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CHAPTER 1  
 

INTRODUCTION

1.1 REINFORCED CONCRETE STRUCTURES

Concrete is arguably the most important building material, playing a part in all building 
structures. Its virtue is its versatility, i.e. its ability to be moulded to take up the shapes 
required for the various structural forms. It is also very durable and fire resistant when 
specification and construction procedures are correct.

Concrete can be used for all standard buildings both single storey and multi-storey 
and for containment and retaining structures and bridges. Some of the common building 
structures are shown in Fig.1.1 and are as follows:

1. The single-storey portal supported on isolated footings;
2. The medium-rise framed structure which may be braced by shear walls or unbraced. 
The building may be supported on isolated footings, strip foundations or a raft;
3. The tall multi-storey frame and core structure where the core and rigid frames together 
resist wind loads. The building is usually supported on a raft which in turn may bear 
directly on the ground or be carried on piles or caissons. These buildings usually include 
a basement.

Complete designs for types 1 and 2 are given. The analysis and design for type 3 is 
discussed. The design of all building elements and isolated foundations is described.

1.2 STRUCTURAL ELEMENTS AND FRAMES

The complete building structure can be broken down into the following elements:
Beams horizontal members carrying lateral loads
Slabs horizontal plate elements carrying lateral loads
Columns vertical members carrying primarily axial load but generally subjected to axial 
load and moment
Walls vertical plate elements resisting vertical, lateral or in-plane loads
Bases and foundations pads or strips supported directly on the ground that spread the 
loads from columns or walls so that they can be supported by the ground without exces-
sive settlement. Alternatively the bases may be supported on piles.

To learn about concrete design it is necessary to start by carrying out the design of 
separate elements. However, it is important to recognize the function of the element in 
the complete structure and that the complete structure or part of it needs to be analysed to 
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obtain actions for design. The elements listed above are illustrated in Fig.1.2 which shows 
typical cast-in-situ concrete building construction.

A cast-in-situ framed reinforced concrete building and the rigid frames and elements 
into which it is idealized for analysis and design are shown in Fig.1.3. The design with 
regard to this building will cover

1. one-way continuous slabs
2. transverse and longitudinal rigid frames
3. foundations

Various types of floor are considered, two of which are shown in Fig.1.4. A one-way 
floor slab supported on primary reinforced concrete frames and secondary continuous 
flanged beams is shown in Fig.1.4(a). In Fig.1.4(b) only primary reinforced concrete 
frames are constructed and the slab spans two ways. Flat slab construction, where the 
slab is supported by the columns without beams, is also described. Structural design for 
isolated pad, strip and combined and piled foundations and retaining walls (Fig.1.5) is 
covered in this book.

1.3 STRUCTURAL DESIGN

The first function in design is the planning carried out by the architect to determine the 
arrangement and layout of the building to meet the client’s requirements. The structural 
engineer then determines the best structural system or forms to bring the architect’s con-
cept into being. Construction in different materials and with different arrangements and 
systems may require investigation to determine the most economical answer. Architect 
and engineer should work together at this conceptual design stage.

Once the building form and structural arrangement have been finalized the design 
problem consists of the following:

1. idealization of the structure into load bearing frames and elements for analysis and 
design
2. estimation of loads
3. analysis to determine the maximum moments, thrusts and shears for design
4.  design of sections and reinforcement arrangements for slabs, beams, columns and walls 

using the results from 3
5. production of arrangement and detail drawings and bar schedules

1.4 DESIGN STANDARDS

In the UK, design is generally to limit state theory in accordance with BS8110:1997: 
Structural Use of Concrete Part 1: Code of Practice for Design and Construction 

The design of sections for strength is according to plastic theory based on behaviour at 
ultimate loads. Elastic analysis of sections is also covered because this is used in calcula-
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tions for deflections and crack width in accordance with BS 8110:1985: Structural Use of 
Concrete Part 2: Code of Practice for Special Circumstances 
The loading on structures conforms to 
 BS 6399–1:1996 Loading for buildings. Code of Practice for Dead and Imposed Loads 
BS 6399–2:1997 Loading for buildings. Code of Practice for Wind Loads 
BS 6399–3:1988 Loading for buildings. Code of Practice for Imposed Roof Loads

The codes set out the design loads, load combinations and partial factors of safety, 
material strengths, design procedures and sound construction practice. A thorough 
knowledge of the codes is one of the essential requirements of a designer. Thus it is 
important that copies of these codes are obtained and read in conjunction with the book. 
Generally, only those parts of clauses and tables are quoted which are relevant to the 
particular problem, and the reader should consult the full text.

Only the main codes involved have been mentioned above. Other codes, to which 
reference is necessary, will be noted as required.

1.5 CALCULATIONS, DESIGN AIDS AND COMPUTING

Calculations form the major part of the design process. They are needed to determine the 
loading on the elements and structure and to carry out the analysis and design of the 
elements. Design office calculations should be presented in accordance with
 Higgins, J.B and Rogers, B.R., 1999, Designed and detailed. British Cement 
Association.
 The need for orderly and concise presentation of calculations cannot be emphasized too 
strongly.

Design aids in the form of charts and tables are an important part of the designer’s 
equipment. These aids make exact design methods easier to apply, shorten design time 
and lessen the possibility of making errors. Part 3 of BS 8110 consists of design charts 
for beams and columns, and the construction of charts is set out in this book, together 
with representative examples. Useful books are
Reynolds, C.E. and Steedman, J.C., 1988, Reinforced concrete designers handbook, (Spon 
Press).
Goodchild, C.H., 1997, Economic concrete frame elements, (Reinforced Concrete 
Council).

The use of computers for the analysis and design of structures is standard practice. 
Familiarity with the use of Spread Sheets is particularly useful. A useful reference is
Goodchild, C.H. and Webster, R.M., 2000, Spreadsheets for concrete design to BS 8110 
and EC2, (Reinforced concrete council). 

In analysis exact and approximate manual methods are set out but computer analysis is 
used where appropriate. However, it is essential that students understand the design prin-
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ciples involved and are able to make manual design calculations before using computer 
programs.

1.6 TWO CARRIAGE RETURNS DETAILING

The general arrangement drawings give the overall layout and principal dimensions of 
the structure. The structural requirements for the individual elements are presented in the 
detail drawings. The output of the design calculations are sketches giving sizes of mem-
bers and the sizes, arrangement, spacing and cut-off points for reinforcing bars at various 
sections of the structure. Detailing translates this information into a suitable pattern of 
reinforcement for the structure as a whole. Detailing is presented in accordance with the

Standard Method of Detailing Structural Concrete. Institution of Structural Engineers, 
London, 1989.

It is essential for the student to know the conventions for making reinforced concrete 
drawings such as scales, methods for specifying steel bars, links, fabric, cut-off points etc. 
The main particulars for detailing are given for most of the worked exercises in the book. 
The bar schedule can be prepared on completion of the detail drawings. The form of the 
schedule and shape code for the bars are to conform to

BS 8666:2000: Specification for Scheduling, Dimensioning, Bending and cutting of steel 
for Reinforcement for Concrete

It is essential that the student carry out practical work in detailing and preparation of 
bar schedules prior to and/or during his design course in reinforced concrete. Computer 
detailing suites are now in general use in design offices. 
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Fig 1.1 (a) Single storey portal; (b) medium-rise reinforced concrete framed building; 
(c) reinforced concrete frame and core structure
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Fig 1.2 (a) Part elevation of reinforced concrete building; (b) section AA, T-beam ; (c) 
section BB; (d) continuous slab; (e) wall; (f) column base
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Fig 1.3 (a) Plan of roof and floor; (b) section CC, T-beam; (c) section DD, column; (d) 
side elevation, longitudinal frame; (e) section AA, transverse frame; (f) continuous one-
way slab.

Fig.1.4 (a) One-way floor slab; (b) two-way floor slab.
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Fig.1.5 (a) Isolated base; (b) wall footing; (c) combined base; (d) piled foundation; (e) 
retaining wall.



 

CHAPTER 2  
 

MATERIALS, STRUCTURAL  
FAILURES AND DURABILITY

2.1 REINFORCED CONCRETE STRUCTURES

Reinforced concrete is a composite material of steel bars embedded in a hardened concrete 
matrix; concrete, assisted by the steel, carries the compressive forces, while steel resists 
tensile forces. Concrete itself is a composite material. The dry mix consists of cement and 
coarse and fine aggregates. Water is added and this reacts with the cement which hardens 
and binds the aggregates into the concrete matrix; the concrete matrix sticks or bonds onto 
the reinforcing bars.

The properties of the constituents used in making concrete, mix design and the prin-
cipal properties of concrete are discussed briefly. Knowledge of the properties and an 
understanding of the behaviour of concrete is an important factor in the design process. 
The types and characteristics of reinforcing steels are noted.

Deterioration of and failures in concrete structures are now of widespread concern. 
This is reflected in the increased prominence given in the concrete code BS 8110 to the 
durability of concrete structures. The types of failure that occur in concrete structures are 
listed and described. Finally the provisions regarding the durability of concrete structures 
noted in the code and the requirements for cover to prevent corrosion of the reinforcement 
and provide fire resistance are set out.

2.2 CONCRETE MATERIALS

2.2.1 Cement

Ordinary Portland cement (OPC) is the commonest type in use. The raw materials from 
which it is made are lime, silica, alumina and iron oxide. These constituents are crushed 
and blended in the correct proportions and burnt in a rotary kiln. The clinker is cooled, 
mixed with gypsum and ground to a fine powder to give cement. The main chemical com-
pounds in cement are calcium silicates and aluminates.

When water is added to cement and the constituents are mixed to form cement paste, 
chemical reactions occur and the mix becomes stiffer with time and sets. The addition 
of gypsum mentioned above retards and controls the setting time. This ensures that 
the concrete does not set too quickly before it can be placed in its final position or too 
slowly so as to hold up construction. Two stages in the setting process are defined in  
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BS EN 197-1:2000: Cement. Composition, specifications and conformity criteria for com-
mon cements

BS EN 197-2:2000: Cement. Conformity evaluation

These are an initial setting time which must be a minimum of 45 min and a final set 
which must take place in 10 h.

Cement must be sound, i.e. it must not contain excessive quantities of certain sub-
stances such as lime, magnesia, calcium sulphate etc. that may expand on hydrating or 
react with other substances in the aggregate and cause the concrete to disintegrate. Tests 
are specified for soundness and strength of cement mortar cubes.

Many other types of cement are available some of which are:

1. Rapid hardening Portland cement: the clinker is more finely ground than for ordinary 
Portland cement. This is used in structures where it is necessary for the concrete to gain 
strength rapidly. Typical example is where the formwork needs to be removed early for 
reuse.
2. Low heat Portland cement: this has a low rate of heat development during hydration 
of the cement. This is used in situations such as thick concrete sections where it is neces-
sary to keep the rate of heat generation due to hydration low as otherwise it could lead to 
serious cracking.
3. Sulphate-resisting Portland cement: this is often used for foundation concrete when the 
soil contains sulphates which can attack OPC concrete.
A very useful reference is 
Adam M Neville, Properties of Concrete, Prentice-Hall, 4th Edition, 1996.

2.2.2 Aggregates

The bulk of concrete is aggregate in the form of sand and gravel which is bound together 
by cement. Aggregate is classed into the following two sizes;

1. coarse aggregate: gravel or crushed rock 5 mm or larger in size
2. fine aggregate: sand less than 5 mm in size

Natural aggregates are classified according to the rock type, e.g. basalt, granite, flint. 
Aggregates should be chemically inert, clean, hard and durable. Organic impurities can 
affect the hydration of cement and the bond between the cement and the aggregate. Some 
aggregates containing silica may react with alkali in the cement causing the some of the 
larger aggregates to expand which may lead to the concrete disintegrating. This is the 
alkali-silica reaction. Presence of chlorides in aggregates, e.g. salt in marine sands, will 
cause corrosion of the steel reinforcement. Excessive amounts of sulphate will also cause 
concrete to disintegrate.

To obtain a dense strong concrete with minimum use of cement, the cement paste 
should fill the voids in the fine aggregate while the fine aggregate and cement paste fills 
the voids in the coarse aggregate. Coarse and fine aggregates are graded by sieve analysis 
in which the percentage by weight passing a set of standard sieve sizes is determined. 
Grading limits for each size of coarse and fine aggregate are set out in
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BS EN 12620:2002: Aggregates for Concrete

The grading affects the workability; a lower water-to-cement ratio can be used if the 
grading of the aggregate is good and therefore strength is also increased. Good grading 
saves cement content. It helps prevent segregation during placing and ensures a good 
finish.

2.2.3 Concrete Mix Design

Concrete mix design consists in selecting and proportioning the constituents to give the 
required strength, workability and durability. Mixes are defined in

BS 8500–1:2002: Concrete. Methods of Specifying and guidance for the specifier

BS 8500–2:2002: Specifications for constituent materials and concrete

The five types are

1. Designated concretes: This is used where concrete is intended for use such as plain and 
reinforced foundations, floors, paving, and other given in Table A.6 or A.7 of the code.
2. Designed concretes: This is the most flexible type of specification. The environment 
to which the concrete is exposed, the intended working life of the structure, the limiting 
values of composition are all taken account of in selecting the requirements of the con-
crete mix.
3. Prescribed concretes: This is used where the specifier prescribes the exact composition 
and constituents of the concrete. No requirements regarding concrete strength can be pre-
scribed. This has very limited applicability.
4. Standardised prescribed concretes: This is used where concrete is site batched or 
obtained from a ready mixed concrete producer with no third party accreditation.
5. Proprietary concretes: Used where concrete achieves a performance using defined test 
methods, outside the normal requirements for concrete.

The water-to-cement ratio is the single most important factor affecting concrete 
strength. For full hydration cement absorbs 0.23 of its weight of water in normal condi-
tions. This amount of water gives a very dry mix and extra water is added to give the 
required workability. The actual water-to-cement ratio used generally ranges from 0.45 
to 0.6. The aggregate-to-cement ratio also affects workability through its influence on the 
water-to-cement ratio, as noted above. The mix is designed for the ‘target mean strength’ 
which is the characteristic strength required for design plus a specified number of times 
the standard deviation of the mean strength.

Several methods of mix design are used. The main factors involved are discussed 
briefly for mix design according to
Teychenne, R.E. Franklin and Entroy, H.C., 1988, Design of Normal Concrete Mixes. 
(HMSO, London). 

1. Curves giving compressive strength versus water-to-cement ratio for various types of 
cement and ages of hardening are available. The water-to-cement ratio is selected to give 
the required strength.
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2. Minimum cement contents and maximum free water-to-cement ratios are specified in 
BS8110: Part 1, Table 3.3, to meet durability requirements. The maximum cement content 
is also limited to avoid cracking due mainly to shrinkage.
3. In Design of Normal Concrete Mixes, the selection of the aggregate-to-cement ratio 
depends on the grading curve for the aggregate.

Trial mixes based on the above considerations are made and used to determine the final 
proportions for designed mixes.

2.2.4 Admixtures

Advice on admixtures is given in

BS EN 934–2:1998 Admixtures for concrete, mortar and grout.

The code defines admixtures as ‘Materials added during the mixing process of in a quan-
tity not more than 5% by mass of the cement content of the concrete, to modify the proper-
ties of the mix in the fresh and/or hardened state’.

Admixtures covered by British Standards are as follows:

1. set accelerators or set retarders
2. water-reducing/plasticizing admixtures which give an increase in workability with a 
lower water-to-cement ratio
3. air-entraining admixtures, which increase resistance to damage from freezing and thaw-
ing
4. high range water reducing agents/super plasticizers, which are more efficient than (2) 
above.
5. hardening accelerators which increases the early strength of concrete.

The general requirements of admixtures are given in Table 1 of the code. The effect of 
new admixtures should be verified by trial mixes. A useful publication on admixtures is
Hewlett, P.C (Editor). 1988, Cement Admixtures: Uses and Applications, (Longman Sci-
entific and Technical).

2.3 CONCRETE PROPERTIES

The main properties of concrete are discussed below.

2.3.1 Compressive Strength

The compressive strength is the most important property of concrete. The characteristic 
strength that is the concrete grade is measured by the 28 day cube strength. Standard 
cubes of 150 or 100 mm for aggregate not exceeding 25 mm in size are crushed to deter-
mine the strength. The test procedure is given in 

BS EN 12390:2:2000: Testing Hardened Concrete: Making and curing specimens for 
strength tests
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BS EN 12390:3:2000: Testing Hardened Concrete: Compressive strength of test speci-
mens

2.3.2 Tensile Strength

The tensile strength of concrete is about a tenth of the compressive strength. It is deter-
mined by loading a concrete cylinder across a diameter as shown in 
Fig.2.1 (a). The test procedure is given in
BS EN 12390:6:2000: Testing Hardened Concrete: Tensile splitting strength of test 
specimens

2.3.3 Modulus of Elasticity

The short-term stress-strain curve for concrete in compression is shown in Fig.2.1 (b). 
The slope of the initial straight portion is the initial tangent modulus. At any point P the 
slope of the curve is the tangent modulus and the slope of the line joining P to the origin 
is the secant modulus. The value of the secant modulus depends on the stress and rate of 
application of the load.
BS 1881–121:1983 Testing concrete. Methods for determination of Static modulus of 
elasticity in compression.
specifies both values to standardize determination of the secant or static modulus of 
elasticity.

The dynamic modulus is determined by subjecting a beam specimen to longitudinal 
vibration. The value obtained is unaffected by creep and is approximately equal to the 
initial tangent modulus shown in Fig.2.1 (b). The secant modulus can be calculated from 
the dynamic modulus.
BS 8110: Part 1 gives the following expression for the short-term modulus of elasticity in 
Fig.2.1, the short-term design stress-strain curve for concrete.

 

where fcu=cube strength and γm=material safety factor taken as 1.5. A further expression 
for the static modulus of elasticity is given in Part 2, section 7.2. (The idealized short-term 
stress-strain curve is shown in Fig.2.1.)

2.3.4 Creep

Creep in concrete is the gradual increase in strain with time in a member subjected to 
prolonged stress. The creep strain is much larger than the elastic strain on loading. If the 
specimen is unloaded there is an immediate elastic recovery and a slower recovery in the 
strain due to creep. Both amounts of recovery are much less than the original strains under 
load. 
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The main factors affecting creep strain are the concrete mix and strength, the type of 
aggregate, curing, ambient relative humidity and the magnitude and duration of sustained 
loading.

BS 8110: Part 2, section 7.3, specifies that the creep strain εcc is calculated from the creep 
coefficient Φ by the equation

 

where Et is the modulus of elasticity of the concrete at the age of loading. The creep coef-
ficient Φ depends on the effective section thickness, the age of loading and the relative 
ambient humidity. Values of Φ can be taken from BS 8110: Part 2, Fig.7.1. Suitable values 
of relative humidity to use for indoor and outdoor exposure in the UK are indicated in the 
figure. The creep coefficient is used in deflection calculations. 

 

Fig.2.1 (a) Cylinder tensile test; (b) stress-strain curve for concrete.
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2.3.5 Shrinkage

Shrinkage or drying shrinkage is the contraction that occurs in concrete when it dries and 
hardens. Drying shrinkage is irreversible but alternate wetting and drying causes expan-
sion and contraction of concrete.

The aggregate type and content are the most important factors influencing shrinkage. 
The larger the size of the aggregate is, the lower is the shrinkage and the higher is the 
aggregate content; the lower the workability and water-to-cement ratio are, the lower is 
the shrinkage. Aggregates that change volume on wetting and drying, such as sandstone 
or basalt, give concrete with a large shrinkage strain, while non-shrinking aggregates such 
as granite or gravel give lower shrinkages. A decrease in the ambient relative humidity 
also increases shrinkage.

Drying shrinkage is discussed in BS8110: Part 2, section 7.4. The drying shrinkage 
strain for normal-weight concrete may be obtained from Fig.7.2 in the code for various 
values of effective section thickness and ambient relative humidity. Suitable values of 
humidity to use for indoor and outdoor exposure in the UK are indicated in the figure. 
Values of shrinkage strain are used in deflection calculations.

2.4 TESTS ON WET CONCRETE

2.4.1 Workability

The workability of a concrete mix gives a measure of the ease with which fresh concrete 
can be placed and compacted. The concrete should flow readily into the form and go 
around and cover the reinforcement, the mix should retain its consistency and the aggre-
gates should not segregate. A mix with high workability is needed where sections are thin 
and/or reinforcement is complicated and congested.

The main factor affecting workability is the water content of the mix. Plasticizing 
admixtures will increase workability. The size of aggregate, its grading and shape, the 
ratio of coarse to fine aggregate and the aggregate-to-cement ratio also affect workability 
to some degree.

2.4.2 Measurement of Workability

(a) Slump test

The fresh concrete is tamped into a standard cone which is lifted off after filling and the 
slump is measured. The slump is 25–50 mm for low workability, 50–100 mm for medium 
workability and 100–175 mm for high workability. Normal reinforced concrete requires 
fresh concrete of medium workability. The slump test is the usual workability test speci-
fied. The following British standard covers slump test. 

BS EN 12350–2: Testing fresh concrete-Part 2: Slump Test
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(b) Compacting factor test

The degree of compaction achieved by a standard amount of work is measured. The appa-
ratus consists of two conical hoppers placed over one another and over a cylinder. The 
upper hopper is filled with fresh concrete which is then dropped into the second hopper 
and into the cylinder which is struck off flush. The compacting factor is the ratio of the 
weight of concrete in the cylinder to the weight of an equal volume of fully compacted 
concrete. The compacting factor for concrete of medium workability is about 0.9. The 
following British standard covers slump test.

BS EN 12350–4: Testing fresh concrete-Part 4: Degree of compatibility

(c) Other tests

Other tests are specified for stiff mixes and super plasticized mixes. Reference should be 
made to specialist books on concrete.

2.5 TESTS ON HARDENED CONCRETE

2.5.1 Normal Tests

The main destructive tests on hardened concrete are as follows.

(a) Cube test: Refer to section 2.3.1 above.

(b) Tensile splitting test: Refer to section 2.3.2 above.

(c) Flexure test: A plain concrete specimen is tested to failure in bending. The theoreti-
cal maximum tensile stress at the bottom face at failure is calculated. This is termed the 
modulus of rupture. It is about 1.5 times the tensile stress determined by the splitting test. 
The following British standard covers testing of flexural strength.

BS EN 12390:5:2000: Testing Hardened Concrete: Flexural strength of test specimens

(d) Test cores: Cylindrical cores are cut from the finished structure with a rotary cutting 
tool. The core is soaked, capped and tested in compression to give a measure of the con-
crete strength in the actual structure. The ratio of core height to diameter and the location 
where the core is taken affect the strength. The strength is lowest at the top surface and 
increases with depth through the element. A ratio of core height-to-diameter of 2 gives a 
standard cylinder test. The following British standard covers testing of cores.

BS EN 12504–1: Testing concrete in structures-Part 1 Cored specimens-Taking examin-
ing and testing in compression.

2.5.2 Non-Destructive Tests

The main non-destructive tests for strength on hardened concrete are as follows. 
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(a) Rebound hardness test

The Schmidt hammer is used in the rebound hardness test in which a metal hammer held 
against the concrete is struck by another spring-driven metal mass and rebounds. The 
amount of rebound is recorded on a scale and this gives an indication of the concrete 
strength. The larger the rebound number is the higher is the concrete strength. The follow-
ing British standard covers testing by Rebound hammer.

BS EN 12504-2: Testing concrete in structures-Part 2: Non-destructive testing-Determi-
nation of rebound number.

(b) Ultrasonic pulse velocity test

In the ultrasonic pulse velocity test the velocity of ultrasonic pulses that pass through a 
concrete section from a transmitter to a receiver is measured. The pulse velocity is cor-
related against strength. The higher the velocity is the stronger is the concrete.

(c) Other non-destructive tests

Equipment has been developed to measure

1. crack widths and depths
2. water permeability and the surface dampness of concrete
3. depth of cover and the location of reinforcing bars
4.  the electrochemical potential of reinforcing bars and hence the presence of corrosion

A useful reference on testing of concrete in structures is
Bungey, J.H. and Millard, S.G., 1996, Testing Concrete in Structures (Blackie Academic 
and Professional), 3rd Edition.

2.5.3 Chemical Tests

A complete range of chemical tests is available to measure

1. depth of carbonation
2. the cement content of the original mix
3. the content of salts such as chlorides and sulphates that may react and cause the con-
crete to disintegrate or cause corrosion of the reinforcement.

The reader should consult specialist literature

2.6 REINFORCEMENT

Reinforcing bars are produced in two grades: hot rolled mild steel bars have yield strength 
fy of 250 N/mm2; hot rolled or cold worked high yield steel bars have yield strength fy of 
460 N/mm2. Steel fabric is made from cold drawn steel wires welded to form a mesh. It 
has a yield strength fy of 460 N/mm2. 
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The stress-strain curves for reinforcing bars are shown in Fig.2.2. Hot rolled bars have 
a definite yield point. A defined proof stress is recorded for the cold worked bars. The 
value of Young’s modulus E is 200 kN/mm2. The idealized design stress-strain curve for 
all reinforcing bars is shown in BS8110: Part 1 (see Fig.2.2). The behaviour in tension and 
compression is taken to be the same.

Mild steel bars are produced as smooth round bars. High yield bars are produced as 
deformed bars in two types defined in the code to increase bond stress: Type 1 Square 
twisted cold worked bars. This type is obsolete. Type 2 Hot rolled bars with transverse 
ribs

Fig.2.2 Stress-strain curves for reinforcing bars.

2.7 FAILURES IN CONCRETE STRUCTURES

2.7.1 Factors Affecting Failure

Failures in concrete structures can be due to any of the following factors:

1. incorrect selection of materials
2. errors in design calculations and detailing
3. poor construction methods and inadequate quality control and supervision
4. chemical attack
5. external physical and/or mechanical factors including alterations made to the structure

The above items are discussed in more detail below.

2.7.1.1 Incorrect Selection of Materials

The concrete mix required should be selected to meet the environmental or soil conditions 
where the concrete is to be placed. The minimum grade that should be used for reinforced 
concrete is grade 30. Higher grades should be used for some foundations and for struc-
tures near the sea or in an aggressive industrial environment. If sulphates are present in the 
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soil or ground water, sulphate-resisting Portland cement should be used. Where freezing 
and thawing occurs air entrainment should be adopted. Further aspects of materials selec-
tion are discussed below.

2.7.1.2 Errors in Design Calculations and Detailing

An independent check should be made of all design calculations to ensure that the section 
sizes, slab thickness etc. and reinforcement sizes and spacing specified are adequate to 
carry the worst combination of design loads. The check should include overall stability, 
robustness and serviceability and foundation design.

Incorrect detailing is one of the commonest causes of failure and cracking in concrete 
structures. First the overall arrangement of the structure should be correct, efficient and 
robust. Movement joints should be provided where required to reduce or eliminate crack-
ing. The overall detail should be such as to shed water.

Internal or element detailing must comply with the code requirements. The provisions 
specify the cover to reinforcement, minimum thicknesses for fire resistance, maximum 
and minimum steel areas, bar spacing limits and reinforcement to control cracking, lap 
lengths, anchorage of bars etc.

2.7.1.3 Poor Construction Methods

The main items that come under the heading of poor construction methods resulting from 
bad workmanship and inadequate quality control and supervision are as follows. BS 8110, 
clause 6.2 gives guidance on many of the aspects discussed below.

(a) Incorrect placement of steel
Incorrect placement of steel can result in insufficient cover, leading to corrosion of the 
reinforcement. If the bars are placed grossly out of position or in the wrong position, col-
lapse can occur when the element is fully loaded.

(b) Inadequate cover to reinforcement
Inadequate cover to reinforcement permits ingress of moisture, gases and other substances 
and leads to corrosion of the reinforcement and cracking and spalling of the concrete.

(c) Incorrectly made construction joints
The main faults in construction joints are lack of preparation and poor compaction. The 
old concrete should be washed and a layer of rich concrete laid before pouring is contin-
ued. Poor joints allow ingress of moisture and staining of the concrete face. 

(d) Grout leakage
Grout leakage occurs where formwork joints do not fit together properly. The result is a 
porous area of concrete that has little or no cement and fine aggregate. All formwork joints 
should be properly sealed.
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(e) Poor compaction
If concrete is not properly compacted by ramming or vibration, the result is a portion of 
porous honeycomb concrete. This part must be hacked out and recast. Complete compac-
tion is essential to give a dense, impermeable concrete.

(f) Segregation
Segregation occurs when the mix ingredients become separated. It is the result of

1. dropping the mix through too great a height in placing. Chutes or pipes should be used 
in such cases.
2. using a harsh mix with high coarse aggregate content
3. large aggregate sinking due to over-vibration or use of too much plasticizer Segregation 
results in uneven concrete texture, or porous concrete in some cases.

(g) Poor curing
A poor curing procedure can result in loss of water through evaporation. This can cause a 
reduction in strength if there is not sufficient water for complete hydration of the cement. 
Loss of water can cause shrinkage cracking. During curing the concrete should be kept 
damp and covered. See BS 8110, clause 6.2.3 on curing.

(h) Too high a water content
Excess water increases workability but decreases the strength and increases the porosity 
and permeability of the hardened concrete, which can lead to corrosion of the reinforce-
ment. The correct water-to-cement ratio for the mix should be strictly enforced.

2.7.1.4 Chemical Attack

The main causes of chemical attack on concrete and reinforcement can be classified under 
the following headings.

(a) Chlorides
High concentrations of chloride ions cause corrosion of reinforcement and the products 
of corrosion can disrupt the concrete. Chlorides can be introduced into the concrete either 
during or after construction as follows.

(i) Before construction Chlorides can be admitted in admixtures containing calcium chlo-
ride, through using mixing water contaminated with salt water or improperly washed 
marine aggregates.

(ii) After construction Chlorides in salt or sea water, in airborne sea spray and from  
de-icing salts can attack permeable concrete causing corrosion of reinforcement. 
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(b) Sulphates

Sulphates are present in most cements and some aggregates. Sulphates may also be pres-
ent in soils, groundwater and sea water, industrial wastes and acid rain. The products 
of sulphate attack on concrete occupy a larger space than the original material and this 
causes the concrete to disintegrate and permits corrosion of steel to begin. Sulphate-re-
sisting Portland cement should be used where sulphates are present in the soil, water or 
atmosphere and come into contact with the concrete. Super sulphated cement, made from 
blast furnace slag, can also be used. This cement can resist the highest concentrations of 
sulphates.

(c) Carbonation

Carbonation is the process by which carbon dioxide from the atmosphere slowly trans-
forms calcium hydroxide into calcium carbonate in concrete. The concrete itself is not 
harmed and increases in strength, but the reinforcement can be seriously affected by cor-
rosion as a result of this process.

Normally the high pH value of the concrete prevents corrosion of the reinforcing bars 
by keeping them in a highly alkaline environment due to the release of calcium hydroxide 
by the cement during its hydration. Carbonated concrete has a pH value of 8.3 while the 
passivation of steel starts at a pH value of 9.5. The depth of Carbonation in good dense 
concrete is about 3 mm at an early stage and may increase to 6–10 mm after 30–40 years. 
Poor concrete may have a depth of carbonation of 50 mm after say 6–8 years. The rate of 
carbonation depends on time, cover, concrete density, cement content, water-to-cement 
ratio and the presence of cracks.

(d) Alkali-silica reaction

A chemical reaction can take place between alkali in cement and certain forms of silica 
in aggregate. The reaction produces a gel which absorbs water and expands in volume, 
resulting in cracking and disintegration of the concrete. The reaction only occurs when the 
following are present together:

1. a high moisture level in the concrete
2. cement with a high alkali content or some other source of alkali
3. aggregate containing an alkali-reactive constituent

The following precautions should be taken if uncertainty exists:

1. Reduce the saturation of the concrete;
2. Use low alkali Portland cement and limit the alkali content of the mix to a low level;
3. Use replacement cementitious materials such as blast furnace slag or pulverized  
fuel ash. Most normal aggregates behave satisfactorily.
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(e) Acids

Portland cement is not acid resistant and acid attack may remove part of the set cement. 
Acids are formed by the dissolution in water of carbon dioxide or sulphur dioxide from 
the atmosphere. Acids can also come from industrial wastes. Good dense concrete with 
adequate cover is required and sulphate-resistant cements should be used if necessary.

2.7.1.5 External Physical and/or Mechanical Factors

The main external factors causing concrete structures to fail are as follows. 

Fig.2.3 (a) Partial contraction joint; (b) expansion joint; (c) sliding joints; (d) hinge
 

joints.
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(a) Restraint against movement

Restraint against movement causes cracking. Movement in concrete is due to elastic 
deformation and creep under constant load, shrinkage on drying and setting, tempera-
ture changes, changes in moisture content and the settlement of foundations. The design 
should include sufficient movement joints to prevent serious cracking. Cracking may only 
detract from the appearance rather than be of structural significance but cracks permit 
ingress of moisture and lead to corrosion of the steel. Various proprietary substances are 
available to seal cracks.

Movement joints are discussed in BS 8110: Part 2, section 8. The code states that the 
joints should be clearly indicated for both members and structure as a whole. The joints 
are to permit relative movement to occur without impairing structural integrity. Types of 
movement joints defined in the code are as follows.

1. The contraction joint may be a complete or partial joint with reinforcement run-
ning through the joint. There is no initial gap and only contraction of the concrete is  
permitted.
2. The expansion joint is made with a complete discontinuity and gap between the con-
crete portions. Both expansion and contraction can occur. The joint must be filled with a 
sealer.
3. There is complete discontinuity in a sliding joint and the design is such as to permit 
movement in the plane of the joint.
4. The hinged joint is specially designed to permit relative rotation of members meeting 
at the joint. The Freyssinet hinge has no reinforcement passing through the joint.
5. The settlement joint permits adjacent members to settle or displace vertically as a 
result of foundation or other movements relative to each other. Entire parts of the building 
can be separated to permit relative settlement, in which case the joint must run through 
the full height of the structure.
Diagrams of some movement joints are shown in Fig.2.3. The location of movement joints 
is a matter of experience. Joints should be placed where cracks would probably develop, 
e.g. at abrupt changes of section, corners or locations where restraints from adjoining ele-
ments occur.

(b) Abrasion

Abrasion can be due to mechanical wear, wave action etc. Abrasion reduces cover to 
reinforcement. Dense concrete with hard wearing aggregate and extra cover allowing for 
wear are required.

(c) Wetting and drying

Wetting and drying leaches lime out of concrete and makes it more porous, which increases 
the risk of corrosion to the reinforcement. Wetting and drying also causes movement of 
the concrete which can cause cracking if restraint exists. Detail should be such as to shed 
water and the concrete may also be protected by impermeable membranes.
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(d) Freezing and thawing

Concrete nearly always contains water which expands on freezing. The freezing-thawing 
cycle causes loss of strength, spalling and disintegration of the concrete. Resistance to 
damage is improved by using an air-entraining agent.

(e) Overloading

Extreme overloading will cause cracking and eventual collapse. Factors of safety in the 
original design allow for possible overloads but vigilance is always required to ensure that 
the structure is never grossly overloaded. A change in function of the building or room 
can lead to overloading, e.g. if a class room is changed to a library the imposed load can 
be greatly increased.

(f) Structural alterations

If major structural alterations are made to a building, the members affected and the over-
all integrity of the building should be rechecked. Common alterations are the removal of 
walls or columns to give a large clear space or provide additional doors or openings. Steel 
beams are inserted to carry loads from above. In such cases the bearing of the new beam 
on the original structure should be checked and if walls are removed the overall stability 
may be affected.

(g) Settlement

Differential settlement of foundations can cause cracking and failure in extreme cases. 
The foundation design must be adequate to carry the building loads without excessive 
settlement. Where a building with a large plan area is located on ground where subsid-
ence may occur, the building should be constructed in sections on independent rafts with 
complete settlement joints between adjacent parts.

Many other factors can cause settlement and ground movement problems. Some prob-
lems are shrinkage of clays from ground dewatering or drying out in droughts, tree roots 
causing disruption, ground movement from nearby excavations, etc.

(h) Fire resistance

Concrete is a porous substance bound together by water-containing crystals. The bind-
ing material can decompose if heated to too high a temperature, with consequent loss 
of strength. The loss of moisture causes shrinkage and the temperature rise causes the 
aggregates to expand, leading to cracking and spalling of the concrete. High temperature 
also causes reinforcement to lose strength. At 550°C the yield stress of steel has dropped 
to about its normal working stress and failure occurs under service loads. 

Concrete, however, is a material with very good fire resistance and protects the rein-
forcing steel. Fire resistance is a function of member thickness and cover. The code 
requirements regarding fire protection are set out below in section 2.9.2.
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2.8 DURABILITY OF CONCRETE STRUCTURES

2.8.1 Code References to Durability

Frequent references are made to durability in BS8110: Part 1, section 2. The clauses 
referred to are as follows.

(a) Clause 2.1.3

The quality of material must be adequate for safety, serviceability and durability.

(b) Clause 2.2.1

The structure must not deteriorate unduly under the action of the environment over its 
design life. i.e. it must be durable.

(c) Clause 2.2.4

This states that ‘integration of all aspects of design, materials and construction is required 
to produce a durable structure’. The main provisions in the clause are the following:

1. Environmental conditions should be defined at the design stage;
2. The design should be such as to ensure that surfaces are freely draining;
3. Cover must be adequate;
4. Concrete must be of relevant quality. Constituents that may cause durability problems 
should be avoided;
5. Particular types of concrete should be specified to meet special requirements;
6. Good workmanship, particularly in curing, is essential. Guidance on concrete  
construction such as placing and compaction, curing, etc. are set out in section 6.2 of the 
code.

2.9 CONCRETE COVER

2.9.1 Nominal Cover against Corrosion

The code states in section 3.3.1 that the actual cover should never be less than the nominal 
cover minus 5 mm. The nominal cover should protect steel against corrosion and fire. The 
cover to a main bar should not be less than the bar size or in the case of pairs or bundles 
the size of a single bar of the same cross-sectional area. 

The cover depends on the exposure conditions given in Table 3.2 in the code.
These are as follows.

Mild:   concrete is protected against weather

Moderate:

 concrete is sheltered from severe rain
 concrete under non-aggressive water
 concrete in non-aggressive soil
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Severe:   concrete exposed to severe rain, alternate wetting and drying or occasional  
freezing or severe condensation

Very severe:   concrete occasionally exposed to sea water, de-icing salts or corrosive 
fumes

Most severe:  concrete frequently exposed to sea water, de-icing salts or corrosive fumes

Abrasive: concrete exposed to abrasive action

Limiting values for nominal cover are given in Table 3.3 of the code and Table 2.1. 
Note that the water-to-cement ratio and minimum cement content are specified. Good 
workmanship is required to ensure that the steel is properly placed and that the specified 
cover is obtained. 

Fire  
resistance 

(hour)

Min. 
Beam 

b

Rib 
b

Min. floor 
Thickness h

Column width 
Fully exposed 

b

Min. wall 
Thickness 

0.4%<p<1.0%

1.0 200 125 95 200 120

1.5 200 125 110 250 140

2.0 200 125 125 300 160

Fig.2.4 Minimum dimensions for fire resistance

2.9.2 Cover as Fire Protection

Nominal cover to all reinforcement to meet a given fire resistance period for various ele-
ments in a building is given in Table 2.2 and Table 3.4 in the code. Minimum dimensions 
of members from Fig.3.2 in the code are shown in Fig.2.4. Reference should be made to 
the complete tables and figures in the code. 
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Table 2.1 Nominal cover to all reinforcement including links to meet durability  
requirements

Conditions of exposure Nominal cover (mm)

Mild 25 20 20

Moderate  35 30

Severe   40

Very severe   50

Most severe – – –

Abrasive Nominal cover+allowance for loss of cover due to  
brasion.

Maximum free water-to-cement 
ratio

0.65 0.60 0.55

Minimum cement content (kg/m3) 275 300 325

Lowest grade of concrete C30 C35 C40

Table 2.2 Nominal cover to all reinforcement including links to meet specified periods 
of fire resistance

Fire Resistance Nominal Cover -mm

 Beams Floors Ribs Columns

Hour SS C SS C SS C  

1.0 20 20 20 20 20 20 20

1.5 20 20 25 20 35 20 20

2.0 40 30 35 25 45 35 25

SS Simply supported, C Continuous
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CHAPTER 3 
 

LIMIT STATE DESIGN AND  
STRUCTURAL ANALYSIS

3.1 STRUCTURAL DESIGN AND LIMIT STATES

3.1.1 Aims and Methods of Design

The code BS 8110, part 1 in clause 2.1.1 states that the aim of design is the achievement 
of an acceptable probability that the structure will perform satisfactorily during its life. 
It must carry the loads safely, not deform excessively and have adequate durability and 
resistance to the effects of misuse and fire. The clause recognizes that no structure can 
be made one hundred percent safe and that it is only possible to reduce the probability of 
failure to an acceptably low level.

Clause 2.1.2 states that the method recommended in the code is limit state design 
where account is taken of theory, experiment and experience. It adds that calculations 
alone are not sufficient to produce a safe, serviceable and durable structure. Correct selec-
tion of materials, quality control and supervision of construction are equally important.

3.1.2 Criteria for a Safe Design: Limit States

The criterion for a safe design is that the structure should not become unfit for use, i.e. 
that it should not reach a limit state during its design life. This is achieved, in particular, 
by designing the structure to ensure that it does not reach

1. The ultimate limit state (ULS): the whole structure or its elements should not col-
lapse, overturn or buckle when subjected to the design loads

2. Serviceability limit states (SLS): the structure should not become unfit for use due to 
excessive deflection, cracking or vibration

The structure must also be durable, i.e. it must not deteriorate or be damaged exces-
sively by the environment to which it is exposed or action of substances coming into 
contact with it. The code places particular emphasis on durability (see the discussion in 
Chapter 2). For reinforced concrete structures the normal practice is to design for the 
ultimate limit state, check for serviceability and take all necessary precautions to ensure 
durability. 
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3.1.3 Ultimate Limit State

(a) Strength

The structure must be designed to carry the most severe combination of loads to which it 
is subjected. Each and every section of the elements must be capable of resisting the axial 
loads, shears and moments derived from the analysis.

The design is made for ultimate loads and design strengths of materials with partial 
safety factors applied to loads and material strengths. This permits uncertainties in the 
estimation of loads and in the performance of materials to be assessed separately. The 
section strength is determined using plastic analysis based on the short-term design stress-
strain curves for concrete and reinforcing steel.

(b) Stability

Clause 2.2.2.1 of the code states that the layout should be such as to give a stable and 
robust structure. It stresses that the engineer responsible for overall stability should ensure 
compatibility of design and details of parts and components.

Overall stability of a structure is provided by shear walls, lift shafts, staircases and 
rigid frame action or a combination of these means. The structure should be such as to 
transmit all loads, dead, imposed and wind, safely to the foundations.

(c) Robustness

Clause 2.2.2.2 of the code states that the planning and design should be such that damage 
to a small area or failure of a single element should not cause collapse of a major part of 
a structure. This means that the design should be resistant to progressive collapse. The 
clause specifies that this type of failure can be avoided by taking the following precau-
tions.

1. The structure should be capable of resisting notional horizontal loads applied at roof 
level and at each floor level. The loads are 1.5% of the characteristic dead weight of the 
structure between mid-height of the storey below and either mid-height of the storey 
above or the roof surface. The wind load is not to be taken as less than the notional hori-
zontal load.
2. All structures are to be provided with effective horizontal ties. These are
(a) peripheral ties
(b) internal ties
(c) horizontal ties to column and walls
The arrangement and design of ties is discussed in section 14.3.
3. For buildings of five or more storeys, key elements are to be identified, failure of which 
would cause more than a limited amount of damage. These key elements must be designed 
for a specially heavy ultimate load of 34 kN/m applied in any direction on the area sup-
ported by the member. Provisions regarding the application of this load are set out in BS 
8110: Part 2, section 2.6.
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4. For buildings of five or more storeys it must be possible to remove any vertical load 
bearing element other than a key element without causing more than a limited amount of 
damage. This requirement is generally achieved by the inclusion of vertical ties in addition 
to the other provisions noted above.

3.1.4 Serviceability Limit States

The serviceability limit states are discussed in BS 8110: Part 1, section 2.2.3. The code 
states that account is to be taken of temperature, creep, shrinkage, sway and settlement 
and possibly other effects.

The main serviceability limit states and code provisions are as follows.

(a) Deflection

The deformation of the structure should not adversely affect its efficiency or appearance. 
Deflections may be calculated, but may tend to be complicated and in normal cases span-
to-effective depth ratios can be used to check compliance with requirements.

(b) Cracking

Cracking should be kept within reasonable limits by correct detailing. Crack widths may 
be calculated, but may tend to be complicated and in normal cases cracking can be con-
trolled by adhering to detailing rules with regard to bar spacing in zones where the con-
crete is in tension.

In analysing a section for the serviceability limit states the behaviour is assessed assum-
ing a linear elastic relationship for steel and concrete stresses. Allowance is made for the 
stiffening effect of concrete in the tension zone and for creep and shrinkage.

3.2 CHARACTERISTIC AND DESIGN LOADS

The characteristic or service loads are the actual loads that the structure is designed to 
carry. These are normally thought of as the maximum loads which will not be exceeded 
during the life of the structure. In statistical terms the characteristic loads have a 95% 
probability of not being exceeded.
The characteristic loads used in design and defined in BS 8110: Part 1, clause 2.4.1, 

1. The characteristic dead load Gk is the self-weight of the structure and the weight of 
finishes, ceilings, services and partitions;
2. The characteristic imposed load Qk is caused by people, furniture, and equipment 
etc. on floors and snow on roofs. Dead and imposed loads for various types of buildings 
are given in 

BS 6399: Part 1, 1996. Loadings for buildings. Code of practice for dead and imposed 
loads.

are
 as follows:
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3. The characteristic wind load Wk depends on the location, shape and dimensions of 
the buildings. Wind loads are estimated using 
BS 6399: Part 2, 1997. Loadings for buildings. Code of practice for wind loads. 

The code BS 8110 states that nominal earth loads En are to be obtained in accordance 
with normal practice. Reference should be made to 
BS 8004:1986: Code of Practice for Foundations 
and textbooks on Geotechnics. A useful work is
Bowles, Joseph E., 1995, Foundation analysis and design, (McGraw-Hill), 5th Edition.

The structure must also be able to resist the notional horizontal loads defined in clause 
3.1.4.2 of the code. The definition for these loads was given in section 3.1.3(c) above.

design load = characteristic load×partial safety factor for load
 = Fk γf

 

The partial safety factor γf takes account of

1 possible increases in load
2. inaccurate assessment of the effects of loads
3. unforeseen stress distributions in members
4. the importance of the limit state being considered

The code states that the values given for γf ensure that serviceability requirements can 
generally be met by simple rules. The values of γf to give design loads and the load com-
binations for the ultimate limit state are given in BS 8110: Part 1, Table 2.1. These factors 
are given in Table 3.1. The code states that the adverse partial safety factor is applied to a 
load producing more critical design conditions. The beneficial factor is applied to a load 
producing a less, critical design condition.

Table 3.1 Load combinations

tion

Load type
Dead load Imposed load Earth and 

Water pressure
Wind

Adverse Beneficial Adverse Beneficial
1 . Dead and 
imposed (and 
earth and water 
pressure)

1.4 1.0 1.6 0 1.4 –

2. Dead and wind 
(and earth and 
water pressure)

1.4 1.0 – – 1.4 1.4

3. Dead, wind 
and imposed (and 
earth and water 
pressure)

1.2 1.2 1.2 1.2 1.2 1.2

Load 
combina
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For example in the case of a beam with an overhang as shown in Fig.3.1, maximum 
upward reaction at the left hand support and maximum bending moment in the main span 
occur when there is minimum load on the overhang and maximum load in the main span. 
On the other hand, possibility of uplift and maximum bending moment in the main span 
causing tension at top occurs when there is minimum load on the main span and maxi-
mum load on the overhang.

In considering the effects of exceptional loads caused by misuse or accident γf can be 
taken as 1.05. The loads to be applied in this case are the dead load, one-third of the wind 
load and one-third of the imposed load except for storage and industrial buildings when 
the full imposed load is to be used.

Adverse load

Beneficial load

Maximum 
reaction

Beneficial load

Adverse load

Minimum 
reaction 

Fig.3.1 Beam with an overhang.

3.3 MATERIALS: PROPERTIES AND DESIGN STRENGTHS

The characteristic strengths or grades of materials are as follows:

Concrete: fcu is the 28 day cube strength in Newtons per square millimetre. The minimum 
grades for reinforced concrete are given in Table 3.3 in the code. These are grades C30, 
C35, C40, C45 and C50 in Newtons per square millimetre.

Reinforcement: fy is the yield or proof stress in Newtons per square millimetre. The 
specified characteristic strengths of reinforcement given in Table 3.1 in the code are

Hot rolled mild steel fy=250 N/mm2

High yield steel, hot rolled or cold worked fy=460 N/mm2
 

Clause 3.1.7.4 of the code states that a lower value may be used to reduce deflection or 
control cracking. The reason for this is that a lower stress in steel at SLS reduces the num-
ber and widths of cracks.

The resistance of sections to applied stresses is based on the design strength which is 
defined as 
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The factor γm takes account of

1. uncertainties in the strength of materials in the structure
2. uncertainties in the accuracy of the method used to predict the behaviour of members
3. variations in member sizes and building dimensions

m

given in Table 3.2. For exceptional loads γm is to be taken as 1.3 for concrete and 1.0 for 
steel. 

Fig.3.2 Short-term design stress-strain curve for (a) normal-weight concrete and  
(b) reinforcement

Values of γ  from Table 2.2 in the code used for design for the ultimate limit state are 
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Table 3.2 Values of γm for the ultimate limit state

Reinforcement 1.05

Concrete in flexure or axial load 1.5

Shear strength without shear reinforcement 1.25

Bond strength 1.4

Others, e.g. bearing strength ≥1.5

The short-term design stress-strain curves for normal-weight concrete and reinforcement 
from Figs 2.1 and 2.2 in the code are shown in Figs 3.2(a) and 3.2(b) The curve for con-
crete in compression is an idealization of the actual compression behaviour which begins 
with a parabolic portion where the slope of the tangent at the origin equals the short-term 
value of Young’s modulus. At strain εo which depends on the concrete grade, the stress 
remains constant with increasing load until a strain of 0.0035 is reached when the concrete 
is considered to have failed and is incapable of resisting any stress. Expressions for Ec and 
εo are given in the figure. The maximum design stress in the concrete is given as 0.67fcu/ 
γm. The coefficient 0.67 takes account of the relation between the cube strength and the 
bending strength in a flexural member. It is not a partial factor of safety.

The stress-strain curve for reinforcement shown in Fig.3.2(b) is bilinear with one yield 
point. The behaviour and strength of reinforcement are taken to be the same in tension 
and compression.

3.4 STRUCTURAL ANALYSIS

3.4.1 General Provisions

The general provisions relating to analysis of the structure set out in BS 8110: Part 1, sec-
tion 2.5, are discussed briefly. The methods of frame analysis outlined in section 3.2 are 
set out. Examples using these methods are given later in the book.

The object of analysis of the structure is to determine the axial forces, shears and 
moments throughout the structure. The code states that it is generally satisfactory to obtain 
maximum design values from moment and shear envelopes constructed from linear elas-
tic analysis and to allow for moment redistribution if desired and for buckling effects in 
frames with slender columns. The code also states that plastic methods such as yield line 
analysis may also be used.

The member stiffness to be used in linear elastic analysis can be based on
1. the gross concrete section ignoring reinforcement: This is the method most frequently 
used in practice because it does not require data about the reinforcement present.
2. the gross concrete section including reinforcement on the basis of the modular ratio 
3. the transformed section (the compression area of concrete and the transformed area of 
reinforcement in tension and compression based on the modular ratio are used)

The code states that a modular ratio of 15 may be assumed. It adds that a consistent 
approach should be used for all elements of the structure.
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3.4.2 Methods of Frame Analysis

The complete structure may be analysed elastically using a matrix computer program 
adopting the basis set out above. It is normal practice to model beam elements using only 
the rectangular section of T-beam elements in the frame analysis (Fig. 1.3). The T-beam 
section is taken into account in the element design.

Approximate methods of analysis are set out in the code as an alternative to a rigorous 
analysis of the whole frame. These methods are discussed below.

3.4.3 Monolithic braced frame

Shear walls, lifts and staircases provide stability and resistance to horizontal loads. A 
braced frame is shown in Fig.3.3. The approximate methods of analysis and the critical 
load arrangements are as follows. 

Fig.3.3 Braced multi-storey building: (a) plan; (b) rigid transverse frame; (c) side 
elevation.

(a) Division into subframes

The structural frame is divided into sub-frames consisting of the beams at one level and 
the columns above and below that level with ends taken as fixed. The moments and shears 
are derived from an elastic analysis (Figs 3.4(a) and 3.4(b)).
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(b) Critical load arrangement

The critical arrangements of vertical load are
1. all spans loaded with the maximum design ultimate load of 1.4Gk+1.6Qk
2. alternate spans loaded with the maximum design ultimate load of 1.4Gk+1.6Qk and all 
other spans loaded with the minimum design ultimate load of 1.0Gk where Gk is the total 
dead load on the span and Qk is the imposed load on the span.

The load arrangements are shown in Fig.3.4(b).

(c) Simplification for individual beams and columns

The simplified sub-frame consists of the beam to be designed, the columns at the ends of 
the beam and the beams on either side if any. The column and beam ends remote from the 
beam considered are taken as fixed and the stiffness of the beams on either side should be 
taken as one-half of their actual value (Fig.3.4(c)).

The moments for design of an individual column may be found from the same sub-
frame analysis provided that its central beam is the longer of the two beams framing into 
the column.

(d) Continuous beam simplification

The beam at the floor considered may be taken as a continuous beam over supports pro-
viding no restraint to rotation. This gives a more conservative design than the procedures 
set out above. Pattern loading as set out in (b) is applied to determine the critical beam 
moments and shear for design (Fig.3.4(d)).

(e) Asymmetrically loaded column

The asymmetrically loaded column method is to be used where the beam has been analy-
sed on the basis of the continuous beam simplification set out in (d) above. The column 
moments can be calculated on the assumption that the column and beam ends remote from 
the junction under consideration are fixed and that the beams have one-half their actual 
stiffnesses. The imposed load is to be arranged to cause maximum moment in the column 
(Fig.3.4(e)). Examples of the application of these methods are given Chapter 14.

3.4.4 Rigid Frames Providing Lateral Stability

Where rigid frames provides lateral stability, they must be analysed for horizontal and 
vertical loads. Clause 3.1.4.2 of the code states that all buildings must be capable of 
resisting a notional horizontal load equal to 1.5% of the characteristic dead weight of the 
structure applied at roof level and at each floor.

The complete structure may be analysed for vertical and horizontal loads using com-
puter analysis program. As an alternative the code gives the following method for sway 
frames of three or more approximately equal bays (the design is to be based on the more 
severe of the conditions):
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Fig 3.4 Analysis for vertical load: (a) frame elevation; (b) subframes; (c) simplified sub-
frame; (d) continuous beam simplification; (c) column moments analysis for (d)

1. elastic analysis for vertical loads only with maximum design load 1.4Gk+1.6Qk (refer 
to sections 3.4.3(a) and 3.4.3(b) above)
2. or the sum of the moments obtained from

(a)  elastic analysis of subframes as defined in section 3.4.3(a) with all beams loaded 
with 1.2Gk+1.2Qk (horizontal loads are ignored)

(b  elastic analysis of the complete frame assuming points of contraflexure at the 
centres of all beams and columns for wind load 1.2Wk only
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The column bases may be considered as pinned if this assumption gives more realistic 
analyses. A sway frame subjected to horizontal load is shown in Fig.3.5. Method of analy-
sis for horizontal load, the portal method, is discussed in Chapter 13. Examples in the use 
of these methods are also given.

Fig.3.5 Horizontal loads.

3.4.5 Redistribution of Moments

Plastic method of analysis for steel structures based on the stress-strain curve shown in 
Fig.3.6(a), which gives the moment-rotation curve in Fig.3.6(b), can be used for the anal-
ysis of reinforced concrete structures provided due attention is paid to the fact reinforced 
concrete sections have limited ductility. In order to prevent serious cracking occurring at 
serviceability limit state, the code adopts a method that gives the designer control over 
the amount of redistribution and hence of rotation that is permitted to take place. In clause 
3.2.2 the code allows a reduction of up to 30% of the peak elastic moment to be made 
whilst keeping internal and external forces in equilibrium. The conditions under which 
this can carried out are set out later in Chapter 13. 

Fig.3.6 (a) Stress-strain curve; (b) moment-rotation curve; (c) elastic and plastic moment 
distributions.



 

CHAPTER 4  
 

SECTION DESIGN FOR MOMENT

4.1 TYPES OF BEAM SECTION

The three common types of reinforced concrete beam section are

a. rectangular sections with tension steel only (this generally occurs when designing a 
given width of slab as a beam.)
b. rectangular sections with tension and compression steel
c. flanged sections of either T or L shape with tension steel and with or without compres-
sion steel

Fig.4.1 (a) Rectangular beam and slab, tension steel only; (b) rectangular beam, tension 
and compression steel; (c) flanged beams.

Beam sections are shown in Fig.4.1. It will be established later that all beams of structural
 importance must have steel top and bottom to carry links to resist shear. 
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4.2 REINFORCEMENT AND BAR SPACING

Before beginning section design, reinforcement data and code requirements with regard 
to minimum and maximum areas of bars in beams and bar spacing are set out. This is to 
enable sections to be designed with practical amounts and layout of steel. Requirements 
for cover were discussed in section 2.9.

4.2.1 Reinforcement Data

In accordance with BS8110: Part 1, clause 3.12.4.1, bars may be placed singly or in pairs 
or in bundles of three or four bars in contact. For design purposes the pair or bundle is 
treated as a single bar of equivalent area. Bars are available with diameters of 6, 8, 10, 12, 
16, 20, 25, 32 and 40 mm and in two grades with characteristic strengths fy:

Hot rolled mild steel fy=250 N/mm2

High yield steel fy=460 N/mm2
 

For convenience in design calculations, areas of groups of bars are given in Table 4.1. 
Table 4.2 gives equivalent diameter of bundles of bars of same diameter.

Table 4.1 Areas of groups of bars

Diameter of bar in mm Numbers of bars in group

1 2 3 4 5 6 7 8

6 28 57 85 113 141 170 198 226

8 50 101 151 201 251 302 352 402

10 79 157 236 314 393 471 550 628

12 113 226 339 452 566 679 792 905

16 201 402 603 804 1005 1206 1407 1609

20 314 628 943 1257 1571 1885 2109 2513

25 491 982 1473 1964 2454 2945 3436 3927

32 804 1609 2413 3217 4021 4826 5630 6434
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Table 4.2 Equivalent diameters of bars in groups

Diameter in mm of bars in group Number of bars in group
1 2 3 4

6 6 8.5 10.4 12
8 8 11.3 13.9 16
10 10 14.1 17.3 20
12 12 17.0 20.8 24
16 16 22.6 27.7 32
20 20 28.3 34.6 40
25 25 35.4 43.3 50
32 32 45.3 55.4 64

Detailed drawings should be prepared according to 

Standard Method of Detailing Structural Concrete. Institution of Structural Engineers, 
London, 1989.
Bar types are specified by letters:

R mild steel bars
T high yield bars

Bars are designated on drawings as, for example, 4T25, i.e. four 25 mm diameter bars 
of grade 460. This system will be used to specify bars in figures.

4.2.2 Minimum and Maximum Areas of Reinforcement in Beams

The minimum areas of reinforcement in a beam section to control cracking as well as to 
resist tension or compression due to bending in different types of beam section are given 
in BS 8110: Part 1, clause 3.12.5.3 and Table 3.25. Some commonly used values are 
shown in Fig.4.2 and Table 4.3. Other values will be discussed in appropriate parts of the 
book. 

Fig.4.2 Minimum tension and compression steels
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Table 4.3: Minimum steel areas

 Percentage fy=250 N/ 
mm2

fy=460 N/ 
mm2

Tension reinforcement 

Rectangular beam 100As/Ac 0.24 0.13

Flanged beam—Web in tension: bw/b<0.4 100As/bw h 0.32 0.18

Flanged beam—Web in tension: bw/b≥0.4 100As/bw h 0.24 0.13

Compression reinforcement 

Rectangular beam 100Asc/Ac 0.2 0.2

Flanged beam—flange in compression: 100Asc/bwhf 0.2 0.2

Ac=total area of concrete, As=minimum area of reinforcement, Asc=area of steel in compression, 
b, bw, hf=dimensions.

The maximum area of both tension and compression reinforcement in beams is specified 
in BS8110: Part 1, clause 3.12.6.1. Neither should exceed 4% of the gross cross-sectional 
area of the concrete.

4.2.3 Minimum Spacing of Bars

The minimum spacing of bars is given in BS8110: Part 1, clause 3.12.11.1. This clause 
states the following:

1. The horizontal distance between bars should not be less than hagg+5 mm
2. Where there are two or more rows

(a)  the gap between corresponding bars in each row should be vertically in line 
and

(b)  the vertical distance between bars should not be less than 2hagg/3

where hagg is the maximum size of coarse aggregate. The clause also states that if the bar 
size exceeds hagg+5 mm the spacing should not be less than the bar size.

Note that pairs or bundles are treated as a single bar of equivalent area.

The above spacing ensures that the concrete can be properly compacted around the 
reinforcement. Spacing of top bars in beams should also permit the insertion of a vibrator. 
The information is summarized in Fig.4.3. 
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Fig.4.3 (a) Flanged beam; (b) minimum spacing.

4.3 BEHAVIOUR OF BEAMS IN BENDING 

The behaviour of a cross section subjected to pure bending is studied by loading a beam 
at third points as shown in Fig.4.4(a). Under this system of loading, sections between 
the loads are subjected to pure bending. Initially the beam behaves as a monolithic 
elastic beam till the stresses at the bottom fibre reach the tensile strength of concrete. 
Because of the very low tensile strength of concrete (about 10% of its compression 
strength), vertical cracks appear at a fairly low load. As the load is increased, cracks 
lengthen and penetrate deeper towards the compression face. Simultaneously, the strain 
in steel also increases. The final failure depends on the amount and yield stress of steel. 
The three possible modes of failure are:

1. Steel yields first: If the tensile force capacity of steel is ‘low’, then steel yields before 
the strain in the concrete at the compression face reaches the maximum permissible 
value of 0.0035. Because steel is a ductile material, steel elongates while maintaining its 
strength. The beam continues to deform at constant load and the neutral axis moves up. 
The beam finally fails when the depth of the compression zone is too small to balance 
the tensile force in steel. This type of failure is the desired type because there is ample 
warning before failure. All beams, if overloaded, should be designed to fail in this man-
ner. Fig.4.4(b) shows the qualitative load versus deflection curve and Fig.4.4(c) shows 
the stress distribution at elastic and ultimate stages.

2. Simultaneous ‘yielding’ of steel and concrete: If the tensile force capacity of steel is 
‘moderate’, yielding of steel is simultaneously accompanied by the crushing of concrete. 
Unlike the failure mode where the steel yields first, there is little warning before failure. 
This is not a desirable mode of failure.
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3. Concrete crushes first: If the tensile force capacity of steel is ‘high’, then steel does 
not yield at all before concrete crushes. Because concrete is a fairly brittle material, it 
fails in an explosive manner without any significant residual load bearing capacity. This 
form of failure is to be avoided at all costs!

4.4 SINGLY REINFORCED RECTANGULAR BEAMS

4.4.1 Assumptions and Stress-Strain Diagrams

The ultimate moment of resistance of a section is based on the assumptions set out in 
BS8110: Part 1, clause 3.4.4.1. These are as follows:
1. The strains in the concrete and reinforcement are derived assuming that plane sections 
remain plane; 

Fig.4.4 (a) Flexural cracks at collapse; (b) load-deflection curve; (c) effective section and 
stress distribution.
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2. The stresses in the concrete in compression are derived using either:

(a) the design stress-strain curve given in Fig.4.5(a) with γm=1.5 or
(b)  the simplified stress block shown in Fig.4.6(d) where the depth of the stress 

block is 0.9 of the depth to the neutral axis denoted by x.

Note that in both cases the maximum strain in the concrete at failure is 0.0035; 

Fig.4.5 Stress-strain diagrams (a) Concrete; (b) Steel.

3. The tensile strength of the concrete is ignored;
4.  The stresses in the reinforcement are derived from the stress-strain curve shown in 

Fig.4.5(b) where γm=1.05;
5. Where the section is designed to resist flexure only, the lever arm should not be assumed 
to be greater than 0.95 of the effective depth, d. This is because of the fact that at the top 
face during compaction water tends to move to the top and causes a higher water cement 
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ratio than the rest of the beam. In addition weathering also affects the strength. Because 
of that a layer of concrete at the top is likely to be weak and by limiting the value of the 
lever arm z, one avoids the possibility of expecting a weak layer of concrete to resist the 
compressive stress due to bending.

stress distributions for the concrete in compression are as shown in Fig.4.6, where the 
following symbols are used: 

Fig.4.6 (a) Section; (b) strain; (c) rectangular parabolic stress diagram; (d) simplified 
stress diagram.

h overall depth of the section 
d effective depth, i.e. depth from the compression face to the centroid of tension steel 
b breadth of the section 
x depth to the neutral axis 
fs stress in steel 
As area of tension reinforcement

    On the basis of these assumptions the strain and stress diagrams for the two alternative 
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εc maximum strain in the concrete (0.0035) 
εs strain in steel

The alternative stress distributions for the compressive stress in the concrete, the rectangular par-
abolic stress diagram and the simplified stress block, are shown in Figs 4.6(c) and 4.6(d) 
respectively.

The maximum strain in the concrete is 0.0035 and the strain εs in the steel depends on 
the depth of the neutral axis. Stress-strain curves for concrete and for steel are shown in 
Figs 4.5(a) and 4.5(b) respectively.

4.4.2 Moment of Resistance: Rectangular Stress Block

Fig.4.6 (d) shows the assumed stress distribution. The concrete stress is

0.67 fcu/γm=0.67 fcu/(γm=1.5)=0.447fcu 
 

which is generally rounded off to 0.45fcu.
The total compressive force C is given by

C=0.447 fcu×b×0.9x=0.402 b×x×fcu 
 

The lever arm z is

z=d−0.9x/2=d−0.45x  

If M is the applied moment, then

M=C×z=0.402 b×x×fcu×(d−0.45x)  

Setting

 

Rearranging,

0.1809(x/d)2–0.402 (x/d)+k=0  

Solving for x/d

x/d={0.402−√(0.1616–0.7236 k}/ 0.3618
=1.11−√(1.2345−5.5279k)

z/d=1–0.45(x/d)
z.d=0.5+√(0.25−k/0.9)

 

k=M/(b d2 fcu)
k=0.402(x/d) (1–0.45 (x/d))
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Total tensile force T in steel is

T=As×fs

 

For internal equilibrium, total tension T must be equal to total compression C. The forces 
T and C form a couple ata lever arm of z.

M=T z=As fs z 
As=M/(fs z)

 

The stress fs in steel depends on the strain εs in steel. As remarked in section 4.3, it is 
highly desirable that final failure is due to yielding of steel rather than due to crushing 
of concrete. It is useful therefore to calculate the maximum neutral axis depth in order 
to achieve this. Assuming that plane sections remain plane before and after bending, an 
assumption validated by experimental observations, if as shown in Fig.4.6(b), the maxi-
mum permitted strain in concrete at the compression face is 0.0035, then the strain εs in 
steel is calculated from the strain diagram by

 

Strain εs in steel at a stress of fy/γm is given by

 

where fy=yield stress, γm=material safety factor and Es is Young’s modules for steel.
Taking fy=460 N/mm2, γm=1.05, fy/γm=438 N/mm2, Es=200 kN/mm2, εs= 0.0022 

For εs=0.0022, the depth of neutral axis x is given by

x/d=0.6140

 

However in order to ensure that failure is preceded by steel yielding well before the strain 
in concrete reaches 0.0035 resulting in the desirable ductile form of failure, in clause 
3.4.4.4, the code limits the ratio x/d to a maximum of 0.5. If x=0.5 d, then

C=0.447 fcu×b×0.9x=0.402×b×0.5d×fcu

C=0.201×fcu×b×d
z=d−0.45x=d−0.45×0.5d=0.775 d

M=C×z=0.156×b×d2×fcu

k=M/(bd2fcu)=0.156
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This is the maximum value of the applied moment that the section can resist because it 
utilises fully the compression capacity of the cross section. This formula can be used to 
calculate the minimum effective depth required in a singly reinforced rectangular concrete 
section.

 

In practice the effective depth d is made larger than the required minimum consistent with 
the required headroom.

 

The reason for this is that with a larger depth, the neutral axis depth is smaller and hence 
the lever arm is larger leading for a given moment M, to a smaller amount of reinforce-
ment. It has the additional advantage that in the event of unexpected overload, the beams 
will show large ductility before failure.

If x/d≤0.5, steel will always yield,

fs=fy/1.05=0.95fy

M=T z=As 0.95 fy z,
As=M/(0.95 fy z)

 

4.4.3 Procedure for the Design of Singly Reinforced Rectangular Beam

The steps to be followed in the design of singly reinforced rectangular beams can be sum-
marised as follows.

•  From the minimum requirements of span/depth ratio to control deflection (see 
Chapter 6), estimate a suitable effective depth d.

•  Assuming the bar diameter for the main steel and links and the required cover 
as determined by exposure conditions, estimate an overall depth h.

h=d+bar diameter+Link diameter+Cover  

• Assume breadth as about half the overall depth.
• Calculate the self-weight.
•  Calculate the design live load and dead load moment using appropriate load 

factors. The load factors are normally 1.4 for dead loads and 1.6 for live loads.
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•  In the case of singly reinforced sections, calculate the minimum effective depth 
using the formula

 

•  Adopt an effective depth greater than the minimum depth in order to reduce the 
total tension reinforcement.

•  Check that the new depth due to increased self-weight does not drastically 
affect the calculated design moment. If it does, calculate the revised ultimate 
moment required.

• Calculate k=M/(b d2 fcu)
• Calculate the lever arm z

z=d{0.5+√(0.25–k/0.9)}≤0.95d  

Note that z/d≤0.95 if k≥0.0428
• Calculate the required steel As

As=M/{0.95 fy z}  

•  Check that the steel provided satisfies the minimum and maximum steel per-
centages specified in the code.

4.4.4 Examples of Design of Singly Reinforced Rectangular Sections

Example 1: A simply supported reinforced rectangular beam of 8 m span carries uni-
formly distributed characteristic dead load, which includes an allowance for self-weight 
of 7 kN/m and characteristic imposed load of 5 kN/m.

The breadth b=250 mm. Design the beam at mid-span section. Use grade 30 concrete 
and high yield steel reinforcement, fy=460 N/mm2.

Design load=(1.4×7)+(1.6×5)=17.8 kN/m  

Design ultimate moment M at mid-span:

M=17.8×82/8=142.4 kNm 
 

Minimum effective depth to avoid any compression steel is given by
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Using this value of d,

x=0.5d
z=d−0.45x=0.775 d.

 

The area of steel required is
 

However, if a value of d equal to say 400 mm, which is larger than the minimum value is 
used, then one can reduce the area of steel required.

Fig.4.7: Mid-span section of the beam.

Assuming d=400 mm
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Provide four 20 mm diameter bars in two layers as shown in Fig.4.7. From Table 4.1, 
Α=1257 mm2. Assuming cover of 30 mm and link diameter of 8 mm, the overall depth h 
of the beam is

h=400+30+8+20=458, say 460 mm. 
 

Check that the percentage steel provided is greater than the minimum of 0.13.

100 As/(bh)=100×1257/(250×450)=1.12>0.13.  

Note that this is only one of several possible satisfactory solutions.

Example 2: Determination of tension steel cut-off. 

Fig 4.8 (a) Section at mid-span; (b) section at support; (c) loading and bending moment 
diagram.

In simply supported beams bending moment decreases towards the supports. Therefore 
the amount of steel required towards the support region is much less than at mid-span. For 
the beam in Example 4.1, determine the position along the beam where theoretically two 
of the four 20 mm diameter bars may be cut off.

The section at cut-off has two 20 mm diameter bars continuing: As=628 mm2. The 
effective depth here is 410 mm (Fig.4.8(b)). The neutral axis depth can be determined by 
equating total compression in concrete to total tension in the beam.

T=0.95 fy As=0.95×460×628×10−3=274.44 kN 
C=(0.445 fcu b 0.9x)10−3 

C=(0.445×30×250×0.9x)×10−3=3x kN

 

Equating C=T,

x=91 mm 
z=d−0.45x=369 mm

z/d=369/410=0.90<0.95
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Moment of resistance MR

MR=T z=264.44×369×10−30=97.6 kNm
 

Determine the position of p along the beam such that M=97.6 kN m (Fig.4.8c). 
Left hand reaction V is

V=17.8×8/2=71.2 kN
97.6=71.2a−0.5×17.8a2

 

The solutions to this equation are α=1.76 m and α=6.24 m from end A. 

Table 4.4 Table to be used for calculating steel areas in slabs, walls, etc.

TOTAL REINFORCEMENT AREA (mm2/m)
 Bar diameter mm

Bar spacing mm 6 8 10 12 16 20 25
50 566 1010 1570 2260 4020 6280 9820

75 378 670 1050 1510 2680 4190 6550

100 283 503 785 1130 2010 3140 4910

125 226 402 628 904 1610 2510 3930

150 189 335 523 753 1340 2090 3270

175 162 288 448 646 1150 1790 2810

200 141 251 392 565 1010 1570 2460

250 113 201 314 452 804 1260 1960

300 94 167 261 376 670 1050 1640

350 81 144 224 323 574 897 1400

400 70 126 196 282 502 785 1230

450 63 112 174 251 447 697 1090

500 57 101 157 226 402 628 982

Note: Α=(πd /4) {1000/(c to c spacing in mm}

Example 3: Singly reinforced one-way slab section

A slab section 1 m wide and 130 mm deep with an effective depth of 100 mm is subjected 
to a design ultimate moment of 10.5 kNm. Find the area of reinforcement required. The 
concrete is grade C30 and the reinforcement grade 460
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Constrain z to, z=0.95×100=95 mm

 

In the case of slabs, reinforcement is not usually specified as a fixed number of bars but in 
terms of the diameter of the bar and its spacing. Using Table 4.4, provide 8 mm diameter 
bars at 175 mm centres. As=288 mm2. 

The percentage steel=100 As/(bh)=100×288/(1000×130)=0.22>0.13. The reinforce-
ment for the slab is shown in Fig.4.9.

Fig.4.9 Reinforcement in slab

4.4.5 Design Chart

Using the equations developed in section 4.4.2, a chart for the design of singly reinforced 
rectangular beams can be constructed as follows.

• Choose a value of (x/d)≤0.5
• (z/d)={1−0.45 (x/d)}≤0.95
• C=0.45 fcubd 0.9 (x/d)
• M=C z=0.401 b d2 fcu (x/d) (z/d)
• As=M/(0.95 fy z)=0.4221 b d (fcu/fy)

• 
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Table 4.5 shows the calculations and the design chart is shown in Fig.4.10. 

Table 4.5: Calculations for the design chart

x/d 1–0.45 x/d z/d M/(b d2 fcu) 100(As/bd)(fv/fcu)
0.001 1.00 0.95 0 0

0.025 0.99 0.95 0.0095 1.055

0.05 0.98 0.95 0.0191 2.111

0.10 0.96 0.95 0.0381 4.221

0.15 0.93 0.93 0.0561 6.332

0.20 0.91 0.91 0.0730 8.442

0.25 0.89 0.89 0.0890 10.553

0.30 0.87 0.87 0.1041 12.663

0.35 0.84 0.84 0.1183 14.774

0.40 0.82 0.82 0.1315 16.884

0.45 0.80 0.80 0.1439 18.995

0.50 0.78 0.78 0.1554 21.105

4.4.5.1 Examples of use of design chart

Example 1: Use the design chart to calculate the area of steel for the beam in Example 
1, section 4.4.4.

 

From Fig.4.9,

 

As=978 mm compared with 967 mm previously calculated.

Example 2: Calculate the moment of resistance for the beam in Example 2, section 4.4.4, 
for the section where steel is curtailed to 2T20.
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From Fig.4.10, 

M=100.9 kNm (Exact answer M=97.6 kNm)

 

Fig.4.10 Design chart for singly reinforced rectangular concrete beams.

Fig.4.11 (a) section; (b) Strain diagram; (c) stress diagram.

4.4.6 Moment of Resistance Using Rectangular Parabolic Stress Block

In the previous sections, the simplified rectangular stress block was used to derive design 
equations. In this section, the stress-strain curve for concrete shown in Fig.4.5a will be 
used to derive the corresponding design equations. As shown in Fig.4.11(b), the maxi-
mum strain at the top is 0.0035. The strain ε0 is where the parabolic part of the stress 
strain-strain curve ends. If the neutral axis depth is x, the distance ‘a’ from the neutral axis 
to where the strain is ε0 is given by

α=x (ε0/0.0035)  
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where ε0 from Fig.4.5(a) is given by

 

The compressive force C1 in the rectangular portion of depth (x–a) of the stress block is 
given by

 

The lever arm z1 for C1 from the centroid of steel area is

z1=d−0.5(x−a)  

Using the ‘well-known’ result that the area of a parabola is equal to two-thirds the area of 
the enclosing rectangle, the compressive force in the parabolic portion of depth ‘a’ of the 
stress block is given by

 

The centroid of C2 is at a distance of 5a/8 from the neutral axis. The lever arm z2 for C2 
from the centroid of steel area is

z2= d−x+5a/8  

Therefore taking moments about the centroid of steel area,

M=C2z2+C1z1
 

For fcu=30 N/mm2 and γm=1.5,

ε0/0.0035=0.306
α=x(ε0/0.0035)=0.306x

C1=0.31 fcubx
C2=0.091 fcubx
z1=(d−0.347x)
z2=d−0.8088x
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The corresponding equation for rectangular stress block assumption as derived in section 
4.4.2 is

 

The two equations differ by very little from each other. The Rectangular stress block 
assumption is therefore accurate for all practical calculations.

4.5 DOUBLY REINFORCED BEAMS

The normal design practice is to use singly reinforced sections. However if for any rea-
son, for example headroom considerations, it is necessary to restrict the overall depth of 
a beam, then it becomes necessary to use steel in the compression zone as well because 
concrete alone cannot provide the necessary compression resistance.

4.5.1 Design Formulae Using the Simplified Stress Block

The formulae for the design of a doubly reinforced beam are derived using the rectangular 
stress block.

Let M be the design ultimate moment. As shown in section 4.4.2, a rectangular section 
as a singly reinforced section can resist a maximum value of the moment equal to

Msr=0.156bd2fcu 
 

The correspo]nding neutral axis depth x=0.5 d. The compressive force Cc in concrete is

Cc=0.45fcub0.45 d=0.2fcubd  

The lever arm zc

zc=0.775d
 

If M>Msr, then compression steel is required. The compressive force Cs due to compres-
sion steel of area As ̀is

Cs=As ̀fs ̀  

where fs’ is the stress in compression steel. 
As shown in Fig.4.12, the lever arm zs for compression steel is

zs=(d−d ̀)  

The stress in the tensile steel is 0.95 fy because the neutral axis depth is limited to 0.5d. 
However the stress fs ̀in the compressive steel depends on the corresponding strain strain 
εsc in concrete at steel level. εsc is given by
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If the strain εsc is equal to or greater than the yield strain in steel, then steel yields and the 
stress fs ̀in compression steel is equal to 0.95 fy. Otherwise, the stress in compression steel 
is given by

fs ̀=Es εsc.  

If fy=460 N/mm2 and Es=200 kN/mm2, then the yield strain in steel is equal to

 

Therefore, steel will yield if

 

If mild steel is used, then fy=250 N/mm2. The above equations then become
 

Therefore, steel will yield if

 

Taking moments about the tension steel,

M=Cczc+Cszs
M=0.2 fcu bd(0.775 d)+As ̀ fs ̀(d−d ̀)

M=0.156 bd2 fcu+A ̀fs ̀(d−d’)
As ̀=(M−0.156 bd2 fcu)/{fs ̀(d−d ̀)}
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From equilibrium, the tensile force T is

T=As0.95fy=Cc+Cs 
 

One important point to remember is that to prevent steel bars in compression from buck-
ling, it is necessary to restrain them using links. Clause 3.12.7 of the code says that links 
or ties at least one quarter of the size of the largest compression bar or 6 mm whichever 
is greater should be provided at a maximum spacing of 12 times the size of the smallest 
compression bar.

Fig.4.12 Doubly reinforced beam.

4.5.2 Examples of Rectangular Doubly Reinforced Concrete Beams

The use of the formulae developed in the previous section is illustrated by a few exam-
ples.

Example 1: A rectangular beam is simply supported over a span of 6 m and carries char-
acteristic dead load including self-weight of 12.7 kN/m and characteristic imposed load 
of 6.0 kN/m. The beam is 200 mm wide by 300 mm effective depth and the inset of the 
compression steel is 40 mm. Design the steel for mid-span of the beam for grade C30 
concrete and grade 460 reinforcement.

design load=(12.7×1.4)+(6×1.6)=27.4 kN/m  

Required ultimate moment M:

M=27.4×62/8=123.3 kN m  

Maximum moment that the beam section can resist as a singly reinforced section is
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Msr=0.156×30×200×3002×10−6=84.24 kNm  

M>Msr, Compression steel is required.

d’/x=40/150=0.27<0.37  

The compression steel yields. The stress fs’ in the compression steel is 0.95fy.

As’={M−0.156 b d2 fcu}/[0.95 fy (d−d)]
As ̀ ={123.3–84.24}× 106/[0.95×460×(300–40)]=344 mm2

 

From equilibrium:

As 0.95 fy=0.2bdfcu+As ̀fs ̀
As 0.95×460=0.2×200×300×30+344×0.95×460

As= 1168 mm2

 

For the tension steel (2T25+2T16) give As=1383 mm2. For the compression steel 2T16 give 
As=402 mm2. The beam section and flexural reinforcement steel are shown in Fig.4.13.

Fig.4.13 Doubly reinforced beam.

Example 2: Design the beam in Example 4.6 but with d’=60 mm.

d ̀/x=60/150=0.40>0.37  

Compression steel does not yield. Strain in compression steel
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Stress in compression steel is

fs ̀=Es εsc=200×103×0.0021=420 N/mm2  

As ̀={M−0.156 b d2 fcu}/[420 (d−d’)]
As ̀= {123.3−84.24}×106/[420×(300−40)]=358 mm2

 

From equilibrium:

As 0.95 fy=0.2bdfcu+As ̀fs ̀
As 0.95×460=0.2×200×300×30+358×420, As=1168 mm2

 

4.6 FLANGED BEAMS

4.6.1 General Considerations

In simple slab-beam system shown in Fig.4.14, the slab is designed to span between the 
beams. The beams span between external supports such as columns, walls, etc. The reac-
tions from the slabs act as load on the beam. When a series of beams are used to support 
a concrete slab, because of the monolithic nature of concrete construction, the slab acts as 
the flange of the beams. The end beams become L-beams while the intermediate beams 
become T-beams. In designing the intermediate beams, it is assumed that the loads acting 
on half the slab on the two sides of the beam are carried by the beam. Because of the 

Fig.4.14 Beam-slab system.

Span

Actual
Assumed

Stress distribution in
the flange
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comparatively small contact area at the junction of the flange and the rib of the beam, 
the distribution of the compressive stress in the flange is not uniform. It is higher at the 
junction and decreases away from the junction. This phenomenon is known as shear lag. 
For simplicity in design, it is assumed that only part of full physical flange width is con-
sidered to sustain compressive stress of uniform magnitude. This smaller width is known 
as effective breadth of the flange. Although the effective width actually varies even along 
the span as well, it is common to assume that the effective width remains constant over 
the entire span.

The effective breadth b of flanged beams (Fig.4.15) as given in BS 8110: Part 1, clause 
3.4.1.5:

Fig.4.15: Cross section of flanged beams.

1. T-beams: b={web width bw+ℓz/5} or the actual flange width if less;
2. L-beams: b={web width bw+ℓz /10} or the actual flange width if less

where bw is the breadth of the web of the beam and ℓz is the distance between points of 
zero moment in the beam. In simply supported beams it is the effective span where as in 
continuous beams ℓz may be taken as 0.7 times the effective span.

The design procedure for flanged beams depends on the depth of the stress block. Two 
possibilities need to be considered.

4.6.2 Stress Block within the Flange

If 0.9x≤hf, the depth of the flange (same as the total depth of the slab) then all the concrete 
below the flange is cracked and the beam may be treated as a rectangular beam of breadth 
b and effective depth d and the methods set out in sections 4.4.6 and 4.4.7 above apply. 
The maximum moment of resistance when 0.9x=hf is equal to

Mflange=0.45 fcubhf(d−hf/2)  

Thus if the design moment M≤Mflange, then design the beam as singly reinforced rectan-
gular section b×d.
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4.6.3 Stress Block Extends into the Web

As shown in Fig.4.16, the compression forces are:
In the flange of width (b−bw), the compression force C1 is 

C1=0.45 fcu(b−bw)hf 
 

In the web, the compression force C2 is 

C2=0.45 fcubw0.9x  

The corresponding lever arms about the tension steel are 

z1=d−hf/2
z2=(d−0.9x/2)

 

Fig.4.16: T-beam with the stress block extending into the web.

The moment of resistance MR is given by

MR=C1z1+C2z2

MR=0.45 fcu(b−bw)hf(d−hf/2)+0.45fcubw0.9x (d−0.9x/2)

 

From equilibrium,

T=Asfs=C1+C2 
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If the amount of steel provided is sufficient to cause yielding of the steel, then fs= 0.95fy. 
The maximum moment of resistance without any compression steel is when x=0.5d. Sub-
stituting x=0.5d in the expression for MR, the maximum moment of resistance is

Mmax=0.45 fcu(b−bw)hf(d−hf/2)+0.156 fcubwd2  

where

 

Thus if the design moment Mflange <M≤Mmax, then determine the value of x from

 

where x≤0.5d and the reinforcement required is obtained from the equilibrium condition,

As0.95fy=C1+C2
 

4.6.3.1 Code formula

As an alternative, a slightly conservative formula for calculating the steel area is given in 
clause 3.4.4.5 of the code. The equation in the code is derived using the simplified stress 
block with x=0.5d (Fig.4.16).

depth of stress block=0.9x=0.45d  

The concrete forces in compression are

C1=0.45fcuhf(b−bw)

C2=0.45fcu×0.45dbw=0.2fcubwd

 

The values of the lever arms for C1 and C2 from the steel force T are:

z1=d−0.5hf
z2=d−0.5x 0.45d=0.775d
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The steel force in tension is

T=0.95fyAs 
 

The moment of resistance of the section is found by taking moments about force C1:

M=Tz1−C2(z1−z2)

M=0.95fyAs(d−0.5hf)−0.2fcubwd (0.225d−0.5hf)

M=0.95fy As(d−0.5hf)−0.1fcubwd(0.45d−hf)

 

from which

 

This is the expression given in the code. It gives conservative results for cases where x
is less than 0.5d. The equation only applies when hf is less than 0.45d, as otherwise the 
second term in the numerator becomes negative.

4.6.4 Steps in Reinforcement Calculation of a T-or an L-Beam

•  Calculate the total design load (including self-weight) and the corresponding 
design moment M using appropriate load factors.

•  Calculate the maximum moment Mflange that can be resisted, when the entire 
flange is in compression.

Mflange=0.45fcubhf(d−hf/2)  

•  Calculate the maximum moment that the section can withstand without requiring 
compression reinforcement.

Mmax=0.45fcu(b−bw)hf (d−hf/2)+0.156fcubwd2  

• If M≤Mflange, then design as a rectangular beam of dimensions, b×d.

•  If Mflange <M≤Mmax, then the required steel area can be determined to sufficient 
accuracy from the code formula
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•  If M>Mmax, then compression steel is required or the section has to be revised. Com-
pression steel is rarely required in the case of flanged beams.

4.6.5 Examples of Design of Flanged Beams

Example 1: A continuous slab 100 mm thick is carried on T-beams at 2 m centres. The 
overall depth of the beam is 350 mm and the breadth bw of the web is 250 mm. The beams 
are 6 m span and are simply supported. The characteristic dead load including self-weight 
and finishes is 7.4kN/m2 and the characteristic imposed load is 5 kN/m2. Design the beam 
using the simplified stress block. The materials are grade C30 concrete and grade 460 
reinforcement.

Since the beams are spaced at 2 m centres, the loads a the beam are:

Dead load=7.4×2=14.8 kN/m  

Live load=5×2=10 kN/m

design load=(1.4×14.8)+(1.6×10)=36.7 kN/m

ultimate moment at mid-span=36.7×62/8=165 kN m

effective width b of flange: b=250+6000/5=1450 mm

 

The beam section is shown in Fig.4.17. From BS8110: Part 1, Table 3.4, the nominal 
cover on the links is 25 mm for grade 30 concrete. If the links are 8 mm in diameter and 
the main bars are 25 mm in diameter, then

d=350–25–8−12.5=304.5 mm, say 300 mm.  

First of all check if the beam can be designed as a rectangular beam by calculating 
Mflange.

Mflange=0.45fcubhf(d−hf/2)
Mflange=0.45×30×1450×100 (300–0.5×100)×10−6=489.3 kNm

 

The design moment of 165 kNm is less than Mflange. The beam can be designed as a rectan-
gular beam of size 1450×300. Using the code expressions in clause 3.4.4.4

k=M/(bd2fcu)=165×106/(1450×3002×30)=0.042

z/d={0.5 +√(0.25–0.042/0.9)}= 0.95

z=0.95d=285 mm

As=165×106/(0.95×460×285)=1325mm2.
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Provide 3T25; As=1472 mm2.

Fig.4.17 Cross section of T-beam.

Example 2: Determine the area of reinforcement required for the T-beam section shown 
in Fig.4.18 which is subjected to an ultimate moment of 260 kNm. The materials are grade 
C30 concrete and grade 460 reinforcement.

Calculate Mflange to check if the stress block is inside the flange or not.

Mflange=0.45×30×600×100(340–0.5 x 100)×10−6=234.9 kNm  

The design moment of 260 kNm is greater than Mflange. Therefore the stress block extends 
into the web.

Check if compression steel is required.

Mmax=0.45fcu(b−bw)hf(d−hf/2)+0.156 fcubwd2

Mmax={0.45×30×(600–250)×100×(340–100/2) 
+0.156×30×250×3402}×10−6

 

Mmax=(137.0+135.3)=272.3 kNm

Mmax>(M=260 kNm)

 

The beam can be designed without any need for compression steel. Two approaches can 
be used for determining the area of tension steel required.
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Fig.4.18 Cross section of T-beam.

(a) Exact approach

Determine the depth of the neutral axis from

 

setting x/d=a

0.1250=0.0659+0.1667 a−0.075 α2  

Simplifying

α2−2.22 α+ 0.788=0  



 

72 Reinforced Concrete

Solving the quadratic in a,

α=x/d=(2.22–1.3328)/2=0.444< 0.5

×=0.444×340=151 mm

T=0.95fyAs=C1+C2

T=0.45fcu(b−bw)hf+0.45fcubw0.9 x

T=(0.45×30×(600–250)×100+0.45×30×250×0.9×151)×10−3

T=0.95 As=(472.5+458.7)=931.2 kN

As=931.2×103/(0.95×460)=2131 mm2

 

(b) Code formula

Calculation of As using simplified code formula which assumes x/d=0.5

 

This is only 1% more than that calculated using the exact neutral axis depth! Provide 
5T25, Α=2454 mm2

4.7 CHECKING EXISTING SECTIONS

In the previous sections methods have been described for designing rectangular and 
flanged sections for a given moment. In practice it may be necessary to calculate the ulti-
mate moment capacity of a given section. This situation often occurs when there is change 
of use in a building and the owner wants to see if the structure will be suitable for the new 
use. Often moment capacity can be increased either by

•  Increasing the effective depth. This can be done by adding a well bonded layer 
of concrete at the top of the beam/slab

•  Increasing the area of tension steel by bonding steel plates to the bottom of the 
beam.

4.7.1 Examples of Checking for Moment Capacity

Example 1: Calculate the moment of resistance of the singly reinforced beam section 
shown in Fig.4.19(a). The materials are grade C30 concrete and grade 460 reinforce-
ment. The tension reinforcement is 4T20 giving As=1256 mm2 Assuming that tension steel 
yields, total tensile force T is given by
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T=0.95fyAs=0.95×460×1256×10−3=548.7 kN  

If the neutral axis depth is x, then the compression force C is

C=0.45fcu (0.9x×b)=0.45×30×0.9x×250×10−3=3.0375x kN  

For equilibrium, T=C. Solving for x

x=181 mm<(0.5 d=200 mm)  

Check the strain in steel

 

Steel yields. Therefore the initial assumption is valid.

z=d−0.45x=400–0.45×181=310 mm
z/d=310/400=0.775<0.95

 

Moment of resistance M

M=T z=548.7×310×10−3=169.9 kNm  

One can also use the Design Chart shown in Fig.4.10 to solve the problem.

 

From design chart Fig.4.10,

M=174.0 kNm
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Fig 4.19 Cross section of rectangular beam.

Example 2: Determine the ultimate moment capacity of the beam in Fig.4.19, except, 
As=6T20=1885 mm2

Proceeding as in Example 1, assume that steel yields and calculate

T=0.95fyAs=0.95×460×1885=8.24×105 N
C=0.45×fcu×0.9×x×b=3037.5x N

 

For equilibrium, T=C.

x=271 mm, x/d=0.68>0.5  

Check strain in steel to check the validity of the initial assumption.
 

Since the strain in steel is less than yield strain, tension steel does not yield indicating 
that the initial assumption is wrong. Assume that the tension steel does not yield. For an 
assumed value of neutral axis depth x, strain εs in tension steel is

 

Since the steel is assumed not to yield, if Young’s modulus for steel is Es=200 kN/mm2, 
then stress fs in tension steel is given by

T=As×fs={1885×700×(d−x)/x}×10−3=1319.5(400−x)/x kN

C=0.45 fcub 0.9x={0.45×30×250×0.9x}×10−3=3.0375x kN

 

For equilibrium, T=C
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1319.5×(400−x)/x=3.0375x  
Simplifying

x2+434.40x−173761.3=0  
Solving the quadratic equation in x,

x=253 mm, x/d=253/400=0.63>0.5  
Calculate the strain in steel.

fs=Es×εs=200×103×0.00204=408 N/mm2

z=d−0.45x=286 mm
M=T×z=769×286×10−3=220 kNm

 

Since x/d>0.5, it is sensible to limit the permissible ultimate moment to a value less than 
220 kNm. Assuming that x=0.5d=200 mm,

C=0.45 fcub 0.9x={0.45×30×250×0.9×200}×10−3=607.5 kN
Lever arm z=0.775 d=0.775×400=310 mm

 

Taking moments about the steel centroid, M=Cz=188.3 kNm
Example 3: Calculate the moment of resistance of the beam section shown in Fig.4.20. 
The materials are grade C30 concrete and grade 460 reinforcement.

As=4T25=1963 mm2, As ̀=2T20+T16–829 mm2  

Assume that both tension and compression steels yield and calculate the tension force T 
and compression force Cs in the steels.

T=0.95fyAs=0.95×460×1963 ×10−3=857.8 kN
Cs=0.95 fyAs ̀=0.95×460×829 ×10−3=362.3 kN

 

The compression force in concrete is

Cc=0.45fcu(0.9x×b)=0.45×30×0.9x×250×10−3=3.0375x kN  

For equilibrium,

Cc+Cs=T
3.0375x +362.3=857.8.

 

Solving x=163 mm, x/d=0.47<0.5.

Fig.4.20 Cross section of doubly reinforced beam.
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Calculate strain in tension and compression steels to verify the assumption.

 

Both strains are larger than yield strain of 0.0022. Therefore both steels yield and the 
initial assumption is correct.

Cc=0.45fcu b0.9x=0.45×30×250×0.9×163 ×10−3=495.1kN  

Taking moments about the tension steel,

M=Cc(d−0.45x)+Cs(d−d ̀)

M=495.1(350–0.45×163)×10−3+362.3×(350–50)×10−3=245.8 kNm

 

4.7.2 Strain Compatibility Method

In the previous section, examples were given for calculating the moment of resistance 
of a given section. It required making initial assumptions about whether the steel yields 
or not. After calculating the neutral axis depth from equilibrium considerations, strains 
in tension and compression steels are calculated to validate the assumptions. The prob-
lem can become complicated if one steel yields while the other steel does not. A general 
approach in this case is the method of Strain Compatibility which has the advantage of 
avoiding the algebraic approach. The basic idea is to assume a neutral axis depth. From 
the assumed value of neutral axis depth, strains in steel in compression and tension are 
calculated. Thus

 

From the stresses, calculate the forces

T=Asfs,Cs=As’fs’,Cc=0.45fcub0.9x, C=Cs+Cc 
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For equilibrium, T=C. If equilibrium is not satisfied, then adjust the value of x and repeat 
until equilibrium is established. Normally only two sets of calculations for neutral axis 
depth are required. Linear interpolation can be used to find the appropriate value of x to 
satisfy equilibrium. The following example illustrates the method.

4.7.2.1 Example of Strain-Compatibility Method

Example 1: Calculate the moment capacity of the section with b=250 mm, d = 350 mm, 
d’=50 mm,

As ̀=3T20=942.5 mm2, As=6T25=2945.2 mm2  

Trial 1: Assume x=220 mm
Strain εs in compression steel is given by

εs
’=0.0035(x–d ̀)/x=0.0035×(220–50)/220=0.0027>0.0022  

Therefore compression steel yields and the stress fs’ is equal to 0.95 fy
Similarly, strain εs in tension steel is given by

εs=0.0035(d−x)/x=0.0035×(350–220)/220=0.00207<0.0022  

Therefore tension steel does not yield and the stress fs is equal to

fs=εsEs= 0.00207×200 ×103=413.6 N/mm2

T=As×fs=2945.2×413.6×10−3=1218.1 kN

C=0.45 fcu×b×0.9x+As ̀×fs ̀

C={0.45×30×250×0.9×220+942.5×0.95×460}×10−3

C=(668.25+411.87)=1080.1 kN

T−C= 138.0 kN

 

Total tensile force T is greater than the total compressive force C. Therefore increase the 
value of x in order to increase the compression area of concrete and also reduce the strain 
in tension steel but increase the strain in compression steel.

Trial 2: Assume x=240 mm say

Strain εs in compression steel is given by

εs ̀=0.0035(x–d’)/x=0.00277>0.0022  

Therefore compression steel yields and the stress fs ̀ is equal to 0.95 fy
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Similarly, strain εs in tension steel is given by

εs=0.0035(d–x)/x=0.0016<0.0022  

Therefore tension steel does not yield and the stress fs is equal to

fs=εs E=0.001604×200×103=320.8 N/mm2

T=As×fs=2945.2×320.8×10−3=944.8 kN

C=0.45fcu×b×0.9x+As ̀ ×fs ̀

C={0.45×30×250×0.9×240+942.5×0.95×460}×10−3

C=(729.0+411.87)=1140.9 kN

T−C=−196.04 kN

 

As shown in Fig.4.21, linearly interpolate between x=220 and 240 to obtain the value of 
x giving T–C=0.

x=220+(240–220)×(138.0)/(138.0+196.04)=228 mm
x/d=228/350=0.65>0.5

 

Fig.4.21 Linear interpolation

As a check calculate T and C for x=228 mm
Strain εs’ in compression steel is given by

εs 
̀=0.0035(x−(d ̀)/x=0.0027>0.0022  

Therefore compression steel yields and the stress fs’ is equal to 0.95 fy
Similarly, strain εs in tension steel is given by
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εs=0.0035(d−x)/x=0.00187<0.0022  

Therefore tension steel does not yield and the stress fs is equal to

fs=εs E=0.00187×200×103=374.6 N/mm2

T=As×fs=2945.2×374.6×10−3=1103.2 kN

C=0.45fcu×b× 0.9x+As
’×fs’ As’

C={0.45×30×250×0.9×228+942.5×0.95×460}×10−3

C=(692.6+411.87)=1104.4 kN

T−C=−1.22kN

 

This is close enough to be zero.

M=(692.6×(350–0.45×228)+411.87×(350–50)}×10−3=294.9 kNm  

Since x/d>0.5, it is sensible to limit the permissible ultimate moment to a value less than 
294.9 kNm. Assuming that x=0.5d=175 mm,

Cc=0.45fcub0.9x={0.45×30×250×0.9x 175}×10−3=531.6 kN

Lever arm zc=0.775 d=0.775×350=271 mm

 

Strain εs ̀in compression steel is given by εs ̀=0.0035(x–d’)/x=0.0025>0.0022 Therefore 
compression steel yields and the stress fs ̀is equal to 0.95 fy

Cs={942.5×0.95×460}×10−3=411.9 kN, Lever arm zs=d−d ̀=300 mm  

Taking moments about the steel centroid, M=Cczc+Cszs=267.6 kNm

Taking moments about the tension steel, the lever arm for compression force in concrete
 is (d–0.45x) and for the compression force in steel it is (d–d’).



 

 



 

CHAPTER 5 
 

SHEAR, BOND AND TORSION

5.1 SHEAR FORCES

In beams, a change in bending moment involves shear forces. Shear force at a section 
gives rise to diagonal tension in the concrete and leads to cracking. Shear failures are very 
brittle and therefore should be avoided. All beams should always be designed to fail in a 
ductile manner in flexure rather than in shear.

5.1.1 Shear in a Homogeneous Beam

According to Engineer’s theory of bending, in a beam a state of pure shear stress exists at 
the neutral axis. This causes principal tensile and compressive stresses of the same mag-
nitude as the shear stress and inclined at 45° to the neutral axis. This is shown in Figs 5.1 
(a) and 5.1(b) on an element at the neutral axis.

In an elastic rectangular beam (Fig.5.1(c)), the distribution of shear stress is parabolic 
as shown in Fig 5.1(d). The maximum elastic shear stress at the neutral axis is given by

 

where V=shear force at the section.
In a T-beam or an L-beam, most of the shear force is resisted by the web and therefore 

for all practical purposes in shear calculations, flanged beams can be considered as rect-
angular beams of dimensions bw×h, where bw=width of the web.

Fig.5.1 (a) Beam; (b) enlarged element; (c) cross section; (d) shear stress distribution.
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5.1.2 Shear in a Reinforced Concrete Beam without Shear Reinforcement

(a) Shear failure

Shear in a reinforced concrete beam without shear reinforcement causes cracks on inclined 
planes near the support as shown in Fig.5.2. 

Fig.5.2 Different actions contributing to shear strength

The cracks are caused by the diagonal tensile stress mentioned above. The shear failure 
mechanism is complex and depends on the shear span av to effective depth d ratio (av/d). 
Shear span av is defined as the distance between the support and the major concentrated 
load acting on the span. When this ratio is large, the failure is as shown in Fig.5.2.

The following actions form the three mechanisms resisting shear in the beam:

1. shear stresses in the compression zone resisted by un-cracked concrete
2. aggregate interlock along the cracks: Although cracks exist in the web due to tensile 
stresses caused by shear stresses, the width of the cracks are not large enough prevent 
frictional forces between cracked surfaces. These frictional forces exist along the cracked 
surfaces and contribute to resisting shear force.
3. dowel action in the bars where the concrete between the cracks transmits shear forces 
to the bars

(b) Shear capacity

An accurate analysis for shear strength is not possible. The problem has been solved by 
testing beams of the type normally used in practice. The shear capacity is represented by 
the simple formula to calculate the notional shear stress given in BS 8110: Part 1, clause 
3.4.5.2.
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v=V/(bvd)  

where bv is the breadth of the section. For a flanged beam bv is taken as the width of the 
web. V is the design shear force due to ultimate loads and d is the effective depth. The 
permissible shear stress in concrete vc is used to determine the shear capacity of the 
concrete alone without any contribution from shear reinforcement.

Value of vc depends on several factors such as

•  the percentage of flexural steel in the member: This affects the shear capacity 
by restraining the width of the cracks and thus enhancing the shear carried by 
the aggregate interlock along the cracks. It also naturally increases the shear 
capacity due to dowel action.

•  the concrete grade: It affects by increasing the aggregate interlock capacity and 
also the shear capacity of the uncracked portion of the beam.

•  Type of aggregate: This affects the shear resisted by aggregate interlock. For 
example, lightweight aggregate concrete has approximately 20% lower shear 
capacity compared to normal weight concrete, BS 8110, Part 2, clause 5.4).

•  
Effective depth: Tests indicate that deeper beams have proportionally lower 
shear capacity compared to shallow beams. The reason for this is not clear but 
it is thought it might have some thing to do with lower aggregate interlock 
capacity.

The design concrete shear stress is given by the following formula from Table 3.8 in the 
code:

 

where:

γm=material safety factor is 1.25, 
100As/(bvd)≤3.0

400/d>1.0 
fcu≤40 N/mm2

 

The code notes (clause 3.4.5.4) that for tension steel to be counted in calculating As it must 
continue for a distance at least of d past the section being considered. Anchorage require-
ments must be satisfied at supports (section 3.12.9.4 in the code).

Some values of vc for grade C30 concrete are given in Table 5.1. vc values for fcu=40 
N/mm2 are approximately 10% larger and the corresponding values for fcu=25 N/mm2 are 
approximately 6% smaller than the values shown in Table 5.1.
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(c) Enhanced shear capacity near supports

The code states (clause 3.4.5.8) that shear failure in beam sections without shear rein-
forcement normally occurs at about 30° to the horizontal. If the angle is steeper due to 
the load causing shear or because the section where the shear is to be checked is close to 
the support (Fig.5.3), the shear capacity is increased. The increase is because of the large 
vertical compressive stress in concrete due to the reaction and the load. The shear span 
ratio av/d is small in this case. The design 

Table 5.1 Design concrete shear strength vc for fcu=30 N/mm2

100(As/bvd) vc (N/mm2)

 d= 125 mm 150 175 200 225 250 300 ≥400

≤0.15 0.48 0.46 0.44 0.42 0.41 0.40 0.38 0.36

0.25 0.57 0.54 0.52 0.50 0.49 0.48 0.46 0.42

0.50 0.71 0.68 0.66 0.63 0.62 0.60 0.57 0.53

0.75 0.82 0.78 0.75 0.73 0.71 0.69 0.66 0.61

1.0 0.90 0.86 0.83 0.80 0.78 0.76 0.72 0.67

1.5 1.03 0.98 0.95 0.91 0.89 0.87 0.83 0.77

2.0 1.13 1.08 1.04 1.01 0.98 0.95 0.91 0.85

≥3.0 1.30 1.24 1.19 1.15 1.12 1.09 1.04 0.97

Fig.5.3 Shear failure close to the support
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concrete shear can be increased from vc as determined above to 2vcd/av where av is the 
length of that part of a member traversed by a shear plane.

(d) Maximum shear stress

BS 8110: Part 1, clauses 3.4.5.2 and 3.4.5.8, state that the notional shear stress v=V/ (bvd) 
must in no case exceed 0.8√fcu or 5 N/mm2, even if the beam is reinforced to resist shear. 
This upper limit prevents failure of the concrete in diagonal compression. If v is exceeds 
the specified maximum, the beam must be made larger.

5.1.3 Shear Reinforcement in the Form of Links

(a) Action of shear reinforcement

As stated in section 5.1.1 the complementary shear stresses give rise to diagonal tensile 
and compressive stresses as shown in Fig.5.1. Taking a simplified view, concrete is weak 
in tension, and so shear failure is caused by a failure in diagonal tension with cracks run-
ning at 45° to the beam axis. Shear reinforcement is provided by bars which cross the 
cracks, and theoretically either vertical links or inclined bars will serve this purpose. In 
practice either vertical links alone or a combination of vertical links and bent-up bars are 
provided.

(b) Vertical links

As shown in Fig.5.4, a cracked beam essentially acts as a truss where the tension rein-
forcement acts as bottom chord, the stirrups act as the vertical members and the cracked 
concrete acts as diagonal compression members and the uncracked concrete at the top of 
the beam acting as the top chord.

Fig.5.4 Analogous truss
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If it is assumed that the distance between the top and bottom chords is approximately 
equal to d and that the cracks form at an angle of 45° to the neutral axis, then as shown 
in Fig.5.5, the horizontal length of the crack is approximately d. If the links are spaced 
at a distance sv apart, then the number of links in a horizontal distance d is equal to d/Sv. 
Assuming that the stress in the links is equal to its yield stress, the shear force Vs resisted 
by the links is equal to

 

where Asv= Area of cross section of the legs of a ‘single’ link crossing the crack. Normally 
if single links are used, then Asv=area of cross section of two legs of a link but in cases of 
heavy shear force, double links with four legs may be required. In designing the links, it 
is assumed that concrete resists shear force Vc equal to

Vc=vcbvd  

The applied shear force V is resisted by a combination of concrete and steel links.

v=vc+Vs
 

Simplifying,

 

where the notional shear stress v=V/(bvd)
This is the formula given in the code in Table 3.7. If the characteristic strength fyv and 

diameter of the link are chosen the spacing sv can be calculated.
The spacing of links should be such that every potential crack is crossed by at least one 

link. Although in deriving the formula, it was assumed that all the links crossing the crack 
inclined at an angle of 45° are effective, tests in fact show that links which intercept the 
crack near the top are relatively ineffective. To ensure this, the code (clause 3.4.5.5) limits 
the spacing to 0.75d in the direction of the span.

The spacing of links at right angles to the span is to be such that no tension bar is 
more than 150 mm or d, whichever is smaller, from a vertical leg. The reason for this is 
to ensure that the longitudinal bars are well supported in order to maintain their dowel 
shear capacity.
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Fig 5.5 (a) beam elevation; (b) two leg links

(c) Minimum area of links

The code states in Table 3.7 that the minimum area of link is to be

 

In Table 3.7 the code notes that all beams of structural importance should be provided 
with minimum links throughout their length. In minor beams such as lintels, links may be 
omitted provided that v is less than 0.5vc. Note that where compression reinforcement is 
required in a beam clause 3.12.7.1 states that the size of the link should not be less than 
one quarter of the size of the largest bar in compression or 6 mm and the spacing should 
not exceed 12 times the size of the smallest compression bar. This is to prevent the bars 
in compression from buckling.

5.1.3.1 Examples of Design of Link Reinforcement in Beams

Example 1: At a cross section in a rectangular beam with b=300 mm and d=500 mm, flex-
ural reinforcement is 5T20. Calculate the maximum permissible shear force at the beam 
section for the following two cases.

(a)  No shear reinforcement is used
(b)  Shear reinforcement consists of 10 mm diameter links in pairs at 150 mm  

spacing.
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Assume fcu= 30 N/mm2, fyv=250 N/mm2

(i) Calculate vc

As=5T20=1570 mm2

100As/(bvd)=100×1570/(300×500)=1.05<3.0

400/d=400/500=0.8<1.0, assume 1.0.

fcu=30 N/mm2<40 N/mm2

vc=0.79×(1.05)1/3 (1.0)1/4 (30/25)1/3 /1.25=0.68 N/mm2

 

(ii) Calculate V

Case a: If no shear reinforcement is provided, then v≤0.5 v,

V=0.5vc×bv×d=0.5×0.68×300×500×10−3=51 kN Vc  

Case b: With shear reinforcement provided by links in pairs:

Asv=4 legs of 10 mm bar=4 (π/4) 102=314 mm2 

sv=150 mm 
vc=0.68 N/mm2,

v=2.33=V/(bv d)=Vx103/(300 x 500),V=351 kN

 

Example 2: At a cross section in a T-beam with flange width b= 600 mm, 
effective depth d=375 mm, flange thickness hf=125 mm, width of web bw=200mm, 
flexural reinforcement=4T32, Design ultimate shear force V = 157.5 kN. Determine the 
spacing of 10 mm diameter links. Assume fcu= 30 N/mm2, fyv=250 N/mm2 fcu=30N/mm2

(i) Calculate vc:

As=4T32=3220 mm2 

100 As/(bv d)=100×3220/(200×375)=4.29>3.0.
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400/d=400/375=1.07>1.0,

fcu=30 N/mm2 <40 N/mm2

vc=0.79x(3.0)1/3 (1.07)1/4 (30/25)1/3 /1.25=0.99 N/mm2

 

(ii) Calculate v

v=V/(bv d)=157.5×103/(200×375)=2.1 N/mm2  

(iii) Check maximum shear stress

v=2.1<(0.8√fcu= 0.8√30=4.4 N/mm2)  

(iv) Calculate sv

bv=web width=200 mm, d=375 mm

sv=168 mm<(0.75 d=281 mm)

 

5.1.4 Shear Reinforcement Close to a Support

Clause 3.4.5.9 of the code deals with shear reinforcement for sections close to the support. 
The total area specified is

ΣAsv=avbv(v−2dvc/av)/(0.95 fyv)≥0.4avbv/(0.95fyv)  

Refer to Fig.5.3 where av is the distance from the support traversed by the failure plane. 
The term 2d vc/av is the enhanced shear stress. The second expression ensures that at least 
minimum links are provided. This reinforcement should be provided within the middle 
three-quarters of av.

The code (clause 3.4.5.10) also gives a simplified approach for design taking enhanced 
shear strength into account. This applies to beams carrying uniform load or where the 
principal load is applied at more than 2d from the face of the support. The procedure given 
is as follows:

1. Calculate the notional shear stress v at d from the face of the support;
2. Check that v does not exceed the maximum permissible shear stress.
3. Determine vc and the amount of shear reinforcement in the form of vertical links.

Limit the steel ratio to 3.0.
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4. Provide this shear reinforcement between the section at d and the support. No further 
checks for shear reinforcement are required;

This approach is the most convenient to use in the majority of situations.

5.1.5 Examples of Design of Shear Reinforcement for Beams

Example 1: A simply supported T-beam of 6 m clear span (Fig.5.6) carries an ultimate 
load of 38 kN/m. The beam section dimensions, support particulars and tension reinforce-
ment are shown in the figure. Design the shear reinforcement for the beam. The concrete 
is grade C30 and the shear reinforcement grade 250. The steps in design are as follows.

(a) Check the maximum shear stress at the face of the support

At the face of the support d=400 mm. 

V=117.8–38.0×0.2/2=114.0 kN
ν=114×103/(250×400)=1.14 N/mm2

 

This is not greater than 0.8√fcu=4.8 N/mm2 or 5 N/mm2. 
Section size is adequate.

Fig.5.6 (a) Side elevation; (b) section at support; (c) shear reinforcement; (d) load.
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(b) Determine the length in the centre of the beam over which nominal links are 
required

The shear resistance of concrete where 5T20 mm diameter bars form tension reinforce-
ment is to be determined.

As=5T20=1570 mm2  

With 5T20,

d=400−20=380mm
100As/(bvd)=100×1570(250×380)=1.65<3.0

400/d=400/3 80=1.05>1.0

 

fcu=30<40 N/mm2

vc=0.79×{(1.65)1/3×(1.05)1/4(30/25)1/3}/1.25=0.80 N/mm2
 

The shear resistance of the concrete is

Vc=vc×bv×d=0.80×380×250×10−3=76.0 kN  

Using the simplified approach described in section 5.1.4, this value of vc is valid from a 
distance of 480+(d=380)=860 mm from the centre of supports.

Adopt nominal 8 mm diameter links where the area of two legs is 100 mm2. The spac-
ing of the links is calculated from

Asv=[0.4 bvsv]/0.95 fyv
100=0.4×250×Sv/(0.95×250), sv=238 mm

0.75d=0.75×380=285 mm>238 mm; space links at 200 mm c/c.

 

With nominal links:

v−vc=0.4 and with vc=0.80 N/mm2, v=1.2 N/mm2.
V=v×bv×d=1.2×250×380×10−3=114.0 kN

 

Shear force at centre of support is

VSupport=38×6.2/2=117.8 kN  

Shear force V at x=860 mm from the support is

V=117.8–38×0.860=85.12 kN  
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This is less than 114.0 kN, the shear capacity with minimum area of links. Provide 8 mm 
diameter links at 200 mm centres over the centre 4.48 m length of beam, i.e. at 0.76 m 
from the face of each support.

(c) Shear reinforcement

The shear reinforcement is shown in Fig.5.6(c). Two 16 mm diameter bars are provided 
at the top of the beam to carry the links. Note that the top bars are not designed as com-
pression steel. Thus the requirements of clause 3.12.7.1 set out in section 5.1.3(b) do not 
apply.

Example 2: Design the shear reinforcement for a rectangular beam with the dimensions, 
the design ultimate load and moment steel shown in Fig.5.7. The concrete is grade C30 
and the shear reinforcement grade 250.

(a) Maximum shear at the face of the support

V=330–165×0.15=305.25 kN
v=V/(bv d)=305.25×103/(300×450)=2.26 N/mm2

2.26 N/mm2<(0.8 fcu=4.38 N/mm2)

 

Section size is satisfactory.

(b) Minimum links

The top layer 3T20 at centre stop at 320 mm from the centre of the support. For all the 
six bars to be considered as effective, they have to extend a distance d from the section. 
Therefore all bars are effective from a distance of

320+(d=425)=745 mm from the centre of support 
As=3T25+3T20=2415 mm2 

d=425 mm

 

100As/(bv d)=100×2415/(300×425)=1.89< 3.0 
400/d=400/425=0.94<1.0. Therefore assume 1.0. 

fcu=30 N/mm2<40 N/mm2

vc=0.79×[1.89 1/3×(1.0)1/4×(30/25)1/3]/1.25=0.83 N/mm2

Vc=vc bvd=0.83×300×425×10−3=105.8 kN

 

Adopt 10 mm diameter links; Asv=157 mm2. Spacing dictated by minimum shear rein-
forcement. Therefore

(v−vc)= 0.4 N/mm2

sv=311 mm<(0.75 d=319 mm)
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Top bars (2T20) are designed as compression steel:

sv≤(12×bar diameter=12×20)=240 mm
v−vc=0.4, v=0.83+0.4=1.23 N/mm2

V=vbvd= 1.23×300×425×10−3=156.83 kN

 

Shear force at centre of support is

Vsupport=165×4.0/2=330 kN  

The distance a from the support where the shear is equal to 156.83 kN is given by

156.83=330−165a, α=1.05m  

The face of support is at 150 mm from the centre of support. Provide eleven number 10 
mm links at 190 mm centres in the centre at (1.05–0.15)=0.9 m from the faces of the sup-
ports (Fig.5.7(c)).

9R10@
100 

11R10@190

Fig.5.7 (a) Side elevation; (b) section and moment steel; (c) links.
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(c) Section between d=450 mm and 900 mm from the face of the support

As=3T25=1473 mm2, 
d=450 mm 

100As/(bvd)=100×1473/(300×450)=1.09<3.0
400/d=400/450<1.0, take as 1.0. 

fcu=30 N/mm2<40 N/mm2

vc=0.79(1.09)1/3 (1.0)1/4 (30/25)1/3/1.25=0.69 N/mm2

 

V at d from the face of support is

V=330–165×(0.45+0.15)=234 KN
v=234.0×103/(300×450)=1.73 N/mm2

v−vc=1.73–0.69=1.04 N/mm2>0.4 N/mm2

 

Provide 10mm diameter links:

Asv=157 mm2  

The spacing required is

 

As the bending moment is low in this section, the compression stress in the top bars will 
be very low. Therefore there is no need to restrain them.

sv<(0.75 d=0.75×450=338 mm)  

Provide nine number 100 mm diameter links at a spacing of 100 mm centres to 900 mm 
from the support and then change to minimum links at 190 mm centres.

(d) Shear reinforcement

This is shown in Fig.5.7(c).

5.1.6 Shear Reinforcement in The Form of Bent-Up Bars

Although use of links to resist shear is the preferred option, because bending moment 
decreases towards the support, instead of curtailing the flexural steel bars, they can be 
bent up at approximately 45° to cross the tension cracks which also form at approximately 
45°. BS 8110: Part 1, clause 3.4.5.6, states that the design shear resistance of a system of 
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bent-up bars may be calculated by assuming that the bent-up bars form the tension mem-
bers of one or more single systems of trusses in which the concrete forms the compression 
members as shown in Fig.5.8(a).

The following terms are as defined:

Sb spacing of the bent-up bars
Asb cross-sectional area of a pair of bent-up bars

fyv characteristic strength of the bent-up bars
a inclination of bent-up bars

β inclination of the crack

 

The truss is to be arranged so that the angles a and β are greater than or equal to 45° giving 
a maximum value of sb=1.5d

A single truss system is shown in Fig.5.8 (a), where the spacing of the bent-up bars is 
equal to 

Fig.5.8 (a) Equivalent single-truss system; (b) inclined bars crossing crack.
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sb=(d−d’)(cot β+cot α)  

In the single truss system, at any vertical section over a distance sb, the vertical component 
of either of the bent-up bar or of the concrete strut resists shear. The force T in a pair of 
bent-up bars is

T=0.95fyvAsb 
 

The shear force Vb resisted by the bent-up bars is equal to the vertical component of the 
forces in the bars. Therefore

Vb=Tsin α=0.95fyvAsbsin α  

If α=45° and sb=(d−d′) (cot β+cot α)≈1.5 d, then cot β=0.5 or β=63°
If the spacing sb<(d−d′) (cot β+cot α) we get a multiple truss system as shown in 

Fig.5.8(b). The number of bars inclined at an angle a crossing a crack inclined at an angle 
β is (d−d′) (cot β+cot α)/sb. The design shear strength of the bent-up bars is then increased 
over a single truss system in proportionate to the number of bars crossing the crack. 
Therefore

Vb=[0.95fyv Asb sin α] (d–d′) (cot β+cot α)/sb 
 

Simplifying,

Vb=0.95fyvAsb (cos α+sin α cot β) (d–d’)/Sb 
 

This is the expression given in the code in clause 3.4.5.6. Note that if α=β=45°,

Vb=0.95fyvAsb 1.4142(d–d’)/Sb 
 

Substituting α=90° and β=45°, the formula for vertical links discussed in section 5.1.3(b) 
above is obtained as a special case of the general expression.

Bent-up bars alone are not satisfactory as shear reinforcement. The code states in 
clause 3.4.5.6, that at least 50% of the shear resistance provided by the steel should be in 
the form of links.

5.1.6.1 Example of Design of Shear Reinforcement Using Bent Up Bars

Redesign the shear reinforcement in Example.2 in section 5.1.6 using bent-up bars. The 
arrangement for the bent-up bars is shown in Fig.5.9 where the bars are bent up at 45°.
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Fig.5.9 Shear reinforcement, bent-up bars and vertical links.

(i) Section at 165 mm from support:

At 165 mm from the centre of the support the shear force V is

V= 330–165×0.165=302.8 kN.
vc=0.69 N/mm2 (Example.2 in section 5.1.6)

Vc=0.69×300×450×10−3=93.2 kN.

 

Shear force Vs to be resisted by steel is

Vs=302.8–93.2=209.6 kN.  

50% of Vs must be resisted by links and the other 50% by bent-up bars.
Bent up bars must resist

Vbent-up bars=0.5×209.6=104.8 kN  

The shear resistance of a pair of T25, where Asb=982 mm2 is

Vb=0.95fyv Asb (cos α+sin α cot β) (d−d′)/Sb
Vb=0.95×460×982×(cos 45+sin 45×cot 67.5) (400/565)×10−3=303.2 kN

 

The bent up bars provide enough resistance.
Calculate the spacing with 10 mm links (Asv=157 mm2) to provide

VLinks=104.8 kN.  

α = 45°, β = 67.5°

6R10@150 9R10@220

165 sb = 565 400
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The shear resistance provided by links

 

(ii) Section at 730 mm from support

The shear at section (165+565)=730 mm from the centre of the support is

V=330–165×0.73=209.6 kN  

Shear force Vs to be resisted by links plus bent-up bars is

Vs=209.6–93.2=116.5 kN.  

A single bent-up bar provides a shear resistance of 0.5×303.2=151.6 kN

This is more than 50% of the resistance to be provided by steel. Links must be provided 
to resist one-half the shear resisted by steel. Shear force to be resisted by links is

Vlinks=0.5×116.5=58.25 kN  

Calculate the spacing with 10 mm links to provide Vs=58.25 kN with Asv=157 mm2

 

Maximum spacing of links is 240 mm (Example 2 in section 5.1.6).

(iii) Shear reinforcement

Rationalize the shear reinforcement as follows.

rest 2200 mm at the centre provide links at 220 mm. The shear reinforcement is shown 
in Fig.5.10.

At 220 mm spacing, the shear force resisted by links alone is

 

Provide  links  at  150 mm  from the  face of the support for a distance of 750 mm. For the 
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From Example 2, section 5.1.6, Vc= 93.2 kN

Total V with links at 220 mm is

V=93.2+72.0=165.2 kN  

This value of V occurs at x from support where

{165.2=330–165 x} giving x=1.0  

The design is satisfactory.

5.1.7 Shear Resistance of Solid Slabs

Slab design is treated in Chapter 8. One-way and two-way solid slabs are designed on 
the basis of a strip of unit width of 1 m. The shear resistance of solid slabs is set out in 
BS8110: Part 1, section 3.5.5.

The design shear stress is given by

v=V/(b d)  

where b is the breadth of slab considered, generally 1 m. The form and area of shear 
reinforcement is given in Table 3.16 of the code. When v is less than the design concrete 
shear stress vc given by the formula in Table 3.8, no shear reinforcement is required, not 
even minimum links.

Slabs carrying moderate loads such as floor slabs in office buildings and apartments 
do not normally require shear reinforcement. It is not desirable to have shear reinforce-
ment in slabs with an effective depth of less than 200 mm. Where shear reinforcement is 
required, reference should be made to Table 3.16 of the code. The approach and equations 
are similar to those for rectangular beams discussed earlier in this chapter.

5.1.8 Shear Due to Concentrated Loads on Slabs

Shear in slabs under concentrated loads is set out in BS 8110: Part 1, section 3.7.7. Fig.5.10 
shows situations where a slab is subjected to concentrated forces such as when the con-
centrated load is caused by a column reaction in a flat slab or in a pad footing or due to a 
concentrated wheel load on slabs in bridge decks.
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Fig.5.10 Punching shear (a) pad footing; (b) flat slab-column junction; (c) wheel load on 
bride deck.

A concentrated load causes punching failure which occurs on inclined faces of a trun-
cated cone or pyramid depending on the shape of the loaded area. The clause states that 
it is satisfactory to consider rectangular failure perimeters. The main rules for design for 
punching are as follows (Fig.5.11).

(a) Maximum design shear capacity

The maximum design shear stress is

vmax=V/(uod)  

where uo is the effective length of the perimeter which touches a loaded area. This is the 
perimeter of the column in Fig.5.11. The shear stress vmax is not to exceed 0.8√fcu or 5 N/ 
mm2.

(b) Design shear stress for a failure zone

The notional shear stress in a failure zone is given by

v=V/(u d)  

where u is the effective length of the perimeter of the failure zone.
If v is less than vc (Table 3.8 of the code) no shear reinforcement is required. The code 

also states that enhancement of vc may not be applied to the shear strength of a perimeter 
at a distance of 1.5d or more from the face of the loaded area. For a perimeter less than 
1.5d, vc can be enhanced by the factor 1.5d/av where av is the distance from the face of the 
loaded area to the perimeter considered. Fig. 3.17 of the code shows the location of suc-
cessive shear perimeters on which shear stresses are checked and the division of the slab 
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into shear zones for design of shear reinforcement. Shear perimeters and zones are shown 
in Fig.5.11. The design procedure is set out in clause 3.7.7.6 of the code.

Fig.5.11 Zones for punching shear reinforcement.
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clause states that if this zone does not require reinforcement, i.e. the shear stress v is less 
than vc, then no further checks are required.

Design of shear reinforcement is set out in clause 3.7.7.5 of the code for slabs over 200 
mm thick. If vc<v≤ 2vc, shear reinforcement is required and is calculated as follows.

(i) vc<v≤1.6 vc,

 

(ii) 1.6vc<v≤2 vc,

 

(iii) Minimum

 

The design procedure involves checking the shear stress on a series of perimeters 0.75d 
apart.

Shear steel of area ∑Asv is divided between two ‘rings’. ‘Ring-1’ at a distance of 
approximately 0.5d from the face of the column and contains at least 40% of ∑Asv and 
‘Ring-2’ at a distance of approximately (0.5+0.75) d=1.25 d from the face of the column 
and contains the rest of ∑Asv.

Zone 2: The second shear perimeter at a distance of (1.5d+0.75d)=2.25 d from the face of 
the column. The corresponding value of ∑Asv is calculated. Value of steel equal to {∑Asv
– steel provided on ‘Ring-2’} is provide on ‘Ring-3’ at a distance of approximately 0.75 d 
from ‘Ring 2’ i.e. at a distance of (1.25d+0.75d) = 2.0 d from the face of the column.

The procedure is continued on further perimeters spaced at 0.75d from the previous 
perimeters until v≤vc. The links should not be spaced at a distance greater than 1.5d.

5.1.8.1 Example of Punching Shear Design

Design the shear reinforcement around the column of a flat slab. The flat slab is supported 
by 400×600 mm columns spaced at 7.5 m in both directions. The slab is 400 mm thick and 
is reinforced with 20 mm bars at 150 mm c/c in both directions with 30 mm cover. Assume 
fcu=35 N/mm2, fyv=460 N/mm2 and shear links are T8 single leg.

Zone 1: It  has  its  shear perimeter at 1.5d from the loaded area, is checked first. The 
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The nominal (unfactored) loads on the slab are: Live load=15 kN/m2

Dead load including self weight, screed, partitions, etc=12 kN/m2

(i) Effective depths

In x-direction=400–30–20/2=360 mm
In y-direction=400–30–20–20/2=340 mm

Average d=350 mm

 

(ii) Steel percentage

As=20 mm bars at 150 mm c/c=2094 mm2/m
100As/(bd)=100×2094/(1000×350)=0.60<3.0

400/d=400/350=1.14>1.0
fcu=35<40

 

(iii) Calculate vc

1.6vc=0.99 N/mm2, 2vc=1.24 N/mm2

 

(iv) Column reaction

Design load on slab:

q=1.4×12+1.6×15=40.8 kN/m2  

Column reaction V=q×spacing in x-direction×spacing in y-direction 

V=40.8×7.5×7.5=2295 kN  

(v) Check for maximum shear around the column perimeter

u0=Column perimeter=2(400+600)=2000 mm
vmax=V/(u0 d)=2295×103/(2000×350)=3.28<(0.8√fcu=4.7) N/mm2

 

The slab thickness is therefore adequate.

(vi) Calculate shear stress at the first shear perimeter at 1.5 d from the column 
face:

u=2{(400+3d)+(600+3d)}=6200 mm  
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The load acting within the perimeter is equal to

(400+3d)×(600+3d)×40.8=97.6 kN
V=2295−97.6=2197.4 kN

v=V/(u×d)=2197.4×103/(6200×350)=1.01 N/mm2

 

(vii) Range of v

1.6Vc<v<2 vc
5(0.7v–vc)=0.44≥0.40

 

(viii) Shear reinforcement on first two rings

 

Area of a single leg of an 8 mm diameter link=50.3 mm2.
Number of links=2185/ (50.3)=44 links.

(ix) Distribution of shear steel on two rings

(a) Ring-1

Number and distribution of single leg links on Ring-1:
Number of links=40% of 44=18 links.
Ring-1 is at 0.5 d from the column face. Lengths of the sides of ‘Ring-1’ are

(400+d)=750 mm, (600+d)=950 mm  

On each of the two shorter sides place 4 single leg links at a spacing of 250 mm and on 
each of the two longer sides place an additional 5 single leg links at an equal spacing of 
158 mm. The maximum spacing does not exceed 1.5 d=525 mm.

(b) Ring-2

Number of single leg links on Ring-2:
Number of single leg links=44–18=26 links.
Ring-2 is approximately 1.25 d from ‘Ring-1’. Lengths of the sides of ‘Ring-2’ are

(400+2.5d)=1275, (600+2.5 d)=1475 mm  

On each of the two shorter sides place 6 single leg links at a spacing of 255 mm and place 
on each of the two longer sides place an additional 7 single leg links at equal spacing of 
184 mm. The maximum spacing does not exceed 1.5 d=525 mm.
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(x) Calculate shear stress at the second shear perimeter at 2.25 d from the column 
face

u=2{(400+4.5 d)+(600+4.5d)}=8300 mm  

The load inside the perimeter is

(400+4.5d) ×(600+4.5d) ×40.8=175.3 kN
V=2295−175.3 =2119.7 kN

v=V/(u×d)=2119.7×103/(8300×350)=0.73 N/mm2

 

(xi) Range of v

vc<v<1.6 vc
(ν−νc)=(0.73−0.62)=0.11<0.4

(v−vc)=0.4

 

(xii) Shear reinforcement on second and third rings

Total shear reinforcement area:

 

Number of 8 mm single leg links=2659/(50.3)=53 links.

(xiii) Distribution of shear steel on two rings

(c) Ring 3

Number and distribution of links on Ring 3:

Number of single leg links=53–links on ring 2
Number of single leg links=53–26=21

 

Ring 3 is at 2.0 d from the column face. Lengths of the sides of ‘Ring3’ are

(400+4d)=1800, (600+4d)=2000  

On each of the two shorter sides place 7 links at a spacing of 300 mm and place on each of 
the two longer sides place additional 7 links at equal spacing of 250 mm. The maximum 
spacing does not exceed 1.5 d=525 mm.
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(xiv) Calculate shear stress at the third shear perimeter at 3.0 d from the column 
face:

u=2{(400+6.0 d)+(600+6.0d)}=10400 mm  

The load inside the perimeter is equal to

(400+6.0 d)×(600+6.0d)×40.8=275.4 kN
V=2295–275.4=2019.6 kN

v=V/(u×d)=2019.6×103/(10400×350)=0.56 N/mm2

v<(vc=0.62 N.mm2)

 

No further checks are required. Design is complete.

5.2 BOND, LAPS AND BEARING STRESSES IN BENDS

Bond is the grip due to adhesion or mechanical interlock and bearing in deformed bars 
between the reinforcement and the concrete. Anchorage is the embedment of a bar in 
concrete so that it can carry load through bond between the steel and concrete. A pull-out 
test on a bar is shown in Fig.5.12(a). If the anchorage length is sufficient, then the full 
strength of the bar can be developed by bond. The area over which the bond stress acts 
is the anchorage length multiplied by the perimeter of the bar. Anchorages for bars in a 
beam to external column joints and in a column base are shown in 5.12(b) and 5.12(c) 
respectively.

Clause 3.12.8.1 of the code states that the embedment length in the concrete is to be 
sufficient to develop the design force in the bar. Clause 3.12.8.3 of the code states that 
the design anchorage bond stress is assumed to be constant over the anchorage length. It 
is given by

 

where Fs is the force in the bar or group of bars, ℓ is the anchorage length and is the 
nominal diameter for a single bar or the diameter of a bar of equal total area for a group 
of bars.
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The anchorage length ℓ should be such that the bond stress does not exceed the design 
ultimate anchorage bond stress given by

fbu=β√fcu
 

where β is a bond coefficient that depends on the bar type. Values of β are given in Table 
3.26 of the code from which the following is extracted:

beams with minimum links. End bearing is taken into account in bars in compression and 
this gives a higher ultimate bond stress. The values include a partial safety factor γm=1.4.

Table 5.1 Bond stresses

Type of bar tension compression
Plain bars β=0.28 β=0.35

Type 2 deformed bars β=0.50 β=0.63

Fig.5.12 (a) Pull-out test; (b) beam to external column; (c) column base.

Type  2  deformed  bars  are rolled with transverse ribs. The values of β apply in slabs and 
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5.2.1 Example of Calculation of Anchorage Lengths

Calculate the anchorage lengths in tension and compression for a grade 460 type 2 
deformed bar of diameter  in grade C30 concrete.

(a) Tension anchorage

The ultimate anchorage bond stress is

fbu=β√fcu=0.5√30=2.74 N/mm2  

Equate the anchorage bond resistance to the ultimate strength of the bar. Stress in the 
bar=0.95 fy.

 

(b) Compression anchorage

The ultimate anchorage bond stress is

fbu=β√fcu=0.63√30=3.45N/mm2   

Ultimate anchorage bond lengths as a multiple of a integral number of bar diameters are 
given in BS8110: Part 1, Table 3.27.

5.2.2 Hooks and Bends

Hooks and bends are used to shorten the length required for anchorage. Clause 3.12.8.23 
of the code states that the effective length of a hook or bend is the length of a straight bar 
which has the same anchorage value as that part of the bar between the start of the bend 
and a point four bar diameters past the end of the bend.

The effective anchorage lengths given in the code are as follows.

(i) 180° hook: (see Fig.5.13(a))

The effective anchorage length is the greater of

(a) Eight times the internal radius r of the hook but not greater than 24 times the bar 
diameter
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If the length of the bar beyond the end of the bend is L, then from the start of the bend 
to the end of the bar

 

or

(b) the actual length of the bar from the start of the bend 

Effective anchorage length=π r+L

(ii) 90° bend: (see Fig.5.13(ba))

The effective anchorage length is the greater of
(a) four times the internal radius of the bend but not greater than 12 times the bar diameter. 
If the length of the bar beyond the end of the bend is L, then from the start of the bend to 
the end of the bar

 

or
(b) the actual length of the bar from the start of the bend

Effective anchorage length=0.5π r+L  

The radius of bend should not be less than twice the radius of the bend guaranteed by the 
manufacturer. A radius of two bar diameters is generally used for mild steel and three bar 
diameters for high yield steel. The hook and bend are shown in Fig.5.13.

Fig.5.13 (a) 180° hook; (b) 90° bend.



 

110 Reinforced Concrete

5.2.2.1 Examples of anchorage length calculation

Example 1: Calculate the effective anchorage length of a 90° bend with an internal radius 
of 70 mm in a 16 mm diameter bar. The straight length of the bar beyond the end of the 
curve is 100 mm.

The effective anchorage length is the greater of

 

Therefore for a full anchorage length of 40  the straight length of the bar before the 
start of the bend must be (40–14.25)  

Example 2: Calculate the effective anchorage length of an 180° bend with an internal 
radius of 80 mm in a 16 mm diameter bar. The straight length of the bar beyond the end 
of the curve is 100 mm.

The effective anchorage length is the greater of

 

Therefore for a full anchorage length of 40  the straight length of the bar before the start 
of the bend must be (40–26.25) 

5.2.2.2 Curtailment and anchorage of bars

The minimum anchorage length is the effective depth d of the section or  which ever 
is larger. In the tension zone of a flexural member, the bar should be taken a full anchor-
age length beyond a point where it is no longer required or to a point where the remaining 
bars continuing beyond provide a moment of resistance twice the bending moment at the 
point. Curtailment or stopping of the bars when they are no longer needed should always 
be staggered.

5.2.3 Laps and Joints

Lengths of reinforcing bars are joined by lapping, by mechanical couplers or by butt or lap 
welded joints. Only lapping which is the usual way of joining bars is discussed here.
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The minimum lap length specified in clause 3.12.8.11 is not to be less than  or 300 
mm whichever is greater. From clause 3.12.8.13 the requirements for tension laps are the 
following:

1. The lap length is not to be less than the tension anchorage length;
2. If the lap is at the top of the section and the cover is less than two bar diameters the lap 
length is to be increased by a factor of 1.4;
3. If the lap is at the corner of a section and the cover is less than two bar diameters the lap 
length is to be increased by a factor of 1.4;
4. If conditions 2 and 3 both apply the lap length is to be doubled.

The length of compression laps should be 1.25 times the length of compression 
anchorage.

Note that all lap lengths are based on the smaller bar diameter. The code gives val-
ues for lap lengths in Table 3.27. It also sets out requirements for mechanical couplers 
in clause 3.12.8.16.2 and for the welding of reinforcing bars in clauses 3.12.8.17 and 
3.12.8.18.

5.2.4 Bearing Stresses Inside Bends

It is often necessary to anchor a bar by extending it around a bend in a stressed state, as 
shown in Fig.5.14(a). It may also be necessary to take a stressed bar through a bend as 
shown in Fig.5.14(b).

In BS 8110: Part 1, clause 3.12.8.25.1, it is stated that if the bar does not extend or is 
not assumed to be stressed beyond a point four times the bar diameter past the end of the 
bend no check need be made. If it is assumed to be stressed beyond this point, the bearing 
stress inside the bend must be checked using the equation:

 

where Fbt is the tensile force due to ultimate loads in the bar or group of bars, r is the inter-
nal radius of the bend,  is the bar diameter or, for a group, the size of bar of equivalent 
area and ab, for a bar or group of bars in contact, is the centre-to-centre distance between 
the bars or groups perpendicular to the bend; for a bar or group of bars adjacent to the face 
of a member ab is taken as the cover plus 

5.2.4.1 Example of design of anchorage at beam support

Referring to Fig.5.14(a), three 20 mm diameter grade 460 deformed type 2 bars are to be 
anchored past the face of the column. The concrete is grade C30. From Table 3.3 of the 
code the nominal cover to 10 mm diameter links for mild exposure is 25 mm. The area of 
tension reinforcement required in the design is 810 mm2. Design the anchorage required 
for the bars.
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The ultimate anchorage bond stress is

fbu=0.5×0.52}>0.3=2.74 N/mm2  

Area provided=3T20=943 mm2,

Stress in the bars=0.95 fy (Area required/area provided) 
=0.95×460×(810/943)=376 N/mm2

 

The anchorage length (see section 5.2) is

 

The internal radius of the bends is taken to be 100 mm and the cover on the main bars is 
35 mm. The arrangement for the anchorage is shown in Fig.5.13(a). Referring to section 
5.2.3 the anchorage length for the lower 90° bend is the greater of

 

Thus the total anchorage provided past the face of the column is

145+173+140+253=711 mm  

From the figure the bars are at 80 mm centres. The ultimate bearing stress is

The tensile force in a bar =376×{(π/4) 202}×10−3=118.1 kN

 

Allow for the reduction in the force in the bar due to bond stress: Anchorage length from 
the point where the stress is a maximum to the centre of the top bend is

anchorage length=145+173/2=232 mm  

The arrangement is satisfactory.
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Full anchorage length of  could be provided by increasing the 
length past the lower bend from 80 to 170 mm. n in Fig.5.25.

Fig.5.14 (a) Anchorage at end of beam; (b) stressed bars carried around bends.
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5.3 TORSION

5.3.1 Occurrence and Analysis of Torsion

BS8110: Part 1, clause 3.4.5.13, states that in normal slab-beam or framed construction 
specific calculations for torsion are not usually necessary. Shear reinforcement will con-
trol cracking due to torsion adequately. However when the design relies on torsional resis-
tance, specific design for torsion is required. Such a case is the overhanging slab shown 
in Fig.5.15 (a).

Fig.5.15 (a) Overhanging slab; (b) design actions.

5.3.2 Structural Analysis Including Torsion

Rigid-jointed frame buildings, although three dimensional, are generally analysed as a 
series of plane frames. This is a valid simplification because the torsional stiffness is much 
less than the bending stiffness. Figure 5.16(a) shows where bending in the beams in the 
transverse frames causes torsion in the longitudinal side beams, where only the end frame 
beams are loaded. In Fig.5.16(b) the loading on the intermediate floor beam causes torsion 
in the support beams. Analysis of the building as a space frame for various arrangements 
of loading would be necessary to determine maximum design conditions including torsion 
for all members.

If torsion is to be taken into account in structural analysis BS 8110: Part 2, clause 2.4.3, 
specifies that
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torsional rigidity=GC, shear modulus G=0.42Ec
 

where Ec is the modulus of elasticity of the concrete and C is the torsional constant equal 
to one-half of the St Venant value for the plain concrete section.

The code states that the St Venant torsional stiffness may be calculated from the equa-
tion

C=β hmin
3 hmax

 

where β depends on the ratio h/b of the overall depth divided by the breadth. Values of β 
are given in Table 2.2 in the code. If the section is square β=1.4. Also, hmax is the larger 
dimension of a rectangular section and hmin the smaller dimension. The code also gives a 
procedure for dealing with non-rectangular sections. 

Fig.5.16 (a) Three-dimensional frame; (b) floor system.

5.3.3 Torsional Shear Stress in a Concrete Section

Fig.5.17 shows a rectangular box beam whose wall thickness can be considered as small 
compared to other cross sectional dimensions. It is shown in books on Strength of Materi-
als that when the box section is subjected to a torsional moment T, the shear flow defined 
as the product of shear stress in the wall and its thickness is a constant. The walls of the 
box are in a state of pure shear.
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The shear stress vt is given by
 

where a, b are the centre line dimensions of the sides of the box and t is wall thickness.

Fig.5.17 Stresses in a thin walled box beam under torsion.

Fig 5.18 Torsional stress distribution in a solid rectangular section.

Fig 5.18 shows the elastic stress distribution in a solid rectangular section subjected to a 
torsional moment. The shear stresses due to torsion are tangential to the sides and in an 
elastic material, the maximum shear stress occurs in the middle of the longer side of a 
rectangular section. The stress is zero at the centroid and increases in a non-linear manner 
towards the edges. If the material is ductile, then at the ultimate or plastic state, the stress 
is the same everywhere.

The constant state of stress is represented by slope a heap of sand would take when it is 
poured over a plate of the same cross section as the beam under torsion. This is called as 
Sand Heap analogy. The heap is conical for a circular section, pyramid shaped for a square 
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and pitched-roof-shape for the rectangular section as shown in Fig.5.19. Fig.5.20 shows 
the plan for the sand heap in the case of T-, L- and I-sections.

Fig.5.19 Sand heap for a rectangular section.

Fig.5.20 Sand heap for T, L and I sections.

The slope of the sand heap is proportional to the shear stress vt and twice the volume 
is proportional to the corresponding plastic torsional resistance. The expression for the 
torsional shear stress and ultimate torque given in BS 8110: Part 2, clause 2.4.4, can be 
derived for the sand heap shape as follows, where hmax, hmin are section dimensions, a is the 
height of the sand heap, the torsional shear stress vt is equal to the slope of the sand heap, 
i.e. vt=2a/hmin, and the ultimate torque T is twice the volume of the sand heap, i.e.

 

Substituting α=0.5 vt hmin,
T=0.5 vt hmin2 (hmax−hmin/3)  
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The code states that T- and L- or I-sections are to be treated by dividing them into compo-
nent rectangles. The division is to be such as to maximize the function Σ(hmin3 hmax). This 
will be achieved if the widest rectangle is made as long as possible. The torque resisted by 
each component rectangle is to be taken as

 

If the torsional shear stress vt exceeds the value of vtmin, reinforcement must be provided.

 

The sum (v+vt) of the shear stresses from direct shear and torsion must not exceed the 
value of vtu.

 

In addition, for small sections where y1<550 mm,

vt ≤vtu y1/550  

where y1 is the larger dimension of the link in the cross section (See Fig.5.21(c)).
This restriction is to prevent concrete breaking away at the corners of small sections.

5.3.4 Torsional Reinforcement

A concrete beam subjected to torsion fails in diagonal tension on each face to form cracks 
running in a spiral around the beam, as shown in Fig.5.21(a). The torque may be replaced 
by the shear forces V on each face. The action on each face is similar to vertical shear in 
a beam. Reinforcement to resist torsion is provided in the form of closed links and lon-
gitudinal bars. This steel together with diagonal bands of concrete in compression can be 
considered to form a space truss which resists torsion.

This is illustrated in Fig.5.21(b). Fig.5.21(c) shows the torsional reinforcement. 
 Let:

x1 smaller dimension of the link 
y1 larger dimension of the link 
Asv area of two legs of the link 

fyv characteristic strength of the link 
sv longitudinal spacing of the links 

Assuming cracks at 45°, the number of links crossing the cracks is y1/sv on the sides and 
x1/sv on the top and bottom faces. The force in one link due to torsion is 0.95 fyv Asv/2. The 
torsional T resistance of all links crossing the cracks is
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The expression given in the BS 8110: Part 2. Clause 2.4.7. is

 

A safety factor of 0.8 (equal to reciprocal of 1.25) has been introduced into the value of 
resistance torque T.

The links and longitudinal bars should fail together. This is achieved by making the 
steel volume multiplied by the characteristic strength the same for each set of bars. This 
gives

Asv (x1+y1)fyv=Assvfy
 

where As is the area of longitudinal reinforcement and fy is the characteristic strength of 
the longitudinal reinforcement. This is the expression given in the code.

Fig.5.21(a) Diagonal cracking pattern.

The code also states that the spacing of the links is not to exceed x1, y1/2 or 200 mm. The 
links are to be of the closed type as shown in Fig.5.22(a). The longitudinal reinforcement 
is to be distributed evenly around the inside perimeter of the links. The clear distance 
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between these bars should not exceed 300 mm and at least four bars, one in each corner, 
are required.

The torsion reinforcement is in addition to that required for moment and shear. In 
design, the longitudinal steel areas for moment and torsion and the link size and spacing 
for shear and torsion are calculated separately and combined.

BS8110: Part 2, clause 2.4.10, states that the link cages should interlock in T− and 
L–sections and tie the component rectangles together as shown in Fig.5.22(b). If the tor-
sional shear stress in a minor component rectangle does not exceed vt.min then no torsional 
shear reinforcement need be provided in that rectangle.

Fig. 5:21 (b) space truss; (c) torsion resistance.
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Fig. 5:22 (a) Closed link; (b) torque reinforcement for a T-beam.

5.3.4.1 Example of Design of Torsion Steel for Rectangular Beam

A rectangular beam section has an overall depth of 500 mm and a breadth of 300 mm. It 
is subjected at ultimate to a vertical hogging moment of 387.6 kNm, a vertical shear of 
205 kN and a torque of 13 kN m. Design the longitudinal steel and links required at the 
section. The materials are grade C30 concrete, grade 460 reinforcement for the main bars 
and grade 250 for the links.

The section is shown in Fig.5.23(a) with the internal dimensions for locations of lon-
gitudinal bars and links taken for design. These dimensions are based on 25mm cover, 12 
mm diameter links and 25 mm diameter main bars at the top in vertical pairs and 20 mm 
bars at the bottom.

Fig.5.23 (a) Section and design dimensions; (b) reinforcement.

(a) Bending moment in the vertical plane:

Calculate the moment that the beam can sustain without any compression steel:
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MSR=0.156 bd2fcu=0.156×350×4382×30×10−6=314.2 kNm 
d−d ̀=438−47=391 mm

d ̀/d=47/438=0.107<0.186, compression steel yields.

 

Moment to be resisted by compression steel:

Applied moment–MRc=387.6–314.2=73.4 kNm
As ̀= 73.4×106/ [(d−d’) 0.95 fy]=73.4×106/[391×0.95×460]=430 mm2

0.95 fyAs=0.45fcub0.45d+0.95fy As ̀

0.95x460xAs=0.45×30×350×0.45×438+0.95×460×430 
As=2561 mm2

 

(b) Shear reinforcement for direct shear

Calculate vc:

100As/(bv d)=100×2561 /(350×438)=1.67< 3.0 
400/d=400/438=0.91 1.0, use 1.0

 

vc=0.79 (1.67)1/3 (1.0)1/4 (30/25)1/3 /1.25=0.80 N/mm2

v=V/ (bv d)=205×103/ (350×438)=1.34 N/mm2

v–vc=0.54>0.4. Needs designed links.

 

 

Assuming a spacing of 150 mm for the links,

Asv=350×150×0.54/ (0.95×250)=119.4 mm2.  

The spacing selected is less than (0.75d=0.75×438–323 mm). The link steel area will be 
added to that required for torsion below.

(c) Torsion reinforcement

vt.min=0.067√ fcu=0.37 N/mm2

(vt=0.55)>(vt,min=0.37)
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Shear reinforcement is necessary for torsion.
Calculate the sum of direct and torsional shear stresses.

v+vt=1.34+0.55=1.89 N/mm2

vtu=0.8√fcu=4.38 N/mm2

(v+vt=1.89)<(vtu=4.38)

 

y1 is the larger centre to centre dimension of the link

y1=500–2×25–12=438 mm  

Check also that
 

Taking sv=150 mm, torsional steel is calculated from

Asv=13×106×150/ (0.8×288×438×0.95×250)=81.4 mm2

 

Since Asv corresponds to area of two legs of a link, the total area of one leg of a link is

0.5 (Asv for torsion+Asv for direct shear)=0.5×(81.4+119.4)=100.4 mm2  

Links 12 mm in diameter with an area of 113 mm2 are required.

The spacing must not exceed x1=288 mm, y1/2=438/2=219 mm or 200 mm.
The spacing of 150 mm is satisfactory.
The area of longitudinal reinforcement

As=81.4×(250/460)×(288+438)/150=214 mm2

 

This area is to be distributed equally around the perimeter.

(d) Arrangement of reinforcement

The clear distance between longitudinal bars required to resist torsion is not to exceed 300 
mm. Six bars with a theoretical area of 214/6=35.7 mm2 per bar are required.

For the bottom steel:

As’=430+ 2×35.7=501 mm2  

Provide 2T20 of area 628 mm2.
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For the top steel:

As=2561+2×35.7=2637 mm2  

Provide 6T25 in two rows of 3 each, giving an area of 2945 mm2.
For the centre bars provide two 12 mm diameter bars of area 113 mm2 per bar. 
The reinforcement is shown in Fig.5.23(b).

5.3.4.2 Example of T-beam Design for Torsion Steel

The T-beam shown in Fig.5.24(a) spans 8 m. The ends of the beam are simply supported 
for vertical load and restrained against torsion. The beam carries an ultimate distributed 
vertical load of 24 kN/m. A column is supported on one flange at the centre of the beam 
and transmits an ultimate load of 50 kN to the beam as shown. Design the reinforcement 
at the centre of the beam for the T-beam section only. A transverse stiffening beam would 
be provided at the centre of the beam but design for this is not part of the exercise. The 
materials are grade C30 concrete, grade 460 for the longitudinal reinforcement and grade 
250 for the links.

(a) The ultimate beam actions:
The maximum vertical shear is

VΑ=(0.5×24×8)+(0.5×50)=121 kN  

The maximum moment in the vertical plane is

M=24×82/8+50×8/4=292 kNm  

The torque is

T=50×0.7×0.5=17.5 kNm  

The load, shear force, bending moment and torque diagrams are shown in Fig.5.24(c). 
Cover has been taken as 25mm, the links are 12 mm in diameter and the main bars 25 mm 
diameter. The dimensions adopted for design as shown in Fig.5.22(b) are: d=438 mm, 
y1=438 mm, x1=238 mm

(b) Moment in the vertical plane:

M=292 kNm  

Check if the beam needs to be designed as a rectangular beam or a T-beam.

Mflange=0.45 fcu×b×hf×(d−hf/2) 
= 0.45×30×1600×150×(438–150/2)×10−6=1176 kNm.

Mflange>M.
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Therefore the stress block lies in the flange and the beam can be designed as a rectangular 
beam 1600×438.

k=M/ (b d2 fcu)=292×106/ (1600×4382×30)=0.032<0.156.  

Fig.5.24 (a) section; (b) dimensions for design; (c) beam design actions.
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Therefore no compression steel is required.

z/d−0.5+√(0.25−k/0.9)=0.96>0.95. Therefore z/d=0.95
As=M/ [0.95 fy z]=292×106/(0.95×460×0.95×438)=1606 mm2

 

(c) Vertical shear at the centre of the beam

Calculate vc:

100 AS/ (bv d)=100×1606/(300×438)=1.22<3.0 
400/d=400/438=0.91<1.0, use 1.0 

vc=0.79 (1.22)1/3 (1.0)1/4 (30/25)1/3 /1.25=0.72 N/mm2

v=V/ (bv d)=25×103/ (300×438)=0.19 N/mm2<vc

 

Beam needs only nominal links.

 

Assuming a spacing of 175 mm for the links,

Asv=300×175×0.4/(0.95×250)=88.4 mm2  

The spacing selected is less than (0.75d=0.75×438=323 mm). The steel area will be added 
to that required for torsion below.

(d) Torsion reinforcement

The T-section is split into component rectangles such that Σ(hmin
3hmax) is a maximum. 

Check the following two alternatives.

(a) flange (1600×150)+rib (350×300)

Σ(hmin3hmax)=(1503×1600)+(3003×350)=5.4×109+9.45×109=14.85×109  

(b) rib (500×300)+two flanges (650×150)

Σ(hmin
3hmax)=(3003×500)+(2×1503×650)=13.5×109+4.39×109 =17.89×109  

Arrangement (b) is adopted where the widest rectangle has been made as long as pos-
sible.
Torque taken by the flange and the ribs are:
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Rib: T×13.5×109/{17.89×109}=17.5×0.755=13.21 kNm
Two flange: T×4.39×109/{17.89×109}=17.5×0.245=4.29 kNm

Rib: vt=2×13.21×106/[3002(500–300/3)=0.73 N/mm2

Flanges: vt=2×0.5×4.29×106/{[1502(650–150/3)]}=0.32 N/mm2

vt.min=0.067√fcu=0.37 N/mm2

Rib: v+vt=0.19+0.73=0.92 N/mm2

 

This is less than vtu=0.8√fcu=4.38 N/mm2

vt<[vtu (y1/550)=4.38×438/550=3.49 N/mm2]  

Taking sv=175 mm, torsional steel is calculated from

 

Asv=13.21×106×175/(0.8×238×438×0.95×250)=116.7 mm2  

Since Asv corresponds to area of two legs of a link, the total area of one leg of a link is

0.5 (Asv for torsion+Asv for direct shear)=0.5×(116.7+88.4)=102.6 mm2  

Links 12 mm in diameter with an area of 113 mm2 are required. The spacing must not 
exceed [x1=238 mm, (y1/2=438/2=219 mm) or 200 mm]. The spacing of 175 mm is sat-
isfactory.

The area of longitudinal reinforcement

As=116.7×(250/460)×(238+438)/175=245 mm2

 

This area is to be distributed equally around the perimeter. Using 6 bars, each bar has an 
area of 40.8 mm2. In the flange vt=0.32 N/mm2 is less than vt.min=0.37 N/mm2 and therefore 
no torsional steel is required.
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(e) Arrangement of reinforcement

For the bottom steel

As=1606+2×40.8=1688 mm2.  

Provide 4T25 of area 1963 mm2.
For the top and centre of the rib, provide two 12 mm diameter bars at each loca-

tion. The distance between the longitudinal bars is not to exceed 300 mm. Reinforcement 
would have to be provided to support the load on the flange. The moment, direct shear and 
torsion reinforcement for the rib is shown in Fig.5.25.

Fig.5.25 Reinforcement in centre rib.



 



 

CHAPTER 6 
 

SERVICEABILITY LIMIT STATE  
CHECKS

6.1 SERVICEABILITY LIMIT STATE

In chapter 4 and chapter 5, design procedure for the ultimate limit state (ULS) in bending, 
shear and torsion were described. It is necessary in practice to ensure that the structure can 
not only withstand the forces at the ultimate limit state but also that it behaves satisfacto-
rily at working loads. The main aspects to be satisfied at serviceability limit state (SLS) 
are that of deflection and cracking. In this chapter checks that are normally used to ensure 
satisfactory behaviour under SLS conditions without detailed calculations are considered. 
These are known as ‘deemed to satisfy’ clauses. Methods requiring detailed calculations 
are discussed in Chapter 19.

6.2 DEFLECTION

6.2.1 Deflection Limits and Checks

Limits for the serviceability limit state of deflection are set out in BS 8110: Part 2, clause 
3.2.1. It is stated in this clause that the deflection is noticeable if it exceeds L/250 where 
L is the span of a beam or length of a cantilever. Deflection due to dead load can be offset 
by pre-cambering.

The code also states that damage to partitions, cladding and finishes will generally 
occur if the deflection exceeds

1. L/500 or 20 mm whichever is the lesser for brittle finishes
2. L/350 or 20 mm whichever is the lesser for non-brittle finishes

Fig. 6.1 (a) Beam load; (b) section.
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Design can be made such as to accommodate the deflection of structural members without 
causing damage to partitions or finishes. Two methods are given in BS 8110: Part 1 for 
checking that deflection is not excessive:

1. limiting the span-to-effective depth ratio using the procedure set out in clause 3.4.6. 
This method should be used in all normal cases
2. calculation of deflection from curvatures set out in BS 8110: Part 2, sections 3.6 and 
3.7. This will be discussed in Chapter 19.

6.2.2 Span-to-Effective Depth Ratio

In a homogeneous elastic beam of span L, if the maximum stress is limited to an allowable 
value a and the deflection Δ is limited to span/q, then for a given load a unique value of 
span-to-depth ratio L/d can be determined to limit stress and deflection to their allowable 
values simultaneously. Thus for the simply supported beam with a uniform load shown 
in Fig. 6.1

Maximum bending moment=W L/8  

where W=total load on the beam

 

where I is the second moment of area of the beam section, d is the depth of the beam and 
L is the span.

The allowable deflection Δ is

 

where E is Young’s modulus.
Similar reasoning may be used to establish span-to-effective depth ratios for reinforced 

concrete beams to control deflection. The method in the code is based on calculation and 
confirmed by tests. The main factors affecting the deflection of the beam are taken into 
account. The allowable value for the span-to-effective depth ratio calculated using the 
procedure given in clause 3.4.6 of the code for normal cases depends on

1. the basic span-to-effective depth ratio for rectangular or flanged beams and the support 
conditions
2. the amount of tension steel and its stress
3. the amount of compression steel
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These considerations are discussed briefly below.

(a) Basic span-to-effective depth ratios

The code states that the basic span-to-effective depth ratios given in Table 3.9 for rect-
angular and flanged beams are so determined as to limit the total deflection to span/250. 
This ensures that deflection occurring after construction is limited to span/350 or 20 mm 
whichever is the less. The support conditions have also to be taken into account.

The basic span-to-effective depth ratios from Table 3.9 of the code are given in  
Table 6.1. The values in the table apply to beams with spans up to 10 m. Refer to clause 
3.4.6.4 of the code for beams of longer span.

If bw/b>0.3, linear interpolation between values for bw/b=0.3 and bw/b=1 (Rectangular 
beam) can be used.

The allowable L/d is lower for flanged beams because in the flanged beam there is not 
as much concrete in the tension zone as in a rectangular beam and the stiffness of the beam 
is therefore reduced.

Table 6.1 Basic span-to-effective depth ratios

Support conditions Span to effective depth ratio

Rectangular beam Flanged beam, bw/b≤0.3
Cantilever 7 5.6

Simply supported beam 20 16.0

Continuous beam 26 20.8

(b) Tension reinforcement

The deflection is influenced by the amount of tension reinforcement and the value of the 
stress at service loads at the centre of the span for beams or at the support for cantilevers. 
According to clause 3.4.6.5 of the code the basic span-to-effective depth ratio from Table 
3.9 of the code is multiplied by the modification factor from Table 3.10. The modification 
factor is given by the formula in the code:

 

Note that the amount of tension reinforcement present is measured by the M/(bd2) term.
The service stress fs is estimated from the equation
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where
As.req is the area of tension steel required at mid-span to support ultimate loads (at the 

support for a cantilever)
As.prov is the area of tension steel provided at mid-span (at the support for a cantilever)
β=1.0 for statically indeterminate beams. Values of βb in the case of statically indeter-

minate structures will be discussed in Chapter 13.
The following comments are made concerning the expression for service stress:

1. The stress due to service loads is given by (2/3) fy. This takes account of partial factors 
of safety for loads and materials used in design for the ultimate limit state;
2. If more steel is provided than required the service stress is reduced by the ratio As.req/
As.prov

It can be noted from the equation for modification factor, that for a given section with 
the reinforcement at a given service stress the allowable span/d ratio is lower when the 
section contains a larger amount of steel. This is because the steel stress as measured by 
M/(bd2), is increased

1. the depth to the neutral axis is increased and therefore the curvature for a given steel 
stress increases (see calculation of deflections in Chapter 19.)
2. there is a larger area of concrete in compression, which leads to larger deflections due 
to creep
3. the smaller portion of concrete in the tension zone reduces the stiffness of the beam

Providing more steel than required reduces the service stress and this increases the 
allowable span/d ratio for the beam.

(c) Compression reinforcement

All reinforcement in the compression zone reduces concrete shrinkage and creep and 
therefore the curvature. This effect decreases the deflection. The modification factors for 
compression reinforcement are given in BS 8110: Part 1, Table 3.11.

The modification factor is given by the formula

 

where A′ s.prov is the area of compression reinforcement provided.
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(d) Deflection check

The allowable span-to-effective depth ratio is the basic ratio multiplied by the modifica-
tion factor for tension reinforcement multiplied by the modification factor for compres-
sion reinforcement. This value should be greater than the actual span/d ratio for the beam 
to be satisfactory with respect to deflection.

(e) Deflection checks for slabs

The deflection checks applied to slabs are discussed under design of the various types of 
slab in Chapter 8.

6.2.2.1 Example of Deflection Check for T-Beam

The section at mid-span designed for a simply supported T-beam of 6 m span is shown in 
Fig. 6.2. The design moment is 165 kNm. The calculated area of tension reinforcement 
was 1447mm2 and three 25 mm diameter bars of area 1472 mm2 were provided. To carry 
the links, two 16 mm diameter bars have been provided at the top of the beam. Using the 
rules set out above, check whether the beam is satisfactory for deflection. The materials 
used are concrete grade 30 and reinforcement grade 460.

From BS 8110: Part 1, Table 3.9:

web width/effective flange width=bw/b=250/1450=0.17<0.3  

The basic span-to-effective depth ratio is 16.

M/(b(d2)=165×106/(1450×3002)=1.26  

The service stress fs is

 

The modification factor for tension reinforcement using the formula given in Table 3.10 
in the code is

 

For the modification factor for compression reinforcement
A ̀s.prov=2T12=226 mm2
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The modification factor for compression steel is

Allowable span/depth=16×1.23×1.017=20.0
Actual span/depth=6000/300=20.0

 

The beam is only just satisfactory with respect to deflection.

Fig. 6.2 Doubly reinforced T-beam.

6.3 CRACKING

6.3.1 Cracking Limits and Controls

Any prominent crack in reinforced concrete greatly detracts from the appearance. Exces-
sive cracking and wide deep cracks affect durability and can lead to corrosion of rein-
forcement. BS 8110: Part 1, clause 2.2.3.4.1, states that for reinforced concrete cracking 
should be kept within reasonable bounds. The clause points to two methods for crack 
control:
1. in normal cases a set of rules for limiting the maximum bar spacing in the tension zone 
of members
2. in special cases use of a formula given in BS 8110: Part 2, section 3.8, for assessing the 
design crack width
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discussed in Chapter 19.

6.3.2 Bar Spacing Controls in Beams

Cracking is controlled by specifying the maximum distance between bars in tension. The 
spacing limits are specified in clause 3.12.11.2. The clause indicates that in normal condi-
tions of internal or external exposure, the bar spacings given will limit crack widths to 0.3 
mm. Calculations of crack widths can often be made to justify larger spacings. The rules 
are as follows.

1. Bars of diameter less than 0.45 of the largest bar in the section should be ignored except 
when considering bars in the side faces of beams.
2. The clear horizontal distance S1 between bars or groups near the tension face of a beam 
should not be greater than the values given in Table 3.28 of the code which are given by 
the expression (Fig. 6.3)

 

β=1.0 for statically indeterminate beams. Value of β in the case of statically indeterminate 
structures will be discussed in Chapter 13.

The maximum clear distance depends on the grade of reinforcement and a smaller 
spacing is required with high yield bars to control cracking because stresses and strains 
are higher than with mild steel bars.
3. As an alternative the clear spacing between bars can be found from the formula (Clause 
3.12.11.2.4 of the Code)

 

4. The clear distance s2 from the corner of a beam to the surface of the nearest horizontal 
bar should not exceed one-half of the values given in BS 8110: Part 1, Table 3.28 or the 
alternative formula.
5. If the overall depth of the beam exceeds 750 mm, longitudinal bars should be provided 
at a spacing of s3 not exceeding 250 mm over a distance of two-thirds of the overall depth 
from the tension face. The size of bar should not be less than √(Sb b/fy) where Sb is the bar 
spacing and b is the breadth of the beam (see clause 3.12.5.4 of the Code).

In this Chapter only rules for the normal case are considered. Rules for special cases are 
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Fig.6.3 Rules for crack width limitation.

6.3.2.1 Examples of maximum bar spacings in beams

Example 1: Fig. 6.3 shows a T-beam. Apply ‘Deemed to satisfy’ rules to check the maxi-
mum bar spacings.

Dimensions of beam: b=600 mm, bw=250 mm, hf=100 mm, h=410 mm, cover = 30 
mm, links 8 mm diameter, main steel 25 mm bars, effective depth=348 mm. The beam 
has been designed for an ultimate moment of 260 kNm using fcu=30 N/mm2 and fy=460 
N/mm2.

Using the code formula for designing the steel in T-beam,

Using 5T25, As provided=2454 mm2.

 

(i) Clear distance S1 between bars:

S1={250 −2×30−2×8−2×25−25)/2=49.5 mm  

Allowable value:

 

The spacing S1 is with in the permissible limit.
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Using the alternative formula

 

The alternative spacing S1 is with in the permissible limit.

(ii) Check s2

Distance from the side and bottom to the centre of the bottom left bar is 30 (cover)+10 
(Link)+25/2=52.5 mm

 

Allowable value=0.5 s1=0.5×163=82 mm.
The maximum spacing is satisfactory.

(iii) Minimum reinforcement in the side faces

Beam is less than 750 mm deep. Additional steel on side faces not required. 

Fig. 6.3 T-beam.

Example 2: Fig. 6.4 shows a rectangular beam. Apply ‘Deemed to satisfy’ rules to check 
the maximum bar spacings.
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Dimensions of beam: breadth b=400 mm, overall depth h=800 mm, cover=30 mm, 
links 10 mm diameter, main steel 25 mm bars, effective depth=735 mm.

The beam has been designed for an ultimate moment of 900 kNm using fcu=30 N/mm2 
and fy=460 N/mm2.

k=900×106/(400×7352×30)=0.139<0.156
z/d=0.5+√(0.25–0.139/0.9)=0.81< 0.95

As required=900×106/(0.81×735×0.95×460)=3459 mm2

As Provided=8T25=3927 mm2

 

(i) Clear distance S1 between bars:

s1={400 −2×30−2×10− 25)/3–25=73 mm  

Allowable value:

 

Using the alternative formula

 

The spacing is with in the permissible limit.

(ii) Check s2:

Distance from the side and bottom to the centre of the bottom left bar is 30 (cover)+10 
(Link)+25/2=52.5 mm

 

Allowable value=0.5 s1=0.5×163=82 mm
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(iii) Minimum reinforcement in the side faces

Beam is more than 750 mm deep. Additional steel on side faces is required. Assume a bar 
spacing Sb=250 mm

 

Fig. 6.4 Deep rectangular beam.

Provide 16 mm bars at a spacing of 250 mm for the (2/3)×800=533 mm from the bottom. 
Provide two layers of bars, first pair of 16 mm bars at 300 mm from the bottom and the 
second pair at 550 mm from bottom. All maximum spacings are satisfactory.

6.3.3 Bar Spacing Controls in Slabs

The maximum clear spacing between bars in slabs is given in BS 8110: Part 1, clause 
3.12.11.2.7. This clause states that the absolute clear distance between bars should not 
exceed three times the effective depth or 750 mm. It also states that no further checks are 
required if any of (a), (b) Or (c) are satisfied, where:

(a) grade 250 steel is used and the slab depth does not exceed 250 mm
(b) grade 460 steel is used and the slab depth does not exceed 200 mm
(c) the reinforcement percentage 100As/(bd) is less than 0.3, b is the breadth of the slab 
considered and d is the effective depth
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Refer to clauses 3.12.11.2.7 and 3.12.11.2.8 for other requirements regarding crack con-
trol in slabs.

6.3.3.1 Example of maximum bar spacings in slabs

Example 1: A 350 mm deep slab has been designed for an ultimate moment of 200 
kNm/m using fcu=30 N/mm2 and fy=460 N/mm2. Apply ‘Deemed to satisfy’ rules to check 
the maximum bar spacings.

Dimensions of slab: b=1000 mm, h=350 mm, cover=30 mm, main steel 16 mm bars,

effective depth=350–30–16/2=312 mm.
k=200×106/(1000×3122×30)=0.069<0.156

z/d=0.5+√(0.25–0.069/0.9)=0.92<0.95
As required=200×106/(0.92×312×0.95×460)=1595 mm2/m

As provided=T16@125 mm=1609 mm2

 

(i) fy=460 N/mm2, h=350 mm>200 mm,

100 As/(bd)=100×1609/(1000×312)=0.52>0.3
1.0>{100 As/(bd)=0.52}>0.3

 

Further checks on bar spacing are necessary.
Maximum spacings allowed

= {155 mm from Table 3.28 of code}/(% steel area)
= 155/(0.52)=298 mm

 

Actual spacing of 125 mm is less than permitted maximum spacing. Design is satisfac-
tory.



 

CHAPTER 7 
 

SIMPLY SUPPORTED BEAMS

The aim in this chapter is to put together the design procedures developed in Chapters 4, 5 
and 6 to make a complete design of a reinforced concrete beam. Beams carry lateral loads 
in roofs, floors etc. and resist the loading in bending, shear and bond. The design must 
comply with the ultimate and serviceability limit states.

7.1 SIMPLY SUPPORTED BEAMS

Simply supported beams do not occur as frequently as continuous beams in in-situ con-
crete construction, but are an important element in pre-cast concrete construction.
The effective span of a simply supported beam is defined in BS 8110: Part 1, clause 
3.4.1.2. This should be taken as the smaller of
1. the distance between centres of bearings or
2. the clear distance between the faces supports plus the effective depth

7.1.1 Steps in Beam Design

Although the steps in beam design as shown in (a) to (i) below are presented in a sequential 
order, it is important to appreciate that design is an iterative process. Initial assumptions 
about size of the member, diameter of reinforcement bars are made and after calculations 
it might be necessary to revise the initial assumptions and start from the beginning. Expe-
rience built over some years helps to speed up the time taken to arrive at the final design. 
The two examples in this chapter do not show this iterative aspect of design.

(a) Preliminary size of beam

The size of beam required depends on the moment and shear that the beam carries. The 
maximum reinforcement provided must not exceed 4% of the cross sectional area of con-
crete and the minimum percentage must comply with the values in Table 3.25 of the 
code.

A general guide to the size of beam required may be obtained from the basic span/
effective depth ratio from Table 3.9 of the code. The values are:

Rectangular sections: 20.0
Flanged sections with bw/b≤0.3, it is 16.0.
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The following values are generally found to be suitable. 

overall depth ≈ span/15
breadth ≈ (0.4 to 0.6)×depth

 

The breadth may have to be very much greater in some cases. The size is generally chosen 
from experience. Many design guides are available which assist in design.

(b) Estimation of loads:

The loads should include an allowance for self-weight which will be based on experience 
or calculated from the assumed dimensions for the beam. The original The loads should 
include an allowance for self-weight which will be based on experience or calculated 
from the assumed dimensions for the beam. The original estimate may require checking 
after the final design is complete. The estimation of loads should also include the weight 
of screed, finish, partitions, ceiling and services if applicable.

The following values are often used:

screed: 1.8kN/m2

ceiling and service load: 0.5 kN/m
demountable light weight partitions: 1.0 kN/m2

block-work partitions: 2.5 kN/m2

 

The imposed loading, depending on the type of occupancy, is taken from BS 6399: Part 
1.1996. Code of practice for dead and imposed loads.

(c) Analysis

The ultimate design loads are calculated using appropriate partial factors of safety from B 
S 8110: Part 1, Table 2.1. The load factors are

Dead load: Adverse=1.4, Beneficial =1.0
Imposed load: Adverse=1.6, Beneficial=0

 

The ultimate reactions, shears and moments are determined and the corresponding shear 
force and bending moment diagrams are drawn.

(d) Design of moment reinforcement

The flexural reinforcement is designed at the point of maximum moment. Refer to Chap-
ter 4 for the steps involved.

(e) Curtailment and end anchorage

A sketch of the beam in elevation is made and the cut-off point for part of the tension rein-
forcement is determined. The end anchorage for bars continuing to the end of the beam is 
set out to comply with code requirements in clause 3.12.9 of the code.
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(f) Design for shear

Design ultimate shear stresses are checked and shear reinforcement is designed using the 
procedures set out in BS 8110: Part 1, section 3.4.5. Refer to this and Chapter 5.

Note that except for minor beams such as lintels all beams must be provided with at 
least minimum links as shear reinforcement. Small diameter bars are required in the top 
of the beam to carry and anchor the links.

(g) Deflection

Deflection is checked using the rules from BS 8110: Part 1, section 3.4.6. Refer to 
Chapter 6.

(h) Cracking

The maximum clear distance between bars on the tension face is checked against the lim-
its given in BS 8110: Part 1, clause 3.12.11 and Table 3.28. Refer to Chapter 6.

(i) Design sketch

Design sketches of the beam with elevation and sections are needed to show all informa-
tion for the draughtsperson.

7.1.2 Curtailment and Anchorage of Bars

General and simplified rules for curtailment of bars in beams are set out in BS 8110: Part 
1, section 3.12.9. The same section also sets out requirements for anchorage of bars at a 
simply supported end of a beam. These provisions are set out below.

Fig.7.1 (a) Load; (b) bending moment diagram; (c) beam and moment reinforcement.
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(a) General rules for curtailment of bars

Clause 3.12.9.1 of the code states that except at end supports every bar should extend 
beyond the point at which it is theoretically no longer required to resist moment by a 
distance equal to the greater of

i. the effective depth of the beam
ii. twelve times the bar size

In addition, where a bar is stopped off in the tension zone, one of the following conditions 
must be satisfied:

iii. The bar must extend an anchorage length past the theoretical cut-off point; or
iv. The bar must extend to the point where the shear capacity is twice the design shear 
force; or
v. The bars continuing past the actual cut-off point provide double the area to resist 
moment at that point.

These requirements are set out in Fig.7.1 for the case of a simply supported beam with 
uniform load. The section at the centre has four bars of equal area. The theoretical cut-off 
point or the point at which two of the bars are no longer required to resist the moment is 
found from the equation

 

In a particular case calculations can be made to check that one only of the three conditions 
above is satisfied. Extending a bar a full anchorage length beyond the point at which it is 
no longer required is the easiest way of complying with the requirements.

(b) Anchorage of bars at a simply supported end of a beam

BS 8110: Part 1, clause 3.12.9.4, states that at the ends of simply supported beams the 
tension bars should have an anchorage equal to one of the following lengths:

i. Twelve bar diameters beyond the centre of the support; no hook or bend should begin 
before the centre of the support.
ii. Twelve bar diameters plus one-half the effective depth from the face of the support; no 
hook or bend should begin before d/2 from the face of the support.

(c) Simplified rules for curtailment of bars in beams

The simplified rules for curtailment of bars in simply supported beams and cantilevers are 
given in clause 3.12.10.2 and Figs. 3.24(b) and 3.24(c) of the code. As these code figures 
are rather difficult to interpret, the rules for simply supported beam and cantilever are 
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shown much more clearly in Fig.7.2. The clause states that the beams are to be designed 
for predominantly uniformly distributed loads 

Fig.7.2 (a) Simply supported bean; (b) Cantilever

7.1.3 Example of Design of a Simply Supported L-Beam in a Footbridge

(a) Specification

The section through a simply supported reinforced concrete footbridge of 7 m span is 
shown in Fig.7.3(a). The characteristic imposed load is 5 kN/m2 and the materials to be 
used are grade C30 concrete and grade 460 reinforcement. Design the L-beams that sup-
port the bridge. Concrete weighs 23.5 kN/m3, and the unit mass of the handrails is 16 kg/m 
per side.

(b) Loads, shear force and bending moment diagram

The total load is carried by two L-beams. All the load acting on 0.8 m width acts on an 
L-beam.

The dead load carried by each L-beam is

[(0.12 slab+0.03 screed)×0.8+0.2×(0.4–0.12) rib]×23.5
+ 16×9.81× 10−3 hand rails=4.3 kN/m

 

The total live load acting on each beam is 0.8×5=4.0 kN/m
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The design load at ultimate limit state is

(1.4×4.3)+(1.6×4)=12.42 kN/m  

The ultimate moment at the centre of the beam is

12.42×72/8=76.1 kNm  

The load, shear force and bending moment diagrams are shown in Figs 7.3(b), 7.3(c) and 
7.3(d) respectively.

(c) Design of moment reinforcement

The effective width b of the flange of the L-beam is given by the lesser of

(i) the actual width, 800 mm, or
(ii) 200+8000/10=1000 mm

b=800 mm

 

From BS 8110: Part 1, Table 3.3, the cover for moderate exposure is 35 mm.
Assuming 25 mm bars, the effective depth d is estimated as

d=400–35 (cover)–8 (link diameter)–25/2=344.5 mm, say 340 mm  

The L-beam is shown in Fig.7.4(a).
Check for the depth of the stress block:
The moment of resistance of the section when the stress block is equal to the slab depth 

hf= 120 mm is

MFlange=0.45 fcu×b×hf×(d−hf/2)
MFlange=0.45×30×800×120×(340–0.5×120)×10−6=362.9 kNm

(M=76.1)<(MFlange=362.9)

 

The stress block is inside the slab and the beam can be designed as a rectangular section.

k=M/(bd2 fcu)=76.1×106/(800×3402×30)=0.027
z/d=0.5+√(0.25−k/0.9)=0.5+√(0.25–0.027/0.9)=0.97>0.95

z=0.95×340=323 mm
As=M/(0.95 fy z) =76.1×106/(0.95×460×323)=539 mm2

 

Provide 4T16, As=804 mm2.
From Fig.7.4(a), b=800 mm, bw=200 mm, h=400 mm, bw/b=0.25, 100 As/(bw 

h)=1.005>0.18 for minimum steel requirement.
Using the simplified rules for curtailment of bars (Fig.7.2(a)) two bars are cut off as 

shown in Fig.7.4(c) at 0.08 of the span from each end.
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Fig 7.3 (a) Section through the footbridge; (b) design load; (c) shear force diagram; (d) 
bending moment diagram.
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(d) Design of shear reinforcement

The enhancement of shear strength near the support using the simplified approach given 
in clause 3.4.5.10 is taken into account in the design for shear. The maximum shear stress 
at the support is,

V=V/(bvd)=43.5×103/(200×340)=0.64 N/mm2  

This is less than 0.8×√30=4.38 N/mm2 or 5 N/mm2.
The width of supports from Fig.7.4(b) is 200 mm. The shear at d=340 mm from face 

of the support is

V=43.5–12.42×(0.34+0.2/2)=38.0 kN
v=38.0×103/(200×340)=0.56 N/mm2

 

The effective area of steel at d from the face of support is 2T16 of area 402 mm2

100 As/(bv d)=100×402/(200×340)=0.59<3.0
400/d=400/340=1.18>1.0

vc=0.79×(0.59)1/3(1.18)1/4(30/25)1/3/1.25=0.59 N/mm2

v<vc

 

Therefore only nominal links required. Provide 8 mm diameter two-leg vertical links, 
Asv=100 mm2, in grade 250 reinforcement. The spacing required is determined using the 
formula

Asv ≥0.4 bv sv/(0.95 fyv)
100≥0.4×200 x sv/(0.95×250), sv≤297 mm

0.75 d=0.75×340=255 mm

 

8 mm links will be spaced at 250 mm throughout the beam. Two 12 mm diameter bars are 
provided to carry the links at the top of the beam. The shear reinforcement is shown in 
Figs 7.4(b) and 7.4(c).

(e) End anchorage

The anchorage of the bars at the supports must comply with BS 8110: Part 1, clause 
3.12.9.4. The bars are to be anchored 12 bar diameters equal to 192 mm past the centre of 
the support. This will be provided by a 90° bend with an internal radius of three bar diam-
eters equal to 48 mm. From clause 3.12.8.23, the anchorage length is the greater of

(i) 4×internal radius=4×48=192 mm but not greater than 12×φ=192 mm
(ii) the actual length of the bar 

The anchorage needed is 192 mm.
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(f) Deflection check

The deflection of the beam is checked using the rules given in BS 8110: Part 1. clause 
3.4.6. Referring to Table 3.9 of the code,

bw/b=200/800=0 25<0 3  

(i) The basic span-to-effective depth ratio is 16.

(ii) The modification factor for tension reinforcement

M/(bd2)=76.1×106/(800×3402)=0.82  

The service stress fs is

fs=(2/3) fy (As.prov/As.Req)=(2/3)×460×(539/804)=206 N/mm2  

Using the formula in Table 3.10 in the code is

 

(iii) For the modification factor for compression reinforcement

A s̀.prov=2112=226 mm2

100 A s̀.prov/(bd)=100×226/(800×340)=0.083

 

The modification factor for compression steel from the formula in Table 3.11 is

 

(iv) Allowable span/d

Span/d=16×1.86×1.03=30.65
Actual span/d=7000/340=20.5
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Hence the beam is very satisfactory with respect to deflection.

(g) Check for cracking

The clear distance between bars on the tension face is

200–2×35–2×8–2×16=82 mm  

This does not exceed 155 mm as per Table 3.28 of the code.
The distance from the side or bottom to the nearest longitudinal bar is

35+8+16/2=51 mm  

The distance from the corner to the nearest longitudinal bar is

√(512+512)−16/2=64 mm<(155/2=77.5 mm)  

The beam is satisfactory with regard to cracking.

(h) End bearing

No particular design is required in this case for the end bearing. With the arrangement 
shown in Fig.7.4(b) the average bearing stress is 1.09 N/mm2. The ultimate bearing capac-
ity of concrete is 0.35fcu=10.5 N/mm2.

Fig.7.4 (a) Beam section; (b) beam support; (c) beam elevation
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(i) Beam reinforcement

The reinforcement for each L-beam is shown in Fig.7.4. Note that the slab reinforcement 
also provides reinforcement across the flange of the L-beam.

7.1.4 Example of Design of Simply Supported Doubly Reinforced  
Rectangular Beam 

(a) Specification

A rectangular beam is 300 mm wide by 520 mm overall depth with inset to the compres-
sion steel of 55 mm. The beam is simply supported and spans 8 m. The characteristic dead 
load including an allowance for self-weight is 20 kN/m and the characteristic imposed 
load is 11 kN/m. The materials to be used are grade 30 concrete and grade 460 reinforce-
ment. Design the beam.

(b) Loads and shear force and bending moment diagrams

design load=(1.4×20)+(1.6×11)=45.6 kN/m 
ultimate moment=45.6×82/8=364.8 kN m

 

The loads and shear force and bending moment diagrams are shown in Fig.7.5.

Fig.7.5 (a) Design loading; (b) ultimate shear force diagram; (c) ultimate bending 
moment diagram.
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(c) Design of the moment reinforcement

Calculate the effective depth d:
Assuming 25 mm bars for reinforcement in two layers, 8 mm diameter for links and 

cover to the reinforcement is taken as 35 mm for moderate exposure, effective depth d is

d=520−35−10−25=450.  

The maximum moment of resistance of a singly reinforced rectangular beam is

0.156 b d2 fcu=0.156×300×4502×30×10−6=284.3 kNm<364.8 kNm  

Compression reinforcement is required.

 

The compression steel yields. Stress in the compression steel is 0.95 fy.
The area of compression steel is

A’
s=(M−0.156 bd2 fcu)/[(d−d’)×0.95 fy]

=(364.8–283.3)106/[(450–55)×0.95×460]=472 mm2
 

Provide 2T20, A’
s=628 mm2.

Equate total tensile and compressive forces:

0.45 fcu×b×0.45d+A s̀×0.95 fy=As×0.95 fy
(0.45×30×300×0.45×450)+(0.95×460×472)=As×0.95×460

As=2349 mm2

 

Provide 6T25, As=2945 mm2. The reinforcement is shown in Fig.7.6(a). In accordance 
with the simplified rules for curtailment, 3T25 tension bars will be cut off at (0.08 
L=0.08×8000=640 mm) from each support. The compression bars will be carried through 
to the ends of the beam to anchor the links. The end section of the beam is shown in 
Fig.7.6(b) and the side elevation in 7.6(c).

(d) Design of shear reinforcement

The design for shear is made using the simplified approach in clause 3.4.5.10.

(i) Maximum shear stress at support:

V=182.4 kN, v=V/(bv d)=182.4×103/(300×462.5)=1.31 N/mm2

This is less than 0.8×√30=4.38 N/mm2 or 5 N/mm2.
Section size is adequate.
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(it) vc with As=3T25:

The top layer bars are curtailed at 640 mm from centre of support. The calculation with 
3T25 is valid up to [640+(d=450 for 6T25)]=1090 mm from centres of supports.

d=520–35–10–25/2=462.5 mm
As for 3T25=1472 mm2. 

100 AS/ (bvd)=100×1472/(300×462.5)=1.06<3.0
400/d=0.87<1.0. Therefore take as 1.0. 

vc=0.79×(1.06)1/3 (1.0)1/4 (30/25)1/3/1.25=0.69 N/mm2

 

Shear force that can be supported with minimum links is

v−Vc=0.4, v=0.4+0.69=1.09 N/mm2

V=v bvd=1.09×300×462.5×10−3=151.24 kN
 

Using 10 mm two leg links, spacing required is

Asv≥[0.4 bv sv]/(0.95 fyv) 
157≥300×Sv×0.40/(0.95×250), Sv≤311 mm,

 

Because of the presence of compression reinforcement, maximum spacing is limited to 
twelve times the size of the smallest compression bar (clause 3.12.7.1 of code). 
Maximum spacing is 12×20=240 mm<(0.75 d=0.75×462.5=347 mm).
Shear force that can be supported by 10 mm diameter two leg links spaced at 240 mm is

Asv≥[bvsv(v−vc)]/(0.95fyv) 
157≥300×240×(v−0.69)/(0.95×250), v≤1.21 N/mm2

V=300×462.5×1.21×10−3=167.9 kN

 

Taking the width of support as 250 mm, shear at d=462.5 mm from the face of support 
is

V=182.4−45.6×(462.5+250/2)×10−3=155.6 kN<167.9 kN  

(iii) vc with As=6T25:

Valid over the central distance (8000−1090−1090)=5820 mm.

d=450 mm, As for 6T25−2945 mm2. 
100 As/(bvd)=100×2945/(300×450)=2.18<3.0 

400/d=0.89<1.0. Therefore take as 1.0. 
vc=0.79×(2.18)1/3 (1.0)1/4 (30/25)1/3/1.25=0.87 N/mm2
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Shear force that can be supported with minimum links is

v−vc=0.4, v=0.4+0.87=1.27 N/mm2

V=v bv d=1.27×300×450×10−3=171.45 kN>155.6 kN
 

(iv) Rationalization of link spacing

Since minimum spacing is required over the entire span, provide 34R10 links at 235 
centres.

(e) End anchorage

As in Example in section 7.1.3, the tension bars are anchored 12 bar diameters past the 
centre of the support. The end anchorage is shown in Fig.7.6(c) where a 90° bend with an 
internal radius of three bar diameters is provided.

(f) Deflection check

The deflection of the beam is checked using the rules given in BS 8110: Part 1, clause 
3.4.6.

(i) The basic span/d ratio

From Table 3.9 of the code the ratio is 20 for a simply supported rectangular beam.

(ii) Calculate the modification factor due to tension steel

M/(bd2)=364.8×106/(300×4502)=6.0  

The service stress fs is 

fs=(2/3) fy (As.prov/As.Req)=(2/3)×460×(2350/2945)=248 N/mm2  

The modification factor for tension reinforcement using the formula in Table 3.11 in the 
code is
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Fig.7.6 (a) Section at mid—span; (b) section at support; (c) part side elevation.

(iii) For the modification factor for compression reinforcement

A′
s.prov=2T20=628 mm2, 

100 A′
s.prov/(bd)=100×628/ (300×450)=0.465

 

The modification factor from the formula in Table 3.11 is
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(iv) Allowable span/depth ratio

Allowable span/d=20×0.83×1.13=18.76
Actual span/d=8000/450=17.78.

 

The beam is satisfactory with respect to deflection.

(g) Check for cracking

The clear distance between bars on the tension face is

(300−2×35−2×10−3×25)/2=68 mm  

This does not exceed 155 mm as per Table 3.28 of the code.
The distance from the side or bottom to the nearest longitudinal bar is

35+10+25/2=58 mm  

The distance from the corner to the nearest longitudinal bar is

√(582+582)−25/2=70 mm<(155/2=77.5 mm)  

The beam is satisfactory with regard to cracking.

(h) Beam reinforcement

The beam reinforcement is shown in Fig.7.6.
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CHAPTER 8  
 

REINFORCED CONCRETE SLABS

8.1 TYPES OF SLAB AND DESIGN METHODS

Slabs are plate elements forming floors and roofs in buildings, which normally carry uni-
formly, distributed loads acting normal to the plane of the slab. In general at a slab sec-
tion, bending moments in two orthogonal directions and twisting moments are present. 
Slabs may be simply supported or continuous over one or more supports and are classified 
according to the method of support as follows:

1. spanning one way between beams or walls
2. spanning two ways between the support beams or walls
3. flat slabs carried on columns and edge beams or walls with no interior beams

Slabs may be solid of uniform thickness or ribbed with ribs running in one or two 
directions. Slabs with varying depth are generally not used. Stairs with various support 
conditions form a special case of sloping slabs.

Slabs may be analysed using the following methods.

1. Elastic analysis covers two techniques:
(a) idealization into strips or beams spanning one way or a grid with the strips spanning 
two ways
(b) elastic plate analysis using analytical methods for many cases of rectangular slabs 
and finite element analysis for irregularly shaped slabs or slabs with non-uniform 
loads.
2. Using design coefficients for moment and shear coefficients given in the code, which 
have been obtained from yield line analysis
3. The yield line and Hillerborg strip methods.

8.2 ONE-WAY SPANNING SOLID SLABS

8.2.1 Idealization for Design

(a) Uniformly loaded slabs

One-way slabs carrying predominantly uniform load are designed on the assumption that 
they consist of a series of rectangular beams 1 m wide spanning between supporting 
beams or walls. The sections through a simply supported slab and a continuous one-way 
slab are shown in Fig.8.1 (a) and Fig.8.1 (b) respectively.
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Fig.8.1 (a) Simply supported slab; (b) Continuous one-way slab

(b) Concentrated loads on a solid slab

BS 8110: Part 1 specifies in clause 3.5.2.2 that, for a slab simply supported on two edges 
carrying a concentrated load, the effective width of slab resisting the load may be taken 
as

w=width of load+2.4×(1−x/l)  

where x is the distance of the load from the nearer support and l is the span of the slab.

If the load is near an unsupported edge the effective width should not exceed
1. w as defined above, or 
2. 0.5w+distance of the centre of the load from the unsupported edge

The effective widths of slab supporting a load in the interior of the slab and near an unsup-
ported edge are shown in Figs 8.2(a) and 8.2(b) respectively.

Refer to the code for provisions regarding other types of slabs.

8.2.2 Effective Span, Loading and Analysis

(a) Effective span

The effective span for one-way slabs is the same as that set out for beams in section 7.1. 
Refer to BS8110: Part 1, clauses 3.4.1.2 and 3.4.1.3. The effective spans are
i. Simply supported slabs: 
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Effective span=The smaller of the centres of bearings or the clear span+d  

ii. Continuous slabs:

Effective span = distance between centres of supports  

(b) Arrangement of loads

The code states in clause 3.5.2.3 that in principle the slab should be designed to resist the 
most unfavourable arrangement of loads. However, normally it is only necessary to design 
for the single load case of maximum design load on all spans or panels. This is permitted 
subject to the following conditions:

1. The area of each bay exceeds 30 m2. In this connection bay is defined as a strip across 
the full width of a structure bounded on the other two sides by a line of supports. In effect 
the area of a bay is equal to the product of the building width times column spacing nor-
mal to the width.
2. The ratio of characteristic imposed load to characteristic dead load does not exceed 
1.25.
3. The characteristic imposed load does not exceed 5 kN/m2 excluding partitions. 

Fig 8.2 The effective widths of slab: (a), interior of slab; (b) near an unsupported edge.
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(c) Analysis and redistribution of moments

Clause 3.5.2.3 referred to above states that if the analysis is carried out for the single load 
case of all spans loaded, the support moments except at supports of cantilevers should 
be reduced by 20%. This gives an increase in the span moments. The moment envelope 
should satisfy all the provisions of clause 3.2.2.1 in the code regarding redistribution of 
moments (See Chapter 13). No further redistribution is to be carried out.

The case of a slab with cantilever overhang is also discussed in clause 3.5.2.3 of the 
code. In this case if the cantilever length is of significant length compared to the span 
adjacent to the cantilever, the load case of (1.4Gk + 1.6Qk) on the cantilever and 1.0Gk 
on the span should be considered, where Gk is the characteristic dead load and Qk is the 
characteristic imposed load.

(d) Analysis using moment coefficients

The code states in clause 3.5.2.4 that where the spans of the slab are approximately equal 
and conditions set out in clause 3.5.2.3 discussed above are met, the moments and shears 
for design may be taken from code Table 3.12. This table allows for 20% redistribution 
and is reproduced here as Table 8.1.

Table 8.1 Ultimate moments and shears in one-way spanning slabs

 At outer 
support

Near middle of 
end span

At first 
interior 
support

At middle of 
interim sup-
port

At interior 
supports

Moment 0
(−0.04 
Fl*)

0.086 Fl
(0.075 Fl*)

−0.086 Fl 0.063 Fl −0.063 Fl

Shear 0.4 F
(0.46 F*)

– 0.6 F – 0.5F

F=Total design load on span, l=span,
*refer to case where the end support is fixed.

8.2.3 Section Design and Slab Reinforcement Curtailment and Cover

(a) Cover

The amount of cover required for durability and fire protection is taken from Tables 3.3 
and 3.4 of the code. For grade C30 concrete the cover is 25 mm for mild exposure and this 
will give 2 h of fire protection in a continuous slab.
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(b) Main moment steel

The main moment steel spans between supports and over the interior supports of continu-
ous slabs as shown in Fig. 8.1. The slab sections are designed as rectangular beam sections 
1 m wide.

The minimum area of main reinforcement is given in Table 3.25 of the code. For rect-
angular sections and solid slabs this is

Mild steel: fy=250 N/mm2, 100As/Ac=0.24 
High yield steel: fy=460 N/mm2, 100As/Ac=0.13

 

where As is the minimum area of reinforcement and Ac is the total area of concrete.

(c) Distribution steel

The distribution, transverse or secondary steel runs at right angles to the main moment 
steel and serves the purpose of tying the slab together and distributing non-uniform loads 
through the slab. The area of this secondary reinforcement is the same as the minimum 
area for main reinforcement set out in (a) above. Note that distribution steel is required at 
the top parallel to the supports of continuous slabs. The main steel is placed nearest to the 
surface to give the greatest effective depth.

Table 8.2 Fabric types

Fabric ref-
erence

Longitudinal wire Cross wire

 Wire size 
(mm)

Pitch 
(mm)

Area 
(mm2/m)

Wire size 
(mm)

Pitch 
(mm)

Area 
(mm2/m)

Square mesh 

A393 10 200 393 10 200 393

A252 8 200 252 8 200 252

A193 7 200 193 7 200 193

A142 6 200 142 6 200 142

A98 5 200 98 5 200 98

 

Structural 
mesh

 

B1131 12 100 1131 8 200 252

B785 10 100 785 8 200 252
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B503 8 100 503 8 200 252

B385 7 100 385 7 200 193

B285 6 100 285 7 200 193

B196 5 100 196 7 200 193

 

Long mesh  

C785 10 100 785 6 400 70.8

C636 9 100 636 6 400 70.8

C503 8 100 503 5 400 49.1

C385 7 100 385 5 400 49.1

C283 6 100 283 5 400 49.1

 

Wrapping 
mesh

 

D98 5 200 98 5 200 98

D49 2.5 100 49 2.5 100 49

(d) Slab reinforcement

Slab reinforcement is a mesh and may be formed from two sets of bars placed at right 
angles. Table 4.4 gives bar spacing data in the form of areas of steel per metre width 
for various bar diameters and spacings. Alternatively cross-welded wire fabric to BS 
4483 can be used. This is produced from cold reduced steel wire with a characteristic 
strength of 460 N/mm2. The particulars of fabric used are given in Table 8.2, taken from 
BS 4483:1985

(e) Curtailment of bars in slabs

The general recommendations given in clause 3.12.9.1 for curtailment of bars apply. The 
code sets out simplified rules for slabs in clause 3.12.10.3 and Fig. 3.25 in the code. These 
rules may be used subject to the following provisions:

1. The slabs are designed for predominantly uniformly distributed loads;
2. In continuous slabs the design has been made for the single load case of maximum 

design load on all spans.
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The simplified rules for simply supported, cantilever and continuous slabs are as shown 
in Figs 8.3(a), 8.3(b) and 8.3(c) respectively. It should be noted that while Figs 8.3(a) 
and 8.3(c) specify 40% of the midspan steel to be continued to supports, often it is much 
more convenient to continue 50% of the steel. This is accomplished by stopping off every 
alternate bar at midspan provided the maximum permitted spacing between bars and also 
minimum steel requirement are not violated.

The code states in clause 3.12.10.3.2 that while the supports of simply supported slabs 
or the end support of a continuous slab cast integral with an L-beam have been taken as 
simple supports for analysis, the end of the slab might not be permitted to rotate freely 
as assumed. Hence negative moments may arise and cause cracking. To control this, bars 
are to be provided in the top of the slab of area equal to 50% of the steel at mid-span but 
not less than the minimum area specified in Table 3.25 in the code. This is accomplished 
by turning up every alternate bar at midspan provided the maximum permitted spacing 
between bars and also minimum steel requirement are not violated. The bars are to extend 
not less than 0.15l or 45 bar diameters into the span. These requirements are shown in 
Figs 8.3(a) and 8.3(c).

Bottom bars at a simply supported end are generally anchored 12 bar diameters past 
the centreline of the support as shown for the right hand support in Fig.8.3 (a). However, 
these bars may be stopped at the line of the effective support where the slab is cast integral 
with the edge beam as shown in left hand support in Fig.8.3(a) (but see design for shear 
below).

Note that where a one-way slab ends in edge beams or is continuous across beams 
parallel to the span some two-way action with negative moments occurs at the top of the 
slab. Reinforcement in the top of the slab, of the same area as that provided in the direc-
tion of the span at the discontinuous edge should be provided to control cracking. This is 
shown in Fig.8.4(c).

8.2.4 Shear

Under normal loads shear stresses are not critical and shear reinforcement is not required. 
Shear reinforcement is provided in heavily loaded thick slabs but should not be used in 
slabs less than 200 mm thick. The shear resistance is checked in accordance with BS8110: 
Part 1, section 3.5.5.

The shear stress is given by 

v=V/(bd)  

where V is the shear force due to ultimate loads. If v is less than the value of vc given in 
Table 3.8 in the code no shear reinforcement is required. Enhancement in design shear 
strength close to supports can be taken into account. This was discussed in section 5.1.2. 
The form and area of shear reinforcement in solid slabs is set out in Table 3.16 in the code. 
The design is similar to that set out for beams in section 5.1.3.
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The shear resistance at the end support, which is integral with the edge beam and where 
the slab has been taken as simply supported in the analysis, depends on the detailing. 

Fig.8.3 (a) Simply supported span. Left and right hand support details are two possible 
methods of detailing; (b) cantilever; (c) continuous slab.
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Fig.8.4 (a) Part floor plan; (b) section AA; (c) section BB.

The following procedures are specified in clauses 3.12.10.3.2 of the code.

1. If the bottom tension bars are anchored 12 diameters past the centre line of the support, 
the shear resistance is based on the steel percentage of bottom bars.
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2. If the tension bars are stopped at the line of effective support, the shear resistance is 
based on the steel percentage top bars.

8.2.5 Deflection

The check for deflection is a very important consideration in slab design and usually con-
trols the slab depth. The deflection of slabs is discussed in BS8110: Part 1, section 3.5.7. 
In normal cases a strip of slab 1 m wide is checked against span-to-effective depth ratios 
including the modification for tension reinforcement set out in section 3.4.6 of the code. 
Only the tension steel at the centre of the span is taken into account.

8.2.6 Crack Control

To control cracking in slabs, maximum values for clear spacing between bars are set out in 
BS8110: Part 1, clause 3.12.11.2.7. These were discussed in Chapter 6, section 6.2.3

8.3 EXAMPLE OF DESIGN OF CONTINUOUS ONE-WAY SLAB

(a) Specification

A continuous one-way slab has three equal spans of 3.5 m each. The slab depth is assumed 
to be 140 mm.

The loading is as follows:

Dead loads due to self-weight, screed, finish, partitions, ceiling: 5.2 kN/m2

Imposed load: 3.0 kN/m2

 

The construction materials are grade C30 concrete and grade 460 reinforcement. The 
condition of exposure is mild and the cover required is 25 mm. Design the slab and show 
the reinforcement on a sketch of the cross-section.

(b) Design loads

Consider a strip 1 m wide.

design ultimate load=(1.4×5.2)+(1.6×3)=12.08 kN/m
design load F per span=12.08×3.5=42.28 kN

 

The single load case of maximum design loads on all spans is shown in Fig.8.5 where the 
critical points for shear and moment are also indicated. 
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Fig 8.5 Continuous one-way slab.

(c) Shear forces and bending moments in the slab

The shear forces and moments in the slab are calculated using BS8110: Part 1 Table 3.12. 
The values are shown in Table 8.3. The redistribution is 20%.

Table 8.3 Design ultimate shears and moments

Position Shear (kN/m) Moment (kNm/m)

A 0.4×42.28=16.91 

P  +0.086×42.28×3.5=12.73

B 0.6×42.28=25.37 −0.086×42.28×3.5=−12.73

Q  +0.063×42.28×3.5=9.32

(d) Design of moment steel

Assume 10 mm diameter bars with 25 mm cover. The effective depth is d=140−2−10/2=110 
mm

The calculations for steel areas are set out below. Reference is made to clause 3.4.4.4 
in the code for the section design.

(i) Section at support B

M=12.73 kN m/m (hogging)  

When values from Table 3.12 are used, redistribution is 20% (βb=0.8),

K’=0.402 (βb−0.40)−0.18 (βb−0.40)2

K’=0.402 (0.8–0.40)−0.18 (0.8–0.40)2=0.132
k=M/(bd2 fcu)=12.73×106/(1000×1102×30)=0.035<K

 

Therefore no compression steel is required.
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z/d=0.5+√(0.25−k/0.9)=0.5+√(0.25–0.035/0.9)=0.96>0.95
z=0.95d=105 mm

As=M/(0.95 fy z)=12.73×106/(0.95×460×105)=279 mm2/m

 

Provide in the top surface 8 mm bars at 175 mm centres to give an area of 288 mm2/m.

(ii) Section in span at P

M=12.73 kN m (sagging)  

Redistribution of support moment increases the span moment. Therefore take maximum 
k=0.156.

k=M/(bd2 fcu)=12.73×106/(1000×1102×30)=0035<0.156  

Therefore no compression steel is required.

z/d=0.5+√(0.25−k/0.9)=0.5+√(0.25–0.035/0.9)=0.96>0.95
z=0.95d=105 mm

As=M/(0.95 fy z)=12.73×106/(0.95×460×104.5)=279 mm2/m

 

Provide in the top surface 8 mm bars at 175 mm centres to give an area of 288 mm2/m. 

(iii) Section Q

Details as at P except that

M=9.32 kNm/m, z=0.95d, As=204 mm2/m  

Provide 8 mm bars at 225 mm centres to give an area of 226 mm2/m.

(iv) The minimum area of reinforcement

0.13%×Ac=(0.13/100)×1000×140=182 mm2/m<226 mm2/m.  

The moment reinforcement is shown in Fig.8.6. Curtailment of bars has not been made 
because one-half of the calculated steel areas would fall below the minimum area of steel 
permitted.

At the end support A, top steel equal in area to 50% of the mid-span steel, i.e. 140 
mm2/m, but not less than the minimum area of 182 mm2/m has to be provided. The clear 
spacing between bars is not to exceed 3d=330 mm. Provide 8 mm bars at 250 mm centres 
to give 201 mm2/m. The tension bars in the bottom of the slab at support A are stopped off 
at the line of support.
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(e) Distribution steel

The minimum area of reinforcement (182 mm2/m) has to be provided. The spacing is 
not to exceed 3d=330 mm. Provide 8 mm bars at 250 mm centres to give an area of 201 
mm2/m.

(f) Shear resistance

Assume that enhancement in design strength close to the support has not been taken into 
account.

(i) End support

V=16.91 kN. 
v=16.91×103/(1000×110)=0.15 N/mm2

 

The shear resistance is based on top bars, T8−250=201 mm2/m.

100 As/(bvd)=100×201/(1000×110)=0.18<3.0 
400/d=400/110=3.64>1.0 

vc=0.79×(0.18)1/3 (3.64)1/4 (30/25)1/3/1.25=0.52 N/mm2

v<vc

 

No shear reinforcement is required.

(ii) Interior Support

V=25.37 kN 
v=25.37×103/(1000×110)=0.23 N/mm2

 

The shear resistance is based on top bars, T8–175=288 mm2/m.

100 As/(bvd)=100×288/(1000×110)=0.26<3.0 
400/d=400/110=3.64>1.0 

vc=0.79×(0.26)1/3 (3.64)1/4 (30/25)1/3/1.25=0.59 N/mm2

v<vc

 

No shear reinforcement is required.

(g) Deflection

The slab is checked for deflection using the rules from section 3.4.6 of the code.
The end span is checked because it is continuous on one side only and will therefore 

deflect more than the interior span. The basic span-to-effective depth ratio is 26 for the 
continuous slab.

Modification factor for tension steel: Using the moment at P,
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M=12.73 kNm/m
M/(bd2)=12.73×106/(1000×1102)=1.05
fs=(2/3) 460×(279/288)=297 N/mm2

 

The modification factor for tension steel is

0.55+(477–297)/[120(0.9+1.05)]=1.32
allowable span/d ratio=132×26=34.3
actual span/d ratio=3500/110=31.8

 

The slab is satisfactory with respect to deflection.
Note that basic L/d ratio for continuous slab refers to case where both supports are con-
tinuous. In the case of only one support being continuous, it is perhaps sensible to use L/
d=23 based on average of values for simply supported slab (L/d=20) and continuous slab 
(L/d=26).

(h) Crack control

Because the steel grade is 460, the slab depth is less than 200 mm and the clear spacing 
does not exceed 3d=330 mm, the slab is satisfactory with respect to cracking. Refer to 
BS8110: Part 1, clause 3.12.11.2.7.

(i) Sketch of cross-section of slab

A sketch of the cross-section of the slab with reinforcement is shown in Fig.8.6.

8.4 ONE-WAY SPANNING RIBBED SLABS

8.4.1 Design Considerations

When spans are long (perhaps over 5 m) but the live loads are relatively moderate or light, 
it is advantageous to reduce the dead weight of the slab. By having a series of ribs (beams) 
connected by structural topping as shown in Fig.8.7, the weight of the slab in between the 
ribs is considerably reduced.

Ribbed slabs may be constructed in a variety of ways as discussed in BS8110: Part 1, 
section 3.6. Two principal methods of construction are:

i. ribbed slabs without permanent blocks
ii. ribbed slabs with permanent hollow or solid blocks

These two types are shown in Fig.8.7. The topping or concrete floor panels between 
ribs may or may not be considered to contribute to the strength of the slab. The hollow 
or solid blocks may also be counted in assessing the strength using rules given in the 
code. The design of slabs with topping taken into account but without permanent blocks 
is discussed. 
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Fig.8.6 Reinforcement details in one-way continuous slab.

Fig.8.7 (a) Ribbed slab; (b) ribbed slab with hollow blocks.

8.4.2 Ribbed slab proportions

Proportions for ribbed slabs without permanent blocks are set out in section 3.6 of the 
code. The main requirements are as follows:

1. The centres of ribs should not exceed 1.5 m.
2. The depth of ribs excluding topping should not exceed four times their average width.
3. The minimum rib width should be determined by consideration of cover, bar spacing 
and fire resistance. Referring to Fig. 3.2 in the code, the minimum rib width is 125 mm.
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4. The thickness of structural topping or flange should not be less than 50 mm or one-tenth 
of the clear distance between ribs (Table 3.17 in the code).

Note that, to meet a specified fire resistance period, non-combustible finish, e.g. screed 
on top or sprayed protection, can be included to give the minimum thickness for slabs set 
out in Fig. 3.2 in the code. See also Part 2, section 4.2, of the code. For example, a slab 
thickness of 125 mm is required to give a fire resistance period of 2 h. The requirements 
are shown in Fig.8.7 (a).

8.4.3 Design Procedure and Reinforcement

(a) Shear forces and moments

Shear forces and moments for continuous slabs can be obtained by analysis as set out for 
solid slabs in section 8.2 or by using Table 3.12 in the code.

(b) Design for moment and moment reinforcement

The mid-span section is designed as a T-beam with flange width equal to the distance 
between ribs. The support section is designed as a rectangular beam. The slab may be 
made solid near the support to increase shear resistance.

Moment reinforcement consisting of one or more bars is provided in the top and bottom 
of the ribs. If appropriate, bars can be curtailed in a similar way to bars in solid slabs.

(c) Shear resistance and shear reinforcement

The design shear stress is given by

v=V/(bvd)  

where V is the ultimate shear force on a width of slab equal to the distance between ribs, bv 
is the average width of a rib and d is the effective depth. In no case should the maximum 
shear stress v exceed 0.8√fcu or 5 N/mm2. No shear reinforcement is required when v is 
less than the value of vc given in Table 3.8 of the code. Shear reinforcement is required 
when v exceeds vc. Clause 3.6.6.3 states that if the rib contains two or more bars, links are 
recommended for constructional purposes, except in waffle slabs. The spacing of links 
can generally be of the order of 1 m to 1.5 m depending on the size of the main bars.

(d) Reinforcement in the topping

The code states in clause 3.6.6.2 that fabric with a cross-sectional area of not less than 
0.12% of the area of the topping should be provided in each direction. The spacing of 
wires should not exceed one-half the centre-to-centre distance of the ribs. The mesh is 
placed in the centre of the topping and requirements for cover given in section 3.3.7 of the 
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code should be satisfied. If the ribs are widely spaced the topping may need to be designed 
for moment and shear as a continuous one-way slab between ribs.

8.4.4 Deflection

The deflection can be checked using the span-to-effective depth rules given in section 
3.4.6 of the code.

8.4.5 Example of One-way Ribbed Slab

(a) Specification

A ribbed slab is continuous over four equal spans each of 6 m. The characteristic dead 
loading including self-weight, finishes, partitions etc. is 4.7 kN/m2 and the characteristic 
imposed load is 2.5 kN/m2. The construction materials are grade C30 concrete and grade 
460 reinforcement. Design the end span of the slab.

Fig.8.8 (a) Section through floor; (b) section PP through slab.

(b) Trial section

A cross-section through the floor and a trial section for the slab are shown in Fig.8.8. The 
thickness of topping is made 60 mm and the minimum width of a rib is 125 mm. The 
deflection check will show whether the depth selected is satisfactory. The cover for mild 
exposure is 25 mm. For 12 mm diameter bar effective depth d is 
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d=275–25–12/2–244, say 240 mm  

Note: Minimum thickness of topping=50 mm or Clear distance between ribs/10 whichever 
is greater. In this case topping is 60 mm which is greater than 50 mm or (450−125)/10=32 
mm.

(c) Shear and moments in the rib

Consider 0.45 m width of floor. The design load per span is

0.45[(1.4×4.7)+(1.6×2.5)]=4.76 kN/m
F=4.76×6=28.57 kN

 

The design shears and moments taken from Table 3.12 in the code are as follows:

shear at Α=0.4×28.57=11.43 kN
shear at B=0.6×28.57=17.14 kN

moment at C=+0.086×28.57×6=14.74 kN m (sagging)
moment at B=−0.086×28.57×6=−14.74 kN m (hogging)

 

(d) Design of moment reinforcement

(i) Mid-span T-section

The flange breadth is 450 mm, hf=60 mm, d=240 mm

Effective width=125+(0.7×6000)/5=965>450 mm b=450 mm  

Check if the stress block is inside the flange.

Mflange=0.45×30×450×60×(240–60/2)×10−6=76.6>14.74 kNm.  

The neutral axis lies in the flange. The beam is designed as a rectangular beam.

k=14.74×106/[30×450×2402]=0.019<0.156
z/d=0.5+√(0.25–0.019/0.9)=0.98>0.95

z=0.95 d=0.95×240=228 mm
As=14.74x106/(0.95×460×228)=149 mm2

 

Provide 2T10 at top of the rib. As=157 mm .

(ii) Section at support

This is a rectangular section 125 mm wide, because the flange is in tension.
The redistribution is 20%, βb=0.8. From Clause 3.4.4.4 of the code
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K ̀=0.402×(0.8–0.40)−0.18×(0.8–0.40)2=0.132
k=M/(bd2 fcu)=14.74×106/(125×2402×x30)=0.068<K

 

Therefore no compression steel is required. 

z/d=0.5+√(0.25−k/0.9)=0.5+√(0.25–0.068/0.9)=0.92<0.95
z=0.92d=220 mm

As=M/(0.95 fy z)=14.74×106/(0.95×460×220)=153 mm2

 

Provide 2T10 at bottom of the rib. As=157 mm2.

(e) Shear resistance

No account will be taken of enhancement to shear strength.
At support B: 

V=17.14 kN.
v=17.14×103/(125×240)=0.57 N/mm2

100 As/(bvd)=100×157/(125×240)=0.52<3.0

 

400/d=400/240=1.67>1.0
vc=0.79 (0.52)1/3 (1.67)1/4 (30/25)1/3/1.25=0.58 N/mm2

v < vc

 

Links not required. However for construction purposes provide 6 mm links in 250 grade 
steel at 1000 mm c/c.

At the simple support A, the bottom bars are to be anchored 12 bar diameters past the 
centre of the support.

(f) Deflection

bw/b=125/450=0.27<0.3  

From Table 3.10 of the code, the basic span/d ratio is 20.8
Modification factor for tension steel:

M/(bd2)=14.74×106/(450×2402)=0.57
fs=(2/3) 460 (153/157)=299 N/mm2

 

The amount of redistribution at mid-span is not known, but the redistributed moment is 
greater than the elastic ultimate moment. Take βb equal to 1.0. The modification factor is

0.55+(477–299)/[120(0.9+0.57)]=1.56<2.0.  

Limit the modification factor to 2.0.
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Fig.8.9 Reinforcement detail in the ribs of a ribbed slab.

allowable span/d ratio=20.8×1.56=32.45
actual span/d ratio=6000/240=25

 

The slab is satisfactory with respect to deflection.

(g) Arrangement of reinforcement in ribs

The arrangement of moment and shear reinforcement in the rib is shown in Fig.8.9.

(h) Reinforcement in topping

The area required per metre width is 

(0.12/100)×60×1000=72 mm2/m  

The spacing of wires is not to be greater than one-half the centre-to-centre distance of 
the ribs, i.e. 225 mm. Refer to Table 8.2. Provide D98 wrapping mesh with an area of 98 
mm2/m and wire spacing 200 mm both ways in the centre of the topping.

8.5 TWO-WAY SPANNING SOLID SLABS

8.5.1 Slab Action, Analysis and Design

When floor slabs are supported on four sides, two-way spanning action occurs as shown 
in Fig.8.10 (a). In a square slab the action is equal in each direction. In long narrow slabs 
where the length is greater than twice the breadth the action is effectively one way. How-
ever, the end beams always carry some slab load.
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Slabs may be classified according to the edge conditions. In the following the word 
continuous over supports also includes the case where the slab is built in at the supports. 
They can be defined as follows:

1. simply supported one-panel slabs where the corners can lift away from the supports
2. a one panel slab held down on four sides by integral edge beams (the stiffness of the 
edge beam affects the slab design)
3. slabs with all edges continuous over supports
4. slab with one, two or three edges continuous over supports. The discontinuous edge(s) 
may be simply supported or held down by integral edge beams 

Elastic analysis of rectangular and circular slabs using analytical solutions for standard 
cases are given in textbooks on the theory of plates. Irregularly shaped slabs, slabs with 
openings or slabs carrying non-uniform or concentrated loads, slabs with edge beams can 
be analysed to give solutions based on finite element analysis.

Commonly occurring cases in slab construction in buildings are discussed. The design 
is based on shear and moment coefficients and the procedures and provisions set out in 
BS8110: Part 1, section 3.5.3. The slabs are square or rectangular in shape and support 
predominantly subjected to uniformly distributed load.

8.5.2 Rectangular Slabs Simply Supported on All Four Edges

The design of simply supported slabs that do not have adequate provision either to resist 
torsion at the corners or to prevent the cornets from lifting may be made in accordance 
with BS 8110: Part 1, clause 3.5.3.3. This clause gives the following equations for the 
maximum bending moments msx and msy at mid-span on strips of unit width for spans lx 
and ly respectively:

(Code equation 10)
(Code equation 11)

 

where

lx is the length of the shorter span,
ly is the length of the longer span,

n=1.4Gk+1.6Qk is the total ultimate load per unit area
αsx, αsy are moment coefficients from Table 3.14 in the code. .

Gk and Qk respectively are unfactored dead and imposed loads.
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The centre strips and locations of the maximum moments are shown in Fig.8.11 (a). A 
simple support for a slab on a steel beam is shown in 8.11(b). Alternatively the slab sup-
port might be a wall. The expressions for αsx and αsy are derived as follows.

If n is the load applied to the slab, as shown in Fig.8.11(a), let load nx be carried by a 
simply supported strip in direction lx and ny be carried a simply supported strip in direc-
tion ly. Therefore

nx+ny=n  

For equal deflection at mid-span of the strips,

 

Solving for nx and ny,

nx=n r4/(1+r4)
ny=n/(1+r4)

r=(ly/lx), ly≥lx

 

The bending moments at the middle of the strips are

(Code equation 12)

(Code equation 13)

 

Fig.8.10 One-way and two-way action in slabs
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Some values of the coefficients from BS8110: Part 1, Table 3.13, are 

ly/lx=1.0; αsx=0.062, αsy=0.062
ly/lx=l.5; αsx=0.104, αsy=0.046

 

Fig.8.11 (a) Centre strips; (b) end supports; (c) loads on edge beam/wall supports and 
slab shears.

As the ratio of sides ly/lx increases, the shorter span supports an increasing share of the 
load.

The tension reinforcement can be designed using the formulae for rectangular beams 
in clause 3.4.4.4 of the code. The area must exceed the values for minimum reinforcement 
for solid slabs given in Table 3.25 of the code. The simplified rules for curtailment given 
in Fig.3.25 in the code and shown in Fig.8.3 here apply. These rules state that 40% of the 
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mid-span reinforcement should extend to the support and be anchored 12 bar diameters 
past the centre of the support. The other 60% of bars are stopped off at 0.1 of the span 
from the support.

The generally assumed load distribution to the beams and the loads causing shear on 
strips 1 m wide are shown in Fig.8.11(c). The shear forces in both strips have the same 
value. The shear resistance is checked using formulae given in clause 3.5.5 and Table 3.16 
of the code.

The deflection of solid slabs is discussed in BS 8110: Part 1, clause 3.5.7, where it 
is stated that in normal cases it is sufficient to check the span-to-effective depth ratio of 
the unit strip spanning in the shorter direction against the requirements given in section 
3.4.6 of the code. The amount of steel in the direction of the shorter span is used in the 
calculation.

Crack control is dealt with in clause 3.5.8 of the code which states that the bar spacing 
rules given in clause 3.12.11 are to be applied.

8.5.3 Example of a Simply Supported Two-way Slab

(a) Specification

A slab in an office building measuring 5 m×7.5 m is simply supported at the edges with no 
provision to resist torsion at the corners or to hold the corners down. The slab is assumed 
initially to be 200 mm thick. The total characteristic dead load including self-weight, 
screed, finishes, partitions, services etc. is 6.2 kN/m2. The characteristic imposed load is 
2.5 kN/m2. Design the slab using grade C30 concrete and grade 250 reinforcement.

(b) Design of the moment reinforcement

Consider centre strips in each direction 1 m wide. The design load is

n=(1.4×6.2)+(1.6×2.5)=12.68 kN/m2

ly/lx=7.5/5=1.5
 

From BS8110: Part 1, Table 3.13 (or from equations 12 and 13 of the code), the moment 
coefficients are

αsx=0.104, αsy=0.046  

For cover of 25 mm and 16 mm diameter bars the effective depths are as follows:

for short span bars in the bottom layer: dx=200−25−8=167 mm
for long span bars in the top layer: dy=200−25−16−8=151 mm
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(i) Short span

msx=0.104×12.68×52=32.97 kN m/m
k=32.97×106/(1000×1672×30)=0.039<0.156

z/dx=0.5+√(0.25−0.039/0.9)=0.954>0.95
z=0.95×167=159 mm

As=32.97×106/(0.95×250×159)=873 mm2/m

 

Provide 16 mm diameter bars at 200 mm centres to give an area of 1005 mm2/m.

Steel percentage=100×1005/(1000×200)=0.5 

Curtailing 50% of bars gives a steel percentage of 0.25>0.24 (minimum). Therefore pro-
vide 16 mm diameter bars at 200 mm centres but curtail alternate bars at 0.1 of span from 
the supports. 

(ii) Long span

msy=0.046×12.68×52=14.58 kN m/m
k=14.58×106/(1000×1512×30)=0.021<0.156

z/dy=0.5+√(0.25−0.021/0.9)=0.98>0.95
z=0.95×151=144 mm

As=14.58×106/(0.95×250×144)=426 mm2/m

 

Provide 12 mm diameter bars at 225 mm centres to give an area of 503 mm2/m.

Steel percentage=100×502/(1000×200)=0.25 

Curtailing 50% of bars gives a steel percentage of 0.125<0.24 (minimum). Therefore 
no curtailment is possible. All bars must be anchored 12 diameters past the centre of the 
support.

Fig 8.12 Slab steel (a) plan; (b) part section.
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(c) Shear resistance

Check the shear stress on the long span. This will have the greatest value because dy is 
less than on the short span. The design concrete shear stress will also be lower for the 
long span because the steel area is less than in the short span. Referring to Fig.8.11(c) the 
maximum shear at the support is given by

V=12.68×2.5=31.7 kN
v=31.7×103/(1000×151)=0.21 N/mm2

100 As/(bv d)=100×503/(1000×151)=0.33<3.0
400/151=2.65>1.0

vc=0.79×(0.33)1/3 (2.65)1/4 (30/25)1/3/1.25=0.59 N/mm2

v<vc

 

No shear reinforcement is necessary and the slab is satisfactory with respect to shear.

(d) Deflection

The slab is checked for deflection across the short span as this carries the major part of 
the load.

From Table 3.9 in the code the basic span-to-effective ratio is 20.
Modification factor for tension steel:

msx/(bd2)=32.97×106/(1000×1672)=1.18
fs=(2/3) 250 (873/1005)=145 N/mm2

 

The modification factor for tension steel is 

0.55+(477–145)/ [120×(0.9+1.18)]=1.88<2.0
allowable span/d ratio=20×1.88=37.6

 

actual span/d ratio=5000/167=29.9  

The slab is very satisfactory with respect to deflections.
If high yield reinforcement is used, then

As=32.97×106/(0.95×460×159)=475 mm2/m
Provide T12 at 200 mm c/c, As=565 mm2/m

fs=(2/3)×460×(475/565)=258 N/mm2

 

The modification factor for tension steel is

0.55+(477–258)/[120×(0.9+1.18)]=1.43<2.0
Allowable span/d ratio=20×1.43=28.55<29.9
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A thicker slab is needed to comply with the deflection limit.

(e) Cracking

Referring to BS8110: Part 1, clause 3.12.11.2.7, using average value of d in x and y-di-
rections, d=(151+167)/2=160 mm. The clear spacing is not to exceed 3d= 480 mm. The 
maximum actual spacing is only 225 mm. In addition the slab depth does not exceed 250 
mm for grade 250 reinforcement. No further checks are required.

(f) Slab reinforcement

The slab reinforcement is shown in Fig.8.12.

8.6 RESTRAINED SOLID SLABS

8.6.1 Design and Arrangement of Reinforcement

The design method for restrained slabs is given in BS8110: Part 1, clause 3.5.3.4. In these 
slabs the corners are prevented from lifting and provision is made for resisting torsion 
near the corners. The maximum moments at mid-span on strips of unit width for spans lx 
and ly are given by

(Code equation 14)
(Code equation 15)

 

The clause states that these equations may be used for continuous slabs when the follow-
ing provisions are satisfied:

1. The characteristic dead and imposed loads are approximately the same on adjacent 
panels as on the panel being considered;
2. The spans of adjacent panels in the direction perpendicular to the line of the common 
support are approximately the same as that of the panel considered in that direction.

The moment coefficients βsx and βsy in the equations above are given in BS8110: Part 
1, Table 3.14. The coefficients have been derived using Yield Line analysis and will be 
discussed in section 8.9.16. Nine slab support arrangements are covered, the first four of 
which are shown in Fig.8.13. The moment coefficients are given both for support moment 
(hogging) and span moment (sagging) in both the short span and long span directions. The 
design rules for slabs are as follows.

1. The slabs are divided in each direction into middle and edge strips as shown in 
Fig.8.14.
2. The maximum moments defined above apply to the middle strips. The moment rein-
forcement is designed for 1m wide strips using formulae in Chapter 4. The amount of 
reinforcement provided must not be less than the minimum area given in BS8110: Part 
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1, Table 3.25. The bars are spaced at the calculated spacing uniformly across the middle 
strip.
3. The reinforcement is to be detailed in accordance with the simplified rules for curtail-
ment of bars in slabs given in clause 3.12.10.3 and shown in Fig. 3.25 of the code. At the 
discontinuous edge, top steel of one-half the area of the bottom steel at mid-span is to be 
provided as specified in clause 3.12.10.3.2 to control cracking. Provisions are given in the 
same clause regarding shear resistance at the end support. This depends on the detailing 
of the bottom reinforcement and was discussed in section 8.2.4 above.
4. The minimum tension reinforcement specified in Table 3.25 of the code is to be pro-
vided in the edge strips together with the torsion reinforcement specified in rule5 below. 
The edge strips occupy a width equal to total width/8 parallel to the supports as shown in 
Fig.3.9 of the code and here in Fig.8.14.

Fig.8.13 (a) Slab arrangement, floor plan: case 1: interior panel; case 2: one short edge 
discontinuous; case 3: one long edge discontinuous; case 4: two adjacent edges discon-
tinuous.

5. Torsion reinforcement is to be provided at corners where the slab is simply supported 
on both edges meeting at the corners. Corners X and Y shown in Fig.8.13 require torsion 
reinforcement. This is to consist of a top and bottom mesh with bars parallel to the sides 
of the slab and extending from the edges a distance of one-fifth of the shorter span. The 
area of bars in each of the four layers should be, at X, three-quarters of the area of bars 
required for the maximum mid-span moment and at Y, one-half of the area of the bars 
required at corner X. Note that no torsion reinforcement is required at the internal corners 
Z shown in Fig.8.13.
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Fig.8.14 (b) Middle and edge strips.

8.6.2 Adjacent Panels with Markedly Different Support Moments

The moment coefficients in Table 3.14 of the code apply to slabs with similar spans and 
loads giving similar support moments. If the support moments for adjacent panels differ 
significantly, the adjustment procedure set out in clause 3.5.3.6 of the code must be used. 
This case is not discussed further.

8.6.3 Shear Forces and Shear Resistance

(a) Shear forces

Shear force coefficients βvx and βvy for various support cases for continuous slab strips are 
given in Table 3.15 of the code. The maximum shear force per unit width in the slab are 
given by 

Vsx=βvx n lx (Code equation 19)
Vsy=βvy n lx (Code equation 20)

 

These are numerically the same as the design loads on supporting beams per unit length 
over the middle three quarters of the span as shown in Fig. 3.10 in the code which is also 
shown here in Fig.8.15.

The coefficients have been derived using Yield Line analysis and will be discussed in 
section 8.9.16.

(b) Shear resistance

The shear resistance for solid slabs is covered in BS 8110: Part 1, section 3.5.5, and the 
form and area of shear reinforcement are given in Table 3.16. Shear resistance was dis-
cussed in section 8.2.4 above.
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Fig.8.15 Distribution of load on support beam.

8.6.4 Deflection

Deflection is checked in accordance with section 3.4.6 of the code by comparing the 
actual span-to-effective depth ratio with the corresponding allowable ratio. Clause 3.5.7 
states that the ratio is to be based on the shorter span and its amount of tension reinforce-
ment in that direction.

8.6.5 Cracking

Crack control is discussed in BS 8110: Part 1, clause 3.5.8. This states that the bar spac-
ing rules given in clause 3.12.11 are the best means of controlling flexural cracking in the 
slabs.

8.6.6 Example of Design of Two-way Restrained Solid Slab

(a) Specification

The part floor plan for an office building is shown in Fig.8.16. It consists of restrained 
slabs poured monolithically with the downstand edge beams. The slab is 175 mm thick 
and the loading is as follows:

total characteristic dead load Gk=6.2 kN/m2

characteristic imposed load Qk=2.5 kN/m2
 

Design the comer slab using grade C35 concrete and grade 460 reinforcement. Show the 
reinforcement on sketches.

(b) Slab division, moments and reinforcement

The corner slab is divided into middle and edge strips as shown in Fig.8.16 (a). The 
moment coefficients are taken from BS 8110: Part 1, Table 3.14 for a square slab for the 
case with two adjacent edges discontinuous. The values of the coefficients and locations 
of moments are shown in Fig.8.16 (b). 
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design ultimate load=(1.4×6.2)+(1.6×2.5)=12.68 kN/m2  

Assuming 10 mm diameter bars and 20 mm cover from Table 3.3 in the code, the effective 
depth of the outer layer to be used in the design for moments in the short span direction 
is

d=180−20−5=155 mm  

The effective depth of the inner layer to be used in the design for moments in the other 
span direction is

d=180−20−5−10=145 mm  

The moments and steel areas for the middle strips are calculated. Because the slab is 
square only one direction need be considered.

Fig.8.16 (a) Part floor plan; (b) symmetric moment coefficients.
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(i) Positions 1 and 4 (Over supports)

d=155 mm
msx=−0.047×12.68×62=−21.45 kN m/m

k=21.45×106/(35×1000×1552)=0.026<0.156
z/d=[0.5+√(0.25–0.026/0.9)]=0.97>0.95

z=0.95×155=147 mm
As=21.45×106/(0.95×460×147)=334 mm2/m

 

Provide 10 mm diameter bars at 200 mm centres to give an area of 392 mm2/m.

(ii) Position 2 (mid-span)

Use the smaller value of d. 

d=145 mm
msx=0.036×12.68×62=16.43 kN m/m

k=16.43×106/(35×1000×1452)=0.022<0.156
z/d=[0.5+√(0.25–0.022/0.9)]=0.98>0.95

 

z=0.95×145=138 mm
As=16.43×106/(0.95×460×138)=272 mm2/m

 

Provide 8 mm diameter bars at 160mm centres to give an area of 314 mm2/m.

(iii) Minimum steel

Check the minimum area of steel in tension from BS8110: Part 1, Table 3.25:

0.13×1000×180/100=234 mm2/m  

(iv) Positions 3 and 5 (Discontinuous edges)

According to clause 3.12.10.3, top steel one half of the area of steel at mid-span to be 
provided.

As=0.5×314=157 mm2/m<234 mm2/m (minimum steel)  

Provide 8 mm diameter bars at 200 mm centres to give an area of 251 mm2/m. In detailing, 
the moment steel will not be curtailed because both negative and positive steel would fall 
below the minimum area if 50% of the bars were stopped off. 
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Fig.8.17 (a) Bottom steel arrangement in solid two-way slab.

(c) Shear forces and shear resistance

(i) Positions 1 and 4

d=155 mm
Vsx=0.4×12.68×6=30.43 kN/m

v=30.43×103/(1000×155)=0.20 N/mm2

100 As/(bvd)=100×392/(1000×155)=0.25<3.0
400/d=400/155=2.58>1.0

vc=0.79×(0.25)1/3(2.58)1/4(35/25)1/3/1.25=0.57 N/mm2

v<vc

 

No shear reinforcement is required.
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(ii) Positions 3 and 5

d=145 mm  

Fig.8.17 (b) Top steel arrangement in solid two-way slab.

The bottom tension bars are to be stopped at the centre of the support. The shear resistance 
is based on the top steel with As=251 mm2/m. 

Vsx=0.26×12.68×6=19.78 kN/m
v=19.78×103/(1000×145)=0.14 N/mm2
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100 As/(bvd)=100×251/(1000×145)=0.17<3.0
400/d=400/145=2.76>1.0

vc=0.79×(0.17)1/3(2.76)1/4(35/25)1/3/1.25=0.51 N/mm2

v<vc

 

No shear reinforcement is required.

(d) Torsion steel

Torsion steel of length equal to l/5th of shorter span=6/5=1.2 m is to be provided in the top 
and bottom of the slab at the three external corners marked X and Y in Fig.8.16(b).

(i) Corner X

The area of torsion steel is 0.75×(Required steel at maximum mid-span moment)

As=0.75×272–204 mm2/m  

This will be provided by the minimum steel of 8 mm diameter bars at 200 mm centres 
giving a steel area of 251 mm2/m.

(ii) Corner Y

The area of torsion steel is one half of that at corner X.

As=0.5×204=102 mm2/m.  

Again provide minimum 8 mm diameter bars at 200 mm centres giving a steel area of 251 
mm2/m.

(e) Edge strips

Provide minimum reinforcement, 8 mm diameter bars at 200 mm centres, in the edge 
strips both at top and bottom.

(f) Deflection

Check using steel at mid-span with d=145 mm. 

basic span d ratio=26 (BS8110: Part 1, Table 3.9)  

Modification factor for tension steel:
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msx/(bd2)=16.43×106/(1000×1452)=0.78
fs=(2/3)×460×(272/314)=266 N/mm2

 

The modification factor due to tension steel is

0.55+(477–266)/ [120(0.9+0.78)]=1.60<2.0
allowable span/d ratio=1.60×26=41.60

actual span/d ratio=6000/145=41.37

 

The slab can be considered to be just satisfactory.

(g) Cracking

The bar spacing does not exceed 3d=3×145=435 mm and in addition for grade 460 
steel the depth is less than 200 mm. No further checks are required as stated in clause 
3.12.11.2.7 of the code. 

(h) Sketch of slab

The arrangements of reinforcement are shown in Fig.8.17 (a) and Fig.8.17 (b). The top 
and bottom bars are shown separately for clarity. The moment steel in the bottom of the 
slab is stopped at the supports at the outside edges and lapped with steel in the next bays at 
the continuous edges. Secondary steel is provided in the top of the slab at the continuous 
edges to tie in the moment steel.

8.7 WAFFLE SLABS

8.7.1 Design Procedure

Two-way spanning ribbed slabs are termed waffle slabs. The general provisions for con-
struction and design procedure are given in BS 8110: Part 1, section 3.6. These conditions 
are set out in section 8.3 above dealing with one-way ribbed slabs. Moments for design 
may be taken from Table 3.13 of the code for slabs simply supported on four sides or 
from Table 3.14 for panels supported on four sides with provision for torsion at the cor-
ners. Slabs may be made solid near supports to increase moment and shear resistance and 
provide flanges for support beams. In edge slabs, solid areas are required to contain the 
torsion steel.
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8.7.2 Example of Design of a Waffle Slab

(a) Specification

Design a waffle slab for an internal panel of a floor system that is constructed on an 8 
m square module. The total characteristic dead load is 6.5 kN/m2 and the characteristic 
imposed load is 2.5 kN/m2. The materials for construction are grade C30 concrete and 
grade 460 reinforcement.

(b) Arrangement of slab

A plan of the slab arrangement is shown in Fig.8.18 (a). The slab is made solid for 500 
mm from each support. The proposed section through the slab is shown in 8.18(b). The 
proportions chosen for rib width, rib depth, depth of topping and rib spacing meet various 
requirements set out in BS 8110: Part 1, section 3.6. The rib width is the minimum speci-
fied for fire resistance given in Fig. 3.2 of the code. From Table 3.3 the cover required for 
mild exposure is 25 mm.

(c) Reinforcement

design ultimate load=(1.4×6.5)+(1.6×2.5)=13.1 kN/m2  

The middle strip moments for an interior square panel are, from Table 3.14,

Support msx=−0.031×13.1×82=−26.00 kNm/m
Mid-span msx=0.024×13.1×82=20.12 kNm/m

 

Slab width supported by one rib=500 mm 

The moment per rib is therefore

Support msx=−26.0×0.5=−13.00 kNm
Mid-span msx=20.12x0.5=10.06 kNm

 

The effective depths assuming 12 mm diameter main bars and 6 mm diameter links are 
as follows:

Outer layer d=275–25–6−12/2=238 mm
Inner layer d=275–25–6−12–12/2=226 mm
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Fig 8.18 (a) Plan of waffle slab; (b) section through the slab
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(i) Support-solid section 500 mm wide

As the flooring dimensions and supports are symmetrical, it is convenient to have the steel 
arrangement also symmetrical. Section design is based on the smaller value of d equal to 
226 mm.

k=13.0×106/(500×2262×30)=0.017<0.156 
z/d=[0.5+√(0.25–0.017/0.9)]=0.98>0.95

z=0.95 d=215 mm 
As=13.0×106/(0.95×460×215)=138 mm2

 

Provide two 10 mm diameter bars to give a steel area of 157 mm2.
At the end of the solid section, the maximum moment of resistance of the concrete ribs 

with width 125 mm is given by

M=0.156×30×125×2262×10−6=29.88 kNm  

This exceeds the applied moment at the support and so the ribs are able to resist the 
applied moment without compression steel. The applied moment at 500 mm from the 
support will be somewhat less than the support moment.

(ii) Centre of span. T-beam, d=226 mm

The flange breadth b is 500 mm and hf=75 mm.

Mflange=0.45×30×500×75(226–75/2)×10−6=95.4 kNm>10.06 kNm  

Hence the neutral axis lies in the flange and 0p8

the beam is designed as a rectangular beam.

k=10.06×106/(500×2262×30)=0.013 
z/d=[0.5+√(0.25–0.013/0.9)]=0.99>0.95

z=0.95d=215 mm 
As=10.06×106/(0.95×460×215)=107 mm2

 

Provide two 10 mm diameter bars with area 157 mm .

(d) Shear resistance

The shear force coefficient is taken from BS8110: Part 1, Table 3.15. The shear at the 
support (Table 3.15) is



 

Reinforced concrete slabs  197

Vsx=0.33×13.1×8=34.58 kN/m  

The shear at the support for the width of 500 mm supported by one rib is

Vsx=34.58×0.5=17.29kN  

The shear on the ribs at 500 mm from support is 

V=17.29–0.5×13.1×0.5=14.02 kN
v=14.02×103/(125×238)=0.47 N/mm2

100 As/(bv d)=100×157/(125×238)=0.53<3.0
400/d=400/23 8=1.68>1.0

 

vc=0.79×(0.53)1/3(1.68)1/4(30/25)1/3/1.25=0.62 N/mm2

0.5 vc<v<vc

 

Provide 6 mm diameter in grade 250 reinforcement nominal links and two bars in the rib 
to anchor the links. Area of two legs of 6 mm diameter links Asv=57 mm2. Calculate the 
spacing.

57>0.4×125×Sv/(0.95×250)
sv=271 mm

0.75d=0.75×226=170 mm

 

Space the links at 160 mm along the rib.

Fig 8.19 Reinforcement detail in the rib including shear reinforcement.
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(e) Deflection

bw/b=125/500=0.25<0.3 (Table 3.9 of code)
Basic span/depth ratio=20.8 (Continuous over all supports)

 

Modification factor for tension steel:

M/(bd2)=10.06×106/ (500×2262)=0.394 
fs=(2/3)×460×(107/157)=209 N/mm2

 

The modification factor for tension steel is

0.55+(477–209)/ [120(0.9+0.394)=2.28>2.0
allowable (span/d)=20.8×2=41.6

actual span/d ratio=8000/226=35.4

 

The slab is satisfactory with respect to deflection.

(f) Reinforcement in topping

According to clause 3.6.5.2, for a topping 75 mm thick the area required per metre width 
is 

0.12×75×1000/100=90 mm2/m  

The spacing of the wires is not to be greater than one-half the centre-to-centre distance 
of the ribs, i.e. 250 mm. Refer to Table 8.2. Provide D98 wrapping mesh with an area 98 
mm2/m and wire spacing of 200 mm in the centre of the topping.

(g) Arrangement of the reinforcement

The arrangement of the reinforcement and shear reinforcement in the rib is shown in 
Fig.8.19.

8.8 FLAT SLABS

8.8.1 Definition and Construction

The flat slab is defined in BS8110: Part 1, clause 1.3.2.1, as a slab with or without drops, 
supported generally without beams by columns with or without column heads. The code 
states that the slab may be solid or have recesses formed on the soffit to give a waffle slab. 
Here only solid slabs will be discussed.
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Flat slab construction is shown in Fig.8.20 for a building with circular internal col-
umns, square edge columns and drop panels. The slab is thicker than that required in 
T-beam floor slab construction but the omission of beams gives a smaller storey height 
for a given clear height and simplification in construction and formwork. Various column 
supports for the slab either without or with drop panels are shown in Fig.8.21. The effec-
tive column head is defined in the code.

8.8.2 General Code Provisions

The design of slabs is covered in BS 8110: Part 1, section 3.7. General requirements are 
given in clause 3.7.1, as follows.

1. The ratio of the longer to the shorter span should not exceed 2.

2. Design moments may be obtained by

(a) equivalent frame method
(b) simplified method
(c) finite element analysis

3. The effective dimension lh of the column head is taken as the lesser of

(a) the actual dimension lho or
(b) lh max=lc+2(dh−40)

 

where lc is the column dimension measured in the same direction as lh. For a flared head 
lho is measured 40 mm below the slab or drop. Column head dimensions and the effective 
dimension for some cases are shown in Fig.8.22 (see also BS8110: Part 1, Fig. 3.11).
4. The effective diameter of a column or column head is as follows:

(a) For a column, the diameter of a circle whose area equals the area of the column

(b)  for a column head, the area of the column head based on the effective dimen-
sions defined in requirement 3 above.

The effective diameter of the column or column head must not be greater than one-
quarter of the shorter span framing into the column.

5. Drop panels only influence the distribution of moments if the smaller dimension of the 
drop is at least equal to one-third of the smaller panel dimension. Smaller drops provide 
resistance to punching shear.

6. The panel thickness is generally controlled by deflection. The thickness should not be 
less than 125 mm.
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Fig.8.20 Flat slab construction (a) Floor plan; (b) section.
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Fig.8.21 (a) Slab without drop panel; (b) slab with drop panel and flared column head.

Fig 8.22 Column head dimensions.
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8.8.3 Analysis

The code states that normally it is sufficient to consider only the single load case of maxi-
mum design load, (1.4×dead load+1.6×imposed load) on all spans. The following two 
methods of analysis are set out in section 3.7.2 of the code to obtain the moments and 
shears for design.

(a) Frame analysis method

The structure is divided longitudinally and transversely into frames consisting of columns 
and strips of slab. Either the entire frame or sub-frames can be analysed by frame analysis 
programs. This method is not considered further.

Table 8.4 Moments and shear forces for flat slabs for internal panels

 At first interior support Middle of interior span Interior supports

Moment −0.086Fl +0.063Fl −0.063Fl

Shear 0.6F  0.5F

l=full panel length in the direction of the span; F, total design load on the strip of slab between 
adjacent columns due to 1.4 times the dead load plus 1.6 times the imposed load.

(b) Simplified method

In this method, for structures where lateral stability does not depend on slab-column con-
nections, moments and shears are taken from Table 3.12 of the code for one-way spanning 
continuous slabs. The total moment across the full width of the panel is calculated and the 
proportion resisted by the column strip and middle strip are taken from Table 3.18 of the 
code. The design moments and shears for internal panels from Table 3.12 of the code are 
given in Table 8.4. Refer to the code for the complete table. Table 8.5 reproduces figures 
from Table 3.18 of the code. 

Table 8.5 Distribution of moments in flat slabs

 Distribution between column and middle strip as percentage of total negative 
or positive moment

 Column strip Middle strip

Nega-
tive

75 25

Posi-
tive

55 45
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The following provisions apply:

1. Design is based on the single load case mentioned above;
2. The structure has at least three rows of panels of approximately equal span in the direc-
tion considered.
3. Moments at supports from Table 3.12 may be reduced by 0.15 F hc, where F= Total 
design load, hc=Effective diameter of column head.

Fig.8.23 Division of a panel into column and middle strips.

8.8.4 Division of Panels and Moments

The code rules have been derived on the basis of extensive analytical studies of plate 
problems. For a full discussion see Reference 2 at the end of the chapter. 

(a) Panel division

Flat slab panels are divided into column and middle strips as shown in Fig. 3.12 of the 
code. The division is shown in Fig.8.23 for a slab with drop panels.
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(b) Moment division

The design moments obtained from Table 3.12 of the code are divided between column 
and middle strips in accordance with Table 3.18 of the code. The proportions are given in 
Table 8.5. Refer to the code for modifications to the table for the case where the middle 
strip is increased in width.

8.8.5 Design of Internal Panels and Reinforcement Details

The slab reinforcement is designed to resist moments derived from Tables 3.12 and 3.18 
of the code. The code states in clause 3.7.3.1 for an internal panel that two-thirds of the 
amount of reinforcement required to resist negative moment in the column strip should be 
placed in a central zone of width one-half of the column strip.

Reinforcement can be detailed in accordance with the simplified rules given in clause 
3.12.10.3.1 and Fig. 3.25 of the code (section 8.2.3(d) above).

8.8.6 Design of Edge Panels

Design of edge panels is not discussed. Reference should be made to the code for design 
requirements. The design is similar to that for an interior panel. The moments are given 
in Table 3.12 of the code. The column strip is much narrower than for an internal panel 
(Fig. 3.13 of the code). The slab must also be designed for large shear forces as shown in 
Fig. 3.15 of the code.

8.8.7 Shear Force and Shear Resistance

The code states in clause 3.7.6.1 that punching shear around the column is the critical 
consideration in flat slabs. Rules are given for calculating the ultimate design shear force 
and checking shear stresses.

(a) Shear forces

Equations are given in the code for calculating the design effective shear force Veff at a 
shear perimeter in terms of the design shear Vt transferred to the column. The equations 
for Veff include an allowance for moment transfer, i.e. the design moment transferred from 
the slab to the column.

The code states that in the absence of calculations it is satisfactory to take for internal 
columns in braced structures with approximately equal spans. To calculate Vt all panels 
adjacent to the column are loaded with the maximum design load.

Veff=1.15Vt 
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Fig.8.24 Punching shear perimeter

(b) Shear resistance

Guidance on shear due to concentrated loads on slabs is given in BS 8110: Part 1, section 
3.7.7 (Refer to section 5.1.9, Chapter 5). The checks are as follows.

(i) Maximum shear stress at the face of the column

vmax=V/(u0 d)≤0.8√fcu or 5 N/mm2  

where uo is the perimeter of the column (Fig.8.24) and V is the design ultimate value of 
the concentrated load promoting punching.

(ii) Shear stress on a failure zone 1.5d from the face of the column

v=V/(u d)  

where u is the perimeter of the failure zone 1.5d from the face of the column (Fig.8.24). 
If v is less than the design concrete shear stress given in Table 3.8 of the code, no shear 
reinforcement is required. If the failure zone mentioned above does not require shear 
reinforcement, no further checks are required. As conventional shear reinforcement in 
the form of links greatly complicates and slows down the steel fixing process, it is not 
desirable to have shear reinforcement in light or moderately loaded slabs. However in the 
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last ten years some prefabricated proprietary shear reinforcement have become available 
which considerably simplify the provision of shear reinforcement. Another form of shear 
reinforcement used is Stud rails which consist of headed shear studs welded to a steel 
plate.

8.8.8 Deflection

The code states in clause 3.7.8 that for slabs with drops, if the width of drop at least equal 
to one-third of the span, the rules limiting span-to-effective depth ratios given in section 
3.4.6 of the code can be applied directly. In other cases span-to-effective depth ratios are 
to be multiplied by 0.9. The check is to be carried out for the most critical direction, i.e. 
for the longest span.

8.8.9 Crack Control

The bar spacing rules for slabs given in clause 3.12.11.2.7 of the code apply.

8.8.10 Example of Design for an Internal Panel of a Flat Slab Floor

(a) Specification

The floor of a building constructed of flat slabs is 30 m×24 m. The column centres are 6 
m in both directions and the building is braced with shear walls. The panels are to have 
drops of 3 m×3 m. The depth of the drops is 250 mm and the slab depth is 200 mm. The 
internal columns are 450 mm square and the column heads are 900 mm square. The depth 
of the column head is 600 mm. The loading is as follows:

Screed, floor finishes, partitions and ceiling=2.5 kN/m
Imposed load=3.5 kN/m2

 

The materials are grade C30 concrete and grade 250 reinforcement.
Design an internal panel next to an edge panel on two sides and show the reinforcement 

on a sketch.

(b) Slab and column details and design dimensions

A part floor plan and column head, drop and slab details are shown in Fig.8.25. The drop 
panels are made one-half of the panel dimension. The column head dimension lh0, 40 mm 
below the soffit of the drop panel, is 870 mm. The effective dimension lh of the column 
head is the lesser of



 

Reinforced concrete slabs  207

lh0=450+(900−450)×{(600−40)/600}=870 mm, and
lhmax=450+2(600−40)=1570 mm

 

Therefore lh=870 mm.
The effective span l is 6000 mm
The effective diameter of the column head is

hc=√(4×8702/π)=982 mm≤(¼)×6000=1500 mm
hc=982 mm

 

The column and middle strips are shown in Fig.8.25(a).

(c) Design loads and moments

Taking unit weight of concrete as 23.6 kN/m3, the average load due to the weight of the 
slabs and drops is 

[(3×3×0.25) (Drops)+(6×6−3×3)×0.2)]×23.6/62=5.02 kN/m2  

Note: The area of drops in a square panel 3 m×3 m is 9 m2

The design ultimate load is

n=(5.02+2.5)×1.4+(3.5×1.6)=16.13 kN/m2  

The total design load on 1 m strip of slab is

F=16.13×6=96.78 kN/m

Fl=96.78×6=580.68 kNm/m

 

The moments in the flat slab are calculated using coefficients from Table 3.12 of the code 
and the distribution of the design moments in the panels of the flat slab is made in accor-
dance with Table 3.18. The moments in the flat slab are as follows.

(i) Negative moment at first interior support

M=−086×580.68=−49.94 kNm/m  

This moment can be reduced by 0.15 Fhc.
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Fig 8.25 (a)Part floor plan; (b) column head, drop and slab details.
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0.15 F hc=0.15×96.78×0.982=14.26 kNm/m.
M=−49.94+14.26=−35.68 kNm/m

 

Total negative moment across the whole panel width of 6 m

M=−35.68×6=−214.08 kNm  

(ii) Positive moment at centre of the interior span

M=+0.063×580.68=36.58 kNm/m  

(iii) Total positive moment across the whole panel width of 6 m

M=36.58×6=219.48 kNm  

The distribution in the panels between the column and middle strips is as follows.

(iv) Column strip

negative moment=−0.75×214.08=−160.6 kN m
positive moment=0.55×219.48=120.7 kN m

 

(v) Middle strip

negative moment=−0.25×214.6=−53.5 kNm
positive moment=0.45×219.5=98.8 kNm

 

Note: There is 20% redistribution assumed in the above values.

(d) Design of moment reinforcement

The cover is 25 mm and 16 mm diameter bars in two layers are assumed. At the drop the 
effective depth for the inner layer is

d=250−25−16−8=201 mm  

In the slab the effective depth of the inner layer is

d=200–25–16–8=151 mm  

The design calculations for the reinforcement in the column and middle strip are made 
with width b=3000 mm.

(i) Column strip negative moment reinforcement (Steel at top)

With 20% redistribution, βb=0.8. 
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K ̀=0.40( βb−0.4)−0.18 (βb−0.4)2=0.132
k=160.6×106/(3000×2012×30)=0.044<0.132

z/d=[0.5+√(0.25–0.044/0.9)]=0.95
z=0.95d=191mm

As=160.6×106/(0.95×250×191)=3540 mm2

 

The total width of the column strip is 3000 mm.
Two thirds of 3540 mm2 equal to 2360 mm2 is placed in the centre half of the column 

strip of width of 1500 mm. Provide 12T16–150 mm c/c giving steel area of 2413 mm2. 
The remaining one third of 3540 mm2 viz. 1180 mm2 are placed in each of the two outer 
750 mm strips. The required steel area is half that in the central strip and is satisfied by 
providing 3T-16 at 250 mm spacing in each outer half giving a total steel area of 1206 
mm2. Although according to the simplified detailing rules in Fig. 3.25 of the code, all the 
bars need to continue only up to 0.15l=900 mm from the face of the column on either side 
of the column and then only 50% of that steel needs to continue a further 900 mm, it is 
convenient to continue all the bars to a distance of 0.3l=1800 mm on either side of the 
column face.

(ii) Column strip positive moment reinforcement (Steel at bottom)

Redistribution increases the span moment. Therefore K ̀=0.156.

k=120.7×106/(3000× 1512×30)=0.059<0.156 
z/d=[0.5+√(0.25–0.06/0.9)]=0.93<0.95

z=0.93 d=140 mm 
As=120.7×106 /(0.95×250×140)=3630 mm2

 

This is over a width of 3 m. Steel area required is 1210 mm2/m, which is satisfied by pro-
viding 19T16–150 mm spacing giving a total steel area of 3819 mm2. Only 40% of the 
steel need go over to the support. This can be achieved by curtailing alternate bars at 0.2l
from the centre of the column.

(iii) Middle strip negative moment reinforcement (Steel at top)

With 20% redistribution, βb=0.8, K ̀=0.132

k=53.5×106/(3000×1512×30)=0.026<0.132
z/d=[0.5+√(0.25–0.026/0.9)]=0.97>0.95

z=0.95d=144 mm
As=53.5×106/(0.95×250×144)=1564 mm2

 

This steel is placed uniformly over a width of 3 m. The steel area required is therefore 
521 mm2/m. Provide fourteen 12 mm bars at 200 mm c/c giving a steel area of 1582 mm2. 
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As in the case of the steel in the column strip, it is convenient to continue all the bars to a 
distance of 0.3l=1800 mm on either side of the column.

(iv) Middle strip positive moment reinforcement (Steel at bottom)

Redistribution increases the span moment. Therefore K ̀=0.156. 

k=98.8×106/(3000×1512×30)=0.048<0.156
z/d=[0.5+√(0.25–0.048/0.9)]=0.94<0.95

z=0.94 d=142 mm

 

As=98.8×106/(0.95×250×142)=2930 mm2  

This is over a width of 3 m. Steel area required is 977 mm2/m, which is satisfied by pro-
viding 15T16 at 200 mm spacing giving a total steel area of 3015 mm2. Only 40% of the 
steel need go over to the support. This can be achieved by curtailing alternate bars at 0.2l 
from the centre of the column. 

Fig.8.26 (a) Top steel in x-direction.

6T16-150

6T16-150

3T16-250

3T16-250

14T12-200
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(e) Shear resistance

(i) At the column face 40 mm below the soffit

Vt=1.15×16.13×(62−0.872)=653.7kN 
u0=4×870=3480 mm 

vmax=653.7×103/(3480×201)=0.94 N/mm2<(0.8√30=4.38 N/mm2)

 

Fig.8.26 (b) Bottom steel in x-direction.

The maximum shear stress is satisfactory.

15T16-200

10T16-150 5T16-300 

10T16-150
5T16-300 

5T16-300 

8T16-400 8T16-400 

5T16-300 
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(ii) At 1.5 d from the column face

Side of shear perimeter

=870+2×1.5×d=870+3×201=1473 mm
u=4×1473=5892 mm

Veff=1.15×16.13×(62−1.4732)=627.5 kN
v=627.5×103/(5892×201)=0.53 N/mm2

 

In the centre half of the column strip 16 mm diameter bars are spaced at 150 mm centres 
giving an area of 1340 mm2/m.

100 As/(bd)=100x1340/(1000×201)=0.67<3.0
400/d=400/201=2.0>1.0

 

The design concrete shear stress is

vc=0.79×(0.67)1/3(2.0)1/4(30/25)1/3/1.25=0.70 N/mm2

v<vc

 

The shear stress is satisfactory and no shear reinforcement is required. 

(f) Deflection

The basic span/d ratio is 26 (Table 3.9 of the code).
Modification factor for tension steel:

M/(bd2)=219.5×106/(6000×1512)=1.61  

The calculations are made for the middle strip using the total moment at mid-span and the 
average of the column and middle strip tension steel.

Required steel=Average of (3630+2930)=3280 mm2

Provided steel=Average of (3819+3015)=3417 mm2

fs=(2/3)×250×(3280/3417)=160 N/mm2

 

The modification factor for tension steel is

0.55+(477–160)/ [120×(0.9+1.61)]=1.60
allowable span/d ratio=1.60×26=41.7

actual span/d ratio=6000/151=39.7

 

Hence the slab is satisfactory with respect to deflection.
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(g) Cracking

The bar spacing does not exceed 3d, i.e. 603 mm for the drop panel and 453 mm for the 
slab. In accordance with BS8110: Part 1, clause 3.12.11.2.7, for grade 250 reinforcement 
the drop panel depth does not exceed 250 mm and so no further checks are required.

(h) Arrangement of reinforcement

The arrangement of the reinforcement is shown in Fig.8.26(a) and Fig.8.26(b). For clar-
ity, only the steel in x-direction is shown separately for top and bottom steel. The steel 
arrangement is identical in both the x and y-directions. Note that although in the diagrams 
steel shown arrangement is shown confined to the individual panel, in reality steel extends 
into adjacent panels.

8.9 YIELD LINE METHOD

8.9.1 Outline of Theory

The yield line method developed by Johansen is applicable to collapse by yielding of 
under-reinforced concrete slab. It is based on the Upper bound theorem (also known as 
the Kinematics theorem) of the classical Theory of Plasticity. According to this theorem, 
for any assumed collapse mechanism, if the collapse load is calculated by equating the 
energy dissipation at the plastic ‘hinges’ to the work done by the external load, then the 
load so calculated is equal to or greater than the true collapse load. The Yield line method 
applied to slabs is analogous of the calculation of ultimate load of frames by the formation 
of plastic hinges in the members of the frame. The collapse mechanism of a frame con-
sists of a set of rigid members connected at plastic hinges. The only difference between a 
frame of hinges, referred to as yield lines. All deformations are assumed to take place at 
the yield lines and the fractured slab at collapse consists of rigid portions held together by 
the yielded reinforcement at the yield lines. It is important to appreciate that the method 
assumes ductile behaviour at yield lines and does not consider the possibility of shear 
failure. Another important point to bear in mind is that because the method gives an upper 
bound solution to the true collapse load, various yield line patterns must be examined so 
as to determine which gives the minimum collapse load. Fig.8.27 shows some yield line 
patterns. 

In the one-way continuous slab shown in Fig.8.27(a), straight yield lines form with a 
sagging yield line at the bottom of the slab near mid-span and hogging yield lines over the 
supports. The yield line patterns for a square and a rectangular simply supported two-way 
slab subjected to a uniform load are shown in Fig.8.27(b) and Fig.8.27(c) respectively. 
The deformed shape of the square slab is a inverted pyramid and that of the rectangular 
slab is an inverted roof shape.
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Fig 8.27 (a) Continuous one-way slab; (b) square slab; (c) rectangular slab.
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Fig.8.28 (a) Simply supported trapezoidal slab; (b) Trapezoidal slab with a free edge; (c) 
Rectangular slab with a column support.
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8.9.1.1 Properties of yield lines

The following properties of the yield lines will be found useful in proposing possible col-
lapse mechanisms.

(i) Yield lines are generally straight and they must end at a slab boundary.
(ii)   A yield line between two rigid regions must pass through the intersection of the axes 
of rotation of the two rigid regions. Edge supports act as axes of rotation.
(iii)  Axes of rotation lie along the line of supports. They can pass over a column at any 
angle.

Fig 8.28 shows some yield line patterns, which illustrate the above properties,
(i) Fig.8.28 (a) shows a trapezoidal slab simply supported on all four edges. The yield line 
between the two trapezoidal rigid regions passes through E where the axes of rotations 
AB and CD meet. The yield line between the trapezoidal rigid region rotating about AB 
and the triangular region rotating about BD meets at B, the intersection point of the two 
axes of rotation.
(ii)   Fig.8.28 (b) shows a trapezoidal slab simply supported on two opposite edges AB 
and CD, while edge AC is fixed against rotation while edge BD is free. The yield line 
between the two trapezoidal rigid regions passes through E where the axes of rotations AB 
and CD meet. The yield line ends at the free edge. The yield line between the trapezoidal 
rigid region rotating about AB and the triangular region rotating about AC meets at A, the 
intersection point of the two axes of rotation.
(iii)  Fig.8.28(c) shows a rectangular slab simply supported on edges AB and BD and 
supported on a column at C. The axes of rotations are AB, BD and EF. The yield lines 
terminating at a free edge intersect the intersection of the two axes of rotations. The axis 
of rotation ECF passes over the column.

8.9.2 Johansen’s Stepped Yield Criterion

As remarked earlier, the slab yields only at yield lines. Yielding is governed by Johansen’s 
Stepped yield criterion which assumes that yielding takes place when the applied moment 
normal to the yield line is equal to the moment of resistance provided by the reinforce-
ment crossing the yield line. It assumes that all reinforcement crossing a yield line yield 
and that the reinforcement bars stay in their original directions.

As shown in Fig.8.29, let the two sets of reinforcement in the x and y directions respec-
tively have ultimate moment of resistance such that for a yield line parallel to the x-axis 
the normal moment of resistance is mx and this resistance is provided by flexural steel 
in the y-direction. Similarly for a yield line parallel to the y-axis, the normal moment of 
resistance is my and this is provided by flexural steel in the x-direction.
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Fig.8.29 Yield line in an orthogonally reinforced slab.

Fig 8.30 Resistant moments on an inclined yield line.

If a yield line forms at an angle θ to the x-axis, then as shown in Fig 8.30, the yield line 
can be imagined to be made up of a series of steps parallel to the reinforcement directions. 
For a unit length of yield line, the lengths of the horizontal and vertical steps are respec-
tively cosθ and sinθ. The moment of resistance on the horizontal step is mx cosθ and on the 
vertical step it is my sin θ. The components of these moment of resistance parallel to the 
yield line are mx cos2 θ and my sin2 θ respectively. Thus the normal moment of resistance 
along the yield line is 

mn=mx cos2 θ+my sin2 θ  

Note that if θ=0, then the yield line is perpendicular to the reinforcement in the y-direction 
and hence mn=mx. Similarly if θ=90°, then the yield line is perpendicular to the reinforce-
ment in the x-direction and hence mn=my. If mx= my=m, a case of isotropic reinforcement, 
then mn=m irrespective of the direction of the yield line.
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8.9.3 Energy Dissipated in a Yield Line

Consider a slab ABCD, simply supported on the two adjacent edges AB and BC and free 
on the other two edges AD and CD as shown in Fig.8.31(a). Let a yield line BD form 
between the two rigid regions ABD and CBD as shown in Fig.8.31(b). Let the dimensions 
of the slab be as follows:

AF=1.5, BF=6.0, FD=2.0, BG=4.0, CG=0.5  

From geometry, the values for the following angles can be calculated.

Angle ABF=tan−1(1.5/6.0)=14.04°,
Angle FBD=tan−1(2.0/6.0)=18.44°
Angle CBG=tan−1(0.5/4.0)=7.13°,

Angle DBG=90°−Angle FBD=71.56°
The length L of the yield line BD=√(22+ 62)=6.325

 

The energy dissipated at a yield line is given by the equation

E=mn L θn  

where mn=normal moment on the yield line, L=length of the yield line, θn= rotation at the 
yield line.

Fig.8.31 (a) Slab supported on two edges only.
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If the moment of resistance due to steel in the x and y-directions respectively are μm and 
m, then the value of mn on a yield line inclined at an angle  to the x-axis is given by 

 

The energy dissipation at a yield line can be calculated by any of the three methods as 
follows.

Method 1: This is the most general and direct method but is not always the most 
convenient method to use. The inclination of the yield line to the horizontal is

 

The length L of the yield lines is L=6.325 and the moment of resistance normal to the 
yield line is

 

In order to calculate θn, draw a line JK perpendicular to the yield line BD as shown in 
Fig.8.31(b). From geometry,

Angle (JBD)=14.04°+18.11°=32.480
BD=6.325, JD=BD tan (JBD)=4.063 
Angle(DBK)=71.56°+7.13°=78.69°

KD=BD tan (DBK)=31.625

 

If point D deflects vertically by Δ, then

θn=Δ/JD+Δ/KD=0.2777 Δ  

Energy dissipated in the yield line is

mn L θn=(0.1m+0.9 (am) (6.325)(0.2777 Δ)
=(1.5812 μm +0.1757m) Δ

 

Fig.8.31(b) Deformation along the yield line BD.
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Method 2: If the yield line is inclined at an angle the x-axis, then the energy dis-
sipated can be expressed as

mn L θn=mx Lx θx+my Ly θy

 

This formulation avoids having to calculate mn and L and can be useful in some instances. 
Referring to Fig.8.31 (a), 

Lx=FD=2.0, Ly=FB=6.00,
mx=m, my=μm,

 

From Method 1,

θn=0.2777 Δ,

mn L θn=m (2.0)(0.0879 Δ)+μm(6.0)(0.2635 Δ)
= (1.5812 μm+0.1757m) Δ

 

Method 3: This is the best approach if the axes of rotation of the rigid regions lie along 
the coordinate axes and the steel is orthogonal and the reinforcement directions coincide 
with the coordinate axes. The method is based on the fact that θn is the sum of the rotation 
of the two rigid regions. In Fig.8.31(b),

θn=Angle DJK+Angle DKJ.
mn L θn=mx Lx θx+my Ly θy

=(mx Lx θx1+my Ly θy1)+(mx Lx θx2+my Ly θy2)

 

Where (θx1, θy1) and (θx2 , θy2) refer respectively to the x and y components of the rotation 
at the yield line due to rigid regions ABD (i.e. Angle DJK) and CBD (i.e. Angle DKJ).

In order to use this method, it is important to use a consistent notation for the moment 
and rotation vectors. For the rotation vector, it is assumed that it is positive if the right 
hand’s thumb points along the positive direction of the rotation vector, then the slab 
rotates in the clockwise direction. For the moment vector, it is assumed that it is positive 
if the right hand’s thumb points along the positive direction of the moment vector, then the 
moment acts in the anticlockwise direction.
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In the example considered, the rigid portion ABD rotates about the support AB in a 
clockwise direction. Therefore the rotation vector points in the direction from A to B. 
Similarly, the rigid portion DBC rotates about the support BC in a clockwise direction. 
Therefore the rotation vector points in the direction from B to C.

The normal moment on the yield line BD causes tension on the bottom side. Therefore 
in the rigid portion ABD, the moment vector points in the direction from D to B while in 
the rigid portion DBC the moment vector points in the opposite direction from B to D.

Rotation of the rigid region ABD about the axis AB is

θ1=Δ/DL, where DL is perpendicular to AB.
DL=BD sin αBD=6.325 sin (14.04+18.44=32.48)=3.397

θ1=Δ/3.397=0.2944 Δ
Angle FAB=90–14.04°=75.96° 

θx1=θ1 cos (FAB)=0.2944 Δ×0.2425=0.0714 Δ
θy1=θ1 sin (FAB)=0.2944 Δ×0.9701=0.2856 Δ

mx=−m, my=μ m, Lx=2.0, Ly=6.0

 

Note that the sign of mx is negative because the horizontal component of the moment vec-
tor points in a direction opposite to that of the corresponding rotation component.

Rotation of the rigid region DBC about the axis BC is 

02=Δ/DM, where DM is perpendicular to AB  

DM=BD sin DBM=6.325 sin (90–18.44+7.13=78.69)=6.202 
θ2=Δ/6.202=0.1612 Δ 

θx2=θ2 cos (GBC)=0.1612 Δ cos(7.13)=0.16 Δ
θy2=θ2 sin (GBC)=0.1612 Δ sin(7.13)=0.02 Δ

mx=m, my=−μ m, Lx=2.0, Ly=6.0

 

Note that the sign of my is negative because the vertical component of the moment vector 
points in the direction opposite to that of the corresponding rotation component.

Energy E dissipated on the yield line is

E =−m(2.0)(0.0714 Δ)+μ m (6.0)(0.2856 Δ)
+m(2.0)(0.16 Δ)−μ m (6.0)(0.02Δ)

E=(1.5936 μm +0.1772m) Δ

 

Although Method 3 appears to be more complicated than Method 1, in most cases of rect-
angular slabs where the axes of rotation coincide with the coordinate axes, Method 3 will 
be found to be the ideal method to use.
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8.9.4 Work Done by External Loads

If a rigid region carries a uniformly distributed load q and rotates by θ about an axis AB 
as shown in Fig.8.32, then the work done by q is given by

Work done=∫ q dA r θ  

where dΑ=an element of area, r=perpendicular distance to the element of area from the 
axis of rotation.
Since q and θ are constant, work done=q θ ∫ r dA
But ∫ r dΑ=first moment of area about the axis of rotation.

W=q θ {First moment of area about the axis of rotation}
=q θ×Area×Distance to the centroid of area from the axis of rotation

=q×Area×Deflection at the centroid

 

Fig.8.32 External work done by loads on a slab.

8.9.5 Example of a Continuous One-way Slab

Consider a strip of slab 1 m wide where the mid-span positive reinforcement has a moment 
of resistance of m per metre and the support negative reinforcement has a moment of resis-
tance of m′ per metre. The slab with ultimate load W per span is shown in Fig.8.33(a).

(a) End span AB

The yield line in the span forms at point C at x from A. The rotation at A is θ. The deflec-
tion Δ at the hinge in the span is θ x. If the rotation at the hinge over the support B is  
then

 

The net rotation ψ at the hinge C is
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The rotations at A, C and B are shown in Fig.8.33(b). 
The work done by the loads is W (x θ)/2. 
The energy dissipated E in the yield lines is

E=mθl/(l−x)+m θ x/(l−x)

E=θ/(l−x) {ml+m ̀x}

 

Equating the work done by the loads to energy dissipated at the hinges, 

W (x θ)/2=θ/(l−x) {ml+m ̀x}
W=2 {ml+m ̀x}/[x( l−x)]

 

Fig.8.33 (a) Continuous one-way slab; (b) end span; (c) internal span.
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The position x of the yield line in the span is determined so that the collapse load is mini-
mum. Differentiating W with respect to x,

dW/dx=x(l−x)m ̀−(ml+m ̀x) (l−2x)=0
m ̀x2−ml(l−2x)=0

 

This equation can be solved for x for a given value of the ratio m′/m. Clause 3.5.2.1 of the 
code states that values of the ratio between support and span moments should be similar 
to those obtained by elastic theory. Values of m′/m should normally lie in the range 1.0 to 
1.5. This limitation ensures that excessive cracking does not occur over the support B.

For the special case where m=m′, the equation dW/dx=0 reduces to

x2+2lx−l2=0, x=0.414l  

Substitute in the work equation x=0.414l to obtain the value of m:

m=m′=0.086 Wl  

Note that the moment value 0.086 Wl is same that in Table 3.12 of the code. Since the 
maximum moment in span is at x=0.414 l, the contra-flexure point is at a distance of 2x 
from support A. Therefore the theoretical cut-off point for the top reinforcement is at 
2x=0.828l from the support A or at 0.172l from support B.

(b) Internal span DE

The hinge is at mid-span and the rotations are shown in Fig.8.31(c). The work equation 
is

W(0.5lθ)/2=mθ+m2θ+mθ  

For the case where m=m′

m=Wl/16=0.063Wl  

Note that the moment value 0.063 Wl is same that in Table 3.12 of the code. The theoreti-
cal cut-off points for the top bars are at 0.147l from each support.

8.9.6 Simply Supported Rectangular Two-Way Slab

The slab and yield line pattern are shown in Fig.8.34. The ultimate loading is w per square 
metre. As shown in Fig.8.34, steel in the shorter y-direction provides a moment of resis-
tance of m per unit length and the steel in the longer x-direction provides a moment of 
resistance of μm per unit length. The yield line pattern is defined by one parameter, β.
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1. Work done by external loads

The work done by the loads can be calculated by assuming that points E and F deflect 
by Δ,

(i) Triangles ACE and BFD

Areα=0.5 b βa, deflection at the centroid=Δ/3.
Work done by external loads is 

 

(ii) Trapeziums CEFD and AEFB

Dividing the trapezium into two triangles and a rectangle,

Triangle: areα=0.5 b/2 βa, deflection at the centroid=Δ/3
Rectangle: areα=b/2 (a−2 βa), deflection at the centroid=Δ/2

 

Work done by external loads is

 

Total work done by the loads 

2. Energy dissipated at the yield lines

The energy dissipated at the yield lines can be calculated using Method 3.

(i) Yield line in triangles ACE and BFD: The triangles rotate only about y-axis.

 

Hence the energy dissipated E1 on the yield lines in triangles ACE and BFC is ;d E1 on 
the yield lines in trian

E1=2[ℓxmxθx+ℓymyθy]  
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Fig.8.34 Collapse mode for a simply supported slab.

(ii) Yield line in trapeziums AEFB and CEFD: The trapeziums rotates only about 
x-axis.

 

Hence the energy dissipated E2 on the yield lines in trapeziums AEFB and CEFD is 
 

The total energy dissipated E is therefore
 

3. Calculation of moment of resistance:

Equating the work done by the external loads to the energy dissipated at the yield lines,
 

Solving for m,
 

In order to calculate the maximum value of m required, set dm/dβ=0
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Simplifying
 

Solving the quadratic in β,
 

8.9.6.1 Example of yield line analysis of a simply supported rectangular slab

A simply supported rectangular slab 4.5 m long by 3 m wide carries an ultimate load of 16 
kN/m2. Determine the design moments for the case when the value of μ=0.5.

Substituting α=4.5 m, b=3.0 m, b/α=0.667, μ=0.5, in the formula for β, 
β=0.312

 

Substituting β=0.312 and q=16.0 in the equation for m,
m=10.51 kNm/m, μm=5.26 kNm/m

 

It is usual in designs based on the yield line analysis for the reinforcement to remain 
uniform in each direction. It is evident from the collapse mechanism, Yield Line analysis 
provides no information on where the reinforcement can be curtailed, nor does it give any 
information on the shear force distribution in the slab. 

8.9.7 Rectangular Two-Way Slab Continuous Over Supports

The solution derived in section 8.9.6 can be extended to the case of a continuous slab. 
The slab shown in Fig.8.35 has a continuous hogging yield line around the supports. The 
negative moment of resistance of the slab at the supports has a value of γm′ per unit length 
in the shorter direction and m′ per unit length in the longer direction.

The basic yield line pattern will be as for the simply supported slab shown in Fig.8.34 
except that negative yield lines (tension at the top face) form parallel and close to the 
supports as shown in Fig.8.35 by dotted lines. The work done by external loads and the 
energy dissipated at the positive yield lines (tension at the bottom face) remain as for the 
simply supported slab. The extra aspect to be considered is the energy dissipated at the 
negative yield lines.
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Fig.8.35 Collapse mode for a clamped slab.

(i) For the two negative yield lines parallel to the shorter sides

 

Hence the energy dissipated by the two negative yield lines parallel to the shorter side is
 

(ii) For the two negative yield lines parallel to the longer sides
 

Hence the energy dissipated by the two negative yield lines parallel to the longer sides is 
 

Total energy dissipated at the negative yield lines is
 

Total energy dissipated at the positive and negative yield lines is
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Equating the work done by the external loads to the energy dissipated at all the yield 
lines,

 

In order to calculate the maximum value of m required, set dm/d β/? = 0
 

Simplifying

 

Solving the quadratic in β,
 

8.9.7.1 Example of Yield line analysis of a clamped rectangular slab

A clamped rectangular slab 4.5 m long by 3 m wide carries an ultimate load of 16 kN/m2. 
Determine the design moments for the case where

m ̀/m=1.3, μ=0.6, γ=0.6  

as obtained from average moment ratios from elastic analysis. Substituting in the formula 
for β,

α=4.5 m, b=3.0 m, b/α=0.667, m ̀/m=1.3, μ=0.6, γ=0.6
β=0.77>0.5

 

As the value of β cannot be greater than 0.5, substituting β=0.5 and q=16.0 kN/m2, m−4.1 
kNm/m, μm=2.47 kNm/m, m−5.33 kNm/m, γm ̀=3.2 kNm/m

It is usual in designs based on the yield line analysis for the reinforcement to remain 
uniform in each direction. However, the extent of the negative reinforcement required can 
be determined by finding the dimensions of a simply supported central rectangular region 
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of dimensions αa×αb which has a collapse moment in the yield lines of m=4.1 kNm/m, 
μm=2.47 kNm/m and q=16.0.

Since at the cut-off of top bars, the hogging yield line has zero strength, this simulates 
simple support. The bars must be anchored beyond the theoretical cut-off lines.

Substituting μ=0.6, b/α=3/(4.5)=0.67 in the equation for β in section 8.9.6, gives 
β=0.33

Substituting for m=4.1 kN/m, b=3α, α=4.5 α, μ = 0.6, β=0.33, q=16kN/m2 in the equa-
tion for m in section 8.9.6, where

 

gives α=0.64. The theoretical cut-off lengths are therefore (1−α)/2=0.18 of the side dimen-
sions.

8.9.8 Clamped Rectangular Slab with One Long Edge Free

A rectangular slab continuous on three edges and free on a long edge has two distinct 
modes of collapse as shown in Fig.8.36 and Fig.8.37. The slab shown in Fig.8.36 and 
Fig.8.37 has a continuous hogging yield line around the supports in addition to posi-
tive yield lines. As shown in Fig.8.36, the positive and negative moment of resistance 
of the slab have values of μm and γm′ per unit length respectively in yield lines parallel 
to the y-direction and m and m′ per unit length respectively in yield lines parallel to the 
x-direction.

In the case of simply supported and clamped rectangular slabs, there was only one 
mode of collapse defined by a single parameter β. However when one of the edges is free, 
there are two different modes of collapse possible as shown in Fig.8.36 and Fig.8.37. 
Calculations have to be done for both modes of collapse to determine either the minimum 
collapse load or the maximum moment of resistance required.

8.9.8.1 Calculations for collapse Mode 1

The mode of collapse is shown in Fig.8.36. Assume that EF deflects by Δ.

(1) Energy dissipated at the yield lines:
(a) Trapeziums ACFE and BDFE: The trapeziums rotate only about the y-axis.

(i) For the negative yield line
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Total energy dissipation for the two regions is 
 

(ii) For the positive yield line

 

Total energy dissipation for the two regions is
 

(b) Triangle CFD: The triangle rotates only about the x-axis.

(i) For the negative yield line

 

Energy dissipation is
 

Fig.8.36 Clamped slab with a free edge; collapse mode 1.

(ii) For the positive yield line
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Energy dissipation is
 

Total energy dissipated at the positive and negative yield lines is
 

Simplifying 
 

(2) Work done by external loads

(a) Triangle CFD

Areα=0.5 a βb, deflection at the centroid=Δ/3  

Work done by external loads is
 

(b) Trapeziums ACFE and BDFE

Dividing it into a triangle and a rectangle

Triangle: areα=0.5 a/2 βb, deflection at the centroid=Δ/3
Rectangle: areα=a/2 (b−βb), deflection at the centroid=Δ/2

 

Work done by the external loads is
 

Total work W done by the loads=W1+W2

 

(3) Calculation of m: Equating the work done by the external loads to the energy dis-
sipated at all the yield lines,

 

In order to calculate the maximum value of m required, set dm/dβ=0
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Simplifying
 

8.9.8.2 Calculations for Collapse Mode 2

The mode of collapse is shown in Fig.8.37. Assume that E F deflects by Δ.

1 Energy dissipated at the yield lines
(a) Triangles ACE and BDF: Rotation of the triangles is about y-axis only. 

(i) For the negative yield line
 

Total energy dissipation for the two triangles is

 

(ii) For the positive yield line

 

Total energy dissipation for the two triangles is
 

(b) Trapezium CEFD: The trapezium rotates only about the x-axis.

(i) For the negative yield line
 

Energy dissipation is
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(ii) For the positive yield lines

 

Energy dissipation is
 

Total energy dissipated at the positive and negative yield lines is
 

Simplifying

 

2. Work done by external loads

(i) Triangles ACE and BDF:

Areα=0.5 b βa, deflection at the centroid=Δ/3

 

ii. Trapezium CEFD

Dividing it into two triangles and a rectangle 

Two triangles: areα=0.5 b βa, deflection at the centroid=Δ/3

Rectangle: areα=b(a−2βa), deflection at the centroid=Δ/2

 

Total work W done by the loads=W1+W2

 

Equating the work done by the external loads to the energy dissipated at all the yield 
lines,
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Fig.8.37 Clamped slab with a free edge; collapse mode 2 

In order to calculate the maximum value of m required, set dm/dβ=0

 

Simplifying
 

Solving the quadratic in β,
 



 

Reinforced concrete slabs  237

8.9.8.3 Example of yield line analysis of a clamped rectangular slab  
with one  free long edge

A clamped rectangular slab with one long edge free is 4.5 m long by 3 m wide and carries 
an ultimate load of 16 kN/m2. Determine the design moments for the case when

m ̀/m=5.0, μ=3.0, γ=1.5  

as obtained from maximum moment ratios from elastic finite element analysis.
When a slab has more than one distinct mode of failure, it is necessary to investigate 

both modes of failure and accept the larger of the two moments as the design moment.

Mode 1: Substituting the values of the parameters in the formula for β,

β=0.712<1.0  

Using this value of β,

m=2.03 kNm/m  

Mode 2: Using the same parameters as for mode 1, calculate the value of β. The smaller 
root for β is

β=0.3<0.5  

Using this value of β,

m=1.57 kNm/m.  

For design the larger value for m is obtained from mode 1. Therefore m=2.03 kNm/m, μ 
m=6.1 kNm/m, m ̀=10.2 kNm/m, γm ̀’=15.2 kNm/m

8.9.9 Trapezoidal Slab Continuous Over Three Supports and Free on a Long Edge

Fig.8.38 shows a uniformly loaded trapezoidal slab with three edges clamped and one 
edge free. Normal moment of resistance per unit length on positive and negative yield 
lines parallel to x and y-axes are respectively (m, μm) and (m’, γm’) respectively.

In the previous examples, the rotations of the rigid regions took place about edges 
which were parallel to x or y-axis. In this example only one axis of rotation is parallel to 
the coordinate axes. One possible mode of collapse is shown by the positive yield lines 
CE and DF and negative yield lines parallel to the supports. 

Assume that EF deflects by Δ. As shown in Fig.8.39, let the yield line CE be inclined 
to the vertical by  and the support CA is inclined to the vertical by ψ. Let EG be perpen-
dicular to support AC. From geometry



 

238 Reinforced Concrete

Angle CAH=90−ψ
GE=h, AE=(α+β)a

 

Triangle ACE rotates clockwise about the support AC by θ. The rotational components 
of θ are

 

Substituting for tan ψ and cos ψ

 

Fig.8.38 Trapezoidal clamped slab with a free edge.

1. Energy dissipated in yield lines

(i) Negative yield line in triangles ACE and BDF

The triangles rotate about an axis inclined to both x and y-axes.
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Hence the energy dissipated on the negative yield line in the two triangles is 

E1=2{ℓxmxθx+ℓymyθy}  

 

Note that because both the moment vector and the rotation vector act in the same direc-
tion, the energy dissipated in both the x and y-components are positive.

Fig.8.39 Rotation and moment vectors.

(ii) Positive yield line in triangles ACE and BDF

 

Note that x-components of the moment vector and rotation vector point in opposite direc-
tions. Therefore the energy dissipated on the positive yield line in triangle ACE is

E2=2{ℓx mx θx+ℓy my θy} 

 

(iii) Negative yield line in the trapezium ECDF: The trapezium rotates only
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about the x-axis.

(iv) Positive yield line in the trapezium ECDF

 

Therefore total energy dissipation is

E=E1+E2+E3+E4 
 

2. Work done by external loads

(i) Triangles ACE and BDF

Areα=0.5 (α+β) a b, deflection of the centroid=Δ/3
W1=2q {0.5(α+β) a b Δ/3}

 

(ii) Trapezium ECDF

Divide into two triangles and a rectangle.
For each triangle:

area–0.5 β a b, deflection of the centroid=Δ/3  

For the rectangle:

Areα=(1–2β) a b, deflection of the centroid=Δ/2  

Work done is

W2=2 q {0.5 a b β} Δ/3+q a b (1–2 β) Δ/2  

Total work W done is W=W1+W2

W=q ab {3+2 (α−β)} Δ/6  

Equating W=E and simplifying,
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If α=0, then the equation will be same as for Mode 2 collapse of a clamped rectangular 
slab with a free edge.

Assuming:

α=4.5 m, b=3.0m, αα=1.0, m/m=5.0, μ=3.0, γ=1.5, q=16 kN/m2

giving, β=0.5, m=3.04 kNm/m.
 

8.9.10 Slab with Hole

Fig.8.40 shows a simply supported rectangular slab of dimensions a×b with a central rect-
angular hole of dimensions αa×αb. There are three distinct modes of collapse which have 
to be analysed in calculating the minimum collapse load. 

Fig.8.40 Slab with a hole.

8.9.10.1 Calculations for collapse Mode 1

Fig.8.41 shows the collapse mode 1. Let the deflection at the apex of the triangle be Δ.

Fig 8.41 Collapse Mode 1.
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1. Work done by external loads

(i) Two side triangles

Areα=0.5 b /βa, deflection at the centroid=Δ/3  

(ii) Two Trapeziums

Dividing each into two triangles, two rectangles and a rectangle adjoining the side of the 
hole.

(a) Triangle

Areα=0.5 b/2 βa, deflection at the centroid=Δ/3  

(b) Rectangle

Areα=b/2 (a–αa–2 βa), deflection at the centroid=Δ/2  

(c) Rectangle adjoining the hole
Note that the deflection at the edge of the hole is not A but (1–α)Δ 

Areα={b(1–α)/2} αa , deflection at the centroid=(1–α)Δ/2  

 

Total work W done by the loads = W1+W2

 

2. The energy dissipated at the yield lines

(i) Yield lines in the two side triangles
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(ii) Yield lines in the two trapeziums

 

The total energy dissipated is therefore
 

Equating the work done by the external loads to the energy dissipated at the yield lines,
 

Solving for m,

 

In order to calculate the maximum value of m required, set dm/dβ=0
 

The resulting quadratic equation in β can be solved numerically for specific values of the 
parameters a and μ and the corresponding value of m can be determined. Note that from 
geometry, the above equations are valid for 0≤β≤(1–α)/2.

8.9.10.2 Calculations for collapse Mode 2

Fig.8.42 shows the collapse mode 2. Assume that the deflection at the apex of side tri-
angles is A. 

1. Work done by external loads

(i) Side trapeziums, two in number

Dividing each into two triangles and a rectangle

(a) Triangle

Areα=0.5 {(1–α)a /2} βb, deflection at the centroid=Δ/3  
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(b) Rectangle:

Areα=(1−2β) b (1–α) a/2, deflection at the centroid=Δ/2  
 

 

(ii) Top and bottom trapeziums two in number

Dividing it into two triangles and a rectangle which is part of the hole.

(a) Triangle

Areα=0.5 {(1–α)a/2} βb, deflection at the centroid=Δ/3  

(b) Rectangle: Note that the deflection at the edge of the hole is not Δ but (1–α)Δ

Areα=αa (1–α) b/2, deflection at the centroid=(1–α)Δ/2 
  

 

Total work W done by the loads

 

Fig 8.42 Collapse Mode 2.
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2. The energy dissipated at the yield lines

(i) Yield lines in the two side trapeziums

 

(ii) Yield line in the top and bottom trapeziums

 

The total energy dissipated is therefore
 

Equating the work done by the external loads to the energy dissipated at the yield lines,
 

Solving for m,
 

In order to calculate the maximum value of m required, setting dm/dβ=0, gives

 

The resulting quadratic equation in β can be solved numerically for specific value of the 
parameters and the corresponding value of m can be determined. The above equations are 
valid only for 0.5(1−α)≤β≤0.5.

8.9.10.3 Calculations for collapse Mode 3

Fig.8.43 shows the collapse mode 3. Assume that the deflection at the longer sides of the 
hole is Δ.
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Fig 8.43 Collapse Mode 3.

1. Work done by external loads

(i) Side trapeziums, two in number: Divide each into two triangles and a rectangle. 

(a) Triangle

Areα=0.5{(1−α)b/2} βa, deflection at the centroid=Δ/3  

(b) Rectangle: Note that the deflection at the edge of the hole is not A but {0.5(1−α)/β}
Δ 

Areα=αb(1−α)a/2, deflection at the centroid={0.5(1−α)/β}Δ/2  

(ii) Top and bottom trapeziums two in number: Divide it into two triangles and a rect-
angle which is part of the hole.

(a) Triangle

Areα=0.5{(1−α)b/2} βa, deflection at the centroid=Δ/3  

(b) Rectangle

Areα=(1–2β)a(1−a)b/2, deflection at the centroid=Δ/2   
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Total work W done by the loads=W1+W2

 

2. The energy dissipated at the yield lines

(i) Yield lines in the two side trapeziums
 

(ii) Yield line in the top and bottom trapeziums
 

The total energy dissipated is E=E1+E2

 

Equating the work done by the external loads to the energy dissipated at the yield lines, 

 

Solving for m,

 

In order to calculate the maximum value of m required, set dm/dβ=0

 

The resulting quadratic equation in β can be solved numerically for specific values of the 
parameters and the corresponding value of m can be determined. The above equations are 
valid only for 0.5(1−α)≤β≤0.5.
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8.9.10.4 Calculation of moment of resistance

For calculating the required ultimate moment, ultimate moment from all the three modes 
are calculated and the largest value is chosen. Results of calculations for a/b=1.5, μ=0.5 
for a range of 0≤α≤0.9 are shown in Table 8.6.

Table 8.6 Collapse load for a simply supported slab with a hole

α Mode 1 Mode 2 Mode 3
 β m/(qb2) β m/(qb2) β m/(qb2)
0 0.312 0.0730 N/A – N/A –

0.05 0.317 0.0753 0.5* N/A 0.5* N/A

0.10 0.320 0.0770 0.5* 0.0716 0.5* 0.0336

0.20 0.322 0.0779 0.5* 0.0742 0.5* 0.0325

0.30 0.317 0.0760 0.4984 0.0767 0.5* 0.0290

0.40 0.300* 0.0701 0.4549 0.0754 0.5* 0.0242

0.50 0.250* 0.0607 0.4601 0.0705 0.5* 0.0189

0.6 0.20* 0.0474 0.3383 0.0627 0.2* 0.0136

0.7 0.15* 0.0316 0.2673 0.0525 0.15* 0.0120

0.8 0.10* 0.0158 0.1875 0.0404 0.10* 0.0074

0.9 0.05* 0.0041 0.10* 0.0272 0.05* 0.0036

*Not a stationary minimum.

In some cases the stationary minimum value of β is obtained in the non-valid region. In 
such cases the minimum value of m/(qb2) has been calculated by limiting the value of β to 
the valid region. This is indicated in the table by *. It is noticed that up to α≈0.25, Mode 1 
governs and afterwards mode 2 governs. It appears that mode 3 never governs. 

8.9.11 Slab-Beam Systems

Combined slab-beam systems are commonly met in practice. Fig.8.44 shows a typical 
case of a slab supported on beams cast integral with slabs, and which in turn are sup-
ported on columns at the corners of the rectangle. In considering this type of system, it is 
important to investigate yield line collapse modes involving independent collapse of the 
slab only and combined slab-beam collapse.
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Fig.8.44 Collapse of beam-slab systems.

If the torsional strength of the supporting beams is ignored, then the slab can be assumed 
to be simply supported on beams and the collapse of the slab only is treated as the col-
lapse of a simply supported slab as discussed in section 8.9.6. The calculated moment of 
resistance is the minimum that should be provided in the slab.

In considering the combined slab-beam collapse, if the deflection at the plastic hinge is 
Δ, then the total rotation at the plastic hinge is

θn=2(Δ/0.5a)=4Δ/a  

The work done by external loads is

W=qb (Δa/2)=0.5q a b Δ  
If the moment capacity of the beams is Mb, then the energy dissipated at the plastic hinge 
due to slab and beam is

E=(μm b+2Mb) θn=(m b+2Mb) 4Δ/a  

Equating W=E,

qa2b/8=μm b+2Mb
 

Knowing m,

Mb=qa2b/16−μm b/2  
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It is possible to increase the value of m to a value larger than the minimum for collapse 
of slab only and provide lighter beams. For example using the slab designed in section 
8.8.6.1, q=16 kN/m2, α=4.5 m, b=3.0 m, μ=0.5, m=10.51 kNm/m, μ m=5.26 kNm/m, 
Mb=52.86 kNm.

If it is decided to decrease the moment capacity of the beams towards the supports, then 
other possible collapse modes such as that shown in Fig.8.45 need to be investigated.

Plastic hinge in beam

Fig.8.45 Collapse of beam-slab systems.

8.9.12 Corner Levers

In sections 8.9.6 and 8.9.7 the yield lines for both simply supported and continuous slabs 
were assumed to run directly into the corners (Fig.8.34 and Fig.8.35). This situation will 
develop only if there is sufficient top steel at the corner region and the corner is held 
down. However if the corners are not held down then the yield line will divide to form a 
corner lever as shown in Fig.8.46. Two possible situations occur.

1. Simply supported corner not held down: In this case the slab lifts off the corner and 
the sagging yield line divides as shown in Fig.8.46(a) and the triangular portion rotates 
about the chain-dotted line.

Fig.8.46 (a) Corner not held down; (b) corner held down.
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2. Simply supported corner held down: In this case the sagging yield line divides and a 
hogging yield line forms as shown in Fig.8.46(b).

Solutions have been obtained for these cases which show that for a 90° corner, the 
corner lever mechanism decreases the overall strength of the slab by about 10%. In the 
case of slabs with acute corners the reduction in the calculated ultimate load due to corner 
levers is much larger. The reinforcement should be increased accordingly when the sim-
plified solution is used. The top reinforcement commonly known as torsional reinforce-
ment will prevent cracking in continuous slabs on the corner lever hogging yield line.

8.9.13 Collapse Mechanisms with More than One Independent Variable

The collapse mechanisms considered previously were governed by a single variable β. 
Unfortunately this is not always the case. Fig.8.47 shows a case of a slab clamped on 
two adjacent edges and the other two edges simply supported. In this case the collapse 
mechanism is defined by three independent variables β1, β2 and β3. The problem of finding 
the maximum (or minimum) value of a function of several variables is not a trivial task. 
Fortunately computer programs are available for solving such problems.

Fig.8.47 Collapse mode for a slab with two adjacent edges discontinuous.

8.9.14 Circular Fans

When concentrated loads act, flexural failure modes are likely to involve concentration of 
yield lines around the loaded area. This generally involves curved negative moment yield 
lines with radial positive moment yield lines as shown in Fig.8.48.
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Fig.8.48 Yield lines in a circular fan.

If the moment of resistance is same in both directions and the radius of the fan is r, then 
the energy dissipated can be calculated by assuming that the deflection at the centre is Δ.

1. Energy dissipated at yield line

(i) Negative yield line

The total length L of the negative yield line is 2πr
rotation θn at the yield line is Δ/r 

moment of resistance is m

 

Therefore energy dissipated is

E1=m ̀(2πr) Δ/r=2π m ̀Δ  

(ii) Positive yield lines

As the reinforcement in each direction is same, the slab is isotropically reinforced. There-
fore the x and y axes for each triangular segment can be different. Assuming that the x 
and y-axes coincide with the radial and tangential directions of the circle, each segment 
rotates about the tangent only. The projection of the yield lines of each segment on the 
tangent is equal to the arc length corresponding to that segment.

The total projected length L of all positive yield line is 2πr
The tangential rotation θn at the yield line is Δ/r

moment of resistance is m.

 

Therefore energy dissipated is

E2=m(2πr) Δ/r=2π m Δ  

The total energy dissipation is

E=E1+E2=2π (m ̀+m) Δ  



 

Reinforced concrete slabs  253

2. Work done by external loads

Let q be the uniformly distributed load due to self weight and other externally applied 
loads and P is the concentrated load at the centre of the circle. The concentrated load could 
be an external load or a reaction from a column as in flat slab construction. The work done 
by the external uniformly distributed load q is calculated by noting that at the centroid of 
each triangular segment, deflection is Δ/3 and the total load is q(π r2). Therefore

W=q(π r2) Δ/3+P Δ  

Equating E and W.

(m’+m)=q r2 /6+P/ (2 π)  

8.9.14.1 Collapse mechanism for a flat slab floor

Fig.8.49 shows a flat slab floor with columns spaced at Lx and Ly in the x and y-directions 
respectively. If a collapse mechanism is postulated where the entire floor deflects by Δ 
with circular fans around columns as shown in Fig.8.49, then in any one panel

(i) Energy dissipated at yield lines

From section 8.9.14 above,

E=2π (m ̀+m) Δ  

Fig.8.49 Collapse of a flat slab floor
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(ii) Work done by external load

(a) Uniformly distributed load outside the circular fans

Areα=Lx Ly—π r2, deflection=Δ  

(b) Uniformly distributed load inside the circular fans

Areα=π r2, deflection=2Δ/3  

Total work done is 

W=q(Lx Ly−π r2)Δ+q π r2 (2Δ/3)
W=q(Lx Ly−π r2/3)Δ

 

Equating W and E,
 

8.9.15 Design of a Corner Panel of Floor Slab Using Yield Line Analysis

A square corner panel of a floor slab simply supported on the outer edges on steel beams 
and continuous over the interior beams is shown in Fig.8.50. The design ultimate load 
is 12.4 kN/m2. The slab is to be 175mm thick and reinforced equally in both directions. 
The moment of resistance in the hogging and sagging yield lines is to be the same. The 
materials are grade C30 concrete and grade 250 reinforcement. Design the slab using the 
yield line method.

The yield line pattern, which is symmetric about the diagonal, depends on one variable 
β. Assuming the deflection at the meeting point of the sagging yield lines as Δ, 

1. Energy dissipated at yield lines

(i) Energy dissipated by the positive yield lines in the left and bottom triangles

(a) Bottom triangle: Rotates about x-axis only. 

θx=Δ/(6β), mx=m, lx=6  

(b) Left triangle: Rotates about y-axis only. 

θy=Δ/(6β), my=m, ly=6  

Total energy dissipation E1 is

E1=2{m6Δ/(6β)}=2mΔ/β  
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(ii) Energy dissipated by the positive and negative yield lines in the top and right 
triangles

Note that my=(m+m ̀ ) accounts for both positive and negative yield lines in the triangle.

(a) Right triangle Rotates about y-axis only.

 

(b) Top triangle: Rotates about x-axis only.

 

Total energy dissipation E2 is

E2=2(m+m’)Δ/(1−β)  

The total energy dissipated E by all yield lines is

 

If m=m ̀, 

E=2m{2/(1−β)+1/β) Δ  

2. External work done by the loads

(i) Bottom and left triangles

Areα=0.5×6×(6 β), deflection=Δ/3
W1=2[q{0.5×6×(6 β)} Δ/3]=12qβ Δ

 

(ii) Top and right triangles

Areα=0.5×6×(6–6 β), deflection=Δ/3
W2= 2[q{0.5×6×(6–6 β)} Δ/3=12q(1−β) Δ

 

The total work W done is

W=W1+W2=12q Δ  

3. Calculation of moment capacity required

Equating E and W, and solving for m

 

For maximum m, dm/dβ=0,



 

256 Reinforced Concrete

(1+β)(1−2β)−(β−β2)=0  

Simplifying,

β2+2β−1=0, β=(√2–1)=0.4142  

Substituting for β, m=1.03q. If q=12.4 kN/m2, m=12.76 kNm/m 

Fig.8.50 Corner slab.

4. Design for flexure

Assuming 10 mm diameter bars and 25 mm cover, the effective depth d of the inner  
layer is 

d=175−25–10–5=135 mm
k=m/(bd2 fcu)=12.76×106/ (1000×1352×30)=0.023<0.156
z/d=0.5+√(0.25–0.023/0.9)=0.97>0.95
z=0.95×135=128 mm
As=12.76×106/ (0.95×250×128)=420 mm2/m

 

Increase the steel area by 10% to 462 mm2/m to allow for the formation of corner levers.
Provide 10 mm diameter bars at 150 mm centres to give a steel area of 523 mm2/m. The 

minimum area of reinforcement is
As=(0.24/100)×175×1000=420 mm2/m 
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Fig.8.51 (a) Plan; (b) corner detail; (c) section AA.
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Using the simplified rules for curtailment of bars in slabs from Fig. 3.25 of the code, the 
negative steel is to continue for 0.3 of the span, i.e. 1800 mm past the interior supports. 
The positive steel is to run into and be continuous through the supports.

5. Check shear capacity

The shear at the continuous edge is 

V=12.4×(6/2)+12.76/6=39.3kN/m
v=39.3×103/(1000×135)=0.29 N/mm2

100 As/ (bd)=100×523/(1000×135)=0.39<3.0 400/135=2.96>1.0
vc=0.79×(0.39)1/3(2.96)1/4(30/25)1/3/1.25=0.64 N/mm2

v<vc

 

The shear stress is satisfactory.

6. Deflection

From Table 3.9 of the code, the basic span/d ratio is 26.
Modification factor for tension steel:

m/(bd2)=12.76×106/(1000×1352)=0.7
fs=(2/3)×250×(462/523)=147 N/mm2

 

The modification factor is

0.55+(477–147)/{120×(0.9+0.7)}=2.27>2.0
Allowable span/d ratio=26×2.0=52
Actual span/d ratio=6000/135=44

 

The slab is satisfactory with respect to deflection. Note that if grade 460 reinforcement is 
used, then a deeper slab would be required to comply with limit on deflection.

7. Cracking

The minimum clear distance between bars is not to exceed 3d=405 mm. The slab depth 
175 mm does not exceed 250 mm and so no further checks are required.

8. Reinforcement details

The reinforcement is shown in Fig.8.51. Note that U-bars are provided at the corners to 
act as torsion reinforcement. This design should be compared with the example in section 
8.6.6.

If the slab was supported on reinforced concrete L-beams on the outer edges, a value 
for the ultimate negative resistance moment at these edges could be assumed and used in 
the analysis.
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8.9.16 Derivation of BS 8110 Moment and Shear Coefficients for the Design of 
Restrained Slabs

Bending moment and shear force coefficients in Tables 3.14 and 3.15 of the code for the 
design of two-way restrained slabs with corners held down and with provision for resist-
ing torsion are derived on the basis of Yield Line analysis. The ratio of negative moment 
to positive moment is kept constant at 1.33. The ‘long span’ momen ts derived for a square 
slab are assumed to hold good for other values of the aspect ratio. Yield line analysis 
assumes that reinforcement in each direction is uniformly distributed over the width but 
the code recommends that the main steel is provided only in the middle strip which is 
3/4 times the relevant width and only minimum steel in the edge strips. Therefore the 
value obtained from the Yield line analysis is multiplied by 4/3. The shear in the slab is 
calculated by assuming that the total load on the support is uniformly distributed over the 
middle three quarters of the beam span (see Fig.8.15)

8.9.16.1 Simply supported slab (case 9 in BS Table 3.14)

Using the formulae derived in section 8.9.6,

 

Multiplying through by (b/a) and simplifying, the above equation becomes

 

(i) Square slab

a/b=1, μm=m, β=0.5, m=0.0417 qb2.  

Multiplying this value for m by 4/3, m=0.056 qb2., βsx=0.056.

(ii) Rectangular slab

a/b>1.0.  

Keep μm=0.0417 qb2 as constant for all values of a/b. Substituting this value in the above 
equation for m and simplifying,

 

For a maximum valu e of m, dm/dβ=0.
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Substituting this value of β in the equation for m

 

Multiplying this value for m by 4/3,

 

Multiplying this value for μm by 4/3, 

μm=0.0556 qb2, βsy=0.056  

(iii) Shear coefficients

β=0.50 b/a  

Short beam

Load=0.5×q×b×βa.  

Spreading this uniformly over a length of 0.75 b,

 

Long beam

Load=0.5×q×0.5b×(2–2β) a.  

Spreading this uniformly over a length of 0.75 a,
 

8.9.16.2 Clamped slab (case 1 in BS Table 3.14)

Using the formula derived in section 8.9.7,
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Multiplying through by b/a and simplifying, the above equation becomes
 

(i) Square slab
 

Multiplying these value for μm by 4/3,

m=0.024 qb2, βsx=0.024 and m ̀=0.032 qb2, βsy=0.032.  

(ii) Rectangular slab: a/b>1.0

Keep μm=0.0179 qb2, γm’=0.024 qb2 and m’=1.33 m as constant for all values of a/b. 
Substituting these values in the above equation for m and simplifying,

 

For a maximum value of m, dm/dβ=0.
 

Substituting this value of β in the equation for m
 

Multiplying this value for μm by 4/3, 
 

For positive moment at mid-span in short span

 

Negative moment at short edge
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Multiplying the above values by 4/3
 

In the long span direction, coefficients for positive and negative moments are respec-
tively 

βsy= 0.0239 and βsy=0.032  

(iii) Shear coefficients

As for the simply supported slab in section 8.9.16.1

8.9.16.3 Slab with two short edges discontinuous (case 5 in BS Table 3.14)

Fig.8.52 shows a slab with two short edges discontinuous. 

Fig.8.52 Collapse mode for a slab with two short edges discontinuous. 

Using the formulae derived in section 8.8.16.2 but with γm’=0,

 

(i) Square slab

a/b=1, μm=m, m ̀=1.33 m.  

For maximum m, dm/dβ=0
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β2 +0.4286β−0.3214=0, β=0.3918.  

Using β=0.3918, m=0.026 qb2, m ̀=0.034 qb2.

Multiplying these values by 4/3,

m=0.034 qb2, βsx=0.034 and m ̀=0.046 qb2, βsy=0.046.  

(ii) Rectangular slab: a/b>1.0

Keep μm=0.026 qb2 and m ̀=1.33 m as constant for all values of a/b. Substituting these 
values in the equation for m and simplifying,

 

For a maximum value of m, dm/dβ=0

 

Substituting this value of β in the equation for m

 

Multiplying the above value by 4/3,

 

Short span

(a) For positive moment

 

(b) Negative moment at short edge

μm=0.0260 qb2

 

Multiplying the above values by 4/3, μm=0.0347 qb2
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(c) For positive moment at mid-span in long span

βsy=0.0347  

(iii) Shear coefficients

As for the simply supported slab but use: 

β=0.3918, a/b=1
β=0.3950 b/a, a/b>1.0.

 

vx=0.2633 qb, βνy=0.2633, b/a<1.0
vx=0.2612 qb, βvy=0.2612, b/α=1.0

νy=qb{0.6667(1−β)}

vy=qb{0.6667(1−0.3918)}, βνy=0.4055, b/α=1.0

 

8.9.16.4 Slab with two long edges discontinuous (case 6 in BS Table 3.14)

Fig.8.53 shows a slab with two long edges discontinuous. Using the formulae derived in 
section 8.9.16.2 and substituting m ̀=0,

 

(i) Square slab

a/b=1, μm=m, γm’=1.33 m.  

For maximum, dm/β=0.

β2+2.333β−1.75=0, β=0.5972>0.5  

Restrict β=0.5 as this is the maximum value permissible. Using β=0.5, m=0.025 qb2, 
γm’=0.033 qb2.

Multiplying these values by 4/3, 

m=μm=0.033 qb2, βsx=0.033 and γm ̀=0.044 qb2, βsy=0.044.  
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Fig.8.53 Collapse mode for slab with two long edges discontinuous.

(ii) Rectangular slab: a/b>1.0

Keep μm=0.025 qb2 and γm ̀=0.033 qb2 as constant for all values of a/b. Substituting these 
values in the equation for m and simplifying, 

 

For a maximum value of m, dm/d β=0.

 

Substituting this value of β in the equation for m and simplifying,

 

Multiplying the above value by 4/3, 

(a) For positive moment at mid-span in short span

 

(b) Long span direction

μm=0.033 qb2 , γm’=0.044 qb2  
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Positive moment

μm=0.033 qb2, βsy=0.033  

Negative moment 

γm’= 0.044 qb2, βsy=0.044  

(iii) Shear coefficients

As for the simply supported slab but use:
β=0.5 for a/b=1 and for a/b>1.0, β=0.59 b/a

vx=0.3933 qb,βνy=0.3933, b/a<1.0
vx=0.3333 qb,βνy=0.3333, b/α=1.0

vy=qb{0.6667(1−β)}

vy=qb{0.6667(1−0.5)}, βvy=0.3333, b/α=1.0

 

8.9.16.5 Slab with one long edge discontinuous (case 3 in BS Table 3.14)

Fig.8.54 shows the collapse mode which is governed by two parameters β1 and β2. It can 
be shown that the basic equation for solving the problem is

 

(i) Square slab

a/b=1, μm=m, γm ̀=m ̀=1.33 m.  

 

For maximum m, dm/dβ1=0 and dm/dβ2=0.

 

Value of β2=0.604 is independent of β1. Using this value of β2,
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Using β1=0.5 and β2=0.604, m=μm=0.020 qb2, m’=γm’=0.027 qb2

Multiplying these values by 4/3,

m=γm’=0.027 qb2, βsx=0.027 and m’=γm’=0.036 qb2, βsy=0.036.  

(ii) Rectangular slab: a/b > 1.0

Keep μm=0.020 qb2 and γm ̀=0.027 qb2 as constant for all values of a/b and m ̀=1.33 m. 
Substituting these values in the equation for m and simplifying,

 

Substituting these values of β1 and β2 in the equation for m and simplifying,

 

Multiplying the above value by 4/3, 

 

Fig.8.54 Collapse mode for a slab with one long edge discontinuous.
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(i) Short span

(a) For positive moment

m=qb20.027, βsx=0.027, b/α=1

 

(b) Negative moment at short edge

     

m′=qb20.036, βsx=0.036, b/α=1

(ii) Long span

μm=0.027 qb2 and γm ̀=0.036 qb2  

For positive and negative moments, the moment coefficients βsy are 0.027 and 0.036 
respectively.

(iii) Shear coefficients

Use and β1=0.5 for a/b=1 and for a/b>1.0, use β1=0.531 b/a. β2=0.604 for all aspect 
ratios.

(a) Short beam: Spread the load uniformly over a length of 0.75 b. 

Load=0.5×q×b×β1a.

vx=0.354 qb, βvy =0.354, b/a<1.0
vx=0.3333 qb, βvy=0.3333, b/α=1.0

 

(b) Load on the longer beam: Spread the load on the beam uniformly over a length of 
0.75 a and use β2=0.604 

Continuous end

vy= 0.5×q×β2b×(2−2β1) a
νy=qb(0.805(1−β1)}

vy=qb(0.805(1−0.5)}, βvy=0.403, b/α=1.0
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Simply supported end

vy=0.5×q×(1−β2) b×(2–2β1) a
νy=qb(0.528(1−β1)}

vy=qb(0.528(1−0.5)}, βvy=0.264, b/α=1.0

 

8.9.16.6 Slab with one short edge discontinuous (case 2 in nBS Table 3.14)

Fig.8.55 shows the collapse mode which is governed by two parameters β1 and β2. It can 
be shown that the basic equation for solving the problem is

 

Fig.8.55 Collapse mode for a slab with one short edge discontinuous

(i) Square slab

a/b=1, μm=m, γm’=m’=1.33 m.  
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Simplifying
 

For maximum m, dm/dβ1=0 and dm/dβ2=0. 
dm/dβ1=0 leads to

A1=1+8β2,

 

dm/dβ2=0 leads to 

A2=1.0+9.333β1,

B2=4.6667β1,

 

The values of β1 and β2 can be calculated as follows:
• Assume a value for β2

• Calculate A1, B1 and C1

• Solve the quadratic in β1

• Using the calculated value of β1, calculate A2, B2 and C2

• Solve the quadratic in β2

• Compare the assumed and calculated values of β2

•  Repeat calculations until the assumed and calculated values of β2 differ by a 
very small value.

• Calculate the value of m/(qb2)

Using this procedure, in this case

β1=0.4013 and β2=0.5455, m=0.0213 qb2, m ̀=0.0284 qb2.  

Multiplying these values by 4/3, 
m=μm=0.028 qb2, βsx=0.028 and m ̀=γm ̀=0.038 qb2, βsx=0.038.

(ii) Rectangular slab: a/b>1.0

Keep m ̀=1.33 m, μm=0.021 qb2 and γm ̀=0.028 qb2 as constant for all values of a/b. Sub-
stituting these values in the equation for m and simplifying,
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dm/dβ1=0 leads to
 

dm/dβ2=0 leads to

 

Substituting these values of β1 and β2 in the equation for m and simplifying,

 

Multiplying the above value by 4/3, 

(i) Short span

(a) Positive moment

 

m=qb20.028, βsx=0.028, b/α=1  

(b) Negative moment at short edge

m′=qb20.038, βsx=0.038, b/α=1

 

(ii) Long span

μm=0.028 qb2 and γm ̀=0.038 qb2  

For positive and negative moments, the moment coefficients are respectively.

βsy=0.028 and βsy=0.038  

(iii) Shear coefficients: Spread the load uniformly over a length of 0.75 b.

a/b=1: β1=0.4013 and β2=0.5455
a/b>1.0: β1=0.3575 b/a and β2=0.546 b/a.
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Load on the shorter beam

(a) Continuous end

Load=0.5×q×b×β2a.  

(b) Simply supported end

Load=0.5×q×b×β1 a.  

Load on the longer beam: Spread the load uniformly over a length of 0.75 a.

Load=0.5 q×0.5b×(2−β1−β2) a 
νy=qb{03333(2−β1−β2}

vy=qb{0.333(2−0.3575−0.546)}, βνy=0.3655, b/α=1.0

 

8.9.16.7 Slab with two adjacent edges discontinuous (case 4 in BS Table 3.14)

Fig.8.56 shows the collapse mode which is governed by three parameters β1, β2 and β3. It 
can be shown that the basic equation for solving the problem is 
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Fig.8.56 Collapse mode for a slab with two adjacent edges discontinuous.

(i) Square slab

a/b=1, μm=m, γm ̀=m ̀=1.33 m.  

For maximum m, dm/dβ1=0, dm/dβ2=0 and dm/dβ3=0. dm/dβ3=0 leads to

 

Substituting this value of β3 in the expression for m and simplifying,
 

For maximum m, dm/dβ1=0 and dm/dβ2=0.

dm/dβ1=0 leads to

A1=6.3384 β2+2.3333,
B1=2β2,
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dm/dβ2=0 leads to

A2=6.3384 β1+1,
B2=4.6667β1,

 

The values of β1 and β2 can be calculated following the same procedure as in section 
8.9.16.7. 

In this case β1=0.39565 and β2=0.64356, m=0.0261 qb2, m’=0.0348 qb2. Multiplying 
these values by 4/3, 

m=μm=0.035 qb2, βsx=0.035 and m’=γm’=0.046 qb2, βsx=0.046.  

(ii) Rectangular slab: a/b>1.0

Keep μm=0.0261 qb2 and γm’=0.0348 qb2 as constant for all values of a/b. Substituting 
these values in the equation for m and simplifying,

 

dm/dβ1=0 leads to
 

dm/dβ1=0 leads to
 

Substituting these values of β1 and β2 in the equation for m and simplifying,
 

Multiplying the above value by 4/3,
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Short span

(a) Positive moment

m=qb20.035, βsx=0.035, b/α= 1

 

(b) Negative moment at short edge

m’=1.333×qb20.035, βsx=0.047, b/α=1

 

Long span

μm=0.035 qb2 and γm’=0.046 qb2

For positive and negative moments, the moment coefficients βsy are 0.035 and 0.046 
respectively.

(iii) Shear coefficients

a/b=1, β1=0.3957, β2=0.6436
a/b > 1.0, β1=0.395 b/a, β2=0.605 b/a.

 

Shorter beam: Spread the load uniformly over a length of 0.75 b. 

Continuous end

Load=0.5×q×b×β2a.  

Simply supported end

Load=0.5× q×b×β1 a.  
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Longer beam: Spread the load uniformly over a length of 0.75 a, and β3=0.604. 

Continuous end

Load=0.5×q×β3b×(2 −β1−β2) a
νy=qb{0.4027(2−β1−β2)}

νy=qb{0.4027(2−1.0393}, βνy=0.3869, b/α=1.0

 

Simply supported end

Load=0.5× q×(1−β3)b×(2−β1−β2) a
νy=qb{0.2640(2−β1−β2)}

vy=qb{0.4027(2−1.0393}, βvy=0.3869, b/α=1.0

 

8.9.16.8 Slab with only a short edge continuous (case 8 in BS Table 3.14)

Fig.8.57 shows the collapse mode which is governed by two parameters β1 and β2. It can 
be shown that the basic equation for solving the problem is

 

(i) Square slab

a/b=1, μm=m, γm ̀=1.33 m.  

Simplifying, 
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Fig.8.57 Collapse mode for a slab with one short edge continuous.

For maximum m, dm/dβ1=0 and dm/dβ2=0.
dm/dβ1=0 leads to

A1=4 β2+2.3333,

B1=6β2,

 

dm/dβ2=0 leads to

A2=4β1+1,

B2=4.6667β1,

 

The values of β1 and β2 can be calculated following the same procedure as in section 
8.9.16.6. In this case β1=0.2868 and β2=0.65934, m=0.0311 qb2, m ̀=0.0414 qb2. Multiply-
ing these values by 4/3,

m=μm=0.042 qb2, βsx=0.042 and γm=0.055 qb2, βsx=0.055.  

(ii) Rectangular slab: a/b>1.0. Keep μm=0.031 qb2 and γm ̀=0.041 qb2 as constant for all 
values of a/b. Substituting these values in the equation for m and simplifying, 
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dm/dβ1=0 leads to

 

dm/dβ2=0 leads to

 

Substituting these values of β1 and β2 in the equation for m and simplifying,

 

Multiplying the above value by 4/3,

 

Short span

Positive moment

 

Long span

μm=0.041 qb2 and γm ̀=0.055 qb2

For positive and negative moments, the moment coefficients βsy are 0.041 and 0.055 
respectively.

(iii) Shear coefficients

a/b=1: β1=0.2868 and β2=0.6593 
a/b>1.0: β1=0.4314 b/a and β2=0.6590 b/a.

Short beam: Spread the load uniformly over a length of 0.75 b.

Continuous end
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Load=0.5×q×b×β2 a  

Simply supported end

Load=0.5×q×b×β1 a  

 

Longer beam: Spread the load uniformly over a length of 0.75 a.

Load:=0.5×q×0.5 b×(2 −β1−β2) a
νy=qb{0.3333(2−β1−β2}

 

8.9.16.9 Slab with only a long edge continuous (case 7 in BS Table 3.14)

Fig.8.58 shows the collapse mode which is governed by two parameters β1 and β2. It can 
be shown that the basic equation for solving the problem is

 

Fig.8.58 Collapse mode for a slab with one long edge continuous.
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(i) Square slab

a/b=1, μm=m, m ̀=1.33 m.  

Simplifying:

 

dm/dβ2=0 leads to 

 

Using this value of β2, the expression for m is

 

dm/dβ1=0 leads to

 

Using β1=0.4404 and β2=0.604 in the expression for m, m=0.032 qb2, m’=0.043 qb2. 
Multiplying these values by 4/3,

m=μm=0.043 qb2, βsx=0.043 and m ̀=0.058 qb2, βsx=0.058.  

(ii) Rectangular slab: a/b>1.0. Keep μm=0.032 qb2, m’=1.333m and β2=0.604 as constant 
for all values of a/b. Substituting these values in the equation for m and simplifying,

 

dm/dβ1=0 leads to

 

Substituting for β1 in the equation for m and simplifying,

 

Dividing the above value by 0.75,
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Short span

Positive moment

 

Negative moment

m’=m=qb2 0.0573, βsx=0.0573, a/b=1

 

Long span

μm=0.043 qb2, βsy=0.058  

(iii) Shear coefficients: Spread the load uniformly over a length of 0.75 b.

β2=0.604 and β1=0.4404, a/b=1
β2=0.604 and β1=0.4382 b/a, a/b>1.0 

Shorter beam

Load=0.5×q×b×β1 a.  

Longer beam: Spread the load uniformly over a length of 0.75 a.

Continuous end

Load=0.5×q×β2b×(2–2β1)a
vy=qb{0.8053(1−β1)}
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Simply supported end

Load=0.5×q×(1−β2) b×(2–2β1)a 
νy=qb{0.5280(1−β1)}

 

8.10 HILLERBORG’S STRIP METHOD

This method of designing slabs is based on the Lower Bound Theorem of Plasticity. The 
basic idea of the method is to find a distribution of moments, which fulfils the equilibrium 
equations and designing the slab for these moments. Normally in a slab not only moments 
about two axes but also torsional moments exist. Analysis is complicated because of the 
presence of these torsional moments. Strip method simplifies analysis by in general com-
pletely ignoring torsional moments and assuming that the load is carried by a set of strips 
in bending only.

8.10.1 Simply Supported Rectangular Slab

As an example, consider the rectangular slab simply supported on four sides and subjected 
to a uniformly distributed load q as shown in Fig.8.59. It is reasonable to assume that the 
load in the triangular areas AEC and BFD are supported by reactions on the short sides AC 
and BD respectively. Similarly loads in the trapeziums AEFB and CEFD are supported by 
reactions on the sides closest to them, AB and CD respectively.

Once this assumption is made the slab is divided into a set of strips in the horizontal 
and vertical directions and the bending in these strips can be calculated and the strips 
reinforced. 

Fig.8.59 Load distribution in a simply supported slab.
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Fig.8.60 Bending moments in horizontal (1–1) and vertical (2–2) strips.

Fig 8.61 Step-wise load distribution to the supports.

As shown in Fig.8.60, for a typical strip 1–1 in the horizontal direction, the loading on 
the strip consists of uniformly distributed loading on the end portions only and for typical 
strip 2–2 in the vertical direction, with the loading on the strip consisting of uniformly dis-
tributed loading covering the entire span. The bending moments in these separate simply 
supported strips can be easily calculated and the slab may be reinforced accordingly.

The main difficulty in assuming the load distribution as shown in Fig.8.60 is that the 
loading on the strip across its width is not uniform. This difficulty can be avoided by 
assuming load distribution to the supports in a step-wise fashion as shown in Fig.8.61.

8.10.2 Clamped Rectangular Slab with a Free Edge

Fig.8.62 shows a slab clamped on three sides and free on one side. The load distribution to 
the supports is as indicated. If desired the step-wise load distribution can also be adopted. 
The strip 1–1 is a beam clamped at both ends while the strip 2–2 is a cantilever.
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8.10.3 A Slab Clamped on Two Opposite Sides, One Side Simply  
Supported and One Edge Free

Fig.8.63 shows a slab clamped on two opposite sides and one side is simply supported 
while the opposite edge is free. The load distribution to the supports is as indicated. 

Fig.8.62 Load distribution in a slab one free edge.

Fig.8.63 Slab with opposite edges simply supported and free.

The strip 1–1 is a beam clamped at both ends. In Fig.8.62, strip 2–2 was clamped at one 
end and could therefore act as a cantilever. In Fig.8.63, for the strip 2–2 to transmit any 
load to the simply supported end, it is necessary that there is a support at the ‘free’ end. 
Edge strip 3–3 provides this support. Therefore while designing strip 3–3, it is necessary 
to include not only the load applied directly onto the strip but also the reactions from strip 
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2–2 and similaras shown in Fig.8.63. Strip 3–3 acts like an edge beam by being more 
heavily reinforced than the rest of strips 1–1. Strip 3–3 could be thickened in order to 
allow sufficient depth of lever arm to the reinforcement.

8.10.4 Strong Bands

Fig.8.64 shows a rectangular slab simply supported on all sides and carrying a concen-
trated load W. The load is transmitted to the supports mainly through heavily reinforced 
strips in two directions. These strips are known as ‘Strong Bands’. The strong bands act 
as beams and are more heavily reinforced compared to the rest of the slab. It is often con-
venient to increase the thickness in order to accommodate steel reinforcement and also to 
increase its lever arm. Distributed load on the rest of the slab can be distributed between 
the edge supports and strong bands. The load carried by the strong bands will be approxi-
mately in inverse proportion to the fourth power of the spans. Thus if the spans are a and 
b with a≥b, then the load Wa and Wb carried by the strips in the a and b direction are

 

The concept of the strong band is also useful when designing slabs with holes or slabs 
with re-entrant corners.

Fig.8.64 Strong band reinforcement.

Fig.8.65 Slab with a hole.
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Fig.8.65 shows a slab with a rectangular hole. By providing strong bands around the hole, 
edge beams are created and the loads can be distributed between the edge supports and 
strong bands. The two strong bands running between the supports also provide support for 
the short edge beams around the hole. 

Fig.8.66 shows a slab with a re-entrant corner. By providing a strong band, the slab is 
conveniently divided into two rectangular slabs which can be effectively designed sepa-
rately. The strong band acts as an additional support to the two slabs and allows the above 
simplification compared with the relatively complex distribution of moments obtained 
from an elastic analysis.

Fig.8.66 Slab with re-entrant corner.

Fig.8.67 A feasible load distribution to the four edge supports.
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8.10.5 Comments on The Strip Method

One of the main attractions of the Strip Method as compared with the Yield Line method 
is that apart from the fact that it is a Lower Bound method and therefore there is no need 
to investigate alternative mechanisms, the method not only gives the bending moments 
and shear forces at every point in the structure but also gives information on the loads and 
their distribution acting on the supporting beams. This is of great attraction to designers.

It is important to remember that the method ensures safety against bending failure 
only. It does not take account of the possibility of shear failure. Because of the fact that 
the emphasis is on safety at ultimate limit state, additional considerations are necessary 
to ensure that the design meets serviceability limit state conditions as well. For any given 
structure, it is possible to choose an infinite number of possible distributions of loads to 
the supports and the corresponding moments. As an example consider the load distribu-
tion on the rectangular slab simply supported on all edges shown in Fig.8.65. The propor-
tion of the uniformly distributed load q against the arrows indicates the value of the load 
carried to the support in the direction indicated. This load distribution is different from 
the one shown in Fig.8.59. However from a serviceability limit state point of view, it is 
important to ensure that the chosen distribution of moments does not depart too far from 
the elastic distribution of moments.

Fig.8.68 Zero shear lines to control load distribution to supports.
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The following points should be borne in mind when deciding on the load distribution to 
the supports.

With fixed edges, the ratio between the proportion of load carried to the fixed edge 
and that carried to the simply supported edge should be increased by a factor of 1.6 to 1.8 
compared to the case where both edges have same support conditions. If, for example, of 
the two opposite edges, one is fixed and the other is simply supported, then an appropriate 
load distribution should be as shown in Fig.8.68. The dividing lines between the regions 
can be treated as zero shear lines. For example, for the strip 1–1 shown in Fig.8.68, if the 
line of zero shear is at 1.1 from the simply supported end, then the reaction at the simply 
supported end is 1.1q and at the fixed end is 1.9q. The maximum bending moment in the 
span is at the point of zero shear and is equal to 0.605q and at the fixed end is 1.2q . Thus 
the ratio of reactions is 1.9/1.1=1.72 and the ratio of moments is 1.2/0.605=2.0. Thus by 
choosing the position of lines of zero shear, it is possible to control the moment distribu-
tion to correspond to the elastic values.

•    Although the Strip Method assumes that torsional moments are zero, how-
ever where two simply supported edges meet, torsional moments do exist. In 
the absence of proper reinforcement, this will lead to cracking which is best 
limited by providing torsional reinforcement as suggested in codes of practice 
(Clause 3.5.3.5).

•    The ratio between the support and span design moments in a strip fixed at 
both ends and subjected to uniformly distributed loading should be about 2.

8.11 DESIGN OF REINFORCEMENT FOR SLABS IN ACCORDANCE 
WITH A PREDETERMINED FIELD OF MOMENTS

With the wide spread availability of Finite Element programs to carry out elastic analy-
sis of plates, it is necessary to have rules for designing reinforcement for a given set of 
bending and twisting moments in slabs. Fig.8.69 shows the bending moments Mx and My
and twisting moment Mxy acting on an element of slab. The convention used in represent-
ing a moment by a double-headed arrow is that if the right hand thumb is pointed in the 
direction of the arrow head, then the direction of the moment is given by the direction the 
fingers of the right hand bend. Bending moments as shown in Fig.8.69, cause tension on 
the bottom face.

moment Mn and twisting moment Mnt act. It can be shown that

Mn=Mx cos2 α+My sin2 α+2 Mxy sin α cos α  

If the ultimate sagging moment of resistance provided by steel in x and y-directions are 
Mb

xu and Mb
yu respectively, then from Johansen’s yield criterion (section 8.9.2), the nor-

mal moment of resistance on a section inclined at an angle a to the y-axis is given by

As  shown  in  Fig.8.70,  on  a section inclined at an angle α to the y-axis, normal bending 
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Mb
nu=Mb

xu cos2 α+Mb
yu sin2 α  

Since it is desirable that the applied Mn must not be greater than the resistance Mnu, [{Mb
xu 

cos2 α +Mb
yu sin2 α}−{Mx cos2 α+My sin2 α+2Mxy sin α cos α}]≥0 Dividing throughout by 

cos2 α and setting t=tan α, the above equation simplifies to 

Fig 8.69 Bending and twisting moments on an element of slab.

Fig 8.70 Normal bending moment and twisting moments on an element of slab.

{(Mb
xu−Mx)+(Mb

yu−My) t
2–2Mxy t}≥0  

Yielding will take place when the difference between Mnu and Mn is a minimum. Differ-
entiating with respect to t,

(Mb
yu−My)t−Mxy=0  

For the difference to be a minimum, the second derivative with respect to t must be posi-
tive. Therefore
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(Mb
yu−My)≥0  

Substituting the value of t and simplifying

(Mb
xu−Mx)(M

b
yu−My)−Mxy

2=0  

This equation shows for what combination of bending and twisting moments a slab with 
a known moment of resistance in x and y-directions yields. This equation is known as the 
yield criterion for a slab. Note that the twisting moment term appears as a square indicat-
ing that the sign of Mxy is irrelevant.

From the yield criterion, the following special cases can be noted.

Case 1

If Mb
xu=0, then Mb

yu=My—M2
xy/Mx 

 

Case 2 

If Mb
yu=0, then Mb

xu=Mx−M2
xy/My 

 

Case 3: If Mb
xu≠0 and Mb

yu≠0, then for economy(Mb
xu+Mb

yu) must be made a minimum. 
From the yield criterion

Mb 
xu=Mx+Mxy

2/(Mb
yu−My) 

(Mb
xu+Mb

yu)=Mx+Mxy
2 /(Mb

yu−My)+Mb
yu

 

Minimizing the above expression with respect to Mb
yu,

−Mxy
2/(Mb

yu−My)
2+l=0 

(Mb
yu−My)=±Mxy

 

Since (Mb
yu−My)≥0, choosing the positive sign,

 

Note that only the numerical value of Mxy is used.

8.11.1 Rules for Designing Bottom Steel

In the following, positive bending moments are sagging moments which cause tension on 
the bottom face . The rules for calculating the moment of resistance required for flexural 
steel at bottom are as follows. 

(a) If  and  then 
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(b) If  and  then 

(c) If  and  then 

(d) If none of the above conditions are valid, then  

8.11.1.1 Examples of Design of Bottom Steel

The following examples illustrate the use of equations derived in section 8.11.1. The four 
criteria are checked to see which is the valid one for a specific combination of Mx, My  
and Mxy.

Example 1: Mx=30 kNm/m, My=15 kNm/m, Mxy=20 kNm/m

Check criterion (a):  Therefore criterion
(a) applies.
Mb

xu=30+20=50 kNm/m, Mb
yu=15+20 =35 kNm/m

Example 2: Mx=−35 kNm/m, My=15 kNm/m, Mxy=20 kNm/m

(a) 

(b)  Therefore criterion (b) applies.

 

Example 3: Mx=−15 kNm/m, My=−25 kNm/m, Mxy=20 kNm/m

(a) 

(b) 

(c)  Therefore criterion (c) applies.
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Example 4: Mx=−30 kNm/m, My=−40 kNm/m, Mxy=20 kNm/m

(a) 

(b) 

(c) 

Since none of the criteria (a) to (c) apply, therefore  No steel is required 
at the bottom of the slab.

8.11.2 Rules for Designing Top Steel

In a manner similar to the determination of sagging moment of resistance, if the ultimate 
hogging moment of resistance provided by steel in x and y-directions is Mt

xu and Mt
yu

respectively, then the rules for calculating the moment of resistance required for flexural 
steel at top are as follows. Note that the value of  and  are both negative indicating 
that they correspond to hogging bending moment requiring steel at the top of the slab.

(a) If  then 

(b) If  then 

(c) If  and  then 

(d) If none of the above conditions are true, then 
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8.11.2.1 Examples of design of top steel

Example 1: Mx=−30, My=−40, Mxy=20 kNm/m

(a)  and  Criterion (a) applies.

 

Example 2: Mx=−30, My=35, Mxy=20 kNm/m

(a)  and 

(b)  and  Criterion (b) applies.

 

Example 3: Mx=25, My=−45, Mxy=20 kNm/m

(a)  and 

(b)  and 

(c)  Criterion (c) applies.

 

8.11.3 Examples of Design of Top and Bottom Steel

In sections 8.11.1.1 and 8.11.2.1 examples were concerned with determining the required 
moment of resistance either at the top or the bottom face of the slab. However cases do 
arise where for a given combination of bending and twisting moments there is need to 
provide steel at both the faces. This case generally arises when twisting moments larger 
than bending moments are present. 
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Example 1: Mx=15, My=−18, Mxy −20 kNm/m

Bottom steel:  and 

 

Top steel:  and 

 

This example shows that steel is required in both directions top and bottom.

Example 2: Mx=20, My=−20, Mxy=20 kNm/m

Bottom steel:  and 

 

Top steel:  and 

 

This example shows that steel is required in only y-direction at top and in only x-direction 
at bottom.

8.11.4 Comments on the design method using elastic analysis

The code BS 8110 in clause 3.5.2.1 permits the design of slabs using Johansen’s Yield 
Line method which is an upper bound method or Hillerborg’s Strip Method which is a 
lower bound method provided the ratio of moments between support and span moments 
are similar to those obtained by the use of elastic theory. If this cautionary note is not 
observed, slabs using these methods might prove unsuitable from a serviceability point of 
view because of early cracking. Using bending and twisting moments from elastic analy-
sis to design slabs using the rules developed in sections 8.11.1 to 8.11.3 avoids this prob-
lem and leads to a very economical design. The main disadvantage is that the designed 
reinforcement will vary from point to point and some form of averaging is needed to 
convert the variable reinforcement into bands with constant reinforcement. The method is 
also highly amenable to computer aided design of general slab structures. 
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8.12 STAIR SLABS

8.12.1 Building Regulations

Statutory requirements are laid down in Building Regulations and Associated Approved 
Documents, Part H [Reference 9], where private and common stairways are defined. The 
private stairway is for use with one dwelling and the common stairway is used for more 
than one dwelling. Requirements from the Building Regulations are shown in Fig.8.71.

Fig.8.71 Building regulation for dimensions of stairs.

8.12.2 Types of Stair Slab

Stairways are sloping one-way spanning slabs. Two methods of construction are used.

(a) Transverse spanning stair slabs

Transverse spanning stair slabs span between walls, a wall and stringer (an edge beam), 
or between two stringers. The stair slab may also be cantilevered from a wall. A stair slab 
spanning between a wall and a stringer is shown in Fig.8.72(a). The stair slab is designed 
as a series of beams consisting of one step with assumed breadth and effective depth 
shown in Fig.8.72(c). The moment reinforcement is generally one bar per step. Secondary 
reinforcement is placed longitudinally along the flight.

(b) Longitudinal spanning stair slab

The stair slab spans between supports at the top and bottom of the flight. The supports 
may be beams, walls or landing slabs. A common type of staircase is shown in Fig.8.73. 
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The effective span l lies between the top landing beam and the centre of support in 
the wall. If the total design load on the stair is W the positive design moment at mid-span 
and the negative moment over top beam B are both taken as Wl/10. The arrangement of 
moment reinforcement is shown in Fig.8.73. Secondary reinforcement runs transversely 
across the stair.

A staircase around a lift well is shown in Fig.8.74. The effective span l of the stair is 
defined in the code BS 8110 in section 3.10. This and other code requirements are dis-
cussed in section 8.12.3 below. The maximum moment near mid-span and over supports 
is taken as Wl/10, where W is the total design load on the span.

8.12.3 Code Design Requirements

(a) Imposed loading

The imposed loading on stairs is given in BS6399: Part 1:1996, Table 1. From this table 
the distributed loading is as follows:

1. dwelling not over three storeys, 1.5 kN/m2

2. all other buildings, the same as the floors, between 3 kN/m2 and 4 kN/m2

(b) Design provisions

Provisions for design of staircases are set out in BS 8110: Part 1, section 3.10 and are 
summarized below.

1. The code states that the staircase may be taken to include a section of the landing span-
ning in the same direction and continuous with the stair flight;
2. The design ultimate load is to be taken as uniform over the plan area. When two spans 
intersect at right angles as shown in Fig.8.74 the load on the common area can be divided 
equally between the two spans;
3. When a staircase or landing spans in the direction of the flight and is built into the wall 
at least 110 mm along part or all of the length, a strip 150mm wide may be deducted from 
the loaded area (Fig.8.75);
4. When the staircase is built monolithically at its ends into structural members spanning 
at right angles to its span, the effective span is given by

la+0.5(lb1+lb2)  

where la is the clear horizontal distance between supporting members. lb1 is the breadth of 
a supporting member at one end or 1.8 m whichever is the smaller and lb2 is the breadth of 
a supporting member at the other end or 1.8 m whichever is the smaller (Fig.8.74);
5. The effective span of simply supported staircases without stringer beams should be 
taken as the horizontal distance between centrelines of supports or the clear distance 
between faces of supports plus the effective depth whichever is less;
6. The depth of the section is to be taken as the minimum thickness perpendicular to the 
soffit of the stair slab;



 

Reinforced concrete slabs  297

7. The design procedure is the same as for beams and slabs (see provision 8 below); 
8. For staircases without stringer beams when the stair flight occupies at least 60% of the 
span the permissible span-to-effective depth ratio may be increased by 15%. 

Fig.8.72 (a) Transverse section; (b) longitudinal section; (c) assumptions for design.

8.12.4 Example of Design of Stair Slab

(a) Specification

Design the side flight of a staircase surrounding an open stair well. A section through the 
stairs is shown in Fig.8.75(a).

The stair slab is supported on a beam at the top and on the landing of the flight at right 
angles at the bottom. The imposed loading is 5 kN/m2. The stair is built 110 mm into the 
sidewall of the stair well. The clear width of the stairs is 1.25 m and the flight consists of 
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eight risers at 180 mm and seven goings of 220 mm with 20 mm nosing. The stair treads 
and landings have 15mm granolithic finish and the underside of the stair and landing slab 
has 15 mm of plaster finish. The materials are grade C30 concrete and grade 460 rein-
forcement.

(b) Loading and moment

Assume the waist thickness of structural concrete is 100 mm, the cover is 25 mm and the 
bar diameter is 10 mm. The loaded width and effective breadth of the stair slab are shown 
in section AA in Fig.8.75(a). The effective span of the stair slab is the clear horizontal 
distance (1540 mm) plus the distance of the stair to the centre of the top beam (235 mm) 
plus one-half of the breadth of the landing (625 mm), i.e. 2400 mm. The design ultimate 
loading on the stairs is calculated first. 

Fig.8.73 A common type of stair case.
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(i) Landing slab

The overall thickness including the top and underside finish is 130mm.

dead load=0.13×24×1.4=4.4 kN/m2

imposed load=5×1.6=8.0 kN/m2

total design ultimate load=12.4 kN/m2

50% of landing load=0.5×12.4×0.625×1.1=4.26 kN

 

Fig.8.74 (a) Plan; (b) section AA.

One-half of the load on the landing slab is included for the stair slab under consideration. 
The loaded width is 1.1 m.
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(ii) Stair slab

The slope length is 2.29 m and the steps project 152 mm perpendicularly to the top surface 
of the waist. The average thickness including finishes is 100+152/2+30=206 mm

Dead load=0.206×24×2.29×1.1×1.4=17.44 kN
Imposed load=5×1.78×1.1×1.6= 15.66 kN 

Total load=33.1 kN

 

The dead load is calculated using the slope length while the imposed load acts on the plan 
length. The loaded width is 1.1 m.

The total load on the span is

4.26+33.1=37.36 kN  

The maximum shear at the top support is 21.44 kN. The design moment for sagging 
moment near mid-span and the hogging moment over the supports are both Wl/10.

37.36×2.4/10=8.97 kNm  

(c) Moment reinforcement

The effective depth

d=100−25−5=70 mm  

The effective width b will be taken as the width of the stair slab, 1250 mm.

k=M/ (bd2 fcu)=8.97×106/ (1250×702×30)=0.049<0.156 
z/d=0.5+√(0.25–0.049/0.9)=0.94<0.95

z=0.94×70=66 mm

 

As=8.97×106/(0.95×460×66)=311 mm2 for the full 1250 mm width. Provide eight 8 mm 
diameter bars to give an area of 402 mm2. Space the bars at 180 mm centres. The same 
steel is provided in the top of the slab over both supports.

The minimum area of reinforcement is

(0.13 /100)×100×1000=130 mm2  

Provide 8 mm diameter bars at 300 mm centres to give 167 mm2/m transversely as distri-
bution steel.

(d) Shear resistance

Shear=21.4 kN 
v=21.4×103/(1250×70)=0.25 N/mm2 

100 AS/(bd)=100×402/(1250×70)=0.46<3.0 
400/d=400/125=3.2>1.0 

vc=0.79×(0.46)1/3(3.2)1/4(30/25)1/3/1.25=0.69 N/mm2
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The slab is satisfactory with respect to shear. Note that a minimum value of d of 125 mm 
is used in the formula. 

Fig.8.75 (a) Section through the stairs; (b) loading diagram.
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(e) Deflection

The slab is checked for deflection.
The basic span/d ratio is 26 as the slb is effectively continuous at both ends of the 2.4 

m span considered.
The modification factor for tension reinforcement:

M/(bd2)=8.97×106/(1250×702)=1.47 
fs=(2/3)×460×(311/402)=237 N/mm2

0.55+(477–237)/ (120×(0.9+1.47)=1.39<2.0
allowable (span/d)=26×1.39×1.15=41.68 

actual (span/d)=2400/70=34.3

 

Note that the stair flight with a plan length of 1540 mm occupies 64% of the span and the 
allowable span/d ratio can be increased by 15% (BS 8110: Part 1, clause 3.10.2.2).

(f) Cracking

For crack control the clear distance between bars is not to exceed 3d=210 mm. The rein-
forcement spacing of 180 mm is satisfactory.

(g) Reinforcement

The reinforcement is shown in Fig.8.73(a).

8.13 REFERENCES

Jones, L.L. and Wood, R.H. 1967, Yield Line analysis of slabs, (Thames and Hudson).
Park, R. and Gamble W.L. 1980, Reinforced Concrete Slabs, (Wiley).
Cope, R.J. and Clark, L.A. 1984, Concrete Slabs: Analysis and Design, (Elsevier). 
Hillerborg, A. 1996, Strip Method Design Handbook, (E & FN Spon).
Hillerborg, A. 1975, Strip Method of Design, (A Viewpoint Publication).
Goodchild, C.H. 1997, Economic concrete frame elements, (British Cement Association). 
Timoshenko, S. and Woinowsky-Krieger, S. 1959, Theory of plates and shells, (McGraw-Hill). 
Building regulations and associated approved documents, (HMSO, 1985)



 



 

CHAPTER 9  
 

COLUMNS

9.1 TYPES, LOADS, CLASSIFICATION AND DESIGN CONSIDERATIONS

9.1.1 Types and Loads

Columns are structural members in buildings carrying roof and floor loads to the founda-
tions. A column stack in a multi-storey building is shown in Fig.9.1 (a). Columns primar-
ily carry axial loads, but most columns are subjected to moment as well as axial load. 
Referring to the part floor plan in the figure, the internal column A is designed for pre-
dominantly axial load while edge columns B and corner column C are designed for axial 
load and appreciable moment.

Design of axially loaded columns is treated first. Then methods are given for design of 
sections subjected to axial load and moment. Most columns are termed short columns and 
fail when the material reaches its ultimate capacity under the applied loads and moments. 
Slender columns buckle and the additional moments caused by deflection must be taken 
into account in design.

The column section is generally square or rectangular, but circular and polygonal col-
umns are used in special cases. When the section carries mainly axial load it is symmetri-
cally reinforced with four, six, eight or more bars held in a cage by links. Typical column 
reinforcement is shown in Fig.9.1 (b).

9.1.2 General Code Provisions

General requirements for design of columns are treated in BS 8110: Part 1, section 3.8.1. 
The provisions apply to columns where the greater cross-sectional dimension does not 
exceed four times the smaller dimension.

The minimum size of a column must meet the fire resistance requirements given in Fig. 
3.2 of the code. For example, for a fire resistance period of 1.5 h, a fully exposed column 
must have a minimum dimension of 250 mm. The covers required to meet durability and 
fire resistance requirements are given in Tables 3.3 and 3.4 respectively of the code.

The code classifies columns first as

1. short columns when the ratios lex/h and ley/b are both less than 15 for braced columns 
and less than 10 for un-braced columns and



 

Columns  305

2. slender columns when the ratios are larger than the values given above Here b is the 
width of the column cross-section, h is the depth of the column cross-section measured in 
the plane under consideration, lex is the effective height in respect of the major axis and ley 
is the effective height in respect of the minor axis.

In the second classification the code defines columns as braced or un-braced. The code 
states that a column may be considered to be braced in a given plane if lateral stability to 
the structure as a whole is provided by walls or bracing designed to resist all lateral forces 
in that plane. Otherwise the column should be considered as un-braced. 

Fig.9.1 (a) Building column; (b) column construction.
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Lateral stability in braced reinforced concrete structures is provided by shear walls, lift 
shafts and stairwells. In un-braced structures, resistance to lateral forces is provided by 
bending in the columns and beams in that plane. Braced and unbraced frames are shown 
in Figs 9.2(a) and 9.2(b) respectively.

Clause 3.8 1.4 of the code states that if a column has a sufficiently large section to resist 
the ultimate loads without reinforcement, it may be designed similarly to a plane concrete 
wall (section 10.4).

Fig.9.2 (a) Braced frame; (b) un-braced frame.

9.1.3 Practical Design Provisions

The following practical design considerations with regard to design of columns are

 
extracted from BS 8110: Part 1, section 3.12. The minimum number of longitudinal bars

 
in a column section is four. The main points from the code are as follows.

(a) Minimum percentage of reinforcement
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The minimum percentage of reinforcement is given in Table 3.25 of the code for both 
grade 250 and grade 460 reinforcement as 

100Asc/Acc=0.4  

where Asc is the area of steel in compression and Acc is the area of concrete in compres-
sion.

(b) Maximum area of reinforcement

Clause 3.12.6.2 states that the maximum area of reinforcement should not exceed 6% 
of the gross cross-sectional area of a vertically cast column except at laps where 10% 
is permitted. Maximum area of reinforcement should not exceed 8% of the gross cross-
sectional area of a horizontally cast column.

Fig.9.3 (a) Arrangement of links; (b) column lap; (c) column base.
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(c) Requirements for links

Clause 3.12.7 covers containment of compression reinforcement:

1. The diameter of links should not be less than 6 mm or one-quarter of the diameter of 
the largest longitudinal bar;
2. The maximum spacing is to be 12 times the diameter of the smallest longitudinal bar; 
3. The links should be arranged so that every corner bar and each alternate bar in an outer 
layer is supported by a link passing round the bar and having an included angle of not 
more than 135°. No bar is to be further than 150 mm from a restrained bar. These require-
ments are shown in Fig.9.3 (a).

(d) Compression laps and butt joints

Clause 3.12.8.15 of the code states that the length of compression laps should be 25% 
greater than the compression anchorage length. Compression lap lengths are given in 
Table 3.27 of the code (section 5.2.1 here). Laps in columns are located above the base 
and floor levels as shown in Fig.9.3 (b). Clause 3.12.8.16.1 of the code also states that the 
load in compression bars may be transferred by end bearing of square sawn cut ends held 
by couplers. Welded butt joints can also be made (clause 3.12.8.17).

9.2 SHORT BRACED AXIALLY LOADED COLUMNS

9.2.1 Code Design Expressions

Both longitudinal steel and all the concrete assist in carrying the load. The links prevent 
the longitudinal bars from buckling outwards. BS 8110: Part 1, clause 3.8.4.3 gives equa-
tion 38 for the ultimate load N that a short braced axially loaded column can support.

N=0.4fcu Ac+0.80 Asc fy (Code equation 38)  

where Ac is the net cross-sectional area of concrete in the column and Asc is the area of 
vertical reinforcement. The expression allows for eccentricity due to construction toler-
ances but applies only to a column that cannot be subjected to significant moments. An 
example is column A in Fig.9.1 (a), which supports a symmetrical arrangement of floor 
beams. Note that for pure axial load the ultimate capacity Nuz of a column given in clause 
3.8.3.1 of the code is

Nuz=0.45 fcu Ac+0.95 Asc fy 
 

Thus in the design equation for short columns the effect of the eccentricity of the load is 
taken into account by reducing the capacity for axial load by about 10%.

Clause 3.8.4.4 gives equation 39 for short braced columns supporting an approximately 
symmetrical arrangement of beams. These beams must be designed for uniformly distrib-
uted imposed loads and the spans must not differ by more than 15% of the longer span. 
The ultimate load is given by
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N=0.35 fcu Ac+0.70Asc fy (Code equation 39)  

9.2.1.1 Examples of axially loaded short column

Example 1: A short braced axially loaded column 300 mm square in section is reinforced 
with four 25 mm diameter bars. Find the ultimate axial load that the column can carry and 
the pitch and diameter of the links required. The materials are grade C30 concrete and 
grade 460 reinforcement.

Steel area Asc=4T25=1963 mm2

Concrete area Ac=3002–1963=88037 mm2

N=(0.4×30×88037+0.80×1963×460)×10−3

=1056+722=1778 kN

 

The links are not to be less than 6 mm in diameter or one-quarter of the diameter of the 
longitudinal bars. The spacing is not to be greater than 12 times the diameter of the lon-
gitudinal bars. Provide 8 mm diameter links at 300 mm centres. The column section is 
shown in Fig.9.4. From Table 3.4 of the code the cover for mild exposure is 25 mm.

Fig.9.4 Designed column cross section.

Example 2: A short braced column has to carry an ultimate axial load of 1366 kN. The 
column size is 250 mm×250 mm. Find the steel area required for the longitudinal rein-
forcement and select suitable bars. The materials are grade C30 concrete and grade 460 
reinforcement.

Substitute in the expression for the ultimate load

1366×103=0.4×30(2502−Asc)+0.80×460 Asc
Asc=1730 mm2

 

Provide four 25 mm diameter bars to give a steel area of 1963 mm2.

100 Asc/(bh)=100×1963/(250×250)=3.14<6.0  

This is satisfactory.
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9.3 SHORT COLUMNS SUBJECTED TO AXIAL LOAD AND BENDING 
ABOUT ONE AXIS-SYMMETRICAL REINFORCEMENT

9.3.1 Code Provisions

The design of short columns resisting moment and axial load is covered in various clauses 
in BS 8110: Part 1, section 3.8. The main provisions are as follows 

1.  Clause 3.8.2.3 states that in column and beam construction in monolithic braced frames, 
the axial force in the column can be calculated assuming the beams are simply supported. 
If the arrangement of beams is symmetrical, the column can be designed for axial load 
only as set out in section 9.2 above. The column may also be designed for axial load and 
a moment due to the nominal eccentricity given in provision 2 below;

2.  Clause 3.8.2.4 states that in no section in a column should the design moment be taken 
as less than the ultimate load acting at a minimum eccentricity emin equal to 0.05 times the 
overall dimension of the column in the plane of bending, but not more than 20 mm;

3.  Clause 3.8.4.1 states that in the analysis of cross-sections to determine the ultimte 
resistance to moment and axial force the same assumptions should be made as when 
analysing a beam. These assumptions are given in Clause 3.4.4.1 of the code;

4.  Clause 3.8.4.2 states that design charts for symmetrically reinforced columns are given 
in BS 8110: Part 3 which uses γm for steel=1.10 not 1.05;

5.  Clause 3.8.4.3 states that it is usually only necessary to design short columns for the 
maximum design moment about one critical axis.

The application of the assumptions to analyse the section and construction of a design 
chart is given below.

9.3.2 Section Analysis

A reinforced column section subjected to the ultimate axial load N and ultimate moment 
M is shown in Fig.9.5. In most cases, columns are symmetrically reinforced because of 
the fact that the direction of the moment in most cases is reversible. An additional reason 
is with unsymmetrical reinforcement there is always the danger of the smaller amount of 
steel being wrongly placed on the face requiring the larger reinforcement. The moment M 
is equivalent to the axial load acting at an eccentricity e=M/N. Depending on the relative 
values of M and N, the following two main cases occur for analysis:

1.  compression over the whole section where the neutral axis lies at the edge or outside 
the section as shown in Fig.9.6(a) with both rows of steel bars in compression.
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2.  compression on one side in the concrete and reinforcement and tension in the rein-
forcement on the other side with the neutral axis lying between the rows of reinforcement 
as shown in Fig.9.6(b)

For a given location of the neutral axis, the strains and stresses in both the concrete 
and the steel can be determined and from these the values of the internal forces can be 
found. The resultant internal axial force and resistance moment can then be evaluated. For 
Fig.9.6 (b) the compression force Cc in the concrete is calculated as follows.

9.3.2.1 Parabolic-rectangular stress block

Let ε0 be the strain at the end of parabolic variation of stress, where

 

let α=ε0/0.0035
In calculating the contribution to axial force and moment by the compressive stress in 

concrete, three cases have to be considered.

Fig.9.5 Column subjected to axial force and moment.

Case 1:x<h

In this case part of the concrete and compression steel are in compression and tension steel 
is in tension. As shown in Fig 9.6 (b), both the parabolic and the constant part of the stress 
lie inside the column cross-section. The compression force Cc1 in the parabolic portion of 
depth αx is
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The factor (2/3) comes from the property of the parabola that the area of a parabola is 
equal to (2/3) the area of the enclosing rectangle.

From the property of the parabola, the centroid of the force Cc1 is at a distance of (5/8) 
αx from the neutral axis. 

Fig.9.6 (a) Compression over whole section; (b) compression over part of section, ten-
sion in some steel.

The centroid of the force Cc2 is at a distance of 0.5(1−α)× from the compression face of 
the column.

The total compressive force Cc is
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Taking moments about the compression face, the centroid ā of the compression force 
Cc from the compression face is 

 

Substituting for Cc, Cc1 and Cc2,

 

Case 2: x≥h/(1−α)

In this case the entire cross-section is under a constant stress of 0.45 fcu. Let the strain at 
the less compressed face be ε.

 

where 

Case 3: 

In this case only a part of the parabolic part of the stress-strain curve and the constant 
part are inside the column. The distance from the neutral axis to the less compressed face 
is (x−h) and the distance from the neutral axis to the point where the strain is ε0 is αx.

Therefore the constant part of the stress is over a depth of (1−α) x and the parabolic part 
is over the depth {αx−(x−h)}=h−(1−α) x
The compression force Cc2 in the constant portion which is of depth (1−α) x is

Cc2=0.45fcu{(1−α)xb}  

The compression force Cc1 in the parabolic portion of the stress block of depth {h−(1−α) 
x} is calculated as follows.
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As shown in Fig 9.6(a), in the parabolic portion of the stress-strain diagram which is of 
depth αx, the stress σ at any distance y from the neutral axis is given by

 

This equation satisfies the boundary conditions as follows. (σ=0, y=0) and (σ=0.45 fcu, 
y=αx)

 

The parabolic portion of interest extends from y=(x−h) to αx. The compressive force Cc1 
in the parabolic portion is obtained by integration as follows. 

 

Simplifying,

 

The moment of the forces Cc1 and Cc2 from the face with the maximum compressive strain 
is

 

Carrying out the integration and substituting the limits, after simplification
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9.3.2.2 Rectangular stress block

In the case of Rectangular stress block assumption, the corresponding equations are much 
simpler than the rectangular-parabolic stress block assumption.

Case 1:0.9x/h<l

In this case part of the column cross section is in compression and part in tension.

 

Taking moments about the compression face, the centroid ā of the compression force Cc 
from the compression face is 

Fig.9.7 Comparison between compressive forces based on rigorous and simplified stress 
blocks.
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Fig.9.8 Comparison between resultant positions of compressive force based on rigorous 
and simplified stress blocks.

 

Case 2:0.9x/h>1

In this case the whole cross section is in compression.

Cc=0.45 fcu bh=0.45 fcubh  

Taking moments about the compression face, the centroid ā of the compression force Cc 
from the compression face is 

Cc×ā=Cc 0.5h=0.45 fcu bh2 0.5
Cc×ā/(bh2)=0.225 fcu

 

Fig.9.7 and Fig.9.8 show respectively variation of Cc/(bh) and ā/h with x/h as calculated 
for the parabolic-rectangular stress block assumption and rectangular block assumption 
for fcu=30 N/mm2. As can be seen, the differences are insignificant.

9.3.2.3 Stresses and strains in steel

For all positions of the neutral axis, the strains in the compression and tension steels are
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The stresses in the compression and tension steels are

fsc=E εsc≤0.95 fy and fst=E εst ≤0.95 fy
 

where E=Young’s modulus for steel.
Note that when x>d, then εst becomes negative, indicating that the stress in the ‘tension’ 
steel is actually compressive. The force Cs in compression and force T in tension steel 
are

Cs=As ̀fs ̀, T=As fs
 

9.2.3.4 Axial force N and moment M

The sum of the internal forces is

N=Cc+Cs−T  

The sum of the moments of the internal forces about the centreline of the column is 

M=Cc(0.5h−ā)+Cs (0.5h−d′)̀+T(d−0.5h)
M=0.5hCc−Ccā+Cs(0.5h−d′ )+T(d−0.5h)

 

Using the above equations, it is not possible to directly design a section to carry a given 
load and moment. It is necessary to assume a trial section and the required amount of steel 
can be determined using design charts constructed using the above equations.

9.2.3.5 Example of a short column subjected to axial load and moment about one axis

Determine the ultimate axial load and moment about the centroidal axis that the column 
section with b=300 mm, h=400 mm, d ̀=50 mm, d=350 mm can carry when the depth to 
the neutral axis is 250 mm. Materials are grade C30 concrete and grade 460 reinforce-
ment. Assume reinforcement consists of two 25 mm bars on each face.
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(a) Using the Parabolic-Rectangular stress block

Calculate ε0 for fcu=30N/mm2, where

ε0=1.0733×10−3, α=ε0/0.0035=0.3067 
h=400 mm, b=300 mm, d=400–50=350 mm, d ̀=50 mm.

 

x=250 mm, x/h=0.625<1.0, therefore using the formulae for Case 1 and substituting 
fcu=30, b=300 mm, x=250 mm,

 

Moment due to Cc about the centre of the column is=Cc×(0.5h)−Cc ×ā.
The maximum strain in concrete at failure is 0.0035. The strains in the reinforcements 

are as follows:

Compression εsc=0.0035×200/250=0.0028 
Tension εst=0.0035×100/250=0.0014

 

Taking E=200 kN/mm2 for steel,

fsc=εsc E=0.0028×200×103=560 N/mm2>(0.95 fy=437 N/mm2) 
fsc=437 N/mm2 

fst=εst E=0.0014×200×103=280 N/mm2 < (0.95 fy=437 N/mm2) 
fsc=280 N/mm2

 

Area of steel on each face=2T25=981.5 mm2. The steel forces are

Compression Cs=437×981.5×10−3=428.9 kN 
Tension T=280×981.5×10−3=274.8 kN

 

The ultimate axial force is 

N=909.0+428.9–274.8=1063.1 kN  

The ultimate moment is found by taking moments of the internal forces about the centre 
of the column:

M=(909.3×200×10−3–102.7)+(428.9+274.8) 150×10−3

=184.7 kNm
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(b) Using the rectangular stress block

Using the formulae for rectangular stress block,

Cc=0.45 fcu b (0.9x)=0.45×30×300×0.9×250×10−3=911.25 kN
Cc×ā=0.45fcub0.9x[0.45x]=102.5 kNm

N=911.25+428.9–274.8–1065.4 kN
M=(911.25×200×10−3−102.5)+(428.9+274.8) 150×10−3=185.3 kNm

 

Compared with the rectangular-parabolic stress block, errors in N and M are about 0.2% 
and 0.3% respectively. This is negligible.

9.3.3 Construction of Column Design Chart

A design curve can be drawn for a selected grade of concrete and reinforcing steel for a 
section with a given percentage of reinforcement, 1 00Asc/(bh), symmetrically placed at 
a given location d/h. The curve is formed by plotting values of N/(bh) against M/(bh) for 
various positions of the neutral axis x. Other curves can be constructed for percentages of 
steel ranging from 0.4% to a maximum of 6% for vertically cast columns. The family of 
curves forms the design chart for that combination of materials and steel location. Sepa-
rate charts are required for the same materials for different values of d/h which determines 
the location of the reinforcement in the section. Groups of charts are required for the vari-
ous combinations of concrete and steel grades.

The process for construction of a design chart is demonstrated below.
1.  Select materials: Concrete fcu=30 N/mm2, Reinforcement fy=460 N mm2

2. Select a value of d/h=0.85, d’/h=0.15.
3. Select a steel percentage 100Asc/(bh)=6
Let the steel be symmetrically placed and A ̀s /bh=0.03 and As/ bh=0.03.
The design chart is constructed by selecting different values of x/h and calculating the 
corresponding N/(bh) and M/(bh2). 

N/(bh)=Cc/(bh)+0.03 (fs’−fs)

M/(bh2)=0.5Cc/(bh)−Cc ā/(bh2)+̀̀0.03(0.35){f′′s+fs}
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The equations for calculating Cc/(bh) and Cc×ā /(bh2) to be used depend up on the value of 
x/h and also on the type of stress block used. They can be summarised as follows.

(a) Parabolic-rectangular stress block assumption

 

(b) Rectangular stress block assumption

 

(c) For all positions of the neutral axis, the strains in the steel areas are
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The stresses in the steel are

fs’= E εs’≤0.95 fy and fs=Eεs≤0.95 fy
 

where E=Young’s modulus for steel. 

9.3.3.1 Typical calculations for rectangular-parabolic stress block

Concrete: fcu=30 N/mm2, ε0=1.0733×10−3, α=ε0/0.0035=0.3067
Steel: fy=460 N/mm2, 0.95 fy=437 N/mm2, E=200 kN/mm2.

fs’− E εs ̀ ≤(0.95 fy=437 N/mm2)
fs=E εs ≤(0.95 fy=437 N/mm2)

 

(a) x/h=0.4

E εs=787.6>437.0, fs= 437 N/mm2

N/(bh)=Cc/(bh)+0.03 (fs ̀−fs)=4.848+0.0=4.848
M/(bh2)=0.5Cc/(bh2)−Cc ā/(bh2)+0.03(0.35) {fs′ +fs}

M/(bh2)=2.424−0.876+9.177=10.725
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(b) x/h=1.2

E εs=−204.2, fs=−204 N/mm2 (‘Tension’ steel is in compression)

N/(bh)=Cc/(bh)+0.03 (fsc−fst)=13.3425+19.236=32.58 
M/(bh2)= 0.5Cc/(bh2)−Cc ā /(bh2)+0.03(0.35) {f’s+fs}

M/(bh2 )=6.6713−6.5991+2.444= 2.5166

 

(c) x/h=2.0

Cc/(bh)=0.45 fcu=13.5 
Ccā /(bh2)=0.225 fcu=6.75

Eεs ̀= 647.5> 437, fs ̀=437 N/mm2 

E εs=−402.5, fs=−403 N/mm2

N/(bh)=Cc/(bh)+0.03 (fsc−fst)=13.50+25.185=38.685 

M/(bh2)=0.5Cc/(bh2)−Ccā/(bh2)+0.03(0.35){fs
′+fs}

M/(bh2)=6.75−6.75+0.362=0.362
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9.3.3.2 Typical calculations for rectangular stress block

Note that only the expressions for concrete change. The expressions for strains and stresses 
in steel remain as for the case of rectangular-parabolic calculations.

(a) x/h=0.4

fs’= 437 N/mm2, fs=437 N/mm2

N/(bh)=Cc /(bh)+0.03 (fsc−fst)=4.86+0.0=4.86

M/(bh2)=0.5Cc/(bh2)−Ccā/(bh2)+0.03(0.35) {fs
′+fs}

M/(bh2)=2.43−0.875+ 9.177=10.732

 

(b) x/h=1.2

Cc/(bh)=0.45 fcu=13.5

Cc×ā/(bh2)=0.45 fcu 0.5 =6.75

fs ̀= 437 N/mm2, fs =−204 N/mm2

N/(bh)=Cc /(bh)+0.03 (fsc−fst)=13.50+19.236=32.74

M/(bh2)=0.5Cc/(bh2)−Ccā/(bh2)+0.03(0.35) {fs ̀̀̀̀̀+fs}

M/(bh2)=6.75−6.75+ 2.444=2.44

 

(c) x/h=2.0

Cc/(bh)=0.45fcu=13.5

Cc×ā/(bh2) =0.45 fcu 0.5=6.75

fs ̀=437 N/mm2, fs=−403 N/mm2

N/(bh)=Cc /(bh)+0.03 (fsc−fst)=13.50+25.185=38.685

M/(bh2)=0.5Cc/(bh2)−Ccā/(bh2)+0.03(0.35){fs ̀+fs}

M/(bh2)=6.75−6.75+ 0.362=0.362
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Fig.9.9 Column design chart for 6% steel.

In a similar manner calculations can be carried out for other values of x/h. Calculations 
are most conveniently done using a Spread Sheet. Using the results, a graph of N/(bh) 
versus M/(bh2) can be drawn as shown in Fig.9.9.

As is to be expected, when x>d, the ‘tension’ reinforcement goes into compression. 
This naturally increases the value of N/(bh) but drastically decreases the value of M/(bh2). 
When the entire column section is under a compressive stress of 0.45fcu and the stress in 
both steels is 0.95fy compression, then the maximum value of N/(bh) is attained and the 
corresponding value of M/(bh2) is equal to zero.

Curves for total steel percentages 0.4, 1,2,3,4,5,6,7 and 8 can be plotted. The design 
chart is shown in Fig.9.10. Other charts are required for different values of the ratio d/h to 
give a series of charts for a given concrete and steel strength. A separate series of charts is 
required for each combination of materials used.

It has to be noted that any combination of (N/(bh), M(bh2)} which lies on or inside the 
curve corresponbding to a particular value of Asc/(bh) leads to a safe design. 
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Fig.9.10 Column design chart

9.3.3.4 Column design using design charts

A short braced column is subjected to a design ultimate load of 1480 kN and an ultimate 
moment of 54 kNm. The column section is 300 mm×300 mm. Determine the area of steel 
required. The materials are grade C30 concrete and grade 460 reinforcement.

Assume 25 mm diameter bars for the main reinforcement and 8 mm diameter links. 
The cover on the links is 25 mm.

b=h=300mm
d=300−25−8−12.5=254.5 mm

d/h=254.5/300=0.85
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Use the chart shown in Fig.9.10 where d/h=0.85.

N/(bh)=1480×103/ (3002)=16.4
M/(bh2)=54×106(3003)=2.0

 

For this combination of (N/(bh), M/(bh2)}, the design chart gives 100Asc/(bh)=2 

Asc=2.0×3002/100=1800 mm2  

Provide four 25 mm diameter bars to give an area of 1963 mm2.
Calculations show that at (x/h)=0.94, fs

 ̀=437 N/mm2, fs=−67 N/mm2

i. Rectangular-parabolic stress block: N/(bh)=16.43, M/(bh2)=2.15
ii. Rectangular stress block: N/(bh)=16.46, M/(bh2)=2.17

9.3.4 Further design chart

The design chart shown in Fig.9.10 strictly applies only to the case where the symmetri-
cal reinforcement is placed on two opposite faces. Charts can be constructed for other 
arrangements of reinforcement. One such case is shown in Fig.9.11 where eight bars are 
spaced evenly around the perimeter of the column. The total steel Asc is placed such that 
at the top and bottom rows steel is 0.375 Asc (3 bars) and in the middle row it is 0.25 Asc. 
(2 bars)

The contribution from concrete is calculated as in the previous section. There are how-
ever three strains to calculate.

 

The stresses in the compression and tension steels are calculated from strains as before.

Cs=As ̀ fs ̀
T1=As1fs1, T2=As2 fs2

N=Cc+Cs−T1−T2  

 

The sum of the moments of the internal forces about the centreline of the column is
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M=Cc(0.5h−ā)+Cs(0.5h−d ′)+T2(d−0.5h)
=0.5hCc−Ccā+Cs(0.5h−d′)+ T2(d−0.5h)

 

Note that the middle layer steel has zero lever arm about the centre line and hence does 
not contribute to moment of resistance. 

Fig.9.11 Column design chart for three layers of reinforcement. fcu=30, fy=460, d/h=0.9.
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9.4 SHORT COLUMNS SUBJECTED TO AXIAL LOAD AND BENDING 

ABOUT ONE AXIS: UNSYMMETRICAL REINFORCEMENT

An unsymmetrical arrangement of reinforcement provides the most economical solution 
for the design of a column subjected to a small axial load and a large moment about one 
axis. Such members occur in single storey reinforced concrete portals. Design charts for 
such cases can be constructed. If the total steel area is 6% say but is distributed such that 
the tension steel is 4% and compression steel is 2%, then the corresponding design chart 
is as shown in Fig.9.12.

When the ratio (x/h)=1.25, the stress fs in the ‘tension’ and compression steels are 
respectively −224 N/mm2 and 437 N/mm2. The compressive forces in the two steels are 
equal and the entire column is almost in a state of uniform compression and N/(bh)=22.27. 
The moment contributed by the two steels is zero. At this stage the corresponding value 
of M/(bh2) is zero. Because of the smaller value of the compressive stress in the ‘tension’ 
steel, the value of N/(bh) at this stage is smaller than in the case if the same amount of total 
steel is symmetrically distributed (N/(bh)=33.33).

When the ratio (x/h)=2.3, the stresses in the two steels are equal to −0.95fy and the 
entire column is almost in a state of uniform compression and the maximum value of 
N/(bh)=26.61 is reached. However because of the fact that the compressive forces in 
the two steel are not equal, the force in the ‘tension’ steel gives rise to a negative value 
of M/(bh2)=−1.53. However if the reinforcement is symmetrically distributed, then N/
(bh)=39.65 and M/(bh2) will be zero. 

Fig.9.12 Column design chart: Unsymmetrical reinforcement.
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9.4.1 Example of a Column Section Subjected to Axial Load and Moment: Unsym-
metrical Reinforcement

Design a column subjected to an ultimate axial load of 230 kN and an ultimate moment of 
244 kNm. Design the reinforcement required using an unsymmetrical arrangement. The 
concrete is grade C30 and the reinforcement is grade 460.

Assuming d’/h=0.15 and d/h=0.85 and because of the large moment, assume a rectan-
gular section with b=300 mm and h=400 mm.

N/(bh)=230×103/(300×400)=1.92
M/(bh2)=244×106/(300×4002)=5.08

 

Assume As ̀/(bh)=1 % and As/(bh)=2% and draw the design chart as shown in Fig.9.13.
Calculations show that at (x/h)=0.52, fs ̀=437 N/mm2 and fs=437 N/mm2. Approxi-

mately only one half of the column cross-section is not in compression.

N/(bh)=1.93, M/(bh2)=6.26.  

As ̀=0.01×300×400=1200 mm2, As=0.02×300×400=2400 mm2

Provide 3T25 on the compression face, As ̀=1473 mm and 5T25 on the tension face, 
As=2454 mm2.

If the column had been symmetrically reinforced, then for total of 3% steel, assuming 
As

’/(bh)=1.5% and As/(bh)=1.5%, calculations show that at (x/h) = 0.29, fs
’=338N/mm , 

fs=437 N/mm . Approximately only one third of the column cross-section is in compres-
sion. For this steel arragement

N/(bh)=2.03, M/(bh2)=5.37  

Provide 4T25 on both faces. As
’=As=1963 mm2. The total reinforcement is same as that for 

the unsymmetrical case. The unsymmetrical case provides a greater moment capacity 

Fig.9.13 Column design chart: As=2%, As
’=1%.
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9.5 COLUMN SECTIONS SUBJECTED TO AXIAL LOAD AND  

BIAXIAL BENDING

9.5.1 Outline of the Problem

When a column is subjected to an axial force and a bending moment about say x-axis, 
the neutral axis is parallel to the x-axis. However when a column is subjected to an axial 
force and moments about the two axes, the neutral axis is inclined to the x-axis as shown 
in Fig.9.14.

Fig.9.14 (a) Section; (b) strain diagram; (c) stresses and internal forces.

For a given location and direction of the neutral axis the strain diagram can be drawn with

 

the maximum strain in the concrete of 0.0035. The strains in the compression and tension

 

steel can be found and the corresponding stresses determined from the stress-strain dia-
gram for the reinforcement. The resultant forces Cs and T in the compression and tension

 

steel and the force Cc in the concrete can be calculated and their locations determined. The

 

net axial force is
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N=Cc+Cs−T  

Moments of the forces Cc, Cs and T are taken about the XX and YY axes to give Mx  
and My. 

Thus a given section can be analysed for a given location and direction of the neutral 
axis and the axial force and biaxial moments that it can support can be determined. As in 
the case of axial load with uni-axial bending moment, a failure surface can be constructed. 
It is generally found simple to use the rectangular stress block as opposed to parabolic-
rectangular stress block. Calculations are naturally much more involved than in the case 
of axial load accompanied by uniaxial bending moment.

9.5.1.1 Expressions for contribution to moment and axial force by concrete

Fig.9.15 shows a rectangular column b×h and reinforced with four bars.

Fig.9.15 Column subjected to axial load and biaxial moments.

23

x

Y

14

X

Y

α h

β b

Neutral axis

Fig.9.16 Column with the neutral axis inclined to x-axis.
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Assuming the origin of coordinates at the centroid of the column cross section, the coor-
dinates of the four bars can be calculated. The position of the neutral axis is governed by 
two parameters α and β as shown in Fig.9.16. Assuming that the maximum compressive 
strain is at the top right hand corner of the column, the normal strain in the cross-section 
is given by

ε=εu (C1+C2 (x/b)+C3 (y/h)), εu= 0.0035  

The constants can be calculated from the boundary conditions as follows:

ε=εu at (x/b=0.5, y/h=0.5), 
ε=0 at (x/b=(0.5−β), y/h=0.5), 
ε=0 at (x/b=0.5, y/h=(0.5−α))

 

Solving for the constants:

C1=1–1/(2β)−1/(2α), C2=1/β, C3=1/αh  

The strain in the bars can be calculated by substituting the appropriate coordinates of the 
bars. The stress σ in the bars is equal to α=E ε but numerically not greater than 0.95 fy.

Assuming a rectangular stress block with constant stress of 0.45fcu and a depth equal 
to 0.9 times the depth of the neutral axis, the expressions for the compressive force and 
the corresponding moments about the x and y-axes due to the compressive stress in the 
column depends on the position of the neutral axis as follows.

Case 1:0.9 β≤1.0 and 0.9 α≤1.0

From the triangular shape of the stress block shown in Fig.9.17,

Nc=0.45 fcu {0.5×0.9 αh×0.9 βb},
Mxc=Nc×(0.5 h—0.9 αh/3),
Myc=Nc×(0.5b−0.9 β b/3)

 

Fig.9.17 Neutral axis position for Case 1.

0.9 α h

0.9 β b
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Case 2:0.9 β>1.0 and 0.9 a≤1.0

From the trapezoidal stress block shown in Fig.9.18, 

Nc=0.45 fcu {0.5 (αh1+0.9 αh) b},

 

Mxc=Nc×(0.5 h−ybar),
Myc=Nc×(0.5 b−xbar)

 

Position of centroid from right face of the trapezium:

 

Position of centroid from top face of the trapezium:

 

Fig.9.18 Neutral axis position for case 2.

Case 3:0.9 β≤1.0 and 0.9 α>1.0

From the trapezoidal stress block shown in Fig.9.19
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Fig.9.19 Neutral axis position for case 3.

Nc=0.45 fcu {0.5 (βb1+0.9 βb) h},
Mxc=Nc×(0.5 h−ybar),

 

Myc=Nc×(0.5 b−xbar)  

Position of centroid from right face of the trapezium:

 

Position of centroid from top face of the trapezium:

 

Case 4:0.9 β>1.0 and 0.9 α>1.0

The five sided stress block shown in Fig.9.20 can be considered as compression over the 
entire column cross section with tension in the triangular area in the left hand bottom 
corner. Compression over the entire column does not give rise to any moment. Moment is 
caused purely by the tension in the triangular area. 
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Fig.9.20 Neutral axis position for case 4.

Nc=0.45 fcu {bh−0.5(h−αh1)(b−βb1)}

 

9.5.1.2 Example of design chart for axial force and biaxial moments

Consider a rectangular column b×h and reinforced with four bars as shown in Fig.9.15. 
The total steel area Asc=2% of bh, fcu=30 N/mm2, fy=460 N/mm2, b/h =0.5. The bars are 
located at 0.15h from top and bottom faces and at 0.3b from the sides. Calculate N/(bh), 
Mx/(bh2) and My/(b

2h) for the following positions of the neutral axis.

The coordinates (x/b, y/h) of the four bars are:

1:(0.2, 0.35), 2:(0.2, −0.35), 3:(−0.2, −0.35), 4:(−0.2, 0.35)
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(i) Assuming α=0.65, β=0.95

Calculate the strains (positive is compressive) in steel from the equation

 

The strains in the four bars are respectively:

1.587×10−3, −2.182×10−3, −3.659×10−3, 0.113×10−3  

The corresponding stresses are:

317, −436, −437 and 22.7 N/mm2  

The contribution of the stresses in steel to:

N=(317−436−437+22.7)×(0.02 bh/4)=−2.667 bh (Tensile)
Mx=(317+436+437+22.7)×(0.02 bh/4)×0.35h=2.12 bh2

My=(317−436+437−22.7)×(0.02 bh/4)×0.2b=0.295 b2h

 

The contribution of the compressive stress in concrete are, using:

0.9α=0.585, 0.9β=0.855
Nc=0.45 fcu×0.5×(0.585 h×0.855 b)=3.376 bh 

Mx=Nc×(0.5 h−0.585h/3)=1.030 bh2 

My=Nc×(0.5 b−0.855b/3)=0.726 b2h

 

Adding the contribution of steel and concrete:

N/(bh)=0.709, Mx/(bh2)=3.15, My/(b
2h)=1.021  

(ii) Assuming α=0.65, β=1.35

The strains in the four bars are respectively:

1.915×10−3, −1.85×10−3, −2.89×10−3, 0.877×10−3  

The corresponding stresses are:

383, −371, −437 and 175 N/mm2  

The contribution of the stresses in steel to:

N=(383−371−437+175)×(0.02 bh/4)=−1.25 bh (Tensile)
Mx=(383+371+437+175)×(0.02 bh/4)×0.35h=2.39 bh2 

My=(383−371+437−175)×(0.02 bh/4)×0.2b=0.273 b2 h
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The contribution of the compressive stress in concrete are calculated using

0.9α=0.585, 0.9β=1.215  

From the trapezoidal stress block shown in Fig.9.18, 

 

Nc=0.45 fcu×{0.5 (αh1+0.9 αh) b}=4.65 bh

Mxc=Nc×(0.5 h−ybar)=1.395 bh2

Myc=Nc×(0.5 b−xbar)=0.541 b2h

 

Adding the contribution of steel and concrete:

N/(bh)=3.40, Mx/(bh2)=3.78, My/(b
2h)=0.814  

(iii) Assuming α=1.2, β=0.65

The strains in the four bars are respectively:

1.447×10−3, −0.59×10−3, −2.75×10−3, −0.71×10−3  

The corresponding stresses are:

289, −119, −437 and −141 N/mm2  

The contribution of the stresses in steel to:

N=(289−119−437−141)×(0.02 bh/4)=−2.04 bh (Tensile)
Mx=(289+119+437−141)×(0.02 bh/4)×0.35h=1.232 bh2

My=(289−119+437+141)×(0.02 bh/4)×0.2b=0.748 b2 h

 

The contribution of the compressive stress in concrete to the forces are, using

0.9α=1.08, 0.9β=0.65  

From the trapezoidal stress block shown in Fig.9.19,
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Nc=0.45 fcu×{0.5 (βb1+0.9βb) h},=4.24 bh

Mxc=Nc×(0.5 h−ybar)=0.608 bh2

Myc=Nc×(0.5 b−xbar)=1.288 b2h

 

Adding the contribution of steel and concrete:

N/(bh)=2.20, Mx/(bh2)=1.84, My/(b
2h)=2.04  

(iv) Assuming α=1.3, β=1.5

Calculate the strains (positive is compressive) in steel. 
The strains in the four bars are respectively:

2.396×10−3, 0.512×10−3, −0.42×10−3, 1.463×10−3  

The corresponding stresses are:

437, 102, −84 and 293 N/mm2  

The contribution of the stresses in steel to: 

N=(437+102−84+293)×(0.02 bh/4)=3.74 bh
Mx=(437−102+84+293)×(0.02 bh/4)×0.35h=1.25 bh2

 

My=(437+102+84–293)×(0.02 bh/4)×0.2b=0.331 b2 h  

The contribution of the compressive stress in concrete to the forces are, using

0.9α= 1.17, 0.9β=1.35  

From the trapezoidal stress block shown in Fig.9.20,
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Nc=0.45 fcu {bh−0.5(h−αh1)(b−βb1)}=9.72 bh

 

Adding the contribution of steel and concrete: N/(bh)=13.46, Mx/(bh2)=2.26, My/
(b2h)=1.208

9.5.1.3 Axial force biaxial moment interaction curve

Calculations similar to that in the previous section can be done and the corresponding 
interaction curves as shown in Fig.9.21 can be constructed for Mx/(bh2)=2.0 and 3.0..

9.5.2 Approximate method given in BS 8110

In the absence of interaction diagram as described in section 9.5.1, an approximate design 
method given in BS8110: Part 1, clause 3.8.4.5 can be used. The method reduces the 
biaxial bending case to a uni-axial one by designing for a larger value of the moment 
than applied. The amount of increase depends on the ratio of the axial load to the capacity 
under axial load only. The applied moment and dimensions are shown in Fig.9.22, where

Mx design ultimate moment about the XX axis
Mx

’ effective uni-axial design moment about the XX axis
My design ultimate moment about the YY axis

My’ effective uni-axial design moment about the YY axis
h overall depth perpendicular to the XX axis

h′ effective depth perpendicular to the XX axis
b overall width perpendicular to the YY axis

b′ effective width perpendicular to the YY axis

 

(Code equation 
40)
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If   (Code equation 41)

The coefficient β is taken from Table 3.22 of the code. It depends on the value of N/(bhfcu), 
e.g. for N/(bhfcu)=0, 0.3, and ≥0.6, β=1.0, 0.65, 0.3 respectively.

Fig.9.21 Column design chart for axial force and biaxial bending
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9.5.2.1 Example of design of column section subjected to axial load and biaxial  
bending: BS 8110 method

Design the reinforcement for the column section shown in Fig.9.23 It is subjected to the 
following actions at ULS:

N=950 kN
Mx about xx-axis=95 kNm
My about yy-axis=65 kNm

 

The materials are grade C30 concrete and grade 460 reinforcement. Assume the cover is 
25 mm, links are 8 mm in diameter and main bars are 25 mm in diameter. 

h′= 400−25−8−12.5=355 mm, say 350 mm
b′=300−25−8−12.5=255 mm, say 250 mm

Mx/h′=95/0.35=211.4
My/b′=65/0.25=260

Mx/h′>My/b′
N/(bh fcu)=950×103 /(400×300×30)=0.264

β=0.693 (Table 3.22 of the code)
Mx

’=95+0.693×(350/250)×65=158.1 kNm
N/(bh)=950×103/(400×300)=7.92

Mx
’/(bh2)=158.1×106/(300×4002)=3.29

 

Fig.9.22 BS 8110 method for biaxial bending design.
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Fig.9.23 Column section under axial load and biaxial moments.

Using As
 ̀=As=2T25=982 mm2, d/h=0.85, 100 Asc (bh)=1.64, calculations show that at 

(x/h)=0.58, fs
’=437 N/mm2, fs=326 N/mm2,

N/(bh)=7.94, M/(bh2)=3.86  

The reinforcement is shown in Fig.9.23.
If it is decided to use the exact column design for biaxial moment, then a corresponding 

column design chart as shown in Fig.9.24 need to be constructed. As a check, using α=1.3, 
β=1.02 and the coordinates of the bars as (±0.375h, ±0.333b)
Calculate the strains (positive is compressive) in steel.
The strains in the four bars are respectively:

2.592×10−3, 0.573×10−3, −1.71×10−3, 0.306×10−3  

The corresponding stresses are:

437, 115, −437 and 61 N/mm2  

The contribution of the stresses in steel to:
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N=(437+115−343+61)×(0.016 bh/4)=1.08 bh
Mx=(437−115+343+61)×(0.016 bh/4)×0.375h=1.09 bh2

My=(437+115+343–61)×(0.016 bh/4)×0.333b=1.11 b2 h

 

The contribution of the compressive stress in concrete to the forces are calculated using 
0.9α=1.17 and 0.9β=0.92.

Fig.9.24 Biaxial design chart for column in Fig.9.24.

From the trapezoidal stress block shown in Fig.9.19,
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Nc=0.45 fcu×{0.5 (βb1+0.9 βb) h},=7.104 bh

Mxc=Nc×(0.5 h−ybar)=0.885 bh2

Myc=Nc×(0.5 b−xbar)=1.336 b2h

 

Adding the contribution of steel and concrete:

N/(bh)=8.18, Mx/(bh2)=1.98, My/(b
2h)=2.45  

The required values are: N=950 kN, Mx=95 kNm, My=65 kNm. 
If b=300 mm and h=400 mm, the section is safe because 
N/(bh)=7.92<8.18, Mx/(bh2) =1.98, My/(b

2h)=1.81<2.45

9.6 EFFECTIVE HEIGHTS OF COLUMNS

9.6.1 Braced and Un-braced Columns

An essential step in the design of a column is to determine whether the proposed dimen-
sions and framing arrangement will result in the column being ‘short’ or a ‘slender’. If the 
column is slender, additional moments due to deflection must be added to the moments 
from the primary analysis. In general columns in buildings are ‘short’, 
Clause 3.8.1.3 of the code defines short and slender columns as follows:

1. For a braced structure, the column is considered as short if both the slenderness ratios 
lex/h and ley/b are less than 15. If either ratio is greater than 15, the column is considered 
as slender.

2. For an un-braced structure, the column is considered as short if both the slenderness 
ratios lex/h and ley/b are less than 10. If either ratio is greater than 10 the column is consid-
ered as slender.

Here h is the column depth perpendicular to the XX axis, b is the column width perpen-
dicular to the YY axis, lex is the effective height in respect of the XX axis and ley is the 
effective height in respect of the YY axis.
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The code states that the columns can be considered braced in a given plane if the struc-
ture as a whole is provided with stiff elements such as shear walls which are designed to 
resist all the lateral forces in that plane. The bracing system ensures that there is no sig-
nificant lateral displacement between the ends of the columns. If the above conditions are 
not met the column should be considered as un-braced. Examples of braced and un-braced 
columns are shown in Fig.9.26.

9.6.2 Effective Height of a Column

The effective height of a column depends on

1. the actual height between floor beams, base and floor beams or lateral supports
2. the column section dimensions h×b
3. the end conditions such as the stiffness of beams framing into the columns or whether 
the column to base connection is designed to resist moment
4. whether the column is braced or un-braced

The effective height of a pin-ended column is its actual height. The effective height of 
a general column is the height of an equivalent pin-ended column of the same buckling 
capacity as the actual member. Theoretically the effective height is the distance between 
the points of inflexion along the member length. These points may lie within the member 
as in a braced column or on an imaginary line outside the member as in an un-braced col-
umn. Some effective heights for columns are shown in Fig.9.25.

For a braced column the effective height will always be less than or equal to the actual 
height. In contrast, the effective height of an un-braced column will always be greater 
than the actual height except in the case where sway occurs without rotation at the ends 
(Fig.9.25). It is important to note that the effective heights of a column in two plan direc-
tions may well be different. Also, the column may be braced in one direction but un-
braced in the other direction.

9.6.3 Effective Height Estimation From BS 8110

Two methods are given in the code to determine the effective height of a column:

1. simplified recommendations given in BS 8110: Part 1, clause 3.8.1.6, that can be used 
in normal cases
2. a more rigorous method given in BS8110: Part 2, section 2.5

Clause 3.8.1.6.1 states that the general equation for obtaining effective heights is:

le=βl0
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where l0 is the clear height between end restraints and β is a coefficient from Tables 3.19 
and 3.20 of the code for braced and un-braced columns; β is a function of the end condi-
tion. In Tables 3.19 and 3.20 the end conditions are defined in terms of a scale from 1 to 4. 
An increase in the scale corresponds to a decrease in end fixity. The four end conditions 
are as follows.

Fig.9.25 (a) Braced columns; (b) un-braced columns.



 

Columns  347

Condition 1. The end of the column is connected monolithically to beams on either side 
which are at least as deep as the overall dimension of the column. When the column is 
connected to a foundation structure this should be designed to carry moment.

Condition 2 The end of the column is connected monolithically to beams or slabs on either 
side which are shallower than the overall dimension of the columns.

Condition 3 The end of the column is connected to members that, while not designed 
specifically to provide restraint, do provide some nominal restraint.

Condition 4 The end of the column is unrestrained against both lateral movement and 
rotation, i.e. it is the free end of a cantilever.

Some values of β from Tables 3.19 and 3.20 of the code are as follows:

Braced column:

Top end, condition 1 β=0.75
Bottom end, condition 1 Essentially fixed ends

 

Un-braced column:

Bottom end, condition 4 β=2.2
Top end, condition 1 Essentially a cantilever

 

The more accurate assessment of effective heights from BS 8110: Part 2, section 2.5, is 
set out below. The derivation of the equations is based on a limited frame consisting of the 
columns concerned, column lengths above and below if they exist and the beams top and 
bottom on either side if they exist. The symbols used are defined as follows:

I second moment of area of the section
le effective height in the plane considered

l0 clear height between end restraints
αc1=ratio of the sum of the column stiffnesses to the sum of the beam stiff-

nesses at the lower end
αc2=ratio of the sum of the column stiffnesses to the sum of the beam stiff-

nesses at the upper end αc min the lesser of αc1 and αc2

 

Only members properly framed into the column are considered. The stiffness is I/l0. In 
specific cases the following simplifying assumptions may be made:

1. In the flat slab construction the beam stiffness is based on the section forming the col-
umn strip; 



 

348 Reinforced Concrete

2. For simply supported beams framing into a column, αc=10;
3. For the connection between column and base designed to resist only nominal moment, 
αc=10;
4. For the connection between column and base designed to resist column moment, 
αc=1.0.

The effective heights for framed structures are as follows:

1. For braced columns the effective height is the lesser of

le=l0[0.7+0.05(αc1+αc2)]<l0

le=l0[0.85+0.05 αcmin]<l0

 

2. For un-braced columns the effective height is the lesser of

le=l0[1.0+0.15(αc1+αc2)]<l0

le=l0[2.0+0.3 αcmin]<l0

 

9.6.4 Slenderness Limits for Columns

The slenderness limits for columns are specified in clauses 3.8.1.7 and 3.8.1.8, as fol-
lows.

1. Generally the clear distance l0 between end restraints is not to exceed 60 times the 
minimum thickness of the column;

2. For un-braced columns, if in any given plane one end is unrestrained, e.g. a cantilever, 
its clear height l0 should not exceed

 

where h and b are the larger and smaller dimensions of the column.

9.6.4.1 Example of calculating the effective heights of column by simplified 
and rigorous methods

(a) Specification

The lengths and proposed section dimensions for the columns and beams in a multi-storey 
building are shown in Fig.9.27. Determine the effective lengths and slenderness ratios for 
the XX and YY axes for the lower column length AB, for the two cases where the struc-
ture is braced and un-braced. The connection to the base and the base itself are designed 
to resist the column moment. Use both the rigorous and the simplified methods.
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(b) Simplified method

(i) YY axis buckling: End conditions:

Top: The top end is connected monolithically to beams with a depth (500 mm) greater 
than the column dimension (400 mm), i.e. condition 1
Bottom: The base is designed to resist moment i.e. condition 1.

1. Braced column:

slenderness: β=0.75 (Table 3.21 of the code) and l0, the clear height between end restraints, 
is 4750 mm;

ley!h=0.75×4750/400=8.9<15  

The column is ‘short’.

2. Un-braced column:

slenderness: β=1.2 (Table 3.22);

ley/h=1.2×4750/400=14.25>10, i.e. the column is ‘slender’.  

Fig.9.26 Multi storey building(a) Side elevation; (b) transverse frame; (c) column UU; 
(d) beam VV.
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(ii) XX axis buckling: End conditions:

Top: condition 1;
Base: condition 1.

1. Braced column

slenderness: lex/b=0.75×4750/300=11.9<15; the column is ‘short’.  

2. Un-braced column

slenderness: lex/b=1.2×4750/300=19>10; the column is ‘slender’.  

(c) Rigorous method

(i)YY axis buckling: The stiffness I/L of

Column AB: (300×4003/12)/5000=320×103

Column BC: (300×3003/12)/4000=169×103

 

It is conservative practice to base beam moments of inertia on the beam depth multiplied 
by the rib width.

Beam BD: (300×5003/12)/5000=625×103

Beam BE: (300×5003/12)/8000=391×103

Joint A: αc1=1.0 (fixed end)
Joint B: αc2=(320+169)/(625+391)=0.48

 

1. Braced column:

Slenderness: l0, the clear height between end restraints, is 4750 mm and ley is the lesser 
of

4750[0.7+0.05(1.0+0.48)]=3677 mm
4750(0.85+0.05×0.48)=4152 mm but must be less than l0;

ley/h=3677/400=9.19<15.0

 

The column is ‘short’.

2. Un-braced column

Slenderness: ley is the lesser of

4750[1.0+0.15(1.0+0.48)]=5805 mm
4570(2.0+0.3)=9500 mm 
ley/h=5805/400=14.5>10.0
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The column is ‘slender’.

(ii) XX axis buckling: The stiffness I/L

Column AB=(400×3003/12)/5000=180×103

Column BC=(300×3003/12)/4000=169×103

 

It is conservative practice to base beam second moments of area on the beam depth mul-
tiplied by the rib width. For beam BF and BG

I=(250×4003/12)=1.33×109 mm4, I/I=1.33×109/5000=267×103

Joint Α=αc1=1.0 (fixed end)
Joint B=αc2=(180+169)/(267+267)=0.65

 

1. Braced column slenderness

4750[0.7+0.05(1.0+0.65)]=3717 mm
4750(0.85+0.05×0.65)=4192 mm but must be less than l0; thus ley/

b=3717/300=12.4<15.0. The column is ‘short’.

 

2. Un-braced column slenderness: ley is the lesser of

4750×[1.0+0.15(1.0+0.65)]=5926 mm
4570×(2.0+0.3)=9500 mm

lex/b=5926/300=19.8>10.0. The column is ‘slender’,

 

(d) Comment and summary

The two methods give the same outcome. These may be summarized as Braced column is 
‘short’ with respect to both axes and Un-braced column is ‘slender’ with respect to both 
axes. The maximum slenderness ratio is 19.8.

9.7 DESIGN OF SLENDER COLUMNS

9.7.1 Additional Moments Due to Deflection

In the primary analysis of the rigid frames the secondary moments due to deflection are 
ignored. This effect is small for short columns but with slender columns significant addi-
tional moments occur. A simplified discussion is given. 
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Fig.9.27 (a) Braced column; (b) un-braced column; (c) curvature at centre.

If the pin-ended column shown in Fig.9.27 (a) is bent such that the curvature 1/r is uni-
form, the deflection at the centre can be shown to be au=l2/8r. If the curvature is taken as 
varying uniformly from zero at the ends to a maximum of 1/r at the centre, au=l2/12r. For 
practical columns au is taken as the mean le

2/10r. The same value is used for the un-braced 
column at the centre of the buckled length, as shown in Fig.9.27(b).

The curvature at the centre of the buckled length of the column is assessed when the 
concrete in compression and steel in tension are at their maximum strains. The curvature 
for this case is shown in Fig.9.27(c). The concrete strain shown is increased to allow for 
creep and a further increase is made to take account of slenderness. The maximum deflec-
tion for the case set out above is given in the code by the expression

au=βaKh  

where

 

and b′ is the smaller dimension of the column, equal to b if b is less than h. K is a reduction 
factor that corrects the curvature and so the resulting deflection for the cases where steel 
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strain in tension is less than its maximum value of 0.002 or where compression exists over 
the whole section. The value of K is

 

where

Nuz=0.45 fcu Ac+0.95 fy Asc
 

This is the capacity under pure axial load.
Nbal=Design ultimate load capacity of a balanced section. For this case, when the maxi-
mum strain in concrete is 0.0035, the strain in steel is also at yield. The strain in steel at 
yield is 0.95 fy/E=0.95×460/(200×103)=0.0022
The depth x of neutral axis is therefore equal to

x=d/(1+0.0022/0.0035)=0.614 d  

The stress block depth is 0.9x
The compression steel normally yields. Nbal is given by

Nbal=0.45 fcu(0.9×0.614 d)b+0.95 fy As
̀−0.95 fy As

 

For symmetrically reinforced rectangular sections, As=As.

Nbal=0.25 fcu bd  

The assessment is first made with K=1 and then K is calculated from the above formula 
and a second iteration is made. The value of K converges quickly to its final result.

Referring to Fig.9.27, the deflection causes an additional moment in the column given 
by

Madd=Nau
 

The additional moment is added to the initial moment Mi from the primary analysis to give 
the total design moment Mt: 

Mt=Mi+Madd
 

In a braced column the maximum additional moment occurs in the centre of the column 
whereas in the un-braced column it occurs at the end of the column.

9.7.2 Design Moments in a Braced Column Bending About a Single Axis

The distribution of moments over the height of a typical braced column in a concrete 
frame from Fig. 3.20 in the code is shown in Fig.9.28. The maximum additional moment 
occurs at the centre of the column where the deflection due to buckling is greatest. The 
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initial moment at the point of maximum additional moment is given in clause 3.8.3.2 of 
the code by

Mi=0.4M1+0.6M2≥0.4M2 
 

where M1 is the smaller initial end moment and M2 is the larger initial end moment.
The column will normally be bending in double curvature in a building frame and 

M1 is to be taken as negative and M2 as positive. The code states that the maximum 
design moment is the greatest of the following four values (Fig.9.29): M2; (Mi+Madd), 
(M1+Madd/2); (emin N), where emin is 0.05h or 20 mm maximum.

Fig.9.28 Slender braced column (a) End conditions; (b) initial moments; (c) additional 
moments; (d) final design moments.

9.7.3 Further Provisions for Slender Columns

Further important provisions regarding the design of slender columns set out in BS8110: 
Part 1, clauses 3.8.3.33.8.3.6, are as follows.

(a) Slender columns bent about a single axis (major or minor)

If the longer side h is less than three times the shorter side b for columns bent about the 
major axis and lelh<20, the design moment is Mi+Madd as set out above.

(b) Slender columns where le/h>20 bent about the major axis

The section is to be designed for biaxial bending. The additional moment occurs about 
the minor axis.

(c) Slender columns bent about their major axis

If h>3b (see 9.7.3(a) above), the section is to be designed for biaxial bending as in 9.7.3(b) 
above.
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(d) Slender columns bent about both axes

Additional moments are to be calculated for both directions of bending. The additional 
moments are added to the initial moments about each axis and the column is designed for 
biaxial bending.

9.7.4 Unbraced Structures

The distribution of moments in an un-braced column is shown in Fig. 3.21 of the code 
(see Fig.9.29 below). The additional moment is assumed to occur at the stiffer end of the 
column. The additional moment at the other end is reduced in proportion to the ratio of 
joint stiffnesses at the ends.

Fig.9.29 Slender unbraced column (a) End conditions; (b) initial moments; (c) additional 
moments; (d) design moments. The asterisk indicates that Madd is reduced in proportion 
to the ratio of end stiffnesses.

9.7.4.1 Example of design of a slender column

(a) Specification

Design the column length AB in the building frame shown in Fig.9.27 for the two cases 
where the frame is braced and un-braced. The bending moment diagrams for the column 
bent about the YY axis and the axial loads for unfactored dead, imposed and wind loads 
are shown in Fig.9.33. The materials are grade C30 concrete and grade 460 reinforce-
ment.

(b) Column AB braced

In the case of a braced column, the wind load is resisted by shear walls. Referring to the 
example (9.6.4.1), the above the column is short with respect to both axes. The design 
loads and moments at the top of the column are
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N=(1.4×765)+(1.6×305)=1559 kN
M=(1.4×48)+(1.6×28)=112 kNm

 

The cover is 25 mm, the links are 8 mm and the bars are 25 mm in diameter. The inset of 
the bars is approximately 50 mm.

d/h=350/400=0.875
N/(bh)=1559×103/(300×400)=13.0 
M/(bh2)=112×106/(300×4002)=2.33

 

Using column design chart, 100Asc/bh=1.6%.
Calculations show that for a column with symmetrical steel equal to

100Asc/(bh)=1.6, at x/h=0.82 fs
 ̀=437 N/mm2, fs=26 N/mm2 and N/

(bh)=13.22, M/(bh2)=2.58.
 

Asc=1.6×300×400/100=1920 mm2. Provide 4T25 bars of area 1963 mm2. 

Fig.9.30 (a) Dead load; (b) imposed load; (c) wind load; (d) column section.
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(c) Column AB un-braced:

Calculate the design loads and moments taking wind load into account.

N=1.2×(765+305)=1284 kN
M=1.2×(48+28+37)=135.6 kNm

 

The column must be checked for the following.

Case 1: dead+imposed load

N=1559 kN, M=112 kNm  

Case 2: dead+imposed+wind load

N=1284 kN, M=135.6 kNm  

The column is slender with respect to both axes. The maximum slenderness ratio from 
example in section 9.6.4.1 is

lex/b=19.8  

The column is bent about the major axis and le/h does not exceed 20.

1. Trial 1: Assume the factor K=1 initially.

βα=19.82/2000=0.196  

The deflection is

au=0.196×1×400=78.41 mm  

(i) Case 1: dead+imposed load

Calculate additional moment:

Madd=1559×78.41×10−3=122.2 kNm  

Calculate design moment as the sum of applied and additional moments:

Mt=112+122.2–234.2 kNm
N/(bh)=1559×103/(300×400)=13.0

M/(bh2)=234.2×106/(300×4002)=4.88

 

Calculate the required steel area using the charts. Calculations show that for a column 
with symmetrical steel equal to 100Asc/(bh)=3.4, at x/h=0.70, fs

 ̀=437 N/mm2, fs=150 N/
mm2, N/(bh)=13.36, M/(bh2)=5.05.

Asc=3.4×300×400/100=4080 mm2  
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2. Trial 2: Calculate the reduction factor K:

Nuz=0.45×30×(400x300–4080)×10−3+(0.95×460×4080)×10−3 =3347.9 kN 
Nbal=0.25×30×300×350×10−3=787.5 kN 

K=(3347.9−1559)/(3347.9−787.5)=0.699
Mt=112+(0.699×122.2)=197.4 kNm

N/(bh)=13.0, Mt/(bh2)=4.11

 

Calculate the required steel area using the charts. Calculations show that for a column 
with symmetrical steel equal to 100Asc/(bh)=2.68, at x/h=0.73, fs=437 N/mm2, fs=126 N/ 
mm2, N/(bh)=13.0, M/(bh2)=4.11.

Asc=2.69×300×400/100=3228 mm2

Nuz= 0.45×30×(400×300−3228)×10−3+(0.95×460×3228)×10−3 =2987 kN 
K=(2987.0−1559)/(2987.0−787.5)=0.649

 

This value of K is almost same as K at the start of Trial 2. Therefore convergence has 
taken place. Calculate the total moment and finalize design.

Mt=112+(0.649×122.2)=191.3 kNm
Mt/(bh2)=191.3×106/(300×4002)=3.99 

N/(bh)=13.0, Mt/(bh2)=3.99

 

Provide 4T32, to give an area of 3217 mm2. 100Asc/(bh)=100×3217/(400×300)=2.68

(ii) Case 2; dead+imposed+wind load

Calculate the additional moment:

Madd=1284×78.41×10−3=100.7 kNm
Mt=135.6+100.7=236.3 kNm 

N/(bh)=1284×103/(300×400)=10.7
M/(bh2)=236.3×106/(300×4002)=4.92

100Asc/bh=3.0

 

Case 1 gives marginally the more severe design condition. The column reinforcement is 
shown in Fig.9.30.



 



 

CHAPTER 10 
 

WALLS IN BUILDINGS

10.1 FUNCTIONS, TYPES AND LOADS ON WALLS

All buildings contain walls the function of which is to carry loads, enclose and divide 
space, exclude weather and retain heat. Walls maybe classified into the following types:
1. internal non-load-bearing walls of block-work or light movable partitions that divide 
space only
2. external curtain walls that carry self-weight and lateral wind loads
3. external and internal infill walls in framed structures that may be designed to provide 
stability to the building but do not carry vertical building loads; the external walls would 
also carry lateral wind loads
4. load-bearing walls designed to carry vertical building loads and horizontal lateral and 
in-plane wind loads and provide stability

Type 4 structural concrete walls are considered.
The role of the wall is seen clearly through the type of building in which it is used. 

Building types and walls provided are as follows:
(a)  framed buildings: wall types 1, 2 or 3
(b)  load-bearing and shear wall building with no frame: wall types 1, 2 and 4
(c)  combined frame and shear wall building: wall types 1, 2 and 4

Type (c) is the normal multi-storey building.
A wall is defined in BS8110: Part 1, clause 1.2.4, as a vertical load-bearing member 

whose length exceeds four times its thickness. This definition distinguishes a wall from 
a column.

Loads are applied to walls in the following ways:
1. vertical loads from roof and floor slabs or beams supported by the wall
2. lateral loads on the vertical wall slab from wind, water or earth pressure
3. horizontal in-plane loads from wind when the wall is used to provide lateral stability in 
a building as a shear wall
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10.2 TYPES OF WALL AND DEFINITIONS

Structural concrete walls are classified into the following two types defined in clause 1.2.4 
of the code:
1. A reinforced concrete wall is a wall containing at least the minimum quantity of rein-
forcement given in clause 3.12.5 (section 10.3 below). The reinforcement is taken into 
account in determining the strength of the wall.
2. A plain concrete wall is a wall containing either no reinforcement or insufficient rein-
forcement to comply with clause 3.12.5. Any reinforcement in the wall is ignored when 
considering strength. Reinforcement is provided in most plain walls to control cracking.

Also in accordance with clause 1.2.4 mentioned above, walls are further classified as fol-
lows:
1. A braced wall is a wall where reactions to lateral forces are provided by lateral sup-
ports such as floors or cross-walls;
2. An un-braced wall is a wall providing its own lateral stability such as a cantilever 
wall;
3. A stocky wall is a wall where the effective height divided by the thickness, le/h, does 
not exceed 15 for a braced wall or 10 for an unbraced wall;
4. A slender wall is a wall other than a stocky wall.

10.3 DESIGN OF REINFORCED CONCRETE WALLS

10.3.1 Wall Reinforcement

(a) Minimum area of vertical reinforcement

The minimum amount of reinforcement required for a reinforced concrete wall from Table 
3.25 of the code expressed by the term 100ASC/ACC is 0.4 where ASC is the area of steel in 
compression and Acc is the area of concrete in compression.

(b) Area of horizontal reinforcement

The area of horizontal reinforcement in walls where the vertical reinforcement resists 
compression and does not exceed 2% is given in clause 3.12.7.4 as

fy=250N/mm2 0.3% of concrete area
fy=460N/mm2 0.25% of concrete area
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(c) Provision of links

If the compression reinforcement in the wall exceeds 2% links must be provided through 
the wall thickness (clause 3.12.7.5).

10.3.2 General Code Provisions For Design

The design of reinforced concrete walls is discussed in section 3.9.3 of the code. The 
general provisions are as follows.

(a) Axial loads

The axial load in a wall may be calculated assuming the beams and slabs transmitting the 
loads to it are simply supported.

(b) Effective height

Where the wall is constructed monolithically with adjacent elements, the effective height 
le should be assessed as though the wall were a column subjected to bending at right 
angles to the plane of the wall.

If the construction transmitting the load is simply supported, the effective height should 
be assessed using the procedure for a plain wall (section 10.4(b))

(c) Transverse moments

For continuous construction transverse moments can be calculated using elastic analysis. 
If the construction is simply supported, the eccentricity and moment may be assessed 
using the procedure for a plain wall. The eccentricity is not to be less than h/20 or 20mm 
where h is the wall thickness (section 10.4.1(g) below).

(d) In-plane moments

Moments in the plane of a single shear wall can be calculated from statics. When several 
walls resist forces the proportion allocated to each wall should be in proportion to its 
stiffness.

Consider two shear walls connected by floor slabs and subjected to a uniform horizon-
tal load, as shown in Fig. 10.1. The walls deflect by the same amount

δ=pH3/8EI  

Thus the load is divided between the walls in proportion to their moments of inertia:
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A more accurate analysis for connected shear walls is given in Chapter 15.

(e) Reinforcement for walls in tension

If tension develops across the wall section the reinforcement is to be arranged in two 
layers and the spacing of bars in each layer should comply with the bar spacing rules in 
section 3.12.11 of the code.

10.3.3 Design of Stocky Reinforced Concrete Walls

The design of stocky reinforced concrete walls is covered in section 3.9.3.6 of the code. 
The provisions in the various clauses are as follows.

(a) Walls supporting mainly axial load

If the wall supports an approximately symmetrical arrangement of slabs, the design axial 
load capacity nw per unit length of wall is given by 

nw=0.35 fcu Ac+0.67 Asc fy
 

where Ac is the gross area of concrete per unit length of wall and Asc is the area of com-
pression reinforcement per unit length of wall. The expression applies when the slabs are 
designed for uniformly distributed imposed load and the spans on either side do not differ 
by more than 15%.

(b) Walls supporting transverse moment and uniform axial load

Where the wall supports a transverse moment and a uniform axial load, a unit length of 
wall can be designed as a column using column design charts discussed in Chapter 9

(c) Walls supporting in-plane moments and axial load

The design for this case is set out in section 10.3.4 below.

(d) Walls supporting axial load and transverse and in-plane moments

The code states that the effects are to be assessed in three stages.

(i) In-plane Axial force and in-plane moments are applied. The distribution of force along 
the wall is calculated using elastic analysis assuming no tension in the concrete.

(ii) Transverse The transverse moments are calculated using the procedure set out in sec-
tion 10.3.2(c).

(in) Combined The effects of all actions are combined at various sections along the wall. 
The sections are checked using the general assumptions for beam design.
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Fig.10.1 Shearwalls connected by floor slabs.

10.3.4 Walls Supporting In-plane Moments and Axial Loads

(a) Wall types and design methods

Some types of shear wall are shown in Fig. 10.2. The simplest type is the straight wall 
with uniform reinforcement as shown in 10.2(a). In practice the shear wall includes col-
umns at the ends as shown in 10.2(e). Channel-shaped walls are also common as shown 
in 10.2(d), and other arrangements are used. 

Three design procedures are discussed.

1. using an interaction chart
2. assuming a uniform elastic stress distribution
3. assuming that end zones resist moment

The methods are discussed briefly below.  Examples illustrating their use are given.
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Fig.10.2 (a) Wall reinforcement: (b) uniform strips of steel; (c) extra reinforcement in 
end zones; (d) channel-shaped shear walls; (e) shear wall between columns.

(b) Interaction chart

The chart construction is based on the assumptions for design of beams given in section 
3.4.4.1 of the code. A straight wall with uniform reinforcement is considered. For the pur-
pose of analysis the vertical bars are replaced by uniform strips of steel running the full 
length of the wall as shown in Fig.10.2(b). The chart is shown in Fig. 10.4. The chart is 
constructed using the following equations:
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Assuming fy=460 N/mm2 and Young’s modulus for steel is 200 kN/mm2, then the strain εy
when the stress is 0.95 fy is given by

εy=0.95 fy/(200×103)=2.185×10−3  

If the maximum compressive strain in concrete is 0.0035 and the neutral axis depth is x, 
the strain in steel is equal to εy at a depth c from the neutral axis, where

c=(εy/0.0035)x=0.6243 x, 
(x−c)=0.3757x

 

Case 1: If (x/h)≤0.6157, as shown in Figure 10.3 (a),

Fig.10.3 (a) Neutral axis position for Case 1.

AB=0.3757x, BC=0.6243x, CD=0.6243x, DE=(h−1.6243x)  

Using the rectangular compressive stress block, if the thickness of the wall is b, the com-
pressive force due to concrete=0.45 fcu (0.9x)b 
If the steel in the wall is Asc mm2/m, then

N=[0.45 fcu b0.9x+(AB+0.5BC−0.5CD−DE)×10−3×0.95 fy Asc]×10−3  

where AB etc. are in mm and N in kN.
Taking moments about the centre of the wall, 

 

where M is in kNm

A B C

D E

x

h

0.95fy

0.95fy
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Case 2: If 1.0≥(x/h)>0.6157, as shown in Figure 10.3 (b) 

Fig.10.3(b) Neutral axis position for Case 2.

AB=0.3757x, BC=0.6243x, CD=h−x  

Fig.10.3(c) Neutral axis position for Case 3.

A B C

DD

x

h

700(h/x–1)

0.95fy

A B C

x

h

x-h

700(h/x–1)0.95fy
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Fig.10.4 Wall design chart.

Case 3: If 2.6617≥(x/h)>1.0, then as shown in Figure 10.3 (c),

AB=0.3757x, BC=h−0.3757x

N=[0.45 fcu b(0.9x≤h)+{AB×0.95fy+0.5BC×(0.95fy+σ)}×10−3 Asc]×10−3

M=[0.45 fcu b(0.9x≤h){0.5h−(0.45x≤0.5h)}+{AB(0.5h−0.5AB)0.95fy 
+0.5BC(0.95fy+σ)(0.5h−AB−r)}×10−3 Asc]×10−6
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A chart could also be constructed for the case where extra steel is placed in two zones 
at the ends of the walls as shown in Fig.10.2(c). Charts could also be constructed for 
channel-shaped walls.

In design the wall is assumed to carry the axial load applied to it and the overturning 
moment from wind. The end columns, if existing, are designed for the loads and moments 
they carry.

(c) Elastic stress distribution

A straight wall section, including columns if desired, or a channel-shaped wall is analyzed 
for axial load and moment using the properties of the gross concrete section in each case. 
The wall is divided into sections and each section is designed for the average direct load 
on it. Compressive forces are resisted by concrete and reinforcement. Tensile stresses are 
resisted by reinforcement only.

(d) Assuming that end zones resist moment

Reinforcement located in zones at each end of the wall is designed to resist the moment. 
The axial load is assumed to be distributed over the length of the wall.

10.3.4.1 Example of design of a wall subjected to axial load and in-plane  
moments using design chart

(a) Specification

The plan and elevation for a braced concrete structure are shown in Fig. 10.5.
The total dead load of the roof and floors is 6 kN/m2. The imposed load on roof is 1.5 
kN/m2 and that for each floor is 3.0 kN/m2. The wind speed is 20 m/s and the building is 
located in a city centre. Design the transverse shear walls as straight walls without taking 
account of the columns at the ends. The load bearing part of the wall is 160 mm thick with 
20 mm thick decorative tiles on both faces. The materials are grade C30 concrete and 
grade 460 reinforcement.

Refer to BS 6399–1:1996: Loading for buildings, Part 1: Code of practice for dead and 
imposed loads, for more information
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Fig. 10.5 Framing arrangement.

(b) Type of wall: slenderness

The wall is 160 mm thick structurally and is braced. The slenderness is calculated as for 
columns. Referring to Table 3.19 in the code the end conditions are as follows:

1. At the top the wall is connected to a ribbed slab 350 mm deep, i.e. condition 1;
2. At the bottom the connection to the base is designed to carry moment, i.e. condition 1.

From Table 3.21, β=0.75. The clear height is 3150 mm, say. The slenderness is

0.75×3150/160= 14.8<15  

The wall is ‘stocky’.

(c) Dead and imposed loads on wall

The dead load on the wall, given that the wall is 200 mm thick including finishes, is as 
follows.

Note that there are 10 floors including the roof and the plan area of each floor is 8×6 m. 
Total height of the building=35 m.

Roof and floor slabs: 10×(6×8)×6 kN/m2−2880 kN
Wall, 200 mm thick: (0.2×6×35)×24 kN/m3=1008 kN 

Total dead load at base: 2880+1008=3888 kN

 

The wall carries load from 10 floors. Therefore imposed load can be reduced by 40% in 
accordance with BS6399: Part 1, Table 2. Imposed load is
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(1−0.4)×{1.5 (Roof load)+3.0×9 floors} (6×8)=820.8 kN  

(d) Dead and imposed loads at each end of the wall from one transverse beam

The slabs span between the beams which are supported on the walls. On any transverse 
beam, all the load acting on area 8×8 acts. The beam reaction acts on the column. 

Roof and floor slab: 10×{(1/2)×(8×8)}×6=1920 kN
Column (500 mm×500 mm) at wall ends: 35×0.5×0.5×24 kN/m3=210.0 kN

Imposed load: (1−0.4)×{(1/2)×(8×8)}×(1.5+3.0×9)=547.2 kN

 

(e) Wind load

Wind loads are specified in BS 6399–2:1997 Loading for buildings-Part 2: Code of prac-
tice for wind loads. For normal calculations the so called Standard Method is used.

The case for which wind load is calculated is wind acting normal to the 40 m width. 
The maximum height H=35 m above the ground. In the following wind load is calcu-
lated using the code. For explanation of the symbols used see BS 6399–2:1997 for more 
details.

Reference height Hr=35 m
Effective height He=Hr=35 m

Building type factor Kb=1.0 (Table 1 of Code)
Dynamic augmentation factor, Cr≈0.04 (Fig. 3 of Code)

The code rules apply.
Basic wind speed, Vb=20 m/s (Assumed)

Altitude factor, Sa≈1.0
Direction factor, Sd=1.0
Seasonal factor, Ss=1.0

Probability factor, Sp=1.0
Site wind speed, Vs=Vb×Sa×Sd×Ss×Sp=20 m/s

 

Terrain and building factor, Sb: Site in town with the closest distance to sea upwind greater 
than 100 km. Using Table 4 of Code and interpolating between 1.85 for 30 m and 1.95 for 
50 m, Sb=1.88

Effective wind speed, Ve=Vs×Sb=20×1.88=37.6 m/s  

Dynamic pressure, qs=0.613 Ve
2=0.613×37.62=866.64 N/m2=0.87 kN/m2 External surface 

pressure coefficient, 
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Smaller dimension of the building, D=22 m 
H=35 m 

D/H=0.63<1.0 
{windward (front) face}=0.85,

{Leeward (rear) face}=−0.5 (Table 5 of Code)

 

Size factor, Ca: Site in town with the closest distance to sea upwind greater than 100 kM. 
Category B,

Ca≈0.85 (Fig. 4 of Code)  

External surface pressure, (windward face):

 

External surface pressure, (leeward face):

Total pressure on the building=0.63−(−0.37)=1.0 kN/m2

 

The wind loads are assumed to be resisted equally by four shear walls. The horizontal 
wind loads and corresponding moments at the base are as follows:

Total horizontal load per wall={0.85×1.0×(1+0.04)}×(40×35)/4=309.4 kN
Moment=309.4×35/2={0.80×40×352/2}/4=5414.5 kNm

 

(f) Load combination

(i) Case 1 1.2(Dead+Imposed+Wind) 

N=1.2×[3888+820.8+2(1920+210.0+547.2)]=12075.8 kN

M=1.2×5414.5=6497.4 kNm

 

(ii) Case 2 1.4 (Dead+Wind)

N=1.4×[3888+2(1920+210.0)]=11407.2 kN

M=1.4×5414.5=7580.3 kNm

 

(iii) Case 3 1.0×Dead+1.4×Wind

N=3888+2(1920+210.0)=8148.0 kN

M=1.4×5414.5=7580.3 kNm
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(g) Wall design for load combinations in (f)

The wall is 160 mm thick by 6000 mm long. The design is made using the chart in Fig. 
10.4. The steel percentages for the three load cases are given in Table 10.1, from which

 

Table 10.1 Load combinations, wall design

 Case 1 Case 2 Case 3
N/(bh) 12.58 11.88 8.49
M/(bh2) 1.13 1.32 1.32
100 Asc/(bh) 0.4 0.4 <0.4

Table 10.2 Load combinations, actual designed wall capacity

 Case 1 Case 2 Case 3
N/(bh) 12.58 11.88 8.49
M/(bh2) 3.29 3.42 3.87
x/h 0.695 0.670 0.568

Provide two rows one on each face of 10 mm diameter bars at 200 mm centres to give a 
total steel area of 784 mm2/m. Table 10.2 shows that the capacity of the wall for the steel 
area provided is adequate.

10.3.4.2 Example of design of a wall subjected to axial load and in-plane moments 
with concentrated steel in end zones/columns

The plan of the structure is shown in Fig. 10.6. In the absence of a design chart to cover 
this case, the following approximate design procedure can be used.

Consider the load case 1.4(dead+wind). Assume that the end columns resist the moment 
due to wind. The lever arm is 6.0 m. The equivalent axial force due to moment caused by 
wind is

±1.4×5414.5/6.0=±1263.4 kN  

The self weight of the column is (500 mm×500 mm) at the wall ends:
Self weight of columns=35×0.5×0.5×24 kN/m3=210.0 kN
The total column load due to dead load and the additional equivalent force due to wind 
is:

1.4×(1920+ 210.0)±1263.4=4245.4 or 1718.6 kN  
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The axial load capacity of the column:

4245.4=0.45×fcu×5002×10−3+0.95 Asc fy×10−3  

Solving, Asc=1717 mm2. Provide 4T25=1964 mm2.

100×1964/5002=0.79>0.4 (minimum)  

The axial force due to dead load on the wall is

=1.4×3888.0=5443.2 kN  

The axial force capacity of the wall is

5443.2=0.45×fcu×5500×160×10−3+0.95 Asc fy×10−3

5443.2=11880 kN+0.95 Asc fy×10−3

 

Only minimum steel of 0.4% is required.

Asc=(0.4/100)×(1000×160)=640 mm2/m  

Provide T10 at 200 mm centres on both faces to give an area of 784 mm2/m. 
Fig 10.7 shows the reinforcement details in the wall and the end columns

Fig.10.6 Wall with end columns.

Fig.10.7 Reinforcement in the wall.
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Figure 10.8 shows the design chart for the designed wall with end columns assuming 
fcu=30 N/mm2, fy=460 mm2 and the bar centre in the columns inset from the edges by 60 
mm. Table 10.3 shows the required capacity in brackets and also the designed capacity 
showing that all three load combinations considered are in the safe region.

Table 10.3 Forces and designed capacities.

 Case 1 Case 2 Case 3
N 12076 (11894) 11407 (11196) 8148 (7997)

M 6497.4 (5880.0) 7580.3 (6860) 7580.3 (6860)

Fig.10.8 Design chart for a wall with end columns.

The procedure used for the construction of the chart is the same as explained in 10.3.4 
(b). As an example choosing x=5000 mm, the stress distribution in the steel is as shown 
in Fig.10.9.

(a) Left hand column: Area of steel=(4T25)= 1963.5 mm2

Compression in concrete=0.45×30×5002×10−3=3375 kN
Compression in steel=(4T25)×0.95×460×10−3=858.05 kN

 

(b) Wall: (Area of steel=784 mm2/m) 
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Length of the wall in compression=0.9 x−500=0.9×5000−500=4000 mm
Compression in concrete:=0.45×30×4000×160×10−3=8640 kN

Length of wall in which the steel stress varies linearly=0.6243×5000=3122 
mm

Compressive force=3122×10−3×784×(0.5×0.95×460)×10−3=534.8 kN
Length of wall in which the steel stress is constant=5000−500−3122=1378 

mm
Compressive force=1378×10−3×784×(0.95×460)×10−3=472.1 kN

 

Portion of the wall in tension=6500−5000−500=1000 mm
Strain in the steel at 1000 mm from neutral axis=0.0035×1000/x=7.0×10−4

Stress in the steel=7.0×10−4×(E=200×103)=140 N/mm2

Tensile force due to steel=1000×10−3×784×(0.5×140)×10−3=54.9 kN
Average stress in the steel in column=140×(1250/1000)=175 N/mm2

Tensile force due to steel in column=1963.5×175×10−3=343.6 kN

 

Total axial force is

N=3375.0+858.05+8640.0+534.8+472.1−54.9−343.6=13481.5 kN  

Taking moments about the centre of the wall, the resistant moment is 

M={(3375.0+858.05)×(3250−250)+8640×(3250−4000/2−500) +534.8×(32
50−500−1378−3122/3)+472.1×(3250−500−1378/2) +54.9×(3250−1000/3−50

0)+343.6×(3250−500/2)}10−3=21489 kNm

 

6.0 m

3.121.379
1.0 

Fig.10.9 (a) Plan; (b) stress distribution in steel.
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Fig.10.10 (a) Wall section; (b) longitudinal stress distribution..

10.3.4.3 Example of design of a wall subjected to axial load, transverse and in- 
plane moments

(a) Specification

The section of a stocky reinforced concrete wall shown in Fig.10.10(e) is subject to the 
following actions:

N=4300 kN
My=2100 kNm
Mx=244 kNm

 

Design the reinforcement for the heaviest loaded end zone 500 mm long. The materials 
are grade C30 concrete and grade 460 reinforcement.

(b) Stresses

From an elastic analysis the stresses in the section due to moment My are calculated as 
follows.
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Α=150×4000=6×105 mm2

I=150×40003/12=8×1011 mm4 

 

The stress at 250 mm from the end is

7.17+5.25×1750/2000= 11.76 N/mm2  

The load on the end zone is

11.76×150×500×10−3=882 kN  

Design the end zone for an axial load of

N=882 kN

M=224 (500/4000)=28 kNm:

N/(bh)= 11.76

M/(bh2)=28×106/(500×1502)=2.5

100 Asc/bh=1.5

Asc=1125 mm2

 

Provide 4T20 to give an area of 1263 mm

10.3.5 Slender Reinforced Walls

The following provisions are summarized from section 3.9.3.7 of the code.

1. The design procedure is the same as in section 10.3.3(d) above.
2. The slenderness limits are as follows: 

braced wall, steel area As<1%, le/h≤40
braced wall, steel area As>1%, le/h≤45
unbraced wall, steel area As>0.4%, le/h≤30

10.3.6 Deflection of Reinforced Walls

The code states that the deflection should be within acceptable limits if the above recom-
mendations are followed. The code also states that the deflection of reinforced shear walls 
should be within acceptable limits if the total height does not exceed 12 times the length.
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10.4 DESIGN OF PLAIN CONCRETE WALLS

10.4.1 Code Design Provisions

A plain wall contains either no reinforcement or less than 0.4% reinforcement. The rein-
forcement is not considered in strength calculations. The design procedure is summarized 
from section 3.9.4 of the code.

(a) Axial loads

The axial loads can be calculated assuming that the beams and slabs supported by the wall 
are simply supported.

(b) Effective height

(i) Unbraced plain concrete wall: The effective height le for a wall supporting a roof slab 
spanning at right angles is 1.5 l0, where l0 is the clear height between the lateral supports. 
The effective height le for other walls, e.g. a cantilever wall, is 2l0.

(ii) Braced plain concrete wall: The effective height le when the lateral support 
resists both rotation and lateral movement is 0.75 times the clear distance between 
the lateral supports or twice the distance between a support and a free edge, le is mea-
sured vertically where the lateral restraints are horizontal floor slabs. It is measured 
horizontally if the lateral supports are vertical walls.

The effective height le when the lateral supports resist only lateral movement is 
the distance between the centres of the supports or 2.5 times the distance between 
a support and a free edge. The effective heights denned above are shown in Fig. 
10.11.

The lateral support must be capable of resisting the applied loads plus 2.5% of the 
vertical load that the wall is designed to carry at the point of lateral support.

The resistance of a lateral support to rotation only exists where both the lateral 
support and the braced wall are detailed to resist rotation and for precast or in situ 
floors where the bearing width is at least two-thirds of the thickness of the wall.

(c) Slenderness limits

The slenderness ratio le/h should not exceed 30 whether the wall is braced or unbraced. 

(d) Minimum transverse eccentricity

The minimum transverse eccentricity should not be less than h/20 or 20 mm. Further 
eccentricity due to deflection occurs in slender walls.
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Fig.10.11 (a) Unbraced walls; (b) braced walls.

(e) In-plane eccentricity

The in-plane eccentricity can be calculated by statics when the horizontal force is resisted 
by several walls. It is shared between walls in proportion to their stiffnesses provided that 
the eccentricity in any wall is not greater than one-third of its length. If the eccentricity is 
greater than one-third of the length the stiffness of that wall is taken as zero.
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(f) Eccentricity of loads from a concrete floor or roof

The design loads act at one-third of the depth of the bearing width from the loaded face. 
Where there is an in situ floor on either side of the wall the common bearing area is 
shared equally (Fig. 10.12). Loads may be applied through hangers at greater eccentrici-
ties (Fig.10.12).

(g) Transverse eccentricity of resultant forces

The eccentricity of forces from above the lateral support is taken as zero. From Fig.10.12, 
where the force R from the floor is at an eccentricity of h/6 and the force P from above is 
taken as axial, the resultant eccentricity is

 

(h) Concentrated loads

Concentrated loads from beam bearings or column bases may be assumed to be immedi-
ately dispersed if the local stress under the load does not exceed 0.6 fcu for concrete grade 
25 or above.

Fig.10.12 (a) Simply supported slab; (b) cast-in-situ slab over wall; (c) hanger; (d) resul-
tant eccentricity.
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(i) Design load per unit length

The design load per unit length should be assessed on the basis of a linear distribution of 
load with no allowance for tensile strength.

(j) Maximum unit axial load for a stocky braced plain wall

The maximum ultimate load per unit length is given by

nw=0.3(h−2ex)fcu 

where ex is the resultant eccentricity at right angles to the plane of the wall (minimum 
value h/20). In this equation the load is considered to be carried on part of the wall with 
the section in tension neglected. The stress block is rectangular with a stress value of 0.3 
fcu (Fig.10.13).

Fig.10.13 Stress block for a stocky braced wall.

(k) Maximum design axial load for a slender braced plain wall

The ultimate load per unit length is given by

nw≤0.3(h−1.2ex−2ea)fcu 

where eα=le
2/(2500 h) is the additional eccentricity due to the wall ̀s out of plane deflection 

and le is the effective height of the wall.

(1) Maximum design axial load for unbraced plain walls

The ultimate load per unit length should satisfy the following:

nw≤0.3(h−2ex1)fcu

nw≤0.3(h−2ex2−2ea)fcu
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where ex1 is the resultant eccentricity at the top of the wall and ex2 is the resultant eccen-
tricity at the bottom of the wall.

(m) Shear strength
The shear strength need not be checked if one of the following conditions is satisfied:
1.  The horizontal design shear force is less than one-quarter of the design vertical load; 
2.  The shear stress does not exceed 0.45 N/mm2 over the whole wall cross-section.

(n) Cracking

Reinforcement may be necessary to control cracking due to flexure or thermal and hydra-
tion shrinkage. The quantity in each direction should be at least 0.25% of the concrete area 
for grade 460 steel and 0.3% of the concrete area for grade 250 steel. Other provisions 
regarding ‘anti-crack’ reinforcement are given in the code.

(o) Deflection of plain concrete walls

The deflection should be within acceptable limit, if the preceding recommendations are 
followed.

The deflection of plain concrete shear walls should be within acceptable limits if the 
total height does not exceed ten times its length.

Fig.10.14 (a) Section through building: (b) section at mid-height
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10.4.1.1 Example of design of a plain concrete wall

Check that the internal plain concrete wall BD in the braced building shown in Fig. 10.14 
is adequate to carry the loads shown. The lateral supports resist lateral movement only. 
The concrete is grade C25. In order to cause maximum moment, the ‘beams’ are loaded 
with full dead and live load on BC and with minimum dead load only on AB.

design load on BC=(1.4×6)+(1.6×4)=14.8 kN/m 
design load on AB (dead load only)=6 kN/m

 

The reactions are as follows:

for BC: 14.8×2.75=40.7 kN
For AB: 6×2.25=13.5 kN 

self-weight of wall BD=0.15×23.5=3.5 kN/m

 

At mid-height, the weight of the wall is 7 kN/m; the effective height is 4000 mm and the 
slenderness ratio is 4000/150=26.6<30.
The wall is slender and is checked at mid-height where the additional moment due to 
deflection is a maximum. The resultant eccentricity due to vertical load from Fig. 10.14(b)) 
is

 

The eccentricity due to slenderness is

ea−40002/2500×150=42.7 mm  

The total eccentricity is not to be less than h/20=7.5 mm or 20 mm. 
The applied ultimate load must be less than

nw=0.3(150−1.2×11.1−2×42.7)25=384.6 N/mm or kN/m >applied load of 
61.2 kN/m

 

The maximum permissible slenderness ratio of 30 controls the thickness. The case where 
the imposed load covers the whole floor should also be checked. The total applied load 
then is 81 kN/m and the wall is found to be satisfactory.



 

CHAPTER 11 

FOUNDATIONS

11.1 GENERAL CONSIDERATIONS

Foundations transfer loads from the building or individual columns to the earth. Types of 
foundations are
1. isolated bases for individual columns
2. combined bases for several columns
3. rafts for whole buildings which may incorporate basements
All the above types of foundations may bear directly on the ground or be supported on 
piles. Only isolated and combined bases are considered. The type of foundation to be used 
depends on a number of factors such as
1. the soil properties and conditions
2.  the type of structure and loading
3. the permissible amount of differential settlement

The choice is usually made from experience but comparative designs are often necessary 
to determine the most economical type to be used.

The size of a foundation bearing directly on the ground depends on the safe bearing 
pressure of the soil, which is taken to mean the bearing pressure that can be imposed with-
out causing excessive settlement. Values for relevant parameters for various soil types and 
conditions are given in
BS 8004:1986: Code of practice for foundations.
In general, site load tests and laboratory tests on soil samples should be carried out to 
determine the actual soil properties for foundation design. Typical values are assumed for 
design in the worked examples in this chapter.

11.2 ISOLATED PAD BASES

11.2.1 General Comments

Isolated pad bases are square or rectangular slabs provided under individual columns. 
They spread the concentrated column load safely to the ground and may be axially or 
eccentrically loaded (Figs 11.1 and 11.2). Mass concrete can be used for lighter founda-
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tions if the underside of the base lies inside a dispersal angle of 45°, as shown in Fig. 11.1 
(a). Otherwise a reinforced concrete pad is required (Fig.11.1(b)).
Assumptions to be used in the design of pad footings are set out in clause 3.11.2 of the 
code:

1.  When the base is axially loaded the load may be assumed to be uniformly distributed. 
The actual pressure distribution depends on the soil type; refer to soil mechanics text-
books;
2.  When the base is eccentrically loaded, the reactions may be assumed to vary linearly 
across the base.

Fig.11.1 (a) Mass concrete foundation; (b) reinforced concrete pad foundation.

11.2.2 Axially Loaded Pad Bases

Refer to the axially loaded pad footing shown in Fig. 11.1 (b) where the following sym-
bols are used: 
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Gk=characteristic dead load from the column (kN)
Qk=characteristic imposed load from the column (kN)

W=weight of the base (kN)
ℓx, ℓy=base length and breadth (m)
Pb=safe bearing pressure (kN/m2)

 

The required area is found from the characteristic loads including the weight of the base:

Base areα=(Gk+Qk+W)/Pb=ℓxℓy m
2  

The design of the base is made for the ultimate load delivered to the base by the column 
shaft, i.e. the design load is (1.4Gk+1.6Qk).

Fig. 11.2 Eccentrically loaded base.

The critical sections in design are set out in clauses 3.11.2.2 and 3.11.3 of the code and 
are as follows.

(a) Bending

The critical section is at the face of the column on a pad footing or the wall in a strip foot-
ing. The moment is taken on a section passing completely across a pad footing and is due 
to the ultimate loads on one side of the section. No redistribution of moments should be 
made. The critical sections are XX and YY in Fig. 11.3 (a).

(b) Distribution of reinforcement

Refer to Fig. 11.3 (b). The code states arbitrarily that where lc is half the spacing between 
column centres (if more than one) or the distance to the edge of the pad, whichever is 
the greater, exceeds (3/4)(c+3d), two-thirds of the required reinforcement for the given 
direction should be concentrated within a zone from the centreline of the column to a dis-
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tance 1.5d from the face of the column. Here c is the column width and d is the effective 
depth of the base slab. Otherwise the reinforcement may be distributed uniformly over lc. 
The reason for this is that although base pressure is assumed to be uniform, the bending 
moment tends to be somewhat higher towards the column than away from it. The concen-
tration of reinforcement below the column area allows for this higher bending moment.

The arrangement of reinforcement is shown in Fig. 11.3 (b) 

Fig. 11.3 (a) Critical sections for design; (b) base reinforcement.
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(c) Shear on vertical section across full width of base

Refer to Fig. 11.3 (a). The vertical shear force is the sum of the loads acting outside the 
section considered. The shear stress is

ν=V/(ld)  

where ℓ is the length or width of the base.
Refer to clause 3.4.5.10 (Enhanced shear strength near supports, simplified approach). 

If the shear stress is checked at d from the support and v is less than the value of vc from 
Table 3.8 of the code, no shear reinforcement is required and no further checks are needed. 
If shear reinforcement is required, refer to Table 3.16 of the code. It is normal practice to 
make the base sufficiently deep so that shear reinforcement is not required. The depth of 
the base is often controlled by the design for shear.

(d) Punching shear around the loaded area

The punching shear force is the sum of the loads outside the periphery of the critical 
section. Refer to clause 3.7.7.6 of the code and Chapter 5, section 5.1.8 dealing with the 
design of flat slabs for shear. The shear stress is checked on the perimeter at 1.5d from 
the face of the column. If the shear stress v is less than the value of vc in Table 3.8 no 
shear reinforcement is needed and no further checks are required. If shear reinforcement 
is required refer to clause 3.7.7.5 of the code. The critical perimeter for punching shear is 
shown in Fig. 11.3 (a). The maximum shear at the column face must not exceed 0.8√fcu 
or 5 N/mm2.

(e) Anchorage of column starter bars

Refer to Fig. 11.3 (b). The code states in clause 3.12.8.8 that the compression bond stresses 
that develop on starter bars within bases do not need to be checked provided that

1. the starter bars extend down to the level of the bottom reinforcement
2. the base has been designed for the moments and shears set out above.

(f) Cracking

See the rules for slabs in clause 3.12.11.2.7 of the code. The bar spacing is not to exceed 
3d or 750 mm, but much lesser spacing is possible depending on the amount of flexural 
steel supplied.

(g) Minimum grade of concrete

The minimum grade of concrete to be used in foundations is grade C35.

(h) Nominal cover

Clause 3.3.1.4 of the code states that the minimum cover should be 75 mm if the concrete 
is cast directly against the earth, or 40mm if cast against adequate blinding. Table 3.2 of 
the code classes non-aggressive soil as a moderate exposure condition.
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11.2.2.1 Example of design of an axially loaded base

(a) Specification

A column 400 mm×400 mm carries a dead load of 800 kN and an imposed load of 300 
kN. The safe bearing pressure is 200 kN/m2. Design a square base to resist the loads. The 
concrete is grade C35 and the reinforcement grade 460.

The condition of exposure is moderate from Table 3.2 for non-aggressive soil. The 
nominal cover is 40 mm for concrete cast against blinding.

(b) Size of base

Assume the weight is 80 kN. 

service load=800+300+80=1180 kN 
area of base=1180/200=5.9 m2.

Make the base 2.5 m×2.5 m.

 

(c) Moment steel

ultimate load=(1.4×800)+(1.6×300)=1600 kN 
ultimate base pressure=1600/6.25=256 kN/m2

 

Note: The self weight of the footing is not included because the self weight and the cor-
responding base pressure will cancel themselves out.
The critical section YY at the column face is shown in Fig. 11.4 (a).

Myy=256×1.05×2.5×1.05/2=352.8 kNm  

Try an overall depth of 500 mm with 16 mm bars both ways.

The weight of the footing=2.5×2.5×0.5×24=75 kN 
75 kN<80 kN assumed in design.

 

The effective depth of the top layer of steel is

d=500−40−16−16/2=436 mm
k=M/ (bd2 fcu)=352.8×106/(2500×4362×35)=0.021<0.156 

z/d=0.5+√(0.25–0.021/0.9)=0.98>0.95
As=352.8×106/(0.95×436×0.95×460)=1949 mm2

 

Number of 16 mm bars=1949/201.1=9.7
Provide 10T16 bars, As=2010 mm2.
The distribution of the reinforcement is determined to satisfy the rule.
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3/4(c+3d)=0.75 (400+3×436)=1281 mm
ℓc=2500/2=1250 mm<1281 mm

 

The bars can be spaced equally at 270 mm centres.
The full anchorage length required past the face of the column is 38×16=608mm. Ade-

quate anchorage is available.

Fig. 11.4 (a) Moment; (b) vertical shear; (c) punching shear.

(d) Vertical shear

The critical section Y1Y1 at d=436 mm from the face of the column is shown in  
Fig. 11.4 (b).

V=256×2.5×(1050−436)×10−3=392.96 kN
v=392.96×103/(2500×436)=0.36 N/mm2

 

The bars extend 565 mm, i.e. more than d, beyond the critical section and so the steel is 
effective in increasing the shear stress.

100 As/(bd)=100×2010/(2500×436)=0.18,
400/d=400/436<1.0, take as 1.0

fcu=35<40
vc=0.79×(0.18)1/3(1.0)1/4(35/25)1/3/1.25=0.40 N/mm2

(v=0.36)<(vc=0.40)

 

and so the shear stress is satisfactory and no shear reinforcement is required.
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Fig. 11.5 Reinforcement arrangement.

(e) Punching shear

Punching shear is checked on a perimeter 1.5d=654 mm from the column face. The criti-
cal perimeter is shown in Fig.11.4(c).

c+3d=400+3×436= 1708
perimeter, u=1708×4=6832 mm

shear force V=256(2.52−1.7082)=853.2 kN
v=853.2×103/(6832×436)=0.29 N/mm2

 

The reinforcing bars extend 396 mm beyond the critical section. Even if the steel is dis-
counted, vc=0.34 N/mm2 from Table 3.8 of the code for 100As/(bd)≤0.15 for grade C25 
concrete. The base is clearly satisfactory and no shear reinforcement is required. The bars 
will be anchored by providing a standard 90° bend at the ends.

Check the maximum shear stress at the face of the column:

V=256×(2.52−0.42)=1559 kN

u0=4×400=1600 mm

vmax=1559×103/(1600×436)=2.23 N/mm2<(0.8√35=4.73 N/mm2)

 

This is satisfactory.

(f) Cracking

The bar spacing does not exceed 750 mm and the flexural reinforcement supplied is 0.18% 
which is less than 0.3%. No further checks are required.
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(g) Reinforcement

The arrangement of reinforcement is shown in Fig. 11.5. Note that in accordance with clause 
3.12.8.8 of the code the compression bond on the starter bars need not be checked.

11.3 ECCENTRICALLY LOADED PAD BASES

11.3.1 Vertical Pressure

Clause 3.11.2 of the code states that the base pressure for eccentrically loaded pad bases 
may be assumed to vary linearly across the base for design purposes.

The characteristic loads on the base are the axial load P, moment M and horizontal load 
H as shown in Fig.11.2. The base dimensions are length ℓ, width b and depth h.

Base area Α=bℓ
section modulus Z=bℓ2/6

 

The total load is P+W and the moment at the underside of the base is M+Hh. The maxi-
mum earth pressure is

 

This should not exceed the safe bearing pressure. The eccentricity e of the resultant  
reaction is

 

If e<ℓ/6 there is pressure over the whole of the base, as shown in Fig.11.2. If e> ℓ/6 part 
of the base does not bear on the ground, as shown in Fig.11.6 (a). In this case

c=ℓ/2−e  

and the length in bearing is 3c. The maximum pressure is

 

Although the code does not prohibit it, this situation is not recommended and must be 
generally avoided.

Sometimes a base can be set eccentric to the column by, say, e1 to offset the moments 
due to permanent loads and give uniform pressure, as shown in Fig.11.6(b): 

Eccentricity e1=(M+Hh)/P  
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Fig.11.6 Eccentrically loaded pads: (a) Bearing on part of base; (b) base set eccentric to 
column.

11.3.2 Resistance to Horizontal Loads

Horizontal loads applied to bases are resisted by passive earth pressure against the end 
of the base, friction between the base and ground for cohesion-less soils such as sand, or 
adhesion for cohesive soils such as clay. In general, the load will be resisted by a combi-
nation of all actions. The ground floor slab can also be used to resist horizontal load. The 
forces are shown in Fig. 11.7 (a).

Fig.11.7 (a) Base; (b) cohesion less soil; (c) cohesive soil.

Formulae from soil mechanics for calculating the resistance forces are given for the two 
cases of cohesionless and cohesive soils.
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(a) Cohesionless soils

Refer to Fig.11.7 (b). Denote the angle of internal soil friction  and the soil density γ. 
The passive earth pressure p at depth h is given by 

p=γhkp
 

If p1 and p2 are passive earth pressures at the top and bottom of the base, then the passive 
resistance

R1=0.5bh(p1+p2)  

where

h×b=base depth×base breadth  

If μ is the coefficient of friction between the base and the ground, generally taken as 
 the frictional resistance is

R3=μ(P+W)  

(b) Cohesive soils

Refer to Fig.11.7(c). For cohesive soils  Denote the cohesion at zero normal pres-
sure c and the adhesion between the base and the load β. The resistance of the base to 
horizontal load is

R=R2+R4+R3

R=2cbh+0.5bh(p3+p4)+βℓb

 

where the passive pressure p3 at the top is equal to γh1, the passive pressure p4 at the 
bottom is equal to γh2 and ℓ is the length of the base. The resistance forces to horizontal 
loads derived above should exceed the factored horizontal loads applied to the founda-
tion.

In the case of portal frames it is often helpful to introduce a tie beam between bases to 
take up that part of the horizontal force due to portal action from dead and imposed loads 
as in the pinned base portal shown in Fig.11.8b. Wind load has to be resisted by passive 
earth pressure, friction or adhesion.

Pinned bases should be used where ground conditions are poor and it would be dif-
ficult to ensure fixity without piling. It is important to ensure that design assumptions are 
realized in practice.
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Fig.11.8 (a) Portal base reactions; (b) force H taken by tie; (c) wind load and base 
reactions.

11.3.3 Structural Design

The structural design of a base subjected to ultimate loads is carried out for the ultimate 
loads and moments delivered to the base by the column shaft. Pinned and fixed bases are 
shown in Fig.11.9.

Fig.11.9 (a) Fixed base; (b) pinned base; (c) pocket base.

11.3.3.1 Example of design of an eccentrically loaded base

(a) Specification

The characteristic loads for an internal column footing in a building are given in Table 
11.1. The proposed dimensions for the 450 mm square column and base (3600×2800 mm) 
are shown in Fig. 11.10. The base supports a ground floor slab 200 mm thick. The soil is 
firm well drained clay with the following properties:
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Unit weight=18 kN/m3,
Safe bearing pressure=150 kN/m2,

Cohesion=60 kN/m2

 

The materials to be used in the foundation are grade C35 concrete and grade 460 rein-
forcement.

Fig.11.10 (a) Side elevation; (b) end elevation.

Table 11.1 Applied column loads and moments

 Vertical load, kN Horizontal load, kN Moment, kNm
Dead 770 35 78

Imposed 330 15 34

(b) Maximum base pressure on soil

The maximum base pressure is checked for the service loads.

weight of base+slab=0.7×3.6×2.8×24=169.3 kN
total axial load=770+330+169.3=1269.3 kN
total moment=78+34+0.5(35+15)=137 kNm

base area Α=2.8×3.6=10.08 m2

section modulus=Z=2.8×3.62/6=6.05 m3

 

maximum base pressure=1269.3/10.08+137/6.05=125.7+22.6=148.6 kN/m2

Maximum base pressure<(safe bearing pressure =150 kN/m2)
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(c) Resistance to horizontal load

Check the passive earth resistance assuming no ground slab. 
No adhesion, β=0, (h1=0, p3=0), (h2=0.5, p4=18×0.5=9) 

The passive resistance is

=2cbh+0.5bh(p3+p4)+βℓb
={2×60×2.8×0.5}+{0.5×2.8×0.5×(0+9.0)}+0

=168+6.3=174.3 kN 
factored horizontal load=(1.4×35)+(1.6×15)=73 kN

Passive resistance>73 kN.

 

The resistance to horizontal load is satisfactory.
The reduction in moment on the underside of the base due to the horizontal reaction 

from the passive earth pressure has been neglected.

(d) Design of the moment reinforcement

The design is carried out for the ultimate loads from the column.

(i) Long span moment steel

axial load N=(1.4×770)+(1.6×330)=1606 kN 
horizontal load H=(1.4×35)+(1.6×15)=73 kN 

moment M=(1.4×78)+(1.6×34)+(0.5×73)=223.5 kNm 
maximum pressure=1606/10.08+223.5/6.05=196.3 kN/m2

minimum pressure=1606/10.08−223.5/6.05=122.4 kN/m2

 

The pressure distribution is shown in Fig. 11.11 (a).
At the face of the column pressure is

Pressure=122.4+(196.3−122.4)×(3.6−1.575)/3.6=164.0 kN/m2  

Moment at the face of the column is

My=164×2.8×1.5752/2+0.5(196.3−164.0)×2.8×1.575×(2/3)×1.575 =644.3 
kNm

 

If the cover is 40 mm and 20 mm diameter bars are used, the effective depth for the bot-
tom layer is

d=500−40−10=450 mm  

k=M/(bd2 fcu)=644.3×106/(2800×4502×35)=0.033<0.156 
z/d=0.5+√(0.25–0.033/0.9)=0.968>0.95

As=644.3×106/(0.95×450×0.95×460)=3449 mm2
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Provide 18T16. As=3619 mm2.

0.75 (c+3d)=0.75 (450+3×450)=1350 mm,
ℓc=2800/2=1400 mm

0.75 (c+3d)<ℓc

 

The difference between 1350mm and 1400mm is small enough to be ignored and steel 
can be distributed uniformly. Provide 18 bars at 160 mm centres to give a total steel area 
of 3619 mm2.

Check minimum steel: 100 As/(bd)=100×3619/(2800×450)=0.29>0.13

Fig. 11.11 (a) Base pressures; (b) plan.

(ii) Short span moment steel

average pressure=0.5×(196.3+122.4)=159.4 kN/m2

moment Mx=159.4×3.6×1.1752/2=396.1 kNm
effective depth d=500–40–20–10=430 mm

k=M/(bd2fcu)=396.1×106/(3600×4302×35)=0.017<0.156
z/d=0.5+√(0.25–0.017/0.9)=0.98>0.95

As=396.1×106/(0.95×430×0.95×460)=2219 mm2

 

The minimum area of steel from Table 3.25 of the code is 0.13%.

As=(0.13/100)×3600×500=2340 mm2  

2800

3600

223.5 kNm

73 kN

1606 kN

1575

196.3
122.4 164
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Provide 21T12. As provided=2375 mm2

0.75(c+3d)=1350<ℓc=1800 mm  

Place two-thirds of the bars (14 bars) in the central zone 1350 mm wide. Provide 14T12-
100mm. In the outer strips 1125 mm wide provide 4T12 at 350 mm centres. The arrange-
ment of bars is shown in Fig. 11.12.

(e) Vertical shear

Long span: The vertical shear stress is checked at d=450 mm from the face of the col-
umn.

Pressure=122.4+(196.3−122.4)×(3.6−1.575+0.450)/3.6=173.2 kN/m2  

Shear at a distance d from the face of the column is

Vy=0.5(173.2+196.3)×2.8×(1.575−0.450)=582.0 kN
v=582.0×103/(2800×450)=0.46 N/mm2

100As/(bd)=100×3619/(2800×450)=0.29<3.0 
400/d=400/450<1.0, take as 1.0

vc=0.79×(0.29)1/3 (1.0)1/4 (35/25)1/3/1.25=0.47 N/mm2

v<vc

 

No shear reinforcement is required.

Short span:

average pressure=0.5(196.3+122.4)=159.4 kN/m2  

The average pressure acts over an area of dimensions

{(2800−450)/2−450=725 mm}×3600 mm  

Shear at a distance d from the face of the column is

Vy=159.4×3.6×0.725=416.0 kN 
v=416.0×103/(3600×430)=0.27 N/mm2

100As/(bd)=100×2375/(3600×430)=0.15<3.0 
400/d=400/430<1.0

vc=0.79×(0.15)1/3 (1.0)1/4 (35/25)1/3/1.25=0.38 N/mm2

v<vc

 

The shear stress is satisfactory and no shear reinforcement is required.
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(f) Punching shear and maximum shear

The punching shear is checked on a perimeter 1.5d from the face of the column. Using the 
data from (e) above,

Average d=0.5 (450+430)=440 mm
Average 100As/(bd)=0.5(0.29+0.15)=0.22

400d=400/440<1.0, take as 1.0
vc=0.79×(0.22)1/3 (1.0)1/4 (35/25)1/3/1.25=0.43 N/mm2

c+3d=450+3×440=1770 mm
perimeter u=1770×4=7080 mm

Average pressure=0.5(196.3+122.4)=159.4 kN/m2

 

Check the maximum shear stress at the face of the column:

shear V=159.4×(3.6×2.8−0.452)=1574.0 kN
u0=4×440=1760mm

vmax=1574×103/(1760×440)=2.03 N/mm2<(0.8√35=4.73 N/mm2)
shear V=159.4 (3.6×2.8−1.772)=1107.0 kN

v=1107.0×103/(7080×440)=0.36 N/mm2<(vc=0.43 N/mm2)

 

The base has adequate shear strength to resist punching shear failure.

(g) Sketch of reinforcement

The reinforcement is shown in Fig. 11.12.

Fig. 11.12 Reinforcement in the base.
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11.3.3.2 Example of design of a footing for pinned base steel portal

(a) Specification

The column base reactions for a pinned base rigid steel portal for various load cases are 
shown in Fig. 11.13. Determine the size of foundation for the two cases of independent 
bases and tied bases. The soil is firm clay with the following properties:

Unit weight=18 kN/m3,
Safe bearing pressure=150 kN/m2,
Cohesion and adhesion=50 kN/m2

 

(b) Independent base

The base is first designed for (dead+imposed load). The proposed arrangement of the base 
is shown in Fig. 11.14 (a). The base is 2 m long by 1.2 m wide by 0.5 m deep. The finished 
thickness of the floor slab is 180 mm. The unfactored loads on the soil are: 

vertical load=103+84+{(0.5+0.18)×2×1.2×24}=226.2 kN
horizontal load=32.4+40.3=72.7 kN 

moment=72.7×0.5=36.4 kNm

 

areα=2×1.2=2.4m2

section modulus=1.2×22/6=0.8 m3

 

The maximum vertical pressure is

226.2/2.4+36.4/0.8=139.8 kN/m2  

The resistance to horizontal load is

=2cbh+0.5bh (p3+p4)+βℓb
=(2×50×1.2×0.5)+0.5×1.2×0.5×(0+18×0.5)+50×2×1.2 

=60+2.7+120=182.7 kN

 

The maximum factored horizontal load is

(1.4×32.4)+(1.6×40.3)=109.9 kN<182.7 kN  

The base is satisfactory with respect to resistance to sliding.
Check the (dead+imposed+wind load internal suction) on the right hand side base.
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vertical load=103+84–29.4=157.6 kN
horizontal load=32.4+40.3+2.4=75.1 kN

moment=75.1×0.5=37.6 kNm
maximum pressure=157.6/2.4+37.6/0.8=112.7 kN/m2

 

The reinforcement for the base can be designed and the shear stress checked as in the 
previous example.

Fig. 11.13 Pinned portal frame reactions (characteristic reactions)(a) Dead load; (b) 
imposed load; (c) wind, internal pressure; (d) wind, internal suction.

(c) Tied base

The proposed base is shown in Fig. 11.14 (b). The trial size for the base is 1.2 m× 1.2 
m×0.5 m deep and tie rods are provided in the ground slab. The horizontal tie resists the 
reaction from the dead and imposed loads. For this case 

vertical load=103+84+{24×1.22×(0.5+0.18)}=210.5 kN
maximum pressure=210.5/1.22=146.2 kN/m2

 

The main action of the wind load is to cause uplift and the slab has to resist a small com-
pression from the net horizontal load when the dead load and wind load internal pressure 
are applied at left hand base.
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Fig 11.14 Unfactored loads and base pressures (a) independent base; (b) tied base.
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(d) Design of tie

To find the steel area for the tie using grade 460 reinforcement,
ultimate load=(1.4×32.4)+(1.6×40.3)=109.84 kN

As=109.84×103/(0.95×460)=251.4 mm2

 

Provide two 16 mm diameter bars to give an area of 402 mm2.
If the steel column base bearing plate is 400 mm×400 mm, the underside of the base 

lies within the 45° load dispersal lines. Theoretically no reinforcement is required but 12 
mm bars at 160 mm centres each way would provide minimum reinforcement.

11.4 WALL, STRIP AND COMBINED FOUNDATIONS

11.4.1 Wall Footings

Typical wall footings are shown in Figs 11.15(a) and 11.15(b). In Fig. 11.15 (a) the wall 
is cast integral with the footing. The critical section for moment is at Y1Y1, the face of the 
wall, and the critical section for shear is at Y2Y2, d from the face of the wall. A 1m length 
of wall is considered and the design is made on similar lines to that for a pad footing.

If the wall is separate from the footing, e.g. a brick wall, the base is designed for the 
maximum moment at the centre and maximum shear at the edge, as shown in Fig. 11.15 
(b). The wall distributes the load W/t per unit length to the base and the base distributes 
the load W/b per unit length to the ground, where W is the load per unit length of wall, t is 
the wall thickness and b is the base width. The maximum shear at the edge of the wall is

W(b−t)/(2b)  

The maximum moment at the centre of the wall is

 

11.4.2 Shear Wall Footing

If the wall and footing resist an in-plane horizontal load, e.g. when the wall is used as a 
shear wall to stabilize a building, the maximum pressure at one end of the wall is found 
assuming a linear distribution of earth pressure (Fig. 11.16). The footing is designed for 
the average earth pressure on, say, 0.5 m length at the end subjected to maximum earth 
pressure. Define the following variables:
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Fig.11.15 (a) Wall and footing integral; (b) wall and footing separate.

Fig 11.16 Shear wall footing.
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W=total load on the base
H=horizontal load at the top of the wall

h=height of the wall
b=width of the base

ℓ=length of the wall and base
base area Α=bℓ

section modulus Z=bℓ2/6
maximum pressure=W/A+H h/Z

 

If the footing is on firm ground and is sufficiently deep so that the underside of the base 
lies within 45° dispersal lines from the face of the wall, reinforcement need not be pro-
vided. However, it would be very advisable to provide at least minimum reinforcement 
at the top and bottom of the footing to control cracking in case some settlement should 
occur.

11.4.3 Strip Footing

A continuous strip footing is used under closely spaced rows of columns as shown in Fig. 
11.17 where individual footings would be close together or overlap.

Fig. 11.17 Continuous strip footing.

If the footing is concentrically loaded, the pressure is uniform. If the column loads are not 
equal or not uniformly spaced and the base is assumed to be rigid, moments of the loads 
can be taken about the centre of the base and the pressure distribution can be determined 
assuming that the pressure varies uniformly. These cases are shown in Fig. 11.17.

In the longitudinal direction, the footing may be analysed for moments and shears by 
the following methods.
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1.  Assume a rigid foundation. Then the shear at any section is the algebraic sum of the 
column forces acting down and the base pressure acting up on one side of the section, and 
the moment at the section is the corresponding sum of the moments of the forces on one 
side of the section;
2.  A more accurate analysis may be made if the flexibility of the footing and the assumed 
elastic response of the soil are taken into account. The footing is analysed as a so called 
beam on an elastic foundation.

In the transverse direction the base may be designed along lines similar to that for a pad 
footing.

11.4.4 Combined Bases

Where two columns are close together and separate footings would overlap, a combined 
base can be used as shown in Fig. 11.18 (a). Again, if one column is close to an existing 
building or sewer it may not be possible to design a single pad footing, but if it is com-
bined with that of an adjacent footing a satisfactory base can engineered. This is shown 
in Fig. 11.18 (b).

Fig.11.18 (a) Combined base; (b) column close to existing building.

If possible, the base is arranged so that its centreline coincides with the centre of gravity 
of the loads because this will give a uniform pressure on the soil. In a general case with an 
eccentric arrangement of loads, moments of forces are taken about the centre of the base 
and the maximum soil pressure is determined from the total vertical load and moment at 
the underside of the base. The pressure is assumed to vary uniformly along the length of 
the base.
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In the longitudinal direction the actions for design may be found from statics. At 
any section the shear is the algebraic sum of the forces and the moment the sum of the 
moments of all the forces on one side of the section. In the transverse direction, the critical 
moment and shear are determined in the same way as for a pad footing. Punching shears 
at the column face and at 1.5 times the effective depth from the column face must also be 
checked.

11.4.4.1 Example of design of a combined base

(a) Specification

Design a rectangular base to support two columns carrying the following loads: 

Column 1: Dead load=310 kN, imposed load=160 kN
Column 2: Dead load=430 kN, imposed load=220 kN

 

The columns are each 350 mm square and are spaced at 2.5 m centres. The width of the 
base is not to exceed 2.0 m. The safe bearing pressure on the ground is 160 kN/m2. The 
materials are grade C35 concrete and grade 460 reinforcement.

(b) Base arrangement and soil pressure

Assume the weight of the base is 130 kN. Various load conditions are examined.

(i) Case 1: Dead+imposed load on both columns

total vertical load=(310+160)+(430+220)+130=1250 kN
area of base=1250/160=7.81 m2

length of base=7.81/2.0=3.91 m

 

Choose 4.5 m×2.0 m×0.6 m deep base.

The weight of the base is (4.5×2.0×0.6×24)=129.6 kN.
areα=4.5×2.0=9.0 m2

section modulus=2.0×4.52/6=6.75 m3

 

The base is arranged so that the centre of gravity of the loads coincides with the centreline 
of the base, in which case the base pressure will be uniform. This arrangement will be 
made for the maximum ultimate loads.
The ultimate loads are

column 1: load=1.4×310+1.6×160=690 kN
column 2: load=1.4×430+1.6×220=954 kN

 

The distance of the centre of gravity from column 1 is
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x=(954×2.5)/(690+954)=1.45 m  

The base arrangement is shown in Fig. 11.19.

Fig.11.19 Combined base dimensions and column loads.

The soil pressure is checked for service loads for case 1: 

direct vertical load=310+160+430+220+129.6=1249.6 kN  

Since the centroid of the loads does not exactly coincide with the centroid of the base, 
check for maximum pressure which is non-uniform. The moment about the centreline of 
the base is

M=(430+220)×1.05−(310+60)×1.45=1.0 kNm
maximum pressure=1249.6/9.0+1.0/6.75=138.9 kN/m2<160.0

 

Maximum pressure towards the column 2 side.

(ii) Case 2: Column 1, dead+imposed load; column 2, dead load

direct load=(310+160)+(430+0)+129.6=1029.6 kN 
moment=M=(430+0)×1.05−(310+160)×1.45=−230 kNm

maximum pressure=1029.6/9.0+230.0/6.75=148.5 kN/m2<160.0 kN/m2

 

Maximum pressure towards the column 1 side.
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(iii) Case 3: Column 1: dead load; column 2: dead+imposed load

direct load=(310+0)+(430+220)+129.6=1089.6 kN
moment=M=(430+220)×1.05−(310+0)×1.45=233 kN m

maximum pressure=1089.6/9.0+233.0/6.75=155.6 kN/m2<160.0 kN/m2

 

Maximum pressure towards the column 2 side.
The base is satisfactory with respect to soil pressure.

(c) Analysis for actions in longitudinal direction

The cover is 40 mm, and the bars, say, 20 mm in diameter, giving an effective depth d of 
550 mm. Using the Macaulay bracket notation, the shear force V and moment M in the 
longitudinal direction due to ultimate loads are calculated by statics.

Fig.11.20 Notation Macaulay bracket formulae.

The notation used is shown in Fig. 11.20 where 

p1 and p2 are the base pressure at left and right hand ends respectively
p base pressure at a distance×from left hand end

W1 and W2 are the column loads.
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The maximum design moments are at the column face and between the columns, and 
maximum shears are at d from the column face. Calculations are best done using spread-
sheets. The load cases are as follows. The weight of the base is ignored as the correspond-
ing base pressure will cancel each other out.

Case 1: Maximum load on both columns

W1:1.4 dead+1.6 imposed=690 kN 
W2:1.4 dead+1.6 imposed=954 kN 

W1+W2=690+954=1644.0 kN, moment M=954×1.05−690×1.45=1.20 kNm
p1=1644.0/9.0−1.2/6.75=182.48 kN/m2

p2=1644.0/9.0+1.2/6.75=182.84 kN/m2

 

The results are shown in Table 11.1. Fig. 11.21 and Fig. 11.22 show respectively the shear 
force and bending moment diagrams.

Table 11.1 Pressure, shear and moment calculation for case 1.

x p V M Remarks
0.075 182.49 27.37 1.03 d from left face of column 1

0.625 182.53 228.13 71.29 Left face of column 1

0.975 182.56 −334.09 52.75 Right face of column 1

1.525 182.60 −133.25 −75.78 d from right face of column 1

1.89 182.63 0 −100.08 Maximum negative moment

2.575 182.69 250.30 −14.34 d from left face of column 2

3.125 182.73 451.28 178.59 Left face of column 2

3.475 182.76 −374.80 191.98 Right face of column 2

4.025 182.80 −173.74 41.13 d from right face of column 2

Design values: Shear force=250.30 kN, Moment=191.98 kNm and −101.08 kNm 

Case 2: Maximum load on column 1 and minimum load on column 2

W1:1.4 dead+1.6 imposed=690 kN 
W2:1.0 dead=430 kN 

W1+W2=690+430=1120.0 kN, 
moment M=340×1.05−690×1.45=−549.0 kN m

p1=1120.0/9.0+549/6.75=205.78 kN/m2

p2=1120.0/9.0−549.0/6.75=43.11 kN/m2
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The results are shown in Table 11.2. Fig. 11.23 and Fig. 11.24 show respectively the shear 
force and bending moment diagrams.

Fig. 11.21 Shear force diagram for case 1.

Fig.11.22 Bending moment diagram for case 1.

Case 3: Minimum load on column 1 and maximum load on column 2

W1:1.0 dead=310 kN
W2:1.4 dead+1.6 imposed=954 kN

W1+W2=310+954=1264.0 kN
moment M=954×1.05−310×1.45=552.2 kNm

p1=1264.0/9.0–552.2/6.75=58.66 kN/m2

p2=1264.0/9.0+552.2/6.75=222.25 kN/m2
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The results are shown in Table 11.3. Fig. 11.25 and Fig. 11.26 show respectively the shear 
force and bending moment diagrams.

Table 11.2 Pressure, shear and moment calculation for case 2.

x p V M Remarks
0.075 203.69 30.66 1.15 d from left face of column 1
0.625 183.19 243.10 77.44 Left face of column 1
0.975 170.54 −323.09 63.70 Right face of column 1
1.525 150.66 −146.44 −64.42 d from right face of column 1
2.04 131.92 0 −101.52 Maximum negative moment
2.575 112.70 130.08 −66.03 d from left face of column 2
3.125 92.82 243.11 37.60 Left face of column 2
3.475 80.16 −126.35 58.29 Right face of column 2
4.025 60.28 −49.11 11.04 d from right face of column 2

Design values: Shear force=146.44 kN, Moment=77.44 kNm and −101.52 kNm

Fig. 11.23 Shear force diagram for case 2.

Fig. 11.24 Bending moment diagram for case 2.
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Table 11.3 Pressure, shear and moment calculation for case 3.

x p V M Remarks
0.075 61.39 9.00 0.34 d from left face of column 1
0.625 81.38 87.53 25.87 Left face of column 1
0.975 94.11 −161.06 12.75 Right face of column 1
1.525 114.10 −46.54 −45.35 d from right face of column 1
1.73 121.29 0 −50.00 Maximum negative moment
2.575 152.27 233.14 45.60 d from left face of column 2
3.125 172.26 411.64 221.91 Left face of column 2
3.475 184.99 −417.32 220.65 Right face of column 2
4.025 204.98 −202.84 49.10 d from right face of column 2

Design values: Shear force=233.14 kN, Moment=221.91 kNm and −50.0 kNm.

Fig.11.25 Shear force diagram for case 3.

Fig 11.26 Bending moment diagram for case 3.
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(d) Design of longitudinal reinforcement

(i) Bottom Steel

The maximum moment from case 3 is (Fig. 11.26)

M=221.91 kNm 
k=221.91×106/(2000×5502×35)=0.011<0.156 

z/d=0.5+√(0.25−0.011/0.9)=0.99>0.95
As=221.91×106/(0.95×550×0.95×460)=971.9 mm2

 

The minimum area of reinforcement is

(0.13/100)×2000×600=1560 mm2>required steel.  

Provide minimum reinforcement.
Provide 16T12-125 mm centres to give a total area of 1808 mm2.

(ℓc=1000 mm)<{0.75(c+3d)=0.75(350+3×550)=1500 mm}  

Reinforcement should be spread uniformly across the width.

(ii) Top steel

The maximum moment from case 2 is (Fig. 11.24),

M=101.53 kNm  

Provide minimum reinforcement as above in each direction.

Fig.11.27 (a) Uniform pressure; (b) case 3, varying pressure; (c) end elevation; (d) 
punching shear.
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(e) Transverse reinforcement

As shown in Fig. 11.27 (b), at ULS the maximum pressures under the base for load case 
3 is 222.3 kN/m2.

The pressure at 0.5 m from the end is
=58.66+(222.25–58.66)×4.0/4.5=204.1 kN/m2  

The average pressure on a 0.5 m length at the heavier end is

=(222.25+204.1)/2=213.2 kN/m2  

The moment at the face of the columns on a 0.5 m length at the heaviest loaded end is

M={213.2×(0.5×0.825)×0.825/2=36.3 kNm
k=36.3 x 106/(500×5502×35)=0.007<0.156

z/d=0.5+√(0.25–0.007/0.9)=0.99>0.95
As=36.3×106/(0.95×550×0.95×460)=159.0 mm2

 

Provide minimum reinforcement in the transverse direction over the length of the base.

Fig.11.28 Reinforcement in the base slab.

(f) Vertical shear

The maximum vertical shear from case 1 is
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V=250.3 kN 
v=250.3×103/(2000×550)=0.23 N/mm2

100As/(bd)=100×1808/(2000×550)=0.164<3.0 
400/d=400/450<1.0. Take as 1.0. 

vc=0.79×(0.164)1/3 (1.0)1/4 (35/25)1/3/1.25=0.39 N/mm2

v<vc

 

No shear reinforcement is required.

(g) Punching shear

Punching shear is checked in a perimeter at 1.5d from the face of a column. The perimeter 
for punching shear which just touches the sides of the base is shown in Fig. 11.27 (d). The 
punching shear is less critical than the vertical shear in this case.

(h) Sketch of reinforcement

The reinforcement is shown in Fig. 11.28. A complete mat has been provided at the top 
and bottom. Some U-spacers are required to fix the top reinforcement in position.

11.5 PILED FOUNDATIONS

11.5.1 General Considerations

When a solid bearing stratum such as rock is deeper than about 3 m below the base level 
of the structure a foundation supported on end-bearing piles will provide an economical 
solution. Foundations can also be carried on friction piles by skin friction between the pile 
sides and the soil where the bedrock is too deep to obtain end bearing.

The main types of piles are as follows (Fig. 11.29 (a)):
1.  Precast reinforced or prestressed concrete piles driven into the required position;
2. Cast-in-situ reinforced concrete piles placed in holes formed either by

(a)   driving a steel tube with a plug of dry concrete or packed aggregate at the end 
into the soil or;

(b)   boring a hole and lowering a steel tube to follow the boring tool as a temporary 
liner. (Other methods are also used. See Foundation Analysis and Design by 
Joseph E Bowles, 5th Edition, 1995, McGraw-Hill.)

A reinforcement cage is inserted and the tube is withdrawn after the concrete is placed.
Short bored plain concrete piles are used for light loads such as carrying ground beams 

to support walls. Deep cylinder piles are used to carry large loads and can be provided 
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under basement and raft foundations. A small number of cylinder piles can give a more 
economical solution than a large number of ordinary piles.

The safe load that a pile can carry can be determined by

1 test loading a pile;
2. using a pile formula that gives the resistance calculated from the energy of the driving 
force and the final set or penetration of the pile per blow

In both cases the ultimate load is divided by a factor of safety of from 2 to 3 to give the 
safe load. Safe loads depend on the size and depth and whether the pile is of 

Fig.11.29 (a) Pile types; (b) small pile cap, vertical load; (c) pile group resisting axial load 
and moment.
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the end-bearing or friction type. The pile can be designed as a short column if lateral 
support from the ground is adequate. However, if ground conditions are unsatisfactory 
it is better to use test load results. The group action of piles should be taken into account 
because the group capacity can be considerably less than the summed capacities of the 
individual piles.

The manufacture and driving of piles are carried out by specialist firms who guarantee 
to provide piles with a given bearing capacity on the site. Safe loads for precast and cast-
in-situ piles vary from 100 kN to 1500 kN. Piles are also used to resist tension forces and 
the safe load in withdrawal is often taken as one-third of the safe load in bearing. Piles in 
groups are generally spaced at 0.8−1.5 m apart. Sometimes piles are driven at an inclina-
tion to resist horizontal loads in poor ground conditions. Rakes of 1 in 5 to 1 in 10 are 
commonly used in building foundations.

In an isolated foundation, the pile cap transfers the load from the column shaft to the 
piles in the group. The cap is cast around the tops of the piles and the piles are anchored 
into it by projecting bars. Some arrangements of pile caps are shown in Figs 11.29(b) and 
11.29(c).

11.5.2 Loads in Pile Groups

In general pile groups are subjected to axial load, moment and horizontal loads. The pile 
loads are as follows.

(a) Axial load

When the load is applied at the centroid of the group it is assumed to be distributed uni-
formly to all piles by the pile cap, which is taken to be rigid. This gives the load per pile

Fα=(P+W)/N  

where P is the axial load from the column, W is the weight of the pile cap and N is the 
number of piles (Fig.11.29(b)).

(b) Moment on a group of vertical piles

The pile cap is assumed to rotate about the centroid of the pile group and the pile loads 
resisting moment vary uniformly from zero at the centroidal axis to a maximum or mini-
mum for the piles farthest away. Referring to Fig.11.29(c), the second moment of area 
about the YY axis is

Iy=2(x2+x2)=4x2  

where x is the pile spacing. The maximum load due to moment on piles A in tension and 
C in compression is

 



 

Foundations  421

For a symmetrical group of piles spaced at ±x1, ±x2…±xn perpendicular to the centroidal 
axis YY, the second moment of area of the piles about the YY axis is 

 

The maximum pile load is

 

If the pile group is subjected to bending about both the XX and YY axes moments of 
inertia are calculated for each axis. The pile loads from bending are calculated for each 
axis as above and summed algebraically to give the resultant pile loads. The loads due to 
moment are combined with those due to vertical load.

(c) Horizontal load

In building foundations where the piles and pile cap are buried in the soil, horizontal loads 
can be resisted by friction, adhesion and passive resistance of the soil. Ground slabs that 
tie foundations together can be used to resist horizontal reactions due to rigid frame action 
and wind loads by friction and adhesion with the soil and so can relieve the pile group of 
horizontal load. However, in the case of isolated foundations in poor soil conditions where 
the soil may shrink away from the cap in dry weather or in wharves and jetties where the 
piles stand freely between the deck and the sea bed, the piles must be designed to resist 
horizontal load.

Pile groups resist horizontal loads by

1.  bending in the piles
2.  using the horizontal component of the axial force in inclined piles

These cases are discussed below.

(d) Pile in bending

A group of vertical piles subjected to a horizontal force H applied at the top of the piles is 
shown in Fig. 11.30. The piles are assumed to be fixed at the top and bottom. The deflec-
tion of the pile cap is shown in 11.30(b).

Shear per pile V=H/N
Moment M1 in each pile=Hh1/(2N)

 

where N is the number of piles and h1 is the length of pile between fixed ends.
The horizontal force is applied at the top of the pile cap of depth h2 and this causes a 

moment Hh2 at the pile tops. When vertical load and moment are also applied the resultant 
pile loads are a combination of those caused by the three actions. The total vertical load 
P+W is distributed equally to the piles. The total moment M+Hh2 is resisted by vertical 
loads in the piles and the analysis is carried out as set out in 11.5.2(b) above. The pile is 
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designed as a reinforced concrete column subjected to axial load and moment. If the pile 
is clear between the cap and ground, additional moment due to slenderness may have 
to be taken into account. If the pile is in soil, complete or partial lateral support may be 
assumed.

Fig. 11.30 (a) Pile group; (b) deflection; (c) moment diagram.

Fig.11.31 (a) Pile group; (b) resistance to horizontal load.
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(e) Resistance to horizontal load by inclined piles

An approximate method used to determine the loads in piles in a group subjected to axial 
load, moment and horizontal load where the horizontal load is resisted by inclined piles 
is set out. In Fig. 11.31 the foundation carries a vertical load P, moment M and horizontal 
load H. The weight of the pile cap is W.

The loads F in the piles are calculated as follows.

(i) Vertical loads, pile loads Fv

The sum of vertical loads is P+W.
 

(ii) Horizontal loads, pile loads FH

The horizontal load is assumed to be resisted by pairs of inclined piles as shown in Fig. 
11.31 (b). The sum of the horizontal loads is H.

 

(iii) Moments, pile loads FM

The second moment of area is

Iy=2[(0.5S)2+(1.5S)2]  

The sum of the moments is

M1=M+Hh  

The maximum pile load is Fν4+FH4+FM4

11.5.2.1 Example of loads in pile group

The analysis using the approximate method set out above is given for a pile group to carry 
the loads and moment from a 6m long shear wall similar to the one designed in Chapter 
10, section 10.3.4.1.

The design actions for service loads are assumed to be as follows:

Axial load=9592 kN,
Moment=5657 kNm,

Horizontal load=281 kN
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The proposed pile group consisting of 18 piles inclined at 1 in 6 as shown in Fig. 11.32. 
The weight of the base is 610 kN. For the vertical loads Fv1 to FV6

 

For the horizontal loads 

FHI=−FH2=−FH3=FH4=FH5=FH6=281×√(62+1)18=94.9kN
The second moment of area is 
Iy=3×2(0.62+1.82+3.02)=76.6

 

The moment at the pile top is

5657+(281×1.2)=5994 kNm  

Fig. 11.32 Pile group
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The maximum pile load is

F6=574.6+94.9+238=907.5 kN  

The pile group and pile cap shown in Fig. 11.32 can be analysed using a plane frame com-
puter program. The large size of the cap in comparison with the piles ensures that it acts 
as a rigid member. The pile may be assumed to be pinned or fixed at the ends. 

Fig 11.33 (a) Pile cap and truss; (b) tensile forces in pile caps
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11.5.3 Design of Pile Caps

The design of pile caps is covered in section 3.11.4 of the code. The design provisions are 
as follows.

(a) General

Pile caps are designed either using bending theory or using the truss analogy also called 
the Strut-Tie method. When the Strut-Tie method is used, the truss should be of triangu-
lated form with a node at the centre of the loaded area. The lower nodes are to lie at the 
intersection of the centrelines of the piles with the tensile reinforcement. Tensile forces in 
pile caps for some common cases are shown in Fig.11.33.

(b) Strut-Tie method with widely spaced piles

Where the spacing exceeds 3 times the pile diameter only reinforcement within 1.5 times 
the diameter from the centre of the pile should be considered to form a tension member 
of a truss.

(c) Shear forces

The shear strength of a pile cap is normally governed by the shear on a vertical section 
through a full width of the cap. The critical section is taken at 20% of the pile diameter 
inside the face of the pile as shown in Fig. 11.34. The whole of the force from the piles 
with centres lying outside this line should be considered.

(d) Design shear resistance

The shear check may be made in accordance with provisions for the shear resistance of 
solid slabs given in clauses 3.5.5 and 3.5.6 of the code. The following limitations apply 
with regard to pile caps.

1. The distance av from the face of the column to the critical shear plane is as defined in 
11.5.3(c) above. The enhanced shear stress is 2dνc/aν where vc is taken from Table 3.8 of 
the code. The maximum shear stress at the face of the column must not exceed 0.8√fcu or 
5 N/mm2.
2. Where the pile spacing is less than or equal to three times the pile diameter  the 
enhancement can be applied over the whole of the critical section. Where the spacing is 
greater, the enhancement can only be applied to strips of width equal to  centred on 
each pile. Minimum stirrups are not required in pile caps where v< vc (enhanced if appro-
priate).
3. The tension reinforcement should be provided with a full anchorage in accordance with 
section 3.12.8 of the code. The tension bars must be anchored by bending them up the 
sides of the pile cap.

(e) Punching shear

The following two checks are required: 
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1.  The design shear stress on the perimeter of the column is not to exceed 0.8√fcu or 5 N/
mm2;

2.  If the spacing of the piles is greater than 3 times the pile diameter, punching shear 
should be checked on the perimeter shown in Fig. 11.34.

Fig. 11.34 Critical shear section and perimeter.

11.5.3.1 Example of design of pile cap

Design a four-pile cap to support a factored axial column load of 3600 kN. The column is 
400 mm×400 mm and the piles are 400 mm in diameter spaced at 1200 mm centres. The 
materials are grade C35 concrete and grade 460 reinforcement. The pile cap is shown in 
Fig. 11.35. The overall depth is taken as 900 mm and the effective depth as 800 mm.

(a) Moment reinforcement

Refer to Fig. 11.33 for a four-pile cap

Tension T=(3600×600)/(4×800)=675 kN
As=675×103/(0.95×460)=1545 mm2 per tie.

 

Provide 12T20 bars, areα=3770 mm2, for reinforcement across the full width for two 
ties.
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The minimum reinforcement from Table 3.26 of the code is 

(0.13/100)×1900×900=2223 mm2<3770 mm2 provided.  

The pile spacing is not greater than three times the pile diameter, so the reinforcement can 
be spaced evenly across the pile cap. The spacing is 160 mm.

Fig. 11.35 Reinforcement in the pile cap.
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(b) Shear

The critical section for shear lies  inside the pile as shown in Fig. 11.35, giving av=280 
mm. The shear V is

V=1800kN.
ν=1800×103/(1900× 800)=1.18 N/mm2

100As/(bd)=100×3770/(1900×800)=0.25<3.0
400/d=400/800<1.0, take as 1.0.

 

vc=0.79×(2.48)1/3 (1.0)1/4 (35/25)1/3/1.25=0.44 N/mm2  

The enhanced design shear stress is

=vc(2d/av)
=0.44×2×800/280=2.53 N/mm2

 

The shear stress at the critical section is satisfactory for vertical shear and no shear rein-
forcement is required.
Check the shear stress on the perimeter of the column:

v=3600×103/(1600×800)=2.81 N/mm2<(0.8√35–4.73 N/mm2)  

This is satisfactory. The pile spacing is not greater than 3 times the pile diameter and so 
no check for punching shear is required.

(c) Arrangement of reinforcement

The anchorage of the main bars is 38 diameters (760 mm), from Table 3.27 of the code. 
Since the spacing of 160 mm does not exceed 750 mm it is satisfactory. Secondary steel, 
12 mm diameter bars, is required on the sides of the pile cap. The reinforcement is shown 
in Fig. 11.35.

11.7 REFERENCES

Bowles, Joseph. E. (1995), Foundation analysis and design., 5th Edition, (McGraw-Hill).



 



 

CHAPTER 12  
 

RETAINING WALLS

12.1 WALL TYPES AND EARTH PRESSURE

12.1.1 Types of Retaining Wall

Retaining walls are structures used to retain mainly earth but also other materials which 
would not be able to stand vertically unsupported. The wall is subjected to overturning 
due to pressure of the retained material. 

Fig.12.1 (a) Gravity wall; (b) cantilever walls; (c) buttress wall; (d) counterfort wall.



 

432 Reinforced Concrete

Fig 12.2 (a) Earth pressure: cohesion less soil (c=0).

The types of retaining wall are as follows:

1. In a gravity wall stability is provided by the weight of concrete in the wall;
2. In a cantilever wall the wall slab acts as a vertical cantilever. Stability is provided 
by the weight of structure and earth on an inner base or the weight of the structure only 
when the base is constructed externally;
3. In counterfort and buttress walls the vertical slab is supported on three sides by the 
base and counterforts or buttresses. Stability is provided by the weight of the structure in 
the case of the buttress wall and by the weight of the structure and earth on the base in 
the counterfort wall.

Examples of retaining walls are shown in Fig. 12.1. Detailed designs for cantilever and 
counterfort retaining walls are given.

12.1.2 Earth Pressure on Retaining Walls

(a) Active soil pressure

The relevant code for calculating earth pressure on retaining walls is BS 8002:1994: Code 
of Practice for earth retaining structures 
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Active soil pressures are given for the two extreme cases of soil such as a cohesionless 
soil like sand and a cohesive soil like clay (Fig. 12.2). General formulae are available for 
intermediate cases. The formulae given apply to drained soils and reference should be 
made to textbooks on soil mechanics for pressure where the water table rises behind the 
wall. The soil pressures given are those due to a level backfill. If there is a surcharge of q 
kN/m2 on the soil behind the wall, this is equivalent to an additional soil depth of z=q/γ 
where γ is the unit weight in kN/m3. The textbooks give solutions for cases where there 
is sloping backfill.

Fig 12.2 (b) Earth pressure: cohesive soil 

(i) Cohesionless soil, c=0  (Fig. 12.2 (a)): The horizontal pressure at any depth z is given by

p=Ka(γz+q)  

where γ is the unit weight of soil in kN/m3, q=uniformly distributed surcharge in kN/m2, 
is the angle of internal friction and Ka is the coefficient of active earth pressure.

The horizontal force P1 on the wall of height H1 is 
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(ii) Cohesive soil,  (Fig. 12.2 (b)): The pressure at any depth z is given theoretically 
by

p=γz+q−2c  

where c is the cohesion at zero normal pressure. This expression gives negative values 
near the top of the wall. In practice there are cracks at the top of the soil normally filled 
with water.

(b) Wall stability against overturning

Referring to Fig. 12.2 the vertical loads are made up of the weight of the wall stem and 
base and the weight of backfill on the base. Front fill on the outer base has been neglected. 
Surcharge would need to be included if present. If the centre of gravity of these loads is 
x from the toe of the wall, the stabilizing moment with respect to overturning about the 
toe is ΣWx with a beneficial partial safety factory γf=1.0. The overturning moment due 
to the active earth pressure is γf P1H1/3 with an adverse partial safety factor γf=1.4. The 
stabilizing moment from passive earth pressure has been neglected. For the wall to satisfy 
the requirement of stability

ΣWx≥γfP1H1/3  

(c) Vertical pressure under the base

The vertical pressure under the base is calculated for service loads. For a 1 m length of 
cantilever wall with base width b transmitting forces to the foundation

area Α=b m2, section modulus Z=b2/6 m3.  

If ΣM is the sum of the moments of all vertical forces ∑W about the centre of the base and 
of the active pressure on the wall, then

ΣM=ΣW(x−b/2)−P1H1/3  

where x=the centre of gravity of vertical loads from the toe of the wall.
The passive pressure in front of the base has again been neglected. The maximum 

pressure is
 

This should not exceed the safe bearing pressure on the soil.

(d) Resistance to sliding (Fig. 12.2)

The resistance of the wall to sliding is as follows.
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(i) Cohesionless soil: The friction R between the base and the soil is μΣW, where μ is the 
coefficient of friction between the base and the soil  The passive earth pressure 
force P2 against the front of the wall from a depth H2 of soil is

 

(ii) Cohesive soils: The adhesion R between the base and the soil is βb where β is the 
adhesion in kN/m2. The passive earth pressure P2 is

P2=0.5γH2
2+2cH2

 

A downstand nib can be added, as shown in Fig. 12.2 to increase the resistance to sliding 
through passive earth pressure. For the wall to be safe against sliding

1.4P1<P2+R  

where P1 is the horizontal active earth pressure on the wall.

12.2 DESIGN OF CANTILEVER WALLS

12.2.1 Initial Sizing of the Wall

The initial dimensions of the wall can be determined from the following equations.

Fig.12.3 Model for initial sizing.
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Ignoring the difference in unit weight between soil and concrete and the weight of the toe 
slab of width b1, for a unit length of wall the total gravity load W is approximately given 
by

W=γb2 H1+qb2 
 

The total horizontal force P1 is given by

P1=0.5 Kaγ H1
2+KaqH1 

 

where q=surcharge in kN/m2 and Kα=coefficient of active earth pressure 

(i) Resistance to sliding:

Ignoring any contribution from passive earth pressure and using a load factor γf equal 
to 1.4 on P1 as it is an adverse load and 1.0 on W as it is a beneficial load, for resistance 
against sliding,

μW≥1.4 P1 
 

Substituting for W and P1,

{μγb2H1+q b2}≥1.4 {0.5 KaγH1
2+Kaq×H1}  

Simplifying,
 

(ii) Zero tension in the base pressure

Taking moments about the toe of the wall,

W (b1+b2/2)−0.5 Kaγ H1
2 (H1/3)−Ka q H1 (H1/2)=W L

L=b1+0.5 b2−b2 Ka (H1/b2)
2{l/6+q/(2γH1)}/[1+q/(γH1)]

 

Eccentricity e of W with respect to the centre of the base is

e=0.5(b1+b2)−L 
e=(1/6) b2 Ka (H1/b2)

2{l+3q/(γH1)}/[1+q/(γH1)]−0.5 b1

 

For no tension to develop at the heel, W must lie in the middle third of the base. There-
fore

e≤(b1+b2)/6  
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12.2.2 Design Procedure for a Cantilever Retaining Wall

For a given height of earth to be retained, the steps in the design of a cantilever retaining 
wall are as follows.

1.  Assume a breadth for the base. This can be calculated from the equations developed in 
section 12.2.1. A nib is often required to increase resistance to sliding.
2.  Calculate the horizontal earth pressure on the wall. Considering all forces, check stabil-
ity against overturning and the vertical pressure under the base of the wall. Calculate the 
resistance to sliding and check that this is satisfactory. A partial safety factor γf of 1.4 is 
applied to the horizontal loads for the overturning and sliding check. The maximum verti-
cal pressure is calculated using service loads and this should not exceed the safe bearing 
pressure.
3.  Reinforced concrete design for the wall is made for ultimate loads using appropriate 
load factors. Surcharge if present may be classed as either dead or imposed load depend-
ing on its nature. 

Referring to Fig. 12.4 the structural design consists of the following.

(a) Cantilever wall: calculate shear forces and moments caused by the horizontal earth 
pressure. Design the vertical moment steel for the inner (earth side) face and check the 
shear stresses. Minimum secondary steel is provided in the horizontal direction for the 
inner face and both vertically and horizontally for the outer face.

(b) Inner footing (heel slab): The net moment due to vertical loads on the top and earth 
pressure on the bottom face causes tension in the top and reinforcement is designed for 
this position.

(c) Outer footing (toe slab): The moment due to earth pressure at the bottom face causes 
tension in the bottom face.
The moment reinforcement for the three parts is shown in Fig. 12.4.

Fig. 12.4 Three parts of the cantilever retaining wall.
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12.2.3 Example of Design of a Cantilever Retaining Wall

(a) Specification

Design a cantilever retaining wall to support a bank of earth 3.5 m high. The top surface 
is horizontal behind the wall but it is subjected to a dead load surcharge of 15 kN/m2. The 
soil behind the wall is well-drained sand with the following properties:

Unit weight γ=17.6 kN/m3  

The material under the wall has a safe bearing pressure of 100 kN/m2. The coefficient of 
friction μ between the base and the soil is 0.5. Design the wall using grade 30 concrete 
and grade 460 reinforcement.
Active earth pressure coefficient:

 

(b) Check preliminary sizing

(i) Check minimum stem thickness

For 1 m length of the wall, bending moment M at the base of the cantilever is

M=0.5 Kaγ H2 (H/3)+Ka q H (H/2)  

Substituting Kα= 0.333, γ=17.6 kN/m3, H=3.5 m, q=15 kN/m2,

M=0.5×0.3333×17.6×3.52×3.5/3+0.3333×15×3.5×3.5/2

M=41.92+30.62=72.54 kN m/m

 

In order for there to be no need for compression steel,

M<0.156bd2fcu 
 

Taking b=1000 mm, fcu=30 N/mm2,
 

Take a value of d much larger than this to reduce the amount of steel required. Assume 
total stem thickness of 250 mm. Same thickness is assumed for the base slab as well.
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(ii) Check resistance to sliding

H1=3.5+0.25=3.75m,
q/(γ H1)=15.0/(17.6×3.75)=0.227

Kα=0.333
μ=0.5

 

Use equation from section 12.2.1.1, to calculate width b2.

(b2/H1){0.5+0.227)≥1.4×0.333×(0.5+0.227)
b2/H1≥0.467
b2≥1.75m,

Take b2=2.05 m,
b2/H1=0.55

 

(iii) Check eccentricity

b2=2.05,
H1/b2=1.829

q/(γ H1)=0.227

 

Kα=0.333  

Use equation from section 12.2.1.1, to calculate width b1.

(b1/b2)≥0.25×0.333×(1.829)2 [{1+3×0.227}/{1+0.227}]−0.25
(b1/b2)≥0.132,

b1≥0.27 m, Take b1=0.8 m.

 

The proposed arrangement of the wall is shown in Fig. 12.5. Wall and base thicknesses 
are assumed to be 250 mm. A nib has been added under the wall to assist in the prevention 
of sliding. 
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Fig. 12.5 Forces acting on the retaining wall.

(c) Wall stability

Consider 1 m length of wall. The horizontal pressure at depth z from the top is

p=Ka(γz+q)=0.333(17.6 z+15) 

The horizontal pressure at the base (z=3.75 m)=27 kN/m2 The horizontal pressure at the 
top (z=0)=5 kN/m2.
The weight of wall, base and earth and the corresponding moments about the toe of the 
wall for stability calculations are given in Table 12.1. Clockwise moments are taken as 
positive.
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Table 12.1 Stability calculations (Cantilever wall)

Type of 
Load

Load (kN) Distance to centroid from 
A, m

Moment about A 
(kNm)

HORIZONTAL (Active earth pressure)

Surcharge 5×3.75=18.75 3.75/2=1.875 −35.16

Triangular 0.5×3.75× (27−5)=41. 
25

3.75/3=1.25 −51.56

∑ 18.75+41.25=60.0  −35.16−51.56= 
−86.72

VERTICAL (Gravity)

Wall+Nib (3.75+0.6)×0.25× 
24=26.1

0.8+0.25/2=0.925 24.14

Base 2.85×0.25×24= 17.1 2.85/2=1.425 24.37

Back fill 1.8×3.5×17.6= 110.88 0.8+0.25+1.8/2= 1.95 216.22

Surcharge 15×1.8=27 0.8+0.25+1.8/2= 1.95 52.65

∑ 181.08  317.38

(i) Maximum soil pressure

Width of base b=2.85m  

For 1 m length of wall, area

Α=2.85 m2

section modulus Z=2.852/6=1.35 m3
 

Taking moments of all forces about the toe A, the centroid of the base pressure from A is 
at a distance L.

L×181.08=317.38–86.72=230.66
L=230.66/181.08=1.273m,

eccentricity, e=B/2−L=2.85/2–1.273=0.15<2.85/6.

 

Hence no tension is developed at C.
The base is acted on by

vertical load=181.08 kN
moment M=181.08×e=27.16 kNm.

 

The maximum soil pressure at A calculated for service load is

181.08/(Α=2.85)+27.16/(Z=1.35)=83.7 kN/m2<100 kN/m2  
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This is satisfactory, as the maximum pressure is less than the safe bearing capacity of 
soil.

(ii) Stability against overturning

The stabilizing (beneficial) moment due to gravity loads about the toe A of the wall has 
a partial safety factor γf=1.0 and the disturbing (adverse) moment due to horizontal loads 
has a partial safety factor γf=1.4. The net stabilizing moment is

(317.38×1.0–86.72×1.4)=195.97>0  

The wall is considered as safe against overturning.

(iii) Resistance to sliding

The forces resisting sliding are the friction under the base and the passive resistance for 
a depth of earth of 850 mm to the top of the base. The gravity loads are beneficial loads 
but the horizontal load is an adverse load. Ignoring the passive pressure, for the wall to 
be safe against sliding

(μ=0.5) {181.08×(γf=1.0)}>(γf=1.4)×60.0, 
ie. 90.54>84.0

 

The resistance to sliding is satisfactory. There was no need for the nib but is included for 
additional protection.

(iv) Overall comment

The wall section is satisfactory. The maximum soil pressure under the base controls the 
design.

(d) Structural design of wall, heel and toe slabs

(1) Cantilever wall slab

(i) Bending design

At serviceability limit state, the horizontal pressure at the base (z=3.5 m) is 25.53 kN/m2 
and at the top (z=0) is 5 kN/m2.

Average pressure=0.5×(25.33+5.0)=15.17 kN/m2  

At ultimate limit state using γf=1.4, at the base of the cantilever, shear force V and moment 
M are

V=15.17×3.5×(γf=1.4)=74.8 kN
M={(25.53–5.0)×0.5×3.5×3.5/3+5.0×3.5×3.5/2}×(γf=1.4) 

M=101.56 kNm

 

Assume that the cover is 40 mm and the diameter of the bars is 16 mm. Effective depth 
d is
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d=250−40−8=202 mm
k=M/(bd2 fcu)=101.56×106/(1000×2022×30)=0.083<0.156

z/d=0.5+√(0.25–0.083/0.9)=0.897<0.95
As=101.56×106/(0.897×202×0.95×460)=1282 mm2/m

 

Provide 16 mm diameter bars at 150 mm centres to give a steel area of 1340 mm2/m. 
Check minimum percentage of steel.

100As/(bh)=100×1340/(1000×250)=0.54>0.13  

Provided steel is greater than the minimum percentage of steel.
Check maximum spacing of steel permitted.

100As/(bd)=100×1340/(1000×202)=0.66  

Maximum spacing allowed from Table 3.28 and clause 3.12.11.2.7 (b) is

155/(0.66)=235 mm.  

(ii) Curtailment of flexural steel Determine the depth z from the top where the 16 mm 
diameter bars can be reduced to a diameter of 12 mm. 12 mm bars at 150 mm centres 
provides an area of steel equal to

As=753 mm2/m  

The corresponding moment of resistance is approximately

M=101.56×(753/1282)=59.65 kNm  

This moment occurs at a depth z from top given by

59.65=1.4×Ka (γ z3/6+15×z2/2)
59.65=1.4×0.333×(17.6×z3/6+15×z2/2)

 

Solving by trial and error, z=2.84 m,

d=250–40–6=204 mm
M=59.65

k=59.65×106/(1000×2042×30)=0.048<0.156
z/d=0.5+√(0.25–0.048/0.9)=0.944<0.95

As=59.65×106/(0.944×204×0.95×460)=709 mm2/m<753 mm2/m

 

An alternative possibility is to use 16 mm bars at 300 mm c/c. The main advantage of 
this system is that by curtailing alternate bars provided at the base at 150 mm, a spacing 
of 300 mm is obtained without any need to lap bars of a different diameter. This is a more 
efficient arrangement from a construction point of view.

T16 at 300 mm centres gives As=670 mm2/m. The moment of resistance provided is 
approximately

M=101.56×670/1282=50.08 kNm  
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This moment occurs at a depth z from top given by

50.08=1.4×0.333×(17.6×z
3/6+15×z2/2)  

Solving by trial and error, z=2.65 m,

k=50.08×106/(1000×2042×30)=0.04<0.156 
z/d=0.5+√(0.25–0.04/0.9)−0.953>0.95

As=50.08×106/(0.95×204×0.95×460)=591 mm2/m<670 mm2/m

 

Check minimum percentage of steel.

100As/(bh)=100×670/(1000×250)=0.27>0.13  

Check maximum spacing between bars. 

100As/(bd)=100×670/(1000×202)=0.33  

Maximum spacing allowed from Table 3.28 and clause 3.12.11.2.7 (b) is

155/(0.33)=470 mm>300 mm proposed.  

Referring to the anchorage requirements in BS8110: Part 1, clause 3.12.9.1, bars are to 
extend an anchorage length beyond the theoretical cut off point. The anchorage length 
from Table 3.27 of the code for grade C30 concrete is (section 5.2.1)

anchorage length=40×16=640 mm  

Alternate bars need to continue up to a distance from top of

=2650−640=2010 mm  

Stop bars off bars at a distance fro base equal to

=3500–2010=1490 mm, say 1500 mm.  

(iii) Shear check

The shear force V at the base of the wall is

V=15.17×3.5×(γf=1.4)=74.8 kN 
v=74.8×103/(1000×202)=0.37 N/mm2

100 As/(bd)=100×1340/(1000×202)=0.66<3.0 
400/d=400/202=1.98>1.0, fcu=30<40.

v<vc

 

The shear stress is satisfactory.
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(iv) Deflection and cracking

The deflection need not be checked. For control of cracking the bar spacing must not 
exceed the limitations in clause 3.12.11.2.7. This is satisfied.

(v) Distribution steel

For distribution steel provide the minimum area of 0.13% from Table 3.25 of the code.

As= (0.13/100)×1000×250=325 mm2/m  

Provide 10 mm diameter bars at 240 mm centres horizontally on the inner face. For crack 
control on the outer face provide 10 mm diameter bars at 240 mm centres each way.

(2) Inner footing (Heel slab)

In order to determine the appropriate load factors to be used, it is necessary to consider 
the effect of gravity loads and earth pressure loads on the bending moment caused in the 
heel slab.

From Table 12.1, gravity loads provide:

Vertical load =181.08 kN,
Moment about the Toe Α=317.38 kNm (Clockwise)

 

The centroid of the base pressure due to gravity loads only from A is at a distance L. 

L×181.08=317.38, giving L=1.75 m, eccentricity, e= 2.85/2−L=0.325  

The base is acted on by a

vertical load=181.08 kN
moment M=181.08×e=58.85 kNm (clockwise)

181.08/Α=63.54kN/m2

M/Z=43.59kN/m2

 

On the top of the heel slab there is surcharge of 15 kN/m2 and a height of soil equal to 3.5 
m and self weight of slab of 250 mm. The total downward load is

{15+3.5×(γ=17.6)+0.25×24}=82.6 kN/m2  

The bending moment on the base due to horizontal earth pressure is

M=86.72 kNm/m (anticlockwise).
M/Z=64.06 kN/m2

 

The pressures due to gravity loads and horizontal earth pressure are shown in Fig. 12.6.
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Fig.12.6 Forces on the base slab due to gravity and earth pressure forces.

The net effect of gravity loads is to produce tension on the bottom of the slab while the 
base pressure due to horizontal loads produces tension on the top of the slab. Therefore 
gravity loads are beneficial loads with a load factor of 1.0 while earth pressure loads are 
adverse with a load factor of 1.4 to be applied. Using these load factors, the base pressure 
at right and left ends of the base slab are

Left end=63.54–43.59+64.06×1.4=109.63 kN/m2

Right end=63.54+43.59–64.06×1.4=17.45 kN/m2
 

The base pressure at the junction of the heel slab and cantilever is

=17.45+(109.63–17.45)×(1.8/2.85)=75.67 kN/m2  

Fig. 12.7 shows the forces acting on the heel slab. 

Fig.12.7 Pressures in kN/m2 acting on heel slab.

181.08 kN 

63.54 

58.85 

43.59 

86.72 

64.06 

Moment due to 

earth pressure 

Moment due to 

gravity loads 

75.67 
17.45

82.60 

1.8 
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(i) Bending design

Referring to Fig.12.7, moment M at the face of the wall is

M=0.5×(82.6–17.45)×1.82–0.5×(75.67–17.45)×1.8×1.8/3 =74.10 kNm/m
k=M/(bd2 fcu)=74.10×106/ (1000×2022×30)=0.061<0.156

z/d=0.5+√(0.25–0.061/0.9)=0.927<0.95
As=74.10×106/(0.927×202×0.95×460)=905 mm2/m

 

Provide 12 mm diameter bars at 120 mm centres to give 942 mm2/m
Check minimum steel percentage:

100As/(bh)=100×942/(1000×250)=0.38>0.13  

Check maximum permitted spacing:

100As/(bd)=100×942/(1000×202)=0.47  

Maximum spacing allowed=155/(0.47)=330 mm>120 mm.
Spacing is satisfactory.

(ii) Shear Check

Referring to Fig.12.7, the shear force V at the face of the wall is

V=(82.6–17.45)×1.8–0.5×(75.67–17.45)×1.8=64.87 kN
v=64.87×103/(1000×202)=0.32 N/mm2

100 As/(bd)=100×942/(1000×202)=0.47<3.0
400/d=400/202=1.98>1.0,

fcu=30<40.

 

The shear stress is satisfactory. 

(iii) Deflection and cracking The deflection need not be checked. For control of cracking 
the bar spacing must not exceed the limitations in clause 3.12.11.2.7 and this is satisfied.

(iii) Distribution steel For distribution steel provide the minimum area of 0.13% from 
Table 3.25 of the code.

As=(0.13/100)×1000×250=325 mm2/m  

Provide 10 mm diameter bars at 240 mm centres horizontally on the inner face. For crack 
control on the outer face provide 10 mm diameter bars at 240 mm centres each way.
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(3) Outer Footing (Toe slab)

As shown in Fig. 12.6, both gravity and horizontal loads acting on the base slab produce 
tension on the bottom of the slab. Therefore both loads are adverse and take a load factor 
of 1.4. The only beneficial load is due to self weight. Using these load factors, the base 
pressure at right and left ends of the base slab are

Left end=(63.54–43.59+64.06)×1.4=117.61 kN/m2

Right end=(63.54+43.59–64.06)×1.4=60.30 kN/m2
 

The base pressure at the junction of the toe slab and cantilever

=60.30+(117.61–60.30)×(1.8+0.25)/2.85=101.52 kN/m2

The self weight load=0.25×24=6 kN/mm2
 

Fig. 12.8 shows the forces acting on the toe slab

Fig.12.8 Pressures in kN/m2 acting on toe slab.

The shear and moment at the face of the wall are as follows:

shear=(101.52–6)×0.8+(117.61–101.52)×0.5×0.8=82.86 kN
moment=0.5×(101.52–6)×0.82+0.5×(117.61–101.52)×0.8×(2/3)×0.8 =34.0 

kN m/m

 

Reinforcement from the wall which is designed for a moment of 101.56 kNm/m will be 
anchored in the toe slab and will provide the moment steel here. The anchorage length 
required is 640 mm and this will be provided by the bend and a straight length of bar along 
the outer footing. The radius of the bend is determined to limit the bearing stress to a safe 
value. The permissible bearing stress inside the bend is 

 

where ab is the bar spacing, 150 mm.

6.0

101.52117.61

0.80
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The force in the bar

Fbt=0.95×460×Area of 16 mm bar=87.86 kN  

The minimum internal radius r of the bend is

r=87.86×103/(49.5×16)=110.9 mm  

Make the radius of the bend 150 mm

Shear stress: The flexural steel and the dimensions of the toe slab are same as for the stem 
which is safe for a shear force of 125.7 kN. This is satisfactory. The distribution steel is 
10 mm diameter bars at 240 mm centres.

(4) Nib

The passive earth pressure coefficient Kp=1/Kα=3.0.
The earth pressure at the top and bottom of the nib are

Top: Kp γ z=3×17.6×0.25=13.2 kN/m2

Bottom: Kp γ z=3×17.6×0.85=44.88 kN/m2
 

Referring to Fig. 12.5 the shear and moment in the nib using a load factor of 1.4 are as 
follows:

shear=1.4×(13.2+44.88)×0.6/2=24.39kN
moment=1.4×{13.2×0.62/2+(44.88–13.2)×0.5×0.6×(2/3)×0.6} =8.65 kNm

 

The forces are quite small. The minimum reinforcement is 0.13% or 325 mm2/m. Provide 
10 mm diameter bars at 150 mm centres (As=524 mm2/m) to lap onto the main wall steel. 
The distribution steel is 10 mm diameter bars at 240 mm centres.

(e) Sketch of the wall reinforcement: A sketch of the wall with the reinforcement designed 
above is shown in Fig. 12.9. Note that the reinforcement is organized to produce a 3-D 
cage which can be easily fabricated.

12.3 COUNTERFORT RETAINING WALLS

12.3.1 Stability Check and Design Procedure

A counterfort retaining wall is shown in Fig. 12.10. The spacing of the counterforts is 
usually made equal to the height of the wall. The following comments are made regarding 
the design.

(a) Stability

Consider as one unit a centre-to-centre length of panels taking into account the weight 
of the counterfort. The horizontal earth acting on this unit together with the gravity loads 
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must provide satisfactory resistance to overturning and sliding. The calculations are made 
in a similar way to those for a cantilever wall.

(b) Wall slab

The slab is thinner than that required for a cantilever wall. It is built in on three edges 
and free at the top. It is subjected to a triangular load due to the active earth pressure. The 
lower part of the wall cantilevers vertically from the base and the upper part spans hori-
zontally between the counterforts. A load distribution 

Fig. 12.9 Reinforcement detail in the cantilever retaining wall.
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commonly adopted between vertically and horizontally spanning elements is shown in 
Fig.12.10. The Finite Element Method could also be used to analyse the wall to determine 
the moments for design. Yield line analysis and Hillerborg’s Strip methods are used in the 
example that follows.

Fig.12.10 (a) Section: (b) back of wall.

(c) Base slab

Like the wall slab, the base slab behind the vertical wall is built-in on three sides and 
free on the fourth. The loading is trapezoidal in distribution across the base due to the 
net effect of the weight of earth down and earth pressure under the base acting upwards. 
As in the case of the wall slab, near the junction with the wall, the forces are resisted by 
cantilever action while away from this junction, the load is resisted by beam action with 
the strips spanning between the counterforts. Like the wall slab, the moments in the base 
slab can be determined using yield line analysis or Hillerborg’s Strip methods.

(b) Outer footing (Toe slab)

If provided, it is designed as a cantilever in a manner similar to cantilever retaining wall.

(d) Counterforts

Counterforts support the wall and base slabs and are designed as vertical cantilevers 
of varying T-beam section. The load on the counterforts is from the wall slab spanning 
between the counterforts. A design is made for the section at the base and one or more sec-
tions up the height of the counterfort. Link reinforcement must be provided between the 
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wall slab and inner base slab and the counterfort to transfer the loading. Reinforcement for 
the counterfort is shown in Fig.12.11(c). 

Fig.12.11 Counterfort wall (a) Yield line pattern and reinforcement in wall; (b) yield line 
pattern in base slab; (c) reinforcement in counterfort.

12.3.2 Example of Design of a Counterfort Retaining Wall

(a) Specification

A counterfort retaining wall has a height from the top to the underside of the base of 5 m 
and a spacing of counterforts of 5 m. The backfill is level with the top of the wall. The 
earth in the backfill is granular with the following properties:
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Unit weight γ=15.7 kN/m3,

Coefficient of active earth pressure Kα=0.333,
Coefficient of friction between the soil and concrete μ=0.5,
Safe bearing pressure of the soil under the base=150 kN/m2

 

The construction materials are grade C35 concrete and grade 460 reinforcement.

(b) Trial section

The proposed section for the counterfort retaining wall is shown in Fig. 12.12. Wall slab is 
made 180 mm thick and the counterfort and base slab are both 250 mm thick.

(c) Stability

Consider a 5 m length of wall centre to centre of counterforts. The horizontal earth pres-
sure at depth z is

Ka γ z=0.333×15.7×z=5.23 z kN/m2

The pressure at z=5 m is 26.15 kN/m2.
 

The loads are shown in Fig. 12.12. The stability calculations are given in Table 12.2. 
Clockwise moments are considered as positive. 

Table 12.2 Stability calculations (Counterfort wall). All loads unfactored.

Type of Load Load, (kN) Distance to centroid 
from A, (m)

Moment about 
A, (kNm)

HORIZONTAL (Active earth pressure)

Triangular 0.5×5×5×26.15= 326.88 5/3=1.67 −544.79

VERTICAL (Gravity)

Wall 5×0.18×4.75×24 =102.6. 0.18/2=0.09 9.23

Base 5×0.25×3.5×24= 105.0 3.5/2=1.75 183.75

Back fill Coun-
terfort

4.75×3.32×4.75×15.7 
=1176.05

0.18+3.32/2=1.84 2163.93

Counterfort 0.5×3.32×4.75×0.25 
×24=47.31

0.18+3.32/3=1.29 60.87

∑ 1430.96  2417.78
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Fig.12.12 Forces acting on the structure.

(i) Maximum soil pressure

The properties of the base are as follows: 

area Α=3.5×5=17.5 m2

section modulus Z=5×3.52/6=10.21 m3
 

Taking moments of all forces about the toe A, the centroid of the base pressure from A is 
at a distance L.

L×1430.96=2417.78–544.79, L=1.31 m
eccentricity, e= 3.5/2−L=0.44<3.5/6

 

No tension is developed at C.
The base is acted on by 

vertical load=1430.96 kN, moment=1430.96×e=629.62 kNm.  

The maximum soil pressure at A calculated for service load is

1430.96/ (Α=17.5)+629.62/ (Z=10.21)=143.44 kN/m2<150 kN/m2  

Width of base is sufficient to prevent bearing capacity failure.
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(ii) Stability against overturning

The stabilizing moment due to gravity loads about the toe A of the wall has a partial safety 
factor γf=1.0 and the disturbing moment due to horizontal loads has a partial safety factor 
γf=1.4.

(2417.78×1.0–544.79×1.4)=1655.1>0  

The wall is very safe against overturning. 

(iii) Resistance to sliding

The forces resisting sliding are the friction under the base. For the wall to be safe against 
sliding

(μ=0.5) {1430.96×(γf=1.0)}>(γf=1.4)×326.88
715.48 > 457.63

 

The resistance to sliding is satisfactory.

(iv) Overall comment

The wall section is satisfactory. The maximum soil pressure under the base controls the 
design.

12.3.3 Design of Wall Slab using Yield Line Method

The yield line solution is given for a square wall with a triangular load with the yield line 
pattern shown in Fig. 12.13 (a). Parameter a, locating point F, controls the collapse pat-
tern. Deflection at F is Δ. It is assumed that the slab will be isotropically reinforced with 
moment of resistance for both positive (tension on the outer face) and negative (tension 
on the earth face) being equal to m.

(i) Energy dissipated in the yield lines

1. Rigid region AEFD and BEFC: Both rotate about y-axis only.

(i). Negative yield lines: ℓy=a, my=m, θy=Δ/ (0.5a)
(ii). Positive yield lines: ℓy=a, my=m, θy=Δ/ (0.5a)

 

Energy dissipated

E1=2{m×a×Δ/ (0.5a)+m×a×Δ/ (0.5a)}=8 m Δ  

2. Rigid region DFC: Rotates about x-axis only.

(i). Negative yield lines: ℓx=a, mx=m, θx=Δ/ (αa)
(ii). Positive yield lines: ℓx=a, mx=m, θx=Δ/ (αa)
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Energy dissipated

E2={m×a×Δ/ (αa)+m×a×Δ/ (αa)}=(2/α) m Δ  

3. Total energy dissipated

E=E1+E2=(8+2/α) m Δ  

Fig.12.13 Yield line pattern for wall slab.

(ii) External work done

Set up the coordinate axes (x, y) with origin at A.

1. Rigid region AEGF:

Pressure at any point=γ y
Rotation θy about the y-axis=Δ/ (0.5a)

Deflection at any point=θy x

 

α a

y1

a/2

A E B

C

H

D

FG

a

a

α a

x

y

x

x1

α a

a-y

a/2
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Work done is

 

2. Rigid region GFD:

Along a vertical strip at a distance x,

y1=αax/ (0.5a)=2αx
Pressure at any point=γ y

Rotation θy about the y-axis=Δ/ (0.5a)
Deflection at any point=θy x

The limits for y are (a−αa) and {(a−y1)=a−2 αx}
The limits for x are 0 and a/2.

 

 

3. Rigid region FDH:

Along a horizontal strip at a distance y, 
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x1/(0.5a)=(a−y)/(αa) 
x1=(a−y)/(2α)

Pressure at any point=γ y
Rotation θx about the x-axis=Δ/(αa)

Deflection at any point=θx (a−y)
The limits for x are {x1=(a−y)/(2α)} and a/2

The limits for y are (a−αa) and a  
 

 

3. Total work done W
 

4. Moment m:

Equating the work done by external loads to the energy dissipated at the yield lines,



 

Retaining walls  459

 

For a maximum m, dm/dα=0

(4α+1)(6−8α+3α2)−4(6α−4α2+α3)=0  

Simplifying,

6−8α−13α2+8α3=0, α=0.483312
m=0.014762 γa3,

 

Substituting α=5.0 m, γ=15.7,

m=28.97 kNm/m  

Using a load factor on the earth pressure of 1.4 and also increasing the calculated moment 
by 10% to account for the formation of corner levers,

m=(28.97×1.4)×1.1=44.62 kNm/m  

5. Reinforcement

Use 16 mm diameter bars and 40 mm cover.

d=180−40−16/2= 132 mm
k=M/ (bd2fcu)=44.62×106/ (1000×1322x 30)=0.085<0.156

 

No compression steel is required

z/d=0.5+√(0.25–0.085/0.9)=0.894<0.95
As=M/ (z×0.95 fy)

=44.62×106/ (0.89×132×0.95×460)=869 mm2/m

 

Provide 16 mm diameter bars at 200 mm centres to give a steel area of 1150 mm2/m. The 
same steel is provided in each direction on the outside and inside of the wall.

Minimum steel percentage:

100×1150/(1000×180)=064>0.13  

The steel on the outside of the wall covers the whole area. On the inside of the wall the 
steel can be cut off at 0.3 times the span from the bottom and from each counterfort sup-
port in accordance with the simplified rules for curtailment of bars in slabs.

Alternatively, the points of cut-off of the bars on the inside of the wall may be deter-
mined by finding the size of a slab simply supported on three sides and one edge free that 
has the same ultimate moment of resistance m=44.62 kNm/m as the whole wall. This slab 
has the same yield line pattern as the wall slab. 
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Maximum Spacing: The clear spacing of the bars does not exceed 3d and the slab depth 
is not greater than 200 mm and so the slab is satisfactory with respect to cracking.

In the above only one mode of collapse has been investigated. As Yield line method is 
an upper bound method other possible yield line patterns need to be investigated before 
finalizing the reinforcement.

12.3.4 Design of Base Slab using Yield Line Method

(i) Base pressure calculation at the ultimate

The properties of the base are:

area Α=17.5 m2

section modulus Z=10.21 m3
 

The forces at SLS are shown in Table 12.2. Taking moments of all forces about the toe A, 
the centroid of the base pressure from A is at a distance L.

Case (a): Load factor is 1.4 for earth pressure and 1.0 for gravity load,

L×1430.96=2417.78–544.79×1.4, L=1.16 m
eccentricity, e=3.5/2−L=0.59>3.5/6.

 

Tension is developed at C. 
The base is acted on by a

vertical load=1430.96 kN 
moment=1430.96×e=849.11 kNm

 

The maximum soil pressure at A and minimum soil pressure at C are

1430.96/17.5±849.11/10.21=164.94 and −1.40 kN/m2  

The negative pressure is very small and can be neglected.

Case (b): Load factor is 1.0 for earth pressure and 1.4 for gravity load,

L×1430.96×1.4=2417.78×1.4–544.79×1.0, L=1.42 m
eccentricity, e= 3.5/2−L=0.33<3.5/6.

 

No tension develops at C. 
The base is acted on by
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vertical load=1430.96 1.4=2003.34 kN
moment=2003.34×e=665.26 kNm

 

The maximum soil pressure at A and minimum soil pressure at C are

2003.34/17.5±665.26/10.21=179.63 and 49.32 kN/m2  

Case (c): Using load factor of 1.4 for earth pressure and 1.4 for gravity load,

L×1430.96×1.4–2417.78×1.4–544.79×1.4, L=1.31 m
eccentricity, e= 3.5/2−L=0.44<3.5/6

 

No tension develops at C.
The base is acted on by

vertical load=1430.96×1.4 kN=2003.34
moment=1430.96×1.4×e=883.67 kNm

 

The maximum soil pressure at A and minimum soil pressure at C are 

1430.96×1.4/17.5±907.18/10.21=201.03 and 27.92 kN/m2  

Using Case (b), the yield line solution is given for a rectangular base slab with a trapezoi-
dal load due to base pressure on the bottom face and a uniform load due to self weight 
of the slab and soil on the slab at the top face. The uniformly distributed load at the top 
is

Base slab=0.25×24×1.4=8.4 kN/m2

Weight of soil=4.75×15.7×1.4=104.41 kN/m2

Total =112.81 kN/m2

 

Two modes will be investigated.

Mode 1: The yield line pattern shown in Fig. 12.14.

One parameter a, locating the position of point F, controls the pattern. Deflection at F is Δ. 
It is assumed that the slab will be isotropically reinforced with moment of resistance for 
both positive (tension at bottom) and negative (tension at top) being equal to m.
The pressure at a point distant y from the free edge is

p=112.81−{49.32+(179.63–49.32)y/3.5}=63.49–37.23 y  
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Fig.12.14 Mode 1 collapse of base slab.

(i) Energy dissipated in the yield lines

1. Rigid region AEFD and BEFC: Both rotate about y-axis only.

(i). Negative yield lines: ℓy=a, my=m, θy=Δ/ (0.5b)
(ii). Positive yield lines: ℓy=a, my=m, θy=Δ/ (0.5b)

 

Energy dissipated E1 is

E1=2{m×a×Δ/(0.5b)+m×a×Δ/ (0.5b)}=8 m (a/b) Δ  

2. Rigid region DFC: Rotates about x-axis only.
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(i) Negative yield lines: ℓx=b, mx=mx θx=Δ/ (αa)
(ii) Positive yield lines: ℓx=a, mx=mx θx=Δ/ (αa)

 

Energy dissipated E2 is

E2={m×b×Δ/ (αa)+m×b×Δ/ (αa)}=(2b/αa) m Δ  

3. Total energy dissipated E is

E=E1+E2=(8a/b+2b/αa) m Δ  

Substituting α=3.5, b=5.0, total energy dissipated E=(5.6+2.8571/α) m Δ

(ii) External work done

Set up the coordinate axes (x, y) with origin at A.

(1) Rigid region AEGF:

Pressure at any point=63.49–37.23 y
Rotation θy about the y-axis=Δ/ (0.5b)

Deflection at any point=θy x

 

Work done is W1:
 

Substituting α=3.5, b=5.0

W1=277.77×(1−α)−285.04×(1−α)2

W1=292.31α−285.04α2−7.27
 

(2) Rigid region GFD:

Along a vertical strip at a distance x, 

y1=αax/ (0.5b)=(2αa/b) x
Pressure at any point=63.49–37.23 y

Rotation θy about the y-axis=Δ/ (0.5b)

 

Deflection at any point=θy x  

The limits for y are:

(a−αa) and {(a−y1)=a−(2αa/b) x}  

The limits for x are 0 and b/2.
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=Δ[92.59α−41.5l(4α−3α2)]
W2=Δ[142.53α2−91A5α]

 

(3) Rigid region FDH:

Along a horizontal strip at a distance y, 

x1/(0.5b)=(a−y)/(αa) 
x1=(0.5b/αa)(a−y)

Pressure at any point=63.49–37.23 y
Rotation θx about the x-axis=Δ/ (αa) 

Deflection at any point=θx (a−y)
The limits for x are {x1=(0.5b/αa) (a−y)} and b/2 

The limits for y are (a−αa) and a
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=Δba[5.29α+l.55aα(α−2)]
=Δba[5.25α2−5.56α]

W3=Δ[94.94α2 −91.3α]

 

(iii) Total work done

W=2(W1+W2+W3)

W=Δ(−14.54+195.06α−95.14α2)

 

(iv) Moment m

Equating the work done by external loads to the energy dissipated at the yield lines,

For a maximum m, α=1.0, m=10.10 kNm/m

 

Mode 2: The yield line pattern shown in Fig.12.15. Making the same assumptions as for 
Mode 1, the pressure p at any point y from the free edge is

p=63.49−37.23 y  

(i) Energy dissipated in the yield lines

1. Rigid region AFD and BEC: Both rotate about y-axis only.

(i). Negative yield lines: ℓy=a, my=m, θy=Δ/(αb)

(ii). Positive yield lines: ℓy=a, my=m, θy=Δ/(αb)

 

Energy dissipated E1 is

E1=2{m×a×Δ/(αb)+m×a×Δ/(αb)}=4m a/(αb) Δ  

2. Rigid region DFEC: Rotates about x-axis only.

(i). Negative yield lines: ℓx=b, mx=m, θx=Δ/a  

(ii) Positive yield lines: ℓx=2αb, mx=m, θx=Δ/a
Energy dissipated E2 is
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E2={m×b×Δ/a+m×2 αb×Δ/a}=(2α+1) (b/a) m Δ  

3. Total energy dissipated

E=E1+E2={(4a/ αb+(2 α+1) (b/a)} m Δ  

Substituting α=3.5, b=5.0, Energy dissipated is 

E=(2.8/ α+1.4286+2.8571α) m Δ  

Fig.12.15 Mode 2 collapse of base slab.

(ii) External work done

Set up the coordinate axes (x, y) with origin at A. 
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1. Rigid region ADF:

Along a horizontal strip at a distance y, x1=(αb/a) (a−y)
Pressure at any point=63.49–37.23 y
Rotation θy about the y-axis=Δ/ (αb)

Deflection at any point=θy x
The limits for x are 0 and x1

The limits for y are 0 and a.  
 

 

 

2. Rigid region FDEC:

Considering only a symmetrical half on the left,
Along a horizontal strip at a distance y,

x1/(αb)=(a−y)/a,

x1=(αb/a)(a−y)

Pressure at any point=63.49–37.23 y

Rotation θx about the x-axis=Δ/a

Deflection at any point=θx (a−y)

The limits for x are x1 and b/2

The limits for y are a and 0
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Total work done W=2(W1+W2)

 

Substituting α=3.5, b=5.0,

W =Δ(175.48−180.33α)  

3. Moment m

Equating the work done by external loads to the energy dissipated at the yield lines, 

For a maximum m, α=0.3788, m=10.82 kNm/m

 

Mode 2 gives marginally higher value of m=10.82 kNm/m. Increasing the calculated 
moment by 10% to account for the formation of corner levers, m= 10.82×1.1=11.90 
kNm/m.

4. Reinforcement

Use 10 mm diameter bars and 40 mm cover.
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d=250–40–10/2=205 mm
k=M/(bd2fcu)=11.90×106/(1000×2052×30)=0.094<0.156

 

No compression steel is required

z/d=0.5+√(0.25–0.095/0.9)=0.99>0.95
As=M/ (z×0.95 fy)=11.90×106/ (0.95×205×0.95×460)=140 mm2/m

 

Minimum steel:

As=(0.13/100) 250×1000=325 mm2/m  

Minimum steel governs. Provide 10 mm diameter bars at 200 mm centres to give a steel 
area of 392 mm2/m. The same steel is provided in each direction on the upper and lower 
faces of the slab.

Maximum Spacing

Steel percentage is less than 0.3%. Maximum spacing limited to 3d. Spacing does not 
exceed this limit so the slab is satisfactory with respect to cracking.

12.3.5 Base Slab Design using Hillerborg’s Strip Method

Although Yield line Method was used in design in the previous sections, it is not the ideal 
method. Hillerborg’s Strip Method offers a better alternative. At the junction of the base 
slab with the wall slab, load is resisted by cantilever action but at a distance away from 
the base, load is resisted by clamped beam action with the slab spanning between the 
counterforts. As shown in Fig.12.16, the 3.5 m×5.0 m base slab is divided into a set of 14 
strips each 125 mm wide. The pressure at any level y from the free edge is given by the 
equation,

p=63.49−37.23 y  

It is assumed that load lying in a triangle with the sides at an inclination of approximately 
30° to the horizontal (see Fig.12.16) is resisted by “vertical” cantilever action. The rest of 
the load is resisted by “horizontal” beam action. 

12.3.5.1 Horizontal strips in base slab

The ‘horizontal’ strips span between the counterforts. The strips towards the base are 
loaded as shown in Fig. 12.17. The bending moment at the support and midspan of each 
strip is calculated using the equation
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where q=uniformly distributed load in kN/m, L=span=5 m, α= a/L, α=loaded length.

Fig.12.16 Division of base slab into “horizontal” strips.

Fig.12.17 Load on “horizontal” strips.

Detailed calculations are shown in Table 12.3. Fig. 12.18 shows the bending moment 
distribution in the “horizontal” strips.

At the support the maximum bending moment causing tension on the bottom of the 
slab is 122.58 kNm/m and the maximum bending moment at midspan causing tension on 
the top of the slab is 61.29 kNm/m in strip no.1. Similarly, at the support the maximum 
bending moment causing tension on the top of the slab is 26.93 kNm/m in strip no. 10 and 
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the maximum bending moment causing tension on the bottom of the slab is 9.42 kNm/m 
in strip no.9.

d=250–40–10/2=205 mm
Width of strip=250 mm,

M=122.58×0.25=30.65 kNm
k=M/ (bd2fcu)=30.65×106/ (250×2052×30)=0.097<0.156

 

No compression steel is required

z/d=0.5+√(0.25–0.097/0.9)=0.88<0.95
As=M/ (z×0.95 fy)=30.65×106/ (0.88×205×0.95×460)=389 mm2

 

Provide 2T16. As=402 mm2. This steel is required over a width of 250 mm. Minimum 
steel As=(0.13/100) 250×250=81.3 mm2

Similar calculations can be done for the required steel in other strips

Table 12.3: Bending moments (kNm/m) in horizontal strips in base slab

Strip No. y P a α C1 C2 M Supp M Midspan
1 0.125 58.84 2.5 0.5 1 0.5 122.58 61.29

2 0.375 49.53 2.5 0.5 1 0.5 103.18 51.59

3 0.625 40.22 2.5 0.5 1 0.5 83.79 41.90

4 0.875 30.91 2.5 0.5 1 0.5 64.40 32.20

5 1.125 21.61 2.5 0.5 1 0.5 45.01 22.51

6 1.375 12.30 2.5 0.5 1 0.5 25.62 12.81

7 1.625 2.99 2.5 0.5 1 0.5 6.23 3.12

8 1.875 −6.32 2.5 0.5 1 0.5 -13.16 −6.58

9 2.125 −15.62 2.08 0.42 0.75 0.29 −24.49 -9.42

10 2.375 −24.93 1.67 0.33 0.52 0.15 −26.93 −7.69

11 2.625 −34.24 1.25 0.25 0.31 0.06 −22.29 −4.46

12 2.875 −43.55 0.83 0.17 0.15 0.02 −13.44 −1.68

13 3.125 −52.85 0.42 0.08 0.04 0.00 −4.33 −0.25

14 3.375 −62.16 0.00 0.00 0.00 0.00 0 0
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12.3.5.2 Cantilever moment in base slab

The cantilever moment is determined by taking a series of vertical strips. The strips can-
tilever from the wall slab. The cantilever moment is greatest in the middle vertical strip. 
Pressures occur only in strips 9–14. The bending moment M at the base of the cantilever is 
given by the product of the pressures on the 250 mm wide strips and the distance from the 
base to the centre of the strips. Pressures at the centre of strips are given in Table 12.3.

M=0.250×{15.62×1.375+24.93×1.125+34.24×0.875 + 43.55×0.625+52.85 
×0.375+62.16×0.125}=33.58 kNm/m

Horizontal width of strip=830 mm

 

M on the strip=33.58×0.83=27.87 kNm
k=M/ (bd2fcu)=27.87×106/ (830×2052×30)=0.027<0.156

 

No compression steel is required

z/d=0.5+√(0.25–0.027/0.9)=0.97>0.95
As=M/ (z×0.95 fy)=27.87 106/ (0.95×205×0.95×460)=328 mm2

 

Provide 2-T16. As=402 mm2. This steel is required over a width of 830 mm. Similar cal-
culations can be done for the required steel in other strips. 

Fig.12.18 Bending moment (kNm/m) in “horizontal” strips in base slab.
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Fig.12.19 Horizontal strips in vertical wall slab.

Table 12.4 Bending moment (kNm/m) in horizontal strips of the wall.

Strip No. y p a α M-Sup. M-Midspan
1 0.125 0.92 2.5 0.5 1.91 0.95
2 0.375 2.75 2.5 0.5 5.72 2.86
3 0.625 4.58 2.5 0.5 9.54 4.77
4 0.875 6.41 2.5 0.5 13.36 6.68
5 1.125 8.24 2.5 0.5 17.17 8.59
6 1.375 10.07 2.5 0.5 20.99 10.49
7 1.625 11.91 2.5 0.5 24.80 12.40
8 1.875 13.74 2.5 0.5 28.62 14.31
9 2.125 15.57 2.5 0.5 32.44 16.22
10 2.375 17.40 2.5 0.5 36.25 18.13
11 2.625 19.23 2.5 0.5 40.07 20.03
12 2.875 21.06 2.5 0.5 43.88 21.94
13 3.125 22.90 2.5 0.5 47.70 23.85
14 3.375 24.73 2.5 0.5 51.52 25.76
15 3.625 26.56 2.08 0.42 41.63 16.01
16 3.875 28.39 1.67 0.33 30.67 8.76
17 4.125 30.22 1.25 0.25 19.68 3.94
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18 4.375 32.05 0.83 0.17 9.89 1.24
19 4.625 33.89 0.42 0.08 2.78 0.16
20 4.875 35.72 0 0 0.00 0.00

Fig.12.20 Bending moment (kNm/m) in the horizontal strips in the wall slab.

12.3.6 Wall Design using Hillerborg’s Strip Method

Wall design is done similar to the base design. As the height of the wall is 5.0 m, it is 
divided into 20 strips each 250 mm wide as shown in Fig. 12.19.

The pressure at any level y from the top is given by the equation, 1.4 γKay, where 
y=15.7 kN/m3, Kα=coefficient of earth pressure=0.33, 1.4 is the load factor for earth pres-
sure. Therefore P=7.33 y. It is assumed that load lying in a triangle with the sides at an 
inclination of approximately 30° to the horizontal is resisted by vertical cantilever action. 
Calculations are shown in Table 12.4 and Fig.12.20 shows the bending moment distribu-
tion in the horizontal strips. The calculation of steel in the strips is done as for the base.

12.3.6.1 Cantilever moment in wall slab

The cantilever moment is greatest in the central vertical strip. Pressures occur only in 
strips 15–20. The bending moment M at the base of the cantilever is given by the product 
of the pressures at the 250 mm wide strips and the distance from the base to the centre of 
the strips.
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M=0.250×(26.56×1.375+28.39×1.125+30.22×0.875+32.05×0.625 
+33.89×0.375+35.72×0.125)=33.03 kNm/m

Width of vertical strip=830 mm,
M on the strip=33.03×0.83–27.41 kNm

 

Steel required can be calculated in the usual way.

12.3.7 Counterfort Design using Hillerborg’s Strip Method

The reactions from the horizontal strips of the wall slab act as horizontal forces on the 
counterfort. At any level, the force R on the counterfort from the 250 mm wide strips on 
either side of the counterfort is (Fig. 12.17)

R=2×p×a× 0.250  

This is calculated at the centre of each strip. From the calculated value of R, shear force 
and bending moment at different levels in the counterfort can be calculated. The detailed 
calculations are shown in Table 12.5. The distribution of shear force and bending moment 
are shown in Fig.12.21 and Fig.12.22.

The depth of the counterfort is 180 mm at top and increasing to 3500 mm at the bottom. 
Assuming 40 mm cover and 16 mm bars, the effective depth at different levels is calcu-
lated. The width of the counterfort is 250 mm. The back of the counterfort is inclined at 
an angle θ to the horizontal where from Fig. 12.12,

θ=tan−1(4750/33200)=55°.  

At any level, the area of steel required is given by

As=M/ (z×0.95×fy×sin 55)  

Note that because of the fact that the tension steel is placed parallel to the back of the 
counterfort as shown in Figure 12.11, only the vertical component the force in the steel 
is taken into account. The required area of steel is very small because of the very large 
effective depth of the counterfort. 

Table 12.5 Shear force and bending moment in counterfort

SF (kN) M (kNm) h (mm) D (mm) k z/d As (mm2)
0 0 267 219 0 0.95 0

1.14 0.29 442 394 0.000 0.95 0.2

4.58 1.43 617 569 0.001 0.95 0.7

10.30 4.01 792 744 0.001 0.95 1.6

18.32 8.59 966 918 0.001 0.95 2.7
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28.62 15.74 1141 1093 0.002 0.95 4.2

41.21 26.04 1316 1268 0.002 0.95 6.0

56.09 40.07 1491 1443 0.003 0.95 8.1

73.27 58.38 1665 1617 0.003 0.95 10.6

92.73 81.57 1840 1792 0.003 0.95 13.4

114.48 110.19 2015 1967 0.004 0.95 16.4

138.52 144.82 2189 2141 0.004 0.95 19.8

164.85 186.03 2364 2316 0.005 0.95 23.6

193.47 234.40 2539 2491 0.005 0.95 27.6

224.38 290.49 2714 2666 0.005 0.95 32.0

252.04 353.50 2888 2840 0.006 0.95 36.5

275.70 422.43 3063 3015 0.006 0.95 41.1

294.59 496.08 3238 3190 0.007 0.95 45.6

307.95 573.06 3413 3365 0.007 0.95 50.0

315.01 651.82 3587 3539 0.007 0.95 54.0

Fig.12.21 Shear force in counterfort.
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Fig.12.22 Bending moment in counterfort.

As shown in Fig.12.11, it is essential to tie the counterfort and the wall slab together 
by horizontal links to resist the force R in tension. Similarly, the counterforts must be 
anchored to the base slab by vertical links as\shown in Fig.12.11.



 



 

CHAPTER 13  
 

DESIGN OF STATICALLY  
INDETERMINATE STRUCTURES

13.1 INTRODUCTION

Design of structures in structural concrete involves satisfying

• The serviceability limit state (SLS) criteria
• The ultimate limit state (ULS) criteria

Design for ULS is concerned with safety and this means ensuring that the ultimate load 
of the structure is at least equal to the design ultimate load. The theoretical principles used 
in design at ULS are based on Classical Theory of Plasticity which was developed for the 
design of steel structures with unlimited ductility. Fig. 13.1 shows the moment-curvature 
relationship for a steel section. As can be seen, once the ultimate or plastic moment capac-
ity is reached, for further changes in curvature and hence increasing deformation, the 
moment capacity is maintained provided that the compression flanges do not buckle.

Fig.13.1 Moment-curvature relationship for a steel section.

Assuming that unlimited ductility can be relied upon, then according to the Theory of 
Plasticity, at ultimate load the state of stress has to satisfy the following three conditions.

•   Equilibrium condition: The state of stress must be in equilibrium with the ulti-
mate load. One convenient way of obtaining a set of stresses in equilibrium with 
external loads is to do an elastic analysis of a structure under a load equal to the 
ultimate load. It does not in any way imply that the designed structure behaves 
elastically under the applied ultimate load. Theoretically it is permissible to use 

Moment

Curvature
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elastic analysis or any variation of it as long as the stresses are in equilibrium 
with the external loads. The implication of this statement for the design of rein-
forced concrete structures will be discussed later.

•   Yield Condition: The state of stress must not violate the yield condition for the 
material. This means for example, that for any combinations of bending moment 
and axial force, the capacity of the column should not exceeded the limits as 
defined by column design chart (section 9.3, Chapter 9). In members in framed 
structures primarily subjected to bending moment and shear forces, adequate 
reinforcement is provided such that the moment and shear capacity of the section 
is at least equal to the design forces at that section.

•   Mechanism Condition: Sufficient yielded zones must be present to convert the 
structure in to a mechanism, indicating that there is no reserve load capacity left. 
In the case of framed structures this means that there must be sufficient plastic 
hinges and in the case of plate structures sufficient ‘Yield lines’ (Chapter 8) to 
convert the structure in to a mechanism.

When using the methods based on the classical theory of plasticity to design structures 
in structural concrete, it is important to recognize the fact that unlike steel, reinforced 
concrete is a material of very limited ductility. Fig. 13.2 shows by the discontinuous line 
the moment-curvature relationship for a reinforced concrete section. After the maximum 
moment capacity is reached, the capacity is maintained for a limited increase in curvature 
beyond the curvature at maximum capacity. For curvature beyond this value, the moment 
capacity decreases. It is therefore necessary to ensure at no section is the curvature so 
large that the moment capacity decreases significantly before the structure collapses.

The need to pay attention to ductility and its effect on ultimate strength as well as ser-
viceability behaviour is explained by two examples. 

Fig. 13.2 Idealized and actual moment-curvature relationship.

Curvature

Moment
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13.2 DESIGN OF A PROPPED CANTILEVER

Consider the design of a propped cantilever of 6 m span as shown in Fig. 13.3. It is 
required to support at mid-span an ultimate load W equal to 100 kN. The design can be 
carried out in several ways as follows.

Fig.13.3 Propped cantilever.

(i) Design 1 based on elastic bending moment distribution

In a propped cantilever supporting a mid-span load W over a span L, from elastic analysis, 
the moments at support and mid-span are respectively 3WL/16 and 5WL/32. If W=100 
kN and L=6 m, the corresponding moments are 112.5 kNm and 93.75 kNm respectively. 
If the beam is designed for these moments, then assuming for simplicity that moment-
curvature is elastic-perfectly plastic as shown by full line in Fig. 13.2, plastic hinges will 
form simultaneously at the support and mid-span sections and the beam will collapse. Up 
to the collapse load, there is no rotation at the built-in support and the beam behaves as an 
elastic structure right up to collapse.

Of course this is a very simplified picture as to what really happens when a beam 
is tested, because cracking and other non-linear behaviour start almost right from the 
beginning and the moment-curvature is more like that shown by dotted line in Fig. 13.2. 
However the grossly simplified elastic-perfectly assumption for moment-curvature rela-
tionship is sufficient for the present discussion.

(ii) Design 2 based on modified elastic bending moment distribution

Instead of designing the beam using the elastic moment distribution, let the beam be 
designed for a support moment equal to 80% of elastic value of 112.5 kNm, i.e. 90 kNm. 
The moment at mid-span for equilibrium at the ultimate load is given by (WL/4—Support 
moment /2)=100×6/4–90/2–105 kNm which is 112% of the corresponding moment of 
resistance at mid-span in design 1.

In the elastic state, the maximum bending moment is at the support. Since the design 
moment at the support is 90 kNm, which is only 80% of the corresponding elastic moment 

W
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at a load of 100 kN, the first plastic hinge will form at the support at a load of 80 kN. Up 
to the stage when the first plastic hinge forms, the beam behaves as an elastic propped 
cantilever and the rotation at the built in support is zero. The moment at the mid-span is 
5/32×(80×6)=75 kNm which is less than the moment capacity of the section which is 105 
kNm.

For a load greater than 80 kN since a plastic hinge has formed at the support, the 
moment there cannot increase any further but moment at mid-span can increase until a 
second plastic hinge forms at mid-span and the beam collapses. Therefore for the load 
stage from 80 kN to 100 kN, the beam behaves as if loaded by a concentrated load at 
mid-span and a support moment equal to 90 kNm. The additional behaviour of the beam 
beyond a load of 80 kN can be computed by treating the beam as a simply supported 
beam. During this stage, the support section continues to rotate. The elastic rotation θ at 
the support in a simply supported beam of flexural rigidity EI and loaded at mid-span by 
a load P is given by

θ=PL2/(16EI)  

Substituting

P=(100–80)−20 kN and L=6, EI θ=45  

At this stage the moment at mid-span is equal to the moment capacity of 105 kNm and the 
beam collapses by the formation of plastic hinges at the support and at mid-span.

Comparing the two designs, both beams collapse by the formation of plastic hinges at 
support and at mid-span. However in Design 1, the two plastic hinges form simultane-
ously and there was no rotation at the built in support right up to collapse. However in 
Design 2 with the support moment capacity of only 80% of the elastic value as used in 
Design 1, the support section has to rotate from the load equal to 80 kN at which the first 
plastic hinge forms right up to collapse load of 100 kN with the moment at the support 
remaining at the value of 90 kNm. The support section had to undergo substantial rotation 
while continuing to maintain a moment of 90 kNm. In other words, the section needs to 
have sufficient ductility between 80 kN to ultimate load of 100 kN to ensure that there is 
no decrease in moment capacity.

(iii)  Design 3 based on greater modification to elastic bending moment distribution 
than Design 2

In this case the beam is designed for a support moment of 67.5 kNm (60% of elastic value 
of 112.5 kNm). The moment at mid-span for equilibrium at the ultimate load is equal to 
(100×6/4–67.5/2)=116.25 kNm. Carrying out the calculations as was done for Design 2, 
the first plastic hinge forms at the support at a load of 60 kN. Up to the stage when the 
first plastic hinge forms, the beam behaves as propped cantilever and the rotation at the 
support is zero. The moment at mid-span is 5×60×6/32=56.25 kNm which is less than the 
capacity of the section which is 116.25 kNm. Since a plastic hinge has formed at the sup-
port at 60 kN, the moment there cannot increase any further. However, since the ultimate 
load to be supported is 100 kN, for the load stage from 60 kN to 100 kN, the beam behaves 
as if loaded by the concentrated load at mid-span and a support moment equal to 67.5 
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kNm. Substituting P=(100–60)=40 kN and L=6, EI θ=90. At this stage the moment at the 
mid-span also reaches a value equal to the moment capacity of 116.25 kNm and the beam 
collapses by the formation of plastic hinges at the support and mid-span.

Comparing the three designs, all three beams collapse by the formation of plastic 
hinges at support and at mid-span. However at the stage when the load on the beam is at 
its ultimate value, the rotation 6 at the built in support for the three designs considered are 
EI θ=0, 45 and 90 respectively. Thus the smaller the designed support moment capacity 
is compared with the elastic value, the larger is the rotation at the support. This is shown 
in Fig. 13.4.

EIθ

W
Design-3

Design 2

Design-1

Fig.13.4 Load-support rotation relationship.

During the stage when the support is rotating from load at which first plastic hinge forms 
to ultimate load, the moment at the support has to remain constant at the designed value. 
The larger the load range, the larger the resulting rotation and greater is the demand placed 
on the ductility of the section. Sections that yield earlier in the loading history are the ones 
where there is the possibility of moment capacity reducing due to increasing curvature. 
The greater the difference between the load at which the first plastic hinge forms and the 
ultimate load, the greater will be the required plastic hinge rotation. It is important there-
fore that the difference between the ultimate load and the load at which the first section 
yields is made as small as possible.

What the above example has demonstrated is that it is perhaps possible to design a 
structure using a bending moment distribution different from the elastic moment distri-
bution, provided sufficient ductility could be assured. Otherwise the assumption that the 
moment will remain constant during the rotation of the plastic hinge becomes invalid 
leading to unsafe design. It is therefore desirable that while designing, that the ̀̀ stress 
distribution ̀ used in design departs from elasic ̀̀̀stress distribution ̀ as little as possible.

13.3 DESIGN OF A CLAMPED BEAM

The idea that although a design might satisfy the ULS criteria, it might be unaccept-
able from an SLS point of view is demonstrated by the following example. Consider the 
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design of a beam spanning a distance L between two walls and subjected to a uniformly 
distributed load q. Fig. 13.5 shows three bending moment diagrams, all of which are in 
equilibrium with a load of q. From an ultimate limit state (ULS) point of view, one can 
design the beam using any one of the three bending moment distributions.

Fig.13.5 Alternative designs for a clamped beam.

Design 1: Assume that the beam behaves as a simply supported beam. The bending 
moment at mid-span is qL2/8. In this case clearly only steel at the bottom face is required. 
The moment of resistance at the support is zero and the first plastic hinges at the supports 
form at essentially zero load while the plastic hinge at mid-span forms at the ultimate 
load. The support hinge starts rotating right from the start leading to large cracks there. 
While this design is satisfactory from a ULS point of view, it is clearly an unsatisfactory 
design from a serviceability limit state (SLS) point of view.

Design 2: Assume that the beam behaves as a clamped beam. From elastic analysis, bend-
ing moment at the junction with the wall is qL2/12 and at mid-span is qL2/24. The plastic 
hinges at support and at mid-span form simultaneously. This design is satisfactory from 
both the ULS and SLS points of view, because the design corresponds to the behaviour of 
the beam taking into account the proper boundary conditions.

Design 3: Assume that the beam behaves as a pair of cantilevers. Bending moment at the 
junction with the wall is qL2/8. In this case clearly only steel at the top face is required. 
The moment of resistance at the mid-span is zero and the first plastic hinge at mid-span 
forms at essentially zero load while the plastic hinges at supports form at the ultimate 
load. The mid-span hinge starts rotating right from the start leading to large cracks there. 

3

11

3

2

qL2/12 
qL2/8

qL2/8 2
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While this design is satisfactory from a ULS point of view, it is clearly an unsatisfactory 
design from a serviceability limit state (SLS) point of view.

As shown in Fig. 13.5, the bending moment distribution in Design 2 is the elastic 
distribution and requires both top and bottom reinforcement. The bending moment distri-
butions used in Design 1 requires only bottom reinforcement and Design 3 requires only 
top reinforcement. They are extreme variations of the elastic moment distribution. This 
example demonstrates the need to pay particular attention to both ULS and SLS aspects, 
keeping in mind the rather limited ductility available in the case of reinforced concrete 
sections. Once again the example demonstrates that using elastic distribution of moments 
is likely to lead to satisfactory designs from both ULS and SLS points of view.

13.4 WHY USE ANYTHING OTHER THAN ELASTIC VALUES IN 
DESIGN?

One question that naturally arises is why not simply use the elastic values of moments and 
avoid all problems of ductility? The reason for using values of moments other than the 
elastic values is purely a matter of convenience. Generally at support sections in frame 
structures, flat slabs and such structures there is considerable congestion of steel due to the 
fact that flexural steel in two directions at top and bottom of the beam or slab are required. 
In addition, steel in the column and shear links need to be accommodated in the same con-
gested area. Therefore any reduction of steel in this zone is an advantage from the point 
of view of detailing. Using moments at supports smaller than the elastic values helps in 
mitigating the problem. Elastic ‘stresses fields’ often contain zones of stress concentra-
tion and it is useful to modify these stress distributions in the interests of a’smoothed out’ 
stress distribution which leads to a more convenient detailing of reinforcement.

13.5 LIMITS ON DEPARTURE FROM ELASTIC MOMENT 
DISTRIBUTION IN BS 8110

Considerable experimental evidence shows that a satisfactory design can be obtained on 
the basis of reasonably small adjustments to the elastic bending moment distribution. In 
general in framed structures reductions of moments up to 30% of the elastic moments 
can be tolerated without making excessive demands on the ductility of the structure. It 
is worth pointing out that as demonstrated in section 13.2, ductility demand is increased 
by the use of moment values smaller than the elastic values. However as the ductility 
demand is unaffected by values of moment above the elastic values, there is no limit to 
the use of moment values larger than the elastic values. In the case of flexural members, 
one way of ensuring that sufficient ductility is available is to limit the maximum depth of 
neutral axis. Larger reduction in moments from the elastic values will require smaller 
maximum depth of neutral axis so that steel yields well before concrete reaches maxi-
mum strain.

To take account of these factors, the code BS 8110 sets out the procedure for adjusting 
the elastic moment distribution for design. This process is called moment redistribution 
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and the constraints on redistribution are set out in section 3.2.2. This section states that a 
redistribution of moments obtained by a rigorous elastic analysis or by other simplified 
methods set out in the code may be carried out provided that the following hold:

1. Equilibrium between internal and external forces is maintained under all appropriate 
combinations of design ultimate load.
2. Where the design ultimate resistance moment at a section is reduced by redistribution 
from the largest moment within that region, the neutral axis depth x should satisfy the 
condition

(x/d)≤(βb−0.4)  

where βb=(Moment after redistribution/Moment before redistribution) ≤ 1.0
The moments before and after redistribution at a section are to be taken from the respec-

tive maximum moment diagrams. This provision ensures that there is adequate rotation 
capacity at the section for redistribution to take place.

13.5.1 Moment of Resistance

In the case of rectangular beams without compression reinforcement, the maximum depth 
of stress block is

0.9x=0.9 (βb−0.4) d 

The average compressive stress in the stress block is 0.447 fcu

Total compressive force=0.447 fcu (0.9x) b, Lever arm=d−0.45 x 

The moment of resistance is

M=0.447 fcu (0.9x) b {d−0.45x) 

Substituting for x,

M=bd2 fcu {0.402 (βb−0.4)−0.18 (βb−0.4)2}
k=M/ (bd2 fcu)=0.402 (βb−0.4)−0.18 (βb−0.4)2

 

Table 13.1 shows the variation of k with βb. The larger the percentage of redistribution the 
smaller the value of moment that singly reinforced sections can resist before the need for 
compression steel arises. 

Table 13.1 Variation k with βb

βb x/d k
0.70 0.30 0.1044
0.75 0.35 0.1187
0.80 0.40 0.1320
0.85 0.45 0.1445
0.90 0.50 0.1560
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13.5.2 Serviceability Considerations

Elastic bending moment at ULS: Fig 13.6 shows the elastic bending moment distribu-
tion in a uniformly loaded clamped beam. If the ultimate design load is q, then from elas-
tic analysis the bending moments at the support and mid-span are respectively qL2/12 and 
qL2/24. The points of contra-flexure are at 0.211L from the fixed ends.

Elastic bending moment at SLS: At ULS the load factor for dead and live loads are 
respectively 1.4 and 1.6 or an average value of approximately 1.5. The load at SLS is 
q/1.5=0.7 q. Since at SLS, the beam is more likely to behave elastically, the bending 
moments at SLS is 0.7 times the bending moment values calculated by elastic analysis at 
ULS.

Redistributed bending moment at ULS: If the bending moments at the supports are 
redistributed by 30%, then at ULS the bending moments at the support and mid-span after 
redistribution are respectively 0.7qL2/12 and 1.6 qL2/24. For this distribution of bending 
moments the points of contra flexure are at 0.135L from the fixed end.

Fig. 13.6 shows the SLS and redistributed bending moments at ULS. Because of the 
shift in the position of contra flexure points, at certain sections in the beam the bending 
moment at SLS is larger than the redistributed bending moments at ULS. During design, 
it is necessary to ensure that the moment of resistance is equal to larger of the SLS and 
redistributed ULS moment at the section. It is for this reason that the code in clause 
3.2.2.1 (c) states that the resistance moment at any section should be at least 70% of the 
moment at that section obtained from an elastic maximum moments diagram covering 
all appropriate combinations design ultimate load. This condition also implies that the 
maximum redistribution permitted is 30%, i.e. the largest moment given in the elastic 
maximum moments diagram may be reduced by up to 30%. 

Fig.13.6 Bending moment distribution at ULS and SLS.
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13.6 CONTINUOUS BEAMS

13.6.1 Continuous Beams in in-situ Concrete Floors

Continuous beams are a common element in cast-in-situ construction. A reinforced con-
crete floor in a multi-storey building is shown in Fig. 13.7. The floor action to support the 
loads is as follows:

1. The one-way slab is supported on the edge frame, intermediate T-beams and centre 
frame. It spans transversely across the building.

2. Intermediate T-beams on line AA span between the transverse end and interior frames 
to support the floor slab.

3. Transverse end frames DD and interior frames EE span across the building and carry 
loads from intermediate T-beams and longitudinal frames.

4. Longitudinal edge frames CC and interior frame BB support the floor slab.

Fig.13.7 Floor in a multi-storey building.

The horizontal members of the rigid frames may be analysed as part of the rigid frame. 
This is discussed in of BS 8110: Part 1, section 3.2.1. The code gives a continuous beam 
simplification in clause 3.2.1.2.4 where moments and shears may be obtained by taking 
the members as continuous beams over supports with the columns providing no restraint 
to rotation (Chapter 3, section 3.4.2). The steps in design of continuous beams are the 
same as those set out in Chapter 4, section 4.4.3 for simple beams except for the limit on 
the depth of the neutral axis depending on the amount of redistribution done. 



 

Design of statically indeterminate structures  489

13.6.2 Loading on Continuous Beams

13.6.2.1 Arrangement of loads to give maximum moments

The loading is to be applied to the continuous beam to give the most adverse conditions at 
any section along the beam. If Gk is the characteristic dead load and Qk is the character-
istic imposed load, qualitative Influence lines obtained using Muller-Breslau’s principle 
show that in any continuous beam, the following two basic loading patterns need to be 
investigated.

1.  maximum moment in a span of a beam occurs when that span and every alternate span 
are loaded by (1.4Gk+1.6Qk) and the rest of the spans by 1.0 Gk

2.  maximum moment at a support in a beam occurs when spans on either side of the sup-
port and every alternate span are loaded by (1.4Gk+1.6Qk) and the rest of the spans by 
1.0 Gk

In order to reduce the number of load cases to be analysed, BS 8110: Part 1, clause 
3.2.1.2.2 prescribes only the following load cases to be analysed:

1.  All spans are loaded with the maximum design ultimate load 1.4Gk+1.6Qk;
2.  Alternate spans are loaded with the maximum design ultimate load (1.4Gk + 1.6Qk) 
and all other spans are loaded with the minimum design ultimate load 1.0Gk.

13.6.2.2 Example of critical loading arrangements

The total dead load on the floor in Fig. 13.7 including an allowance for the ribs of the 
T-beams, screed, finishes, partitions, ceiling and services is 6.6 kN/m2 and the imposed 
load is 3 kN/m . Calculate the design load and set out the load arrangements to comply 
with BS 8110: Part 1, clause 3.2.1.2.2, for the continuous T-beam on lines AA and BB.

Gk=3×6.6=19.8 kN/m
Qk=3×3=9 kN/m

1.4 Gk+1.6 Qk=(1.4×19.8)+(1.6×9)=42.12 kN/m

 

The loading arrangements are shown in Fig. 13.8.

13.6.2.3 Loading from one-way slabs

Continuous beams supporting slabs designed as spanning one-way can be considered to 
be uniformly loaded. The slab is assumed to consist of a series of beams as shown in Fig. 
13.9. Note that some two-way action occurs at the corners of one-way slabs. 
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Fig.13.8 (a) Case 1, all spans loaded with 1.4Gk+1.6Qk; (b) case 2, central span loaded 
with (1.4Gk+1.6Qk); (c) case 3, end spans loaded with 1.4Gk+1.6Qk.

13.6.2.4 Loading from two-way slabs

If the beam is designed as spanning two-ways, the four edge beams assist in carrying the 
loading. The load distribution normally assumed for analyses of the edge beams is shown 
in Fig. 13.10 where lines at 45° are drawn from the corners of the slab. This distribution 
gives triangular and trapezoidal loads on the edge beams as shown in the Fig. 13.10.

The fixed end moments for the two load cases shown in Fig.13.10(b) and Fig.13.10(c) 
are as follows.

(i) Trapezoidal load: The load is broken down into a uniform central portion
 

and two triangular end portions each 



 

Design of statically indeterminate structures  491

 

Fig. 13.9 (a) Floor plan; (b) beam AA.

where W1 is the total load on one span of the beam, lx is the short span of the slab and ℓy 
is the long span of the slab.

The fixed end moments for the two spans in the beam on AA are
 

(ii) Triangular load: The fixed end moments for the two spans in the beam on line BB in 
Fig.13.10(a) are

 

where W2 is the total load on one span of the beam.
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13.6.2.5 Alternative distribution of loads from two-way slabs

BS 8110: Part 1, Fig. 3.10, gives the distribution of load on a beam supporting a two-way 
spanning slab. This distribution is shown in Fig. 13.11 (a). The design loads on the sup-
porting beams are as follows: 

Long span vsy=βvy n ℓx kN/m
Short span vsx=βvx n ℓx kN/m

 

where n is the design load per unit area in kN/m2. Values of the coefficients βνx and βvy are 
given in Table 3.15 of the code and are derived in Chapter 8, section 8.9.16.

Fig.13.10 (a) Floor plan; (b) beam on AA; (c) beam on BB.
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13.6.3 Analysis for Shear and Moment Envelopes

The following methods of analysis can be used to find the shear forces and bending 
moments for design:

1.  Analyses using the matrix stiffness method
2.  using coefficients for moments and shear from BS 8110: Part 1, Table 3.5. 

Fig.13.11 (a) Load distribution; (b) two-way slab.

In using method 1, the beam is analysed for the various load cases, the shear force and 
bending moment diagrams are drawn for these cases and the maximum shear and moment 
envelopes are constructed. Precise values are then available for moments and shear at 
every point in the beam. This method must be used for two span beams and beams with 
concentrated loads not covered by Table 3.5 of the code. It is also necessary to use rigor-
ous elastic analysis if moment redistribution is to be made, as set out in section 13.5.

BS 8110: Part 1, clause 3.4.3, gives moments and shear forces in continuous beams 
with uniform loading. The design ultimate moments and shear forces are given in Table 
3.5 in the code which is reproduced as Table 13.2 here. 
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Table 13.2 Design ultimate bending moments and shear forces for continuous beams

 At outer 
support

Near middle 
of end span

At first inte-
rior support

At middle of 
interior span

At interior 
supports

Moment 0 0.09 F −0.11Fℓ 0.07 Fℓ −0.08 Fℓ

Shear 0.45 F – 0.6 F – 0.55 F

ℓ. effective span; F. total design ultimate load on a span equal to 1.4Gk+1.6Qk

The use of coefficients in the table is subject to the following conditions:

1.  The characteristic imposed load Qk may not exceed the characteristic dead load Gk;
2.  The loads should be substantially uniformly distributed over three or more spans;
3.  Variations in span length should not exceed 15% of the longest span.

The code also states that no redistribution of moments calculated using this table 
should be made.

13.7 EXAMPLE OF ELASTIC ANALYSIS OF A CONTINUOUS BEAM

(a) Specification

Analyse the continuous beam for the three load cases shown in Fig. 13.8 and draw the 
separate shear force and bending moment diagrams. Construct the maximum shear force 
and bending moment envelopes. Also calculate the moments and shears using the coef-
ficients from BS 8110: Part 1. Table 3.5.

(b) Analysis by Stiffness method

The fixed end moments are

Case 1: All spans: M=42.12×82/12=224.64 kNm 
Case 2: Spans AB and CD: M=19.8×82/12=105.60 kNm 

Span BC: M=42.12×82/12=224.64 kNm 
Case 3: Spans AB and CD: M=42.12×82/12=224.64 kNm

Span BC: M=19.8×82/12–105.60 kNm

 

Assuming uniform flexural rigidity EI and equal spans of 8 m, the stiffness matrix K and 
the load vectors F for the three load cases are
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The loading and structure are symmetric. Therefore

θΑ=− θD, θB
=−θC  

The stiffness relationship can therefore be condensed to
 

The displacements are 
 

Using clockwise moment as positive, the bending moments at the ends of a span are 
obtained from the following equations

Mleft=Fixed end moment+(EI/L) {4 θLeft+2 θRight}
MRight=Fixed end moment+(EI/L) {2 θLeft+4 θRight}

 

The reactions R are given by

Rleft=0.5 q L+(Mleft−Mright)/L
RRight=0.5 q L−(Mleft−Mright)/L

 

The shear force V and bending moment M at a section x from the left hand support are 
given by

V=Rleft−q x
M=Mleft−Rleft x+0.5 q x2

 

where L=span (8 m) and q=uniformly distributed loading. 

Table 13.3 Summary of elastic analysis

 Beam AB Beam BC
 Case 1 Case 2 Case 3 Case 1 Case 2 Case 3
RLeft 134.78 54.43 143.71 168.48 168.48 79.2

RRight 202.18 103.97 193.25 168.48 168.48 79.2

MLeft 0 0 0 269.57 198.11 198.1

MRight 269.57 198.11 198.11 269.57 198.11 198.1

MMax in Span 215.65 74.82 245.17 67.39 138.85 −39.71

Mmax at x 3.2 2.75 3.41 4.0 4.0 4.0
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Table 13.4 Elastic moment and shear calculations for beam AB

x Case 1 Case 2 Case 3 Moment Shear force
    Max. Min. Max. Min.
0 0.00 0.00 0.00 0.00 143.71 0.00 54.43

1 −113.72 −44.53 −122.65 −44.53 101.59 −122.65 34.63

2 −185.33 -69.26 −203.18 -69.26 59.47 −203.18 14.83

3 -214.81 −74.20 −241.60 −74.20 17.35 −241.60 −4.97

4 −202.18 −59.33 −237.89 −59.33 −24.77 −237.89 −33.70

5 −147.42 −24.66 −192.06 −24.66 −44.57 −192.06 −75.82

6 −50.54 29.81 −104.11 29.81 −64.37 −104.11 −117.94

7 88.45 104.08 25.96 104.08 −84.17 25.96 −160.06

8 269.57 198.14 198.14 269.57 −103.97 198.14 −202.18

Table 13.5 Elastic moment and shear calculations for beam BC

x Case 1 Case 2 Case 3 Moment Shear force
    Max. Min. Max. Min.
0 269.57 198.14 198.14 269.57 198.14 168.48 168.48

1 122.15 50.72 128.81 128.81 50.72 126.36 126.36

2 16.85 −54.58 79.31 79.31 −54.58 84.24 84.24

3 −46.33 −117.76 49.61 49.61 −117.76 42.12 42.12

4 −67.39 −138.82 39.71 39.71 −138.82 0.00 0.00

5 −46.33 −117.76 49.61 49.61 −117.76 −19.8 −42.12

6 16.85 −54.58 79.31 79.31 −54.58 −39.6 -84.24

7 122.15 50.72 128.81 128.81 50.72 −59.4 −126.36

8 269.57 198.14 198.14 269.57 198.14 −79.2 −168.48

The results are summarised in Table 13.3. Detailed calculations for beam AB and beam 
BC are shown in Tables 13.4 and 13.5 respectively. The bending moment and shear force 
diagrams for the three load cases are shown in Fig. 13.12 (a) and Fig. 13.12 (b) respec-
tively.
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Fig.13.12 (a) Bending moment diagrams.

(c) Analysis using BS 8110: Part 1, Table 3.5

The values of the maximum shear forces and bending moments at appropriate points 
along the beam are calculated using coefficients from BS 8110: Part 1. Table 3.6. Total 
design ultimate load per span F

F=42.12×8–336.96 kN, L=8 m  

The values of moments and shears are tabulated in Table 13.6. 

Fig. 13.12 (b) Shear force diagrams
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Table 13.6 Moments and shears in continuous beam

 Position BS8110, Table 3.5 value Elastic analysis
Shear forces A 0.45×336.96 =151.63 143.71
 B 0.6×336.96=202.18 202.18
Bending moments P 0.09×336.96×8=242.61 245.17
 B −0.11×336.96×8 =−296.52 −269.57
 Q 0.07×336.96×8=188.69 138.82

Generally the two results are in reasonable agreement except for the support moment at 
B. The reason for this is that in the elastic analysis, the loading pattern to give maximum 
support moment as indicated by the influence line has been ignored. If the beam had been 
analysed for a load of 1.4Gk+1.6Qk on spans AB and BC and 1.0Gk on span CD so as to 
give the maximum support moment, the following results would have been obtained.

Load vector F and the displacement vectors are

 

The support moments are
MAB=0, MBΑ=293.38, MBC=−293.38, MCB=174.34, MCD=−174.34, MDC=0 Thus the 

correct maximum hogging moment at support B would be 293.38 kN m, which agrees 
with the values from Table 3.5 of the code. 

13.8 EXAMPLE OF MOMENT REDISTRIBUTION FOR A CONTINUOUS 
BEAM

As explained in section 13.4, redistribution gives a more even arrangement for the rein-
forcement, relieving congestion at supports. It might also lead to a saving in the amount 
of reinforcement required.

(a) Specification

Referring to the three-span continuous beam analysed in section 13.7 above, redistribute 
the moments after making a 20% reduction in the maximum hogging moment at the inte-
rior support. Draw the envelopes for maximum shear force and bending moment.

(b) Moment redistribution

The maximum elastic hogging moment over the supports B and C in case 1  
(Table 13.5), is 269.57. If this is reduced by 20%, the hogging moment over the support 
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is 0.8×269.57=215.65. The support section is therefore designed for a moment of 215.65 
kNm. Reducing the hogging moment increases the corresponding span moments.

The maximum elastic hogging moment over the supports B and C in case 2 and 3 
(Table 13.3) is 198.11. Since the support section is designed to resist a moment of 215.65 
kNm, in order to decrease the span moments, for redistributed values, the support moment 
in cases2 and 3 is increased to 215.65.

The results are summarised in Tables 13.7 and detailed calculations for beam AB and 
BC are shown in Tables 13.8 and Table 13.9 respectively. Fig.13.13 (a) and Fig. 13.13(b) 
show the redistributed bending moment and shear force diagrams

Table 13.7 Summary of redistributed Analysis

 Beam AB Beam BC
 Case 1 Case 2 Case 3 Case 1 Case 2 Case 3
RLeft 141.52 52.24 141.52 168.48 168.48 79.2
RRight 195.44 106.16 195.44 168.48 168.48 79.2
MLeft 0 0 0 215.65 215.65 215.65
MRight 215.65 215.65 215.65 215.65 215.65 215.65
MMax in Span 237.76 68.92 237.76 121.31 121.31 −57.25
Mmax at x 3.36 2.64 3.36 4.0 4.0 4.0

(c) Moment envelop for design

Having calculated the moment distribution for elastic and redistributed cases, the design 
envelop is constructed. At any section the design moment is larger of

• 70% of Elastic bending moment
• 100% of redistributed moment.

Fig.13.13 (a) Redistributed bending moment diagrams.
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Fig.13.13 (b) Redistributed shear force diagrams.

Table 13.10 and Table 13.11 show detailed calculations for design moment envelops for 
beam AB and BC respectively. The moment envelops is shown in Fig.13.14(a). When 
Fig.13.12(a) and Fig. 13.13(a) are compared, it is noted that the maximum hogging and 
sagging moments from the elastic bending moment envelope have both been reduced by 
the moment redistribution. The redistribution gives a saving in the amount of reinforce-
ment required.

(d) Shear force envelop for design

Redistribution of moments alters the shear force distribution. It has been suggested that 
when it comes to determining the shear force envelop, at any section one need to take the 
larger of the elastic and redistributed shear force to guard against the possibility of redis-
tribution not occurring. Detailed calculations are shown in Tables 13.13 and 13.14. Fig. 
13.14 (b) shows the design shear force envelop. 

Table 13.8 Redistributed moment and shear calculations for beam AB

x Case 1 Case 2 Case 3 Moment Shear force
    Max. Min. Max. Min.
0 0.00 0.00 0.00 0.00 0.00 141.52 52.24
1 -120.46 −42.34 −120.46 −42.34 −120.46 99.40 32.44
2 −198.81 −64.89 −198.81 −64.89 −198.81 57.28 12.64
3 −235.03 −67.63 −235.03 −67.63 −235.03 15.16 −7.16
4 −229.13 −50.57 −229.13 −50.57 −229.13 −26.96 −26.96
5 −181.12 −13.72 −181.12 −13.72 −181.12 −46.76 −69.08
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6 −90.98 42.94 −90.98 42.94 −90.98 −66.56 −111.20
7 41.28 119.40 41.28 119.40 41.28 −86.36 −153.32
8 215.65 215.65 215.65 215.65 215.65 -106.16 −195.44

Table 13.9 Redistributed moment and shear calculations for beam BC

x Case 1 Case 2 Case 3 Moment Shear force
    Max. Min. Max. Min.
0 215.65 215.65 215.65 215.65 215.65 168.48 79.2
1 68.23 68.23 146.35 146.35 68.23 126.36 59.4
2 −37.07 −37.07 96.85 96.85 −37.07 84.24 39.6
3 −100.25 −100.25 67.15 67.15 −100.25 42.12 19.8
4 −121.31 −121.31 57.25 57.25 −121.31 0 0
5 −100.25 −100.25 67.15 67.15 −100.25 −19.8 −42.12
6 −37.07 −37.07 96.85 96.85 −37.07 −39.6 −84.24
7 68.23 68.23 146.35 146.35 68.23 −59.4 −126.36
8 215.65 215.65 215.65 215.65 215.65 −79.2 −168.48

Table 13.10 Moment envelop for beam AB

x Redistributed Elastic Design
 Max. Min. Max. Min. Max. Min.
0 0.00 0.00 0.00 0.00 0.00 0.00
1 −42.34 −120.46 −44.53 −122.65 −31.17 −120.46
2 −64.89 −198.81 −69.26 −203.18 −48.48 −198.81
3 −67.63 −235.03 −74.20 −241.60 −51.94 −235.03
4 −50.57 −229.13 −59.33 −237.89 −41.53 −229.13
5 −13.72 181.12 −24.66 −192.06 −13.72 −181.12
6 42.94 −90.98 29.81 -104.11 42.94 −90.98
7 119.40 41.28 104.08 25.96 119.40 18.17
8 215.65 215.65 269.57 198.14 215.65 138.70

Table 13.11 Moment envelop for beam BC

x Redistributed Elastic Design
 Max. Min. Max. Min. Max. Min.
0 215.65 215.65 269.57 198.11 215.65 138.68
1 146.35 68.23 128.81 50.72 146.35 35.51
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2 96.85 −37.07 79.31 −54.58 96.85 −38.20
3 67.15 −100.25 49.61 −117.76 67.15 −100.25
4 57.25 −121.31 39.71 −138.82 57.25 −121.31
5 67.15 −100.25 49.61 −117.76 67.15 −100.25
6 96.85 −37.07 79.31 −54.58 96.85 −38.20
7 146.35 68.23 128.81 50.72 146.35 35.51
8 215.65 215.65 269.57 198.11 215.65 138.68

Fig.13.14 (a) Design bending moment envelop.

Table 13.12 Shear force envelop for beam AB

x Redistributed Elastic Design
 Max. Min. Max. Min. Max. Min.
0 141.52 52.24 143.71 54.43 143.71 52.24
1 99.40 32.44 101.59 34.63 101.59 32.44
2 57.28 12.64 59.47 14.83 59.47 12.64
3 15.16 −7.16 17.35 −4.97 17.35 −7.16
4 –26.96 –26.96 −24.77 −33.70 −24.77 −33.70
5 −46.76 –69.08 −44.57 −75.82 −44.57 −75.82
6 −66.56 –111.20 −64.37 −117.94 −64.37 −117.94
7 −86.36 −153.32 −84.17 –160.06 −84.17 −160.06
8 −106.16 −195.44 −103.97 −202.18 −103.97 −02.18
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Table 13.13 Shear force envelops for beam BC

X Redistributed Elastic Design
 Maximum Minimum Maximum Minimum Maximum Minimum
0 168.48 79.2 168.48 79.2 168.48 79.2
1 126.36 59.4 126.36 59.4 126.36 59.4
2 84.24 39.6 84.24 39.6 84.24 39.6
3 42.12 19.8 42.12 19.8 42.12 19.8
4 0.00 0.00 0 0 0 0
5 –19.8 –42.12 –19.8 –42.12 –19.8 –42.12
6 –39.6 –84.24 –39.6 –84.24 –39.6 –84.24
7 –59.4 –126.36 –59.4 –126.36 –59.4 –126.36
8 –79.2 –168.48 –79.2 –168.48 –79.2 –168.48

Fig.13.14 (b) Design shear force envelop.

13.9 CURTAILMENT OF BARS

The curtailment of bars may be carried out in accordance with the detailed provisions set 
out in BS 8110: Part 1, clause 3.12.9.1. The anchorage of tension bars at the simply sup-
ported ends is dealt with in clause 3.12.9.4 of the code.

Simplified rules for curtailment of bars in continuous beams are given in clause 
3.12.10.2 and Fig. 3.24(a) of the code. The clause states that these rules may be used 
when the following provisions are satisfied:

1. The beams are designed for predominantly uniformly distributed loads;

2. The spans are approximately equal in the case of continuous beams.
The simplified rules for curtailment of bars in continuous beams are shown in Fig 13.15. 
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Fig.13.15 Reinforcement as percentage of that required for (i) maximum hogging 
moment over support and (ii) maximum sagging moment in span.

13.10 EXAMPLE OF DESIGN FOR THE END SPAN  
OF A CONTINUOUS BEAM

(a) Specification

Design the end span of the continuous beam analysed in section 13.7. The design is to be 
made for the shear forces and moments obtained after 20% redistribution from the elastic 
analysis has been made. The shear force and moment envelopes are shown in Fig.13.14. 
The materials are grade C30 concrete and grade 460 reinforcement.

(b) Design of moment steel

The assumed beam sections for mid-span and over the interior support are shown in Figs 
13.16(a) and 13.16 (b) respectively. The cover for mild exposure from Table 3.3 in the 
code is 25 mm. The cover for a fire resistance period of 2 h from Table 3.4 is 30 mm for 
continuous beams. Cover of 30 mm is provided to the links.

(i) Section near the centre of the span: The beam acts as a T-beam at this section.

The design moment M=237.7 kNm.
Effective breadth of flange =(0.7×8000/5)+250=1370 mm

 

The moment of resistance of the section when the entire flange is in compression is
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MFlange=0.45 fcu bf hf(d−hf/2)
=0.45×30×1370×125(385–0.5×125)×10–6=745.6 kNm

M<Mflange

 

The neutral axis lies in the flange. The beam can be designed as a rectangular beam. 

k=237.7×106/ (30×1370×3852)=0.039<0.156
z/d=0.5+√(0.25–0.039/0.9)=0.956>0.95=367.5mm
As=237.7×106 / (0.95×385×0.95×460)=1487 mm2

 

Provide 4T25, As=1963 mm2.

Fig.13.16 (a) T-beam at mid-span; (b) rectangular beam over support.

Note that in this case the amount of redistribution from the elastic moment of 245.17 
kNm to redistributed value of 237.76 kNm is just 3% i.e. βb=0.97, and the depth x to the 
neutral axis must not exceed (0.97–0.4)d=0.57d. But the maximum value of x/d ≤ 0.5. In 
fact the moment from the elastic analysis at the position where redistributed moment is a 
maximum is in fact 215.12 kNm. In other words redistribution increases the moment at 
that section rather than decrease it.

The moment of resistance after cutting off two 25 mm diameter bars is calculated 
where

d=397.5mm, z=0.95d and As=981 mm2.  

Note that z=0.95d when the moment is 237.7 kN m and so the beam will have the same 
limiting value for z/d=0.95 at a section where the moment is less. The moment of resis-
tance is
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MR=(0.95×460)×(0.95×397.5)×981×10−6=161.89 kNm  

From the design moment envelop this moment of resistance occurs at 1.46 m and 2.74 
m from the ends. The anchorage length for type 2 deformed bars is calculated. Refer to 
clause 3.12.8.3 and Table 3.27 in the code and Chapter 5, section 5.2.1. The anchorage 
length is 40 bar diameters which is equal to 1000 mm. To comply with the detailed provi-
sions for curtailment of bars given in clause 3.12.9.1 of the code the two 25mm diameter 
bars will be stopped off at 1000 mm beyond the theoretical cut-off points. This also satis-
fies the condition that bars extend a distance equal to the greater of the effective depth or 
12 bar diameters beyond the theoretical cut-off points. At the support tension bars must 
be anchored 12 bar diameters past the centre line of the support. The cut-off points are 
shown in Fig. 13.20. These are at (1460–1000)=460 mm from the centre of end support 
and (2740–1000)=1740 mm from the interior support respectively.

(it) Section at the interior support: The beam acts as a rectangular beam at the support. 
The section is shown in Fig. 13.16 (b). The redistribution of 20% has been carried out and 
so the depth to the neutral axis should not exceed

x=(βb–0.4) d=(0.8–0.4) d=0.4d  

The design moment is 215.65 kN m. The maximum moment of resistance with no com-
pression steel is calculated from the expressions given in clause 3.4.4.4 of the code. Refer 
to section 4.7.

k̀=[(0.402 x 0.4)–0.18 x 0.42]=0.133
0.133 bd2 fcu=0.133×(250×3852×30) x 10–6–147.85 kNm < 215. 65 kNm

 

Compression reinforcement is required.

 

The stress in the compression steel is 0.95fy.

As=147.85×106/ (0.775×385×0.95×460) 
+(215.65–147.85)×106/(0.95×460×(385–52.5)

As=1134+467=1601 mm2

As’= 467 mm2

 

The compression reinforcement will be provided by carrying two 25 mm diameter mid-
span bars through the support. For tension reinforcement, provide four 25 mm diameter 
bars providing an area of 1963 mm2.

The theoretical and actual cut-off points for two of the four top bars are determined. 
The moment of resistance of the section with two 25 mm diameter bars and an effective 
depth d=397.5 mm is calculated. Assuming that steel yields, equate the total tensile force 
T and the total compressive force C.
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T=0.95×460×981×10−3=428.70 kN
C=0.45×30×(0.9x)×250×10−3=3038x kN

Equating T=C, 428.70=3038x.
x=141 mm, x/d=141/397.5=0.36 < 0.5

Lever arm: z /d=1–0.45 x/d=0.84 < 0.95

 

The moment of resistance is

MR=T z=428.7×(0.84×397.5)×10−3=143.1 kNm  

From the design moment envelop this moment occurs at 0.73 m from the support. The 
actual cut-off point after continuing the bars from an anchorage length is (730+1000)=1730 
mm from support B. The bar cut-offs are shown in Fig.13.17. 

(c) Design of shear reinforcement

The design will take account of enhancement of shear strength near the support (BS8110: 
Part 1, clause 3.4.5.10).

460 

4T25

4T25

2T25

1740 

1730 

T10@250

2T-25 

Fig.13.17 Continuous beam.
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(i) Simply supported end: From the design shear force envelop 

Check for maximum shear stress:

V=143.71 kN
v=143.71×103/(250×397.5)=1.45 N/mm2< {0.8√(fcu=30)=4.38 N/mm2}

 

Section is satisfactory and shear links can be designed.

Shear V at d from support

V=143.71–42.12x(d=397.5)×10−3=126.97 kN 
v=126.97×103/(250×397.5)=1.28 N/mm2

As=2T25=982 mm2 

100 As/(bd)=100×982/ (250×397.5)=0.99 < 3.0
400/d=400/397.5=1.01>1.0 

νc=0.79×(0.99)1/3(1.006)1/4 (30/25)1/3/1.25=0.67 N/mm2

v–vc=1.28−0.67=0.61>0.4

 

Provide 10 mm diameter grade 460 links:
Asv=157 mm for two-legs. 
Calculate the spacing of links 

157≥(1.28–0.67)×250×sv/(0.95×460), sv≤450 mm 
Maximum spacing=0.75 d=298 mm.

Calculate the region over which only minimum links are required
Minimum links are required when v=vc+0.4
For the section with four 25 mm diameter bars, d=385 mm, As=1964 mm2.

100 As/ (bd)=100×1964/(250×385)=2.05< 3.0 
400/d=400/385=1.04>1.0 

νc=0.79×(2.05)1/3 (1.04)1/4 (30/25)1/3/1.25=0.86 N/mm2

v=0.86+0.40=1.26 N/mm2 

V=1.26−250×385×10−3=121.28 kN

 

From the design shear force envelop,

121.28=143.71–42.12 a,α=0.53 m  

For minimum links, the spacing is

157≥(0.4)×250×Sv/(0.95×460), sv≤686 mm 
Rationalize the results from the above calculations and space links at 250 mm centres.
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(ii) Near the internal support: From the shear force envelop the maximum shear is 
V=202.18 kN

v= 202.18×103/ (250×385)=2.10 N/mm2 < (0.8√30=4.38 N/mm2)  

The shear at d= 385 mm from the support is
V–202.18 −42.12×385×10−3–185.96 kN
v=185.96×103/ (250×385)=1.93 N/mm2

As=4T25=1964 mm2, 100 As/ (bd)=100×1964/ (250×385)=2.05<3.0, 400/
d=400/385=1.04>1.0

νc=0.79×(2.05)1/3 (1.04)1/4 (30/25)1/3/1.25=0.86 N/mm2

 

Provide 10 mm diameter grade 460 links. Asv=157 mm2 for two-legs.

157≥(1.93–0.86)×250×sv/ (0.95×460), sv ≤ 256 mm  

On the bottom face where the reinforcement is in compression the link spacing must not 
exceed 12×25=300 mm.

Space links at 250 mm centres along the full length of the beam. The arrangement of 
links is shown in Fig. 13.20.

(d) Deflection

bw/b=250/1370=0.18<0.3  

From BS8110: Part 1, Table 3.9, the basic span-to-effective depth ratio is 20.8 Modifica-
tion factor for tension steel:

M / (bd2)=237.76×106 / (1370×3852)=1.17

As required=1487 mm2, As provided=1963 mm2, βb=0.8

fs=(2/3)×(1487/1963)×460×(1/ 0.8)=290 N/mm2

0.55+(477–290)/ {120×(0.9+1.17)}=1.30 < 2.0

 

Modification factor for compression steel:
Two 20 mm diameter bars, As

’=625 mm2 are provided in the top of the beam which can 
act as compression reinforcement. 

100 As / (bd)=100×625/ (1370×385)=0.12
1+0.12/(3+0.12)=1.04

allowable span/d ration 20.8×1.3×1.04=28.12
actual span/d ratio 8000/385=20.8

 

The beam is satisfactory with respect to deflection.
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(e) Cracking

From Fig. 13.16, the clear distance between bars on the tension faces at mid-span and over 
the support is 120 mm. This does not exceed the 125 mm permitted in Table 3.28 of the 
code for 20% redistribution. The distance from the corner to the nearest longitudinal bar 
is (cover=30 mm, links 10 mm, bar diameter=25 mm)

√ {(30+10+25/2)2+(30+10+25/2)2}–25/2=62 mm  

It should not exceed 125/2 = 62.5 mm. The beam is satisfactory with respect to crack 
control.

(f) Sketch of the beam
A sketch of the beam with the moment and shear reinforcement and curtailment of bars is 
shown in Fig. 13.17.

13.11 EXAMPLE OF DESIGN OF A NON-SWAY FRAME

(a) Specification

Fig. 13.18 shows a typical frame supporting a loading bay. The frames are spaced at 4 
m centres. The floor consists of 250 mm thick precast slabs simply supported on top of 
beams. The imposed load is 10 kN/m2. The beams are 300×600 mm and columns are 300 
mm×300 mm. The materials are grade C30 concrete and grade 460 reinforcement.

A

B C

D

E F

3.5 m 3.5 m

1.5

2 m

Fig.13.18 Non-sway rigid-jointed frame.(b) Loads

Dead load: 
Beam self weight=0.3×0.6×24=4.32 kN/m
Precast planks: 0.125×4.0×24=24.00 kN/m

Gk=4.32+24.0=28.32 kN/m
Imposed load Qk=10×4=40 kN/m

 

(1.4Gk+1.6 Qk)=1.4×28.32+1.6×40=103.65 kN/m
1.0Gk=28.32 kN/m
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(c) Elastic analysis
I beams=0.3×0.63/12=5.4×10−3 m4

I columns=0.3×0.33/12=0.675×10−3 m4

Beams, I/L:=5.4×10−3/3.5=1.5429×10−3 m3

Columns, I/L:=0.675×10−3/2.0=0.3375×10−3 m3

 

A B C

E F

Fig.13.19 Simplified frame used in analysis.

In order to simplify the computation, the structure analysed is as shown in Fig.13.19. The 
cantilever CD is not included in the stiffness matrix but the moment induced by the can-
tilever on the rest of the frame in taken into account when computing the load vector and 
rotations at the joints A, B and C. The simplified stiffness matrix K is given by

 

The structure is analysed for the following four load cases:

Case1: (1.4Gk+ 1.6 Qk) on AB and BC, 1.0 Gk on CD

Fixed end moments AB and BC=103.65×3.52/12=105.8073 kNm
Fixed end moment in CD=28.32×1.52/2=31.86 kNm

 

Case 2: 1.0 Gk on AB, (1.4Gk+1.6 Qk) on BC and CD

Fixed end moments AB=28.32×3.52/12=28.91 kNm
Fixed end moments BC–103.65×3.52/12–105.8073 kNm
Fixed end moment in CD=103.65×1.52/2=116.606 kNm

 

Case 3: (1.4Gk+1.6 Qk) on AB and CD, 1.0Gk on BC 

Fixed end moments AB=103.65×3.52/12=105.8073 kNm
Fixed end moments BC=28.32×3.52/12=28.91 kNm

Fixed end moment in CD=103.65×l.52/2=116.606 kNm
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Case 4: 1.0 Gk on AB and CD, (1.4Gk+1.6 Qk) BC

Fixed end moments AB=28.32×3.52/12=28.91 kNm 
Fixed end moments BC=103.65×3.52/12=105.8073 kNm 

Fixed end moment in CD=28.32×l.52/2=31.86

 

The load vectors for the four cases are
 

The displacement vectors for the four cases are
 

The results are summarised in Table 13.14. The elastic bending moment diagrams for 
beams AB and BC are shown in Fig. 13.20 (a) and Fig.13.20(b). 

Table 13.14 Summary of elastic analysis

 Case 1 Case 2 Case 3 Case 4
MBA 149.11 68.04 88.21 82.82
MBC −146.32 −75.23 −67.65 −94.33
MCB 43.98 117.62 92.43 49.86
MCD −31.86 –116.61 –116.61 −31.86
MAE –2.80 7.20 −20.56 11.51
MBF –12.12 –1.01 24.18 −17.99
Axial: BE 434.62 238.28 249.07 267.32

Axial: CF 194.63 348.98 211.12 211.16

Fig. 13.20(a) Elastic bending moment diagrams for beam AB.
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Fig.13.20(b) Elastic bending moment diagrams for beam BC.

(c) Redistribution

(i) Beam AB

The support moment MBΑ
=149.11 from case 1 is the largest value of hogging moment 

considering all load cases and can be reduced by 30% to

MBΑ=0.7×149.11=104.38  

The redistributed support moments are as follows.
Case 1: MBΑ=104.38 (changed from elastic value of 149.11)
Case 2: MBΑ=68.04 (Unchanged from elastic value)
Case 3: MBΑ=104.38 (changed from elastic value of 88.21)
Case 4: MBΑ=104.38 (changed from elastic value of 82.82)

(ii) Beam BC

Hogging moment MBC=146.32 from case 1 can also be reduced to 104.38 so that the 
same top steel over the column BE serves for both moments MBA and MBC. The maximum 
moment MCD at the root of the cantilever is 116.61. Since CD is a cantilever, this moment 
cannot be reduced. Moment MCB from case 2 is 117.62 and this can be reduced also to 
116.61 so that the same top steel over the column CF for both moments MCB and MCD. The 
redistributed moments are as follows.

Case 1: MBC=104.38 (changed from elastic values of 146.32), MCB=43.98
Case 2: MBC=104.38, MCB=116.61 (changed from elastic values of 75.23 and 117.62 

respectively)
Case 3: MBC=104.38, MCB=116.61 (changed from elastic values of 67.65 and 92.43 

respectively)
Case 4: MBC=104.38, MCB=49.86 (changed from elastic values of 94.33 and 49.86 

respectively)
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Note that at support C, in cases 1 and 4, no redistribution has been done. The reason for 
this is that the moment in the cantilever is small. If the support moment MCB is raised to 
116.61, then it will result in a very large moment in column CF. The redistributed bending 
moment diagrams for beams AB and BC are shown in Fig. 13.21 (a) and Fig.13.21(b). 

Fig.13.21(a) Redistributed bending moments for beam AB.

Fig.13.21(b) Redistributed bending moments for beam BC.

(d) Design moment envelops

The design maximum (or minimum) value of bending moment at a section is obtained as 
follows.

The maximum (or minimum) moment value at a section is obtained by considering all 
load cases. For a particular load case the values to be considered are:
•  If there is no redistribution, then the elastic moment value
•  If there is redistribution then the larger of:
a.  0.7×elastic value
b.  the corresponding redistributed moment value
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The design moment envelops for Beams AB and BC are shown in Fig.13.22(a) and 
Fig.13.22(b) respectively.

(e) Design of moment steel

(i) Section near the centre of span AB

Assuming 20 mm bars and a cover of 30 mm and 8 mm diameter shear links 

d=600–20/2–8–30=552 mm  

Maximum redistributed moment from the design moment envelop is 110.74 kNm at 1.5 m 
from left hand support from Case 3.

The corresponding moment before redistribution is 117.67 kNm.

βb=110.74/117.67=0.94>0.9  

Redistribution is less than 10%. Therefore 

k=110.74×106/ (300×5522×30)=0.04<0.156  

No compression steel is required.

z/d=0.5+√ (0.25–0.04/0.9)=0.953>0.95
As=110.74×106/ (0.95×552×0.95×460)=483 mm2

 

Provide 3T16 giving an area of 603 mm2.

Fig.13.22(a) Design bending moment envelop for beam AB.
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Fig.13.22(b) Design bending moment envelop for beam BC.

(ii) Section over support B

Maximum redistributed moment from the design moment envelop is 104.38 kNm from 
Case 1. The corresponding moment before redistribution is 149.11 kNm. 

βb=104.38/149.11=0.7<0.9 

K=0.402 (0.7–0.4)–0.18 (0.7–0.4)2=0.104

k=104.38×106/ (300×5522×30)=0.038 < 0.104

 

No compression steel is required.

z/d=0.5+√(0.25–0.038/0.9)=0.96>0.95

As=104.38×106/ (0.95×552×0.95×460)=456 mm2

 

Provide 3T16 giving an area of 603 mm2.

(iii) Section near the centre of span BC

Maximum redistributed moment from the design moment envelop from Case 1 is 85.61 
kNm at 2.0 m from left hand support. The corresponding moment before redistribution is 
67.64 kNm. The moment after redistribution has increased.

k=81.60×106/ (300×5522×30)=0.030<0.156  

No compression steel is required.

z/d=0.5+√(0.25–0.03/0.9)=0.97>0.95
As=85.61×106/(0.95×552×0.95×460)=374 mm2

 

Provide 3T16 giving an area of 603 mm2.
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(iv) Section over support C 
 
Maximum redistributed moment from the design moment envelop is 116.61 kNm for 
Case 2. The corresponding moment before redistribution is 117.62 kNm.

βb=116.61/117.62=0.99>0.9
k=116.61×106/(300 ×5522× 30)=0.043 < 0.156

 

No compression steel is required.

z/d=0.5+√(0.25–0.043/0.9)=0.95
As=116.61×106/ (0.95×552×0.95×460)=509 mm2

 

Provide 3T16 giving an area of 603 mm2.

By rationalizing the steel area calculations, for simplicity, provide 3T16 at both top and 
bottom for the beams including the cantilever.

(f) Design shear envelops

The design maximum (or minimum) value is obtained as follows.

The maximum (or minimum) shear force at a section is obtained by considering for 
all load cases both the elastic analysis shear values and the redistributed shear values. 
The design shear force envelops for Beams AB and BC are shown in Fig.13.23(a) and 
Fig.13.23(b).

(g) Design of shear reinforcement

The design will take account of enhancement of shear strength near the support (BS8110: 
Part 1, clause 3.4.5.10).

As the tension and compression steel is 3T–16 over the entire span, a common value of vc 
can be calculated which is applicable over the entire span.

100 As/ (bd)=100×603/ (300×552)=0.36<3.0
400/d=400/552=0.73<1.0, take as 1.0

νc=0.79×(0.36)1/3 (1.0)1/4 (30/25)1/3/1.25=0.48 N/mm2

 

Use 10 mm diameter 2–leg grade 460 links through out. Asv=157 mm2. 

Nominal link spacing is

157≥0.4×300×Sv/(0.95×460), sv≤572 mm  

Maximum spacing=0.75 d=414 mm.
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Fig.13.23(a) Design shear force envelop for beam AB.

Fig.13.23(b) Design shear force envelop for beam BC.

(i) Simply supported end A

From the design shear force envelop

V=156.18 kN (From elastic, case 3).
v=156.18×103/ (300×552)=0.94 N/mm2< {0.8√(fcu=30)=4.38 N/mm2}

 

Shear V at d from support

V=156.18–103.65×(d=552) x 10−3=98.97 kN 
v=98.97×103/ (300×552)=0.60 N/mm2

v–vc=0.60m–0.48=0.12<0.4

 

Nominal links required.
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(ii) Continuous end B of span AB over column BE

From the design shear force envelop

V=224.0 kN (From elastic, case 1).
v=224.0×103/ (300×552)=1.35 N/mm2< {0.8√(fcu=30)=4.38 N/mm2}

 

Shear V at d from support 

V=224.0–103.65×(d=552)×10−3=166.79 kN
v=166.79×103/ (300×552)=1.01 N/mm2

v–vc=1.01–0.48=0.53>0.4

 

Design links required. Provide 10 mm diameter grade 460 links.

Asv=157 mm2 for two-legs.

157≥(0.53)×300×Sv/(0.95×460), sv≤432 mm
 

Maximum spacing=0.75 d=414 mm.

(iii) Continuous end of span BC over column BE

From the design shear force envelop

V=210.63 kN (From elastic, case 1).

This shear force is less than 224.0 kN for continuous end B for span AB. Use same 
design as for span AB.

(iv) Continuous end over column CF

From the design shear force envelop V=193.50 kN (from elastic case 2). This shear force 
is less than 224.0 kN. Use the same design as for support B.

By rationalizing the link spacings calculated, for simplicity, provide 8 mm diameter 
two leg links at 400 mm c/c through out the beams including the cantilever.

(h) Deflection

The basic span-to-effective depth ratio is 26 for continuous beam (BS8110: Part 1,  
Table 3.9).

Over the entire span, compression steel is provided by 3T-16. As′=603 mm2 .

100 As̀/ (bd)=100×603/ (300×552)=0.36
 

The modification factor for compression steel is

1+0.367(3+0.36)=1.11
 

Calculate the modification factor for tension steel and the allowable span/depth ratio.
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(i) Beam AB 

Moment at mid-span from the design moment envelop=106.52 kNm

M / (bd2)=106.52×106 / (300×5522)=1.17
As required=483 mm2, As provided=603 mm2, βb=106.52/114.61=0.93

fs =(2/3)×(483/603)×460×(1/ 0.93)=264 N/mm2

0.55+(477–264)/ (120×(0.9+1.17)=1.41 2.0
allowable span/d ration 26×1.41 x 1.11=40.69

actual span/d ratio 3500/552=6.34

 

The beam is satisfactory with respect to deflection.

(ii) Beam BC

Moment at mid-span from the design moment envelop=81.60 kNm 

M / (bd2)=85.61×106 / (300×5522)=0.94

As required=374 mm2, As provided=603 mm2, βb=1.0

 

fs =(2/3)×(374/603)×460×(1/ 0.94)=190 N/mm2

0.55+(477–190)/ {120×(0.9+0.94)}=1.85<2.0
allowable span/d ration 26x1.85x1.11=53.39

actual span/d ratio 3500/552=6.34

 

The beam is satisfactory with respect to deflection.

(iii) Cantilever CD

Moment at support=116.61 kNm

M/(bd2)=116.61 106/ (300 ×5522)=1.28

As required=509 mm2, As provided=603 mm2, βb=1.0

fs=(2/3)×(509/603)×460×(1)=259 N/mm2

0.55+(477–259)/ {120x(0.9+1.28)}=1.38<2.0

allowable span/d ration 7×1.38×1.11=10.7

actual span/d ratio 1500/552=2.72

 

The cantilever is satisfactory with respect to deflection.
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(j) Cracking

The clear distance between bars on the tension faces at mid-span and over the support is

(300–2×30 for cover–2×8 for link–16)/2–16=88 mm  

This does not exceed the 110 mm permitted in Table 3.28 of the code for 30% redistribu-
tion. The distance from the corner to the nearest longitudinal bar is

√{(30+8+16/2)2+(30+8+16/2)2}–16/2=57 mm  

which should not exceed 110/2=55 mm. The difference between the actual and permitted 
is very small and the beam is satisfactory with respect to crack control.

Table 13.15 Axial force and moments in columns

  Case 1 Case 2 Case 3 Case 4
  Elas. Redis Elas. Redis Elas. Redis Elas. Redis

BE N 435 410 238 247 249 68 267 276

  (4.8) (4.6) (2.7) (2.7) (2.8)  (3.0) (3.1)

 M 2.8 0 7.2 36 21 0 12 0

  (0.1)  (0.3) (1.4) (0.8)  (0.4)  

CF N 195 207 349 340 212 209 211 208

  (2.2) (2.3) (3.9) (3.8) (2.4)  (2.4) (2.3)

 M 12 12 1.0 0 24 0 18 18

  (0.5) (0.5) (0.04)  (0.9)  (0.7) (0.7)

(k) Column Design

Table 13.15 shows the axial force and moments at the top of the columns. The figures in 
brackets are M/ (bh2) and N/ (bh) using b=h=300 mm. The column design chart (Fig. 9.11, 
Chapter 9) for fcu=30 N/mm2, fy=460 N/mm2 and d/h = 0.90 shows that only minimum 
steel equal to Asc/ (bh)=0.4% is required.

Asc=(0.4/100)×3002=360 mm2. Provide one 12 mm bar in each corner.

Asc=452 mm2. Provide 6 mm diameter links spaced at 125 mm c/c. 

13.12 APPROXIMATE METHODS OF ANALYSIS

In the examples of continuous beam and non-sway frame analysed in the previous sec-
tions, the relative flexural rigidity EI was assumed in order to carry out the elastic analysis. 
In the case of statically indeterminate structures, information about the relative stiffness 
of members is required before analysis can be carried out. In many cases experience 
can be used to guess at the relative size of members. However it is convenient to have 
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approximate methods of analysis which allow a designer to estimate the relative stiffness 
of members. Approximate methods of analysis convert a statically indeterminate structure 
into a statically determinate structure by assuming the position of points of contra-flexure. 
This enables the determination of inevitably approximate values of bending moment and 
shear forces in the structure without the need to know the relative stiffness of members.

13.12.1 Analysis for Gravity Loads

Analysis for gravity loads is done by assuming the points of contra-flexure in the indi-
vidual beams. 

Fig.13.24 (a) Clamped beam; (b) Propped cantilever.

If a beam is continuous at both ends, its behaviour will be between the behaviour of a 
clamped beam at one extreme and that of a simply supported beam at the other extreme. 
As shown in Fig.13.24(a), in a clamped beam of span L subjected to a uniformly distrib-
uted load q, the contra flexure points are at 0.21 L from the ends. The support and mid-
span moments are respectively, qL2/12 and qL2/24. In the corresponding simply supported 
beam, the points of zero moment are at the support and the moment at mid-span is qL2/8. 
Assuming the position of contra-flexure at approximately at 0.1L from the ends, the sup-
port and mid-span moments are respectively, 0.36 (qL2/8) and 0.64 (qL2/8).

If a beam is continuous at one end only, its behaviour will be between the behaviour 
of a propped cantilever at one extreme and that of a simply supported beam at the other 
extreme. As shown in Fig.13.24(b), in a propped cantilever of span L clamped at the right 
hand end and subjected to a uniformly distributed load q, the contra-flexure point is at 
0.25 L from the clamped end. The support and mid-span moments are respectively, qL2/8 
and qL2/16. In the corresponding simply supported beam, the points of zero moment are at 
the support and the moment at mid-span is qL2/8. Assuming the position of contra flexure 
at approximately 0.12L from the ends, the support and mid-span moments are respec-
tively, 0.48 (qL2/8) and 0.76 (qL2/8).

The following two examples show how these values can be used to analyse beams 
subjected to uniformly distributed loading.

Clamped beam

Simply
supported
beam

Simply
supported
beam

Propped
cantilever
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13.12.2 Analysis of a Continuous Beam for Gravity Loads

Fig. 13.25 shows a three span continuous beam. The beam spans are 8 m each. Assum-
ing the position of contra flexure points, the beams are analysed for the It is given that 
1.4Gk+1.6Qk=42.12 kN/m and 1.0 Gk=19.8 kN/m.

Fig.13.25 Approximate bending moment distribution.

Case 1: All beams are subjected to a uniformly distributed load of 42.12 kN/m.  
End spans:

support moment=0.48×42.12×82/8=162 kNm
span moment=0.76×42.12×82/8=235 kNm.

 

Central span: 

support moment=0.36×42.12×82/8=121 kNm
span moment=0.64×42.12×82/8=216 kNm

 

Case 2: End spans carry 19.8 kN/m and central span carries 42.12 kN/m.  
End spans:

support moment=0.48×19.8×82/8=76 kNm
span moment=0.76×19.8×82/8=120 kNm

 

Case 1 

Case 2

Case 3
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Central span:

support moment=0.36×42.12×82/8=121 kNm
span moment=0.64×42.12×82/8=216 kNm

 

Case 3: End beams carry 42.12 kN/m and central span carries 19.8 kN/m.  
End spans:

support moment=0.48×42.12×82/8=162 kNm
span moment=0.76×42.12×82/8=235 kNm.

 

Central span:

support moment=0.36×19.8×82/8=57 kNm
span moment=0.64×19.2×82/8=101 kNm

 

From the above three analyses, the support needs to be designed for approximately 162 
kNm and the mid-span for 235 kNm. Exact elastic analysis assuming uniform flexural 
rigidity shows that the maximum support moment is 270 kNm and span moment in end 
spans is 245 kNm. The support moment is quite poorly predicted. The reason for this is 
that when all the three spans are loaded by the same load, it almost produces a clamped 
condition at the supports which is a more severe condition than the assumption of position 
of contra-flexure at 0.1L from supports.

13.12.3 Analysis of a Rectangular Portal Frame for Gravity Loads

Fig. 13.26 shows a single by portal frame subjected to gravity loads on the beam. The 
bending moment distribution can be obtained by assuming the points of contra-flexure in 
the beam. The moment at the tops of the columns will be the same as in the beam. If the 
columns are fixed at the base, then the moment at the base of columns is half that of the 
moment at the top of columns. 

Fig.13.26 Rectangular portal frame.
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13.12. 4 Analysis for Wind Loads by Portal Method

Analysis of portal frames for the wind load is made for the whole frame assuming points 
of contra-flexure at the mid-height of columns and at mid-span of beams. In the portal 
method the horizontal shear force in each storey is assumed to be divided between the 
bays in proportion to their spans. The shear force in each bay is then divided equally 
between the columns. The column end moments are the column shear force multiplied by 
one-half the column height. Beam moments balance the column moments. The method is 
considered to be applicable to building frames of regular geometry up to 25 stories high 
with a height-to-width ratio of less than five. Variations in beam spans and column heights 
should be small. The application of the method is shown by the analyses of the frame for 
wind loads shown in Fig. 13.27.

Fig. 13.27 Rigid-jointed frame subjected to lateral loads.

(a) Shear force and bending moment in columns

Bay 1: width = L, Bay 2: width = 2L Column heights: 2h, 1.5 h and h.

Total shear force Q in any storey is shared by the two bays in proportion to their 
widths.

Bay 1 = Q/3, Bay 2: = 2Q/3.

shear force in left column=0.5 (Q/3)=Q/6
shear force in middle column=0.5(Q/3+2Q/3)=0.5Q

shear force in right column=0.5(2Q/3)=Q/3
The bending moment at the top and bottom of columns

= shear force in the column x (height of column /2)

 

Table 13.16 shows the shear force and bending moments in the columns. 

L 2L

h

1.5h 

2 h 

1.5W

3.5W

2.5W
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Table 13.16 Shear forces and bending moment in columns

 Q/W Storey 
height

Shear in columns/W Moment in columns/ 
(Wh)

   Left Middle Right Left Middle Right
Top 1.5 h 0.25 0.75 0.50 0.125 0.375 0.25
Middle 1.5+2.5 = 4.0 1.5h 0.67 2.0 1.33 0.50 1.50 1.0
Bottom 4.0 + 3.5 = 7.5 2h 1.25 3.75 2.5 1.25 3.75 2.5

Table 13.17 Moments in beams

Location Left beam Right beam
Top 0.125 Wh 0.25 Wh

Middle 0.625 Wh 1.25 Wh
Bottom 1.75 Wh 3.50 Wh

(b) Bending moments in beams

As shown in Fig. 13.28, the bending moments at the ends of the left beam are equal to sum 
of the bending moments at the ends of the columns on the left of the connecting the beam. 
Similarly the bending moments at the ends of the right beam are equal to sum of the bend-
ing moments at the ends of the columns on the right of the connecting the beam. Table 
13.17 shows the bending moments in the beams. Fig. 13.29 shows the bending moment 
distribution in the frame.

(c) Axial forces in columns

As shown in Fig. 13.28, from the bending moments in the beams, reactions R at the ends 
of the beam is given by

R=2×Bending moments/ Span.  

From the reactions in the beam, axial forces in the columns can be determined.

Table 13.18 shows the axial forces in columns. Note that the axial force in the middle 
column is zero and the axial force in the left column is tensile while in the right column 
it is compressive. 

Fig.13.28 Forces at joints and beams.
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Table 13.18 Axial forces in columns

Level Beam moments/
(Wh)

Reactions*(L/Wh) Axial force in column*(L/
Wh) 

 Beam 
left

Beam 
Right

Beam 
left

Beam 
Right

Column-Left and right

Top 0.125 0.25 0.25 0.25 0.25

Middle 0.625 1.25 1.25 1.25 0.25+1.25 = 1.50

Bottom 1.75 3.50 3.50 3.50 0.25+1.25+3.50 =5.0

Fig.13.29 Bending moment distribution in the frame.

Table 13.19 Axial forces in beams

 
Load at joint/W Shear columns/W Axial force in beam/W

 Left Right Beam-Left Beam-right

Top 1.5 0.25 0.5 1.5−0.25 = 1.25 0.5

Middle 2.5 0.67 1.33 2.5 + 0.25− 0.67 
= 2.08

1.33−0.5 = 
0.83

Bottom 3.5 1.25 2.5 3.5 + 0.67− 1.25 
= 2.92

2.5−1.33 = 
1.17

L 2L

h 

1.5h 

2 h 

1.5W

3.5W

2.5W
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Fig.13.30 Axial force in beams.

(d) Axial forces in beams

As shown in Fig. 13.30, by considering at joints equilibrium in the horizontal direction of 
shear forces in the columns and the axial forces in the beams, axial forces in beams can be 
determined. Table 13.19 shows the axial forces in beams. 



 

 
CHAPTER 14 

  
REINFORCED CONCRETE FRAMED  

BUILDINGS

14.1 TYPES AND STRUCTURAL ACTION

Commonly used single-storey and medium-rise reinforced concrete framed structures are 
shown in Fig. 14.1. Tall multi-storey buildings are discussed in Chapter 15. Only cast-in-
situ rigid jointed frames are dealt with, but the structures shown in the figure could also 
be precast.

The loads are transmitted by roof and floor slabs and walls to beams and to rigid frames 
and through the columns to the foundations. In cast-in-situ buildings with monolithic 
floor slabs, the frame consists of flanged beams and rectangular columns. However, it is 
common practice to base the analysis on the rectangular beam section, but in the design 
for sagging moments the flanged section is used. If precast slabs are used the beam sec-
tions are rectangular.

Depending on the floor system and framing arrangement adopted, the structure may be 
idealized into a series of plane frames in each direction for analysis and design. Such a 
system where two-way floor slabs are used is shown in Fig. 14.2; the frames in each direc-
tion carry part of the load. In the complete three-dimensional frame, torsion occurs in the 
beams and biaxial bending in the columns. These effects are small and it is stated in BS 
8110: Part 1, clause 3.8.4.3, that it is usually only necessary to design for the maximum 
moment about the critical axis. In rectangular buildings with a one-way floor system, the 
transverse rigid frame across the shorter plan dimension carries the load. Such a frame is 
shown in the design example in section 14.5. 

Fig. 14.1 (a) Single storey; (b) multi-storey.
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Resistance to horizontal wind loads is provided by
1.  braced structures-shear walls, lift shaft and stairs
2.  un-braced structures-bending in the rigid-jointed frames

The analysis for combined shear wall, rigid-jointed frame systems is discussed in  
Chapter 15.

In multi-storey buildings, the most stable arrangement is obtained by bracing with 
shear walls in two directions. Stairwells, lift shafts, permanent partition walls as well as 
specially designed external shear walls can be used to resist the horizontal loading. Shear 
walls should be placed symmetrically with respect to the building axes. If this is not done 
the shear walls must also be designed to resist the resulting torque. The concrete floor 
slabs act as large horizontal diaphragms to transfer loads at floor levels to the shear walls. 
BS 8110: Part 1, clause 3.9.2.2, should be noted: it is stated that the overall stability of a 
multi-storey building should not depend on unbraced shear walls alone. Shear walls in a 
multi-storey building are shown in Fig. 14.2.

Foundations for multi-storey buildings may be separate pad or of strip type. However, 
rafts or composite raft and basement foundations are more usual. For raft type founda-
tions the column base may be taken as fixed for frame analysis. The stability of the whole 
building must be considered and the stabilizing moment from dead loads should prevent 
the structure from overturning.

Separate pad type foundations should only be used for multi-storey buildings if foun-
dation conditions are good and differential settlement will not occur. For single-storey 
buildings, separate foundations are usually provided and, in poor soil conditions, pinned 
bases can be more economical than fixed bases. The designer must be satisfied that the 
restraint conditions assumed for analysis can be achieved in practice. If a fixed base settles 
or rotates, a redistribution of moments occurs in the frame.

14.2 BUILDING LOADS

The load on buildings is due to dead, imposed, wind, dynamic, seismic and accidental 
loads. In the UK, multi-storey buildings for office or residential purposes are designed for 
dead, imposed and wind loads. The design is checked and adjusted to allow for the effects 
of accidental loads. The types of load are discussed briefly.

14.2.1 Dead Load

Dead load is due to the weight of roofs, floors, beams, walls, columns, floor finishes, parti-
tions, ceilings, services etc. The load is estimated from assumed section sizes and allow-
ances are made for further dead loads that are additional to the structural concrete. 

14.2.2 Imposed Load

Imposed load depends on the occupancy or use of the building and includes distributed 
loads, concentrated loads, impact, inertia and snow. Loads for all types of buildings are 
given in BS 6399: Part 1:1996
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Fig.14.2 (a) Plan; (b) rigid transverse frame; (c) side elevation; (d) column; (e) T-beam.

14.2.3 Wind Loads

Wind load on buildings is estimated in accordance with BS 6399: Part 2:1997. The fol-
lowing factors are taken into consideration:
1. The basic wind speed Vb depends on the location in the country.
2. The design wind speed Vs

Vs=Vb×Sa×Sd×Ss×Sp
 

where
Sa is an altitude factor depending on the site altitude above mean sea level

Sd is a direction factor normally taken as 1,
Ss is a seasonal factor normally taken as 1

Sp is a probability factor, normally taken as 1.
3. Effective wind speed Ve 

Ve=Vs×Sb
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where Sb is terrain and building factor which depends on location of the building, whether 
close to the sea or the site is in town and also on the effective height. The height may refer 
to the total height of the building or the height of the part under consideration. In a multi-
storey building the wind load increases with height and the factor Sb should be increased 
at every floor or every three or four floors (Fig. 14.3). The factor varies from a minimum 
of 1.07 to a maximum of 2.12.

4. The dynamic pressure qs

qs=0.613Ve
2 N/m2  

qs is the pressure on a surface normal to the wind and is modified by the dimensions of the 
building and by openings in the building.

5. The pressure pe acting on an external surface of a building is given by
pe=qs Cpe Ca

 

where

Cpe is the external pressure coefficient. Values of Cpe are given for rectangular plan build-
ings and for different types of roofs.
Ca is the size effect factor for external pressures. In calculating the size effect factor Ca, 
the diagonal dimension of the loaded area above the level being considered is used.

6. Similar to the external pressure, the pressure pi acting on an internal surface of a 
building is given by

pi=qs Cpi Ca 
 

where depending on whether openings occur on the windward or leeward sides, internal 
pressure or suction exists inside the building. Tables and guidance are given in the code 
for evaluating internal pressure coefficient Cpi. Ca is the size effect factor for internal 
pressures.
7. For enclosed buildings, the net pressure p across a surface is given by

p=(pe–pi)
 

8. The net load P on an area A of a building surface is given by

P=0.85(1+Cr)pA  

where Cr= dynamic augmentation factor
Wind loads should be calculated for lateral and longitudinal directions to obtain loads on 
frames or shear walls to provide stability in each direction. In asymmetrical buildings it 
may be necessary to investigate wind from all directions.

14.2.4 Load Combinations

Separate loads must be applied to the structure in appropriate directions and various types 
of loading combined with partial safety factors selected to cause the most severe design 



 

Reinforced concrete framed buildings  533

condition for the member under consideration. In general the following load combinations 
should be investigated. 

(a) Dead load Gk + imposed load Qk

1. All spans are loaded with the maximum design load of 1.4Gk+1.6Qk;
2. Alternate spans are loaded with the maximum design load of 1.4Gk+1.6Qk and all other 

spans are loaded with the minimum design load of 1.0Gk.

(b) Dead load Gk + wind load Wk

If dead load and wind load effects are additive the load combination is 1.4 (Gk+ Wk). 
However, if the effects are in opposite directions the critical load combination is  
(1.0Gk–1.4Wk).

(c) Dead load Gk + imposed load Qk + wind load Wk

The structure is to be loaded with 1.2 (Gk+Qk+Wk).

Fig.14.3 Wind loading (a) Loads distributed on surfaces; (b) loads applied at floor levels.

14.2.4.1 Example on load Combinations

Fig. 14.4 shows a building supported on pinned base columns spaced 10 m in both direc-
tions. Calculate the maximum bending moment and axial force (compression and tension) 
in the columns. It is given that

Gk=15.0 kN/m2, Qk=12.5 kN/m2, Wk=1.0 kN/m2  
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Wind acts on the face AB or GD and can act from left to right or vice versa. 
In considering the load combinations to be considered for a particular force, it is neces-

sary to be aware of the effect of the load on a particular part of the structure on the force 
under consideration in order that appropriate load factors can be applied. 

In this example the following effects can be noted.

18 m

6 m

10 m6 m

A

B C
D

E F

G

Wind

Fig.14.4 Building supported by pinned base columns.

1. Left hand column:

•   Vertical load acting on the entire plan area BCD will cause compression in the  
column.

•  Wind blowing from right to left causes compression in the column

•  Wind blowing from left to right causes tension in the column

2. Right hand column:

•  Vertical load acting on a plan area CD will cause compression

•  Vertical load on plan area BC will cause tension.

•  Wind blowing from right to left causes tension in the column

•  Wind blowing from left to right causes compression in the column

Load combinations:

(i) Dead load Gk+imposed load Qk

There are four cases to be considered. They are

(a) (1.4 Gk+1.6 Qk) on the plan area BCD:
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Total vertical load=(1.4×15+1.6×12.5)×16×10=6560 kN
Taking moments about F,

axial force in CE={6560×16/2}/10=5248 kN
axial force in DF=6560–5248=1312 kN

 

(b) (1.4 Gk+1.6 Qk) on the plan area CD and 1.0 Gk on plan area BC 

Total vertical load on plan area CD

=(1.4×15+1.6×12.5)×10×10=4100 kN
Total vertical load on plan area BC

= (1.0×15)×6×10=900 kN
Taking moments about F,

 

axial force in CE={4100×10/2+900×(10+6/2)}/10=3220 kN
axial force in DF=4100+900–3220=1780 kN

 

(c) 1.0 Gk on the plan area CD and (1.4 Gk+1.6 Qk) on plan area BC

Total vertical load on plan area CD
= (1.0× 15)×10×10= 1500 kN

Total vertical load on plan area BC
= (1.4×15+1.6×12.5)×6×10=2460 kN

Taking moments about F,
axial force in CE={1500×10/2+2460×(10+6/2)}/10=3948 kN

axial force in DF=1500+2460–3948=12 kN

 

(d) 1.0 Gk on the plan area BCD:

Total vertical load=(1.0×15)×16×10=2400 kN
Taking moments about F,

axial force in CE={2400×16/2}/10=1920 kN
axial force in DF=2400–1920=480 kN

 

Column forces: From the above four combinations the maximum and minimum forces 
in the columns are:

Column CE

Maximum compressive force=5248 kN (from (a))
Minimum compressive force=1920 kN (from (d))
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Column DF

Maximum compressive force=1780 kN (from (b))
Minimum compressive force =12 kN (from (c))

 

(ii) Dead load and wind load: [(1.4 or 1.0) Gk ± 1.4 Wk]

For convenience, the calculations are done by considering wind and dead loads sepa-
rately.

(a) Wind load 1.4 Wk only 

wind load=1.4×1.0×18×10=252 kN
Axial force in columns=± 252×(6+ 18/2)/10=± 378 kN 

Shear force in columns=± 252/2=126 kN
Moment in columns=126×6=756 kNm

 

(b) 1.4 Gk on the plan area BCD:

Total vertical load=(1.4×15)×16×10=3360 kN  

Taking moments about F,

axial force in CE={3360×16/2}/10=2688 kN
axial force in DF=3360–2688=672 kN

 

(c) 1.4 Gk on the plan area CD and 1.0 Gk on plan area BC 

Total vertical load on plan area CD=(1.4×15)×10×10=2100 kN
Total vertical load on plan area BC=(1.0×15)×6×10–900 kN

 

Taking moments about F,

axial force in CE={2100×10/2+900×(10+6/2)}/10=2220 kN
axial force in DF=2100+900–2220=780 kN

 

(d) 1.0 Gk on the plan area CD and 1.4 Gk on plan area BC 

Total vertical load on plan area CD=(1.0×15)×10×10=1500 kN 
Total vertical load on plan area BC=(1.4×15)×6×10=1260 kN

 

Taking moments about F,

axial force in CE={1500x 10/2+1260 x (10+6/2)}/10=2388 kN
axial force in DF=1500+1260–2388=372 kN
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(e) 1.0 Gk on the plan area BCD:

Total vertical load=(1.0×15)×16×10=2400 kN  

Taking moments about F,

axial force in CE={2400×16/2}/10=1920 kN
axial force in DF=2400–1920=480 kN

 

Column forces: From the above four cases the critical axial force and moment combina-
tions are:

Column CE

Maximum compressive force
=2688 (from (b))+378 (from (a))=3066 kN

Moment in column=756 kNm
Minimum compressive force

=1920 (from (e))–378 (from (a))=1542 kN
Moment in column=756 kNm

 

Column DF

Maximum compressive force
=780 (from (c))+378 (from (a))=1158 kN

Moment in column=756 kNm
Minimum compressive force

=372 (from (e))–378 (from (a))=−6 kN
Moment in column=7564 kNm

 

(iii) [Dead+imposed+wind] load: 1.2 (Gk+Qk+Wk)

For convenience, the calculations are done by considering wind, dead and imposed loads 
separately. 

(a) Wind load

wind load=1.2×1.0×18×10=216 kN
Axial force in columns=± 216×(6+18/2)/10=± 324 kN

Shear force in columns=± 216/2=108 kN
Moment in columns=108×6=648 kNm

 

(b) Vertical load on the plan area BCD:

Total vertical load=(1.2×15+1.2×12.5)×16×10=5280 kN  
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Taking moments about F,

axial force in CE={5280×16/2}/10=4224 kN
axial force in DF=5280–4224=1056 kN

 

Column forces: From the above four cases the critical axial force and moment combina-
tions are:

Column CE

Maximum compressive force 
= 4224 (from (b))+324 (from (a))=4548 kN 

Moment in column=648 kNm
Minimum compressive force 

= 4224 (from (b))–324 (from (a))=3900 kN
Moment in column=648 kNm

 

Column DF

Maximum compressive force 
= 1056 (from (b))+324 (from (a))=1380 kN 

Moment in column=648 kNm
Minimum compressive force 

= 1056 (from (e))–324 (from (a))=732 kN
Moment in column=648 kNm

 

Design values: From a design point of view, the critical combinations probably are

Column CE: N=1542 kN, M=756 kNm
Column DF: N=−6 kN, M=756 kNm

 

Both arise from 1.0 Gk+1.4 Wk combination.

This example shows that even in a simple structure, the number of load cases to be 
considered may become quite large. In large scale structures, a good understanding of the 
behaviour of the structure under consideration is necessary in order to limit the number of 
load cases to be considered, by eliminating load cases clearly not critical.

14.3 ROBUSTNESS AND DESIGN OF TIES

Clause 2.2.2.2 of the code states that situations should be avoided where damage to a 
small area or failure of a single element could lead to collapse of major parts of the struc-
ture. The clause states that provision of effective ties is one of the precautions necessary to 
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prevent progressive collapse. The layout also must be such as to give a stable and robust 
structure.

The design of ties set out in section 3.12.3 of the code is summarized below. 

14.3.1 Types of Tie

The types of tie are
1.  peripheral ties

2.  internal ties

3.  horizontal ties to columns and walls

4.  vertical ties

The types and location of ties are shown in Fig. 14.5.

14.3.2 Design of Ties

Steel reinforcement provided for a tie can be designed to act at its characteristic strength. 
Reinforcement provided for other purposes may form the whole or part of the ties. Ties 
must be properly anchored and a tie is considered anchored to another at right angles if it 
extends 12 diameters or an equivalent anchorage length beyond the bar forming the other 
tie. 

Fig.14.5 Building ties (a) Plan; (b) section.
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14.3.3 Internal Ties 

Internal ties are to be provided at the roof and all floors in two directions at right angles. 
They are to be continuous throughout their length and anchored to peripheral ties. The ties 
may be spread evenly in slabs or be grouped in beams or walls at spacing not greater than 
1.5lr where lr is defined below. Ties in walls are to be within 0.5 m of the top or bottom 
of the floor slab.

The ties should be capable of resisting a tensile force which is the greater of

 

where

gk+qk=the characteristic dead plus imposed floor load (kN/m2), 
Ft=lesser of (20+ 4no) or 60 kN 
no=the number of storeys 
lr=is the greater of the distance in metres between the centres of columns, frames or 

walls supporting any two adjacent floor spans in the direction of the tie.

14.3.4 Peripheral Ties

A continuous peripheral tie is to be provided at each floor and at the roof. This tie is to 
resist Ft as defined above and is to be located within 1.2 m of the edge of the building or 
within the perimeter wall.

14.3.5 Horizontal Ties to Columns and Walls

Each external column and, if a peripheral tie is not located within the wall, every metre 
length of external wall carrying vertical load should be tied horizontally into the structure 
at each floor and at roof level. The tie capacity is to be equal to

• the greater of 2Ft or (ls/2.5) Ft if less , or
• 3% of the ultimate vertical load carried by the column or wall,

where ls is the floor-to-ceiling height in metres.
Where the peripheral tie is located within the walls the internal ties are to be anchored 

to it.

14.3.6 Corner Column Ties

Corner columns are to be anchored in two directions at right angles. The tie capacity is the 
same as specified in section 14.3.5 above.
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14.3.7 Vertical Ties

Vertical ties are required in buildings of five or more storeys. Each column and load bear-
ing wall is to be tied continuously from foundation to roof. The tie is to be capable of 
carrying a tensile force equal to the ultimate dead and imposed load carried by the column 
or wall from one floor.

14.4 FRAME ANALYSIS

14.4.1 Methods of Analysis

The methods of frame analysis that are used may be classified as
1.  using solutions for standard frames
2.  implified methods of analysing sub-frames given in section 3.2.1 of the code  
(Chapter 3, section 3.4.2, Fig.3.3)
3.   plane frame computer programs based on the matrix stiffness method of analysis

All methods are based on elastic theory. For the justification for using internal forces 
determined from elastic analysis for design at ultimate loads, see Chapter 13. BS8110 
permits redistribution of up to 30% of the peak elastic moment to be made in frames up 
to four storeys. In frames over four storeys in height where the frame provides the lateral 
stability, redistribution is limited to 10%.

In rigid frame analysis the sizes for members must be chosen from experience; or 
established by an approximate design before the analysis can be carried out. Ratios of 
stiffness of the final member sections should be checked against those estimated and the 
frame should be reanalysed if it is found necessary to change the sizes of members sig-
nificantly.

Although BS8110: Part 1, clause 2.5.2, permits the calculation of relative stiffness of 
members by different methods, it is usual to calculate the relative stiffnesses using gross 
section sizes. As noted previously in beam-slab floor construction it is normal practice to 
base the beam stiffness on a uniform rectangular section consisting of the beam depth by 
the beam rib width. The flanged beam section is taken into account in the beam design for 
sagging moments near the centre of spans.

14.4.2 Example of Simplified Analysis of Concrete Framed  
Building under Vertical Load

The application of the various simplified methods of analysis given in section 3.2 of the 
code is shown in the following example.

(a) Specification
The cross-section of a reinforced concrete building is shown in Fig.14.6(a). The frames 
are at 4.5 m centres, the length of the building is 36 m and the column bases are fixed. Pre-
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liminary sections for the beams and columns are shown in Fig.14.6(b). The floor and roof 
slabs are designed to span one way between the frames. Longitudinal beams are provided 
between external columns of the roof and floor levels only.

Fig.14.6 (a) Cross-section; (b) assumed member sections. 
The dead and imposed loading is as follows:

Roof:

total dead load=4.3 kN/m2

imposed load =1.5 kN/m2

 

Floor:

total dead load=6.2 kN/m2

imposed load=3.0 kN/m2

 

Wind load: The wind load is according to BS 6399–2:1997, Part 2: Code of practice for 
wind loads. The location is on the outskirts of a city in the Northeast of the UK.

The materials are grade C30 concrete and grade 460 reinforcement.
Determine the design actions for the beam BFK and column length FE for an internal 

frame for the two cases where the frame is braced and unbraced. Results for selected 
cases using only the simplified method of analysis from BS 8110: Part 1, section 3.2, are 
given.

(b) Loading 
Braced frame:

The following load cases are required for beam BFK for the braced frame. 
Case 1: (1.4 Gk+1.6 Qk) on the whole beam
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Case 2: (1.4 Gk+1.6 Qk) on BF and (1.0 Gk) on FK
Case 3: (1.0 Gk) on BF and (1.4 Gk+1.6 Qk) on FK 

Unbraced frame:
For the unbraced frame, an additional load case is required:
Case 4: 1.2(Gk+Qk) on the whole beam
Using a frame spacing of 4.5 m c/c, the characteristic loads are as follows.

Dead load:

Roof 4.3×4.5=19.4 kN/m
Floors 6.2×4.5=27.9 kN/m

 

Imposed load:

Roof 1.5×4.5=6.8 kN/m
Floors 3.0×4.5=14.5 kN/m

 

(c) Section properties

The beam and column properties are given in Table 14.1.

Table 14.1 Section properties

Member bxd L (mm) I (mm4) I/L

Columns FE, AB, KJ 400×500 5500 4.17×109 7.58×105

Columns GF, BC, KL 300×400 4000 1.60×109 4.0×105

Beam FK 400×600 8000 7.20×109 9.0×105

Beam BF 400×600 6000 7.20×109 12.0×105

(d) Sub-frame analysis for braced frame
Although the correct way to analyse the structure is to analyse the entire frame, for sim-
plicity, very often instead of analysing the entire frame, only parts of the structure called 
sub-frames are analysed. BS 8110 in clause 3.2.1.2 allows the use of sub-frame consisting 
of the beams at one level together with the columns above and below. The sub-frame used 
in this example is shown in Fig. 14.7.

The frame is analysed for the three load cases using the Stiffness Method of analysis. 
From characteristic dead and imposed loads, 

(1.4 Gk+1.6 Qk)=(1.4×27.9+1.6×14.5)=60.66 kN/m, 1.0 Gk= = 27.9 kN/m
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8 m6 m

B K

F 

4 m

5.5 m

E

GC

A

L

J

Fig.14.7 Simplified subframe for beam BFK.
The fixed end moments are:

Case 1:

span BF=60.66×62/12=181.98 kNm,
span FK=60.66×82/12=323.2 kN m

 

Case 1:

span BF=60.66×62/12=181.98 kNm
span FK=27.9×82/12=148.80 kN m

 

Case 3:

span BF=27.9×62/12=83.70 kNm
span FK=60.66×82/12=323.2 kN m

 

The stiffness matrix K and load vector F for the three load cases are
 

The displacement vectors for the three load cases are
 

where E=Young’s modulus.
The shear force and bending moment diagrams for beam BFK for are shown in Fig. 

14.8 and Fig. 14.9 and the results of analysis are shown in Table 14.2. 
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Fig.14.8 Shear force diagrams for beam BFK in sub-frame.

Fig.14.9 Bending moment diagrams for beam BFK in sub-frame.

(e) Sub-sub-frames

As an alternative to the use of sub-frame discussed above, the code in clause 3.2.1.2.3 
allows the use of sub-frames which are part of sub-frames. The bending moment in an 
individual beam may be found by considering a sub-frame formed by consisting of only 
that beam, the columns attached to the ends of the beam and the beams on either side with 
half of their actual stiffness. Fig 14.10 shows the two sub-frames which can be analysed 
to determine the bending moment in the beam BF and FK respectively.

The stiffness matrix K and load vector F for the three load cases for sub-sub-frame for 
beam BF are 
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The displacement vectors for the three load cases are
 

The stiffness matrix K and load vector F for the three load cases for sub-frame for beam 
FK are

 

The resulting displacement vectors for the three load cases are
 

Table 14.2 shows the bending moments in the members from the subframe analysis

Fig.14.10 Sub-sub-frame for beam BF and beam FK.

(f) Continuous beam simplification

According to clause 3.2.1.2.4, an approach which is even more conservative than the sub-
sub-frames considered above is to assume that the beams at any one level is a continuous 
beam over simple supports. The beam BFK can be taken as a continuous beam over sup-
ports that provide no restraint to rotation. The load cases are the same as for the sub-frame 
analysis above. 

B F K

B F K
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The stiffness matrix K and load vector F for the three load cases are
 

The resulting displacement vectors for the three load cases are
 

The bending moments from the three simplified idealizations viz. continuous beam ide-
alization, the two sub-sub-frames and the full sub-frame are shown in Table 14.2. The 
results indicate that for moments MBF and MFB, the full sub-frame and the sub-sub-frame 
for beam BF produce fairly close results. Similarly, the results indicate that for moments 
MFK and MKF, the full sub-frame and the sub-sub-frame for beam FK produce fairly close 
results. The continuous beam idealization is not particularly accurate.

Fig.14.11 Asymmetrically loaded columns.

(g) Asymmetrically loaded columns
Where the beam moments have been obtained from the continuous beam idealization, the 
moments for a column are calculated assuming that column and beam ends remote from 
the junction considered are fixed and that beams have one-half their actual stiffness. If the 
continuous beam idealization is used, then the moments MBF and MKF should be taken to 
be equal to those found from the sub 
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frame analyses for the asymmetrically loaded outer columns. Fig. 14.11 shows the three 
asymmetrically loaded columns.

The stiffness matrix and the load vectors and the corresponding joint rotations for the 
three cases are:

Asymmetrical Column ABC:

K=E×105[70.32][θB], F=[181.98 181.98 83.70]
E×105θB=[2.5879 2.5879 1.048l]

 

Asymmetrical Column EFG:

K=E×105[8832][θF], F=[141.54 −33.18 239.82]
E×105θF [1.6026 −0.3757 2.7154]

 

Asymmetrical Column JKL:

K=E×105[64.l6][θK], F=[−323.52–148.80 −323.52]
E×105θk =[−5.0424 −2.3192 −5.0424]

 

The results of analysis are shown in Table 14.3.

(h) Un-braced frame analysis for vertical loads

The analysis for vertical loads can be made in the same way as for the braced frame. The 
load in this case is 1.2 (Gk+Qk).

14.4.3 Example of Simplified Analysis of Concrete Framed 
Building for Wind Load by Portal Frame Method

(a) Wind loads

The wind loads are calculated using BS 6399:1997, Part 2: Code of practice for wind 
loads. For normal calculations the so called Standard Method is used.

The case for which wind load is calculated is wind acting normal to the 40 m width.

The maximum height H=14.5 m above the ground. 
Reference height Hr=14.5 m 

Effective height He=Hr=14.5 m 
Building type factor Kb=1.0 (Table 1 of the Code)

 

Dynamic augmentation factor Cr, (Fig. 3 of the Code)

Cr ≈ 0.04  
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The code rules apply. 

Basic wind speed: Vb=20 m/s (Assumed)
Altitude factor, Sa≈1.0

Direction factor, Sd=1.0
Seasonal factor, Ss=1.0

 

Probability factor, Sp=1.0
Site wind speed, Vs=Vb×Sa×Sd×Ss×Sp=20 m/s

 

Terrain and building factor, Sb: Site in town, with the closest distance to sea upwind from 
the site is greater than 100 kM. Using Table 4 of code and interpolating between 1.85 for 
30 m and 1.95 for 50 m,

Sb=1.88  

Effective wind speed:

Ve=Vs×Sb=20×1.88=37.6 m/s  

Dynamic pressure:

qs=0.613 Ve
2=0.613×37.62=866.64 N/m2=0.87 kN/m2

External and internal surface pressure coefficient, Cpe and Cpi (Table 5 of the Code). 
Smaller dimension of the building, D=14 m

H=14.5m
D/H=1.04

Cpe (Windward (front) face)
= 0.85–(0.85–0.6) (1.04–1.0)/ (4.0–1.0)=0.847

Cpe (leeward (rear) face)=–0.5

 

Size factor, Ca: (Fig.4 of the Code)

Diagonal dimension of the area on which wind acts,

α=√(362+14.52)=38.45m  

Using the factors for site in town,

Ca≈0.83  

External surface pressure:

pe=qs×Cpe×Cα=0.87×0.847×0.83=0.612 kN/m2 (front face)
= 0.87×(–0.5)×0.83=−0.361 kN/m2 (rear face)
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Total pressure p on the building:

p=0.612–(–0.361)=0.973 kN/m2  

Fig. 14.12 shows the wind load acting as a uniformly distributed load over the height of 
the building. 

4 m

4 m

5.5 m

Fig.14.12 Rigid frame subjected to wind load.

6 8 

4.0 

4.0 

5.5 

7.74

18.38

15.48

Fig.14.13 Loads at joints and bending moment diagram.

Total horizontal load per frame 
= 0.85×(1+Cr)×p×A 

= 0.85×(1+0.04)×0.973×(4.5×13.5)=52.25 KN

 

The total load is distributed at the storey levels in proportion as follows:

Roof level=52.25×(0.5×4)/13.5=7.74 KN 
Second floor level=52.25×4.0/13.5=15.48 KN

First floor level=52.25×{0.5(4.0+5.5)}/13.5=18.38 kN

 

Fig. 14.13 shows the concentrated loads acting at roof and storey levels.
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(b) Analysis by Portal method
The moments and shear forces due to wind load are calculated using the portal method 
explained in Chapter 13, section 13.12.4.

(i) Shear in bays
Total shear Q in each storey is divided between the bays in proportion to their spans.

Bay 1: Span=6 m
Bay 2: Span=8 m

Shear in bay 1=Q×6/(6+8)=0.4286 Q
Shear in Bay 2=Q×8/(6+8)=0.5714 Q

 

(ii) Shear in columns
The shear in each bay is divided equally between the columns. 

Shear in left column=0.5×0.4286 Q=0.2143 Q
Shear in the middle column=0.5×(0.4286+0.5714) Q=0.5Q

Shear in right column=0.5×0.5714 Q=0.2857 Q

 

(iii) Bending moment in columns
Bending moment at the top and bottom of a column is equal to product of shear in the 
column and storey height/2.

Table 14.4a summarises the storey shear forces and shear forces in columns. Table 
14.4b shows bending moment in columns.

Table 14.4a Shear forces in kN in columns

Location Q(kN) Storey Shear in columns (kN)
height Left Middle Right

Top 7.74 4.0 1.66 3.87 2.21
Middle 7.74+15.48=23.22 4.0 4.97 11.61 6.63
Bottom 23.22 + 18.38 = 41.60 5.5 8.92 20.80 11.89

Table 14.4b Bending moments in kNm in columns

Location Storey height Shear in columns Moment in columns
 Left Middle Right Left Middle Right
Top 4.0 1.66 3.87 2.21 3.32 7.74 4.42
Middle 4.0 4.97 11.61 6.63 9.94 23.22 14.26
Bottom 5.5 8.92 20.80 11.89 24.53 57.2 32.70
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(iv) Bending moment in beams

As shown in Fig. 13.28, the bending moments at the ends of the left beam are equal to sum 
of the bending moments at the ends of the columns on the left connecting the beam. Simi-
larly the bending moments at the ends of the right beam are equal to sum of the bending 
moments at the ends of the columns on the right connecting the beam. Table 14.5 shows 
the bending moments in the beams. Fig. 14.13 shows the bending moment distribution in 
the frame.

Table 14.5 Moments in beams

Location Left beam Right beam

Top 3.32 4.42

Middle 14.26 17.68

Bottom 34.47 45.96

(v) Axial force in columns

Since there is no distributed load on the beams and the contra-flexure point is at mid-span, 
reactions R at the ends of the beam is given by

R=2×Bending moments at the ends/ Span  

From the reactions in the beam, axial forces in the columns can be determined. Table 14.6 
shows the axial forces in columns. Forces reverse in sign if the wind blows from right to 
left.

(vi) Axial forces in beams

As shown in Fig.13.33, Chapter 13, from the shear forces in the columns and by consider-
ing the horizontal force equilibrium at the joints, axial forces in beams can be determined. 
Table 14.7 shows the axial forces in beams.

Table 14.6 Axial forces in columns

Level Beam moments Reactions in beams Axial force in columns
 Beam-left Beam-Right   

Top 3.32 4.42 1.11 1.11

Middle 14.26 17.68 4.42 1.11+4.42=5.53

Bottom 34.47 45.96 11.49 5.53+11.49=17.02
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Table 14.7 Axial forces in beams

 Load at joint Shear columns Axial force in beam
  Left Right Beam-Left Beam-right
Top 7.74 1.66 2.21 7.74−1.66=6.08 1.66

Middle 15.48 4.97 6.63 15.48+1.66–4.97=12.17 6.63−2.21 =4.42

Bottom 18.38 8.92 11.89 18.38+4.97–8.92=14.43 11.89–6.63=5.26

14.5 BUILDING DESIGN EXAMPLE

14.5.1 Example of Design of Multi-Storey Reinforced Concrete Framed Buildings

Specification
The framing plans for a multi-storey building are shown in Fig. 14.14. The main dimen-
sions, structural features, loads, materials etc. are set out below.

(a) Overall dimensions
The overall dimensions are 36 m×22 m in plan×36 m high

Length: six bays at 6 m each; total 36 m
Breadth: three bays, 8 m, 6 m, 8 m; total 22 m
Height: ten storeys, nine at 3.5 m+one at 4.5 m

(b) Roof and floors
The floors and roof are constructed in one-way ribbed slabs spanning along the length of 
the building. Slabs are made solid for 300 mm on either side of the beam supports. 

(c) Stability
Stability is provided by shear walls at the lift shafts and staircases in the end bays.

(D) Fire resistance
All elements are to have a fire resistance period of 2h.

(e) Loading condition
Roof imposed load: 1.5 kN/m2 
Floors imposed load: 3.0 kN/m2

Finishes, roof: 1.5 kN/m2

Finishes, floors, partitions, ceilings, services: 3.0 kN/m2

Parapet: 2.0 kN/m
External walls at each floor: 6.0 kN/m
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Fig.14.14 (a) Floor plan and roof plan; (b) end elevation.

The load due to self-weight is estimated from preliminary sizing of members. The imposed 
load contributing to axial load in the columns is reduced by 50% for a building with ten 
floors including the roof as permitted by Table 2 of BS 6399–1, 1996.
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(f) Exposure conditions
External moderate
Internal mild

(g) Materials
Concrete grade 30 Reinforcement grade 460

(h) Foundations
Pile foundations are provided under each column and under the shear walls.

Scope of the work
The work carried out covers analysis and design for
1. transverse frame members at floor 2 outer span only
2. an internal column between floors 1 and 2
The design is to meet requirements for robustness. In this design, the frame is taken as 
completely braced by the shear walls in both directions. A link-frame analysis can be car-
ried out to determine the share of wind load carried .by the rigid frames (Chapter 15). The 
design for dead and imposed load will be the critical design load case.

Preliminary sizes and self-weights of members:

(a) Floor and roof slab
The one-way ribbed slab is designed first. The size is shown in Fig. 14.15. The weight of 
the ribbed slab is 0.5 m wide×1 m is

= 24[(0.5×0.275)–(0.375×0.215)]=1.365 kN/m
= 1.365/ (0.5) =2.73 kN/m2

 

(b) Beam sizes
Beam sizes are specified from experience:

depth=span/15=500 mm,
width=0.6×depth=400 mm, say

 

Preliminary beam sizes for roof and floors are shown in Fig. 14.15. The weights of the 
beams including the solid part of the slab are: 

roof beams, 24[(0.3×0.45)+(0.6×0.275)]=7.2 kN/m
floor beams, 24[(0.4 x 0.5)+(0.6 x 0.275)]=8.8 kN/m.
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Fig 14.15 (a) Roof and floor slab; (b) roof and floor beams; (c) columns

(c) Column sizes
Preliminary sizes are shown in Fig. 14.15. The self-weights are as follows. 

Floors 1 to 3:0.552×24=7.3 kN/m
Floors 3 to 7:0.452×24=4.9 kN/m 

Floor 7 to roof: 0.42×24=3.8 kN/m
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Fig 14.16 (a) Sub-frame; (b) Case 1, all spans 1.4 Gk + 1.6 Qk; (c) Case 2, maximum load 
on outer spans; (d) Case 3, maximum load on centre span.
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Vertical loads

(a) Roof beam
The floor slab extends to only (6000–2×300–300)=5100 mm 

dead load (slab, beam, finishes)=(2.73×5.1) floor slab
+ 7.2 beam self weight+(1.5×6) finishes= 35 kN/m

imposed load=6×1.5=9 kN/m

 

(b) Floor beams
The floor slab extends to only (6000–2×300–400)=5000 mm 

dead load=(2.73×5) floor slab+8.8 beam self weight
+(3×6) finishes=40.5kN/m

imposed load=6×3=18 kN/m

 

(c) Internal column below floor 2
The entire load over a width (8+6)/2=7 m is carried by the internal column.

The dead load is:

Beam: 7[35 roof+(40.5×9 floors)]=2796.5 kN Column self weight: 
3.5[7.3+4(4.9+3.8)]=147.35 kN

Total: 2943.85 kN 
imposed load=7×[9 roof+(18×9 floors)]=1197 kN

 

Table 2 of BS 6399, Part 1 allows for 40% reduction in total distributed imposed floor 
loads carried by a member for the number of floors including roof up 10. 

reduced imposed load=(1–0.4)×1197=718.2 kN

Sub-frame analysis

(a) Sub-frame
The sub-frame consisting of the beams and columns above and below the floor level 1 is 
shown in Fig. 14.16. The properties of members are shown in Table 14.8.

(c) Loads and load combinations
(i) Case 1: All spans are loaded with (1.4Gk+1.6Qk)

(1.4Gk+1.Qk)=(1.4×40.5)+(1.6 x 18)=85.5 kN/m 
The fixed end moments are:

Spans BE and HM: 85.5×82/12=456 kNm
Span EH: 85.5×62/12=256.5 kNm

 



 

Reinforced concrete framed buildings  561

(ii) Case 2: Alternate spans are loaded with (1.4Gk+1.6Qk) and the other spans are loaded 
with 1.0Gk

1.0Gk=40.5 kN/m  

The fixed end moments are:

Spans BE and HM: 85.5×82/12=456 kNm
Span EH: 40.5×62/12=121.5 kNm

 

(iii) Case 3: Alternate spans are loaded with (1.4Gk+1.6Qk) and the other spans are loaded 
with 1.0Gk 

The fixed end moments are

Spans BE and HM: 40.5×82/12=216 kNm
Span EH: 85.5×62/12=256.5 kNm

 

The design load cases are shown in Fig. 14.16.

Table 14.8 Section properties

Member Length (mm) Second Moment of area, I (mm4) Stiffness, I/L

BC, MN 4500 3.417×109 7.5938×105

EF, HK 4500 7.626×109 16.9456×105

AB, LM 3500 3.417×109 9.7634×105

DE, GH 3500 7.626×109 21.787×105

BE, HM 8000 4.167×109 5.208×105

EH 6000 4.167×109 6.945×105

Note: Columns BC, EF and MN, the length is taken as 4.5 m, although it is shown as 5.5 
m in Fig. 14.14 and Fig. 14.16. It is assumed that they are deformable only over 4.5 m.

(d) Analysis

The stiffness matrix relationship is given by

 

Since the structure and the loading are both symmetrical, indicating that
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The stiffness matrix and the load vector can be condensed to

 

The condensed load vector for the three cases and the corresponding displacement vector 
are given by 

 

Table 14.9 shows the values of the bending moments in the symmetrical half of the sub-
frame. The shear force and bending moment diagrams for the load cases are shown in  
Fig. 14.17 and Fig. 14.18 respectively 

Fig.14.17 Shear force diagram for a symmetrical half of beam.
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Fig.14.18 Bending moment diagram for a symmetrical half of beam.

Table 14.9 Bending moments in kNm in the sub-frame

Moment Case 1 Case 2 Case 3
MBE −361.47 −367.21 −165.49

MEB 482.36 468.30 242.55

MEH −275.08 −150.03 −255.35

MBA 203.32 206.55 93.08

MBC 158.15 160.66 72.40

MED −116.59 −179.02 7.20

MEF −90.69 −139.25 5.60

Design of the outer span of beam BEH

(a) Design of moment reinforcement
(i) Section at mid-span: The exposure is mild, and the fire resistance 2 h. Cover is 30 
mm for a continuous beam. Refer to BS8110: Part 1, Tables 3.4 and 3.5. Assume 25 mm  
diameter bars and 10 mm diameter links:

d=500−30−10−12.5=447.5mm  

Maximum span moment occurs for case 2 loading. The support moments from Table 14.8 
are
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MBE=367.21, MEB=468.3 kNm, load q=85.5 kN/m, Span=8 m
 

Reaction at left support

Vleft=0.5×85.5×8+(367.21−468.3)/8=329.36 kN 
Shear force is zero when

329.36−85.5 α=0, α=3.85m  

Maximum span moment

Mspan=−367.21+329.36×3.85−85.5×3.852/2=267.16 kNm 
k=M/ (fcub d2)=267.16×106 / (30×1000×447.52)=0.044<0.156 

z/d=0.5+√(0.25–0.044/0.9)=0.948<0.95
As=267.16×106/ (0.948×447.5×0.95×460)=1440 mm2

 

Provide 4T25 to give an area of 1963 mm2 (Fig. 14.19). This will provide for tie reinforce-
ment.

(ii) Section at outer support: Maximum support moment occurs for case 2 loading. From 
Table 14.8,

MBE=367.21 kNm.  

At support tension is at the top. The flange will be in tension. The beam section is there-
fore rectangular.

b=400 mm. Provide for 25 mm bars; d=447.5 mm.
k=M/ (fcub d2)=367.21×106 / (30×400×447.52)=0.153<0.156 

z/d=0.5+√(0.25–0.153/0.9)=0.783<0.95
As=367.21×106/ (0.783×447.5×0.95×460)=2398 mm2

 

Provide 5T25=2454 mm2.

(iii) Section at inner support: Maximum support moment occurs for case 1 loading. 
From Table 14.8, MEB=482.36 kN m. 

Assuming 32 mm bars,

d=500−30−10−32/2=444 mm
k=M/ (fcub d2)=482.36×106 / (400×4442×30)=0.203>0.156

 

Need compression reinforcement.
Design as a doubly reinforced beam.

d′= 52.5 mm; d′ /d=0.121<0.171.  

Compression steel yields.
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0.156 bd2 fcu=0.156×400×4442×30×10−6=369.04 kNm
As=369.04×106/ (0.775×444×0.95×460) +(482.36−369.04)×106/ 

{(444−52.5)×0.95×460}
As=(2454+663)=3117 mm2

As′= 663 mm2

 

For the compression steel, carry 2T25 through from the centre span.
As′=982 mm2. For the tension steel, provide 4T32 to give an area of 3217 mm2. 

Fig.14.19 Beam BE (a) Mid-span; (b) outer column; (c) inner column.
Note: Links not shown for clarity.

(b) Curtailment and anchorage
As moments have been calculated by detailed analysis, the cut-off points will be calcu-
lated in accordance with section 3.12.9.1 in the code.

(i) Top steel at outer support: Refer to Fig.14.19. The section has 5T25 bars at the top 
and 2T25 bars at the bottom. Determine the positions along the beam where the three bars 
can be cut off.

The moment of resistance of the section with 2T25 bars (As=981 mm2) at top in tension 
is calculated.

Assuming that tension steel yields and the stress in the steel is 0.95 fy,
Equate the forces in the section:

0.95×460×981=0.45×30×400(0.9x)
x=88 mm

 

Check strain in tension steel 

εs=0.0035×(447.5−x)/x
=14.3 x 10−3>yield strain (0.95×460/E=2.185×10−3)
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Tension steel yields, fs=0.95×460=437 N/mm2 

Taking moment about the tension steel, moment of resistance is given by

MR=0.45 fcu b (0.9 x) (d−0.9x/2)
=(0.45×30×400×(0.9×88) (447.5−0.45×88)×10−6

=174.45 kNm

 

Using case 2 loads, the theoretical cut-off point for two bars is given by the solution of 
the equation

−174.45=−367.21+329.36×a−85.5×a2/2, giving α=0.64 m  

In accordance with the general rules for curtailment of bars in the tension zone given 
in clause 3.12.9.1, using the code designation, the code states that one of the following 
requirements should be satisfied:

(a) effective depth of the member, d=447.5 mm
(c) The bar must continue for an anchorage length (40 diameters=1000 mm) beyond 

the point where it is no longer required to resist bending moment.
3T25 will therefore extend a distance of (0.64+anchorage length)=1.64 m from the 

centre line of support.
The position of point of contra-flexure is given by

0=−367.21+329.36 a−85.5 a2/2, giving α=1.35 m  

The remaining 2T25 bars will extend to lap with 2T32 top bars running from the inner 
support.

(ii) Top steel at inner support: The section has 4T32 bars at the top and 2T25 bars at the 
bottom. Determine where 2T32 can be stopped.

Equate the forces in the section with 2T32 at top and 2T25 at bottom. Assume that ten-
sion steel yields but compression steel remains elastic.

Strain in compression steel is

εsc=0.0035 ×(x−52.5)/x 
stress in compression steel is

fsc=εsc x 200×103 =700 (x−52.5)/x 
Equate the total tension and total compression forces.

0.95×460×1608=0.45 x 30×400(0.9x)+981×700 (x−52.5)/x  

Simplifying

x2−3.2914x−7418.0558=0, giving x=88 mm  

Check strains in compression and tension steel to see if the assumptions were justified.
Compression steel:
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εsc=0.0035 ×(x−52.5)/x

εsc=1.412×10−3<yield strain (0.95×460/E=2.185×10−3)

fsc=1.412×10−3×200×103=282 N/mm2

 

Tension steel:

εs=0.0035 ×(444−x)/x

εs=14.66 ×10−3>yield strain (0.95×460/E=2.185×10−3)

 

Tension steel yields, fs=0.95×460=437 N/mm2

Taking moment about the tension steel, moment of resistance is given by

MR=0.45 fcu b (0.9 x) (d−0.9x/2)+fscAs 
̀ (d−d ̀)

=[(0.45×30×400×(0.9×88)(444−0.45×88)+981×282(444−52.5)]×10−6

MR=172.95+108.31=281.26 kNm

 

As shown in Fig. 14.18, maximum support moment occurs for case 1 loading. From  
Table 14.8,

MBE=361.47 kNm, MEB=482.36 kNm, q=85.5 kN/m, L=8 m
 

Reaction on the right

V=85.5×8/2−(361.47−482.63)/8=357.15 kN  

Determine the position a from the right hand support where the moment is equal to moment 
of resistance due to 2T32 at top and 2T25 at bottom.

−281.26=−482.26+357.15 a−85.5×a2/2, giving α=0.61 m
 

The 2T32 at top therefore will continue to a distance of (0.61 m+anchorage length of 
40×bar diameter)=1.89 m from the right hand support.

The position of contra−flexure is given by

0=−482.26+357.15 a−85.5×a2/2, giving α=1.69 m
 

The remaining 2T32 at top therefore will continue to a distance of (1.69 m+ anchorage 
length of 40×bar diameter)=2.93 m from the right hand support.

(iii) Bottom steel at outer support: The bottom steel consists of 4T25 bars. The point 
where two bars can be cut off will be determined. Assume that at the theoretical cut off 
points the effective bottom steel consists of 2T25 bars. The beam section is shown in Fig. 
14.19 with a flange breadth of 1000 mm.
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Calculate the moment of resistance due to 2T25 only. Neglect the ‘compression steel’ 
at the top and assuming that tension steel yields, equate forces in the section:

0.95×460×981=0.45×30×1000×0.9x, giving x=35.3 mm 
z=447.5−0.5×0.9×35.3=432 mm>(0.95d=425 mm)

 

The moment of resistance of the section is

MR=(0.95×460×981×425)×10−6=182.2 kNm  

Consider case 2 loads and solve the following equation to give the theoretical cut off 
points:

182.2=−367.21+329.36 a−85.5 a2/2
Solving, α=2.44 and 5.26 m

 

Left hand support: From the left hand support, extend 4T25 to a distance of

(2.44−anchorage length of 40 bar diameters)=1.44 m  

Right hand support: From the right hand support, extend 4T25 to a distance of

=(8.0−5.26)−anchorage length of 40 bar diameters=1.74 m  

The position of point of contra-flexure from left hand support is given by 

0 =−367.21+329.36 a−85.5 a2/2,
Solving, α=1.35 and 6.35

 

(iv) Anchorage of top bars at outer support: 5T25 bars are to be anchored. The arrange-
ment for anchorage is shown in Fig. 14.20. The anchorage length is calculated for pairs 
of bars.

A larger steel area has been provided than is required (section 14.5.6(a) (ii)).

The stress in the bars at the start of the bend is

0.95×460×2398/2454=427 N/mm2 
 

From Table 3.28 of the code, β=0.5 for type 2 deformed bars in tension.

Anchorage bond stress:

fbu=0.5 √fcu=0.5 √30=2.74 N/mm2  

Anchorage length

Assume bend radius=275 mm
Area of 25 mm bar=490 mm2

Fbt=427×490=209.23 kN
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centre to centre distance between bars:

ab=(400−2x 30−2×10−25)/4=74 mm

30.4 < 35.8 N/mm2

 

For outer bar:

ab=(cover+link+bar diameter)=65 mm

permissible stress is 33.9 N/mm

30.4<33.9 N/mm2

 

(v) Arrangement of longitudinal bar: The arrangement of the longitudinal bars is shown 
in Fig. 14.21.

(c) Design of Shear Reinforcement

The shear force envelope constructed from the shear force diagrams is shown in Fig. 
14.17. Take account of the enhanced shear strength near the support using the simplified 
approach set out in clause 3.4.5.9 of the code.

(i) Inner support: From case 1 loading, shear force at support

V=357.11 kN
 

Distance from centre line of support (column=550 mm wide) to a distance (d= 444) from 
the support

=550/2+ 444=719 mm
 

The shear at d from the face of the support is

V=357.11–85.5×(0.719)=295.6 kN.

v=295.6×103/ (400×444)=1.66 N/mm2

 

The effective tension steel is 4T32 bars, As=3217 mm2, d=444 m (Fig. 14.20).

The bars continue for at least a distance d past the section. 

100 As/(bv d)=100×3217/ (400×444)=1.81<3.0

400/d=400/444<1, take as 1.0
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Fig.14.20 Anchorage arrangement for top bars.

vc= (0.79/1.25)×1.811/3×(1)1/4×(30/25)1/3=0.82 N/mm2  

Use T10 links, Asv=157 mm2: Spacing of links,

157>400 sv (1.66−0.82)/ (0.95×460)
sv<204 mm.

 

Maximum spacing <0.75d=326 mm

Provide links at 200 mm centres.

The spacing for minimum links is

157>400 sv (0.4)/(0.95×460) 
sv<429 mm

 

Maximum spacing <0.75d=326 mm

Adopt a minimum spacing of 300 mm.

Determine the distance from the centre of the inner support where minimum links at 
300 mm centres can be used. At this location the effective tension steel is 2T32 bars.

As=1608 mm2, d=444 mm  

Calculate vc for this value. 
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100 As/(bv d)=100×1608/(400×444)=0.91<3
400/d=400/444<1, take as 1.0

vc=(0.79/1.25)×0.911/3×(1)1/4×(30/25)1/3=0.65 N/mm2

 

Taking account of the shear resistance of the T10 links at 300 mm centres, the average 
shear stress v in the concrete can be found:

v−0.65=0.95×460×157/(400×300)=0.57 N/mm2

v=1.22 N/mm2

 

The shear V at the section is

V=1.22×444×400×10−3=216.7 kN  

The distance a from the centre support where the shear force is 216.7 kN is given by

216.7=357.1−85.5×a, giving α=1.64m  

where 85.5 kN/m is the uniformly distributed load on the beam.

(ii) Outer support: From case 1 and case 2 loading, shear force V at support is

V=329.36 kN  

Distance from centre line of support (column=450 mm wide) to a distance d from the 
support

= 450/2+447.5=672.5 mm  

The shear at d from the face of the support is

V=329.36−85.5×(0.673)=271.9 kN.  

The shear stress

v=271.9×103/ (400×444)=1.53 N/mm2  

For 4T25 bars, As=1963 mm2, at the top gives

100 AS/ (bv d)=100×1963/ (400×444)=1.11<3.0
400/d=400/444<1, Take as 1.0

vc= (0.79/1.25)×1.111/3×(1)1/4×(30/25)1/3=0.70N/mm2

 

The spacing sy for the T10 links is

157>400 sv (1.53−0.70)/(0.95×460)
Sv= 207 mm.

 

For 2T25 bars, As=982 mm2,
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100 As/(bv d)=100×982/(400×444)=0.55<3 
400/d=400/444<1, take as 1.0 

vc= (0.79/1.25)×0.551/3×(1)1/4×(30/25)1/3=0.55 N/mm2

 

For a minimum spacing of 300mm with vc=0.55 N/mm2, calculate the permissible value 
of v.

157>400 x 300(v−0.55)/ (0.95 x 460), v=0.57 N/mm2

v=0.57+0.55=1.12 N/mm2

V=1.12×400×444×10−3=198.9 kN

 

This shear occurs at a from the left hand support.

198.9=329.36–85.5×a, giving α=1.53 m  

(iii) Rationalization of link spacings: The following rationalization of link spacings will 
be adopted:

1.  From face of outer support to a distance of 1400mm, provide 9T10–175mm c/c
2. From face of centre (inner) support to a distance of 1575 mm, provide 10T10–
175mmc/c
3. Centre portion over a distance of 5025 mm provide 18T10–280 mm c/c 
The link spacing is shown in Fig. 14.21.

(d) Deflection
Refer to Fig. 14.15

bw/b=400/1000=0.4>0.3  

Interpolating from Table 3.10 of the code the basic span/d ratio is

20.8+(26−20.8)×(0.4−0.3)/(1.0−0.3)=21.5  

Modification factor for tension steel:

M/(bd2)=267.16×106/(400×447.52)=3.33

fs=(2/3)×460×(1569/1963)=245 N/mm2

0.55+(477−245)/{120×(0.9+3.33)}=1.01

 

The modification factor for compression reinforcement with 2T25 bars supporting the 
links is
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100×As ̀ provided / (bd)=100×981/(1000×447.5)=0.219
1+0.219/(3+0.219)=1.07

allowable span/d ratio=21.5×1.01×l.07=23.2
actual span/d ratio=8000/447.5=17.9

 

The beam is satisfactory with respect to deflection.

(e) Cracking

Referring to Table 3.28 in the code, the clear spacing between bars in the tension zone for 
grade 460 steel and no redistribution should not exceed 155 mm

(i). Top steel at outer support: 5T25 bars with 30 mm cover and 10 mm links.
Spacing between bars is

=(400−30−10−30−10−25)/4=49 mm <155 mm
 

If the inner 3T25 bars are curtailed, spacing between bars is

=(400−30−10−30−10−25)=295 mm >155 mm
 

In the interests of crack control, curtail only the inner 2T25 bars.

(ii) Top steel at Inner support: 4T32 bars with 30 mm cover and 10 mm links.
Spacing between bars is

=(400−30−10−30−10−32)/3=96 mm <155 mm
 

If the inner 2T32 bars are curtailed, spacing between bars is

=(400−30−10−30−10−32)=288 mm >155 mm
 

In the interests of crack control, add an additional 25 mm bar to link with middle 25 bar 
from outer support steel.

(iii) Bottom steel: Curtailing 2T25 bars will again make the bar spacing too wide. The 
simple solution is to add an extra 20 mm bar in the interests of crack control.

(f) Arrangement of reinforcement

The final arrangement of the reinforcement is shown in Fig. 14.21.
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9T10-175

10T10-175

18T10-280

5T25 2T25 4T32

4T252T25+1T20

Fig. 14.21 Reinforcement detail.

Fig.14.22 Column reinforcement.

Design of lower length of centre column

(a) Design loads and moments
The axial load and moment at the column top are as follows.
Case 1:

axial load N=(1.4×2943.85)+(1.6×718.2)=5270.5 kN 
moment M=MEF=90.7 kNm

 

Case 2: At the first floor the centre beam carries dead load only. The axial load can be 
calculated from the axial load in case 1 by deducting (0.4 Gk+1.6 Qk) 
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axial load N= 5270.5−[(0.4×40.5)+1.6×18]×6/2−5135.5 kN
moment M=MEF=139.25 kNm

 

(b) Effective length and slenderness
Refer to BS8110: Part 1, section 3.8.1.6. The column is square with assumed dimensions 
550 mm×550 mm. The restraining members are as follows:

Transverse direction beam 500 mm deep
Longitudinal direction ribbed slab 275 mm deep
Check the slenderness in the longitudinal direction. The end conditions for a braced 

column are (Table 3.19 of the code)
Top Condition 3, ribbed slab
Bottom Condition 1, moment connection to base

β=0.9
effective length lc=0.9(5500−250)=4725 mm

slenderness=4725/550=8.59<15

 

The column is short.

(c) Column reinforcement
Use column design chart, fcu=30, fy=460, d/h=0.85
Case 1:

N/ (bh)=5270.5×103/5502=17.42
M/(bh2)=90.7×106/5503=0.55

100Asc/bh=1.4.

 

Calculations show that for x/h=1.22, N/ (bh)=18.05, M/(bh2)=0.55,
Case 2:

N/(bh)=5135.5×103/5502=16.98  
M/(bh2)= 139.25×106/5503=0.84

100Asc/bh=1.4.

 

Calculations indicate that for x/h=1.09, N/ (bh)=17.33, M/(bh2)=0.84.

Asc=1.4×5502/100=4235 mm2  

Provide 6T25+2T32 to give an area of 4552 mm2.
The links required are 8 mm in diameter at 300 mm centres. The reinforcement is 

shown in Fig. 14.22. Note that no bar must be more than 150mm from a restrained bar. So 
centre links are provided.
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Robustness -design of ties
The design must comply with the requirements of sections 2.2.2.2 and 3.12.3 of the code 
regarding robustness and the design of ties. These requirements are examined.

(a) Internal ties
(i) Transverse direction: The ties must be able to resist a tensile force in kN/m width that 
is the greater of

[{(gk+qk)/7.5}(lr/5) Ft=(7+3)/7.5}(8 /5)Ft  
=2.13Ft or

Ft

 

where 

gk=2.73 (self weight of ribbed slab)+8.8/6 (Self weight of floor beam) +3.0 
(Finishes)=7kN/m2

qk=3.0kN/m2, lr=8.0m (transverse direction)
Ft=lesser of (20+4no=80 kN) or 60 kN 

no=10 is the number of storeys. 
tie force=2.13×60=127.8 kN/m

steel area =127.8×103/ (0.95×460)=293 mm2/m

 

Provide 3T12 bars, As=339 mm2, in the topping of the ribbed slab per metre width.

(ii) Longitudinal direction: The area of ties must be added to the area of steel in the 
ribs.

(b) Peripheral ties
The peripheral ties must resist a force Ft of 60 kN. This will be provided by an extra steel 
area in the edge L-beams running around the building.

(c) External column tie
The force to be resisted is the greater of

2.0Ft=120kN 
or 

(ℓs/2.5)Ft=3×60/2.5=72 kN 
or

 

3% of the design ultimate vertical load carried by the column at that level, which is,

(3 /100)×4887.5=146.6 kN  

where ℓs is the floor to ceiling height (3.0 m)
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steel areα=146.6×103/(0.95×460)=336 mm2  

At the centre of the beam 4T25 bars equal to 1963 mm2 are provided whereas 1440.4 
mm2 are required. The extra moment reinforcement provided at the bottom of the beam 
is (1963–1440)=523 mm2 is adequate to resist this force. The top reinforcement will also 
provide resistance. The bars are anchored at the external column.

The corner columns must be anchored in two directions at right angles.

(d) Vertical ties
The building is over five storeys and so each column must be tied continuously from 
foundation to roof. The tie must support in tension the design load of one floor section on 
vertical loads.

design load=7[1.4×40.5+1.6×18]=598.5 kN  

The steel area required is 598.5×103/ (0.95×460)=1370 mm2.

The column reinforcement is lapped above floor level with a compression lap of 40 
times the bar diameter (Table 3.27 of the code). This reinforcement is more than adequate 
to resist the code load. 



 



 

 
CHAPTER 15 

TALL BUILDINGS

Modified version of initial contribution by 
J.C.D.Hoenderkamp, formerly of Nanyang Technological  

Institute, Singapore

15.1 INTRODUCTION

For the structural engineer the major difference between low and tall buildings is the influ-
ence of the horizontal loads due to wind and earthquake on the design of the structure. 
Lateral deflection of a tall concrete building is generally limited to H/1000 to H/200 of the 
total height H of the building. In the case of tall buildings, in addition to limiting this so 
called lateral drift, attention has to be focussed on the comfort of the occupants because 
vibratory motion could induce mild discomfort to acute nausea.

Another aspect that needs to be addressed in tall buildings is the vertical movement due 
to creep and shrinkage in addition to that due to elastic shortening. These movements can 
cause distress in non-structural elements and must be allowed for in detailing.

This chapter is mainly concerned with the elastic static analysis of tall structures sub-
ject to lateral loads. An attempt is made to explain the complex behaviour of such struc-
tures and to suggest simplified methods of analysis of those types of structures which do 
not require full 3-D analysis. The behaviour of individual planar bents and the interaction 
between shear walls and rigid-jointed frames will be examined in detail as it highlights 
the complexity involved in the analysis of three dimensional structures subjected to hori-
zontal forces.

15.2 ASSUMPTIONS FOR ANALYSIS 

The structural form of a building is inherently three dimensional. The development of 
efficient methods of analysis for tall structures is possible only if the usual complex com-
bination of many different types of structural members can be reduced or simplified whilst 
still representing accurately the overall behaviour of the structure. A necessary first step is 
therefore the selection of an idealized structure that includes only the significant structural 
elements with their dominant modes of behaviour. It is often possible to ignore the asym-
metry in a structural floor plan of a building, thereby making a three dimensional analysis 
unnecessary. One common assumption made is to assume that floor slabs are fully rigid in 
their own plane. Consequently, all vertical members at any level are subject to the same 
components of translation and rotation in the horizontal plane. This does not hold true 
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for very long narrow buildings and for slabs which have their widths drastically reduced 
at one or more locations. Similarly contributions from the out-of-plane stiffness of floor 
slabs and structural bents can be neglected because of their low stiffness compared with 
inplane stiffness.

15.3 PLANAR LATERAL LOAD RESISTING ELEMENTS

15.3.1 Rigid-jointed Frames

The most common type of planar bent used for medium height structures is the rigid-
jointed frame. They are economic for buildings up to about 25 stories. Beyond that height, 
control of drift becomes problematic and requires uneconomically large members.

15.3.2 Braced Frames

The lateral stiffness of a rigid frame can be improved significantly by providing diagonal 
members. In fact such structures could be economic in case of very tall structures. Bracing 
can be either in storey height-bay width module or they could extend over many bays and 
stories. Fig. 15.1 shows rigid frame and braced frames.

Fig.15.1 (a). Rigid-jointed frame; (b). braced frame; (c) braced frame with large  
diagonal bracing.

15.3.3 Shear walls

The simplest form of bracing against horizontal loading is the plane cantilevered shear 
wall. The main difficulty with shear walls is their solid form which tends to restrict plan-
ning where wide open internal spaces are required. They are particularly suitable for hotel 
and residential buildings requiring repetitive floor plans. This allows the walls to be verti-
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cally continuous and they can serve both as room dividers and also provide sound and fire 
insulation. 

15.3.4 Coupled Shear walls

As shown in Fig. 15.2, a coupled shear wall structure is a shear wall with openings. The 
two halves of the wall could be connected by beams or slabs at each floor level. For 
analysis purposes coupled shear walls are treated as rigid frames. However compared to 
the width of a column in a rigid frame, the width of the wall is very large. To allow for the 
large width of the walls, the beams connecting the walls are assumed to be rigid over half 
the width of the walls as shown in Fig. 15.3.

Fig 15.2 Coupled shear wall

15.3.5 Wall-frame Structures

When rigid-jointed structures which deflect in a shear mode as shown in Fig.15.4(a) are 
combined with shear walls which deflect in a flexural mode as shown in Fig.15.4(b), they 
are constrained to adopt a common deflected shape because of the horizontally stiff gird-
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ers and slabs. As a consequence, the two horizontal load resisting structural forms inter-
act, especially at the top to produce a stiffer and stronger structure than a simple addition 
of the stiffnesses of the two elements would indicate. This combined form has been found 
to be suitable for structures in the 40–60 storey range. 

Fig. 15.3 Rigid-jointed frame model for a coupled shear wall

Fig.15.4 Shear mode and bending mode of deflection of rigid-jointed frames and walls.
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15.3.6 Framed-tube Structures

In this type of structure the lateral load resisting system consists of moment resisting 
rigid-jointed frames in two orthogonal directions which form a closed tube around the 
perimeter of the building plan as shown in Fig. 15.5. The frame consists of closely spaced 
columns at around 2–4 m centres joined by deep girders. The lateral load is carried by 
the perimeter frames but gravity load is shared between internal columns and perimeter 
frames. Perimeter frames aligned in the direction of the lateral load act as the webs and the 
frames normal to the direction of loading act as the flanges of the massive box cantilever. 
Inevitably, with a wide flange, shear lag effect as shown in Fig. 15.5 makes the flanges 
much less efficient.

Fig. 15.5 Framed-tube structure

15.3.7 Tube-in-Tube Structures

This is similar to framed tube structures except that apart from the perimeter tube there is 
an internal tube formed of a service core and lift cores as shown in Fig.15.6. Both tubes 
participate in resisting lateral loads.

15.3.8 Outrigger-braced Structures

Fig.15.7 shows an outrigger structure. This consists of a central core which could be 
shear walls which form part of the elevator and service cores or a braced frame. The core 
is connected to the perimeter columns by horizontal cantilevers or ‘outriggers’. Under 
horizontal loads the core bends and rotation of the core is restrained by the outrigger 
trusses through tension and compression in the perimeter columns. In effect the outriggers 
considerably increase the effective depth of the building and provide a very stiff structure. 
The number of outriggers up the height is generally limited to a maximum of about four. 
This type of structure has been found to be efficient in the design of buildings in the 40–70 
storeys range. 

Stress profiles 
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Fig.15.6 Tube-in tube structure.

Fig.15.7 Outrigger braced structure.

15.4 INTERACTION BETWEEN BENTS

The analysis of a tall building structure subject to horizontal and vertical loads is a three 
dimensional problem. In many cases, however, it is possible to simplify and reduce this to 
a 2-D problem by splitting the structure into several smaller two-dimensional components 
which then allow a less complicated planar analysis to be carried out. The procedure for 
subdividing a three dimensional structure requires some knowledge of the sway behav-
iour of individual bents subjected to lateral loads. As stated in section 15.3.5, rigid frames 
subject to lateral load will mainly deflect in a shear configuration and shear walls will 
adopt a flexural configuration under identical loading conditions. These types of behav-
iour describe extreme cases of deflected shapes along the height of the structures. Other 
bents such as coupled walls will show a combination of the two deflection curves. In 
general they behave as flexural bents in the lower region of the structure and show some 
degree of shear behaviour in the upper storeys. Combining several bents with characteris-
tically different types of behaviour in a single three dimensional structure will inevitably 
complicate the lateral load analysis. It would be incorrect to isolate one of the bents and 
subject it to a percentage of the horizontal loading.

Core

Outrigger truss

Perimeter column in
compression.

Perimeter column
in tension.

Load
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Fig. 15.8 (a) shows the structural floor plan of a multi-storey building that consists of a 
single one-bay frame combined with a shear wall. The symmetrically applied lateral load 
will cause the structure to rotate owing to the distinctly different characteristics of the two 
bents. A side view of the deflections of both cantilevers is shown in Fig.15.8 (b). Fig.15.8 
(c) shows rotation of sections taken at different levels. It shows that it cannot be assumed 
not only that the rotation of the floor plans continuously increase along the height in one 
direction but also that the structure has a single centre of rotation. To deal with these com-
plications a more sophisticated three dimensional analysis will be necessary.

15.5 THREE DIMENSIONAL STRUCTURES

15.5.1 Classification of Structures for Computer Modelling

In many cases it is possible to simplify the analysis of a three dimensional tall building 
structure subject to lateral load by considering only small parts which can be analysed 
as two-dimensional structures. This type of reduction in the size of the problem can be 
applied to many different kinds of building. The degree of reduction that can be achieved 
depends mainly on the layout of the structural floor plan and the location, in plan, of the 
horizontal load resultant. The analysis of tall structures as presented here is divided into 
three main categories on the basis of the characteristics of the structural floor plan.

15.5.1.1 Category I: Symmetric floor plan with identical parallel bents subject to a 
symmetrically applied lateral load q

The structure shown in Fig.15.9 (a) comprises six rigid-jointed frames, four in the y-di-
rection and two in the x-direction. Because of symmetry about the y axis, all beams and 
columns at a particular floor level will have identical translations in the y-direction when 
subjected to load q. There will be no deflections in the x-direction. For the analysis of this 
model consisting of four identical rigid frames parallel to the applied load, it will be suf-
ficient to analyse only one frame subjected to a quarter of the total load.

15.5.1.2 Category II: Symmetric structural floor plan with non-identical bents subject 
to a symmetric horizontal load q

The lateral load-resisting component of the structure shown in Fig.15.10(a) comprises 
two rigid frames and two shear walls orientated parallel to the direction of the horizontal 
load q. The behaviour of the structure is similar to Category I structures except that for 
the analysis a symmetrical half of the structure needs to be analysed. In addition the shear 
wall and the rigid-jointed frame need to be connected in line such that the horizontal 
deflections of the two elements at any level are identical. The two structures can be linked 
by members of high axial stiffness to achieve the required compatibility of deflections. 
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Fig 15.8 (a) Structural floor plan; (b) deflected profiles; (c) floor rotations.
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Fig.15.9 (a) Structural floor plan of tall rigid frame building; (b) simplified floor plan; (c) 
one-bay rigid frame computer model.

Note that as long as symmetry about the y-axis is maintained, it is possible to cope with 
any variation in geometry with height of different frames/walls. A setback in the upper 
storeys for all exterior bays in the floor plan shown in Fig. 15.11 (a) will still allow a plane 
frame analysis for the linked bents shown in Fig.15.11 (b). If the setback causes a loss of 
symmetry about the y axis, however, the structure will rotate in the horizontal plane and a 
full three dimensional analysis will be necessary. 
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Fig.15.10 (a) Structural floor plan of frame-wall building; (b) simplified floor plan; (c) 
computer model of linked bents in a single plane.
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15.5.1.3 Category III: Non-symmetric structural floor plan with identical or non-iden-
tical bents subject to a lateral load q

A category III structure, of which an example floor plan is shown in Fig. 15.12, will rotate 
in the horizontal plane regardless of the location of the lateral load. It cannot be reduced 
to a plane frame problem and a complete three dimensional analysis is required. 

Fig 15.11 (a) Structural floor plan of rigid frame building;

15.6 ANALYSIS OF FRAMED-TUBE STRUCTURES

Framed tube structures shown in Fig.15.5 can be analysed as a pair of cantilevers lying in 
the same plane. However it is necessary to allow for the shear lag effect in columns in the 
‘flange’ frame. This can be allowed for by treating the ‘web’ frame and the ‘flange’ frame 
as two cantilevers as shown in Fig. 15.13. The lateral load is applied to the web frame. At 
the junction between the two frames, at each storey level the web frame is connected to 
the flange frame through a set of “rigid” vertical springs. This ensures that at the junction 
between the two frames, both frames move in the vertical z-direction by the same amount. 
However the displacement in the y-direction of web frame is different from the deflection 
of the flange frame in the x-direction, although in the analysis they lie in the same plane. 
The compatibility of deflections is valid only in the vertical direction.

15.7 ANALYSIS OF TUBE-IN-TUBE STRUCTURES

The distribution of horizontal load between the inner core and the perimeter tube of a 
tube-in-tube structure (Fig. 15.14) depends on the characteristics of the floor system con-
necting the vertical elements. Two assumptions about these connections can be made, 
resulting in different computer models. 
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Fig 15.11 (b) linked rigid frames in a single plane.

(a) The interior beams and/or floors are effectively pin connected to the cores and 
columns: If the structural floor plan is symmetric about the y axis as shown in Fig. 15.14 
(a), the structure can be classified under category II and a plane frame analysis is possible. 
Only half the structure needs to be considered. As shown in Fig. 15.14 (b), half the core is 
bent B, i.e. one channel-shaped cantilever wall is bundled with its exterior columns of the 
two exterior frames perpendicular to the direction of the load. In calculating the second 
moment of area of the channel section, allowance has to be made for shear lag effect by 
assuming a reduced effective width for flange width. Together they can be modelled as a 
single flexural cantilever with a combined bending stiffness represented by the wall and 
columns 1 and 2. One rigid frame parallel to the direction of the load, bent A, is then con-
nected to it in a single plane by means of rigid links at each floor level. The two dimen-
sional model is to be subjected to half the lateral load. 

(b) Beams spanning from the exterior columns to the cores can be considered rig-
idly connected: The channel-shaped shear wall which is parallel to the load and rigidly 
connected to floor beams will behave as a wide column and must be modelled as such. 
Flexural column elements are located on the neutral axis of the wall but in the plane of 
the bent. The moment of inertia of these members should represent the full section of the 
channel-shaped wall. Rigid arms are then attached in two directions at each floor level. 
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Floor beams are rigidly connected to these arms and the columns of the perpendicular 
frames. The plane frame model of half the structure subjected to half the horizontal load-
ing is shown in Fig.15.14 (c). The short deep beams connecting the shear walls at each 
floor level will not influence the deflection behaviour of the structure in the y direction 
since both walls adopt exactly the same deflection profile when subjected to lateral load.

Fig.15.12 Non-symmetric structural floor plan.

x
y
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zWeb
Fram Flange

frame

Fig.15.13 Web and flange frames
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Fig.15.14 (a) Structural floor plan of a tube-in-tube building.

Fig.15.14 (b) rigid frame linked to core and columns.
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When the core is turned through 90°, without loss of symmetry, a wide arm column model 
is still possible. The flexible column elements are to be placed on the neutral axis of the 
channel-shaped section but in the plane of the bent to be analysed. The second moment 
of area of this element should represent only one-half of one channel-shaped section. 
The two unequal rigid arms at each floor level add up to the width of the ‘flange’ of the 
channel-shaped cantilever. Beams connecting the wide column to other walls or columns 
can then be rigidly jointed to the arms.

Fig.15.14 (c). Linked bents
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CHAPTER 16

PRESTRESSED CONCRETE

16.1 INTRODUCTION

Prestressed concrete structure can be defined as a concrete structure where external com-
pressive forces are applied to overcome tensile stresses caused by unavoidable loads due 
to gravity, wind, etc. In other words, it is pre-compressed concrete meaning that compres-
sive stresses are introduced into areas where tensile stresses might develop under working 
load and this pre-compression is introduced even before the structure begins its working 
life.

One of the disadvantages of reinforced concrete is that tensile cracks due to bending 
occur even under working loads. This has four major disadvantages.

•  Cracks encourage corrosion of steel.
•  A cracked concrete beam is much more flexible than an uncracked beam. This means 

that when using a reinforced concrete beam, one could have serviceability problems 
due to deflection or even due to cracking if too slender a beam is used.

•  Cracked concrete is not, on the whole, contributing to strength but rather it is simply 
adding to dead weight.

•  The width of the cracks is to a large extent governed by the strain in reinforcing steel. 
If high tensile steel is used as reinforcement, then the resulting width of the cracks at 
working loads would be unacceptable. Ordinary reinforced concrete precludes the uti-
lization of high strength steel and the resulting possible economies.

Clearly the above problems can be overcome if we can apply external compressive forces 
to the beam to prevent it from cracking or even better if the external compressive forces 
can be applied so as to neutralize the stresses created by applied loads under serviceability 
conditions, a very efficient structure can be designed.

Consider the simply supported beam supporting loads as shown in Fig. 16.1. Bend-
ing moment at a section XX produces tensile and compressive stresses at bottom and 
top fibres respectively. If a compressive force is applied at the centroidal axis, it sets up 
uniform compression throughout the beam cross-section. It does neutralize the tensile 
stresses at the bottom portion of the beam caused by bending but it has the disadvantage 
of increasing the total compressive stresses at the top face. If however the compressive 
force is applied towards the bottom face at an eccentricity of ‘e’ from the centroidal axis, 
then in addition to an axial force of P, a bending moment equal to Pe of a nature opposite 
to that caused by external loads is created. The total stresses due to the bending moment 
M and the prestress P at an eccentricity e are
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where zt and zb are the section moduli of the cross section for top and bottom fibres respec-
tively and A is the cross sectional area of the beam.

As shown in Fig. 16.1, by proper manipulation of the values of P and e, it is possible to 
ensure that at working loads, the entire cross-section is in compression. It is often stated 
that one tonne of prestressing steel can result in up to 15 times the amount of building that 
is made possible by one tonne of structural steel.

Fig.16.1 Stresses due to prestress and external loads.

16.2 HOW TO APPLY PRESTRESS?

There are two main methods of pre-stressing. They are called pre-tensioning and post-
tensioning.

16.2.1 Pre-tensioning

This is used for producing precast prestressed concrete products such as bridge beams, 
double T beams for floors, floor slabs, railway sleepers, etc. In this method, as shown in 
Fig. 16.2, the process consists of the following steps.
•  any reinforcing steel such as links etc. are threaded onto the high tensile steel ‘cables’. 

The cables are tensioned or ‘jacked’ to the desired force between abutments. The cable 
is anchored using a simple barrel and wedge device. Because of the fact that the cables 
are tensioned before concrete is cast, the name pre-tensioning is used for this process.

•  the formwork is assembled round the steel cables
•  concrete is placed in the moulds around it and is allowed to cure to gain desired level of 

strength. This is often speeded up using steam curing. This also enables the prestress-
ing bed to be reused quickly for another job.

P P
e 

X

X

+ + =
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•  steel is released from the abutments, transferring the compressive force to the concrete 
through the bond between steel and concrete.

Fig. 16.2 Basic stages of pre-tensioning.

In practice a large number of identical units are cast at the same time using what is known 
as Long-Line production method.

It is worth noting that when the force in the cable is transferred to concrete, it contracts. 
Because of the full bond between concrete and steel, steel also suffers the same contrac-
tion leading to a certain loss of stress from the stress at the time of jacking. This is known 
as Loss of prestress at Transfer and is generally of the order of 10%. Thus

PTransfer≈0.9 Pjack
 

where
PTransfer=Total force in the cable after initial loss of stress due to compression of con-

crete.
Pjack=Total force used at the time of initial jacking the cable between the abutments. 

16.2.1.1 Debonding

One of the disadvantages of having the same prestressing force P and eccentricity e at 
all sections is that while normally the external loads produce large bending stresses at 
the mid-span of the simply supported beam but small stresses towards the supports, the 
stresses due to prestressing remains constant at all sections. This clearly defeats the idea 



 

598 Reinforced Concrete

of tailoring stresses due to pre-stressing to match the stresses due to external loads. This 
disadvantage can be overcome to a great extent by two methods as follows. 

Fig. 16.3 Deflected tendons.

Fig.16.4 Debonding (a) Plastic sleeves around the cables; (b) Effective position of where 
prestress starts; (c) variation of prestress and eccentricity along span.

(a)  Deflected Tendons: As shown in Fig. 16.3, the cable is deflected along its length by 
pulling the cable up or down as necessary. However this is generally not preferred 
because of extra cost.

(b)  De-bonding: In this method by preventing bond from developing between concrete 
and steel by sheathing some of the cables in plastic tubing as shown in Fig. 16.4, both 
the prestressing force and eccentricity can be varied in a stepwise fashion along the 
span. This is generally the preferred option due to low cost.

The transfer of force between concrete and steel takes place gradually. The force trans-
fer takes place due to two basic actions.
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•  Bond between concrete and steel plays an important part. It is therefore essential to 
ensure that the ‘cable’ is clean and free from loose rust and that concrete is well com-
pacted.

•  The cable is stretched and therefore has a very slightly reduced diameter due to the 
Poisson effect. However when the cable is released from the abutments, the wire 
regains its original diameter at the ends. This creates a certain amount of wedging 
action and in addition frictional forces also come into play.

16.2.1.2 Transmission length

As shown in Fig. 16.2, once the cable is released from the abutments, the force in the 
cable becomes zero at the ends of the cable. However away from the ends, ‘bond’ between 
cable and concrete prevents the cable from regaining its original length. As shown in Fig. 
16.5, the force in the cable gradually builds up to its full value over a certain length. This 
is known as Transmission Length. This varies depending on the surface characteristics of 
the cables and the strength of concrete. It is generally of the order of about 50 diameters 
for 7-wire strand.

Fig.16.5 Gradual build up of force in the cable.

16.2.2 Post-tensioning

One of the limitations of Pre-tensioning is that normally the cables need to remain straight 
because the cable is pre-tensioned before concrete hardens. This limitation can be over-
come if as shown in Fig. 16.6, the cable is laid to any desired profile inside a metal ducting 
fixed to the required profile to the reinforcement cage with the permanent anchorages also 
positioned at the ends of the duct. Afterwards, concrete is cast and once it has hardened the 
cable is tensioned and anchored to the concrete using permanent external anchors rather 
than relying on bond between the cable and the concrete as in the case of Pre-tensioning. 
This is the basic idea of Post-tensioning. Because of the fact that the cables are tensioned 
after the concrete has hardened, the system is known as post-tensioning. Finally, the duct 
is filled with a colloidal grout under pressure in order to establish bond between concrete 
and steel and also as protection against corrosion.

There are various types of anchors used in practice but they are generally of two 
types.
•  The bar is threaded at the ends and anchoring is by a nut bearing on concrete. The 

threads are rolled rather than cut to reduce stress concentration. The main advantage 
of this system is that prestress can be applied in stages to suit design considerations 

Transmission
length
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or losses can be compensated at any time prior to grouting. The anchorage is com-
pletely positive and there is no loss of pre-stress at the transfer stages.

•  Anchoring is done using a system of cones and wedges. In this case, there is loss of 
pre-stress at transfer stage because of the slip between the cable and the wedge before 
the wedges ‘bite in’.

Fig. 16.6 Different stages in post-tensioning.

16.2.3 External Prestressing

One of the disadvantages of traditional Post-tensioning is that there is no guarantee that 
the ducts are properly filled with grout to prevent corrosion and if the steel corrodes, 
cables cannot be replaced. In order to overcome these problems, external prestressing as 
shown diagrammatically in Fig. 16.7 is used. The cables are on the outside of the beam 
and the eccentricity is varied using saddles at appropriate places to obtain the required 
profile. This is similar to the use of deflected tendons in a pre-tensioned system. This sys-
tem allows replacement of cables as required and also allows the use of additional cables 
at a later stage in order to strengthen the structure. Although the term external prestressing 
is used, it is not necessary for the cables to be ‘outside’ the structure. For example in the 
case of box girders, cables can be placed inside the void of the box girder.



 

Prestressed concrete  601

Fig. 16.7 External prestressing.

16.2.4 Un-bonded Construction

Because of the relative unreliability of grouting to prevent corrosion of the cables and 
also because of the fact grouting is a time consuming job and sufficient time has to elapse 
for the bond between the cable (also called tendons or strands) and concrete to become 
effective, a common form of construction used in practice is to dispense altogether with 
the bond between the concrete and steel. Cables used in this form of construction are 
manufactured with the cables coated by grease and encased in a plastic sleeve. The plastic 
sleeve acts as the duct and the construction process is similar to normal post-tensioning. 
The main advantage of this “unbonded” system is speed of construction as no grouting is 
done. However this is not a particularly structurally efficient system because the ultimate 
bending capacity tends to be only about 70% of a corresponding beam using bonded 
construction. Nevertheless, un-bonded post-tensioned slabs are a very common form of 
construction.

16.2.5 Statically Indeterminate Structures

Because the bending moment due to external loading in a simply supported beam is para-
bolic, the cable profile is also parabolic. One of the advantages of post-tensioning is that 
the cable profile can be varied so that the bending moment due to external loading can 
be neutralized by varying the eccentricity to match the shape of the bending moment dia-
gram. A Post-tensioning system is essential when constructing prestressed statically inde-
terminate structures. Fig. 16.8 shows the cable profile in a two span continuous beam. 

FIG.16.8 Cable profile in a two span continuous beam

saddle
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16.2.6 End-block

One important aspect of post-tensioning that needs special attention is the area where 
cables are anchored. Because of the fact that many cables are anchored to the same 
anchorage block of a relatively small size, large compressive forces are transferred at the 
anchorage block. Depending on the number of cables anchored and their diameter, the 
force at an anchor block can vary from 100 kN to 12000 kN. This large transfer of force 
has the same effect as driving a wedge into a block of wood and has the tendency to burst 
the concrete transversely near the anchorage. The bursting forces have to be resisted using 
a large number of links near the anchors. This area of beam is known as an End-block.

16.3 MATERIALS

16.3.1 Concrete

Concrete used for prestressing work is generally of much higher quality than that used for 
reinforced concrete work. Concrete of grade C50 or over is common. Certain deforma-
tional properties of concrete affect the design of prestressed concrete structures and it is 
necessary to understand them. One of the important properties of concrete is Creep. Creep 
is defined as the increase of strain with time when the stress is held constant. Under the 
action of compressive stress due to prestress, concrete continues to deform. Because of the 
bond between steel and concrete, steel also experiences compressive strain which reduces 
the tension in the cables. In addition to creep, shrinkage of concrete also contributes to the 
loss of prestress. This long-term loss can be as high as 25% of the initial stress. Thus

PService≈0.75 Pjack 
 

where
PService=Total prestress remaining in the long term under working load conditions, after 

all the losses have taken place.
Pjack=Total load in the cables at the time of jacking.
It should be noted that these long term losses of prestress is common to both pre- and 

post-tensioning systems. 
One important effect of creep is increased deflections. Because in a prestressed con-

crete member a greater part of the cross section is in compression compared to the cor-
responding reinforced concrete section, long term creep movements are increased.

16.3.2 Steel

Compared to normal high yield steel bars used in reinforced concrete which has an ulti-
mate tensile stress of about 460 N/mm2, prestressing steel is usually cold drawn high 
tensile steel wires or alloy steel bars with an ultimate tensile stress of about 1800 N/mm2. 
Apart from the fact that steel used in prestressing work is of higher strength, it is also 
much less ductile compared with reinforcing bars. Steel used in prestressed concrete is 
available in the form of:
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•  Wires from 7 mm to 3 mm diameter. In order to improve bond, wires are often indented. 
This is called crimping.

•  Tendons used today are almost always 7-wire strand made from six wires spun round 
a straight central wire. The overall nominal diameter varies from 12.5 mm to 18 mm. 
Two basic shapes of cables are available. In Standard cables the individual wires main-
tain their circular cross section. In order to reduce the overall diameter, the Standard 
strand can be passed through a die to compress the cable and reduce the voids. The final 
shape of the individual wires is trapezoidal rather than circular. This type of cable is 
called ‘Drawn’ and has, for the same nominal diameter, a higher amount of steel in the 
cross-section.

•  Bars: 25 mm to 50 mm diameter. Two types are common:

(i)   Dividag Bbar: This is a bar with ribs along its entire length. The ribs are rolled rather 
than cut to reduce stress concentration problems. The ribs act as threads for coupling 
purposes.

(ii)  Macalloy Bar: This is a smooth bar with threads rolled only at the ends for coupling 
or for anchorage purposes.

16.3.2.1 Relaxation of steel

Just as concrete exhibits time dependent deformation due to creep, steel exhibits a prop-
erty called Relaxation. If the strain in steel is maintained constant, then the stress required 
to maintain that strain reduces with time. This property is known as Relaxation. Relax-
ation is thus loss of stress under constant strain. Generally tests are conducted for duration 
of 1000 hours (about 42 days) to determine Relaxation properties. Final long-term relax-
ation loss is expressed as a multiple of the 1000 hour loss. Relaxation also contributes to 
the loss of prestress in the long term. 

Heat treatment is used to improve the elastic and ‘yield’ properties of strands. Two 
types of strands are available. They are:

•  Relaxation Class 1: This is also called as Normal Relaxation or Stress relieved strand. 
In order to remove residual stresses due to cold drawing, the strand is heated to about 
350° C and allowed to cool slowly.

•  Relaxation Class 2: This is also called Low relaxation or Strain tempered strand. The 
strand is heated to about 350° C while the strand is under tension and allowed to cool 
slowly.

This process is known as Strain tempering.

16.4 DESIGN OF PRESTRESSED CONCRETE STRUCTURES

Although design of prestressed concrete structures has to satisfy both serviceability and 
ultimate limit state criteria, there is a fundamental difference in the approach to the design 
of reinforced and prestressed concrete structures. The normal design procedure for a  
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reinforced concrete structure is to design the structure for ultimate limit state and then 
check that the structure behaves satisfactorily at serviceability limit state. On the other 
hand, the normal design procedure for a prestressed concrete structure is to design the 
structure for the serviceability limit state and then check that the structure behaves sat-
isfactorily at ultimate limit state. The reason for this difference is that generally speak-
ing in prestressed concrete structures, serviceability limit state conditions are much more 
critical than the conditions at ultimate limit state. Thus generally structures designed for 
serviceability limit state also satisfy the ultimate limit state criteria, but not the other way 
round.

16.5 LIMITS ON PERMISSIBLE STRESSES IN CONCRETE

Since prestressed concrete structures are primarily designed to satisfy the serviceabil-
ity limit state, it is necessary to limit the stresses in concrete and steel. The structure is 
assumed to behave elastically and the two critical conditions to be considered are

•  Stress state at transfer of prestress: At this stage the loads acting are the self weight of 
the structure and prestress with only elastic shortening during transfer having taken 
place.

•  Stress state at serviceability limit state when the loads acting are the dead and live 
loads along with the prestress with all the long term losses assumed to have taken 
place.

16.5.1 Definition of Class

In the design of prestressed concrete structures, a structure is designed to the criterion of 
a certain Class. Class is simply dependent on the amount of tensile stress fst permitted in 
concrete at serviceability limit state. 

There are three classes defined in the code BS8110. These are
Class 1: fst=0
Class 2: No visible cracking, fst>0
Class 3: Surface crack width not greater than 0.1 mm in members exposed to severe envi-
ronment (such as alternate wetting and drying, occasional freezing, severe condensation, 
severe rain, etc.) and limited to 0.2 mm in other cases.

It has been found in practice that for design purposes, Class 1 and Class 2 are generally 
governed by SLS criteria based on stress limitation whereas Class 3 can be governed by 
either Limit State of Deflection or Ultimate limit state condition.

16.5.1.1 Partial prestressing 

Class 1 structures are described as being fully prestressed as the whole cross section is 
maintained in compression at working loads.
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Class 3 structures are termed as partially prestressed because like reinforced concrete 
cracking is allowed at working loads. In Class 3 structures part of the steel present is 
tensioned and in addition there is also untensioned steel as in ordinary reinforced con-
crete. The main purpose of unstressed steel is to improve ultimate limit capacity. The 
main advantage of partial prestressing is that of economy of materials, especially pre-
stressing steel. Partial prestressing has the advantage over reinforced concrete in that the 
prestress present aids the recovery of deflections after an overload and also reduces the 
crack widths or even closes the cracks altogether. Such structures also tend be less brittle 
compared to Class 1 structures.

Class 2 structures fall between Class 1 and Class 3 structures.

16.5.2 Permissible Compressive Stress in Concrete at Transfer

Permissible stress in compression at transfer, ftc is given in Clause 4.3.5.1. The numerical 
value of ftc≤0.5 fci at the extreme fibre, where fci=Cube strength at transfer of prestress. If 
the distribution of prestress is near uniform, then this should be limited to 0.4 fci.

16.5.3 Permissible Tensile Stress in Concrete at Transfer

Permissible stress in tension, ftt at transfer are given in Clause 4.3.5.2.
Class 1:1 N/mm2 
Class 2 and Class 3:

0.45√fci N/mm2 for pre-tensioned structures.
0.36√fci N/mm2 for post-tensioned structures

 

16.5.4 Permissible Compressive Stress in Concrete at Serviceability Limit State

Permissible stresses in compression at serviceability limit state, fsc are given in Clause 
4.3.4.2. The numerical value of fsc≤0.33 fcu at the extreme fibre, where fcu is the cube 
strength at 28 daysis. In continuous beams and other statically indeterminate structures, 
near support moments, this may be increased to 0.40 fcu. If the distribution of prestress is 
near uniform, then this should be limited to 0.25 fcu.

Note that although fcu is greater than fci, still ftc≤0.5 fci is numerically larger than fsc≤0.33 
fcu. The reason for this is that the transfer state lasts only for a short time as the stresses 
beginto reduce due to creep.

16.5.4 Permissible Tensile Stress in Concrete at Serviceability Limit State

Permissible stress in tension, fst at serviceability limit state are given in Clause 4.3.4.3.
Class 1: fst=0; ie. No tensile stress is permitted.
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Class 2:

0.45√fcu N/mm2 for pre-tensioned structures.
0.36√fcu N/mm2 for post-tensioned structures.

 

fcu=Cube strength at 28 days.
Class 3: Although crack width is the limitation, for design purposes, hypothetical val-

ues of tensile stresses are given as shown in Table 16.1. 

Table 16.1 Permissible values of fst (hypothetical)

Group Crack width 
Limit in mm

C30 C40 C50 and over

Pre-tensioned 0.1  4.1 4.8
 0.2  5.0 5.8

Grouted Post-tensioned 0.1 3.2 4.1 4.8
Tendons 0.2 3.8 5.0 5.8

16.6 LIMITS ON PERMISSIBLE STRESSES IN STEEL

As described in section 16.3.2, many different types of prestressing steel are available in 
the form of wires, bars, tendons, etc. The ultimate tensile stress varies from about 1030 N/ 
mm2 for hot rolled bars to 1860 N/mm2 for Super or Drawn strands. The value of Young’s 
modulus E=(195±10) kN/mm2.

16.6.1 Maximum Stress at Jacking and at Transfer

The permissible stresses are given in Clause 4.7.1. They are:
•  Jacking force should not normally exceed 75% of the characteristic strength of the 

tendon but may be increased to 80% provided additional consideration is given to 
safety.

•  At transfer, the initial prestress should not normally exceed 70% of the characteristic 
strength of the tendon, and in no case should it exceed 75%.

It is worth noting that with the usual long term loss of about 20 to 25% of the jacking 
stress, the stress in steel at service, fpe is of the order of 50 to 60% of the of the character-
istic tensile stress fpu of the tendon. Essentially, for ultimate strength purposes, tendons act 
as reinforcement with a characteristic strength of (fpu−fpe).

16.7 EQUATIONS FOR STRESS CALCULATION

In a statically determinate structure, the stresses at top and bottom fibres are given by the 
following equations. The sign convention used is as follows.

Eccentricity e is positive below the neutral axis.
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Tensile stresses are positive and compressive stresses are negative.
Bending moment causing sagging is considered positive.

16.7.1 Transfer State

At transfer, the external load acting is normally only the self weight. With a large prestress 
force applied below the neutral axis, the beam will hog up. The critical stress conditions 
are
•  tension is critical at the top of the beam
•  compression is critical at the bottom of the beam.
The expressions for the stress at top and bottom fibres are given by 

(16.1)

(16.2)

where ftt and ftc are the permissible stresses at transfer in tension and compression respec-
tively. The first subscript, t stands for transfer and the second subscript, 
(t or c) stands for tension and compression respectively. Note that ftc is a compressive 
stress, and it takes on a negative number.

Pt=Prestress at transfer. Pt=α Pjack, where α≈0.90 because at transfer, there is generally 
loss of prestress of about 10%.

zt and zb are the section moduli of the beam for top and bottom fibres respectively.

16.7.2 Serviceability Limit State

At working loads, external loads on the beam increase due to live loads and other dead 
loads. In addition due to long term loss the prestress in the cables also decreases. These 
effects cause the beam to sag. The critical stress conditions are:
•  compression is critical at the top of the beam,
•  tension is critical at the bottom of the beam.
The expressions for the stress at top and bottom fibres are given by

(16.3)

(16.4)
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where 
fst and fsc are the permissible stresses at service in tension and compression respec-

tively. The first subscript, s stands for service and the second subscript (t or c) stands for 
tension and compression respectively.

Mservice=Moment at Serviceability limit state. It includes the effect of self-weight, live 
loads, etc.

Ps=β Pjack where β≈0.75 because of about 25% prestress is lost due to elastic shortening, 
creep, shrinkage and relaxation.

16.7.3 Example of Stress Calculation

Fig. 16.9 shows a pre-tensioned symmetric double-T-beam. 

Fig.16.9 A double-T-beam.

It is used as a simply supported beam to support a total characteristic load (excluding self 
weight) of 45 kN/m over a span of 10 m. It is prestressed by a total force of Pjack=1450 
kN. The constant eccentricity is 390 mm. Calculate the stresses at mid-span and support 
at transfer and serviceability limit state. It is given that the structure has been designed for 
Class 2 criterion. fci=35 N/mm2 and fcu=50 N/mm2. Assume loss at transfer and service-
ability limit state as respectively 10% and 25% of the jacking force.

(i) Section Properties
Area of cross section

Α=2400×75+2×(200×650)=44×104 mm2 

Position of the centroid from the bottom: Taking moment about the bottom of the webs,

A yb=2400×75×(725−75/2)+2×(200×650×650/2)=2.083×108 mm3 

Distance from the centroidal axis to bottom and top fibres are:

yb=473 mm, yt=725−yb=252 mm 
Second moment of area, I:

2400

725 650

200
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I=[2400×753/12+2400×75×(yt−75/2)2]+2×[200×6503/12
+200×650×(650/2−yb)

2]=2.322×1010 mm4

zt=I/yt=92.12×106 mm3

zb=I/yb=49.08×106 mm3

 

(ii) Calculation of moments
Unit weight of concrete=24 kN/m3

Self weight=(44×104)×10−6×24= 10.56 kN/m
Mself weight=10.56×102/8=132.0 kNm at mid-span
Total load on the beam (including self weight)

=10.56+45.0=55.56 kN/m
Mservice= 55.56×102/8=694.5 kNm at mid-span

 

(iii) Prestress

Pt=0.90 Pjack=0.9×1450=1305 kN
Ps=0.75 Pjack=0.9×1450=1087.5 kN

 

(iv) Permissible stresses
(a) Transfer

ftt=0.45 √fci=0.45×√35=2.7 N/mm2

ftc=−0.5fci=-0.5×35=−17.5 N/mm2

 

(b) Service 

fst=0.45 √fcu=0.45×√50=3.2 N/mm2

fsc=−0.33fcu=−0.33×50=−16.7 N/mm2

 

(v) Stress calculation at transfer

Pt=1305 kN, e=390 mm  

Expressions for stresses at top and bottom fibres are given by equations 16.1 and 16.2.
(a) Support: At support self weight moment is zero because of the simply supported 
condition.

ftop=−1305×103/(44×104)+1305×103×390/(92.12×106)
=−2.97+5.53=2.56<2.70 N/mm2

 

fbottom=−1305×103/(44×104)−1305×103×390/(49.08×106)
=−2.97–10.37=−13.33>−17.50 N/mm2
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(b) Mid-span:

Self weight moment=132.0 kNm 
ftop=−1305×103/ (44×104)+1305×103×370/(92.12×106) 

−132.0×106/(92.12×106) 
=−2.97+5.53–1.43=1.13<2.70 N/mm2

 

fbottom=−1305×103/(44×104)−1305×103×370/(49.08×106) 
+132.0×106/(49.08×106) 

fbottom=−2.97–10.37+2.69=−10.65>−17.50 N/mm2

 

Note: Stresses at the supports are larger than at mid-span.

(vi) Stress calculation at serviceability limit state

Ps=1087.5 kN, e=390 mm  

Expressions for stresses at top and bottom fibres are given by equations 16.3 and 16.4.
(a) Support: At support moment is zero because of the simply supported condition. 

ftop=−1087.5×103/(44×104)+1087.5×103×390/(92.12×106)
=−2.47+4.60=2.13< 3.2 N/mm2

 

fbottom=−1087.5×103/ (44×104)−1087.5×103×390/(49.08×106)
=−2.47–8.64=−11.11>−16.70 N/mm2

 

(b) Mid-span:
Serviceability limit state moment=694.5 kNm

ftop=−1087.5×103/(440× 104)+1087.5×103×390/(92.12×106)
−694.5×106/(92.12×106) 

=−2.47+4.60–7.54=−5.41>−16.7 N/mm2

 

fbottom=−1087.5×103/(44×104)−1087.5×103×370 / (49.08 x 106)
+ 694.5×106/(49.08×106) 

=−2.47–8.64+14.15=3.04<3.20 N/mm2

 

Note: Stresses at the supports are smaller than at transfer condition. The stresses at mid-
span are larger than at transfer condition. In addition the state of stress has reversed from 
tension at top to tension at bottom and vice versa. 

16.8 DESIGN FOR SERVICEABILITY LIMIT STATE

For a given structural configuration and loads, design in prestressed concrete for service-
ability limit state requirements involves two things.
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•  A suitable section
•  Choice of prestress and corresponding eccentricity

16.8.1 Initial Sizing of Section

Consider the four equations 16.1 to 16.4 associated with the calculation of stresses at top 
and bottom fibres at a cross section under transfer and serviceability conditions. In these 
equations

Ptransfer=α PJack, α≈0.90
PService=β Pjack, β≈0.75

P transfer=η PService,
η=β/α≈0.83

 

Expressing Pt in terms of Ps, equations 16.1 and 16.2 can be expressed in terms of Ps as

(16.5)

(16.6)

Eliminating Ps and e from equations 16.5 and 16.3,

(16.7)

Similarly, eliminating Ps and e from equations 16.6 and 16.4, 
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Initially the self weight moment is not known. However, (Mservice−MSelfweight) represents 
the moment due to external loads which are known. As η≈0.83, the effect of including 
Mself weight has a small effect on the required section moduli. Therefore for an initial esti-
mate, it is reasonable to take Mself weight as zero. Once an initial section has been decided 
upon, if necessary the required value of section modulus can be recalculated.

16.8.1.1 Example of initial sizing

Calculate the section moduli required for a simply supported beam to support a charac-
teristic load of 45 kN/m (excluding self weight) over a span of 10 m. It is given that the 
allowable stresses are:

ftt=2.7 N/mm2, ftc=−17.5 N/mm2

fst=3.2 N/mm2, fsc=−16.7 N/mm2

 

The loss of prestress at transfer and service can be taken as 10% and 25% of the force at 
jacking.

Mservice−Mself weight=45×102/8=562.5 kNm at mid-span.
η=0.9/0.75=0.83

η ftt− fsc=0.83×2.7−(−16.7)=18.9 N/mm2

fst−η ftc=3.2–0.83 x (−17.5)=17.7 N/mm2

 

Ignoring Mself weight for an initial estimate of moduli, from equations 16.7 and 16.8,

zt≥562.5×106/18.9=29.76×106 mm3

zb≥562.5×106/17.7=31.78×106 mm3

 

If it is decided to choose a T-section shown in Fig. 16.10, the section properties can be 
expressed as functions of the two parameters (hf/h) and (bw/b) as follows. Table 16.2 gives 
the section properties. 
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Table 16.2 Section properties of T-beams

hf/h bw/b A/(bh) yb/h yt/h I/(bh3) zt/(bh2) zb/(bh2)
0.1 0.1 0.19 0.713 0.287 0.018 0.063 0.025

0.2 0.1 0.28 0.757 0.243 0.019 0.079 0.025

0.3 0.1 0.37 0.755 0.245 0.019 0.079 0.026

0.1 0.2 0.28 0.629 0.371 0.028 0.076 0.045

0.2 0.2 0.36 0.678 0.322 0.031 0.098 0.046

0.3 0.2 0.44 0.691 0.309 0.032 0.103 0.046

0.1 0.3 0.37 0.585 0.415 0.037 0.088 0.062

0.2 0.3 0.44 0.627 0.373 0.041 0.109 0.065

0.3 0.3 0.51 0.644 0.356 0.042 0.117 0.065

0.1 0.4 0.46 0.559 0.441 0.044 0.100 0.079

0.2 0.4 0.52 0.592 0.408 0.049 0.119 0.082

0.3 0.4 0.58 0.609 0.391 0.050 0.127 0.082

Fig.16.10 T-section.

Choosing

hf/h=0.1, bw/b=0.2,  

A variety of section sizes is possible, for example:

(i) b=2000 mm, h=595 say 600 mm, bw=400 mm, hf=60 mm,

zt=0.076×2000×6002=54.72×106 mm3

zb=0.045×2000×6002=32.40×106 mm3
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(ii) b=1500 mm, h=686 say 700 mm, bw=300 mm, hf=70 mm, 

zt=0.076×1500×7002=55.86×106 mm3

zb=0.045×1500×7002=33.08×106 mm3

 

If a double T-section (Fig. 16.9) is desired, the web width bw can be shared between two 
webs with the width of each web equal to 0.5bw. 

Having chosen a section, its self weight can be calculated. For example for the  
section: 

b=1500 mm, h=700 mm, bw=300 mm, hf=70 mm,
Α=294.0×103 mm2

Self weight=7.056 kN/m, 
Mself weight=88.2 kNm

(1−η)Mself weight=15.00 kNm

 

Using the self weight moment, the revised required section moduli become

zt≥(562.5+15.00)×106/18.9=30.56×106 mm3

zb≥(562.5+15.00)×106/17.7=32.63×106 mm3

 

The section modulus zb of the chosen section is 33.08×106 mm3 which is only slightly 
greater than the required value of 32.63×106 mm3. The chosen section is adequate.

Fig.16.11 Magnel diagram (The numbers against the lines correspond to equation  
numbers).
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16.8.2 Choice of Prestress and Eccentricity

Having chosen a section, the next step is to choose the required value of prestress and 
eccentricity such that none of the stress criteria are violated. By dividing throughout by 1/
Ps, equations 16.3 to 16.6 can be rewritten as follows 

(16.9)

(16.10)

(16.11)

(16.12)

If the inequality signs are replaced by an equality sign, a plot of e vs. 1/Ps of each equation 
is a straight line and the plot of all the four equations encloses a quadrilateral as shown 
in Fig. 16.11. Any choice of e and Ps inside the quadrilateral satisfies all the four stress 
criteria. This plot is known as a Magnel diagram.

16.8.2.1 Example of construction of Magnel diagram

Fig. 16.9 shows a pre-tensioned symmetric double-T-beam. It is used as a simply sup-
ported beam to support a total characteristic load (excluding self weight) of 45 kN/m 
over a span of 10 m. Construct the Magnel diagram for the mid-span section using the 
following data. Assume loss at transfer and serviceability limit state as respectively 10% 
and 25% of the jacking force.

(i) Section properties:

Α=44×104 mm2
zt=92.12×106 mm3
zb=49.08×106 mm3
1/Α=227.27×10−8,
1/zb=2.035×10−8,
1/zt=1.086×10−8
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(ii) Moments at mid-span:

Mself weight=132.0 kNm
Mselfweight/zt=132.0×106/(92.12×106)=1.43 N/mm2

Mself weight/zb=132.0×106/(49.08×106)=2.69 N/mm2

 

Mservice= 694.5 kNm
Mservice/zt=694.5×106/ (92.12×106)=7.54 N/mm2

Mservice/zb=694.5×106/ (49.08×106)=14.15 N/mm2

 

(iii) Permissible stresses:

ftt=2.7 N/mm2, 
ftc=−17.5 N/mm2

fst=3.2 N/mm2

fsc=−16.7 N/mm2

 

(iv) Prestress losses:

η=0.75/0.9=0.83  

(v) Solution:

Substituting the above values in equations 16.9 to 16.11, the following four linear equa-
tions are obtained.

−227.27+1.086 e=0.83(1.43+2.7) 108/Ps=3.43 (108/Ps) 
−227.27–2.035 e=0.83(−2.69–17.5) 108/Ps=−16.76 (108/Ps) 

−227.27+1.086 e=(7.54–16.7) 108/Ps=−9.16 (108/Ps) 
−227.27–2.035 e=(−14.15+3.2) 108/Ps=−10.95 (108/Ps)

 

Fig. 16.12 shows the Magnel diagram.

Fig. 16.12 Magnel diagram for mid-span.
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16.8.2.2 Example of choice of prestress and eccentricity

Fig. 16.12 shows the feasible region. Any combination of Ps and e within the feasible 
region will satisfy all the four stress criteria. Unfortunately practical limitations of cover, 
etc, reduce the extent of the feasible area. In the above example yb=473 mm. Assuming 
that cables require a cover of approximately 50 mm, the maximum eccentricity emax allow-
able is only (yb−50)=423 mm. This limitation is shown in Fig. 16.12 by the vertical line.

In choosing a value of Ps and e two important points to keep in mind are:
•  Choose as small a value of Ps (ie. as large a value of 108/Ps) and as large a value of e 

as possible. This will keep the costs down. In this example this is approximately,

108/Ps≈100 and e≈420 mm.  

•  It is not advisable to work right at the edge of the feasible region as it does not allow 
for any flexibility in the arrangement of cables in the cross section.

(i) Determination of number of cables(strands, tendons) required

A value of Ps can be chosen which is near the top right hand part of the feasible region. 
Choosing

108/Ps≈85,
Ps≈1180 kN,

Pjack=Ps/0.75≈1570 kN

 

Having calculated the value of Pjack? the next stage is to choose the type and number of 
cables required. Table 16.3 gives the strengths of various types of 7-wire strands. If for 
example 7-wire drawn strand of 18.0 mm nominal diameter is chosen, its breaking load 
is 380 kN. However jacking force should not normally exceed 75% of the characteristic 
strength of the tendon but may be increased to 80% provided additional consideration is 
given to safety (see 16.6.1).

Force per cable at jacking=0.75×380=285 kN
Number of cables required=Pjack/285=1570/285=5.5 say 6 cables.

 

Table 16.3 Properties of strands

Type of 
strand

Nominal 
diameter, mm

Net area of cross 
section, mm2

Characteristic 
breaking load, kN

Nominal tensile 
strength, N/mm2

Standard 12.5 92.66 164 1770

 15.2 138.92 232 1670
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Super 12.9 100.00 186 1860

 15.7 149.72 265 1770

Drawn 12.7 112.36 209 1860

 15.2 164.84 300 1820

 18.0 223.53 380 1700

Fig.16.13 Arrangement of cables in the web.

(ii) Determination of eccentricity

Assuming that cables can be placed in the webs in horizontal layers at 50 mm intervals 
vertically with two cables per layer, 6 cables can be accommodated with three cables in 
each web with two cables at the lowest level and one cable at the next level as shown in 
Fig. 16.13. The resultant eccentricity

e=yb−(2×50+1×100)/3=473−61=406 mm  

The point corresponding to

108/Ps=85, e=406 mm  

is inside the feasible region. Therefore the arrangement and force in the cables is satisfac-
tory.

16.8.2.3 Example of debonding

If it is decided to debond some cables towards the support, then a Magnel diagram has to 
be drawn for the support section as well. At a support section, the critical condition is at 
transfer. Conditions at service are not critical because of the long term losses in the pre-
stress. Since there are no moments acting at supports, the two critical equations are:

−227.27+1.086 e=0.83(0+2.7) 108/Ps=2.24 (108/Ps) 
−227.27–2.035 e=0.83(0–17.5) 108/Ps=−14.53 (108/Ps)
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Fig. 16.14 shows the Magnel diagram at the support. The feasible area is not a closed 
polygon. 

Fig. 16.14 Magnel diagram at support.

The point corresponding to 108/Ps=85, e=406 mm is outside the feasible region and 
cannot be accepted. In order to bring the point inside the feasible region, remove two 
cables, one from each web. The number of strands is reduced from six to four. The cor-
responding 108/Ps is given by

108/Ps=85×(6/4) =127.5
e=473–50=423 mm.

 

This point now lies inside the feasible region and can be accepted. Thus one cable in each 
web needs to be debonded towards the support.

16.9 COMPOSITE BEAMS

In a very common form of bridge construction, precast pre-tensioned beams are erected 
first and the in-situ concrete is cast on top of them using form-work which is supported on 
the precast beams. The form-work is just left in place. This type of formwork is called sac-
rificial formwork. Beams are placed at approximately 1 m apart. Once the in-situ concrete 
has hardened, the beam and the deck slab act as a composite structure. Fig. 16.15 shows a 
typical bridge superstructure using inverted T-beams.
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Fig.16.15 Composite beam.

In this type of beams, the weight of the slab and associated permanent formwork is carried 
wholly by the precast beam. However once the slab hardens, then all subsequent loads 
acting on the slab will be resisted by the pre-tensioned beam acting in conjunction with 
the cast-in-situ slab. The cast-in-situ slab acts as the compression flange of the composite 
I-beam.

Since the object is to calculate the value of Ps and e so that the stresses in the precast 
section are within permissible limits, the stresses are calculated in the precast section 
only. 

(i) Transfer stage: Prestress acts on the precast beam. The only external moment is due 
to the self weight of the beam. The governing equations are 16.1 and 16.2 (repeated here 
for completeness)

(16.1)

(16.2)

(ii) Serviceability limit: The weights of slab and precast beam are supported by the pre-
cast beam. The ‘Live’ loads are supported by composite beam. In addition to the stresses 
caused by the loads, one needs to include the stresses caused by the shrinkage of the insitu 
slab. Stresses due to shrinkage occur because as the cast-in-situ slab dries, it shrinks and 
forces the precast beam to bend.

(16.13)
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(16.14)

16.9.1 Magnel Equations for a Composite Beam

Fig. 16.16 shows a composite beam. The precast pre-tensioned inverted T-beam is made 
composite with an cast-in-situ slab acting as the top flange of the composite beam. It is 
used as a simply supported beam over a span of 24 m.

Fig 16.16 Composite beam section.

The section properties on precast and composite beam are as follows. 

(a) Precast beam:

Areα=4.425×105 mm2

yb=442 mm
yt=658 mm

I=4.90×1010 mm4,
zb=111.0×106 mm3

zt=74.5×106 mm3.
self weight=10.62 kN/m

 

(b) Composite beam:

Acomposite=6.025×105 mm2

yb composite=638 mm,
yt to top of precast=1100–638=462 mm

IComposite= 11.33 ×1010 mm4

zb composite=177.6×106 mm3

Composite zt to top of precast=245.2×106 mm3

self weight=14.46 kN/m
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(c) Loads:

self weight of precast=10.62 kN/m 
qdead=Weight of (Composite beam+permanent formwork) 

qdead=14.46+say 1.2–15.66 kN/m 
qlive= 18.2 kN/m

 

(d) Moments and stresses at mid-span:

Self weight:
 

Total dead load: 
 

Live load:

Shrinkage stresses: Assume:

Top=−1.7 N/mm2

Bottom=0.6 N/mm2.
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(e) Magnel Equations: Magnel equations consider the stresses in precast section only. 
Using precast beam properties,

1/Α=1/ (4.425×105)=226.0×10−8

1/zb=l/(111.0× 106)=0.90×10−8,
1/zt=1/ (74.5×106)=1.34×10−8

 

(f) Losses
Take 10% loss at transfer and 25% long term.

η=(1−0.1)/(1−0.25)=0.83  

(g) Permissible stresses: Assume

ftt=3.0 N/mm2

ftc=−20 0 N/mm2

fst=3.2 N/mm
fsc=−21 0 N/mm2

 

(h) Stress conditions and Magnel equations:

At transfer:
Top: (Equation 16.1)

(−226.0×10−8+1.34e×10−8)Ps−0.83×10.3≤0.83×3.0
−226.0+1.34 e≤11.0×(108/Ps)

 

Bottom: (Equation 16.2) 

(−226.0×10−8–0.90e×10−8)Ps+0.83×6.9≥0.83×(−20.0)
−226.0–0.90 e≥−22.3×(108/Ps)

 

At Service:

Top: (Equation 16.13)

(−226.0×10−8+1.34e×10−8)Ps−15.1–5.3–1.7≥−21.0
−226.0+1.34 e≥1.1×(108/Ps)

 

Bottom: (Equation 16.14)

(−226.0×10−8–0.90e×10−8)Ps+10.2+7.4+0.6≤3.2
−226.0–0.90 e≤−15.0×(108/Ps)

 

The Magnel diagram for the above set of four equations can be drawn.
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16.10 POST TENSIONED BEAMS: CABLE ZONE

In pre-tensioned beams, the strands are straight (except when cables are deflected) and 
due to debonding, prestress and eccentricity vary along the span in a stepwise manner. In 
post-tensioned beams, cables take a curved profile. Thus the eccentricity can vary along 
the span but the prestress remains constant (if losses in prestress along the span can be 
ignored). The permissible eccentricity at any section can be calculated by rearranging 
equations 16.9 to 16.12 as follows.

(16.15)

(16.16)

(16.17)

(16.18)

16.10.1 Example of a Post-tensioned Beam

Fig. 16.9 shows a post-tensioned symmetric double-T-beam. It is used as a simply sup-
ported beam to support a total load (excluding self weight) of 45 kN/m over a span of 10 
m. From the Magnel diagram at mid-span, the value of 108/Ps=85, giving Ps=1176.5 kN. 
Assume loss at transfer and serviceability limit state as respectively 10% and 25% of the 
jacking force.

(i) Section properties: 

Α=44×104 mm2

zt=92.12×106 mm 
zb=49.08×106 mm3

zt/Α=209.36 mm
zb/Α=111.56 mm

 

(ii) Moments (At position x from left hand support):

qself weight=10.56 kN/m
Mself weight=52.8 x−5.28 x2

qservice=55.56 kN/m
Mservice=277.8x−27.78 x2
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(iii) Permissible stresses:

ftt=2.7 N/mm2

ftc=−17.5N/mm2

fst=3.2 N/mm2

fsc=−16.7 N/mm2

 

(iv) Loss of prestress

η=0.75/0.9=0.83  

(v). Prestress

Ps=1176.5 kN  

(v) Limits on eccentricity:

Substituting the above values in equations 16.15 to 16.18 and simplifying 

e≤{384.83+37.25 x−3.725 x2}
e≤{717.50+37.25 x−3.725 x2}

e≥{−1098.25+236.12 x−23.612 x2}
e≥{−518.32+236.12 x−23.612 x2}

 

Fig.16.17 Feasible cable zone.
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Lower limits for e (e ≥) are governed by equations 16.15 and 16.16. Clearly equation 
16.15 gives a lower value than equation 16.16. Similarly the upper limits for e (e ≤) are 
governed by equations 16.17 and 16.18. Clearly equation 16.18 gives a larger value than 
equation 16.17. Thus the feasible cable zone lies between the curves corresponding to 
equations 16.15 and 16.18. Cables placed inside the feasible zone thus satisfy all the stress 
criteria. Assuming a minimum cover to the cables of 50 mm, the maximum and minimum 
values of e attainable are equal to

yb−50=423 mm
yt−50=202 mm.

 

Fig. 16.17 shows the feasible region. The range of e at the support and mid-span are:

Ends: −202≤e≤384.83
Mid-span: 71.98≤e≤423

 

16.11 ULTIMATE MOMENT CAPACITY

One aspect of design of prestressed sections which is different from the procedure used in 
the case of a reinforced concrete section is that the designs are carried out for SLS and the 
designed section is checked to ensure that ULS conditions are also satisfied. The calcula-
tions for determining the ultimate moment capacity are similar to the ultimate moment 
capacity calculation in the case of reinforced concrete section as explained in Chapter 4, 
section 4.6.2. As in the case of reinforced concrete sections, the compressive stress dis-
tribution in concrete is assumed to be that given by rectangular stress block assumption 
with the maximum stress equal to 0.445fcu and the maximum strain equal to 0.0035. The 
main difference from the calculations for a reinforced concrete section is in calculating 
the strains in steel. In the case of reinforced concrete sections, the strain in steel is due 
to bending. However, in the case of prestressed concrete sections, because the cables are 
pre-tensioned before the application of load, the total strain in the cable is the sum of the 
prestrain due to prestress Pservice and the strain due to applied bending.

16.11.1 Example of Ultimate Moment Capacity Calculation

Fig. 16.18 shows the cross section of a precast pre-tensioned inverted T-beam made com-
posite with an cast-in-situ slab. The beam is used to carry a total factored uniformly dis-
tributed dead load of 20 kN/m and 30 kN/m live load over a simply supported span of 24 
m. Calculate the ultimate moment capacity of the section.

(a) Specification

The properties of the beam are as follows.
Total prestressing force Ps at service is 3712 kN applied at an eccentricity of 283 mm. 

The prestress is applied by 32 number 15.2 mm diameter 7-wire standard strands with an 
ultimate breaking load of 232 kN. 
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The 32 strands are positioned as follows:

10 cables at 60 mm from the soffit
14 cables at 110 mm from the soffit
6 cables at 160 mm from the soffit

2 cables at 1000 mm from the soffit.

 

The cross sectional area Aps of cable

APs= 138.92 mm2
fcu for precast beam=50 N/mm2

fcu for insitu slab=35 N/mm2

 

Fig.16.18 Composite beam.

(b) Stress-strain relationship
The stress-strain relationship for prestressing steel is given in Fig. 2.3 of the code BS8110. 
It is a trilinear curve as shown in Fig. 16.19.

ε1 ε2

strain 

Stress 

0.8fpu/γ m

fpu/γ m

E

Fig.16.19 Stress-strain relationship for prestressing steel.
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The ultimate tensile strength fpu of steel in 15.2 mm diameter 7-wire strand ‘standard’ 
cable is 

fpu=1670 N/mm2  

Young’s modulus E=195 kN/mm 
γm=1.05 for steel.

0.8 fpu/γm= 1272 N/mm2

ε1=1272/E=1272/(195×103)=6.523×10−3

fpu/γm=1591 N/mm2

ε2=0.005+1591/E 
ε2=0.005+1591/(195×103)=13.154×10−3

E2=(1591–1272)/ (ε2–ε1)=48.11 kN/mm2

 

(c) Pre-strain calculation

fpe=prestress in the cables=Ps/Total area of cables 
=3712×103/(32×138.92)=835 N/mm2

εpe=prestrain in the cables=fpe/E=835/(195×103)=4.28x10−3

 

(d) Stress and strain in cables

For a given depth x of neutral axis, at a depth a from the compression face, Strain εb due 
to bending

εb=0.0035×(a−x)/x=3.5×10−3 (a/x−1.0)
Total depth of composite beam=1100+160=1260 mm

α=1260−distance to the layer from soffit

 

Table 16.4 summarises the data for all the cables.

Table 16.4 Data for cables

Layer c=Depth from soffit, mm No. in the layer a =1260−c
1 60 10 1200

2 110 14 1150

3 160 6 1100

4 1000 2 260

Total strain ε at a depth a from the compression face

ε=εpe+εb={4.28+3.5(a/x−1)} 10−3  
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From Fig. 16.19, for a given strain ε, the corresponding stress a is given by the following 
equations.

0<ε≤ε1, σ=εE
ε1<ε≤ε2, σ=1272+(ε−ε1) E2

ε>ε2, σ=1591 N/mm2

 

(e) Compressive stress in concrete

Using the rectangular stress block, the depth of the stress block is 0.9x. The compressive 
stress in concrete is 0.45 fcu. 

(f) Determination of neutral axis depth x

The determination of the neutral axis depth is a trial and error process. The steps involved 
are as follows.
(i)  Assume a value for neutral axis depth, x

(ii)   Calculate the bending strain in εb in the cables at different levels a:

εb=3.5×10−3(a/x−1.0)  

(iii)  Calculate the total strain ε=εpe+εb, εpe=4.28×10−3

(iv)  Calculate the stress σ in the cables

(v)   Calculate the total tensile force F in each layer

F=σ×(Area of cable= 138.92 mm2)×No. of cables in the layer  

(vi)  Total tensile force T=∑F

(vi)  Calculate the total compressive force C:

(a)  If x<depth of slab (=160 mm),

C=0.447×fcu slab×1000×(0.9x)  

(b)  If x>(depth of slab=160 mm)

CSlab=0.447 ×fcu slab×(1000×160)

CBeam=0.447 fcu beam×(0.9x−160)×300

C=CSlab+CBeam

 

(vii)  Check if T=C. If not go back to step (i) and repeat.
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(g) Trial 1:

Assume x=600 mm  

Table 16.5 summarizes the calculation of forces in layers.

F=σ×No. of cables in the layer×138.92×10−3 kN 

Table 16.5 Force calculation in the cables for Trial 1.

Layer εbx103 (ε=εpe+εb)x103 σ N/mm2 F, kN
1 3.5 7.78 1333 1852

2 3.208 7.488 1318 2563

3 2.917 7.197 1304 1087

4 −1.983 2.297 448 125

    T=ΣF=5657

Cslab=0.447×35×1000×160×10−3=2503.2 kN 

Cbeam=0.447×50×(0.9x−160)×300×10−3=2547.9 kN

 

C=Cslab+Cbeam=2503.2+2547.9=5051.1 kN 

T−C=605.9 kN

 

Since T>C, increase the value of x and repeat.

(h) Trial 2:

Assume x=700 mm 
 

Table 16.6 summarises the calculation of forces in layers.

Table 16.6 Force calculation in the cables for Trial 2.

Layer εb×103 (ε=εpe+εb)×103 σ N/mm2 F, kN
1 2.5 6.78 1284 1784
2 2.25 6.53 1272 2474
3 2.0 6.28 1225 1021
4 −2.2 2.08 406 113
    T=ΣF=5392

Cslab=0.447×35×1000×160×10−3=2503.2 kN 
Cbeam=0.447×50×(0.9x−160)×300×x10−3=3151.4 kN 

C=Cslab+Cbeam=2503.2+3151.4=5654.6 kN
T−C=−262.6 kN
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(i) Linear interpolation

Since there are two values of neutral axis depth for which values of (T−C) are known, 
linear interpolation between x=600 and x=700 can be done to determine the value of x for 
which T−C=0. From Fig. 16.20, 

 

Fig. 16.20 Linear interpolation.

(j) Calculation of tensile and compressive forces at x=670 mm.
Table 16.7 shows the force calculation in the cables.

Table 16.7 Force calculation in the cables for interpolated value of x.

Layer εbx103 (ε=εpe+εb)×103 σ N/mm2 F, kN
1 2.769 7.049 1297 1802
2 2.508 6.788 1285 2499
3 2.246 6.526 1272 1060
4 −2.142 2.138 417 116
    T=IF=5477

Cslab=0.447×35×1000×160×10−3=2503.2 kN
Cbeam=0.447×50×(0.9x−160)×300×10−3=2970.0 kN

C=Cslab+Cbeam=2503.2+2970.0=5473.2 kN
T−C=3.8 kN which is small enough to be ignored.
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(k) Calculation of ultimate moment Mu

Since the total T and C form a couple, the ultimate moment is calculated by taking moments 
about any convenient point of the tensile and compressive forces. Taking moments about 
the top of the cross section of the forces shown in Fig. 16.21, the ultimate moment capac-
ity is equal to 4897.53 kNm. 

Fig.16.21 Forces in the cross section

Table 16.8 Calculation of ultimate moment capacity, Mu

 Force, kN Lever arm = Distance from top, m Moment, kNm
Cslab −2503.2 (160/2=80)×10−3 −200.26
CBeam −2970.0 {160+(0.9x−160)/2=381.5}×10−3 −1133.06
F1 1802 1200×10−3 2162.40
F2 2499 1150×10−3 2873.85
F3 1060 10−3 1166.00
F4 110 260×10−3 28.6
   ∑=4897.5

The applied bending moment at ultimate load is

M at ULS=20×242/8 due to dead load+30×242/8 due to live load 
=3600 kNm<4897.53 kNm.

 

The applied moment is less than the ultimate moment capacity Mu. The beam has suf-
ficient capacity to resist the applied bending moment at ULS.

16.11.2 Ultimate Moment Capacity Calculation using Tables in BS8110

The code BS8110 provides Table 4.4 from which the ultimate moment can be calculated 
for rectangular sections and for flanged sections where the stress block is inside the top 
flange. The Table is based on strain compatibility method applied to a rectangular beam
with all the steel concentrated at the effective depth d. Calculations have been done for 
fpu=1860 N/mm2 and E=195 kN/mm2. The given values are slightly conservative for lower 
strength tendons. In using the table, it has to be remembered that only those tendons, 
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which are in the tensile zone, should be included. In other words the stress in the tendons, 
which are included, should not be vastly different from the ‘average’ stress.

Assuming a neutral axis depth of x, the basic equations used in the development of the 
tabular values are as follows. Total compression :

C=0.445fcu×b×{0.9x}  

If the area of prestressing cables is Aps and the stress in the cables is fpb, total tension T 
is,

T=fpb Aps
 

For equilibrium C must be equal to T.

0.445fcu×b×{0.9x}=fpb Aps
 

Rewriting the above equation as

0.4 {x/d} [fcu b d]={fpb/fpu} [fpu Aps]
0.4{x/d}=[(fpu Aps)/ (fcu b d)] {fpb/fpu}

 

For a given section and material strengths, [(fpu Aps)/ (fcu b d)] is a non-dimensional  
parameter.

Strain in steel:

ε=fpe/E+0.0035(d/x−1)
=[fpe/fpu] {fpu/E}+0.0035(d/x−1)

 

For a given value of prestress in the cables, [fpe/fpu] is aother non-dimensional parameter.
For prescribed values of the non-dimensional parameters, assuming values of (x/d), 

stress in steel can be obtained from the stress-strain curve for steel and equilibrium can 
be checked. The value of (x/d) which satisfies equilibrium is the correct value. Once the 
value of x is known, the value of fpb can be calculated.

The ultimate moment is then given by 

Mu=Aps fpb (d−0.45 x)  

16.11.2.1 Example of ultimate moment capacity calculation using tables in BS8110

Calculate the ultimate moment capacity of the composite beam shown in Fig. 16.19. Use 
data as given in section 16.11.1.

Assuming that the stress block depth is inside the depth of the slab, the cross section 
will be treated as a rectangular with a width b equal to width of slab. The beam has 32 
cables each of cross sectional area equal to 138.92 mm2. Since the cables at 1000 mm 
from the soffit are too far away from the tension zone, excluding these two cables, the 
number of cables in the tension zone is 30. This is made up of 10 cables at 60 mm from 
the soffit, 14 cables at 110 mm from the soffit, and 6 cables at 160 mm. The resultant 
effective depth is
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d={10×(1260−60)+14×(1260−110)+6×(1260−160)}/30=1157 mm
b=width of slab=1000 mm

 

Area of prestressing steel Aps

Aps=30×138.92=4167.6 mm2

fcu=fcuSlab=35N/mm2

fpu=1670 N/mm2, fpe=835 N/mm2

 

From Table 4.4 of the code, using linear interpolation

fpb=0.888×(0.95×1670)=1409 N/mm2

x=0.532×1157=407 mm,
0.9x=366 mm>depth of slab

 

The tabular values are inapplicable for calculating the ultimate moment capacity of the 
section. Strain compatibility method is the valid approach.

16.12 ULTIMATE SHEAR CAPACITY OF SECTIONS CRACKED  
IN FLEXURE 

The ultimate shear capacity depends on whether the section is cracked in flexure or not. 
A section is said to be cracked in flexure if the applied moments cause a tensile stress at 
the soffit sufficient to neutralize the compressive stress due to prestress. If a section is 
cracked in flexure, then the shear capacity Vcr due to concrete is given by the following 
empirical formula. 

 

where
M and V are shear force and moment acting on the section
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Mo=Moment required to neutralize 0.8 of the compressive stress due to prestress at the 
soffit.

fpe=stress in prestressing cables due to Ps, prestress at SLS
fpu=ultimate tensile stress in the cables

bv=width of web
d=effective depth

vc=permissible shear stress in concrete

 

16.12.1 Example of Calculation of Vcr

Calculate Vcr at the mid-span section of the beam in section 16.11.1.

1100

750

300

250

Fig 16.22 Precast beam section

(a) Calculate M0

The prestress Ps acts on the precast pre-tensioned inverted T-beam shown in Fig.16.22.
The properties of the precast section are:

Α=4.425×105 mm2
yb=442 mm, yt=658 mm

I=4.90×1010 mm4

zb= 111.0×106 mm3,
zt=74.5×106 mm3

Ps=3712 kN, eccentricity e=283 mm.

 

Compressive stress σ at soffit due to prestress 
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0.8 σ=0.8×17.9=14.3 N/mm2

 

Dead load acts on the precast beam:

Bending moment due to dead load=20×242/8=1440 kNm
Tensile stress at soffit due to dead load=1440×106/zb=13.0 N/mm2

 

Bending stress 13.0 N/mm2 due to dead load is insufficient to neutralize 0.8 σ. Additional 
moment Madditional acting on the composite section shown in Fig. 16.19 is necessary.

The properties of the composite section are:

Acomposite=6.025×105 mm2

Centroid: yb=638 mm, yt=622 mm
Second moment of area Icomposite=11.33×1010 mm4

Section moduli: zb composite=177.6×106 mm3, zt composite=182.2×106 mm3

 

The 0.8 of the compressive stress due to prestress is neutralized when

−14.3+13.00+MAdditional×106/(177.6×106)=0
MAdditional=230.9 kN

Mo=MDead+MAdditional=1440+230.9=1670.9 kNm

 

(b) Calculate M and V

From the influence line for shear force at a section, it can be shown that in order to obtain 
maximum shear force at mid-span, the live load will occupy only one half of the span. 
Dead load being a stationary load will occupy the entire span. The load positions are as 
shown in Fig. 16.23.

The total moment M at mid-span

=qdead×242/8+qlive×242/16

M=20×242/8+30×242/16

M=2530 kNm

V=0+qlive×24/8

V=0+ 30×24/8=90 kN
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(c) Calculate vc

In calculating vc, only cables in the tension zone should be included in calculating the 
effective depth d and the area of cross section As. Excluding the two cables at 1000 mm 
from the bottom, using the data from section 16.11.2.1, 

d=1157 mm
As=4167.6 mm2

 

bv=300 mm

100As/(bvd)=1.2<3.0

400/d<1.0, take as 1.0

fcu=50>40 N/mm2, take as 40N/mm2 

 

Fig. 16.23 Dead and live loads to give maximum shear force at mid-span.

(d) Calculate fpe/fpu

fpu=1670 N/mm2

fpe=prestress in the cables

fpe=Ps/Total area of all cables

fpe=3712x103/(32×138.92)=835 N/mm2

fpe/fpu=835/1670=0.50
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(e) Calculate Vcr

 

Applied shear force is V=90 kN and hence the shear capacity of concrete alone is suffi-
cient. There is no need for any shear links but minimum links will always be provided as 
in the case of reinforced concrete beam.

16.13 ULTIMATE SHEAR CAPACITY VCO OF SECTIONS  
UNCRACKED IN FLEXURE

Sections are said to be uncracked in flexure if the applied moment M is less than the 
moment M0 required to neutralize 0.8 of the compressive stress at the soffit due to pre-
stress. In sections which are uncracked in flexure, it is necessary to limit the maximum 
principal tensile stress in the web to a value ft, where ft=0.24√fcu.

In the case of a rectangular section b×h, the maximum shear stress τ due to a shear 
force V occurs at the neutral axis and is given by

 

If fcp is the compressive stress due to prestress at the neutral axis, then the state of stress 
at the neutral axis is as shown in Fig. 16.24.

Fig. 16.24 Normal and shear stresses at the neutral axis.
The maximum principle tensile stress for the biaxial state of stress shown in Fig. 16.24 
is given by

 

From which the permissible value of τ can be calculated as follows.
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The code BS8110 gives the following formula for calculating VCO, the shear capacity due 
to concrete alone in sections uncracked in flexure, where the compressive stress is taken 
as 0.8 fcp.

 

Although the formula is derived for the case of a rectangular section, it can be applied for 
flanged sections also with little loss of accuracy because the shear force is mainly resisted 
by the web. 

16.13.1 Example of Calculating Ultimate Shear Capacity VCO

Calculate Vco at the support section of the beam in section 16.11.1. The number of cables 
at the support has been reduced by 50% by debonding all cables at 60 mm from soffit and 
six cables at 110 mm from the soffit.

Ps=Prestress force from 16 cables only

Ps=0.5×3712= 1856 kN
e=yb of precast−{8×110+6×160+2×1000)/16

e=442−240=202 mm

 

fcp=compressive stress (taken as positive value) due to prestress at centroidal axis of the 
composite beam.

fcp=4.2−1.5=2.7N/mm2

ft=0.24 √fcu=0.24√50=1.7 N/mm2

b=bv=300 mm, h=1260 mm
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Applied shear force V

V=20×24/2 from dead load+30×24/2 from live load 
V=600 kN

 

Since VCO>V, theoretically no shear reinforcement is required but but minimum links will 
always be provided as in the case of reinforced concrete beam

16.13.1.1 Calculation of VCO from First Principles

The formula given in the code does not distinguish between the loads carried by the 
precast beam section and the loads carried by the composite section. If this fact is taken 
into account, the calculation of VCO can be refined as follows.

1. Permissible shear stress

The permissible shear stress τ at the centroid of the composite beam from Section 16.13.1 
is

 

2. Shear stress due to dead load

The shear stress τdead due to dead load is given by 

 

where

V dead=20×24/2=240 kN 
bv=300 mm

 

∫ y dΑ=First moment of area of the part of the section above the level considered for cal-
culating the shear stress about the centroidal axis of the beam.

FIG.16.25 Calculation of first moment of area of precast section.

From Fig. 16.25, for the hatched area
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3. Shear stress τAdditional from live load

The permissible value of shear stress carried by the composite section without exceeding 
the total permissible shear stress is τAdditional 

τ=τdead+τAdditional

2.6=1.0+τAdditional

τAdditional=1.6N/mm2

 

Fig.16.26 Calculation of first moment of area of composite section.

The τAdditional arises from any live loads acting on the composite beam.
 

From Fig. 16.26, for the hatched area

∫ y dΑ=462×300×{462/2}+1000×160×(462+160/2)
∫y dΑ=118.7×106 mm3

VAdditlonal=458.2 kN
Vco=Vdead+VAdditional=240+458.2=698.2 kN
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The approximate value of VCO from code formulα=648.8 kN. In this example, the code 
formula under estimates VCO by about 7%.

16.14 DESIGN OF SHEAR REINFORCEMENT

Design of shear links is carried out in a manner similar to the design in reinforced concrete 
(See Chapter 5, section 5.1.3).

1. Check if section is adequate

 

2. 0.5 Vc<V≤(Vc+0.4 bvd),
Provide minimum shear reinforcement Asv at a spacing of sv.

 

3. V>(Vc+0.4 bv d)

Provide shear reinforcement Asv at a spacing of sv.

 

where

sv=spacing of links
Asv=Area of all legs of a link in a cross section

fyv=yield stress of link steel
d=effective depth to steel in the tension zone

bv=width of the web.
Vc=VCO at a section uncracked in flexure

Vc=lesser of (VCO and VCR) at a section cracked in flexure.

 

Maximum spacing sv of links is limited to 0.75 d.

16.14.1 Example of Shear Link Design

Design the shear reinforcement for the beam in section 16.13.1 using 8 mm diameter two 
legged high yield steel links.
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V=600 kN  

Vco=648.8 kN (using code formula)
bv=300 mm

 

Ignoring the steel at 1000 mm from the soffit,

d=1129 mm.  

Check adequacy of section:

V/(bvd)=600×103/(300×1129)
=1.8 N/mm2<lesser of {(0.8√50=5.7 and 5 N/mm2}

 

Section size is adequate and shear links can be provided.
Check if minimum or design links are required.

0.4 bv d=0.4×300×1129×10−3=135.5 kN
Vco+0.4 bv d=648.8+135.5=784.3 kN

(0.5 Vc=300)<(V=600)≤{(Vc+0.4 bv d)=784.3)}

 

Only minimum steel is required to resist shear.
Minimum links:

fyv=460 N/mm2, Asv=2×(π/4)×82=100.5 mm2.
 

giving sv=366 mm. 0.75 d=847 mm. Spacing of links at say 350 mm can be used.

16.15 HORIZONTAL SHEAR

In the case of composite beams, it is necessary to ensure that the horizontal shear stress 
between the precast beam and the cast-in-situ slab as shown in Fig. 16.27 can be safely 
resisted. If there there were to be a shear failure at the slab-beam junction, then com-
posite beam action will be destroyed. BS8110 gives guidance on horizontal shear in  
clause 5.4.7.

If the compressive force in slab due to ultimate moment at mid-span is Cslab, the aver-
age shear stress τaverage is given by

τaverage=Cslab/(0.5×Span×Contact width w)
 

In continuous beams, instead of half span, the length between the maximum positive or 
negative moment and the point of zero moment should be used.

The average design shear stress should be distributed in proportion to the vertical 
design shear force diagram. The design shear stress vh should be less than the appropriate 
value in Table 5.5 of the code.
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16.15.1 Shear Reinforcement to Resist Horizontal Shear Stress

In clauses 5.4.7.3 and 5.4.7.4, code gives guidance on the required shear reinforcement in 
the form of shear links projecting from the precast beam into the cast-in-situ slab.

(a) Nominal links

If vh≤permitted value from Table 5.5, links should be provided such that

 

(b) Design links

If vh>permitted value from Table 5.5, links should be provided such that

 

where Ah=area of two-legged link, sh=spacing of links, w=contact width. sh in T-beam ribs 
with cast-in-situ slab acting compositely with the precast beam should not exceed four 
times the minimum thickness of slab nor 600 mm which ever is greater.

0.5L

Cslab

τAverage

Precast beam

w

Fig.16.27 Horizontal shear stress.

16.15.2 Example of Design for Horizontal Shear

Design the shear reinforcement for the beam in section 16.11.1. At ULS, the neutral axis 
depth x=670 mm. The cast-in-situ slab is 1000×160 mm, fcuslab=35N/mm2.

Since the neutral axis depth x>depth of slab,

Cslab=0.447×35×1000×160×10−3=2503.2 kN
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Width of contact w=300 mm
0.5 span=24/2=12 m 1.4 N/mm2

τaverage=Cslab/(0.5×Span×Contact width w)
τaverage=2503.2×103/(12×103×300)=0.7 N/mm2

 

At ULS to cause maximum horizontal shear both dead and live loads cover the entire 
span. Shear force at support is 600 kN (Section 16.13.1) and zero at mid-span.

0.5×τSupport=τAverage=0.7
vh=τsupport=1.4 N/mm2

 

From Table 5.5 of code, minimum permissible interface shear stress for grade 30 con-
crete is 1.8 N/mm2. Therefore only nominal links are required. Using 8 mm diameter two 
legged links,

 

sh=233 mm<greater of (4×160 or 600 mm)

Note that this spacing is smaller than 366 mm which was required for resisting vertical 
shear.

16.16 LOSS OF PRESTRESS IN PRE-TENSIONED BEAMS

In sections 16.2.1 and 16.3.1 it was stated that that although at the time of stressing the 
cables, the total force is Pjack, due to losses that occur during transfer of prestress to con-
crete and also due to long term deformation of steel and concrete, there is considerable 
reduction in prestress at the long term SLS stage.

16.16.1 Loss at Transfer

The loss at transfer occurs because of the fact that when the force is transferred to con-
crete, it contracts. Because of the full bond between steel and concrete, steel also suffers 
the same contraction. The loss in prestress can be calculated by using a simple model 
where the prestress and eccentricity are constant over the whole length and all the pre-
stressing steel Aps can be assumed to be concentrated at an eccentricity e. If Pt is the force 
in the cables, then at the centroid of steel the stress σc in concrete is given by
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where A and I are respectively the area of cross section and second moment area of pre-
tensioned beam.

The strain εc in concrete is given by

εc=σc/Ec 
 

where Ec=Young’s modulus for concrete considering immediate contraction. Because of 
full bond, the strain εs in steel is same as strain in concrete. 

εs=εc=σc/Ec 
 

The stress σs in steel corresponding to εs is 

σs=Es εs=Es σc/Ec 
 

The loss of prestress is given by 

Loss=Aps σs=Aps Es σc/Ec

Pt=Pjack−LOSS

 

16.16.1.1 Example on calculation of loss at transfer

Calculate the loss at transfer for the pre-tensioned beam in section 16.11.1. The properties 
of the precast section are:

Area Α=4.425×105 mm2

Second moment of area I=4.90×1010 mm4

 

Prestressing force used to stress 32 cables each of area 138.92 mm2 is

PJack=4700 kN

eccentricity e=283 mm.

Es=195 kN/mm2

 

The cables are normally released after one or two days or earlier using steam curing to 
speed up the gain in strength. Assuming that at the time of transfer of prestress, fcu for 
concrete is approximately 30 N/mm2, from Table 7.2, BS8110, Part 2,

Ec=(20 to 32 kN/mm2)
Let Ec=30 kN/mm2.

 

Assuming that Pt is in kN, compressive stress σc due to prestress at centroid of steel
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Loss=Aps Es σc/Ec

Loss=(32×138.92)×(195/30)×3.894×10−3×Pt×10−3 kN
Loss=0.113 Pt kN

Pt=Pjack−Loss=4700–0.113 Pt

Pt=4223 kN, Pt/Pjack=0.90

 

There is 10 % loss of prestress at the time of transfer.

16.16.2 Long Term Loss of Prestress

After the force has been transferred, concrete continues to contract due to creep. In addi-
tion concrete also suffers shrinkage due to loss of moisture. Because the steel is under 
stress there is reduction in stress due to the relaxation effect. These losses can be calcu-
lated using the simple model used in section 16.15.1

(i) Loss of prestress due to creep

Code gives guidance on calculating the loss due to creep in clause 4.8.5.2. The long term 
Young’s modulus of concrete is obtained by dividing the short term Ec at transfer by creep 
coefficient which varies between 1.8 for transfer at 3 days and 1.4 for transfer at 28 days. 
The stress in concrete should be taken as the value at transfer.

Assuming that Pt=4223 kN, compressive stress σc due to prestress at centroid of steel

 

Using Creep coefficient=1.8, Ec including creep deformation

Ec=30/1.8=16.7 kN/mm2

Loss due to creep=Aps Es σc/Ec

Loss due to creep=(32×138.92)×195/16.7×16.4×10−3=851.3 kN

 

(ii) Loss of prestress due to shrinkage of concrete

In clause 4.8.4 of BS8110, shrinkage strain εsh of 100×10−6 for UK outdoor exposure and 
300×10−6 for indoor exposure are suggested.

Loss of prestress=Aps Es εsh

Using εsh=l 00×10−6,
Loss due to shrinkage=(32×138.92)×195×100×10−6

Loss due to shrinkage=86.7 kN
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(iii) Loss of prestress due to relaxation of steel

In clause 4.8.2 of BS8110 gives guidance on calculation of prestress loss due to relaxation 
of steel. Tests are normally conducted for 1000 hour duration and the long term relaxation 
loss is a multiple of 1000 hour loss by relaxation by factors given in Table 4.6 of the 
code.

For 7-wire strand, if the initial stress is 60%, 70% and 80% of fpu, then the correspond-
ing 1000 hour loss is approximately 1%, 2.5% and 4.5% respectively.

Taking 2.5% as the 1000 hour loss and a relaxation factor equal to 1.5, then the total 
loss due to relaxation is

Loss due to relaxation=2.5×1.5=3.75% of Pt.
Taking Pt=4141 kN,

Loss due to relaxation=(3.75/100)×4141=155.3 kN

 

(iv) Total long term loss
Total long term loss=Loss due to (Creep+Shrinkage+Relaxation)

Total long term loss=851.3+86.7+155.3=1093.3 kN
Ps=Pt—long term loss=4223−1093.3=3129.7 kN 
% Loss=(1−Ps/Pjack)×100=33%
As can be seen the greatest part of the long term loss is due to creep. Creep can also 

substantially increase long term deformation leading to unacceptable deflection. It is very 
important to make realistic estimation of the effects of creep. 

16.17 LOSS OF PRESTRESS IN POST-TENSIONED BEAMS

The difference between the losses in pre-tensioned and post-tensioned occurs only due to 
losses during jacking and transfer. The long term loss calculations are identical.

(i) Transfer loss
In post-tensioned beams, because concrete contracts while the cables are being stressed, 
any loss due to elastic contraction of concrete can be compensated to a certain extent. 
In clause 4.8.3.3, the code suggests that this loss is approximately 50% of that in a cor-
responding pre-tensioned beam. However once the jacking is done and the wedges are 
driven into the anchors, a certain amount of slip takes place before the wedges bite in. 
This is known as ‘Draw-in’ during anchorage. As the amount of slip is same whatever the 
length of the member, the loss of prestress due to ‘draw-in’ is particularly important in 
short members.

Loss=Aps×(Slip/Length of member)×Es 
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(ii) Loss due to friction between the cable and the duct and curvature of the 
tendons

Friction between the duct and the cable reduces the force in the cable away from the jack-
ing end. Loss also occurs because of the curvature of the cables. The loss may be mini-
mized by jacking from both ends of the beam. If Po is the prestress at the jacking end, then 
prestress Px at a distance x from the anchorage is given by the equation

 

where
k=profile coefficient, k is dependent on many factors such as the type of duct, how well 

it is supported while concrete is being cast, degree of vibration used. In clause 4.9.3.3, the 
code suggests k=33×10−4 per meter length in normal use.

μ=friction coefficient. In clause 4.9.4.3, the code suggests μ=0.20 to 0.30 for strands 
running in steel ducts, the value to be used depending on the surface characteristics of the 
duct and the strand.

rps=radius of curvature. In the case of symmetric parabolic profile with the dip at mid-
span of Δ and span of L, then rps=L2/ (8Δ)

As an example, in a simply supported post-tensioned beam of span 15m assuming

k=33×10−4/m
μ=0.30

Δ=200mm
rps=L2/(8 Δ)=152/(8×0.2)=140.6 m

k+μ/rps=5.43×10−3/m

 

Loss from prestress from jacking end to mid span is for x=15/2=7.5 m

 

 

There is 4% loss of prestress from anchorage to mid-span.

16.18 DESIGN OF END-BLOCK IN POST-TENSIONED BEAMS

In post-tensioned members, after stressing the cables which are inside ducts fixed to the 
reinforcement cage, they are anchored at the ends using proprietary anchorages. After 



 

650 Reinforced Concrete

anchoring, the ducts are grouted to prevent corrosion of the cables and also to bond the 
cables to concrete.

Fig. 16.28 Bursting forces in an End block.

When the cables are anchored, a very high force is transferred to the concrete over a small 
area. As shown in Fig. 16.28, if an axial force representing the force applied to the anchor 
acts at the end face, the load gradually diffuses into concrete along curved paths and after 
a certain distance from end, the stresses normal to the cross section become uniform. A 
simplified force system can be visualized by replacing the curved stress path by straight 
inclined struts. In order to maintain equilibrium, a vertical tie is needed. This represents 
the bursting or splitting force which can cause tensile failure of the end block.

The bursting stresses are local to the anchorage and generally there is little of an inter-
ference effect from neighbouring anchorages. The code uses a simplified approach to the 
determination of the bursting force. Considering an end block of square cross section with 
a load on the anchor of P0 over a square area as shown in Fig. 16.29, the ratio of bursting 
force Fbst to Po is given in Table 4.7 of the code. The smaller the ratio of ypo/y0, the larger 
will be the ratio of Fbst/P0.

Since in practice the ratio ypo/y0 will not be the same in both vertical and horizontal 
directions, the smaller of the two ratios will be used for determining the bursting force to 
be restrained.

The total bursting force Fbst is resisted by closed links extending from 0.2y0 to 2y0 from 
the loaded face. The stress in the reinforcement must be limited to 200 N/mm2.
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Fig. 16.29 Idealized End block used for calculation.

It is not unusual for multiple anchors to occur as shown in Fig. 16.30. Normally the 
anchors are so spaced that there is very little interference between the end blocks of indi-
vidual anchors. Therefore in case of multiple anchors, each anchor will be treated on 
its own with the associated idealized square end block. For the end block shown in Fig. 
16.29, in the vertical direction the value of y0 is calculated as follows. 

 

Fig. 16.30 End block with multiple anchors.

Top anchor: y0=smaller of (h1 and 0.5 h2)
Middle anchor: y0=smaller of (0.5h2 and 0.5 h3)

Bottom anchor: y0=smaller of (h4 and 0.5 h3)

 

16.18.1 Example of End-Block Design

Fig. 16.31 shows the cross section at the support of a post-tensioned T-beam with three 
anchors. Each tendon is prestresssed with a force at jacking of 1200 kN. The anchorages 
are all 150 mm square. Design the necessary reinforcement to prevent bursting.

2ypo

2y0
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Fig.16.31 End-block with multiple anchors

1. Horizontal direction:

In the horizontal direction for all the three anchors:

yo=250/2=125 mm, 
yPo=150/2=75 mm

YPo/yo=0.6

 

2. Vertical direction:

yPo=150/2=75 mm 

Bottom anchor: yo=lesser of (250 and 0.5×500)=250 mm 

Middle anchor: yo=lesser of (0.5×500 and 0.5×500)=250 mm 

Top anchor: yo=lesser of (0.5×500 and 550)=250 mm

 

Therefore for all the three anchors:

yo=250 mm 
yPo=150/2=75 mm 

YPo/yo=0.3

 

3. Bursting force:
The smaller of two ratios viz. 0.6 and 0.3 governs design. From Table 4.7 of the code, 

for yPo/yo=0.3, Fbst/P0=0.23 
P0=Force at anchor=1200 kN 

Fbst=0.23×P0=0.23×1200=276 kN

 

1800

200 

500 

500 

250 

1200

250
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4. Reinforcement to resist bursting force:

Fbst=Asv×200×N  

where Asv=Area of 2-legs of a link, N=Number of links required. Using 8 mm links, 
Asv=100.5 mm2.

276×103=100.5×200×N, N=14 links.

Spacing of links=(2y0−0.2y0)/ (N−1)

=(2×250−0.2×250)/ (14−1)=34 mm
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CHAPTER 17

 
DESIGN OF STRUCTURES RETAINING  

AQUEOUS LIQUIDS

17.1 INTRODUCTION

Structures such as tanks for retaining water or effluents in sewage treatment works are 
designed using the code

the relevant clauses of code BS 8110:1997 with additional clauses as required. The fol-
lowing is a brief summary of the relevant clauses. The reader should always refer to the 
complete texts in the codes.

The design is normally carried out according to the limit state principles. However, 
unlike normal reinforced concrete structures, design is often governed by the service-
ability limit state considerations of limiting the crack width rather than by ultimate limit 
state considerations.

17.1.1 Load Factors

Although the load factors for various load combinations at ultimate limit state are as 
given by Table 2.1 of BS 8110, in the case of tanks located below ground, the possibility 
of floatation of the tank when empty due to ground water pressure should be considered. 
The uplift is normally resisted by the dead weight of the structure. The required factor of 
against floatation during construction and in service should not be less than 1.1.

17.1.2 Crack Width

At serviceability limit state in a reinforced concrete structure, the maximum crack width 
due to direct tension and flexure or restrained temperature and moisture effects should be 
limited to 0.2 mm in case of severe or very severe exposure (see Table 3.2 of BS 8110) or 
to 0.1 mm when aesthetic appearance is critical.

In the case of prestressed concrete structure, the crack width is governed by the per-
missible tensile stress according to the Class to which it is designed (see Chapter 16,  
section 16.5.1)

BS 8007:1987: Code of practice for Design of concrete structures for retaining aqueous
 liquids.
The code (in this chapter this refers  to BS8007 rather than to BS8110) generally adopts 
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17.1.3 Span/Effective Depth Ratios

Limitations on the permissible deflection in cantilever walls is satisfied by ensuring that 
span/effective depth ratio is limited to 7 as given in Table 3.9 of BS 8110. However 
because of the fact that the loading on the walls is hydrostatic rather than uniform and also 
that the thickness of the wall at top is smaller than at the base, the following reduction is 
suggested. Linear interpolation is permissible between quoted figures.

Table 17.1 Reduction factor for tapered cantilever

dtop/dbase Reduction factor L/d
1.0 1.0 7

0.6 1.0 7

0.3 0.78 5.46

17.1.4 Cover

Clause 2.7.6 specifies that nominal cover should not be less than 40 mm. Care has to 
be taken to take account of the fact that especially in sections less than 300 mm thick, 
increasing the cover will lead to increased crack width.

17.1.5 Mix Proportions

Clause 6.3 specifies that the 28 day characteristic cube strength should not be less than 35 
N/mm2 and classed as grade C35A as this is not in accordance with BS 8110. Additional 
advice is given on the maximum cement content which for ordinary Portland cement 
should not exceed 400 kgs/m3.

17.1.6 Minimum Reinforcement

The minimum reinforcement is 0.64% for 250 grade steel and 0.35% for 460 grade steel. 
The total reinforcement is provided as follows:

(a)  Walls and suspended slabs: Total depth h≤500 mm, the required reinforcement is 
calculated for the whole area of concrete and on each face half the required rein-
forcement is provided. If h>500 mm, the required reinforcement is calculated for 
the outer 250 mm depth of concrete and on each face half the required reinforce-
ment is provided.

(b)  Ground slabs:
(i)  h<300 mm: Minimum reinforcement calculated on the basis of top half of the 

slab only. Provide this area of reinforcement in the top half of the slab. There is 
no reinforcement in the bottom part of the slab in contact with the ground.
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(ii)  300<h≤500 mm: Provide reinforcement for the upper half of slab as in (i) above. 
In addition calculate the reinforcement for the 100 mm depth of the slab in con-
tact with ground and provide the same.

(iii)  h>500 mm: Calculate and provide reinforcement as for (ii) above, except that 
the depth of the upper half is limited to 250 mm only.

17.2 BENDING ANALYSIS FOR SERVICEABILITY LIMIT STATE

Consider a rectangular beam of width b and effective depth d shown in Fig. 17.1.

Fig 17.1 Elastic strain and stress distribution.

Let the area of tension steel be As. Under serviceability limit loads, concrete and steel are 
assumed to remain elastic. Assuming that plane sections remain plane, and ignoring the 
contribution from the concrete in the tensile zone, the stress distribution in the compres-
sion zone is linear. The maximum fibre strain and stress are respectively εc and fc.

fc=Ecεc
 

where Ec=Young’s modulus for concrete.

Since the average stress in the compressive zone is 0.5 fc, the total compressive force 
C is

 

The strain in tension steel is εs, where
 

The stress in steel is

fs=Es εs,
 

εc

d

b
fc

x
C 

T 
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where Es=Young’s modulus for steel
 

where αe=Es/Ec is the modular ratio. 

The total tensile force T is
 

Equating C=T, for equilibrium
 

Dividing throughout by fc and simplifying
 

The lever arm z is
z=d−x/3  

For a given moment M, the stresses in steel and concrete can be determined as follows.

M=T z=As fs z=C z=0.5 fc bx z
 

17.2.1 Example of Stress Calculation At SLS

Fig 17.2 shows a cantilever wall which is part of a water tank. The tank retains water to a 
depth of 3.5 m. The base is 400 mm thick overall and is reinforced with 12 mm diameter 
bars at 100 mm c/c. Calculate the stresses in concrete and steel at serviceability limit state. 
Also check if the moment of resistance is sufficient at ultimate limit state. Assume fcu=35 
N/mm2 , fy=460 N/mm2 and modular ratio αe=15.

Fig. 17.2 A cantilever wall.
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Consider 1 m length of wall. The steel area As=1131 mm2/m, b=1000 mm h=400 mm. 
Assuming cover=40 mm,

d=400–40–12/2=354 mm  

(i) Calculate the neutral axis depth:

 

Simplifying:

x2+33.93 x−12011.2=0, giving x=94 mm
z=d−x/3=354−94/3=323 mm

 

(ii) Moment at base at serviceability limit state:

Assuming γ=unit weight of water=10 kN/m3,

M=γH3/6

M=10×3.53/6=71.46 kNm/m

 

(iii) Stresses in steel and concrete
 

(iv) Moment at ultimate limit state:

Using a load factor of 1.4,

M=1.4×71.46=100.04 kNm/m  

(v) Neutral axis depth at ULS:

Assuming that steel yields, equating total tension and total compression,

0.45 fcu b 0.9x=0.95 fy As

0.45×35×1000 ×0.9x=0.95×460×1131, giving x=34.9 mm

 

Check the strain in tension steel:
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Steel yields and the assumption is justified.

(vi) Moment of resistance at ULS:

Mu=0.95 fy As (d−0.45x)

=0.95×460×1131×(354−0.45×34.9)×10−6

=167.2 kNm/m>100.04 kNm/m

 

The design is satisfactory at ULS.

17.2.2 Crack Width Calculation in a Section Subjected to Flexure Only

Provided that the stress in steel fs≤0.8fy and the stress in concrete fc≤0.45fcu, the design 
crack width w is given by

 

Fig. 17.3 Crack width calculation.

s

a 

εc

εs

ε1

fc

As fs

x
h

d

s

cmin
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If limiting design crack width is 0.2 mm,
 

If limiting design crack width is 0.1 mm,
 

where as shown in Fig. 17.3
w=design crack width, x=neutral axis depth

h=overall depth of member, d=effective depth
cmin=minimum cover to tension steel

bt = width of section at the centroid of steel
ε1=apparent strain at the level considered

ε2=strain due to the stiffening effect of concrete between cracks.
s=centre to centre distance between bars

 

acr=distance from the point considered to the surface of the nearest longitu-
dinal bar.

 

17.2.2.1 Example of crack width calculation in flexure only

Determine the design crack width using data from Example in 17.2.1: Steel reinforcement 
is provided by 12 mm bars at 100 mm c/c,

As=1131 mm2/m
h=400 mm
d=354 mm,

cover c=40 mm
fcu=35 N/mm

fy=460 N/mm2

x=94 mm
fs= 196 N/mm2

fc=4.7 N/mm2

 

(i) Check that the stresses in steel and concrete are within permissible limits:

fc=4.7 N/mm2<(0.45×35=15.8 N/mm2)
fs=196 N/mm2<(0.8×460=368 N/mm2)

 

(ii) Strain at steel level:

Taking Young’s modulus for steel Es=200 kN/mm2,
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εs=fs/Es

εs=196/(200×103)=0.98×10−3

 

(iii) Apparent strain at the surface

ε1=εs(h−x)/(d−x)

ε1=0.98×10−3(400–94)/(354–94)=1.153×10−3

 

(iv) Tension stiffening effect:
If limiting design crack width is 0.2 mm,

 

bt=1000 mm, a ̀=h, because the crack is calculated at the surface of the wall.

 

(v) Average strain at the surface:

εm=ε1−ε2

εm= 1.153×10−3−0.531×10−3=0.622×10−3

 

(vi) Calculate acr

If  c=cover and s=bar spacing, from Fig. 17.3,
 

(vii) Width of crack, w:
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Fig. 17.4 Tank wall subjected to bending moment and axial tension.

17.2.3 Crack Width Calculation in a Section Subjected to Bending  
Moment and Direct Tension

Fig. 17.4 shows rectangular and circular water tanks. Normal load acting on the side wall 
of the rectangular tank is resisted by shear forces at the base and at the sides. The shear 
forces on the sides act as tensile forces on the front and back walls.

Similarly, in the case of circular water tanks, the radial pressure causes circumfer-
ential tension and depending on the fixity at the base of the wall may result in bending 
moment.
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If the tensile force is not so large as to crack the whole section, the equations for calcu-
lating the neutral axis depth x and the stresses in concerete and steel can be developed in 
a manner is similar to the calculations for the case of pure flexure.

From the equations in section 17.2, the total compressive force C is

 

where As ̀ is the area per unit length of compression steel.

The total tensile force T is
 

For equilibrium in the axial direction,

T−C = Applied tensile force N

(17.1)

Taking moments about the tension steel,

(17.2)

where M=applied moment, h=overall depth of the section.
There are two unknowns viz. fc and x in the two equations. Eliminating fc from the two 

equations,

(17.3)

Solution of the above cubic equation gives the value of neutral axis depth, x. Compressive 
stress in concrete fc can be obtained from equation 17.1 or 17.2.

The equations are valid only if x≥d ̀because it is assumed that the stress in ‘compres -
sion’ steel is actually compressive.

17.2.3.1 Example of calculation of crack width under bending  
moment and axial tension

Calculate the crack width using the following data.

h=400 mm 
cover=40 mm
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Tension steel: 16 mm diameter bars at 100 mm c/c giving

As=2011 mm2/m
fcu=35 N/mm2, fy=460 N/mm2, αe=15

 

Applied actions at serviceability limit state:

M=100 kNm/m, N=60 kN/m
b= 1000 mm,

d=400−40−16/2=352 mm
As’= 0

 

1. Neutral axis dpth:

From equation 17.3,
 

Simplifying:

x3−5456 x2−265452 x+93.4391×106=0  

Solving the cubic equation by trial and error gives x=109.7 mm

2. Compressive stress in concrete
Determine the compressive stress fc in concrete using equation 17.1.

 

3. Tensile stress in steel

Calculate tensile stress in steel:
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4. Check that the stresses in steel and concrete are with in permissible limits:

fc=5.09 N/mm2<(0.45×35=15.8 N/mm2) 
fs=168.7 N/mm2<(0.8×460=368 N/mm2)

 

5. Strain at steel level:

Taking Young’s modulus for steel Es=200 kN/mm2,

εs=fs/Es=168.7/(200×103)=0.84×10−3  

6. Apparent strain at the surface

ε1=εs(h−x)/(d−x) 

ε1=0.84×10−3(400−109.7)/(352−109.7)=1.006×10−3

 

7. Tension stiffening effect:
If limiting design crack width is 0.2 mm,

 

Substituting bt=1000 mm, a ̀=h,
 

8. Average strain at the surface:

εm=ε1−ε2=1.006×10−3−0.288×10−3=0.718×10−3  

9. Calculate acr

If  c=cover and s=bar spacing, from Fig.17.3,

α=√[(100/2)2+(40+16/2)2]=69.3 mm

 

10. Width of crack, w:
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17.2.4 Crack Width Calculation in Direct Tension

Provided that the stress in steel fs≤0.8 fy, according to the code the crack width w is given 
by

w=3acrεm

εm=ε1−ε2

 

17.2.4.1 Example of crack width calculation in direct tension

A circular water tank 10 m internal diameter and 6.5 m high retains water to a depth of 
6.0 m. The base of the tank is designed to be free sliding. Design the reinforcement at the 
base and calculate the crack width.

Fig. 17.5 Ring tension.

The pressure p at the base of the tank:

p=γH=10 kN/m3×6=60 kN/m2  

As shown in Fig. 17.5, the circumferential tension at the base T is given by

T=p D/2=60×10/2=300 kN/m
 

where D=Diameter of tank=10 m
Assuming 350 mm thick walls, the minimum steel reinforcement in each face (Clause 

2.6.2.3) should not be less than 0.35%

As=(0.35/100)×(350/2)×1000=613 mm2/m
Cover=40 mm

 

Provide 12 mm bars at 175 c/c on each face. As=646 mm2/m on each face.
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(i) Stress and strain in steel:

fs=T/(2 As) 
fs= 300×103/(2×646)=232 N/mm2 < (0.8×460=368 N/mm2)

 

(ii) Effect of tension stiffening:

If limiting design crack width is 0.2 mm,

(iii) Average surface strain:

εm=ε1−ε2=(1.16−0.903)×10−3=0.257×10−3  

(iv) Calculate acr

If  c=cover and s=bar spacing, from Fig. 17.3,

 

acr=a−12/2=77.6−12/2=71.6 mm
 

(v) Crack width

w=3acrεm=3×71.6×0.257×10−3=0.06 mm  

17.2.4 Deemed to Satisfy Clause

Instead of calculating the width of cracks, BS 8007 allows a simpler approach. If the stress 
at serviceability limit state is less than shown in Table 17.2 (corresponds to Table 3.1 in 
the code), then crack widths can be assumed to be satisfactory.

It is generally found that these limitations are quite restrictive and designs which do 
not satisfy the above criterion are often found to be quite satisfactory when crack widths 
are calculated as illustrated by the three examples from previous sections as shown in 
Table 17.3.



 

Design of structures retaining aqueous liquids  669

17.2.5 Design Tables

Since it is not possible to design directly a section for a fixed value of design crack width, 
design tables can be developed for specific sections with specified bar diameter and spac-
ing. Tables 17.4 and 17.5 are typical design aids. Notice that only those cases where 
the ratio of ultimate moment capacity to moment capacity at serviceability limit state is 
greater than 1.4 are retained.

17.3 CONTROL OF RESTRAINED SHRINKAGE AND THERMAL 
MOVEMENT CRACKING

Changes in temperature and moisture content of the concrete cause movements. If these 
movements are restrained they lead to tensile stresses in concrete and possibility of cracks. 
During hydration of cement heat is generated and as the concrete cools, it contracts. Simi-
larly loss of moisture leads to drying shrinkage. In most structures these effects are of no 
significance compared with the stresses due to external loads. However in thin sections 
such as walls, these effects are important and must be taken into account if the structure 
is not to be rendered unserviceable due to wide cracks. It is necessary to reinforce the 
structures to ensure that a number of well distributed cracks of acceptable width occur 
rather than a few wide cracks.

The restraint to movement can be reduced by proper sequence of construction. Fig. 
17.6 (a) shows the preferred sequence because after each bay is cast, the slab is unre-
strained at one edge and can contract during cooling. On the other hand a sequence of con-
struction shown in Fig. 17.6 (b) is not recommended because the middle slab is restrained 
on both sides.

Table 17.2 Allowable stress in steel at SLS

Design crack width mm Allowable stress N/mm2

fv=250N/mm2 fv= 460 N/mm2

0.1 85 100 
0.2 115 130

Table 17.3 Calculated fs and w

Example in section fs, N/mm2 w, mm
17.2.2.1 196 0.1
17.2.3.1 169 0.12
17.2.4.1 169 0.06
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Table 17.4 Design table (Crack width = 0.1 mm)

h=450 mm, cover =52 mm, w = 0.1 mm
bar 
dia

Spacing, 
mm

M-service, 
kNm/m

fs, service N/ 
mm2

M-ultimate, 
kNm/m

fs, ultimate N/ 
mm2

12 100 98.24 242 184.05 437
 150 87.56 319 122.70 437
16 100 116.60 167 314.01 437
 150 96.75 204 215.71 437
 200 87.99 244 162.77 437
 250 83.58 288 130.21 437
20 100 140.88 133 462.69 437
 150 110.01 152 324.01 437
 200 95.84 174 248.84 437
 250 88.40 199 201.87 437
 300 84.15 226 168.68 437
25 100 178.00 111 656.09 437
 150 131.57 120 475.36 437
 200 109.45 131 370.76 437
 250 97.45 144 303.44 437
 300 90.34 159 256.66 437
32 100 239.17 95 894.25 376
 150 169.29 98 693.66 437
 200 134.57 102 556.62 437
 250 115.07 108 463.64 437
 300 103.17 115 396.56 437

Table 17.5 Design table (Crack width=0.2 mm)

h=450 mm, cover=52, w=0.2 mm

bar 
dia

Spacing, 
mm

M-service, 
kNm/m

fs, service N/ 
mm2

M-ultimate, 
kNm/m

fs, ultimate N/ 
mm2

16 100 176.87 253 314.01 437
 150 132.67 279 215.71 437
 200 112.23 311 162.77 437
20 100 231.03 218 462.69 437
 150 164.40 227 324.01 437
 200 132.81 242 248.84 437
 250 115.57 260 201.87 437
 300 105.24 282 168.68 437
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25 100 311.16 194 656.09 437
 150 213.15 194 475.36 437
 200 165.41 198 370.76 437
 250 138.82 205 303.44 437
 300 122.34 215 256.66 437

32 100 440.13 175 894.25 376
 150 295.16 171 693.66 437
 200 222.04 168 556.62 437
 250 180.28 169 463.64 437
 300 154.27 172 396.56 437

(a) Preferredoption

(b) Not recommended

1 2 3

1 3 2

Fig.17.6 Sequence of construction.

The restraint to movement due to friction between the ground and the wall can be reduced 
by laying a sheet of polythene sheet on a layer of smooth blinding concrete.

17.3.1 Movement Joints

Stresses due to shrinkage and thermal movements are controlled by the provision of 
movement joints. See Fig. 5.1 in BS 8007. There are basically three types of movement 
joints. They are
•  Expansion joints: Fig. 17.7 shows a typical expansion joint. This has no restraint to 

movement. There is no continuity of steel or concrete across the joint. An initial gap 
is provided for expansion and leakage of water is prevented by using a water stop 
made from rubber or similar materials.

•  Complete contraction joint: This is similar to the expansion joint except that there is 
no initial gap.
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•  Partial contraction joint: As shown in Fig. 17.8, in these types of joint there is conti-
nuity of 50% of steel across the joint. However, there is no concrete continuity across 
the gap.

Generally the maximum distance between the full contraction joints is about 15 m with a 
partial contraction joint in between the full contraction joints. 

Fig.17.7 Complete expansion joint.

Fig. 17.8 Partial contraction joint.

17.3.2 Critical Amount of Reinforcement

Although movement joints reduce the effect of restraint to overall contraction in indi-
vidual bays, the effect of contraction within bays can be minimized by ensuring that rein-
forcement can distribute the contraction between a large number of fine cracks as opposed 
to a small number of large cracks. The critical amount of reinforcement necessary to 
control the early thermal and shrinkage cracking is based on the ability of the reinforce-
ment to crack the immature concrete and hence produce a series of fine cracks. Fig. 17.9 
shows the state of equilibrium adjacent to a crack. The tensile force in steel is resisted by 
tensile stress in concrete. The stress in the concrete fct is the early age (about three days) 
tensile strength which is quite small. The tensile stress in the steel in uncracked concrete 
is small and is ignored. The maximum allowable stress in steel is fy, the yield stress in 
steel. For equilibrium,

Initial gap for expansion.

Sealing compound

Centre bulb water stop

Sealing compound

water stop
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As fy=Ac fct

ρcritical=As/Ac=fct/fy

 

If the steel ratio ρ=As/Ac is less than ρcritical, the steel will yield in tension resulting in a few 
rather wide cracks.

BS 8007 recommends in Table A.1 for C35A concrete,

ρcritical=0.64% for grade 250 steel

ρcritical
=0.35% for grade 460 steel.

 

17.3.3 Crack Spacing

Once the first crack forms, local slipping starts between the concrete and steel. If the steel 
ratio is greater than ρcritical the stress in steel is less than the yield stress. Additional cracks 
will form if the bond stress fb between steel and concrete exceeds the tensile strength fct 
of concrete.

fb s Σu≥fct Ac
 

where
s=development length for bond stress
Σu=total perimeter of all bars at the section.

 

The ratio of area to perimeter in the case of bars of diameter is given by

 

Because in general only one type of bars will be used at a cross section,
 

where ρ=As/Ac

The minimum crack spacing is given by the equality sign and the maximum crack 
spacing Smax is twice the value of development length s immediately prior to the formation 
of a new crack. Thus
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Fig. 17.9 Forces adjacent to a crack.

Fig. 17.10 Crack spacing.

The crack spacing reduces with decreasing bar size (hence smaller diameter bars are pre-
ferred), greater bond strength and larger steel ratio.

The code BS 8007 recommends in Table A.1 for C35A concrete, 

fct/fb=1.0 and fb=1.6 N/mm2 for grade 250 steel

fct/fb=0.67 and fb=2.4 N/mm2 for grade 460 steel.

 

17.3.4 Width of Cracks

The estimated crack width wmax is given by
 

Substituting for Smax,

 

T1=the fall in temperature between the hydration peak and the ambient. Table A.2 of 
BS 8007 gives the value to be used for ordinary Portland concretes. These are shown in  
Table 17.7.

T2=Further fall in temperature because of seasonal variations.

crack 

Ac fctAs fst 
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α=Coefficient of thermal expansion. Typical values are given in Table 7.3 of BS 8110, 
Part 2. It varies from about 8×10−6/°C to 12×10−6/°C.

Table 17.7 Typical values of T1°C for OPC concretes

Section thick-
ness, mm

Walls Ground slabs
Steel formwork OPC 

content, kg/m3
1 8 mm plywood formwork 

OPC content, kg/m3
OPC content, 

kg/m3

 325 350 400 325 350 400 325 350 400
300 20 20 20 23 25 31 15 17 21
500 20 22 27 32 35 43 25 28 34
700 28 32 39 38 42 49 – – –
1000 38 42 49 42 47 56 – – –

17.3.5 Design Options for Control of Thermal Contraction and  
Restrained Shrinkage

The provision of movement joints and their spacing depends on whether the designer 
prefers to provide substantial amount of reinforcement (in the form of small diameter bars 
at close spacing, see section 17.3.3) and no movement joints or closely spaced movement 
joints with a moderate amount of reinforcement or any combination in between these two 
extreme options. BS 8007 in Table 5.1 reproduced in Table 17.8 provides three major 
options with many more sub-options in each major option.

17.3.6 Example of Options for Control of Thermal Contraction and  
Restrained Shrinkage

A wall slab in a water retaining structure is 350 mm thick. Calculate the required steel area 
to control cracking due to thermal effects and the joint spacing for the various options in 
Table 17.8 for a design crack width of 0.2 mm. Concrete is C35A grade and steel is 460 
grade.

(a) Calculate ρcrit:

ρcrit=0.35%, h=350 mm<500 mm
As=(0.35/100) 350×1000=1225 mm2/m

Provide T10–125 mm c/c=628 mm2/m. As=2×628=1256 mm2/m.

 

(b) Movement joint spacing:

Option 1: Continuous casting with no movement joints.
Provide T10–125 mm c/c=628 mm2/m
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Option 2: Semi-continuous for partial restraint:
Provide T10–125 mm c/c=628 mm2/m
The spacing of joints can de adapted to any of the three options as follows:
(a) Complete joints at a spacing ≤15 m
(b) Alternate partial and complete joints (by interpolation), ≤11.25 m
(c) Partial joints, ≤7.5 m

Table 17.8 Design options for control of thermal contraction and restrained shrinkage

Option Type of 
construc-
tion and 
method 
of control

Movement joint spacing Steel 
ratio

Comments

1 Continus: 
for full 
restraint

No joints, but expansion joints 
at wide spacing may be desir-
able in walls and roofs that are 
not protected from solar heat 
gain or where the contained 
liquid is subjected to a substan-
tial temperature range

Minimum 
of ρcrit

Use small 
size bars at 
close spacing 
to avoid high 
steel ratios well 
in excess of ρcrit

2 Semi con-
tinuous: 
for partial 
restraint

a) Complete joints, spacing 
≤15 m
b) Alternate partial and com-
plete joints (by interpolation), 
spacing ≤11.25 m
c) Partial joints, ≤7.5 m

Minimum 
of ρcrit

Use small size 
bars but less 
steel than in 
option 1

3 Close 
movement 
joint spac-
ing: for 
freedom 
of move-
ment

(a) Complete joints, in metres 
≤4.8+w/ε
(b) Alternate partial and com-
plete joints, in metres ≤0.5 
smax+2.4+ w/ε
(c) Partial joints, in metres 
≤smax+w/ε

2/3 ρcrit Restrict the 
joint spacing 
for options 3 
(b) and 3(c).

w=Design crack width, ε=thermal strain=0.5 α T1 (see Table 17.7)

Option 3: Close movement joint spacing:
As=(2/3)1225=817 mm2/m, 817/2=408 mm2/m on each face. \ 
Provide T10–175 mm c/c=448 mm2/m

w=0.2 mm  
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Assume 18 mm plywood formwork and T1=20°C, α=10−6/°C

ε=0.5αT1=0.5×10×10−6×20=0.1×10−3 mm/mm
w/ε=2×103 mm=2 m

fct/fb=0.67 (Table A.1 of BS 8007)

ρ=As/(350×1000)=2×448/(350×1000)=0.256%

smax=0.67×10/(2×0.00256)=1309 mm=1.31 m

 

The spacing of joints can de adapted to any of the three options as follows:
(a) Complete joints:
Spacing of joints≤(4.8+w/ε=4.8+2.0=6.8 m)
Spacing of joints≤6.8 m
(b) Alternate partial and complete joints:
Spacing of joints≤(0.5 smax+2.4+w/ε)
Spacing of joints≤=(0.5 x 1.31+2.4+2.0=5.055 m)
Spacing of joints≤=5.055 m
(c) Partial joints:
Spacing of joints≤(Smax+w/ε=1.31+2.0=3.31 m)
Spacing of joints≤3.31 m

17.4 DESIGN OF A RECTANGULAR COVERED TOP UNDER  
GROUND WATER TANK

Specification:

Design a rectangular water tank with two equal compartments as shown in Fig.17.11.

Soil: Unit weight γ=18 kN/m3

Soil: Submerged unit weight γ=(18−γw)=8 kN/m3

Coefficient of friction 
Surcharge: 12 kN/m2.

Unit weight of water γw=10 kN/m3

 

Consider the possibility of water logging up to 1 m below the ground level.

Design for severe exposure, design crack width=0.2 mm.
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Use C35A concrete and 460 grade steel.

Assume walls and slabs are 400 mm thick. The roof is not integrally connected to the 
walls and is simply supported on the external walls but continuous over the central divid-
ing wall.

Fig.17.11 Rectangular water tank

(a) Check uplift:

Total weight W of the tank when empty:

W={5×10−(5–0.4–0.4) (10–0.4–0.4–0.4)}×8×24
W=2504 kN

 

Uplift Pressure of water under the floor due to 4 m head of water

Uplift pressure=10×4=40 kN/m2

Uplift force=8×10×40=3200 kN

 

Additional weight required to have a factor of safety against floatation of 1.1

Additional weight=3200×1.1–2504=1016 kN
This can be provided by extending the base as shown in Fig. 17.12.
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Fig. 17.12 New design of base to increase total weight of tank.

The submerged unit weight of the soil=18−10=8 kN/m3

Pressure due to 1 m high dry soil plus 3.6 m of submerged soil

=1×18+3.6×8=46.8 kN/m2  

Submerged weight of slab=(24–10)x0.4=5.6 kN/m2

If b=width of the projecting base slab, then

{(10+2b)×(8+2b)−10×8}×(46.8+5.6)=1016  

If b=0.55 m, the additional weight is 1101 kN

(b) Pressure calculation on the walls:
Case 1: Tank empty.

Coefficient of active earth pressure:

Pressure due to surcharge=ka x 12=4 kN/m2

 

The wall is 5000–400–400=4200 mm high.
For the top (1000–400)=600 mm, unit weight of soil=18 kN/m3

Below this level submerged unit weight of soil=8 kN/m3

In addition to the soil pressure there is also the pressure due to ground water.
The pressures at different levels are:
(i) At 400 mm below ground:

p=4 kN/m2 due to surcharge+ka×18×0.4=6.4 kN/m2  

(ii) At 1000 mm below ground:

p=4 kN/m2 due to surcharge+ka×18×1.0=10.0 kN/m2  

(iii) At 4600 mm below ground:

p=10+ka×8×(4.6–1.0)+10×(4.6–1.0) due to ground water
p=55.6 kN/m2
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Case 2: Tank full.
Ignore any passive pressure due to soil and assume that the ground is dry.

(i) At 400 mm below ground

p= 10×0.4=4.0 kN/m2  

(ii) At 4600 mm below ground:

p= 10×4.6=46 kN/m2  

(c) Check shear capacity:

Effective depth: 

d=400–40 mm cover—12 mm bar /2=354 mm  

Case 1: Tank empty:

Total shear force at base is approximately 

V=0.5×(6.4+10.0)×0.6+0.5×(10.0+55.6)×3.6=123.0 kN/m 
v=123.0×103/ (1000×354)=0.35 N/mm2

 

Assuming minimum area of steel As=0.35%
 

Section thickness is adequate.

Case 2: Tank full.

Total shear force at base is approximately 

V=0.5×(4.0+46.0)×4.2=105.0 kN/m
v=105.0×103/(1000×354)=0.30 N/mm2

v<vc

 

Section thickness is adequate.

(d) Minimum steel:

From Table A1 of 8007, ρcrit=0.0035 for 460 grade steel.

Minimum steel As area required=0.0035×1000×400=1400 mm2/m 

wmax=0.2 mm 

α=12×10−6 from Table 3.2 of BS 8110, Part 2

T1=25°C (Table A.2 of BS 8007)
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From Table A1 of 8007, fct/fb=0.67 for deformed bars of type 2.

Choose bar diameter 

 

Using continuous construction for full restraint (Table 5.1 of BS 8007), minimum steel 
required is

As=0.0035×1000×400=1400 mm2/m
 

Provide T12–150 mm c/c=755 mm2/m on each face. 

Total steel areα=1510 mm2/m.

(e) Design of walls for bending at serviceability limit state:

For calculating moments in the walls of the tank, ready made tables of moment coef-
ficients are available. These coefficients have been obtained from elastic analysis of thin 
plates using analytical methods based on multiple Fourier series or using the finite ele-
ment method. Typical results are shown in Table 17.9 for the case of side and bottom 
edges being clamped and the top edge being free as shown in Fig.17.13.

(i) Transverse walls:

The wall is designed as a 7.2 m×4.2 m slab clamped on three sides and free at top and 
subjected to a hydrostatic loading giving base pressures of 55.6 kN/m2 for case 1 and 46.0 
kN/m2 for case 2. Since the pressure difference is not large, design for Case 1 and use the 
same steel area for case 2.

(1) Vertical bending moment at base
From Table 17.9, interpolating between b/a of 1.5 and 2.0,

bending moment coefficient=(0.084+0.058)/2=0.071  

Vertical bending moment M at SL:

M=0.071×55.6×4.22=69.64 kNm/m (SLS)  

Vertical bending moment at base (ULS) 

M=1.4×69.64=97.50 kNm/m (ULS)  
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Fig.17.13 Notation for Table 17.9.

Table 17.9 Moment coefficients

b/a x/a y=0 y=b/4 y=b/2
  Mx Mv Mx Mv Mv

2.0 0 0 0.027 0 0.010 −0.064
 0.25 0.012 0.024 0.006 0.010 −0.060
 0.50 0.016 0.017 0.011 0.010 −0.048
 0.75 −0.007 0.003 −0.002 0.003 −0.024
 1.0 −0.084  −0.058   

1.5 0 0 0.021 0 0.006 −0.039
 0.25 0.009 0.020 0.004 0.007 −0.044
 0.50 0.015 0.017 0.009 0.008 −0.041
 0.75 0.003 0.006 0.004 0.004 −0.023
 1.0 −0.058  −0.039   

1.0 0 0 0.010 0 0.002 −0.014
 0.25 0.003 0.012 0.001 0.003 −0.023
 0.50 0.009 0.013 0.005 0.005 −0.028
 0.75 0.008 0.008 0.005 0.004 −0.020
 1.0 −0.032  −0.021   

Moment=Coefficient×q×a2  

Table 17.10 Moment capacity for a fixed crack width.

h=400 mm, cover=40 mm, crack width w=0.2 mm

bar 
dia

Spacing 
(mm)

SLS Moment 
(kNm)

SLS fs (N/ 
mm2)

ULS Moment 
(kNm)

ULS fs (N/ 
mm2)

 100 125.70 344 165.89 437
 150 96.05 389 110.81 437
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 200 83.31 445 83.11 437

 250 76.84 510 66.48 437

12 300 73.16 580 55.40 437

      

 100 174.43 278 280.62 437

 150 122.83 288 193.45 437

 200 99.97 309 146.91 437

 250 88.05 337 117.53 437

16 300 81.10 370 97.94 437

      

 100 235.15 247 410.53 437

 150 157.52 243 289.24 437

 200 122.31 248 222.76 437
 250 103.57 260 181.01 437

20 300 92.48 276 152.16 437
      

 100 324.84 226 577.71 437

 150 211.02 215 421.02 437

 200 157.42 210 330.00 437

 250 128.58 212 270.84 437

25 300 111.22 218 229.49 437

      
 100 469.02 208 744.74 347
 150 299.83 194 624.66 437
 200 218.16 185 489.85 437
 250 172.83 181 410.22 437

32 300 145.06 180 352.04 437

From the data in Table 17.10, using T12–150 mm c/c gives at SLS and ULS moment 
of resistances of 96.05 kNm/m and 110.81 kNm/m respectively. Provide on both faces 
T12–150 mm c/c in the vertical direction.
(2) Horizontal bending moment at fixed vertical edges

From data in Table 17.9, interpolating between b/a of 1.5 and 2.0,
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bending moment coefficient=(0.064+0.039)/2=0.052

M at SLS=0.052×55.6×4.22=51.0 kNm/m

 

(3) Horizontal bending moment at mid-span

From data in Table 17.9, interpolating between b/a of 1.5 and 2.0,

bending moment coefficient=(0.027+0.021)/2=0.024

M at SLS=0.024×55.6×4.22=23.54 kNm/m

 

From the data in Table 17.9, using T12–150 mm c/c gives at SLS and ULS moment 
of resistances of 96.05 kNm/m and 110.81 kNm/m respectively. Provide on both faces 
T12–150 mm c/c in the horizontal direction. As on each face=754 mm2/m

(4) Direct tension in walls

In case 2 there is also direct tension in the horizontal direction in the wall due to water 
pressure on the 10 m long walls. Average pressure p is approximately

p=0.5×46.0=23 kN/m2  

Ignoring the resistance provided by the base, tensile force N per meter is

N=0.5×5.0×23=57.5 kN/m.  

The tensile stress in steel due to tensile force is

N=57.5×103/(2×754)=38 N/mm2  

The tensile force N is combined with a maximum bending moment of 51.0 kNm/m. Check 
the crack width using steel area provided by T12 @ 150 mm c/c on each face

(5) Calculate the crack width using the following data

h=400 mm, cover=40 mm, Steel: 12 mm diameter bars at 150 mm c/c. Applied forces at 
serviceability limit state:

M=51.0 kNm/m, N=57.5 kN/m (tension)

fcu=35 N/mm2, fy=460 N/mm2, αe=15 

b=1000 mm, d=354 mm, As=754 mm2/m
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(i) Calculate the neutral axis depth including compression steel area:

 

 

Simplifying:

x3–3122.87 x2−114134.61 x+19.2031×106=0
Solving, x=62.7 mm

 

(ii) Calculate the compressive stress in concrete:
 

Solving for fc, fc=3.5 N/mm2 < (0.45×35=15.8 N/mm2)

(iii) Calculate the tensile stress in steel:

 

(iv) Strain at steel level:

Taking Young’s modulus for steel Es=200 kN/mm2,

εs=fs/Es=244/(200×103)=1.22×10−3  
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(v) Apparent strain at the surface

ε1=εs (h−x)/(d−x)=1.22×10−3 (400–62.7)/(354–62.7)
ε1=1.41×x 10−3

 

(vi) Tension stiffening effect:

If limiting design crack width is 0.2 mm,

 

b,=1000 mm, α=h because the crack is calculated at the surface of the wall.

 

(vii) Average strain at the surface:

εm=ε1−ε2=1.41×10−3−0.86× 10−3=0.55×10−3  

(viii) Calculate acr

If   c=cover and s=bar spacing, from Fig.17.3,

 

(ix) Width of crack, w:

 

(x) Check ultimate conditions:

Applied forces:

M =1.4×51.0=71.4 kNm/m,
N=1.4×57.5=80.5 kN/m

 

Using the method in Chapter 9 on columns for calculating moment-axial force  
interaction,

x/h=0.034, M=75.0 kNm/m, N=468.6 kN/m  

both steels yield in tension.
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x/h=0.094, M=236.6 kNm/m, N=51.0 kN/m,
 

Tensile stress in ‘compression’ steel=157 N/mm2, tension steel yields.

(ii) Longitudinal walls: The wall is designed as a 4.4 m×4.2 m slab clamped on three 
sides and free at top and subjected to a hydrostatic loading giving at base pressures of 55.6 
kN/m2 for case 1 and 46.0 kN/m2 for case 2. Since the pressure difference is not large, 
design for Case 1 and use the same steel area for case 2 as well.

(1) Vertical bending moment at base

From Table 17.9, using the coefficient for b/α=1.0,

Moment at SLS=0.032×55.6×4.22=31.4 kNm/m (SLS)  

Vertical bending moment at base (ULS)

Moment at ULS=1.4×31.4–43.9 kNm/m (ULS)  

From the data in Table 17.10, using minimum steel of T12–150 mm c/c, gives at SLS and 
ULS moment of resistance of 96.05 kNm/m and 110.81 kNm/m respectively. Provide on 
both faces T12–150 mm c/c in the vertical direction.

(2) Horizontal bending moment at fixed vertical edges
From Table 17.9, using the coefficient for b/α=1.0,

Moment at SLS=0.028×55.6×4.22=27.5 kNm/m  

(3) Horizontal bending moment at mid-span
From Table 17.9, using the coefficient for b/α=1.0,

Moment at SLS=0.013×55.6×4.22=12.8 kNm/m.  

Provide on both faces T12–150 mm c/c in the horizontal and vertical directions. As on 
each face=754 mm2/m

In case 2 there is also direct tension in the horizontal direction in the wall due to water 
pressure on the 8 m long walls. Average pressure p is approximately

p=0.5×46.0=23 kN/m2  

Ignoring the resistance provided by the base, tensile force N per meter is

N=0.5×8.0×23=92.0 kN/m  

The tensile stress due to tensile force is

=92.0×103/(2×754)=61 N/mm2  
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The tensile force is combined with a maximum bending moment of 27.5 kNm/m. Check 
the crack width using steel area provided by T12–150 mm c/c on each face.
(4) Calculate the crack width using the following data

h=400 mm, cover=40 mm, Steel: 12 mm diameter bars at 150 mm c/c.
Applied forces at serviceability limit state: M=27.5 kNm/m, N=92.0 kN/m 
fcu=35 N/mm2, fy=460 N/mm2, αe=15 
b=1000 mm, d=354 mm, As=754 mm2/m. Since the tensile force is small, ignore the 

steel in the compression zone.

(i) Calculate the neutral axis depth ignoring compression steel:

 

Simplifying:

x3–1358.74 x2–6712.24 x+2.3761×106=0
Solving, x=40 mm

 

(ii) Calculate the compressive stress in concrete:

 

Solving,

fc=1.34 N/mm2< (0.45 x 35–15.8 N/mm2)  

(iii) Calculate the tensile stress in steel:

 

(iv) Strain at steel level:

Taking Young’s modulus for steel Es=200 kN/mm2,
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εs=fs/Es=158/(200×103)=0.79×10−3  

(v) Apparent strain at the surface

ε1=εs (h—x)/ (d − −)=0.79×10−3 (400–40)/(354−40)=0.91×10−3  

(vi) Tension stiffening effect:

If limiting design crack width is 0.2 mm,

 

bt=1000 mm, α=h, because the crack is calculated at the surface of the wall.

 

(vii) Average strain at the surface:

εm=ε1−ε2=0.91×10−3–0.91×10−3=0  

Section is uncracked!

(viii) Check ultimate conditions:

Applied forces:

M=1.4×27.5=38.5 kNm/m
N=1.4×92.0=128.8 kN/m

 

Using the method in Chapter 9 on columns for calculating moment-axial force interac-
tion,

x/h=0.018, M=40.0 kNm/m, T=558 kN/m,  

both steels yield in tension.

x/h=0.079, M=184.7 kNm/m, T=130.0 kN/m,  

tensile stress in ‘compression’ steel=325 N/mm2, tension steel yields.

(f) Detailing at corners

Proper detailing of steel at corners is extremely important to realize the full strength of 
the sections. Fig. 17.14 shows the recommended detail for closing and opening corners. 
The details are taken from
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Standard Method of detailing structural concrete, Institution of Structural Engineers, 
1989.

Fig. 17.14 Corner details: (a) & (b) closing; (b) opening.

(g) Design of base slab for serviceability limit state

The slab is subjected to concentrated load from the walls and bending moment at the 
ends from the walls. There is also a small amount of direct tension from the internal pres-
sure in the tanks but this has been ignored in the following design.

(i) Longitudinal direction:

(1) Tank empty:

Fig. 17.15 Forces on the base slab in the longitudinal direction: Tank empty.
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(i) Load on end walls:

Vertical load from roof slab:=(5.0/2)×0.4×24=24.0 kN/m
Surcharge: (5/2)×12=30.0 kN/m

Weight of wall: 4.2×0.4×24=40.32 kN/m
Weight of soil on the 0.66 m projection

=0.66×(18.0×1.0 dry soil at top+8.0×3.2 submerged soil)=28.78 kN/m
Total=24.0+30.0+40.32+28.78=123.1 kN/m

 

From previous calculation of wall design, moment from the external pressure

=0.071×55.6×4.22=69.64 kNm/m  

(ii) Load on central wall:

Vertical load from roof slab:=5.0×0.4×24=48.0 kN/m
Surcharge: 5×12=60.0 kN/m

Weight of wall: 4.2×0.4×24=40.32 kN/m
Total=48.0+60.0+40.32=148.32 kN/m

 

Moment from the external pressure=0

(iii) Uplift pressure: There is an uplift pressure of 10×4.0=40 kN/m2

(iv) Net pressure p on the ground

p=(2×123.1+148.32)/9.6–40.0=1.1 kN/m2  

Fig. 17.15 and Fig. 17.16 show respectively the forces on the base slab and the corre-
sponding bending moment distribution.

Fig. 17.16 Bending moment distribution in base slab in the longitudinal direction: Tank empty.



 

692 Reinforced Concrete

(2) Both tanks full and no ground water:

(i) Load on end walls:

Vertical load from roof slab:=(5.0/2)×0.4×24=24.0 kN/m
Surcharge: (5/2)×12–30.0 kN/m 

Weight of wall: 4.2×0.4×24=40.32 kN/m 
Weight of soil on the 0.66 m projection=0.66×18.0×4.2=49.90 kN/m

Total=24.0+30.0+40.32+49.90=144.22 kN/m
Vertical bending moment at base (SLS) 
M=0.071×(10×4.2)×4.22=52.60 kNm/m

 

(ii) Load on central wall:

Vertical load from roof slab:=5.0×0.4×24=48.0 kN/m
Surcharge: 5×12= 60.0 kN/m 

Weight of wall: 4.2×0.4×24=40.32 kN/m
Total=48.0+60.0+40.32=148.32 kN/m
Moment from the external pressure=0

 

(iii) There is no uplift pressure

(iv) Net pressure p on the ground

p=(2×144.2+148.32)/9.6=45.5 kN/m2  

Fig. 17.17 and Fig. 17.18 show respectively the forces on the base slab and the corre-
sponding bending moment distribution.

Fig. 17.17 Forces on the base slab in the longitudinal direction, tank full.
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Design of Reinforcement
The maximum bending moment causing tension at top is 281.0 kNm/m from tank full 
case and the maximum bending moment causing tension at bottom is 69.64 kNm/m from 
tank empty case. From Table 17.10, T25-100c/c gives a moment of resistance at SLS of 
324.84 kNm and at ULS of 577.71 kNm/m. Similarly, T12-150 gives moment of resis-
tance of 96.05 kNm/m at SLS and 110.81 kNm at ULS. Provide T25@100 at top and 
T12@150 at bottom.

Fig. 17.18 Bending moment distribution in base slab in the longitudinal direction, tank 
empty.

(ii) Transverse direction:

The slab is subjected to concentrated loads from the walls and bending moment at the 
ends from the walls.

(1) Tank empty:

Fig. 17.19 Forces on the base slab in the transverse direction, tank empty.
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(i) Load on end walls:
Vertical load = 123.1 kN/m (from previous calculation for longitudinal wall) 
Moment from the external pressure=0.032×55.6×4.22=31.4 kNm/m

(ii) Uplift pressure=10×4.0=40 kN/m2

(iii) Net pressure p on the ground

p=2×123.1/7.6–40.0=−7.6 kN/m2  

Although calculation indicates that the slab will not be in equilibrium, since the overall 
stability against floatation of the structure has been established, calculation will be con-
tinued. Fig. 17.19 shows the forces on the base slab.

Maximum bending moment causing tension at bottom=31.4 kNm/m 
Maximum moment causing tension at top=32.4×7.62/8−31.4=205.5 kNm/m

Fig. 17.20 Forces on the base slab in the transverse direction, tank full.

(2) Both tanks full and no ground water:

(i) Load on end walls:
Vertical load=144.2 kN/m (from previous calculation for longitudinal wall) Moment from 
the external pressure=0.032×(10×4.2)×4.22=23.7 kNm/m

(ii) There is no uplift pressure

(iii) Net pressure p on the ground

p=2×144.2/7.6=37.95 kN/m2  

Fig. 17.20 shows the forces on the base slab.
Maximum moment causing tension at top

=37.95×7.62/8+23.7=297.7 kNm/m  
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Design of Reinforcement

The maximum bending moment causing tension at top is 297.7 kNm/m from tank full case 
and the maximum bending moment causing tension at bottom is 31.4 kNm/m from tank 
empty case. From Table 17.10, T25–100c/c gives a moment of resistance at SLS of 324.84 
kNm and at ULS of 577.71 kNm/m. Similarly, T12–150 gives moment of resistance of 
96.05 kNm/m at SLS and 110.81 at ULS. Provide T25–100c/c at top and T12–150 at bot-
tom.

17.5 DESIGN OF CIRCULAR WATER TANKS

Circular water tanks are commonly employed especially in prestressed concrete. Fig. 
17.21 shows a circular tank subjected to an internal pressure which can be constant as in 
the case of gas tanks or increase towards the base as in the case of liquid retaining tanks.

Fig. 17.21 A circular tank.

If the tank is not restrained in the radial direction at top and bottom, then considering the 
tank as a thin walled cylinder, under a constant internal pressure p, the circumferential 
tension T in the wall is given by

T=pR  

where R=internal radius of the tank.
The displacement w in the radial direction is given by
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where E=Young’s modulus, t=thickness of the wall. 
If the pressure variation is hydrostatic and at p any depth y from the top is

p=γy 
where γ=unit weight of the liquid retained.

The circumferential tension T in the wall is given by 

T=γyR.  

The displacement w in the radial direction at a depth y from the top is given by

 

If the displacement is constrained at the bottom, then the total pressure p is resisted partly 
by circumferential tension and partly by bending action in the vertical direction as shown 
in Fig. 17.22. In addition to the bending moment in the vertical direction, there is also a 
bending moment in the circumferential direction given by νM, where v is the Poisson’s 
ratio.

Fig.17.22 Forces on an element of the wall.

The pressure pt resisted by tension causes a radial displacement w given by

 

The pressure pb resisted by bending action is given by

 

I=t3/12 per unit length, t=thickness of the wall.
Because of the Poisson effect,
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If p is the internal pressure,

 

The bending moment M and shear force V and circumferential tension T are given by

 

The differential equation is known as the Beam on Elastic Foundation equation and can 
be solved for given boundary conditions. Ready made tables are available for calculating 
the circumferential tension T and bending moment M for the two cases of the base of the 
tank being either fully fixed or pinned. Fig. 17.23 shows the base reinforcement details 
for achieving pinned and fixed joints. Table 17.11 shows typical values for a specific tank 
of dimensions h2/(Rt)=8.0

Table 17.11 Vertical bending moment and ring tension coefficients for cylindrical tanks

 h2/(Rt)=8.0, v=0.2  

y/h Fixed base Pinned base
 M T M T

0: Top 0 0.067 0 0.017
0.1 0.0003 0.163 0.0001 0.136
0.2 0.0013 0.256 0.0006 0.254
0.3 0.0028 0.339 0.0016 0.367
0.4 0.0047 0.402 0.0033 0.468
0.5 0.0066 0.430 0.0056 0.545
0.6 0.0077 0.410 0.0084 0.579
0.7 0.0069 0.334 0.0109 0.552
0.8 0.0023 0.210 0.0118 0.446
0.9 -0.0081 0.073 0.0092 0.255

1.0: Base −0.0267 0 0 0

Moment M=Coefficient×(γ h3) kNm/m.
Positive moment causes tension on the outer face.

Tension T=Coefficient×(γ h R) kN/m
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17.5.1 EXAMPLE OF DESIGN OF A CIRCULAR WATER TANK

Design an above ground fixed base water tank for the following specification.

(a) Specification
Internal radius R=15m, Height h=6 m, wall thickness t=300 mm 

Unit weight of water γ=10 kN/m3

Design crack width=0.2 mm

(b) Calculation of forces

Parameter (h2/Rt)=62/ (15×0.3)=8.0 
q=γh= 10×6=60 kN/m2

 

Fig. 17.24, Fig. 17.25 and Fig. 17.26 show the distribution of vertical bending moment, 
shear force and circumferential tension. Maximum shear force V at base at SLS:

V=0.063×60×6=22.90 kN/m  

At ULS shear force V:

V=1.4×22.90=32.06 kN/m  

Maximum bending moment causing tension on inner face at base at SLS: 

M=0.0267×60×62=57.67 kNm/m. (SLS)  

 

Fig.17.23 Base details for pinned and fixed joints.



 

Design of structures retaining aqueous liquids  699

M at ULS:

M=1.4×57.67=80.74 kNm/m (ULS)  

Maximum bending moment causing tension on the outer face at 0.4h at SLS:

M=0.0077×60×62=16.63 kNm/m. (SLS)  

M at ULS:

M=1.4×16.63=23.29 kNm/m (ULS)  

Maximum ring tension T occurs at mid-height

T=0.43×60×15=387 kN/m  

Corresponding moment:

M=0.0066×60×62=14.26 kNm/m  

Circumferential moment:

=ν M=0.2×14.17=2.83 kNm/m  

(c) Design
(i) Check shear capacity
Effective depth:

d=300−40 cover−16/2=252 mm
v=32.06×103/(1000×252)=0.13 N/mm2

 

Assuming minimum area of steel As=0.35%,
 

Depth is adequate.
 

Fig.17.24 Vertical bending moment in the wall.
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Fig.17.25 Shear force in the wall.

Fig. 17.26 Circumferential tension in the wall.

(ii) Steel to control thermal cracking

From Table A1 of BS8007, ρcrit= 0.0035 for 460 grade steel.
Minimum steel As area required=0.0035×1000×300=1050 mm2/m
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wmax=0.2 mm,
α=12×10−6 from Table 3.2 of BS 8110, Part 2

T1=25°C (Table A.2 of BS 8007)
T2=0, from Table A1 of 8007

fct/fb=0.67 for deformed bars of type 2.

ρ=0.30% <(ρcrit=0.35)

 

Provide T12–200 mm c/c. As=565 mm2/m on each face. Total steel areα=1130 mm2/m.

ρ=100×1130/(1000×300)=0.38%.  

(iii) Design for vertical bending:

(1) Vertical steel on inner face

M at base at SLS=57.67 kNm/m
M at ULS=1.4×57.67=80.74 kNm/m

 

Using T12–100 gives for a maximum crack width of 0.2 mm, moment capacities at SLS 
and ULS equal to 78.16 kNm/m and 116.47 kNm/m respectively. This steel is required for 
only a height of approximately 0.2 h from base. Above this only minimum steel required. 
Alternate bars can be terminated beyond (0.2h+ anchorage length of 38 )=1656 mm, say 
1700 mm above base.

(2) Vertical steel on outer face:

M=16.63 kNm/m  

Using T12–200 gives for a maximum crack width of 0.2 mm, moment capacities at SLS 
and ULS equal to 49.51 kNm/m and 59.63 kNm/m respectively.

(iv) Design for ring tension

T at mid-height=0.043×60×15=387 kN/m
Circumferential moment=2.83 kNm/m

 

Try tensile stress in steel equal to 300 N/mm2

As=387×103/300=1290 mm2/m  

Use T16–300 on each face giving total As=1340 mm2/m
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(d) Check crack width
Moment is small and can be ignored.

(i) Stress and strain in steel:

fs= T/As=387×103/(1340)=289 N/mm2<(0.8×460=368 N/mm2)  

(ii) Effect of tension stiffening:

If limiting design crack width is 0.2 mm,
 

(iii) Average surface strain:

εm=ε1−ε2=(1.44–0.75)×10−3=0.69×10−3  

(iv) Calculate acr

 c=cover and 
s=bar spacing, from Fig. 17.3,

 

(v) Crack width

w=3acr εm =3×81×0.69×10−3=0.17mm 

Use T16–300 on each face giving As=1340 mm2/m,

ρ=1340/(1000–300)=0.45 %>(ρcrit=0.35%)  
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CHAPTER 18

 
EUROCODE 2

The search for harmonization of technical standards throughout the European Commu-
nity (EC) has led to the development of Eurocodes which are intended to replace the 
national codes. Eurocode 2 is the replacement standard for BS 8110. The provisions of 
Eurocode2(EC2) are similar to BS8110. This chapter summarises the main clauses with 
a few examples showing the comparison between the codes. Two useful publications are 
given at the end.

18.1 LOAD FACTORS 

Dead load and imposed loads are designated as Permanent load and Variable loads  
respectively.

18.1.1 Load Factors for Ultimate Limit State

Table 18.1 Load combinations and values of γf for the ultimate limit state EC2  
(BS 8110)

Load combinations   Load type   

Permanent Variable Earth and 
water 

pressure

Wind
 Adverse Beneficial Adverse Benefi-

cial
Permanent and variable 

(and earth and water 
pressure)

1.35
(1.40)

1.0
(1.0)

1.50
(1.60)

0
(0)

1.35
(1.40)

Permanent and wind 
(and earth and water 

pressure)

1.35
(1.40)

1.0
-

- - 1.35
(1.40)

1.50
(1.40)

Permanent and variable 
and wind (and earth and 

water pressure)

1.35
(1.2)

1.0
-

1.35
(1.2)

0
-

1.35
(1.2)

1.35
(1.2)

Note that in Table 18.1, figures in brackets refer to BS 8110 values.

Table 18.1 shows the load factors to be used for various load combinations when design-
ing for ultimate limit state.
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As can be seen, the main differences are for

•  Dead and imposed load: Dead load when adverse instead using a load factor of 1.4, 
the new value is 1.35 and for the imposed load instead of 1.6 the new load factor is 
1.5.

•  Dead and wind load: The new factor for dead load is 1.35 instead of 1.40 and for 
wind 1.5 instead of 1.4.

•  Dead+Imposed+wind: The factor has increased to 1.35 from BS8110 value of 1.2.

18.1.2 Load Factors for Serviceability Limit State

Table 18.1 shows the load factors to be used for various load combinations when design-
ing for serviceability limit state. As can be seen, the main difference is

• 1Dead+Imposed+wind: The factors for imposed and wind loading has decreased from 
1.0 to 0.9.

Load combinations Permanent Variable Wind

Permanent and variable 1.0 1.0
(1.0 or 0.25 to 0.75)*

-

Permanent and wind 1.0 - 1.0

Permanent and variable and wind 1.0 0.9
(1.0)

0.9
(1.0)

*Generally 1.0 but for deflection calculations, 0.25 for domestic or office occupancy and 0.75 for 
storage. (BS 8110, Part 2, clause 3.3.3)

18.2 MATERIAL SAFETY FACTORS

Table 18.2 Material safety factors γm

Limit State Type of ‘stress’ Material
Ultimate  Concrete Steel

 Flexure and axial load 1.5 1.15
(1.05)

 Shear 1.5
(1.25)

1.15
(1.05)

 Bond 1.5
(1.4)

 

Serviceability  1.0 1.0
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Note that in Table 18.2, figures in brackets refer to BS 8110 values.
Table 18.2 shows the material safety factors for steel and concrete. The main difference 

is for steel γm is 1.15 instead of 1.05. For concrete slightly larger values of γm than BS 8110 
are used for shear and bond stresses.

18.3 MATERIALS

Concrete: Properties are specified in terms of characteristic cylinder strength fck. Table 
18.3 shows the relationship between cylinder strength fck and corresponding cube strength 
fcu.

Table 18.3 Relationship between cylinder and cube strength

fck fcu fck/fcu Lowest class for use as specified
12 15 0.80  
16 20 0.80 Plain concrete
20 25 0.80  
25 30 0.83 Reinforced concrete
30 37 0.81 Prestressed concrete
35 45 0.78  
40 50 0.80  
45 55 0.82  
50 60 0.83  

Figures in bold are the preferred class. 

The ratio of fck/fcu varies from 0.78 to 0.83 with an average value of 0.81.
The stress-strain relationship is made up of parabolic and straight segments. The maxi-

mum stress is limited to 0.85 fck/(γc=1.5). Or in terms of cube strength this is approxi-
mately 0.459 fcu, which corresponds to BS 8110 value of 0.447 fcu. The maximum strain 
is limited in both codes to 0.0035. In EC2, the strain at the end of parabolic variation is 
0.002 for all value of fck. In BS 8110 this is equal to 2.4×10−4√[fcu/(γc=1.5)]. From the for-
mula, for fcu=30 N/mm2, the value of the strain at the end of parabolic variation is 0.001.

Steel
The specified characteristic strength is designated by fyk and corresponds to fy in BS8110

18.4 BENDING ANALYSIS

The basic assumptions such as plane sections remaining plane, full bond between steel 
and concrete, maximum concrete strain limited to 0.0035 and a material safety factor on 
concrete of 1.5 are identical in both codes.
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18.4.1 Maximum Depth of Neutral Axis x

In the absence of any redistribution of moments, in EC2 the permissible maximum depth 
of neutral axis depends on the value of fcu and is in addition smaller than the correspond-
ing value in BS 8110. EC2:

x/d≤0.45 for fcu≤45 N/mm2

x/d≤0.35 for fcu>45 N/mm2

 

BS 8110: x/d≤0.5 for all values of fcu

18.4.2 Stress Block Depth

EC2: The depth of the rectangular stress block and the average compressive stress are 
respectively 0.8x and (0.567 fck≈0.459 fcu)

BS 8110: The depth of the rectangular stress block and the average compressive stress 
are respectively 0.9x and 0.447 fcu.

18.4.3 Maximum Moment Permitted in a Rectangular Beam With no  
Compression Steel

The maximum moment permitted in EC2 is generally smaller than in BS 8110. Therefore 
in designs based on EC2 compression steel will be required at a smaller value of maxi-
mum moment than in designs based on BS 8110.

EC2:

(i) x/d ≤ 0.45 for fcu≤45 N/mm2

Mmax=0.459 fcu b 0.8 (0.45d) (d—0.8×0.45d/2)

Mmax=0.136 bd2 fcu

 

(ii) x/d ≤ 0.35 for fcu > 45 N/mm2

Mmax=0.459 fcu b 0.8 (0.35d) (d—0.8×0.35d/2)
Mmax=0.110 bd2 fcu

 

BS8110:

For all values of fcu, 

Mmax=0.156 bd2 fcu 
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18.4.4 Lever Arm Z

Lever arm in EC 2 will be marginally larger than in BS 8110.

EC 2:

M=0.459 fcu b 0.8.x (d−0.8x/2)
z=d−0.8x/2
x=(d−z)/0.4

 

Substituting for x in terms of z

M=0.918 b fcu z(d−z)
 

If k=M/(bd2fcu),

z/d=0.5+√(0.25−k/0.918)  

BS8110:

M=0.45 fcu b 0.9x (d−0.9x/2)

z=d−0.9x/2

x=(d−z)/0.45

 

Substituting for x in terms of z

M=0.9 b fcu z (d−z)
 

If k=M/(bd2fcu),

z/d=0.5+√(0.25−k/0.9)  

Table 18.4 Neutral axis depth and maximum value of M

% Redistribution δ (βb) fcu≤45 fcu>45 BS8110
  x/d k x/d k x/d k

0 1 0.45 0.135 0.35 0.111 0.5 0.156
5 0.95 0.41 0.126 0.310 0.100 0.5 0.156

10 0.9 0.37 0.116 0.270 0.088 0.5 0.156
15 0.85 0.33 0.105 0.230 0.077 0.45 0.144
20 0.8 0.29 0.094 0.190 0.064 0.4 0.132
25 0.75 0.25 0.083 0.15 0.052 0.35 0.119
30 0.7 0.21 0.071 0.11 0.039 0.3 0.104
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18.4.5 Moment Redistribution

The maximum permitted value of neutral axis depth in EC 2 depends on the value of fcu.

EC2:

δ=Moment after redistribution/Moment before redistribution

x/d≤(0.8 δ−0.35), fcu≤45
x/d≤(0.8 δ−0.45), fcu>45

 

For high ductility steel, δ≤0.7

BS8110:

βb=Moment after redistribution/Moment before redistribution

x/d≤(βb−0.4), for all values of fcu 
 

Table 18.4 shows a comparison between EC2 and BS 8110 values of the maximum per-
mitted values of moment for singly reinforced rectangular sections. Especially when fcu is 
greater than 45 N/mm2, the differences between the values are quite large.

18.5 EXAMPLES OF BEAM DESIGN FOR BENDING

Three examples are given with ‘parallel’ calculations for EC2 and BS 8110 rules.

18.5.1 Singly Reinforced Rectangular Beam

A simply supported rectangular beam of 8 m span carries a uniformly distributed dead 
load (which includes an allowance for self weight) of 7 kN/m and an imposed load of 5 
kN/m. Assuming breadth, b=250 mm, design the beam. Use fcu=30 N/mm2 and fy=460 N/
mm2 

EC2:

Design load=1.35×7+1.5×5=16.95 kN/m

Ultimate moment=16.95×82/8=135.6 kNm

 

Minimum depth required for no compression steel: 

x/d≤0.45 for fcu≤45 N/mm2, Mmax=0.136 bd2 fcu 

dmin=√ [135.6×106/(0.136×250×30)]=365 mm
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BS8110:

Design load=1.40×7+1.6×5=17.80 kN/m
Ultimate moment=17.80×82/8=142.4 kNm

 

Minimum depth required for no compression steel:

x/d≤0.5, Mmax=0.156 bd2 fcu
dmin=√ [142.4×106/(0.156×250×30)]=349 mm

 

Total depth, h:

Assuming 30 mm cover, 25 mm bars and 8 mm links, total depth h is

h=365+30+8+25/2=416 mm  

Assume an overall depth of 425 mm

Effective depth, d: 

d=425−30−8−25/2=375 mm  

EC2:

k=M/(bd2fcu)=135.6×106/(250×3752×30)]=0.129
z/d=0.5+√(0.25−0.129/0.908)=0.83

As=135.6×106/(0.83×375×0.87×460)=1089 mm2

 

BS8110:

k=M/(bd2 fcu)=142.4×106/(250×3752×30)]=0.135
z/d=0.5+√(0.25–0.135/0.9)=0.82

As−142.4×106/(0.82×375×0.95×460)=1060 mm2

 

In both designs, provide 3T25 giving an area of 1472 mm2

18.5.2 Doubly Reinforced Beam

A simply supported rectangular beam of 6 m span carries a uniformly distributed dead 
load (which includes an allowance for self weight) of 12.7 kN/m and an imposed load of 
6 kN/m. The breadth b=200 mm and the overall depth h is limited to 400 mm. Design the 
beam. Use fcu=30 N/mm2 and fy=460 N/mm2 Assume 30 mm cover, 8 mm shear links and 
25 mm diameter bars. Effective depth

d=400–30–8−25/2=350 mm
d’= 30+8+25/2=51 mm
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EC2:

Design load=1.35×12.7+1.5×6.0=26.15 kN/m 
Ultimate moment=26.15×62/8=117.68 kNm

 

Maximum moment allowed with no compression steel:

fcu≤45 N/mm2 

Mmax=0.136 bd2 fcu=0.136×200×3502×30×10−6=99.96 kNm 
Mmax<117.68

 

Compression steel required.

x=0.45 d=0.45×350=157.5 mm 
stress block depth=0.8×157.5=126 mm 

lever arm, z−350–0.5×126=287 mm

 

Strain in compression steel=0.0035×(157.5 −51)/157.5=2.37×10−3 Compression steel 
yields.

As=99.96×106/(287×0.87×460) 
+(117.68–99.96)×106/[(350×51)×0.87×460] 

As=870+148=1018 mm2,
As ̀=148 mm2

 

BS8110:

Design load=1.40×12.7+1.6×6.0=27.38 kN/m 
Ultimate moment=27.38×62/8=123.21 kNm

 

Maximum moment allowed with no compression steel:

Mmax=0.156 bd2 fcu=0.156×200×3502×30×10−6=114.66 kNm 

Mmax<123.21

 

Compression steel required. 

x=0.5 d=0.5×350=175 mm 

stress block depth=0.9×175=157.5 mm, 

lever arm, z=350–0.5×157.5=271 mm

 

Strain in compression steel=0.0035×(175–51)/175=2.48×10−3 Compression steel yields.
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As=114.66×106/(271×0.95×460)
+(123.21–114.66)×106/[(350–51)×0.95×460]

As=968+66=1034 mm2

As ̀=66 mm2

 

In both designs, provide

Tension steel: 2T25+1T16=1182 mm2

Compression steel: 2T12=226 mm2.

 

18.5.3 T-Beam Design

Determine the area of reinforcement required for the T-beam section with breadth of flange, 
b=600 mm, depth of flange, hf=100 mm, width of web, bw=250 mm, overall depth=425 
mm.

The beam is subjected to an ultimate moment of 280 kN m. The materials are grade 30 
concrete and grade 460 reinforcement.

Assume cover=30 mm, link diameter=8 mm, 25 mm bars, effective depth d:

d=425–30–8−25/2=375 mm  

EC 2:

Calculate Mflange to check if the stress block is inside the flange.

Mflange=0.459 fcu b hf(d−hf/2)
Mflange=0.459×30×600×100×(375–0.5×100)×10−6=268.5 kNm

 

The design moment of 280 kNm is greater than Mflange. Therefore the stress block extends 
in to the web.

Check if compression steel is required.

Mmax=0.459 fcu (b−bw) hf(d−hf/2)+0.136 fcu bw d2

Mmax={0.459×30×(600–250)×100×(375–100/2)

+0.136×30×250×3752}×10−6

Mmax=156.63+143.44=300.1 kNm

Mmax>(M=280 kNm)

 

The beam does not need compression steel.

Determine the depth of the neutral axis from
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Setting x/d=α 

0.1106=0.0619+0.153 α−0.0612 α2  

Simplifying

α2−2.50 α+0.7958=0 
 

Solving the quadratic in α

α=x/d=(2.50–1.7524)/2=0.3738
x=0.3738×375=140 mm <(0.45 d=169 mm)

T=0.95 fy As=0.459 fcu (b−bw) hf+0.459 fcu bw 0.8 x 
T=(0.459×30×(600–250)×100+0.459×30×250×0.8×140×10−3

T=(472.5+385.6)=858.1 kN
As=858.1×103/(0.87×460)=2144 mm2

 

BS8110:

Calculate Mflange to check if the stress block is inside the flange.

Mflange=0.45 fcu b hf(d−hf/2)
Mflange=0.45×30×600×100×(375–0.5×100)×10−6

Mflange=263.25 kNm

 

The design moment of 280 kNm is greater than Mflange. Therefore the stress block extends 
in to the web.

Check if compression steel is required.

Mmax=0.45 fcu (b−bw) hf (d−hf/2)+0.156 fcu bw d2

Mmax={0.45×30×(600–250)×100×(375–100/2)

+0.156×30×250×3752}×10−6

Mmax=(153.6+164.5)=318.1 kNm 

Mmax>(M=280 kNm)
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The beam can be designed without any need for compression steel. Two approaches can 
be used for determining the area of tension steel required.

(a) Exact approach:
Determine the depth of the neutral axis from

 

Setting x/d=α

0.1106=0.0607+0.1688 α−0.0759 α2  

Simplifying

α2−2.22 α+0.657=0  

Solving the quadratic in α,

α=x/d=(2.22–1.5167)/2=0.352

x=0.352×375=132 mm <(0.5 d=188 mm)

T=0.95 fy As=0.45 fcu(b−bw) hf+0.45 fcu bw 0.9 x

T=(0.45×30×(600–250)×100+0.45×30×250×0.9×132)×10−3

T=(472.5+400.95)=873.5 kN

As=873.5×103/(0.95×460)=1999 mm2

 

(b) Calculation of As using simplified code formula which uses x=0.5

 

In both designs, provide 3T32, As=2412 mm2

18.6 SHEAR DESIGN: STANDARD METHOD

EC2 allows two methods for shear design, Standard method and Variable inclination 
method. Only the former is considered here.
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18.6.1 Maximum Permissible Shear Stress

EC2:

Vmax=0.3 ν fck

v=(0.7−fck/200)≥0.5 i.e. fck≤40 N/mm2

Taking fck≈0.81 fcu, 
vmax=0.243 (0.7−fcu/247) fcu, fcu ≤50 N/mm2

 

BS8110:

Vmax=0.8√fcu 
 

Table 18.5 shows a comparison between the vmax permitted by the two codes. 

Table 18.5 Maximum permissible shear stress

fcu fck 
 Vmax

  EC2 BS8110
25 20.25(20) 3.64 4.00
30 24.30 (25) 4.22 4.38
35 28.35 4.75 4.73
40 32.40 5.23 5.06
50 40.50 (40) 6.05 5.66

Figures in brackets correspond to values in Table 18.2.

18.6.2 Permissible Shear Stress in Reinforced Concrete

EC2:

vc=0.035 fck
(2/3) (1.6−d/1000) {1.2+0.4 (100 As/bvd)}

(A material safety factor of γm=1.5 is included) 

100 As/(bvd)≤2, (1.6−d/1000)>1.0, i.e. d<600 mm

Taking fck≈0.81 fcu, 0.035 fck
(2/3)=0.030 fcu

(2/3)

vc=0.03 fcu
(2/3) (1.6−d/1000) {1.2+0.4 (100 As/bvd)}

 

BS8110

vc=(0.79/1.25) (fcu/25)(1/3) (400/d)(1/4) (100 As/bvd)(1/3)

(A material safety factor of γm=1.25 is included) 
fcu≤40 N/mm2, 100 As/(bvd)≤3, 400/d ≥1, i.e. d≤400
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Table 18.6 shows a comparison between EC2 and BS 8110 values for vc for fcu= 30 N/
mm2 

Table 18.6 vc values for EC2 and BS 8110, fcu=30 N/mm2

ρ% Code vc N/mm2

  d, mm
  150 200 250 300 400 500 600
 EC 2 0.53 0.51 0.49 0.47 0.44 0.40 0.36
0.15 BS8110 0.46 0.42 0.40 0.38 0.36 0.36 0.36
 EC 2 0.55 0.53 0.51 0.49 0.45 0.41 0.38
0.25 BS8110 0.54 0.50 0.48 0.45 0.42 0.42 0.42
 EC 2 0.59 0.57 0.55 0.53 0.49 0.45 0.41
0.5 BS8110 0.68 0.63 0.60 0.57 0.53 0.53 0.53
 EC 2 0.63 0.61 0.59 0.56 0.52 0.48 0.43
0.75 BS8110 0.78 0.73 0.69 0.66 0.61 0.61 0.61
 EC 2 0.67 0.65 0.63 0.60 0.56 0.51 0.46
1.00 BS8110 0.86 0.80 0.76 0.72 0.67 0.67 0.67
 EC 2 0.76 0.73 0.70 0.68 0.63 0.57 0.52
1.50 BS8110 0.98 0.91 0.86 0.83 0.77 0.77 0.77
 EC 2 0.84 0.81 0.78 0.75 0.70 0.64 0.58
2.00 BS8110 1.08 1.01 0.95 0.91 0.85 0.85 0.85
 EC 2 0.84 0.81 0.78 0.75 0.70 0.64 0.58
2.50 BS8110 1.16 1.08 1.02 0.98 0.91 9.91 0.91
 EC 2 0.84 0.81 0.78 0.75 0.70 0.64 0.58
3.00 BS8110 1.24 1.15 1.09 1.04 0.97 0.97 0.97

18.6.3 Total Shear Capacity

Symbols inside brackets are BS 8110 symbols.

VRd3 (V)=Applied shear force
Vcd or VRd1 (Vc)=Shear force resisted by reinforced concrete=vc bv d

Vwd (Vs)=Shear resistance provided shear reinforcement
VRd3 (V)=Vcd or VRd1 (Vc)+Vwd (Vs)
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18.6.4 Shear Reinforcement in the Form of Links

 

where fyk=fyv and Asw=Asv in BS 8110 notation. 
This includes the factor of safety of 0.87 on fyk.
The shear force carried by the links is Vwd (Vs).

 

BS8110:
 

18.6.5 Maximum Permitted Spacing of Links

In EC 2, the rules for maximum permitted link spacing are a function of the ratio of design 
shear force to maximum permitted shear force. BS 8110 adopts a much simpler rule.

EC 2:

Link Spacing should not exceed the smaller of:

a. 0.8d or 300 mm if Vsd (V)≤0.2 VRd2 (Vmax)
b. 0.6d or 300 mm if 0.2 VRd2 (Vmax)<Vsd (V)≤0.67VRd2(Vmax)

c. 0.3d or 200 mm if Vsd (V)>0.67 VRd2(Vmax)

 

BS8110

Link Spacing should not exceed 0.75 d.

18.6.6 Minimum Area of Links
EC2:

 

In order to compare with the equations in BS 8110, using the values of ρw in Table 18.7, 
the equation for minimum shear steel can be expressed as follows.
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Table 18.7 shows the value of C.

BS8110:
 

Table 18.7 Values of ρw for minimum stirrups

Concrete strength class in fcu (fyk)fyv=250 N/mm2 (fyk)fyv=460 N/mm2

 ρw% C ρw% C
C15 and C25 0.15(0.17) 0.33 0.08(0.09) 0.32
C30 to C45 0.22(0.17) 0.48 0.12(0.09) 0.48
C50 to C60 0.28(0.17) 0.61 0.14(0.09) 0.56

Note: Numbers in brackets for ρw refer to BS 8110 values.
The value of C for BS 8110 is 0.4 in all cases.

EC2 requires a greater amount of minimum links than BS 8110

18.6.7 Example of Shear Design

A simply supported T-beam carries an ultimate load of 38 kN/m over a span of 6.5m. The 
supports are 200 mm wide. The T-beam has:

web width, bw (bv)=250mm, overall depth, h=450 mm
It is reinforced by 5T20 bars in tension at mid-span and curtailed to 3T20 towards the 

support. Design 8 mm high yield steel shear links required at a distance of d from the face 
of the support. The materials are grade 30 concrete and grade 460 reinforcement.

Note: EC 2 uses bw for web width and BS 8110 uses bv.
Assume 30 mm cover. Effective depth

d=450–30–8–20/2=402 mm
Reaction=38×6.5/2=123.5 kN

 

Shear force at d from the face of support:

V=123.5–38×(200/2+402)×10−3=104.42 kN  

Design shear force VRd3 (V)=104.42 kN 

v=VRd3(V)/(bw d)
v−104.42×103/(250×402)−1.04 N/mm2

As=3T20=943mm2

100 As/(bvd)−100×943/(250×402)=0.94
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EC2:

vmax=0.24×(0.7–30/250)×30=4.18 N/mm2

VRd2 (Vmax)=bw d vmax=250×402×4.18×10−3=420.1 kN
v<vmax

 

100As/(bvd)=0.94<2.0 
d=402<600 mm 

vc=0.03 fcu
(2/3) (1.6−d/1000) {1.2+0.4 (100 As/bvd)}

vc=0.03×(30)(2/3)×(1.6–402/1000)×{1.2+0.4×0.94}
vc=0.55 N/mm2

Vc<V<Vmax

 

Design Shear links: 2 leg 8 mm links, Asv=100 mm2

 

Is [Vsd (V)=104.42]≤[0.2 VRd2 (Vmax)=0.2×420.1=84.0], No.

Is [0.2 VRd2 (Vmax)=84.0]<[Vsd (V)=104.42]≤[0.67 VRd2 (Vmax)=280.1], Yes 

Link spacing is smaller of (0.6d=241 mm) or 300 mm 

Therefore maximum spacing is limited to 240 mm.

Minimum links: fyv=460 N/mm2 and fcu=30 N/mm2, Asv=100 mm2, bv=250 mm
 

s=333 mm. Say 300 mm
Shear resisted by minimum links:

 

Assuming vc=0.55 N/mm2, shear resisted by concrete:

Vcd or VRd1 (Vc)=vc bv d=0.55×250×402×10−3=55.3 kN 
Total shear force V resisted in the region of minimum shear links is

VRd3 (V)=VRd1 (Vc)+Vwd (Vs)=55.3+48.1=103. 4 kN  

Shear force at d from the face of support=104.42 kN
Provide four links at 240 mm from the centre of support at either end and the rest at 

300 mm c/c. 
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BS8110:

vmax=0.8√30=4.38 N/mm2

v<vmax

100As/(bvd)=0.94<3.0
d=402 > 400 mm, 400/d=1

fcu=30<40N/mm2

vc=(0.79/1.25) (100 As/bvd)(1/3) (400/d)(1/4) (fcu/25)(1/3)

 

vc=(0.79/1.25)×(30/25)(1/3)×(1.0)(1/4)×(0.94)(1/3)=0.66 N/mm2

Vc<V<Vmax

 

Design Shear links: 2 leg 8 mm links, Asv= 100 mm2

 

Maximum spacing is limited to 0.75 d=300 mm.

Minimum links: fyv=460 N/mm2, Asv=100 mm2, bv=250 mm

s=437 mm>(0.75d=301 mm)

 

Shear resisted by the minimum links:

 

Assuming vc=0.55 N/mm2, shear resisted by concrete:

Vc=vc bv d=0.55×250×402×10−3=55.3 kN  

Total shear force V resisted in the region of minimum shear links is

V=Vc+Vs=58.6+48.1=106.7 kN  

Shear force at d from the face of support=104.42 KN

Provide minimum links at 300 mm c/c throughout the beam.

The main difference between the two designs is in the region approximately at d from 
the face of the support, where closer spacing of the links is needed according to EC2.
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18.7 PUNCHING SHEAR

18.7.1 Location of Critical Perimeter

In EC2, critical perimeters are at a constant distance from the loaded area while in BS 
8110 critical perimeters have the same shape as the loaded area.

In EC 2 the location of the first critical perimeter is at a constant distance of 1.5 d from 
the loaded area. BS 8110 considers rectangular perimeters at a distance of 1.5 d from the 
loaded area. For a rectangular loaded area a×b, the critical perimeters are (Fig. 18.1):

EC2: perimeter, u=2(a+b)+3π d 
BS 8110: perimeter, u=2(a+b)+12d  

Fig. 18.1 Critical shear perimeters in EC2 and BS 8110.

18.7.2 Maximum Permissible Shear Stress, Vmax

Vmax=V/(u0d), where u0=perimeter of loaded area.
EC2: vmax<0.9√fck≈0.81√fcu 

BS 8110: vmax≤0.8√fcu or 5 N/mm2

 

18.7.3 Permissible Shear Stress, vc

The values are as discussed in section 18.5.2. Generally enhancement of shear strength 
close to supports is not permitted.

EC2: The code recommends that d should be the average of the effective depth in two 
directions and the reinforcement ratio ρ=As/(bv d) used in the expression for vc is given 
by
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ρ=lesser of [√ρx ρy] and 0.015  

In order to allow for combined effect of bending and shear, the design effective shear

Veff=αV  

where

α=1.50 for corner column,
α=1.40 for edge column,

α=1.15 for internal column.

 

BS 8110: BS 8110 assumes that the reinforcement ratio used in calculation of vc is the 
average of values in two directions. The multiplication factor a for calculating design 
effective shear Veff is given by

α=1.25 for corner and edge columns for bending parallel to free edge,
α=1.40 for corner columns for bending perpendicular to free edge.

 

α=1.15 for internal column.  

18.7.4 Shear Reinforcement

EC 2: The maximum shear capacity is limited to v=1.6 vc. Shear reinforcement is required 
if

vc<v≤1.6 vc
 

Shear reinforcement provides shear capacity of Vs where

Vs=0.87 fy∑Asv
 

where ∑Asv is the sum of cross-sectional areas of all stirrups with in a distance of 1.5 d or 
800 mm which ever is smaller from the edge of the loaded area. Further critical perimeters 
at a distance of 1.5 d from the outside of the shear reinforced area must be checked for 
need for shear reinforcement.

BS 8110: See Chapter 5, section 5.1.8.

18.7.5 Example

A flat slab 250 mm thick overall is reinforced by 16 mm diameter bars at 175 mm both 
ways. Assuming fcu=30 N/mm2 and fy=460 N/mm2, design shear reinforcement to prevent 
punching failure at an edge column. The axial force in the 300 mm square column is 350 
kN. Take cover=30 mm. Effective depths:
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dx=250–30–16/2=212 mm
dy=250–30–16–16/2=196 mm

daverage=204mm
Asx=Asy=1150 mm2/m 

ρx=Asx/(1000×dx)=0.00543 
ρy=Asx/(1000×dy)=0.00587

 

EC2:

ρ=√ρxρy)=0.00564<0.015 
100As/(bvd)=0.56<2.0 

d=204<600 mm
vc=0.03 fcu

(2/3) (1.6−d/1000) {1.2+0.4 (100 As/bvd)}
vc=0.03×(30)(2/3)×(1.6–204/1000)×{1.2+0.4×0.56}=0.58 N/mm2

V=350 kN

 

Edge column: α=1.4 

Veff=1.4×350=490 kN  

Check shear around the column perimeter:

u0=4×300=1200 mm
vmax=490×103/(1200×204)=2.00 N/mm2<(0.81 √fcu=4.44 N/mm2)

 

Depth of slab is adequate.
Calculate shear stress at a perimeter 1.5 d from loaded area: 

u=2(300+300)+2π(1.5d)=3123 mm
v=490×103/(3123×204)=0.77 N/mm2

 

(vc=0.58)<(v=0.77)<(1.6vc=0.93) 
Slab needs shear reinforcement.

Design of shear reinforcement:

Vc=ud vc=3123×204×0.58×10−3=369.5 kN
Vs=0.87 fy ∑Asv=V−Vc=490–369.5=120.49 kN

∑Asv=120.49×103/(0.87×460)=301 mm2

 

Minimum steel area required is 60% of that required for beams. From Table 18.7,

ρw=0.6×0.0012=0.00072  

 



 

Eurocode 2  723

Acrit=Area inside the critical perimeter, Aload=Loaded area

Acrit−Aload=2×300×1.5d+2×300×1.5d+2π (1.5d)2

=4×300×306+2π (306)2=0.956×106 mm2

 

Minimum area of links required:

ΣAsv=0.00072×0.956×106=688 mm2>(301 mm2 required)  

Provide 8 mm diameter, 2-leg links in two perpendicular directions. Area of one link=100 
mm2. Provide 8 links in all.

BS8110:

Average 100 As/(bvd)=0.565<3.0,
400/d=1.96>1.0

vc=(0.79/1.25) (100 As/bvd)(1/3) (400/d)(1/4) (fcu/25)(1/3)

vc=(0.79/1.25)×(0.565)(1/3)×(1.96)(1/4)×(30/25)(1/3)=0.66 N/mm2

V=350 kN

 

Edge column: α=1.25

Veff=1.25×350=437.5 kN  

Check shear around the column perimeter:

u0=4×300=1200 mm
vmax=437.5×103/(1200×204)=1.79 N/mm2 <(0.8√fcu=4.38 N/mm2)

 

Depth of slab is adequate.
Calculate shear stress at a perimeter 1.5 d from loaded area:

u=2(300+300)+12d=3648 mm
v=437.5×103/(3648×204)=0.59 N/mm2

(vc=0.66)>(v=0.59)

 

No shear reinforcement is necessary.

18.8 COLUMNS

This section deals with the design of short columns only. 

18.8.1 Short or Slender Column?
EC 2:

The slenderness of a column is defined by λ the ratio of effective length ℓ0 to the radius 
of gyration r.

λ=ℓ0/r, ℓ0=β ℓco1, r=√(I/A),  
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I=second moment of area of the section about the axis being considered, 
Α=cross sectional area. 
ℓcol=height of the column between the centres of restraint 
β=coefficient which is a function of the ratios of column to beam stiffnesses ka and kb 

at the top and bottom respectively of the column.

 

The summation sign ∑ indicates that all columns and all beams framing in to the joint at 
a or b should be included. The coefficient α depends on the fixity at the end of the beam 
remote from the joint, α=1.0 for continuous end and 0.5 for simply supported end and 0 
for a cantilever.

If λ≤λmin then the column is considered short and slenderness effects can be ignored.

λmin is greater of 25 or 15/√νu 
 

where

vu=Nsd/(Ac fcd),
Nsd=Design axial load on column 

Ac=Area of cross section 
fcd=fck/1.5≈0.54 fcu

 

BS8110:

The code gives in Tables 3.19 and 3.20, β values for different end conditions. Three types 
of conditions are defined for braced columns and four types for unbraced columns. The 
effective length ℓe of the column is equal to β ℓcol. A Column is short if ℓe/h and ℓe/b are 
both less than 15 for braced column and 10 for unbraced column.

In Part 2, the following equations are given:
Braced Columns:

β=lesser of [{0.7+0.05(ka+kb)} or {0.85+minimum of (ka and kb)}]  

18.8.2 Example

Design the column shown in Fig. 18.2.
Design axial load N=1800 kN, fcu=30 N/mm2

Column=400×400 mm, height between floor, ℓcol=3.5 m
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EC2:

8 m 6 m

Fig. 18.2 Example for checking slenderness ratio.

(i) Calculate slenderness ratio, λ

Icol=4004/12=2133×106 mm4

Α=4002=16×104 mm2,
r=400/√12=115.5 mm

 

Beams: T-beams but only the rib 300×500 is considered.

Ibeam=300×5003/12=3125×106 mm4

kα=kb=(2133/3.5+2133/3.5)/(3125/8+3125/6)=1.34>0.4

 

From the Nomogram, β=0.8

ℓo=0.8×3.5=2.8 m
λ=2.8×103/115.5=24.4

 

(ii) Calculate λmin

Nsd=1800 kN
Ac=4002=16×104 mm2

vu=1800×103/(16×104×0.54×30)=0.69
15/√νu=18.06

λmin=greater of (25 or 18.06)=25.0
(λ=24.4)<(λmin=25)

Column is short.
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BS8110:

(i) Simplified approach

Braced column with end conditions at both top and bottom is 1. 

β=0.75
ℓe=0.75 ×3.5 = 2.625m 

ℓe/h=2.625×103/400=6.57<15 
Column is short.

 

(ii) Using the equations of Part 2

β=lesser of [{0.7 + 0.05(1.34+1.34)} or {0.85+ 0.05 × 1.34)}]
β=0.834<1.0

ℓe=0.834×3.5=2.92m 
ℓe/h=2.92×103/400=7.30<15

 

Column is short.

18.9 DETAILING

This section gives a short summary of some significant aspects of detailing in EC2.

18.9.1 Bond

Quality of bond depends, apart from obvious things, on the dimensions of the member and 
the position and inclination of reinforcement during concreting.

a.  If the bar is inclined to the horizontal between 45° and 90° to the horizontal, then the 
bond on the bar is taken as good.

b.  If the bar is inclined to the horizontal between 0° and 45° to the horizontal and the 
direction of concreting is normal to the bar, then for a slab of depth h, good bond can 
be assumed in the following cases:

•   if h<250mm

•   for bars in the lower half of the slab depth if 250<h<600 mm

•   for bars in the depth below 300 mm from the top if h≥600 mm
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In cases of ‘poor’ bond, the bond stress is taken as 0.7 the values for ‘good’ bond. A 
table of bond stress, fbd vs. cylinder strength is provided. The bond strength varies from 
3.0 N/mm2 for fcu≈24.3 N/mm2 to 4.0 N/mm2 for fcu≈40.5 N/mm2.

18.9.2 Anchorage Lengths

Basic anchorage length ℓb is given in terms of the bar diameter φ by

 

The required anchorage length ℓb,net is given by 

 

αα=1.0 for straight bars

αα=0.7 for curved bars in tension if the cover perpendicular to the plane of curvature 
is at least 

ℓb,minimum=greatest of [0.3ℓb, 10 100 mm) for bars in tension

ℓb,minimum=greatest of [0.6ℓb, 10 100 mm) for bars in compression

18.9.3 Longitudinal Reinforcement in Beams

(i) Minimum longitudinal reinforcement

Minimum required steel percentage is given by

 

b=average width in the tension zone.

(ii) Maximum tension or compression reinforcement

Except at laps, the maximum tension or compression reinforcement is given by
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(iii) In monolithic construction

In monolithic construction, even where simple support has been assumed, at least 25% of 
the maximum span moment steel should be provided.

(iv) Minimum steel at support

At least 25% of the bottom steel in the span should continue up to the supports.
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CHAPTER 19 

 
DEFLECTION AND CRACKING

In Chapter 6, ‘Deemed to satisfy’ rules such as

a. using minimum ratios of span to depth to ensure deflection criteria at serviceability 
limit state

b. restricting maximum spacing of tension reinforcement to satisfy crack width criteria 
at serviceability limit state

were given. In normal design structures are designed for ultimate limit state and by 
satisfying the ‘Deemed to satisfy’ clauses, their satisfaction at serviceability limit states 
are ensured. Only in rare cases is detailed calculation of deflection and crack widths 
required, the exception being design of liquid retaining structures which are governed by 
crack width considerations (See Chapter 17). The object of this chapter is to discuss these 
detailed calculations.

19.1 DEFLECTION CALCULATION

19.1.1 Loads on the Structure

The design loads for the serviceability limit state are set out in BS 8110: Part 2, clause 3.3. 
The code distinguishes between calculations
1. to produce a best estimate of likely behavior

In choosing the loads to be used the code again distinguishes between characteristic 
and expected values. For best estimate calculations, expected values are to be used. The 
code states that
1. for dead loads characteristic and expected values are the same
2.  for imposed loads the expected values are to be used in best estimate calculations 
and the characteristic loads in serviceability limit state requirements (in apartments 

Characteristic loads are used in deflection calculations.
19.1.2 Analysis of the Structure

An elastic analysis based on the gross concrete section may be used to obtain moments for 
calculating deflections. The loads are as set out in 19.1.1. 

2.  to comply with serviceability limit state requirements which may entail taking special
 restrictions into account

and 
office buildings 25% of the imposed load is taken as permanently applied)
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19.1.3 Method for Calculating Deflection

The method for calculating deflection is set out in BS 8110: Part 2, section 3.7. The code 
states that a number of factors which are difficult to assess can seriously affect results. 
Factors mentioned are
1. inaccurate assumptions regarding support restraints
2.  that the actual loading and the amount that is of long-term duration which causes 
creep cannot be precisely estimated
3. whether the member has or has not cracked
4. the difficulty in assessing the effects of finishes and partitions 

The method given is to assess curvatures of sections due to moment and to use these 
values to calculate deflections.

19.1.4 Calculation of Curvatures

The curvature at a section can be calculated using assumptions set out for a cracked or 
uncracked section. The larger value is used in the deflection calculations. Elastic theory is 
used for the section analysis.

19.1.5 Cracked Section Analysis

The assumptions used in the analysis of cracked section are as follows:
1. Strains are calculated on the basis that plane sections remain plane;
2. The reinforcement is elastic with a modulus of elasticity of 200 kN/mm2;
3. The concrete in compression is elastic;
4.  The modulus of elasticity of the concrete to be used is the mean value given in BS 
8110: Part 2, Table 7.2;
5.  The effect of creep due to long-term loads is taken into account by using an effective 
modulus of elasticity with a value of times the short-term modulus from 
Table 7.2 of the code, where is the creep coefficient;
6.  The stiffening effect of the concrete in the tension zone is taken into account by 
assuming that the concrete develops some stress in tension. The value of this stress 

2 of the 
tension steel for short term loads and reducing to 0.55 N/mm2 for long term loads.

To show the method for calculating curvature, consider the doubly reinforced rectan-
gular beam section shown in Fig. 19.1 (a). The strain diagram and stresses and internal 
forces in the section are shown in 19.1(b) and 19.1(c) respectively. The terms used in the 
figure are defined as follows: 

is
 taken as varying linearly from zero at the neutral axis to 1 N/mm  at the centroid 
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fc=stress in the concrete in compression
fsc=stress in the compression steel

fst=stress in the tension steel
fct=stress in the concrete in tension at the level of the tension steel
1 N/mm2 for short-term loads; (0.55 N/mm2 for long-term loads)

As=area of steel in tension
As’= area of steel in compression

 

x=depth to the neutral axis
h=depth of the beam

d=effective depth
d’= inset of the compression steel

Cc=force in the concrete in compression
Cs=force in the steel in compression
Tc=force in the concrete in tension

Ts=force in the steel in tension

 

The following further definitions are required:

Ec=modulus of elasticity of the concrete
Es=modulus of elasticity of the steel

αe=modular ratio, Es/Ec

 

Note that for long-term loads the effective value of Ec is used.

Eeff = effective modulus of elasticity of the concrete for long term  

x
d'

d

Cs

Tc
Ts

Cc

fcεc

Fig.19.1

If the maximum stress in concrete is fc, the corresponding strain εc in concrete is

εc=fc/Ec
 

Assuming full bond, the strains in compression and tension steels are
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εsc=εc(x - d ̀)/x
εs=εc(d−x)/x

 

The stresses in compression and tension steels are

fsc Es εsc

fs = Es εs

 

Substituting for strains in steel in terms of concrete strain,

fsc=Esεsc=Es[εc(x−d ̀)/x]
= Es(fc/Ec)(x−d’)/x 
fsc = αefc(x−d ̀)/ x

 

Similarly

fs = Esεs = Es[εc(d−x)/x] 
=Es(fc/Ec)(d−x)/x 
fs = αe fc (d−x)/x

 

The concrete stress ft in tension at the bottom face is 

ft=fct(h−x)/(d−x)  

The internal forces due to compression in concrete, compression steel, tension steel and 
tension in concrete are given by

Cc=0.5fc bx 
Cs=αe fc As’(x−d’)/x 

Ts=αefcAs(d−x)/x 
Tc=0.5fct b(h−x)2/(d−x)

 

For equilibrium, the sum of the internal forces is zero:

Cc+Cs=Ts+Tc 
 

Substituting for the forces in terms of stresses

0.5fcbx2+αefcAs’(x−d’)/x=αefcAs(d−x)/x+0.5fct b(h−x)2/ (d−x)  

Multiplying through out by x

0.5fc b x2+αefcAs’(x−d’)=αefcAs(d−x)+0.5fct b x (h−x)2/(d−x) (19.1)

The sum of the moments of the internal forces about the neutral axis is equal to the applied 
moment M

M=0.67 Ccx+Cs(x−d’)+Ts(d−x)+0.67 Tc (h−x)
M=0.33 fcbx2+αefcAs’ (x−d’)2/x+ αefcAs(d—x)2/x 

 +0.33 fct b(h−x)3/(d−x)
(19.2)
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For a given value of M, equations 19.1 and 19.2 can be solved simultaneously by succes-
sive trials to obtain the values of fc and x. Note that the area of concrete occupied by the 
reinforcement has not been deducted in the expressions given above.

Let Mc be the moment resisted by tension in concrete. Mc is given by

Mc=0.33 fct b(h−x)3/(d−x) (19.3)

M−Mc=0.33 fcbx2+αe fc As’(x−d’)2/x+αe fc As(d−x)2/x

M−Mc=fc [0.33 b x3+αe As’(x−d’)2+αe As(d—x)2]/x

M−Mc=fcI/x

 

where

I=0.33 b x3+αe As’(x−d’)2+αe As(d−x)2 (19.4)

I is called second moment of area of cracked transformed section.

fc=[(M−Mc)I]/x (19.5)

The compressive strain εc in concrete is

εc=fc/Ec

 

The curvature 1/r is

1/r=εc/x=(M−Mc)/(EcI)
 

The value of Ec to be used depends whether the loads are short term or long term. Solu-
tions are required for both short- and long-term loads. 

19.1.5.1 Simplified Approach

Solution of equations 19.1 and 19.2 simultaneously by successive trials to obtain the val-
ues of fc and x is an onerous task. The solution of problem can be considerably simplified 
without too great a loss of accuracy, if in considering equilibrium in the axial direction the 
contribution of fct is ignored. With this assumption equation 19.1 simplifies to

0.5fcbx2+αefcAs ̀(x−d ̀̀)=αefcAs(d−x)
 

Dividing through out by fc

0.5bx2+αeAs ̀(x−d ̀)=αeAs(d−x) (19.6)

This is a quadratic equation in x from which the value of x can be determined without the 
need for complicated analysis.

fc=[(M−Mc)I]/x
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19.1.6 Uncracked Section

For an uncracked section concrete and steel are both considered to act elastically in ten-
sion and compression. The analysis is similar to the cracked section analysis except that 
the area of concrete below the neutral axis is uncracked. The stress at the bottom face of 
the beam is fc(h−x)/x instead of fct(h−x)/ (d−x) in a cracked section. The internal forces 
are given by

Cc=0.5fcbx

Cs=αefcAs ̀( x−d ̀)/ x

Ts=αefcAs(d−x)/x

Tc=0.5fcb(h−x)2/x

 

For equilibrium, the sum of the internal forces is zero:

Cc+Cs=Ts+Tc

0.5fcbx+αefcAs ̀( x−d`)/x=αefcAs(d−x)/x+0.5fc b (h−x)2/x

 

Multiplying through out by x/fc

0.5bx2+αe As`(x−d`)=αeAs(d−x)+0.5b(h−x)2  

Simplifying

αeAs`(x−d`)=αeAs(d−x)+0.5 bh2−bhx  

Solving for x

x={0.5bh2+αe(Asd+As`d`)}/[bh+αc(As+As’)] (19.7)

The sum of the moments of the internal forces about the neutral axis is equal to the exter-
nal moment M

M=0.67Ccx+Cs(x−d`)+Ts(d−x)+0.67Tc(h−x)

M=0.33 fcbx2+αefcAs`(x−d`)2/x+αefcAs(d−x)2/x + 0.33fcb(h−x)3/x

M=[0.33 bx3+αeAs`(x−d`)2+αeAs(d−x)2 +0.33b(h−x)3](fc/x)

 

Simplifying

M=[0.33bh3+αeAs`(x−d`)2+αeAs(d−x)2 −bhx(h−x)](fc/x) 
M=I(fc/x)

 

I=[0.33 bh3+αe As′ (x−d′)2+αe As(d−x)2−bhx(h−x)] (19.8)
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19.1.7 Long-Term Loads: Creep

The effect of creep must be considered for long-term loads. Load on concrete causes an 
immediate elastic strain and a long-term time-dependent strain known as creep strain. The 
strain due to creep may be much larger than that due to elastic deformation. On removal 
of the load, most of the strain due to creep is not recovered.

Creep is discussed in BS 8110: Part 2, section 7.3. The creep coefficient  is used to 
evaluate the effect of creep. Values of  depend on the age of loading, effective section 
thickness and ambient relative humidity. The code recommends suitable values for indoor 
and outdoor exposure in the UK and defines the effective section thickness for uniform 
sections as twice the cross-sectional area divided by the exposed perimeter.

In deflection calculations, for calculating the curvature due to the long-term loads 
creep is taken into account by using an effective value for the modulus of elasticity of the 
concrete equal to

 

Ec is the short-term modulus for the concrete, values of which at 28 days are given in BS 
8110: Part 2, Table 7.2.

19.1.8 Shrinkage Curvature

Concrete shrinks as it dries and hardens. This is termed drying shrinkage and is discussed 
in of BS 8110: Part 2, section 7.4. The code states that shrinkage is mainly dependent on 
the ambient relative humidity, the surface area from which moisture can be lost relative 
to the volume of concrete, and the mix proportions. It is noted that certain aggregates 
produce concrete with a higher initial drying shrinkage than normal.

Values of drying shrinkage strain εcs for plain concrete which depend on the effective 
thickness and ambient relative humidity may be taken from BS 8110: Part 2, Fig. 7.2. A 
plain concrete member shrinks uniformly and does not deflect laterally. Reinforcement 
prevents some of the shrinkage through bond with the concrete and if it is asymmetrical as 
in a singly reinforced beam this causes the member to curve and deflect. More shrinkage 
occurs at the top of the doubly reinforced beam because the steel area is less at the top than 
at the bottom. BS 8110: Part 2, Clause 3.7, gives the following equation for calculating 
the shrinkage curvature 1/rcs.

1/rcs=εcs αe Ss/I
 

where

αe=Es/Eeff is the modular ratio,
εcs is the free shrinkage strain,
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I corresponds to cracked section (Equation 19.4) or uncracked section (Equation 19.7) 
depending on which value is used to calculate the curvature due to the applied loads. Ss 
is the first moment of area of the reinforcement about the centroid of the cracked or gross 
section.

19.1.9 Total Long-Term Curvature

BS 8110: Part 2, section 3.6, gives the following four step procedure for assessing the total 
long-term curvatures of a section:

1.  Calculate the instantaneous curvatures under the total load and under the permanent 
load;

2. Calculate the long-term curvature under the permanent load;
3.  Add to the long-term curvature under the permanent load the difference between the 

instantaneous curvatures under the total and the permanent load;
4. Add the shrinkage curvature.

19.1.10 Deflection Calculation

Curvature is equal to the second derivative of deflection with respect to distance along the 
span. Deflection can be calculated directly by integrating the curvature using a numerical 
integration technique. The code gives the following simplified method as an alternative.

The deflection a is calculated from

α=KL2(1/rb) 
 

where

L is the effective span of the member,

1/rb is the curvature at the point of maximum moment which is at mid-span in the case 
of beams and at support in the case of cantilevers. K is a constant which depends on the 
shape of the bending moment diagram

19.1.10.1 Evaluation of constant K

The method of calculating K is illustrated by a few examples. Expressions for deflection 
of an elastic beam are given in books on Structural Analysis.

Example 1: Simply supported beam carrying uniformly distributed total load W The 
deflection Δ at mid-span is given by

Δ=5WL3/(384 EI)  

Bending moment M at mid-span is

M=WL/8  
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Replacing the load W by moment M 

Δ=5ML2/(48 EI)=KL2/(EI)
K=5/48

 

Example 2. Cantilever carrying uniformly distributed total load W

The deflection Δ at the tip is given by

Δ=WL3/(8 EI)  

Bending moment M at support is

M=WL/2  

Replacing the load W by moment M

Δ=ML2/(4 EI)=KL2/(EI)
K=1/4

 

Example 3: An intermediate span beam carrying uniformly distributed total load W with 
support moments of MA and MB.

The deflection Δ at mid span is given by

Δ=5WL3/(384 EI)−(MA+MB)L2/(16 EI)  

Bending moment M at mid-span is

M=WL/8−(MA+MB)/2  

Replacing the load W by moment M

Δ=5 {M+(MA+MB)/2} L2/(48 EI)−(MA+MB)L2/(16 EI)
Δ={5 M/48−(MA+MB)/96} L2/(EI)

Δ=KL2/(EI)
K=5/48−(MA+MB)/(96 M)

K=5/48(1−β/10)
β=(MA+MB)/(10M)

 

BS 8110, Part 2 in Table gives values of K for different bending moment distributions.

19.2 EXAMPLE OF DEFLECTION CALCULATION FOR T-BEAM

A simply supported T-beam of 6 m span carries a dead load including self-weight of 
14.8kN/m and an imposed load of 10 kN/m. The T-beam section has the tension reinforce-
ment designed for the ultimate limit state and the bars in the top to support the links. The 
dimensions of the beam in Fig. 19.2 are: web width bw=250 mm, flange width b=1450 
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mm, total depth h=350 mm, flange thickness hf=100 mm, effective depth d=300 mm, 
inset of compression steel d′=45 mm, compression steel 2T16, As′=402 mm2, tension steel 
3T25, As=1472 mm2. The materials are grade C30 concrete and grade 460 reinforcement. 
Calculate the deflection of the beam at mid-span.

(a) Moments

The deflection calculation will be made for characteristic dead and imposed loads to com-
ply with serviceability limit state requirements. The permanent load is taken as the dead 
load plus 25% of the imposed load as recommended in BS 8110: Part 2, clause 3.3.

total load=14.8+10−24.8 kN/m
permanent load=14.8+0.25×10=17.3 kN/m

 

The moments at mid-span are

Total load: MT=24.8×62/8=111.6 kNm

Permanent load: MP=17.3×62/8=77.85 kNm

Fig.19.2 T-beam

(b) Instantaneous curvatures for the cracked section: accurate analysis

The instantaneous curvatures for the total and permanent loads are calculated first. The 
static modulus of elasticity from BS 8110: Part 2, Table 7.2, is Ec=26 kN/mm2 for grade 30 
concrete. For steel Es=200 kN/mm2 from BS 8110: Part 1, Fig. 2.2. The modular ratio αe

αe=200/26=7.69.  

The stress in the concrete in tension at the level of the tension steel is 1.0 N/mm2. The 
neutral axis is assumed to be in the flange as shown in Fig. 19.3. This is checked on 
completion of the analysis.

The stresses in the steel in terms of the concrete stress fc in compression are

fsc−7.69 fc (x−45)/x
fst=7.69 fc (300−x)/x

As′=402 mm2

As=1472 mm2
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Fig. 19.3

Cc=0.5 fc×1450 x

Cs=As′×fsc=402×7.69 fc (x−45)/x

Ts=As×fst=1472×7.69 fc (300−x)/x

Tc Rib=0.5×[(350−x)/(300−x)]×1.0×(350−x)×250

Tc Flange=0.5×[(100−x)/(300−x)]×1.0×(1450−250)×(100−x)

 

For equilibrium in the axial direction:

Cc+Cs−Ts−Tc=0  

For moment equilibrium:

M=Cc×0.67 x+Cs×(x−45)+Ts×(300−x)+Tc Rib×0.67×(350−x) +Tc 

lange×0.670×(100−x)

 

The solution for x and fc can be obtained as follows.
•  Assume a value of x
•  From equilibrium in the axial direction, calculate fc

•  From moment equilibrium, calculate fc.
•   If the two fc values are different change the value of x and go to step 2 and repeat till 

the two values are same.

Table 19.1 shows the summary results of calculation.

The solution is

x=63.9 mm
fc=8.7 N/mm2

 

The neutral axis lies in the flange as assumed.

The compressive strain εc in the concrete is

εc=fc/Ec=8.7/(26×103)=3.346×10−4  

The curvature for the total loads is

1/r=εc/x=3.346×10−4/63.9=5.24×10−6  
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Table 19.1 Determination of x and fc for M=11.6 kNm

x fc from Axial fc from Bending Difference
62.0 20.13 8.44 11.69
62.5 14.88 8.51 6.36
63 11.80 8.58 3.22

63.5 9.79 8.65 1.14
63.8634 8.71 8.70 0.01

64.5 7.30 8.78 −1.48

(c) Instantaneous curvature for permanent loads

For the instantaneous curvature for permanent loads the applied moment is 77.85 kNm. 
Table 19.2 shows the summary of calculations for determining the values of x and fc.

Table 19.2 Determination of x and fc for M−77.85 kNm

x fc from Axial fc from Bending Difference
64 8.36 5.87 2.49

64.2 7.90 5.88 2.02
64.4 7.49 5.90 1.59
64.6 7.12 5.92 1.20
64.8 6.78 5.94 0.85
65.0 6.48 5.96 0.52
65.2 6.20 5.97 0.23

65.365 5.99 5.99 0.00
65.6 5.71 6.01 −0.30
65.8 5.49 6.03 −0.53

The solution is

x=65.4 mm
fc=6.0 N/mm2

 

The neutral axis lies in the flange as assumed.

The compressive εc strain in the concrete is

εc=fc/Ec=6.0/(26×103)=2.3077×10−4  

The curvature for the total loads is

1/r=εc/x=3.346×10−4/65.4=3.53×10−6  
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(d) Long-term curvature under permanent loads

The creep coefficient  is estimated using data given in BS 8110: Part 2, section 7.3. 
effective area Ac=2[(250×350)+(1200×100)]=4.15×105 mm2

exposed perimeter=1450+(1450–250)+(2 x 350)+250=3600
effective section thickness=4.15×105/3600=115 mm

 

The relative humidity for indoor exposure is 45%. If the age of loading is 14 days, say, 
when the soffit form and props are removed, the creep coefficient from Fig. 7.1 of the 
code is

 

The effective modulus of elasticity is
 

The modular ratio:

αe=200/5.78=34.6.  

Assuming that the neutral axis is in the web as shown in Fig. 19.4,

Fig.19.4

Cc1=0.5 fc×1450 x
Cc2=−(1450–250)×(x−100)×0.5×fc×(x−100)/x

Ts=As×fst=1472×34.6×fc (300−x)/x
Tc Rib=0.5×[(350−x)/(300−x)}×0.55×(350−x)×250

 

Note: Cc1 is the compressive force in a rectangle of area b x, x>hf.
Cc2 is the negative compression in a rectangle of area (b−bw) (x−hf)
For equilibrium in the axial direction:

Cc+Cs−Ts−Tc=0  

For moment equilibrium:

M=Cc1×0.67 x+Cc2×0.67 (x−100)+Cs×(x−45)+Ts×(300−x) +Tc 

Rib×0.67×(350−x)
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Table 19.3 shows the summary of calculations.

The solution is

x=113.59 mm 
fc=3.33 N/mm2

 

The neutral axis lies in the web as assumed.

The compressive εc strain in the concrete is

εc=fc/Ec=3.33/(5.78×103)=5.761×10−4  

The curvature for the permanent loads is

1/r=εc/x=5.761×10−4/113.59=5.07×10−6  

The moment Mc due to tensile stress in concrete is

Mc=0.5×fct×(h−x)3/(d−x)×bw(2/3)
Mc=0.5×0.55×(350–113.59)3/(300–113.59)×250×(2/3)

Mc=3.248×106Nmm
I=(M−Mc)x/fc

I=(77.86×106–3.248×106)×113.59/3.333=2.543×109 mm4

 

Table 19.3 Determination of x and fc for M=77.86 kNm

x fc from Axial fc from Bending Difference
113.2 3.77 3.32 0.44

113.25 3.70 3.32 0.38
113.30 3.64 3.32 0.32
113.35 3.58 3.33 0.26
113.40 3.53 3.33 0.20
113.45 3.47 3.33 0.14
113.50 3.42 3.33 0.09
113.55 3.37 3.33 0.04
113.59 3.33 3.33 0.00
113.60 3.32 3.33 −0.01
113.65 3.27 3.33 −0.06

(e) Curvature due to shrinkage

The value of drying shrinkage for plain concrete is evaluated from of BS 8110: Part 2, Fig. 
7.2, for an effective thickness of 115 mm (calculated in (d) above) and a relative humidity 
of 45%. The 30 year shrinkage value is
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εcs=420×10−6  

The effective modulus for an age of loading of 14 days is

Eeff=5.78kN/mm2

αe=34.6

 

The moment of inertia of the cracked section is calculated using the depth to the neutral 
axis determined in (d) above.

I=2.543×109 mm4  

The first moment of area of the reinforcement about the centroid of the cracked sections 
is

Ss=As′ (x−d’)+As (d−x)  

=402×(113.59–45)+1472×(300–113.59)=3.019×105mm3  

The shrinkage curvature is

1/rcs=εcs×αe×Ss/I
1/rcs=420×10−6×34.6×3.019×105/2.543×109

1/rcs=1.7252×10−6

 

(f) Final curvature

The final curvature 1/rb is the instantaneous curvature under the total load (from (b) above) 
minus the instantaneous curvature under the permanent load (from (c) above) plus the 
long-term curvature under the permanent load (from (d) above) plus shrinkage curvature 
(from (e) above):

1/rb=(5.24–3.53+5.07+1.725) x 10−6

1/rb=8.51×10−6

 

(g) Beam deflection

For a simply supported beam carrying a uniform load, K=5/48. (from 19.1.10.1)

Deflection α=K L2 (1/rb)

(5/48)×60002×8.51×10−6=31.9 mm

permissible deflection=6000/250=24 mm or 20 mm

 

The beam does not meet deflection requirements for the creep and shrinkage conditions 
selected. The beam is satisfactory when checked by span/d ratio rules. This example 
shows that controlling deflection through span/d ratio might not always be satisfactory.



 

744 Reinforced Concrete

(h) Instantaneous curvatures for the cracked section: Approximate method

In the simplified approach the main assumption made is to neglect the contribution by the 
tensile strength of concrete in considering equilibrium in the axial direction. Using the 
equations from (b) above

Cc=0.5 fc×1450 x
Cs=As′×fsc=402×7.69 fc (x−45)/x 

Ts=As×fst=1472×7.69 fc (300−x)/x 
Tc Rib=0.5×[(350−x)/(300−x)]×1.0 x (350−x)×250 

Tc Flange=0.5×[(100−x)/(300−x)]×1.0×(1450–250)×(100−x)

 

For equilibrium in the axial direction:

Cc+Cs−Ts=0  

Multiplying through out by x/fc and simplifying

0.5×1450 x2+402×7.69(x−45)−1472×7.69 (300−x)=0  

Simplifying

x2+19.877x−4875.88=0
x=60.6 mm (‘Exact’ value=63.9 mm)

Tc Rib=0.5×[(350−x)/(300−x)]×1.0 x (350−x)×250=43.73 kN 
Tc Flange=0.5×[(100−x)/(300−x)]×1.0 x (1450–250)×(100−x)=3.89 kN

 

For moment equilibrium: 

M=Cc×0.67x+Cs×(x−45)+Ts×(300−x)+Tc Rib×0.67×(350−x) +Tc Flange×0.67 x 
(100−x)

 

Mc=Tc Rib×0.67×(350−x)+Tc Flange×0.67×(100−x)
Mc=(43.73×0.67×289.4+3.89×0.67×39.4)×10−3=8.54 kNm 

M=111.6 kNm
M−Mc=111.6–8.54=103.1 kNm

M−Mc=Cc×0.67x+Cs×(x−45)+Ts×(300−x) 
=(fc/x) [0.33×1450×x3+402×7.69×(x−45)2+1472×7.69×(300−x)2] 

I=[0.33×1450×x3+402×7.69×(x−45)2+1472 x 7.69×(300−x)2]
I=757.07×106 mm4

fc=(M−Mc)x/I=103.1×106×60.6/(757.07×106) 
fc=8.3 N/mm2 (‘Exact’ value=8.7 N/mm2)

 

The compressive strain εc in the concrete is

εc=fc/Ec=8.3/(26×103)=3.192×10−4  
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The curvature for the total loads is

1/r=εc/x=3.192×10−4/60.6=5.27×10−6 (Exact value=5.24×10−6)  

Clearly the ‘approximate’ values are very close to the exact values. The simplified 
approach is recommended.

(i) Curvature for the uncracked section

In the uncracked section calculation, fct is replaced by fc(d—x)/x. The rest of the calcula-
tions remain as before. The neutral axis can be assumed to be in the web. From (d) above 
but using αe=7.69

Cc1=0.5 fc×1450 x
Cc2=−(1450–250)×(x−100)×0.5×fc×(x−100)/x

Cs=As′×fsc=402×7.69 fc (x−45)/x
Ts=As×fst=1472×7.69 fc (300−x)/x

Tc Rib=0.5×[(350−x)/(300−x)]×{fc×(300−x)/x}×(350−x)×250

 

Simplifying

Tc Rib=0.5×(350−x)2 (fc/x}×250  

For equilibrium in the axial direction:

Cc1+Cc2+Cs−Ts−Tc=0  

Multiplying through out by x/fc and simplifying

0.5×1450 x2−(1450–250)×(x−100)2×0.5+402×7.69 (x−45) −1472×7.69 
(300−x)−0.5×(350−x)2×250=0

 

Simplifying

(2.219x−248.48)×105=0
x=112 mm

 

For moment equilibrium: 

M=Cc1×0.67x+Cc2×0.67 (x−100)+Cs×(x−45)+Ts×(300−x) +Tc 

Rib×0.67×(350−x)
M=[0.33×1450×x3–0.33×1200×(x−100)3+402×7.69 (x−45)2 +1472×7.69×(3

00−x)2+0.33×250×(350−x)2](fc/x)
I=[0.33×1450×x3–0.33×1200×(x−100)3+402×7.69 (x−45)2 +1472×7.69×(30

0−x)2+0.33×250×(350−x)2]
I=2.22×109 mm4
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x=113.59 mm 
fc=(M/I)x=[111.6×106/(2.22×109)]113.6=5.71 N/mm2

 

The neutral axis lies in the web as assumed.

The compressive εc strain in the concrete is

εc=fc/Ec=5.63/(26.0×103)=2.165×10−4  

The curvature for the permanent loads is

1/r=εc/x=2.165×10−4/113.6=1.906×10−6  

As is to be expected, this is much less than 5.24×10−6 calculated in (b) above for cracked 
section. Deflection calculation based on cracked section.

19.3 CALCULATION OF CRACK WIDTHS

Calculation of crack widths in connection with the design of structures retaining aqueous 
liquids was discussed in Chapter 17. In this section determination of crack widths in con-
nection with beams will be discussed.

19.3.1 Cracking in Reinforced Concrete Beams

A reinforced concrete beam is subject to flexural cracks on the tension face when the 
tensile strength of the concrete is exceeded. Primary cracks form first and with increase in 
moment secondary cracks form. Cracking has been extensively studied both experimen-
tally and theoretically. The crack width at a point on the surface of a reinforced concrete 
beam has been found to be affected by two factors:

1. the surface strain found by analyzing the sections and assuming that plane sections 
remain plane and

2. the distance of the point from a point of zero crack width at the neutral axis and the 
surface of longitudinal reinforcing bars. The larger this distance is, the larger the crack 
width will be.

Referring to Fig. 19.5 the critical locations for cracking on the beam surface are

1. at C equidistant between the neutral axis and the bar surface
2. at B equidistant between the bars
3. at A on the corner of the beam

19.3.2 Crack Width Equation

The calculation of crack widths is covered in BS 8110: Part 2, section 3.8. The code notes 
that the width of a flexural crack depends on the factors listed above. It also states that 



 

Deflection and cracking  747

cracking is a semi-random phenomenon and that it is not possible to predict an absolute 
maximum crack width.

The following expression is given in BS 8110: Part 2, clause 3.8.3, to determine the 
design surface crack width. 

 

The code states that this formula can be used provided that the strain in the tension rein-
forcement does not exceed 0.8fy/Es. The terms in the expression are defined as follows:

acr distance of the point considered to the surface of the nearest longitudinal bar
εm=average strain at the level where the cracking is being considered (this is  

discussed below)
cmin=minimum cover to the tension steel

h=overall depth of the member
x=depth of the neutral axis

 

The average strain εm can be calculated using the method set out for determining the 
curvature in BS8110: Part 2, section 3.6, and section 19.1. The code gives an alternative 
approximation in which

1. the strain ε1, at the level considered is calculated ignoring the stiffening effect of the 
concrete in the tension zone (the transformed area method is used in this calculation)

2. the strain ε1, is reduced by an amount equal to the tensile force due to the stiffening 
effect of the concrete in the tension zone acting over the tension zone divided by the steel 
area

3. εm for a rectangular tension zone is given by
 

where

bt=the width of the section at the centroid of the tension steel
a′= the distance from the compression face to the point at which the crack width is 

required
The code adds the following comments and requirements regarding use of the crack 

width formula:
1. A negative value of εm indicates that the section is not cracked;
2. The modulus of elasticity of the concrete is to be taken as one-half the instantaneous 
value to calculate strains;
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3. If the drying shrinkage is very high, i.e. greater than 0.0006, εm should be increased by 
adding 50% of the shrinkage strain. In normal cases shrinkage may be neglected.

19.4 EXAMPLE OF CRACK WIDTH CALCULATION FOR T-BEAM

The beam chosen is the same as the one used in section 19.2. The total moment at the sec-
tion due to service loads is 111.6kNm. The materials are grade 30 concrete and grade 460 
reinforcement. Determine the crack widths at the corner A, at the centre of the tension face 
B and at C on the side face midway between the neutral axis and the surface of the tension 
reinforcement as shown in Fig. 19.5.

The approximate method set out in section 19.2 (h) is used in the calculation. The 
properties of the cracked section are computed first. The values for the moduli of elastic-
ity are as follows:

Reinforcement=Es=200kN/mm2

Concrete=Ec=0.5×26=13 kN/mm2

Modular ratio=αe=200/13=15.4 
Cc=0.5 fc×1450 x

Cs=As′×fsc=402×15.4 fc (x−45)/x
Ts=As×fst=1472×15.4 fc (300−x)/x 

Tc Rib=0.5×[(350−x)/(300−x)]×1.0×(350−x)×250 
Tc Flange=0.5×[(100−x)/(300−x)]×1.0×(1450–250)×(100−x)

 

For equilibrium in the axial direction:

Cc+Cs−Ts=0 

Multiplying through out by x/fc and simplifying

0.5×1450 x2+402×15.4 (x−45)−1472×15.4 (300−x)=0 

Simplifying

x2+39.806x−9764.45=0
x=80.9 mm

 

For moment equilibrium ignoring contribution from the tensile stress in concrete:

M=Cc×0.67x+Cs×(x−45)+Ts×(300−x)
M=111.6 kNm 

M=Cc×0.67x+Cs×(x−45)+Ts×(300−x) 
=(fc/x) [0.33×1450×x3+402×15.4×(x−45)2+1472×15.4×(300−x)2] 

fc=6.7 N/mm2
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The compressive strain εc in the concrete is

εc=fc/Ec=6.7/(13×103)=5.137×10−4  

Strain εs at steel level

εs=(εc/x)(d−x)
εs=5.137×10−4×(300–80.9)/80.9=1.391×10−3

 

Strain ε1 at the bottom face is

ε1=εs (h−x)/(d−x)  

The strain reduction due to the stiffening effect of the concrete in the tension zone, where 
a′=h=350mm, is 

 

The average strain at the bottom face is therefore

εm=(1.708–0.094)10−3=1.614×10−3

Cover cmin=37.5mm

 

Crack width at A:

Vertical or horizontal distance from the surface of beam to centre of bar is

=Cover+bar diameter/2

=37.5+25/2=50 mm

Distance from the surface of the bar to point A is

acr=√(502+502)−25/2=58.2 mm
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Fig.19.5

(b) Crack width at B

The bars are spaced at

(250–50–50)/2=75 mm centres.
acr=√{(75/2)2+502}−25/2=50mm

εm=1.614×10−3

 

(c) Crack width at C

C is midway between the neutral axis and the surface of the reinforcement. Vertical dis-
tance between the neutral axis and the upper surface of the bar is =350–80.9 (neutral axis 
depth)−37.5 (cover)−25 (bar diameter)=206.6 mm Vertical distance a’ to the point from 
compression face

a’=80.9+206.6/2=184.2 mm  

Strain ε1 at C

ε1=(εc/x)(a’−x)
ε1=5.137×10−4×(184.2–80.9)/80.9

ε1=0.656×10−3

 

The strain reduction due to the stiffening effect of the concrete in the tension zone, where 
a′=h=350mm, is
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The average strain at C is therefore

εm=(0.656–0.036)10−3=0.62×10−3

Cover cmin=37.5mm

 

Horizontal distance from the vertical surface of beam to centre of bar is

=Cover+bar diameter/2
=37.5+25/2=50 mm

 

Vertical distance from C to centre of bar is

206.6/2+25/2=115.8 mm  

Distance from the surface of the bar to point C is

acr=√(1 15.82+502)−25/2=113.6 mm

 

 

All crack widths are less than 0.3 mm and are thus satisfactory.
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Failures in structures
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example 343
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examples 349, 353
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comments 250
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Horizontal shear 574
reinforcement 575
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L
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design 78
formula 79
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example 473
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factors 32
design 31
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at transfer 531, 576, 579
example 577
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M
Magnel diagram 548, 554

example 549
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beams 43
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beams 122

examples 123
slabs 126
example 126
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Minimum reinforcement

beams 43
columns 269
links 78, 270
slabs 144
walls 318
water tanks 586

Mix design 11
Modification factors

compression reinforcement 120
tension reinforcement 119

Modular ratio 588, 659
Modulus of elasticity:

concrete
dynamic 13
secant 13
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effective long term 14
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steel 18, 47

Moment curvature relationship steel 424
reinforced concrete 424

Moment redistribution 429, 442
Moment of resistance, beams

doubly reinforced 58
flanged 63
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Movement joints 23, 600
N
Neutral axis

columns 273, 292
elastic theory 587, 593, 652, 655
flanged beams 61
simplified stress block 48
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others 17

Non-sway frame 452
elastic analysis 453
redistribution 455
moment envelops 456
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One way solid slab

concentrated load 142
cover 149
crack control 149
curtailment 146
deflection 149
distribution steel 144
effective width 143
example 149
moment and shear coefficients 144
shear 146
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deflection 155
design procedure 154
example 155
proportions 153
shear 154
topping reinforcement 154

Over loading 24

P
Partial prestressing 539
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Partial safety factors
loads 32
materials 33

Passive earth pressure 347, 384
Permissible stresses, concrete

transfer 539
service 540

Permissible stresses, steel prestressing 540
Pile cap design 376

example 377
punching shear 376
shear 376
strut-tie 376

Piles 368
Pile groups loads

axial 370
example 373
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inclined piles 373
moment 370

Plain concrete walls
braced 333
cracking 337
deflection 337
design load 336
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transverse 334
in-plane 334

effective height 333
example 338
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unbraced 333
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also see Yield line analysis

Poor construction methods 19
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incorrect construction of joints 19

incorrect placement of steel 19
poor compaction 20
poor curing 20
segregation 20

Portal method 39, 465, 491
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beam forces 466

Post tensioning 533
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example 557
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comments 257
rules for bottom steel 254

examples 254
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examples 256
Pressure coefficients 472
Prestressed concrete 529

design 538
pre-tensioning 530

debonding 532
deflected tendon 533
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Pre-tensioning 530

transfer loss 576
example 577
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Punching shear 90, 181, 343, 352, 376

failure zone 91
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examples 93

R
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Rectangular parabolic stress block 57
Rectangular stress block 49
Redistribution, see Moment redistribution 39, 
442
Reinforced concrete frames 469

example 493
loads 470

Reinforced concrete walls
axial load 319
deflection 333
design methods 321
examples 325, 328
effective heights 319
horizontal reinforcement 318
in-plane moments 319
interaction chart 322
minimum reinforcement 318
transverse moments 319

Reinforcement 17
bar spacing 41
bar types 42
characteristic strength 33
curtailment 53, 130, 146, 147
data 42

area of group 42
equivalent area of group 42
area per metre 54

design strength 33
high yield bars 18
maximum areas 43, 270
maximum spacing 122, 126
mild steel bars 18
minimum areas 43, 144, 269, 318, 586
minimum spacings 44
modulus of elasticity 18
partial safety factor 33
shear 80
slabs 144
stress-strain curve 18, 34, 560

torsional 107
walls 318

Relaxation of steel 537
Restrained solid slabs

deflection 166
design rules 163
example 166
moment coefficients 163, 226
shear coefficients 165, 226
torsion reinforcement 164
yield line solution 227

Restraint against movement 23
Retaining walls

types 381
gravity 382
cantilever 382, 385
counterfort 382, 397

base pressure 384
stability 384, 397
sliding 384

Ribbed slab, one-way spanning 152
design 152
example 155
proportions 153
reinforcement in topping 154

Ribbed slab two-way spanning see Waffle slabs

S
St. Venants constant 104
Safety factors, partial 32
Sand heap analogy 106
Secant modulus 13
Serviceability limit state 29, 31, 117, 651

cracking 31
deflection 31, 117
bending analysis 587

example 588, 658
deemed to satisfy 117, 597
design tables 598
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redistribution effect 431
Service stress 119
Settlement 24

settlement joint 23
Shear

bent up bars 86
example 88

capacity 76
concentraled loads on slabs 90
design stress 77
elastic stress 75
enhanced capacity 77
examples 82
failure 76
maximum stress 78
modulus 104
punching 90
shear reinforcement 78, 86

close to support 82
links 78
examples 81, 82

simplified approach 82
slabs 146
concentrated load on slabs 90, 142
stress distribution, elastic 75

Shear reinforcement
links 78
bent up bars 86

Shear reinforcement, prestressed 573, 575
example 574

Shear mode 516
Shear walls 269, 514, 515
Short braced column 267, 271

code equation 271
examples 271

Shrinkage 15
Simplified analysis 37, 462, 481
Simply supported beams 127

curtailment 128

simplified rules 130
doubly reinforced section 136
examples 131, 136
preliminary sizing 127
steps in design 127

Singly reinforced beam
assumptions 45
examples, ULS 52
design chart 55
design procedure 51
elastic theory 587

example 588
moment of resistance

rectangular stress block 49
rectangular-parabolic stress block 57

preliminary sizing 127
Slab-beam systems 218
Slabs

flat 175, 222
one-way solid 141
predetermined field of moments 252
ribbed one way 152
stair 25 8
two-way solid 158
yield line method 188
waffle 171

Slender columns
additional moments 309
design moments 311
example 312
initial moments 311
reduction factor 310

Slender walls 332
Sliding joint 23
Slump test 15
Span-to-effective depth ratio 118

basic 118
modification tension steel 118
modification compression steel 118
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Spacings of bars
maximum 123, 126
minimum 44

Spread sheet 3
Stair slabs 258

building regulations 258
code design requirements 259
example 260
imposed loading 259
longitudinal spanning 258
transverse spanning 258

Statically indeterminate structures 423, 535
Steel

partial safety factor 33
prestressing 537

relaxation 537
stress strain curve 34, 560

Stocky walls
axial load only 319
transverse moment and axial load 320
example 332
in-plane moment and axial load 321

interaction chart 322, 324
example 325, 328

Strain compatibility method 71, 565
example 71, 566

Strengths, material
characteristic 33
design 33
partial safety factor 33

Stress calculation
transfer 541
service 542
example 542

Stress-strain curve
concrete 34, 47
reinforcing steel 18, 34, 47
prestressing steel 560

Strip footing 358

Structural analysis 35
general provisions 35

Structural alterations 24
Sub frames 38

asymmetrical loaded column 37
continuous beam simplification 37
sub-sub frames 38

T
T-beam 7, 66, 112, 120, 636, 658, 666
Tall buildings 513

braced frames 514
coupled shear wall 515
framed tube 517, 523
outrigger 517
rigid jointed frames 514
shear wall 514
tube-in tube 517, 523
wall-frames 515

Tangent modulus 13
Target mean strength 11
Tension in concrete 654
Test cores 16
Tests on concrete

hardened 16
cube 16
tensile splitting 16
flexure 16
non-destructive 16
wet 15
cores 16

Theory of Plasticity
equilibrium 423
yield 424
mechanism 424

Three dimensional structures 519
symmetric frames only 519
symmetric walls and frames 519
non-symmetric structures 522
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Ties in buildings 477
corner column 479
external column 511
internal tie 479, 510
horizontal tie 479
peripheral tie 479, 511
vertical tie 479, 511
design 478, 510

Tied base 355
Torsion 103

elastic torsion constant 104
examples 110, 112
reinforcement 107

links 107
longitudinal 108

rigidity 104
sand heap analogy 105
stress 104

minimum 107
maximum 118

Transmission length 533
Two-way solid slabs 158

examples 161, 166
Hillerborg’s strip method 245
restrained slabs 163

derivation of moment and shear 
coefficients 226

example 166
moment coefficients 163
shear coefficients 165
torsion steel 170
shear stresses 162, 169
simply supported -corner free to lift 158

example 161
moment coefficients 158

waffle slab 171
yield line method 188

Tube in tube structure 517, 523

U
Ultimate limit state 30

robustness 30
stability 30
strength 30

Ultimate moment capacity
prestressed 559

BS code 565
example 559

Ultimate shear capacity
cracked in flexure 566

example 567
uncracked in flexure 569

example 571
Ultrasonic pulse velocity 17
Unbonded construction 535
Unbraced

columns 312
walls 318

Uncracked section 655
Uniaxial bending of columns 272

section analysis 273
rectangular-parabolic stressblock 274
rectangular stress block 277
stresses in steel 279
example 280
design chart 285, 286, 288, 289

example 286
Unsymmetrically reinforced column 288

design chart 289
example 290

W
Waffle slab 171

design procedure 171
example 171
steel in topping 174

Walls
design chart 324
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effective height 319, 333
example 325, 338
horizontal reinforcement 318
links 318
minimum area of reinforcement 318
stocky walls 319
transverse moments 319
types 321

Wall with end columns 328
example 328

Water-cement ratio 11
Water tanks, circular beam on elastic founda-
tion 622

moment coefficients 623
direct tension coefficients 623
example 623

Water tanks, rectangular crack width 585
cover 586
design 603
design tables 610
detailing, corners 615
load factors 585
mix proportions 586
minimum reinforcement 586
moment coefficients 609

Wetting and drying 23
Wind loads

basic wind speed 471
code 31
design wind speed 471
dynamic pressure 472
frame analysis 38
pressure coefficients 472

Workability 15
compacting factor 16

slump 16

Y
Yield line method 188

circular fans 220
stepped yield criterion 191

theory 188
two-way slab 198

energy dissipation 193
simply supported 198

example 200
clamped one edge free 203

mode 1 203
mode 2 205
method 1 194
method 2 194

corner levers 219
corner panel design 223

method 3 195
external work 196
moment and shear coefficients 226
one-way slab 196

example 208
continuous 201

example 202
slab-beam systems 218
slab with hole 211
mode 1, 212
mode 2, 213
mode 3, 215
example 208
trapezoidal 208
yield lines, properties 191

Yield strength of reinforcement 17


