Studies in Classification, Data Analysis,
and Knowledge Organization

Managing Editors

H.-H. Bock, Aachen
W. Gaul, Karlsruhe
M. Vichi, Rome

Editorial Board

Ph. Arabie, Newark

D. Baier, Cottbus

E Critchley, Milton Keynes
R. Decker, Bielefeld

E. Diday, Paris

M. Greenacre, Barcelona
C. Lauro, Naples

J. Meulman, Leiden

P. Monari, Bologna

S. Nishisato, Toronto

N. Ohsumi, Tokyo

0. Opitz, Augsburg

G. Ritter, Passau

M. Schader, Mannheim
C. Weihs, Dortmund



Titles in the Series:

E. Diday, Y. Lechevallier, and
O. Opitz (Eds.) Ordinal and
Symbolic Data Analysis. 1996

R. Klar and O. Opitz (Eds.)
Classification and Knowledge
Organization. 1997

C. Hayashi, N. Ohsumi, K. Yajima,

Y. Tanaka, H.-H. Bock, and Y. Baba (Eds.)

Data Science, Classifaction,
and Related Methods. 1998

1. Balderjahn, R. Mather, and

M. Schader (Eds.)

Classification, Data Analysis, and
Data Highways. 1998

A. Rizzi, M. Vichi, and H.-H. Bock (Eds.)

Advances in Data Science
and Classification. 1998

M. Vichi and O. Optiz (Eds.)
Classification and Data Analysis. 1999

W. Gaul and H. Locarek-Junge (Eds.)
Classification in the Information
Age. 1999

H.-H. Bock and E. Diday (Eds.)
Analysis of Symbolic Data. 2000

H. A. L. Kiers, J.-P. Rasson, P.J.F.
Groenen, and M. Schader (Eds.)
Data Analysis, Classification, and
Related Methods. 2000

W. Gaul, O. Opitz, M. Schader (Eds.)
Data Analysis. 2000

R. Decker and W. Gaul (Eds.)
Classification and Information
Processing at the Turn of the
Millenium. 2000

S. Borra, R. Rocci, M. Vichi,

and M. Schader (Eds.)

Advances in Classification and Data
Analysis. 2000

W. Gaul and G. Ritter (Eds.)
Classification, Automation, and New
Media. 2002

K. Jajuga, A. Sokolowski, and
H.-H. Bock (Eds.)

Classification, Clustering and Data
Analysis. 2002

M. Schwaiger and O. Opitz (Eds.)
Exploratory Data Analysis in
Empirical Research. 2003

M. Schader, W. Gaul, and M. Vichi (Eds.)
Between Data Science and Applied
Data Analysis. 2003

H.-H. Bock, M. Chiodi, and
A. Mineo (Eds.)

Advances in Multivariate Data
Analysis. 2004

D. Banks, L. House, F.R. McMorris,
P. Arabie, and W. Gaul (Eds.)
Classification, Clustering, and Data
Minig Applications. 2004

D. Baier and K.-D. Wernecke (Eds.)
Innovations in Classification, Data
Science, and Information Systems. 2005

M. Vichi, P. Monari, S. Mignani, and
A. Montanari (Eds.)

New Developments in Classification
and Data Analysis. 2005

D. Baier, R. Decker, and L. Schmidt-Thieme (Eds.)
Data Analysis and Decision Support. 2005

C. Weihs and W. Gaul (Eds.)
Classification - the Ubiquitous
Challenge. 2005

M. Spiliopoulou, R. Kruse, C.

Borgelt, A. Niirnberger, and W. Gaul (Eds.)
From Data and Information Analysis

to Knowledge Engineering. 2006

V. Batagelj, H.-H. Bock, A. Ferligoj,
and A. Ziberna (Eds.)
Data Science and Classification. 2006

S. Zani, A. Cerioli, M. Riani, M. Vichi (Eds.)
Data Analysis, Classification and the
Forward Search. 2006

P. Brito, P. Bertrand, G. Cucumel,

F. de Carvalho (Eds.)

Selected Contributions in Data Analysis
and Classification. 2007

R. Decker, H.-J. Lenz (Eds.)
Advances in Data Analysis. 2007

C. Preisach, H. Burkhardt, L. Schmidt-Thieme,

R. Decker (Eds.)

Data Analysis, Machine Learning and Applications.
2008



Christine Preisach - Hans Burkhardt
Lars Schmidt-Thieme - Reinhold Decker
(Editors)

Data Analysis,
Machine Learning
and Applications

Proceedings of the 31st Annual Conference
of the Gesellschaft fiir Klassifikation e.V.,
Albert-Ludwigs-Universitét Freiburg,
March 7-9, 2007

With 226 figures and 96 tables

@ Springer



Editors

Christine Preisach

Institute of Computer Science and
Institute of Business Economics and
Information Systems

University of Hildesheim
Marienburgerplatz 22

31141 Hildesheim

Germany

Professor Dr. Dr. Lars Schmidt-Thieme
Institute of Computer Science and
Institute of Business Economics and
Information Systems
Marienburgerplatz 22

31141 Hildesheim

Germany

Professor Dr. Hans Burkhardt
Lehrstuhl fiir Mustererkennung und
Bildverarbeitung

Universitit Freiburg

Gebidude 052

79110 Freiburg i. Br.

Germany

Professor Dr. Reinhold Decker
Fakultit fiir Wirtschaftswissenschaften
Lehrstuhl fiir Betriebswirtschaftslehre,
insbes. Marketing

Universititsstraie 25

33615 Bielefeld

Germany

ISBN: 978-3-540-78239-1 e-ISBN: 978-3-540-78246-9

Library of Congress Control Number: 2008925870

© 2008 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations
are liable for prosecution under the German Copyright Law.

The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of
a specific statement, that such names are exempt from the relevant protective laws and regulations and
therefore free for general use.

Cover Design: WMX Design GmbH, Heidelberg, Germany

Printed on acid-free paper

543210

springer.com



Preface

This volume contains the revised versions of selected papers presented during the
31%" Annual Conference of the German Classification Society (Gesellschaft fiir Klas-
sifikation — GfKl). The conference was held at the Albert-Ludwigs-University in
Freiburg, Germany, in March 2007. The focus of the conference was on Data Analy-
sis, Machine Learning, and Applications, it comprised 200 talks in 36 sessions. Ad-
ditionally 11 plenary and semi-plenary talks were held by outstanding researchers.
With 292 participants from 19 countries in Europe and overseas this GfKI Confer-
ence, once again, provided an international forum for discussions and mutual ex-
change of knowledge with colleagues from different fields of interest. From alto-
gether 120 full papers that had been submitted for this volume 82 were finally ac-
cepted.

With the occasion of the 30% anniversary of the German Classification Society
the associated societies Sekcja Klasyfikacji i Analizy Danych PTS (SKAD), Verenig-
ing voor Ordinatie en Classificatie (VOC), Japanese Classification Society (JCS) and
Classification and Data Analysis Group (CLADAG) have sponsored the following in-
vited talks: Paul Eilers - Statistical Classification for Reliable High-volume Genetic
Measurements (VOC); Eugeniusz Gatnar - Fusion of Multiple Statistical Classifiers
(SKAD); Akinori Okada - Two-Dimensional Centrality of a Social Network (JCS);
Donatella Vicari - Unsupervised Multivariate Prediction Including Dimensionality
Reduction (CLADAG).

The scientific program included a broad range of topics, besides the main theme
of the conference, especially methods and applications of data analysis and machine
learning were considered. The following sessions were established:

I. Theory and Methods

Supervised Classification, Discrimination, and Pattern Recognition (G. Ritter); Clus-
ter Analysis and Similarity Structures (H.-H. Bock and J. Buhmann); Classifica-
tion and Regression (C. Bailer-Jones and C. Hennig); Frequent Pattern Mining (C.
Borgelt); Data Visualization and Scaling Methods (P. Groenen, T. Imaizumi, and A.
Okada); Exploratory Data Analysis and Data Mining (M. Meyer and M. Schwaiger);
Mixture Analysis in Clustering (S. Ingrassia, D. Karlis, P. Schlattmann and W. Sei-
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del); Knowledge Representation and Knowledge Discovery (A. Ultsch); Statistical
Relational Learning (H. Blockeel and K. Kersting); Online Algorithms and Data
Streams (C. Sohler); Analysis of Time Series, Longitudinal and Panel Data (S. Lang);
Tools for Intelligent Data Analysis (M. Hahsler and K. Hornik); Data Preprocessing
and Information Extraction (H.-J. Lenz); Typing for Modeling (W. Esswein).

I1. Applications

Marketing and Management Science (D. Baier, Y. Boztug, and W. Steiner); Banking
and Finance (K. Jajuga and H. Locarek-Junge); Business Intelligence and Person-
alization (A. Geyer-Schulz and L. Schmidt-Thieme); Data Analysis in Retailing (T.
Reutterer); Econometrics and Operations Research (W. Polasek); Image and Sig-
nal Analysis (H. Burkhardt); Biostatistics and Bioinformatics (R. Backofen, H.-P.
Klenk and B. Lausen); Medical and Health Sciences (K.-D. Wernecke); Text Mining,
Web Mining, and the Semantic Web (A. Niirnberger and M. Spiliopoulou); Statistical
Natural Language Processing (P. Cimiano); Linguistics (H. Goebl and P. Grzybek);
Subject Indexing and Library Science (H.-J. Hermes and B. Lorenz); Statistical Mu-
sicology (C. Weihs); Archaeology and Archaecometry (M. Helfert and I. Herzog);
Psychology (S. Krolak-Schwerdt); Data Analysis in Higher Education (A. Hilbert).

Contributed Sessions (by CLADAG and SKAD)

Latent class models for classification (A. Montanari and A. Cerioli); Classification
and models for interval-valued data (F. Palumbo); Selected Problems in Classifica-
tion (E. Gatnar); Recent Developments in Multidimensional Data Analysis between
research and practice I (L. D’ Ambra); Recent Developments in Multidimensional
Data Analysis between research and practice II (B. Simonetti).

The editors would like to emphatically thank all the section chairs for doing
such a great job regarding the organization of their sections and the associated paper
reviews.

Cordial thanks also go to the members of the scientific program committee for
their conceptual and practical support as well as for the paper reviews: D. Baier
(Cottbus), H.-H. Bock (Aachen), H. Bozdogan (Tennessee), J. Buhmann (Ziirich),
H. Burkhardt (Freiburg), A. Cerioli (Parma); R. Decker (Bielefeld), W. Gaul (Karl-
sruhe), A. Geyer-Schulz (Karlsruhe), P. Groenen (Rotterdam), T. Imaizumi (Tokyo),
K. Jajuga (Wroclaw), R. Kruse (Magdeburg), S. Lang (Innsbruck), B. Lausen (Erlan-
gen-Niirnberg), H.-J. Lenz (Berlin), F. Murtagh (London), H. Ney (Aachen), A.
Okada (Tokyo), L. Schmidt-Thieme (Hildesheim), C. Schnoerr (Mannheim), M.
Spiliopoulou (Magdeburg), C. Weihs (Dortmund), D. A. Zighed (Lyon).

Furthermore we would like to thank the additional reviewers: A. Hotho, L. Mar-
inho, C. Preisach, S. Rendle, S. Scholz, K. Tso.

The great success of this conference would not have been possible without the
support of many people mainly working in the backstage. We would like to par-
ticularly thank M. Temerinac (Freiburg), J. Fehr (Freiburg), C. Findlay (Freiburg),
E. Patschke (Freiburg), A. Busche (Hildesheim), K. Tso (Hildesheim), L. Marinho
(Hildesheim) and the student support team for their hard work in the preparation
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of this conference, for the support during the event and the post-processing of the
conference.

The GfKI Conference 2007 would not have been possible in the way it took place
without the financial and/or material support of the following institutions and com-
panies (in alphabetical order): Albert-Ludwigs-University Freiburg — Faculty of Ap-
plied Sciences, Gesellschaft fiir Klassifikation e.V., Microsoft Miinchen and Springer
Verlag. We express our gratitude to all of them. Finally, we would like to thank Dr.
Martina Bihn from Springer Verlag, Heidelberg, for her support and dedication to
the production of this volume.

Hildesheim, Freiburg and Bielefeld, February 2008 Christine Preisach
Hans Burkhardt

Lars Schmidt-Thieme

Reinhold Decker
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Distance-based Kernels for Real-valued Data

Lluis Belanche!, Jean Luis Vazquez? and Miguel Vazquez?

Dept. de Llenguatges i Sistemes Informatics
Universitat Politecnica de Catalunya

08034 Barcelona, Spain
belanche@lsi.upc.edu

Departamento de Matematicas

Universidad Auténoma de Madrid.

28049 Madrid, Spain
juanluis.vazquez@uanm.es

Dept. Sistemas Informaticos y Programacién
Universidad Complutense de Madrid

28040 Madrid, Spain
mivazque@fdi.ucm.es

Abstract. We consider distance-based similarity measures for real-valued vectors of interest
in kernel-based machine learning algorithms. In particular, a truncated Euclidean similarity
measure and a self-normalized similarity measure related to the Canberra distance. It is proved
that they are positive semi-definite (p.s.d.), thus facilitating their use in kernel-based methods,
like the Support Vector Machine, a very popular machine learning tool. These kernels may be
better suited than standard kernels (like the RBF) in certain situations, that are described in
the paper. Some rather general results concerning positivity properties are presented in detail
as well as some interesting ways of proving the p.s.d. property.

1 Introduction

One of the latest machine learning methods to be introduced is the Support Vector
Machine (SVM). It has become very widespread due to its firm grounds in statistical
learning theory (Vapnik (1998)) and its generally good practical results. Central to
SVMs is the notion of kernel function, a mapping of variables from its original space
to a higher-dimensional Hilbert space in which the problem is expected to be easier.
Intuitively, the kernel represents the similarity between two data observations. In the
SVM literature there are basically two common-place kernels for real vectors, one
of which (popularly known as the RBF kernel) is based on the Euclidean distance
between the two collections of values for the variables (seen as vectors).

Obviously not all two-place functions can act as kernel functions. The conditions
for being a kernel function are very precise and related to the so-called kernel matrix
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being positive semi-definite (p.s.d.). The question remains, how should the similarity
between two vectors of (positive) real numbers be computed? Which of these simi-
larity measures are valid kernels? There are many interesting possibilities that come
from well-established distances that may share the property of being p.s.d. There has
been little work on this subject, probably due to the widespread use of the initially
proposed kernel and the difficulty of proving the p.s.d. property to obtain additional
kernels.

In this paper we tackle this matter by examining two alternative distance-based
similarity measures on vectors of real numbers and show the corresponding kernel
matrices to be p.s.d. These two distance-based kernels could better fit some applica-
tions than the normal Euclidean distance and derived kernels (like the RBF kernel).
The first one is a truncated version of the standard Euclidean metric in R, which
additionally extends some of Gower’s work in Gower (1971). This similarity yields
more sparse matrices than the standard metric. The second one is inversely related
to the Canberra distance, well-known in data analysis (Chandon and Pinson (1971)).
The motivation for using this similarity instead of the traditional Euclidean-based
distance is twofold: (a) it is self-normalised, and (b) it scales in a log fashion, so that
similarity is smaller if the numbers are small than if the numbers are big.

The paper is organized as follows. In Section 2 we review work in kernels and
similarities defined on real numbers. The intuitive semantics of the two new kernels
is discussed in Section 3. As main results, we intend to show some interesting ways
of proving the p.s.d. property. We present them in full in Sections 4 and 5 in the
hope that they may be found useful by anyone dealing with the difficult task of
proving this property. In Section 6 we establish results for positive vectors which
lead to kernels created as a combination of different one-dimensional distance-based
kernels, thereby extending the RBF kernel.

2 Kernels and similarities defined on real numbers

We consider kernels that are similarities in the classical sense: strongly reflexive,
symmetric, non-negative and bounded (Chandon and Pinson (1971)). More specifi-
cally, kernels k for positive vectors of the general form:

k(xy) =1 Y gildi(xj.)) | (1
=1

where x;,y; belong to some subset of R, {dj};?:l are metric distances and
{f.8;}—, are appropriate continuous and monotonic functions in R U{0} mak-
ing the resulting k a valid p.s.d. kernel. In order to behave as a similarity, a natural
choice for the kernels k is to be distance-based. Almost invariably, the choice for
distance-based real number comparison is based on the standard metric in R. The
aggregation of a number n of such distance comparisons with the usual 2-norm
leads to Euclidean distance in R". It is known that there exist inverse transformations
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of this quantity (that can thus be seen as similarity measures) that are valid kernels.
An example of this is the kernel:

[[x—yl?
202
popularly known as the RBF (or Gaussian) kernel. This particular kernel is ob-
tained by taking d(x;,y;) = |xj —yj|,gj(z) = 12/(20'3) for non-zero o? and f(z) =
e~ *. Note that nothing prevents the use of different scaling parameters o; for every
component. The decomposition need not be unique and is not necessarily the most

useful for proving the p.s.d. property of the kernel.

In this work we concentrate on upper-bounded metric distances, in which case
the partial kernels g;(d;(x;,y;)) are lower-bounded, though this is not a necessary
condition in general. We list some choices for partial distances:

k(x,y) =exp{— b x,yeER' 6£0€ER, 2)

drre (xi,yi) = min{ L, |x; — | } (Truncated Euclidean) 3)
dean(xi,yi) = M (Canberra) 4
Xi+yi
d(xi,yi) = vl Maximam) (5)
max (x;, ;)
d(xi,yi) = (i =30 (squared %) ©)
irYi Xi+; q

Note the first choice is valid in R, while the others are valid in R™. There is some
related work worth mentioning, since other choices have been considered elsewhere:
with the choice g;(z) = 1 —z, a kernel formed as in (1) for the distance (5) appears
as p.s.d. in Shawe-Taylor and Cristianini (2004). Also with this choice for g;, and
taking f(z) = ¢/9.6 > 0 the distance (6), leads to a kernel that has been proved
p.s.d. in Fowlkes et al. (2004).

3 Semantics and applicability

The distance in (3) is a truncated version of the standard metric in R, which can
be useful when differences greater than a specified threshold have to be ignored.
In similarity terms, it models situations wherein data examples can become more
and more similar until they are suddenly indistinguishable. Otherwise, it behaves
like the standard metric in R. Notice that this similarity may lead to more sparse
matrices than those obtainable with the standard metric. The distance in (4) is called
the Canberra distance (for one component). It is self-normalised to the real interval
[0,1), and is multiplicative rather than additive, being specially sensitive to small
changes near zero. Its behaviour can be best seen by a simple example: let a variable
stand for the number of children, then the distance between 7 and 9 is not the same



6 Lluis Belanche, Jean Luis Vazquez and Miguel Vazquez

“psychological” distance than that between 1 and 3 (which is triple); however, |7 —
9| = |1 —3|. If we would like the distance between 1 and 3 be much greater than that
between 7 and 9, then this effect is captured. More specifically, letting z = x/y, then
dcan(x,y) = g(z), where g(z) = |z—1|/(z+ 1) and thus g(z) = g(1/z). The Canberra
distance has been used with great success in content-based image retrieval tasks in
Kokare et al. (2003).

4 Truncated Euclidean similarity

Let x; be an arbitrary finite collection of n different real points x; € R, i =1,...,n.
We are interested in the n x n similarity matrix A = (g;;) with
a,-jzl—dij, d,'j:min{l,|x,~ij\}, (7)

where the usual Euclidean distances have been replaced by truncated Euclidean dis-
tances. We can also write ¢;; = (1 —d;;)+ = max{0, 1 — |x; —x;|}.

Theorem 1. The matrix A is positive definite (p.s.d.).

PROOF. We define the bounded functions X;(x) for x € R with value 1 if |x — x;| <
1/2, zero otherwise. We calculate the interaction integrals

lij Z/RX,'()C)XJ'()C)dx.

The value is the length of the interval [x; —1/2,x;+1/2]N[x; —1/2,x;+1/2] . Itis
easy to see that [;; = 1 —d;; if d;; < 1, and zero if |x; —x;| > 1 (i.e., when there is no
overlapping of supports). Therefore, [;; = a;; if i # j. Moreover, for i = j we have

/RX,'(x)Xj(x)dx: /Xiz(x)dx: L.

We conclude that the matrix A is obtained as the interaction matrix for the system of
functions {X,-}?I= 1- These interactions are actually the dot products of the functions in
the functional space L*(R). Since a; ; is the dot product of the inputs cast into some
Hilbert space it forms, by definition, a p.s.d. matrix.

Notice that rescaling of the inputs would allow us to substitute the two “1” (one) in
equation (7) by any arbitrary positive number. In other words, the kernel with matrix

ajj = (s —djj)+ = max{0,s — |x; —x;| } ®)

with s > 0 is p.s.d. The classical result for general Euclidean similarity in Gower
(1971) is a consequence of this Theorem when |x; —x;| < 1 for all i, j.
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5 Canberra distance-based similarity

We define the Canberra similarity between two points as follows

X — X
SCan(xhxj) =1 _dCan(xiaxj)7 dCan(xhxj) = |xz+x],> 9)
where dcan(xi,x;) is called the Canberra distance, as in (4). We establish next
the p.s.d. property for Canberra distance matrices, for x;,x; € R'.

Theorem 2. The matrix A = (a;;) with a;j = Scan(%i,X;) is p.s.d.

PROOF. First step. Examination of equation (9) easily shows that for any x;,x; € R*
(not including 0) the value of scan(x;,x;) is the same for every pair of points x;,x;
that have the same quotient x; /x;. This gives us the idea of taking logarithms on the
input and finding an equivalent kernel for the translated inputs. From now on, define
X = x;,2 = xj, for clarity. We use the following straightforward result:

Lemma 1. Let K’ be a p.s.d. kernel defined in the region B x B, let ® be map from a
region A into B, and let K be defined on A x A as K(x,z) = K'(®(x),®(z)). Then the
kernel K is p.s.d.

PROOF. Clearly @ is a restriction of B, and K’ is p.s.d in all B x B.

Here, we take K = Scan, A = RY, ®(x) = log(x), so that B is R. We now find
what K’ would be by defining x’ =log(x), z =log(z), so that distance dcq, can be
rewritten as

J J
x—z| ||
dCun(XaZ) T itz o T
As we noted above, dcgn(x,7) is equivalent for any pair of points x,z € RT with
the same quotients x/z or z/x. Assuming that x > z without loss of generality, we
write this as a translation invariant kernel by introducing the increment in logarith-
mic coordinates h =| X' — 7' |=x — 7 =log(x/z):

! /
el — et eh—1

eZel+e? 41

dcan (x, Z) =

Substitution on K = S¢y,, gives

-1 2

S D) = 1= Gy = a1

Therefore, for X',z € R, X' =7/ + h, we have

2

1o N g (] A —
K(X,Z)—K(X*Z)fmf

F(h). (10)

Note that F is a convex function of & € [0,00) with F(0) = 1, F(e) = 0.
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Second step. To prove our theorem we now only have to prove the p.s.d. property for
kernel K’ satisfying equation (10).

A direct proof uses an integral representation of convex functions that proceeds
as follows. Given a twice continuously differentiable function F of the real variable
s > 0, integrating by parts we find the formula

F(x) = —[F’(s)ds - /wa"(s)(s—x)ds,

valid for all x > 0 on the condition that F(s) and sF’(s) — 0 as s — eo. The formula
can be written as

F(x)= /OwF//(S)(S—x)J,_ ds,

which implies that whenever F” > 0, we have expressed F(x) as an integral combina-
tion with positive coefficients of functions of the form (s —x).. This is a non-trivial,
but commonly used, result in convex theory.

Third step. The functions of the form (s — x), are the building blocks of the Trun-
cated Euclidean Similarity kernels (7). Our kernel K’ is represented as an integral
combination of these functions with positive coefficients. In the previous Section we
have proved that functions of the form (8) are p.s.d. We know that the sum of p.s.d.
terms is also p.s.d., and the limit of p.s.d. kernels is also p.s.d. Since our expression
for K’ is, like all integrals, a limit of positive combinations of functions of the form
(s — x), the previous argument proves that equation (10) is p.s.d., and by Lemma 1
our theorem is proved. More precisely, what we say is that, as a convex function, F’
can be arbitrarily approximated by sums of functions of the type

X
Jn(x) = max{0,a, — r—} (11)
n
forn €[0,...,N], and the r,, equally spaced in the range of the input (so that the bigger
the N the closer we get to (10)). Therefore, we can write

2 L h
Il :r}ﬂo;(ai_z_)Jm (12)

where each term in the succession (12) is of the form (11), equivalent to (8).

6 Kernels defined on real vectors

We establish now a result for positive vectors that leads to kernels analogous to the
Gaussian RBF kernel. The reader can find useful additional material on positive and
negative definite functions in Berg et al. 1984 (esp. Ch. 3).

Definition 1 (Hadamard function). If A = [a;;] is a n X n matrix, the function f :
A — f(A) = [f(aij)] is called a Hadamard function (actually, this is the simplest
type of Hadamard function).
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Theorem 3. Let a p.s.d. matrix A = [a;j] and a Hadamard function f be given. If
f is an analytic function with positive radius of convergence R > |a;;| and all the
coefficients in its power series expansion are non-negative, then the matrix f(A) is
p.s.d. as proved in Horn and Johnson (1991).

Definition 2 (p.s.d. function). A real symmetric function f(x,y) of real variables
will be called p.s.d. if for any finite collection of n real numbers x1,...,x,, the n X n
matrix A with entries a;j = f(x;,x;) is p.s.d.

Lemma 2. Let b > 1 € R,c € R and let ¢ — f(x,) be a p.s.d. function. Then b~/
is a p.s.d. function.

PROOF. The function x — b* is analytic with infinite radius of convergence and all the
coefficients in its power series expansion are non-negative in case b > 1. By theorem
(3) the function b~ /™¥) is p.s.d.; then so is bb~ /) and consequently b—/) is
p.s.d. (since b is a positive constant).

Theorem 4. The following function

n d(xi.v:
k(x,y):exp <_Zl (x”yl)>7 xivyi7GiGR+

where d is any of (3), (4), (5), is a valid p.s.d. kernel.

PROOF. For simplicity, make d; = d(x;,y;). We know 1 —d; is a p.s.d. function, for the

choices of d; defined in (3), (4), (5). Therefore, (1 —d;)/o; for 6; > 0 € Ris also p.s.d.

Making ¢ = )"}, 1/0; and f = d;/o;, by lemma (2), the function exp(—d;/0;) is
n

p.s.d. The product of p.s.d. functions is p.s.d., and thus []exp(—d;/0;) =

i=1
= 4
aj :
exp (— Zl m) is p.s.d.
i=
This result is useful since it establishes new kernels analogous to the Gaussian
RBF kernel but based on alternative metrics. Computational considerations should
not be overlooked: the use of the exponential function considerably increases the
cost of evaluating the kernel. Hence, kernels not involving this function are specially
welcome.
Proposition 1. Ler d(x;,x;) = lii;ﬁj | be the Canberra distance. Then k(xi,xj) =1—

d(xi,x;)/c is a valid p.s.d. kernel if and only if 6 > 1.

PROOF. Let d;; = d(x;,x;). We know 377 37" cicj(1 —djj) > 0 for all ¢;,c; €
R. We have to show that > 7 > cic;(1 — %) > 0. This can be expressed as
o3 2 cicy) = 20y Do cicydij.

This result is a generalization of Theorem (2), valid for ¢ = 1. It is immediate
that the following function (the Canberra kernel) is a valid kernel:
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1~ di(xi,yi)
k(XaY)ZI*;ZTv c; > 1
i=1

The inclusion of the 6; (acting as learning parameters) has the purpose of adding
flexibility to the models. Concerning the truncated Euclidean distance, a correspond-
ing kernel can be obtained in a similar way. Let d(x;,x;) = min{1,|x; —x;|} and de-
note for a real number a, a; = 1 —min(1,a) = max(0,1 — a). Then 6 — min{o, |x; —
xj|} is p.s.d. by Theorem (1) and so is max{0,1 — @} In consequence, it is im-
mediate to affirm that the following function (the Truncated Euclidean kernel) is
again a valid kernel:

1~ [ dilxi,i
k(x,y):nz<(6‘y)> LG >0
i +

i=1
7 Conclusions

We have considered distance-based similarity measures for real-valued vectors of
interest in kernel-based methods, like the Support Vector Machine. The first is a
truncated Euclidean similarity and the second a self-normalized similarity. Derived
real kernels analogous to the RBF kernel have been proposed, so the kernel toolbox
is widened. These can be considered as suitable alternatives for a proper modeling of
data affected by multiplicative noise, skewed data and/or containing outliers. In addi-
tion, some rather general results concerning positivity properties have been presented
in detail.
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Abstract. In many classification applications, Support Vector Machines (SVMs) have proven
to be highly performing and easy to handle classifiers with very good generalization abilities.
However, one drawback of the SVM is its rather high classification complexity which scales
linearly with the number of Support Vectors (SVs). This is due to the fact that for the classi-
fication of one sample, the kernel function has to be evaluated for all SVs. To speed up clas-
sification, different approaches have been published, most which of try to reduce the number
of SVs. In our work, which is especially suitable for very large datasets, we follow a different
approach: as we showed in (Zapien et al. 20006), it is effectively possible to approximate large
SVM problems by decomposing the original problem into linear subproblems, where each
subproblem can be evaluated in Q(1). This approach is especially successful, when the as-
sumption holds that a large classification problem can be split into mainly easy and only a few
hard subproblems. On standard benchmark datasets, this approach achieved great speedups
while suffering only sightly in terms of classification accuracy and generalization ability. In
this contribution, we extend the methods introduced in (Zapien et al. 2006) using not only
linear, but also non-linear subproblems for the decomposition of the original problem which
further increases the classification performance with only a little loss in terms of speed. An
implementation of our method is available in (Ronneberger and et al.) Due to page limitations,
we had to move some of theoretic details (e.g. proofs) and extensive experimental results to a
technical report (Zapien et al. 2007).

1 Introduction

In terms of classification-speed, SVMs (Vapnik 1995) are still outperformed by many
standard classifiers when it comes to the classification of large problems. For a non-
linear kernel function &, the classification function can be written as in Eq. (1). Thus,
the classification complexity lies in Q(n) for a problem with n SVs. However, for
linear problems, the classification function has the form of Eq. (2), allowing clas-
sification in Q(1) by calculating the dot product with the normal vector w of the
hyperplane. In addition, the SVM has the problem that the complexity of a SVM
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model always scales with the most difficult samples, forcing an increase in Support
Vectors. However, we observed that many large scale problems can easily be divided
in a large set of rather simple subproblems and only a few difficult ones. Following
this assumption, we propose a classification method based on a tree whose nodes
consist mostly of linear SVMs (Fig.(1)).

f(x) = sign <Zy,~(xik (xi,X) +b> (D

i=1

f(x) = sign ((w,x) +b) 2)

This paper is structured as follows: first we give a brief overview of related work.
Section 2 describes our initial linear algorithm in detail including a discussion of the
zero solution problem. In section 3, we introduce a non-linear extension to our initial
algorithm, followed by Experiments in section 4.

@ linear SVM: (o, X) +b5) % hey >0

label x = —hey ~

@ linear SVM: ((wp,x) +bys) x hepy >0
label x = —hcy

label x = —hcyy label x = heyy

Fig. 1. Decision tree with linear SVM

1.1 Related work

Recent work on SVM classification speedup mainly focused on the reduction of the
decision problem: A method called RSVM (Reduced Support Vector Machines) was
proposed by Lee and Mangasarian (2001), it preselects a subset of training samples
as SVs and solves a smaller Quadratic Programming problem. Lei and Govindaraju
(2005) introduced a reduction of the feature space using principal component anal-
ysis and Recursive Feature Elimination. Burges and Schoelkopf (1997) proposed a
method to approximate w by a list of vectors associated with coefficients o;. All these
methods yield good speedup, but are fairly complex and computationally expensive.
Our approach, on the other hand, was endorsed by the work of Bennett and Breden-
steiner (2000) who experimentally proved that inducing a large margin in decision
trees with linear decision functions improved the generalization ability.
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2 Linear SVM trees

The algorithm is described for binary problems, an extension to multiple-class prob-
lems can be realized with different techniques like one vs. one or one vs. rest (Hsu
and Lin 2001) (Zapien et al. 2007).

At each node i of the tree, a hyperplane is found that correctly classifies all sam-
ples in one class (this class will be called the “hard"’ class, denoted hc;). Then, all
correctly classified samples of the other class (the “soft" class) are removed from
the problem, Fig. (2). The decision of which class is to be assigned “hard" is taken

Fig. 2. Problem fourclass (Schoelkopf and Smola 2002). Left: hyperplane for the first node.
Right: Problem after first node (“hard" class = triangles).

in a greedy manner for every node (Zapien et al. 2007). The algorithm terminates
when the remaining samples all belong to the same class. Fig.(3) shows a training
sequence. We will further extend this algorithm, but first we give a formalization for
the basic approach.

Problem Statement. Given a two class problem with m = m; +m_; samples x; € R"
with labels y;, i € CC and CC = {1,...,m}. Without loss of generality we define a
Class 1 (Positive Class) CC; = {1,...,m;}, y; = 1 for all i € CC}, with a global pe-
nalization value D and individual penalization values C; = D for all i € CC; as well
as an analog Class -1 (Negative Class) CC_; = {m;+1,...m;+m_;},y; = —1 for
all i € CC_y, with a global penalization value D_; and individual penalization values
C;=D_qforalli e CC_;.

2.1 Zero vector as solution

In order to train a SVM using the previous definitions, taking one class to be “hard"
in a training step, e.g. CC_1 is the “hard" class, one could simply set D_; — oo and
D << D_j in the primal SVM optimization problem:

e 1 2 m
minimize T(w, &) =5|lwl|-+ >, Ci&, 3
minimize w(w,E) = HwlP+ 7, G ®
subjectto y;({x;,w)+D)>1-¢&;, i=1,..,m, 4)
£&>0,i=1,..,m. %)

Unfortunately, in some cases the optimization process converges to a trivial solu-
tion: the zero vector. We used the convex hull interpretation of SVMs (Bennett and
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Fig. 3. Sequence (left to right) of hyperplanes for nodes 1-6 of the tree.

Bredensteiner 2000), in order to determine under which circumstances the trivial so-
lution is occurring and proved the following theorems (Zapien et al. 2007):

Theorem 1: If the convex hull of the “hard" class CC; intersects the convex hull of
the “soft" class CC_j, then w = 0 is a feasible point for the primal Problem (4) if
D_1 > maxjecc, {Ai} - D1, where A; are such that

P= Z }"ixia
ieCCy

is a convex combination for a point p that belongs to both convex hulls.
Theorem 2: If the center of gravity s_; of class CC_; is inside the convex hull of
class CCq, then it can be written as

1

S 1= Zkixi and s | = Z —X;
m

ieCC, jecc, 1

with A; > 0 for all i € CC; and Ziecc. A; = 1. If additionally, D| > ApaxD—1m_1,
where Amax = maxiecc, {A:}, then w = 0 is a feasible point for the primal Problem.

Please refer to (Zapien et al. 2007) for detailed proofs of both theorems.

2.2 H1-SVM problem formulation

To avoid the zero vector, we proposed a modification of the original SVM optimiza-
tion problem, which is taking advantage of the previous theorems: the HI-SVM (H1
for one hard class).
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HI1-SVM Primal Problem

i l 2 - . . .
we%}},lbleu{ 2 1wl ZzeCC];yz“Xn w)+b) (©6)
subject to  y;((x;,w) +b) > 1 for all i € CCy, )

where k=1landk=—1,ork=—1andk=1.
This new formulation constraints Eq. (7) to classify all samples in the class CCy, per-
fectly, forcing a “hard" convex hull (H1) for CCy. The number of misclassification
on the other class CCj is added to the objective function, hence the solution is a
trade-off between a maximal margin and a minimum number of misclassifications in
the “soft" class CCy.

HI1-SVM Dual Formulation

max 3 o — 3 Do oy (Xi, X)) ®)
subject to 0<o; <C, ieCCy, )
a;=1, j€CCy, (10)

> oy =0, (11)

wherek=1landk=—1,ork=—1and k= 1.

This problem can be solved in a similar way as the original SVM Problem using the
SMO algorithm (Schoelkopf and Smola 2002)(Zapien et al. 2007), and adding some
modifications to force o; = 1 Vi € CCy.

Theorem 3: For the HI-SVM the zero solution can only occur if |CCy| > (n— 1) and
there exists a linear combination of the sample vectors in the “hard" class x; € CCy
and the sum of the sample vectors in the “soft" class, Ziecc,; X;.

Proof: Without loss of generality, let the “hard" class be class CC;. Then,

m
W:Zaiyixi = Z X — Z X
i=1

ieCC, ieCC_,

14
= Z oUX; — Z X;. (12)
i€CCy ieCC_;
If we define z; = > ;. X; and [CCy| > (n— 1) = dim(z;) — 1, there exist {a},i €
CCy,0; # 0 such that
W = ZO(,‘X,‘—Zi = 0.

ieCC,

The usual threshold calculation ((Keerthi et al. 1999) and (Schoelkopf and Smola
2002)) can no longer be used to define the hyperplane, please refer to (Zapien et al.
2007) for details on the threshold computation.

The basic algorithm can be improved with some heuristics for greedy “hard"-class
determination and tree pruning, shown in (Zapien et al. 2007).
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3 Non-linear extension

In order to classify a sample, one simply runs it down the SVM-tree. When using
only linear nodes, we already obtained good results (Zapien et al. 2006), but we also
observed that first of all, most errors occur in the last node, and second, that over all
only a few samples will reach the last node during the classification procedure. This
motivated us to add a non-linear node (e.g. using RBF kernels) to the end of the tree.
Training of this extended SVM-tree is analogous to the original case. First a pure

linear SVM: ((wy,X) +by) X heg >0

]inearSVM: ((W,X) +by) x hey >0

label x = —hc
@ non-linear SVM
label x = —hcy

label x = Z o yik(x;,x) +bpy
xjasv

Fig. 4. SVM tree with non-linear extesion

linear tree is build. Then we use a heuristic (trade-off between average classification
depth and accuracy) to move the final, non-linear node from the last node up the tree.
It is very important to notice, that to avoid overfitting, the final non-linear SVM has
to be trained on the entire initial training set, and not only on the samples remain-
ing after the last linear node. Otherwise the final node is very likely to suffer from
strong overfitting. Of cause, then the final model will have many SVs, but since only
a few samples will reach the final node, our experiments indicate that the average
classification depth will be hardly affected.

4 Experiments

In order to show the validity and classification accuracy of our algorithm we per-
formed a series of experiments on standard benchmark data sets. These experiments
were conducted! e.g. on Faces (Carbonetto) (9172 training samples, 4262 test sam-
ples, 576 features) and USPS (Hull 1994) (18063 training samples, 7291 test sam-
ples, 256 features) as well as on several other data sets. More and detailed exper-
iments can be found in (Zapien et al. 2007). The data was split into training and
test sets and normalized to minimum and maximum feature values (Min-Max) or
standard deviation (Std-Dev).

! These experiments were run on a computer with a P4, 2.8 GHz and 1G in Ram.
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Faces RBF |HI-SVM |HI-SVM | RBF/H1 | RBF/H1
(Min-Max) Kernel Gr-Heu Gr-Heu
Nr. SVs or 2206 4 4 551.5 551.5
Hyperplanes

Training Time 14:55.23 | 10:55.70 | 14:21.99 | 1.37 1.04
Classification Time | 03:13.60 | 00:14.73 | 00:14.63 | 13.14 | 13.23
Classif. Accuracy % | 95.78 % | 91.01 % | 91.01 % 1.05 1.05

USPS RBF |HI-SVM |H1-SVM | RBF/HI | RBF/H1
(Min-Max) Kernel Gr-Heu Gr-Heu
Nr. SVs or 3597 49 49 73.41 73.41
Hyperplanes

Training Time 00:44.74 | 00:22.70 | 02:09.58 | 1.97 0.35
Classification Time | 01:58.59 | 00:19.99 | 00:20.07 | 5.93 5.91
Classif. Accuracy % | 95.82 % | 93.76 % | 93.76 % 1.02 1.02

Comparisons to related work are difficult, since most publications (Bennett and Bre-
densteiner 2000), (Lee and Mangasarian 2001) used datasets with less than 1000
samples, where the training and testing time are negligible. In order to test the per-
formance and speedup on very large datasets, we used our own Cell Nuclei Database
(Zapien et al. 2007) with 3372 training samples, 32 features each, and about 16 mil-
lion test samples:

RBF-Kernel | linear tree | non-linear tree
H1-SVM HI-SVM
training time ~ls ~3s ~58
Nr. SVs or 980 86 86
Hyperplanes
average classification - 7.3 8.6
depth
classifiaction time ~1.5h ~2 min ~~2 min
accuracy 97.69% 95.43% 97.5%

5 Conclusion

We have presented a new method for fast SVM classification. Compared to non-
linear SVM and speedup methods our experiments showed a very competitive
speedup while achieving reasonable classification results (loosing only marginal
when we apply the non-linear extension compared to non-linear methods). Espe-
cially if our initial assumption holds , that large problems can be split in mainly easy
and only a few hard problems, our algorithm achieves very good results. The ad-
vantage of this approach clearly lies in its simplicity since no parameter has to be
tuned.
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Abstract. In the last decade the classifier ensembles have enjoyed a growing attention and
popularity due to their properties and successful applications.

A number of combination techniques, including majority vote, average vote, behavior-
knowledge space, etc. are used to amplify correct decisions of the ensemble members. But the
key of the success of classifier fusion is diversity of the combined classifiers.

In this paper we compare the most commonly used combination rules and discuss their
relationship with diversity of individual classifiers.

1 Introduction

Fusion of multiple classifiers is one of the recent major advances in statistics and ma-
chine learning. In this framework, multiple models are built on the basis of training
set and combined into an ensemble or a committee of classifiers. Then the component
models determine the predicted class.

Classifier ensembles proved to be high performance classification systems in nu-
merous applications, e.g. pattern recognition, document analysis, personal identifi-
cation, data mining etc.

The high accuracy of the ensemble is achieved if its members are “weak" and di-
verse. The term “weak” refers to unstable classifiers, such as classification trees, and
neural nets. Diversity means that the classifiers are different from each other (inde-
pendent, uncorrelated). This is usually obtained by using different training subsets,
assigning different weights to instances or selecting different subsets of features.

Tumer and Ghosh (1996) have shown that the ensemble error decreases with the
reduction in correlation between component classifiers. Therefore, we need to assess
the level of indpendence of the members of the ensemble, and different measures of
diversity have been proposed so far.

The paper is organised as follows. In Section 2 we give some basics on classi-
fier fusion. Section 3 contains a short description of selected diversity measures. In
Section 4 we discuss the fusion methods (combination rules). The problems related
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to assessment of performance of combination rules and their relationship with diver-
sity measures are presented in Section 5. Section 6 gives a brief description of our
experiments and the obtained results. The last section contains some conclusions.

2 Classifier fusion

A classifier C is any mapping C : X — Y from the feature space X into a set of class
labels Y = {ll ,lz, ‘e ,lj}.

The classifier fusion consists of two steps. In the first step the set of M in-
dividual classifiers {C,C,,...,Cy} is designed on the basis of the training set
T:{(leyl)v(x27y2)v'"7(XN7yN)}' R

Then, in the second step, their predictions are combined into an ensemble C*
using a combination function F':

C*=F(C,C,....Chn). )

Various combinatorial rules have been proposed in the literature to approximate the
function F, and some of them will be discussed in Section 4.

3 Diversity of ensemble members

In order to assess the mutual independence of individual classifiers, different mea-
sures have been proposed. The simplest ones are pairwise measures defined between
two classifiers, and the overall diversity of the ensemble is the average of the diver-
sities (p) between all pairs of the ensemble members:

M-1 M
ey 2
Diversity(C*) = MOI—T) mZ:lk:”Z;lp(mk). 2)

The relationship between a pair of classifiers C; and C; can be shown in the form
of the 2 x 2 contingency table (Table 1).

Table 1. A 2 x 2 contingency table for the two classifier outputs.

Classifiers | C; is correct | C; is wrong

C; is correct a b
C; is wrong c d

The well known measure of classifier dependence is the binary version of the
Pearson’s correlation coefficient:

SN ad — bc
(i) = Jarb)crdatobrd)

3)
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Partridge and Yates (1996) have used a measure named within-set generalization
diversity. This measure is simply the kappa statistics:

. 2(ac—ba)
K(t,J) = . 4
D) = G p et d T (at )b +d) @
Skalak (1996) reported the use of the disagreement measure:
b+c
DM(i,j) = ————. 5
G = rera Q)

Giacinto and Roli (2000) have introduced a measure based on the compound
error probability for the two classifiers, and named compound diversity:

d

cD(i,j)=— .
(2:7) a+b+c+d

(6)
This measure is also named “double-fault measure” because it is the proportion of
the examples that have been misclassified by both classifiers.

Kuncheva et al. (2000) strongly recommended the Yule’s Q statistics to evaluate
the diversity:

o ad — be
Q0. j) = ad+bc’

Unfortunately, this measure has two disadvantages. In some cases its value may be
undefined. e.g. when @ = 0 and » = 0, and it cannot distinguish between different
distributions of classifier outputs.

In order to overcome the drawbacks of the Yule’s Q statistics, Gatnar (2005)
proposed the diversity measure based on the Hamann’s coefficient:

N

(a+d)—(b+c)

i
G = o erd

(®)
Several non-pairwise measures have been also developed to evaluate the level of
diversity between all members of the ensemble.
Cunningham and Carney (2000) suggested using the entropy function:

N N
1 1
EC =~ Y Lls)log(Lx) = 5 D (M ~Lx)log(M ~L(x)).  ©)
1= 1=
where L(x) is the number of classifiers that correctly classified the observation x. Its
simplified version was introduced by Kuncheva and Whitaker (2003):

1
N

1

E:

N
min{L(x;),M — L(x;)}. (10)

1
<M~ [M/2]

Kohavi and Wolpert (1996) used their variance to evaluate the diversity:
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N
KW = Mt/lzlz_;L(xi)(M—L(xi)). (11)

Also Dietterich (2000) proposed the measure to assess the level of agreement
between classifiers. It is the kappa statistics:

g i L(x) (M — L(x))
N(M —1)p(1—p)

Hansen and Salamon (1990) introduced the measure of difficulty 6. It is simply
the variance of the random variable Z = L(x)/M:

K=1

12)

0 =Var(Z). (13)

Two measures of diversity have been proposed by Partridge and Krzanowski
(1997) for evaluation of the software diversity. The first one is the generalized di-
versity measure:

2
GD=1- &, (14)
p(1)
where p(k) is the probability that k randomly chosen classifiers will fail on the ob-
servation X. The second measure is named coincident failure diversity:

0 where pg = 1

CFD = ) |
{ l—lpo Z?nlzl Hpm where Po < 1

(15)

where p,, is the probability that exactly m out of M classifiers will fail on an obser-
vation X.

4 Combination rules

Once we have produced the set of individual classifiers of desired level of diversity,
we combine their predictions to amplify their correct decisions and cancel out the
wrong ones. The combination function F in (1) depends on the type of the classifier
outputs.

There are three different forms of classifier output. The classifier can produce a
single class label (abstract level), rank the class labels according to their posterior
probabilities (rank level), or produce a vector of posterior probabilities for classes
(measurement level).

Majority voting is the most popular combination rule for class labels!:

M
C*(x) :argmjglx{ZI(C’m(x) :lj)}. (16)
m=1

In the R statistical environment we obtain class labels using the command
predict(...,type="class").
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It can be proved that it is optimal if the number of classifiers is odd, they have the
same accuracy, and the classifier’s outputs are independent. If we have evidence that
certain models are more accurate than others, weighing the individual predictions
may improve the overall performance of the ensemble.

Behavior Knowledge Space developed by Huang and Suen (1995) uses a look-up
table that keeps track of how often each class combination is produced by the clas-
sifiers during training. Then, during testing, the winner class is the most frequently
observed class in the BKS table for the combination of class labels produced by the
set of classifiers.

Wernecke (1992) proposed a method similar to BKS, that uses the look-up table
with 95% confidence intervals of the class frequencies. If the intervals overlap, the
least wrong classifier gives the class label.

Naive Bayes combination introduced by Domingos and Pazzani (1997) also
needs training to estimate the prior and posterior probabilities:

5i(x) = P(L) [ P(Cn()I1)). (17)

m=1

Finally, the class with the highest value of s;(x) is chosen as the ensemble prediction.

On the measurement level, each classifier produces a vector of posterior probabil-
ities? G, (X) = [cm1 (X), cm2(X), - . ., ¢y (X)]. And combining predictions of all models,
we have a matrix called decision profile for an instance x:

Cll(X) Clg(x) C]](X)
DP(x)=| ... ... .. .. (18)
CMl(X) CMz(X) CMJ(X)

Based on the decision profile we calculate the support for each class (s;(x)), and
the final prediction of the ensemble is the class with the highest support:

C*(x) = argmax {s5;(x) } . (19)
J

The most commonly used is the average (mean) rule:

1 M
5i(x) = m Zcmj(x). (20)
m=1

There are also other algebraic rules that calculate median, maximum, minimum and
product of posterior probabilities for the j-th class. For example, the product rule is:

| M
s/(x):MHCm/(X)' (21)

m=1

Kuncheva et al. (2001) proposed a combination method based on Decision Tem-
plates, that are averaged decision profiles for each class (DT;). Given an instance X,

2 We use the command predict(...,type="prob").
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its decision profile is compared to the decision templates of each class, and the class
whose decision template is closest (in terms of the Euclidean distance) is chosen as
the ensemble prediction:

M
si(x)=1- MLJ D> (DT(m.k) — c(x))* (22)
m=1 k=1

There are other combination functions using more sophisticated methods, such
as fuzzy integrals (Grabisch, 1995), Dempster-Shafer theory of evidence (Rogova,
1994) etc.

The rules presented above can be divided into two groups: trainable and non-
trainable. In trainable rules we determine the values of their parameters using the
training set, e.g. cell frequencies in the BKS method, or Decision Templates for
classes.

5 Open problems

There are several problems that remain open in classifier fusion. In this paper we
only focus on two of them. We have shown above ten combination rules, so the
first problem is the search for the best one, i.e. the one that gives the more accurate
ensembles.

And the second problem is concerned with the relationship between diversity
measures and combination functions. If there is any, we would be able to predict the
ensemble accuracy knowing the level of diversity of its members.

6 Results of experiments

In order to find the best combination rule and determine relationship between com-
bination rules and diversity measures we have used 10 benchmark datasets, divided
into learning and test parts, as shown in Table 2.

For each dataset we have generated 100 ensembles of different sizes: M =
10,20,30,40, 50, and we used classification trees as the base models.

We have computed the average ranks for the combination functions, where rank
1 was for the best rule, i.e. the one that produced the most accurate ensemble, and
rank 10 - for the worst one. The ranks are presented in Table 3.

We found that the mean rule is simple and has consistent performance for the
measurement level, and majority voting is a good combination rule for class labels.
Maximum rule is too optimistic, while minimum rule is too pessimistic.

If the classifier correctly estimates the posterior probabilities, the product rule
should be considered. But it is sensitive to the most pessimistic classifier.

3 In order to grow trees, we have used the Rpart procedure written by Therneau and Atkinson
(1997) for the R environment.
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Table 2. Benchmark datasets.

Dataset | Number of cases | Number of cases | Number of | Number
in training set in test set predictors | of classes
DNA 2124 1062 180 3
Letter 16000 4000 16 26
Satellite 4290 2145 36 6
Iris 100 50 4 3
Spam 3000 1601 57 2
Diabetes 512 256 8 2
Sonar 138 70 60 2
Vehicle 564 282 18 4
Soybean 455 228 34 19
Zip 7291 2007 256 10

Table 3. Average ranks for combination methods.

Method | Rank
mean 2.98
vote 3.50
prod 4.73
med 491
min 6.37
bayes 6.42
max 7.28
DT 7.45
Wer 7.94
BKS 8.21

Figure 1 illustrates the comparison of performance of the combination functions
for the Spam dataset, which is typical of the datasets used in our experiments. We
can observe that the fixed rules perform better than the trained rules.

Error

006 008 010 012 014

Semeses LT

T T T T T T T T T T
sred  max min med prod vote bayes BKS = Wer DT

Fig. 1. Boxplots of combination rules for the Spam dataset.
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We have also noticed that the mean, median and vote rules give similar results.
Moreover, cluster analysis has shown that there are three more groups of rules of
similar performance: minimum and maximum, Bayes and Decision Templates, BKS
and Wernecke’s combination method.

In order to find the relationship between the combination functions and the di-
versity measures, we have calculated Pearson correlations. Correlations are moderate
(greater than 0.4) between mean, mode, product, and vote rules and Compound Di-
versity (6) as the only pairwise measure of diversity.

For non-pairwise measures correlations are strong (greater than 0.6) only be-
tween average, median, and vote rules, and Theta (13).

7 Conclusions

In this paper we have compared ten functions that combine outputs of the individual
classifiers into the ensemble. We have also studied the relationships between the
combination rules and diversity measures.

In general, we have observed that trained rules, such as BKS, Wernecke, Naive
Bayes and Decision Templates, perform poorly, especially for large number of com-
ponent classifiers (M). This result is contrary to Duin (2002), who argued that trained
rules are better than fixed rules.

We have also found that the mean rule and the voting rule are good for the mea-
surement level and abstract level, respectively.

But there are not strong correlations between the combination functions and the
diversity measures. This means that we can not predict the ensemble accuracy for
the particular combination method.
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Abstract. Margin-based classifiers like the SVM and ANN have two drawbacks. They are
only directly applicable for two—class problems and they only output scores which do not
reflect the assessment uncertainty. K—class assessment probabilities are usually generated by
using a reduction to binary tasks, univariate calibration and further application of the pairwise
coupling algorithm. This paper presents an alternative to coupling with usage of the Dirichlet
distribution.

1 Introduction

Although many classification problems cover more than two classes, the margin—
based classifiers such as the Support Vector Machine (SVM) and Artificial Neural
Networks (ANN), are only directly applicable to binary classification tasks. Thus,
tasks with number of classes K greater than 2 require a reduction to several binary
problems and a following combination of the produced binary assessment values to
just one assessment value per class.

Before this combination it is beneficial to generate comparable outcomes by cali-
brating them to probabilities which reflect the assessment uncertainty in the binary
decisions, see Section 2. Analyzes for calibration of dichotomous classifier scores
show that the calibrators using Mapping with Logistic Regression or the Assign-
ment Value idea are performing best and most robust, see Gebel and Weihs (2007).
Up to date, pairwise coupling by Hastie and Tibshirani (1998) is the standard ap-
proach for the subsequent combination of binary assessment values, see Section 3.
Section 4 presents a new multi—class calibration method for margin—based classifiers
which combines the binary outcomes to assessment probabilities for the K classes.
This method based on the Dirichlet distribution will be compared in Section 5 to the
coupling algorithm.
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2 Reduction to binary problems

Regard a classification task based on training set 7 := {(x;,¢;),i = 1,...,N} with x;
being the ith observation of random vector X of p feature variables and respective
class¢; € C={1,...,K} which is the realisation of random variable C determined by
a supervisor. A classifier produces an assessment value or score Sygmop (C = k|X;) for
every class k € C and assigns to the class with highest assessment value. Some clas-
sification methods generate assessment values Pygmion(C = k|X;) which are regarded
as probabilties that represent the assessment uncertainty. It is desirable to compute
these kind of probabilities, because they are useful in cost—sensitive decisions and
for the comparison of results from different classifiers.

To generate assessment values of any kind, margin-based classifiers need to re-
duce multi—class tasks to seveal binary classfication problems. Allwein et al. (2000)
generalize the common methods for reducing multi—class into B binary problems
such as the one—against—rest and the all-pairs approach with using so—called error—
correcting output coding (ECOC) matrices. The way classes are considered in a
particular binary task b € {1,...,B} is incorporated into a code matrix ¥ with K
rows and B columns. Each column vector ; determines with its elements g, €
{—1,0,+1} the classes for the bth classification task. A value of Yy, = 0 implies
that observations of the respective class k are ignored in the current task b while —1
and +1 determine whether a class k is regarded as the negative and the positive class,
respectively.

One—against-rest approach

In the one—against—rest approach the number of binary classification tasks B is equal
to the number of classes K. Each class is considered once as positive while all the
remaining classes are labeled as negative. Hence, the resulting code matrix ¥ is of
size K x K, displaying +1 on the diagonal while all other elements are —1.

All-pairs approach

In the all-pairs approach one learns for every single pair of classes a binary task b in
which one class is considered as positive and the other one as negative. Observations
which do not belong to either of these classes are omitted in the learning of this

K
binary task. Thus, Wis a K x ( ’ ) —matrix with each column b consisting of elements

Wi, » = +1 and yy, , = —1 corresponding to a distinct class pair (ky,k2) while all
the remaining elements are 0.

3 Coupling probability estimates
As described before, the reduction approaches apply to each column v of the code

matrix V, i. e. binary task b, a classification procedure. Thus, the output of the reduc-
tion approach consists of B score vectors s ,(x;) for the associated positive class.
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To each set of scores separately one of the univariate calibration methods described
in Gebel and Weihs (2007) can be applied. The outcome is a calibrated assessment
probability p. ;(x;) which reflects the probabilistic confidence in assessing observa-
tion x; for task b to the set of positive classes K 1 := {k;\uk,h = —H} as opposed to
the set of negative classes &), _ := {k; Yip=—1 } Hence, this calibrated assessment
probability can be regarded as function of the assessment probabilities involved in

the current task:
) = St PC=kR)
P+.p\Xi) = .
l Zkeﬁb.+uﬁb., P(C = k‘xi)

The values P(C = k|x;) solving equation (1) would be the assessment probabilities
that reflect the assessment uncertainty. However, considering the additional con-
straint to assessment probabilities

ey

K

> P(C=klx) =1 )

k=1

there exist only K — 1 free parameters P(C = k|x;) but at least K equations for the
one-against-rest approach and even more for all-pairs (K(K — 1) /2). Since the num-
ber of free parameters is always smaller than the number of constraints, no unique
solution for the calculation of assessment probabilities is possible and an approxima-
tive solution has to be found instead. Therefore, Hastie and Tibshirani (1998) supply
the coupling algorithm which finds the estimated conditional probabilities py 5(x;)
as realizations of a Binomial distributed random variable with an expected value y ;
in a way that

*  pi15(x;) generate unique assessment probabilities P(C = k|x;),
+  P(C = k|x;) meet the probability constraint (2) and
*  pr1p(x;) have minimal Kullback-Leibler divergence to observed p. (X;).

4 Dirichlet calibration

The idea underlying the following multivariate calibration method is to transform the
combined binary classification task outputs into realizations of a Dirichlet distributed
random vector P~ D(hy, ..., hg) and regard the elements as assessment probabilities
Py := P(C = k|x).

Due to the concept of well—calibration by DeGroot and Fienberg (1983), we want to
achieve that the confidence in the assignment to a particular class converges to the
probability for this class. This requirement can be easily attained with a Dirichlet
distributed random vector by choosing parameters /; proportional to the a—priori
probabilities Ty, ..., Mk of classes, since elements P, have expected values E(P;) =

i/ 25:1 h;.
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Dirichlet distribution
A random vector P = (P, ..., Px) generated by

Sk
K
Zj:l S

with K independently x>—distributed random variables S ~ %> (2 - i) is Dirichlet
distributed with parameters ky,. .., hg, see Johnson et al. (2002).

P, = (k=1,2,...,K)

Dirichlet calibration

Initially, instead of applying a univariate calibration method we normalize the output
vectors s; 11, by dividing them by their range and add half the range so that boundary
values (s = 0) lead to boundary probabilities (p = 0.5):

Sip1,b P -maxi|si 11|
2-p-maxi|si 11|

; 3

Pi+1,p =

since the doubled maximum of absolute values of scores is the range of scores. It is
required to use a smoothing factor p = 1.05 in (3) so that p; 11, € 10,1[, since we
calculate in the following the geometric mean of associated binary proportions for
eachclass k € {1,....K}

1
s}

ik = H Dit1p- H (1—=pi+1p)

by p=+1 by p=—1

This mean confidence is regarded as a realization of a Beta distributed random vari-
able Ry ~ B(ay,Px) and parameters oy and 3 are estimated from the training set
by the method of moments. We prefer the geometric to the arithmetic mean of pro-
portions, since the product is well applicable for proportions, especially when they
are skewed. Skewed proportions are likely to occur when using the one—against-rest
approach in situations with high class numbers, since here the number of negative
strongly outnumber the positive class observations.

To derive a multivariate Dirichlet distributed random vector, the r; can be trans-
formed to realizations of a uniformly distributed random variable

ik 1= g, (12)

By using the inverse of the y>~distribution function these uniformly distributed ran-
dom variables are further transformed into y>—distributed random variables. The re-

alizations of a Dirichlet distributed random vector P ~ D(hy,. .., hk) with elements
Eo, (uig)
PO Xy D
Pik =

K -1
Zj:l sz,h,« (uif)
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are achieved by normalizing. New parameters Ay, ...,hg should be chosen propor-
tional to frequencies 71,...,mg of the particular classes. In the optimization proce-
dure we choose the factor m = 1,2,...,2- N with respective parameters h; = m - T
which score highest on the training set in terms of performance, determined by the
geometric mean of measures (4), (5) and (6).

5 Comparison

This section supplies a comparison of the presented calibration methods based on
their performance. Naturally, the precision of a classification method is the major
characteristic of its performance. However, a comparison of classification and cal-
ibration methods just on the basis of the precision alone, results in a loss of infor-
mation and would not include all requirements a probabilistic classifier score has
to fulfill. To overcome this problem, calibrated probabilities should satisfy the two
additional axioms:

» Effectiveness in the assignment and
e Well—calibration in the sense of DeGroot and Fienberg (1983).

Precision

The correctness rate

1
Cr=o D Tiny=c (xi) )
where I is the indicator function, is the key performance measure in classification,
since it mirrors the quality of the assignment to classes.
Effective assignment

Assessment probabilities should be effective in their assignment, i. e. moderately
high for true classes and small for false classes. An indicator for such an effectiveness
is the complement of the Root Mean Squared Error:

N K

1 1
1—RMSE :=1— NZ EZ (iepmig (%) — P(c; = k%)) . )
i=1 k=1

Well—calibrated probabilities

DeGroot and Fienberg (1983) give the following definition of a well—calibrated fore-
cast: “If we forecast an event with probability p, it should occur with a relative fre-
quency of about p.” To transfer this requirement from forecasting to classification
we partition the training/test set according to the assignment to classes into K groups
Ti := {(ci,x;) € T : &(x;) = k} with Ny, := |T;| observations. Thus, in a partition Ty
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the forecast is class k.

Predicted classes can differ from true classes and the remaining classes j # k can
actually occur in a partition 7. Therefore, we estimate the average confidence
Cfy ;= Nilrk wer, P (k|¢(x;) = j) for every class j in a partition T;. According to
DeGroot and Fienberg (1983) this confidence should converge to the average cor-
rectness Cry ; 1= NLT,‘ in €Ty Ij¢(x;)=j]- The average closeness of these two measures

K K
1
WCR:zl—EE E |Cfyj — Cry ©)
k=1 j=1

indicates how well—calibrated the assessment probabilities are.

On the one hand, the minimizing “probabilities” for the RMSE (5) can be just the
class indicators especially if overfitting occurs in the training set. On the other hand,
vectors of the individual correctness values maximize the WCR (6). To overcome
these drawbacks, it is convenient to combine the two calibration measures by their
geometric mean to the calibration measure

Cal := /(1 -RMSE)-WCR.. (7
Experiments

The following experiments are based on the two three—class data sets Iris and
balance—scale from the UCI ML—Repository as well as the four—class data set B3,
see Newman et al. (1998) and Heilemann and Miinch (1996), respectively.

Recent analyzes on risk minimization show that the minimization of a risk based on
the hinge loss which is usually used in SVM leads to scores without any probability
information, see Zhang (2004). Hence, the L2-SVM, see Suykens and Vandewalle
(1999), with using the quadratic hinge loss function and thus squared slack variables
is preferred to standard SVM. For classification we used the L2-SVM with radial—
basis Kernel function and a Neural Network with one hidden layer, both with the
one—against-rest and the all-pairs approach. In every binary decision a separate 3—
fold cross—validation grid search was used to find optimal parameters.

The results of the analyzes with 10—fold cross—validation for calibrating L2-SVM
and ANN are presented in Tables 1-2, respectively.

Table 1 shows that for L2-SVM no overall best calibration method is available. For
the Iris data set all—pairs with mapping outperforms the other methods, while for B3
the Dirichlet calibration and the all-pairs method without any calibration are per-
forming best. Considering the balance—scale data set, no big differences according
to correctness occur for the calibrators.

However, comparing these results to the ones for ANN in Table 2 shows that the
ANN, except the all-pairs method with no calibration, yields better results for all
data sets.

Here, the one—against—rest method with usage of the Dirichlet calibrator outper-
forms all other methods for Iris and B3. Considering Cr and Cal for balance—scale,
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Table 1. Results for calibrating L2-SVM-scores

Iris B3 balance

Cr Cal Cr Cal Cr Cal
Paii—pairs,no 0.853 0.497 0.720 0.536  0.877 0.486
Pall—pairs,map 0.940 0.765 0.688 0.656  0.886 0.859
Palpairs,assign~ 0.927 0.761  0.694 0.677  0.886 0.832
Paii—pairs,Dirichter 0.893 0.755  0.720 0.688  0.888 0.771
Pi_y_restno 0.833 0.539 0.688 0.570  0.885 0.464
P1_y_rest,map 0.873 0.647 0.682 0.563 0.878 0.784
P_y_restassign  0-867 0.690  0.701 0.605  0.885 0.830
Pi_y_rest Dirichlet 0.880 0.767  0.726 0.714  0.880 0.773

Table 2. Results for calibrating ANN—scores

Iris B3 balance

Cr Cal Cr Cal Cr Cal
Pall—pairs,no 0.667 0.614 0.490 0.573 0.302 0.414
Pall_pairs,map 0.973 0909 0.752 0.756  0.970 0.946
Paiipairs,assign~ 0.960 0.840 0771 0.756  0.954 0.886
Pail_pairs,Dirichter. 0953 0.892  0.777 0.739  0.851 0.619
Pi_y_restno 0.973 0.618 0.803 0.646  0.981 0.588
P|_y_restmap 0.973 0942 0.803 0.785 0.978 0.921
Pi_y_restassign 0973 0.896  0.796 0.752  0.976 0.829
Pi_y_rest.Dirichlet 0.973 0.963  0.815 0.809  0.971 0.952

Table 3. Comparing to direct classification methods

Iris B3 balance

Cr Cal Cr Cal Cr Cal
PANN, 1-v—rest.Dirichlet 0.973 0.963 ~ 0.815 0.809  0.971 0.952
Pipa 0.980 0972 0.713 0.737  0.862 0.835
Popa 0.980 0969 0.771 0.761 0.914 0.866
PLogistic Regression 0.973 0964 0.561 0.633 0.843 0.572
Prree 0.927 0.821  0.427 0.556  0.746 0.664
PNaive Bayes 0.947 0936 0.650 0.668 0.904 0.710

one—against-rest with mapping performs best, but with correctness just slightly bet-

ter than the Dirichlet calibrator.

Finally, the comparison of the one—against-rest ANN with Dirichlet calibration to
other direct classification methods in Table 3 shows that for Iris LDA and QDA are
the best classifiers, since the Iris variables are more or less multivariate normally dis-
tributed. Considering the two further data sets the ANN yields highest performance.
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6 Conclusion

In conclusion it is to say that calibration of binary classification outputs is beneficial
in most cases, especially for an ANN with the all—pairs algorithm.

Comparing classification methods to each other, one can see that the ANN with one—
against—rest and Dirichlet calibration performs better than other classifiers, except
LDA and QDA on Iris. Thus, the Dirichlet calibration is a nicely performing alter-
native, especially for ANN. The Dirichlet calibration yields better results with usage
of one—against—all, since combination of outputs with their geometric mean is bet-
ter applicable in this case where outputs are all based on the same binary decisions.
Furthermore, the Dirichlet calibration has got the advantage that here only one opti-
mization procedure has to be computed instead of the two steps for coupling with an
incorporated univariate calibration of binary outputs.
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Abstract. Kernel methods offer a flexible toolbox for pattern analysis and machine learn-
ing. A general class of kernel functions which incorporates known pattern invariances are
invariant distance substitution (IDS) kernels. Instances such as tangent distance or dynamic
time-warping kernels have demonstrated the real world applicability. This motivates the de-
mand for investigating the elementary properties of the general IDS-kernels. In this paper we
formally state and demonstrate their invariance properties, in particular the adjustability of
the invariance in two conceptionally different ways. We characterize the definiteness of the
kernels. We apply the kernels in different classification methods, which demonstrates various
benefits of invariance.

1 Introduction

Kernel methods have gained large popularity in the pattern recognition and machine
learning communities due to the modularity of the algorithms and the data repre-
sentations by kernel functions, cf. (Scholkopf and Smola (2002)) and (Shawe-Taylor
and Cristianini (2004)). It is well known that prior knowledge of a problem at hand
must be incorporated in the solution to improve the generalization results. We ad-
dress a general class of kernel functions called IDS-kernels (Haasdonk and Burkhardt
(2007)) which incorporates prior knowledge given by pattern invariances.

The contribution of the current study is a detailed formalization of their basic
properties. We both formally characterize and illustratively demonstrate their ad-
justable invariance properties in Sec. 3. We formalize the definiteness properties in
detail in Sec. 4. The wide applicability of the kernels is demonstrated in different
classification methods in Sec. 5.



38 Bernard Haasdonk and Hans Burkhardt

2 Background

Kernel methods are general nonlinear analysis methods such as the kernel princi-
pal component analysis, support vector machine, kernel perceptron, kernel Fisher
discriminant, etc. (Scholkopf and Smola (2002)) and (Shawe-Taylor and Cristianini
(2004)). The main ingredient in these methods is the kernel as a similarity measure
between pairs of patterns from the set X.

Definition 1 (Kernel, definiteness). A function k : X x X — R which is symmetric
is called a kernel. A kernel k is called positive definite (pd), if for all n and all sets of
observations (x;);_; € X" the kernel matrix K := (k(x;,x;))} ,_, satisfies vIKv >0
for all v € R™. If this only holds for all v satisfying v' 1 = 0, the kernel is called
conditionally positive definite (cpd).

We denote some particular />-inner-product (-,-) and />-distance |- — -|| based ker-
nels by K"(x,x) := (x,x'), k" (x,x') := — ||X—X’||B for B € [0,2], k" (x,x') :=

(14 (x,x))? kP (x,x) := e*YH"*"'H2 for p € N,y € R... Here, the linear k'™, poly-
nomial kP°' and Gaussian radial basis function (rbf) k™ are pd for the given param-
eter ranges. The negative distance kernel kg cpd (Scholkopf and Smola (2002)).
We continue with formalizing the prior knowledge about pattern variations and cor-
responding notation:

Definition 2 (Transformation knowledge). We assume to have transformation
knowledge for a given task, i.e. the knowledge of a set T = {t : X — X} of trans-
formations of the object space including the identity, i.e. id € T. We denote the set
of transformed patterns of x € X as T, := {t(x)|t € T'} which are assumed to have
identical or similar inherent meaning as x.

The set of concatenations of transformations from two sets 7,7’ is denoted as
T oT’. The n-fold concatenation of transformations 7 are denoted as /"1 := 70", the
corresponding sets denoted as 7! := T oT". If all ¢ € T are invertible, we denote
the set of inverted functions as 7~!. We denote the semigroup of transformations

generated by T as T := | J,.y T". The set T induces an equivalence relation on X

by x ~x' :< there exist 7,/ € T such that (x) = ¢'(x’). The equivalence class of x is
denoted with E and the set of all equivalence sets is X /...

Learning targets can often be modeled as functions of several input objects, for
instance depending on the training data and the data for which predictions are re-
quired. We define the desired notion of invariance:

Definition 3 (Total Invariance). We call a function f : X" — H totally invariant
with respect to T, if for all patterns x1,...,x, € X and transformations t,...,t, € T
holds f(x1,...,x,) = f(t1(x1)s- - 10 (xn))-

As the IDS-kernels are based on distances, we define:



Classification with Invariant Distance Substitution Kernels 39

Definition 4 (Distance, Hilbertian Metric). A function d : X x X — R is called a
distance, if it is symmetric and nonnegative and has zero diagonal, i.e. d(x,x) = 0.

A distance is a Hilbertian metric if there exists an embedding into a Hilbert space
® : X — H such that d(x,x") = ||®(x) — D(X)]| .

So in particular the triangle inequality does not need to be valid for a distance
function in this sense. Note also that a Hilbertian metric can still allow d(x,x') =0
for x # x'.

Assuming some distance function d on the space of patterns X enables to incor-
porate the invariance knowledge given by the transformations 7" into a new dissimi-
larity measure.

Definition 5 (Two-Sided invariant distance). For a given distance d on the set X
and some cost function Q : T x T — R with Q(t,t') =0 <1 =1 = id, we define
the two-sided invariant distance as

drs(x,x') := inf d(t(x),t'(x')) +AQ(¢,1). 1)

For A = 0 the distance is called unregularized. In the following we exclude artifi-
cial degenerate cases and reasonably assume that limy_.. das(x,x") = d(x,x") for all
x,x". The requirement of precise invariance is often too strict for practical problems.
The points within 7, are sometimes not to be regarded as identical to x, but only as
similar, where the similarity can even vary over 7,. An intuitive example is optical
character recognition, where the similarity of a letter and its rotated version is de-
creasing with growing rotation angle. This approximate invariance can be realized
with IDS-kernels by choosing A > 0.

With the notion of invariant distance we define the invariant distance substitution
kernels as follows:

Definition 6 (IDS-Kernels). For a distance-based kernel, i.e. k(x,x') = f(||[x —x||),
and the invariant distance measure dys we call kips(x,x) := f(das(x,x")) its invari-
ant distance substitution kernel (IDS-kernel). Similarly, for an inner-product-based
kernel k, i.e. k(x,X') = f((x,X')), we call kips(x,x') := f((x,x')°) its IDS-kernel,
where O € X is an arbitrary origin and a generalization of the inner product is given
by (x,x)? := — L (dos(x,X')% — das(x,0)* — dos(x',0)?).

The IDS-kernels capture existing approaches such as tangent distance or dynamic
time-warping kernels which indicates the real world applicability, cf. (Haasdonk
(2005)) and (Haasdonk and Burkhardt (2007)) and the references therein.

Crucial for efficient computation of the kernels is to avoid explicit pattern trans-
formations by using or assuming some additional structure on 7. An important com-
putational benefit of the IDS-kernels must be mentioned, which is the possibility to
precompute the distance matrices. By this, the final kernel evaluation is very cheap
and ordinary fast model selection by varying kernel or training parameters can be
performed.
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3 Adjustable invariance

As first elementary property, we address the invariance. The IDS-kernels offer two
possibilities for controlling the transformation extent and thereby interpolating be-
tween the invariant and non-invariant case. Firstly, the size of T can be adjusted.
Secondly, the regularization parameter A can be increased to reduce the invariance.
This is summarized in the following:

Proposition 1 (Invariance of IDS-Kernels).

i) If T ={id} and d is an arbitrary distance, then kips = k.

ii) Ifallt €T are invertible, then distance-based unregularized IDS-kernels kips(+,x)
are constant on (T ' o T),.

iii) If T =T and T—' =T, then unregularized IDS-kernels are totally invariant with
respectto T.

iv) If d is the ordinary Euclidean distance, then lim,_,., kjps = k.

Proof. Statement 1) is obvious from the definition, as d>s = d in this case. Simi-
larly, iv) follows as lim;_,.,d>s = d. For statement ii), we note that if x’ € (T*l o
T)y, then there exist transformations 7,7 € T such that 7(x) = #'(x’) and conse-
quently dag(x,x’) = 0. So any distance-based kernel kjps is constant on this set
(T~'oT),. For proving iii) we observe that for ,¢' € T holds dps(t(x),f’ (X)) =
inf, d(t(t(x)),7' (' (x'))) > inf, s d(t(x),7'(x')) = dos(x,x’). Using the same argu-
mentation with #(x) for x, t~! for ¢ and similar replacements for x',¢’ yields
das(x,x') > das(t(x),1'(x')), which gives the total invariance of dps and thus for all
unregularized IDS-kernels.

Points i) to iii) imply that the invariance can be adjusted by the size of 7'. Point ii)
implies that the invariance occasionally exceeds the set 7. If for instance T is closed
with respect to inversions,i.e. T =T~ I then the set of constant values is (Tz)x. Point
iii) and iv) indicate that A can be used to interpolate between the full invariant and
non-invariant case.

We give simple illustrations of the proposed kernels and these adjustability mech-
anisms in Fig. 1. For the illustrations, our objects are simply points in two dimen-
sions and several transformations define sets of points to be regarded as similar. We
fix one argument x’ (denoted with a black dot) of the kernel, and the other argument
X is varying over the square [—1,2]? in the Euclidean plane. We plot the different
resulting kernel values k(x,x’) in gray-shades. All plots generated in the sequel can
be reproduced by the MATLAB library KerMet-Tools (Haasdonk (2005)).

In Fig. 1 a) we focus on a linear shift along a certain slant direction while in-
creasing the transformation extent, i.e. the size of 7. The figure demonstrates the
behaviour of the linear unregularized IDS-kernel, which perfectly aligns to the trans-
formation direction as claimed by Prop. 1 i) to iii). It is striking that the captured
transformation range is indeed much larger than 7" and very accurate for the IDS-
kernels as promised by Prop. 1 ii).

The second means for controlling the transformation extent, namely increasing
the regularization parameter A, is also applicable for discrete transformations such
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Fig. 1. Adjustable invariance of IDS-kernels. a) Linear kernel k}iBS with invariance wrt. linear
shifts, adjustability by increasing transformation extent by the set 7, A = 0, b) kernel k; Ds With

combined nonlinear and discrete transformations, adjustability by increasing regularization
parameter A.

as reflections and even in combination with continuous transformations such as ro-
tations, cf. Fig. 1 b). We see that the interpolation between the invariant and non-
invariant case as claimed in Prop. 1 ii) and iv) is nicely realized. So the approach is
indeed very general concerning types of transformations, comprising discrete, con-
tinuous, linear, nonlinear transformations and combinations thereof.

4 Positive definiteness

The second elementary property of interest, the positive definiteness of the kernels,
can be characterized as follows by applying a finding from (Haasdonk and Bahlmann
(2004)):

Proposition 2 (Definiteness of Simple IDS-Kernels). The following statements are
equivalent: i) dys is a Hilbertian metric

ii) kIS is cpd for all B € [0,2] iii) ki is pd
iv) Ko is pd forally e R, v) kygls ispdforallpe N,yeR,.

So the crucial property, which determines the (c)pd-ness of IDS-kernels is, whether
the dps is a Hilbertian metric. A practical criterion for disproving this is a violation
of the triangle inequality. A precise characterization for d»g being a Hilbertian metric
is obtained from the following.

Proposition 3 (Characterization of d»s as Hilbertian Metric). The unregularized
das is a Hilbertian metric if and only if dygs is totally invariant with respect to T and
dys induces a Hilbertian metric on X/ .
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Proof. Let dps be a Hilbertian metric, i.e. dag(x,x’) = ||®(x) — ®(x')||. For prov-
ing the total invariance wrt. T it is sufficient to prove the total invariance wrt. T
due to transitivity. Assuming that for some choice of patterns/transformations holds
dys(x,x") # das(t(x),1'(x")) a contradiction can be derived: Note that dps(z(x),x’)
differs from one of both sides of the inequality, without loss of generality the left
one, and assume das(x,x') < das(¢(x),x’). The definition of the two-sided distance
implies das(x,7(x)) = infy d(t'(x),1" (t(x))) = 0 via ¢’ := ¢ and ¢” = id. By the
triangle inequality, this gives the desired contradiction das(x,x") < dag(t(x),x’) <
drs(1(x),x) + das(x,x') = 0+ das(x,x’). Based on the total invariance, dag(-,x”)
is constant on each E € X/.: For all x ~ x’ transformations ¢, exist such that
t(x) =1'(X'). So we have dys(x,x") = das(t(x),x") = das('(x'),x") = dos(x',x"), i.e.
this induces a well defined function on X /... by das(E,E’) := dag(x(E),x(E")). Here
x(E) denotes one representative from the equivalence class E € X /... Obviously, das
is a Hilbertian metric. via ®(E) := ®(x(E)). The reverse direction of the proposition
is clear by choosing ®(x) := ®(Ey,).

Precise statements for or against pd-ness can be derived, which are solely based on
properties of the underlying 7 and base distance d:

Proposition 4 (Characterization by d and 7).

i) If T is too small compared to T in the sense that there exists X' € Ty, but
d(T,Ty) > 0, then the unregularized dys is not a Hilbertian metric.

ii) If d is the Euclidean distance in a Euclidean space X and T, are parallel affine
subspaces of X then the unregularized d»s is a Hilbertian metric.

Proof. For i) we note that d(Ty, T) =inf, yc7 d(t(x),t' (x’)) > 0. So das is not totally
invariant with respect to 7" and not a Hilbertian metric due to Prop. 3. For statement
ii) we can define the orthogonal projection ® : X — # := (Tp)* on the orthog-
onal complement of the linear subspace through the origin O, which implies that
dys(x,x') = d(®(x),D(x')) and all sets 7, are projected to a single point ®(x) in
(Tp)™*. So dys is a Hilbertian metric.

In particular, these findings allow to state that the kernels on the left of Fig. 1 are
not pd as they are not totally invariant wrt. 7. On the contrary, the extension of the
upper right plot yields a pd kernel, as soon as T, are complete affine subspaces. So
these criteria can practically decide about the pd-ness of IDS-kernels.

If IDS-kernels are involved in learning algorithms, one should be aware of the
possible indefiniteness, though it is frequently no relevant disadvantage in practice.
Kernel principal component analysis can work with indefinite kernels, the SVM is
known to tolerate indefinite kernels and further kernel methods are developed that
accept such kernels. Even if an IDS-kernel can be proven by the preceding to be
non-(c)pd in general, for various kernel parameter choices or a given dataset, the
resulting kernel matrix can occasionally still be (¢)pd.
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Fig. 2. Illustration of non-invariant (upper row) versus invariant (lower row) kernel meth-
ods. a) Kernel k-nn classification with k™ and scale-invariance, b) kernel perceptron with
kP! of degree 2 and y-axis reflection-invariance, c) one-class-classification with K" and sine-
invariance, d) SVM with k™ and rotation invariance.

5 Classification experiments

For demonstration of the practical applicability in kernel methods, we condense the
results on classification with IDS-kernels from (Haasdonk and Burkhardt (2007)) in
Fig. 2. That study also gives summaries of real-world applications in the fields of
optical character recognition and bacteria-recognition.

A simple kernel method is the kernel nearest-neighbour algorithm for classifi-
cation. Fig. 2 a) is the result of the kernel 1-nearest-neighbour algorithm with the
k™ and its scale-invariant k}',’)fs kernel, where the scaling sets T, are indicated with
black lines. The invariance properties of the kernel function obviously transfer to the
analysis method by IDS-kernels.

Another aspect of interest is the convergence speed of online-learning algorithms
exemplified by the kernel perceptron. We choose two random point sets of 20 points
each lying uniformly distributed within two horizontal rectangular stripes indicated
in Fig. 2 b). We incorporate the y-axis reflection invariance. By a random data draw-
ing repeated 20 times, the non-invariant kernel kP! of degree 2 results in 21.0046.59
update steps, while the invariant kernel kﬁ’gls converges much faster after 11.55+4.54
updates. So the explicit invariance knowledge leads to improved convergence prop-
erties.

An unsupervised method for novelty detection is the optimal enclosing hyper-
sphere algorithm (Shawe-Taylor and Cristianini (2004)). As illustrated in Fig. 2 ¢)
we choose 30 points randomly lying on a sine-curve, which are interpreted as nor-
mal observations. We randomly add 10 points on slightly downward/upward shifted
curves and want these points to be detected as novelties. The linear non-invariant &'
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results in an ordinary sphere, which however gives an average of 4.75 4+ 1.12 false
alarms, i.e. normal patterns detected as novelties, and 4.35 40.93 missed outliers, i.e.
outliers detected as normal patterns. As soon as we involve the sine-invariance by the
IDS-kernel we consistently obtain 0.00 £ 0.00 false alarms and 0.40 4= 0.50 misses.
So explicit invariance gives a remarkable performance gain in terms of recognition
or detection accuracy.

We conclude the 2D experiments with the SVM on two random sets of 20 points
distributed uniformly on two concentric rings, cf. Fig. 2 d). We involve rotation in-
variance explicitly by taking T as rotations by angles ¢ € [—7/2,7/2]. In the example
we obtain an average of 16.40 £ 1.67 SVs (indicated as black points) for the non-
invariant k" case, whereas the IDS-kernel only returns 3.40 & 0.75 SVs. So there
is a clear improvement by involving invariance expressed in the model size. This is
a determining factor for the required storage, number of test-kernel evaluations and
error estimates.

6 Conclusion

We investigated and formalized elementary properties of IDS-kernels. We have
proven that IDS-kernels offer two intuitive ways of adjusting the total invariance
to approximate invariance until recovering the non-invariant case for various dis-
crete, continuous, infinite and even non-group transformations. By this they build a
framework interpolating between invariant and non-invariant machine learning. The
definiteness of the kernels can be characterized precisely, which gives practical cri-
teria for checking positive definiteness in applications.

The experiments demonstrate various benefits. In addition to the model-inherent
invariance, when applying such kernels, further advantages can be the convergence
speed in online-learning methods, model size reduction in SV approaches, or im-
provement of prediction accuracy. We conclude that these kernels indeed can be
valuable tools for general pattern recognition problems with known invariances.
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Abstract. The problem of selection of variables seems to be the key issue in classification of
multi-dimensional objects. An optimal set of features should be made of only those variables,
which are essential for the differentiation of studied objects. This selection may be made easier
if a graphic analysis of an U-matrix is carried out. It allows to easily identify variables, which
do not differentiate the studied objects. A graphic analysis may, however, not suffice to analyse
data when an object is described with hundreds of variables. The authors of the paper propose
a procedure which allows to eliminate variables with the smallest discriminating potential
based on the measurement of concentration of objects on the Kohonen self organising map
networks.

1 Introduction

An intensive development of computer technologies in recent years lead i.a. to an
enormous increase in the size of available databases. The question refers not only to
an increase in the number of recorded cases. An essential, qualitative change is the
increase of the number of variables describing a particular case. There are databases
where one object is described by over 2000 attributes. Such a great number of vari-
ables meaningfully changes the scale of problems connected with the analysis of
such databases. It results, inter alia, in problems of separation of the group structure
of studied objects. According to i.a. Milligan (1994, 1996, p. 348) the approach fre-
quently applied by the creators of databases who strive to describe the objects with
the possibly large number of variables is not only unnecessary but essentially erro-
neous. Adding several irrelevant variables to the set of studied variables may limit or
even eliminate the possibility of discovering the group structure of studied objects.
In the set of variables only such variables should be included, which (cf: Gordon
1999, p. 3), contribute to:

e an increase in the homogeneity of separate clusters,
* an increase in the heterogeneity among clusters,
* easier interpretation of features of clusters which were set apart.
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The reduction of the space of variables would also contribute to a considerable re-
duction of time of analyses and to apply much more refined, but at the same time
more sophisticated and time consuming methods of data analysis.

The problem of reduction of the set of variables is extremely important while
solving the classification problems. That is why a considerable attention was de-
voted to it in literature (cf.: Gnanadieskian, Kettenring, Tsao, 1995). It is possible to
distinguish three approaches to the development of an optimal set of variables:

1. weighing the variables — where each variable is given a weight which is related
to its relative importance in description of the studied problem,

2. selection of variables — consisting in the elimination of variables with the small-
est discriminating potential from the set of variables; this approach may be con-
sidered as a special case of the first approach where some variables are assigned
the weight of O — in the case of rejected variables and the weight of 1 in the case
of selected variables,

3. replacement of the original variables with artificial variables — this is a classical
statistical approach based on the analysis of principal components.

In the present paper a method of selecting variables based on the neural SOM net-
work belonging to the second of the above types of methods will be presented.

2 A proposition to reduce the number of variables

The Kohonen SOM network is a very attractive method of classifying multidimen-
sional data. As shown by Deboeck G. and Kohonen T. (1998) it is an efficient method
of sorting out complex data. It is also an excellent method of visualisation of multi-
dimensional data, examples supporting this supposition may be found in Vesanto J.
(1997). One of important properties of the SOM network is the possibility of visuali-
sation of shares of particular variables in a matrix of unified distances (an U-matrix).
Joint activation of particular neurons of the network is the sum of activations result-
ing from activation of particular variables. Since those components may be recorded
in a separate data vector, they may be analysed independently from one another.

Let us consider two simple examples. Figure 2 shows a set of 200 objects de-
scribed with 2 variables. It is possible to identify a clear structure of 4 clusters, each
made of 50 objects. The combination of both variables clearly differentiates the clus-
ters.

A SOM network was built for the above dataset with a hexagonal structure, with
a dimension of 17x17 neurons with a Gaussian neighbour function. The visualisation
of the matrix of unified distances (the U-matrix) is shown in Fig. 2. The colour of
particular segments indicates the distance, in which a given neuron is located in
relation to its neighbours. Since some neurons identify the studied objects, this colour
shows at the same time the distances between objects in the space of features. The
“wall” of higher distances is clearly visible. Large distances separate objects which
create clear clusters (concentrations). The share of both variables in the matrix of
unified distances (U-matrix) is presented in Fig. 2. It can be clearly observed, that
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Fig. 1. An exemplary dataset - set 1

variables 1 and 2 separate the set of objects, each variable dividing the set into two
parts. Both parts of the graph indicate extreme distances between objects located
there. This observation allows to say, that both variables are characterised with a
similar potential of discrimination of the studied objects. Since the boundary between
both parts is so “acute” it may be considered, that both variables have a considerable
potential to discriminate the studied objects.
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Fig. 2. The matrix of unified distances for the dataset 1
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Fig. 3. The share of variable 1 and 2 in the matrix of unified distances (U-matrix) - dataset 1

The situation is different in the second case. Like in the former case we observe
200 objects described with two variables, belonging to 4 clusters. The first vari-
able allows to easily classify objects into 4 clusters. The variable 2 does not have,
however, such potential, since the clusters are non-separable in relation to it. Fig. 2
presents the objects, while Fig. 2 shows the share of particular variables in the matrix
of unified distances (the U-matrix) based on the SOM network.

The analysis of distance between objects with the use of the two selected vari-
ables suggests, that variable 1 discriminates the objects very well. The borders be-
tween clusters are clear and easily discernible. It may be said that variable 1 has a
great discriminating potential. Variable 2 has, however, much worse properties. It is
not possible to identify clear clusters. Objects are rather uniformly distributed over
the SOM network. We can say that variable 2 does not have the discriminating po-
tential.

The application of the above procedure to assess the discriminating potential of
variables is also highly efficient in more complicated cases and may be successfully
applied in practice.

Its essential weakness is the fact, that for a large number of variables it becomes
time consuming and inefficient. A certain way to circumvent that weakness, if the
number of variables does not exceed several hundred, is to apply a preliminary group-
ing of variables. Very often, in socio-economic research, there are many variables
which are differently and to a different extent correlated with one another. If we
preliminarily distinguish the clusters of variables of similar properties, it will be pos-
sible to eliminate the variables with the smallest discriminating potential from each
cluster of variables. Each cluster of variables is analysed independently, what makes
the analysis easier. An exceptionally efficient method of classification of variables is
the SOM network which has a topology of a chain. In Figure 2 the SOM network
is shown, which classifies 58 economic and social variables describing 307 Polish
poviats (smallest territorial administration units in Poland) in 2004.

In particular clusters of variables their number is much smaller than in the entire
dataset and it is much easier to eliminate those variables with the smallest discrim-
inating potential. At the same time this procedure does not allow to eliminate all
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variables with similar properties, because they are located in one, not empty cluster.
Quite frequently, because of certain factual reasons we would like to retain some
variables, or prefer to retain at least one variable for each cluster.

For a great number of variables, above 100, a solely graphic analysis of discrim-
inating potential of variables would be inefficient. Thus it seems justified to look for
an analytical method of assessment of the discriminating potential of variables based
on the SOM network and the above observations.

One of the possible solutions results from the observation of the location of ob-
jects on the map of unified distances for variables. It can be observed, that the vari-
ables with a great discriminating potential are characterised with a higher object con-
centration on the map than the variables with a small potential. The variables with
a small discriminating potential are to an important extent rather uniformly located
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on the map. On the basis of this observation we propose to apply the concentration
indices on the SOM map in the assessment of discriminating potential of variables.
In the presented study we tested the two known concentration indices. The first one
is the concentration index based on entropy:

H
K,=1- 1
log, (n) o
where:
- 1
H= Z(pilogz(;)) ©))
i=1 !

The second of proposed indices is the classical Gini concentration index:

1 - (,Mﬂ’l cum
sz[;l—l le 3)

Both indices were written in the form appropriate for individual data. It seems
that higher values of those coefficients should suggest variables with a greater dis-
criminating potential.

3 Applications and results

As a result of application of the proposed indices in the first example, the values
recorded in Table 1 were received (SOM network the same like in Fig 2).

The value of discriminating potential was initially assessed as high for both vari-
ables. The values of concentration coefficients for both variables were also similar!.

It is worth to note, that the value of coefficients is of no relevance here. The differences
between values of particular variables are more important.
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Table 1. Values of concentration coefficients for set 1.

Variable | K, Gini
1 0.0412  0.3612
2 0.0381  0.3438

The values of indices for variables from the second example are given in Table
2 (SOM network the same like in Fig 2). As it is possible to observe, the second
variable is characterised with much smaller values of concentration coefficients than
the first variable.

Table 2. Values of concentration coefficients for set 2.

Variable | K, Gini
1 0.0411  0.3568
2 0.0145  0.2264

It is compatible with observations based on graphic analysis, since the discrimi-
nating potential of the first variable was assessed as high, while the potential of the
second variable was assessed as low. The procedure of elimination of variables of
a low discriminating potential may be connected with a procedure of classification
of variables. Thus a situation may be prevented, where all variables of a given type
would be eliminated, if they were located in one cluster of variables only. Such prop-
erty will be desirable in many cases. A full procedure of elimination of variables is
presented in Fig. 3. It is a procedure consisting in several stages. In the first stage
the SOM network is built on the basis of all variables. Then the values of concentra-
tion coefficients are determined. In the second stage variables are classified on the
basis of the SOM network with a chain topology. Then, variables with the smallest
value of concentration coefficient are eliminated from each cluster of variables. In
the third stage a new SOM network is built for a reduced set of variables. In order
to assess, whether the elimination of particular variables leads to an improvement
in the resulting group structure, the value of one index of the quality of classifica-
tion should be identified. Among the better known ones it is possible to mention the
Calinski-Harabasz, Davies-Bouldin2, and Silhouette® indices. In the quoted research
the value of the Silhouette index was determined. Apart from its properties that allow
for a good assessment of the group structure of objects, this index allows to visualise
the belonging of objects to particular clusters, what is compatible with the idea of
studies based on graphic analysis proposed here. This procedure is repeated until the
number of variables in a cluster of variables is not smaller than a certain number

2 Compare: Milligan G.W., Cooper M.C. (1985), An examination of procedures for deter-
mining the number of clusters in data set. Psychometrika, 50(2), p. 159-179.

3 Rousseeuw PJ. (1987), Silhouettes: a graphical aid to the interpretation and validation of
cluster analysis. J. Comput. Appl. Math. 20, p. 53-65.
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determined in advance and the value of the Silhouette index increases. The appli-
cation of the above procedure (compare Fig. 3) for the determination of an optimal
set of variables in the description of Polish poviats is presented in Table 3. In the
presented analysis the reduction of variables was carried out on the basis of the Ke
concentration coefficient since it manifested several times higher differentiation of
particular variables than the Gini coefficient. The value of the Silhouette index for
the classification of poviats on the basis of all variables adopts the value of -0.07.
It suggests, that the group structure is completely false. Elimination of the variable
no. 24* clearly improves the group structure. In the subsequent iterations subsequent
variables are systematically eliminated, increasing the value of the Silhouette index.

After six iterations the highest value of the Silhouette index is achieved and the
elimination of further variables does not result in an improvement of the resulting
cluster structure. The cluster structure obtained after the reduction of 14 variables is
not very strong, but it is meaningfully better than the one resulting from the consid-
eration of all variables. The resulting classification of poviats is factually justified, it
is possible then to well interpret the clusters®.

Table 3. Values of the Silhouette index after the reduction of variables

Step | Removed Variables Global Silhouette Index
0 all var. -0.07
1 24 0.10
2 36 0.11
3 18, 43 0.11
4 1,2,3,6 0.13
5 3, 15, 26, 39 0.28
6 4,17 0.39
7 5,20, 23 0.38

4 Conclusions

The proposed method of selection of variables has numerous advantages. It is a fully
automatic procedure, compatible with the Data Mining philosophy of analyses. Sub-
stantial empirical experience of the authors suggest, that it leads towards a consider-
able improvement in the obtained group structure in comparison with the analysis of
the whole data set. It is more efficient the greater is the number of variables studied.

4 After each iteration the variables are renumbered anew, that is why in subsequent iterations
the same numbers of variables may appear.

5 Compare: Migdal Najman K., Najman K. (2003), Zastosowanie sieci neuronowej typu
SOM w badaniu przestrzennego zroZnicowania powiatow (Application of the SOM neural
network in studies of spatial differentiation of poviats), Wiadomosci Statystyczne, 4/2003,
p. 72-85
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Fig. 7. Procedure of determination of an optimal set of variables

This procedure may be also applied together with other methods of data classifica-
tion as a preprocessor. It is also possible to apply other measures of discriminating
potential than the concentration coefficients. It is also possible to use the measures
based on the distance between objects on the SOM map.

The proposed method is, however, not devoid of flaws. Its application should be
preceded with a subjective determination of a minimum number of variables in a
single cluster of variables. There are no factual indications, how great that number
should be. This method is also very sensitive to the quality of the SOM network
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itself®. Since the learning algorithm of the SOM network is not deterministic, in
subsequent iterations it is possible to obtain a network with very weak discriminating
properties. In such a situation the value of the Silhouette index in subsequent stages
of variable reduction may not be monotone, what would make the interpretation
of obtained results substantially more difficult. At the end it is worth to note that
for large databases the repetitive construction of the SOM networks may be time
consuming and may require a large computing capacity of the computer equipment
used.

In the opinion of the authors the presented method proved its utility in numerous
empirical studies and may be successfully applied in practice.
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Abstract. The histological grade of a brain tumor is an important indicator for choosing the
treatment after resection. To facilitate objectivity and reproducibility, Iglesias et al. (1986)
proposed to use a standardized protocol of 50 histological features in the grading process.

We tested the ability of Support Vector Machines (SVM), Learning Vector Quantization
(LVQ) and Supervised Relevance Neural Gas (SRNG) to predict the correct grades of the
794 astrocytomas in our database. Furthermore, we discuss the stability of the procedure with
respect to errors and propose a different parametrization of the metric in the SRNG algorithm
to avoid the introduction of unnecessary boundaries in the parameter space.

1 Introduction

Although the histological grade has been recognized as one of the most powerful
predictors of the biological behavior of tumors and significantly affects the manage-
ment of patients, it suffers from low inter- and intraobserver reproducibility due to
the subjectivity inherent to visual observation. The common procedure for grading
is that a pathologist looks at the biopsy under a microscope and then classifies the
tumor on a scale of 4 grades from I to IV (see Fig. 1). The grades roughly correspond
to survival times: a patient with a grade I tumor can survive 10 or more years, while
a patient with a grade IV tumor dies with high probability within 15 month. Iglesias
et al. (1986) proposed to use a standardized protocol of 50 histological features in
addition to make grading of tumors reproducible and to provide data for statistical
analysis and classification.

The presence of these 50 histological features (Fig. 2) was rated in 4 categories
from O (not present) to 3 (abundant) by visual inspection of the sections under a
microscope. The type of astrocytoma was then determined by an expert and the cor-
responding histological grade between I and IV is assigned.
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Fig. 1. Pictures of biopsies under a microscope. The larger picture is healthy brain tissue
with visible neurons. The small pictures are tumors of increasing grade from left top to right
bottom. Note the increasing number of cell nuclei and increasing disorder.

+ ++ +++

Fig. 2. One the 50 histological features: Concentric arrangement. The tumor cells build con-
centric formations with different diameters.

2 Algorithms

We chose LVQ (Kohonen (1995)), SRNG (Villmann et al. (2002)) and SVM (Vap-
nik (1995)) to classify this high dimensional data set, because the generalization
error (expectation value of misclassification) of these algorithms does not depend on
the dimension of the feature space (Barlett and Mendelson (2002), Crammer et al.
(2003), Hammer et al. (2005)).

For the computations we used the original LVQ-PAK (Kohonen et al. (1992)),
LIBSVM (Chan and Lin (2001)) and our own implementation of SRNG, since to our
knowledge there exists no freely available package. Moreover for obtaining our best
results, we had to deviate in some respects from the description given in the original
article (Villmann et al. (2002)). In order to be able to discuss our modification we
briefly formulate the original algorithm.

2.1 SRNG

Let the feature space be R" and fix a discrete set of labels 9, a training set 7 C
R" x 9 and a prototype set C C R" x .
The distance in feature space is defined to be
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with parameters A = (A1,...,A,) € R", A; > 0and > A; = 1. Given a sample (x,y) €
T, we define denote its distance to the closest prototype with a different label by
dy (x,y),

dy (x,y) := min{d(x, %)|(%,5) € C,y # J} -

We denote the set of all prototypes with label y by

Wy = {(%y) €C}

and enumerate its elements (¥,¥) according to their distance to (x,y)

120y (%3) := [{(£,9) € Wyld(%,x) <d(%x)}|.

Then the loss of a single sample (x,y) € T is given by
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where v is the neighborhood range, sgd = (1+exp(—x))~! the sigmoid function and
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a normalization constant. The actual SRNG algorithm now minimizes the total loss
of the training set 7 C X

Lep(T) = Z Ly (x,y) (D

(xy)eT

by stochastic gradient descent with respect to the prototypes C and the parameters of
the metric A, while letting the neighborhood range y approach zero. This in particular
reduces the dependence on the initial choice of the prototypes, which is a common
problem with LVQ.

Stochastic gradient descent means here, that we compute the gradients VL and
VL of the loss function L (x,y) of a single randomly chosen element (x,y) of the
training set and replace C by C —ecVeL and A by A — ¢, V; L with small learning
rates €c > 10g), > 0. The different magnitude of the learning rates is important, be-
cause classification is primarily done using the prototypes. If the metric is allowed to
change too quickly, the algorithm will in most cases end in a suboptimal minimum.
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2.2 Modified SRNG

In our early experiments and while tuning SRNG for our task, we found two prob-
lems with the distance used in feature space.

The straight forward parametrization of the metric comes at the price of intro-
ducing the boundaries A; > 0, which in practice are often hit too early and knock
out the corresponding feature. Also, artificially setting negative A; to zero does slow
down the convergence process.

The other point is, that by choosing different learning rates €¢ and ¢, for proto-
types and metric parameters, we are no longer using the gradient of the given loss
function (1), which can also be problematic in the convergence process.

We propose using the following metric for measuring distance in feature space

n
dy (x,%) = Zer}” |x; 7)'5,'|2 ,
i=1

where the dependence on 2; is exponential and we introduce a scaling factor r > 0.
This definition avoids explicit boundaries for A; and r allows to adjust the rate of
change of the distance function relative to the prototypes. Hence this parametriza-
tion enables us to minimize the loss function by stochastic gradient descent without
treating prototypes and metric parameters separately.

3 Results

To test the prediction performance of the algorithms (Table 3), we divided the 794
cases (grade I: 156, grade I1: 362, grade III: 238, grade 4: 38) into 10 subsets of equal
size and grade distribution for cross validation.

For SVM we used a RBF kernel and let LIBSVM choose its two parameters.
LVQ performed best with 700 prototypes (which is roughly equal to the size of the
training set), a learning rate of 0.1 and 70000 iterations.

Choosing the right parameters for SRNG is a bit more complicated. After some
experiments using cross validation, we got the best results using 357 prototypes, a
learning rate of 0.01, a metric scaling factor » = 0.1 and a fixed neighborhood range
vy = 1. We stopped the iteration process once the classification results for the training
set got worse. An attempt to choose the parameters on a grid by cross validation over
the training set yielded a recognition rate of 77.47%, which is almost 2% below our
best result.

For practical applications, we also wanted to know how good the performance in
the presence of noise would be. If we prepare the testing set such that in 5% of the
features uniformly over all cases, a feature is ranked one class higher or lower with
equal probability, we still get 76.6% correct predictions using SVM and 73.1% with
SRNG. At 10% noise, the performance drops to 74.3% (SVM) resp. 70.2% (SRNG).
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Table 1. The classification results. The columns show how many cases of grade i where clas-
sified as grade j. For example, in SRNG grade 1 tumors were classified as grade 3 in 2.26%
of the cases.

4 0.00 | 0.00 | 4.20 |48.33
3 1.92 | 8.31 |70.18 |49.17 2.62 | 3.87 |77.30|46.67
2 ]/26.83(79.80|22.26 | 0.00 28.83|88.41 | 18.06| 2.50
I ||71.25|11.89| 3.35 | 2.50 1 68.54| 7.44 | 2.54 | 0.00

[LVQ] 1 [ 2 [ 3 [ 4 |[SRNG[[ 1 [ 2 [ 3 [ 4 |

0.00 | 0.28 | 2.10 |50.83
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0.00 | 0.56 | 2.08 |53.33

067 | 3.60 |81.12|44.17
28218535 15.54] 2.50 [ Total [ LVQ [SRNG [ SVM |

1 [[71.12]10.50| 1.25 | 0.00 [200d [[73.69] 79.36 [79.74 ]
[SWM[[ 1 [ 2 [3 ] 4]

| W] &

4 Conclusions

We showed that the histological grade of the astrocytomas in our database can be
reliably predicted with Support Vector Machines and Supervised Relevance Neural
Gas from 50 histological features rated on a scale from 0 to 3 by a pathologist. Since
the attained accuracy is well above the concordance rates of independent experts
(Coons et al. (1997)), this is a first step towards objective and reproducible grading
of brain tumors.

Moreover we introduced a different distance function for SRNG, which in our
case improved convergence and reliability.
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Abstract. Mixture regression models have increasingly received attention from both market-
ing theory and practice, but the question of selecting the correct number of segments is still
without a satisfactory answer. Various authors have considered this problem, but as most of
available studies appeared in statistics literature, they aim to exemplify the effectiveness of
new proposed measures, instead of revealing the performance of measures commonly avail-
able in statistical packages. The study investigates how well commonly used information cri-
teria perform in mixture regression of normal data, with alternating sample sizes. In order to
account for different levels of heterogeneity, this factor was analyzed for different mixture
proportions. As existing studies only evaluate the criteria’s relative performance, the resulting
success rates were compared with an outside criterion, so called chance models. The findings
prove helpful for specific constellations.

1 Introduction

In the field of marketing, finite mixture models have recently received increasing
attention from both a practical and theoretical point of view. In the last years, tradi-
tional mixture models have been extended by various multivariate statistical methods
such as multidimensional scaling, exploratory factor analysis (DeSarbo et al. (2001))
or structural equation models (Jedidi et al. (1979); Hahn et al. (2002)), whereas
regression models (Wedel and Kamakura, (1999), p. 99) for normally distributed
data are the most common analysis procedure in marketing context, e.g. in terms of
conjoint and market response models (Andrews et al. (2002); Andrews and Currim
(2003b), p. 316). Correspondingly, mixture regression models are prevalent in mar-
keting literature. Despite their widespread use and the importance of retaining the
true number of segments in order to reach meaningful conclusions from any anal-
ysis, model selection is still an unresolved problem (Andrews and Currim (2003a),
p- 235; Wedel and Kamakura (1999), p. 91). Choosing the wrong number of seg-
ments results in an under- or oversegmentation, thus leading to flawed management
decisions on e.g. customer targeting, product positioning or the determination of the
optimal marketing mix (Andrews and Currim (2003a), p. 235). Therefore the objec-
tive of this paper is to give recommendations on which criterion should be considered
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at what combination of sample/segment size in order to identify the true number of
segments in a given data set.

Various authors have considered the problem of choosing the number of seg-
ments in mixture models in different context. But as most of the available studies
appeared in statistics literature, they aim at exemplifying the effectiveness of new
proposed measures, instead of revealing the performance of measures commonly
available in statistical packages. Despite its practical importance, this topic has not
been thoroughly considered for mixture regression models. An exception in this area
are the studies by Hawkins et al. (2001), Andrews and Currim (2003b) and Oliveira-
Brochado and Martins (2006), that examine the performance of various information
criteria against several factors such as measurement level of predictors, number of
predictors, separation of the segments or error variance. Regardless of the broad
scope of questions covered in these studies, they do not profoundly investigate the
criteria’s performance against the one factor best influenceable by the marketing an-
alyst, namely the sample size. From an application-oriented point of view, it is de-
sirable to know which sample size is necessary in order to guarantee validity when
choosing a model with a certain criterion. Furthermore, the sample size is a key
differentiator between different criteria, having a large effect on the criteria’s effec-
tiveness. Therefore, the first objective of this study is to determine how well the
information criteria perform in mixture regression of normal data with alternating
sample sizes. Another factor that is closely related to this problem concerns segment
size ratio, as past research suggests the mixture proportions to have a significant ef-
fect on the criteria’s performance (Andrews and Currim (2003b)). Even though a
specific sample size might prove beneficial in order to guarantee a satisfactory per-
formance of the information criteria in general, the presence of niche segments might
lead to a reduced heterogeneity and thus to a wrong decision in choosing the number
of segments. That is why the second objective is to measure the information cri-
teria’s performance in order to be able to assess the validity of the criteria chosen
when specific segment and sample sizes are present. These factors are evaluated for
a three-segment solution by conducting a Monte Carlo simulation.

2 Model selection in mixture models

Assessing the number of segments in a mixture model is a difficult but important
task. Whereas it is well known that conventional %>-based goodness of fit tests and
likelihood ratio tests are unsuitable for making this determination (Aitkin and Ru-
bin (1985)), the decision on what model selection statistic should be used still re-
mains unsolved (McLachlan and Peel (2000)). Different test procedures, designed to
circumnavigate implementation problems of classical 2-tests exist, but haven’t yet
found their way into widely used software applications for mixture model estima-
tion (Sarstedt (2006), p. 8). Another main approach for deciding on the number of
segments is based on a penalized form of the likelihood. These so called information
criteria. Information criteria for model selection simultaneously take into account the
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goodness-of-fit (likelihood) of a model and the number of parameters used to achieve
that fit.

The simulation study focuses on four of the most representative and widely ap-
plied model selection criteria. In a recent study by Oliveira-Brochado and Martins
(2006), the authors report that in 37 published studies, the Akaike’s Information Cri-
terion (AIC) (Akaike, 1973) was used 15 times, the Consistent Akaike’s Information
criterion (CAIC) (Bozdogan (1987)) was used 13 times and the Bayes Information
Criterion (BIC) (Schwarz (1978)) was used 11 times (multiple selections possible).
In another meta-study of all major marketing journals, Sarstedt (2006) observes that
BIC, AIC, CAIC and the Modified AIC with factor three (AIC3) (Bozdogan (1994))
are the selection statistics most frequently used in mixture regression analysis. In
none of the studies examined by Sarstedt did the author draw back on statistical tests
to decide on the number of segments in the mixture. This report narrows its focus
on presenting the simulation results for AIC, BIC, CAIC and AIC3. Furthermore,
the Adjusted BIC (Rissanen, 1978) is considered because the authors expect an in-
creased usage due to its implementation into the increasingly popular software for
estimating mixture models, Mplus. For a detailed discussion on the statistical prop-
erties of the criteria, the reader is referred to the references cited above.

3 Simulation design

The strategy for this simulation consists of initially drawing observations derived
from an ordinary least squares regression and applying these to the FlexMix algo-
rithm (Leisch, 2004; Griin and Leisch (2006)). FlexMix is a general framework for
finite mixtures of regression models using the EM algorithm (Dempster et al., 1977)
which is available as an extension package for the statistical computing software R.
In this simulation study, models with alternating observations and three continuous
predictors were considered for the OLS regression. First, Y = 'X was computed for
each observation, where X was drawn from a normal distribution. Subsequently an
error term derived from a standard normal distribution was added to the true values.
Each simulation set up was run with 1.000 iterations. The main parameters control-
ling the simulation were:

* The number of segments: K =3

* The regression coefficients in each segment which were specified as follows:
—  Segment 1: B; = (1,1,1.5,2.5)

- Segment 2: B, = (1,2.5,1.5,4)
—  Segment 3: B3 = (2,4.5,2.5,4)

* Sample sizes which were varied in a hundred-step interval of [100;1.000]. For
each of the sample sizes the simulation was run for three types of mixture pro-
portions. To allow for a high level of heterogeneity, two small and one large
segment were generated.

— Minor proportions: 7'5% = né =0.land 7 =038

— Intermediate proportions: 1t} =1t} = 0.2 and 7t} = 0.6
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—  Near-uniform proportions: t} =7} = 0.3 and } = 0.4
e Each simulation run was carried out five times for k = 1,...,5 segments.

The likelihood was maximized using the EM algorithm. As a limitation of the
algorithm is its convergence to local maxima (Wedel and Kamakura (1999), p. 88),
it was run repeatedly with 10 replications, totalling in 50 runs per iteration. For each
number of segments, the best solution was picked.

4 Results summary

The performance of each criterion was measured by their success rate, or by the
percentages of iterations in which the criterion succeeded in determining the true
number of segments in the model. As indicated above, previous studies only observe
the criteria’s relative performance, ignoring the question whether the criteria perform
any better than chance. To gain a deeper understanding of the criteria’s absolute per-
formance one has to compare the success rates with an ex-ante specified chance
model. In order to verify whether the criteria are adequate, the predictive accuracy of
each criterion with respect to chance is measured using the following chance models
derived from discriminant analysis (Morrison (1969)): Random chance, proportional
chance and maximum chance criterion. In order to be able to apply these criteria,
the researcher has to have prior knowledge or make presumptions concerning the
underlying model: For a given data set, let M; be a model with K; segments from a
consideration set with C competing models K = {M,...,Mc} and p; be the prior
probability to observe M;, (j=1,...,C) and Z]C:l p; = 1. The random chance cri-
terion is CM;,, = é = p, which indicates that each of the competing models has
an equal prior probability. The proportional chance criterion is CMpop = chzl pjz,
which has been used mainly as a point of reference for subjective evaluation (Mor-
rison (1969)), rather than the basis of a statistical test to determine if the expected
proportion differs from the observed proportion of models that is correctly classified.
The maximum chance criterion is CMp,x = max(pj,...,pc), which defines the max-
imum prior probability to observe model j in a given consideration set as being the
benchmark for a criterion’s success rate. Since CMay < CMprop < CMpax , CMpax
denotes the strictest of the three chance model criteria. If a criterion cannot do better
than CM ., one might disregard the model selection statistics and choose M ; where
max(p;) . But as model selection criteria may defy the odds by pointing at a model i
where p; < max(p;), in most situations CMpy,p should be used.

Relating to the focus of this article, an information criterion is adequate for a
certain factor level combination when the success rate is greater than the value of a
given chance model criterion. If this is not the case, a researcher shoud rather revert
to practical considerations as for example segment identifiability when choosing the
number of segments. To make use of the idea of chance models, one can define a
consideration set K = {M/,M,, M3} where M| denotes a model with K = 2 segments
(underfitting), M> a model with K = 3 segments (success) and M3 a model with K > 4
segments (overfitting), thus leading to the random chance criterion CM;,, ~ 0.33.
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Suppose a researcher has the following prior probabilities to observe one of the
models, p; = 0.5, p» = 0.3, and p3 = 0.2 the proportional chance criterion for each
factor level combination is CMprop = 0.38 and the maximum chance criterion is
CMpax = 0.5. The following figures illustrate the findings of the simulation run. Line
charts are used to show the success rates for all sample/segment size combinations.
Vertical dotted lines illustrate the boundaries of the previously mentioned chance
models with K = {M,M>,M3}: CMa, ~ 0.33 (lower dotted line), CMpop = 0.38
(medial dotted line) and CMpax = 0.5 (upper dotted line). These boundaries are just
exemplary and need to be specified by the researcher in dependence of the analysis
at hand. Figure 1 illustrates the success rates of the five information criteria with re-

Fig. 1. Success rates with minor mixture proportions

spect to minor mixture proportions. Whereas AIC demonstrates a poor performance
across all levels of sample size, CAIC outperforms the other criteria across almost all
factor levels. The criterion performs favorably in recovering the true number of seg-
ments, meeting exemplary chance boundaries for sample sizes of approximately 150
(random chance, proportional chance) and 250 (maximum chance), respectively. The
results in figure 2 from intermediate and near-uniform mixture proportions confirm
the previous findings and underline the CAIC’s strong performance in small sam-
ple size situations, quickly achieving success rates of over 90%. However as sample
sizes increase to 400, both ABIC and AIC3 perform advantageously. Even with near-
unifrom mixture proportions, AIC fails to any meet chance boundaries used in this
set-up. In contrast to previous findings by Andrews and Currim (2003b), CAIC out-
performs BIC across almost all sample/segment size combinations, whereupon the
deviation is marginal in the minor mixture proportion case.
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Fig. 2. Success rates with intermediate and near-uniform mixture proportions

5 Key contributions and future research directions

The findings presented in this paper are relevant to a large number of researchers
building models using mixture regression analysis. This study extends previous stud-
ies by evaluating how the interaction of sample and segment size affects the perfor-
mance of five of the most widely used information criteria for assessing the true
number of segments in mixture regression models. For the first time the quality of
these criteria was evaluated for a wide spectrum of possible sample/segment-size
constellations. AIC demonstrates an extremely poor performance across all simula-
tion situations. From an application-oriented point of view, this proves to be prob-



Model Selection in Mixture Regression Analysis 67

lematic, taking into account the high percentage of studies relying on this criterion
to assess the number of segments in the model. CAIC performs favourably, show-
ing slight weaknesses in determining the true number of segments for higher sample
sizes, in comparison to ABIC and AICs. Especially in the context of intermediate
and near-uniform mixture proportions AIC3 performs well, quickly achieving high
success rates.

A continued research on the performance of model selection criteria is needed
in order to provide practical guidelines for disclosing the true number of segments
in a mixture and to guarantee accurate conclusions for marketing practice. In the
present study, only three combinations of mixture proportions were considered, but
as the results show that market characteristics (i.e. different segment sizes) affect
the performance of the criteria, future studies could allow for a greater variation of
these proportions. However, considering the high number of research projects, one
generally has to be critical with the idea of finding a unique measure that can be
considered optimal in every simulation design or even practical applications, as in-
dicated in other studies. Model selection decisions should rather be based on various
evidences, not only derived from the data at hand but also from theoretical consider-
ations.
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Abstract. In this paper four local classification methods are described and their statistical
properties in the case of local data generating processes (LDGPs) are compared. In order to
systematically compare the local methods and LDA as global standard technique, they are
applied to a variety of situations which are simulated by experimental design. This way, it is
possible to identify characteristics of the data that influence the classification performances of
individual methods. For the simulated data sets the local methods on the average yield lower
error rates than LDA. Additionally, based on the estimated effects of the influencing factors,
groups of similar methods are found and the differences between these groups are revealed.
Furthermore, it is possible to recommend certain methods for special data structures.

1 Introduction

We consider four local classification methods that all use the Bayes decision rule.
The Common Components and the Hierarchical Mixture Classifiers, as well as Mix-
ture Discriminant Analysis (MDA), are based on mixture models. In contrast, the
Localized LDA (LLDA) relies on locally adaptive weighting of observations. Appli-
cation of these methods can be beneficial in case of local data generating processes
(LDGPs). That is, there is a finite number of sources where each one can produce
data of several classes. The local data generation by individual processes can be de-
scribed by local models. The LDGPs may cause, for example, a division of the data
set at hand into several clusters containing data of one or more classes. For such
data structures global standard methods may lead to poor results. One way to obtain
more adequate methods is localization, which means to extend global methods for
the purpose of local modeling. Both MDA and LLDA can be considered as localized
versions of Linear Discriminant Analysis (LDA).

In this paper we want to examine and compare some of the statistical properties of
the four methods. These are questions of interest: Are the local methods appropriate
to classification in case of LDGPs and do they perform better than global methods?
Which data characteristics have a large impact on the classification performances
and which methods are favorable to special data structures? For this purpose, in a
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simulation study the local methods and LDA as widely-used global technique are
applied systematically to a large variety of situations generated and simulated by ex-
perimental design.

This paper is organized as follows: First the four local classification methods are de-
scribed and compared. In section 3 the simulation study and its results are presented.
Finally, in section 4 a summary is given.

2 Local classification methods

2.1 Common Components Classifier - CC Classifier

The CC Classifier (Titsias and Likas (2001)) constitutes an adaptation of a radial ba-
sis function (RBF) network for class conditional density estimation with full sharing
of kernels among classes. Miller and Uyar (1998) showed that the decision func-
tion of this RBF Classifier is equivalent to the Bayes decision function of a classifier
where class conditional densities are modeled by mixtures with common mixture
components.

Assume that there are K given classes denoted by ci,...,ck. Then in the common
components model the conditional density for class ¢y is

Gee

fe(X|Ck):ZTEjkfej(x‘j) fork:la"'7K7 (1)
j=1

where 6 denotes the set of all parameters and 7 j; represents the probability P(j|cx).
The densities fp; (x]7), j=1,...,Gcc, with 8; denoting the corresponding parame-
ters, do not depend on c;. Therefore all class conditional densities are explained by
the same G¢c mixture components.

This implicates that the data consist of Gce groups that can contain observations of
all K classes. Because all data points in group j are explained by the same density
fo, (x] ) classes in single groups are badly separable. The CC Classifier can only
perform well if individual groups mainly contain data of a unique class. This is more
likely if the parameter G¢c is large. Therefore the classification performance de-
pends heavily on the choice of G¢c.

In order to calculate the class posterior probabilities the parameters 0; and the pri-
ors Tj; and Py := P(cy) are estimated based on maximum likelihood and the EM
algorithm. Typically, fp;(x|j) is a normal density with parameters 6; = {u;,%;}. A
derivation of the EM steps for the gaussian case is given in Titsias and Likas (2001),
p- 989.

2.2 Hierarchical Mixture Classifier — HM Classifier

The HM Classifier (Titsias and Likas (2002)) can be considered as extension of the
CC Classifier. We assume again that the data consist of Gy groups. But addition-
ally, we suppose that within each group j, j = 1,...,Gpwm, there are class-labeled
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subgroups that are modeled by the densities fp, (x|c, j) fork=1,..., K, where 6;
are the corresponding parameters. Then the unconditional density of x is given by a
three-level hierarchical mixture model

Gum

Zn,ZPk,fek, x| ek, J) )
j=1 k=1

with 1t; representing the group prior probability P(j) and Py; denoting the probability
P(ci | j). The class conditional densities take the form

Gum

fo (x Zn/kfek x|e,j) fork=1,... K, 3)

where 0y denotes the set of all parameters corresponding to class c¢. Here, the mix-
ture components fekj (x| ¢k, j) depend on the class labels ¢, and hence each class
conditional density is described by a separate mixture. This resolves the data repre-
sentation drawback of the common components model.

The hierarchical structure of the model is maintained when calculating the class pos-
terior probabilities. In a first step, the group membership probabilities P(j|x) are
estimated and, in a second step, based on P(j|x) estimates for 7, P; and ; are
computed. For calculating P(j|x) the EM algorithm is used. Typically, Jou,; (x| ek, J)
is the density of a normal distribution with parameters 0; = {14;,%;}. Details on
the EM steps in the gaussian case can be found in Titsias and Likas (2002), p. 2230.
Note that the estimate O ; is only provided if By ;> 0. Otherwise, it is assumed that
group j does not contain data of class ¢ and the associated subgroup is pruned.

2.3 Mixture Discriminant Analysis - MDA

MDA (Hastie and Tibshirani (1996)) is a localized form of Linear Discriminant Anal-
ysis (LDA). Applying LDA is equivalent to using the Bayes rule in case of normal
populations with different means and a common covariance matrix. The approach
taken by MDA is to model the class conditional densities by gaussian mixtures.
Suppose that each class ¢y is artificially divided into S; subclasses denoted by ¢y,
j=1,...,85 and define S := ZkK:l Sy as total number of subclasses. The subclasses
are modeled by normal densities with different mean vectors yy ; and, similar to LDA,
a common covariance matrix X. Then the class conditional densities are

fups(x Zn,kq% x|er ) fork=1,...,K, (4)

where u; denotes the set of all subclass means in class c; and 7, represents the prob-
ability P(cy;|cx). The densities ¢y, ; x(x|cx,cx;) of the mixture components depend
on c;. Hence, as in the case of the HM Classifier, the class conditional densities are
described by separate mixtures.
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Parameters and priors are estimated based on maximum likelihood. In contrast to the
hierarchical approach taken by the HM Classifier, the MDA likelihood is maximized
directly using the EM algorithm.

Let x € R?. LDA can be used as a tool for dimension reduction by choosing a
subspace of rank p* < min{p,K — 1} that maximally separates the class centers.
Hastie and Tibshirani (1996), p. 160, show that for MDA a dimension reduction sim-
ilar to LDA can be achieved by maximizing the log likelihood under the constraint
rank{uy;} = p* with p* <min{p,S—1}.

2.4 Localized LDA — LLDA

The Localized LDA (Czogiel et al. (2006)) relies on an idea of Tutz and Binder
(2005). They suggest the introduction of locally adaptive weights to the training data
in order to turn global methods into observation specific approaches that build in-
dividual classification rules for all observations to be classified. Tutz and Binder
(2005) consider only two class problems and focus on logistic regression. Czogiel et
al. (2006) extend their concept of localization to LDA by introducing weights to the
n nearest neighbors x(1),...,x(, of the observation x to be classified in the training
data set. These are given as

w(x7x(l-)) =W (W) @)

for i = 1,...,n, with W representing a kernel function. The Euclidean distance
dy(x) = Hx(,l) —xH to the farthest neighbor x(,) denotes the kernel width. The ob-
tained weights are locally adaptive in the sense that they depend on the Euclidean
distances of x and the training observations x;).

Various kernel functions can be used. For the simulation study we choose the kernel
Wy(y) = exp(—yy) that was found to be robust against varying data characteristics by
Czogiel et al. (2006). The parameter y € R™ has to be optimized.

For each x to be classified we obtain the n nearest neighbors in the training data
and the corresponding weights w (x,x@), i=1,...,n. These are used to compute
weighted estimates of the class priors, the class centers and the common covariance
matrix required to calculate the linear discriminant function. The relevant formulas
are given in Czogiel et al. (2006), p. 135.

3 Simulation study

3.1 Data generation, influencing factors and experimental design

In this work we compare the local classification methods in the presence of local data
generating processes (LDGPs). In order to simulate data for the case of K classes and
M LDGPs we use the mixture model
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Table 1. The chosen levels, coded by -1 and 1, of the influencing factors on the classification
performances determine the data generating model (equation (6)). The factor PUVAR defines
the proportion of useless variables that have equal class means and hence do not contribute to
class separation.

influencing factor model lfactor levej_ |
LP number of LDGPs M 2 4
PLP prior probabilities of LDGPs T unequal equal
DLP distance between LDGP centers M large small
CL number of classes K 3 6
PCL (conditional) prior probabilities of classes | Py; unequal equal
DCL  distance between class centers Ui j large small
VAR number of variables Micj> Zj 4 12
PUVAR proportion of useless variables U 0% 25%
DEP dependency in the variables 2y no yes
DND  deviation from the normal distribution T no yes

M K
fus@) = 3130 PT (G5, (xl e, ) ©6)
j=1 k=1

with u and X denoting the sets of all u;; and 2 ; and priors 7t; and Py;. The jth LDGP
is described by the local model Zszl P;T (q)#kj;kj (x] ex, ])) The transformation
of the gaussian mixture densities by the function 7" allows to produce data from non-
normal mixtures. In this work we use the system of densities by Johnson (1949) to
generate deviations from normality in skewness and kurtosis. If T is the identity the
data generating model equals the hierarchical mixture model in equation (2) with
gaussian subgroup densities and Gum = M.

We consider ten influencing factors which are given in Table 1. These factors de-
termine the data generating model. For example the factor PLP, defining the prior
probabilities of the LDGPs, is related to 7t; in equation (6) (cp. Table 1). We fix two
levels for every factor, coded by —1 and +1, which are also given in Table 1. In
general the low level is used for classification problems which should be of lower
difficulty, whereas the high level leads to situations where the premises of some
methods are not met (e.g. nonnormal mixture component densities) or the learning
problem is more complicated (e.g. more variables). For more details concerning the
choice of the factor levels see Schiffner (2006).

We use a fractional factorial 2!~3-design with tenfold replication leading to 1280
runs. For every run we construct a training data set with 3000 and a test data set
containing 1000 observations.

3.2 Results

We apply the local classification methods and global LDA to the simulated data sets
and obtain 1280 test data error rates r;, i = 1,. .., 1280, for every method. The chosen



74 Julia Schiffner and Claus Weihs

Table 2. Bayes errors and error rates of all classification methods with the specified param-
eters and mixture component densities on the 1280 simulated test data sets. R> denotes the
coefficients of determination for the linear regressions of the classification performances on
the influencing factors in Table 1.

mixture component error rate

method parameters . . . R?
densities minimum mean maximum
Bayes error - - 0.000  0.026  0.193 -
LDA - - 0.000 0.148 0.713 |0.901
CcCM Gec=M fo, =u; 3, 0.000 0.441 0.821 [0.871
CC MK Gcc=M-K Jo, = bu;3; 0.000 0.054 0.217 ]0.801
LLDA y=5, n=500 - 0.000 0.031 0.207 |0.869
MDA Sk=M - 0.000 0.042  0.205 |0.904
HM Gym =M Jor; = Ouy 3 0.000 0.036  0.202 [0.892

parameters, the group and subgroup densities assumed for the HM and CC Classi-
fiers and the resulting test data error rates are given in Table 2. The low Bayes errors
(cp. also Table 2) indicate that there are many easy classification problems. For the
data sets simulated in this study, in general, the local classification methods perform
much better than global LDA. An exception is the CC Classifier with M groups,
CC M, which probably suffers from the common components assumption in com-
bination with the low number of groups. The HM Classifier is the most flexible of
the mixture based methods. The underlying model is met in all simulated situations
where deviations from normality do not occur. Probably for this reason the error rates
for the HM Classifier are lower than for MDA and the CC Classifiers.

In order to measure the influence of the factors in Table 1 on the classification per-
formances of all methods we estimate their main and interaction effects by linear
regressions of In(odds(1 —r;)) =In((1—r;)/ri) € R, i=1,...,1280, on the coded
factors. Then an estimated effect of 1, e.g. of factor DND, can be interpreted as an
increase in proportion of hit rate to error rate by e ~ 2.7.

The coefficients of determination, R?, indicate a good fit of the linear models for
all classification methods (cp. Table 2), hence the estimated factor effects are mean-
ingful. The estimated main effects are shown in Figure 1. For the most important
factors CL, DCL and VAR they indicate that a small number of classes, a big distance
between the class centers and a high number of variables improve the classification
performances of all methods.

To assess which classification methods react similarly to changes in data character-
istics they are clustered based on the Euclidean distances in their estimated main
and interaction effects. The resulting dendrogram in Figure 2 shows that one group
is formed by the HM Classifier, MDA and LLDA which also exhibit similarities in
their theoretical backgrounds. In the second group there are global LDA and the lo-
cal CC Classifier with MK groups, CC MK. The factors mainly revealing differences
between CC M, which is isolated in the dendrogram, and the remaining methods are
CL, DCL, VAR and LP (cp. Figure 1). For the first three factors the absolute effects
for CC M are much smaller. Additionally, CC M is the only method with a positive
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Fig. 1. Estimated main effects of the influenc- Fig. 2. Hierarchical clustering of the classifi-
ing factors in Table 1 on the classification per- cation methods using average linkage based
formances of all methods on the estimated factor effects

estimated effect of LP, the number of LDGPs, which probably indicates that a larger
number of groups improves the classification performance (cp. the error rates of CC
MK in Table 2). The factor DLP reveals differences between the two groups found
in the dendrogram. In contrast to the remaining methods, for both CC Classifiers
as well as LDA small distances between the LDGP centers are advantageous. Local
modeling is less necessary, if the LDGP centers for individual classes are close to-
gether and hence, the global and common components based methods perform better
than in other cases.

Based on theoretical considerations, the estimated factor effects and the test data er-
ror rates, we can assess which methods are favorable to some special situations. The
estimated effects of factor LP and the error rates in Table 2 show that application of
the CC Classifier can be disadvantageous and is only beneficial in conjunction with
a big number of groups Gcc which, however, can make the interpretation of the re-
sults very difficult. However, for large M, problems in the E step of the classical EM
algorithm can occur for the CC and the HM Classifiers in the gaussian case due to
singular estimated covariance matrices. Hence, in situations with a large number of
LDGPs MDA can be favorable because it yields low error rates and is insensible to
changes of M (cp. Figure 1), probably thanks to the assumption of a common covari-
ance matrix and dimension reduction.

A drawback of MDA is that the numbers of subclasses for all K classes have to be
specified in advance. Because of subgroup-pruning for the HM Classifier only one
parameter Gy has to be fixed.

If deviations from normality occur in the mixture components LLDA can be recom-
mended since, like CC M, the estimated effect of DND is nearly zero and the test
data error rates are very small. In contrast to the mixture based methods it is appli-
cable to data of every structure because it does not assume the presence of groups,
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subgroups or subclasses. On the other hand, for this reason, the results of LLDA are
less interpretable.

4 Summary

In this paper different types of local classification methods, based on mixture models
or locally adaptive weighting, are compared in case of LDGPs. For the mixture mod-
els we can distinguish the common components and the separate mixtures approach.
In general the four local methods considered in this work are appropriate to classifi-
cation problems in the case of LDGPs and perform much better than global LDA on
the simulated data sets. However, the common components assumption in conjunc-
tion with a low number of groups has been found very disadvantageous. The most
important factors influencing the performances of all methods are the numbers of
classes and variables as well as the distances between the class centers. Based on all
estimated factor effects we identified two groups of similar methods. The differences
are mainly revealed by the factors LP and DLP, both related to the LDGPs. For a
large number of LDGPs MDA can be recommended. If the mixture components are
not gaussian LLDA appears to be a good choice. Future work can consist in con-
sidering robust versions of the compared methods that can better deal, for example,
with deviations from normality.
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Abstract. Astronomy is in the age of large scale surveys in which the gathering of multidi-
mensional data on thousands of millions of objects is now routine. Efficiently processing these
data - classifying objects, searching for structure, fitting astrophysical models - is a significant
conceptual (not to mention computational) challenge. While standard statistical methods, such
as Bayesian clustering, k-nearest neighbours, neural networks and support vector machines,
have been successfully applied to some areas of astronomy, it is often difficult to incorporate
domain specific information into these. For example, in astronomy we often have good phys-
ical models for the objects (e.g. stars) we observe. That is, we can reasonably well predict
the observables (typically, the stellar spectrum or colours) from the astrophysical parameters
(APs) we want to infer (such as mass, age and chemical composition). This is the “forward
model”: The task of classification or parameter estimation is then an inverse problem. In this
paper, we discuss the particular problem of combining astrometric information, effectively a
measure of the distance of the source, with spectroscopic information.

1 Introduction

Gaia is an ESA astronomical satellite that will be launched in 2011. Its mission is
to build a three dimensional map of the positions and velocities of a substantial part
of our galaxy. In addition to the basic position and velocity data, the astrophysical
nature of the detected objects will be determined. Since Gaia is expected to detect
upwards of a billion individual objects of various types, and since the mission will
not use an input catalogue, automated classification and parameterization based on
the dataset is a crucial part of the mission.

1.1 Astronomical context

From galactic rotation curves and other evidence it is believed that most material in
the universe is comprised of so-called dark matter. The nature of this material is a
fundamental current question in astronomy. The distribution and properties of the
dark matter at the time of the formation of our galaxy should leave traces in the dis-
tribution and dynamics of the stellar population that is observed today. Since heavy
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elements are formed by nucleosynthesis in the centres of massive stars, and are there-
fore scarce at early epochs, their relative abundances in stellar atmospheres can be
used to discriminate between stellar populations on the basis of age. By building up
a complete picture of a large portion of our galaxy, such tracers of galactic evolution
can be studied in unprecedented detail.

1.2 Basic properties of the dataset

Gaia will detect all point sources down to a fixed limiting brightness. This limit corre-
sponds to the brightness of the Sun if observed at a distance of approximately 11,000
parsecs (35,000 light years, compared the accepted distance to the Galactic centre of
26,000 light years). The vast majority of detected sources will be stars, but the sam-
ple will also include several million galaxies and quasars, which are extragalactic
objects, and many objects from within our own solar system.

The positions of the various sources on the sky can of course be measured very
easily. Radial velocities are determined from Doppler shifts of spectral lines observed
with an onboard spectrometer. Transverse motions on the sky are of the order of a few
milliarcseconds per year, scaling with distance, and these motions must be mapped
over the timescale of the mission (56 years). Distances are a priori not known and
are in fact one of the most difficult, and most crucially important, measurements in
astronomy. Gaia is designed to measure the parallaxes of the stellar sources in order
to determine distances to nearby stars. The parallax in question is the result of the
changing viewpoint of the satellite as the Earth orbits the Sun. An object displaying
a parallax of one arcsecond relative to distant, negligable-parallax stars, has by defi-
nition a distance of 1 parsec (3.26 light years). This distance happens to correspond
roughly to the distance to the nearest stars. The parallax scales linearly with distance
so that the Sun at a distance of 11,000 parsec (the approximate brightness limit of
such an object for Gaia) would display a parallax of about 90 microarcseconds (uas)).
Gaia is designed to measure parallaxes with a standard error of around 25 pas, so that
the parallax-limit roughly corresponds to the brightness-limit for solar type stars.

As well as position, parallax and transverse motion (proper motion), and the high
resolution spectra used to determine the radial velocities, the Gaia satellite will return
low resolution spectra with approximately 96 resolution elements spanning the range
300-1000 nanometres (roughly from the ultraviolet to the near infrared range). These
spectra can be used to classify objects according to basic type (galaxies, quasars,
stars etc) and to then determine the basic parameters of the object (e.g. for stars, the
effective temperature of the atmosphere). This information is important because the
nature of the stellar population coupled with the kinematic information constrains
models of galaxy formation and evolution.

2 Classification and parametrization

As the sky is continuously scanned by the satellite’s detectors, sources are detected
on board and the data (position, low resolution spectra and high resolution spectrum)
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are extracted from the raw detector output, processed into an efficient form and re-
turned to the ground station. As the mission proceeds, repeated visits to the same
area of sky allow the measurement of variations in the positions of sources, which
are used to build up a model of the proper motions and parallaxes for the full set
of sources. This leads to a distinction for the data processing between early mission
data, consisting of the spectra and positions, and late mission data, which includes
parallaxes and proper motions. The sources should be classified into broad astronom-
ical classes on the basis of the spectra alone in the early mission, and on the basis of
the spectra combined with astrometric information in the later part of the mission.
This classification is important for the astrophysics, but also for the astrometric so-
lution, since the distant quasars form a distant, essentially fixed (zero parallax and
zero proper motion, plus or minus measurement errors) population. The early mis-
sion classifier should feed back the identified extragalactic objects to the astrometric
processing, and the purer this sample, the better.

Once the classification is made, sources are fitted with astrophysical models to
recover various parameters, such as effective surface temperature or atmospheric el-
ement abundances for stars. The algorithms for this classification and regression are
in the early stages of development by the data processing consortium. For the classi-
fication, the algorithm mostly used at this stage is a Support Vector Machine (SVM)
after Vapnik (1995), taken from the library libSVM (Chang and Lin (2001)), with a
radial basis function (RBF) kernel. The decision to use SVM for classification is of
course provisional and other methods may be considered. Synthetic data for training
and testing the classifier is produced using standard models of various astronomical
source classes. The multi-class SVM used returns a probability vector containing the
probabilities that a particular source belongs to each class (Wu and Weng (2005)).
Sources are classified according to the highest component of the probability vector.
We are now incorporating into the simulated data values for the parallax and proper
motion, indicating a distance. The current task is to incorporate this information into
the classification and regression schemes.

3 Classification results

For current purposes, we consider only four classes of astrophysical object; single
stars and binary stars, both of which belong to the set of objects within our own
galaxy, and galaxies and quasars, both of which are extragalactic. Two datasets were
generated, each with a total of 5000 sources split evenly between the four classes
(i.e. 1250 of each). One set was used as a trianing set for the SVM, the other is a
test set from which the statistics are compiled. The classification results for the basic
SVM classifier running on the spectrum only are shown in Table 1. Here, and in
subsequent experiments, the input data are scaled to have mean of zero and standard
deviation of one for each bin. The classifier achieves an overall correct classification
rate of approximately 93%. The main confusion is between single stars and binaries.

The parallaxes of the simulated data for stars and quasars are shown in Figure 1.
The parallax could be included directly into the classifier as a 97th data point for each
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Table 1. Confusion matrix for the SVM classifier, working on the spectral data without any
astrometric information. Reading row by row, the matrix shows the percentage of test sources
which are of a particular type, for example Stars, which are classified as each possible output
type. The leading diagonal shows the sources that are correctly classified (true positives). The
off-diagonal elements show the level of contamination (false positives) as a percentage of the
input source sample. In this test case, the numbers of each class of source were roughly equal
(just over 1000 each). In the real mission, the number of stars is expected to be three orders of
magnitude greater than the number of galaxies or quasars.

Stars Binaries Quasars Galaxies

Stars  88.21  9.27 243 0.09
Binaries 8.67 91.13 0.00 0.20
Quasars 2.04  0.90 95.77 1.28
Galaxies 0.00  0.00 0.62 99.38
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Fig. 1. The distribution of simulated parallaxes for stars (filled squares) and quasars (+ signs).

object, alongside the 96 spectral bins. Such a classifier would be expected to perform
significantly better than spectrum-only version, and indeed it does (Table 2). It might,
however, be possible to include the parallax in the classification in a way that utilises
our knowledge of the astrophysical significance of the quantity. Significant values of
parallax are expected for a subset of the galactic sources, i.e. the stars and binaries.
Not all stars and binaries will have a detectable parallax, but none of the extragalactic
sources will. This then suggests a split in the data, based on parallax, into objects that
are certainly galactic and objects that may belong to any class.

To implement such a two-stage classifier, we trained two separate SVMs, one
with all four classes, and the other with the galactic sources (stars and binaries) only.
These SVMs were trained on the spectral data only, not including the parallax. We
then classified the entire test set with each classifier. For each object, the output from
each classifier is a four-component probability vector, in the case of the classifier
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Table 2. Confusion matrix obtained by using the SVM with the parallax information included
as an additional input.

Stars Binaries Quasars Galaxies

Stars  93.52  6.03 0.45 0.00
Binaries 6.38 93.62 0.00 0.00
Quasars 0.76  0.14 98.91 0.19
Galaxies 0.00  0.00 0.41 99.59

trained only on galactic sources (stars and binaries), the probabilities for the quasars
and galaxies are necessarily always zero. Finally, we combined the output probability
vectors of the two SVMs using a weighting function based on the parallax value.

If P; and P, are the probability vectors for the galactic and general SVM classifier
respectively, they are combined to form the output probability as follows;

P =wP +(1—w)Ps, (1
w = 0.5(1 +tanh ((o. X SNR) 4 9)) ()
where SNR is the significance of the measured parallax, estimated by assuming that
the standard error is 25uas. The parameter o is set to 1. and the value of d to -5. With

these values, the function does not produce significant weighting (w ~ 0.1) toward
exclusively galactic sources until the parallax rises to four times the standard error.

Extragalactic sources

weight
0.5
\

Parallax (uas)

Fig. 2. The weighting function applied to the extragalactic sources.

The results of the two-stage classification are shown in Table 3. The leading
diagonal shows that the completeness at each class is not as good as in the case of
the single SVM classifier with parallax as discussed above (Table 2), however the
contamination of the extragalactic sources with misidentified galactic sources has
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Fig. 3. The weighting function for the galactic sources. These sources are distributed through
arange of parallaxes.

been strongly reduced - in fact falling to zero for the test sample of 5000 objects.
As noted above, this is a significant advantage when the galaxies and quasars form
important classes for determining the astrometric solution, and when there will be
several hundred times more stars than extragalactic objects in the final sample.

Table 3. Confusion matrix obtained by using the SVM twice then combining the probabilities
weighted according to the value of the parallax.

Stars Binaries Quasars Galaxies

Stars  90.82  9.18 0.00 0.00
Binaries 8.87 91.13 0.00 0.00
Quasars  2.04  0.90 95.77 1.28
Galaxies 0.00  0.00 0.62 99.38

4 Summary

Since we know the relationship of the observables to the underlying nature of the
objects in the sample, we are in a position to incorporate this knowledge into the
classification or regression problems in an informed way, making maximum use of
this physical knowledge. The goal of this is twofold; Firstly, the addition of domain-
specific information should improve the predictive accuracy. Second, but not unim-
portant, is that it allows an interpretation of how the model works: the sensitivities
of the model observables to a given underlying parameter provide an explicit (and
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unique) weighting function of the observables. Apart from making the model more
acceptable (and less like a “black box”), this allows us to identify where we gather
higher quality data in order to improve performance further.
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Abstract. A proposal of an extended version of the HINoV method for the identification of
the noisy variables (Carmone et al. (1999)) for nonmetric, mixed, and symbolic interval data is
presented in this paper. Proposed modifications are evaluated on simulated data from a variety
of models. The models contain the known structure of clusters. In addition, the models contain
a different number of noisy (irrelevant) variables added to obscure the underlying structure to
be recovered.

1 Introduction

Choosing variables is the one of the most important steps in a cluster analysis. Vari-
ables used in applied clustering should be selected and weighted carefully. In a clus-
ter analysis we should include only those variables that are believed to help to dis-
criminate the data (Milligan (1996), p. 348). Two classes of approaches, while choos-
ing the variables for cluster analysis, can facilitate a cluster recovery in the data (e.g.
Gnanadesikan et al. (1995); Milligan (1996), pp. 347-352):

— variable selection (selecting a subset of relevant variables),

— variable weighting (introducing relative importance of the variables according
to their weights).

Carmone et al. (1999) discussed the literature on the variable selection and
weighting (the characteristics of six methods and their limitations) and proposed the
HINoV method for the identification of the noisy variables, in the area of the variable
selection, to remedy problems with these methods. They demonstrated its robustness
with metric data and k-means algorithm. The authors suggest further studies of the
HINoV method with different types of data and other clustering algorithms on p.
508.

In this paper we propose extended version of the HINoV method for nonmetric,
mixed, and symbolic interval data. The proposed modifications are evaluated for
eight clustering algorithms on simulated data from a variety of models.
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2 Characteristics of the HINoV method and its modifications

Algorithm of Heuristic Identification of Noisy Variables (HINoV) method for metric
data (Carmone et al. (1999)) is following:

1. A data matrix [x;;] containing n objects and m normalized variables measured
on a metric scale i = 1,...,n; j=1,...,m) is a starting point.

2. Cluster, via kmeans method, the observed data separately for each j-th variable
for a given number of clusters u. It is possible to use clustering methods based on
a distance matrix (pam or any hierarchical agglomerative method: single, complete,
average, mcquitty, median, centroid, Ward).

3. Calculate adjusted Rand indices Rj; (j,/ =1, ..., m) for partitions formed from
all distinct pairs of the m variables (j # [). Due to a fact that adjusted Rand index is
symmetrical we need to calculate m(m — 1) /2 values.

4. Construct m x m adjusted Rand matrix (parim). Sum rows or columns for each

m
Jj-th variable R, = > R (topri):
I=1

Variable parim topri
M1 R12 ...le Rl.
M, Ry oo Rop Roe
Mm le RmZ Rmo
5. Rank topri values Rie, Roe,- .., Rye in a decreasing order (stopri) and plot the

scree diagram. The size of the topri values indicate a contribution of that variable to
the cluster structure. A scree diagram identifies sharp changes in the topri values. Rel-
atively low-valued topri variables (the noisy variables) are identified and eliminated
from the further analysis (say & variables).

6. Run a cluster analysis (based on the same classification method) with the se-
lected m — h variables.

The modification of the HINoV method for nonmetric data (where number of ob-
jects is much more than a number of categories) differs in steps 1, 2, and 6 (Walesiak
(2005)):

1. A data matrix [x;;] containing n objects and m ordinal and/or nominal variables
is a starting point.

2. For each j-th variable we receive natural clusters, where the number of clusters
equals the number of categories for that variable (for instance five for Likert scale or
seven for semantic differential scale).

6. Run a cluster analysis with one of clustering methods based on a distance
appropriate to nonmetric data (GDM2 for ordinal data — see Jajuga et al. (2003);
Sokal and Michener distance for nominal data) with the selected m — h variables.

The modification of the HINoV method for symbolic interval data differs in steps
1 and 2:

1. A symbolic data array containing n objects and m symbolic interval variables
is a starting point.
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2. Cluster the observed data with one of clustering methods (pam, single, com-
plete, average, mcquitty, median, centroid, Ward) based on a distance appropriate to
the symbolic interval data (e.g. Hausdorff distance — see Billard and Diday (2006),
p. 246) separately for each j-th variable for a given number of clusters u.

Functions HINoV.Mod and HINoV.Symbolic of clusterSim computer program
working in R allow adequately using mixed (metric, nonmetric), and the symbolic
interval data. The proposed modifications of the HINoV method are evaluated on
simulated data from a variety of models.

3 Simulation models

We generate data sets in eleven different scenarios. The models contain the known
structure of clusters. In the models 2-11 the noisy variables are simulated indepen-
dently from the uniform distribution.

Model 1. No cluster structure. 200 observations are simulated from the uniform
distribution over the unit hypercube in 10 dimensions (see Tibshirani et al [2001], p.
418).

Model 2. Two elongated clusters in 5 dimensions (3 noisy variables). Each clus-
ter contains 50 observations. The observations in each of the two clusters are inde-
pendent bivariate normal random variables with means (0, 0), (1, 5), and covariance
matrix Z (ij =1, Cji = —0.9).

Model 3. Three elongated clusters in 7 dimensions (5 noisy variables). Each
cluster is randomly chosen to have 60, 30, 30 observations, and the observations are
independently drawn from bivariate normal distribution with means (0, 0), (1.5, 7),
(3, 14) and covariance matrix ) | (6,; =1, 6;; = —0.9).

Model 4. Three elongated clusters in 10 dimensions (7 noisy variables). Each
cluster is randomly chosen to have 70, 35, 35 observations, and the observations
are independently drawn from multivariate normal distribution with means (1.5, 6,
-3), (3, 12, -6), (4.5, 18, -9), and identity covariance matrix » ., where oj; =1
(1<j<3),012=013=-0.9,and 653 =0.9.

Model 5. Five clusters in 3 dimensions that are not well separated (1 noisy vari-
able). Each cluster contains 25 observations. The observations are independently
drawn from bivariate normal distribution with means (5, 5), (-3, 3), (3, =3), (0, 0),
(=5, -5), and identity covariance matrix ) (6;; =1, 6;; = 0.9).

Model 6. Five clusters in 5 dimensions that are not well separated (2 noisy vari-
ables). Each cluster contains 30 observations. The observations are independently
drawn from multivariate normal distribution with means (5, 5, 5), (-3, 3, -3), (3, -3,
3), (0, 0, 0), (-5, =5, =5), and covariance matrix »_, where c;j=1(1<j< 3), and
6i=09(1<j#1<3).

Model 7. Five clusters in 10 dimensions (8 noisy variables). Each cluster is ran-
domly chosen to have 50, 20, 20, 20, 20 observations, and the observations are inde-
pendently drawn from bivariate normal distribution with means (0, 0), (0, 10), (5, 5),
(10, 0), (10, 10), and identity covariance matrix (0jj=1,05;=0).
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Model 8. Five clusters in 9 dimensions (6 noisy variables). Each cluster contains
30 observations. The observations are independently drawn from multivariate normal
distribution with means (0, 0, 0), (10, 10, 10), (-10, —10, —-10), (10, -10, 10), (-10,
10, 10), and identity covariance matrix »_, where G ;i=30<j< 3), and ;=2
(I1<j#£1<3).

Model 9. Four clusters in 6 dimensions (4 noisy variables). Each cluster is ran-
domly chosen to have 50, 50, 25, 25 observations, and the observations are indepen-
dently drawn from bivariate normal distribution with means (-4, 5), (5, 14), (14, 5),
(5, —4), and identity covariance matrix ) (6;; = 1, 6;; = 0).

Model 10. Four clusters in 12 dimensions (9 noisy variables). Each cluster con-
tains 30 observations. The observations are independently drawn from multivariate
normal distribution with means (-4, 5, —4), (5, 14, 5), (14, 5, 14), (5, -4, 5), and iden-
tity covariance matrix ), where 6;; =1 (1 < j<3),ando; =0(1 < j#1<3).

Model 11. Four clusters in 10 dimensions (9 noisy variables). Each cluster con-
tains 35 observations. The observations on the first variable are independently drawn
from univariate normal distribution with means -2, 4, 10, 16 respectively, and iden-
tity variance G? =05(1<j<4).

Ordinal data. The clusters in models 1-11 contain continuous data and a dis-
cretization process is performed on each variable to obtain ordinal data. The number
of categories k determines the width of each «class intervals:

max{x;;) —min{x; ]}] / k. Independently for each variable each class interval re-
1 1

ceive category 1,...,k and the actual value of variable x;; is replaced by these cate-
gories. In simulation study k£ = 5 (for k = 7 we have received similar results).
Symbolic interval data. To obtain symbolic interval data the data were generated
for each model twice into sets A and B and minimal (maximal) value of {ai i, b j} is
treated as the beginning (the end) of an interval.
Fifty realizations were generated from each setting.

4 Discussion on the simulation results

In testing the robustness of the HINoV modified algorithm using simulated ordi-
nal or symbolic interval data, the major criterion was the identification of the noisy
variables. The HINoV-selected variables contain variables with the highest topri val-
ues. In models 2-11 the number of nonnoisy variables is known. Due to this fact, in
simulation study, the number of the HINoV-selected variables equals the number of
nonnoisy variables in each model. When the noisy variables were identified, the next
step was to run the one of clustering methods based on distance matrix (pam, single,
complete, average, mcquitty, median, centroid, Ward) with the nonnoisy subset of
variables (HINoV-selected variables) and with all variables. Then each clustering re-
sult was compared with the known cluster structure from models 2-11 using Hubert
and Arabie’s [1985] corrected Rand index (see Table 1 and 2).
Some conclusions can be drawn from the simulations results:
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Table 1. Cluster recovery for all variables and HINoV-selected subsets of variables for ordinal
data (five categories) by experimental model and clustering method

Model Clustering method

pam ward | single |complete | average | mcquitty | median | centroid

@ ]0.3804710.53576 | 0.00022 | 0.11912 | 0.42288 | 0.25114 | 0.00527 | 0.00032

2 b 10.84218 10.90705 | 0.72206 | 0.12010 |0.99680 | 0.41796 | 0.30451 | 0.89835
a|0.27681 | 0.34071 | 0.00288 | 0.29392 | 0.40818 | 0.35435 | 0.04625|0.00192

3 b 10.85946 | 0.60606 | 0.36121 | 0.61090 | 0.68223 | 0.51487 | 0.49199 | 0.61156
a | 0.35609 | 0.44997 | 0.00127 | 0.43860 |0.53509 | 0.47083 | 0.04677 | 0.00295

4 b10.8399310.87224 1 0.56313 | 0.56541 | 0.80149 | 0.62102 | 0.54109 | 0.80156
a]0.54746 10.60139 [ 0.27610 | 0.46735 | 0.58050 | 0.49842 | 0.33303 | 0.50178

> b10.91071]0.84888 | 0.48550 | 0.73720 | 0.81317 | 0.79644 | 0.72899 | 0.74462
a|0.61074 | 0.60821 | 0.13400 | 0.53296 | 0.61037 | 0.56426 | 0.35113 | 0.47885

6 b10.83880[0.87183 0.56074 | 0.75584 |0.86282 | 0.81395 | 0.71085 | 0.79018
@ (0.10848 | 0.11946 | 0.00517 | 0.09267 | 0.10945 | 0.11883 | 0.00389 | 0.00659

7 b10.8007210.87399 [ 0.27965 | 0.87892 | 0.94882 | 0.77503 | 0.74141|0.91638
@ (0.31419]0.43180 | 0.00026 | 0.29529 |0.40203 | 0.36771 | 0.00974 | 0.00023

8 b10.95261]0.96372 | 0.58026 | 0.95596 |0.96627 | 0.95507 | 0.93701 | 0.96582
@ (0.37078 | 0.45915 [ 0.01123 | 0.12128 | 0.50198 | 0.31134 | 0.04326 | 0.00709

? b 10.99966 | 0.98498 | 0.93077 | 0.96993 |0.99626 | 0.98024 | 0.95461 | 0.99703
@ (0.2972710.41152 | 0.00020 | 0.22358 | 0.41107 | 0.34663 | 0.00030 | 0.00007

10 b | 1.00000 | 1.00000 | 0.99396 | 0.99911 | 1.00000 | 1.00000 | 0.99867 | 1.00000
b10.8937810.88097 | 0.60858 | 0.73259 | 0.89642 | 0.76384 | 0.71212 | 0.85838
r[0.53130(0.44119 | 0.56066 | 0.44540 |0.45403 | 0.39900 |0.61883 | 0.74730

cer 98.22% | 98.00% | 94.44% | 90.67% | 97.11% | 89.56% | 98.89% | 98.44%
11 |a|0.04335|0.04394 | 0.00012 | 0.04388 | 0.03978 | 0,03106 | 0,00036 | 0.00009
b10.1432010.08223 | 0.12471 | 0.08497 | 0.10373 | 0,12355 | 0,04626 | 0,06419

a (b) — values represent Hubert and Arabie’s adjusted Rand indices averaged over fifty repli-
cations for each model with all variables (with HINoV-selected variables); r = b — a; ccr —
corrected cluster recovery.

1. The cluster recovery that used only the HINoV-selected variables for ordinal
data (Table 1) and symbolic interval data (Table 2) was better than the one that used
all variables for all models 2-10 and each clustering method.

2. Among 450 simulated data sets (nine models with 50 runs) the HINoV method
was better (see ccr in Table 1 and 2):

— from 89.56% (mcquitty) to 98.89% (median) of runs for ordinal data,

— from 91.78% (ward) to 99,78% (centroid) of runs for symbolic interval data.

3. Figure 1 shows the relationship between the values of adjusted Rand indices
averaged over fifty replications and models 2-10 with the HINoV-selected variables
(b) and values showing an improvement (r) of average adjusted Rand indices (cluster
recovery with the HINoV selected variables against all variables) separately for eight
clustering methods and types of data (ordinal, symbolic interval). Based on adjusted
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Table 2. Cluster recovery for all variables and HINoV-selected subsets of variables for sym-
bolic interval data by experimental model and clustering method

Model . Clustering method . . .
pam ward single |complete | average |mcquitty | median | centroid
a|0.86670 | 0.87920 | 0.08006 | 0.28578 | 0.32479 | 0.49424 |0.02107 | 0.00004

2 b10.99920 | 0.97987 | 0.91681 | 0.99680 | 0.99524 | 0.98039 |0.85840|0.95739
a|0.41934|0.39743 | 0.00368 | 0.37361 | 0.38831 | 0.36597 | 0.00088 | 0.00476

3 b | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |0.99062 | 1.00000
a|0.04896 | 0.01641 | 0.00269 | 0.01653 |-0.00075 | 0.01009 | 0.00177 | 0.00023

4 b | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000
a|0.715430.70144 | 0.73792 | 0.47491 | 0.60960 | 0.53842 |0.34231 | 0.28338

> b10.9955610.99718 | 0.98270 | 0.91522 | 0.99478 | 0.99210 |0.90252 | 0.97237
a|0.75308 | 0.67237 | 0.33392 | 0.47230 | 0.67817 | 0.55727 |0.18194|0.10131

6 b10.99631 | 0.99764 | 0.99169 | 0.95100 | 0.98809 | 0.97881 |0.84463 | 0.99866
a|0.36466 | 0.51262 | 0.00992 | 0.32856 | 0.33905 | 0.39823 |0.00527 | 0.00681

7 b|1.00000 | 0.99974 | 1.00000 | 0.98493 | 0.99954 | 1.00000 |0.99974 | 0.99954
a|0.74711|0.85104 | 0.01675 | 0.50459 | 0.51029 | 0.61615 |0.00056 | 0.00023

8 b | 1.00000 | 0.99966 | 0.99932 | 0.99966 | 0.99966 | 0.99843 |0.99835 | 1.00000
a | 0.86040 | 0.90306 | 0.30121 | 0.26791 | 0.54639 | 0.62620 | 0.00245 | 0.00419

0 b | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000
a|0.70324 | 0.91460 | 0.00941 | 0.48929 | 0.47886 | 0.54275 |0.00007 | 0.00004

10 b | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000
b10.99900 | 0.99712 | 0.98783 | 0.98306 | 0.99747 | 0.99441 |0.95491 | 0.99199
710.39023 [ 0.34732 | 0.82166 | 0.62601 | 0.56687 | 0.53337 {0.89310|0.94744

cer 94.67% | 91.78% | 97.33% | 99.11% | 96.22% | 96.44% | 99.56% | 99.78%
11 @ 0.05334 | 0.04188 | 0.00007 | 0.03389 | 0.02904 | 0.03313 | 0.00009 | 0.00004
b|0.12282|0.04339 | 0.04590 | 0.08259 | 0.08427 | 0.14440 | 0.04380 | 0.08438

a);r= b— a. ccr — see Table 1.

Rand indices averaged over fifty replications and models 2-10 the improvements in
cluster recovery (HINoV selected variables against all variables) are varying:

— for ordinal data from 0.3990 (mcquitty) to 0.7473 (centroid),

— for symbolic interval data from 0.3473 (ward) to 0.9474 (centroid).

5 Conclusions

The HINoV algorithm has limitations for analyzing nonmetric and symbolic interval
data almost the same as the ones mentioned in Carmone et al. (1999) article for
metric data.

First, the HINoV is of a little use with a nonmetric data set or a symbolic data
array in which all variables are noisy (no cluster structure — see model 1). In this
situation topri values are similar and close to zero (see Table 3).



Identification of Noisy Variables for Nonmetric and Symbolic Data... 91

am .
104 "l e omplete single  cenjreld
i
median
A
average pam
09 1 ward® P L]
" centroid
.
o 0.8 o )
mequitty
.
complete
- median
.
0.7 o
single = ordinal data
0.6 - - A symbolic data
T T T T T T T T
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

T

Fig. 1. The relationship between values of band 7
Source: own research

Table 3. Mean and standard deviation of topri values for 10 variables in model 1

. Ordinal data with five categories Symbolic data arra
Variable mean s%l mea}rll };d

1 -0.00393 0.01627 0.00080 0.02090
2 -0.00175 0.01736 0.00322 0.02154
3 0.00082 0.02009 0.00179 0.01740
4 -0.00115 0.01890 -0.00206 0.02243
5 0.00214 0.02297 —-0.00025 0.02074
6 0.00690 0.02030 —0.00312 0.02108
7 —0.00002 0.02253 —0.00440 0.02044
8 0.00106 0.01754 0.00359 0.01994
9 0.00442 0.01998 0.00394 0.02617
10 -0.00363 0.01959 0.00023 0.02152

Second, the HINoV method depends on the relationship between pairs of vari-
ables. If we have only one variable with a cluster structure and the others are noisy,
the HINoV will not be able to isolate this nonnoisy variable (see Table 4).

Third, if all variables have the same cluster structure (no noisy variables) the topri
values will be large and similar for all variables. The suggested selection process
using a scree diagram will be ineffective.

Fourth, an important problem is to decide on a proper number of clusters in stage
two of the HINoV algorithm with symbolic interval data. To resolve this problem we
should initiate the HINoV algorithm with a different number of clusters.
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Table 4. Mean and standard deviation of topri values for 10 variables in model 11

. Ordinal data with five categories Symbolic data arra
Variable mean s%i mea}; };d
1 —0.00095 0.03050 0.00012 0.02961
2 -0.00198 0.02891 0.00070 0.03243
3 0.00078 0.02937 —0.00206 0.02969
4 -0.00155 0.02950 —-0.00070 0.03185
5 0.00056 0.02997 -0.00152 0.03157
6 0.00148 0.03090 -0.00114 0.03064
7 -0.00246 0.02959 —-0.00203 0.03019
8 —-0.00274 0.03137 —0.00186 0.03021
9 —0.00099 0.02975 0.00088 0.03270
10 0.00023 0.02809 —0.00181 0.03126
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Abstract. A conceptual framework for cluster analysis from the viewpoint of p-adic geom-
etry is introduced by describing the space of all dendrograms for n datapoints and relating
it to the moduli space of p-adic Riemannian spheres with punctures using a method recently
applied by Murtagh (2004b). This method embeds a dendrogram as a subtree into the Bruhat-
Tits tree associated to the p-adic numbers, and goes back to Cornelissen et al. (2001) in p-adic
geometry. After explaining the definitions, the concept of classifiers is discussed in the con-
text of moduli spaces, and upper bounds for the number of hidden vertices in dendrograms are
given.

1 Introduction

Dendrograms are ultrametric spaces, and ultrametricity is a pervasive property of
observational data, and by Murtagh (2004a) this offers computational advantages
and a well understood basis for developping data processing tools originating in p-
adic arithmetic. The aim of this article is to show that the foundations can be laid
much deeper by taking into account a natural object in p-adic geometry, namely the
Bruhat-Tits tree. This locally finite, regular tree naturally contains the dendrograms
as subtrees which are uniquely determined by assigning p-adic numbers to data.
Hence, the classification task is conceptionally reduced to finding a suitable p-adic
data encoding. Dragovich and Dragovich (2006) find a 5-adic encoding of DNA-
sequences, and Bradley (2007) shows that strings have natural p-adic encodings.

The geometric approach makes it possible to treat time-dependent data on an
equal footing as data that relate only to one instant of time by providing the concept
of family of dendrograms. Probability distributions on families are then seen as a
convenient way of describing classifiers.

Our illustrative toy data set for this article is given as follows:

Example 1.1 Consider the data set D = {0,1,3,4,12,20,32,64} given by n = 8
natural numbers. We want to hierarchically classify it with respect to the 2-adic
norm |-|2 as our distance function, as defined in Section 2.
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2 A brief introduction to p-adic geometry

Euclidean geometry is modelled on the field R of real numbers which are often rep-
resented as decimals, i.e. expanded in powers of the number 10~

X = Zavlof", ay€{0,....9}, meZ.

v=m

In this way, R completes the field Q of rational numbers with respect to the absolute

X, x>0

norm |x| = - 0 On the other hand, the p-adic norm on Q with
<

—X,

_ a0
x| = -
0, x=0
is defined for x = % by the difference v, (x) = v,(a1) — V,(a2) € Z in the multiplic-
ities with which numerator and denominator of x are divisible by the prime number
p:a; = p’»“)y;, and u; not divisible by p, i = 1,2.
The p-adic norm satisfies the ultrametric triangle inequality

Px+ylp < max {|x[,,[y|p}-

Completing QQ with respect to the p-adic norm yields the field Q, of p-adic numbers
which is well known to consist of the power series

x:ZavpV, ay€{0,....p—1}, meZ. 1)
v=m

Note, that the p-adic expansion is in increasing powers of p, whereas in the decimal
expansion, it is the powers of 10~! which increase arbitrarily. An introduction to
p-adic numbers is e.g. Gouvéa (2003).

Example 2.1 For our toy data set D, we have [0, =0, |1l = |3, =1, |4, = |12, =
120], =272, |32, =273, |64|, =27°, i.e. |-|5 is maximally 1 on D. Other examples:
13/23 =16/4=37", [20ls = 57", [p~"|, = Ipl," = p.

Consider the unit disk D = {x € Q, | [x[, < 1} = B;(0). It consists of the so-
called p-adic integers, and is often denoted as Z, when emphasizing its ring struc-
ture, i.e. closedness under addition, subtraction and multiplication. A p-adic number
x lies in an arbitrary closed disk B,-(a) = {x € Q, | |x—a|, < p~"}, where r € Z,
if and only if x — a is divisible by p". This condition is equivalent to x and a having
the first r terms in common in their p-adic expansions (1). The possible radii are all
integer powers of p, so the disjoint disks B,,-1(0),B,-1(1),...,B,1(p— 1) are the
maximal proper subdisks of D, as they correspond to truncating the power series (1)
after the constant term. There is a unique minimal disk in which D is contained prop-

erly, namely B,(0) = {x € Q, | x|, < p}. These observations hold true for arbitrary
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p-adic disks, i.e. any disk B, (x), x € Q,, is partitioned into precisely p maximal
subdisks and lies properly in a unique minimal disk. Therefore, if we define a graph
T, whose vertices are the p-adic disks, and edges are given by minimal inclusion,
then every vertex of T, hE.IS preC{sely p+1 oqtgomg edges. In other words, Ty, is
a p+ l-regular tree, and p is the size of the residue field F, = Z, / pZ,,.

Definition 2.2 The tree 7y, is called the Bruhat-Tits tree for Q.

Remark 2.3 Definition 2.2 is not the usual way to define ﬂ@p. The problem with
this ad-hoc definition is that it does not allow for any action of the projective linear
group PGL(Q)). A definition invariant under projective linear transformations can
be found e.g. in Herrlich (1980) or Bradley (2006).

An important observation is that any infinite descending chain
Bi2BD... (2)

of strictly decreasing p-adic disks converges to a unique p-adic number {x} = () B,.

n

A chain (2) defines a halfline in the Bruhat-Tits tree 7, . Halflines differing only
by finitely many vertices are said to be equivalent, and the equivalence classes under
this equivalence relation are called ends. Hence the observation means that the p-adic
numbers correspond to ends of Jp,. There is a unique end By C B, C ... coming
from any strictly increasing sequence of disks. This end corresponds to the point at
infinity in the p-adic projective line P'(Q,) = Q, U {e}, whence the well known
fact:

Lemma 2.4 The ends of T, are in one-to-one correspondance with the Q,-rational
points of the p-adic projective line P!, i.e. with the elements of P! (Qp).

From the viewpoint of geometry, it is important to distinguish between the p-adic
projective line P! as a p-adic manifold and its set P! (Q ) of Q,-rational points, in the
same way as one distinguishes between the affine real line A! as a real manifold and
its rational points A!(Q) = Q, for example. One reason for distinguishing between a
space and its points is:

Lemma 2.5 Endowed with the metric topology from |-
is totally disconnected.

p» the topological space Q,

The usual approaches towards defining more useful topologies on p-adic spaces
are by introducing more points. Such an approach is the Berkovich topology, which
we will very briefly describe. More details can be found in Berkovich (1990).

The idea is to allow disks whose radii are arbitrary positive real numbers, not
merely powers of p as before. Any strictly descending chain of such disks gives a
point in the sense of Berkovich. For the p-adic line P! this amounts to:

Theorem 2.6 (Berkovich) P! is non-empty, compact, hausdorff and arc-wise con-
nected. Every point of P!\ {eo} corresponds to a descending sequence By 2 B D ...
of p-adic disks such that B =By, is one of the following:
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. apoint x in Q,,
. a closed p-adic disk with radius r € |Q,|,,
. a closed p-adic disk with radius r ¢ |Q, |,

. empty.

N W N~

Points of types 2. to 4. are called generic, points of type 1. classical. We remark
that Berkovich’s definition of points is technically somewhat different and allows
to define more general p-adic spaces. Finally, the Bruhat-Tits tree 7, is recovered

inside P!:

Theorem 2.7 (Berkovich) 7, is a retract of PI\PY(Q,), i.e. there is a map P!\
P(Q,) — T, whose restriction to Ty, is the identity map on Ty,

3 p-adic dendrograms
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Fig. 1. 2-adic valuations for D. Fig. 2. 2-adic dendrogram for DU {eo}.

Example 3.1 The 2-adic distances within D are encoded in Figure 1, where
dist(i, j) = 27V204), if vy (i, j) is the corresponding entry in Figure I, using 2= = 0.
Figure 2 is the dendrogram for D using |-|,: the distance between disjoint clusters
equals the distances between any of their representatives.

Let X CP! (QI,) be a finite set. By Lemma 2.4, a point of X can be considered as
anend in g,

Definition 3.2 The smallest subtree Z(X) of Jg, whose ends are given by X is
called the p-adic dendrogram for X.

Cornelissen et al. (2001) use p-adic dendrograms for studying p-adic symme-
tries, cf. also Cornelissen and Kato (2005). We will ignore vertices in 2(X) from
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which precisely two edges emanate. Hence, for example, Z({0,1,0}) consists of
a unique vertex v(0, 1,00) and three ends. The dendrogram for a set X C NU {eo}
containing {0, 1,e} is a rooted tree with root v(0, 1,e0).

Example 3.3 The 2-adic dendrogram in Figure 2 is nothing but 9(X) for X = DU
{eo} and is in fact inspired by the first dendrogram of Murtagh (2004b). The path
from the top cluster to x; yields its binary representation [-], which easily translates
into the 2-adic expansion: 0 = [0000000],, 64 = [1000000], = 2°, 32 = [0100000], =
23, 4 = [0000100], = 22, 20 = [0010100], = 22 4+ 2%, 12 = [0001100], = 2% + 23,
1 = [0000001]5, 3 = [0000011], = 1 +2.

Any encoding of some data set M which assigns to each x € M a p-adic repre-
sentation of an integer including 0 and 1, yields a p-adic dendrogram 2(M U {eo})
whose root is v(0, 1,0), and any dendrogram for real data can be embedded in a non-
unique way into 7, as a p-adic dendrogram in such a way that v(0, 1,0) represents
the top cluster, if p is large enough. In particular, any binary dendrogram is a 2-adic
dendrogram. However, a little algebra helps to find sufficiently large 2-adic Bruhat-
Tits trees Jx which allow embeddings of arbitrary dendrograms into Jx. In fact, by
K we mean a finite extension field of Q,. The p-adic norm |-|, extends uniquely to a
norm |-|g on K, for which it is a complete field, called a p-adic number field. The in-
tegers of K are again the unit disk Ox = {x € K | |x|x < 1}, and the role of the prime
p is played by a so-called uniformiser m € Ok. It has the property that Ox /O is a
finite field with ¢ = p/ elements and contains [F,,. Hence, if some dendrogram has a
vertex with maximally » > 2 children, then we need K large enough such that 2/ >n.
This is possible by the results of number theory. Restricting to the prime character-
istic 2 has not only the advantage of avoiding the need to switch the prime number p
in the case of more than p children vertices, but also the arithmetic in 2-adic number
fields is known to be computationally simpler, especially as in our case the so-called
unramified extensions, i.e. where dimg, K = f, are sufficient.

Example 3.4 According to Bradley (2007), strings over a finite alphabet can be
encoded in an unramified extension of Q,, and hence be classified p-adically.

4 The space of dendrograms

From now on, we will formulate everything for the case K = Q,, bearing in mind
that all results hold true for general p-adic number fields K. Let S = {xi,...,x,} C
P!(Qp) consist of n distinct classical points of P! such that x; = 0, x; = 1, x3 = .
Similarly as in Theorem 2.7, the p-adic dendrogram Z(S) is a retract of the marked
projective line X = P!\ S. We call Z(S) the skeleton of X. The space of all projective
lines with n such markings is denoted by 9t,,, and the space of corresponding p-adic
dendrograms by ©,,_;. 91, is a p-adic space of dimension n — 3, its skeleton ©,_
is a cw-complex of real polyhedra whose cells of maximal dimension n — 3 consist
of the binary dendrograms. Neighbouring cells are passed through by contracting
bounded edges as the n — 3 “free” markings “move” about P! without colliding. For
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example, 913 is just a point corresponding to P!\ {0, 1,0}. 914 has one free marking
A which can be any Q,-rational point from P! \ {0, 1,e0}. Hence, the skeleton D3 is

A: l B:

/ /i C: /i v l
N N N \ / ‘\
0 1 A0 A 1 1 A 0 o 1 A
Fig. 3. Dendrograms representing the different regions of ©3.

itself a binary dendrogram with precisely one vertex v and three unbounded edges
A, B,C (cf. Figure 3). For n > 3 there are maps

Sort: M1 = My, Gpy1: D — D1,y

which forget the (n + 1)-st marking. Consider a Q,-rational point x € 9t,, corre-
sponding to P!\ S with skeleton d. Its fibre £, +11 (x) corresponds to P!\ S’ for all
possible S” whose first n entries constitute S. Hence, the extra marking A € §"\ S can
be taken arbitrarily from P(Q,) \ S. In this way, the space fn_+11 (x) can be considered
asP'\ S, and ¢, il (d) as the p-adic dendrogram for S. What we have seen is that tak-
ing fibres recovers the dendrograms corresponding to points in the space ©,,. Instead
of fibres of points, one can take fibres of arbitrary subspaces:

Definition 4.1 A family of dendrograms with n data points over a space Y is a map
Y — 9, from some p-adic space Y to D,,.

For example, take Y = {yj,...,yr}. Then a family ¥ — ©,, is a time series of
n collision-free particles, if ¢ € {1,...,T} is interpreted as time variable. It is also
possible to take into account colliding particles by using compactifications of 91, as
described in Bradley (2006).

5 Distributions on dendrograms

Given a dendrogram 2 for some data S = {xi,...,x,}, the idea of a classifier is
to incorporate a further datum x ¢ S into the classification scheme represented by
2. Often this is done by assigning probabilities to the vertices of &, depending
on x. The result is then a family of possible dendrograms for SU {x} with a certain
probability distribution. It is clear that, in the case of p-adic dendrograms, this family
is nothing but ¢, +11 (d) — D,,if d € D, is the point representing Z. This motivates
the following definition:

Definition 5.1 A universal p-adic classifier C for n given points is a probability
distribution on 9%, ;.
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Here, we take on 901, | the Borel c-algebra associated to the open sets of the
Berkovich topology. If x € 91, corresponds to P!\ S, then C induces a distribution on
fn;ll (x), hence (after renormalisation) a probability distribution on ¢, +11 (d), where
d € ®,_, is the point corresponding to the dendrogram Z(S). The similar holds true
for general families of dendrograms, e.g. time series of particles.

6 Hidden vertices

A vertex v in a p-adic dendrogram & is called hidden, if the class corresponding
to v is not the top class and does not directly contain data points but is composed
of non-trivial subclasses. The subforest of 2 spanned by its hidden vertices will be
denoted by 2", and is called the hidden part of 9. The number b/} of connected
components of 2" measures how the clusters corresponding to non-hidden vertices
are spread within the dendrogram . We give bounds for b’g and the number v of
hidden vertices, and refer to Bradley (2006) for the combinatorial proofs (Theorems
8.3 and 8.5).

Theorem 6.1 Let € ©,,. Then

n—4
3 )

_h
vhg%bo and bgg

where the latter bound is sharp.

7 Conclusions

Since ultrametricity is the natural property which allows classification and is perva-
sive in observational data, the techniques of ultrametric analysis and p-adic geometry
are at ones disposal for identifying and exploiting ultrametricity. A p-adic encoding
of data provides a way to investigate arithmetic properties of the p-adic numbers
representing the data.

It is our aim to lay the geometric foundation towards p-adic data encoding. From
the geometric point of view it is natural to perform the encoding by embedding its
underlying dendrogram into the Bruhat-Tits tree. In fact, the dendrogram and its em-
bedding are uniquely determined by the p-adic numbers representing the data. For
this end, we give an account of p-adic geometry in order to define p-adic dendro-
grams as subtrees of the Bruhat-Tits tree.

In the next step we introduce the space of all dendrograms for a given num-
ber of data points which, by p-adic geometry, is contained in the space 91, of all
marked projective lines, an object appearing in the context of the classification of
Riemann surfaces. The advantages of considering the space of dendrograms rely on
the fact that a conceptual formulation of moving particles as families of dendrograms
is made possible, and its simple geometry as a polyhedral complex. Also, assigning
distributions on 91, allows for probabilistic incorporation of further data to a given
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dendrogram. At the end, we give bounds for the numbers of hidden vertices and
hidden components of dendrograms.

What remains to do is to computationally exploit the foundations laid in this
article by developping a code along these lines and apply it to Fionn Murtagh’s task
of finding ultrametricity in data.
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Abstract. Forward search (FS) methods have been shown to be usefully employed for detect-
ing multiple outliers in continuous multivariate data (Hadi, (1994); Atkinson et al., (2004)).
Starting from an outlier-free subset of observations, they iteratively enlarge this good subset
using Mahalanobis distances based only on the good observations. In this paper, an alternative
formulation of the FS paradigm is presented, that takes a mixture of K > 1 normal components
as a null model. The proposal is developed according to both the graphical and the inferen-
tial approach to FS-based outlier detection. The performance of the method is shown on an
illustrative example and evaluated on a simulation experiment in the multiple cluster setting.

1 Introduction

Mixtures of multivariate normal densities are widely used in cluster analysis, density
estimation and discriminant analysis, usually resorting to maximum likelihood (ML)
estimation, via the EM algorithm (for an overview, see McLachlan and Peel, (2000)).
When the number of components K is treated as fixed, ML estimation is not robust
against outlying data: a single extreme point can make the parameter estimation of
at least one of the mixture components break down. Among the solutions presented
in the literature, the main computable approaches in the multivariate setting are: the
addition of a noise component modelled as a uniform distribution on the convex hull
of the data, implemented in the software MCLUST (Fraley and Raftery, (1998)); a mix-
ture of z-distributions instead of normal distributions, implemented in the software
EMMIX (McLachlan and Peel, (2000)). According to Hennig, both the alternatives *
... do not possess a substantially better breakdown behavior than estimation based on
normal mixtures" (Hennig, (2004)).

An alternative approach to the problem is based on the idea that a good outlier
detection method defines a robust estimation method, that works by omitting the
observations nominated as outliers and computing a standard non-robust estimate
on the remaining observations. Here, attention is focussed on the so-called forward
search (FS) methods, which have been usefully employed for detecting multiple out-
liers in continuous multivariate data. These methods are based on the assumption that
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non-outlying data stem form a multivariate normal distribution or they are roughly
elliptically symmetric.

In this paper, an alternative formulation of the FS algorithm is proposed, which is
specifically designed for situations where non-outlying data stem from a mixture of
a known number of normal components. It could not only enlarge the applicability
of FS outlier detection methods, but could also provide a possible strategy for robust
fitting in multivariate normal mixture models.

2 The Forward Search

The Forward search (FS) is a powerful general method for detecting multiple masked
outliers in continuous multivariate data (Hadi, (1994); Atkinson, (1993)). The search
starts by fitting the multivariate normal model to a small subset S,,,, consisting of m =
mq observations, that can be safely presumed to be free of outliers: it can be specified
by the data analyst or obtained by an algorithm. All n observations are ordered by
their Mahalanobis distance and §,, is updated as the set of the m + 1 observations
with the smallest Mahalanobis distances. Then, the number m is increased by 1 and
the search goes on, by fitting the normal model to the current subset S, and updating
Sy as stated above — so that its size is increased by one unit at a time — until S,
includes all n observations (that is, m = n).

By ordering the data according to their closeness to the fitted model (by means
of Mahalanobis distance), the various steps of the search provide subsets which are
designed to be outlier-free, until there remain only outliers to be included. The in-
clusion of outlying observations can be signalled by following two main approaches.
The former consists in graphically monitoring the values of suitable statistics during
the search, such as the minimum squared Mahalanobis distance amongst units not
included in subset S, (for m ranging from mq to n): if it is large, it means that an
outlier is going to join the subset (for a presentation of FS exploratory techniques,
see Atkinson et al., (2004)). The latter approach consists in testing the maximum
squared Mahalanobis distance amongst the observations included in S,,: if it exceeds
a given % cutoff, then the search stops (before its natural ending) and the tested ob-
servation is nominated as an outlier together with all observations not yet included
in §,, (see Hadi, (1994)), for a presentation of the method).

When non-outlying data stem from a mixture distribution, the Mahalanobis dis-
tance cannot be generally used as a measure of discrepancy. A proper criterion for
ordering the units by closeness to the assumed model is required, together with a con-
sistent method for finding the starting subset of observations. In this paper a novel
algorithm of sequential point addition is proposed, designed for situations where
non-outlying data come from a mixture of K > 1 normal components, with K as-
sumed to be known. Two possible formulations are presented, each related to one
of the two aforementioned approaches to FS-based outlier detection, hereafter called
“graphical" and “inferential", respectively.
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3 Forward Search and Normal Mixture Models: the graphical
approach

We assume that the d-dimensional random vector X is distributed according to a K
component Normal mixture model:

K
P) = wid (x|, ), (1
k=1

where each Gaussian density ¢(-) is parameterized by its mean vector g € RY and
covariance matrix X, belonging to the set of positive definite d x d matrices, and
wi (k= 1,...,K) are mixing proportions; we suppose that some contamination is
present in the sample. Because of the zero breakdown-point of ML estimators, the
FS graphical approach can still be useful for outlier detection in normal mixtures,
provided that the three aspects that make up the search are properly modified: the
choice of an initial subset, the way we progress in the search and the statistic to be
monitored during the search.

Subset S, could be defined as the union of K subsets, each located well inside
a single mixture component: each set could be determined by using robust bi-variate
boxplots or robustly centered ellipses (both described in Atkinson et al., (2004)) on
a distinct element of the data partition provided by some robust clustering method.
This requires that model (1) is a clustering model. As a more general solution, we
propose to define S,,, as a subset of high-density observations, since it is unlike that
outliers lye in high-density regions of R¢. For this purpose, a nonparametric density
estimate is built on the whole data set and the observations x; (i = 1,...,n) are sorted
in decreasing order of estimated density. Denoting by x[; o the observation with the
i—th ordered density (estimated at step 0), we take:

S’"o Z{X[i]’OZiZI,...,mo}. 2)

It is worth noting that nonparametric density estimation is used here in order to
dampen the effect of outliers. Its use limits the applicability of the proposed method
to large medium-dimensional datasets; anyway, it is well known that nonparametric
density estimation is less sensitive to the curse of dimensionality just in the region(s)
around the mode(s).

In order to define how to progress in the search, the following criterion is pro-
posed, for m ranging from myg to n. Given the current subset S,,, model (1) is fitted
by the EM algorithm and the parameter estimates {Wy ,, ﬁhm?ﬁ)k_,”;k =1,...,K} are
obtained. For each observation x;, the corresponding estimated value of the mixture
density function

K
PO = > Wem®xitems Siem) 3)

k=1
is taken as a measure of closeness of x; to the fitted model. The density values p(x;)
are then ordered from largest to smallest and the m + 1 observations with the high-
est values are taken to form the new subset S,,+1. This sorting criterion is coherent
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with (2); moreover, when K = 1 it is equivalent, but opposite, to that defined by the
normalized squared Mahalanobis distance:

* A < 1 < A &— A
D™ (X33 iy 2 ) = 3 [dIn(2m) + In(|Z,|) + (x; —,um)TZm1 (xi — fum)]- 4)

In elliptical K-means clustering, (4) is preferred to the squared Mahalanobis distance
because of stability reasons.

In our experiments we found that the inclusion of outlying points can be well
monitored by plotting the values of the following statistic:

sm = —In(max{p(x;);i & Sim}). Q)

It is the negative natural logarithm of the maximum density estimate amongst obser-
vations not included in the current subset: if an outlier is about to enter, the value
of s, will be large relative to the previous ones. When K = 1, monitoring (5) is
equivalent to monitor the minimum value of (4) amongst observations not included
in S,,.

The proposed procedure is illustrated on an artificial bi-variate dataset, re-
ported by Cuesta-Albertos et al. (available at http://personales.unican.es/cuestaj/
RobustEstimationMixtures.pdf) as an example where the 7-mixture model can fail.
The main stages of the procedure are shown in Figure 1: my was set equal to 200
and density estimation has been carried out on the whole data set through a Gaussian
kernel estimator with “rule of thumb" bandwidth. The forward plot of (5) is reported
only for the last 100 steps of the search, so that its final part is more legible: it signals
the introduction of the first outlying influential observation with a sharp peak, just
after the inclusion of 600 units in S,,. Stopping the search before the peak provides a
robust fitting of the mixture, since it is estimated on all observations but the outlying
ones. Good results were obtained also in case of symmetrical contamination.

It could be objected that a 4-component mixture would work as well in the exam-
ple above. However, in our experience we observed also situations where the cluster
of outliers can be hardly identified by fitting a K 4 I-component mixture, since it
tends to be “picked-up" by a flat component accounting for generic noise (see, for
instance, Example 3.2 in Cuesta-Albertos et al.).

Anyway, the graphical exploration technique presented above is prone to errors,
because not every data set will give rise to an obvious separation between extreme
points which are outliers and extreme points which are not outliers. For this reason,
a formulation of the FS in normal mixtures according to the “inferential approach"
(mentioned in Section 2) should be devised. In the following section, a FS proce-
dure involving a test about the outlyingness of a point with respect to a mixture is
presented.

4 Forward Search and Normal Mixture Models: the inferential
approach

The problem of outlier detection from a mixture is considered in McLachlan and
Basford (1988). Attention is focused on the assessment of whether an observation is
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Fig. 1. The example from Cuesta-Albertos ef al.: 20 outliers are added to a sample of 600
observations. Top right panel shows the contour plot of the density estimate and the ny = 200
(circled) observations belonging to the starting subset. Bottom left panel reports the monitor-
ing plot of (5) for m = 520,...,620. The 95% ellipses of the mixture components fitted to Sgq
are plotted in the last panel.

atypical of a mixture of K normal populations, Py,..., Pk, on the basis of a set of m
observations {xp;h=1,...,mg,k=1,...,K}, where xj; are known to come from P
and Zle my = m. The problem is tackled by assessing how typical the observation
is of each P in turn.

In case of unclassified data {x;;j =1,...,m} — like the one considered in the
present paper — McLachlan and Basford suggest that the m observations should be
first clustered by fitting a K-component heteroscedastic normal mixture model. Then,
the aforementioned comparison of the tested observation to each of the mixture com-
ponents in turn is applied to the resulting K clusters as if they represent a “true clas-
sification" of the data. The approach is based on the following distributional results,
which are derived under the assumption that model (1) is valid:

for the generic sample observation x;, the quantity
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(M) D (xj: fu, 2
(Vi +d) (mg — 1) — mD(x 3 fue, Zx)

(6)

has the Fy y, distribution, where D(x;; i, %) = (x; — fu)" 2, ' (x; — i) denotes the
squared Mahalanobis distance of x; from the k-th cluster, n; is the number of obser-
vations put in the kth cluster by the estimated mixture model and vy =my —d — 1,
withk=1,....K;

for a new unclassified observation y, the quantity

mk(Vk + 1)
(mk—i— 1)d(Vk —‘rd)

D(y; fue, ) 7

has the Fy v, ;1 distribution, where D(y; fi, ﬁlk) denotes the squared Mahalanobis dis-
tance of y from the k-th cluster, and v; and my;, are defined as before, withk=1,... K.

Therefore, an assessment of how typical an observation z is of the k-th component
of the mixture is given by the tail area to the right of the observed value of (6) or
(7) under the F distribution with the appropriate degrees of freedom, depending on
whether z belongs to the sample (z = x;) or not (z = ). Finally, if ax(z) denotes this
tail area, z is assessed as being atypical of the mixture if

a(z) = maxKak(z) <a, (8)
where o is some specified threshold. According to rule (8), z will be labelled as
outlying of the mixture if it is outlying of all the mixture components. The value of
o depends on how the presence of apparently atypical observations is handled: the
more protection is desired against the possible presence of outliers, the higher the
value of c.

We present a FS algorithm using the typicality index a(z) as a measure of “close-
ness" of a generic observation z to the fitted mixture model. For the sake of simplicity,
the same criterion for selecting S,,,, described in Section 3 is employed. Then, at each
step of the search, a K-component normal mixture model is fitted to the current sub-
set Sy, and the typicality index is computed for each observation x;(i = 1,...,n) by
means of (6) or (7), depending on whether the observation is an element of S,, or an
element of the remainder of the sample in step m. Then, observations are sorted in
decreasing order of typicality: denoting by x[; ,, the observation with the i-th ordered
typicality value (computed on subset S,,), subset S,, is updated as the set of the m + 1
most typical observations: Sy, 1 = {x[j 1 i=1,...,m+1}.

If the least typical observation in the newly created subset, that is xj,; 1) . 1S
assessed as being atypical according to rule (8), then the search stops: the tested ob-
servation is nominated as an outlier, together with all the observations not included
in the subset. The performance of the FS-procedure based on the “inferential” ap-
proach has been compared with that of an outlier detection method for clustering
in the presence of outliers (Hardin and Rocke, 2004). The method starts from a ro-
bust clustering of the data and involves a testing procedure about the outlyingness
of the data, which exploits a distributional result for squared Mahalanobis distances
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based on minimum covariance determinant estimates of location and shape param-
eters. The comparison has been carried out on a simulation experiment reported in
Hardin and Rocke’s paper, with N = 100 independent replicates. In d=4 dimensions,
two groups of 300 observations each are simulated from N(0,7) and N(2¢1,1), re-

spectively, where ¢ = , /XCZI'O.()Q /d and 1 is a vector of d ones. Sixty outliers stemming

from N(4c1,I) are planted to each dataset, thus placing the cluster of outliers at the
same distance the clean clusters are separated. By separating two clusters of stan-
dard normal data at a distance of 2¢, we have clusters that do not overlap with high
probability. The following measures of performance have been used:

N N
- Out; . TrueOut;
S0y S Treouw; o

A )
Nnour Nnour

where n,,,=60 is the number of planted outliers and Out; (TrueOut;) is the number
of observations (planted outliers) declared as outliers in the j-th replicate. Perfect
performance occurs when A = B = 1.

Table 1. Results of the simulation experiment. In both the compared procedures o = 0.01.
The first row is taken from Hardin and Rocke’s paper.

Technique Measures of performance
(A—1)-100 (B—1)-100

Hardin and Rocke 4.03 -0.17

FS-based 0.01 -0.05

In Table 1 the measures of performance are given in terms of distance from 1.
Both the methods identify all the planted outliers in nearly all replicates. However,
Hardin and Rocke’s technique seems to have some tendency in identifying a non-
planted observation as an outlier. The FS-based method performs generally better,
probably because it exploits the normality assumption on the components of the
parental mixture density, by means of the typicality measure a(-). It is expected to
be preferable also in case of highly overlapping mixture components, since Hardin
and Rocke’s algorithm may fail for clusters with significant overlap - as the Authors
themselves point out.

5 Concluding remarks and open issues

One critical aspect of the proposed procedure (and of any FS method, indeed) is the
choice of the size my of the initial subset: it should be relatively small so as to avoid
the initial inclusion of outliers, but also large enough to make stable estimates of the
mixture parameters. Moreover, McLachlan and Basford’s test for outlier detection
is known to have poor control over the overall significance level; we dealt with the
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problem by using Bonferroni bounds. The test for outlier detection from a mixture
proposed by Wang et al. (1997) does not suffer from this drawback but requires boot-
strap techniques, thus its use in the FS algorithm would increase the computational
burden of the whole procedure.

FS methods are naturally computer-intensive methods. In our FS algorithm, time
savings could come from using the estimation results of step m as an initial value for
the EM in step m + 1. A possible drawback of this solution is that the results of one
step irreversibly influence the following ones. The problem of improving computa-
tional efficiency while preserving effectiveness deserves further attention. Finally,
we assume that the number of mixture components, K, is both fixed and known. In
our experience, the first assumption seems to be not crucial: when subset Sy does not
contain data from one component, say g, the first observation from g may be sig-
nalled by the forward plot, but it can’t appear like an outlier since its inclusion does
not occur in the final steps of the search. On the contrary, generalizing the procedure
for K unknown is a rather challenging task, which we are presently working on.
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Abstract. Multiple Imputation is a frequently used method for dealing with partial nonre-
sponse. In this paper the use of finite Gaussian mixture models for multiple imputation in a
Bayesian setting is discussed. Simulation studies are illustrated in order to show performances
of the proposed method.

1 Introduction

Imputation is a common approach to deal with nonresponse in surveys. It consists
in substituting missing items with plausible values. This approach has been widely
used because it allows to work with a complete data set so that standard analysis can
be applied. Despite of this important advantage, the introduction of imputed values
is not a neutral task. In fact, imputed values are not really observed and this should
be explicitly taken into account in statistical inference based on the completed data
set. If standard methods are applied as if the imputed values were really observed,
there would be a general overestimate of the precision of the results, resulting, for
instance, in too narrow confidence intervals. Multiple imputation (Rubin, (1987)) is
a methodology for dealing with this problem. It essentially consists in imputing a
certain number of times the incomplete data set following specific rules. The result-
ing completed data set is analysed by standard methods and results are combined in
order to yield estimates and assessing their precision including the additional source
of variability due to nonresponse. The multiplicity of completed data sets has the
role of reflecting the variability due to the imputation mechanism. Although in mul-
tiple imputation data normality is frequently assumed, this assumption does not fit
all situations (e.g., multimodal distributions). Moreover, the analyst who works on
the completed data set not necessarily will or must be aware of the model used for
imputation. Thus, problems may arise when the models used by the analyst and by
the imputer are different. Meng (1994) suggests to use a model for imputation that
is reasonably accurate and general to overcome this difficulty. To this aim, an in-
teresting work is that of Paddock (2002) who proposes a nonparametric multiple
imputation technique based on Polya trees. This technique is appealing since it al-



112 Marco Di Zio and Ugo Guarnera

lows to treat continuous and ordinal data, and in some circumstances also categorical
variables. However, in Paddok’s paper it is shown that, even with nonnormal data, in
some case the technique based on normality is still quite better. Nonnormal data can
be dealt with by using finite mixtures of Gaussian distributions (GMM) since they
are flexible enough to approximate a wide class of density functions with a limited
number of parameters. These models can be seen as generalizations of the general
location model used by Little and Rubin (2002) to model partially observed data
with mixed categorical and continuous variables. Unlike in the latter case, however,
in the present approach categorical variables are latent variables (‘class labels’ that
are never observed), and their role is merely to allow better approximation of the
true data distribution. The performance of GMM in a likelihood based approach for
single imputation is evaluated in Di Zio et al. (2007). In this paper we discuss the
use of finite mixtures of Gaussian distributions for multiple imputation in a Bayesian
framework. The paper is structured as follows. Section 2 describes multiple impu-
tation through mixture models. In Section 3, the problem of label switching is dis-
cussed. Section 4 is devoted to the description and discussion of the experiments
carried out in order to assess the performance of the proposed method.

2 Multiple imputation

Multiple imputation has been proposed for both frequentist and Bayesian analy-
ses. Nevertheless, the theoretical justification is most easily understood from the
Bayesian perspective. In this setting, the ultimate goal is to fill in missing values
Y,,is with values y,,;s drawn from the predictive distribution that, once an appropri-
ate prior distribution for @ is set, can be written as

P(Y i |Yons) = / PUY i Yo ®) P(®] ) dD (1)

where Y,,;; are the missing values and Y,ps; the observed ones. The imputation
process is repeated m times, so m completed data sets are obtained. These m dif-
ferent data sets incorporate the uncertainty about the missing imputed values. Let
us suppose that Q(Y) is the quantity of interest, e.g., a population mean, and that
an estimate O(Y)!¥) is computed on the ith completed data set, for i = 1,...,m.
The final estimate O is defined by O = LS O(Y)"). The estimate 7 of the
variance of O can be obtained by combining a within component term U and a
between component term B. The former is the average of the m standard vari-
ance estimates U(?) for complete data computed on the ith completed data set, for
i=1,....m:U0= %Z:”zl 0. The between variance is the variance of the m esti-

mates, i.e. B = mll S (O — Q)2 Finally, the total variance of Q is estimated by
T =U+ (1+m~")B, and a 95% confidence interval for Q is given by QAj:tV70_975T1/2,
where the degrees of freedom are v = (m — 1){1+[(1+m~")B]7'U}, (see Rubin,

1987).
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Since it is often difficult to obtain a closed form for the observed posterior distri-
bution P(®|y,ps), the data augmentation algorithm may be used (Tanner and Wong,
1987). This algorithm consists of iterating the two following steps:

1. I-step - draw §nis from P(Y is|Yops, @)
2. P-step - draw @ from P(®|§mis, Yobs)-

This is a Gibbs sampling algorithm and, after convergence, the resulting sequence of
values ;s can be thought of as generated from P(Y is|yops)- Data augmentation is
explicitly described by Schafer (1997) when data follow a Gaussian distribution. We
study the case when data are generated from a finite mixture of K Gaussian distribu-
tions, i.e., when each observation y; fori = 1,...,n is supposed to be a realization of
a p-dimensional r.v. Y; with density:

f(yil®) = anN (yil6r), yeR?

where >, m = 1,m > 0 for k = 1,...,K, and N,(y;|0;) is the Gaussian density
with parameters 6; = (u, % ). Note that @ denotes the full set of parameters: ® =
(nl,...nK;Ol,...,GK).

Mixture models have a natural missing data formulation if we suppose that each
observation y; comes from a specific but unknown component k of the mixture, and
introduce, for each unit i, an indicator or allocation variable Z;, taking values in
{1,...,K}, with z; = k if individual i belongs to group k. The discrete variables Z; are
1ndependently distributed according to P(Z; = k|®) =my, (i=1,...,mk=1,...,K).
Furthermore, conditional on Z; = k, the observations y; are supposed to be i.i.d. from
the density N, (yi|0x). Thus, if some items are missing for the ith unit, the relevant
distribution, conditional on Z; = k, is P(Ymis|Yobs, Ok ), while the classification prob-
abilities, expressed in terms of y; yps, are:

N YI obv|e)
Zk 17T'kN (YI obs|ek)

Toi = P(Z; = g|Yions: @) = g=1,....K 2)

where N, (¥iops|0g) is the Gaussian marginal distribution of the gth mixture compo-
nent of the variables observed in the ith unit.
The previous formulation leads to a data augmentation algorithm consisting, at
the zth iteration, of the following two steps:
e Istep:fori=1,...,n
— draw a random value of the allocation variable zl@ from the distribution
P(Zi|¥i obs, V), ice., select a value in {1,...,K} using the probabilities
Tyj,...,Tk; defined in formula (2) expressed in terms of the current value of
vector ®1);
draw yf‘tr)nis (the missing part of the ith vector yl(t)) from P(y; mis| zl(.t) ,Yi.obss o).
e P-step:
draw @) from the distribution P(<D|y0bs,y,(,2s).
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The above scheme produces a sequence (z(’),yfézs,dﬂ’ )) which is a Markov chain
with stationary distribution P(Z, Y s, ®|Yoss ). The convergence properties of the al-
gorithm have been studied by Diebolt and Robert (1994) in the case of completely
observed data.

The choice of an appropriate prior is a critical issue in Gaussian mixture models.
For instance, reference priors lead to improper priors for the specific component
parameters that are independent across the mixture components. This situation is
problematic insofar posterior distributions remain improper for configurations where
no units are assigned to some components. In this paper we follow a hierarchical
Bayesian approach, based on weakly informative priors, as introduced by Richardson
and Green (1997) for univariate mixtures, and generalized to the multivariate case
by Stephen (2000). In this approach it is assumed that the prior distribution for g is
rather flat over an interval of variation of the data. The hierarchical structure of the
prior distributions for a K-component p-variate Gaussian mixture is given by:

M ~ N(E.n\P_l)
B ~ W(2e, (28)7)
B~ W(25,(2h)")
m ~ D(y),
where W and D denote the Wishart and Dirichlet distributions respectively, and the
hyperparameters &,'¥', o, d,h,Y, are constants defined below. Let R; be the length
of the observed interval of variation (range) of the obtained valu s for the vari-
able Y;, and &; the corresponding midpoint (j = 1,...,p). Then,  is the p-vector:

(&1,...,&p), while the matrix ¥ is the diagonal matrix whose element ; is R;2.
The other hyperparameters are specified as follows:

o=p+1, d=0a/10, h=10¥, y=(1,...,1).

The P-step described in general above in this section, with ol =
(B(’),ngl), e ,n%);,ugt), e ,yg);z({), . ,ng) can be implemented by sampling from
the appropriate posterior distributions as follows:

K
Bl W (26+2g0c, (2h+222,(f)1)_1> ,
k=1
Ao~ Dy+n1,... .Y+ nk),

—1 —1 -1
w e N () T s e+ W), ) w7,

—1(141 1 Dy —
w2 (2B 3 (i) i) )
iizj=k
where |--- denotes conditioning on all other variables. In the previous formulas

denotes the number of units assigned to the k" mixture component at the 1" step,
and y is the mean: >, yi/n.
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3 Label switching

Label switching is a typical problem in Bayesian estimation of finite mixture mod-
els (Stephens, (2000)). When using symmetric priors (i.e., invariant with respect
to permutations of the components), the posterior distributions are still symmet-
ric and thus the marginal posterior distributions for the parameters will be identi-
cal for all the mixture components. Inference based on MCMC is meaningless, be-
cause it results in averaging over different mixture components. Nevertheless, this
problem does not affect inference on parameters that are independent of label com-
ponents. For instance, if the parameter to be estimated is the population mean, as
often required in official statistics, the target quantity is independent of the com-
ponent labels. Moreover, in multiple imputation, the estimate is computed on the
observed and imputed values, and the imputed values are drawn from P(¥,is|Yops)
that is invariant with respect to permutation of component labels. As an illustra-
tive example, we have drawn 200 random samples from the two-component mixture
f(y) = 0.5N(1.3,0.1) +0.5N(2,0.15) in R!, and nonresponse is artificially intro-
duced with a 20% missing rate. This dataset is multiply imputed according to the
algorithm previously described. In Figure 1 the trace plot of the component means
obtained via data augmentation, and of the sample mean that is used to produce mul-
tiple imputation estimates are shown (5000 iterations). In the figure, the component
means of the generating mixture distribution (dashed lines) are also reported. More-
over vertical lines, corresponding to label switching, are depicted. It is worth to note
that the label switching of the component means does not affect the target estimate
that in fact is stable.

mut
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Fig. 1. Trace plot of the two-component means and the sample means computed through the
data augmentation algorithm.
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4 Simulation study and results

We present a simulation study to assess the performance of Bayesian GMM for mul-
tiple imputation. In order to mimic the situtation in official statistics, a sample of
N = 50000 units (representing the finite population) with three variables (Y1,Y>,Y3)
is drawn from a probability model. The target parameter is the mean of the variables
in the finite population. A random sample u# without replacement of n = 1000 units is
drawn from the reference population. This sample is corrupted by the introduction of
missing values according to a Missing at Random mechanism (MAR). Missing items
are introduced for the variables (Y2,Y3) depending on the observed values y; of the
variable Y; under the assumption that the higher the value of Y; the higher is the
nonresponse propensity. Denoting by g; the ith quartile of the empirical distribution
of ¥}, the nonresponse probabilities for (Y2,¥3) are 0.1 if y; < g1, 0.2if y; € [g1,42),
0.4 ify; € [q2,93) and 0.5 if y; > g3.

The sample « is multiply imputed (m=5) via GMM. Data augmentation algorithm
is initialized by using maximum likelihood estimates (MLE) obtained through the
EM algorithm as described in Di Zio et al. (2007). After a burn-in period of 500 iter-
ations, multiple imputation is performed by subsampling the chain every 7 iterations,
that is, the Y,,;s used for imputation are those referring to the iterations (¢,2z,...,51).
Subsampling is used to avoid dependent samples, as suggested by Schafer (1997).
Although the burn-in period may appear to be not very long, as again suggested by
Schafer (1997), the initialization of the algorithm with a good starting point (e.g.,
through MLE) may speed up the convergence of the chain. This is also confirmed by
analysing the trace plot of the parameters.

Once the data set is imputed, for each analysed variable, the estimate of the mean,
its variance, and the corresponding 95% confidence interval for the mean are com-
puted by applymg the multiple imputation formulas to the usual Horvitz- Thompson
estimator ¥ = y, and to its estimated variance Var(Y ) = (L —1)s%, where s? is the
sample variance. The estimates are compared to the true mean value of the popu-
lation by computing the square difference, and verifying whether the true value is
included in the confidence interval. Taking the population fixed, the experiment is
repeated 1000 times, and the results are averaged over these iterations. The results
give simulated MSE, bias, simulated coverage corresponding to a 95% nominal level,
and average length of the confidence intervals.

This simulation scheme is applied in two settings. In the first, the population is
drawn from a two-component Gaussian mixture, with mixing parameter T = (.75,
mean vectors u; = (0,0,0)’, up = (3,5,8)’, and covariance matrices

302424 402424
21=1243021]), Z=|(243521
242113 242132

In the second setting, the population is generated from the Cheriyan and Ram-
abhadran’s multivariate Gamma distribution described in Kotz et al. (2000) pp. 454-
456. In order to draw a sample of a 3-variate random vector (¥1,Y»,¥3) from such
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a distribution the following procedure is adopted. First, we consider 4 independent
random variables X; in R! for i = 0,1,2,3 that are distributed according to Gamma
distributions characterised by different parameters 6;. Then, the 3-variate random
vector is obtained combining the X; so that ¥; = Xy + X; for i = 1,2, 3. The values of
the parameters are 6 = (1,0.2,0.2,0.4)".

In the two-component Gaussian mixture population, multiple imputation is car-
ried out according to a plain normal model (hereafter NM) and a mixture of two
Gaussian components (M). The results for the variable Y3 are illustrated in Table
1. For the Gamma population, multiple imputation is performed by using the plain
normal model (NM) and a K-component mixture Mg for K = 2,3,4. Results for the
variable Y3 are provided in Table 2.

Table 1. Results of the experiment where population is based on a two-component Gaussian
mixture

Mod bias MSE S.Cov Length

NM -0.0144 0.1323 93.7% 0.5000
M, 0.0014 0.1316 949% 0.5163

Table 2. Results of the experiment where population is based on Multivariate Gamma

Mod  bias MSE S.Cov Length

NM 0.0015 0.0431 93.8% 0.1604
M, 0.0052 0.0437 94.0% 0.1661
M; 0.0043 0.0435 94.0% 0.1651
My 0.0059 0.0442 94.1%  0.1655

Results show that confidence intervals are close to the nominal coverage. In par-
ticular, in the first experiment, the confidence interval computed by the mixture mod-
els is better than that computed through a Gaussian distribution. The improvement
is due to the fact that the model used for estimation is correctly specified. This sug-
gests the need of improving estimation of unknown distribution by means of mixture
models. To this aim it could be an important step to consider the number of mixture
components as a random variable, thus incorporating the model uncertainty in the
estimation phase.

References

DIEBOLT, J. and ROBERT, C.P. (1994): Estimation of finite mixture distributions through
Bayesian sampling. Journal of the Royal Statistical Society B, 56, 363-375.



118 Marco Di Zio and Ugo Guarnera

DI ZIO, M., GUARNERA, U. and LUZI, O. (2007): Imputation through finite Gaussian mix-
ture models. Computational Statistics and Data Analysis, 51, 5305-5316.

KOTZ, S., BALAKRISHNAN, N. and JOHNSON, N.L. (2000): Continuous multivariate dis-
tributions. Vol.1, 2nd ed. Wiley, New York.

LITTLE, R.J.A. and RUBIN, D.B. (2002): Statistical analysis with missing data. Wiley, New
York.

MENG, X.L. (1994): Multiple-imputation inferences with uncongenial sources of input (with
discussion). Statistical Science, 9, 538-558.

PADDOCK, S.M. (2002): Bayesian nonparametric multiple imputation of partially observed
data with ignorable nonresponse. Biometrika, 89, 529-538.

RICHARDSON, S. and GREEN, P.J. (1997): On Bayesian analysis of mixtures with an un-
known number of components.Journal of the Royal Statistical Society B, 59, 731-792.

RUBIN, D.B. (1987): Multiple imputation for nonresponse in surveys. Wiley, New York.

SCHAFER, J.L. (1997): Analysis of incomplete multivariate data. Chapman & Hall, London.

STEPHENS, M. (2000): Bayesian analysis of mixture models with an unknown number of
components-an alternative to reversible jump methods. Annals of Statistics, 28, 40-74.

TANNER, M.A. and WONG, W.H. (1987): The calculation of posterior distribution by data
augmentation (with discussion). Journal of the American Statistical Association, 82,
528-550.



Mixture Model Based Group Inference in Fused
Genotype and Phenotype Data

Benjamin Georgi!, M.Anne Spence?, Pamela Flodman? , Alexander Schliep'

! Max-Planck-Institute for Molecular Genetics, Department of Computational Molecular
Biology, Ihnestrasse 73, 14195 Berlin, Germany

2 University of California, Irvine, Pediatrics Department,
307 Sprague Hall, Irvine, CA 92697, USA

Abstract. The analysis of genetic diseases has classically been directed towards establishing
direct links between cause, a genetic variation, and effect, the observable deviation of phe-
notype. For complex diseases which are caused by multiple factors and which show a wide
spread of variations in the phenotypes this is unlikely to succeed. One example is the Atten-
tion Deficit Hyperactivity Disorder (ADHD), where it is expected that phenotypic variations
will be caused by the overlapping effects of several distinct genetic mechanisms. The classical
statistical models to cope with overlapping subgroups are mixture models, essentially convex
combinations of density functions, which allow inference of descriptive models from data as
well as the deduction of groups. An extension of conventional mixtures with attractive prop-
erties for clustering is the context-specific independence (CSI) framework. CSI allows for an
automatic adaption of model complexity to avoid overfitting and yields a highly descriptive
model.

1 Introduction

The attention deficit hyperactivity disorder (ADHD) is diagnosed in 3% — 5% of all
children in the US and is considered to be the most common neurobehavioral dis-
order in children. Today ADHD is known to be influenced by a multitude of factors
such as genetic disposition, neurological properties and environmental conditions
(Swanson et al. (2000a), Woodruff et al. (2004)). The phenotypes usually associ-
ated with ADHD fall into the general categories inattentiveness, hyperactivity and
impulsivity. This is only a partial list of symptoms associated with ADHD and it is
noteworthy that most patients will only show some of these behaviors, with differing
degrees. This wide spread of observable symptoms associated with ADHD supports
the notion that possible ADHD subtypes will have complex characteristics and may
contain overlaps. Since ADHD has a complex non-mendelian mode of inheritance
a partition of phenotypes into clearly separated groups cannot be expected. Rather
some phenotypic variations will be caused by several distinct genetic mechanisms.
The neurotransmitter dopamine and the genes involved in dopamine function are
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known to be relevant to ADHD (Gill et al. (1997)). According to the prevalent the-
ory (Cook et al. (1995)), the contribution of the dopamine metabolism to ADHD is
based on over-activity of dopamine transporters in the pre-synaptic membrane which
leads to reduced dopamine concentrations in the synaptic gap. There have been stud-
ies linking the disposition towards ADHD with the genotypes of a variable number
of tandem repeats (VNTR) region on the third exon of the dopamine receptor gene
DRD4 (Swanson et al. (2000b)). Considering all this, it seems promising to explore
the influences of different dopamine receptor haplotypes on ADHD related pheno-
types and the sub group decompositions implicit in these relationships. For complex
genetic diseases such as ADHD for which the degree of diagnostic uncertainty with
respect to presence of the disease and determination of the disease subtype is large,
the search for simple, direct causalities between different factors is likely to fail (Luft
(2000)). Rather one would expect to find correlations in the form of changes in dispo-
sition for a specific disease feature. When attempting to cluster data from such a com-
plex disease, it is important that the clustering method can accommodate this kind of
uncertainty. The classical statistical approach in this situation is mixture modelling.
An extension of the conventional mixture framework are the context-specific inde-
pendence (CSI) mixture models (Barash and Friedman (2002), Georgi and Schliep
(2006)). In a CSI model the number of parameters used, i.e. the model complexity,
is automatically adapted to match the level of variability present in the data.

In this paper we present a CSI mixture model-based clustering of a data set of
ADHD patients that consists of both genotypic and phenotypic features. The data
set includes 134 samples with 91 genotypic variables and 27 phenotypic variables
each. The genotype variables contain variable number of tandem repeats (VNTR)
information on the DRD4 gene as well as Single Nucleotide Polymorphism (SNP)
data on four dopamine receptor (DRD1-DRD3,DRDS5) and one dopamine transporter
(DAT1) genes. The DRD family proteins are G-protein coupled dopamine receptors
located in the plasma membrane. DAT1 encodes for a dopamine transporter located
in the presynaptic membrane. The phenotypes are represented by two IQ and three
achievement test scores, as well as 21 diagnoses for various comorbid behavioral
disorders.

2 Methods

Let Xi,...,X, be discrete random variables. Given a data set D of N realizations,
D =xy,...,xy with x; = (x;1,...,xj,) a conventional mixture density (see McLachlan
and D. Peel (2000) for details) is given by:

K
P(x) =Y e filx::0x), (1
k=1

where the 7, are non-negative the mixture coefficients, Zszl T, = 1 and each
component distribution
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fe(xi:6x) ka, (%3 6) )
j=1

is a product distribution over Xi,...,X, parameterized by parameters
0r = (61, ...,ka). In other words, we assume conditional independence between
features within the mixture components and adopt the Naive Bayes model as com-
ponent distributions. All component distribution parameters are denoted by 6y, =
(01,...,0k) Finally, the complete parameterizations of the mixture M is then given

by M = (m,0)). The likelihood of data set D under the mixture M is given by

P(D|M) = HP (x;). 3)

that is we have the usual assumption of independence between samples.

The standard technique for learning the parameters © is the Expectation Maxi-
mization (EM) algorithm (Dempster et al. (1977)). The central quantity for the EM
based parameter estimation is the posterior of component membership given by

T T fr(xi: Ok) @

S filxi0r)

i.e. Tj is the probability that a sample x; was generated by component k. Moreover,
this posterior is used for assigning samples to clusters (i.e. components). This is done
by assigning a sample to the component with maximal posterior.

X1 X X3 Xy X1 X X3 Xy
Cq G
C2 C2
a) Cs b) Cs
Cy Cy
Cs Cs

Fig. 1. Model structure matrices for a) conventional mixture model and b) CSI mixture model

The conventional mixture model defined above requires the estimation of one
set of distribution parameters 0y ; per feature and distribution. This is visualized in
the matrix in Fig. 1 a). This example shows a model with five components and four
features. Each cell in the matrix represents one 0y ;. The central idea of the context-
specific independence extension of the mixture framework is that for many data sets
it will not be necessary to estimate separate parameters in each feature for all com-
ponents. Rather one should learn only as many parameters as is justified by the vari-
ability found in the data. This leads to the kind of matrix shown in Fig. 1 b). Here
each cell spanning multiple rows represents a single set of parameters for multiple
components. For instance, for feature X;, C; and C, share the same parameters, for
feature X», C; — C4 have the same parameters and for X4 all components share a
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single set of parameters. This modification of the conventional mixture framework
has a number of attractive properties: The model complexity is reduced as there are
less free parameters to estimate. Also, if a feature has only a single set of parame-
ters assigned for all components, (such as X4 in Fig. 1 b), its contribution in (4) will
cancel out and it will not affect the clustering. This amounts to a feature selection
in which the impact of noisy features is negated as an integral part of model train-
ing. Hence, we can expect a more robust clustering in which the risk of overfitting is
greatly reduced. Finally, the model structure matrix yields a highly descriptive model
which facilitates the analysis of a clustering. For instance, the matrix 1 b) shows that
clusters C4 and Cs are only distinguished by feature X5.

Formally the CSI mixture model is defined as follows: Given the set of com-
ponent indexes C = {1,..,K} and features Xi,...,X, let G = {g;}(j—,..p) be the
CSI structure of the model M. Then g; = (g1, ~~-ngj) such that Z; is the number of
subgroups for X; and each g;,,r = 1,...,Z; is a subset of component indexes from C.
That means, each g; is a partition of C into disjunct subsets where each g ;. represents
a subgroup of components with the same distribution for X;. The CSI mixture dis-
tribution is then obtained by replacing f;(x;;;0x;) with fi;(x; 730, (k) ;) in (2) where
gj(k) = r such that k € gj,. Accordingly By = (7,0, .-, 0x,]g,,) is the model
parametrization. Where 6y .. denotes the different parameter sets in the structure
for feature j. The complete CSI model M is then given by M = (G,0),). Note that
we have covered the CSI mixture model and the structure learning algorithm in some
more detail in a previous publication (Georgi and Schliep (2006)).

2.1 Structure Learning

To learn the CSI structure from data we took a Bayesian approach. That means dif-
ferent models are scored by their posterior distribution which can be efficiently com-
puted in the Structural EM framework (Friedman (1998)). The model posterior is
given by P(M|D) o< P(D|M)P(M) where P(D|M) is the Bayesian likelihood with
P(D|M) = P(D|§>M)P(§>M). P(D|§>M) is the mixture likelihood (3) of the data
evaluated at the maximum aposterior paramters E)M. P(?M) is a conjugate prior

over the model parameters. Due to the independence assumptions P(?M) decom-
poses into a product distribution of conjugate priors over 1 and the individual 6xj| e
For discrete distributions the Dirichlet distribution and for Gaussians a Normal
Inverse-Gamma prior was used. The second term needed to evaluate the model pos-
terior is the prior over the model structure P(M) which is given by P(M) < P(K)P(G)
with P(K) o< y* and P(G) o= []"_; 0%. v < 1 and o0 < 1 are hyper parameter which
act as a regularization of the structure learning by introducing a bias towards less
complex models into the posterior. Here, ow and y were chosen as weak priors by the
heuristic introduced in (Georgi and Schliep (2006)) with a § = 0.05. Since exhaustive
evaluation of all possible structures is infeasible, the structure learning is carried out
by a straightforward greedy procedure starting from the full structure matrix (again
refer to (Georgi and Schliep (2006)) for details).
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3 Results

We applied the CSI mixture model based clustering to the genotype and phenotype
data separately, as well as to the fused data set. For each data set we trained models
with 1 to 10 components and model selection was performed using the Normalized
Entropy Criterion (NEC) (C. Biernacki (1999)).

3.1 Genotype clustering

Fig. 2. VG2 plot (http://pga.gs.washington.edu/VG2.html) of three clusters out of the 7
component genotype clustering. The color code is as follows: rare homozygous is shown
in dark grey , heterozygous in medium grey, common homozygous in light gray and
missing values in white. It can be seen that the clustering captures strong and distinc-
tive patterns within the genotypes. The plot for the full clustering can be obtained from
http://algorithmics.molgen.mpg.de/pymix/genoclust.html.

The model selection on the genotype data set indicated 7 components to be
optimal. Three example clusters out of this clustering of the genotypes are visual-
ized in Fig. 2. The plot for the full clustering is available from our homepage at
http://algorithmics.molgen.mpg.de/pymix/genoclust.html. In the figure the rare ho-
mozygous alleles are shown in dark grey, the heterozygous alleles are shown in
medium grey, the common homozygous alleles in light grey and missing values in
white. It can be seen that the clustering recovered strong and distinctive patterns
within the genotypes data. When contrasting the clustering with the linkage disequi-
librium (LD) found between the loci in the data set one can see a strong agreement
between high LD loci and loci which are informative for cluster discrimination ac-
cording to the CSI structure. An interesting observation was that out of the 92 fea-
tures 71 were found to be uninformative in the CSI structure. In other words only
features that carried strong discriminative information with respect for the clustering
were influencing the result.
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3.2 Phenotype clustering

For the phenotype data the NEC model selection indicated two and four component
to be good choices, with the score for two being slightly better. The clusters for the
two component model could readily be identified as a high performance and a low
performance cluster with respect to the 1Q (BD, VOC) and achievement (READ-
ING, MATH, SPELLING) features. In fact, the diagnosis features did not contribute
strongly to the clustering and most were selected to be uninformative in the CSI
structure. When considering the four component clustering a more interesting pic-
ture arose. The distinctive features of the four clusters can be summarized as

1. high scores (IQ and achievement), high prevalence of ODD, above average gen-
eral anxiety, slight increase in prevalence for many other disorders,

2. above average scores, high prevalence of transient and chronic tics,

low performance, little comorbidity,

4. high performance, little comorbidity.

b
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Fig. 3. CSI structure matrix for the four component phenotype clustering. Identical colors
within each column denote shared use of parameters. Uninformative features are depicted in
white.

The CSI structure matrix for this clustering is shown in Fig. 3. Identical colors
within each column of the matrix denote a shared set of parameters. For instance
one can see that cluster 1 has a unique set of parameters for the feature Oppositional
Defiancy Disorder (ODD) and general anxiety (GENANX) while the other clusters
share parameters. This indicates that these two features are distinguishing the cluster
from the rest of the data set. The same is true for the transient (TIC-TRAN) and
chronic tics (TIC-CHRON) features in cluster 2. Moreover one can immediately see
that cluster 3 is characterized by distinct parameters for the 1Q and achievement
features. Finally, one can also consider which features are discriminating different
clusters. For instance clusters 3 and 4 share parameters for all features but the IQ and
achievement features.



Mixture Based Group Inference in Fused Geno- and Phenotype Data 125
3.3 Joined clustering

The NEC model selection for the fused data set yielded two clusters to be optimal
with four being second best. The analysis of the clustering showed that the a small
number of genotype features dominated the clustering and that in particular all the
phenotype features were selected to be uninformative. Moreover one could observe
that the genotype patterns found were more noisy and less distinctive within clusters.
From these observations we conclude that phenotypes covered in the data set do not
carry meaningful information about the genotypes and vice versa.

4 Discussion

The clustering of geno- and phenotype data separately yielded interesting partitions
of the data. For the former the clustering captured strong patterns of LD within the
clusters. For the latter we found sub groups of differing levels of IQ and achievement
as well as differing degrees of comorbidity. For the fused data set the analysis re-
vealed that there were no strong correlations between the two sources of data. While
a positive result in this aspect would have been more interesting, the analysis was
exploratory in nature. In particular, while the dopamine pathway is known to be rele-
vant for ADHD, there was no guarantee that the specific genotypes in the data would
account for any of the represented phenotypes. As for the CSI mixture method, we
showed that it is well suited for the analysis of complex biological data sets. The
interpretation of the CSI matrix as a high level overview of the discriminative in-
formation of each feature allows for an effortless assessment which features are of
relevance to specifically characterize a cluster. This greatly facilitates the analysis of
a clustering result for data sets with a large number of features.
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Abstract. The so-called noise-component has been introduced by Banfield and Raftery
(1993) to improve the robustness of cluster analysis based on the normal mixture model.
The idea is to add a uniform distribution over the convex hull of the data as an additional
mixture component. While this yields good results in many practical applications, there are
some problems with the original proposal: 1) As shown by Hennig (2004), the method is not
breakdown-robust. 2) The original approach doesn’t define a proper ML estimator, and doesn’t
have satisfactory asymptotic properties.

We discuss two alternatives. The first one consists of replacing the uniform distribution
by a fixed constant, modelling an improper uniform distribution that doesn’t depend on the
data. This can be proven to be more robust, though the choice of the involved tuning constant
is tricky. The second alternative is to approximate the ML-estimator of a mixture of normals
with a uniform distribution more precisely than it is done by the “convex hull” approach. The
approaches are compared by simulations and for a real data example.

1 Introduction

Maximum Likelihood (ML)-estimation of a mixture of normal distributions is a
widely used technique for cluster analysis (see, e.g., Fraley and Raftery (1998)).
Banfield and Raftery (1993) introduced the term “model-based cluster analysis” for
such methods.

In the present paper we are concerned with an idea for improving the robustness
of these estimators against outliers and points not belonging to any cluster. For the
sake of simplicity, we only deal with one-dimensional data here, but the theoretical
results carry over easily to multivariate models. See Section 6 for a discussion of
computational issues in the multivariate case.

Observations xp, . ..,x, are modelled as i.i.d. according to the density
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N

Fal) =D 10, 02 (%), )
j=1

where = (s,ay,...,d5,01,...,04,M,...,T) is the parameter vector, the number
of components s € N may be known or unknown, (aj,G;) pairwise distinct, a; €
R,6;>0,m;>0,j=1,...,s, Zj’:lnj =l and @, 2 is the density of the normal
distribution with mean @ and variance 6°. Estimators of the parameters are denoted
by hats.

There is a problem with the ML-estimation of 1. If @; = x; for some i, a mixture
component j and 6; — 0, the likelihood converges to infinity and the ML-estimator
is not properly defined. This has to be prevented by a restriction. 6; > ¢o > 0V for
a given ¢ or
Ol 00,0 =1,...,s, )

Oj
ensure a well-defined ML-estimator (up to label switching of the components). In
the present paper we use (2), see Hathaway (1985) for theoretical background.

Having estimated the parameter vector 1 by ML for given s, the points can be
classified by assigning them to the mixture component for which the estimated a
posteriori probability p;; that x; has been generated by the mixture component j is
maximized:

cl(x;) = argmax p;j,
J
O Riae;(xi)
Zi:l ﬁk(\oﬁk»ék (xi) .

In cluster analysis, the mixture components are interpreted as clusters, though this
is somewhat controversial, because mixtures of more than one not well separated
normal distributions may be unimodal and could look quite homogeneous.

It is possible to estimate the number of mixture components s by the Bayesian
Information Criterion BIC (Schwarz (1978)), which is done for example by the add-
on package “mclust” (Fraley and Raftery (1998)) for the statistical software systems
R and SPLUS. In the present paper we don’t treat the estimation of s. Note that
robustness for fixed s is important as well if s is estimated, because the higher s, the
more problematic the computation of the ML-estimator, and therefore it is important
to have good robust solutions for small s.

Figure 1 illustrates the behaviour of the ML-estimator for normal mixtures in
the presence of outliers. The addition of one extreme point to a data set generated
from a normal mixture with three mixture components has the effect that the ML
estimator joins two of the original components and fits the outlier alone by the third
component. Note that the solution depends on the choice of ¢y in (2), because the
mixture component to fix the outlier is estimated to have minimum possible variance.

Various approaches to deal with outliers are suggested in the literature about
mixture models (note that all of the methods introduced below work for the data in
Figure 1 in the sense that the outlier on the right side doesn’t affect the classification

3)

Dij
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Fig. 1. Left side: artificial data generated from a mixture of three normals with normal mixture
ML-fit. Right side: same data with one outlier added at 22 and ML-fit with ¢y = 0.01.

of the points on the left side, provided that not too unreasonable tuning constants
are chosen where needed). Banfield and Raftery (1993) suggested to add a uniform
distribution over the convex hull (i.e., the range for one-dimensional data) to the
normal mixture:

- 1 min s Ymax
Fal) =m0, 02 (x) + g L€ Lonin: ], )
j=1

Xmax — Xmin

Z‘;-:O ;= 1, Ty > 0, Xyngy and Xy, denote the maximum and minimum of the data.
The uniform component is called the “noise component”. The parameters 7, a; and
0 can again be estimated by ML (“BR-noise” in the following”).

As an alternative, McLachlan and Peel (2000) suggest to replace the normal den-
sities in (1) by the location/scale family defined by #,-distributions (v could be fixed
or estimated). Other families of distributions yielding more robust ML-estimators
than the normal could be chosen as well, such as Huber’s least favourable distribu-
tions as suggested for mixtures by Campbell (1984).

A further idea is to optimize the log-likelihood of (1) for a trimmed set of points,
as has already been proposed for the k-means clustering criterion (Cuesta-Albertos,
Gordaliza and Matran (1997)).

Conceptually, the noise component approach is very appealing. t-mixtures for-
mally assign all outliers to mixture components modelling clusters. This is not ap-
propriate in most situations from a subject-matter perspective, because the idea of an
outlier is that it is essentially different from the main bulk of the data, which in the
mixture setup means that it doesn’t belong to any cluster. McLachlan and Peel (2000)
are aware of this and suggest to classify points in the tail areas of the t-distributions
as not belonging to the clusters, but mathematically the outliers are still treated as
generated by the mixture components modelling the clusters.
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Fig. 2. Left side: votes for the republican candidate in the 50 states of the USA 1968. Right
side: fit by mixture of two (thick line) and three (thin line) normals. The symbols indicate the
classification by two normals.
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Fig. 3. Left side: votes data fitted by a mixture of two #3-distributions. Right side: fit by mixture
of two normals and BR-noise. The symbols indicate the classifications.

On the other hand, the trimming approach makes a crisp distinction between
trimmed outliers and “normal” non-outliers, while in reality it is often unclear
whether points on the borderline of clusters should be classified as outliers or mem-
bers of the clusters. The smoother mixture approach via estimated a posteriori prob-
abilities by analogy to (3) applied to (4) seems to be more appropriate in such situ-
ations, while still implying a conceptual distiction between normal clusters and the
outlier generating uniform distribution.

As an illustration, consider the dataset shown on the left side of Figure 2 giving
the votes in percent for the republican candidate in the 1968 election in the USA
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(taken from the add-on package “cluster” for R). The main bulk of the data can be
roughly separated into two normally looking clusters and there are several states on
the left that look atypical. However, it is not so clear where the main bulk ends and
states begin to be “outlying”, neither is it clear whether the state with the best result
for the republican candidate should be considered an outlier. On the right side you
see ML-fits by normal mixtures. For s = 2 (thick line), one mixture component is
taken to fit just three outliers on the left, obscuring the fact that two normals would
yield a much more convincing fit for the vast majority of the higher election results.
The mixture of three normals (thin line) does a much better job, although it joins
several points on the left as a third “cluster” that don’t have very much in common
and don’t look very “normal”.

The #3-mixture ML runs into problems on this dataset. For s = 2, it yields a
spurious mixture component fitting just four packed points (Figure 3, left side). Ac-
cording to the BIC, this solution is better than the one with s = 3, which is similar
two the normal mixture with s = 3. On the right side of Figure 3 the fit with the
noise component approach can be seen, which is similar to three normals in terms of
point classification, but provides a useful distinction between normal “clusters” and
uniform “outliers”.

Another conceptual remark concerns the interpretation of the results. It makes
a crucial difference whether a mixture is fitted for the sake of density estimation or
for the sake of clustering. If the main interest is in cluster analysis, it is of major
importance to interpret the classification and the distinction between “cluster” and
“outlier” can be very useful. In such a situation the uniform distribution for the noise
component is not chosen because we really believe that the outliers are uniformly
distributed, but to mimic the situation that there is no prior information where outliers
could be and what could be their distributional shape. The uniform distribution can
then be interpreted as “informationless” in a subjective Bayesian fashion.

However, if the main interest is density estimation, it is much more important to
come up with an estimator with a reasonable shape of the density. The discontinuities
of the uniform may then be judged as unsatisfactory and a mixture of three or even
four normals may be preferred. In the present paper we focus on the cluster analytical
interpretation.

In Section 2, some theoretical shortcomings of the original noise component ap-
proach are highlighted and two alternatives are proposed, namely replacing the uni-
form distribution over the range of the data by am improper uniform distribution and
estimating the range of the uniform component by ML.

In Section 3, theoretical properties of the different noise component approaches
are discussed. In Section 4, the computation of the estimators using the EM-algorithm
is treated and some simulation results are given in Section 5. The paper is concluded
in Section 6. Note that the theory and simulations in this paper are an overview of
more detailed results in Pietro Coretto’s forthcoming PhD thesis. Proofs and detailed
simulation results will be published elsewhere.
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2 Two variations on the noise component

2.1 The improper noise component

Hennig (2004) has derived a robustness theory for mixture estimators based on the fi-
nite sample addition breakdown point by Donoho and Huber (1983). This breakdown
point is defined, in general, as the smallest proportion of points that has to be added
to a dataset in order to make the estimation arbitrarily bad, which is usually defined
by at least one estimated parameter converging to infinity under a sequence of a fixed
number of added points. In the mixture setup, Hennig (2004) defined breakdown as
aj — oo, Gf — oo, or T; — O for at least one of j = 1,...,s. Under (4), the uniform
component is not regarded as interesting on its own, but as a helpful device, and
its parameters are not included in the breakdown point definition. However, Hennig
(2004) showed that for fixed s the breakdown point not only for the normal mixture-
ML, but also for the t-mixture-ML and BR-noise is the smallest possible; all these
methods can be driven to breakdown by adding a single data point. Note, however,
that a point has to be a very extreme outlier for the noise component and t-mixtures to
cause trouble, while it’s much easier to drive conventional normal mxtures to break-
down.

The main robustness problem with the noise component is that the range of the
uniform distribution is determined by the most extreme points, and therefore it de-
pends strongly on where the outliers are.

A better breakdown behaviour (under some conditions on the dataset, i.e., the
components have to be well separated in some sense) has been shown by Hennig
(2004) for a variant in which the noise component is replaced by an improper uniform
density k over the whole real line:

falx) = an%j,c§ (x) + mok. 5)
=1

k has to be chosen in advance, and the other parameters can then be fitted by “pseudo
ML” (“pseudo” because (5) does not define a proper density and therefore not a
proper likelihood). There are several possibilities to determine k:

e a priori by subject matter considerations, deciding about the maximum density
value for which points cannot be considered anymore to lie in a “cluster”,

» exploratory, by trying several values and choosing the one yielding the most con-
vincing solution,

e estimating k from the data. This is a difficult task, because k is not defined by a
proper probability model. Interpreting the improper noise as a technical device to
fit a good normal mixture for most points, we propose the following technique:

1. Fit (5) for several values of k.

2. For every k, perform classification according to (3) and remove all points
classified as noise.

3. Fit a simple normal mixture on the remaining (non-noise) points.
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4. Choose the k that minimizes the Kolmogorow distance between the empirical
distribution of the non-noise points and the fit in step 3. Note that this only
works if all candidate values for k are small enough that a certain minimum
portion of the data points (50%, say) is classifed as non-noise.

From a statistical point of view, estimating k is certainly most attractive, but theo-

retically it is difficult to analyze. Particularly, it requires a new robustness theory

because the results of Hennig (2004) assume that & is chosen independently of

the data. The result for the voting data is shown on the left side of Figure 4. k

is lower than for BR-noise, so that the “borderline points” contribute more to

the estimation of the normal mixture. The classification is the same. More im-

provement could be seen if there was a further much more extreme outlier in the

dataset, for example a negative number caused by a typo. This would affect the
range of the data strongly, but the improper noise approach would still yield the
same classification. Some alternative techniques to estimate k are discussed in

Coretto and Hennig (2007).

2.2 Maximum likelihood with uniform

A further problem of BR-noise is that the model (4) is data dependent, and its ML es-
timator is not ML for any data independent model, particularly not for the following
one:

Fal@) =Y 0, 2 () + ot 1y (x), ©6)
j=1

where uy, 5, is the density of a uniform distribution on the interval [by,b;]. This
may come as a surprise, because the range of the data is ML for a single uniform
distribution, but if it is mixed with some normals, the range of the data is not ML
anymore for by and by, because fy is nonzero outside [b1,b,). For example, BR-
noise doesn’t deliver the ML solution for the voting data, which is shown on the
right side of Figure 4. In order to prevent the likelihood from converging to infinity

for b, — by — 0, the restriction (2) has to be extended to Gy = bf/}gl , the standard

deviation of the uniform.

Taking the ML-estimator for (6) is an obvious alternative (“ML-uniform”). For
the voting data the ML solution to fit the uniform component only on the left side
seems reasonable. The largest election result is now assigned to one of the normal
clusters, to the center of which it is much closer than the outliers on the left to the
other normal cluster.

3 Some theory

Here is a very rough overview on some theoretical results which will be published
elsewhere in detail:
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Fig. 4. Left side: votes data fitted by (5) with s = 2 and estimated k. Right side: fit by ML for
(6), s = 2. The symbols indicate the classifications.

Identifiability. All parameters in model (6) are identifiable. This is not surprising
because the uniform can be located by the discontinuities in the density (defined
as the derivative of the cdf), and mixtures of normals are identifiable. The result
involves a new definition of identifiability for mixtures of different families of
distributions, see Coretto and Hennig (2006).

Asymptotics. Note that the results below concern parameters, but asymptotic re-
sults concerning classification can be derived in a straightforward way from the
asymptotic behaviour of the parameter estimators.

BR-noise. n — o0 = 1/(Xjnax — Xmin) — O whenever s > 0. This means that
asymptotically the uniform density is estimated to be zero (no points are
classified as noise), even if the true underlying model is (6) including a uni-
form.

ML-uniform. This is consistent for model (6) under (2) including the standard
deviation of the uniform. However, at least the estimation of b, and b; is
not asymptotically normal because the uniform distribution doesn’t fulfill
the conditions for asymptotic normality of ML-estimators.

Improper noise. Unfortunately, even if the density value of the uniform distri-
bution in (6) is known to be k, the improper noise approach doesn’t deliver
a consistent estimate for the normal parameters in (6). Its asymptotics con-
cerning the canonical parameters estimated by (5), i.e., the value of its “pop-
ulation version”, is currently investigated.

Robustness. Unfortunately, ML-uniform is not robust according to the breakdown
definition given by Hennig (2004). It can be driven to breakdown by two extreme
points in the same way BR-noise can be driven to breakdown by one extreme
point, because if two outliers are added on both sides of the original dataset,
BR-noise becomes ML for (6).
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The improper noise approach with estimated k is robust against the addition
of extreme outliers under a sensible initial range of k. Its precise robustness
properties still have to be investigated.

4 The EM-algorithm

Nowadays, the ML-estimator for mixtures is often computed by the EM-algorithm,
which is shown in various settings to increase the likelihood in every iteration, see
Redner and Walker (1984). The principle is as follows:

Start with some initial parameter values which may be obtained by an initial parti-
tion of the data. Then iterate the E-step and the M-step until convergence.

E-step: compute the posterior probabilities (3), their analogues for the model under
study, respectively, given the current parameter values.

M-step: compute component-wise ML-estimators for the parameters from weighted
data, where the weights are given by the E-step.

For given k, the improper noise estimator can be computed precisely in the same
way. The proof in Redner and Walker (1984) carries over even though the estimator
is only pseudo-ML, because given the data, the improper noise component can be
replaced by a proper uniform distribution over some set containing all data points
with a density value of k.

For ML-uniform it has to be taken into account that the ML-estimator for a single
uniform distribution is always the range of the data. This means for the EM-algorithm
that whatever initial interval [ is chosen for [b1,b5], the uniform mixture component
is estimated as the uniform over the range of the data contained in / in the M-step.
Particularly, if I = [X,in, Xmax], the EM-estimator yields Banfield and Raftery’s noise
component as ML-estimator, which is indeed a local optimum of the likelihood in
this sense. Therefore, unfortunately, the EM-algorithm is not informative about the
parameters of the uniform.

A reasonable approximation of ML-uniform can only be obtained by starting
the EM-algorithm several times, either initializing the uniform by all pairs of data
points, or, if this is computationally not feasible, by choosing an initial grid of data
points from which all pairs of points are used. This could be for example X,,in, Xmaxs
and all empirical 0.1g-quantiles for g = 1,...,9, or the range of the data could be
partitioned into a number of equally long intervals and the data points closest to the
interval borders could be chosen. The solution maximizing the likelihood can then
be taken.

5 Simulations

Simulations have been carried out to compare the two new proposals ML-uniform
and improper noise with BR-noise and ML for #,-mixtures. The latter has been car-
ried out with estimated degrees of freedom v and classification of points as “out-
liers/noise” in the tail areas of the estimated t-components, according to Chapter 7
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of McLachlan and Peel (2000). The ML-uniform has been computed based on a grid
of points as explained in Section 4.

Data sets have been generated with n = 50, n = 200 and n = 500, and several
statistics have been recorded. The precise simulation results will be published else-
where. In the present paper we focus on the average misclassification percentages
for the datasets with n = 200. Data have been simulated from four different param-
eter choices of the model (6), which are illustrated in Figure 5. For every model, 70
repetitions have been run.
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Fig. 5. Simulated models. Note that for the model “2 outliers” the number of points drawn
from the uniform component has been fixed to 2.

The misclassification results are given in Table 1. BR-noise yielded the best per-
formance for the “wide noise” model. This is not surprising, because in this model
it’s very likely that the most extreme points on both sides are generated by the uni-
form. With two extreme outliers on one side, it was also optimal. However, it per-
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Table 1. Average misclassification percentages for n = 200

Model/method BR-noise t-mixture improper noise ML-uniform
Two outliers 2.7 7.3 3.9 3.3
Wide noise 8.0 9.6 8.4 9.3
Noise on one side 10.6 8.3 3.6 53
Noise in between 8.8 8.7 5.5 7.3

formed much worse in the two models that generated 10% noise at particular places
(“noise on one side” and “noise in between”). The improper noise approach gen-
erally performed very well, almost always better than uniform-ML (which was the
best method for two of the models for n = 500). The t-mixtures-ML didn’t perform
very well, but this is at least partly due to the fact that all simulated models were
of the “normal mixture plus uniform”-type. We will also carry out simulations from
t-mixtures in the future.

6 Conclusion

To deal with noise and outliers in cluster analysis, two new methods have been pro-
posed, which are variants of Banfield and Raftery’s (1993) noise component, namely
the use of an improper density to model the noise and an ML-estimator for a mixture
model including a uniform component. Both methods have some theoretical advan-
tages over BR-noise. Simulations showed a good performance particularly for the
improper noise component with estimated density value. We find the principle to
model outliers and noise by an additional (proper or improper) uniform component
appealing, particularly for cluster analysis applications. It allows a smooth classifi-
cation of points as “noise” or as belonging to a cluster.

Of course it is desirable to apply the ideas to multivariate data as well. This is
possible in a straightforward way for the improper noise approach where k is fixed
in advance by subject matter considerations. Our proposal to estimate k may work as
well for moderate dimensionality, but this is still under investigation.

The ML-uniform approach is problematic in the multivariate setup because of
the large number of potentially reasonable support sets for the uniform distribution.
In principle it could be applied by assuming the support of the uniform component
as rectangular and parallel to the coordinate axes defined by the variables in the data.
The ML solution could then be approximated by the best of several hyperrectan-
gles defined by pairs of data points. It remains to see whether this leads to useful
clusterings.
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Abstract. An approach for the integration of supervising information into unsupervised clus-
tering is presented (semi supervised learning). The underlying unsupervised clustering al-
gorithm is based on swarm technologies from the field of Artificial Life systems. Its basic
elements are autonomous agents called Databots. Their unsupervised movement patterns cor-
respond to structural features of a high dimensional data set. Supervising information can be
easily incorporated in such a system through the implementation of special movement strate-
gies. These strategies realize given constraints or cluster information. The system has been
tested on fundamental clustering problems. It outperforms constrained k-means.

1 Introduction

For traditional cluster analysis there is usally a large supply of unlabeled data but
little background information about classes. To generate a complete labeling of
data can be expensive. Instead, background information might be available as small
amount of preclassified input samples that can help to guide the cluster analysis. Con-
sequently, integration of background information into clustering and classification
techniques has recently become focus of interest. See Zhu (2006) for an overview.

Retrieval of previously unknown cluster structures, in the sense of multi-mode
densities, from unclassified and classified data is called semi-supervised clustering.
In contrast to semi-supervised classification, semi-supervised clustering methods are
not limited to the class labels given in the preclassified input samples. New classes
might be discovered, given classes are merged or might be purged.

A particularly promising approach to unsupervised cluster analysis are systems
that possess the ability of emergence through self-organization (Ultsch (2007)). This
means that systems consisting of a huge number of interacting entities may pro-
duce a new, observable pattern on a higher level. Such patterns are said to emerge
from the self-organizing entities. A biological example for emergence through self-
organization is the formation of swarms, e.g. bee swarms or ant colonies.

An example of such nature-inspired information processing techniques is clus-
tering with simulated ants. The ACLUSTER system of Ramos and Abraham (2003)
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is inspired by ant colonies clustering corpses. It consists of a low-dimensional grid
that only carries pheromone intensities. A set of simulated ants moves on the grid’s
nodes. The ants are used to cluster data objects that are located on the grid. An ant
might pick up a data object and drop it later on. Ants are more likely to drop an
object on a node whose neighbourhood has similar data objects rather than on nodes
with dissimilar objects. Ants move according to pheromone trails on the grid.

In this paper we describe a novel approach for semi-supervised clustering that
is based on our unsupervised learning artificial life system (see Ultsch (2000)). The
main idea is that a large number of autonomous agents show collective behaviour
patterns that correspond to structural features of a high dimensional training set. This
approach turns out to be inherently prepared to incorporate additional information
from partially labeled data.

2 Artificial life

The artifical life system (ALife) is used to cluster a finite high-dimensional training
set X C R”. It consists of a low-dimensional grid / C IN? and a set B of so-called
Databots. A Databot carries an input sample of training set X and moves on the
grid. Formally, a Databot i € B is denoted as a triple (x;,m(x;),S;) whereas x; €
X is the input sample, m(x;) € I is the Databot’s location on the grid and S; is a
set of movement programs, so-called strategies. Later on, mapping of data onto the
low-dimensional grid is used for visualization of distance and density structure as
described in section 4.

A strategy s € S; is a function that assigns probabilites to available directions
of movement (north, east, et cetera). The Databot’s new location n’ (x;) is chosen at

Fig. 1. ALife system: Databots carry high-dimensional data objects while moving on the grid,
nearby objects are to be mapped on nearby nodes of the low-dimensional grid



An Atrtificial Life Approach for Semi-supervised Learning 141

random according to the strategies’ probabilites. Several strategies are combined into
a single one by weighted averaging of probabilities. Probabilities of movements are
to be chosen such that a Databot is more likely to move towards Databots carrying
similar input samples than towards Databots with dissimilar input samples. This aims
at creation of a sufficiently topography preserving projection m : X — I (see figure
1). For an overview on strategies see Ultsch (2000).

A generalized view on strategies for topography preservation is given below. For
each Databot (x;,m(x;),S;) € B there is a set of bots F; (friends) it should move
towards. Here, the strategy for topography preservation is denoted with sr. Canoni-
cally, F; is chosen to be the Databots carrying the k € IN most similar input samples
with respect to x; according to a given dissimilarity measure d : X x X — IRO+ , e.g.
the euclidean metric on cardinal scaled spaces. Strategy sr assigns probabilites to
all directions of movements such that m(x;) is more likely to be moved towards
‘71’_‘ > ek m(x;) than to any other node on the grid. This can easily be achieved, for
example, by vectorial addition of distances for every direction of movement. Addi-
tionally, a set of Databots F/ with the most dissimilar input samples with respect to
x; might inversely be used such that m(x;) is moved away from its foes. A showclass
example for sr is given in figure 2. In analogy to self-organizing maps (Kohonen
(1982)), the size of set F; is decreasing over time. This means that Databots adapt a
global ordering before they adapt to local orderings.

Strategies are combined by weighted averaging, i.e. probability of movement towards
direction D € {north,east,...} is p(D) = 35 wss(D)/ > ics, ws With ws € [0,1]
being the weight of strategy s. Linear combination of probabilities is to be preferred
over multiplicative because of its compensation. Several combinations of strategies
have intensely been tested. It turned out that for obtaining good results a small

Fig. 2. Strategies for Databots’ movements: (a) probabilities for directed movements (b) set
of friends (black) and foes (white), counters resulting from vectorial addition of distances are
later on normalized to obtain probabilities, e.g. py consists of black northern distances and
white southern distances
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amount! of random walk is necessary. This strategy assigns equal probabilities to
all available directions in order to overcome local optima by the help of randomness.

3 Semi-supervised artificial life

As described in section 2, the ALife system produces a vector projection for clus-
tering purposes using a movement strategy sr depending on set F;. Choice of bots
in F; C B is derived from the input samples’ similarities with respect to x;. This is
subsumed as unsupervised constraints because F; arises from unlabeled data only.

Background information about cluster memberships is given as pairwise con-
straints stating that two input samples x;,x; € X belong to the same class (must-link)
or different classes (cannot-link). For each input sample x; this results in two sets:
ML; C X denotes the samples that are known to belong to the same class whereas
CL; C X contains all samples from different classes. ML; and CL; remain empty for
unclassified input samples. For each x;, vector projection m : X — [ has to reflect
this by mapping m(x;) nearby m(ML;) and far from m(CL;). This is subsumed as
supervised constraints because they arise from preclassifications.

The sr paradigm for satisfaction of unsupervised constraints and how to combine
them has already been described in section 2. Same method is applied for satisfaction
of supervised constraints. This means that an additional strategy sy, is introduced
for Databots carrying preclassified input samples. For such a Databot (x;,m(x;),S;)
the set of friends is simply defined as F; = ML;. According to that strategy, m(x;) is
more likely to be moved towards W%J > jemr;m(x;) than to any other node on the
grid. This strategy sysz is added to other available strategies. Thus, integration of su-
pervised and unsupervised learning tasks is realized on basis of movement strategies
for Databots creating a vector projection m. This is referred to as semi-supervised
learning Databots. The whole system is referred to as semi-supervised ALife (sSAL-
ife).

There are at least two strategies that have to be combined for suitable move-
ment control of semi-supervised learning Databots: the sy strategy concerning un-
supervised constraints and the sy, strategy concerning supervised constraints. An
adequate proportional weighting of sr and sy, strategy can be estimated by several
methods: Any clustering method can be understood as a classifier whose quality is
assessable as prediction accuracy. In this case, accuracy means accordance of input
samples’ preclassifications and final clustering. The suitability of a given propor-
tional weighting may be evaluated by cross validation methods. Another approach
is based on two assumptions. First, cluster memberships are rather global than local
qualities. Second, the ssALife system adapts to global orderings before local ones.
Therefore, the influence of the sy strategy is constantly decreasing from 100%
down to O over the training process. The latter method was applied in the current
realization of the ssALife system.

I usually with an absolute weight of 5% up to 10%
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4 Semi-Supervised artificial life for cluster analysis

Since ssALife is not an inherent clustering but vector projection method, its visual-
ization capabilities are enhanced using structure maps and the U-Matrix method.

A structure map enhances the regular grid of the ALife system such that each
node i € I contains a high-dimensional codebook vector m; € R". Structure maps
are used for vector projection and quantization purposes, i.e. arbitrary input sam-
ples x € R" are assigned to nodes with bestmatching codebook vectors bm(x) =
arg min;e; d(x,m;) with d being the dissimilarity measure from section 2. For a mean-
ingful projection the codebook vectors are to be arranged in a topography preserving
manner. This means that neighbouring nodes i, j usually have got codebook vectors
m;,m; that are neighbouring in the input space. A popular method to achieve that
is the Emergent Self-organizing Map (see Ultsch (2003)). In this context, projected
input samples m(x;), Vx; € X from our ssALife system are used for structure map cre-
ation. A high-dimensional interpolation based on the self-organizing map’s learning
technique determines the codebook vectors (Kohonen (1982)).

The U-Matrix (see figure 3 for illustration) is the canonical display of structure
maps. The local distance structure is displayed on each grid node as a height value
creating a 3D landscape of the high dimensional data space. Clusters are represented
as valleys whereas mountain ranges depict cluster boundaries. See Ultsch (2003) for
an overview.

Contrairy to common belief, visualizations of structure maps are not clustering
algorithms. Segmentation of U-Matrix landscapes into clusters has to be done sepa-
rately. The U*C clustering algorithm uses an entropy-based heuristic in order to au-
tomatically determine the correct number of clusters (Ultsch and Herrmann (2006)).
By the help of the watershed-transformation, a structure map decomposes into sev-
eral coherent regions called basins. Basins are merged in order to form clusters if
they share a highly dense region on the structure map. Therefore, U*C combines
distance and density information for cluster analysis.

5 Experimental settings and results

In order to evaluate the clustering and self-organizing abilities of ssALife, its clus-
tering performance was measured. The main idea is to use data sets on which the
input samples’ true classification is known in beforehand. Clustering accuracy can
be evaluated as fraction of correctly classified input samples. The ssALife is tested
against the well known constrained k-means (COPK-Means) from Wagstaff et al.
(2001). For each data set, both algorithms got 10% of input samples with the true
classification. The remaining samples are presented as unlabeled data.

The data comes from the fundamental clustering problem suite (FCPS). This
is a collection of data sets for testing clustering algorithms. Each data set repre-
sents a certain problem that arbitrary clustering algorithms shall be able to han-
dle when facing real world data sets. For example, ”Chainlink”, ”Atom” and “Tar-
get” contain spatial clusters of linear not separable, i.e. twined, structure. “Lsun”,
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“EngyTime” and "Wingnut” consist of density defined clusters. For details see
http://www.mathematik.uni-marburg.de/~databionics.

Comparative results can be seen in table 1. The ssALife method clearly out-
performs COPK-Means. COPK-Means suffers from its inability to recognize more
complex cluster shapes. As an example, the so-called EngyTime data set is shown in
figure 3.

Table 1. Percental clustering accuracy: ssALife outperforms COPK-Means, accuracy esti-
mated on fully classified original data over fifty runs with random initialization

data set || COPK-Means [ ssALife with U*C
Atom 71 100
Chainlink 65.7 100
Hepta 100 100
Lsun 96.4 100
Target 55.2 100
Tetra 100 100
TwoDiamonds 100 100
Wingnut 93.4 100
EngyTime 90 96.3

Fig. 3. Density defined clustering problem EngyTime: (a) partially labeled data (b) ssALife
produced U-Matrix, clearly visible decision boundary, fully labeled data

6 Discussion

In this work we described a first approach of semi-supervised cluster analysis using
autonomous agents called Databots. To our knowledge, this is the first approach that
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aims for the realization of semi-supervised learning paradigms on basis of a swarm
clustering algorithm.

The ssALife system and Ramos” ACLUSTER differ in two ways. First, Databots
can be seen as a bijective mapping of input samples onto locations whereas simu-
lated ants have no permanent connection to the data. This facilitates the integration
of additional data-related features into the swarm entities. Furthermore, there is no
global exchange about topographic information in ACLUSTER, which may lead to
discontinuous projections of clusters, i.e. projection errors.

Most popular approaches for semi-supervised learning can be distinguished in
two groups (Belkin et al. (2006)). The manifold assumption states that input samples
with equal class labels are located on manifolds or subspaces, respectively, of the
input space (Belkin et al. (2006), Bilenko et al. (2004)). Recovery of such manifolds
is accomplished by optimization of an objective function, e.g. for adaption of met-
rics. The cluster assumption states that input samples in the same cluster are likely
to have the same class label (Wagstaff et al. (2001), Bilenko et al. (2004)). Again,
recovery of such clusters is accomplished by optimization of an objective function.
Such objective functions consist of terms for unsupervised cluster retrieval and a
loss term that punishes supervised constraint violations. Obviously, the obtainable
clustering solutions are predetermined by the inherent cluster shape assumption of
the chosen objective function. For example, k-means like clustering algorithms and
Mahalanobis like metric adaptions, too, assume linear separable clusters of spheri-
cal shape and well-behaved density structure. In contrast to that, the ssALife method
comes up with a simple yet powerful learning procedure based on movement pro-
grams for autonomous agents. This enables a unification of supervised and unsu-
pervised learning tasks without the need for a main objective function. Except for
the used dissimilarity measure, the ssALife system does not rely on such objective
functions and reaches maximal accuracy on FCPS.

7 Summary

In this paper, cluster analysis is presented on basis of a vector projection problem. Su-
pervised und unsupervised learning of a suitable projection means to incorporate in-
formation from topography and preclassifications of input samples. In order to solve
this, a very simple yet powerful enhancement of our ALife system was introduced.
So-called Databots move the input samples’ projection points on a grid-shaped out-
put space. Databots’ movements are chosen according to so-called strategies. The
unifying framework for supervised and unsupervised learning is simply based on
defining an additional strategy that can incorporate preclassifications into the self-
organization process.

From this self-organizing process a non-linear display of the data’s spatial struc-
ture emerges. The display is used for automatic cluster analysis. The proposed
method ssALife outperforms a simple yet popular algorithm for semi-supervised
cluster analysis.
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Abstract. Euclidean partition dissimilarity (P, P) (Dimitriadou et al., 2002) is defined as the
square root of the minimal sum of squared differences of the class membership values of the
partitions P and P, with the minimum taken over all matchings between the classes of the parti-
tions. We first discuss some theoretical properties of this dissimilarity measure. Then, we look
at the Euclidean consensus problem for partition ensembles, i.e., the problem to find a hard
or soft partition P with a given number of classes which minimizes the (possibly weighted)
sum , wpd (Py,P)? of squared Euclidean dissimilarities d between P and the elements P,
of the ensemble. This is an NP-hard problem, and related to consensus problems studied in
Gordon and Vichi (2001). We present an efficient “Alternating Optimization” (AO) heuristic
for finding P, which iterates between optimally rematching classes for fixed memberships, and
optimizing class memberships for fixed matchings. An implementation of such AO algorithms
for consensus partitions is available in the R extension package clue. We illustrate this algo-
rithm on two data sets (the popular Rosenberg-Kim kinship terms data and a macroeconomic
one) employed by Gordon & Vichi.

1 Introduction

Over the years, a huge number of dissimilarity measures for (hard) partitions has
been suggested. Day (1981), building on work by Boorman and Arabie (1972), iden-
tifies two leading groups of such measures. Supervaluation metrics are derived from
supervaluations on the lattice of partitions. Minimum cost flow (MCF) metrics are
given by the minimum weighted number of admissible transformations required to
transform one partition into another.

One such MCF metric is the R-metric of Rubin (1967), defined as the “mini-
mal number of augmentations and removals of single objects” needed to transform
one partition into another. This equals twice the Boorman-Arabie A (single element
moves) distance, and is also called transfer distance in Charon et al. (2006) and
partition-distance in Gusfield (2002). It can be computed by solving the Linear Sum
Assignment Problem (LSAP)

min wit|Ce AC
WeWAZkJ w|Cx ACH|
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where W) is the set of all matrices W = [wy,] with non-negative elements and row all
column sums all one, and the {C; } and {C;} denote the classes of the first and second
partition P and P, respectively. The LSAP can be solved efficiently in polynomial
time using primal-dual algorithms such as the so-called Hungarian method, see e.g.
Papadimitriou and Steiglitz (1982).

For possibly soft partitions, as e.g. obtained by fuzzy or model-based mixture
clustering, the theory of dissimilarities is far less developed. To fix notations and ter-
minology, let n be the number of objects to be classified. A (possibly soft) partition P
assigns to each object 7 and class k a non-negative number m;; quantifying the “be-
longingness” or membership of the object to the class, such that ), mj = 1. We can
gather the my; into the membership (matrix) M = M(P) = [my] of the partition. In
general, M is a stochastic matrix; for hard partitions, it is a binary matrix. Note that
M is unique up to permutations of its columns. We refer to the number of non-zero
columns of M as the number of classes of the partition, and write 7, and £P\{'I for the
space of all (possibly soft) partitions with v classes, and all hard partitions with v
classes, respectively.

In what follows, it will often be convenient to bring memberships to “a com-
mon number of classes” (i.e., columns) by adding trailing zero columns as needed.
Formally, we can work on the space P of all stochastic matrices with n rows and in-
finitely many columns, with the normalization that non-zero columns are the leading
ones.

For two hard partitions with memberships M and M, we have |C;AC)| =
> |mix —my|P for all p > 1, as |u|? = |u| if u € {—1,0,1}. This strongly suggests
to generalize the R-metric to possibly soft partitions via dissimilarities defined as the
p-th root of

Wrg% w0 K Zi mix — it |P

Using p = 2 gives Euclidean dissimilarity d (Dimitriadou et al. (2002)). Identify-
ing the optimal assignment with its corresponding map 7 (‘“permutation” in the pos-
sibly augmented case) of the classes of the first to those of the second partition (i.e.,
n(k) = L iff wy; = 1 iff Cy is matched with C;), we can use Zk,l Wi > | mix — g [P =
> i 2k Imix — 1t 7| to obtain

(M, M) = min [|M — M1 ¢

where the minimum is taken over all permutation matrices IT and ||M|p =
(32, xm%)"/? is the Frobenius norm. See Hornik (2005b) for details.

For p = 1, we get Manhattan dissimilarity (Hornik, 2005a). For general p and
W = [wy] constrained to have given row sums oy and column sums 3; (not neces-
sarily all identical as for the assignment case), we get the Mallows-type distances
introduced in Zhou et al. (2005), and motivated from formulations of the Monge-
Kantorovich optimal mass transfer problem.

Gordon and Vichi (2001, Model 1) introduce a dissimilarity measure also based
on squared distances between optimally matched columns of the membership matri-
ces, but ignoring the “unmatched” columns. This will result in discontinuities (with
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respect to the natural topology on P) for sequences of membership matrices for
which at least one column converges to zero.

In Section 2, we give some theoretical results related to Euclidean partition dis-
similarity, and present a heuristic for solving the Euclidean consensus problem for
partition ensembles. Section 3 investigates soft Euclidean consensus partitions for
two data sets employed in Gordon and Vichi (2001), the popular Rosenberg-Kim
kinship terms data and a macroeconomic one.

2 Theory

2.1 Maximal Euclidean dissimilarity

Charon et al. (2006) provide closed-form expressions for the maximal R-metric
(transfer distance) between hard partitions with v and v classes, which readily yield

Uyy=  max d(M,M) = \/n—cqin(V,V),

MePl MePH

with the minimum concordance cpin given in Theorem 2 of Charon et al. (2006). One
can show (Hornik, 2007b) that the maxima of the Euclidean dissimilarity between
(possibly soft) partitions can always be attained at the “boundary”, i.e., for hard
partitions, such that

max d(M,M)= max d(M,M)=pyy
MeP, MeP; Merl Merl!

E.g.if v<Vand (v— 1)V <n, then uyy = (n— [1n/¥])!/2. Note that the dissimilar-
ities between soft partitions are “typically” much smaller than for hard ones.

2.2 The Euclidean consensus problem

Aggregating ensembles of clusterings into a consensus clustering by minimiz-
ing average dissimilarity has a long history, with key contributions including
Mirkin (1974), Barthélemy and Monjardet (1981, 1988), and Wakabayashi (1998).
More generally, clusterwise aggregation of ensembles of relations (thus containing
equivalence relations, i.e., partitions, as a special case) was introduced by Gaul and
Schader (1988).

Given an ensemble (profile) of partitions Py,...,Pg of the same n objects and
weights wy,...,wp summing to one, a soft Euclidean consensus partition (general-
ized mean partition) is defined as a partition which minimizes

ZB wpd (P, Py)?
by VoA B

over P, for given v. Similarly, a hard Euclidean consensus partition minimizes the
criterion function over P . Equivalently, one needs to find
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mmz W m1n M — MyIT, |3 = rr}lvllnnmln Z wp||M — MyTT, || %
over all suitable M and permutation matrices Iy, ..., I1p.

Soft Euclidean consensus partitions can be characterized as follows (see
Hornik (2005b)). For fixed ITy,...,Ig, >, wpl|M — M,I1,||% = |M — M||% +
>y wpl|MpIlp||% — || M||% where M = 3", w,M}I1, is the weighted mean of the (suit-
ably matched) memberships. If M is feasible for M (such that v > max(vy,...,Vp)),
the overall minimum sought is found by

geensy ,...,

for a suitable B-dimensional cost array c. This is an instance of the Multi-dimensional
Assignment Problem (MAP), which is known to be N P-hard.

For hard partitions M and fixed TIy,...,T15, >, wy||M — MpIl,||3 =
|M|j% — 23, wptrace(M'M,I1,) + wabHMbeHF = const — 2trace(M'M). As
trace(M'M) = ;> mjmy, if again v > max(vy,...,vg), this can be maximized

by choosing, for each row i, m; = 1 for the first & such that my, is maximal for the

i-th row of M. Le., the optimal M is given by a closest hard partition H(M) of M
“winner-takes-all weighted voting”).

Inserting the optimal M yields that the optimal permutations are found by solving

o, 3™ (e 3, o
.. <1<k<v b (k )

which looks “similar” to, if not worse than, the MAP for the soft case.

In both cases, we find that determining Euclidean consensus partitions by simul-
taneous optimization over the memberships M and permutations I1y,...,I1z leads
to very hard combinatorial optimization problems, for which solutions by exhaus-
tive search are only possible for very “small” instances. Hornik and Bohm (2007)
introduce an “Alternating Optimization” (AO) algorithm based on the natural idea to
alternate between minimizing the criterion function >, wy||M — M,I1,||% over the
permutation for fixed M, and over M for fixed permutations. The first amounts to
solving B (independent) linear sum assignment problems, the latter to computing
suitable approximations to the weighted mean M = ", w,M,I1, (see above for the
case where v > max(vy,...,Vg); otherwise, one needs to “project” or constrain to
the space of all M with only v leading non-zero columns). If every update reduces
the criterion function, converge to a fixed point is ensured (it is currently unknown
whether these are necessarily local minima of the criterion function). These AO al-
gorithms, which are implemented as methods "SE" (default) and "HE" of function
cl_consensus of package clue (Hornik, 2007a), provide efficient heuristics for find-
ing the global optimum, provided that the best solution found in “sufficiently many”
replications with random starting values is employed.
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Table 1. Memberships for the soft Euclidean consensus partition with v = 3 classes for the
Gordon-Vichi macroeconomic ensemble.

Argentina  0.618 0.374 0.008 Norway 0.082 0.912 0.006
Bolivia 0.666 0.056 0.278 Portugal 0.488 0.452 0.060
Canada 0.018 0.980 0.002 South Africa  0.626 0.366 0.008
Chile 0.632 0.356 0.012 Spain 0.314 0.658 0.028
Egypt 0.750 0.070 0.180 Sudan 0.566 0.088 0.346
France 0.012 0.988 0.000 Sweden 0.050 0.944 0.006
Greece 0.736 0.194 0.070 UK. 0.112 0.872 0.016
India 0.542 0.076 0.382 U.S.A. 0.062 0.930 0.008
Indonesia  0.616 0.144 0.240 Uruguay 0.680 0.310 0.010
Italy 0.044 '0.950 0.006 Venezuela 0.600 0.390 0.010
Japan 0.134 0.846 0.020

3 Applications

3.1 Gordon-Vichi macroeconomic ensemble

Gordon and Vichi (2001, Table 1) provide soft partitions of 21 countries based on
macroeconomic data for the years 1975, 1980, 1985, 1990, and 1995. These parti-
tions were obtained using fuzzy c-means on measurements of variables such as an-
nual per capita gross domestic product (GDP) and the percentage of GDP provided
by agriculture. The 1980 and 1990 partitions have 3 classes, the remaining ones two.

Table 1 shows the memberships of the soft Euclidean consensus partition for
v = 3 based on 1000 replications of the AO algorithm. It can be verified by exhaus-
tive search (which is feasible as there are at most 67 = 7776 possible permutation
sequences) that this is indeed the optimal solution. Interestingly, one can see that
the maximal membership values are never attained in the third column, such that
the corresponding closest hard partition (which is also the hard Euclidean consen-
sus partition) has only 2 classes. One might hypothesize that there is a bias towards
2-class partitions as these form the majority (3 out of 5) of the data set, and that
3-class consensus partitions could be obtained by suitably “up-sampling” the 3-class
partitions, i.e., increasing their weights w;,. Table 2 indicates how a third consensus
class is formed when giving the 3-class partitions w times the weight of the 2-class
ones (all these countries are in class 1 for the unweighted consensus partition): The
order in which countries join this third class (of the least developed countries) agrees
very well with the “sureness” of their classification in the unweighted consensus, as
measured by their margins, i.e., the difference between the largest and second largest
membership values for the respective objects.

3.2 Rosenberg-Kim Kinship terms data

Rosenberg and Kim (1975) describe an experiment where perceived similarities of
the kinship terms were obtained from six different “sorting” experiments. In one of
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Table 2. Formation of a third class in the Euclidean consensus partitions for the Gordon-Vichi
macroeconomic ensemble as a function of the weight ratio w between 3- and 2-class partitions
in the ensemble.

1.5
2.0
3.0
4.5
10.0
12.5

[

India
India, Sudan
India, Sudan

India, Sudan, Bolivia, Indonesia
India, Sudan, Bolivia, Indonesia
India, Sudan, Bolivia, Indonesia, Egypt
India, Sudan, Bolivia, Indonesia, Egypt

these, 85 female undergraduates at Rutgers University were asked to sort 15 English
terms into classes “on the basis of some aspect of meaning”. There are at least three
“axes” for classification: gender, generation, and direct versus indirect lineage. The
Euclidean consensus partitions with v = 3 classes put grandparents and grandchil-
dren in one class and all indirect kins into another one. For v = 4, {brother, sister}
are separated from {father, mother, daughter, son}. Table 3 shows the memberships
for a soft Euclidean consensus partition for v =5 based on 1000 replications of the
AO algorithm.

Table 3. Memberships for the 5-class soft Euclidean consensus partition for the Rosenberg-
Kim kinship terms data.

grandfather
grandmother
granddaughter

grandson
brother
sister
father
mother
daughter
son
nephew
niece
cousin
aunt
uncle

0.000
0.005
0.113
0.134
0.612
0.579
0.099
0.089
0.000
0.031
0.012
0.000
0.080
0.000
0.000

0.024
0.134
0.242
0.111
0.282
0.391
0.546
0.654
1.000
0.842
0.047
0.129
0.056
0.071
0.000

0.012
0.016
0.054
0.052
0.024
0.026
0.122
0.136
0.000
0.007
0.424
0.435
0.656
0.929
0.882

0.965
0.840
0.466
0.581
0.082
0.002
0.158
0.054
0.000
0.113
0.071
0.000
0.033
0.000
0.071

0.000
0.005
0.125
0.122
0.000
0.002
0.075
0.066
0.000
0.007
0.447
0.435
0.174
0.000
0.047

Figure 1 indicates the classes and margins for the 5-class solutions. We see that
the memberships of ‘niece’ are tied between columns 3 and 5, and that the margin
of ‘nephew’ is only very small (0.02), suggesting the 4-class solution as the optimal

Euclidean consensus representation of the ensemble.
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grandfather <
grandmother <&
granddaughter <o

grandson <&

brother A

sister A

father +

mother +
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nephew v

niece o

cousin X
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uncle x

[ I R R .

3

w W W

Fig. 1. Classes (incicated by plot symbol and class id) and margins (differences between the
largest and second largest membership values) for the 5-class soft Euclidean consensus parti-
tion for the Rosenberg-Kim kinship terms data.

Quite interestingly, none of these consensus partitions split according to gender,
even though there are such partitions in the data. To take the natural heterogene-
ity in the data into account, one could try to partition them (perform clusterwise
aggregation, Gaul and Schader (1988)), resulting in meta-partitions (Gordon and
Vichi (1998)) of the underlying objects. Function c1_pclust in package clue pro-
vides an AO heuristic for soft prototype-based partitioning of classifications, allow-
ing in particular to obtain soft or hard meta-partitions with soft or hard Euclidean
consensus partitions as prototypes.
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Abstract. In developing information systems conceptual models are used for varied purposes.
Since the modeling process is characterized by interpretation and abstracting the situation at
hand it is essential to enclose information about the design process the modelers went through.
This aspect is often discarded. But the lack of this information hinders the reuse of past knowl-
edge for later, similar problems encountered and supports the repeat of failures.

The design rationale approaches, discussed in the software engineering community since
the 1990s, seem to be an effective means to solve these problems. But the semiformal style of
the rationale models challenges the retrieval of the relevant information. The paper explores
an approach for classifying issues by its responding alternatives as an access to the complex
rationale documentation.

1 Subjectivism in the modeling process

Our considerations are based on a moderate constructivistic position. This attitude of
mind has significant consequences on the design of the modeling process as well as
on the evaluation of the quality of the resulting model. As it is outlined in (Schiitte
and Rotthowe (1998)) a model is a result of a cognitive process done by a modeler,
who is structuring the considered system according to a specific purpose. Because
of the differing thought patterns of the stakeholder a consensus about structuring the
problem domain as well as about the model representation has to be defined. In this
way the modeling process is a consensus oriented one.

The definition of the application domain terms is an accepted starting point for
the process of conceptual modeling (cp. Holten (2003), p. 201). Therefore it is fair
to assume that no misinterpretation of the applied terminology occurs.

In order to manage the subjectivity in the modeling process and to support the
traceability of the conceptualizations done by the model designer, SCHUETTE and
ROTTHOWE proposed the Guidelines of Modeling as generic modeling conventions
(cp. Schiitte and Rotthowe (1998)). In doing so they also considered not only the
significant role of the model designer but also the role of the model user. They claim
that the model user is only able to interpret the model in a correct way, if he knows
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the underlying guidelines of the model design (cp. Schiitte and Rotthowe (1998), p.
242).

Model designers are facing similar problems in different projects (cp. Fowler
(1997)). Owing to a lack of an explicit and maintained knowledge base containing
experiences in model construction and model use, similar problems are solved re-
peatedly at higher costs than they have to be (cp. Hordijk and Wieringa (2006), p.
353).

Due to the subjectivism in the modeling process it is inevitable to externalize the
assumptions and objectives the model bases on. The traceability of the model con-
struction is not only relevant for reusing modeling solutions but also for maintaining
the model itself. Stakeholder, who were not involved in the modeling process, are
not able to interpret the model in the right way. Particularly with regard to fractional
changes of the model, the lack of rationale information could have far-reaching con-
sequences like violating assumptions, constraints or tradeoffs.

Argumentation based models of design rationale ought to be suitable for solv-
ing these problems (cp. Dutoit et al. (2006)). Based on the literature about Design
Rationale approaches in Software Engineering we derive an approach for reusing
experiences in conceptual modeling. For this purpose we use the classification of
rationale fragments accessing different rationale models resulting from various mod-
eling projects.

2 The design rationale approach

According to the latest level of knowledge in software engineering issue models
which represent the justification for a design in a semiformal manner are the most
promising approach to solve the problems described above (cp. Dutoit et al. (2006)).
They could be used for structuring the rationale in a more systematic way than text
documentations do. In addition, implementing a knowledge base containing the ra-
tionales of past modeling projects could improve the efficiency of future modeling
processes as well as the quality of the outcoming artifacts.

VAN DER VEN ET AL. identified a general process for creating rationale, which
most of the approaches have in common (cp. van der Ven et al. (2006), p. 333).

After the problems are identified and described in problem statements they are
evaluated one by one. Alternative solutions are created, evaluated and weighted for
their suitability of solving the problem at hand. After an informed decision is made,
it is documented along with its justification in a rationale document.

Various approaches for capturing design rationale have been evolved. Most of
them are basing on very similar concepts and are more or less restrictive. For our
concerns we have chosen the QOC notation, because it is quite expressive and deals
directly with evaluation of artifact features (cp. Dutoit et al. (2006), p. 13).

2.1 The QOC-Notation

The Questions, Options, and Criteria (QOC) notation is used for the design space
analysis, which ’ [...] creates an explicit representation of a structured space of design
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alternatives and the considerations for choosing among them [...] * (MacLean et al.
(1991), p. 203).

QOC is a semiformal node-and-link diagram. Though it provides a formal struc-
ture, the statements within any of the nodes are informal and unrestricted. MACLEAN
ET AL. define the three basic concepts, questions, options, and criteria. These con-
cepts and their relations are depicted in Figure 1.

Question Criterion

Criterion

Option ‘ supports—  Criterion
su} orts
i Argument 1
chaiienges
e Argument 2

Fig. 1. QOC notation

Questions represent key issues of design decisions not having trivial solutions.
They are means for structuring the design space of an artifact. Options are alternative
solutions responding to a question. * [...] Criteria represent the desirable properties
of the artifact and requirements that it must satisfy [...] © (MacLean et al. (1991), p.
208). Because they state the objectives of the design in a clear and structured manner,
they form the basis of evaluation, weighting and selection of a design solution. The
labeled link between an option and a criterion displays the assessment whether an
option satisfy a criterion. In doing so tradeoffs are made explicit and the discussion
about choosing among the options turns focus to the purpose the design is made for.

The presented design space analysis is an argumentation based approach. On this
account all of the QOC elements could be supported or challenged by arguments.
These arguments could play an important role for the evolution of the organizational
knowledge base. In the case of reusing design solution the validity of the arguments
the primary design decision was based on has to be proven.

One objection to the utility of rationale models is that they are very complex
and hardly to manage without any tool support (cp. MacLean et al. (1991), p. 216).
Due to the complexity of the rationale models it is necessary to provide an effective
retrieval mechanism. Otherwise this kind of documentation seems to be useless for a
managed organizational memory.
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2.2 Reuse of rationale documentation

Since the capturing of design rationale takes considerable effort, the benefit from
using the resulting models has to exceed the costs of their construction.

HORDIIK and WIERINGA propose Reusable Rationale Blocks for reusing design
knowledge in order to improve quality and efficiency of design choices (cp. Hordijk
and Wieringa (2006)). For achieving this goal they use generalized pieces of decision
rationale.

The idea of Reusable Rationale Blocks bases on the QOC approach and on
the concept of design patterns. Design Patterns are widely accepted approaches for
reusing design knowledge. Though they provide a detailed description of a solu-
tion for a repeating design problem, they lack evaluations of alternative solutions
(cp. Hordijk and Wieringa (2006), p. 356). But they are appropriate options within
a QOC-Model, which could be ranked by a set of quality indicators. In this way
tradeoffs and dependencies among solutions can be considered.

In order to define appropriate patterns and to assemble an experience base the
documented argumentation, i.e. the rationale models, has to be analyzed. To support
the analysis of the rationale documentation of several modeling projects an effective
and efficient access is needed. This goal claims that all relevant information to the
problem at hand is retrieved and no irrelevant information is element of the answer
set. Precision and recall are accepted measures for assessing the achievement of this
objective.

The classification scheme presented in the next section could be regarded as an
intermediate stage for editing the rationale information of project specific documen-
tations to generate generic rationale information like the described Reusable Ratio-
nale Blocks.

3 Classification of rationale fragments

The QOC notation is more restrictive than most of the other approaches and deals
directly with the evaluation of artifact features. These are premises for classifying
the options of divers rationale models as a systematic entry to the rationale docu-
mentation.

To depict our idea we use FOWLERS Analysis Pattern (cp. Fowler (1997)). He
discusses different alternatives for modeling derivatives.
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Contract

T

| | Contract

isLong

Long Short

(a) Subtyping (b) Boolean Attribute

Fig. 2. Alternative Modeling of Long and Short

Figure 2 shows two different models of a contract and the distinction between
Long and Short. In the first model subtyping is used for this purpose whereas the
second one uses the Boolean attribute isLong. FOWLER states that both alternatives
are equivalent in conceptual modeling (cp. Fowler (1997), p. 177).

Fig. 3. Different Structures of the Optionality of a Contract

For modeling the concept Option FOWLER presents two alternatives depicted in
Figure 3 (cp. Fowler (1997), pp. 200ff.). In the first model the optionality of a contract
is represented by subtyping. In this way an option is a t'"[...] kind of contract with
additional properties and some variant behavior [...]Jt"" (Fowler (1997), p. 204). The
second model differentiates between an option and its underlying base contract. Even
FOWLER can give only little advice for choosing among these alternative modeling
solutions.
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Option Short Long
How to add the otionality How to model Long and Short?
to the contract? / \
ki f
ind o Base contract subtyping Boolean

contract as underlying attribute
“definite . Minimum of
notion explicitness classes

plain

Fig. 4. Example for a Design Space Analysis

For this purpose we analyzed the rationale for the modeling alternatives pre-
sented by FOWLER. Figure 4 shows an extract of the rationale model using QOC.
The represented discussion bases on the assumption that there has been a decision
to include the information objects Option, Long and Short in the model. From these
decisions, there follow two Questions concerning the divers alternatives.

On closer examination two different kinds of modeling issues can be derived
from the provided solutions. The first one are problem solutions concerning the use
of modeling grammar and its influence on the resulting model quality. For solving
these problems the knowledge, experiences and assumptions of the modeling expert
are decisive.

As a second kind of issues we can identify questions concerning the structuring
of the considered system. The expertise and the instinct of the domain expert should
dominate this discussion.

A rationale fragment contains at least a question and its associated options, cri-
teria, and arguments. One single question deals either with structuring the problem
domain or with applying the modeling grammar. While the considered options in
the QOC model can be identified by means of the formal structure, the statements
within the nodes are facing the common problems of information retrieval. If we can
presume a defined terminology both of the application domain and of the modeling
grammar a classification of the Options can identify Questions concerning similar
design problems discussed in several rationale models. The resulting classification
can be used as a starting point for the analysis of the archived rationale documenta-
tion in order to accumulate and aggregate the specific project experiences.

To exemplify our thoughts Figure 5 depicts a possible classification of rationale
fragments. The two main branches, problem domain and modeling grammar, catego-
rize the rationale information according to the experiences of the domain expert and
the modeling expert respectively.

The differentiation between these two kinds of modeling issues is also reflected
in the two principles of the Guidelines of Modeling, construction adequacy and lan-
guage suitability (cp. Schiitte and Rotthowe (1998), p. 246). Just these principles



Rationale Models for Conceptual Modeling 161

. Single Multiple
Option Future Inheritance Inheritance
Derivatives Inheritance
Problem Modelling
Domain Grammar

Conceptual
Modelling

Fig. 5. Classification of Rationale Fragments

reveal that information modeling is characterized by various decision problems. So
the choice of the information objects, relevant for the modeling problem, determines
the appropriateness of the resulting model. Furthermore an agreement about the ap-
plication of certain modeling techniques has to be settled.

The branch referring to the usability and utility of the modeling grammar de-
serves closer attention. Rationale documentations concerning these kinds of issues
are not only useful for the model designer and user, but they are also invaluable as
feedback information for an incremental knowledge base for the designers of the
modeling method.

Experiences in the method use, i.e. usage of the modeling grammar, are discov-
ered as an essential resource for the method engineering process (cp. Rossi et al.
(2004)). ROSSI ET AL. stress these kind of information as a complementary part of
the method rationale documentation. They define the method construction rationale
and the method use rationale as a coherent unit of rationale information.

4 Conclusion

The paper suggests that a classification of design rationale fragments can support the
analysis and reuse of modeling experiences resulting in an explicit and systematic
structured organizational memory.

Owing to the subjectivism in the modeling process the application of an argumen-
tation based design rationale approach could assist the reasoning in design decisions
and the reflection of the resulting model. Furthermore Reusable Rationale Blocks are
valuable assets for estimating the quality of the prospective conceptual model.

The semiformality of the complex rationale models challenges the retrieval of
documented discussions relevant to a specific modeling problem. The paper presents
an approach for classifying issues by its responding alternatives as a systematic entry
in the rationale models as a starting point for the analysis of modeling experiences.

What is needed now is empirical research on the impact of design rationale mod-
eling on the resulting conceptual model. An appropriate notation has to be elabo-
rated. This is not a trivial mission because of the tradeoff between a flexible model-
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ing grammar and an effective retrieval mechanism. The more formal a notation is the
more precise the retrieval system works. The other side of the coin is that the more
formal a notation is the more the capturing of rationale information is interfering.
But a high intrusive approach will hardly be used for supporting decision making on
the fly.
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Abstract. A clustering algorithm, in essence, is characterized by two features (1) the way in
which the heterogeneity within resp. between clusters is measured (objective function) (2) the
steps in which the splitting resp. fusioning proceeds. For categorical data there are no “stan-
dard indices” formalizing the first aspect. Instead, a number of ad hoc concepts have been
used in cluster analysis, labelled “similarity”, “information”, “impurity” and the like. To clar-
ify matters, we start out from a set of axioms summarizing our conception of “dispersion” for
categorical attributes. To no surprise, it turns out, that some well-known measures, including
the Gini index and the entropy, qualify as measures of dispersion. We try to indicate, how
these measures can be used in unsupervised classification problems as well. Due to its simple
analytic form, the Gini index allows for a dispersion-decomposition formula that can be made
the starting point for a CART-like cluster tree. Trees are favoured because of i) factor selection
and ii) communicability.

1 Motivation

Most data sets in business administration show attributes of mixed type i.e. numerical
and categorical ones. The classical text-book advice to cluster data of this kind can
be summarized as follows

a) Measure (dis-)similarities among attribute vectors separately on the basis of
either kind of attributes and unite both the resulting numbers in a (possibly
weighted) sum.

b) In order to deal with the categorical attributes, encode them in a suitable (binary)
way and look for coincidences all over the resulting vectors. Condense your
findings with the help of one of the numerous existing matching coefficients.

(cf. Fahrmeir et al. (1996), p. 453). This advice, however, is bad policy for at least
two reasons. Treating both parts of the attribute vectors separately amounts to saying
that both groups of variables are independent—which only can be claimed in excep-
tional cases. By looking for bit-wise coincidences, as in step two, one completely
looses contact with the individual attributes. This feature, too, is statistically unde-
sirable. For that reason it seems to be less harmful to categorize numerical quantities
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and to deal with all variables simultaneously—but to avoid matching coefficients
and the like. During the last decade roughly a dozen agglomerative or partitioning
cluster algorithms for categorical data have been proposed, quite a few based on
the concept of entropy. Examples include “COOLCAT” (Barbard et al. (2002)) or
“LIMBO” (Andritsos et al. (2004)). These approaches, no doubt, have their merits.
For various reasons, however, it would be advantageous to rely on a divisive, tree-
structured technique that

a) supports the choice of relevant factors,
b) helps to identify the resulting clusters and renders the device communicable to
practitioners.

In other words, we favour some unsupervised analogue to CART or CHAID.

That type of procedure, furthermore, facilitates the use of prior information on
the attribute level as it will be seen in Section 3. Within that context comparisons of
attributes should not be based any longer on similarity-measures but on quantities
that allow for a model-equivalent and accordingly, can be related to the underlying
probability source. For that purpose we shall work out the concept of “dispersion” in
Section 2 and discuss starting points for cluster algorithms in Section 3. The material
in Section 2 may bewilder some readers as it seems that “somebody should have
written down something like that long time ago”. Despite some efforts, however, no
source in the literature could be spotted.

There is another important aspect that has to be addressed. Categorical data is
typically organized in form of tables or cubes. Obviously, the number of cells ex-
ponentially increases with the number of factors taken into consideration. This, in
turn, will result in many empty or sparsely populated cells and render the analysis
obsolete. In order to circumvent this difficulty, some form of “sequential sub-cube
clustering” is needed (and will be reported elsewhere).

2 Measures of dispersion

What is a meaningful splitting criterion? There are essentially three answers pro-
vided in the literature, “impurity”, “information” and “distance”. The axiomization
of impurity is somewhat scanty. Every symmetric functional of a probability vector
qualifies as a measure of impurity iff it is minimal (zero) in the deterministic case
and takes its maximum value at the uniform distribution (cf. Breiman et al. (1984),
p- 24). That concept is not very specific and it hardly gives way to an interpretation
in terms of “intra-class-density” or “inter-class-sparsity”’. Information, on the other
hand, can be made precise by means of axioms that uniquely characterize the Shan-
non entropy (cf. Rényi (1971), p. 442). The reading of those axioms in the realm
of classification and clustering is disputable. Another approach to splitting is based
on probability metrics measuring the dissimilarity of stochastic vectors representing
different classes. Various types of divergences figure prominently in that context (cf.
Teboulle et al. (2006), for instance). That approach, no doubt, is conceptually sound
but suffers from a technical drawback in the present context. Divergences are defined
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in terms of likelihood ratios and, accordingly, are hardly able to distinguish among
(exactly or approximately) orthogonal probabilities. Orthogonality among cluster-
representatives, however, is considered to be a desirable feature.

A time-tested road to clustering for objects represented by quantitative attribute-
vectors is based on functions of the covariance matrix (e.g. determinant or trace). It is
near at hand to mimic those approaches in the presence of qualitative characteristics.
However, there seems to be no source in the literature that systematically specifies

CERNNTS ELINNT3 ELINNT3

a notion like “variability”, “volatility”, “diversity”, “dispersion” etc. for categorical
variates. In order to make this conception precise, we consider functionals D,

D:P — [0,00]

where P denotes the class of all finite stochastic vectors, i.e. P is the union of the sets
Pk comprising all probability vectors of length K > 2. D, of course, will be subject
to further requirements:

(PI)  “invariance w.r. to permutations (relabellings)”
D(poy,---:Poy) = D(p1,- ... PK)
forall p = (pi,...,pk) € Pk and all permutations G.
(MD) “dispersion is minimal in the deterministic case”
D(p) =0 iff pis an unit vector.
(MA) “D is monotone w.r. to majorization”

P<mq=D(p)>D(q) p.qc P .

In particular, D takes its maximum at the uniform distribution (cf. Tong (1980),
p. 102ff for the definition of <,, and some basics).

(SC) “splitting cells increases dispersion”
D(pla'"7pk*13rvsapk+lw~'vpK)ZD(pla"'7pk*13pkapk+17'”apK) .

where p € Px,0 <r,sand r+s = pi.

(MP) “mixing probabilities increases dispersion”
D((1=r)p+rg) = (1-r)D(p) +rD(q)

for 0 < r <1 and p,q € Px. In addition to concavity we assume D to be
continuous on all of Px,K > 2.
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(EC) “consistency w.r. to empty cells”

D(p17"'apK7O) SD(plw"apK)
for all p € Px.

Definition 1. A functional D satisfying (PI), (MD), (MA), (SC), (MP), (EC) is called
a (categorical) measure of dispersion.

Some comments on this definition.

1. The majorization ordering seems to be a “natural” choice and it guarantees that
D is also a measure of impurity. “<,,” could be replaced, however, by an or-
dering expressing concentration around the mode. The restriction to unimodal
probabilities (frequencies) and the dependency on a measure of location to be
specified in advance, is somewhat undesirable.

2. In an earlier draft, (EC) was formulated with “=" instead of “<”. Some helpful
remarks made by C.Henning and A. Ultsch lead to this modification. It allows
for measures that relate dispersion to the length of the stochastic vector. This
might be meaningful in tree-building in order to prevent a preferential treatment
of attributes exhibiting many levels. Such an index, for instance, could take on
the form

p € int(Bg) = D(p) = wk Y_ g(px),
k

where g is some “suitable” function (see below) and wg are some discounting
weights.

3. In case of ordinal variates, it makes sense to restrict the class of permutations in
(PD).

For the sake of convenience (and “w.l.0.g”) the axioms above were formulated by
means of a linearly ordered indexing set. With two-way (or higher order) tables,
multiple indices k = (i, j) € K = I x J are more convenient. The marginal resp. con-
ditional distributions associated with probabilities (or empirical frequencies) (p;;)
on a I x J-table are denoted as usual, e.g.

1 s
Y = pior (1) = pig/pi. -
The next assertion parallels the well-known formula “c*(Y) > E(c*(Y|X))”.

Proposition 1. Let D be a measure of dispersion and (p;j) probabilities on a two-

way-table. Then,
D(p?) =3 D' (10)p!" .

Proof. Consequence of (MP) O
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The proposition implies that any measure of dispersion induces a predictive measure
of association Ap,

S D ([0))p!"

3 _ _ )
Ap(2]1) =1— 550 —Zi:AD(le—l)p,» :

where Ap (2|1 = i) represents the conditional predictive strength of level i. For D(p) =
1 — pmax, Ap ist closely related to Goodman-Kruskal’s lambda. The measures Ap can
be employed, for instance, to construct association rules.

In what follows we shall restrict our attention to functionals D of the form
p)=>_gpi)
i

where g is a continuous, concave function on [0, 1], g(0) = g(1) =0 and g(z) > 0 for
0<r<l1.

Examples.
i) g(t)=t(1—1)=Dy(p)=1- Zp,Z = ZZpipj =trace(X),
i i#]

% = diag(p) — pp"

i.e. D is the Gini-index resp. the generalized variance. More general Beta densi-
ties could be employed as well.

ii.) g(t) = —t log 1 = Dy( Zp, log p;
i.e. D is the Shannon entropy.

Proposition 2. a) D, is a measure of dispersion.
b) If g is strictly concave, then D, takes its unique maximum on Py at the uniform
distribution ux = K~'(1,...,1).

Proof. (PI), (MD) and (MP) are immediate consequences of the definition. (MA)
follows from a well-known lemma by Schur (cf. Tong (1980), Lemma 6.2.1). In
order to see (SC), just write r = opg,s = (1 — o) px and employ concavity. O

Obviously, D, (p) can efficiently be estimated from an multinomial i.i.d. sample
XWX py =N X0 In fact, Dg(py) is the strongly consistent ML-
estimator of Dg(p) and distributional aspects can be settled with the help of the
A-method.

Proposition 3. Let p be an interior point of Px.
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a) If p #£ ug, then

where Ty = (....&'(p),-- )Z(....& (px),.. ).
b) If p = ug, then

L,(N(Dg(pn) —Dg(p))) — L ijyf ’
J

where Y1,..., Yk is a sample of standard-normal variates and where Ay, ..., Ak
denote the eigenvalues of =V/*HZ'/?, H = diag(...,u" (py),...).

Proof.

a) 1is adirect consequence of Witting and Miiller-Funk (1995), Satz 5.107 b), p. 107
("Delta method").
b) follows from their Satz 5.127, p. 134. O

The limiting distribution in b) must be worked out for every g seperately. For the
Gini index Dg this becomes

R 1 K—1%+_,
£(NDo(pw) —1+ ) = £ == D_¥;
i—1

3 Segmentation

Again, we start out from a sample of categorical (multinomial) attribute vectors,
XWX In general, a clustering corresponds to a partition of the objects
{1,...,N}. With categorical data we shall demand, that vectors contributing to the
same cell should always be united in the same cluster. With that convention, a cluster-
ing now corresponds to a partitioning of the cells, i.e. is related to the attributes. That
makes it easy to formulate further constraints on the attribute-level. For instance, it
can be required in the segmentation process that cells pertaining to some ordinal fac-
tor only come along in intervals within a cluster. As already indicated, we are mainly
interested in building up cluster-trees on the basis of some measure D,.

Now let p(m) be the average of all observations in cluster C(m). According to
our convention, these cluster-representatives become orthogonal. If C(m) is further
decomposed into two subclusters Cy,(m) and Cg(m), then

Dy (p(m)) — pr(m)Dg (pr(m)) — pr(m)Dg (pr(m)) >0

is the gain in dispersion within clusters and is to to be maximized. A look at the
corresponding formula characterizing a CART-tree (cf. Breiman et al (1984), p. 25),
reveals that in the absence of the information in labels, a posteriori probabilities are
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merely replaced by “centroids”. Matters become even more transparent in case of the
Gini-index Dg. This is due to the identity

Dg(ap+Bq) = a’Dg(p) + B*Da(q) +2ap(1 - pq)

where p,g € Pk, 0, > 0,00+ = 1, resulting in the general decomposition-formula:

= w (DG (AN(D) + D> Ay (D (m) (1= p (1) pn(m))
l I#m
= Dg(within) + Dg(between)

where 7ty (m) denotes the proportion of observations in cluster C(m). With our con-
vention fty (m) = py(m) and the decomposition formula becomes

ZPN )DG (py(m) +> > pn(l) pv(m

[#£m

Here, the quantity to be maximized simply becomes py,(m) - pr(m). Accordingly,
a cluster is divided into subclasses of approximately the same size if no further prior
information (restriction) is added. This solution to the clustering problem of course,
is rather blunt and undesirable for most applications. It provokes the question, how-
ever whether related measures (like the entropy) really produce partitions that allow
for a better statistical interpretation. It remains to see, moreover, how well the ap-
proach performs if restrictions, prior probabilities or label-information is provided.

There is a promising alternative route based on the predictive measures of as-
sociation introduced earlier. At each node the best predictor-attribute is selected.
Attribute cells with a low conditional predictive power are merged into one and the
node is branched out accordingly. The procedure stops if predictive power falls short
a prescribed critical value. The whole device, in fact, can be interpreted as some form
of non-linear factor analysis. It will be part of forthcoming work.
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Abstract. A central task when integrating data from different sources is to detect identical
items. For example, price comparison websites have to identify offers for identical products.
This task is known, among others, as record linkage, object identification, or duplicate detec-
tion.

In this work, we examine problem settings where some relations between items are given
in advance — for example by EAN article codes in an e-commerce scenario or by manually
labeled parts. To represent and solve these problems we bring in ideas of semi-supervised and
constrained clustering in terms of pairwise must-link and cannot-link constraints. We show
that extending object identification by pairwise constraints results in an expressive framework
that subsumes many variants of the integration problem like traditional object identification,
matching, iterative problems or an active learning setting.

For solving these integration tasks, we propose an extension to current object identification
models that assures consistent solutions to problems with constraints. Our evaluation shows
that additionally taking the labeled data into account dramatically increases the quality of
state-of-the-art object identification systems.

1 Introduction

When information collected from many sources should be integrated, different ob-
jects may refer to the same underlying entity. Object identification aims at identifying
such equivalent objects. A typical scenario is a price comparison system where offers
from different shops are collected and identical products have to be found. Decisions
about identities are based on noisy attributes like product names or brands. More-
over, often some parts of the data provide some kind of label that can additionally
be used. For example some offers might be labeled by a European Article Number
(EAN) or an International Standard Book Number (ISBN). In this work we investi-
gate problem settings where such information is provided on some parts of the data.
We will present three different kinds of knowledge that restricts the set of consistent
solutions. For solving these constrained object identification problems we extend the
generic object identification model by a collective decision model that is guided by
both constraints and similarities.
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2 Related work

Object identification (e.g. Neiling 2005) is also known as record linkage (e.g. Win-
kler 1999) and duplicate detection (e.g. Bilenko and Mooney 2003). State-of-the-art
methods use an adaptive approach and learn a similarity measure that is used for
predicting the equivalence relation (e.g. Cohen and Richman 2002). In contrast, our
approach also takes labels in terms of constraints into account.

Using pairwise constraints for guiding decisions is studied in the community of
semi-supervised or constrained clustering — e.g. Basu et al. (2004). However, the
problem setting in object identification differs from this scenario because in semi-
supervised clustering typically a small number of classes is considered and often it is
assumed that the number of classes is known in advance. Moreover, semi-supervised
clustering does not use expensive pairwise models that are common in object identi-
fication.

3 Four problem classes

In the classical object identification problem Cjsic a set of objects X should be
grouped into equivalence classes Ex. In an adaptive setting, a second set ¥ of objects
is available where the perfect equivalence relation Ey is known. It is assumed that X
and Y are disjoint and share no classes —i.e. Ex NEy = 0.

In real world problems often there is no such clear separation between labeled
and unlabeled data. Instead only the objects of some subset ¥ of X are labeled. We
call this problem setting the iterative problem Cj,, where (X,Y,Ey) is given with
XDYandY2DEy. Obviously, consistent solutions Ex have to satisfy Ex Y 2 —Fy.
Examples of applications for iterative problems are the integration of offers from
different sources where some offers are labeled by a unique identifier like an EAN
or ISBN, and iterative integration tasks where an already integrated set of objects is
extended by new objects.

The third problem setting deals with integrating data from »n sources, where each
source is assumed to contain no duplicates at all. This is called the class of matching
problems Gqch. Here the problem is given by X = {Xj,...,X,} with X;NX; =0
and the set of consistent equivalence relations E is restricted to relations £ on X
with ENX? = {(x,x)|x € X;}. Traditional record linkage often deals with matching
problems of two data sets (n = 2).

At last, there is the class of pairwise constrained problems C..,s,. Here each
problem is defined by (X, R, R.;) where the set of objects X is constrained by a
must-link R,; and a cannot-link relation R.;. Consistent solutions are restricted to
equivalence releations E with ENR,; = 0 and E D R,,;. Obviously, R.; is symmet-
ric and irreflexive whereas R,; has to be an equivalence relation. In all, pairwise
constrained problems differ from iterative problems by labeling relations instead of
labeling objects. The constrained problem class can better describe local informa-
tions like two offers are the same/ different. Such information can for example be
provided by a human expert in an active learning setting.



Information Integration of Partially Labeled Data 173

Fig. 1. Relations between problem classes: Ceius5ic C Giter C Ceonstr and Cegssic C Guaten C

CL'UﬂS tr-

We will show, that the presented problem classes form a hierarchy Cgg5ic C
Giter C Ceonser and that Ceyagsic C Guarch C Ceonsyr ut neither Gygien € Giger DOT Giger ©
Gnaien, (see Figure 1). First of all, it is easy to see that Cjussic © Cirer because any
problem X € C.sic corresponds to an iterative problem without labeled data (Y =
0). Also Cussic © Guaren because an arbitrary problem X € Cugic can be trans-
formed to a matching problem by considering each object as its own dataset: X| =
{x1},..., X, = {x,}. On the other hand, Gyor € Corssic and Cuasen € Celassic» because
Celassic 18 not able to formulate any restriction on the set of possible solutions £ as

the other classes can do. This shows that:
Cclassic - Cmatchv Cclaxsic C Citer (1)

Next we will show that Gy, C Coonsir- First of all, any iterative problem (X,Y, Ey)
can be transformed to a constrained problem (X,R,;,R;) by setting
Rt —{(v1,y2)[y1 =g, y2} and Ry «— {(y1,2)[y1 #ZE, y2}- On the other hand, there
are problems (X, Ry, Re1) € Coongir that cannot be expressed as an iterative problem,
e.g.

X = {x1,%2,x3,%4}, R ={(x1,%2),(x3,x2)}, Re=10
If one tries to express this as an iterative problem, one would assign to the pair (x;,x3)
the label /; and to (x3,x4) the label I;. But one has to decide whether or not [} = .
If 1 = Db, then the corresponding constrained problem would include the constraint
(x2,x3) € Ry, which differs from the original problem. Otherwise, if /| # [, this
would imply (x2,x3) € R, which again is a different problem. Therefore:

Citer C Ccanstr (2)

Furthermore, Cpuen © Ceonstr because any matching problem X, ..., X, can be
expressed as a constrained problem with:

n
X:UXia RCl:{(xvy)‘xayEXi/\x#y}v Ru =0
i=1

There are constrained problems that cannot be translated into a matching problem.
E.g.:
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X:{XI,.XZ,.X3}, le:{(-xlaxz)}a RCl:0

Thus:
Cmatch C Cconstr (3)

At last, there are iterative problems that cannot be expressed as matching prob-
lems, e.g.:
X ={x1,x,x3}, Y={xi,x2}, x1=p %

And there are matching problems that have no corresponding iterative problem, e.g.:

X1 ={xi,m2}, Xo={y,»m}

Therefore:
Cmatch Z Citera Ciler Z Cmatch (4)

In all we have shown that C..,g 1S the most expressive class and subsumes all
the other classes.

4 Method

Object Identification is generally done by three core components (Rendle and Schmidt-
Thieme (2006)):

1. Pairwise Feature Extraction with a function f : X> — R”.

2. Probabilistic Pairwise Decision Model specifying probabilities for equivalences
Plx=yl.

3. Collective Decision Model generating an equivalence relation E over X.

The task of feature extraction is to generate a feature vector from the attribute de-
scriptions of any two objects. Mostly, heuristic similarity functions like TFIDF-
Cosine-Similarity or Levenshtein distance are used. The probabilistic pairwise deci-
sion model combines several of these heuristic functions to a single domain specific
similarity function (see Table 1). For this model probabilistic classifiers like SVMs,
decision trees, logic regression, etc. can be used. By combining many heuristic func-
tions over several attributes, no time-consuming function selection and fine-tuning
has to be performed by a domain-expert. Instead, the model automatically learns
which similarity function is important for a specific problem. Cohen and Richman
(2002) as well as Bilenko and Mooney (2003) have shown that this approach is suc-
cessful. The collective decision model generates an equivalence relation over X by
using sim(x,y) := P[x = y] as learned similarity measure. Often, clustering is used
for this task (e.g. Cohen and Richman (2002)).
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Table 1. Example of feature extraction and prediction of pairwise equivalence Plx; = x;] for
three digital cameras.

Object Brand Product Name Price
X1 Hewlett Packard Photosmart 435 Digital Camera 118.99
X2 HP HP Photosmart 435 16MB memory 110.00
X3 Canon Canon EOS 300D black 18-55 Camera 786.00
Object Pair || TFIDF-Cos. Sim. | FirstNumberEqual | Rel. Difference Feature Vector | P[x; = x;]
(Product Name) (Product Name) (Price)

(x1,x2) 0.6 1 0076 ||(0.6,1,0.076)| 0.8

(x1,x3) 0.1 0 0.849 [[(0.1,0,0.849)] 02

(x2,x3) 0.0 0 0.860 (0.0,0,0.860)| 0.1

4.1 Collective decision model with constraints

The constrained problem easily fits into the generic model above by extending the
collective decision model by constraints. As this stage might be solved by clustering
algorithms in the classical problem, we propose to solve the constrained problem by a
constraint-based clustering algorithm. To enforce the constraint satisfaction we sug-
gest a constrained hierarchical agglomerative clustering (HAC) algorithm. Instead
of a dendrogram the algorithm builds a partition where each cluster should contain
equivalent objects. Because in an object identification task the number of equivalence
classes is almost never known, we suggest model selection by a (learned) threshold
0 on the similarity of two clusters in order to stop the merging process. A simplified
representation of our constrained HAC algorithm is shown in Algorithm 1. The al-
gorithm initially creates a new cluster for each object (line 2) and afterwards merges
clusters that contain objects constrained by a mustlink (line 3-7). Then the most sim-
ilar clusters, that are not constrained by a cannotlink, are merged until the threshold
0 is reached.

From a theoretical point of view this task might be solved by an arbitrary, prob-
abilistic HAC algorithm using a special initialization of the similarity matrix and
minor changes in the update step of the matrix. For satisfaction of the constraints

Ry and Ry, one initializes the similarity matrix for X = {xj,...,x,} in the following
way:
oo, if (xj,xk) € Ry
0 .
Ajp=4q —, if (xj,x¢) € Ry

Plxj=x;] otherwise

As usual, in each iteration the two clusters with the highest similarity are merged.
After merging cluster ¢; with ¢, the dimension of the square matrix A reduces by
one — both in columns and rows. For ensuring constraint satisfaction, the similarities
between ¢; U ¢y, to all the other clusters have to be recomputed:
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oo, if A}, = +eo VA, ;= +oo
AN = { —co, if Aj; = —o VAL ;= —oo
sim(c;Ucp,c;)  otherwise

For calculating the similarity sim between clusters, standard linkage techniques
like single-, complete- or average-linkage can be used.

Algorithm 1 Constrained HAC Algorithm

1: procedure CLUSTERHAC(X, R, R¢1)
2: P—{{x}xeX}

3: for all (x,y) € R,; do

4: ¢« cwherece PA\x€c

5: ¢y «—cwherece P\yec

6: P— (P\{c1,c2})U{c1Uca}

7: end for

8: repeat

9: (c1,62) < argmax sim(cy,c2)
¢1,2€PA(c1 xc2)NRy=0

10: if sim(cy,c¢2) > 6 then

11: P— (P\{c1,c2})U{c1Uca}

12: end if

13: until sim(cy,c2) <0

14: return P

15: end procedure

4.2 Algorithmic optimizations

Real-world object identification problems often have a huge number of objects. An
implementation of the proposed constrained HAC algorithm has to consider several
optimization aspects. First of all, the cluster similarities should be computed by dy-
namic programming. So the similarities between clusters have to be collected just
once and afterward can be inferred by the similarities, that are already given in the
similarity-matrix:

simg (c1 Uca, c3) = max{simg (c1,c3),simg(ca,c3)} single-linkage

simer(c1Uca,cz) = min{simg(c1,¢3), sime(c2,¢3)} complete-linkage

sima(c1Uca, c3) = e |- simai(c1,¢3) + |ea| - sima(c2,¢3) average-linkage
le1] 4+ ez

Second, a blocker should reduce the number of pairs that have to be taken into
account for merging. Blockers like the canopy blocker (McCallum et al. (2000))
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Table 2. Comparison of F-Measure quality of a constrained to a classical method with different
linkage techniques. For each data set and each method the best linkage technique is marked
bold.

Data Set Method Single Linkage | Complete Linkage | Average Linkage
Cora classic/constrained 0.70/0.92 0.74/0.71 0.89/0.93
DVD player | classic/constrained | 0.87/0.94 0.79/0.73 0.86/0.95
Camera classic/constrained 0.65/0.86 0.60/0.45 0.67/0.81

reduce the amount of pairs very efficiently, so even large data sets can be handled.
At last, pruning should be applied to eliminate cluster pairs with similarity below
Oprune- These optimizations can be implemented by storing a list of cluster-distance-
pairs which is initialized with the pruned candidate pairs of the blocker.

5 Evaluation

In our evaluation study we examine if additionally guiding the collective decision
model by constraints improves the quality. Therefore we compare constrained and
unconstrained versions of the same object identification model on different data sets.
As data sets we use the bibliographic Cora dataset that is provided by McCallum et al.
(2000) and is widely used for evaluating object identification models (e.g. Cohen et
al. (2002) and Bilenko et al. (2003)), and two product data sets of a price comparison
system.

We set up an iterative problem by labeling N% of the objects with their true class
label. For feature extraction of the Cora model we use TFIDF-Cosine-Similarity,
Levenshtein distance and Jaccard distance for every attribute. The model for the
product datasets uses TFIDF-Cosine-Similarity, the difference between prices and
some domain-specific comparison functions. The pairwise decision model is chosen
to be a Support Vector Machine. In the collective decision model we run our con-
strained HAC algorithm against an unconstrained (‘classic’) one. In each case, we
run three different linkage methods: single-, complete- and average-linkage. We re-
port the average F-Measure quality of four runs for each of the linkage techniques
and for constrained and unconstrained clustering. The F-Measure quality is taken on
all pairs that are unknown in advance — i.e. pairs that do not link two labeled objects.

2-Recall - Precision

F-Measure = —
Recall + Precision
TP TP
Recall = ——,  Precision = ———
TP+ FN TP+ FP

Table 2 shows the results of the first experiment where N = 25% of the objects
for Cora and N = 50% for the product datasets provide labels. As one can see, the
best constrained method always clearly outperforms the best classical method. When
switching from the best classical to the best constrained method, the relative error
reduces by 36% for Cora, 62% for DVD-Player and 58% for Camera. An informal
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Fig. 2. F-Measure on Camera dataset for varying proportions of labeled objects.

significance test shows that in this experiment the best constrained method is better
than the best classic one.

In a second experiment (see Figure 2) we increased the amount of labeled data
from N = 10% to N = 60% and report results for the Camera dataset for the best clas-
sical method and the three constrained linkage techniques. The figure shows that the
best classical method does not improve much beyond more than 20% labeled data. In
contrast, when using the constrained single- or average-linkage technique the quality
on non-labeled parts improves always with more labeled data. When few constraints
are available average-linkage tends to be better than single-linkage whereas single-
linkage is superior in the case of many constraints. The reason are the cannot-links
that prevent single-linkage from merging false pairs. The bad performance of con-
strained complete-linkage can be explained by must-link constraints that might result
in diverse clusters (Algorithm 1, line 3-7). For any diverse cluster, complete-linkage
can not find any cluster with similarity greater than 6 and so after the initial step,
diverse clusters are not merged any more (Algorithm 1, line 8-13).

6 Conclusion

We have formulated three problem classes that encode knowledge and restrict the
space of consistent solutions. For solving problems of the most expressive class
Ceonstr» that subsumes all the other classes, we have proposed a constrained object
identification model. Therefore the generic object identification model was extended
in the collective decision stage to ensure constraint satisfaction. We proposed a HAC
algorithm with different linkage techniques that is guided by both a learned similar-
ity measure and constraints. Our evaluation has shown, that this method with single-
or average-linkage is effective and using constraints in the collective stage clearly
outperforms non-constrained state-of-the-art methods.
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Abstract. In this work we apply several data mining techniques that give us deep insight
into knowledge extraction from a marketing survey addressed to the potential buyers of an
university gift shop. The techniques are classified as symmetrical and non-symmetrical. An
advocation for such combination is given as conclusion.

1 Introduction

When a large dataset is obtained from a survey including a large number of questions
it is necessary to extract the information and the relationships inherent to the data in
an ordered and effective way. The data is usually a mixture of subsets of quantitative,
categorical (closed questions) and frecuency (open-ended) questions.

In this work we analyze data extracted from an on-line survey by means of dif-
ferent and complementary methods divided in two categories: symmetrical and non-
symmetrical. The former will be some factor method complemented with classifica-
tion, whereas the latter will comprise some sort of regression models. After present-
ing data and objectives (section 2) we outline methodology and results (section 3)
and finally give some conclusions (section 4).

2 Data and objectives

The University of the Basque Country (UPV/EHU), as part of a large project which
main aim is revamping its corporate image, is about launching a corporate shop (also
considered as a gift or souvenir shop). In order to better know its potential buyers
and the potential success of it, it has set up an online survey to collect information
on its acceptability.

* Authors gratefully acknowledge financial support from Grupo de Investigacion Consoli-
dado DEC UPV/EHU GIU06/53.
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Such on-line survey is addressed to the members of the research and teaching
staff, administrative staff and the students of the university. Its main objectives are to
evaluate buying propensity about the corporate products, identify potential buyers’
and non-buyers’ profiles, know desirable characteristics of the products and obtain a
function to be named and considered as a “propensity to buy”.

Table 1 contains the sampling technical characteristics. The access to filling in
the survey was possible only by invitation and there was a period of one month for
doing so. The number of invitations or sample size was fixed per strata and chosen
in order to get a maximum error of 2% of the variability range of the responses for a
95% confidence level. The sampling was thus proportionallly random and the results
were encouraging, with a global response rate of around 40%, though not equally
distributed.

Table 1. Technical characteristics of the on-line survey.

Students | Admin. Staff | Research & Teaching
Population 48995 1128 3982
Sample size 2289 768 1499
Response (%) || 547 (23.9) | 444 (57.81) 754 (50.30)
Sampling error 0.042 0.036 0.032
Confidence level 0.95 0.95 0.95

The most relevant questions included in the sample were: a question over general
satisfaction about being a member of the university (5 point scale), a binary question
on general interest about buying the corporate articles, 26 questions on the valuation
(from 1 to 4) of the same number of products (shown in a photo), valuation (from 1
to 7) of 8 proposed desirable characteristics of products (sober, traditional, stylish,
modern, practical, artistic, daring and original) and personal information (gender,
age, post and campus - up to three possible -). We were particularly interested in
getting information on preferences on the products so we intentionally dropped the
middle point in product valuation questions. These questions are those which we
analyze by means of both non-symmetrical and symmetrical methods. We have made
this distinction in order to differentiate between methods that assume some sort of
causality or relationship direction in the variables (i.e., regression methods) and those
who don’t (as factor methods).

3 Methodology and results

3.1 Symmetrical methods: Exploratory multivariate techniques

Depending upon which kind of variables are to be considered as active we can con-
sider a Principal Components (PCA) or a Multiple Correspondence Analysis (MCA),
see e.g., Greenacre (1984), Lebart et al. (1984), Lebart (1994).
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PCA of continuous variables and classification

We first consider as active variables the scores given to the question of the desir-
able characteristics of products (original, sober, ...), which are measured in a 7 point
scale and may arguably be considered as near-continuous variables. The variables
regarding personal characteristics as gender or age are considered as supplementary
variables, as well as the variables reflecting satisfaction with the institution and the
interest in buying.

The first factor is a size factor which distinguishes between persons who select
higher scores for all or most such characteristics from those who select lower values.
Those who give higher marks are also people who manifest a greater satisfaction,
interest in buying and are over 44 years old. The positive side of the second factor
corresponds to higher scores given to sober, traditional, stylish and artistic and to re-
spondents over 44, teaching-research staff and men and the negative side corresponds
to higher scores given to daring, original and modern. Finally, the third factor locates
individuals scoring high the term practical, who are mostly students and under 30.

After performing a hierarchical clustering on the PCA first 5 axes, using the gen-
eralized Ward criterion, this results in three clusters. The first one (46%) corresponds
exactly to those on the positive side of the first factor (over 44, fully satisfied, with
buying interest, high scores to all characteristics). The second one (31%) to individ-
uals who rank high the characteristics of original, daring, modern and practical and
who are students, under 30, neither satisfied or dissatisfied and who do not manifest
buying interest. This is a group who might be attracted to the first group, composed
of feasible buyers, by improving the characteristics of the products in the way they
consider important. The last cluster (23%) give low scores to most of the characteris-
tics and manifest no interest in buying and are also indifferent to the institution. This
group seems a difficult one to reach to.

This first analysis provides three main directions of variability by means of a
PCA. The clustering over the main factors helps to group individuals into homoge-
neous families where each cluster represents a market segment with different char-
acteristics and reachable through different marketing strategies or perhaps products
not considered here.

MCA of categorical variables and classification

As a second factor method, we choose the categorical variables referring to valuation
of the 26 articles (after seeing a displayed photo) in a scale 1-4 as the active variables
of a MCA. As supplementary variables we choose the products characteristics, the
satisfaction variable, the intention to buy and the individuals’ personal data.

Figure 1 shows the projection of the active categories on the MCA main plane.
It shows how the first factor represents a global propensity to buy, roughly ordering
categories from left to right with respect to their probability to buy, from lower to
higher. The plane shows a typical Guttman effect with the second factor reflecting
differences between extreme and centered opinions.
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Fig. 1. MCA: active categories on plane (1,2).

With respect to the projections of the supplementary categories, it is shown in
Figure 2 that the first factor is positively related to the satisfaction with the institution
and the declared propensity to buy. This shows the relationship of these variables
with the overall propensity to buy individually the 26 products.
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Fig. 2. MCA: supplementary categories on plane (1,2).

A mixed classification in three steps is carried out on 8 MCA first principal axes.
This process starts by choosing a partition in 10 clusters with random initial centers
and then update those centers calculating the centroids of the groups of individuals
nearest to the centers (K-means algorithm); the process is repeated until the clusters
are stable. We reduce further the number of clusters by means of a hierarchical algo-
rithm (generalized Ward’s method) and refine the resulting partition with a consol-
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idation step with re-assignment (testing moving centers with convergence achieved
in 7 iterations). This results in a partition of 6 classes with an inter inertia over total
inertia ratio of 55.62%. The positions of the final centers on the plane are given in
Figure 3, and are following the pattern set by the active categories on this same plane.

O Factor2 - 6.67 %

Cluster 4/ 6
Cluster 3/ 6
Cluster 5/ 6 Cluster 2/ 6
Factor1 - 1413 %

Cluster 6/ 6

Cluster 1/ 6

@)

Fig. 3. Classification on MCA factors. Clusters centers and relative sizes represented by circle
diameters.

The partition description is as follows. Cluster 1 (15.73%) contains those who
would prior buy, say is very likely to buy for many products, are over 44, fully satis-
fied, females, members of the teaching and research staff, give high scores to stylish
and traditional. Cluster 2 (17.91%) is formed by those who are likely to buy, over 44,
would prior buy and rank highly stylish, traditional and sober. In cluster 3 (17.74%)
predominate those who say it is unlikely to buy sober and stylish products (metal-
lic) but it is likely to buy original, modern and practical products (textiles and bags).
Cluster 4 (12.80%) groups individuals unlikely to buy anything with low scores for
stylish products. Cluster 5 (18.66%) is composed of individuals very unlikely to buy,
aged between 18 and 22, students, from Gipuzkoa campus, neither satisfied or dis-
satisfied and with low scores on traditional, sober or stylish. Finally, on cluster 6
(17.16%) are those who are very unlikely to buy, between 30 and 44, males and with
low marks for all characteristics of the products.

This MCA confirms the tight relationship between the interest to buy articles
featuring the logo (before visualization), the degree of satisfaction about the insti-
tution and the scores given to the proposed desirable characteristics of the products.
The clustering process shows marketing implications on the buyers’ and non-buyers’
personal characteristics and on which articles are perceived as stylish, traditional and
sober and which ones as modern, original and practical. Furthermore, the parabolic
path apperaring in Figure 1 is similar to those shown in Figures 2 and 3, reinforcing
its interpretation as an indicator of the propensity to buy the displayed products.
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3.2 Non-symmetrical methods: regression related techniques

In this section we consider methods where one variable is chosen to be depending on
others. In this work, the variable of interest is the probability, or propension, to buy
and is exactly our choice for the endogeneous variable.

PLS path modelling

PLS path modelling (see, e.g., Tenenhaus et al. (2005)) is a technique based on the re-
lationships between latent variables in a regression framework where such variables
are constructed with underlying manifest variables (MV). In this case, the variables
are those obtained with the questions of the survey.

We are going to construct a global propensity to buy using all manifest variables,
resulting in a global latent variable (LV). At the same time, we want unidimensional
partial propensities to buy groups of products and these to be autoselected by the
data, we do not want to impose any additional structure, other than the imposed by
the model itself. These will also have the form of LVs and will be sought with a
previous PCA of the valuations of all the 26 products displayed in the survey.

Table 2 contains the 8 groups of products formed in the way explained above.
These groupings originate directly 8 partial LVs, using mode B.

Table 2. Groups of products to be considered as LV.

label LV products
umbh &; umbrella, hat
tie &, tie, kerchief no.1, kerchief no.2

textiles &z T-shirt, T-shirt-V, sweater, cap

bag &, plastic tray, leather tray, backpack, bag, cup

wat s leather-strapped watch, metallic-strapped watch, wallet
mous &g keyring, lighter, mousepad

scul &7 pin, sculpture

pens &g blue pen, black pen, silver pen, silver pen in wooden case

Selecting all products valuations, we construct the global propensity to buy using
mode A. Finally, we formulate the external model & = Zf‘:l Big;+v.

Figure 4 shows the path model specified. The numbers are correlations and show
relatively high values between the partial LVs and the global one. We can also see
the pairwise correlations between individual MVs and the LVs.

The actual estimates of the external model parameters are given in equation (1).
These show higher values for textiles, bags and pens products groups, which are
those with a higher acceptability among the respondents.

E(E) = 0.0865 + umbh + 0.1335 x tie + 0.2041 « textiles + 0.2114 * bag )
40.1791 x wat + 0.1292 x mous + 0.0881 x scul 4+ 0.2322 x« pens
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Fig. 4. PLS path diagram for products to be sold at the university shop.

In order to get a potential buyers’ characterization (similar to the projection of
supplementary variables in a factor analysis), we perform a regression on the de-
sirable characteristics of the products and the respondents’ personal characteristics.
This is actually a Principal Components Regression (PCR), since the desirable char-
acteristics are highly correlated, selecting 2 main components out of the 7 original
variables.

E(&) = —0.85+0.07 «F1 (orig., daring, practical, artistic, modern)
+0.11 % F2 (traditional, sober, stylish) —0.25 x male
+0.15 x satisfied 4 0.26 * very satisfied + 0.07 x age(+44)
+0.06 * teaching-research staff — 0.10 * higher education
+1.18 x overall propensity to buy a logo product
+0.14 * campus: Araba+ 0.12 % campus: Bizkaia

R?> =0.4848

All parameters whose estimates are shown are significant at the 5% level, both
using bootstrap confidence intervals and usual t-test statistics. These estimates show
how those individuals most satisfied with the university are more likely to buy, along
with women. It is also so for those who have a prior intention to buy, members of
teaching and research staff, older age and those proceeding from the campuses of
Bizkaia and Araba from over those from Gipuzkoa. With respect to product charac-
teristics, those marking as more important the terms traditional, sober and stylish are
more likely to buy than individuals giving more importance to aspects as modern,
practical and so on.
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Logit models

Finally, we have calculated a logit regression (see, e.g., Hosmer and Lemeshow
(2000)) on individuals’ personal characteristics, products characteristics and the sat-
isfaction variable where the dichotomous endogeneus variable is the response (yes
or no) to the question if the respondent would, in general, buy university corporate
products. This is a prior probability in the sense that individuals had to respond to
that question before actually seeing the products.

We have also considered the construction of a posterior probability to buy and
then estimated another logit model with this probability as the endogeneous vari-
able. Thus, an individual is considered to be likely to buy one product if he or she
scores 3 (likely) or 4 (very likely) for that product. In the same way, an individual is
considered to buy articles if he or she would likely buy more than 25% of all articles
(at least 7 articles).

As in the PLS path model case, the desirable characteristics of the products are
highly correlated and we have substituted them by two principal PCA factors (after
performing a Varimax rotation).

We end up with the following two model estimates:

1. Prior probability model estimates (Nagelkerke R> = 0.140):

X'B = —0.510+0.267 + teach./res. + 0.307 * Bizkaia + 0.398 x age over 44
+0.797 x satisfied + 1.160 * very satisfied +
40.220 % F1 (innovative+practical) 4+ 0.272 « F2 (classic)

2. Posterior estimates (Nagelkerke R* = 0.502):

X'B = —1.298 +0.537 * student + 0.584 * teach./res. — 0.794 x male
+0.367 * satisfied + 0.710 = very satisfied + 0.339 = F2 (classic)
+2.979 % buying initial interest

The prior probability model yields very similar results to those from the PLS path
model and the factor analyses performed in the previous subsection. The posterior
probability model yields, with a better fit, results not so similar, what can be due to
the particular construction of the endogeneous variable. That construction is sensitive
but also subjective and it can only be considered as a help to better know the structure
of the data.

4 Conclusions

Each different technique used shows specific, though related, conclusions given its
different objectives. The symmetrical methods (PCA, MCA) combined with Cluster
Analysis help to learn what is contained in the data, including relationships and clas-
sifications of similar individuals. On the other hand, non-symmetrical methods as
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PLS or Logit regressions allow for modelling individuals’ global and partial (group)
behaviour using inference tools to select a better model with a good fit to the data.

The methods exposed above extract consistently some facts from this particular
data. The gift shop potential buyers’ general characteristics become clear (satisfied
with the institution, members of the teaching-research staff, women...). At the same
time, it is also clear the general characteristics of the articles shown (traditional, ...)
and the sort of characteristics of possible successful articles not covered in current
product line (practical, original or modern). It seems that a better, more modern,
design is needed to reach other market segments.

The marketing implications obtained have been somewhat conditioned upon the
actual articles displayed with photographs in the on-line questionnaire. It has been
observed that many have been perceived as stylish and traditional (generally of a
metallic aspect) and of little appeal for the young. As a general issue, this work rec-
ommends the promotion of articles with the characteristics mentioned above and,
particularly, belonging to the groups of textiles, bags and desktop articles which
would yield a better acceptance for this target public in the opening university gift
shop.

All in one, it can be said that these data mining techniques yield useful directions
for the university marketing policy, regarding the corporate shop. The combination
of techniques, though never fully exhaustive, reinforces the confidence on the results
as it is improbable to having missed important patterns in the data.
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Abstract. Many problems in industrial quality control involve n measurements on p process
variables X, ,. Generally, we need to know how the quality characteristics of a product behav-
ior as process variables change. Nevertheless, there may be two problems: the linear hypothe-
sis is not always respected and ¢ quality variables Y, ;, are not measured frequently because of
high costs. B-spline transformation remove nonlinear hypothesis while principal component
analysis with linear constraints (CPCA) onto subspace spanned by column X matrix. Linking
Y4 and X,, ;, variables gives us information on the Y, , without expensive measurements and
off-line analysis. Finally, there are few uncorrelated latent variables which contain the infor-
mation about the ¥, , and may be monitored by multivariate control charts. The purpose of
this paper is to show how the conjoint employment of different statistical methods, such as
B-splines, Constrained PCA and multivariate control charts allow a better control on prod-
uct or service quality by monitoring directly the process variables. The proposed approach is
illustrated by the discussion of a real problem in an industrial process.

1 Introduction

Frequently firms have to define how to select the process parameters which mostly
influence the quality characteristics of a product. The selection of the "optimal" com-
bination of parameters and the choice of statistical methods to solve this problem
could be no simple question. In this paper, we have proposed some statistical tech-
niques to determinate the "best" technology for pasta production.

Quality characteristics of pasta, tested in laboratory, can be divided in two clus-
ters: "colour-appeal” and "taste". Customers prefer clear and amber pasta without red
vein. Besides, the pasta must be characterise by "al dente" stage in case of overcook-
ing or undercooking (Abecassis et al., 1992).

In this paper, we suggest a nonlinear approach to select the "best" technology for
pasta production, spaghetti about 0.04 in (diameter), and choose process parameters
was to monitor.
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In the first step, we define the different setting of the manufacturing process
which can be used. To obtain an optimal setting, it is necessary to consider three
process parameters: temperature (T') , drying time (DT), damp (D). Forty-five tests
have been running with different combinations of process parameters. At the same
time, quality characteristics have been measured by six variables: viscosity on a 1-9
category scale (V), judgement on taste in case of overcooking (NI) and undercooking
(N2) on a 0-9 category scale, homogeneity of red (A), yellow (B), brown (100-L). In
the second step, we define every new relation between response variables (Yys5¢) and
process variables (X45.7) by-means of multivariate statistical methods such as Con-
strained Principal Component Analysis (CPCA - D’ Ambra and Lauro, 1982). In the
third step, since CPCA analysis shows a horseshoes effect in data set, we propose a
B-spline transformation in data before interpreting results. In the last step, we define,
by means a Shewhart charts, the "optimal"” combination of process parameters which
produces the "best" pasta.

The use of traditional control charts to monitor the process variables instead of
the response ones is a good solution for many reasons. First, the process variables
are measured much more frequently, usually in the order of seconds or minutes as
compared to hours for the response variables. Second, process variables are generally
measured in a more precise way than response variables. Third, CPCA components
are always independent even when single variables are correlated.

The aim of this paper is to show how the CPCA methods can be used in case of
nonlinear data and the employment of techniques like Multivariate Principal Com-
ponent Charts (MPCC - MacGregor and Kourti, (1995)) can aid in the interpretation
of results. The paper is organised as follows. In Section 2 CPCA method is applied to
pasta data. A horseshoes effect is present on raw data. Different approaches to solve
this problem is given in Section 3, in particular, B-spline transformation on X data is
applied. In Section 4 the results of CPCA on B-spline transformed data are tested by
a stability analysis. A first interpretation of CPCA results is given in Section 5.

2 Constrained principal component analysis

Let X, ,, and Y, , be the raw data matrices associated with two sets of quantitative
variables observed on the same experimental units. Furthermore let Q and D be sym-
metric and positive definite matrices of gth-order and nth-order respectively. In the
remainder of the paper, we will consider X and Y standardised data matrices, hence
O =1.The CPCA (D’ Ambra and Lauro, 1982) aim is to analyse the structure of the
explained variability of the ¥ data set given the process variables X. Let

Py = X(X'DxX) "X’ )

be the D-orthogonal projector onto the space spanned by the columns of X CPCA
consists in carrying out a PCA on the matrix

Y = PyY )
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Figure 1 shows a scatter plot of the first two principal components of the sta-
tistical study (}A’,D,I). It explain nearly all the data variability (87.80%) but in this
representation the second axis is a special arched function of the first axis. CPCA cre-
ates a serious artifact called the horseshoes effect. This is a problem because CPCA
perform better when the 45 experimental tests have a monotonic distributions along
gradients (i.e. either increase or decrease but not both). To resolves horseshoes prob-
lem and gives more interpretable results, nonlinear transformation of data can be
used (Gifi, 1990).

Fig. 1. Plot of the first and second Constrained Principal Component.

3 Nonlinear Constrained Principal Component Analysis

B-spline approach (Durand, 1993) allows a greater flexibility in the adjustment of
dependence between the X and Y sets of variables.

Let S;j(x;)B; be the transformation of x;-column, j=1,...,p , Sj(n,k) the B-
basis spline with a priori fixed order and knots (De Boor, 1978; Eubank, 1988),
Bj(k,q) is the matrix of coefficient.

Similarly we can write S as:

Sy k) = [S1(x)]- .- [Sp(xp)] 3)
and B as:
By

By kg = | “
BP

Consider the following multivariate model
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X=SB+E 5)
In order to estimate the B we will minimise the trace E'E. Then

min ||X — SBJ? (©6)
B

Consider the class of reduced-rank regression for the multivariate linear model
with rank(B) = r < [min(Zk, q)] (Izenman, 1975). With such condition there will
exist two (non-unique) matrices B = A G where A and Gr are both of rank r. So
we have to minimise

min || X — SA,G,|? 7)
A.G,
The solutions for the minimisation of (7) are given by 6,. = [v’l ...v’r], Xr =

(8'S)~1S'X[vy ...v,] where vy is the eigenvector corresponding to the k largest eigen-
value A of Y'S(S'S)~1S8'Y (Izenman, 1975).
The regression coefficient with rank r is therefore given by

-
B, = (8')'S'X[> v} (8)
k=1

This solution is linked to an extension of CPCA, called CPCC-additive spline,
concerning a PCA of the image of y; onto B-basis spline with knots chosen in the
range of each y;, j=1,..., p. In this case we have Y*=PY =S(5'S)"'S'Y and we

carrying out PCA of the statistical study (Y*, D, I).
A second approach (Durand, 1993) searches a matrix transformation C of X and

a matrix R to minimise the distance between the scalar product operators YY’D and
CRC'D

min ||YY'D — CRC'D|? )
C.R

with C = SB and where S is the B-spline matrix with a priori fixed order and
knots. The minimum can be attained by an approximate solution based on an alter-
nate iterative procedure.

A more recent method is the two-stage approach to engine mapping by using
B-spline basis functions at the second stage to describe the effects of one or more
factors (splined factors) and low-order monomials to represent the main effects and
interactions of the remaining (nonsplined) factors (Grove et al., 2004).

In this paper we have used the first approach. The first principal component of
the statistical study Y*,D,1 explains the 81.10% of the total variation of the matrix Y.
The 96.80% of the total variance is explained by the first two principal components.
A stability analysis can be performed to evaluate the goodness of the results.
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4 Stability analysis

Daudin (1988) suggests the study of stability by bootstrap. The basic idea of boot-
strap is to generate many new matrices starting from the raw data. Any new matrix
is obtained by a random replacement of the original rows. Applying bootstrap on Y,
we generate 7 new matrices Y* where [ =1,...,m. Let A; and 4; be the ith eigen-
value and the associated eigenvector of the correlation matrix of Y* and Zﬁf the fth
eigenvector of the correlation matrix of ! Y*. Furthermore let

I~ o~
"o = cos('Ty. i) = ﬁ(lﬁggm (10)
and
e =ZickZr<i' pif (11)
where i, f = 1,...,k, and k is the number of the examined eigenvalues.

Plotting 'y respect x-axis and j versus y-axis , the orientation of the first two
eigenvectors seems to be stable (Figure 2). In fact, it is not considerably modified
over the 250 replications.

Fig. 2. The stability representation for the first two eigenvectors.

The stability of the components can be confirmed by the following quantity
1
MSE(k) = — X ey — ). (12)
If MSE(k) is near to zero, the examined k components are stable. Here for k = 2
and m = 250 the result is 0.000084.

S Results and interpretation

Figure 3 shows the representation of 45 samples of the first two principal compo-
nents, where the percent of the total variability explained is 96.80. This percentage
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allows a good description of data structure and stability analysis indicates that this
data structure could be considered stable. Furthermore, the dotted lines show that B-
spline transformation have smoothed raw data and the problem of nonlinearity would

seem to be eliminated.
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Fig. 3. Plot of the first and second Nonlinear Constrained Principal Component; the points are
the 45 different tests and the vectors are variables: temperature (7'); drying time (DT); damp
(D); interaction between temperature, drying time and damp (T*DT*D); temperature and dry-
ing time(T*DT); temperature and damp (7%#D); drying time and damp (DT*D); viscosity (V);
judgement on taste in case of overcooking (NI) and undercooking (N2); homogeneity of red
(A), yellow (B), brown (100-L).

The first axis of representation could be called "taste" as it is characterised by
contributions of viscosity and judgement on taste together with contributions of red
and brown colour. All these variables are positively correlated with "taste" (about
0.97). The second axis could be called "colour-appeal”, as the yellow colour con-
tributes to this axis with 98%. The process variables which have a positive influence
on "taste" are temperature, drying time, their interaction and the interaction between
drying time and damp. On the contrary, all the other variables have a negative influ-
ence. The second axis is characterised mostly by the fact that drying time and damp
are each at the opposite side of the other, this contrast influences the homogeneity of
yellow.

The PCA of statistical study (IA/ *,D,I) indicates only which process variables
influence the quality characteristics of products. The direction where to look for the
best combination of process parameters (Abecassis et al., 1992) is along the diagonal
D-DT (Figure 3). This information could be not sufficient clear because along the
diagonal D-DT there are a lot of different combinations of process parameters. In
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this case, a graphic display, such as Shewhart charts, could give some information
about the optimal combination to choose for the production of pasta.

The scores could be projected onto Shewhart charts where Central Line (CL),
Upper Decision Line (UDL) and Lower Decision Line (LDL) are 0, 0+3 and 0-3
respectively. In this paper, these "Multivariate Principal Component Charts" (MPCC)
are used for the first principal component (Figure 4.a), and the second one (Figure
4.b) or both, according to marketing decisions, that is maximise "taste" or "colour-
appeal” or choose the optimal mix of "taste" and "colour-appeal".
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Fig. 4. MPCC for the first (a) and the second (b) Nonlinear Constrained Principal Component.

In Figure 4.a, the experimental tests 34, 38, 39, 40, 44 and 45 could suggest that
temperature must be higher than 100°C to give the best value for "taste". Figure 4.b
shows that the best value for "colour-appeal" is obtained in correspondence of tem-
perature 90°C, drying time 2.5 or 5, and damp 5.5. The "optimal" mixture of "taste"
and "colour-appeal” is obtained in correspondence of the maximum value taken in
Figure 4.b, by the experimental tests which are out of the UDL in Figure 4.a. The
experimental test 40 could be represents the "optimal” combination of parameters in
term of "taste" and "colour-appeal".

6 Concluding remarks

Today the advent of on-line process computer system have totally changed the nature
of the data that are available. The use of multivariate statistical methods is necessary
to treat the problems associated with these large volumes of messy data. We can use
all the information contained in data, to improve the quality of products and pro-
cesses. Multivariate analysis as Constrained Principal Component Analysis could be
employed to determine the relationships between the quality characteristic of prod-
ucts with the process parameters. In this way, we can select the best technology to get
a quality product and/or to monitor the quality characteristics of product by process
variables.

In many situation it is reasonable attend to the presence of anomalies observa-
tions, in these cases principal components are influenced and may not capture the
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variation of the regular observations. Therefore, data reduction based on PCA be-
comes unreliable. When outliers are present in the data, to obtain a more accurate
estimates at noncontaminated data sets and more robust estimates at contaminated
data a method for robust principal component analysis could be used (Hubert et al.,
2005).
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Abstract. Statistical process control (SPC) chart is aimed at monitoring a process over time in
order to detect any special event that may occur and find assignable causes for it. Controlling
both product quality variables and process variables is a complex problem. Multivariate meth-
ods permit to treat all the data simultaneously extracting information on the “directionality"
of the process variation. Highlighting the dependence relationships between process variables
and product quality variables, we propose the construction of a non-parametric chart, based on
Multivariate Additive Partial Least Squares Splines; proper control limits are built by applying
the Bootstrap approach.

1 Introduction

The multivariate nature of product quality (response or output variables) and pro-
cess characteristics (predictors or input variables) highlights the limits of any anal-
ysis based exclusively on descriptive and univariate statistics. On the other hand,
the possibility for process managers of extracting knowledge from large databases,
opens the way to analyze the multivariate dependence relationships between qual-
ity product and process variables via predictive and regressive techniques like PLS
(Tenenhaus, 1998; Wold, 1966) and its generalizations (Durand, 2001; Lombardo et
al., 2007). In this paper, the application of a multivariate control chart based on a
generalization of PLS-T? chart (Kourti and MacGregor, 1996) is proposed in order
to analyze the in-control process and monitoring it over time. Furthermore, in order
to face the problem of the unknown distribution of the statistic to be charted, a non-
parametric approach is applied for the selection of the control limits. Distribution-
free or non-parametric control charts have been proposed in literature to overcome
the problems related to the lack of normality in process data. An overview in lit-
erature on univariate non-parametric control charts is given by Chakraborti ef al.
(2001). The principles on which non-parametric control charts rest can be general-
ized to multivariate settings. In particular, the bootstrap approach to estimate control
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limits (Wu and Wang, 1997; Jones and Woodall, 1998; Liu and Tang, 1996) has been
followed.

2 Multivariate control charts based on projection methods

A standard multivariate quality control problem occurs when an observed vector of
measurements on quality characteristics exhibits a significant shift from a set of tar-
get (or standard) values. The first attempt to face the problem of multivariate process
control is due to Hotelling (1947) who introduced the well-known T2 chart based
on variance-covariance matrix. Successively, different approaches to take into ac-
count the multivariate nature of the problem were proposed (Woodall, Ncube, 1985;
Lowry et al., 1992; Jackson, 1991; Liu, 1995; Kourti and MacGregor, 1996, Mac-
Gregor, 1997). In particular, we focus on the approach based on PLS components
proposed by Kourti and MacGregor (1996), in order to monitor over time the depen-
dence structure between a set of process variables and one or more product quality
variables (Hawkins, 1991). The PLS approach proves to be effective in presence of
a low-ratio of observations to variables and in case of multicollinearity among the
predictors, but a major limit of this approach is that it assumes a linear dependence
structure. Generally, linearity assumption in a model is reasonable as first research
step, but in practice relationships between the process variables and the product qual-
ity variables are often non-linear and in order to study the dependence structure it
could be much more appropriate the use of non-linear models (PLS via Spline, i.e.
PLSS; Durand, 2001) as proposed by Vanacore and Lombardo (2005). The PLSS-7>
chart allows to handle non-linear dependence relationships in data structure, miss-
ing values and outliers, but it presents two major drawbacks: 1) it does not take into
account the possible effect of interactions between process variables; 2) it requires
testing normality assumption on the component scores, even when original data are
multinormal (in fact, in case of spline, i.e. non linear transformations of original
process variables, the multinormality assumption cannot be guaranteed anymore).
To overcome these drawbacks we present non-parametric Multivariate Additive PLS
Spline-T2 chart based on Multivariate Additive PLSS (MAPLSS, Lombardo et al.,
2007) briefly described in sub-section 2.2.

2.1 Review of MAPLSS

MAPLSS is just the application of linear PLS regression of the response (matrix Y
of dimension n,q) on linear combinations of the transformed predictors (matrix X
of dimension n, p) and their interactions. The predictors and bivariate interactions
are transformed via a set of K = d + 1 +m (d is the spline degree and m is the knot
number) basis functions, called B-splines B;(.), so as to represent any spline as a
linear combination

K
s(x,B) =Y _BiBi(x),
=1
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where B = (B1,..,PK) is the vector of spline coefficients computed via regression of
y € R on the B;(.) The centered coding matrix or design matrix including interactions
becomes

B=[.B. |..B". ] )
i€k, (k,l)EKz

where K| and K; are index sets for single variables and bivariate interactions, re-
spectively. In a generic form, the MAPLSS model, for the response j, can be written

as

Y(Aa)=> Bl(A)B, ©)

leL

where A is the space dimension parameter and L is the index set pointing out the pre-
dictors as well as the bivariate interactions retained by MAPLSS. It is thus a purely
additive model that depends on A which in turn depends on the spline parameters
(i.e. degree, number and location of knots).
Increasing the order of interaction in MAPLSS implies expanding the dimension of
the design matrix B. MAPLSS constructs a sequence of centered and uncorrelated
predictors, i.e. the MAPLSS (latent) components (t', ..., t4). We now briefly describe
the MAPLSS building-model stage. In the first phase we do not consider interactions
in the design matrix. This phase consists of the following steps

step 1 Denote Bp = B and Yo = Y the design and response data matrices, respec-
tively. Define t' = Bow! and u' = Yy¢!' as the first MAPLSS components, where
the weighting unit vectors w' and ¢! are computed by maximizing the covari-
ance between linear compromises of the transformed predictors and response
variables, cov(t;,uy).

step k Compute the generic MAPLSS component
th = B, whut = Y, . (3)

Update the new matrices By and Y} as the residuals of the least-squares regres-
sions on the components previously computed using the orthogonal projection
operator Py on t, that is Py = t“t* /||tX]|2, we write

By =B;_1 —PuBi_4 “4)

Y=Y, —PuYi . (5)

Final Step The algorithm stops on the base of the A number of components defined
by PRESS criterion.

In the second phase of the MAPLSS building-model stage, we individually evaluate
all possible interactions. The rule for accepting a candidate bivariate interaction is
based on the gain in fit (R?) and prediction (GCV criterion) compared to that of the
model with main effects only. Then, the selected interactions are ordered in decreas-
ing value for consideration to adding them step-by-step to the main effects model. At
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the end, in the final phase we include in the design matrix B the selected interactions
and repeat the algorithm from step I to the final step.

A simple way to illustrate the contribution of predictors to response variables, con-
sists of ordering the predictors with respect to their decreasing influence on the re-
sponse §/(A), using as a criterion, the range of the s;(x’, B{ (A)) values of the trans-
formed sample x' (see figure 3). One can also use the same criterion to prune the
model, by eliminating the predictors and/or the interactions of low influence so as to
obtain a more parsimonious model.

2.2 MAPLSS-T? chart

Based on a generalization of PLS chart, taking into account not only the original pro-
cess variables, but also their bivariate interactions, in this paper, we discuss the appli-
cability of a new chart called MAPLSS-T? chart. Following the procedure used for
the construction of multivariate control charts based on projection methods like PCA-
T2 chart(Jackson, 1991), PLS-T? chart (Kourti and MacGregor, 1996) and PLSS-T?
chart (Vanacore and Lombardo, 2005), the MAPLSS-T2 chart is based on the first A
components. The MAPLSS-T?2 chart is an effective monitoring tool: it incorporates
the variability structure underlying process data and quality product data extracting
information on the directionality of the process variation. The scores of each new
observation are monitored by the MAPLSS-T2 control chart based on the following
statistic

A (2
=3yl ©)

where A, and t, for a = 1,...,A are the eigenvalues and the component scores, re-
spectively, of the previously defined covariance matrix. The control limits of the
MAPLSS-T? chart are based on the percentiles g, (for oo < 10%) of the empirical
distributions, Fy, of MAPLSS component scores, computed on a large number N of
bootstrap samples

o= P(T} < qolFv). @)

Multivariate control charts can detect an unusual event but do not provide a reason
for it. Following the diagnostic approach proposed by Kourti and MacGregor (1996)
and using some new tools, we can investigate observations falling out of the limits
through

(1) bar plots of standardized out-of control scores (¢,/v/Aq for a = 1,...,A), to focus
on the most important dimensions;

(2) bar plot of the contributions of the process variables on the dimensions identified
as the most important ones, to evaluate how each process variable involved in the
calculation of that score contributes to it;

(3) bar plot of the contributions of the process variables on product variables (mea-
sured by the spline range) to evaluate the importance of process variables.
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3 Application: monitoring the painting process of hot-rolled
aluminium foils

In this section we illustrate the usefulness of MAPLSS-T? chart and the related di-
agnosis tools by applying them to monitor a real manufacturing process. We focus
on the modeling phase of statistical process control. The data refer to a manufac-
turing firm of Naples, specialized in hot-rolling of aluminium foils. The manufac-
turing process consists in simultaneously painting the lower and upper surfaces of
an aluminium foil. The process starts by setting the aluminium roll on the unwind-
ing swift. The aluminium foil, pulled by the draught rein that manages the crossing
speed, reaches the painting station where it is uniformly painted on both surfaces by
deflector rolls. The paint drying and polymerization is realized in a flotation oven
consisting of 6 distinct modules (each module is characterized by a specific temper-
ature and can be gradually boosted and independently tuned up).

The process stops by rewinding the aluminium roll. The key product quality char-
acteristics are the uniformity and stability of the alumium painting. Both of them
depend on the Peak Metal Temperature, PMT , reached during the polymerization.
By managing the temperatures of the stay of the aluminium foil in the oven, one can
influence the PMT . Thus PMT has been selected as the only quality product vari-
able, whereas the temperatures characterizing the six modules (7'1,72,73,T4,T5,T6)
and the post-combustion temperature (7post) have been selected as process vari-
ables. The MAPLSS-T? control chart is built on an historical data set of n = 100
independent unit samples. The computational strategy consists in performing at first
the MAPLSS regression (see Table 1) using low degree and knot number (degree=1,
knots=1), deciding the dimension space A by Cross Validation (we get A = 3 with
PRESS = 0.15). Using the balance between the goodness of fit (R?) and thriftness
(PRESS), we select only one interaction among the candidates, the resulting best one
is T4*T5. Afterwards we extract N = 500 Bootstrap samples and perform MAPLSS

Fig. 1. MAPLSS—T? control chart.
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Fig. 2. Bar plot of contributions of process variables to the second dimension

Fig. 3. Bar plot of contributions of process variables to PMT .

regression procedure on each of them, having properly fixed the model parameters
(degree=1, knots=1, A=3). The computation of the T2 scores for all Bootstrap sam-
ples allows to estimate the empirical distribution function of T2. We fix the con-
trol chart upper and lower limits at the percentiles with o0 = 1% and o = 99%
(UCL=393.03, LCL=2.81)

Looking at the resulting control chart (see figure 1) we note two points out of control
at the beginning of the sequence (points 5 and 13). They must be investigated, using
bar plots (1) for points 5 and 13, the dimension 2 results as the most important one
for both out of control points. The bar plot (2) of process variables which contribute
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Table 1. MAPLSS results: R? according to the dimension

Dimension A R?  %cum.

0.74 74%
0.16 89.6
0.03 923

to dimension 2 (figure 2) highlights that the most important process variables are the
temperature in zone 4 (74 ) zone 3 (73), zone 2 (T2), zone 1 (T1), the interaction
between temperatures in zone 4 and zone 5 (T4*T5), ecc. In particular, 74 has a
strong effect on dimension 2 as well as on the quality product variable (Fig. 3). In
Fig. 3 we read in decreasing order the most important predictors on PMT, a part
from 74, the other important process variables are 71, T2, T6, T4*T5, and so on.
It is interesting to observe that the interaction between 74*75 is more important
than the simple process variable given by 75 (Fig. 2 and 3). After the diagnosis
analysis, the causes for observed out of control points have been detected. In fact
the expert technologist suggests that the out-of-control signals are the consequence
of a ‘transition phenomenon’ due to a calibration problem in the feedback of the
automatic loop (i.e. the methane valve opens when temperature is naturally rising).
Having identified and removed the causes for the out of control signals, the modeling
phase of the MAPLSS-T? chart requires that the control limits should be recomputed
excluding the out of control points. The modeling phase ends when all points are
inside the control limits.

4 Conclusion

In this paper a powerful non-parametric multivariate process control chart has been
proposed for monitoring a manifacturing process. By simultaneously monitoring
process and product variables, MAPLSS-T2 chart quickly detects and diagnoses un-
usual events that may occur during the process. The proposed non-parametric control
chart allows to handle collinear variables, missing values, outliers and interactions
between variables, without imposing any distributional assumption. Further devel-
opments of this work could be related to the construction of a chart of the Squared
Prediction Error (SPE; Kourti and MacGregor, 1996) on MAPLSS model, in order to
monitor any change in the covariance structure and verify that the process conditions
during the monitoring stage are not different with respect to the time the in control
MAPLSS model was developed.
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Abstract. Simple Component Analysis (SCA) was introduced by Rousson and Gasser (2004)
as an alternative to Principal Component Analysis (PCA). The goal of SCA is to find the
“optimal simple system” of components for a given data set, which may be slightly correlated
and suboptimal compared to PCA but which is easier to interpret.

Aim of the present paper paper is to consider an extension of SCA to categorical data.
In particular, we consider a simple version of the Non Symmetrical Correspondence Analy-
sis (D’ Ambra and Lauro, 1989). This latter approach can be seen as a centered PCA on the
column profile matrix with suitable metrics enabling to describe the association in two way
contingency table in cases where one categorical variable is supposed to be the explanatory
variable and the other the response.

1 Introduction

It is well known that Principal Component Analysis (PCA) is optimal in at least
two ways: principal components extract a maximum of the variability of the original
variables and they are uncorrelated. The former ensures that a minimum of “total
information” will be missed when looking at the first few principal components. The
latter warrants that the extracted information will be organized in an optimal way:
we may look at one principal component after the other, separately, without taking
into account the rest.

Unfortunately, principal components often lack interpretability. They define some
abstract scores which often are not meaningful, or not well interpretable in practice.
The same remark applies to all methods based on PCA.

Simple Component Analysis (SCA) was introduced by Rousson and Gasser
(2004) as an alternative to Principal Component Analysis. The goal of SCA was to
find the “optimal simple system” of components for a given data set. A component
was considered to be simple if the number of possibles values for its loadings was
restricted to three (a positive one, zero and a negative one). Optimality of a syztem of
components was defined as in Gervini and Rousson (2004). At the end, the optimal
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simple system defined by SCA may be slightly correlated and suboptimal compared
to PCA but will be easier to interpret. Thus, SCA may represent a worth alternative
to PCA if the loss of optimality remains modest.

Aim of the present paper is to consider an extension of SCA to categorical data.
In particular, we consider a simple version of the Non Symmetrical Correspondence
Analysis (D’ Ambra and Lauro, 1989). This latter approach can be seen as a PCA
performed on the column profile matrix with the same weighting system of Corre-
spondence Analysis but in a different metric.

Advantages of the method are illustrated with a well known data set.

2 Non symmetrical correspondence analysis

In many fields, the researcher is interested to study the relationship between two or
more variables. When the variables are collected in a contingency table, classical
statistic tools like correspondence analysis (CA) are applied in order to measure and
visualize the strength of the association.

The CA is based on the decomposition of the index (])2 of Pearson, which is a
symmetric measure of association. This approach however is no longer appropriate
when one has to study a two way contingency table where one categorical variable is
supposed to be the explanatory variable and the other the response. To overcome this
problem, D’ Ambra and Lauro (1989) introduced the Non Symmetrical Correspon-
dence Analysis (NSCA). This approach decomposes the numerator of the Goodman-
Kruskal T (1954), which is an asymmetric measure of association in a contingency
table.

Given two categorical variables I and J, the goal of NSCA is to evaluate the
influence of categories of the explanatory variable J on the distribution of the reponse
I.

LetN = (n;;) and P =& = (p;;) = (“£) be the absolute and relative two-way con-
tingency table of d1mens1on I x J where I and J also denote the number of categories
of the response and the explanatory variable, respectively, based on # individuals. Let
pi. = Z j—1pijand p j = Zle pij be the column and row marginals, respectively,
and let D; = diag(p ;).

Finally, let

J
be the matrix describing the conditional distribution of / given J. This matrix contains
information on the / conditional distributions - ”/ adjusted to the row marginal p; , and
is hence a weighted average of the column profiles.

From a geometrical point of view, the purpose of NSCA is to evaluate in the space
R’ the spread of the cloud of points defined by IT around its centroid according to an
appropriate weighting system. A global measure of dispersion is given by the inertia

2
In—Tnum—ZZp]<pU_pl> .

i=1 j=1
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NSCA looks for the orthonormal basis which accounts for the largest part of iner-
tia to visualize the dependence structure between J and [ in a lower dimensional
space. Solutions are given by the eigen-analysis of the variance covariance matrix
S = IID;IT whose general term (i,i’) is given by

where p; denotes the centre of gravity of the ith row of P. This is achieved also by
the generalized singular value decomposition of IT = Z%; Amambm’ with Mx <
M = min[(I,J) — 1] and where the scalar A, is the singular value (we shall note
A = diag(Ap)), a,, and by, are orthonormal singular vectors in an unweighted and
weighted metric, respectively, such that a),a,, = 1, aj,a,, = 0 and b}, D;b,, = 1,
b;nDjbm’ =0form 5_'5 m'.

In the previous decomposition, the numerator of the Goodman and Kruskal t
(1954) can be decomposed as T, = Zﬂm/li 1 ?»%1.

The factorial row and column coordinates are given by y,,, = VAma,, and @, =
\/7TmD;1/ 2bm, respectively. Finally, factorial coordinates can be also obtained from
the transition formulae:

= () )
= ()T (2 )

See D’ Ambra and Lauro (1989) for further details and remarks.

3 Simple non symmetrical correspondence analysis

It is possible to show that NSCA corresponds to a PCA of the profile matrix IT with
suitable row and column metrics. This is equivalent (Tenenhaus and Young, 1985) to
study the statistical triplet (I,1,D;) where the identity matrix I denotes the metric
and D; the weighting system. Thus, like all PCA-based methods, the components
produced by NSCA are optimal but may lack interpretability, as recalled in the In-
troduction.

In the similar way as SCA was introduced as an alternative to PCA, we shall now
introduce a technique called Simple NSCA as an alternative to NSCA. For this, we
shall use similar concepts and algorithms as in SCA. Note that while one makes the
distinction between simple block-components and simple difference-components in
SCA, we shall here consider only difference components (i.e. components with both
positive and negative loadings), since NSCA does not produce block-components
(i.e. components where all loadings share the same sign). Thus, we shall consider
simple components with loadings proportional to vectors with only three different
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values (a negative value, zero, and a positive value), the sum of the loadings being
zero for each component (defining hence proper contrasts of categories).

The goal of Simple NSCA is to find the optimal system of components among
the simple ones, where optimality is calculated according to Gervini and Rousson
(2004).

The percentage of extracted variability V(L) accounted by a system L of m =
min(I,J) — 1 components is given by

I SI; 1
(L) = t;(A) L=y

S (S ST (L SLie 1)Ly 8) e
k=2

where I is the kth column of L, and where L;_1) is the m x (k— 1) matrix containing
the first (k— 1) columns of L.

Whereas the numerator of the first term of this sum is equal to the variance of the
first component, the numerator of the kth term can be interpreted as the variance of
the part of the kth component which is not explained by (which is independent from)
the previous (k — 1) components. Thus, correlations are "penalized" by this criterion
which is hence uniquely maximized by PCA, i.e. by taking L. = E,,,, the matrix of the
first m eigenvectors of S (Gervini and Rousson, 2004). The optimality of a system L.
is then calculated as V(L) /V(E,,).

In our sequential algorithms below, the kth simple component is obtained by
regressing the original row/column categories on the previous k£ — 1 simple compo-
nents already in the system, by computing the first eigenvector of the residual vari-
ance hence obtained, and by shrinking this eigenvector towards the simple difference
component which maximizes optimality. Here are two algorithms providing simple
components for the rows and the columns.

Simple solutions for the rows

1. Let S =TIID,IT, let L be an empty matrix and let S=s.

2. Leta= (aj,...,a) be the first eigenvector of S.

3. For each cut-off value among g = {0, |ai|,. .., |as| }, consider the shrunken vector
b(g) = {b1(g),...,bi(g)} with elements by(g) = sign(ay) if |ax| > g and b (g) =
0 otherwise (for k = 1,...,I). Update and normalize it such that > bz (g) = 0 and
S big) = 1.

4. Include into the system the difference component b(g) which maximizes
b(g)'Sb(g) (i.e. add the column b(g) to the matrix of loadings L).

5. If the maximum number of components is attained stop. Otherwise let S=S-
SL(L/SL)~'L’S and go back to step 2.

Simple solutions for the columns

I. LetS =D}/’r'mp}/”

2. Leta= (aj,...,a;) be the first eigenvector of S.

, let L be an empty matrix and let S=S.
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3. For each cut-off value among g = {0, |a1|,. .., |as|}, consider the shrunken vector
b(g) ={bi(g),...,bi(g)} with elements by(g) = sign(ay) if |ax| > g and by (g) =
0 otherwise (for k = 1,...,J). Update and normalize it such that > bx(g) = 0 and
S bi(g) = 1.

4. Include into the system the difference component b(g) which maximizes
b(g)'Sb(g) (i.e. add the column b(g) to the matrix of loadings L).

5. If the maximum number of components is attained, let L = D;l/ ’L and stop.
Otherwise let § = S — SL(L/SL)~'L’S and go back to step 2.

4 Father’s and son’s occupations data

To illustrate the technique of Simple NSCA, we applied it to the well known Father’s
and Son’s Occupations. This data set (Perrin, 1904) was collected to study whether
and how the professional occupation of some man depends on the occupation of his
father. Occupations of 1550 men were cross-classified according to father’s and son’s
occupation reparted into 14 occupations.

The conclusion of the study was that such a dependence existed. Two measures
of predicability, the Goodman-Kruskal’s T (1954) and the Light and Margolin’s C =
(n—1)(I — 1)T (1971), have been computed. Note that the C-statistic can be used
to formally test for association, being asymptotically chi-squared distributed with
(I —1)(J —1) degrees of freedom under the hypothesis of no association (Light and
Margolin, 1971).

The overall increase in predicability of a man’s occupation when knowing the oc-
cupation of his father was equal to 14% (t = 0.14; C = 2880.8; df = 169,
Dvaine(0.0001).

According to the NSCA decomposition of the numerator of T (T, = ZkM: 1 7»% =
0.1288), we have for the first two axes A; = 0.24 and A, = 0.16, which are the
weights of the axes in the joint plot of Figure 1. The first axis accounts for 100 x
(0.24)2/0.1288 = 43.7% of the dependence between the two variables while the
second one represents 20.7%. Therefore Figure 1 accounts for 64.4% of the total
inertia.

Unfortunately, the two-dimensional NSCA solution (Figure 1) does not give a
clear description of the dependence of the two variables as well as of the association
between rows and columns. Thus, NSCA is difficult to interpret and a simple solution
has been calculated according to Simple NSCA.

From Table 1, one can see that the first component defined by Simple NSCA for
the rows contrasts son’s occupation “Art” versus the group of occupations { Army,
Divinity, Law, Medicine, Politics & Court and Scholarship & Science}. This simple
component explains 42.5% of the variance compared to 43.7% for optimal solution
above. Thus, the first simple row solution is 42.5%/43.7%=97.4% optimal. One can
conclude that the influence of father’s occupation on son’s occupation mainly con-
trasts these two groups of occupation. The second simple row solution provided by
Simple NSCA contrasts son’s occupation “Divinity” versus the group of occupations
{ Army and Politics & Court}.
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Fig. 1. Non Symmetrical Correspondence Analysis (NSCA): Joint plot.

The same table also contains the Simple NSCA solution for the columns. The
first simple column solution contrasts father’s occupation “Art” versus “Divinity”,
and is 81.9% optimal. The second simple column solution contrast groups of father’s
occupations {Army, Landownership, Law and Politics & Court} versus {Art and
Divinity} with an optimality value of 90.4%. Similarly, further simple constrats can
be defined for both the rows and the columns (see Table 1 for the first 5 solutions).
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Table 1. Simple NSCA solutions for the first five axes.

SON (row) FATHER (column)

Axisl [ Axis2 [ Axis3 [ Axis4 [ Axis5 [ Axis1 [ Axis2 [ Axis3 [ Axis4 [ Axis5
Army 0.15 -041 -044 -037 -050| 000 -0.89 -120 3.21 0,00
Art -093 0,00 000 000 000 |-204 177 -120 000 0,00
TCCS 0,00 0,00 000 000 000 | 000 000 000 000 000
Crafts 0,00 0,00 000 000 000 | 000 000 086 000 0,00
Divinity 0,15 082 -044 000 000 | 2,04 1,77 -120 0,00 0,00
Agricolture 0,00 000 000 000 000 | 000 000 086 000 000
Landownership| 0,00 0,00 0,00 0,00 000 | 000 -089 -120 0,00 0,00
Law 0,15 000 033 055 -050| 0,00 -0.89 086 -1,61 -2,65
Literature 0,00 000 033 000 000 | 000 000 086 000 0,00
Commerce 0,00 000 033 000 000 | 000 000 086 000 0,00
Medicine 0,15 0,0 000 -037 050 | 0,00 000 086 000 2,65
Navy 0,00 000 000 000 000 | 000 000 000 000 000
POLCOURT | 0,15 -041 -044 055 050 | 000 -0.89 -1,20 -1,61 0,00
SCSCIENCE | 0,15 0,00 033 -0,37 0,00 | 0,00 000 086 0,00 0,00

Explained variance (%)

Optimal solu- [ 43,70 [ 64.40 [ 75,30 [ 83,00 | 89,20 [ 43,70 | 64,40 [ 75,30 [ 83,00 | 89,20
tion
Simple  solu- [ 42,50 [ 62,20 | 72,30 [ 79,70 | 85,70 | 35,80 | 58,20 | 68,50 | 75,10 | 80,30
tion
Optimality 97,40 [ 96,60 | 96,10 | 96,10 | 96,10 | 81,90 [ 90,40 | 91,00 | 9050 | 90,00

Note: TCCS, POLCOURT and SCSCIENCE stand for “Teacher, Clerck and Civil
Servant”, “Politics & Court” and “Scolarship & Science”, respectively.

To better summarize and visualize the relationship between father’s and son’s
occupation, it is helpful to plot the solutions for rows and columns for each axis on a
same graphic (Figure 2). One can see that the first Simple NSCA solution highlights
the fact that a son has the tendency to choose the same occupation as his father if
this occupation is “Art”, while father’s occupation “Divinity” is linked with a son’s
occupation within { Army, Divinity, Law, Medicine, Politics & Court and Scholarship
& Science}. Similarly, one can try to interpret the second Simple NSCA solution.

In summary, Simple NSCA provides a clearcut picture of the situation, the opti-
mality of the first two axes being in this example of more than 95% (for the rows)
and 90% (for the columns). Thus, the price to pay for simplicity is about 5% (for the
rows) and 10% (for the columns), which is not much. In this sense, Simple NSCA
may be a worth alternative to NSCA.

5 Conclusions

In general, all PCA-based methods are tuned to condense information in an optimal
way. However, they define some abstract scores which often are not meaningful or
not well interpretable in practice. This was also the case in our example above for
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Fig. 2. Summary of Simple NSCA solutions for the axes 1 and 2.

NSCA. To enhance interpretability, Simple NSCA focus on simplicity and seeks
for “optimal simple components”, as illustrated in our example. It provides a clear-
cut interpretation of the association between rows and columns, the price to pay
for simplicity being relatively low. In this sense, Simple NSCA may be a worth
alternative to NSCA. Extensions of this approach for the Classical Correspondence
Analysis and for ordinal variables are under investigation.
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Abstract. The aim of this work is to present a method of joint factorial analysis of several
contingency tables. This method that we have called Simultaneous Analysis (SA), is especially
appropriate to analyze frequency tables whose row margins are different, for example when
the tables are from different samples or different time points. Furthermore, SA may be applied
to the joint analysis of more than two data tables in which rows refer to the same entities, but
columns may be different.

SA allows us to maintain the structure of each table in the overall analysis by centering
each table internally with its margins, as is done in Correspondence Analysis (CA) and pro-
vides a joint description of the different structures contained within each table. Besides jointly
studying the intrastructure of the tables, SA permits an overall comparison of the similarities
and differences between the tables.

1 Introduction

The need of jointly analyzing several contingency tables has produced several facto-
rial methods.

Some of the proposed methods consist in the analysis of the table obtained as
sum of the separated contingency tables and/or the analysis of the table obtained as
juxtaposition of the initial tables (Cazes (1980) and (1981)) and the Intra Analysis
(Escofier (1983)). Nevertheless, in Zarraga and Goitisolo (2002) it is shown that there
are situations where none of these methods permits an analysis of the similarities
among rows that mantains the similarity in the analyses of the separated tables.

The aim of this work is to present a factorial method for the joint analysis of sev-
eral contingency tables that allows, in a similar way to correspondence analysis, the
study of the similarity among the set of rows, of columns and the relations between
both sets.

Also cite the non symmetrical analysis (D’ Ambra and Lauro (1984) and Lauro
and D” Ambra (1989)) and more recently the Multiple Factor Analysis for Contin-
gency Tables (Pages and Bécue-Bertaut (2006)).
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2 Methodology

Let T ={1,...,t,...,T} be the set of contingency tables to be analyzed. Each of
them classifies the answers of n_, individuals with respect to two categorical vari-
ables. All the tables have one of the variables in common, in this case the row vari-
able with categories I ={1,...,i,...,I}. The other variable of each contingency table
can be different or the same variable observed at different time points or in different
subsamples. On concatenating all these contingency tables, a joint set of columns
J={1,...,j,...,J} is obtained. The element n;;; corresponds to the total number of
individuals who choose simultaneously the categories i € I of the first variable and
j € J; of the second variable, for table ¢ € T. Sums are denoted in the usual way, for
example, n;; =Y jey, Nijes and n denotes the grand total of all T tables.

In order to maintain the internal structure of each table 7, SA begins by obtaining
the relative frequencies of each table as usually done in CA: pi; = njj;/n.; so that
Doier. jel, piz- = 1 for each table 7. It is important to keep in mind that these relative
frequencies are different from those obtained when calculating the relative frequency
for the whole matrix: p;j;; = n;j; /n.

The method that we propose is carried out in three stages.

2.1 Stage one: CA of each contingency table

Since in SA it is important for each table to maintain its own structure, the first
stage carries out a classical CA of each of the T' contingency tables. These separate
analyses also allow us to check for the existence of structures common to the different
tables. From these analyses it is possible to obtain the weighting used in the next
stage.

CA on the ¢-th contingency table can be carried out by calculating the singular
value decomposition (SVD) of the matrix X', whose general term is:

t 1 t
/ot [ PiPi P /ot
Di. < g ) D

Let D. and D, be the diagonal matrices whose diagonal entries are respectively the
marginal row frequencies p! and column frequencies p’ ;- From the SVD of each
table X’ we retain the first squared singular value (or eigenvalue, or principal inertia),
denoted by A}.

2.2 Stage two: analysis of intrastructure

In the second stage, in order to balance the influence of each table in the joint analy-
sis, measured by the inertia, and to prevent this joint analysis from being dominated
by a particular table, SA will include a weighting on each table, ¢,. With this aim, in
SA, o, = 1/A}, where A} denotes the first eigenvalue (square of first singular value)
of the separate CA of table ¢ (stage one). This weight is similar to the one used in
Multiple Factor Analysis (MFA) (Escofier and Pages (1988)).
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As a result, SA proceeds by performing a principal component analysis (PCA)
of the matrix X, X = [\/oTle o VOX \/(TTXT}

The PCA results are also obtained using the SVD of X, giving singular values
V/As on the s-th dimension and corresponding left and right singular vectors u, and
Vs.

We calculate projections on the s-th axis of the columns as principal coordinates
g5, 8 = KSDEI/Z vy where D, (J x J), is a diagonal matrix of all the column masses,
that is all the DL.

One of the aims of the joint analysis of several data tables is to compare them
through the points corresponding to the same row in the different tables. These points
will be called partial rows and denoted by .

The projection on the s-th axis of each partial row is denoted by f and the vector
of projections of all the partial rows for table ¢ is denoted by fi, fi =
)2 0... JaGX ...0] v

Especially when the number of tables is large, comparison of partial rows is
complicated. Therefore each partial row will be compared with the (overall) row,
projected as f; = (D,,) ! [VouX! ..o yoXt L JarXT] v = (D,,) "' X v, where
D,, is the diagonal matrix whose general termis ) _,.p \/pT’ . The choice of this matrix
D,, allows us to expand the projections of the (overall) rows to keep them inside the
corresponding set of projections of partial rows, and is appropriate when the partial
rows have different weights in the tables. With this weighting the projections of the
overall and partial rows are related as follows:

ZIET Z \/?/IT lts‘

So the projection of a row is a weighted average of the projections of partial rows. It
is closer to those partial rows that are more similar to the overall row in terms of the
relation expressed by the axis and have a greater weight than the rest of the partial
rows. The dispersal of the projections of the partial rows with regard to the projection
of their (overall) row indicates discrepancies between the same row in the different
tables.

Notice that if p! is equal in all the tables then f; = (1/T)} ", yfi, that is the
overall row is projected as the average of the projections of the partial rows.

Interpretation rules for simultaneous analysis

In SA the transition relations between projections of different points create a simul-
taneous representation that provides more detailed knowledge of the matter being
studied.

Relation between f; and g js: The projection of a partial row on axis s depends
on the projections of the columns:

Pij
- fzjeJr p] 8Js
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Except for the factor /c /A, the projection of a partial row on axis s, is, as in CA,
the centroid of the projections of the columns of table ¢.

Relation between fs and g js: The projection of an overall row on axis s may be
expressed in terms of the projections of the columns as follows:

pi 1 Pij
fis = D ier VO Z\:/,ZT Vpi (\/}: ZjeJ, 75 g./'S)

The projection of the row is therefore, except for the coefficients 4/a, /Ay, the
weighted average of the centroids of the projections of the columns for each table.

Relation between g js and fis or fi;: The projection on the axis s, of the column j
for table 7, can be expressed in the followmg way:

= 42 (St (S VT (222 ) 1)

This expression shows that the projection of a column is placed on the side of
the projections of the rows with which it is associated, compared to the hypothesis
of independence, and on the opposite side of the projections of those to which it is
less associated.

This projection is, according to partial rows:

gjs_\/%?(zz'el p; <p”p e > (Xierv/PLfs ))

The same aids to interpretation are available in SA as in standard factorial anal-
ysis as regards the contribution of points to principal axes and the quality of display
of a point on axis s.

2.3 Stage three: comparison of the tables: interstructure

In order to compare the different tables, SA allows us, to represent each of them by
means of a point and to project them on the axes.

The coordinate of table 7 on axis s, f;s, represents the projected inertia of the table
on the axis and, therefore, indicates the importance of the table in the determination
of the axis. Thus, fis = >y P g?s = Inertiay(r) where Inertia,(7) represents the
projected inertia of the sum of columns of the table 7 on the axis s.

Due to the weighting of the tables chosen by SA, the maximum value of this
inertia on the first axis is 1. A value of fs close to O would indicate orthogonality
between the first axes of the separate analyses with regard the Simultaneous Anal-
ysis. A value of f;; close to 1 would indicate that the axis of the joint analysis is
approximately the same as in the separate analysis of each table. So, if all the tables
present a coordinate close to the maximum value, 1, on the first factorial axis of the
SA, the projected inertia onto it is approximately 7', the number of tables, and this
confirms that this first direction is accurately depicting the relevant associations of
each table.
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2.4 Relations between factors of the analyses

In SA it is also possible to calculate the following measurements of the relation
between the factors of the different analyses.

Relation between factors of the individual analyses: The correlation coefficient
can be used to measure the degree of similarity between the factors of the separate
CA of different tables. This is possible when the marginals p! are equal.

When p/ are not equal, Cazes (1982) proposes calculating the correlation coef-
ficient between factors, assigning weight to the rows corresponding to the margins
of one of the tables. Therefore, these weights, and the correlation coefficient as well,
depend on the choice of this reference table. In consequence, we propose to solve this
problem of the weight by extending the concept of generalized covariance (Méot and
Leclerc (1997)) to that of generalized correlation (Zarraga and Goitisolo (2003)).

The relation between the factors s and s” of the tables ¢ and ¢’ respectively would

be calculated as:
r(fstvfs/t/) = le[ \J}L V pl \/ pi/ \/”}5,/

where fi; and fis. are the projections on the axes s and s of the separate CA of
the tables ¢ and ¢’ respectively and where A and N\’, are the inertias associated with
these axes. This measurement allows us to verify whether the factors of the separate
analyses are similar and check the possible rotations that occur.

Relation between factors of the SA and factors of the separate analyses: Like-
wise, it is possible to calculate for each factor s of the SA, the relation with each of
the factors s of the separate analyses of the different tables:

(f”,f) Z:el \/}J \/Z(ZteT\/E) fm

If all the tables of frequencies analysed have the same row weights this measure-
ment is reduced to:

pl{ fi.v’t fiS
(fis’r)z\/ZiEIp,{ (fix)2

that is, the classical correlation coefficient between the factors of the separate analy-
ses and the factors of SA.

r(fx’ af): i
o z:GI\/ZieIPit

3 Application

In this section we apply SA to the data taken from an on-line survey drawn up by the
Spanish Ministry of Education and Science, from January to March 2006, to Spanish
students who participate in the Erasmus program in European universities.

This application presents a comparative study for Spanish students, according to
gender, of the relationships between the countries that they choose as destination to
carry out the university interchange in the Erasmus program and the scientific fields
in which they are studying.
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The 15 countries that they choose as destination are Austria, Belgium, Czech
Republic, Denmark, Finland, France, Germany, Ireland, Italy, Netherlands, Norway,
Poland, Portugal, Sweden and United Kingdom. The scientific fields in which they
are studying are: Social and Legal Sciences, Engineering and Technology, Humani-
ties, Health Science and Experimental Science.

Therefore, we have two data tables whose rows (countries) and columns (sci-
entific fields) correspond to the same modalities but refer to two different sets of
individuals, depending on their gender. In these tables both the marginals and the
grand-totals are different. This fact suggests analyzing the tables by SA since the re-
sults of applying other methods can be affected by the above mentioned differences
(Zarraga and Goitisolo (2002)).

The first factorial plane of SA (figure 1) explains nearly 60% of total inertia. In
the plane we observe that male and female students of Humanities Area, Health Sci-
ence and specially Engineering and Technology have a similar behavior in the choice
of the country of destination to realize their studies, whereas students of Social and
Legal Sciences and of Experimental Science choose different countries as destiny
depending on their gender.

The plane shows that students of Humanities Area, both male and female, choose
the United Kingdom as destiny country, followed by Ireland. The countries chosen
as destiny for students of both gender of Engineering and Technology are mainly
Austria, Sweden and Denmark. Finally, the males and females students of Health
Science Area prefer Portugal and Finland.

The students of Experimental Science Area select different countries to realize
the interchange depending on their gender. While male students go mainly to Portu-
gal and Netherlands, females go to Norway.

Also students of Social and Legal Sciences Area have a different behavior. The
Netherlands and Ireland are selected as destiny country by males and females but
males also go to Belgium, the United Kingdom and Italy while females do it to
Norway and Sweden.

The projection of partial rows of each table, joined by segments, allows us to
appreciate the differences between males and females in each destiny country. We
will only remark some of them.

For example, United Kingdom is a country to which males and females students
go in a greater proportion among the students of Humanities. Nevertheless males
also choose United Kingdom to carry out Social and Legal studies whereas females
do not.

Male and female students that come to Portugal agree in selecting this country
over the average for Health degrees. But, males also go to Portugal to study Ex-
perimental Science while females prefer this country for studies of Engineering and
Technology.

Spanish students who go to Finland share the selection of this country over the
rest of the countries to study in the areas of Health and Engineering but there are
more females in the former area and males in the last one.
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Fig. 1. Projection of columns, overall rows and partial rows

In the other hand, not big differences between males and females are found in
Germany, France, Belgium and Norway as it is indicate by the close projections of
overall and partial rows.

As conclusion of this application we can say that Simultaneous Analysis allows
us to show the common structure inside each table as well as the differences in the
structure of both tables. A more extensive application to the joint study of the inter
and intra-structure of a bigger number of contingency tables can be found in Zarraga
and Goitisolo (2006).

4 Discussion

The joint study of several data tables has given rise to an extensive list of factorial
methods, some of which have been gathered by Cazes (2004), for both quantitative
and categorical data tables. In the correspondence analysis (CA) approach Cazes
shows the similarity between some methods in the case of proportional row mar-
gins and shows the problem that arises in a joint analysis when the row margins are
different or not proportional.

Comments on the appropriateness of SA and a comparison with different meth-
ods, especially with Multiple Factor Analysis for Contingency Tables (Pages and
Bécue-Bertaut (2006)), in the cases where row margins are equal, proportional and
not proportional between the tables can be found in Zarraga and Goitisolo (2006).
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5 Software notes

Software for performing Simultaneous Analysis, written in S-Plus 2000 can be found
in Goitisolo (2002). The AnSimult package for R can be obtained from the authors.
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Abstract. In frequent subgraph mining one tries to find all subgraphs that occur with a user-
specified minimum frequency in a given graph database. The basic approach is to grow sub-
graphs, adding an edge and maybe a node in each step, to count the number of database graphs
containing them, and to eliminate infrequent subgraphs. The predominant method to avoid re-
dundant search (the same subgraph can be grown in several ways) is to define a canonical form
that uniquely identifies a graph up to automorphisms. The obvious alternative, a repository of
processed subgraphs, has received fairly little attention yet. However, if the repository is laid
out as a hash table with a carefully designed hash function, this approach is competitive with
canonical form pruning. In experiments we conducted, the repository-based approach could
sometimes outperform canonical form pruning by 15%.

1 Introduction

Frequent subgraph mining consists in the task to find all subgraphs that occur with a
user-specified minimum frequency in a given database of (attributed) graphs. Since
this problem appears in applications in biochemistry, web mining, and program flow
analysis, it has attracted a lot of attention, and several algorithms were proposed to
tackle it. Some of them rely on principles from inductive logic programming and
describe graphs by logical expressions (Finn er al. 1998). However, the vast ma-
jority transfers techniques developed originally for frequent item set mining. Ex-
amples include MolFea (Kramer et al. 2001), FSG (Kuramochi and Karypis 2001),
MoSS/MoFa (Borgelt and Berthold 2002), gSpan (Yan and Han 2002), Closegraph
(Yan and Han 2003), FFSM (Huan et al. 2003), and Gaston (Nijssen and Kok 2004).
A related, but slightly different approach is used in Subdue (Cook and Holder 2000).

The basic idea of these approaches is to grow subgraphs into the graphs of the
database, adding an edge and maybe a node (if it is not already in the subgraph) in
each step, to count the number of graphs containing each grown subgraph, and to
eliminate infrequent subgraphs. All found frequent subgraphs are reported (or often
only the subset of so-called closed subgraphs).

While in frequent item set mining it is trivial to ensure that each item set is
checked only once, it is a core problem in frequent subgraph mining how to avoid
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redundant search. The reason is that the same subgraph can be grown in several
ways, namely by adding the same nodes and edges in different orders. Although
multiple tests of the same subgraph do not invalidate the result of a subgraph mining
algorithm, they can be devastating for its execution time.

One of the most elegant ways to avoid redundant search is to define a canonical
description of a (sub)graph. Combined with a specific way of growing the subgraphs,
such a canonical description can be used to check whether a given subgraph has
been considered in the search before. For example, Borgelt (2006) studied a family
of such canonical forms, which comprises the special forms used in gSpan (Yan
and Han 2002) and Closegraph (Yan and Han 2003) as well as the one underlying
MoSS/MoFa (Borgelt and Berthold 2002).

However, canonical form pruning is not the only way to avoid redundant search.
A simpler and much more straightforward approach is a repository of already pro-
cessed subgraphs, against which each grown subgraph is checked. Nevertheless this
approach is rarely used, has actually not even been properly investigated yet. To
our knowledge only two existing algorithms use a repository, namely MoSS/MoFa,
which prunes with a canonical form by default, but offers the optional use of a repos-
itory, and Gaston (Nijssen and Kok 2004), in which a repository is used in the final
phase for general graphs, since Gaston’s canonical form is restricted to trees. In order
to close this gap, this paper examines repository-based pruning and compares it to
canonical form pruning. Surprisingly enough, a repository-based approach is highly
competitive and could sometimes outperform canonical form pruning by 15%.

2 Canonical form pruning

The core idea underlying a canonical form is to construct a code word that uniquely
identifies a graph up to automorphisms. The characters of this code word describe
the connection structure of the graph. If the graph is attributed (labeled), they also
comprise information about edge and node attributes. While it is straightforward
to capture the attribute information, it is less obvious how to describe the connec-
tion structure. For this, the nodes of the graph must be numbered (more generally:
endowed with unique labels), because we need to specify the source and the desti-
nation node of an edge. Unfortunately, different ways of numbering the nodes of a
graph yield different code words, because they lead to different descriptions of an
edge (simply because the indices of source and destination node differ). In addition,
the edges can be listed in different orders. Different possible solutions to these two
problems give rise to different canonical forms (see Borgelt (2006) for details).

However, given a (systematic) way of numbering the nodes of a graph and a
sorting criterion for the edges, a canonical description is derived as follows: each
numbering of the nodes yields a code word, which is the concatenation of the sorted
edge descriptions. The resulting code words are sorted lexicographically. The lexico-
graphically smallest code word is the canonical description. (It should be noted that
the graph can be reconstructed from this code word.)
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Canonical code words are used in the search as follows: the process of growing
subgraphs is associated with a way of building code words for them. Most naturally,
the code word of a subgraph is obtained by simply concatenating the descriptions
of its edges in the order in which they are added in the search. Since each possible
subgraph needs to be checked only once, we may choose to process it only in the
node of the search tree, in which its code word (as constructed by the search) is the
canonical code word. Otherwise the subgraph (and thus the search tree rooted at it)
is pruned.

It follows that we cannot use just any possible canonical form. If extended code
words are built by appending the next edge description to the code word of the cur-
rent subgraph, then the canonical form must have the so-called prefix property: any
prefix of a canonical code word must be a canonical code word itself. Since we plan
to extend only graphs in canonical form, the prefix property is needed to ensure that
all possible subgraphs can be reached in the search. A simple way to ensure that a
canonical form has the prefix property is to confine oneself to spanning tree number-
ings of the nodes of a graph.

In a straightforward algorithm (the code words of) all possible extensions of a
subgraph are created and checked for canonical form. Extensions in canonical form
are processed further, the rest is discarded. However, canonical forms also give rise
to restrictions of the extensions of a subgraph, because for certain extensions one can
see immediately that they lead to a non-minimal code word. For the two most impor-
tant canonical forms, namely those that are based on a breadth-first (MoSS/Mofa)
and a depth-first spanning tree numbering (gSpan/Closegraph), these are (for details
see Borgelt (2006)):

* maximum source extensions
Only nodes having an index no less than the maximum source of an edge may be
extended (the source of an edge is the node with the smaller index).

* rightmost path extensions
Only the nodes on the rightmost path of the spanning tree used for numbering
the nodes may be extended (children of a node are sorted by index).

While reasons of space prevent us from reviewing details, restricted extensions are
important to mention here. The reason is that they can be exploited for the repos-
itory approach as well, because they are an inexpensive way of avoiding most of
the redundancy imminent in the search. (Note, however, that they cannot rule out all
redundancy, as there are no perfect “simple rules”.)

3 Repository of processed subgraphs

A repository of processed subgraphs is the most straightforward way of avoiding
redundant search. Every encountered frequent subgraph is stored in a data structure,
which allows us to check quickly whether a given subgraph is contained in it or not.
Whenever a new subgraph is created, this data structure is accessed and if it contains
the subgraph, we know that it has already been processed and thus can be discarded.
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Only subgraphs that are not contained in the repository are extended and, of course,
inserted into the repository.

There are two main issues one has to address when designing such a data struc-
ture. In the first place, we have to make sure that each subgraph is stored using a
minimal amount of memory, because the number of processed subgraphs is usually
huge. (This consideration may be one of the main reasons why a subgraph repository
is so rarely used.) Secondly, we have to make the containment test as fast as possible,
since it will be carried out frequently.

In order to achieve the first objective, we exploit that we only want to store graphs
that appear in at least one graph of the database (which usually resides in memory
anyway). Therefore we can store a subgraph by listing the edges of one embedding
(that is, one occurrence of the subgraph in a graph of the database). Note that it
suffices to list the edges, since the search is usually restricted to connected subgraphs
and thus the edges also identify all nodes.'

It is pleasing to observe that this way of storing a subgraph can also make it
easier to check whether a given subgraph is equivalent to it (isomorphism test). The
rationale is to fix an order of the database graphs and to create the embeddings of all
subgraphs in this order. Then we do not store an arbitrary embedding, but one into
the first database graph it is contained in. For a new subgraph, for which we want
to know whether it is in the repository, we can then check whether the first database
graph containing it coincides with the one underlying the stored embedding. If it
does not, we already know that the subgraphs (the new one and the stored one to
which it is compared) cannot be equivalent, since equivalent subgraphs have the
same embeddings.

However, if the database graphs coincide, we carry out the actual isomorphism
test by also relying on the embeddings. We mark the embedding that is stored in the
repository (that is, its edges) in the containing database graph. Then we traverse all
embeddings of the new subgraph into the same graph’? and check whether for any
of them all edges are marked. If such an embedding exists, the two subgraphs (the
new one and the stored one) must be equivalent, otherwise they differ. Obviously,
this isomorphism test is linear in the number of edges and thus very efficient. It
should be kept in mind, though, that it can be costly if a subgraph possesses a large
number of embeddings into the same graph, because in the worst case (that is, if
the two subgraphs are not isomorphic) all of these embeddings have to be checked.
However, our experiments showed that this is an unlikely case, since especially larger
subgraphs most of the time possess only a single embedding per database graph.

Even though an isomorphism test of the described form is fairly efficient, one
should try to avoid it. Apart from the obvious checks whether the number of nodes
and edges, the support in the graph database and the number of embeddings coin-

! The only exception are subgraphs consisting of a single node. Fortunately, such subgraphs
need not be stored, since they cannot be created in more than one way, thus making it
unnecessary to check whether they have been processed before.

2 This is straightforward in our implementation, since in order to facilitate and accelerate
forming extensions, we keep a list of all embeddings of a subgraph.
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cide (naturally these must all be equal for isomorphic subgraphs), we employ a hash
function that is computed from local graph properties. The basic idea is to com-
bine the node and edge attributes and the node degrees, hoping that this allows us
to distinguish non-isomorphic subgraphs. In particular, we combine for each edge
the edge attribute and the attribute and degree of the two incident nodes into a num-
ber. For each node we compute a number from the node attribute, the node degree,
the attributes of its incident edges and the attributes of the other nodes these edges
are incident to. These numbers (one for each node and one for each edge) are then
combined with the total numbers of nodes and edges to yield a hash code.?

The computed hash code is used in the standard way to build a hash table, thus
making it possible to restrict the isomorphism test to (a subset of) the subgraphs in
one hash bin (a subset, because some collisions can be resolved by comparing the
support etc., see above). By carefully tuning the parameters of the hash function we
tried to minimize the number of collisions.

4 Comparison

Considering how canonical form pruning and repository-based pruning work, we
can make the following observations, which already give hints w.r.t. their relative
performance (and which we use to explain our experimental findings):

Canonical form pruning has the advantage that we only have to carry out one test
(for canonical form) in order to determine whether a subgraph needs to be processed
or not (even though this test can be expensive). It has the disadvantage that it is most
costly for the subgraphs that are in canonical form (and thus have to be processed),
because for these subgraphs all possibilities to construct a code word have to be tried.
For non-canonical code words the test usually terminates earlier, since it can often
construct fairly quickly a prefix that is smaller than the code word of the subgraph to
test.

Repository-based pruning has the advantage that it often allows to decide very
quickly that a subgraph has not been processed yet (for example, if a hash bin is
empty). Together with comparing the numbers of nodes and edges, the support etc.,
this suggests that a repository-based approach is fastest for subgraphs that actually
have to be processed. Only if these simple tests fail (as for equivalent subgraphs), we
have to carry out the isomorphism test.

As a consequence, we expect repository-based pruning to perform well if the
number of subgraphs to be processed is large compared to the number of subgraphs
to be discarded (as the repository is usually faster for the former).

3 A technical remark: we do not only combine these numbers by summing them and com-
puting their bitwise exclusive or, but also apply bitwise shifts of varying width in order to
cover the full range of values of (32 bit) integer numbers.
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Fig. 1. Experimental results on the IC93 data set, search time vs. minimum support in percent.
Left: maximum source extensions, right: rightmost path extensions.

5 Experiments

In order to test our repository-based pruning experimentally, we implemented it as
part of the MoSS program®, which is written in Java. As a test dataset (to which we
confine ourselves here due to limits of space) we used a subset of the Index Chemicus
from 1993. The results we obtained with different restricted extensions (maximum
source and rightmost path, see Section 2) are shown in Figures 1 to 3. The horizontal
axis shows the minimal support in percent.

Figure 1 shows the execution times in seconds. The upper graph refers to canon-
ical form pruning, the lower to repository-based pruning. The times do not dif-
fer much, but diverge for lower support values, reaching 15% advantage for the
repository-based approach together with maximum source extensions.

Figure 2 shows the numbers of subgraphs considered in the search and provides
a basis for explanations of the observed behavior. The graphs refer (from top to bot-
tom) to the number of generated subgraphs, the number checked for duplicates, the
number of processed subgraphs, and the number of (discarded) duplicates (difference
between the two preceding curves).

Note that about half of the work is done by minimum support pruning (which
discards all subgraphs that do not appear in the user-specified minimum number of
database graphs), as it is responsible for the difference between the two top curves.
The subgraphs discarded in this way may be unique or not—we need not care, since
they do not qualify anyway.

Canonical form or repository-based pruning only serve the purpose to get rid of
the subgraphs between the two middle curves. That the gap between them is fairly
small compared to their vertical location indicates the high quality of restricted ex-
tensions: most redundancy is already removed by them and only fairly few redundant
subgraphs still need to be detected. (Note that the gap is smaller for maximum source
extensions, which is the main reason for the usually lower execution times achieved
by this approach).

4 MoSS is available for download under the Gnu Lesser (Library) General Public License at
http://www.borgelt.net/moss.html.
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Fig. 2. Experimental results on the IC93 data set, numbers of subgraphs used in the search.
Left: maximum source extensions, right: rightmost path extensions.
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Fig. 3. Experimental results on the IC93 data set, performance of repository-based pruning.
Left: maximum source extensions, right: rightmost path extensions.

Figure 3 finally shows the performance of repository-based pruning (mainly the
effectiveness of the hash function). All curves are the same as in the preceding fig-
ure, with the exception of the third curve from the top, which shows the number of
isomorphism tests. Subgraphs in the gap between this curve and the one above it
have to be processed and are identified as such without any isomorphism test. Only
subgraphs in the (small) gap between this curve and the bottom curve (the number of
actual duplicates) have to be identified and discarded with the help of isomorphism
tests.

Note that for a perfect hash function (which maps only equivalent subgraphs to
the same value) the two bottom curves would coincide. Note also that a canonical
form can be seen as a perfect hash function (with a range of values that does not fit
into an integer), since it uniquely identifies a graph.

6 Summary
In this paper we investigated the widely neglected possibility to avoid redundant

search in frequent subgraph mining with a repository of already encountered sub-
graphs. Even though it may be less elegant than the more popular approach of canon-
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ical forms and, of course, requires additional memory for storing the subgraphs, it
should not be dismissed too easily. If the repository is designed carefully, namely as
a hash table with a hash function computed from local graph properties, it is highly
competitive with a canonical form approach. In our experiments we observed exe-
cution times that were up to 15% lower for the repository-based approach than for
canonical form pruning, while the additional memory requirements were bearable.
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Abstract. Watermarks in papers have been in use since 1282 in Medieval Europe. Water-
marks can be understood much in the sense of being an ancient form of a copyright signature.
The interest of the International Association of Paper Historians (IPH) lies specifically in the
categorical determination of similar ancient watermark signatures.

The highly complex structure of watermarks can be regarded as a strong and discrimina-
tive property. Therefore we introduce edge-based features that are incorporated for retrieval
and classification. The feature extraction method is capable of representing the global structure
of the watermarks, as well as local perceptual groups and their connectivity. The advantage of
the method is its invariance against changes in illumination and similarity transformations.

The classification results have been obtained with leave-one out tests and a support vec-
tor machine (SVM) with an intersection kernel. The best retrieval results have been received
with the histogram intersection similarity measure. For the 14 class problem we obtain a true
positive rate of more than 87%, that is better than any earlier attempt.

1 Introduction

Ancient watermarks served as a mark for the paper mill that made the sheet. Hence,
they served as a unique identifier and as a quality label. Nowadays, scientists from
the International Association of Paper Historians (IPH) try to identify unique wa-
termarks in order to get known the evolution of commercial and cultural exchanges
between cities in the Middle Ages (IHP 1998). The work is tedious since there are
approximately 600.000 known watermarks and their number is steadily growing.

In this paper we present a structure-based feature approach in order to automati-
cally retrieve and classify ancient watermarks. In the following we show that struc-
ture is a well suited feature to discriminate ancient watermarks.

Next, we present relevant work that is followed by a section on the actual feature
computation. In the second part of this article we show the most important results. We
summarize our contribution with a discussion of the results and a final conclusion.
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1.1 Related work

To date, there have been attempts to classify and retrieve watermark images, both by
textual- and content-based approaches. Textual approaches have been developed by
Del Marmol (1987) and Briquet (1923). As a matter of fact, pure textual classification
systems can be error prone. Watermark labels and or textual descriptions might be
very old, erroneous or just not detailed enough. Therefore, more recent attempts have
been undertaken in order to focus on the real content of watermark images. In Rauber
et al. (1997) the authors used a 16-bin large circular histogram computed around the
center of gravity of each watermark image. In addition, eight directional filters were
applied to each image and used as a feature vector. The algorithms were tested on a
small watermark database consisting of 120 images, split up into 12 different classes.
The system achieved a probability of 86% that the first retrieved image belongs to
the same class as the query image. A different approach was taken by the authors in
Riley and Eakins (2002) who used three sets of various global moment features and
three sets of component-based features. The latter set of features consists of several
shape descriptors which are extracted from various image regions.

In the following we will show that the structure of watermarks can be most effi-
ciently represented by features taken from a set of straight line segments. Therefore,
we will extract sets of segments and compute features from them on different scales.

2 Feature extraction

The geometric structure of watermarks is a strong descriptor. Therefore, we compute
a hierarchy of structural features, namely global and local ones. The former ones
depict a holistic scene representation and the latter ones take local perceptual groups
and their connectivity into account. As mentioned earlier we represent the structure
of the watermarks by straight line segments. In order to extract the line segments
we have adopted the algorithms of Pope and Lowe (1994) and Kovesi (2002). In
the first step we create an edge map with the Canny detector. Next, the algorithm
scans through the binary edge map, where the neighborhood of every edge pixel is
investigated in order to form line segments. The final segments serve as a ground
truth for the further feature computation.

Global Features

LetL={l;|i=1,2,...,N}, be a set of line segments obtained from a watermark im-
age. Then, we compute geometric properties of L such as the angles of all segments
between each other, the relative lengths of every segment and the relative Euclidean
distance between all segment mid-points.

In detail, the angle between two segments l; and 1; is defined as:
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with || - ||2 being the L2 — Norm. The angle is in the range of [—m,7]. The relative
length of a segment 1; can be written as:

VO =2+ 0 =302

len(li) N \/(xmax _x0)2 + (ymax —)’0)2 7

@

where xf’ L X7, yf’ and y¢ denote the coordinates of the segment’s begin and end points.
The denominator is a scaling factor in respect to the longest possible line segment!
with (x0,y0) and (Xmayx, Vmax) as the begin and end point coordinates. The Euclidean
distance between the mid-points p{ and pji of the segments I; and 1; is defined as

V05 =22+ 05 —3)?
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with x7, x%, y; and y; as the coordinates of the segment mid-points. The denominator
fulfills the same scaling purpose as the one in Equation 2. Thus, the relative length
of a segment and the relative distance between two segments is limited to the range
[0,1]. The relative representation ensures invariance under isotropic scaling.

Now, that the three basic properties of a set of line segments are computed, we
can incorporate this information into Euclidean distance matrices (EDM). An EDM
is a two-dimensional array consisting of distances taken from a set of entities, that
can be coordinates or points from a feature space. Thus, an EDM incorporates dis-
tance knowledge. For our feature computation, EDMs are used in order to represent
the relative geometric connectivity for a set of straight line segments. Specifically,
we define three EDMs: one based on segment angles E“*¢ (see Equation 1) a second
one based on relative segment lengths E/*” (see Equation 2) and a third one based on
relative distances between segments E%' (see Equation 3). The matrix of E“¢ can

be written as:
ang ang ang

Mg % " Sl
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and each element is computed according to
ang L X
ej;ic = 16: =0, (5)

where the values of 8; and 0 are in the range of [—m,7]. The angles are taken between
the line segments i and j. E** and E?" can be represented in a similar fashion.
Next, we compute three histograms from the previously created EDMs. The his-
tograming step is necessary since the size of the EDMs can differ, i.e. the number of
line segments is not the same for each watermark.ming step is necessary since the
size of EDMs can differ, i.e. the number of line segments is not the same for each

! The longest possible line segment is as long as the diagonal of the image.
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watermark. The three histograms can be understood as a holistic representation of a
set of segments. The final concatenation of the three histograms resembles a global
feature and is invariant against similarity transformations.

Local features

The previously developed global features encode a complete watermark. However,
local structural information plays an important role, too. Watermarks commonly ex-
hibit certain local regularities in their structure. In order to tackle this problem we
introduce local features that are based on perceptual groups of line segments.

Therefore, we define subsets of line segments from every watermark which are
unique, eminent structural entities with well defined relations: Parallelity, Perpen-
dicularity, Diagonality (%,37"). These groups are formed according to angular re-
lations between segments and will be used in order to compute geometric relations
between their members.

The four subsets reflect line segments with certain relations. In fact, we will
extract similar features as we did in the global case. Following that methodology, we
can compute three EDMs: EZ™, EX" and E4**', for each of the four extracted sets of
segments. Note that the * is a placeholder for the four sets. Specifically, we define the
angles between two segments, the relative segment lengths and the relative distance
between two segments according to Equations 1, 2 and 3 for every subset of line
segments.

Then we create three histograms for every subset of line segments. The his-
tograms represent geometric relations of perceptual segment subsets. Since three
histograms have been formed for every set, we obtain 12 histograms in total. The
final set of local feature vectors is obtained by concatenation of all 12 histograms.

Feature representation

In our experiments we have empirically determined the best resolution for the his-
tograms. For the angle based histograms? we have incorporated 36 bins, that corre-
sponds to a 10° resolution with respect to angles. The resolutions for every length
based histogram? is 15 bins, which results in a robust and compact feature. The fi-
nal feature vector is obtained by the concatenation of all global and local feature
histograms.

3 Results

3.1 Data description

The Swiss Paper Museum in Basel provided us a subset of their digital watermark
database. The database used in the subsequent experiments consists of about 1800

2 Histograms that are computed from the following EDMs: E“8 (global features) and
E&"¢ (local features).

3 Histograms that are computed from the following EDMs: E/¢”, E45" (global features) and
Ele" E9is (local features).
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images, split up into 14 classes. : Eagle, Anchorl, Anchor2, Coat of Arm, Circle, Bell,
Heart, Column, Hand, Sun, Bull Head, Flower, Cup and Other objects. The class
memberships are according to the Briquet catalog (Briquet 1923). Figure 1 shows
scanned sample watermark images. A detailed description of the scanning setup can
be found in Rauber (1998). In fact, the watermarks are digitized from the original
sources. Specifically, each ancient document was scanned three times (front, back
and by transparency) in order to obtain a high quality digital copy, where the last
scan contains all necessary information (Rauber 1998). A semi-automatic method,
that is describe in (Rauber 1998), delivers the final images. The method incorporates
a global contrast, contour enhancement and grey-level inversion. Figure 2 shows
sample images after the method was applied.

Fig. 1. Samples of scanned ancient watermark images (courtesy Swiss Paper Museum, Basel).

3.2 Ancient Watermark Retrieval

For retrieval we have computed the features offline for all watermarks. At retrieval
time, only the feature vector for the query watermark has to be computed. The re-
trieval results are obtained with the histogram intersection similarity measure.
Figure 3 shows a set of 10 watermark images. The first image is the query, the
second one is the identical match, indicated by the 1 above the image. The subse-
quent images are sorted in decreasing similarity, as it is indicated by the numbers
above each image. It is interesting to observe that most of the retrieved anchors show
the same orientation. A closer look at the query image reveals that it is featured with
a tiny cross atop and with cusp-like structures at the outer endings*. The retrieved
images clearly show that both of these small scale structures are present in all of
the displayed images. In Figure 4 we can see another retrieval result. Table 1 shows
the averaged class-wise precision and recall at N/2, where N is the number of class

4 Note, that the class Anchorl possesses a large intra-class variation of shapes, i.e. many
anchors have no crosses or show very different endings.
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Fig. 2. Sample filigrees from the watermark database after enhancement and binarization (see
Rauber 1998). Each of the two rows shows watermarks from the same class, namely Heart
and Eagle. The samples show the large intra-class variability of the watermark database.

Fig. 3. Retrieval result obtained with our structure-based features from the class Anchorl of
the watermark database.

Table 1. Averaged precision and recall at N /2 for the watermark database.

Classes | 1 2 3 4 5 6 7 8 9 10 | 11 | 12 | 13 | 14

N 322 | 115|139 | 71 | 91 | 44 | 197 126 | 99 | 33 | 14 | 31 | 17 | 416

P(N/2) |.492|.243|.214 |.144 | .109 | .244 | .173 | .097 | .442|.068 | .190 | .802 | .556 | .283

R(N/2) |.528.139|.302|.197 |.088|.182|.152|.191 |.263 |.061 | .143|.710 |.352 |.361
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Fig. 4. Retrieval result of the class Circle from the watermark database, under the usage of
global and local structural features.

members. Due to place limitations the watermark classes have been assigned a num-
ber’, where one refers to the class Eagle and 14 to the class Other objects. However,
we do observe some classes of worse performance. That is to a large extent due to the
high intra-class variation of the database. Figure 2 shows the large intra-class vari-
ation for two sample classes. Since CBIR performs a similarity ranking some class
members can be less similar to a certain query (from the same class) then images
from other classes. Visual inspections have shown that this argumentation holds for
the classes Eagle and Coat of Arm. The reason is that eagle motives are very com-
mon in heraldry, i.e. about half of the members of the class Coat of Arms have some
kind of eagle embedded on a shield or armorial bearings. Similar observations hold
for some other classes.

3.3 Ancient Watermark Classification

In the previous section we have retrieved watermark images. Now we want to learn
the feature distribution of every class in the feature space. Therefore, the classifi-
cation of the watermark images is treated as a learning problem. The classification
results are obtained with leave-one out tests and SVMs under the usage of different
kernel. Specifically, we have obtained the best results with the intersection kernel and
a cost parameter C = 2°°, We have used the same features as for the retrieval task.
The feature vectors have been normalized according to zero mean and unit variance.
Table 2 shows the class-wise true and false positive rates which have been obtained

Table 2. Class-wise true positive (TP) and false positive (FP) rates for the watermark
database.

Classes | 1 2 3 4 5 6 7 8 9 10 | 11 | 12 | 13 | 14 | Total
TP 919 | .870 | .871 | .465 | .758 | .773 | .817 | .865 | .919 | .546 | .571 | 1.00 | .824 | .995 | .874
FP .0371.001 | .019 | .012 | .011 | .003 | .025 | .008 | .002 | .004 | .001 | O 0 |.008 ]| .125

5 The class names are listed in Section 3.1.
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with a leave-one-out test. We can see that for most of the classes a high recognition
rate is achieved. In total, a 87.41% true positive rate is achieved.

4 Conclusion

The retrieval and classification of watermark images is of great importance for paper
historians. Therefore we have developed a structure-based feature extraction method
that encodes relative spatial arrangements of line segments. The method determines
relations on global and local scales. The results show that structure is a powerful de-
scriptor for the current problem. The retrieval results show that the proposed features
work very well.

Next, we have performed a classification of the watermark images. A support
vector machine with intersection kernel was able to successfully learn the character-
istics of every class. A classification rate (true positive rate) of more than 87% is an
indicator of a good performance. In future work, we would like to apply the struc-
tural features to a larger database of watermarks and investigate partial matching as
well.
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Abstract. Supervised classification methods require reliable and consistent training sets. In
image analysis, where class labels are often assigned to the entire image, the manual genera-
tion of pixel-accurate class labels is tedious and time consuming. We present an independent
component analysis (ICA)-based method to generate these pixel-accurate class labels with
minimal user interaction. The algorithm is applied to the detection of skin cancer in hyper-
spectral images. Using this approach it is possible to remove artifacts caused by sub-optimal
image acquisition. We report on the classification results obtained for the hyper-spectral skin
cancer data set with 300 images using support vector machines (SVM) and model-based dis-
criminant analysis (MclustDA, MDA).

1 Introduction

Hyper-spectral images consist of several, up to hundred, images acquired at different
- mostly narrow band and contiguous - wavelengths. Thus, a hyper-spectral image
contains pixels represented as multidimensional vectors with elements indicating the
reflectivity at a specific wavelength. For a contiguous set of narrow band wavelengths
these vectors correspond to spectra in the physical meaning and are equal to spectra
measured with e.g. spectrometers.

Supervised classification of hyper-spectral images requires a reliable and consistent
training set. In many applications labels are assigned to the full image instead of to
each individual pixel even if instances of all the classes occur in the image. To obtain
areliable training set it may be necessary to label the images on a pixel by pixel basis.
Manually generating pixel-accurate class labels requires a lot of effort; cluster-based
automatic segmentation is often sensitive to measurement errors and illumination
problems. In the following we present a labelling strategy for hyper-spectral skin
cancer data that uses PCA, ICA and K-Means clustering. For the classification of
unknown images, we compare support vector machines and model-based discrimi-
nant analysis.
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Section 2 describes the methods that are used for the labelling approach. The classi-
fication algorithms are discussed in Section 3. In Section 4 we present the segmen-
tation and classification results obtained for the skin cancer data set and Section 5 is
devoted to discussions and conclusions.

2 Labelling

Hyper-spectral data are highly correlated and contain noise which adversely affects
classification and clustering algorithms. As the dimensionality of the data equals the
number of spectral bands, using the full spectral information leads to computational
complexity. To overcome the curse of dimensionality we use PCA to reduce the di-
mensions of the data, and inherently also unwanted noise. Since different features of
the image may have equal score values for the same principal component, an addi-
tional feature extraction step is proposed. ICA makes it possible to detect acquisition
artifacts like saturated pixels and inhomogeneous illumination. Those effects can be
significantly reduced in the spectral information giving rise to an improved segmen-
tation.

2.1 Principal Component Analysis (PCA)

PCA is a standard method for dimension reduction and can be performed by sin-
gular value decomposition. The algorithm gives uncorrelated principal components.
We assume that those principal components that correspond to very low eigenvalues
contribute only to noise. As a rule of thumb, we chose to retain at least 95% of the
variability which led to selecting 6-12 components.

2.2 Independent Component Analysis (ICA)

ICA is a powerful statistical tool to determine hidden factors of multivariate data. The
ICA model assumes that the observed data, x, can be expressed as a linear mixture
of statistically independent components, s. The model can be written as

x=As

where the unknown matrix A is called the mixing matrix. Defining W as the unmixing
matrix we can calculate s as
s =Wx.

As we have already done a dimension reduction, we can assume that noise is neg-
ligible and A is square which implies W = A~!. This significantly simplifies the
estimation of A and s. Providing that no more than one independent component has
Gaussian distribution, the model can be uniquely estimated up to scalar multipliers.
There exists a variety of different algorithms for fitting the ICA model. In our work
we focused on the two most popular implementations which are based on maximisa-
tion of non-Gaussianity and minimisation of mutual information respectively: Fas-
tICA and FlexICA.
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FastICA

The FastICA algorithm developed by Hyvirinen et al. (2002) uses negentropy, J (v),
as a measure of Gaussianity. Since negentropy is zero for Gaussian variables and
always nonnegative one has to maximise negentropy in order to maximise non-
Gaussianity. To avoid computation problems the algorithm uses an approximation
of negentropy: If G denotes a nonquadratic function and we want to estimate one
independent component s we can approximate

JO) = [E{G()} ~E{G(V)}I,

where Vv is a standardised Gaussian variable and y is an estimate of s. We adopt to use
G (y) = logcoshy since this has been shown to be a good choice. Maximisation di-
rectly leads to a fixed-point iteration algorithm that is 20 — 50 times faster than other
ICA implementations. To estimate several independent components a deflationary
orthogonalisation method is used.

FlexICA

Mutual information is a natural measure of information that members of a set of
random variables have on the others. Choi et al. (2000) proposed an ICA algorithm
that attempts to minimise this quantity. All independent components are estimated
simultaneously using a natural gradient learning rule with the assumption that the
source signals have the generalized Gaussian distribution with density

o p— Lxl”
(Vi) = ——=———exp| —— .
Y 26, (1/r3) PUTn

Here r; denotes the Gaussian exponent which is chosen in a flexible way depending
on the kurtosis of the y;.
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G

2.3 Two-Stage K-Means clustering

From a statistical point of view it may be inappropriate to use K-means clustering
since K-means cannot use all the higher order information that ICA provides. There
are several approaches that avoid using K-means, for example Shah et al. (2005) pro-
posed the ICA mixture model ICAMM). However, for large images this algorithm
fails to converge. We developed a 2-stage K-means clustering strategy that works
particularly well with skin data. The choice of 5 resp. 3 clusters for the K-means
algorithm has been determined empirically for the skin cancer data set.

1. Drop ICs that contain a high amount of noise or correspond to artifacts.

2. Perform K-means clustering with 5 clusters.

3. Those clusters that correspond to healthy skin are taken together into one cluster.
This cluster is labelled as skin.

4. Perform a second run of K-means clustering on the remaining clusters (inflamed
skin, lesion, etc.). This time use 3 clusters. Label the clusters that correspond to
the mole and melanoma centre as mole and melanoma. The remaining clusters
are considered to be ‘regions of uncertainty’.
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3 Classification

This section describes the classification methods that have been investigated. The
preprocessing steps for the training data are the same as in the segmentation task:
Dimension reduction using PCA and feature extraction performed by ICA. Using
the Bayesian Information Criterion (BIC), the data were reduced to 6 dimensions.

3.1 Mixture Discriminant Analysis (MDA)

MDA assumes that each class j can be modelled as a mixture of R; subclasses.
The subclasses have a multivariate Gaussian distribution with mean vector u;,, r =
1,...,R;, and covariance matrix X, which is the same for all classes. Hence, the
mixture model for class j has the density

—u VS Y (x—u.

where 7 ;. denote the mixing probabilities for the j-th subclass, Zﬁ 1T = 1. The
parameters 0 = (,u i 2T j,) can be estimated using an EM-algorithm or, as Hastie et
al. (2001) suggest, using optimal scoring. It is also possible to use flexible discrim-
inant analysis (FDA) or penalized discriminant analysis (PDA) in combination with
MDA. The major drawback of this classification approach is that, similar to LDA
which is also described in Hastie et al. (2001), the covariance matrix is fixed for all
classes and the number of subclasses for each class has to be set in advance.

3.2 Model-based Discriminant Analysis (MclustDA)

MclustDA, proposed by Fraley et al. (2002), extends MDA in a way that the covari-
ance in each class is parameterized using the eigenvalue decomposition

Y, =ADADI r=1,... R}

The volume of the component is controlled by A,, A, defines the shape and D, is
responsible for the orientation. The model selection is done using the BIC and the
maximum likelihood estimation is performed by an EM-algorithm.

3.3 Support Vector Machines (SVM)

The aim of support vector machines is to find a hyperplane that optimally separates
two classes in a high-dimensional feature space induced by a Mercer kernel K (x,z).
In the L*>-norm case the Lagrangian dual problem is to find A* that solves the follow-
ing convex optimization problem:

maXZK —*ZZX}\. y,yj( X,,Xj)-l-é&‘j) S.t.ikiyizo, A >0,

i=1 j=1
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where x; are training points belonging to classes y;. The cost parameter C and the
kernel function have to be chosen to suit to the problem. It is also possible to use
different cost parameters for unbalanced data as was suggested by Veropoulos et al.
(1999).

Although SVMs were originally designed as binary classifiers, there exists a vari-
ety of methods to extend them to k > 2 classes. In our work we focused on one-
against-all and one-against-one SVMs. The one-against-all formulation trains each
class against all remaining classes resulting in k& binary SVMs. The one-against-one

formulation uses @ SVMs, each separating one class from one another.

4 Results

A set of 310 hyper-spectral images (512 x 512 pixels and 300 spectral bands) of
malign and benign lesions were taken in clinical studies at the Medical University
Graz, Austria. They are classified as melanoma or mole by human experts on the
basis of a histological examination. However, in our survey we distinguish between
three classes, melanoma, mole and skin, since all these classes typically occur in the
images. The segmentation task is especially difficult in this application: We have
to take into account that melanoma typically occurs in combination with mole. To
reduce the number of outliers in the training set we define a ‘region of uncertainty’
as a transition region between the kernels of mole and melanoma and between the
lesion and the skin.

4.1 Training

Figures 1(b) and 1(c) display the first step of the K-Means strategy described in Sec-
tion 2.3. The original image displayed in Figure 1(a) shows a mole that is located
in the middle of a hand. For PCA-transformed data, as in Figure 1(b), the algorithm
performs poorly and the classes do not correspond to lesion, mole and skin regions
(left and bottom). Even the lesion is in the same class together with an illumination
problem. If the data is also transformed using ICA, as in Figure 1(c), the lesion is
already identified and there exists a second class in the form of a ring around the
lesion which is the desired ‘region of uncertainty’. The other classes correspond to
wrinkles on the hand.

Figure 1(d) shows the second K-Means step for the PCA transformed data. Although
the second K-Means step makes it possible to separate the lesion from the illumina-
tion problem it can be seen that the class that should correspond to the kernel of the
mole is too large. Instances from other classes are present in the kernel. The second
K-Means step with the ICA preprocessed data is shown in Figure 1(e). Not only the
kernel is reliably detected but there also exists a transition region consisting of two
classes. One class contains the border of the lesion. The second class separates the
kernel from the remaining part of the mole.

We believe that the FastICA algorithm is the most appropriate ICA implementation
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(a) (b) (©)

(d) ©

Fig. 1. The two iteration steps of the K-Means approach for both PCA ((b) and (d)) and
ICA ((c) and (e)) are displayed together with the original image (a). The different gray levels
indicate the cluster the pixel has been assigned to.

for this segmentation task. The segmentation quality for both methods is very simi-
lar, however the FastICA algorithm is faster and more stable.

To generate a training set of 12.000 pixel spectra per class we labelled 60 mole im-
ages and 17 melanoma images using our labelling approach. The pixels in the train-
ing set are chosen randomly from the segmented images.

4.2 Classification

In Table 1 we present the classification results obtained for the different classifiers
described in Section 3. As a test set we use 57 melanoma and 253 mole images. We
use the output of the LDA classifier as a benchmark.

LDA turns out to be the worst classifier for the recognition of moles. Nearly one half
of the mole images are misclassified as melanoma. On the other hand LDA yields
excellent results for the classification of melanoma, giving rise to the presumption
that there is a large bias towards the melanoma class. With MDA we use three sub-
classes in each class. Although both MDA and LDA keep the covariance fixed, MDA
models the data as mixture of Gaussians leading to a significantly higher recognition
rate compared to LDA. Using FDA or PDA in combination with MDA does not im-
prove the results. MclustDA performs best among these classifiers. Notice however,
that BIC overestimates the number of subclasses in each class which is between 14
and 21. For all classes the model with varying shape, varying volume and varying
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Table 1. Recognition rates obtained for the different classifiers

Pre-Proc. Class MDA MclustDA LDA
FXCA o947 % 5K 27
FalCA oo 4% 5 K2
Pre-Proc. Class OAA-SVM OAO-SVM unbalanced SVM
FeCA o 5997 5 7% 5
FSICA o 975% 57 517

orientation of the mixture components is chosen. This extra flexibility makes it pos-
sible to outperform MDA even though only half of the training points could be used
due to memory limitations. Another significant advantage of MclustDA is its speed,
taking around 20 seconds for a full image.

Since misclassification of melanoma into the mole class is less favourable than mis-
classification of mole into the melanoma class, we clearly have unbalanced data
in the skin cancer problem. According to Veropoulos et al. (1999) we can choose
Chelanoma > Cmote = Cskin- We obtain the best results using the polynomial kernel of
degree three with Cyeranoma = 0.5 and Cyp10 = Cyin = 0.1. This method is clearly
superior when compared with the other SVM approaches. For the one-against-all
(OAA-SVM) and the one-against-one (OAO-SVM) formulation we use Gaussian
kernels with C = 2 and o = 20. A drawback of all the SVM classifiers, however, is
that training takes 20 hours (Centrino Duo 2.17GHz, 2GB RAM) and classification
of a full image takes more than 2 minutes.

We discovered that different ICA implementations have no significant impact on the
quality of the classification output. FlexICA performs slightly better for the unbal-
anced SVM and one-against-all-SVM. FastICA gives better results for MclustDA.
For all other classifiers the performances are equal.

5 Conclusion

The combination of PCA and ICA makes it possible to detect both artifacts and the
lesion in hyper-spectral skin cancer data. The algorithm projects the correspond-
ing features on different independent components; dropping the independent com-
ponents that correspond to the artifacts and applying a 2-stage K-Means clustering
leads to a reliable segmentation of the images. It is interesting to note that for the
mole images in our study there is always one single independent component that
carries the information about the whole lesion. This suggests very simple segmen-
tation in the case where the skin is healthy: keep the single independent component
that contains the desired information and perform the K-Means steps. For melanoma
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images the spectral information about the lesion is contained in at least two inde-
pendent components, leading to reliable separation of the melanoma kernel from the
mole kernel.

Unbalanced SVM and MclustDA yield equally good classification results, however,
because of its computational performance MclustDA is the best classifier for the skin
cancer data in terms of overall accuracy.

The presented segmentation and classification approach does not use any spatial in-
formation. In future research Markov random fields and contextual classifiers could
be used to take into account the spatial context.

In a possible application, where the physician is assisted by system which pre-screens
patients, we have to take care of high sensitivity which is typically accompanied with
a loss in specificity. Preliminary experiments showed that a sensitivity of 95% is pos-
sible at the cost of 20% false-positives.
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Abstract. Research in the field of knowledge discovery from temporal data recently focused
on a new type of data: interval sequences. In contrast to event sequences interval sequences
contain labeled events with a temporal extension. Mining frequent temporal patterns from
interval sequences proved to be a valuable tool for generating knowledge in the automotive
business. In this paper we propose a new algorithm for mining frequent temporal patterns from
interval sequences: FSMTree. FSMTree uses a prefix tree data structure to efficiently organize
all finite state machines and therefore dramatically reduces execution times. We demonstrate
the algorithm’s performance on field data from the automotive business.

1 Introduction

Mining sequences from temporal data is a well known data mining task which gained
much attention in the past (e.g. Agrawal and Srikant (1995), Mannila et al. (1997),
or Pei et al. (2001)). In all these approaches, the temporal data is considered to con-
sist of events. Each event has a label and a timestamp. In the following, however,
we focus on temporal data where an event has a temporal extension. These tempo-
rally extended events are called temporal intervals. Each temporal interval can be
described by a triplet (b,e,l) where b and e denote the beginning and the end of the
interval and ! its label.

At DaimlerChrysler we are interested in mining interval sequences in order to
further extend the knowledge about our products. Thus, in our domain one interval
sequence may describe the history of one vehicle. The configuration of a vehicle, e.g.
whether it is an estate car or a limousine, can be described by temporal intervals. The
build date is the beginning and the current day is the end of such a temporal interval.
Other temporal intervals may describe stopovers in a garage or the installation of
additional equipment. Hence, mining these interval sequences might help us in tasks
like quality monitoring or improving customer satisfaction.
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2 Foundations and related work

As mentioned above we represent a temporal interval as a triplet (b, e,1).

Definition 1. (Temporal Interval) Given a set of labels | € L, we say the triplet
(b,e,l) € R xR x L is a temporal interval, if b < e. The set of all temporal inter-
vals over L is denoted by I.

Definition 2. (Interval Sequence) Given a sequence of temporal intervals, we say
(by,e1,11),(ba,e2,1a),...,(bn,en,ly) € I is an interval sequence, if

V(b eili),(bj,ejl;) €Li# j:bi<bjNe;>bj=1; #1; (1)

V(biaeiali)v(bjaejvlj) eli<j:

2
(b <bj)\/(bi=bj/\€i <ej)\/(b,-=bj/\e,~=ej/\li <lj) )

hold. A given set of interval sequences is denoted by S.

Equation 1 above is referred to as the maximality assumption (Hoppner (2002)).
The maximality assumption guarantees that each temporal interval A is maximal,
in the sense that there is no other temporal interval in the sequence sharing a time
with A and carrying the same label. Equation 2 requires that an interval sequence
has to be ordered by the beginning (primary), end (secondary) and label (tertiary,
lexicographically) of its temporal intervals.

Without temporal extension there are only two possible relations. One event is
before (or after as the inverse relation) the other or they coincide. Due to the tem-
poral extension of temporal intervals the possible relations between two intervals
become more complex. There are 7 possible relations (or 13 if one includes inverse
relations). These interval relations have been described in Allen (1983) and are de-
picted in Figure 1. Each relation of Figure 1 is a temporal pattern on its own that
consists of two temporal intervals. Patterns with more than two temporal intervals
are straightforward. One just needs to know which interval relation exists between
each pair of labels. Using the set of Allen’s interval relations I, a temporal pattern is
defined by:

Definition 3. (Temporal Pattern) A pair P = (s,R), where s : 1,....n — Land R €
" n e N, is called a “temporal pattern of size n” or “n-pattern”.

Relation A to B Inverse Relation B to A Relation A to B Inverse Relation B to A
A before B - B after A A contains B @ B during A
A meets B B is-met-by A A is-started-by B F B starts A
A overlaps B B is-overlapped-by A A equals B B equals A

A is-finished-by B q B finishes A

Fig. 1. Allen’s Interval Relations
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Fig. 2. a) Example of an interval sequence: (1,4,A), (3,7,B), (7,10,A) b) Example of a temporal
pattern (e stands for equals, o for overlaps, b for before, m for meets, io for is-overlapped-by,
etc.)

Figure 2.a shows an example of an interval sequence. The corresponding tempo-
ral pattern is given in Figure 2.b.

Note that a temporal pattern is not necessarily valid in the sense that it must be
possible to construct an interval sequence for which the pattern holds true. On the
other hand, if a temporal pattern holds true for an interval sequence we consider this
sequence as an instance of the pattern.

Definition 4. (Instance) An interval sequence S = (bj,e;,l;)1<i<n conforms to a n-
pattern P = (s,R), if Vi, j : s(i) = [; As(j) = L; AR[i, j] = ir([bj, ei], [b}, e;]) with func-
tion ir returning the relation between two given intervals. We say that the interval
sequence S is an instance of temporal pattern P. We say that an interval sequence S'
contains an instance of P if S C §', i.e. S is a subsequence of S'.

Obviously a temporal pattern can only be valid if its labels have the same order as
their corresponding temporal intervals have in an instance of the pattern. Next, we
define the support of a temporal pattern.

Definition 5. (Minimal Occurrence) For a given interval sequence S a time interval
(time window) [b,e] is called a minimal occurrence of the k-pattern P (k > 2), if (1.)
the time interval [b,e| of S contains an instance of P, and (2.) there is no proper
subinterval [b',¢'] of |b,e] which also contains an instance of P. For a given interval
sequence S a time interval [b,e] is called a minimal occurrence of the 1-pattern P, if
(1.) the temporal interval (b,e,l) is contained in S, and (2.) 1 is the label in P.

Definition 6. (Support) The support of a temporal pattern P for a given set of interval
sequences S is given by the number of minimal occurrences of P in S: Supg(P) =
I{[b,e] : [b,e] is a minimal occurrence of P in SAS € S}|.

As an illustration consider the pattern A before A in the example of Figure 2.a. The
time window [1,11] is not a minimal occurrence as the pattern is also visible e.g. in
its subwindow [2,9]. Also the time window [3, 8] is not a minimal occurrence. It does
not contain an instance of the pattern. The only minimal occurrence is [4,7] as the
end of the first and the beginning of the second A are just inside the time window.

The mining task is to find all temporal patterns in a set of interval sequences
which satisfy a defined minimum support threshold. Note that this task is closely
related to frequent itemset mining, e.g. Agrawal et al. (1993).

Previous investigations on discovering frequent patterns from sequences of tem-
poral intervals include the work of Hoppner (2002), Kam and Fu (2000), Papapetrou
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et al. (2005), and Winarko and Roddick (2005). These approaches can be divided
into two different groups. The main difference between both groups is the definition
of support. Hoppner defines the temporal support of a pattern. It can be interpreted
as the probability to see an instance of the pattern within the time window if the time
window is randomly placed on the interval sequence. All other approaches count the
number of instances for each pattern. The pattern counter is incremented once for
each sequence that contains the pattern. If an interval sequence contains multiple
instances of a pattern then these additional instances will not further increment the
counter.

For our application neither of the support definitions turned out to be satisfying.
Hoppner’s temporal support of a pattern is hard to interpret in our domain, as it
is generally not related to the number of instances of this pattern in the data. Also
neglecting multiple instances of a pattern within one interval sequence is inapplicable
when mining the repair history of vehicles. Therefore we extended the approach
of minimal occurrences in Mannila (1997) to the demands of temporal intervals.
In contrast to previous approaches, our support definition allows (1.) to count the
number of pattern instances, (2.) to handle multiple instances of a pattern within one
interval sequence, and (3.) to apply time constraints on a pattern instance.

3 Algorithms FSMSet and FSMTree

In Kempe and Hipp (2006) we presented FSMSet, an algorithm to find all frequent
patterns within a set of interval sequences S. The main idea is to generate all frequent
temporal patterns by applying the Apriori scheme of candidate generation and sup-
port evaluation. Therefore F.SMSet consists of two steps: generation of candidate sets
and support evaluation of these candidates. These two steps are alternately repeated
until no more candidates are generated. The Apriori scheme starts with the frequent
1-patterns and then successively derives all k-candidates from the set of all frequent
(k-1)-patterns.

In this paper we will focus on the support evaluation of the candidate patterns, as
it is the most time consuming part of the algorithm. F'SMSet uses finite state machines
which subsequently take the temporal intervals of an interval sequence as input to
find all instances of a candidate pattern.

It is straightforward to derive a finite state machine from a temporal pattern.
For each label in the temporal pattern a state is generated. The finite state machine
starts in an initial state. The next state is reached if we input a temporal interval that
contains the same label as the first label of the temporal pattern. From now on the
next states can only be reached if the shown temporal interval carries the same label
as the state and its interval relation to all previously accepted temporal intervals is
the same as specified in the temporal pattern. If the finite state machine reaches its
last state it also reaches its final accepting state. Consequently the temporal intervals
that have been accepted by the state machine are an instance of the temporal pattern.

The minimal time window in which this pattern instance is visible can be derived
from the temporal intervals which have been accepted by the state machine. We
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A[al[B][c] D[ a] e) "
O[] [a] O[] [8]

Fig. 3. a) — d) four candidate patterns of size 3 e) an interval sequence

Table 1. Set of state machines of FSMSet for the example of Figure 3. Each column shows the
new state machines that have been added by FSMSet.

1 | 2] 3 4 5 6
Sa() |Sa(1)]Sa(2) | Sc(3) | Se(3,4) | Sa(5) |Sa(1,3,6)
Sp() | So(1) |Sp(2) | Sa(3) Sa(3,4)| Sp(5) |Sp(2,3,6)
Se() Sa(1,3) Se(3,4,5)
Sa() S»(2,3)

know that the time window contains an instance but we do not know whether it is
a minimal occurrence. Therefore FSMSet applies a two step approach. First it will
find all instances of a pattern using state machines. Then it prunes all time windows
which are not minimal occurrences.

To find all instances of a pattern in an interval sequence FSMSet is maintaining
a set of finite state machines. At first, the set only contains the state machine that
is derived from the candidate pattern. Subsequently, each temporal interval from the
interval sequence is shown to every state machine in the set. If a state machine can
accept the temporal interval, a copy of the state machine is added to the set. The
temporal interval is shown only to one of these two state machines. Hence, there will
always be a copy of the initial state machine in the set trying to find a new instance
of the pattern. In this way FSMSet also can handle situations in which single state
machines do not suffice. Consider the pattern A meets B and the interval sequence
(1,2, A), (3,4, A), (4,5, B). Without using look ahead a single finite state machine
would accept the first temporal interval (1,2, A). This state machine is stuck as it
cannot reach its final state because there is no temporal interval which is-met-by
(1, 2, A). Hence the pattern instance (3, 4, A), (4, 5, B) could not be found by a single
state machine. Here this is not a problem because there is a copy of the first state
machine which will find the pattern instance.

Figure 3 and Table 1 give an example of FSMSet’s support evaluation. There are
four candidate patterns (Figure 3.a — 3.d) for which the support has to be evaluated
on the given interval sequence in Figure 3.e.

At first, a state machine is derived for each candidate pattern. The first column
in Table 1 corresponds to this initialization (state machines S, — S;). Afterwards
each temporal interval of the sequence is used as input for the state machines. The
first temporal interval has label A and can only be accepted by the state machines
S4() and S (). Thus the new state machines S,(1) and S(1) are added. The numbers
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in brackets refer to the temporal intervals of the interval sequence that have been
accepted by the state machine. The second temporal interval carries again the label
A and can only be accepted by S,() and S, (). The third temporal interval has label B
and can be accepted by S.() and S;(). It also stands to the first A in the relation after
and to the second A in the relation is-overlapped-by. Hence also the state machines
S4(1) and Sp(2) can accept this interval. Table 1 shows all new state machines for
each temporal interval of the interval sequence. For this example the approach of
FSMSet needs 19 state machines to find all three instances of the candidate patterns.

A closer examination of the state machines in Table 1 reveals that many state
machines show a similar behavior. E.g. both state machines S, and S; accept ex-
actly the same temporal intervals until the fourth iteration of FSMSet. Only the fifth
temporal interval cannot be accepted by S;. The reason is that both state machines
share the common subpattern B overlaps C as their first part (i.e. a common prefix
pattern). Only after this prefix pattern is processed their behavior can differ. Thus we
can minimize the algorithmic costs of FSMSet by combining all state machines that
share a common prefix. Combining all state machines of Figure 3 in a single data
structure leads to the prefix tree in Figure 4. Each path of the tree is a state machine.
But now different state machines can share states, if their candidate patterns share a
common pattern prefix. By using the new data structure we derive a new algorithm
for the support evaluation of candidate patterns — FSMTree.

Instead of maintaining a list of state machines FSMTree maintains a list of nodes
from the prefix tree. In the first step the list only contains the root node of the tree. Af-
terwards all temporal intervals of the interval sequence are processed subsequently.
Each time a node of the set can accept the current temporal interval its corresponding
child node is added to the set. Table 2 shows the new nodes that are added in each
step if we apply the prefix tree of Figure 4 to the example of Figure 3. Obviously the
algorithmic overhead is reduced significantly. Instead of 19 state machines FSMTree
only needs 11 nodes to find all pattern instances.

N,

N, N;
A B
N, Ny Ng
B afterA B is-overlapped-by A C is-overlapped-by B
N, af Ng 6 Ny B Ny .
C after B C after B A is-overlapped-by C B finishes C
after A after A after B after B

Fig. 4. FSMTree: prefix tree of state machines based on the candidates of Figure 3
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Table 2. Set of nodes of FSMTree for the example of Figure 3. Each column gives the new
nodes that have been added by FSMTree.

v 2| 3 | 4 | 5 | 6
Ni() | N2(1) | N2(2) | N3(3) [ Ne(3,4)| MNa(5) | N7(1,3,6)
Ng(1,3) Ny(3,4,5) | Ng(2,3,6)
N5(273)
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Fig. 5. Runtimes of FSMSet and FSMTree for different support thresholds.

4 Performance evaluation and conclusions

In order to evaluate the performance of FSMTree in a real application scenario we
employed a dataset from our domain. This dataset contains information about the
history of 101250 vehicles. There is one sequence for each vehicle. Each sequence
comprises between 14 and 48 temporal intervals. In total, there are 345 different
labels and about 1.4 million temporal intervals in the dataset.

We performed 5 different experiments varying the minimum support threshold
from 3200 down to 200. For each experiment we measured the runtimes of FSMSet
and FSMTree. The algorithms are implemented in Java and all experiments were
carried out on a SUN Fire X2100 running at 2.2 GHz.

Figure 5 shows that FSMTree clearly outperforms FSMSet. In the first experiment
FSMTree reduced the runtime from 36 to 5 minutes. The difference between FSMSet
and FSMTree even grows as the minimum support threshold gets lower. For the last
experiment FSMSet needed two days wh