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Preface

Evolution and Development

Throughout the past, human beings have been concerned with how to acquire tools
that might increase their potentialities, not only regarding the physical or intellectual
aspect but also the metaphysical one.

At the physical aspect, the use of wheels, levers, or cams, among others, finally reached
the point of elaborating hominids and automats that in their most sophisticated cre-
ations consisted of animated statues that generally reproduced daily movements. Heron
of Alexandria constructed some artificial actors which represented the Trojan War,
where the idea of automats reached a high level of development as it was established
that: (a) the mechanisms would act depending on the internal structure; (b) the action
comes from an accurate organisation of motor forces, both natural and artificial; (c) the
mobile ones are the most improved, since they are able to move completely. Ultimately,
they are only the expression of the unavoidable human wish to increase their possibili-
ties in all the aspects of their lives. In this line, some of the most remarkable creations
include “The Dove” by Archytas de Tarente, Archimedes’ “Syracuse Defensive Mecha-
nisms” (developed to face the Roman fleet), “The Mechanical Lion” by Leonardo Da
Vinci, the clock creations of the Droz brothers at the Cathedrals of Prague and Munich,
and “The Transverse Flute Player” by Vaucanson. “The Madzel Chess Automaton” by
Hungary’s Von Kempelen was able to play chess with the best players of its time and
impressed Empress Maria Theresa of Austria. Edgar Allan Poe built a logical test trying
to prove that this automaton was not authentic, but failed as he considered that the
machine was not able to change its strategy as the game went on (Elgozy, 1985; Poe,
1894).

At the metaphysical aspect, the creations along time also have been numerous. The
main concern in this case was “ex nihilo,” the idea of a motionless-based creation of
beings similar to humans that might act as substitutes to humans during the perfor-
mance of the most tedious, dangerous, or unpleasant tasks. The Hephaistos (God of
the Forge) androids were the first known reference to creation of artificial intelligence.
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As Tetis told her son Achilles during their visit to the workshop of the god, “They were
made of solid gold and they had understanding in their mind.” In the modern age, “The
Golem” by Loew, XVI century Prague Rabbi (Meyrink, 1972; Wiener, 1964), “The Uni-
versal Robots” by Rossum (Capek, 1923), and “Frankenstein” (Shelley, 1818) should be
highlighted as well.

But what is really interesting is the third of the mentioned aspects: the attempt to
reproduce and promote the intellect. Multiple mechanical devices, specifically the aba-
cus, were designed in order to improve the capability of calculation. In the Middle
Ages, the Majorcan Ramén Llul developed the Ars Magna, a logical method that ex-
haustively and systematically tested all the possible combinations. Later, in the Mod-
ern Age, some of the most noticeable devices are “The Pascal Machines” and the works
of several authors such as Leibnitz, Freege, or Boole. Ada Lovelance, Charles Babbage’s
co-worker at the analytic machine, established “The Lovelance Regime,” where she
states that “machines only can do those things we know how to tell them to do, so their
mission is helping to supply or to obtain what is already known.”. Other important
contributions of the second half of 20" century in this field include “The Logical Theo-
retical” by Bewel, “The General Problem Solver” by Shaw, Newell, and Simon, the pro-
gram for draughts play by Samuel, and the developments of the first computers by Zuse
and Sreyers (Samuel, 1963; Erns, 1969).

The appearance of computers and computer software is the key point in the real devel-
opment of certain characteristics of intelligent beings such as the capabilities of memory
or calculus, although most of these characteristics still are merely outlined when repli-
cated in artificial systems. In this way, and despite the high rhythm of advances during
the last decades, we are still too far from artificially reproducing something that is so
inherent to human beings, such as creativity, criticism capability (including self-criti-
cism), conscience, adaptation capability, learning capability, or common sense, among
others.

Artificial intelligence (Al) is an area of multidisciplinary science that comes mainly from
cybernetics and deals with the deeper study of the possibility — from a multidisciplinary,
but overall engineering, viewpoint — of creating artificial beings. Its initial point was
Babbage’s wish for his machine to be able to “think, learn, and create” so that the
capability for performing these actions might increase in a coextensive way with the
problems that human beings deal with (Newel & Simon, 1972). Al — whose name is
attributed to John McCarthy from the Dormouth College group of the summer of 1956
— is divided into two branches known as symbolic and connectionist, depending on
whether they respectively try to simulate or to emulate the human brain in intelligent
artificial beings. Such beings are understood as those who present a behaviour that,
when performed by a biological being, might be considered as intelligent (McCorduck,
1979; McCarthy, 1958).

The main precursor of connectionist systems from their biological fundaments was
from Spanish Nobel Award-winning Dr. Santiago Ramoén y Cajal who, together with
Sherringon, Williams y Pavlov, tried to approach the information processes of the brain
by means of an experimental exploration and also described the first connectionist
system with the statement: “When two brain procedures are active at the same time or
consecutively, one tends to propagate its excitation to the other” (Ramon y Cajal, 1967;
Ramony Cajal, 1989).
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In the dawn of cybernetics, and within that field, three papers published in 1943 consti-
tuted the initiation of the connectionist systems (Wiener, 1985). The first of these
works was written by McCulloch and Pitts. Apart from revealing how machines could
use such concepts as logic or abstraction, they proposed a model for an artificial
neuron, named after them. This model, together with the learning systems, represented
the foundations of connectionist systems. Most of the mentioned systems derive from
the Hebb Rule, which postulates that a connection between neurons is reinforced
every time that this connection is used (McCulloch & Pitts, 1943).

The second work was by Rosemblueth, Wiener, and Bigelow, who suggested several
ways of providing the machines with goals and intentions (Rosemblueth, Wiener, &
Bigelow, 1943). In the last work, Craik proposed the use of models and analogies by the
machines for the resolution of problems, which established that the machines have
certain capabilities of abstraction (Craik, 1943).

These three contributions were added to some others: “The Computer and the Brain”
by Von Neumann;, “The Turing Machine” by Turing — a theory that preceded actual
computers; and “The Perceptron” by Rosemblatt — the first machine with adaptable
behaviour able to recognise patterns and provide a learning system where stimulus and
answers are associated by means of the action of inputs (Turing, 1943; Von Nuemann,
1958).

During the second half of the 20" century, numerous authors made important contribu-
tions to the development of these types of intelligent systems. Some of the most re-
markable are Anderson, who made the first approaches to the Associative Lineal Memory,
Fukushima, Minsky, Grossberg, Uttley, Amari, McClelland, Rumelhart, Edelman, and
Hopfield. They contribute with different cell models, architectures, and learning algo-
rithms, each representing the basis for the most biological Al systems, which eventu-
ally resulted in the most potent and efficient ones (Raphael, 1975; Minsky, 1986; Minsky
& Papert, 1968; Rumelhart & McClelland, 1986).

These systems are quite interesting due, not only to their ability for both learning
automatically and working with inaccurate information or with failures in their compo-
nents, but also because of their similarities with the neurophysiologic brain models, so
that the advances in both disciplines might be exchanged for their reinforcement, indi-
cating a clear symbiosis between them.

Present and Future Challenges

All these studies and investigations have achieved spectacular results, although they
are still far from the daily performance of biological systems. Besides, during the last
decades, the expectation for these type of systems has broadened due to the
miniaturisation of computers coupled with the increment of their capacities for calculus
and information storage. In this way, more complex systems are being progressively
implemented in order to perform already demanded functions as well as those that will
be coming soon and are unforeseen.

The efforts made so far represent two sides: On the one hand, they are the basis for all
the advances achieved up to this moment in order to reinforce or reproduce the charac-



teristics that define the intelligent beings; on the other hand, they also reflect the poor
— although spectacular — advances achieved with regards to the creation of truly
intelligent artificial beings. While the connectionist systems are the most advanced
ones in the field of emulation of biological intelligent systems, certain restrictions are
present. These limitations are mainly referred to the need to reduce the time for training
and to optimise the architecture — or network topology — as well as to the lack of
explanation for their behaviour and to the approach to more complex problems. For the
two first restrictions, there is a new technique based on genetics, known as genetic
algorithms (GA) (Holland, 1975), proposed by Holland and developed until genetic
programming in the last decade by Koza (1992) among others. These techniques have
proved to be useful for the extraction of new knowledge from the system, using the data
mining process.

The two other restrictions might be palliated by incoming solutions such as those
suggested with the incorporation of artificial glia cells to the Artificial Neural Networks
(ANN). This adventurous proposal is currently being elaborated by our research group
of La Corufia University, co-working at the neuroscience aspects with Professors Araque
and Bufo, of the Santiago Ramoén y Cajal Scientific Research Institute.

It seems necessary to look again toward nature, such as it was done when the wider
steps were taken along this track, looking for new guides and new information for the
search of solutions. And the nature, as it has been mentioned, contributes again with
solutions.

Technology also tries to provide solutions. In this line, it is intended to integrate
different disciplines under a common label: MNBIC (Micro and Nanotechnologies,
Biotechnology, Information Technologies, and Cognitive Technologies) Convergent
Technologies. The MNBIC promise to be a revolution at the scientific, technologic, and
socioeconomic fields because they contribute to help make possible the construction
of hybrid systems: biological and artificial.

Some of their possibilities consist on the use of micro or nano elements that might be
introduced into biological systems in order to substitute dysfunctional parts of it,
whereas biological particles might be inserted into artificial systems for performing
certain functions. According to a recent report of the U.S. National Science Founda-
tion, “The convergence of micro and nanoscience, biotechnology, information technol-
ogy, and cognitive science (MNBIC) offers immense opportunities for the improvement
of human abilities, social outcomes, the nation’s productivity, and its quality of life. It
also represents a major new frontier in research and development. MNBIC convergence
is a broad, cross-cutting, emerging, and timely opportunity of interest to individuals,
society, and humanity in the long term.”

There is a scientific agreement with regards to the fact that the most complex part for
being integrated with the rest of the convergent technologies is the one that represents
the cognitive science. The part that has to do with technologies of knowledge has a
best level of integration through models of knowledge engineering. It is remarkable that
the interaction of the connectionist branch with other disciplines such as the GAs and
the introduction of other elements, representing the cells of the glial system, are differ-
ent from neurons.



Book Organization

This book is organized into six sections with 16 chapters. A brief revision of each
chapter is presented as follows:

Section | presents recent advances in the study of biological neurons and also shows
how these advances can be used for developing new computational models of ANNSs.

. Chapter | shows a study that incorporates, into the connectionist systems, new
elements that emulate cells of the glial system. The proposed connectionist sys-
tems are known as artificial neuroglial networks (ANGN).

. Chapter Il expands artificial neural networks to artificial neuroglial networks in
which glial cells are considered.

New techniques such as connectionist techniques are preferred in cases like the time
series analysis, which has been an area of active investigation in statistics for a long
time, but has not achieved the expected results in numerous occasions. Section Il
shows the application of ANNSs to predict temporal series.

. Chapter 111 shows a hybrid evolutionary computation with artificial neural net-
work combination for time series prediction. This strategy was evaluated with 10
time series and compared with other methods.

. Chapter 1V presents the use of artificial neural networks and evolutionary tech-
niques for time series forecasting with a multilevel system to adjust the ANN
architecture.

In the world of databases the knowledge discovery (a technique known as data mining)
has been a very useful tool for many different purposes and tried with many different
techniques. Section I11 describes different ANNSs-based strategies for knowledge search
and its extraction from stored data.

. Chapter V describes genetic algorithm-based evolutionary techniques for auto-
matically constructing intelligent neural systems. This system is applied in labo-
ratory tests and to a real-world problem: breast cancer diagnosis.

. Chapter VI shows a technique that makes the extraction of the knowledge held by
previously trained artificial neural networks possible. Special emphasis is placed
on recurrent neural networks.

. Chapter VII shows several approaches in order to determine what should be the
most relevant subset of variables for the performance of a classification task. The
solution proposed is applied and tested on a practical case in the field of analyti-
cal chemistry, for the classification of apple beverages.
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The advances in the field of artificial intelligence keep having strong influence over the
area of civil engineering. New methods and algorithms are emerging that enable civil
engineers to use computing in different ways. Section IV shows two applications of
ANNSs to this field. The first one is referred to the hydrology area and the second one
to the building area.

. Chapter V111 describes the application of artificial neural networks and evolution-
ary computation for modeling the effect of rain on the run-off flow in a typical
urban basin.

. Chapter IX makes predictions of the consistency of concrete by means of the use
of artificial neuronal networks

The applications at the economical field, mainly for prediction tasks, are obviously
quite important, since financial analysis is one of the areas of research where new
techniques, as connectionist systems, are continuously applied. Section V shows both
applications of ANNs to predict tasks in this field; one of them is for bond-rating
prediction, and the other for credit-rating prediction:

. Chapter X shows an application of soft computing techniques on a high dimen-
sional problem: bond-rating prediction. Dimensionality reduction, variable reduc-
tion, hybrid networks, normal fuzzy, and ANN are applied in order to solve this
problem.

. Chapter XI provides an example of how task elements for the construction of an
ANN can be automated by means of an evolutionary algorithm, in a credit rating
prediction.

Finally, section VI shows several applications of ANNs to really new areas, demonstrat-
ing the interest of different science investigators in facing real-world problems.

As a small sample of the areas where ANNSs are used, this section presents applications
for music creation (Chapter XI1), exploitation of fishery resources (Chapter XII11), cost
minimisation in production schedule setting (Chapter X1V), techniques of intruder de-
tection (Chapter XV), and an astronomy application for stellar images (Chapter XVI).

. Chapter XI1 explains the complex relationship between music and artificial neural
networks, highlighting topics such as music composition or representation of
musical language.

. Chapter X111 approaches the foundations of a new support system for fisheries,
based on connectionist techniques, digital image treatment, and fuzzy logic.

. Chapter XIV proposes an artificial neural network model for obtaining a control
strategy. This strategy is expected to be comparable to the application of cost
estimation and calculation methods.
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. Chapter XV shows a novel hybrid method for the integration of rough set theory,
genetic algorithms, and an artificial neural network. The goal is to develop an
intrusion detection system.

. Finally, Chapter XVI describes a hybrid approach to the unattended classifica-
tion of low-resolution optical spectra of stars by means of integrating several
artificial intelligence techniques.

Relevance and Conclusions

As can be observed, this book tries to offer an outlook of the most recent works in the
field of the connectionist Al. They include not only theoretical developments of new
models for constitutive elements of connectionist systems, but also applications of
these systems using intelligent characteristics for adaptability, automatic learning, clas-
sification, prediction, and even artistic creation.

All this being said, we consider this book a rich and adventurous, but well-based,
proposal that will contribute to solving old problems of knowledge-based systems and
opening new interrogations which, without doubt, will make the investigations ad-
vance through this field.

This is not a book of final words or definitive solutions, rather it contributes new and
imaginative viewpoints, as well as small — or big — advances in the search of solu-
tions for achieving truly intelligent artificial systems.

Prof. Alejandro Pazos

Department of Information and Communications Technologies
University of A Corufia, Spain

2005
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Chapterl

Neuroglial Behaviour
in Computer Science

Ana B. Porto, University of A Corufia, Spain

Alejandro Pazos, University of A Corufia, Spain

Abstract

This chapter presents a study that incorporates into the connectionist systems new
elements that emulate cells of the glial system. More concretely, we have considered
a determined category of glial cells known as astrocytes, which are believed to be
directly implicated in the brain’s information processing. Computational models have
helped to provide a better understanding of the causes and factors that are involved
in the specific functioning of particular brain circuits. The present work will use these
new insights to progress in the field of computing sciences and artificial intelligence.
The proposed connectionist systems are called artificial neuroglial networks (ANGN).

Introduction

The analysis of the computational models developed up to the present day show that the
artificial neural networks (ANN) have certain limits as information processing paradigms.
We believe that these limitations may be due to the fact that the existing models neither

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.
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reflect certain behaviours of the neurons nor consider the participation of elements that
are not artificial neurons. Since the ANN pretend to emulate the brain, researchers have
tried to represent in them the importance the neurons have in the nervous system (NS).
However, during the last decades, research has advanced remarkably in the field of
neuroscience, and increasingly complex neural circuits, as well as the glial system (GS),
are being observed closely. The importance of the functions of the GS leads researchers
to think that their participation in the processing of information in the NS is much more
relevant than previously assumed. In that case, it may be useful to integrate into the
artificial models other elements that are not neurons. These assisting elements, which
until now have not been considered in the artificial models, would be in charge of specific
tasks, such as the acceleration of the impulse transmission, the establishment of the best
transmission routes, the choice of the elements that constitute a specific circuit, the
“heuristic” processing of the information (warning the other circuits not to intervene in
the processing of certain information), and so forth.

Neuroscience and Connectionist Systems

In order to create ANN that emulate the brain and its tremendous potentiality, we must
know and thoroughly understand its structure and functioning; unfortunately, and in
spite of numerous discoveries in the course of the last decades, the NS remains a mystery,
as Cajal (1904) already predicted a century ago.

Many studies on specialised knowledge fields led to the NS. In biology, for instance, we
can study the different forms of animal life and its astounding diversity without realizing
that all these shapes depend on a corresponding diversity in NS. The study of the
behavioural models of animals in their natural habitat, whose most renowned researcher
Lorenz (1986) created hundreds of behavioural models that can be implanted into
computers, is known as ethology, and the interrelation of these models and the nervous
mechanism is called neuroethology. As such, the study of biological behaviour from a
computational point of view could be called “computational neuroethology” or
“computoneuroethology”. In general psychology, relevant studies from the perspective
of computational neuroethology will raise many questions on the mechanisms in the
brain which determine human behaviour and abilities. Recently, neuroscientists have
disposed of a wide array of new techniques and methodologies that proceeded from the
fields of cellular and molecular biology and genetics. These research fields have
contributed significantly to the understanding of the NS and the cellular, molecular, and
genetic mechanisms that control the nervous cells; they also constitute the first step
toward the processing and storage of the NS’s information.

Itiscommonly known that many fields of the learning process imply the NS. Neuroscience
can therefore be seen as the intersection of a wide range of overlapping interest spheres.
Itisarelatively new field that reflects the fact that, until recently, many of the disciplines
that compose it had not advanced sufficiently to be intersected in a significant manner:
behavioural sciences (psychology, ethology, etc.), physical and chemical sciences,
biomedical sciences, artificial intelligence, and computational sciences.
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Figure 1. Science fields that contribute to neuroscience
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Inneuroscience, the study of the NS of vertebrates is increasingly compelled to take into
accountvarious elements and points of view. Until a few decades ago, these studies were
mainly focused on the analysis of the neurons, but now that the relevance of other cellular
typessuch asthe glial cellsis being reconsidered, it becomes obvious that the focus must
be widened and the research orientation renewed.

Astrocytes: Functions in Information Processing

Since the late 1980s, the application of innovative and carefully developed cellular and
physiological techniques (such as patch-clamp, fluorescent ion-sensible images, con-
focal microscopy, and molecular biology) to glial studies has defied the classic idea that
astrocytes merely provide a structural and trophic support to neurons and suggests that
these elements play more active roles in the physiology of the central nervous system
(CNS).

New discoveries are now unveiling that the glia is intimately linked to the active control
of neural activity and takes part in the regulation of synaptic neurotransmission. We
know that the astrocytes have very important metabolic, structural, and homeostatic
functions, and that they play a critical role in the development and the physiology of the
CNS, involved as they are in key aspects of the neural function, such as trophic support
(Cajal, 1911), neural survival and differentiation (Raff et al., 1993), neural guidance
(Kuwada, 1986; Rakic, 1990), external growth of neurites (LeRoux & Reh, 1994) and

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



4 Porto & Pazos

synaptic efficiency (Mauch et al., 2001; Pfrieger & Barres, 1997). Astrocytes also
contribute to the brain’s homeostasis by regulating local ion concentrations (Largo,
Cuevas, Somjen, Martindel Rio, & Herreras, 1996) and neuroactive substances (Mennerick
& Zorumski, 1994; Largo et al., 1996). Some of these aspects will be briefly described
hereafter, but we can already affirm that they are very interesting from the point of view
of the connectionist systems (CS), because they directly affect the topology, number,
and specificity of its elements and layers.

Rackic and Kimelberg have shown that neurons usually migrate from one place to another
by means of atype of scaffold or safety route, linked to the prolongations of the immature
glial cells that afterwards disappear and transform into astrocytes (Rakic, 1978; Kimelberg,
1983). The traditional functions of neural support, maintenance, and isolation that are
usually attributed to the glia must therefore be completed with the functions of growth
“guide” and the possible regeneration of neurons. Also, the astrocytes take care of the
detoxification of products of the cerebral metabolism, which contain a high concentration
of glutamine-synthetase enzymes, carbon anhidrasis, and potassium-dependent ATP-ase
—elements that contribute to maintain a narrow homeostasis of ammoniac, hydrogenion-
CO2, and potassium in the extracellular cerebral environment.

The astrocytes also carry out active missions in the cerebral physiology. They play a
decisive role in the metabolism of the neurotransmitters glutamate and gamma-amino
butyricacid (GABA), for instance, which are both caught by the astrocyte of the synaptic
fissure and metabolised to form glutamine, an amino acid that subsequently helps to
synthesise new neurotransmitters. Noremberg, Hertz, and Schousboe (1988) demon-
strated that the enzyme that is responsible for the synthesis of glutamine is found
exclusively in the astrocytes, which are responsible for the adequate presence of an
element that is crucial for the transfer of information between the neurons.

Onthe other hand, astrocytes are cells in which glucogene can accumulate as a stock and
a source of glucosis and used when needed. Glucogenolysis (liberation of glucose) is
induced by different neurotransmitters such as noradrenaline and the vasointestinal
peptid, substances for which the membrane of the astrocytes has receptors whose
internal mechanism is not yet well understood. They also maintain the osmotic balance
of the brain by reacting in case of metabolical aggressions like ischemia, increasing
rapidly insize or increasing the size of their mitochondria (Smith-Thier, 1975).

When the NS is damaged, the astrocytes can cleanse and repair, together with the
microglial cells. To this effect, they undergo a series of morphological and functional
transformations, acquire proliferative qualities and become reactive astrocytes, which
formaglial scar around the injured area, isolate it from the rest of the nervous tissue, and
hereby repair the information process between the neurons.

Another important function of the astrocytes is the “spatial buffering of potassium”.
Kuffler and his research team discovered that the astrocytes remove the surplus of
potassium that is generated by the neural activity in the extracellular space. This function
eliminates the noise that could be caused by the presence of the potassium and is
therefore important for the information transfer.

Giventhisvariety in functions, itis not surprising that alterations in the astrocytes cause
large numbers of pathologies in the NS. In some neurological alterations, there are
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obvious anomalies in the astrocytes, whereas in other cases, these anomalies precede
those of the neurons. Famous examples are epilepsy, Parkinson’s, multiple sclerosis, and
certain psychiatric alterations (Kimelberg, 1989).

Whereas until very recently stem cells had only been detected in the spinal marrow, the
umbilical cord, and in foetal tissue, in 2004, Sanai, Tramontin, Quifiones, Barbaro, and
Guptadiscovered the existence of stem cells inthe adult human brain (Sanai etal., 2004).
They located a band of stem cells that could potentially be used for the regeneration of
damaged brain tissue and shed new light on the most common type of brain tumour. Inside
a brain cavity filled with brain fluids, the subventricular area, they discovered a layer of
astrocytes that, cultivated in vitro, can convert themselves into neurons, which may
mean that the astrocytes can regenerate themselves and produce various types of brain
cells. Even though their capacity to renew the neurons does not seem to work in vivo,
they obviously have great potential and must be further analysed to decypher the
mechanisms that control them.

Many receptors and second messengers also are being discovered in the astrocytes, and
some studies indicate that they have receptors for various neurotransmitters; even
though the function of these receptors is not completely clear, their presence leads us
to believe that the astrocytes respond to the changing conditions of the brain with a
versatility that may be similar to that of the neurons and even superior.

Communication Between Astrocytes and Neurons:
New Concept of Synapse

The astrocytes liberate chemical transmitters, and, more particularly, the increase in
calcium that takes place in their interior when they are excited (Verkhratsky, Orkand, &
Kettenmann, 1998) leads toward the release of glutamate, the most abundantly present
excitatory neurotransmittor of the brain. At present, the functions of the liberation of
chemical gliotransmittors are not entirely defined, but it is already clear that the
stimulation that elevates the astrocytic calcium, indicating the activation of these cells,
releases the glutamate. This glutamate release could lead to the modulation of the
transmission in local synapses (Haydon & Araque, 2002) and has indeed been consid-
ered in the present research, since we have tried to modulate the synapses produced
between the artificial neurons of a network through the presence and performance of
elements that represent astrocytes in that network.

Inrecentyears, abundant evidence has suggested the existence of bidirectional commu-
nication between astrocytes and neurons, and the important active role of the astrocytes
inthe NS’s physiology (Araque, Carmignoto, & Haydon, 2001; Perea & Araque, 2002).
This evidence has led to the proposal of a new concept in synaptic physiology, the
tripartite synapse, which consists of three functional elements: the presynaptic and
postsynaptic elements and the surrounding astrocytes (Araque, Plrpura, Sanzgiri, &
Haydon, 1999). The communication between these three elements has highly complex
characteristics, which seem to reflect more reliably the complexity of the information
processing between the elements of the NS (Martin & Araque, 2005).
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So there is no question about the existence of communication between astrocytes and
neurons (Perea & Araque, 2002). In order to understand the motives of this reciprocated
signaling, we must know the differences and similarities that exist between their
properties. Only a decade ago, it would have been absurd to suggest that these two cell
types have very similar functions; now we realise that the similarities are striking from
the perspective of chemical signaling. Both cell types receive chemical inputs that have
animpact onthe ionotropic and metabotropic receptors. Following this integration, both
cell types send signals to their neighbours through the release of chemical transmittors.
Both the neuron-to-neuron signaling and the neuron-to-astrocyte signaling show
plastic properties that depend on the activity (Pasti, Volterra, Pozzan, & Carmignoto,
1997). The main difference between astrocytes and neurons is that many neurons extend
their axons over large distances and conduct action potentials of short duration at high
speed, whereas the astrocytes do not exhibitany electric excitability but conduct calcium
spikes of long duration (tens of seconds) over short distances and at low speed. The fast
signaling and the input/output functions in the central NS that require speed seem to
belong to the neural domain. But what happens with slower events, such as the induction
of memories, and other abstract processes such as thought processes? Does the
signaling between astrocytes contribute to their control? As long as there is no answer
to these questions, research must continue; the present work offers new ways to advance
through the use of artificial intelligence techniques.

We already know that astrocytes are much more prominent in the more advanced species.
Table 1 shows the filogenetic comparison elaborated by Haydon (2001).

For the lower species on the filogenetic scale, which survive perfectly with a minimal
amount of glial cells, the reciprocate signaling between glia and neurons does not seem
to be very important.

However, the synaptic activity increases the astrocytic calcium, the gliotransmission
(transmittor release dependant on calcium from the astrocytes) modulates the synapse
and may improve the synaptic transmission in the hypocampus in the long term. This
means that the glial cells are clearly implied in the signaling of the NS. The release of
transmittors by the astrocytes could modulate the neural function and change the
threshold for various events; for instance, by releasing glutamate locally, the astrocytes
would modulate the threshold for synaptic plasticity and neural excitability (Martin &
Araque, 2005). Combining this with their potential to provoke the spatial synchronisation
of up to 140,000 synapses each, the astrocytes could add a new layer of information
processing and biochemical integration that helps to establish at least some of the
differences between the capacities of the NSs of humans, rats, fruit flies, and nemathods.

There is obviously no doubt concerning the high conduction speed of the electric
impulse through the neurons. The propagation of this high-speed action potential is
essential to control our behaviour and ensure our survival. It is not so clear, however,
whether high-speed conduction is necessary and exclusive for many of the intellectual
and plastic processes of the NS. Researchers believe that the propagation of the signal
in the glial cells at speeds six times slower than the action potential may be sufficiently
fast to contribute to many of the plastic and intellectual processes of the NS (Haydon
& Araque, 2002).
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Antecedents

Introduction

Since its early beginnings, artificial intelligence has been focused on improvements in
the wide field of computer sciences, and has contributed considerably to the research
in various scientific and technical areas. This work particularly considers the use of the
computational modeling technique in the field of artificial intelligence.

There are two types of computational models in the present study context: The first type
is based on an axiomisation of the known structures of the biological systems and the
subsequent study of the provoked behaviour. Researchers usually apply this work
method; the second type, mainly used by engineers, consists in axiomising or specifying
a behaviour and afterwards trying to build structures that execute it.

McCulloch and Pitts (1943), mentioned at the beginning of this chapter, and other authors
suchas Wiener (1985) and Von Neumann (1958), in their studies on cybernetics and their
theory on automats, were the first to tackle the problem of the integration of biological
processes with engineering methods. McCulloch and Pitts (1943) proposed the artificial
neuron model that now carries their name: a binary device with two states and a fixed
threshold that receives excitatory connections or synapses, all with the same value and
inhibitors of global action. They simplified the structure and functioning of the brain
neurons, considering them devices with m inputs, one single output, and only two
possible states: active or inactive. In this initial stage, a network of artificial neurons was
acollection of McCulloch and Pitts neurons, all with the same time scales, in which the
outputs of some neurons were connected to the inputs of others. Some of the proposals
of McCulloch and Pitts have been maintained since 1943 without modifications, and
others have evolved, but all the mathematical formalisations on the ANN that were
elaborated after them have used biological systems as a starting point for the study of
biological neural networks, without pretending to be exact models. The recentrevival of
the ANN is to a great extent due to the presentation of certain models that are strongly
inspired by biologists (Hopfield, 1989).

Table 1. Filogenetic comparison of glia in various species

q Proportion
Species A
glia:neuron
Nemathods <1
Rodents 1:1
Human brain ~50:1
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Artificial Neural Networks

Computers that are able to carry out 100 million operations in floating point per second
are nevertheless unable to understand the meaning of visual shapes, or to distinguish
between various types of objects. Sequential computation systems are successful in
resolving mathematical or scientific problems; in creating, manipulating, and maintaining
databases; in electronic communications; in the processing of texts, graphics, and auto-
editing; and even in making control functions for electric household devices more
efficient and user friendly; but they are virtually illiterate in interpreting the world.

Itis this difficulty, typical for computing systems based on Von Neumann’s sequential
system philosophy (Neumann, 1956), which has pushed generations of researchers to
focus on the development of new information processing systems, the ANN or CS, which
solve daily problems the way the human brain does. This biological organ has various
characteristics that are highly desirable for any digital processing system: It is robust
and fault tolerant, neurons die every day without affecting its functioning; it is flexible
since it adjusts to new environments through “Socratic” learning (i.e., through ex-
amples), and as such does not necessarily require programming; it can manage diffuse
information (inconsistent or with noise); it is highly parallel and therefore efficient
(effective intime); and itis small, compact, and consumes little energy. The human brain
isindeed a “computer” that is able to interpret imprecise information from the senses at
a considerable pace. It can discern a whisper in a noisy room, recognize a face in a dark
alley, and read between the lines. And most surprisingly, it learns to create the internal
representations that make these abilities possible without explicit instructions of any
kind.

The ANN or CS emulate the biological neural networks in that they do not require the
programming of tasks but generalise and learn from experience. Current ANN are
composed by a set of very simple processing elements (PE) that emulate the biological
neurons and by a certain number of connections between them. They do not execute
instructions, respond in parallel to the presented inputs, and can function correctly even
though a PE or aconnection stops functioning or the information has a certain noise level.
Itis therefore a fault and noise tolerant system, able to learn through a training process
that modifies the values associated to the PE connections to adjust the output offered
by the system in response to the inputs. The result is not stored in a memory position;
it is the state of the network for which a balance is reached. The knowledge and power
of an artificial neural network does not reside in its instructions but in its topology
(position of the PE and the connections between them), in the values of the connections
(weights) between the PE, and the functions that define its elements and learning
mechanisms.

The CS offer an alternative to classic computation for problems of the real world that use
natural knowledge (which may be uncertain, imprecise, inconsistent, and incomplete)
and for which the development of a conventional programme that covers all the
possibilities and eventualities is unthinkable or at least very laborious and expensive.
In Pazos (1991) we find several examples of successful applications of CS: image and
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voice processing, pattern recognition, adaptive interfaces for man/machine systems,
prediction, control and optimisation, signals filtering, and so forth.

Different ANN Types

Since the early beginnings of ANN, researchers have developed a rather large number
of ANN types and implementations from the concept of simple PE, that is, the copy of
the natural neuron and its massive interconnections. Even though all these types are
similar where neurons and connections are concerned, they vary significantly in
topology, dynamics, feed, and functions. There also have been, and there continue to
be, many advances and varieties in the field of learning algorithms. Some present new
learning types, while others offer minor adjustments in already existing algorithms in
order to reach the necessary speed and computational complexity.

On the one hand, the presence of such a large amount of possibilities is an advantage
that allows the experimentation of various networks and training types; on the other
hand, it presents at least two doubts. First, how do we know which is the best option to
solve a determined problem? Mathematically speaking, itis impossible to know that the
final choice is indeed the best. Second, would it not be better to wait for future
improvements that will substantially contribute to solving the problems of ANN, instead
of tackling them with the tools that are available today?

Nevertheless, it remains true that all the design possibilities, for the architecture as well
as for the training process of an ANN, are basically oriented toward minimising the error
level or reducing the system’s learning time. As such, it is in the optimisation process
of a mechanism, in this case the ANN, that we must find the solution for the many
parameters of the elements and the connections between them.

Considering what has been said about possible future improvements that optimise an
ANN with respect to minimal error and minimal training time, our models will be the brain
circuits, in which the participation of elements of the GS is crucial to process the
information. In order to design the integration of these elements into the ANN and
elaborate a learning method for the resulting ANGN that allows us to check whether there
isan improvementin these systems, we have analysed the main existing training methods
that will be used for the elaboration. We have analysed non-supervised and supervised
training methods, and other methods that use or combine some of their characteristics
and complete the analysis: training by reinforcement, hybrid training, and evolutionary
training.

Some Observed Limitations

Several experiments with ANN have shown the existence of conflicts between the
functioning of the CS and biological neuron networks, due to the use of methods that
did notreflectreality. For instance, in the case of amultilayer perceptron, which isasimple
CS, the synaptic connections between the EP have weights that can be excitatory or
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inhibitory, whereas in the natural NS, the neurons seem to represent these functions, not
the connections; recent research (Perea & Araque, 2002) indicates that the cells of the
GS, more concretely the astrocytes, also play an important role.

Another limitation concerns the learning algorithm known as “backpropagation”, which
implies that the change of the connections value requires the backwards transmission
of the error signal in the ANN. It was traditionally assumed that this behaviour was
impossible in a natural neuron, which, according to the “dynamic polarisation” theory
of Cajal (1904), is unable to efficiently transmit information inversely through the axon
until reaching the cellular soma; new research, however, has discovered that neurons can
send information to presynaptic neurons under certain conditions, either by means of
existing mechanisms in the dendrites or else through various interventions of glial cells
such as astrocytes.

If the learning is supervised, it implies the existence of an “instructor”, which in the
context of the brain means a set of neurons that behave differently from the rest in order
to guide the process. At present, the existence of this type of neuron is biologically
indemonstrable, but the GS seems to be strongly implied in this orientation and may be
the element that configures an instructor that until now had not been considered.

These differences between the backpropagation models and the natural model are not
very important in themselves. The design of artificial models did not pretend to obtain
a perfect copy of the natural model but a series of behaviours whose final functioning
approached it as much as possible. Nevertheless, a close similarity between both is
indispensable to improve the output and increase the complexity of the ANN and may
resultin more “intelligent” behaviours. Itisin this context that the present study analyses
to what extent the latest discoveries in neuroscience (Araque etal., 2001; Perea & Araque,
2002) contribute to these networks: discoveries that proceed from cerebral activity in
areas that are believed to be involved in the learning and processing of information
(Porto,2004).

Finally, we must remember that the innovation of the existing ANN models toward the
development of new architectures is conditioned by the need to integrate the new
parameters inthe learning algorithms so that they can adjust their values. New parameters
that provide the PE models of the ANN with new functionalities are harder to come by
than optimisations of the most frequently used algorithms that increase the output of the
calculations and basically work on the computational side of the algorithm. The present
study will analyse the integration of new elements in the existing networks. This
approach will not excessively complicate the training process, because we apply ahybrid
training method that combines the supervised and unsupervised training and whose
functioning will be explained in detail further on.

Inour opinion, ANN are still in a phase of development and possibly even in their initial
phase. Their real potential is far from being reached, or even suspected.
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Artificial Neuroglial Networks

Introduction

Many researchers have used the current potential of computers and the efficiency of
computational models to elaborate “biological” computational models and reach a better
understanding of the structure and behaviour of both pyramidal neurons, which are
believed to be involved in learning and memory processes (LeRay, Fernandez, Porto,
Fuenzalida, & Bufio, 2004) and astrocytes (Porto, 2004; Perea & Araque, 2002). These
models have provided a better understanding of the causes and factors that are involved
in the specific functioning of biological circuits. The present work will use these new
insights to progress in the field of computing sciences and more concretely artificial
intelligence.

We propose ANGN that include both artificial neurons and processing control elements
that represent the astrocytes, and whose functioning follows the steps that were
successfully applied in the construction and use of CS: design, training, testing, and
execution.

Also, since the computational studies of the learning with ANN are beginning to
converge toward evolutionary computation methods (Dorado, 1999), we will combine the
optimisation in the modification of the weights (according to the results of the biological
models) with the use of genetic algorithms (GA) in order to find the best solution for a
given problem. This evolutionary technique was found to be very efficient in the training
phase of the CS (Rabufial, 1998) because it helps to adapt the CS to the optimal solution
according to the inputs that enter the system and the outputs that must be produced by
the system. This adaptation phenomenon takes place in the brain thanks to the plasticity
of itselements and may be partly controlled by the GS; itis for this reason that we consider
the GA asapart of the “artificial glia”. The result of this combination is a hybrid learning
method that is presented in the following sections and compared with other methods.

Inthistheoretic study, the design of the ANGN is oriented toward classification problems
that are solved by means of simple networks (i.e., multilayer networks), although future
research may lead to the design of models in more complex networks. It seems a logical
approach to start the design of these new models with simple ANN, and to orientate the
latest discoveries on astrocytes and pyramidal neurons in information processing
toward their use in classification networks, since the control of the reinforcement or
weakening of the connections in the brain is related to the adaptation or plasticity of the
connections, which lead to the generation of activation ways. This process could
therefore improve the classification of the patterns and their recognition by the ANGN.

The objectives of this study are the following: Analyse the modulation possibilities of
the artificial synaptic activity that have not been considered so far; propose a method-
ology that applies these possibilities to the CS, in totally connected feedforward
multilayer networks, without backpropagation and lateral connections, and conceived
to solve simple classification and patterns recognition problems.
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Analysis of Models and Hypotheses on Astrocytes

We know that glutamate released in the extracellular space by an astrocyte or a
presynaptic neuron can affect another astrocyte, another presynaptic neuron, or a
postsynaptic neuron. If the glutamate that reaches a postsynaptic neuron proceeds
directly froma presynaptic neuron, the action potential (AP) takes place more rapidly and
end more or less soon. If there also has been a release of glutamate by an astrocyte that
was activated by the glutamate of a presynaptic neuron, more AP will take place (Pasti
etal.,1997). Since the influence process controlled by the astrocyte is slower, the AP that
are provoked by it will be easily detected because of their slowness. We know that the
activation of the astrocytes and the communication between them through calcium
signalsisaslow process if we compare it to the neural activity (Araque, 2002). The same
conclusion can be drawn from their effect on the synapse between two neurons, whose
neurotransmitters activated the astrocyte, and which is 1,000 times slower than the
propagation of the impulse in the neurons (60 s. astrocyte — 60 ms. neuron). This
slowness has led to a consideration (cfr. below) on the presentation to the ANGN of each
training pattern during more than one cycle or iteration. If it imitates this slowness, the
ANGN will need n cycles or iterations to process each input pattern.

So far, we have not mentioned the idea that the if the astroyctes act so slowly, they are
probably involved in the more complex processes of the brain, because the less
developed species have less astrocytes and depend on their neurons to react rapidly to
stimuli for hunting, escaping, and so forth. Since human beings usually depend less on
fast reactions and more on abilities like thinking and conversing, the astrocytes may be
elements that contribute to those particular processes. Research into this subject is being
carried out on well-established grounds.

We also must also remember that the contribution of the astrocytes to the weights of the
ANGN connections takes place according to the time factor, given the fact that they act
slowly and their answers are non-linear. It would be interesting to know how astrocytes
affect the CS, considering their influence on the synapses according to the activity of
the neurons inthe course of time. The more intense the activity of the neurons, the bigger
the influence of the astrocyte on a connection, or even on another astrocyte that affects
another network synapse, and so forth.

We know that there are 10 astrocytes for each neuron and that each astrocyte can affect
thousands of neurons through all its ramifications. The ratio astrocytes/neurons can
grow to is 50:1 in the areas with most cognitive activity.

Astrocytes have two activity levels: the neurons with their connections; the astrocytes
with their connections, and their influence on the connections between neurons.

The response of the astrocyte is not “all or nothing”, but the response of the neuron can
be made to be “all or nothing” according to the type of network that is being built and
its activation function.
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Considered Cerebral Events

Considering the functioning of the pyramidal neurons and the astrocytes (Porto, 2004),
together with the existing hypotheses (LeRay etal., 2004; Perea & Araque, 2004), the main
cerebral events that must be taken into account and reflected in the CS are the following:
(1) Increase of the trigger potential in the postsynaptic neuron. (2) Decrease of the
neurotransmitter release probability in the active synapse. (3) Decrease of the neu-
rotransmitter release probability in other synapses, nearby or not. (4) Increase of the
neurotransmitter release probability inthe active synapse. (5) Increase of the neurotrans-
mitter release probability in other synapses, nearby or not. (6) The release of neurotrans-
mitters of an astrocyte can affect the presynaptic neuron, the postsynaptic neuron, or
both. It also can open a route of influence to another synapse that is far away from the
one that provoked the calcium increase prior to the release of the neurotransmitter. (7)
Inhibition of inhibitory actions of presynaptic neurons in a synapse, that is, inhibitions
that could take place will not do so, the synaptic transmission may take place or not
depending on how the other axons in that synapse react. This point differs from point
2, inwhichthe synaptic transmission does not take place, whereas here it may take place,
regardless of the influence of the inhibitory axon that was inhibited by the astrocyte. (8)
Inhibition of excitatory actions of presynaptic neurons in asynapse, thatis, the excitation
will not take place, the synaptic transmission may take place or not depending on the
actions of the other axons in that synapse. This point also differs from point 2; the
synaptic transmission may or may not take place, but this does not depend on the
influence of the excitatory axon that was inhibited by the astrocyte. (9) Excitation of
inhibitory actions of presynaptic neurons in asynapse, thatis, the inhibition will be more
powerful and the synaptic transmission may or may not occur depending on the
behaviour of the other axons. (10) Excitation of the excitatory actions of presynaptic
neurons in a synapse, that is, the excitation will be more powerful, the synaptic
transmission may or may not occur depending on the behaviour of the other axons in that
synapse.

The behaviour of neurons and astrocytes obviously makes room for certain ways and
excludes others, like the eye that creates a contrast in order to distinguish between certain
surrounding images.

Possibilities of the Influence of Elements and Cerebral
Phenomena on CS

The analysis of the cerebral activities has opened various ways to convert CS into ANGN
and as such provide them with a potential that improves their contribution to the
information processing. The following paragraphs present a theoretic proposal that
includes a series of modifications with an important biological basis.

The possibilities were classified according to what happens with connections between
neurons, the activation value of the neurons, and combinations of both.
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Connections Between Neurons

(@) Considering each neuron individually: The condition is that one neuron is
activated. Depending on the activation function that we wish to use, we can
establish in the testing system the output value that will activate the neuron, such
asthreshold (avalue between0and 1), linear (value of the slope of the straight line),
and so forth: If any of the neurons has been activated or not x times, the weight
of the connections that enter into that neuron, depart from it, or both, is respectively
increased or weakened with a determined percentage of its current value. This
means that we reinforce the connections that reach that neuron and/or trigger in
its interior the AP that provoke more powerful synapses. We can try to reinforce
or weaken the connections that leave a neuron, those that enter a neuron, or both,
and compare the results.

(b) Considering two active or inactive contiguous neurons during x consecutive
iterations: Partly based on the postulate of Hebb (1949): Only the connection that
unites these two neurons is reinforced; the aforementioned connection is weak-
ened; the aforementioned connection, and all the connections that enter into the
source neuron and/or those that leave the destination neuron, are reinforced or
weakened.

(c) Considering neuronsofthesamelayer of an active or inactive neuron duringx
consecutive iterations: Based on the fact that an astrocyte can influence many
neurons simultaneously: The connections that enter or leave the neighbour
neurons, or both types (in case that the neuron that is being managed is active
during x iterations), are reinforced; the connections that enter or leave the
neighbour neurons, or both types (in case that the neuron that is being managed
is inactive during x iterations), are weakened.

(d) Combinations of a, b, and c.

Activation Value of the Neurons

The activation value of an artificial neuron at the present moment is influenced. This
action is not a recurrence because it does not consider, for the calculation of the NET
functioninanartificial neuron, its own the output value or that of other artificial neurons;
it considers the activation value of a neuron according to the own activity percentage
or that of other neurons.

(@) Consideringeach neuronindividually: The activation value of the neuron that was
active or inactive during x consecutive iterations is increased or decreased.

(b) Considering two active or inactive contiguous neurons during x consecutive
iterations: Following Hebb’s postulate: The activation value of the postsynaptic
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or presynaptic neuron, or both, is increased or decreased to a certain degree; the
activation values of the two involved neurons and of all the contiguous neurons
are increased or decreased.

(c) Consideringneighbour neurons (of the same layer) of an active or inactive neuron
during x consecutive iterations: Based on the fact that an astrocyte influences
many neurons simultaneously, the activation value of these neighbour neurons (in
case that the neuron being managed is active or inactive during x iterations) is
increased or decreased respectively.

(d) Combinations of a, b, and c.

Combinations of Previous Cases

The resulting combinations symbolize inhibition of inhibitions, inhibition of excitations,
excitation of inhibitions, excitation of excitations, of one or several neurons, of the
connections that enter the neuron, of those that leave it, and so forth: When a determined
neuron was inactive during x consecutive iterations, but had been active during z
consecutive iterations, the value of the connections that enter or leave it, or both, does
not decrease; when a neuron was inactive during x consecutive iterations, but had been
active during z consecutive iterations, its associate negative outgoing connections
become positive. Thisisan example of excitation of inhibitory synapses; when a neuron
was active during x consecutive iterations, but had been inactive during z consecutive
iterations, the associated connections are not reinforced; when a neuron was active
during x consecutive iterations, but had been inactive during z consecutive iterations,
its associate positive outgoing connections become 0. This is an example of inhibition
of excitatory synapses.

Functioning Proposal of the ANGN

The construction and functioning of an ANGN follows all the stages of a CS, starting with
the design of the network architecture, followed by the training, testing, and execution
phases.

Design Phase

Forreasons of simplification, the design is based on feedforward multilayer architectures
that are totally connected, without backpropagation or lateral connections, and oriented
toward the classification and recognition of patterns.
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Training Phase

We have designed a hybrid training method that combines non-supervised learning (first
phase) with the supervised learning that uses the evolutionary technique of GA (second
phase).

Since the GArequires individuals, the first phase creates a set of individuals to work with.
Each individual of the GA consists of as many values as there are connection weights
in the ANGN, and each arbitrary set of values of all the weights constitutes a different
individual.

The first phase consists of a non-supervised learning based on the behaviour of the
cerebral cells that were modeled by the NEURON simulation environment (Hines, 1994)
inthe works of Porto (2004), Araque (2002), and LeRay et al. (2004). The functioning of
the network with all its individuals is analysed. Each individual (i.e., the weights of the
connections) is modified as each training pattern passes on to the network, according
to how the activity of the neurons has been during the passage of that pattern. For each
individual, each pattern or input example of the training set is presented to the network
during a given number of times or iterations. These iterations represent the slowness of
the astrocytic influence (cfr. above), and constitute a cycle of the pattern. The number
of iterations can be established for any cycle. During each iteration of the cycle, the
connections are modified according to the previously explained rules (cfr. above), which
generally depend on the activity of the neurons. Once the cycle of the pattern is finished,
we calculate the error of the network for that pattern to find the difference between the
obtained and the desired output. We store the error of the network for each pattern.
Afterwards, when all the training patterns have been passed on to the network, we
calculate the mean square error (MSE) for that individual, since at the start of a pattern
cycle, the individual that is applied to the network is once again the first of the used set
of individuals. We have opted for the MSE because it gives a relative measure to the
examplesthatare fed to the network to compare the error between different architectures
and training games. Also, the square in the numerator favours the cases of individuals
for which the output of the network is close to the optimal values for all the examples.
The process is the same for all the individuals. This phase constitutes a non-supervised
training, because the modifications of the connections’ weights do not consider the error
of the output, but take place at any time according to the activation frequency of each
neuron, simulating reinforcements and inhibitions that in the brain would possibly be
provoked by astrocytes (Perea & Araque, 2004) or depolarising ion streams (LeRay et
al.,2004).

The second and last phase of the training is the supervised training phase. It consists
in applying GA to the individuals according to the MSE made by the network with each
of the individuals and stored during the first training phase (Rabufial, 1998). Once the
MSE of all the individuals are stored, the GA in a second phase carries out the
corresponding cross-overs and mutations and selects the new individuals with which the
first and second phases will be repeated until the least possible error, and preferably no
error, is obtained. The second phase is considered a supervised training because the GA
takes into account the error made by the network to select the individuals that will be
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mutated and crossed over, that is, it makes the changes in the weights according to that

error.
The GA training system applies the GA specifications formulated by Holland (1975).

Testing and Execution Phase

The training of the ANGN has provided us with the individual whose weights allow us
to obtainthe smallest error in the output. During the present phase, we use this individual
to check whether the output obtained by the model is correct, that is, whether the
generalisation capacity of the ANGN is correct with input patterns that differ from those
used during the training stage, and to prepare the ANGN for its subsequent use.

In this phase, and in the course of all the subsequent executions, the network activity
control elements that represent pyramidal neurons and astrocytes — which intervene
during the non- supervised training phase — remain active. These new incorporated
elements will therefore be a part of the model in all its stages and participate directly in
the information processing, just like the artificial neurons. The input patterns will present
themselves during the iterations that were determined in the training phase and hereby
allow the new elements to carry out their activity.

Comparison Between the Proposed Learning Method
and the Existing Methods

This section compares the proposed learning method with several methods that are
usually applied in CS and present certain similarities; our purpose is to comment on the
existing differences and the advantages of this new proposal.

The first difference resides in the modification moment of the weights. In the
backpropagation method and other methods that use supervised learning rules, the
weights are not modified each time a pattern is passed on: Once all the patterns of the
training set are passed on, the MSE is calculated and on the basis of that error the weights
are modified once. Afterwards, the whole training set is passed on again, the MSE is
calculated again and the relevant modifications in the weights are carried out again. This
continues until the error is as small as possible and the network converges. The proposed
method, however, modifies the weights during each step of the cycle, regardless of the
observed error and according to the activations that have taken place at each moment.
This situation may cause a slight delay in the functioning of the CS, but it emulates the
cerebral reality with more precision.

With respect to the criteria that must be followed to modify the weights, we copy the
functionalities of the modeled cerebral elements. First, this procedure presents certain
similarities with the modifications of the non-supervised learning method of Kohonen,
except for the fact that in our method, which is tested on classification problems, there
is no competitivity. Kohonen presents competitive networks that classify input patterns
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into groups and uses the modification of the weights of the PE with more or less output
value. Second, since our method takes into account all the activations of the artificial
neurons, we believe it is important to comment on the difference with the method used
by the networks based on delays. In those networks, the PE possess memories that store
the values of previous activations in order to operate with them at the present moment.
During the first phase of the proposed hybrid method, we count how often an artificial
neuron has been activated, not what value it has obtained.

This method reinforces or weakens certain connections. According to the applied
neurobiological rule, connections before or after the PE can be reinforced or weakened.
By taking into account the modification of previous connections, we observe what could
be a resemblance to a recurrence which is partial, because only certain connections are
reinforced or inhibited under specific conditions. However, since the new control
elements, outside the PE, influence the weights regardless of the current activation value
of the PE, we can conclude that this is not a case of recurrence, as in partially or totally
recurrent networks, but a case of “influence”.

This may imply not only that the new element modifies previous connections, but also
that the previous artificial neurons may have modified the magnitude of the correspond-
ing synapse, as has been observed during in vitro experiments. This situation, which is
based on the postulate of Hebb (1949), will allow the incorporation of phenomena that
are modeled in synaptic potentiation (LeRay et al., 2004; Porto, 2004). It also suggests
the future use of the Hebb rule, used in non-supervised learning, to make these weights’
variations, combining this use with GA to continue considering the advantages of a
hybrid method for the classification of multilayer networks.

Another important aspect that distinguishes the ANGN does not concern the training
phase, but rather the evaluation and execution phase. When the network is used in the
execution phase, the control actions of the new incorporated elements are maintained.
This means that each pattern must be passed on n times, n being the number of iterations
chosen from the pattern cycle. The ANGN needs n cycles to process each input pattern.

Future Developments

We have already begun to implement this theoretical proposal on CS, testing each of the
presented possibilities and comparing their results with those of ANN trained with GA.
We are considering the solution of a simple problem with an ANGN: We simulate an
electronic device known as multiplexor (MUX), with four inputs and one output, by
means of an ANGN with a totally connected and feedforward multilayer architecture,
without backpropagation and lateral connections. The results are satisfactory and the
experiments are being continued.
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Chapter Il

Astrocytes and
the Biological
Neural Networks

Eduardo D. Martin, University of Castilla - La Mancha, Spain

Alfonso Araque, Instituto Cajal, CSIC, Spain

Abstract

Artificial neural networks are a neurobiologically inspired paradigm that emulates
the functioning of the brain. They are based on neuronal function, because neurons are
recognized as the cellular elements responsible for the brain information processing.
However, recent studies have demonstrated that astrocytes can signal to other astrocytes
and can communicate reciprocally with neurons, which suggests a more active role of
astrocytes in the nervous system physiology and fundamental brain functions. This
novel vision of the glial role on brain function calls for a reexamination of our current
vision of artificial neural networks, which should be expanded to consider artificial
neuroglial networks. The neuroglial network concept has not been yet applied to the
computational and artificial intelligent sciences. However, the implementation of
artificial neuroglial networks by incorporating glial cells as part of artificial neural
networks may be as fruitful and successful for artificial networks as they have been for
biological networks.
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Introduction

Artificial neural networks — a neurobiologically inspired paradigm that emulates the
functioning of the brain — are based on the way we believe that neurons work, because
they are recognized as the cellular elements responsible for the brain information
processing. Two main cell types exist in the brain: neurons and glia. Among the four main
subtypes of glia, astrocytes are the most common cells in the central nervous system
(CNS). Astrocyte function has long been thought to be merely supportive of neural
function. However, recent studies have demonstrated that astrocytes can signal to other
astrocytes — forming anew type of cellular network in the brain — and can communicate
bidirectionally with neurons, which suggests a more active role of astrocytes in
fundamental brain functions, regulating neuronal excitability and synaptic transmission
(for areview see Araque, Carmignoto, & Haydon, 2001). Based on these new findings,
glia is now considered as an active partner of the synapse, dynamically regulating
synaptic information transfer as well as neuronal information processing. This novel
vision of the glial role on brain function calls for a reexamination of our current vision
of artificial neural networks, which should be expanded to consider glial cells to create
artificial neuroglial networks.

Insome areas of the nervous system, glial cells outnumber nerve cells 10to 1. Glia (from
the Greek, meaning glue) is important in providing a homeostatic environment to the
nerve cells as well as being involved in other functions. There are three main types of
glial cells in the central nervous system: astrocytes, oligodendrocytes, and microglia.
Astrocytes have many processes that branch out in a starlike formation. Functions of
astrocytes include: structural support for nerve cells; proliferation and repair following
injury to nerves; participation in metabolic pathways that modulate extracellular concen-
tration of ions, transmitters, and metabolites involved in functions of nerve cells and
synapses. Oligodendrocytes are mainly responsible for the formation of myelin around
axons in the central nervous system. These myelin sheaths play an important role in the
improvement of the nerve conduction properties. While oligodendrocytes are specifi-
cally presentin the central nervous system, the myelin is formed by Schwann cells in the
peripheral nervous system. The third type of glial cells, microglia, are smaller cells present
throughout the central nervous system that function as immune system cells in the CNS.

The astroglial cells, or astrocytes, are connected through gap junctions forming a
relatively large electrically coupled syncytium. The single cells have long processes, and
some of them establish contacts with blood vessels, forming part of the blood-brain
barrier. Other processes extend toward and encapsulate synapses, especially glutamatergic
synapses (i.e., excitatory synapses that release the neurotransmitter glutamate) and also
the varicosities, from which other neurotransmitters such as monoamines are released.
Neuronal cell bodies, neuronal processes, and the brain surface are also encapsulated
by astroglial processes.

The astroglial cell mass constitutes a prominent part of the total brain cell number and
volume (Peters, Palay, & Webster, 1991). More than 100 years ago, Virchow proposed
that these cells have a metabolic and structural supportive role for neurons. Since then
and until the last 15 to 20 years, this idea of astrocytes as simple supportive and passive
cells has been maintained. Very little attention was paid to the astroglial cells for decades,
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mostly because the absence of conspicuous physiological function in the electrophysi-
ological behaviour of the nervous system. Indeed, while neurons were relatively easy to
identify using electrophysiological techniques due to their ability to fire action poten-
tials, astrocytes can be depolarized but no action potential or other significant active
electrical behaviour can be elicited.

In the last years, it has been shown that, in addition to the relevant functions in brain
homeostasis (e.g., supplying energy to neurons, controlling the concentration of ions
and neurotransmitters in the extracellular space, and synthesizing and releasing neu-
rotrophic factors), astrocytes have the capacity to monitor synaptic activity, to sense
the composition of the extracellular space and the blood serum, to integrate the
information obtained, and to influence neuronal activity and synaptic transmission by
regulating the extracellular concentration of neurotransmitters and by releasing neuro-
active substances (called gliotransmitters) (for reviews see Araque etal., 2001; Volterra,
Magistretti, & Haydon, 2002).

In this chapter, we will provide an overview of our current knowledge of astroglial
physiology and their impact in the neuronal physiology, and we will discuss the
relevance of these new findings on the artificial neuronal network concept. We will first
present a general outline of the neural network function, summarizing the well-known
biological concepts and cellular mechanisms of neuronal function and synaptic physi-
ology. We will next briefly describe astroglial cell physiology, discussing the Ca?*-based
astroglial excitability, the existence of astrocyte-neuron communication and its relevant
physiological consequences for the functioning of the nervous system. Finally, we will
suggest a reassessment of our current vision of artificial neural networks proposing the
necessity and convenience of considering artificial neuroglial networks.

Biological Neural Networks

In the following paragraphs we will briefly present some key concepts on biological
neural networks, and specifically on neuronal and synaptic physiology. The interested
reader may find a broader description of the topics in several excellent textbooks in the
field (e.g., Kandel, Schwartz, & Jessell, 1991; Nicholls, Martin, & Wallace, 1992; Shep-
herd, 1994; Kuno, 1995).

The nervous system can be considered as an organized assembly of cells interconnected
through synapses. Brain functions emerge out of the highly complex and dynamic
organization of the central nervous system. At the highest levels of nervous system
organization are systems and pathways. Pathways are sequences of connections
through several neuronal centers, that is, functional and anatomical groups of neurons.
Their function is to transmit information from the periphery into the central nervous
system (as in the sensory pathway), or from center to periphery (as in the motor pathway).
Central systems, or distributed systems, are sets of connections between a number of
centers which together mediate functions necessary for the coordinated behaviour of the
whole organism. There is a gradual progression from pathways that perform specific
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tasks of sensory processing and motor control to central systems that deal with the global
aspects of behaviour.

Nerve centers, or nuclei, and local circuits are populations of neurons and glial cells that
are connected together in networks. These populations receive information from other
centers, perform some specific processing operations, and send the output to other
centers or to effectors organs (such as muscles or glands). This level of organization is
equivalent to the interconnections among processing elements in artificial neural
networks.

Neuron Structure and Function

The neuron, which may be considered as the fundamental anatomical unit of the nervous
system, is a specialized cell that receives signals from other cells through its soma and
dendrites, integrates them (i.e., elaborate a response which is a function of the multiple
incoming signals), and sends output signals to other cells through its axon. Figure 1
shows these basic elements.

Like any other cell, the neuron is enclosed by a lipid bi-layer membrane, has a nucleus
with genetic material, and has the usual complement of cellular organelles such as
mitochondrian, endoplasmic reticulum, lysosomes, and so forth. However, neurons have
particular morphologies, depending on their role and position in the nervous system, that
follow asimilar morphological pattern: acell body from where many branches extend. As
a neuron grows, only one of these branches becomes an axon, while the rest become
dendrites. In a prototypic neuron, each region has distinctive signaling functions: (1)
soma, which is the metabolic center of the neuron; (2) dendrites, which correspond to
the receptive area of the neuron; (3) the axon, which is the neuronal conducting unit that
conveys the informationto relatively distant cells; (4) presynaptic terminals of the axon,
which are the transmitting elements of the neuron. Through these presynaptic terminals,
one neuron contacts and transmits information to the receptive surfaces of another
neuron, muscle, or gland cell. This point of contact is known as the synapse.

There are two main types of neurons that can be identified by the scope of their axonal
connections. The so-called projection, principal, or relay neurons typically have long
axons that make distant connections. Examples of these cells are the sensory and motor
neurons that go outside the brain, and neurons in the brain that reach different nervous
system centers. The other main type of neuron hasamuch shorter axon and only connects
to other neurons within a center. These neurons are called intrinsic neurons or interneu-
rons.

Like any other cell, neurons have what is known as a membrane potential, that is, an
electric potential difference between the intracellular and extracellular compartments.
This membrane potential is based on the fact that there is normally about 10 times more
sodium in the extracellular fluid thanin the cytoplasm and about 40 times more potassium
in the cytoplasm than in the extracellular fluid. Neuronal membrane is endowed with
relatively selective ionic channels that allow some specific ions to cross the membrane.
In resting conditions, sodium ionic channels are closed, thus preventing sodium ions
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Figure 1. Schematic drawing of a prototypical neuron. The soma (cell body) and
dendrites represent the site of input reception, integration, and coordination of
information signals coming from pre-synaptic nerve terminals. Information propagates
from the dendrites and the cell body to the axon hillock. If the sum of the synaptic
potentials conducted to the axon hillock is greater than the depolarization threshold
for firing action potentials, one or more output action potentials occur. The axon is
responsible for the transmission of the action potential. The CNS switches between
amplitude modulation and frequency modulation. While the action potential is
propagated regeneratively in an all-or-non form in the axonal region of the nerve, the
frequency of action potentials generated at the axon hillock is proportional to the
magnitude of the net synaptic response at that location. Information about the sum of
the electrical activity reaching the axon hillock is represented in the frequency of these
action potentials.
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from “leaking” in. Some potassium channels, however, are open, and potassium is
allowed to “leak” out of the cytoplasm, following its concentration gradient. In this
situation, the cytoplasm becomes more negative than the extracellular fluid and eventu-
ally becomes negative enough to start attracting potassium ions back into the cell. The
pointat which this attraction balances with potassium following its concentration results
in the resting membrane potential, which is close to the equilibrium potential of the
electrochemical gradient of potassium ions, that is, around -70 mV.

Unlike many other cells, however, neurons have excitable membranes because some of
the selective ionic channels present in the membrane are voltage-gated, that is, are
opened or closed depending on the membrane potential. Signals from dendrites, the
“input” region of a neuron, cause the opening of sodium channels. Sodium ions,
following their concentration gradient, cross the membrane, depolarizing the membrane
potential. Once enough of a depolarization threshold is reached, the voltage difference

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



Astrocytes and the Biological Neural Networks 27

between the cytoplasm and extracellular fluid suddenly reverses. This abruptreversal is
called action potential and may be propagated down the length of the axon to the axon
terminal. The action potential represents the biophysical substrate that encodes the
neuronal information.

Synaptic Physiology

The synapse is the basic input-output unit for transmission of information between
neurons. There are two types of synapses: electrical and chemical. Electrical synapses
are able to transmit nerve signals very fast and directly across a very small gap between
two nerve cells, which are connected through special structures called gap junctions.
Gap junctions are membrane specializations that provide a pathway for intercellular
exchange of small molecules and ions between cells. Gap junctional communication is
thought to facilitate coordination of cellular activity in several physiological processes
such as tissue homeostasis, neuronal synchronization, and cardiac and smooth muscle
contraction and development (Bennettetal., 1991). Gap junctional channels are formed
by members of closely related membrane proteins called connexins. Each channel is
formed by two sets of six connexin molecules spanning the membrane of each connecting
cell, forming the connexon, the functional gap junction channel. While in electrical
synapses the electrical signal pass from one neuron to another, in chemical synapses the
communicationsignal relies on a chemical substance called neurotransmitter. Although
electrical synapses are extremely important for the nervous system function, we will
focus our discussion in this chapter on chemical synapses, which are the most abundant
and well studied.

When the action potential reaches the axon terminal of the presynaptic neuron, voltage-
gated Ca?* channels are opened, allowing the influx of Ca?* into the terminal. The
subsequentincrease of the intracellular Ca?* concentration causes the fusion of vesicles
that contain neurotransmitters. These neurotransmitters released from synaptic termi-
nals diffuse across the synaptic cleft and bind to receptors on the surface of the
postsynaptic neuron. This binding leads to membrane permeability changes that will
either stimulate or inhibit the firing of the second neuron (Figure 2). There is a
considerable amount of different molecules that may act as neurotransmitters and they
are classified based on their function as excitatory or inhibitory. On the other hand,
according to the mechanism of action, neurotransmitter receptors are classified as
ionotropic or metabotropic. Binding of neurotransmitters to metabotropic receptors
leads to activation of specific proteins and production of intracellular second messen-
gers that can ultimately affect the behavior of the neuron. lonotropic receptors are also
called ligand-gated channels because they are transmembrane proteins that form ionic
channels that undergo conformational changes upon binding of neurotransmitters, that
is, these ionic channels are opened by neurotransmitters. These ionotropic channels are
specific in the type of ion that they allow to pass through. If a receptor allows negative
ions, such as chlorine (CI"), to flow into the cytoplasm, then this has an inhibitory effect
as it moves the membrane potential away from the threshold to fire action potentials. On
the other hand, if a receptor allows a positive ion to enter the cytoplasm, then this has
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an excitatory effect as it depolarizes the local membrane potential, bringing it closer to
the action potential threshold.

Integration of synaptic information by neurons involves the complex interactions
between ionic currents and synaptic configurations that lead to the global behavior of
the neuron. At individual synapses, an excitatory postsynaptic potential (EPSP) depo-
larizes the membrane potential. Conversely, an inhibitory postsynaptic potential (IPSP)
usually hyperpolarizes the membrane potential (Figure 2). These actions are notdiscrete
like signals in an electric circuit or numbers in an equation. Like the extracellular fluid,
the inside of the neuron is a continuous milieu, which diffuses ions within it. When there
is an EPSP at a dendrite, positive ions diffuse not only into the local region of the
cytoplasm, butalso away fromitin both directions (likewise for IPSPs). Thision flow can
affect other regions. Activation of an excitatory synapse in adendrite results inan inward
current that elicits a depolarization that spreads along the proximal dendrite, the soma,
and the axon hillock (the initial segment of the axon, where the action potential is usually
generated). However, when an inhibitory synapse located between the excitatory
synapse and the cell body is activated, the resulting outward current tends to hyperpo-
larize the membrane and, when it occurred concomitantly with an EPSP, it reduces the

Figure 2. Communication between neurons takes place via a specialized structure
called synapse. Action potentials in the presynaptic neuron can either generate or
inhibit action potentials in the postsynaptic neuron via synaptic potentials. The cleft
between the neurons is bridged either electrically (an electrical synapse) or chemically
via neurotransmitters (a chemical synapse). In the distal end of the nerve fiber there
are voltage-gated calcium channels along with voltage-gated sodium and potassium
channels. Action potentials in the nerve terminals cause an influx of Ca’* due to the
opening of calcium channels. The resultant increase in intracellular calcium is
responsible for the release of neurotransmitters that transfer the information to the
postsynaptic neuron during synaptic transmission.
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EPSP-evoked depolarization of the cell body and the axon hillock. Therefore, opposing
EPSPs and IPSPs “compete” for the control of the membrane potential in a non-linear
fashion. The integration of all excitatory and inhibitory synapses, that is, their non-linear
summation, may finally result in the eventual generation of an action potential that
propagates along the axon.

On average, every one of the hundreds of millions of neurons estimated to be present
in the rat brain receives about 6,000 synaptic contacts that can be either excitatory or
inhibitory. Therefore, the next level of nervous system organization applies to the
synaptic organization that involves patterns of interconnecting synapses. The simplest
of these patterns is formed by two or more synapses situated near each other and oriented
inthe same direction. A simple synapse may be defined as one in which an axon terminal
of neuronis paired with the dendrite of another (axodendritic), or its cell body (axosomatic).
However, most parts of the system are organized in more complex patterns. For example,
dendrodendritic synapses are those in which one dendrite signals uni-directionally with
another dendrite. Reciprocal synapses are those in which signaling is bi-directional for
dendrodendritic synapses. Axoaxonic synapses are formed when the axon terminal of
one neuron contacts with the initial segment or axon of the postsynaptic neuron. Serial
synapses are sequences of uni-directional signaling from more than two processes.
Examples are axodendrodendritic sequences, in which an axon signals a dendrite which
then signals another dendrite, and axoaxodendritic sequences in which an axon signals
another axon that signals a dendrite. These complex arrangements of synapses, which
constitute the microcircuit level of organization, presumably operate ina unified manner
inorderto process information (Kuno, 1995; Kandel etal., 2000). Insummary, the nervous
system is structured in a high degree of both morphological and functional complexity
presentinall the successive levels of organization, from molecular (e.g., specific receptor
expression and distribution) to cellular (e.g., morphological neuronal characteristics and
physiological phenotype of synapses) and supracellular levels (e.g., microcircuit func-
tioning and nuclei connections).

Neuroglial Networks

Neurons have long been known to signal to each other by various kinds of transmitter
substances. Recent data have revealed that glial activity is probably determined by
neuronal activity and that glial cells have the capacity to signal not only to each other,
but also back to neurons. Astrocytes are the most abundant cells in the brain, consti-
tuting over 50% of the total cell number in the cerebral cortex (Petersetal., 1991). Their
relative number is especially highin humans and other highly developed mammals. They
are recognized as star-shaped cells whose processes extend into the surrounding
neuropil, and they are extensively coupled inacellular network. They also are intimately
associated with neurons both structurally and functionally, indicating important roles
for the astroglial cells in brain function. Indeed, they are involved in neuronal guidance
during development (Hatten & Mason, 1990; Ullian, Sapperstein, Christopherson, &
Barres, 2001), neuronal survival (Banker, 1980; Pfrieger & Barres, 1995; Tsacopoulos &
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Magistretti, 1996) and differentiation (Takeshima, Shimoda, Sauve, & Commissiong,
1994), neuronal guidance (Bastiani & Goodman, 1986; Kuwada, 1986; Rakic, 1990), neurite
outgrowth (e.g., Johnson et al., 1989; Le Roux & Reh, 1994; Noble et al., 1984),
synaptogenesis (Slezak & Pfrieger, 2003; Ullian etal., 2001; Ullian, Christopherson, &
Barres, 2004), and control of the local extracellular concentration of ions (Largo, Cuevas,
Somjen, Martin del Rio, & Herreras, 1996; Orkand, Nicholls, & Kuffler, 1966) and
neurotransmitters (Largoetal., 1996; Mennerick & Zorumski, 1994; Szatkowski, Barbour,
& Attwell, 1990; Walz, 1989; Vernadakis, 1996). Morphologically, astrocytes are closely
associated with neurons. They can encase synaptic terminals, make extensive contact
with endothelial cells from capillaries, and are interconnected through gap junctions
(Ventura & Harris, 1999). Many of the ionic channels found in neurons (voltage-, ligand-
, and mechanically-activated channels) are also present in astrocytes (Barres, Chun, &
Corey, 1990; Sontheimer, 1994). Although the functional significance of these ionic
channels is not fully understood, data indicate that they have important functions. For
example, ionic channels constitute a prerequisite for astroglial extracellular buffering,
responsiveness to synaptic activity, and intercellular communication (see next section).

Astrocytes Support and Monitor Neuronal Activity

Many astrocytes have processes that contact the surfaces of blood vessels with their
“end-feet,” forming part of the blood-brain barrier together with the capillary endothe-
lium (Nedergaard, Ransom, & Goldman, 2003). Other processes extend to the neuronal
cell bodies, and the astrocytes thereby serve as a connecting link between the neurons
and the blood circulation (Figure 3). In addition to these vital extensions, astrocyte
processes also reach the ependymal cells, connecting them with the cerebral ventricular
system, while other processes extend to the brain surface to form expansions that
constitute the glial limiting membrane (Petersetal., 1991). Furthermore, other processes
closely approach the synaptic regions and ensheathe the synaptic clefts (Ventura &
Harris, 1999). Inview of the fact that astrocytes express a variety of ion channels, a large
number of neurotransmitter receptors, and several active release and uptake mechanisms
for neuroactive substances, this close proximity of astrocytes to synapses enables them
to communicate with neurons.

One of the first recognized roles of astrocytes is the metabolic support for neurons.
Glucose is taken up into the astroglia from the blood, transformed to glycogen, and
stored. When required, and especially upon demand during neuronal activity, the
astrocytes release lactate and other energy-rich compounds to be used as metabolic fuel
for the neurons (Figure 3). Neuron-glial interaction is vital to the energy metabolism of
the brain, and accumulating data indicate that cerebral energy metabolism is under
detailed regulation of neurotransmitters acting on these glial cells (Hamprecht &
Dringen, 1995; Magistretti etal., 1994; Tsacopoulos & Magistretti, 1996; Bernardinelli,
Magistretti, & Chatton, 2004; Pellerin & Magistretti, 2004). Metabolic inhibition of glial
cells reduces and modulates synaptic transmission, and the astrocytes have a verified
neuroprotective effect under conditions of metabolic stress (Takuma, Baba, & Matsuda,
2004), probably because their high tolerance for cellular stress such as hypoxia and
hypoglycemia is unique among the cells of the brain. A considerable amount of the
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energy generated is, however, used within the astrocyte itself to operate the membrane
pumps necessary for vital brain functions. lon buffering, glutamate uptake, and cell-
volume regulation are the highest metabolic priorities. Energy status also playsarole in
regulating intercellular communication (Hertz & Peng, 1992; Swanson & Choi, 1993;
Tsacopoulos & Magistretti, 1996).

Glutamate (Glu) is the most abundant excitatory neurotransmitter in the central nervous
system. Glutamatergic synaptic transmission is largely terminated by high affinity,
sodium-dependent transport of glutamate from the synaptic cleft (e.g., Bergles, Diamond,
& Jahr, 1999). Furthermore, Glu transporters also keep the extracellular Glu concentration
atlow levels (1to 3 mM), which is crucial because the well-known excitotoxic effects of
high levels of the ambient Glu (Choi & Rothman, 1990) (Figure 3). Both astroglial cells
and neurons possess similar, although not identical, Glu uptake carriers on their plasma
membranes. However, the capacity of neurons to take up Glu seems to be lower than that
of glia, even though the anatomy of the synaptic cleft might favor a neuronal removal of
Glu after its release from the presynaptic region. The uptake capacity of Glu by astroglia,
however, is considered to be sufficient to account for all Glu released by neurons,
although the relative contribution of neurons and glial cells to Glu uptake may vary
between different brain areas (Schousboe, 1981; Bergles etal., 1999).

Intercellular Astrocyte Communication

Recently, ithas become evident that some cell types, including astroglial cells, communi-
cate intercellularly viacomplex spatio-temporal calcium fluxes (Cornell-Bell, Finkbeiner,
Cooper, & Smith, 1990; Charles & Giaume, 2002). Intercellular Ca?* waves can be initiated
inastrocytes and endothelial cells by mechanical, chemical, or electrical stimuli. Stimu-
lation results in an increase in the intracellular Ca?* concentration, which is propagated
fromcell to cell (Figure 4) (Verkhartsky, Solovyeva, & Toescu, 2002; Charles & Giaume,
2002). Different stimuli, including several neurotransmitters, may induce intracellular
Ca?" increases that can propagate as Ca?" waves between astrocytes in cultured cells as
well as organotypic and acute brain slices (Cornell-Bell etal., 1990; Dani, Chernjavsky,
& Smith, 1992; Schipke, Boucsein, Ohlemeyer, Kirchhoff, & Kettenmann, 2002; Sul,
Orosz, Givens, & Haydon, 2004). These astrocyte Ca?* waves may extend for relatively
long distances (<500 um) at relatively low speed (~14 um/s) (Schipke et al., 2002).

The cellular mechanisms underlying astrocytic Ca?* wave propagation have been the
focus of several studies due to their possible important functions as a novel form of
cellular communication in the nervous system. Astrocytes express a wide range of
neurotransmitter receptors, and many of them are metabotropic. The activation of these
receptors elicit intracellular Ca?* elevations that result from the release of Ca?" from
intracellular stores, which are activated by elevations of the second messenger inositol-
1,4,5-trisphosphate (IP,). This messenger is generated as a consequence of the activity
of phospholipase C, whichinturnisactivated by certain G-protein-coupled metabotropic
receptors. Calcium waves were first thought to spread as a result of gap junction-
mediated diffusion of IP, between astrocytes (Sneyd, Charles, & Sanderson, 1994)
(Figure 4). Later studies indicated that in addition to diffusion of IP,, other mechanisms
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might underlie the propagation of astrocyte Ca?" waves, and the involvement of an
extracellular component in the intercellular Ca?* wave was suggested (Hassinger,
Guthrie, Atkinson, Bennett, & Kater, 1996), because Ca?* waves can pass frequently
between disconnected cells as long as the gap between them does not exceed ~120 um.
The extracellular componentis likely to be ATP that can be released from astrocytes. ATP
release appears to be an important component of long-range Ca?* signaling, whereas
shorter range signaling may be mediated by cellular coupling through gap junctions
(Figure 4) (Cotrinaetal., 1998; Guthrieetal., 1999; Charles & Giaume, 2002).

Therefore, our current knowledge indicates that astrocytes can promote long-distance
signaling from one to another neuronal network, and that this communication might take
place as long as astrocytes are communicated, and even if the two neuronal networks are
not coupled through synapses.

Astrocyte-Neuron Communication

Glial cells were classically thought to be non-excitable cells, because unlike neurons,
they do not show electrical excitability. However, glial cells possess a form of cellular
excitability thatis based on variations of the intracellular Ca?* concentration (for reviews
see Volterraetal., 2002). Indeed, a little more than a decade ago two pioneering studies

Figure 3. Astrocytes support and monitor neuronal activity. Astrocytes, which are in
key position between the capillaries and neurons, take up glucose from the blood, and
transform it to glycogen that serves as storage energy supply. Upon demand, metabolic
substrates, such as lactate or glutamine, are exported to neurons. On the other hand,
astrocytes control the extracellular levels of ions and neuroactive substances, such as
glutamate.
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performed on cultures’ cells showed that stimulation of an astrocyte, either mechanically
or with the neurotransmitter glutamate, caused the elevation of the astrocytic Ca?" that
subsequently may propagate nondecrementally to neighboring astrocytes in the form of
awave of elevated Ca?* that can extend for several hundreds of micrometers (Cornell-Bell
etal., 1990; Charles, Merrill, Dirksen, & Sanderson, 1991; Innocenti, Parpura, & Haydon,
2000; Newman & Zahs, 1997). Therefore, these Ca?* variations may serve as an intercel-
lular signal that can propagate between astrocytes at a relatively low speed (Schipke et
al., 2002), constituting a new type of long-range, slow intercellular communication in the
nervous system. In addition, studies performed in brain slices have demonstrated that
astrocytes from different brain regions show Ca?* elevations and oscillations that occur
spontaneously (Aguado, Espinosa-Parrilla, Carmona, & Soriano, 2002; Nett, Oloff, &
McCarthy, 2002; Parri, Gould, & Crunelli, 2001).

A great number of neuroactive substances including neurotransmitters have been
shown to elevate the intracellular Ca?* concentration in astrocytes (Figure 5) (Porter &
McCarthy, 1997; Verkhratsky, Orkand, & Kettenmann, 1998). Indeed, exogenous appli-
cation of glutamate (Porter & McCarthy, 1996), norepinephrine (Muydermanetal., 1998),
5-hydroxytryptamine (5-HT) (Hagberg, Blomstrand, Nilsson, Tamir, & Hansson, 1998),
histamine (Shelton & McCarthy, 2000), acetylcholine (Shelton & McCarthy, 2000;
Sharma & Vijayaraghavan, 2001; Araque, Martin, Perea, Arellano, & Buno, 2002), ATP
(Guthrieetal., 1999) and gamma-aminobutyricacid (GABA) (Kang, Jiang, Goldman, &
Nedergaard, 1998) may increase the internal Ca?* levels of glial cells through activation
of receptors expressed by astrocytes. Consistent with these findings, it has been
demonstrated that neurotransmitters released by synaptic terminals can elevate the
astrocyte [Ca*'], (Araqueetal., 2002; Bezzietal., 1998; Danietal., 1992; Kangetal., 1998;
Kulik, Haentzsch, Luckermann, Reichelt, & Ballanyi, 1999; Nettetal., 2002; Parri etal.,
2001; Pasti et al., 1997; Porter & McCarthy, 1996). Therefore, the astrocytic cellular
excitability, thatis, the astrocyte Ca?* levels, is under the control of the synaptic activity.

Furthermore, recent results obtained in rat hippocampus — a brain region thought to be
involvedin learning and memory processes — demonstrate that the astrocyte Ca?* signal
does not simply reflect synaptic activity, but that astrocytes display integrative prop-
erties for synaptic information processing (Perea & Araque, 2005). Indeed, we have
shown that astrocytes discriminate between the activity of different synaptic terminals
belonging to different axon pathways, and that the synaptic-evoked astrocyte Ca?*
signal can be bidirectionally modulated by interaction of different synaptic inputs, being
potentiated or depressed depending on the level of synaptic activity. We also have
demonstrated that this modulation controls the intracellular expansion of the Ca?* signal
and is due to the existence of cellular intrinsic properties in astrocytes. Taken together,
these results indicate that astrocytes are endowed with cellular computational charac-
teristics that integrate synaptic information (Perea & Araque, 2005). Therefore, in
addition to neurons, astrocytes also could be considered as cellular elements involved
in the information processing by the nervous system.

Glial cells may synthesize and release a great number of neuroactive substances, such
as glutamate, D-serine, TNFa, or ATP (Araque, Parpura, Sanzgiri, & Haydon, 1998a;
Araque, Sanzgiri, Parpura, & Haydon, 1998b; Araque, Li, Doyle, & Haydon, 2000; Araque
& Perea, 2005; Arcuino et al., 2002; Beattie et al., 2002; Coco et al., 2003; Haydon &

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



34 Martin & Araque

Figure 4. Astrocytes form a syncitium that exhibit a form of excitability based on
intracellular Ca’* variations. These Ca’* variations can propagate intercellularly to
adjacent astrocytes, forming a wave of elevated Ca’*. The astrocyte Ca’* waves are
mainly mediated by the release of ATP that, acting on purinergic receptors in the
adjacent astrocytes, stimulates the production of IP, which increase the intracellular
Ca’* through the activation of intracellular Ca®* stores. Upon Ca’* oscillations,
excitatory amino acids like glutamate and aspartate are released by astrocytes and
modulate synaptic activity. The information received might be integrated in the
astroglial network via the Ca’* signaling within the electrically coupled astroglial
network.

Araque, 2002; Newman, 2003a; Wolosker, Blackshaw, & Snyder, 1999; Zhangetal., 2003).
These transmitters — termed gliotransmitters when released by glial cells (Bezzi &
Volterra, 2001) — can serve as intercellular signals from glial cells that can signal back
to neurons, regulating the postsynaptic neuronal excitability and the neurotransmitter
release from presynaptic terminals (Figure 5) (for reviews see, e.g., Araque & Perea, 2004;
Auld & Robitaille, 2003; Newman, 2003b). Indeed, we demonstrated in cultured hippoc-
ampal cells that the amount of synaptic transmitter released when an action potential
reached the synaptic terminals was transiently reduced by stimuli that evoked Ca?"
elevations in astrocytes. Additionally, astrocyte Ca?* elevations induced a transient
increase in the frequency of the miniature postsynaptic currents (i.e., the unitary events
due to spontaneous transmitter release from presynaptic terminals that do not depend
on the generation of action potentials). These modulatory phenomena of the synaptic
transmission were mediated by glutamate that was released through a Ca?*-dependent
process from astrocytes and that activated either presynaptic metabotropic glutamate
receptors or NMDA receptors, respectively (Araque etal. 1998a, 1998b). Interestingly,
this astrocyte-induced glutamate-mediated modulation of synaptic transmission was
presentin both excitatory glutamatergic and inhibitory GABAergic synapses. Although
this general broad modulation of both types of synapses is likely to be more specifically
controlled in the brain, it suggests that different types of synapses may be under the
control of astrocytes. Glutamate released from astrocytes also has been shown to
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modulate synaptic transmission in more intact preparations. In the retina, it modulates
the light-evoked activity of the ganglion cells (Newman & Zahs, 1998), and in the
hippocampus, it potentiates inhibitory transmission (Kangetal., 1998; Liu, Xu, Arcuino,
Kang, & Nedergaard, 2004) and increases the probability of spontaneous excitatory
synaptic transmission (Fiacco & McCarthy, 2004).

Inaddition to glutamate, glial cells also may release other amino acids (such as aspartate
and taurine), neuropeptides, eicosanoids, steroids, and growth factors (for review, see
Bezzi & Volterra, 2001). Although most of these gliotransmitters might influence synaptic
transmission, this fact has only been demonstrated in a few cases. Besides glutamate,
D-Serine and ATP are probably the best-studied examples of gliotransmitters that can
modulate synaptic transmission (e.g., Boehning & Snyder, 2003; Koizumi, Fujishita,
Tsuda, Shigemoto-Mogami, & Inoue, 2003; Zhang etal., 2003; Miller, 2004).

Several studies have demonstrated that astrocytes also can modulate neuronal excitabil-
ity. Using cultures of rat hippocampal cells, we showed that elevations of astrocyte
intracellular Ca?* levels led to a Ca?*-dependent release of glutamate, which evoked
glutamate-dependent slow inward currents (SIC) in adjacent neurons by activation of
ionotropic glutamate receptors (Araque etal., 1998a, 1998b, 2000). This direct stimulation
of postsynaptic neurons by glutamate release from astrocytes can be observed as
neuronal membrane depolarizations that can trigger action potential discharges (Hassinger
etal., 1995; Araque etal., 1998a). Astrocyte-induced glutamate-mediated SIC in neurons
also have been demonstrated in acute thalamic (Parrietal., 2001) and hippocampal slices
(Angulo, Kozlov, Charpak, & Audinat, 2004; Fellinetal., 2004; Perea & Araque, 2004).
These neuronal SICs can occur synchronously in multiple neurons suggesting that they
may synchronize neuronal activity (Angulo et al., 2004; Fellin et al., 2004). Moreover,
astrocytes activated by a specific synapse can transfer information to neighboring
neurons and synapses because a single astrocyte can contact multiple neurons and can
eventually influence ~140.000 synapses (Ventura & Harris, 1999) (Figure 6). In addition,
the intercellular signaling between astrocytes through Ca?* waves may serve as a
mechanism for a long-range slower information transfer in the CNS, representing an
alternative parallel information pathway to the rapid action potential-based neuronal
communication.

In summary, astrocytes exhibit both a form of excitability based on variations of the
intracellular Ca?" concentration, they possess a form of intercellular communication
based on intercellular Ca?* waves, the astrocytic cellular excitability is triggered and
regulated by the synaptic activity, and, in turn, astrocytes release gliotransmitters that
modulate the neuronal electrical activity and the synaptic transmission. As a conse-
quence of the demonstration of these new forms of cellular signaling between astrocytes
and neurons supports the existence of new and complex information pathways in the
CNS, which are based on the existence of bidirectional communication between astro-
cytes and neurons, and which have relevant consequences on the cellular mechanisms
responsible for the information processing of the CNS.
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Figure 5. Schematic drawing illustrating the new concept of the synaptic physiology
— the tripartite synapse — where astrocytes play an active role by exchanging
information with the synaptic elements. Two pairs of neurons with pre- and post-
synaptic contact are shown, as well as an astrocyte in close proximity to the synapse.
During synaptic activity, neurotransmitters released form presynaptic terminals elicit
postsynaptic potentials. The neurotransmitters eventually reach the astrocytic
membrane, activating receptors that increase astrocytic Ca’* levels through the
release of Ca’* from the internal stores. Elevated astrocytic Ca’” may evoke the release
of the neuroactive substances such as the chemical transmitter glutamate, which can
modulate the synapse transmission.
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Future Trends

Neurobiological modeling has the goal to develop models of artificial neuronal network.
In this context, the knowledge of the exact cellular properties of the nervous system is
essential. The last few decades have produced a vast amount of knowledge about the
function of the nervous system, mostly concerning the function of neurons. Much more
recently, the possible importance of astroglial cells in the biological neuronal network
hasemerged. One of the most novel and exciting areas of neuroscience has emerged after
the demonstration of the existence of intercellular astrocyte communication, which may
represent a novel extraneuronal communication system, possibly with information
processing capacity. Furthermore, the existence of reciprocal communication between
astrocytes and neurons adds further complexity to the communication pathways in the
nervous system. Therefore, future developments concerning artificial neuronal networks
might be improved by including the possibility that an artificial glial network would
provide a parallel super-regulatory system. Therefore, three different components of the
overall nervous system must be considered: the astrocyte network, the network of
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neurons, and, finally, the neuroglial network that is based on the reciprocal communica-
tion between neuron and astrocyte networks. These networks are based on different and
successive organizational levels in the brain, from molecular to cellular and supracellular
levels.

Althoughagreatadvance has occurred in the last few years in our understanding of basic
cellular and molecular processes in the astrocyte-neuron communication, many ques-
tions exist about the specific functional roles as well as the mechanisms by which glial
cells might participate in information processing in the CNS. For example, it is well
established at the synaptic level that astrocytes respond to a neurotransmitter signal
from a nearby neuron and that they can signal back to neurons through the release of
gli