in
the process. And good detection and audit mechanisms should produce
audit logs that are admissible in court, and that prove guilt. And it should
be possible to make these logs public without revealing any organizational
secrets: something called knowledge partitioning. A legal discovery process
should not result in any security violations.

Be Vigilant

Vigilance means continuous. For detection and response to be effective, it
needs to work all the time: 24 hours a day, 365 days a year. Guard services
offer 24-hour protection. Security-alarm monitoring companies don’t go
home for the weekends. It can’t be any different in the digital world. You
can’t put a splash screen on your network connections saying: “Please
restrict all hacking attempts to within the hours of nine in the morning
and five in the evening, Monday through Friday, excepting holidays.”
Attackers follow their own schedules.

Attacks often happen at inconvenient times. Criminal hacking follows
the academic year. All sorts of commerce fraud—ATMs, credit cards—
goes up during the Christmas season as people find themselves in need of
money. Smart criminals attack banking systems Friday afternoon, after
they’ve closed for the weekend. In 1973, the Arab countries attacked
Israel during Yom Kippur: the holiest Jewish holiday of the year. If some-
one were going to launch a serious attack against a system, he would pick
an equally inconvenient time.
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Vigilance means immediateness. In any aspect of security, timeliness is
next to godliness. It’s much more useful to detect an attack in progress
than a week, or even an hour, after it has happened. It’s far better to
upgrade your systems in response to a vulnerability now, and not next
month. Sometimes reacting late is no better than not reacting at all.

Vigilance also means preparedness. Any detection and response team
needs to know what to do when an attack occurs. When Yahoo! got
whacked with a denial-of-service attack in 2000, it took them three hours
to get back up and running. Partly this was because Yahoo! had never
seen this kind of attack before. Whenever processes are automated, and
exceptions become rarer, people forget how to react. A monitoring and
response service is only useful if it regularly sees attacks, and continuously
practices how to respond.

Watch the Watchers

The banking industry has long known that layers of audit provide good
security. Managers audit the tellers. Internal auditors audit the managers.
Outside auditors reaudit things, but with different methods—effectively
auditing the internal auditors. The outside auditors act as a trusted third
party does in a protocol; they are paid to audit the system and don’t care
whether they find problems or not; they get paid regardless. The casino
industry likes to call this process “people watching people watching peo-
ple.” Dealers watch the players, floormen watch the dealers, pit bosses
watch the floormen, and surveillance watches the pit bosses.

In the banking industry, this process is enhanced by mandatory vaca-
tions. The idea is that if someone else is doing your job, then maybe he’ll
notice evidence of your crimes. One example is Lloyd Benjamin Lewis,
an assistant operations office at a large bank. He engaged in large-scale
fraud over two years, and during that time never took a single vacation
day, sick day, or was late to work. He had to be there, otherwise the fraud
might be discovered. 

It’s not enough to have a good system administration staff who knows
all about computer and network security, monitors the systems, and
responds to attacks 24 hours a day. Someone has to watch them. It’s not
just because they might be malicious, although this has happened. (There
is a long history of crimes committed by senior bank officials, since they’re
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the ones most likely to get away with it. Someone who was charged with
auditing slot machines, making sure they were not rigged by the house,
was caught modifying the ROMs so he could force them to produce a
jackpot at will.) The real reason is that people are people; they make mis-
takes. Even processes have security flaws, and there has to be another
process in place to catch and fix them. It’s a lesson that has long needed to
be applied to cyberspace.

Recover from Attacks

When a French banking smart card was broken in 2000, they had a prob-
lem. There was nothing they could do about it except turn the system off
or live with the problem. We saw similar problems in the New York City
transit farecards, a Canadian cash card, and the DVD encryption scheme.
If you spend all your time thinking about preventive countermeasures,
you can forget to plan what to do if those countermeasures fail.

Preventive countermeasures fail all the time. Fixing the problem and
tracking down the bad guys are part of a good response, but so is recov-
ering from a compromise. This can mean designing systems so that they
can be upgraded in the field, and building processes to facilitate that
upgrade. This can mean building systems with emergency cryptography,
emergency protocols, or emergency procedures. This can mean cutting
your losses and returning your system to a secure state.

I’ve seen too many security systems with the implicit assumption: “If
someone breaks the security, we all go home and get new jobs.” That just
doesn’t cut it. Compromise recovery should be a core element of any
security system. 

COUNTERATTACK

In the war for security, it sometimes looks pretty bleak. Attackers have it
easier. They can cheat. They can invent new science and new technology
to attack systems already in place. They can use techniques the defenders
never considered. They don’t have to follow the defender’s threat model.

And the odds are in their favor. The defender occupies what Karl von
Clausewitz calls “the position of the interior.” An attacker needs to find
one successful attack: one minor vulnerability that the defender forgot to
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close. A defender, on the other hand, needs to protect against every pos-
sible attack. He needs to think of everything; he can’t afford to miss one.

And the defenders are in disarray. They make stupid mistakes. They
write buggy code. They don’t install security upgrades and patches. They
have near theological beliefs about the security of products. They don’t
understand the real threats against themselves, and they don’t protect
themselves accordingly.

Time is on the attackers’ side. Systems have to go on working, day in
and day out. Attackers can sit and wait, looking for a vulnerability, wait-
ing for the defenders to drop their guard, changing strategies and tactics to
suit the situation.

One solution is to go on the offensive.
We don’t fight crime by making our banks 100 percent immune to

attack; we fight crime by catching criminals. Luckily, criminals are pretty
stupid. And given the kind of salary a good computer security expert can
command, computer crime doesn’t pay nearly as well.

If the United States was ever the target of a nuclear attack by the
USSR, the planned response was to counterattack. Mutual assured
destruction is about as surreal as a security defense gets, but it worked.

The Pinkerton Detective Agency was established in 1852. One of
their early services was to protect trains from robbers in the American
West. Early on, they realized that it was expensive to put a Pinkerton
guard on every train. They also realized that robbing a train was a com-
plicated operation—you needed an insider who knew the schedule, a
dozen or so people, horses, pack animals, and so forth—and that only a
few criminals were capable of pulling it off. So they decided to go after
the train robbers directly. It didn’t matter if the railroad paid for the pur-
suit; the Pinkertons did it because catching train robbers made all of their
customers more secure.

The Pinkertons were known for not giving up. If you robbed a
Pinkerton-protected train, they would hunt you down. And they were
serious; there were gun battles against the Hole in the Wall Gang that
involved hundreds of Pinkerton men. There’s a scene in Butch Cassidy and
the Sundance Kid where they’re being chased after a train robbery by a
group who just will not give up. “Who are these guys?” Butch says to
Sundance. They were the Pinkertons.

Cyberspace needs a few good counterattacks like this. Today’s situa-
tion is a kind of Prisoner’s Dilemma for hacking: If you don’t face conse-
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quences for your actions, it’s in your best interest to beat the system.
Breaking into networks is not a game; it’s a crime. Stealing money by
hacking a digital payment system is a crime. Distributing copyrighted
material on the Internet is a crime. And criminals should be prosecuted.
This prosecution does two things. One, the convicted criminal is less
likely to do it again. And two, everyone else is less likely to do it in the
first place.

This is not meant to be a call for the vigilante-like “justice” we’ve
seen out of the FBI and others over the past decade. In the 1980s, they
knew little about computers and networks and computer crimes. Every-
thing was potentially dangerous, and everything was investigated haphaz-
ardly. In 1989, when the Macintosh ROM source code was stolen and
broadcast on the Internet by the NuPrometheus League, the FBI investi-
gated dozens of completely random computer people. In 1990, the Secret
Service raided the headquarters of a role-playing game company, Steve
Jackson Games, because the company was working on a role-playing
game (not even a computer program) that had something to do with
“cyberpunks” and hackers, and because they believed an employee, Loyd
Blankenship, was a member of the “Legion of Doom” hacker group. In
1999, the DVD Copy Control Association tried to gag 500 Web sites
whose only crime was writing about the DVD encryption break. And in
2000, Microsoft tried to force Slashdot to delete postings about its propri-
etary extensions to the Kerberos protocol.

This is also not meant to be a call for overreaction, which we saw a
lot of in the 1990s. David Smith, the author of the Melissa virus, faces five
to ten years in prison. Kevin Mitnick got (and served) almost five years,
and was prohibited from using a computer for another three. (All his skills
are related to computers, and he has been prohibited from lecturing on
the subject. Supposedly, his parole officer suggested he get a job at
Arby’s.) Kevin Poulson received almost the same sentence. The Chinese
government sentenced a hacker to death for hacking a bank computer
and stealing $87,000. (To be fair, all bank robbers get the death penalty in
China.) I am reminded that in the American West in the 1800s, horse
thieving was often punished by hanging. This is because the society
wanted to send a clear message that stealing horses was not to be tolerated.
Various European governments sent a similar message in the 1970s when
they started gunning terrorists down in the streets. The message was a
very clear: “We’re not playing games anymore.” Some of the overreac-
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tions we’re seeing in hacker prosecution reflect this same sort of moral
panic.

This is also not meant as a call to extinguish legitimate researchers or
hackers, full disclosure mailing lists, or the right to evaluate security prod-
ucts. In the United States, laws have been passed that prohibit reverse
engineering of copy protection systems. The entertainment industry lob-
bied hard for these draconian laws, using them in an attempt to hide their
incompetent security countermeasures. No other industry tries to pro-
hibit someone who purchases a product from taking it apart to see how it
works. No other industry tries to prevent Consumer Reports–style evalua-
tions of its products’ effectiveness. Shooting the messenger is simply
another overreaction to the situation.

What this is a call for is an increase in prosecution of people who
engage in criminal activity and for the issuance of fair sentences. There’s a
pervasive mentality of: “If I just stay still and don’t make any noise, no one
will bother me.” Companies are reluctant to prosecute computer crimi-
nals because they fear retaliation. The reality is that until we prosecute the
criminals, they will continue to disseminate attack tools and break into
computer networks. Once we start prosecuting criminals, hacking into
other people’s networks will be much less cool. This isn’t a perfect solu-
tion—hacking tools are likely to go underground—but it will make a dif-
ference. There were two positive effects from the terrorist crackdown of
the 1970s: The real terrorists trod a lot more carefully, and all the
wannabes took off their armbands.

MANAGE RISK

There’s no such thing as perfect security, but that’s not necessarily a prob-
lem. In the United States alone, the credit card industry loses $10 billion
to fraud per year; neither Visa nor MasterCard are showing any signs of
going out of business. Shoplifting estimates in the United States are cur-
rently at $10 to $26 billion per year; but rarely is shrinkage (as it is called)
the cause when a store closes its doors. Recently, I needed to notarize a
document; that is about the lamest security protocol I’ve seen in a long
time. Still, it works fine for what it is.

After you’ve identified a risk, you can do one of three things with it:
You can accept it, you can reduce it, or you can insure yourself against it.
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Security does not have to be perfect, but the risks have to be manageable.
The credit card industry understands this. They know the losses due to
fraud. They also know that losses from phone credit card transactions are
about five times the losses from face-to-face transactions (when the card is
present), and that losses from Internet transactions are about twice again
that amount. (Much of the cost of card-not-present fraud is borne by the
merchants, who have little or no recourse when they are stuck with the
bill.) They’re pushing Internet alternatives like SET precisely because the
risks are getting worse.

A closed system like this is an exception. My primary fear about
cyberspace is that people don’t understand the risks, and they are putting
too much faith in technology’s ability to obviate them. Compared to the
physical world, cyberspace is both exactly the same and very different (see
Chapter 2). And products alone cannot solve security problems.

The digital security industry is in desperate need of perceptual shift.
Countermeasures are sold as prophylactics: ways to counter threats. Good
encryption prevents eavesdropping. A good firewall prevents network
attacks. PKI is sold as trust management, so you can avoid mistakenly
trusting people you really don’t. And so on.

This paradigm is better suited to national security than to the com-
mercial world. Business is about taking risks, which is why in the real
world much more focus is put on detection and reaction than on preven-
tion. Web sites don’t need unhackable passwords, they just need them
strong enough to prevent attacks most of the time. The credit card indus-
try doesn’t need foolproof smart cards; they just need them strong enough
to limit attacks so that the detection and response mechanisms can kick in.
(It’s actually worth noting that the credit card industry has built a multi-
billion-dollar business based on a very insecure combination of magnetic
stripe cards and merchant-run terminals.)

Once you start thinking of security this way, everything else falls into
place. If security is about avoiding threats, then it is a cost center. Security
has to be justified, and a central IT department approves security budgets.
If security is about managing risk, it becomes a way to create revenue. If
a company can figure out how to manage the risk of putting their order-
ing system online, then they can grab more market share. If a credit card
company can figure out how to manage the risk of a certain class of cus-
tomers, then they can sell more credit cards. All business is risk, and those
who are better at managing that risk are more profitable.
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Security is old, older than computers. And the old-guard security
industry thinks of countermeasures as ways to manage risk. This distinc-
tion is enormous. Avoiding threats is black and white: Either you avoid
the threat or you don’t. Managing risk is continuous: You either accept
it, reduce it, or insure against it.

A secure computer is one you’ve insured.
I believe that insurance is the future of digital security. You can buy

insurance against almost any other security risk: theft, vandalism, rogue
employees shooting the executive team, or whatever. Why not digital
security risks?

It’s a good question, and one that the big insurance companies have
not ignored. Every one of them is working on insurance for computer-
security risks: insurance for corporate intranets, insurance against denial-
of-service attacks, insurance against Web site defacement, whatever. This
is hard to do correctly, since no one knows what the risks are, but there’s
so much demand that the insurance companies aren’t waiting.

A standard joke in insurance circles goes something like this: A com-
pany goes to an insurance company, trying to get some bizarre risk
insured. The insurance company asks a series of questions:

“How big is the potential loss?”
“We don’t know.”
“How likely is a loss to occur?”
“We don’t know.”
“How much is your company worth?”
“This much.”
“That’s the premium; send it in.”

Right now, insurance companies are offering antihacking insurance, but
I don’t believe that they fully understand the risks. Most of the policies are
complicated and unwieldy, and contain so many provisions, that I won-
der if they’ll ever pay off. The point of standardizing security processes is
that the risks can be quantified. If a thousand companies use the same
security countermeasures, an insurance company can amortize the risks
and write policies. This is how ADT Security Services works. Companies
don’t buy the service because it makes their warehouses more secure; they
buy it because they can get a better deal on their insurance.

Eventually there will be two types of network insurance. The first
type is the obvious one: Someone breaks into your network and causes
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damage, and you want the insurance company to compensate you for
your loss. But the second type is even more important: Someone breaks
into your network and wreaks havoc with your customers, their propri-
etary information, and their reputations. The third-party liability can be
huge. Not only is it a breach of fiduciary responsibility, but the resulting
lawsuits could easily exceed the net worth of the attacked company. A
warranty-type of insurance to deal with this kind of threat is critical.

Risk management is the future of digital security. Whoever learns
how to best manage risk is the one who will win. Insurance is one critical
component of this. Technical solutions to mitigate risk to the point where
it is insurable is another.

OUTSOURCING SECURITY PROCESSES

Security processes are a way of mitigating the risks. Network security
products will have flaws; a process is necessary both to catch attackers
exploiting those flaws, and fixing the flaws once they become known.
Insider attacks will occur; a process is necessary to detect the attack, repair
the damage, and prosecute the attacker. Large systemwide flaws will com-
promise entire products and services (think cell phones, think DVD); a
process is necessary to recover from the compromise and stay in business.
Counterintelligence is the only way to stay abreast of what’s really going
on. Insurance will handle the residual risk.

None of this is easy, and it all requires experts. And as more and more
aspects of our lives move into cyberspace, the demand for cyberspace
security (and hence the demand for these experts) increases. The only
workable solution is to leverage these experts as much as possible. Out-
sourcing is the only way to do this efficiently.

Think about a security-monitoring center for a large network. It takes
five trained security analysts to man a single 24x7 seat; a concerted attack
can require the attention of half a dozen analysts. A single organization
can’t afford to hire all those people for the few events they’re needed; an
outsourced service can deploy those people when needed. An outsourced
service can train those analysts, both in the classroom and through expe-
rience. An outsourced service can actively test new security countermea-
sures, analyze new intrusion tools, and stay abreast of hacking techniques
and product vulnerabilities. And an outsourced service can see large
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swaths of the Internet, and not just one organization’s network.
In the near term I see the rise of a variety of cyberspace outsourced

security services, similar to what we see in the physical world from private
security guard companies like Allied Security and alarm service companies
like ADT. There’s too much specialized knowledge required to secure
cyberspace; only a specialized company can provide it. My consulting
company, Counterpane Systems, offered outsourced cryptography and
security design and analysis. Other companies are offering risk assess-
ments, policy development, installation, testing, update management, and
so forth.

We’re also seeing a more intimate service: Managed Security Moni-
toring. Someone has to monitor security products in real time and
respond to events as they occur. They (a single person won’t be there 24
hours) have to be versed in attackers and their tools. They have to be able
to maintain the security products in the face of the ever-changing net-
works and ever-changing services running on those networks. Compa-
nies just can’t do this for themselves. They’re in the business of making
cars, selling books, or doing whatever, not of securing their networks. Just
as they outsourced the management of their networks to an ISP and the
hosting of their Web sites to an ASP (Application Service Provider), they
will outsource the security of their network to a company that specializes
in that. (Of course there will always be specialized networks—banking,
cellular telephone, credit card—that require proprietary systems, and
there will be security consultants that specialize in that, too.) This is what
my new company, Counterpane Internet Security, Inc., does.

This is the normal evolution of security services. No one hires their
own guards; they outsource. No one hires their own security auditors;
they outsource. Even something as mundane as document shredding is
best outsourced to a company that specializes in that sort of thing.

Aside from access to expertise and availability, other benefits of out-
sourcing come from the aggregation of security expertise. These out-
sourced security companies will be able to engage in active intelligence
gathering among hackers to learn about new attacks, and potentially even
counterintelligence activities to stop criminals. They can spot patterns
across multiple customers. And they will be able to respond to attacks
across a variety of customers: They could see an attack in New Delhi and
protect their clients in New York.
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In the real world, organizations outsource security. No company
directly hires its own security guards; everyone uses a guard company.
Banks outsource cash transport to armored car companies. Companies
hire outside auditors to secure their business practices. Computer and net-
work security is no different. It’s complex, important, and distasteful. It
requires vigilance. In the digital world, outsourced services are the only
ones that can supply that vigilance.
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25

Conclusion

Mark Loizeaux is president of Controlled Demolitions; he
blows up buildings for a living. Complaining about the inep-
titude of modern terrorists, he’s quoted in the July 1997

Harper’s Magazine as saying: “We could drop every bridge in the United
States in a couple of days. . . . I could drive a truck on the Verrazano Nar-
rows Bridge and have a dirt bike on the back, drop that bridge, and I
would get away. They would never stop me.”

As technology becomes more complicated, society’s experts become
more specialized. And in almost every area, those with the expertise to
build society’s infrastructure also have the expertise to destroy it.

Ask any doctor how to poison someone untraceably, and he can tell
you. Ask someone who works in aircraft maintenance how to drop a 747
out of the sky without getting caught, and he’ll know. Now ask any
Internet security professional how to take down the Internet, perma-
nently. I’ve heard about half a dozen different ways, and I know I haven’t
exhausted the possibilities. 

The knowledge is there; the systems are vulnerable. All it takes is
someone with just the right combination of skill and morals. Sometimes
it doesn’t even take that much skill. Timothy McVeigh did quite a num-
ber on the Oklahoma City federal building, even though his banausic use
of explosives probably disgusted a professional like Loizeaux. Dr. Harold
Shipman murdered possibly as many as 150 of his patients, using artless
techniques like injecting them with morphine.

At first glance cyberspace is no different from any other piece of our
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society’s infrastructure: fragile and vulnerable. But as I argued in Chapter
2, the nature of the attacks is very different. McVeigh had to acquire the
knowledge, go to a private farm and practice, rent the truck, fill it with
explosives, drive to the federal building, set the fuse, and get away. Dr.
Shipman had to build a medical practice and meet his patients; our hypo-
thetical aircraft maintainer had to work on the planes. They all had to get
close to their target, put themselves at risk, get in, get away, make mis-
takes. And they had to know what they were doing.

Or think of nuclear proliferation. When the knowledge for manufac-
turing nuclear bombs became accessible by the public, there was still no
large-scale proliferation of nuclear munitions. Why? Because the knowl-
edge about how wasn’t the critical barrier, it was the vast resources and
unwieldy engineering programs that only a handful of countries could
assemble.

Cyberspace is different. You can be elsewhere, far away from the site
you are attacking. You can have no skill, nothing more than a software
package you downloaded from some Web site somewhere. And you
don’t even have to put yourself at risk. An ethical hacker could describe a
vulnerability on the Internet, a criminal hacker with fewer ethics could
write an exploit that demonstrates the vulnerability, and then someone
with no skill or ethics could use it to break into computers. A Philippine
student could write a worm that infects ten million computers, and costs
$10 billion in damage, time, and lost productivity. Or maybe there’s a
Web site in some badly policed Third World country that includes a Java
application: “Click here to bring down the Internet.” It’s not a pretty
thought.

In the late nineteenth century, French sociologist Emile Durkheim
postulated that anomie led people to become criminals. You can extend
his arguments to the hacker psychology we’re seeing now: No one is con-
nected to anyone else, people feel anonymous behind their handles, and
there are no repercussions to actions; this leads some people to do antiso-
cial things. The miasma of the Internet virtually guarantees it.

Technology alone cannot prevent this, just as it could not prevent
McVeigh or Shipman. Both of them were captured (and others were dis-
suaded) by security processes: detection and response. (In the case of Ship-
man, the detection and response processes were egregious, and he got
away with his massacre for decades.) Forensics techniques figured out
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what happened, investigative techniques figured out who did it, and laws
punished the guilty.

There are no technical solutions for social problems. Laws are vital for
security.

If someone invented the unpickable door and window lock or the
perfect burglar alarm system, no one would turn around and say: “We
don’t need police or those obsolete breaking and entry laws.” If the his-
tory of criminal activity has shown anything, it is the limits of the tech-
nology. We need guards to watch the products and police to investigate
crimes. We need laws to prosecute people who engage in electronic com-
merce fraud, computer trespassing, and theft, or people who write the
tools that facilitate these crimes. We can deploy the best technology we
can in order to prevent them from doing it in the first place. We can
deploy the best technology we can in order to detect their crime after the
fact. But we are going to have to rely on guards to catch them and the
judicial system to convict them. We can make it as hard as possible for a
marketing research firm to illegally collect data on people, but we need
laws to prosecute the infractions.

In short, we need to ensure that people put themselves at risk when
committing crimes in cyberspace.

We also need to learn from our mistakes.
When a DC-10 falls out of the sky, everyone knows it. There are

investigations and reports, and eventually people learn from these acci-
dents. You can go to the Air Safety Reporting System and read the
detailed reports of tens of thousands of accidents and near-accidents since
1975.

Security debacles are different; there’s often no fireball and no imme-
diate repercussions. Most successful attacks—against banks, against corpo-
rations, against governments—go unmentioned in the media. Some of
them even go unnoticed by the victims. We know all about the metal-
lurgy of MD-80 jackscrew gimbal nuts, but little about how attackers
have been stealing credit card numbers off Web sites. It’s like the Soviet
Union’s Aeroflot; officially there were never any crashes, but everyone
knew that occasionally planes would mysteriously never reach their desti-
nations.

And those that go public are not rewarded. When Citibank lost $12
million to a Russian hacker in 1995, it announced that the bank had been
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hacked into and instituted new and more profound security measures to
prevent such attacks from occurring in the future. Even so, millions of
dollars were withdrawn by people who believed their funds were vulner-
able immediately after Citibank’s announcement. Ultimately Citibank
recovered, but the lesson to Citibank was clear and unambiguous: “Don’t
publicize.”

We need to publicize attacks. We need to publicly understand why
systems fail. We need to share information about security breaches: causes,
vulnerabilities, effects, methodologies. Secrecy only aids the attackers. 

The myopic view of those who seek to ban reverse engineering just
makes things worse. Why should people who buy software be prohibited
from figuring out how it works, unlike purchasers of, for example, auto-
mobiles? Why should software be exempt from Consumer Reports–style
analysis and testing? Again, secrecy only aids the attackers.

And we need real product liabilities. This one seems obvious: Ven-
dors won’t produce secure software until it is in their best interest to 
do so.

The blend of no liabilities/no reverse engineering is particularly dam-
aging. If researchers are prohibited from analyzing product security, how
does it make sense to shield product vendors from liability? And if ven-
dors have no liability for producing lousy products, how can it be illegal
to point the flaws out?

Throughout this book I argued that security technologies have their
limitations. I do not mean to imply that they’re useless. Countermeasures
like cryptography, tamper resistance, and intrusion detection make a sys-
tem more secure than otherwise. The technologies stop the script kiddies,
the ankle biters, the desultory attackers who don’t really know what
they’re doing. But they’re like the X-ray machines and metal detectors at
airports: They do nothing to stop professionals, but they keep all the ama-
teurs from hijacking planes.

The average person cannot tell good security from bad security. It
works the same. It costs the same. (Bad security might even look better
and cost less; a company that doesn’t worry too much about security can
devote more engineering resources to nifty features.) The advertising is
the same; the product literature is the same. It’s not different until you
look under the hood: examine the source code, pick apart the hardware.
And then only if you’re an expert. The average person still won’t be able
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to tell a quality product from snake oil.
The world is filled with specialties that are critical to public safety and

security, and yet are beyond the comprehension of the general popula-
tion. People can’t tell a safe airline from an unsafe airline—that is, until
one airline’s 737s start plowing into mountainsides—yet 1.6 million peo-
ple in the United States fly every day. People can’t possibly differentiate
between a quality drug and a worthless one, yet the U.S. market for pre-
scription drugs is $60 billion per year. People ride roller coasters, trust
their money to bizarre financial derivatives, and eat processed meats—all
without really worrying if they’re safe.

Commerce works the same way. When was the last time you per-
sonally checked the accuracy of a gas station’s pumps, or a taxicab’s meter,
or the weight and volume information on packaged foods? When was the
last time you went into a building’s office and demanded to see the cur-
rent elevator inspection certificate? Or examined a pharmacist’s license?

We have often relied on the government to step in as a consumer
advocate in areas where most people don’t have the skill or expertise to
properly assess the risk and make intelligent buying decisions. The FAA
regulates aircraft safety; the DOT regulates automobile safety. States reg-
ulate weights and measures at merchants. You can’t expect a family on its
way to Walt Disney World to make an intelligent decision about whether
their particular aircraft is safe to fly, whether their rental car is safe to drive,
or whether their hotel’s second floor balcony will drop into the atrium
below. You can argue about whether or not the government does a good
job at this role—since voters don’t understand how to evaluate risks, they
don’t reward government for good risk evaluation—but it is not unrea-
sonable to give them this role.

But while an FDA for Internet security and reliability is worth con-
sidering, government regulation’s chilling effect would probably take
away everything that makes the Internet what it is. Regulation is often
misdirected (how much money has been spent making sure that airplane
seat cushions float, and how many people have successfully paddled away
from a crash as a result?) and slow. It took three and a half years to approve
Interleukin-2; that’s forever in the world of the Internet. On the other
hand, the FDA’s slowness has been a good thing at times: It’s why the
United States didn’t have a thalidomide disaster on the scale of Britain’s.
And why Laetrile was never approved for sale in the U.S.  market.
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Also possible is an Underwriters Laboratory model for cyberspace
security. Underwriters Laboratory is a private lab that tests and certifies
electrical equipment. (They also provide ratings for safes.) Consumer
Reports does a similar service for other products. A private company can
do the same for computer and network security, but the costs quickly
become exorbitant. And new laws in the United States are moving in the
opposite direction, making it illegal for companies and individuals to eval-
uate the security of products.

Still another model is licensing, like Medical Doctors and Registered
Nurses. Engineers who are certified and have liability insurance can put
“PE” after their name. But certifications are local, and the Internet is
global. And still there is no guarantee.

All this seems to leave us in a quandary. We need technological solu-
tions, but they’re not perfect. We need experts to build, configure, and
manage these technological solutions, but there aren’t enough experts to
go around. We need strong laws to prosecute criminals and a willingness
to do so, but most companies who are attacked don’t want to go public.

In Chapter 24, I argued that the only way to maintain security in the
face of the technological limitations is to build security processes. And that
these security processes are not reasonable to build inside an organization,
and will most likely be outsourced to cyberspace security professionals.
This seems to be the only way out of the previous paragraph’s bind as
well.

Assuming you can trust the outsourcing organization.
In my first book, Applied Cryptography, I wrote: “Encryption is too

important to be left solely to the government.” I still believe that, but in
a more general sense. Security is too important to be left solely to any
organization. And it is too personal to be left to an arbitrary organization.

Trust is personal. One person might trust the government com-
pletely, while another might not trust the government at all. Different
people might trust different governments. Some people might trust dif-
ferent corporations, but no governments. It is impossible to design a secu-
rity system (product or process) that is devoid of trust; even the person
who writes his own security software has to trust his compiler and com-
puter.

Unfortunately, most organizations don’t realize whom they trust.
Some might blindly trust companies for no good reason. (Witness the
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blind faith some people have in a particular operating system, or firewall
manufacturer, or encryption algorithm.) Others might blindly trust their
employees. (I’ve heard it said that the real question is not how much your
firewall costs, but how much it costs to buy your sysadmin.)

Given that security is all about limiting risk, organizations need to
trust entities that limit their risk. This means entities that come with insur-
ance. Trusted entities will also have things like a proven track record, a
good reputation, and independent certifications and audits. None of this
counts as proof, but all of it counts as evidence.

The decision is not whether to trust an organization, but which orga-
nization to trust. A company’s own MIS department is probably less trust-
worthy than an outsourced organization that takes security seriously.

Security is not a product; it’s a process. You can’t just add it to a sys-
tem after the fact. It is vital to understand the real threats to a system,
design a security policy commensurate with those threats, and build in
appropriate security countermeasures from the beginning. Remember
that perfect solutions are not required, but systems that can be completely
broken are unacceptable. And good security processes are essential to
make products work.

It is prudent to prepare for the worst. Attacks and attackers always get
better, and systems fielded today could be in place 20 years from now.
The real lesson of Y2K was the amount of ancient computer code out
there: code that was updated for Y2K compliance rather than replaced.
We’re still stuck with mistakes made in analog cellular systems decades
ago, and digital cellular systems years ago. We’re still stuck with an inse-
cure Internet, and insecure password-protected systems.

But by the same token, we’re still stuck with insecure door locks,
assailable financial systems, and an imperfect legal system. None of this has
caused the downfall of civilization yet, and it is unlikely to. And neither
will our digital security systems, if we refocus on the processes instead of
the technologies.
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Afterword

Istarted writing this book in 1997; it was originally due to the pub-
lisher by April 1998. I eventually delivered it in April 2000, two years
late. I have never before missed a publication deadline: books, arti-

cles, or essays. I pride myself on timeliness: A piece of writing is finished
when it’s due, not when it’s done.

This book was different. I got two-thirds of the way through the
book without giving the reader any hope at all. And it was about then I
realized that I didn’t have the hope to give. I had reached the limitations
of what I thought security technology could do. I had to hide the
manuscript away for over a year; it was too depressing to work on. 

During the early months of 1999, I also became disillusioned by my
consulting practice. Counterpane Systems had been providing cryptogra-
phy and computer-security consulting for several years, and business was
booming. Most of our work was design and analysis. A company would
come to us with a security problem, and we would design a system that
was secure given the threats. Or a company would come to us with an
already designed system that purported to be secure against a list of threats,
and we would poke holes in the solution and then fix them. We could
invoice as many hours as we could stay awake. The only problem was that
our beautiful designs were being broken in the real world. Beautiful cryp-
tography was regularly compromised through bad implementations.
Carefully tested implementations were being broken through human
errors. We would do all this work, and systems were still insecure. 
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I came to security from cryptography, and thought of the problem in
a military-like fashion. Most writings about security come from this
perspective, and it can be summed up pretty easily: Security threats are to
be avoided using preventive countermeasures.

This is how encryption works. The threat is eavesdropping, and
encryption provides the prophylactic. This could all be explained with
block diagrams. Alice is communicating with Bob; both are identified by
boxes, and there is a line between them signifying the communication.
Eve is the eavesdropper; she also is a box and has a dotted line attached to
the communications line. She is able to intercept the communication.
The only way to prevent Eve from learning what Alice and Bob are talk-
ing about is through a preventive countermeasure: encryption. There’s no
detection. There’s no response. There’s no risk management; you have to
avoid the threat.

For decades we have used this approach to computer security. We
draw boxes around the different players and lines between them. We
define different attackers—eavesdroppers, impersonators, thieves—and
their capabilities. We use preventive countermeasures like encryption and
access control to avoid different threats. If we can avoid the threats, we’ve
won. If we can’t, we’ve lost.

Imagine my surprise when I learned that the world doesn’t work this
way. I had my epiphany in April 1999: that security was about risk man-
agement, that the process of security was paramount, that detection and
response was the real way to improve security, and that outsourcing was
the only way to make this happen effectively. It suddenly all made sense.
So I rewrote this book and reformed my company. Counterpane Systems
is now Counterpane Internet Security, Inc. We provide Managed Secu-
rity Monitoring services—detection and response—for networks.

In the world of Alice and Bob and Eve, that answer made no sense.
When the model was invented, communication was over radio or long
wires. Detection isn’t possible. Response isn’t possible. But in today’s
electronic world, it’s a lot more complicated. An attacker doesn’t passively
monitor a communication. He breaks into a firewall. He tries to steal
money using a forged smart card. He manipulates a digital network.
Today’s world is much more like the physical world, with all its potential
for rich interaction.

And it’s not all or nothing. If Eve could eavesdrop, she could eaves-
drop on everything. If she could not eavesdrop, she could not eavesdrop
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on anything. Today’s electronic world is more complicated. Someone
could steal some money, but not a lot. A particular counterfeiter might
want to make a few copies of a DVD, but not ten thousand. An attacker
might break into a network and poke around for ten minutes, then be
discovered and shut out. Just like in the real world.

And in the real world, security threats are everywhere. They’re not
things to be avoided, they’re opportunities to make money. The prize
doesn’t go to the company that best avoids the threats, it goes to the com-
pany that best manages the risks. (Just look at the credit card industry.)

At Counterpane Internet Security, we believe that computers alone
cannot defend against a human attacker, so our service is centered around
trained security analysts. Probes on customer networks collect informa-
tion from a variety of devices—security and networking—and sift
through them looking for footprints of attacks. Then we forward any-
thing suspicious to trained analysts. These analysts know about attacks,
can separate real attacks from false positives, and know how to respond.

I’ve realized that the fundamental problems in security are no longer
about technology; they’re about how to use the technology. There’s no
way to turn what we do into a product. At Counterpane, we’ve built a
human–computer cyborg. People are critical in every other aspect of
security; we believe they’re a critical component of computer security as
well.

So, if this book seems a little self-serving, that’s why. Both the book
and the new company grew from the same epiphany, that expert human
detection and response provides the best possible security. The book
tracks my thinking in reforming my company, and explains the service
that we offer.

You can learn more about us at www.counterpane.com. 
Thanks for reading.
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Resources

The ideas in this book have been heavily influenced by the ideas
and writings of others. I deliberately did not disrupt the flow of
text with footnotes or citations. What follows is a list of some of

my more useful sources.
All URLs are guaranteed accurate as of 1 July 2000. Some Internet

pundits have decried the Web as useless for scholarly archives, claiming
that URLs move or disappear regularly. Consider this list to be an ongo-
ing experiment to prove or disprove that thesis.

Ross Anderson’s writing are always interesting and worth reading.
His Web site is www.cl.cam.ac.uk/users/rja14/. Look for his new book,
coming out next year: Security Engineering: A Comprehensive Guide to
Building Dependable Distributed Systems (John Wiley & Sons, 2001).

Dorothy Denning has written about cryptography, computer and
database security, and (more recently) information warfare. I used her
most recent book, Information Warfare and Security (Addison-Wesley,
1999), as well has her classic Cryptography and Data Security (Addison-Wes-
ley, 1982).

Whit Diffie’s writings and speeches have affected my thinking. I
recommend the book he co-wrote with Susan Landau: Privacy on the Line
(MIT Press, 1998).

Carl Ellison has continued to write common-sense essays and papers
on public-key infrastructure. Much of his writing can be found on his
Web site, world.std.com/~cme/.

Ed Felton has spoken on the insecurities inherent in software modu-
larity, and on Java security. I always learn something when I hear him. I
first saw the figures on page 160 in one of his talks.

Dan Geer’s speeches have been similarly educational.
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Dieter Gollmann’s excellent text, Computer Security (John Wiley &
Sons, 1999), was a very useful resource.

David Kahn’s classic book The Codebreakers provided invaluable
historic background on the subject of cryptography.

Stuart McClure, Joel Scrambray, and George Kurtz wrote Hacking
Exposed (Osborne/McGraw-Hill, 1999), which I strongly recommend. I
wrote the Foreword to the second edition, which should be available by
the time this book is published.

Gary McGraw has written extensively about secure software engi-
neering, as well as the pros and cons of open source software. I used his
book, Securing Java (John Wiley & Sons, 1999), written with Ed Felton.

Peter Neumann’s observations on computer security are so profound
and obvious that I often forget that I didn’t always believe him. His back-
page column, “Inside Risks,” running for the past ten years in Communi-
cations of the ACM, is always interesting. I strongly recommend his book
Computer-Related Risks (Addison-Wesley, 1995) and the Internet RISKS
Forum mailing list he moderates.

Marcus Ranum’s essays, speeches, and dinnertime banter have
long been a source of inspiration and common sense. I strongly recom-
mend reading everything he’s written. His Web site is at
http://pubweb.nfr.net/~mir/.

Avi Ruvin, Dan Geer, and Marcus Ranum co-wrote the Web Secu-
rity Sourcebook (John Wiley & Sons, 1997), which I recommend highly.

Winn Schwartau’s Time Based Security (Interpact Press, 1999), con-
tains ideas very similar to my own on the importance of detection and
response in computer security.

Diomidis Spinellis provided the data on complexity of operating sys-
tems and programming languages on pages 357 and 358 in his article
“Software Reliability: Modern Challenges” (in G. I. Schuëller and P.
Kafka, editors, Proceedings ESREL ’99—The Tenth European Conference on
Safety and Reliability, pages 589–592, Munich-Garching, Germany, Sep-
tember 1999).

Richard Thieme’s musings on hacking and the epistemology of the
Internet have long been a source of inspiration. The comment about the
dead Marine and Mogadishu was from one of his stories. You can find his
writings at www.thiemeworks.com.

Hundreds of essays, articles, and papers are published each year on
computer security. I feel as if I’ve read them all, and undoubtedly
thoughts, ideas, ruminations, nuances, and clever one-liners from my
readings have crept into this book. I apologize for not giving everyone the
credit they deserve.
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Page references followed by italic t indicate
material in tables.

A5/1 algorithm, 105
Access Control Lists (ACLs), 125
access controls, 122–125

mandatory, 126
access tokens, 145–147
active cryptographic protocol attacks, 114
ActiveX, 165–166

malware susceptibility, 159
Acxiom, 19
ADT Security Services, 386
Advanced Encryption Standard, See AES
adversaries. See also each term as a main

index heading
hackers, 43–46
industrial espionage, 49–50
infowarriors, 56–58
lone criminals, 46–47
malicious insiders, 47–49, 265–266
national intelligence organizations, 

54–56
organized crime, 50–51
police, 51–53
press, 50
risk tolerance, 42–43
terrorists, 53–54

AES, 118
described, 89, 100
as hacking contest, 348

Alberti, Leon Battista, 88
airline accidents, greater visibility of relative

security debacles, 391
Air Safety Reporting System, 391
AirTran, Web site hack in 1997, 37
Alibris, 49
AlterNIC, Network Solutions traffic redi-

rect attack/protest, 181
American military, See United States mili-

tary
analysis

of attacks, 376–377
fault, 218, 221
traffic, 34–35, 362

AND nodes, 320
and defense in depth, 370

annual loss expectancy, 301–302
anomaly detection, 196–197
anonymity, 63–67
antitampering devices, 216
antivirus software, 153–154, 157–158

at firewall, 201
application gateways, 192
Applied Cryptography, xxii, 394
Ariane 5 rocket mishap, 202–203
artificial intelligence, 362
assessment, of attacks, 376
assurance, 363, 373
asymmetric key encryption, 95. See also

public-key encryption
and PGP attack tree, 325–326
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ATBASH cipher, 86
ATM fraud, 23, 40

card retention after PIN timeout,
140–141

difficulty of prosecuting in England,
377–378

Hartford Connecticut fraud of 1993,
46–47

increasing sophistication of, 16
proactive solutions, 80–81
and secure failure, 371
security policies and countermeasures,

312–313
vulnerabilities, 281

AT&T, 1-800-C0LLECT, 28
attacks, 14–15. See also specific kinds of

attacks such as denial-of-service attacks,
and specific attacks by perpetrator(s)
and/or target(s)

action at a distance: global nature of
Internet, 19–21

analyzing, 376–377
automation, 18–19, 21
changing nature of, 17–22
counterattacks, 380–383
criminal, 23–29
cryptographic protocols, 90–91, 113–115
detection, 374–376
inside origin: 70% of all attacks, 189
legal attacks, 40–41
need for vigilance, 378–379
need to prepare for worst, 395
need to publicize, 392
privacy violations, 29–36
proaction over reaction, 22
propagation of successful techniques,

21–22
publicity attacks, 36–39
recovery, 380
response, 377–378
steps to successful, 274–278
unchanging aspects of, 15–17

attack trees, 318–324
creating and using, 332–333
Pretty Good Privacy (PGP), 324–331

attrition.org, defaced Web sites list, 4
auction escrow services, 227
auditing, 9, 379–380

security needs, 77–78

Aum Shinrikyo, 90
authentication, 135–150, 283

and denial-of-service attacks, 183
security needs, 68–73

authentication protocols, 147–149
Authenticode, 165
automated social engineering, 267–268
automatic program checkers, 362
automatic toll-collection systems, 32
automatic virus-detection centers, 

159
automation, 18–19, 21
availability, 122
Avant!, 49

back doors, 241
Back Orifice, 156, 330

hacking tools infected with, 304
banking industry, 379–380
base rate fallacy, 195
Bell-LaPadula model, 125–126, 129
benefit denial, 375
beta testing, 204–205, 206
biometrics, 141–145
black boxes, 186
Blankenship, Lloyd, 382
Blowfish, 89
blue boxes, 186
boot-sector viruses, 152, 153
bots, 310
brand theft, 27–28
British military

laptop theft from, 284
security classifications, 63

brute-force attacks, 99–100
buffer overflows, 207–210, 363
bugs

harmlessness of most software, 366
software faulty code, 202–207, 

210–211
systems, 7, 8

Bugtraq list, 330
Bulgarian Telecommunications Company,

distributed denial-of-service attack
against, 185

burglar alarms, 197–198, 281
business privacy, 61
buzzword-compliant products, 102–103
byte code verifier, Java, 166
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Cadence Design Systems, 49
Canadian cash card, 380
Canadian Trusted Computer Products Eval-

uation Criteria, 132
Captain Crunch whistles, 186
car alarms, denial-of-service attacks against,

39
cash card systems, 213
casino industry, 379
CD Universe, hacker credit card attack

against, 37
cell phones, 386

A5/1 algorithm, 105
future improvements in digital, 353
organized crime applications, 51
pinpointing, 31
threat modeling, 304

CERT, 338–339
certificate authorities, 232–233
certificate revocation list (CRL), 231
certificates, 229–238

public-key, 225
CGI (common gateway interface), 

172–174
CGI scripts, 172–174
check clearing, 213–214
check fraud, 23
Chinese Wall model, 127
choke points, 369–370
choosing, of security products, 

349–352
chosen-plaintext attack, 91
Christma.exec, 157
CIA, 54, 343
ciphertext only attack, 90
Cisco Systems, bug in switches, 203
Citibank, Russian hacker theft, 20, 391–392
Clark-Wilson model, 127
class loader, Java, 166
Clipper Chip, 241, 294, 304
code signing, 163, 165
Cohen, Fred, 152
collusion in access, 111
Comité Liquidant ou Détournant les 

Ordinateurs (Computer Liquidation
and Deterrence Committee), 24

commercial anonymity, 65–66
compartmentalization, 367–369

complexity
and faulty code, 204
and function creep, 359–360
as hindrance of security, xi–xii
and security, 354–361
of systems, 6-7, 8
trend to in operating systems, 358t
trend to in source code, 357t
as worst enemy of security, 361

component-based software, 160–164
computer games, 310, 359
computerized lottery terminals, 313–314
Computer Liquidation and Deterrence

Committee, 24
computer security, 120–131
computer viruses, 151–154

fingerprints, 153–154
technique propagation, 22

Confidential classification, United States
military, 62

connection laundering, 377
Consumer Reports model, 394
cookie poisoning, 174
cookies, 170–172
copy protection, 250–253
counterattacks, 380–383
counterfeiting, 23

of $100 bills by Iran, 21
countermeasures, 307–308, 316–317

inability to defend against skilled attacker,
310

and vulnerabilities, 278–282
Counterpane Internet Security, xvii,

396–398
covert channels, 130–131
cracking contests, 346–349
credentials, 227–229
credit card databases, 19
credit card fraud, 23, 32

risk management, 383, 398
cribs, 91
criminal attacks, 23–29. See also organized

crime
lone criminals, 46–47
speculations about causes of, 390

criminal investigation, and global nature of
Internet, 20–21

critical infrastructure, 57
cross-site scripting, 174
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cryptanalysis contests, 346–349
Crypto-gram, xix
cryptographic algorithms, choosing,

115–119
cryptographic keys, 88

government access to, 240–243
key escrow, 240–241
key management, 90

cryptographic protocols, 107–112
attacks, 90–91, 113–115
choosing, 115–119
Internet, 112–113
proprietary, 117, 118

cryptography, 85–101. See also encryption;
MACs

as branch of mathematics, 102
buzzword-compliant products, 102–103
digital signatures, 96–98
future advances in, 353–354
future technologies, 361
key length, 99–101, 103–106
one-time pads, 106–107
one-way hash functions, 94
recognizing plaintext, 91–92
resources on, xviii–xix

cyberinsurance, xv–xvi
CyberPatrol, reverse engineering, 346
cyberspace crime, 15–16

ability to execute from anywhere, 19–21,
390

technique propagation, 22
cyber-squatting, 169–170
cyberstalking, 15

databases, 18–19, 33–34
database security, 18–19
Data Encryption Standard, See DES
data harvesting, 29, 30
Data Interception by Remote Transmission

(DIRT), 156
data mining, 19
Data Protection Act of 1998 (EU), 60
Deep Crack, 100
default to insecure, 370–371
defense in depth, 370
Defense Intelligence Agency, 54
denial-of-service attacks, 38–39, 260. See

also distributed denial-of-service attacks
lack of skill needed, 22
and network security, 181–184

DES, 119
differential-fault-analysis attack, 221

destructive attacks, 24
detection

and effective countermeasures, 279
dictionary attacks, 105, 137
differential-fault-analysis attack, 221
Diffie-Hellman keys, 101
digital embezzlement, 15
digital information erasure, 253–254
Digital Millennium Copyright Act

(DMCA), 346
Digital Signature Algorithm (DSA), 97
Digital Signature Standard (DSS), 97
digital signatures, 96–98, 225
Digital Telephony Bill, 67
digital threats, 14–22. See also attacks
digital watermarking, 248–250
directional microphones, 30
DIRT (Data Interception by Remote

Transmission), 156
discrete logarithm, 101
distinguished name, 233
distributed denial-of-service attacks, 24,

184–186
lack of skill needed, 22
Trojan horse use, 157

distributed firewalls, 201
distributed.net, 100
DNS security, 180–181
Domain Name Service (DNS), 180–181
dongle, 251
DoubleClick, 1, 19

identity database, 33, 171–172
double-entry bookkeeping, 77
DSA, 97
Dudayev, Dzholar, killing by Russians after

cell phone pinpointing, 31
duress code, 259
DVD attacks, 305, 311, 368, 386

and Sony product launch delay, 37
DVD Copy Control Association, 346, 

382
dynamic linked libraries (DLLs), 161, 166

eBay
CGI script attack, 173
22–hour outage in 1999, 196
software bugs, 203

ECHELON, 35–36, 55–56
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electronic currency, 78–79
ElGamal algorithm, 95

key length, 101
and PGP attack tree, 325–326, 327

elliptic-curve algorithms, 95, 101
e-mail bombing, 182
e-mail-propagating malware, 157
e-mail security, 200

policies, 307
threat modeling, 295–296

emergent properties, 7, 8, 9
encrypted viruses, 154
encryption, 86–90, 397. See also asymmetric

key encryption; cryptography; sym-
metric key encryption

and network defenses, 201
packets, 179–180, 201
and virtual security, 284–285

Enigma, 91
entropy, 104
equities issue, 342
erasing digital information, 253–254
Europe, smart cards vs. credit cards, 316
evaluation

criteria for computer systems, 131–133
of security products, 349–352

Excel macroviruses, 355
exception handling, 258–260
exploits, 45, 340
export laws, 67–68

face recognition, 31
factoring, future breakthroughs in, 361
fail-safe strategies, 204, 371

default to insecure, 370–371
fair elections, 289–293
fault analysis, 218, 221
faulty code, 202–205, 210–211

attacks on, 205–207
FBI, 55

Florida wiretaps, 52
NuPrometheus League investigation, 382
pinpointing of Oklahoma City bombing

truck, 31
position on key escrow, 240–241, 242
pushes for stronger antiprivacy measures,

67–68
social engineering attack of D.C. office,

266

FEAL algorithm, hacking contest, 347
file infector viruses, 152–153
fingerd program (UNIX), Morris Worm

attack, 205, 209
fingerprinting, 248–249
FIPS 140–3 zeroization certificate, 254
firewalls, 188–193, 273

business use of, xiii–xiv
distributed, 201
and e-mail-propagating viruses, 

158–159
ineffectiveness of, xiii

Flooz.com, specialized currency, 79
FOUO classification (For Official Use

Only), British military, 63
fraud, 23

and privacy violations, 17
full-disclosure movement, 338–340
functional testing, 335–336
function creep, 359–360

GAK back door, 241–243
GPS, surveillance applications, 32

hackers, 43–46
activity follows academic year, 378
prosecutions, 382–383

Hackers, Web site hack in 1995, 37
hacking contests, 346–349
hacking tools, 45, 277

technique propagation, 22
Trading on Web, 304

hardware security, 212–214
side-channel attacks, 218–222, 248
smart card attacks, 222–224
tamper-proof hardware, future break-

throughs in, 362
tamper resistance, 214–218

hash functions
key length, 100
one-way, 94

heartbeats, 39
HIJACK, 222
honey pots, 197–198
host-based intrusion detection systems, 

197
Hotmail CGI script bug, 173, 205
human–computer interface, 260–262
human–computer transference, 262–265
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human factors, 255–256
exception handling, 258–260
risk analysis, 256–258
social engineering, 266–269

IDEA, 89
identification, 135–150

of attacks, 376
identity theft, 26–27

as growth area for organized crime, 51
IKE (Internet Key Exchange), 112
ILOVEYOU worm, 155, 158, 262

social engineering aspects, 268
in-band signaling, 186
industrial espionage, 49–50

laptop theft, 284
infowarriors, 56–58

terroristic, 53
insurance, 385–386
insurance companies

and cyberinsurance, xv–xvi
demand for improved security, xvi

integrity, 73–77, 122
intellectual property theft, 24–26
interactivity, of systems, 6 –7, 8
interconnectedness, of complex systems,

174, 355
Internet. See also World Wide Web; specific

Internet-related attacks
complexity, 354
FDA-type organization, 393
future secure networking infrastructures,

362
lack of borders, 19–21
and least privilege, 368
and mobile code, 164
out-of-band signaling as defensive mea-

sure, 186–187
public-key infrastructures, 238–239
systems nature of, 6

Internet backbone, 178
Internet cryptographic protocols, 112–113
Internet Explorer, 3

fake update-based denial-of-service
attack, 185

subscription feature, 163
Internet Information Server, 363–364
Internet Key Exchange (IKE), 112
Internet Liberation Front, 182

Internet protocols, 176–177
Internet viruses, 153
Internet worms, 22
interpreted viruses, See macro viruses
intrusion detection systems, 194–197
IP addresses, 180
IPsec, 86, 112, 116–117, 201
IP security, 178–180
IP spoofing, 179
ISP filtering, 183
ITSEC, 132

Java, 166–167
Java 2, 163, 167
Java applets, 166
Java sandbox, 162, 166

attacks against, 368
JavaScript, 165
Java security manager, 166–167
Java security model, 159, 206
Jurassic Park: The Lost World, Web site self-

hack as publicity stunt, 37–38

Kashpureff, Eugene, 181
Kerberos, 148–149, 345, 382
Kerckhoffs, Auguste, 91
kernel bloat, 129
keyboard sniffer, 330
key escrow, 240–241
key freaks, 44
keys, See cryptographic keys
keywords, 169
King, Steven, 311
knowledge partitioning, 378
known-plaintext attack, 90

lamers, 44
laptop theft, 284
Law Enforcement Access Field, 241
Layer Two Tunneling Protocol (L2TP), 

112
least privilege, 368
legal attacks, 40–41
liability

for businesses’ product security, xiv–xv
software sold without, 365
transfer of, xv–xvi

licensing, 394
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linking, 161
localization, of attacks, 376
locks, 103
logic bombs, 156
lone criminals, 46–47
lotteries, 305
lottery terminals, 313–314
L0phtcrack, 137

macro viruses, 152, 153
MACs, 92–94

and digital signatures, 97–98
magnetic stripe cards, 315
mail bombing, 182
mailing lists, 330
malicious insiders, 47–49, 265–266
malicious software, 151–159
malware, 151, 157–160
Managed Security Monitoring, 387
mandatory access controls, 126
man-in-the-middle attacks, 114
Mars planet orbiter mishap, 203
MCI, 1–800–0PERATOR, 28
MD4, 94
medical anonymity, 66–67
Melissa virus, 32, 158, 262, 329, 382
memory cards, 314–316
Message Authentication Codes, See MACs
meta tags, 169
Microsoft Data Access Components, secu-

rity flaw discovered in, 340
Microsoft Excel macroviruses, 355
Microsoft Outlook, 159, 172
Microsoft Outlook 2000, HTML-based

malware susceptibility, 159
Microsoft scripting languages, 159
Microsoft Word

known-plaintext attacks, 90–91
macroviruses, 153, 355
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TEMPEST, 220, 222, 235, 330
terrorists, 24, 53–54
threat modeling, 288–289, 302–303, 318

fair elections, 289–293
secure e-mail, 295–296
secure telephones, 293–295
stored-value smart cards, 296–301
wrong threat, 303–306

threats, 14–22. See also attacks
ticker symbol smashing, 169
timing attacks, 218, 220, 326
TLS (Transport Layer Security), 112, 167
Top Secret classification, United States mili-

tary, 62
trade secrets, 61
traffic analysis, 34–35, 362
Transport Layer Security (TLS), 112, 167
Trin00 distributed denial-of-service attack,

45–46
Triple-DES, 89, 100, 117, 118
Trojan horses, 151, 155–157
trust, 394–395
trusted client software, 309–312
trusted computing bases, 128
trusted third parties, 226–227
trust model, 308
typo pirates, 28, 169

Unclassified classification, United States mil-
itary, 62

Underwriters Laboratory model, 393–394
unicity distance, 92

Uniform Computer Information Transac-
tions Act (UCITA), 346

United States military. See also NSA
counterattack plan after potential  Russian

nuclear strikes, 381
intercepts Japanese message discussing

Pearl Harbor, 35
micro air vehicles, 31
Navajo code talkers, 87
Navy NSA-distributed keys, 89
Navy procedures to prevent social

 engineering, 268
nuclear weapons control system: tamper

resistance, 217
Patriot missile unpredictability, 372
pizza deliveries preceding Iraq bombing,

34
security levels, 62–63
Serbian hackers attack, 57
Soviet Embassy denial-of-service attack in

D.C., 39
TEMPEST shielding, 220, 222
U.S. Embassy in Moscow bugged, 

286
University of Minnesota, distributed denial-

of-service attack against, 
184

UNIX
and C1 security, 131–132
kernel bloat, 129
password files, 140
permission system, 124, 368

unpredictability, leveraging, 371–372
URL hacking, 168–170
Usenet postings, 19
users, enlisting security processes, 373

van Eck radiation, 31, 220
VeriFone, 69–70
VeriSign, 232
version-rollback attack, 304
video piracy, 25–26
Video Privacy Protection Act, 25–26
vigilance, against attacks, 378–379
virtual private networks (VPNs), 193–194,

364
cryptography, 86, 113

virtual security, 284–285
viruses, See computer viruses

Index 413

453803_Index_3.qxd:453803_Index_3.qxd  4/17/13  11:26 AM  Page 413



Visa
brand theft attempt against, 27
SET protocol, 78

voice recognition, 31
von Neumann, John, 98
vulnerability landscape, 282–286
vulnerability scanners, 198–200, 210, 342

Walker, John, 378
warez, 25, 252
watermarking, 248–250
Web privacy, 172–175
Web scripts, 172–175
Web spoofing, 170
Windows 2000, 210

Active Directory, 2
hacking contest, 347
kernel bloat, 130
security holes, 207

Windows NT
kernel bloat, 129–130
L0phtcrack, 137

permission system, 124, 368
security flaw discovered in Microsoft

Data Access Components, 340
security holes, 207
software architecture, 161
user-remembered passwords, 105

World Wide Web
publicity attack site defacings, 37–38
security, 167–175
sites defaced in March 2000, 4–5

Worm.ExploreZip worm, 158, 262
worms, 151, 154–155

Morris worm, 154–155, 205, 209, 363

Y2K, 395

zeroization, 254
zombies, 184–185

414 Index

453803_Index_3.qxd:453803_Index_3.qxd  4/17/13  11:26 AM  Page 414



Crypto-Gram

Written and published by Bruce Schneier.
A free monthly e-mail newsletter that provides news, sum-

maries, analyses, insights, and commentaries on computer and
network security.

Written in the same style as this book, Crypto-Gram provides
timely punditry on security issues, a list of interesting URLs, straight
talk on breaking news, and general clueful commentary. Join the
over 100,000 readers who get their security information from
Crypto-Gram.

To subscribe, send a blank message to:

crypto-gram-subscribe@counterpane.com

Or visit:

http://www.schneier.com/crypto-gram.html

Back issues of Crypto-Gram are available at http://www.
schneier.com

Privacy policy: Bruce Schneier, Counterpane Internet Security,
Inc., and Counterpane Labs will not use the Crypto-Gram mailing
list for any other purpose than e-mailing Crypto-Gram. We will not
use the mailing list for company marketing, nor will we sell the list
to any third parties.

453803_CryptoGram_3.qxd:453803_CryptoGram_3.qxd  4/15/13  9:33 AM  Page 415

http://www.schneier.com/crypto-gram.html
http://www.schneier.com

	Contents
	Introduction to the Paperback Edition
	Preface
	Chapter 1: Introduction
	SYSTEMS
	SYSTEMS AND SECURITY

	Part 1: The Landscape
	Chapter 2: Digital Threats
	THE UNCHANGING NATURE OF ATTACKS
	THE CHANGING NATURE OF ATTACKS
	PROACTION VS. REACTION

	Chapter 3: Attacks
	CRIMINAL ATTACKS
	PRIVACY VIOLATIONS
	PUBLICITY ATTACKS
	LEGAL ATTACKS

	Chapter 4: Adversaries
	HACKERS
	LONE CRIMINALS
	MALICIOUS INSIDERS
	INDUSTRIAL ESPIONAGE
	PRESS
	ORGANIZED CRIME
	POLICE
	TERRORISTS
	NATIONAL INTELLIGENCE ORGANIZATIONS
	INFOWARRIORS

	Chapter 5: Security Needs
	PRIVACY
	MULTILEVEL SECURITY
	ANONYMITY
	PRIVACY AND THE GOVERNMENT
	AUTHENTICATION
	INTEGRITY
	AUDIT
	ELECTRONIC CURRENCY
	PROACTIVE SOLUTIONS


	Part 2: Technologies
	Chapter 6: Cryptography
	SYMMETRIC ENCRYPTION
	TYPES OF CRYPTOGRAPHIC ATTACKS
	RECOGNIZING PLAINTEXT
	MESSAGE AUTHENTICATION CODES
	ONE-WAY HASH FUNCTIONS
	PUBLIC-KEY ENCRYPTION
	DIGITAL SIGNATURE SCHEMES
	RANDOM NUMBER GENERATORS
	KEY LENGTH

	Chapter 7: Cryptography in Context
	KEY LENGTH AND SECURITY
	ONE-TIME PADS
	PROTOCOLS
	INTERNET CRYPTOGRAPHIC PROTOCOLS
	TYPES OF PROTOCOL ATTACKS
	CHOOSING AN ALGORITHM OR PROTOCOL

	Chapter 8: Computer Security
	DEFINITIONS
	ACCESS CONTROL
	SECURITY MODELS
	SECURITY KERNELS AND TRUSTED COMPUTING BASES
	COVERT CHANNELS
	EVALUATION CRITERIA
	FUTURE OF SECURE COMPUTERS

	Chapter 9: Identification and Authentication
	PASSWORDS
	BIOMETRICS
	ACCESS TOKENS
	AUTHENTICATION PROTOCOLS
	SINGLE SIGN-ON

	Chapter 10: Networked-Computer Security
	MALICIOUS SOFTWARE
	MODULAR CODE
	MOBILE CODE
	WEB SECURITY

	Chapter 11: Network Security
	HOW NETWORKS WORK
	IP SECURITY
	DNS SECURITY
	DENIAL-OF-SERVICE ATTACKS
	DISTRIBUTED DENIAL-OF-SERVICE ATTACKS
	THE FUTURE OF NETWORK SECURITY

	Chapter 12: Network Defenses
	FIREWALLS
	DEMILITARIZED ZONES
	VIRTUAL PRIVATE NETWORKS
	INTRUSION DETECTION SYSTEMS
	HONEY POTS AND BURGLAR ALARMS
	VULNERABILITY SCANNERS
	E-MAIL SECURITY
	ENCRYPTION AND NETWORK DEFENSES

	Chapter 13: Software Reliability
	FAULTY CODE
	ATTACKS ON FAULTY CODE
	BUFFER OVERFLOWS
	THE UBIQUITY OF FAULTY CODE

	Chapter 14: Secure Hardware
	TAMPER RESISTANCE
	SIDE-CHANNEL ATTACKS
	ATTACKS AGAINST SMART CARDS

	Chapter 15: Certificates and Credentials
	TRUSTED THIRD PARTIES
	CREDENTIALS
	CERTIFICATES
	PROBLEMS WITH TRADITIONAL PKIs
	PKIS ON THE INTERNET

	Chapter 16: Security Tricks
	GOVERNMENT ACCESS TO KEYS
	DATABASE SECURITY
	STEGANOGRAPHY
	SUBLIMINAL CHANNELS
	DIGITAL WATERMARKING
	COPY PROTECTION
	ERASING DIGITAL INFORMATION

	Chapter 17: The Human Factor
	RISK
	EXCEPTION HANDLING
	HUMAN–COMPUTER INTERFACE
	HUMAN–COMPUTER TRANSFERENCE
	MALICIOUS INSIDERS
	SOCIAL ENGINEERING


	Part 3: Strategies
	Chapter 18: Vulnerabilities and the Vulnerability Landscape
	ATTACK METHODOLOGY
	COUNTERMEASURES
	THE VULNERABILITY LANDSCAPE
	RATIONALLY APPLYING COUNTERMEASURES

	Chapter 19: Threat Modeling and Risk Assessment
	FAIR ELECTIONS
	SECURE TELEPHONES
	SECURE E-MAIL
	STORED-VALUE SMART CARDS
	RISK ASSESSMENT
	THE POINT OF THREAT MODELING
	GETTING THE THREAT WRONG

	Chapter 20: Security Policies and Countermeasures
	SECURITY POLICIES
	TRUSTED CLIENT SOFTWARE
	AUTOMATIC TELLER MACHINES
	COMPUTERIZED LOTTERY TERMINALS
	SMART CARDS VS. MEMORY CARDS
	RATIONAL COUNTERMEASURES

	Chapter 21: Attack Trees
	BASIC ATTACK TREES
	PGP ATTACK TREE
	CREATING AND USING ATTACK TREES

	Chapter 22: Product Testing and Verification
	THE FAILURE OF TESTING
	DISCOVERING SECURITY FLAWS AFTER THE FACT
	OPEN STANDARDS AND OPEN SOURCE SOLUTIONS
	REVERSE ENGINEERING AND THE LAW
	CRACKING AND HACKING CONTESTS
	EVALUATING AND CHOOSING SECURITY PRODUCTS

	Chapter 23: The Future of Products
	SOFTWARE COMPLEXITY AND SECURITY
	TECHNOLOGIES TO WATCH
	WILL WE EVER LEARN?

	Chapter 24: Security Processes
	PRINCIPLES
	DETECTION AND RESPONSE
	COUNTERATTACK
	MANAGE RISK
	OUTSOURCING SECURITY PROCESSES

	Chapter 25: Conclusion

	Afterword
	Resources
	Acknowledgments
	Index




