
Network
Programming
with Go

Essential Skills for Using and
Securing Networks
—
Jan Newmarch

Network Programming
with Go

Essential Skills for Using and
Securing Networks

Jan Newmarch

Network Programming with Go: Essential Skills for Using and Securing Networks

Jan Newmarch
Oakleigh, Victoria
Australia

ISBN-13 (pbk): 978-1-4842-2691-9 ISBN-13 (electronic): 978-1-4842-2692-6
DOI 10.1007/978-1-4842-2692-6

Library of Congress Control Number: 2017941517

Copyright © 2017 by Jan Newmarch

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Technical Reviewer: Ronald Petty
Coordinating Editor: Mark Powers
Copy Editor: Kezia Endsley
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover image designed by Freepik

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM
Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/9781484226919. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
www.apress.com/9781484226919
http://www.apress.com/source-code

iii

Contents at a Glance

About the Author ���xvii

About the Technical Reviewer ��xix

Preface ���xxi

 ■Chapter 1: Architecture ��� 1

 ■Chapter 2: Overview of the Go Language �� 21

 ■Chapter 3: Socket-Level Programming �� 29

 ■Chapter 4: Data Serialization ��� 57

 ■Chapter 5: Application-Level Protocols ��� 87

 ■Chapter 6: Managing Character Sets and Encodings �� 107

 ■Chapter 7: Security �� 121

 ■Chapter 8: HTTP ��� 137

 ■Chapter 9: Templates ��� 161

 ■Chapter 10: A Complete Web Server �� 175

 ■Chapter 11: HTML �� 193

 ■Chapter 12: XML �� 199

 ■Chapter 13: Remote Procedure Call��� 209

 ■Chapter 14: REST ��� 221

 ■Chapter 15: WebSockets �� 247

Afterword �� 267

Index ��� 269

v

Contents

About the Author ���xvii

About the Technical Reviewer ��xix

Preface ���xxi

 ■Chapter 1: Architecture ��� 1

Protocol Layers ��� 1

ISO OSI Protocol �� 2

OSI Layers ��� 2

TCP/IP Protocol ��� 3

Some Alternative Protocols �� 3

Networking ��� 3

Gateways �� 4

Packet Encapsulation ��� 4

Connection Models ��� 5

Connection Oriented ��� 5

Connectionless ��� 5

Communications Models �� 5

Message Passing �� 5

Remote Procedure Call ��� 6

Distributed Computing Models ��� 7

Client-Server System ��� 8

Client-Server Application�� 8

Server Distribution ��� 9

 ■ Contents

vi

Communication Flows �� 9

Synchronous Communication ��� 10

Asynchronous Communication ��� 10

Streaming Communication ��� 10

Publish/Subscribe ��� 10

Component Distribution �� 10

Gartner Classification ��� 11

Three-Tier Models �� 13

Fat versus Thin ��� 14

Middleware Model �� 14

Middleware Examples �� 14

Middleware Functions �� 15

Continuum of Processing ��� 15

Points of Failure ��� 16

Acceptance Factors �� 16

Transparency �� 17

Access Transparency �� 17

Location Transparency �� 17

Migration Transparency �� 17

Replication Transparency �� 17

Concurrency Transparency ��� 17

Scalability Transparency ��� 17

Performance Transparency ��� 18

Failure Transparency �� 18

Eight Fallacies of Distributed Computing ��� 18

Fallacy: The Network Is Reliable ��� 18

Fallacy: Latency Is Zero �� 19

Fallacy: Bandwidth Is Infinite�� 19

Fallacy: The Network Is Secure �� 19

 ■ Contents

vii

Fallacy: Topology Doesn’t Change �� 19

Fallacy: There Is One Administrator �� 19

Fallacy: Transport Cost Is Zero �� 20

Fallacy: The Network Is Homogeneous ��� 20

Conclusion �� 20

 ■Chapter 2: Overview of the Go Language �� 21

Types �� 22

Slices and Arrays �� 22

Structures ��� 22

Pointers �� 23

Functions �� 23

Maps ��� 24

Methods �� 24

Multi-Threading �� 25

Packages �� 25

Type Conversion ��� 25

Statements ��� 25

GOPATH ��� 25

Running Go Programs �� 26

Standard Libraries �� 26

Error Values �� 26

Conclusion �� 27

 ■Chapter 3: Socket-Level Programming �� 29

The TCP/IP Stack �� 29

IP Datagrams �� 30

UDP ��� 30

TCP ��� 30

Internet Addresses ��� 30

IPv4 Addresses ��� 31

IPv6 Addresses ��� 31

 ■ Contents

viii

IP Address Type �� 32

The IPMask Type ��� 33

The IPAddr Type �� 36

Host Lookup �� 37

Services�� 38

Ports ��� 38

The TCPAddr Type ��� 39

TCP Sockets ��� 40

TCP Client ��� 40

A Daytime Server �� 42

Multi-Threaded Server�� 44

Controlling TCP Connections �� 46

Timeout ��� 46

Staying Alive ��� 46

UDP Datagrams �� 47

Server Listening on Multiple Sockets ��� 49

The Conn, PacketConn, and Listener Types �� 49

Raw Sockets and the IPConn Type ��� 52

Conclusion �� 55

 ■Chapter 4: Data Serialization ��� 57

Structured Data �� 57

Mutual Agreement �� 59

Self-Describing Data �� 59

ASN�1 �� 60

ASN�1 Daytime Client and Server ��� 66

JSON��� 68

A Client and Server ��� 72

The Gob Package �� 75

A Client and Server ��� 78

 ■ Contents

ix

Encoding Binary Data as Strings �� 81

Protocol Buffers �� 83

Installing and Compiling Protocol Buffers �� 84

The Compiled personv3�pb�go File ��� 84

Using the Compiled Code�� 85

Conclusion �� 86

 ■Chapter 5: Application-Level Protocols ��� 87

Protocol Design �� 87

Why Should You Worry? �� 88

Version Control ��� 88

The Web �� 89

Message Format��� 90

Data Format�� 91

Byte Format �� 91

Character Format �� 92

A Simple Example �� 92

A Standalone Application �� 93

The Client-Server Application ��� 94

The Client Side �� 94

Alternative Presentation Aspects �� 95

The Server Side �� 95

Protocol: Informal ��� 95

Text Protocol ��� 96

Server Code �� 97

Client Code ��� 99

Textproto Package �� 101

State Information ��� 101

Application State Transition Diagram ��� 103

Client State Transition Diagrams �� 104

 ■ Contents

x

Server State Transition Diagrams ��� 105

Server Pseudocode ��� 105

Conclusion �� 106

 ■Chapter 6: Managing Character Sets and Encodings �� 107

Definitions �� 108

Character �� 108

Character Repertoire/Character Set ��� 108

Character Code ��� 108

Character Encoding �� 108

Transport Encoding ��� 109

ASCII ��� 109

ISO 8859 ��� 111

Unicode �� 111

UTF-8, Go, and Runes ��� 112

UTF-8 Client and Server ��� 112

ASCII Client and Server ��� 113

UTF-16 and Go �� 113

Little-Endian and Big-Endian �� 113

UTF-16 Client and Server ��� 114

Unicode Gotchas �� 116

ISO 8859 and Go ��� 117

Other Character Sets and Go �� 119

Conclusion �� 119

 ■Chapter 7: Security �� 121

ISO Security Architecture ��� 121

Functions and Levels �� 122

Mechanisms ��� 123

Data Integrity �� 124

Symmetric Key Encryption ��� 126

Public Key Encryption ��� 127

 ■ Contents

xi

X�509 Certificates ��� 129

TLS ��� 132

A Basic Client �� 132

Server Using a Self-Signed Certificate ��� 133

Conclusion �� 136

 ■Chapter 8: HTTP ��� 137

URLs and Resources �� 137

I18n ��� 137

HTTP Characteristics �� 138

Versions �� 138

HTTP 0�9 ��� 138

HTTP 1�0 ��� 139

HTTP 1�1 ��� 140

HTTP/2 �� 141

Simple User Agents �� 141

The Response Type ��� 141

The HEAD Method ��� 142

The GET Method ��� 143

Configuring HTTP Requests �� 145

The Client Object �� 147

Proxy Handling ��� 149

Simple Proxy ��� 149

Authenticating Proxy �� 151

HTTPS Connections by Clients �� 153

Servers ��� 155

File Server �� 155

Handler Functions��� 156

Bypassing the Default Multiplexer �� 158

HTTPS ��� 159

Conclusion �� 160

 ■ Contents

xii

 ■Chapter 9: Templates ��� 161

Inserting Object Values ��� 161

Using Templates ��� 162

Pipelines ��� 164

Defining Functions ��� 165

Variables ��� 167

Conditional Statements �� 168

The HTML / Template Package �� 173

Conclusion �� 173

 ■Chapter 10: A Complete Web Server �� 175

Browser Site Diagram �� 175

Browser Files ��� 177

Basic Server ��� 177

The listFlashCards Function ��� 179

The manageFlashCards Function ��� 181

The Chinese Dictionary �� 181

The Dictionary Type ��� 182

Flashcard Sets �� 183

Fixing Accents �� 184

The ListWords Function �� 187

The showFlashCards Function ��� 189

Presentation on the Browser �� 191

Running the Server �� 191

Conclusion �� 191

 ■Chapter 11: HTML �� 193

The Go HTML/Template Package �� 194

Tokenizing HTML �� 195

XHTML/HTML �� 197

 ■ Contents

xiii

JSON��� 198

Conclusion �� 198

 ■Chapter 12: XML �� 199

Parsing XML ��� 200

The StartElement Type �� 200

The EndElement Type ��� 200

The CharData Type �� 200

The Comment Type ��� 200

The ProcInst Type ��� 201

The Directive Type �� 201

Unmarshalling XML �� 203

Marshalling XML ��� 206

XHTML �� 207

HTML �� 207

Conclusion �� 207

 ■Chapter 13: Remote Procedure Call��� 209

Go’s RPC ��� 210

HTTP RPC Server �� 212

HTTP RPC Client �� 213

TCP RPC Server �� 214

TCP RPC Client �� 216

Matching Values ��� 217

JSON��� 217

JSON RPC Server �� 218

JSON RPC Client ��� 219

Conclusion �� 220

 ■Chapter 14: REST ��� 221

URIs and Resources ��� 221

Representations ��� 222

 ■ Contents

xiv

REST Verbs ��� 223

The GET Verb �� 223

The PUT Verb �� 223

The DELETE Verb ��� 224

The POST Verb �� 224

No Maintained State ��� 224

HATEOAS �� 224

Representing Links ��� 225

Transactions with REST �� 226

The Richardson Maturity Model ��� 227

Flashcards Revisited �� 228

URLs ��� 228

The Demultiplexer (Demuxer) ��� 229

Content Negotiation �� 230

GET / ��� 232

POST / ��� 233

Handling Other URLs �� 234

The Complete Server �� 234

Client �� 240

Using REST or RPC ��� 245

Conclusion �� 245

 ■Chapter 15: WebSockets �� 247

WebSockets Server �� 248

The Go Sub-Repository Package �� 248

The Message Object ��� 248

The JSON Object ��� 251

The Codec Type ��� 254

WebSockets Over TLS ��� 257

WebSockets in an HTML Page �� 259

 ■ Contents

xv

The Gorilla Package �� 263

Echo Server �� 264

Echo Client �� 265

Conclusion �� 266

Afterword �� 267

Index ��� 269

xvii

About the Author

Jan Newmarch is head of ICT (higher education) at Box Hill Institute, adjunct
professor at Canberra University, and adjunct lecturer in the School of
Information Technology, Computing and Mathematics at Charles Sturt
University. He is interested in more aspects of computing than he has time to
pursue, but the major thrust over the last few years has developed from user
interfaces under UNIX into Java, the Web, and then into general distributed
systems. Jan developed a number of publicly available software systems in
these areas. For the last few years, he has been looking at sound for Linux
systems and programming the Raspberry Pi’s GPU. He is now exploring
aspects of the IoT. He lives in Melbourne, Australia and enjoys the food and
culture there, but is not so impressed by the weather.

xix

About the Technical Reviewer

Ronald Petty, M.B.A., M.S. is the founder of Minimum Distance LLC, a
management consulting firm based in San Francisco. He spends his time
helping technology-based startups do the right thing. He is also an
instructor at UC Berkeley Extension.

xxi

Preface

It’s always fun to learn a new programming language, especially when it turns out to be a major one. Prior
to the release of Go in 2009, I was teaching a Master’s level subject in network programming at Monash
University. It’s good to have a goal when learning a new language, but this time, instead of building yet
another wine cellar program, I decided to orient my lecture notes around Go instead of my (then) standard
delivery vehicle of Java.

The experiment worked well: apart from the richness of the Java libraries that Go was yet to match, all
the programming examples transferred remarkably well, and in many cases were more elegant than the
original Java programs.

This book is the result. I have updated it as Go has evolved and as new technologies such as HTTP/2
have arisen. But if it reads like a textbook, well, that is because it is one. There is a large body of theoretical
and practical concepts involved in network programming and this book covers some of these as well as the
practicalities of building systems in Go.

In terms of language popularity, Go is clearly rising. It has climbed to 16th in the TIOBE index, is 18th
in the PYPL (Popularity of Programming Language), and is 15th in the RedMonk Programming Language
rankings. It is generally rated as one of the fastest growing languages.

There is a growing community of developers both of the core language and libraries and of the
independent projects. I have tried to limit the scope of this book to the standard libraries only and to the
“sub-repositories” of the Go tree. While this eliminates many excellent projects that no doubt make many
programming tasks easier, restricting the book to the official Go libraries provides a clear bound.

This book assumes a basic knowledge of Go. The focus is on using Go to build network applications,
not on the basics of the language. Network applications are different than command-line applications,
are different than applications with a graphical user interface, and so on. So the first chapter discusses
architectural aspects of network programs. The second chapter is an overview of the features of Go that we
use in this book. The third chapter on sockets covers the Go version of the basics underlying all
TCP/IP systems. Chapters 4, 5, and 6 are more unusual in network programming books. They cover the
topics of what representations of data will be used, how a network interaction will proceed, and for text,
which language formats are used. Then in Chapter 7, we look at the increasingly important topic of security.
In Chapter 8, we look at one of the most common application layer protocols in use, HTTP. The next four
chapters are about topics related to HTTP and common data formats carried above HTTP—HTML and
XML. In Chapter 13, we look at an alternative approach to network programming, remote procedure calls.
Chapters 14 and 15 consider further aspects of network programming using HTTP.

http://dx.doi.org/10.1007/978-1-4842-2692-6_4
http://dx.doi.org/10.1007/978-1-4842-2692-6_5
http://dx.doi.org/10.1007/978-1-4842-2692-6_6
http://dx.doi.org/10.1007/978-1-4842-2692-6_7
http://dx.doi.org/10.1007/978-1-4842-2692-6_8
http://dx.doi.org/10.1007/978-1-4842-2692-6_13
http://dx.doi.org/10.1007/978-1-4842-2692-6_14
http://dx.doi.org/10.1007/978-1-4842-2692-6_15

1© Jan Newmarch 2017
J. Newmarch, Network Programming with Go, DOI 10.1007/978-1-4842-2692-6_1

CHAPTER 1

Architecture

This chapter covers the major architectural features of distributed systems. You can’t build a system without
some idea of what you want to build. And you can’t build it if you don't know the environment in which it
will work. GUI programs are different than batch processing programs; games programs are different than
business programs; and distributed programs are different than standalone programs. They each have their
approaches, their common patterns, the problems that typically arise, and the solutions that are often used.

This chapter covers the high-level architectural aspects of distributed systems. There are many ways of
looking at such systems, and many of these are dealt with.

Protocol Layers
Distributed systems are hard. There are multiple computers involved, which have to be connected in some
way. Programs have to be written to run on each computer in the system and they all have to cooperate to
get a distributed task done.

The common way to deal with complexity is to break it down into smaller and simpler parts. These
parts have their own structure, but they also have defined means of communicating with other related parts.
In distributed systems, the parts are called protocol layers and they have clearly defined functions. They
form a stack, with each layer communicating with the layer above and the layer below. The communication
between layers is defined by protocols.

Network communications requires protocols to cover high-level application communication all the way
down to wire communication and the complexity handled by encapsulation in protocol layers.

Chapter 1 ■ arChiteCture

2

ISO OSI Protocol
Although it was never properly implemented, the OSI (Open Systems Interconnect) protocol has been a
major influence in ways of talking about and influencing distributed systems design. It is commonly given as
shown in Figure 1-1.

OSI Layers
The function of each layer from bottom to top is as follows:

•	 The Physical layer conveys the bit stream using electrical, optical, or radio
technologies.

•	 The Data link layer puts the information packets into network frames for
transmission across the physical layer, and back into information packets.

•	 The Network layer provides switching and routing technologies.

•	 The Transport layer provides transparent transfer of data between end systems and
is responsible for end-to-end error recovery and flow control.

•	 The Session layer establishes, manages, and terminates connections between
applications.

•	 The Presentation layer provides independence from differences in data
representation (e.g., encryption).

•	 The Application layer supports application and end-user processes.

Application

Presentation

Session

Transport

Network

Data Link

Physical

Application

Presentation

Session

Transport

Network

Data Link

Physical

Figure 1-1. The Open Systems Interconnect protocol

Chapter 1 ■ arChiteCture

3

TCP/IP Protocol
While the OSI model was being argued, debated, partly implemented, and fought over, the DARPA Internet
research project was busy building the TCP/IP protocols. These have been immensely successful and have
led to The Internet (with capitals). This is a much simpler stack, as shown in Figure 1-2.

Some Alternative Protocols
Although it almost seems like it, the TCP/IP protocols are not the only ones in existence and in the long run
may not even be the most successful. Wikipedia’s list of network protocols (see https://en.wikipedia.
org/wiki/List_of_network_protocols_(OSI_model)) has a huge number more, at each of the ISO layers.
Many of these are obsolete or of little use, but due to advances in technology in all sorts of areas—such as the
Internet in Space and the Internet of Things—there will always be room for new protocols.

The focus in this book is on the TCP/IP (including UDP) layer, but you should be aware that there are
other ones.

Networking
A network is a communications system for connecting end systems called hosts. The mechanisms of
connection might be copper wire, Ethernet, fiber optic, or wireless, but that won’t concern us here. A local
area network (LAN) connects computers that are close together, typically belonging to a home, small
organization, or part of a larger organization.

A Wide Area Network (WAN) connects computers across a larger physical area, such as between cities.
There are other types as well, such as MANs (Metropolitan Area Network), PANs (Personal Area Networks),
and even BANs (Body Area Network).

An internet is a connection of two or more distinct networks, typically LANs or WANs. An intranet is an
internet with all networks belonging to a single organization.

There are significant differences between an internet and an intranet. Typically, an intranet will be
under a single administrative control, which will impose a single set of coherent policies. An internet, on the
other hand, will not be under the control of a single body, and the controls exercised over different parts may
not even be compatible.

application

TCP UDP

IP

h/w interface

application OSI 5−7

OSI 4

OSI 3

OSI 1−2

Figure 1-2. The TCP/IP protocols

https://en.wikipedia.org/wiki/List_of_network_protocols_(OSI_model
https://en.wikipedia.org/wiki/List_of_network_protocols_(OSI_model

Chapter 1 ■ arChiteCture

4

A trivial example of such differences is that an intranet will often be restricted to computers by a small
number of vendors running a standardized version of a particular operating system. On the other hand, an
internet will often have a smorgasbord of different computers and operating systems.

The techniques of this book are applicable to internets. They are also valid with intranets, but there you
will also find specialized, non-portable systems.

And then there is the “mother” of all internets: The Internet. This is just a very, very large internet that
connects us to Google, my computer to your computer, and so on.

Gateways
A gateway is a generic term for an entity used to connect two or more networks. A repeater operates at
the physical level and copies information from one subnet to another. A bridge operates at the data link
layer level and copies frames between networks. A router operates at the network level and not only moves
information between networks but also decides on the route.

Packet Encapsulation
The communication between layers in either the OSI or the TCP/IP stacks is done by sending packets of
data from one layer to the next, and then eventually across the network. Each layer has administrative
information that it has to keep about its own layer. It does this by adding header information to the packet it
receives from the layer above, as the packet passes down. On the receiving side, these headers are removed
as the packet moves up.

For example, the TFTP (Trivial File Transfer Protocol) moves files from one computer to another. It uses
the UDP protocol on top of the IP protocol, which may be sent over Ethernet. This looks like the diagram
shown in Figure 1-3.

ethernet
header

IP
header

UDP
header

TFTP
header

data

IP
header

UDP
header

TFTP
header

data

UDP
header

TFTP
header

data

TFTP
header

data

data

Figure 1-3. The TFTP (Trivial File Transfer Protocol)

Chapter 1 ■ arChiteCture

5

The packet transmitted over Ethernet is of course the bottom one.

Connection Models
In order for two computers to communicate, they must set up a path whereby they can send at least one
message in a session. There are two major models for this:

•	 Connection oriented

•	 Connectionless

Connection Oriented
A single connection is established for the session. Two-way communications flow along the connection. When
the session is over, the connection is broken. The analogy is to a phone conversation. An example is TCP.

Connectionless
In a connectionless system, messages are sent independent of each other. Ordinary mail is the analogy.
Connectionless messages may arrive out of order. An example is the IP protocol. UDP is a connectionless
protocol above IP and is often used as an alternative to TCP, as it is much lighter weight.

Connection-oriented transports may be established on top of connectionless ones—TCP over IP.
Connectionless transports may be established on top of connection-oriented ones—HTTP over TCP.

There can be variations on these. For example, a session might enforce messages arriving, but might not
guarantee that they arrive in the order sent. However, these two are the most common.

Communications Models
In a distributed system there will be many components running that have to communicate with each other.
There are two primary models for this, message passing and remote procedure calls.

Message Passing
Some non-procedural languages are built on the principle of message passing. Concurrent languages often
use such a mechanism, and the most well known example is probably the UNIX pipeline. The UNIX pipeline
is a pipeline of bytes, but this is not an inherent limitation: Microsoft’s PowerShell can send objects along
its pipelines, and concurrent languages such as Parlog can send arbitrary logic data structures in messages
between concurrent processes.

Message passing is a primitive mechanism for distributed systems. Set up a connection and pump some
data down it. At the other end, figure out what the message was and respond to it, possibly sending messages
back. This is illustrated in Figure 1-4.

Chapter 1 ■ arChiteCture

6

Event-driven systems act in a similar manner. At a low level, node.js runs an event loop waiting for I/O
events, dispatching handlers for these events and responding. At a higher level, most user interface systems
use an event loop waiting for user input, while in the networking world, Ajax uses the XMLHttpRequest to
send and receive requests.

Remote Procedure Call
In any system, there is a transfer of information and flow control from one part of the system to another. In
procedural languages, this may consist of the procedure call, where information is placed on a call stack and
then control flow is transferred to another part of the program.

Even with procedure calls, there are variations. The code may be statically linked so that control
transfers from one part of the program’s executable code to another part. Due to the increasing use of library
routines, it has become commonplace to have such code in dynamic link libraries (DLLs), where control
transfers to an independent piece of code.

DLLs run in the same machine as the calling code. it is a simple (conceptual) step to transfer control to
a procedure running in a different machine. The mechanics of this are not so simple! However, this model
of control has given rise to the remote procedure call (RPC), which is discussed in much detail in a later
chapter. This is illustrated by Figure 1-5.

Requestor Responder

Send(Msg, Responder)

Send(Reply, Requestor)

Receive(Msg, Requestor)

Receive(Reply, Responder)

Figure 1-4. The message passing communications model

Chapter 1 ■ arChiteCture

7

There are many examples of this: some based on particular programming languages such as the Go
rpc package (discussed in Chapter 13) or RPC systems covering multiple languages such as SOAP and
Google’s grpc.

Distributed Computing Models
At the highest level, we could consider the equivalence or the non-equivalence of components of a
distributed system. The most common occurrence is an asymmetric one: a client sends requests to a server,
and the server responds. This is a client-server system.

If both components are equivalent, both able to initiate and to respond to messages, then we have a
peer-to-peer system. Note that this is a logical classification: one peer may be a 16,000 core supercomputer,
the other might be a mobile phone. But if both can act similarly, then they are peers.

These are illustrated as shown in Figure 1-6.

Client Process
main()
{

}

rpc(a, b, c)

send(x=a, y=b)

receive(x, y)

send(z)

rpc(x, y, z)
{
 ...
}

Server Process

receive(c=z)

Figure 1-5. The remote procedure call communications model

client-server A B

peer-to-peer A A’

Figure 1-6. Client-sever versus peer-to-peer systems

http://dx.doi.org/10.1007/978-1-4842-2692-6_13

Chapter 1 ■ arChiteCture

8

Client-Server System
Another view of a client-server system is shown in Figure 1-7.

This view may be held by a developer who needs to know the components of a system. It is also the view
that may be held by a user: a user of a browser knows it is running on her system but is communicating with
servers elsewhere.

Client-Server Application
Some applications may be seamlessly distributed, with the user unaware that it is distributed. Users will see
their view of the system, as shown in Figure 1-8.

Client
request

response

Server

Client
process

Server
process

System System

hardware hardware

User

Figure 1-7. The client-server system

Client Server

Client
process

System

hardware hardware

Process

System

Application

Figure 1-8. The user’s view of the system

Chapter 1 ■ arChiteCture

9

Server Distribution
A client-server system need not be simple. The basic model is a single client, single server system, as shown
in Figure 1-9.

However, you can also have multiple clients, single server, as illustrated in Figure 1-10.

In this system, the master receives requests and instead of handling them one at a time itself, it passes
them to other servers to handle. This is a common model when concurrent clients are possible.

There are also single client, multiple servers, as shown in Figure 1-11.

This type of system occurs frequently when a server needs to act as a client to other servers, such as
a business logic server getting information from a database server. And of course, there could be multiple
clients with multiple servers.

Communication Flows
The previous diagrams have shown the connection views between high-level components of a system. Data
will flow between these components and it can do so in multiple ways, discussed in the following sections.

Client Server

Figure 1-9. The single client, single server system

Client ClientMaster

Slave Slave

Figure 1-10. The multiple clients, single server system

Client Server Server

Figure 1-11. The single client, multiple servers system

Chapter 1 ■ arChiteCture

10

Synchronous Communication
In a synchronous communication, one party will send a message and block, waiting for a reply. This is often
the simplest model to implement and is just relies on blocking I/O. However, there may need to be a timeout
mechanism in case some error means that no reply will ever be sent.

Asynchronous Communication
In asynchronous communication, one party sends a message and instead of waiting for a reply carries
on with other work. When a reply eventually comes, it is handled. This may be in another thread or by
interrupting the current thread. Such applications are harder to build but are much more flexible to use.

Streaming Communication
In streaming communication, one party sends a continuous stream of messages. Online video is a good
example. The streaming may need to be handled in real time, may or may not tolerate losses, and can be
one-way or allow reverse communication as in control messages.

Publish/Subscribe
In pub/sub systems, parties subscribe to topics and others post to them. This can be on a small or massive
scale, as demonstrated by Twitter.

Component Distribution
A simple but effective way of decomposing many applications is to consider them as made up of three parts:

•	 Presentation component

•	 Application logic

•	 Data access

The presentation component is responsible for interactions with the user, both displaying data and
gathering input. It may be a modern GUI interface with buttons, lists, menus, etc., or an older command-line
style interface, asking questions and getting answers. It could also encompass wider interaction styles, such
as the interaction with physical devices such as a cash register, ATM, etc. It could also cover the interaction
with a non-human user, as in a machine-to-machine system. The details are not important at this level.

The application logic is responsible for interpreting the users’ responses, for applying business rules, for
preparing queries, and for managing responses from the third component.

The data access component is responsible for storing and retrieving data. This will often be through a
database, but not necessarily.

Chapter 1 ■ arChiteCture

11

Gartner Classification
Based on this threefold decomposition of applications, Gartner considered how the components might be
distributed in a client-server system. They came up with five models, shown in Figure 1-12.

Example: Distributed Database
•	 Gartner classification: 1 (see Figure 1-13)

Modern mobile phones make good examples of this. Due to limited memory, they may store a small
part of a database locally so that they can usually respond quickly. However, if data is required that is not
held locally, then a request may be made to a remote database for that additional data.

Google maps is another good example. All of the maps reside on Google’s servers. When one is
requested by a user, the “nearby” maps are also downloaded into a small database in the browser. When the
user moves the map a little bit, the extra bits required are already in the local store for quick response.

presentation

logic
logic

logic

logic

logic

logic
data

data

distributed
data

distributed
transaction

distributed
presentation

remote
data

remote
presentation

data data

data

data

presentation presentation presentation presentation

presentation

Figure 1-12. Gartner’s five models

presentation

logic

data

data

Figure 1-13. Gartner example 1

Chapter 1 ■ arChiteCture

12

Example: Network File Service
Gartner classification 2 allows remote clients access to a shared file system, as shown in Figure 1-14.

There are many examples of such systems: NFS, Microsoft shares, DCE, etc.

Example: Web
An example of Gartner classification 3 is the Web with Java applets or JavaScript, and CGI scripts or similar
(Ruby on Rails, etc.) on the server side. This is a distributed hypertext system, with many additional
mechanisms, as illustrated in Figure 1-15.

Example: Terminal Emulation
An example of Gartner classification 4 is terminal emulation. This allows a remote system to act as a normal
terminal on a local system, as shown in Figure 1-16.

Telnet is the most common example of this.

presentation

logic

logic

data

Figure 1-15. Gartner example 3

presentation

logic

data

Figure 1-16. Gartner example 4

presentation

logic

data

Figure 1-14. Gartner example 2

Chapter 1 ■ arChiteCture

13

Example: Secure Shell
The secure shell on UNIX allows you to connect to a remote system, run a command there, and display the
presentation locally. The presentation is prepared on the remote machine and displayed locally. Under
Windows, remote desktop behaves similarly. See Figure 1-17.

Three-Tier Models
Of course, if you have two tiers, then you can have three, four, or more. Some of the three-tier possibilities are
shown in Figure 1-18.

The modern Web is a good example of the rightmost of these. The backend is made up of a database,
often running stored procedures to hold some of the database logic. The middle tier is an HTTP server such
as Apache running PHP scripts (or Ruby on Rails, or JSP pages, etc.). This will manage some of the logic and
will have data such as HTML pages stored locally. The frontend is a browser to display the pages, under the
control of some JavaScript. In HTML 5, the frontend may also have a local database.

presentation

presentation

logic

data

Figure 1-17. Gartner example 4

data

data

data

data data data

logic

logic logic logic logic

logiclogic

logic

presentation presentation presentation presentation

Figure 1-18. Three-tier models

Chapter 1 ■ arChiteCture

14

Fat versus Thin
A common labeling of components is “fat” or “thin”. Fat components take up lots of memory and do complex
processing. Thin components on the other hand, do little of either. There don't seem to be any “normal” size
components, only fat or thin!

Fatness or thinness is a relative concept. Browsers are often labeled as thin because all they do is display
web pages. However, Firefox on my Linux box takes nearly half a gigabyte of memory, which I don't regard as
small at all!

Middleware Model
Middleware is the “glue” connecting components of a distributed system. The middleware model is shown
in Figure 1-19.

Components of middleware include the following:

•	 The network services such as TCP/IP

•	 The middleware layer is application-independent software using the network services

•	 Database access

•	 Managers of services such as identity

•	 Security modules

Middleware Examples
Examples of middleware include the following:

•	 Primitive services such as terminal emulators, file transfer, and e-mail

•	 Basic services such as RPC

•	 Integrated services such as DCE (Distributed Computing Environment)

Client processes

Client
middleware

Local
services

Network
services

O/S and h/w O/S and h/w

Exchange
protocol

network protocol

Server processes

Server
middleware

Local
services

Network
services

Figure 1-19. The middleware model

Chapter 1 ■ arChiteCture

15

•	 Distributed object services such as CORBA and OLE/ActiveX

•	 Mobile object services such as RMI and Jini

•	 The World Wide Web

Middleware Functions
The functions of middleware can include these:

•	 Initiation of processes at different computers

•	 Session management

•	 Directory services to allow clients to locate servers

•	 Remote data access

•	 Concurrency control to allow servers to handle multiple clients

•	 Security and integrity

•	 Monitoring

•	 Termination of processes, both local and remote

Continuum of Processing
The Gartner model is based on a breakdown of an application into the components of presentation,
application logic, and data handling. A finer grained breakdown is illustrated in Figure 1-20.

TYPE ACTIVITY DIVISION

Interactive
processing

Application
processing

Database
processing

keyboard/mouse input

screen handling

graphics/sound/video control

command/menu/dialog interpretation

help processing

data input validation

application logic

error recovery

transaction construction

transaction validation

database access

data management and storage

(Client)

Host
application

Intelligent
terminal

GUI front ene
application

Client/server
transaction
processing

Networked SQL
data base
Filesharing
application

(Server)

Figure 1-20. Breakdown of an application into its components of presentation

Chapter 1 ■ arChiteCture

16

Points of Failure
Distributed applications run in a complex environment. This makes them much more prone to failure than
standalone applications on a single computer. The points of failure include:

•	 Client-side errors

•	 The client side of the application could crash

•	 The client system may have hardware problems

•	 The client’s network card could fail

•	 Network errors

•	 Network contention could cause timeouts

•	 There may be network address conflicts

•	 Network elements such as routers could fail

•	 Transmission errors may lose messages

•	 Client-server errors

•	 The client and server versions may be incompatible

•	 Server errors

•	 The server’s network card could fail

•	 The server system may have hardware problems

•	 The server software may crash

•	 The server’s database may become corrupted

Applications have to be designed with these possible failures in mind. Any action performed by one
component must be recoverable if failure occurs in some other part of the system. Techniques such as
transactions and continuous error checking need to be employed to avoid errors. It should be noted that while a
standalone application may have a lot of control over the errors that can occur, that is not the case with distributed
systems. For example, the server has no control over network or client errors and can only be prepared to handle
them. In many cases, the cause of an error may not be available: did the client crash or did the network go down?

Acceptance Factors
The acceptance factors of a distributed system are similar to those of a standalone system. They include the
following:

•	 Reliability

•	 Performance

•	 Responsiveness

•	 Scalability

•	 Capacity

•	 Security

Chapter 1 ■ arChiteCture

17

Currently users often tolerate worse behavior than from a standalone system. “Oh, the network is slow”
seems to be an acceptable excuse. Well, it isn’t really, and developers should not get into the mindset of
assuming that factors under their control can have ignorable effects.

Transparency
The “holy grails” of distributed systems are to provide the following:

•	 Access transparency

•	 Location transparency

•	 Migration transparency

•	 Replication transparency

•	 Concurrency transparency

•	 Scalability transparency

•	 Performance transparency

•	 Failure transparency

Access Transparency
The user should not know (or need to know) if access to all or parts of the system are local or remote.

Location Transparency
The location of a service should not matter.

Migration Transparency
If part of the system moves to another location, it should make no difference to a user.

Replication Transparency
It should not matter if one or multiple copies of the system are running.

Concurrency Transparency
There should be no interference between parts of the system running concurrently. For example, if I am
accessing the database, then you should not know about it.

Scalability Transparency
It shouldn’t matter if one or a million users are on the system.

Chapter 1 ■ arChiteCture

18

Performance Transparency
Performance should not be affected by any of the system or network characteristics.

Failure Transparency
The system should not fail. If parts of it fail, the system should recover without the user knowing the failure
occurred.

Most of these transparency factors are observed more in the breach than in the observance. There are
notable cases where they are almost met. For example, when you connect to Google, you don’t know
(or care) where the servers are. Systems using Amazon Web Services are able to scale up or down in response
to demand. Netflix has what almost seems cruel testing strategies, regularly and deliberately breaking large
sections of its system to ensure that the whole still works.

Eight Fallacies of Distributed Computing
Sun Microsystems was a company that performed much of the early work in distributed systems, and even
had a mantra” “The network is the computer.” Based on their experience over many years, a number of the
scientists at Sun came up with the following list of fallacies commonly assumed:

 1. The network is reliable.

 2. Latency is zero.

 3. Bandwidth is infinite.

 4. The network is secure.

 5. Topology doesn't change.

 6. There is one administrator.

 7. Transport cost is zero.

 8. The network is homogeneous.

Fallacy: The Network Is Reliable
A paper by Bailis and Kingsbury entitled “The Network is Reliable” (see http://queue.acm.org/detail.
cfm?id=2655736) examines this fallacy. It finds many instances, such as Microsoft reporting on their
datacenters giving 5.2 device failures per day and 40.8 link failures per day.

The Chinese government uses “DNS poisoning” as one of its techniques to censor what it considers to
be undesirable web sites. China also runs one of the DNS root servers. In 2010, this server was misconfigured
and poisoned the DNS servers of many other countries. This made many non-Chinese web sites inaccessible
outside of China as well as inside (see http://www.pcworld.com/article/192658/article.html).

There are many other possible cases, such as DDS (distributed denial of service) attacks making web
sites unavailable. At Box Hill Institute, a contractor once put a back hoe through the fiber cable connecting
our DHCP server to the rest of the network, and so we went home for the rest of the day.

The network is not reliable. The implications are that any networked program must be prepared to deal
with failure. This led to the design choices of Java's RMI and most later frameworks, with application design
allowing for each network call possibly failing.

http://queue.acm.org/detail.cfm?id=2655736
http://queue.acm.org/detail.cfm?id=2655736
http://www.pcworld.com/article/192658/article.html

Chapter 1 ■ arChiteCture

19

Fallacy: Latency Is Zero
Latency is the delay between sending a signal and getting a reply. In a single-process system, latency can
depend on the amount of computation performed in a function call before it can return, but on the network,
it is usually caused by simply having to traverse transports and be processed by all sorts of nodes such as
routers on the way.

The ping command is a good way of showing latency. A ping to Google’s Australia server takes about
20 milliseconds from Melbourne. A ping to Baidu's Chinese servers takes about 200 msecs1.

By contrast, Williams (see http://www.eetimes.com/document.asp?doc_id=1200916) discusses
the latency of the Linux scheduler and comes up with a mean latency of 88 microseconds. The latency of
network calls is thousands of times greater.

Fallacy: Bandwidth Is Infinite
Everyone who goes to make a cup of tea or coffee while a download takes place knows this is a fallacy. I run
my own web server, and on ADSL2 get an upload speed of 800 Kbps. I am unfortunate enough to have HFC
to my home, and the disastrous Australian National Broadband Network will upgrade this to 1000 Kbps
perhaps. In three years time, by 2020.

In the meantime, I use a local wireless connection to give me 75 Mbps up and down and it still isn’t fast
enough!

Fallacy: The Network Is Secure
There is a strong push by technology companies for strong crypto to be used for all network
communications, and an equally strong push by governments all over the world for weaker systems or for
backdoors “only for particular governments”. This seems to apply equally well to demoncratic (my accidental
misspelling may be accurate!) as well as totalitarian governments.

In addition, of course, there are the general “baddies,” stealing and selling credit card numbers and
passwords by the millions.

Fallacy: Topology Doesn’t Change
Well it does. Generally this may affect latency and bandwidth. But the more hard-coding of routes, or of IP
addresses, the more prone to failure network applications will become.

Fallacy: There Is One Administrator
So what? No problem when everything is working fine. It’s when it goes wrong that problems start—who to
blame, who to fix it?

1From my Melbourne, Australia location I see the ping time by
ping www.google.com.au
PING google.com.au (216.58.203.99) 56(84) bytes of data.
64 bytes from syd09s15-in-f3.1e100.net (216.58.203.99): icmp_seq=1 ttl=50 time=27.1 ms
64 bytes from syd09s15-in-f3.1e100.net (216.58.203.99): icmp_seq=2 ttl=50 time=19.7 ms

http://www.eetimes.com/document.asp?doc_id=1200916
http://www.google.com.au/

Chapter 1 ■ arChiteCture

20

A major research topic for years was grid computing, which distributed computing tasks across typically
many university and research organizations to solve huge scientific problems. This had to resolve many
complex issues due to not only multiple administrators but also different access and security problems,
different maintenance schedules, and so on. The advent of cloud computing has solved many of these issues,
reducing the number of administrators and systems, so that cloud computing is more resilient than many
grid systems.

Fallacy: Transport Cost Is Zero
Once I've bought my PC, the transport cost from CPU to monitor is zero (well, minor electricity!). But we all
pay our IP providers money each month because they have to build server rooms, lay cables, and so on. It's
just a cost that has to be factored in.

Fallacy: The Network Is Homogeneous
The network isn't homogenous and neither are the endpoints—your and my PCs, iPads, Android devices,
and mobile phones for example. Let alone with the IoT bringing a myriad of connected devices into the
picture. There are continual attempts by vendors for product lockin, and continually restrictive work
environments trying to simplify their control systems, which succeed to some extent. But when they fail,
systems dependent on homogeneity fail too.

Conclusion
This chapter has tried to emphasize that distributed computing has its own unique features compared to
other styles of computing. Ignoring these features can only lead to failure of the resultant systems. There are
continual attempts to simplify the architectural model, with the latest being “microservices” and “serverless”
computing, but in the end the complexities still remain.

These have to be addressed using any programming language, and subsequent chapters consider how
Go manages them.

21© Jan Newmarch 2017
J. Newmarch, Network Programming with Go, DOI 10.1007/978-1-4842-2692-6_2

CHAPTER 2

Overview of the Go Language

There is a continual stream of programming languages being invented. Some are highly specialized, others
are quite generic, while a third group is designed to fill broad but to some extent niche areas. Go was created
in 2007 and released publically in 2009. It was intended to be a systems programming language, augmenting
(or replacing) C++ and other statically compiled languages for production network and multiprocessing
systems.

Go joins a group of modern languages including Rust, Swift, Julia, and several others. Go’s particular
features are a simple syntax, fast compilation of multiple program units, a form of O/O programming based on
“structural” typing, and of course the benefit of lessons learned from large-scale programs in C, C++, and Java.

The language popularity listings in early 2017 such as TIOBE (see http://www.tiobe.com/tiobe-index/)
rank Go as currently the 14th most popular language. PYPL (see http://pypl.github.io/PYPL.html) places it
at number 19. This is alongside the 20+ year old languages of Java, Python, C, C++, JavaScript, and more.

This book assumes you are an experienced programmer with some or extensive knowledge of Go at
some level. This could be by an introductory text such as Introducing Go by Caleb Doxsey (O’Reilly) or The
Little Go Book by Karl Seguin, or by reading the more formal documentation such as The Go Programming
Language Specification at https://golang.org/ref/spec.

If you are an experienced programmer, you can skip this chapter. If not, this chapter points out the bits
of Go that are used in this book, but you should go elsewhere to get the necessary background. There are
several tutorials on the Go web site at http://golang.org:

•	 Getting started

•	 A tutorial for the Go programming language

•	 Effective Go

•	 GoLang tutorials

Installing Go is best done from the Go programing language web site. At the time of writing, Go 1.8 has
just been released. Most of the examples in this book will run using Go 1.6, with a few pointers to Go 1.8. You
don’t actually need to install Go to test the programs: Go has a “playground” accessible from the main page
which can be used to run code. There are also several REPL (Read–Eval–Print Loop) environments, but these
are third party.

The book predominantly uses libraries and packages from the Go Standard Library (https://golang.
org/pkg/). The Go team also built a further set of packages as “sub-repositories,” which often do not have
the same support as the Standard Library. These are occasionally used. They will need to be installed using
the go get command. These have package names including an “x,” such as golang.org/x/net/ipv4.

http://www.tiobe.com/tiobe-index/
http://pypl.github.io/PYPL.html
https://golang.org/ref/spec
http://golang.org/
https://golang.org/pkg/
https://golang.org/pkg/

Chapter 2 ■ Overview Of the GO LanGuaGe

22

Types
There are pre-defined types of Boolean, numeric, and string types. The numeric types include uint32,
int32, float32, and other sized numbers, as well as bytes (uint8) and runes. Runes and strings are dealt
with extensively in Chapter 7, as issues of internationalization can be significant in distributed programs.

There are more complex types, discussed next.

Slices and Arrays
Arrays are sequences of elements of a single type. Slices are segments of an underlying array. Slices are often
more convenient to deal with in Go. An array can be created statically:

var x [128]int

Or dynamically as a pointer:

xp := new([128]int)

A slice may be created along with its underlying array:

x := make([]int, 50, 100)

or

x := new([100]int)[0:50]

These last two are both of type []int (as shown by reflect.TypeOf(x)).
Elements of an array or slice are accessed by their index:

x[1]

The indices are from 0 to len(x)-1.
A slice may be taken of an array or slice by using the lower (inclusive) and upper (exclusive) indices of

the array or slice:

a := [5]int{-1, -2, -3, -4, -5}
s := a[1:4] // s is now [-2, -3, -4]

Structures
Structures are similar to those in other languages. In Chapter 4, we consider serialization of data and use the
example of the following structs:

type Person struct {
 Name Name
 Email []Email
}

http://dx.doi.org/10.1007/978-1-4842-2692-6_7
http://dx.doi.org/10.1007/978-1-4842-2692-6_4

Chapter 2 ■ Overview Of the GO LanGuaGe

23

type Name struct {
 Family string
 Personal string
}

type Email struct {
 Kind string
 Address string
}

A compound struct can be declared as follows:

person := Person{
 Name: Name{Family: "Newmarch", Personal: "Jan"},
 Email: []Email{Email{Kind: "home",
 Address: "jan@newmarch.name"},
 Email{Kind: "work",
 Address: "j.newmarch@boxhill.edu.au"}}}

The visibility of a structure’s fields is controlled by the case of the first character of the field’s name. If
it is uppercase, it is visible outside of the package it is declared in; if it is lowercase, it is not. In the previous
example, all the fields of all the structures are visible.

Pointers
Pointers behave similarly to pointers in other languages. The * operator dereferences a pointer, while the &
operator takes the address of a variable. Go simplifies the use of pointers so that most of the time you don’t
have to worry about them. The most we do in this book is check if a pointer value is nil, which will usually
signify an error, or conversely, if a possible error value is not nil, as described in the next section.

Functions
Functions are defined using a notation unique to Go. Why the familiar C syntax (or any other for that
matter) is not used is explained in the Go’s Declaration Syntax blog (see https://blog.golang.org/
gos-declaration-syntax). We leave it to the textbooks to explain the details of the syntax.

Every Go program must have a main function declared as follows:

func main() { ... }

We will frequently use a function checkError defined as follows:

func checkError(err error) {
 if err != nil {
 fmt.Fprintf(os.Stderr, "Fatal error: %s", err.Error())
 os.Exit(1)
 }
}

It takes one parameter and has no return value. It starts with a lowercase letter, so it is local to the
package in which it is declared.

mailto:jan@newmarch.name
mailto:j.newmarch@boxhill.edu.au
https://blog.golang.org/gos-declaration-syntax
https://blog.golang.org/gos-declaration-syntax

Chapter 2 ■ Overview Of the GO LanGuaGe

24

Functions that return values will often return an error status as well as a substantive value, as in this
function from Chapter 3:

func readFully(conn net.Conn) ([]byte, error) { ... }

It takes net.Conn as a parameter and returns an array of bytes and an error status (nil if no error
occurred).

In this book, no more complex definitions than this are used.

Maps
A map is an unordered group of elements of one type, indexed by a key of another type. We do not use maps
much in this book, although one place is in Chapter 10, where the values of fields of an HTTP request may be
accessed through a map using the field name as key.

Methods
Go does not have classes in the sense that languages like Java do. However, types can have methods
associated with them, and these act similar to methods of more standard O/O languages.

We will make heavy use of the methods defined for the various networking types. This will happen from
the very first programs of the next chapter. For example, the type IPMask is defined as an array of bytes:

type IPMask []byte

A number of functions are defined on this type, such as:

func (m IPMask) Size() (ones, bits int)

A variable of type IPMask can have the method Size() applied, as follows:

var m IPMask
...
ones, bits := m.Size()

Learning how to use methods of the network-related types is a principal aim of this book.
We won’t be defining our own methods much in this book. That’s because to illustrate the Go libraries

we don’t need many of our own complex types. A typical use will be pretty-printing a type like the Person
type defined previously:

func (p Person) String() string {
 s := p.Name.Personal + " " + p.Name.Family
 for _, v := range p.Email {
 s += "\n" + v.Kind + ": " + v.Address
 }
 return s
}

There is more extensive use in Chapter 10, where a number of types and methods on these types, are
used. This is because we do need our own types when we are building more realistic systems.

http://dx.doi.org/10.1007/978-1-4842-2692-6_3
http://dx.doi.org/10.1007/978-1-4842-2692-6_10
http://dx.doi.org/10.1007/978-1-4842-2692-6_10

Chapter 2 ■ Overview Of the GO LanGuaGe

25

Multi-Threading
Go has a simple mechanism for starting additional threads using the go command. In this book, that is all we
will need. Complex tasks such as synchronizing multiple threads are not needed here.

Packages
Go programs are built from linked packages. The packages used by any block of code have to be imported,
by an import statement at the head of the code file. Our own programs are declared to be in package main.

Apart from Chapter 10 again, nearly all of the programs in this book are in the main package.
Most packages are imported from the Standard Library. Some are imported from the sub-repositories

such as golang.org/x/net/ipv4.

Type Conversion
The only one we need to worry about in this book is conversion of strings to byte arrays and vice versa.
To convert a string to a byte array, you do:

var b []byte
b = []byte("string")

To convert the whole of an array/slice to a string, use this:

var s string
s = string(b[:])

Statements
A function or method will be composed of a set of statements. These include assignments, if and switch
statements, for and while loops, and several others.

Apart from syntax, these have essentially the same meaning as in other programming languages. Nearly
all of the statements types will be used in later chapters.

GOPATH
There are two ways of organizing workspaces for projects: put every project in a shared workspace or have a
separate workspace for each project. My preference is for the second, whereas apparently the preference by
most Go programmers is for the first.

Either way is supported by the go tool by the environment variable GOPATH. This can be set to a list of
directories (a : separated list in Linux/UNIX a ; separated list on Windows, and a list on Plan9). It defaults to
the directory go in the user’s home directory if it’s unset.

For each directory in GOPATH, there will be three sub-directories—src, pkg, and bin. The directory
src will typically contain one directory per package name, and under that will be the source files for that
package. For example, in Chapter 10 we have a complete web server that uses packages we define of
dictionary and flashcards. The src/flashcards directory contains the file FlashCards.go.

http://dx.doi.org/10.1007/978-1-4842-2692-6_10
http://dx.doi.org/10.1007/978-1-4842-2692-6_10

Chapter 2 ■ Overview Of the GO LanGuaGe

26

Running Go Programs
A Go program must have a file defining the package main. Most of the programs in this book are defined
in a single file, such as the program IP.go in Chapter 3. The simplest way to run it is from the directory
containing the file:

go run IP.go <IP address>

Alternatively, you can build an executable and then run it:

go build IP.go
./IP <IP address>

Programs that require packages other than the standard ones will require GOPATH to be set. For example,
the programs in Chapter 10 require (under Linux):

export GOPATH=$PWD
go run Server.go <port>

Standard Libraries
Go has an extensive set of Standard Libraries. Not as large as C, Java, or C++, for example, but those
languages have been around for a long time. The Go packages are documented at https://golang.org/pkg/
We will use these extensively in this book, particularly the net, crypto, and encoding packages.

In addition, there is a sub-repositories group of packages available from the same page. These are less
stable, but sometimes have useful packages, which we will use occasionally.

As well as these, there is a large set of user-contributed packages. They will not be used in the body
of this book which deals with principles, but in practice you may find many of them very useful. Some are
discussed in the concluding chapter.

Error Values
We discussed in the last chapter that a major difference between distributed and local programming is the
greatly increased likelihood of errors occurring during execution. A local function call may fail because of
simple programming errors such as divide by zero; more subtle errors may occur such as out-of-memory
errors, but their possible occurrences are generally predictable.

On the other hand, almost any function that utilizes the network can fail for reasons beyond the
application’s control. Networking programs are consequently riddled with error checks. This is tedious, but
necessary. Just like operating system kernel code is always error checking—errors need to be managed.

In this book, we generally exit a program with errors with appropriate messages on the client side, and
for servers, attempt to recover by dropping the offending connection and carrying on.

http://dx.doi.org/10.1007/978-1-4842-2692-6_3
http://dx.doi.org/10.1007/978-1-4842-2692-6_10
https://golang.org/pkg/

Chapter 2 ■ Overview Of the GO LanGuaGe

27

Languages like C generally signal errors by returning “illegal” values such as negative integers, null
pointers, or by raising a signal. Languages like Java raise exceptions, which can lead to messy code and are
often slow. The standard Go functions give an error in an extra parameter return from a function call.

For example, in the next chapter, we discuss the function in the net package:

func ResolveIPAddr(net, addr string) (*IPAddr, error)

Typical code to manage this is:

addr, err := net.ResolveIPAddr("ip", name)
if err != nil {
 ...
}

Conclusion
This book assumes a knowledge of the Go programming language. This chapter just highlighted those parts
that will be needed for later chapters.

29© Jan Newmarch 2017
J. Newmarch, Network Programming with Go, DOI 10.1007/978-1-4842-2692-6_3

CHAPTER 3

Socket-Level Programming

There are many kinds of networks in the world. These range from the very old networks, such as serial links,
through to wide area networks made from copper and fiber, to wireless networks of various kinds, both for
computers and for telecommunications devices such as phones. These networks obviously differ at the
physical link layer, but in many cases they also differ at higher layers of the OSI stack.

Over the years there has been a convergence to the “Internet stack” of IP and TCP/UDP. For
example, Bluetooth defines physical layers and protocol layers, but on top of that is an IP stack so that
the same Internet programming techniques can be employed on many Bluetooth devices. Similarly,
developing Internet of Things (IoT) wireless technologies such as LoRaWAN and 6LoWPAN include an
IP stack.

While IP provides the networking layer 3 of the OSI stack, TCP and UDP deal with layer 4. These
are not the final word, even in the Internet world: SCTP (Stream Control Transmission Protocol)
has come from the telecommunications world to challenge both TCP and UDP, while to provide
Internet services in interplanetary space requires new, under development protocols such as DTN
(Delay Tolerant Networking). Nevertheless, IP, TCP, and UDP hold sway as principal networking
technologies now and at least for a considerable time into the future. Go has full support for this style
of programming

This chapter shows how to do TCP and UDP programming using Go, and how to use a raw socket for
other protocols.

The TCP/IP Stack
The OSI model was devised using a committee process wherein the standard was set up and then
implemented. Some parts of the OSI standard are obscure, some parts cannot easily be implemented, and
some parts have not been implemented.

The TCP/IP protocol was devised through a long-running DARPA project. This worked by
implementation followed by RFCs (Request for Comments). TCP/IP is the principal UNIX networking
protocol. TCP/IP stands for Transmission Control Protocol/Internet Protocol.

The TCP/IP stack is shorter than the OSI one, as shown in Figure 3-1.

Chapter 3 ■ SoCket-LeveL programming

30

TCP is a connection-oriented protocol, whereas UDP (User Datagram Protocol) is a connectionless
protocol.

IP Datagrams
The IP layer provides a connectionless and unreliable delivery system. It considers each datagram
independently of the others. Any association between datagrams must be supplied by the higher layers.

The IP layer supplies a checksum that includes its own header. The header includes the source and
destination addresses.

The IP layer handles routing through an internet. It is also responsible for breaking up large datagrams
into smaller ones for transmission and reassembling them at the other end.

UDP
UDP is also connectionless and unreliable. What it adds to IP is a checksum for the contents of the datagram
and port numbers. These are used to give a client-server model, which you’ll see later.

TCP
TCP supplies logic to give a reliable connection-oriented protocol above IP. It provides a virtual circuit that
two processes can use to communicate. It also uses port numbers to identify services on a host.

Internet Addresses
In order to use a service, you must be able to find it. The Internet uses an address scheme for devices such
as computers so that they can be located. This addressing scheme was originally devised when there were
only a handful of connected computers, and very generously allowed up to 2^32 addresses, using a
32-bit unsigned integer. These are the so-called IPv4 addresses. In recent years, the number of connected

application

TCP UDP

IP

h/w interface

application OSI 5-7

OSI 4

OSI 3

OSI 1-2

Figure 3-1. TCP/IP stack versus the OSI

Chapter 3 ■ SoCket-LeveL programming

31

(or at least directly addressable) devices has threatened to exceed this number, and there is a
progressive transition to IPv6. The transition is patchy, and shown for example in the graph by Google
(https://www.google.com/intl/en/ipv6/statistics.html). Sadly—from my viewpoint—few of the
Australian IP providers support IPv6.

IPv4 Addresses
The address is a 32-bit integer that gives the IP address. This addresses down to a network interface card
on a single device. The address is usually written as four bytes in decimal with a dot . between them, as in
127.0.0.1 or 66.102.11.104.

The IP address of any device is generally composed of two parts: the address of the network in which
the device resides, and the address of the device within that network. Once upon a time, the split between
network address and internal address was simple and was based on the bytes used in the IP address.

•	 In a class A network, the first byte identifies the network, while the last three identify
the device. There are only 128 class A networks, owned by the very early players in
the Internet space such as IBM, the General Electric Company, and MIT1.

•	 Class B networks use the first two bytes to identify the network and the last two to
identify devices within the subnet. This allows up to 2^16 (65,536) devices on a subnet.

•	 Class C networks use the first three bytes to identify the network and the last one to
identify devices within that network. This allows up to 2^8 (actually 254, not 256, as
the bottom and top addresses are reserved) devices.

This scheme doesn’t work well if you want, say, 400 computers on a network. 254 is too small, while
65,536 (-2) is too large. In binary arithmetic terms, you want about 512 (-2). This can be achieved by using a
23-bit network address and 9 bits for the device addresses. Similarly, if you want up to 1024 (-2) devices, you
use a 22-bit network address and a 10-bit device address.

Given an IP address of a device and knowing how many bits N are used for the network address gives
a relatively straightforward process for extracting the network address and the device address within that
network. Form a “network mask” which is a 32-bit binary number with all ones in the first N places and all
zeroes in the remaining ones. For example, if 16 bits are used for the network address, the mask is 1111111
1111111110000000000000000. It’s a little inconvenient using binary, so decimal bytes are usually used. The
netmask for 16-bit network addresses is 255.255.0.0, for 24-bit network addresses it is 255.255.255.0,
while for 23-bit addresses it would be 255.255.254.0 and for 22-bit addresses it would be 255.255.252.0.

Then to find the network of a device, bit-wise AND its IP address with the network mask, while
the device address within the subnet is found with bit-wise AND of the one’s complement of the mask
with the IP address. For example, the binary value of the IP address 192.168.1.3 is 1100000010101
0000000000100000011 (using the IP Address Subnet Mask Calculator). If a 16-bit netmask is used,
the network is 1100000010101000 0000000000000000 (or 192.168.0.0), while the device address is
0000000000000000 0000000100000011 (or 0.0.1.3).

IPv6 Addresses
The Internet has grown vastly beyond original expectations. The initially generous 32-bit addressing scheme
is on the verge of running out. There are unpleasant workarounds such as NAT (Network Address Translation)
addressing, but eventually we will have to switch to a wider address space. IPv6 uses 128-bit addresses. Even
bytes becomes cumbersome to express such addresses, so hexadecimal digits are used, grouped into four
digits and separated by a colon :. A typical address might be FE80:CD00:0000:0CDE:1257:0000:211E:729C.

1Recently MIT have returned their class A network to the pool. http://www.iana.org/assignments/ipv4-address-
space/ipv4-address-space.xml.

https://www.google.com/intl/en/ipv6/statistics.html
https://www.fukatani.org/~hi-lo/cgi-bin/fk-ip_calc.cgi
http://www.iana.org/assignments/ipv4-address-space/ipv4-address-space.xml
http://www.iana.org/assignments/ipv4-address-space/ipv4-address-space.xml

Chapter 3 ■ SoCket-LeveL programming

32

These addresses are not easy to remember! DNS will become even more important. There are tricks
to reducing some addresses, such as leading zeroes and repeated digits. For example, “localhost” is
0:0:0:0:0:0:0:1, which can be shortened to ::1.

Each address is divided into three components: the first is the network address used for Internet
routing and is the first 64 bits of the address. The next part is 16 bits for the netmask. This is used to divide
the network into subnets. It can give anything from one subnet only (all zeroes) to 65,535 subnets (all 1s).
The last part is the device component, of 48 bits. The above address would be FE80:CD00:0000:0CDE for the
network, 1257 for the subnet, and 0000:211E:729C for the device.

IP Address Type
Finally we can start using some of the Go language network packages. The package net defines many types,
functions, and methods of use in Go network programming. The type IP is defined as an array of bytes:

type IP []byte

There are several functions to manipulate a variable of type IP, but you are likely to use only some of
them in practice. For example, the function ParseIP(String) will take a dotted IPv4 address or a colon IPv6
address, while the IP method String() will return a string. Note that you may not get back what you started
with: the string form of 0:0:0:0:0:0:0:1 is ::1.

A program that illustrates this process is IP.go:

/* IP
 */

package main

import (
 "fmt"
 "net"
 "os"
)

func main() {
 if len(os.Args) != 2 {
 fmt.Fprintf(os.Stderr, "Usage: %s ip-addr\n", os.Args[0])
 os.Exit(1)
 }
 name := os.Args[1]

 addr := net.ParseIP(name)
 if addr == nil {
 fmt.Println("Invalid address")
 } else {
 fmt.Println("The address is ", addr.String())
 }
 os.Exit(0)
}

Chapter 3 ■ SoCket-LeveL programming

33

This can be run for example as follows:

go run IP.go 127.0.0.1

Here is the response:

The address is 127.0.0.1

Or it could be run as:

go run IP.go 0:0:0:0:0:0:0:1

With this response:

The address is ::1

The IPMask Type
An IP address is typically divided into the components of a network address, a subnet, and a device portion.
The network address and subnet form a prefix to the device portion. The mask is an IP address of all binary
ones to match the prefix length, followed by all zeroes.

In order to handle masking operations, you use this type:

type IPMask []byte

The simplest function to create a netmask uses the CIDR notation of ones followed by zeroes up to the
number of bits:

func CIDRMask(ones, bits int) IPMask

A mask can then be used by a method of an IP address to find the network for that IP address:

func (ip IP) Mask(mask IPMask) IP

An example of the use of this is the following program called Mask.go:

/* Mask
 */

package main

import (
 "fmt"
 "net"
 "os"
 "strconv"
)

Chapter 3 ■ SoCket-LeveL programming

34

func main() {
 if len(os.Args) != 4 {
 fmt.Fprintf(os.Stderr, "Usage: %s dotted-ip-addr ones bits\n", os.Args[0])
 os.Exit(1)
 }
 dotAddr := os.Args[1]
 ones, _ := strconv.Atoi(os.Args[2])
 bits, _ := strconv.Atoi(os.Args[3])

 addr := net.ParseIP(dotAddr)
 if addr == nil {
 fmt.Println("Invalid address")
 os.Exit(1)
 }
 mask := net.CIDRMask(ones, bits)
 network := addr.Mask(mask)
 fmt.Println("Address is ", addr.String(),
 "\nMask length is ", bits,
 "\nLeading ones count is ", ones,
 "\nMask is (hex) ", mask.String(),
 "\nNetwork is ", network.String())
 os.Exit(0)
}

This can be compiled to Mask and run as follows:

Mask <ip-address> <ones> <zeroes>

Or it can be run directly as follows:

go run Mask.go <ip-address> <ones> <zeroes>

For an IPv4 address of 103.232.159.187 on a /24 network, we get the following:

go run Mask.go 103.232.159.187 24 32
Address is 103.232.159.187
Mask length is 32
Leading ones count is 24
Mask is (hex) ffffff00
Network is 103.232.159.0

For an IPv6 address fda3:97c:1eb:fff0:5444:903a:33f0:3a6b where the network component is
fda3:97c:1eb, the subnet is fff0, and the device part is 5444:903a:33f0:3a6b, we get the following:

go run Mask.go fda3:97c:1eb:fff0:5444:903a:33f0:3a6b 52 128
Address is fda3:97c:1eb:fff0:5444:903a:33f0:3a6b
Mask length is 128
Leading ones count is 52
Mask is (hex) fffffffffffff0000000000000000000
Network is fda3:97c:1eb:f000::

Chapter 3 ■ SoCket-LeveL programming

35

IPv4 netmasks are often given in the 4-byte dotted notation such as 255.255.255.0 for a /24 network.
There is a function to create a mask from such a 4-byte IPv4 address:

func IPv4Mask(a, b, c, d byte) IPMask

Also, there is a method of IP that returns the default mask for IPv4:

func (ip IP) DefaultMask() IPMask

Note that the string form of a mask is a hex number, such as ffffff00 for a /24 mask.
The following program called IPv4Mask.go illustrates these:

/* IPv4Mask
 */

package main

import (
 "fmt"
 "net"
 "os"
)

func main() {
 if len(os.Args) != 2 {
 fmt.Fprintf(os.Stderr, "Usage: %s dotted-ip-addr\n", os.Args[0])
 os.Exit(1)
 }
 dotAddr := os.Args[1]

 addr := net.ParseIP(dotAddr)
 if addr == nil {
 fmt.Println("Invalid address")
 os.Exit(1)
 }
 mask := addr.DefaultMask()
 network := addr.Mask(mask)
 ones, bits := mask.Size()
 fmt.Println("Address is ", addr.String(),
 "\nDefault mask length is ", bits,
 "\nLeading ones count is ", ones,
 "\nMask is (hex) ", mask.String(),
 "\nNetwork is ", network.String())
 os.Exit(0)
}

For example, running this:

go run Mask.go 192.168.1.3

Chapter 3 ■ SoCket-LeveL programming

36

In my home network gives the following result:

Address is 192.168.1.3
Default mask length is 32
Leading ones count is 24
Mask is (hex) ffffff00
Network is 192.168.1.0

The IPAddr Type
Many of the other functions and methods in the net package return a pointer to an IPAddr. This is simply a
structure containing an IP (and a zone which may be needed for IPv6 addresses).

type IPAddr {
 IP IP
 Zone string
}

A primary use of this type is to perform DNS lookups on IP hostnames. The zone may be needed for
ambiguous IPv6 addresses with multiple network interfaces.

func ResolveIPAddr(net, addr string) (*IPAddr, error)

Where net is one of ip, ip4, or ip6. This is shown in the program called ResolveIP.go:

/* ResolveIP
 */

package main

import (
 "fmt"
 "net"
 "os"
)

func main() {
 if len(os.Args) != 2 {
 fmt.Fprintf(os.Stderr, "Usage: %s hostname\n", os.Args[0])
 fmt.Println("Usage: ", os.Args[0], "hostname")
 os.Exit(1)
 }
 name := os.Args[1]

 addr, err := net.ResolveIPAddr("ip", name)
 if err != nil {
 fmt.Println("Resolution error", err.Error())
 os.Exit(1)
 }

Chapter 3 ■ SoCket-LeveL programming

37

 fmt.Println("Resolved address is ", addr.String())
 os.Exit(0)
}

Running this:

go run ResolveIP.go www.google.com

Returns the following:

Resolved address is 172.217.25.164

If the first parameter to ResolveIPAddr() for the net type is given as ip6 instead of ip, I get this result:

Resolved address is 2404:6800:4006:801::2004

You may get different results, depending on where Google appears to live from your address’s
perspective.

Host Lookup
The ResolveIPAddr function will perform a DNS lookup on a hostname and return a single IP address. How
it does this depends on the operating system and its configuration. For example, a Linux/UNIX system may
use /etc/resolv.conf or /etc/hosts with the order of the search set in /etc/nsswitch.conf.

Some hosts may have multiple IP addresses, usually from multiple network interface cards. They may
also have multiple hostnames, acting as aliases. The LookupHost function will return a slice of addresses.

func LookupHost(name string) (cname string, addrs []string, err error)

One of these addresses will be labeled as the “canonical” hostname. If you want to find the canonical
name, use this:

func LookupCNAME(name string) (cname string, err error).

For www.google.com, it prints both the IPv4 and IPv6 addresses:

172.217.25.164
2404:6800:4006:806::2004

This is shown in the following program called LookupHost.go:

/* LookupHost
 */

package main

import (
 "fmt"
 "net"
 "os"
)

http://www.google.com/

Chapter 3 ■ SoCket-LeveL programming

38

func main() {
 if len(os.Args) != 2 {
 fmt.Fprintf(os.Stderr, "Usage: %s hostname\n", os.Args[0])
 os.Exit(1)
 }
 name := os.Args[1]

 addrs, err := net.LookupHost(name)
 if err != nil {
 fmt.Println("Error: ", err.Error())
 os.Exit(2)
 }

 for _, s := range addrs {
 fmt.Println(s)
 }
 os.Exit(0)
}

Note that this function returns strings, not IP address values. When it runs:

go run LookupHost.go

It prints something similar to this:

172.217.25.132
2404:6800:4006:807::2004

Services
Services run on host machines. They are typically long lived and are designed to wait for requests and
respond to them. There are many types of services, and there are many ways in which they can offer their
services to clients. The Internet world bases many of these services on two methods of communication—
TCP and UDP—although there are other communication protocols such as SCTP waiting in the wings to take
over. Many other types of service, such as peer-to-peer, remote procedure calls, communicating agents, and
many others, are built on top of TCP and UDP.

Ports
Services live on host machines. We can locate a host using a IP address. But on each computer may be many
services, and a simple way is needed to distinguish between them. The method used by TCP, UDP, SCTP,
and others is to use a port number. This is an unsigned integer between 1 and 65,535 and each service will
associate itself with one or more of these port numbers.

There are many “standard” ports. Telnet typically uses port 23 with the TCP protocol. DNS uses port 53,
either with TCP or with UDP. FTP uses ports 21 and 20, one for commands, the other for data transfer. HTTP
usually uses port 80, but it often uses ports 8000, 8080, and 8088, all with TCP. The X Window System often
takes ports 6000-6007, both on TCP and UDP.

On a UNIX system, the commonly used ports are listed in the file /etc/services. Go has a function to
look up ports on all systems:

func LookupPort(network, service string) (port int, err error)

Chapter 3 ■ SoCket-LeveL programming

39

The network argument is a string such as "tcp" or "udp", while the service is a string such as "telnet"
or "domain" (for DNS).

A program using this is LookupPort.go:

/* LookupPort
 */

package main

import (
 "fmt"
 "net"
 "os"
)

func main() {
 if len(os.Args) != 3 {
 fmt.Fprintf(os.Stderr,
 "Usage: %s network-type service\n",
 os.Args[0])
 os.Exit(1)
 }
 networkType := os.Args[1]
 service := os.Args[2]

 port, err := net.LookupPort(networkType, service)
 if err != nil {
 fmt.Println("Error: ", err.Error())
 os.Exit(2)
 }

 fmt.Println("Service port ", port)
 os.Exit(0)
}

For example, running LookupPort tcp telnet prints service port 23.

The TCPAddr Type
The TCPAddr type is a structure containing an IP, a port, and a zone. The zone is required to distinguish
between possible ambiguous IPv6 link-local and site-local addresses, as different network interface cards
(NICs) may have the same IPv6 address.

type TCPAddr struct {
 IP IP
 Port int
 Zone string
}

Chapter 3 ■ SoCket-LeveL programming

40

The function to create a TCPAddr is ResolveTCPAddr:

func ResolveTCPAddr(net, addr string) (*TCPAddr, error)

Where net is one of tcp, tcp4, or tcp6 and the addr is a string composed of a hostname or IP address,
followed by the port number after a :, such as www.google.com:80 or 127.0.0.1:22. If the address is an
IPv6 address, which already has colons in it, then the host part must be enclosed in square brackets, such
as [::1]:23. Another special case is often used for servers, where the host address is zero, so that the TCP
address is really just the port name, as in :80 for an HTTP server.

TCP Sockets
When you know how to reach a service via its network and port IDs, what then? If you are a client, you need
an API that will allow you to connect to a service and then to send messages to that service and read replies
back from the service.

If you are a server, you need to be able to bind to a port and listen at it. When a message comes in, you
need to be able to read it and write back to the client.

The net.TCPConn is the Go type that allows full duplex communication between the client and the
server. Two major methods of interest are as follows:

func (c *TCPConn) Write(b []byte) (n int, err error)
func (c *TCPConn) Read(b []byte) (n int, err error)

A TCPConn is used by both a client and a server to read and write messages.
Note that a TCPConn implements the io.Reader and io.Writer interfaces so that any method using a

reader or writer can be applied to a TCPConn.

TCP Client
Once a client has established a TCP address for a service, it “dials” the service. If successful, the dial
returns a TCPConn for communication. The client and the server exchange messages on this. Typically
a client writes a request to the server using the TCPConn and reads a response from the TCPConn. This
continues until either (or both) side closes the connection. A TCP connection is established by the
client using this function:

func DialTCP(net string, laddr, raddr *TCPAddr) (c *TCPConn, err error)

Where laddr is the local address, which is usually set to nil, and raddr is the remote address of
the service. The net string is one of "tcp4", "tcp6", or "tcp", depending on whether you want a TCPv4
connection, a TCPv6 connection, or don’t care.

A simple example can be provided by a client to a web (HTTP) server. We will deal in substantially more
detail with HTTP clients and servers in a later chapter, so for now we will keep it simple.

One of the possible messages that a client can send is the HEAD message. This queries a server for
information about the server and a document on that server. The server returns information, but does not
return the document itself. The request sent to query an HTTP server could be as follows:

"HEAD / HTTP/1.0\r\n\r\n"

Chapter 3 ■ SoCket-LeveL programming

41

This asks for information about the root document and the server. A typical response might be:

HTTP/1.1 200 OK
Server: nginx/1.10.0 (Ubuntu)
Date: Tue, 28 Feb 2017 10:33:01 GMT
Content-Type: text/html
Content-Length: 2152
Last-Modified: Mon, 13 Oct 2008 02:38:03 GMT
Connection: close
ETag: "48f2b48b-868"
Accept-Ranges: bytes

We first give the program (GetHeadInfo.go) to establish the connection for a TCP address, send the
request string, and then read and print the response. Once compiled, it can be invoked as follows:

GetHeadInfo www.google.com:80

The program is GetHeadInfo.go:

/* GetHeadInfo
 */
package main

import (
 "fmt"
 "io/ioutil"
 "net"
 "os"
)

func main() {
 if len(os.Args) != 2 {
 fmt.Fprintf(os.Stderr, "Usage: %s host:port ", os.Args[0])
 os.Exit(1)
 }
 service := os.Args[1]

 tcpAddr, err := net.ResolveTCPAddr("tcp4", service)
 checkError(err)

 conn, err := net.DialTCP("tcp", nil, tcpAddr)
 checkError(err)

 _, err = conn.Write([]byte("HEAD / HTTP/1.0\r\n\r\n"))
 checkError(err)

 result, err := ioutil.ReadAll(conn)
 checkError(err)

Chapter 3 ■ SoCket-LeveL programming

42

 fmt.Println(string(result))

 os.Exit(0)
}

func checkError(err error) {
 if err != nil {
 fmt.Fprintf(os.Stderr, "Fatal error: %s", err.Error())
 os.Exit(1)
 }
}

The first point to note is the almost excessive amount of error checking that is going on. This is
normal for networking programs: the opportunities for failure are substantially greater than for standalone
programs. Hardware may fail on the client, the server, or on any of the routers and switches in the middle;
communication may be blocked by a firewall; timeouts may occur due to network load; the server may crash
while the client is talking to it. The following checks are performed:

 1. There may be syntax errors in the address specified.

 2. The attempt to connect to the remote service may fail. For example, the service
requested might not be running, or there may be no such host connected to the
network.

 3. Although a connection has been established, writes to the service might fail if the
connection has died suddenly, or if the network times out.

 4. Similarly, the reads might fail.

Reading from the server requires a comment. In this case, we read essentially a single response from
the server. This will be terminated by end-of-file on the connection. However, it may consist of several TCP
packets, so we need to keep reading until the end of file. The io/ioutil function ReadAll will look after
these issues and return the complete response. (Thanks to Roger Peppe on the golang-nuts mailing list.)

There are some language issues involved. First, most of the functions return a dual value, with the
possible error as second value. If no error occurs, then this will be nil. In C, the same behavior is gained by
special values such as NULL, or -1, or zero being returned—if that is possible. In Java, the same error checking
is managed by throwing and catching exceptions, which can make the code look very messy.

A Daytime Server
About the simplest service that we can build is the daytime service. This is a standard Internet service,
defined by RFC 867, with a default port of 13, on both TCP and UDP. Unfortunately, with the (justified)
increase in paranoia over security, hardly any sites run a daytime server any more. Never mind; we can
build our own. (For those interested, if you install inetd on your system, you usually get a daytime server
thrown in.)

A server registers itself on a port and listens on that port. Then it blocks on an “accept” operation,
waiting for clients to connect. When a client connects, the accept call returns, with a connection object.
The daytime service is very simple and just writes the current time to the client, closes the connection, and
resumes waiting for the next client.

The relevant calls are as follows:

func ListenTCP(net string, laddr *TCPAddr) (l *TCPListener, err error)
func (l *TCPListener) Accept() (c Conn, err error)

Chapter 3 ■ SoCket-LeveL programming

43

The argument net can be set to one of the strings "tcp", "tcp4", or "tcp6". The IP address should be
set to zero if you want to listen on all network interfaces, or to the IP address of a single network interface
if you only want to listen on that interface. If the port is set to zero, then the O/S will choose a port for you.
Otherwise, you can choose your own. Note that on a UNIX system, you cannot listen on a port below 1024
unless you are the system supervisor, root, and ports below 128 are standardized by the IETF. The example
program chooses port 1200 for no particular reason. The TCP address is given as :1200—all interfaces,
port 1200.

The program is DaytimeServer.go:

/* DaytimeServer
 */
package main

import (
 "fmt"
 "net"
 "os"
 "time"
)

func main() {

 service := ":1200"
 tcpAddr, err := net.ResolveTCPAddr("tcp", service)
 checkError(err)

 listener, err := net.ListenTCP("tcp", tcpAddr)
 checkError(err)

 for {
 conn, err := listener.Accept()
 if err != nil {
 continue
 }

 daytime := time.Now().String()
 conn.Write([]byte(daytime)) // don't care about return value
 conn.Close() // we're finished with this client
 }
}

func checkError(err error) {
 if err != nil {
 fmt.Fprintf(os.Stderr, "Fatal error: %s", err.Error())
 os.Exit(1)
 }
}

If you run this server, it will just wait there, not doing much. When a client connects to it, it will respond
by sending the daytime string to it and then return to waiting for the next client.

Chapter 3 ■ SoCket-LeveL programming

44

Note the changed error handling in the server as compared to a client. The server should run forever,
so that if any error occurs with a client, the server just ignores that client and carries on. A client could
otherwise try to mess up the connection with the server and bring it down!

We haven’t built a client. That is easy, just changing the previous client to omit the initial write.
Alternatively, just open a telnet connection to that host:

telnet localhost 1200

This will produce output such as the following:

$telnet localhost 1200
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
2017-01-02 20:13:21.934698384 +1100 AEDTConnection closed by foreign host.

Where 2017-01-02 20:13:21.934698384 +1100 AEDT is the output from the server.

Multi-Threaded Server
echo is another simple IETF service. The SimpleEchoServer.go program just reads what the client types and
sends it back:

/* SimpleEchoServer
 */
package main

import (
 "fmt"
 "net"
 "os"
)

func main() {

 service := ":1201"
 tcpAddr, err := net.ResolveTCPAddr("tcp4", service)
 checkError(err)

 listener, err := net.ListenTCP("tcp", tcpAddr)
 checkError(err)

 for {
 conn, err := listener.Accept()
 if err != nil {
 continue
 }
 handleClient(conn)
 conn.Close() // we're finished
 }
}

Chapter 3 ■ SoCket-LeveL programming

45

func handleClient(conn net.Conn) {
 var buf [512]byte
 for {
 n, err := conn.Read(buf[0:])
 if err != nil {
 return
 }
 fmt.Println(string(buf[0:]))
 _, err2 := conn.Write(buf[0:n])
 if err2 != nil {
 return
 }
 }
}

func checkError(err error) {
 if err != nil {
 fmt.Fprintf(os.Stderr, "Fatal error: %s", err.Error())
 os.Exit(1)
 }
}

While it works, there is a significant issue with this server: it is single-threaded. While a client has a
connection open to it, no other client can connect. Other clients are blocked and will probably time out.
Fortunately, this is easily fixed by making the client handler a go routine. We have also moved closing the
connection into the handler, as it now belongs there. The program is called ThreadedEchoServer.go:

/* ThreadedEchoServer
 */
package main

import (
 "fmt"
 "net"
 "os"
)

func main() {

 service := ":1201"
 tcpAddr, err := net.ResolveTCPAddr("tcp", service)
 checkError(err)

 listener, err := net.ListenTCP("tcp", tcpAddr)
 checkError(err)

 for {
 conn, err := listener.Accept()
 if err != nil {
 continue
 }

Chapter 3 ■ SoCket-LeveL programming

46

 // run as a goroutine
 go handleClient(conn)
 }
}

func handleClient(conn net.Conn) {
 // close connection on exit
 defer conn.Close()

 var buf [512]byte
 for {
 // read up to 512 bytes
 n, err := conn.Read(buf[0:])
 if err != nil {
 return
 }
 fmt.Println(string(buf[0:]))
 // write the n bytes read
 _, err2 := conn.Write(buf[0:n])
 if err2 != nil {
 return
 }
 }
}

func checkError(err error) {
 if err != nil {
 fmt.Fprintf(os.Stderr, "Fatal error: %s", err.Error())
 os.Exit(1)
 }
}

Controlling TCP Connections
Timeout
The server may want to time out a client if it does not respond quickly enough, i.e., does not write a request to
the server in time. This should be a long period (several minutes), because the users may be taking their time.
Conversely, the client may want to time out the server (after a much shorter time). Both do this as follows:

func (c *IPConn) SetDeadline(t time.Time) error

This is done before any reads or writes on the socket.

Staying Alive
A client may want to stay connected to a server even if it has nothing to send. It can use this:

func (c *TCPConn) SetKeepAlive(keepalive bool) error

There are several other connection control methods, which are documented in the net package.

Chapter 3 ■ SoCket-LeveL programming

47

UDP Datagrams
In a connectionless protocol, each message contains information about its origin and destination. There is
no “session” established using a long-lived socket. UDP clients and servers make use of datagrams, which
are individual messages containing source and destination information. There is no state maintained by
these messages, unless the client or server does so. The messages are not guaranteed to arrive, or may arrive
out of order.

The most common situation for a client is to send a message and hope that a reply arrives. The most
common situation for a server is to receive a message and then send one or more replies back to that client.
In a peer-to-peer situation, though, the server may just forward messages to other peers.

The major difference between TCP and UDP handling for Go is how to deal with packets arriving from
multiple clients, without the cushion of a TCP session to manage things. The major calls needed are as follows:

func ResolveUDPAddr(net, addr string) (*UDPAddr, error)
func DialUDP(net string, laddr, raddr *UDPAddr) (c *UDPConn, err error)
func ListenUDP(net string, laddr *UDPAddr) (c *UDPConn, err error)
func (c *UDPConn) ReadFromUDP(b []byte) (n int, addr *UDPAddr, err error
func (c *UDPConn) WriteToUDP(b []byte, addr *UDPAddr) (n int, err error)

The client for a UDP time service doesn’t need to make many changes; just change the ...TCP... calls
to ...UDP... calls in the program UDPDaytimeClient.go:

/* UDPDaytimeClient
 */
package main

import (
 "fmt"
 "net"
 "os"
)

func main() {
 if len(os.Args) != 2 {
 fmt.Fprintf(os.Stderr, "Usage: %s host:port", os.Args[0])
 os.Exit(1)
 }
 service := os.Args[1]

 udpAddr, err := net.ResolveUDPAddr("udp", service)
 checkError(err)

 conn, err := net.DialUDP("udp", nil, udpAddr)
 checkError(err)

 _, err = conn.Write([]byte("anything"))
 checkError(err)

Chapter 3 ■ SoCket-LeveL programming

48

 var buf [512]byte
 n, err := conn.Read(buf[0:])
 checkError(err)

 fmt.Println(string(buf[0:n]))

 os.Exit(0)
}

func checkError(err error) {
 if err != nil {
 fmt.Fprintf(os.Stderr, "Fatal error ", err.Error())
 os.Exit(1)
 }
}

While the server has to make a few more changes in the program UDPDaytimeServer.go:

/* UDPDaytimeServer
 */
package main

import (
 "fmt"
 "net"
 "os"
 "time"
)

func main() {

 service := ":1200"
 udpAddr, err := net.ResolveUDPAddr("udp", service)
 checkError(err)

 conn, err := net.ListenUDP("udp", udpAddr)
 checkError(err)

 for {
 handleClient(conn)
 }
}

func handleClient(conn *net.UDPConn) {

 var buf [512]byte

 _, addr, err := conn.ReadFromUDP(buf[0:])
 if err != nil {
 return
 }

Chapter 3 ■ SoCket-LeveL programming

49

 daytime := time.Now().String()

 conn.WriteToUDP([]byte(daytime), addr)
}

func checkError(err error) {
 if err != nil {
 fmt.Fprintf(os.Stderr, "Fatal error ", err.Error())
 os.Exit(1)
 }
}

The server is run as follows:

go run UDPDaytimeServer.go

A client on the same host is run as follows:

go run UDPDaytimeClient.go localhost:1200

The output will be something like this:

2017-03-01 21:37:03.988603994 +1100 AEDT

Server Listening on Multiple Sockets
A server may be attempting to listen to multiple clients not just on one port, but on many. In this case, it has
to use some sort of polling mechanism between the ports.

In C, the select() call lets the kernel do this work. The call takes a number of file descriptors. The
process is suspended. When I/O is ready on one of these, a wakeup is done, and the process can continue.
This is cheaper than busy polling. In Go, you can accomplish the same by using a different go routine for
each port. A thread will become runnable when the lower-level select() discovers that I/O is ready for this
thread.

The Conn, PacketConn, and Listener Types
So far we have differentiated between the API for TCP and the API for UDP, using for example DialTCP and
DialUDP returning a TCPConn and UDPConn, respectively. The Conn type is an interface and both TCPConn and
UDPConn implement this interface. To a large extent, you can deal with this interface rather than the two types.

Instead of separate dial functions for TCP and UDP, you can use a single function:

func Dial(net, laddr, raddr string) (c Conn, err error)

The net can be any of tcp, tcp4 (IPv4-only), tcp6 (IPv6-only), udp, udp4 (IPv4-only), udp6 (IPv6-only),
ip, ip4 (IPv4-only), and ip6 IPv6-only) and several UNIX-specific ones such as unix for UNIX sockets. It will
return an appropriate implementation of the Conn interface. Note that this function takes a string rather than
address as the raddr argument, so that programs using this can avoid working out the address type first.

Chapter 3 ■ SoCket-LeveL programming

50

Using this function makes minor changes to the programs. For example, the earlier program to get HEAD
information from a web page can be rewritten as IPGetHeadInfo.go:

/* IPGetHeadInfo
 */
package main

import (
 "bytes"
 "fmt"
 "io"
 "net"
 "os"
)

func main() {
 if len(os.Args) != 2 {
 fmt.Fprintf(os.Stderr, "Usage: %s host:port", os.Args[0])
 os.Exit(1)
 }
 service := os.Args[1]

 conn, err := net.Dial("tcp", service)
 checkError(err)

 _, err = conn.Write([]byte("HEAD / HTTP/1.0\r\n\r\n"))
 checkError(err)

 result, err := readFully(conn)
 checkError(err)

 fmt.Println(string(result))

 os.Exit(0)
}

func checkError(err error) {
 if err != nil {
 fmt.Fprintf(os.Stderr, "Fatal error: %s", err.Error())
 os.Exit(1)
 }
}

func readFully(conn net.Conn) ([]byte, error) {
 defer conn.Close()

 result := bytes.NewBuffer(nil)
 var buf [512]byte

Chapter 3 ■ SoCket-LeveL programming

51

 for {
 n, err := conn.Read(buf[0:])
 result.Write(buf[0:n])
 if err != nil {
 if err == io.EOF {
 break
 }
 return nil, err
 }
 }
 return result.Bytes(), nil
}

This can be run on my own machine as follows:

go run IPGetHeadInfo.go localhost:80

It prints the following about the server running on port 80:

HTTP/1.1 200 OK
Server: nginx/1.10.0 (Ubuntu)
Date: Wed, 01 Mar 2017 10:42:39 GMT
Content-Type: text/html
Content-Length: 2152
Last-Modified: Mon, 13 Oct 2008 02:38:03 GMT
Connection: close
ETag: "48f2b48b-868"
Accept-Ranges: bytes

Writing a server can be similarly simplified using this function:

func Listen(net, laddr string) (l Listener, err error)

This returns an object implementing the Listener interface. This interface has a method:

func (l Listener) Accept() (c Conn, err error)

This will allow a server to be built. Using this, the multi-threaded Echo server given earlier becomes
ThreadedIPEchoServer.go:

/* ThreadedIPEchoServer
 */
package main

import (
 "fmt"
 "net"
 "os"
)

Chapter 3 ■ SoCket-LeveL programming

52

func main() {

 service := ":1200"
 listener, err := net.Listen("tcp", service)
 checkError(err)

 for {
 conn, err := listener.Accept()
 if err != nil {
 continue
 }
 go handleClient(conn)
 }
}

func handleClient(conn net.Conn) {
 defer conn.Close()

 var buf [512]byte
 for {
 n, err := conn.Read(buf[0:])
 if err != nil {
 return
 }
 _, err2 := conn.Write(buf[0:n])
 if err2 != nil {
 return
 }
 }
}

func checkError(err error) {
 if err != nil {
 fmt.Fprintf(os.Stderr, "Fatal error: %s", err.Error())
 os.Exit(1)
 }
}

If you want to write a UDP server, there is an interface called PacketConn and a method to return an
implementation of this:

func ListenPacket(net, laddr string) (c PacketConn, err error)

This interface has the primary methods ReadFrom and WriteTo that handle packet reads and writes.
The Go net package recommends using these interface types rather than the concrete ones. But by

using them, you lose specific methods such as SetKeepAlive of TCPConn and SetReadBuffer of UDPConn,
unless you do a type cast. It is your choice.

Raw Sockets and the IPConn Type
This section covers advanced material that most programmers are unlikely to need. it deals with raw sockets,
which allow programmers to build their own IP protocols, or use protocols other than TCP or UDP.

Chapter 3 ■ SoCket-LeveL programming

53

TCP and UDP are not the only protocols built above the IP layer. The site http://www.iana.org/
assignments/protocol-numbers lists about 140 of them (this list is often available on UNIX systems in the
file /etc/protocols). TCP and UDP are only numbers 6 and 17, respectively, on this list.

Go allows you to build so-called raw sockets, to enable you to communicate using one of these other
protocols, or even to build your own. But it gives minimal support: it will connect hosts and write and read
packets between the hosts. In the next chapter, we look at designing and implementing your own protocols
above TCP; this section considers the same type of problem, but at the IP layer.

To keep things simple, we use almost the simplest possible example: how to send an IPv4 ping message
to a host. Ping uses the echo command from the ICMP protocol. This is a byte-oriented protocol, in which
the client sends a stream of bytes to another host, and the host replies. The format of the ICMP packet
payload is as follows:

•	 The first byte is 8, standing for the echo message.

•	 The second byte is zero.

•	 The third and fourth bytes are a checksum on the entire message.

•	 The fifth and sixth bytes are an arbitrary identifier.

•	 The seventh and eight bytes are an arbitrary sequence number.

•	 The rest of the packet is user data.

The packet can be sent using the Conn.Write method, which prepares the packet with this payload. The
replies received include the IPv4 header, which takes 20 bytes. (See for example, the Wikipedia article on the
Internet Control Message Protocol, ICMP.)

The following program called Ping.go will prepare an IP connection, send a ping request to a host, and
get a reply. You may need root access in order to run it successfully:

/* Ping
 */
package main

import (
 "bytes"
 "fmt"
 "io"
 "net"
 "os"
)

// change this to my own IP address or set to 0.0.0.0
const myIPAddress = "192.168.1.2"
const ipv4HeaderSize = 20

func main() {
 if len(os.Args) != 2 {
 fmt.Println("Usage: ", os.Args[0], "host")
 os.Exit(1)
 }

 localAddr, err := net.ResolveIPAddr("ip4", myIPAddress)

http://www.iana.org/assignments/protocol-numbers
http://www.iana.org/assignments/protocol-numbers

Chapter 3 ■ SoCket-LeveL programming

54

 if err != nil {
 fmt.Println("Resolution error", err.Error())
 os.Exit(1)
 }

 remoteAddr, err := net.ResolveIPAddr("ip4", os.Args[1])
 if err != nil {
 fmt.Println("Resolution error", err.Error())
 os.Exit(1)
 }

 conn, err := net.DialIP("ip4:icmp", localAddr, remoteAddr)
 checkError(err)

 var msg [512]byte
 msg[0] = 8 // echo
 msg[1] = 0 // code 0
 msg[2] = 0 // checksum, fix later
 msg[3] = 0 // checksum, fix later
 msg[4] = 0 // identifier[0]
 msg[5] = 13 // identifier[1] (arbitrary)
 msg[6] = 0 // sequence[0]
 msg[7] = 37 // sequence[1] (arbitrary)
 len := 8

 // now fix checksum bytes
 check := checkSum(msg[0:len])
 msg[2] = byte(check >> 8)
 msg[3] = byte(check & 255)

 // send the message
 _, err = conn.Write(msg[0:len])
 checkError(err)

 fmt.Print("Message sent: ")
 for n := 0; n < 8; n++ {
 fmt.Print(" ", msg[n])
 }
 fmt.Println()

 // receive a reply
 size, err2 := conn.Read(msg[0:])
 checkError(err2)

 fmt.Print("Message received:")
 for n := ipv4HeaderSize; n < size; n++ {
 fmt.Print(" ", msg[n])
 }
 fmt.Println()
 os.Exit(0)
}

Chapter 3 ■ SoCket-LeveL programming

55

func checkSum(msg []byte) uint16 {
 sum := 0

 // assume even for now
 for n := 0; n < len(msg); n += 2 {
 sum += int(msg[n])*256 + int(msg[n+1])
 }
 sum = (sum >> 16) + (sum & 0xffff)
 sum += (sum >> 16)
 var answer uint16 = uint16(^sum)
 return answer
}

func checkError(err error) {
 if err != nil {
 fmt.Fprintf(os.Stderr, "Fatal error: %s", err.Error())
 os.Exit(1)
 }
}

func readFully(conn net.Conn) ([]byte, error) {
 defer conn.Close()

 result := bytes.NewBuffer(nil)
 var buf [512]byte
 for {
 n, err := conn.Read(buf[0:])
 result.Write(buf[0:n])
 if err != nil {
 if err == io.EOF {
 break
 }
 return nil, err
 }
 }
 return result.Bytes(), nil
}

It is run using the destination address as an argument. The received message should differ from the sent
message in only the first type byte and the third and fourth checksum bytes, as follows:

Message sent: 8 0 247 205 0 13 0 37
Message received: 0 0 255 205 0 13 0 37

Conclusion
This chapter considered programming at the IP, TCP, and UDP levels. This is often necessary if you want to
implement your own protocol or build a client or server for an existing protocol.

57© Jan Newmarch 2017
J. Newmarch, Network Programming with Go, DOI 10.1007/978-1-4842-2692-6_4

CHAPTER 4

Data Serialization

A client and server need to exchange information via messages. TCP and UDP provide the transport
mechanisms to do this. The two processes also need to have a protocol in place so that message exchange
can take place meaningfully.

Messages are sent across the network as a sequence of bytes, which has no structure except as a linear
stream of bytes. We address the various possibilities for messages and the protocols that define them in the
next chapter. In this chapter, we concentrate on a component of messages—the data that is transferred.

A program will typically build complex data structures to hold the current program state. In conversing
with a remote client or service, the program will be attempting to transfer such data structures across the
network—that is, outside of the application’s own address space.

Structured Data
Programming languages use structured data such as the following:

•	 Records/structures

•	 Variant records

•	 Array: Fixed size or varying

•	 String: Fixed size or varying

•	 Tables: Arrays of records

•	 Non-linear structures such as

•	 Circular linked lists

•	 Binary trees

•	 Objects with references to other objects

None of the IP, TCP, or UDP packets know the meaning of any of these data types. All that they can
contain is a sequence of bytes. Thus an application has to serialize any data into a stream of bytes in order
to write it, and deserialize the stream of bytes back into suitable data structures on reading it. These two
operations are known as marshalling and unmarshalling, respectively1.

1I’m treating serialization and marshalling as synonomous. There are a variety of opinions on this, some more
language-specific than others. See, for example, “What is the difference between Serialization and Marshaling?”

http://stackoverflow.com/questions/770474/what-is-the-difference-between-serialization-and-marshaling

Chapter 4 ■ Data Serialization

58

For example, consider sending the following variable length table of two columns of variable length
strings:

fred programmer

liping analyst

sureerat manager

This could be done by in various ways. For example, suppose that it is known that the data will be an
unknown number of rows in a two-column table. Then a marshalled form could be:

3 // 3 rows, 2 columns assumed
4 fred // 4 char string,col 1
10 programmer // 10 char string,col 2
6 liping // 6 char string, col 1
7 analyst // 7 char string, col 2
8 sureerat // 8 char string, col 1
7 manager // 7 char string, col 2

Variable length things can alternatively have their length indicated by terminating them with an
“illegal” value, such as \0 for strings. The previous table could also be written with the number of rows again,
but each string terminated by \0 (the newlines are for readability, not part of the serialization):

3
fred\0
programmer\0
liping\0
analyst\0
sureerat\0
manager\0

Alternatively, it may be known that the data is a three-row fixed table of two columns of strings of length
8 and 10, respectively. Then a serialization of the table could be (again, the newlines are not part of the
serialization):

fred\0\0\0\0
programmer
liping\0\0
analyst\0\0\0
sureerat
manager\0\0\0

Any of these formats is okay, but the message exchange protocol must specify which one is used or allow it
to be determined at runtime.

Chapter 4 ■ Data Serialization

59

Mutual Agreement
The previous section gave an overview of the issue of data serialization. In practice, the details can be
considerably more complex. For example, consider the first possibility, marshalling a table into the stream:

3
4 fred
10 programmer
6 liping
7 analyst
8 sureerat
7 manager

Many questions arise. For example, how many rows are possible for the table—that is, how big an
integer do we need to describe the row size? If it is 255 or less, then a single byte will do, but if it is more,
then a short, integer, or long may be needed. A similar problem occurs for the length of each string. With the
characters themselves, to which character set do they belong? 7-bit ASCII? 16-bit Unicode? The question of
character sets is discussed at length in a later chapter.

This serialization is opaque or implicit. If data is marshalled using this format, then there is nothing in
the serialized data to say how it should be unmarshalled. The unmarshalling side has to know exactly how
the data is serialized in order to unmarshal it correctly. For example, if the number of rows is marshalled as
an 8-bit integer, but unmarshalled as a 16-bit integer, then an incorrect result will occur as the receiver tries
to unmarshal 3 and 4 as a 16-bit integer, and the receiving program will almost certainly fail later.

An early well-known serialization method is XDR (external data representation) used by Sun’s RPC,
later known as ONC (Open Network Computing). XDR is defined by RFC 1832 and it is instructive to see
how precise this specification is. Even so, XDR is inherently type-unsafe as serialized data contains no type
information. The correctness of its use in ONC is ensured primarily by compilers generating code for both
marshalling and unmarshalling.

Go contains no explicit support for marshalling or unmarshalling opaque serialized data. The RPC
package in Go does not use XDR, but instead uses Gob serialization, described later in this chapter.

Self-Describing Data
Self-describing data carries type information along with the data. For example, the previous data might get
encoded as follows:

table
 uint8 3
 uint 2
string
 uint8 4
 []byte fred
string
 uint8 10
 []byte programmer
string
 uint8 6
 []byte liping

Chapter 4 ■ Data Serialization

60

string
 uint8 7
 []byte analyst
string
 uint8 8
 []byte sureerat
string
 uint8 7
 []byte manager

Of course, a real encoding would not normally be as cumbersome and verbose as in the example:
small integers would be used as type markers and the whole data would be packed in as small a byte array
as possible. (XML provides a counter-example, though.) However, the principle is that the marshaller will
generate such type information in the serialized data. The unmarshaller will know the type-generation rules
and will be able to use them to reconstruct the correct data structure.

ASN.1
Abstract Syntax Notation One (ASN.1) was originally designed in 1984 for the telecommunications industry.
ASN.1 is a complex standard, and a subset of it is supported by Go in the package asn1. It builds self-
describing serialized data from complex data structures. Its primary use in current networking systems is as
the encoding for X.509 certificates, which are heavily used in authentication systems. The support in Go is
based on what is needed to read and write X.509 certificates.

Two functions allow us to marshal and unmarshal data:

func Marshal(val interface{}) ([]byte, error)
func Unmarshal(val interface{}, b []byte) (rest []byte, err error)

The first marshals a data value into a serialized byte array, and the second unmarshals it. However, the
first argument of type interface deserves further examination. Given a variable of a type, we can marshal it by
just passing its value. To unmarshal it, we need a variable of a named type that will match the serialized data.
The precise details of this are discussed later. But we also need to make sure that the variable is allocated to
memory for that type, so that there is actually existing memory for the unmarshalling to write values into.

We illustrate with an almost trivial example in ASN1.go of marshalling and unmarshalling an integer. We
can pass an integer value to marshal to return a byte array, and unmarshal the array into an integer variable,
as in this program:

/* ASN1
 */

package main

import (
 "encoding/asn1"
 "fmt"
 "os"
)

Chapter 4 ■ Data Serialization

61

func main() {
 val := 13
 fmt.Println("Before marshal/unmarshal: ", val)
 mdata, err := asn1.Marshal(val)
 checkError(err)

 var n int
 _, err1 := asn1.Unmarshal(mdata, &n)
 checkError(err1)

 fmt.Println("After marshal/unmarshal: ", n)
}

func checkError(err error) {
 if err != nil {
 fmt.Fprintf(os.Stderr, "Fatal error: %s", err.Error())
 os.Exit(1)
 }
}

The program is run as follows:

go run ASN1.go

The unmarshalled value, is of course, 13.
Once we move beyond this, things get harder. In order to manage more complex data types, we have to

look more closely at the data structures supported by ASN.1, and how ASN.1 support is done in Go.
Any serialization method will be able to handle certain data types and not handle some others. So in

order to determine the suitability of any serialization such as ASN.1, you have to look at the possible data
types supported versus those you want to use in your application. The following ASN.1 types are taken from
http://www.obj-sys.com/asn1tutorial/node4.html.

The simple types are as follows:

•	 BOOLEAN: Two-state variable values

•	 INTEGER: Models integer variable values

•	 BIT STRING: Models binary data of arbitrary length

•	 OCTET STRING: Models binary data whose length is a multiple of eight

•	 NULL: Indicates effective absence of a sequence element

•	 OBJECT IDENTIFIER: Names information objects

•	 REAL: Models real variable values

•	 ENUMERATED: Models values of variables with at least three states

•	 CHARACTER STRING: Models values that are strings of characters from a specified
character set

http://www.obj-sys.com/asn1tutorial/node4.html

Chapter 4 ■ Data Serialization

62

Character strings can be from certain character sets:

•	 NumericString: 0,1,2,3,4,5,6,7,8,9, and space

•	 PrintableString: Upper- and lowercase letters, digits, space, apostrophe, left/right
parenthesis, plus sign, comma, hyphen, full stop, solidus, colon, equal sign, and
question mark

•	 TeletexString (T61String): The Teletex character set in CCITT’s T61, space,
and delete

•	 VideotexString: The Videotex character set in CCITT’s T.100 and T.101, space,
and delete

•	 VisibleString (ISO646String): Printing character sets of international ASCII,
and space

•	 IA5String: International Alphabet 5 (International ASCII)

•	 GraphicString 25: All registered G sets, and space GraphicString

•	 There are additional string types as well as these, notably UTF8String

And finally, there are the structured types:

•	 SEQUENCE: Models an ordered collection of variables of different types

•	 SEQUENCE OF: Models an ordered collection of variables of the same type

•	 SET: Models an unordered collection of variables of different types

•	 SET OF: Models an unordered collection of variables of the same type

•	 CHOICE: Specifies a collection of distinct types from which to choose one type

•	 SELECTION: Selects a component type from a specified CHOICE type

•	 ANY: Enables an application to specify the type

 ■ Note ANY is a deprecated aSn.1 Structured type. it has been replaced with X.680 open type.

Not all of these are supported by Go. Not all possible values are supported by Go. The rules, as given in
the Go asn1 package documentation, are as follows:

•	 An ASN.1 INTEGER can be written to an int or int64. If the encoded value does not fit
in the Go type, Unmarshal returns a parse error.

•	 An ASN.1 BIT STRING can be written to a BitString.

•	 An ASN.1 OCTET STRING can be written to a []byte.

•	 An ASN.1 OBJECT IDENTIFIER can be written to an ObjectIdentifier.

•	 An ASN.1 ENUMERATED can be written to an Enumerated.

•	 An ASN.1 UTCTIME or GENERALIZEDTIME can be written to a *time.Time.

•	 An ASN.1 PrintableString or IA5String can be written to a string.

Chapter 4 ■ Data Serialization

63

•	 Any of the above ASN.1 values can be written to an interface{}. The value stored in
the interface has the corresponding Go type. For integers, that type is int64.

•	 An ASN.1 SEQUENCE OF x or SET OF x can be written to a slice if an x can be written
to the slice’s element type.

•	 An ASN.1 SEQUENCE or SET can be written to a Go struct if each of the elements in the
sequence can be written to the corresponding element in the struct.

Go places real restrictions on ASN.1. For example, ASN.1 allows integers of any size, while the Go
implementation will only allow up to signed 64-bit integers. On the other hand, Go distinguishes between
signed and unsigned types, while ASN.1 doesn’t. So for example, transmitting a value of uint64 may fail if it
is too large for int64.

In a similar vein, ASN.1 allows several different character sets, while the Go package states that it only
supports PrintableString and IA5String (ASCII). ASN.1 now has Unicode UTF8 string type, and this is
supported by Go, but not currently documented.

We have seen that a value such as an integer can be easily marshalled and unmarshalled. Other basic
types such as Booleans and reals can be similarly dealt with. Strings composed entirely of ASCII characters
or UTF8 characters can be marshalled and unmarshalled. This code works as long as the string is composed
only of ASCII or UTF8 characters:

s := "hello"
mdata, _ := asn1.Marshal(s)

var newstr string
asn1.Unmarshal(mdata, &newstr)

ASN.1 also includes some “useful types” not in this list, such as UTC time. Go supports this UTC time
type. This means that you can pass time values in a way that is not possible for other data values. ASN.1
does not support pointers, but Go has special code to manage pointers to time values. The function Now()
returns *time.Time. The special code marshals this, and it can be unmarshalled into a pointer variable to a
time.Time object. Thus this code works:

t := time.Now()
mdata, err := asn1.Marshal(t)

var newtime = new(time.Time)
_, err1 := asn1.Unmarshal(newtime, mdata)

Both LocalTime and new handle pointers to a *time.Time, and Go looks after this special case. The
program ASN1basic.go illustrates these:

/* ASN.1 Basic
 */

package main

import (
 "encoding/asn1"
 "fmt"
 "os"
 "time"
)

Chapter 4 ■ Data Serialization

64

func main() {

 t := time.Now()
 fmt.Println("Before marshalling: ", t.String())

 mdata, err := asn1.Marshal(t)
 checkError(err)
 fmt.Println("Marshalled ok")

 var newtime = new(time.Time)
 _, err1 := asn1.Unmarshal(mdata, newtime)
 checkError(err1)

 fmt.Println("After marshal/unmarshal: ", newtime.String())

 s := "hello \u00bc"
 fmt.Println("Before marshalling: ", s)

 mdata2, err := asn1.Marshal(s)
 checkError(err)
 fmt.Println("Marshalled ok")

 var newstr string
 _, err2 := asn1.Unmarshal(mdata2, &newstr)
 checkError(err2)

 fmt.Println("After marshal/unmarshal: ", newstr)

}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

When it runs as follows:

go run ASN1basic.go

It prints something similar to this:

Before marshalling: 2017-03-02 22:31:16.878943019 +1100 AEDT
Marshalled ok
After marshal/unmarshal: 2017-03-02 22:31:16 +1100 AEDT
Before marshalling: hello ¼
Marshalled ok
After marshal/unmarshal: hello ¼

Chapter 4 ■ Data Serialization

65

In general, you will probably want to marshal and unmarshal structures. Apart from the special case
of time, Go will happily deal with structures, but not with pointers to structures. Operations such as new
create pointers, so you have to dereference them before marshalling/unmarshalling them. Go normally
dereferences pointers for you when needed, but not in this case, so you have to dereference them explicitly.
These both work for a type T:

// using variables
var t1 T
t1 = ...
mdata1, _ := asn1.Marshal(t)

var newT1 T
asn1.Unmarshal(&newT1, mdata1)

// using pointers
var t2 = new(T)
*t2 = ...
mdata2, _ := asn1.Marshal(*t2)

var newT2 = new(T)
asn1.Unmarshal(newT2, mdata2)

Any suitable mix of pointers and variables will work as well. We don’t give a full example here, as it
should be straightforward enough to apply the rules.

The fields of a structure must all be exportable, that is, field names must begin with an uppercase letter.
Go uses the reflect package to marshal/unmarshal structures, so it must be able to examine all fields. This
type cannot be marshalled:

type T struct {
 Field1 int
 field2 int // not exportable
}

ASN.1 only deals with the data types. It does not consider the names of structure fields. So the following
type T1 can be marshalled/unmarshalled into type T2 as the corresponding fields are the same types:

type T1 struct {
 F1 int
 F2 string
}

type T2 struct {
 FF1 int
 FF2 string
}

Not only must the types of each field match, but the number must match as well. These two types
don’t work:

type T1 struct {
 F1 int
}

Chapter 4 ■ Data Serialization

66

type T2 struct {
 F1 int
 F2 string // too many fields
}

We don’t give full code examples for these since we won’t be using these features.
ASN.1 illustrates many of the choices that can be made by those implementing a serialization method.

Pointers could have been given special treatment by using more code, such as the enforcement of name
matches. The order and number of strings will depend on the details of the serialization specification,
the flexibility it allows, and the coding effort needed to exploit that flexibility. It is worth noting that other
serialization formats will make different choices, and implementations in different languages will also
enforce different rules.

ASN.1 Daytime Client and Server
Now (finally) let’s turn to using ASN.1 to transport data across the network.

We can write a TCP server that delivers the current time as an ASN.1 Time type, using the techniques of
the last chapter. A server is ASNDaytimeServer.go:

/* ASN1 DaytimeServer
 */
package main

import (
 "encoding/asn1"
 "fmt"
 "net"Calibri
 "os"
 "time"
)

func main() {

 service := ":1200"
 tcpAddr, err := net.ResolveTCPAddr("tcp", service)
 checkError(err)

 listener, err := net.ListenTCP("tcp", tcpAddr)
 checkError(err)

 for {
 conn, err := listener.Accept()
 if err != nil {
 continue
 }

 daytime := time.Now()
 // Ignore return network errors.
 mdata, _ := asn1.Marshal(daytime)

Chapter 4 ■ Data Serialization

67

 conn.Write(mdata)
 conn.Close() // we're finished
 }
}

func checkError(err error) {
 if err != nil {
 fmt.Fprintf(os.Stderr, "Fatal error: %s", err.Error())
 os.Exit(1)
 }
}

This can be compiled to an executable such as ASN1DaytimeServer and run with no arguments. It will
wait for connections and then send the time as an ASN.1 string to the client.

A client is ASNDaytimeClient.go:

/* ASN.1 DaytimeClient
 */
package main

import (
 "bytes"
 "encoding/asn1"
 "fmt"
 "io"
 "net"
 "os"
 "time"
)

func main() {
 if len(os.Args) != 2 {
 fmt.Fprintf(os.Stderr, "Usage: %s host:port", os.Args[0])
 os.Exit(1)
 }
 service := os.Args[1]

 conn, err := net.Dial("tcp", service)
 checkError(err)

 result, err := readFully(conn)
 checkError(err)

 var newtime time.Time
 _, err1 := asn1.Unmarshal(result, &newtime)
 checkError(err1)

 fmt.Println("After marshal/unmarshal: ", newtime.String())

 os.Exit(0)
}

Chapter 4 ■ Data Serialization

68

func checkError(err error) {
 if err != nil {
 fmt.Fprintf(os.Stderr, "Fatal error: %s", err.Error())
 os.Exit(1)
 }
}

func readFully(conn net.Conn) ([]byte, error) {
 defer conn.Close()

 result := bytes.NewBuffer(nil)
 var buf [512]byte
 for {
 n, err := conn.Read(buf[0:])
 result.Write(buf[0:n])
 if err != nil {
 if err == io.EOF {
 break
 }
 return nil, err
 }
 }
 return result.Bytes(), nil
}

This connects to the service given in a form such as localhost:1200, reads the TCP packet, and
decodes the ASN.1 content back into a string, which it prints.

Note that neither of these two—the client or the server—are compatible with the text-based clients and
servers of the last chapter. This client and server are exchanging ASN.1 encoded data values, not textual strings.

JSON
JSON stands for JavaScript Object Notation. It was designed to be a lightweight means of passing data
between JavaScript systems. It uses a text-based format and is sufficiently general that it has become used as
a general-purpose serialization method for many programming languages.

JSON serializes objects, arrays, and basic values. The basic values include string, number, Boolean
values, and the null value. Arrays are a comma-separated list of values that can represent arrays, vectors,
lists, or sequences of various programming languages. They are delimited by square brackets [...].
Objects are represented by a list of “field: value” pairs enclosed in curly braces { ... }.

For example, the table of employees given earlier could be written as an array of employee objects:

[
 {"Name": "fred", "Occupation": "programmer"},
 {"Name": "liping", "Occupation": "analyst"},
 {"Name": "sureerat", "Occupation": "manager"}
]

There is no special support for complex data types such as dates, no distinction between number types,
no recursive types, etc. JSON is a very simple language, but nevertheless can be quite useful. Its text-based
format makes it easy to use and debug, even though it has the overheads of string handling.

Chapter 4 ■ Data Serialization

69

From the Go JSON package specification, marshalling uses the following type-dependent default
encodings:

•	 Boolean values encode as JSON Booleans.

•	 Floating point and integer values encode as JSON numbers.

•	 String values encode as JSON strings, with each invalid UTF-8 sequence replaced by
the encoding of the Unicode replacement character U+FFFD.

•	 Array and slice values encode as JSON arrays, except that []byte encodes as a
Base64-encoded string.

•	 Struct values encode as JSON objects. Each struct field becomes a member of
the object. By default the object’s key name is the struct field name converted to
lowercase. If the struct field has a tag, that tag will be used as the name instead.

•	 Map values encode as JSON objects. The map’s key type must be string; the object
keys are used directly as map keys.

•	 Pointer values encode as the value pointed to. (Note: This allows trees but not
graphs!). A nil pointer encodes as the null JSON object.

•	 Interface values encode as the value contained in the interface. A nil interface value
encodes as the null JSON object.

•	 Channel, complex, and function values cannot be encoded in JSON. Attempting to
encode such a value causes Marshal to return InvalidTypeError.

•	 JSON cannot represent cyclic data structures and Marshal does not handle them.
Passing cyclic structures to Marshal will result in an infinite recursion.

A program to store JSON serialized data into the file person.json is SaveJSON.go:

/* SaveJSON
 */

package main

import (
 "encoding/json"
 "fmt"
 "os"
)

type Person struct {
 Name Name
 Email []Email
}

type Name struct {
 Family string
 Personal string
}

Chapter 4 ■ Data Serialization

70

type Email struct {
 Kind string
 Address string
}

func main() {
 person := Person{
 Name: Name{Family: "Newmarch", Personal: "Jan"},
 Email: []Email{Email{Kind: "home", Address: "jan@newmarch.name"},
 Email{Kind: "work", Address: "j.newmarch@boxhill.edu.au"}}}

 saveJSON("person.json", person)
}

func saveJSON(fileName string, key interface{}) {
 outFile, err := os.Create(fileName)
 checkError(err)
 encoder := json.NewEncoder(outFile)
 err = encoder.Encode(key)
 checkError(err)
 outFile.Close()
}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

To load it back into memory, use LoadJSON.go:

/* LoadJSON
 */

package main

import (
 "encoding/json"
 "fmt"
 "os"
)

type Person struct {
 Name Name
 Email []Email
}

Chapter 4 ■ Data Serialization

71

type Name struct {
 Family string
 Personal string
}

type Email struct {
 Kind string
 Address string
}

func (p Person) String() string {
 s := p.Name.Personal + " " + p.Name.Family
 for _, v := range p.Email {
 s += "\n" + v.Kind + ": " + v.Address
 }
 return s
}
func main() {
 var person Person
 loadJSON("person.json", &person)

 fmt.Println("Person", person.String())
}

func loadJSON(fileName string, key interface{}) {
 inFile, err := os.Open(fileName)
 checkError(err)
 decoder := json.NewDecoder(inFile)
 err = decoder.Decode(key)
 checkError(err)
 inFile.Close()
}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

The serialized form is (formatted nicely):

{"Name":{"Family":"Newmarch",
 "Personal":"Jan"},
 "Email":[{"Kind":"home","Address":"jan@newmarch.name"},
 {"Kind":"work","Address":"j.newmarch@boxhill.edu.au"}
]
}

Chapter 4 ■ Data Serialization

72

A Client and Server
A client to send a person’s data and read it back 10 times is JSONEchoClient.go:

/* JSON EchoClient
 */
package main

import (
 "bytes"
 "encoding/json"
 "fmt"
 "io"
 "net"
 "os"
)

type Person struct {
 Name Name
 Email []Email
}

type Name struct {
 Family string
 Personal string
}

type Email struct {
 Kind string
 Address string
}

func (p Person) String() string {
 s := p.Name.Personal + " " + p.Name.Family
 for _, v := range p.Email {
 s += "\n" + v.Kind + ": " + v.Address
 }
 return s
}

func main() {
 person := Person{
 Name: Name{Family: "Newmarch", Personal: "Jan"},
 Email: []Email{Email{Kind: "home", Address: "jan@newmarch.name"},
 Email{Kind: "work", Address: "j.newmarch@boxhill.edu.au"}}}

 if len(os.Args) != 2 {
 fmt.Println("Usage: ", os.Args[0], "host:port")
 os.Exit(1)
 }
 service := os.Args[1]

Chapter 4 ■ Data Serialization

73

 conn, err := net.Dial("tcp", service)
 checkError(err)

 encoder := json.NewEncoder(conn)
 decoder := json.NewDecoder(conn)

 for n := 0; n < 10; n++ {
 encoder.Encode(person)
 var newPerson Person
 decoder.Decode(&newPerson)
 fmt.Println(newPerson.String())
 }

 os.Exit(0)
}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

func readFully(conn net.Conn) ([]byte, error) {
 defer conn.Close()

 result := bytes.NewBuffer(nil)
 var buf [512]byte
 for {
 n, err := conn.Read(buf[0:])
 result.Write(buf[0:n])
 if err != nil {
 if err == io.EOF {
 break
 }
 return nil, err
 }
 }
 return result.Bytes(), nil
}

The corresponding server is JSONEchoServer.go:

/* JSON EchoServer
 */
package main

Chapter 4 ■ Data Serialization

74

import (
 "encoding/json"
 "fmt"
 "net"
 "os"
)

type Person struct {
 Name Name
 Email []Email
}

type Name struct {
 Family string
 Personal string
}

type Email struct {
 Kind string
 Address string
}

func (p Person) String() string {
 s := p.Name.Personal + " " + p.Name.Family
 for _, v := range p.Email {
 s += "\n" + v.Kind + ": " + v.Address
 }
 return s
}

func main() {

 service := "0.0.0.0:1200"
 tcpAddr, err := net.ResolveTCPAddr("tcp", service)
 checkError(err)

 listener, err := net.ListenTCP("tcp", tcpAddr)
 checkError(err)

 for {
 conn, err := listener.Accept()
 if err != nil {
 continue
 }

 encoder := json.NewEncoder(conn)
 decoder := json.NewDecoder(conn)

 for n := 0; n < 10; n++ {
 var person Person
 decoder.Decode(&person)

Chapter 4 ■ Data Serialization

75

 fmt.Println(person.String())
 encoder.Encode(person)
 }
 conn.Close() // we're finished
 }
}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

The Gob Package
Gob is a serialization technique specific to Go. It is designed to encode Go data types specifically and does
not at present have substantial support for or by any other languages. It supports all Go data types except for
channels, functions, and interfaces. It supports integers of all types and sizes, strings and Booleans, structs,
arrays, and slices. At present, it has some problems with circular structures such as rings, but that will
improve over time.

Gob encodes type information into its serialized forms. This is far more extensive than the type
information in say an X.509 serialization, but far more efficient than the type information contained in an
XML document. Type information is only included once for each piece of data, but includes, for example,
the names of struct fields.

This inclusion of type information makes Gob marshalling and unmarshalling fairly robust to changes
or differences between the marshaller and unmarshaller. For example, this struct:

 struct T {
 a int
 b int
}

Can be marshalled and then unmarshalled into a different struct, where the order of fields has changed:

 struct T {
 b int
 a int
}

It can also cope with missing fields (the values are ignored) or extra fields (the fields are left
unchanged). It can cope with pointer types, so that the previous struct could be unmarshalled into this one:

 struct T {
 *a int
 **b int
}

Chapter 4 ■ Data Serialization

76

To some extent it can cope with type coercions so that an int field can be broadened into an int64, but
not incompatible types such as int and uint.

To use Gob to marshal a data value, you first need to create an Encoder. This takes a Writer as a
parameter and marshalling will be done to this write stream. The encoder has a method called Encode,
which marshals the value to the stream. This method can be called multiple times on multiple pieces of data.
Type information for each data type is only written once, though.

You use a Decoder to unmarshal the serialized data stream. This takes a Reader and each read returns
an unmarshalled data value.

A program to store Gob serialized data into the file person.go is SaveGob.go:

/* SaveGob
 */

package main

import (
 "encoding/gob"
 "fmt"
 "os"
)

type Person struct {
 Name Name
 Email []Email
}

type Name struct {
 Family string
 Personal string
}

type Email struct {
 Kind string
 Address string
}

func main() {
 person := Person{
 Name: Name{Family: "Newmarch", Personal: "Jan"},
 Email: []Email{Email{Kind: "home", Address: "jan@newmarch.name"},
 Email{Kind: "work", Address: "j.newmarch@boxhill.edu.au"}}}

 saveGob("person.gob", person)
}

func saveGob(fileName string, key interface{}) {
 outFile, err := os.Create(fileName)
 checkError(err)
 encoder := gob.NewEncoder(outFile)

Chapter 4 ■ Data Serialization

77

 err = encoder.Encode(key)
 checkError(err)
 outFile.Close()
}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

To load it back into memory, use LoadGob.go:

/* LoadGob
 */

package main

import (
 "encoding/gob"
 "fmt"
 "os"
)

type Person struct {
 Name Name
 Email []Email
}

type Name struct {
 Family string
 Personal string
}

type Email struct {
 Kind string
 Address string
}

func (p Person) String() string {
 s := p.Name.Personal + " " + p.Name.Family
 for _, v := range p.Email {
 s += "\n" + v.Kind + ": " + v.Address
 }
 return s
}

Chapter 4 ■ Data Serialization

78

func main() {
 var person Person
 loadGob("person.gob", &person)

 fmt.Println("Person", person.String())
}

func loadGob(fileName string, key interface{}) {
 inFile, err := os.Open(fileName)
 checkError(err)
 decoder := gob.NewDecoder(inFile)
 err = decoder.Decode(key)
 checkError(err)
 inFile.Close()
}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

A Client and Server
A client to send a person’s data and read it back 10 times is GobEchoClient.go:

/* Gob EchoClient
 */
package main

import (
 "bytes"
 "encoding/gob"
 "fmt"
 "io"
 "net"
 "os"
)

type Person struct {
 Name Name
 Email []Email
}

type Name struct {
 Family string
 Personal string
}

Chapter 4 ■ Data Serialization

79

type Email struct {
 Kind string
 Address string
}

func (p Person) String() string {
 s := p.Name.Personal + " " + p.Name.Family
 for _, v := range p.Email {
 s += "\n" + v.Kind + ": " + v.Address
 }
 return s
}

func main() {
 person := Person{
 Name: Name{Family: "Newmarch", Personal: "Jan"},
 Email: []Email{Email{Kind: "home", Address: "jan@newmarch.name"},
 Email{Kind: "work", Address: "j.newmarch@boxhill.edu.au"}}}

 if len(os.Args) != 2 {
 fmt.Println("Usage: ", os.Args[0], "host:port")
 os.Exit(1)
 }
 service := os.Args[1]

 conn, err := net.Dial("tcp", service)
 checkError(err)

 encoder := gob.NewEncoder(conn)
 decoder := gob.NewDecoder(conn)

 for n := 0; n < 10; n++ {
 encoder.Encode(person)
 var newPerson Person
 decoder.Decode(&newPerson)
 fmt.Println(newPerson.String())
 }

 os.Exit(0)
}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

Chapter 4 ■ Data Serialization

80

func readFully(conn net.Conn) ([]byte, error) {
 defer conn.Close()

 result := bytes.NewBuffer(nil)
 var buf [512]byte
 for {
 n, err := conn.Read(buf[0:])
 result.Write(buf[0:n])
 if err != nil {
 if err == io.EOF {
 break
 }
 return nil, err
 }
 }
 return result.Bytes(), nil
}

The corresponding server is GobEchoServer.go:

/* Gob EchoServer
 */
package main

import (
 "encoding/gob"
 "fmt"
 "net"
 "os"
)

type Person struct {
 Name Name
 Email []Email
}

type Name struct {
 Family string
 Personal string
}

type Email struct {
 Kind string
 Address string
}

Chapter 4 ■ Data Serialization

81

func (p Person) String() string {
 s := p.Name.Personal + " " + p.Name.Family
 for _, v := range p.Email {
 s += "\n" + v.Kind + ": " + v.Address
 }
 return s
}

func main() {

 service := "0.0.0.0:1200"
 tcpAddr, err := net.ResolveTCPAddr("tcp", service)
 checkError(err)

 listener, err := net.ListenTCP("tcp", tcpAddr)
 checkError(err)

 for {
 conn, err := listener.Accept()
 if err != nil {
 continue
 }

 encoder := gob.NewEncoder(conn)
 decoder := gob.NewDecoder(conn)

 for n := 0; n < 10; n++ {
 var person Person
 decoder.Decode(&person)
 fmt.Println(person.String())
 encoder.Encode(person)
 }
 conn.Close() // we're finished
 }
}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

Encoding Binary Data as Strings
Once upon a time, transmitting 8-bit data was problematic. It was often transmitted over noisy serial lines
and could easily become corrupted. 7-bit data, on the other hand, could be transmitted more reliably
because the 8th bit could be used as check digit. For example, in an “even parity” scheme, the check digit
would be set to one or zero to make an even number of 1s in a byte. This allows detection of errors of a single
bit in each byte.

Chapter 4 ■ Data Serialization

82

ASCII is a 7-bit character set. A number of schemes have been developed that are more sophisticated
than simple parity checking, but which involve translating 8-bit binary data into 7-bit ASCII format.
Essentially, the 8-bit data is stretched out in some way over the 7-bit bytes.

Binary data transmitted in HTTP responses and requests is often translated into an ASCII form. This
makes it easy to inspect the HTTP messages with a simple text reader without worrying about what strange
8-bit bytes might do to your display!

One common format is Base64. Go has support for many binary-to-text formats, including Base64.
There are two principal functions to use for Base64 encoding and decoding:

func NewEncoder(enc *Encoding, w io.Writer) io.WriteCloser
func NewDecoder(enc *Encoding, r io.Reader) io.Reader

A simple program just to encode and decode a set of eight binary digits is Base64.go:

/**
 * Base64
 */

package main

import (
 "encoding/base64"
 "fmt"
)

func main() {

 eightBitData := []byte{1, 2, 3, 4, 5, 6, 7, 8}

 enc := base64.StdEncoding.EncodeToString(eightBitData)
 dec, _ := base64.StdEncoding.DecodeString(enc)

 fmt.Println("Original data ", eightBitData)
 fmt.Println("Encoded string ", enc)
 fmt.Println("Decoded data ", dec)
}

The output is as follows:

Original data [1 2 3 4 5 6 7 8]
Encoded string AQIDBAUGBwg=
Decoded data [1 2 3 4 5 6 7 8]

Chapter 4 ■ Data Serialization

83

Protocol Buffers
The serialization methods considered so far fall into various types:

•	 ASN.1 encodes the different types using binary tags in the data. In that sense, an
ASN.1 encoded data structure is a self-describing structure.

•	 JSON similarly is a self-describing format, using the rules of JavaScript data
structures: lists, dictionaries, etc.

•	 Gob similarly encodes type information into its encoded form. This is far more
detailed than the JSON format.

A separate class of serialization techniques rely on an external specification of the data type to be
encoded. There are several major ones, such as the encoding used by ONC RPC.

ONC RPC is an old encoding, targeted toward the C language. A recent one is from Google, known as
protocol buffers. This is not supported in the Go Standard Libraries, but is supported by the Google Protocol
Buffers developer group (https://developers.google.com/protocol-buffers/) and is apparently very
popular within Google. For that reason, we include a section on protocol buffers, although in the rest of the
book we typically deal with the Go Standard Libraries.

Protocol buffers are a binary encoding of data intended to support the data types of a large variety
of languages. They rely on an external specification of a data structure, which is used to encode data (in a
source language) and also to decode the encoded data back into a target language. (Note: Protocol buffers
transitioned to version 3 in July 2016. It is not compatible with version 2. Version 2 will be supported for a
long time, but will eventually be obsoleted. See Protocol Buffers v3.0.0 at https://github.com/google/
protobuf/releases/tag/v3.0.0).

The data structure to be serialized is known as a message. The data types supported in each message
include:

•	 Numbers (integers or floats)

•	 Booleans

•	 Strings (in UTF-8)

•	 Raw bytes

•	 Maps

•	 Other messages, allowing complex data structures to be built

The fields of a message are all optional (this is a change from proto2 where fields were required or
optional). A field can stand for a list or array by the keyword repeated or a map using the keyword map. Each
field has a type, followed by a name, followed by a tag index value. The full language guide is at called the
“Protocol Buffers Language Guide” (see https://developers.google.com/protocol-buffers/docs/proto).

Messages are defined independent of the possible target language. A version of the Person type in
the syntax of Protocol Buffers version 3 is personv3.proto. Note that the file includes specific tags (1, 2) on
each type.

syntax = "proto3";
package person;

message Person {
 message Name {
 string family = 1;
 string personal = 2;
 }

https://developers.google.com/protocol-buffers/
https://github.com/google/protobuf/releases/tag/v3.0.0
https://github.com/google/protobuf/releases/tag/v3.0.0
https://developers.google.com/protocol-buffers/docs/proto

Chapter 4 ■ Data Serialization

84

 message Email {
 string kind = 1;
 string address = 2;
 }

 Name name = 1;
 repeated Email email = 2;
}

Installing and Compiling Protocol Buffers
Protocol buffers are compiled using a program called protoc. This is unlikely to be installed on your system.
Version 3 was only released in July 2016, so copies in repositories are likely to be version 2.

Install the latest version from the Protocol Buffers v3.0.0 page. For 64-bit Linux for example, download
protoc-3.0.0-linux-x86_64.zip from GitHub and unzip it to a suitable place (it includes the binary
bin/protoc, which should be placed somewhere in your PATH).

That installs the general binary. You also need the “backend” to generate Go files. To do this, fetch it
from GitHub:

go get -u github.com/golang/protobuf/protoc-gen-go

You are nearly ready to compile a .proto file. The previous example of personv3.proto declares the
package person. In your GOPATH, you should have a directory called src. Create a subdirectory called
src/person. Then compile the personv3.proto as follows:

protoc --go_out=src/person personv3.proto

This should create the src/person/personv3.pb.go file.

The Compiled personv3.pb.go File
The compiled file will declare a number of types and methods on these types. The types are as follows:

type Person struct {
 Name *Person_Name `protobuf:"bytes,1,opt,name=name" json:"name,omitempty"`
 Email []*Person_Email `protobuf:"bytes,2,rep,name=email" json:"email,omitempty"`
}

type Person_Name struct {
 Family string `protobuf:"bytes,1,opt,name=family" json:"family,omitempty"`
 Personal string `protobuf:"bytes,2,opt,name=personal" json:"personal,omitempty"`
}

type Person_Email struct {
 Kind string `protobuf:"bytes,1,opt,name=kind" json:"kind,omitempty"`
 Address string `protobuf:"bytes,2,opt,name=address" json:"address,omitempty"`
}

They are in the package called person. (Note: Simple types such as strings are encoded directly. In
Protocol Buffers v2, a pointer was used. For compound types, a pointer is required, as in v2.)

Chapter 4 ■ Data Serialization

85

Using the Compiled Code
There is essentially no difference between the coding used in the JSON example and this one, apart from
having to watch pointers for the structs used. A simple program just to marshal and unmarshal a Person is
ProtocolBuffer.go:

The output should be a Person before and after marshalling and should be the same:

/* ProtocolBuffer
 */

package main

import (
 "fmt"
 "github.com/golang/protobuf/proto"
 "os"
 "person"
)

func main() {
 name := person.Person_Name{
 Family: "newmarch",
 Personal: "jan"}

 email1 := person.Person_Email{
 Kind: "home",
 Address: "jan@newmarch.name"}
 email2 := person.Person_Email{
 Kind: "work",
 Address: "j.newmarch@boxhill.edu.au"}

 emails := []*person.Person_Email{&email1, &email2}
 p := person.Person{
 Name: &name,
 Email: emails,
 }
 fmt.Println(p)

 data, err := proto.Marshal(&p)
 checkError(err)
 newP := person.Person{}
 err = proto.Unmarshal(data, &newP)
 checkError(err)
 fmt.Println(newP)
}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

Chapter 4 ■ Data Serialization

86

The output should be a Person before and after marshalling and should be the same by running the
following:

 go run ProtocolBuffer.go

{family:"newmarch" personal:"jan" [kind:"home" address:"jan@newmarch.name" kind:"work"
address:"j.newmarch@boxhill.edu.au"]}
{family:"newmarch" personal:"jan" [kind:"home" address:"jan@newmarch.name" kind:"work"
address:"j.newmarch@boxhill.edu.au"]}

We haven’t done much with the marshalled object. However, it could be saved to a file or sent across the
network and unmarshalled by any of the supported languages: C++, C#, Java, Python, as well as Go.

Conclusion
This chapter discussed the general properties of serializing data types and showed a number of common
encodings. There are many more, including XML (included in the Go libraries), CBOR (a binary form of
JSON), and YAML (similar to XML), as well as many language-specific ones such as Java Object Serialization
and Python’s Pickle. Those not in the Go standard packages may often be found on GitHub.

87© Jan Newmarch 2017
J. Newmarch, Network Programming with Go, DOI 10.1007/978-1-4842-2692-6_5

CHAPTER 5

Application-Level Protocols

A client and server need to exchange information via messages. TCP and UDP provide the transport
mechanisms to do this. The two processes also need to have a protocol in place so that message exchange
can take place meaningfully. A protocol defines what type of conversation can take place between two
components of a distributed application, by specifying messages, data types, encoding formats, and so on.
This chapter looks at some of the issues involved in this process and gives a complete example of a simple
client-server application.

Protocol Design
There are many possibilities and issues to be decided on when designing a protocol. Some of the issues
include:

Is it to be broadcast or point-to-point? Broadcast can be UDP, local multicast, or
the more experimental MBONE. Point-to-point could be either TCP or UDP.

Is it to be stateful or stateless? Is it reasonable for one side to maintain state about
the other side? It is often simpler for one side to maintain state about the other,
but what happens if something crashes?

Is the transport protocol reliable or unreliable? Reliable is often slower, but then
you don’t have to worry so much about lost messages.

Are replies needed? If a reply is needed, how do you handle a lost reply?
Timeouts may be used.

What data format do you want? Several possibilities were discussed in the last
chapter.

Is your communication bursty or steady stream? Ethernet and the Internet are
best at bursty traffic. Steady stream is needed for video streams and particularly
for voice. If required, how do you manage Quality of Service (QoS)?

Are there multiple streams with synchronization required? Does the data need to
be synchronized with anything, such as video and voice?

Are you building a standalone application or a library to be used by others? The
standards of documentation required might vary.

Chapter 5 ■ appliCation-level protoCols

88

Why Should You Worry?
Jeff Bezos, the CEO of Amazon, reportedly made the following statements in 2002:

•	 All teams will henceforth expose their data and functionality through service
interfaces.

•	 Teams must communicate with each other through these interfaces.

•	 There will be no other form of interprocess communication allowed: no direct
linking, no direct reads of another team’s data store, no shared-memory model, no
backdoors whatsoever. The only communication allowed is via service interface calls
over the network.

•	 It doesn’t matter what technology they use. HTTP, Corba, Pubsub, custom
protocols—it doesn’t matter. Bezos doesn’t care.

•	 All service interfaces, without exception, must be designed from the ground up to be
externalizable. That is to say, the team must plan and design to be able to expose the
interface to developers on the outside world. No exceptions.

•	 Anyone who doesn’t do this will be fired.

(Source: Rip Rowan’s blog about Steve Yegge’s posting at https://plus.google.com/+RipRowan/
posts/eVeouesvaVX.) What Bezos was doing was orienting one of the world’s most successful Internet
companies around service architectures, and interfaces must be clear enough that all communication must
be through those interfaces alone—without confusion or errors.

Version Control
A protocol used in a client-server system will evolve over time, changing as the system expands. This raises
compatibility problems: a version 2 client will make requests that a version 1 server doesn’t understand,
whereas a version 2 server will send replies that a version 1 client won’t understand.

Each side should ideally be able to understand messages from its own version and all earlier ones. It
should be able to write replies to old-style queries in old-style response formats. See Figure 5-1.

https://plus.google.com/+RipRowan/posts/eVeouesvaVX
https://plus.google.com/+RipRowan/posts/eVeouesvaVX

Chapter 5 ■ appliCation-level protoCols

89

The ability to talk earlier version formats may be lost if the protocol changes too much. In this case, you
need to be able to ensure that no copies of the earlier version still exist, which is generally impossible.

Part of the protocol setup should involve version information.

The Web
The Web is a good example of a system that has been through multiple different versions. The underlying
HTTP protocol manages version control in an excellent manner, even though it has been through four
versions. Most servers/browsers support the latest version but also support the earlier versions. The
latest version HTTP/2 appears to account for just over 11% of web traffic by January 2017, while HTTP/1.1
accounts for almost all of the rest. The version is given in each request as in the following GET requests:

Request Version

GET / Pre 1.0

GET / HTTP/1.0 HTTP 1.0

GET / HTTP/1.1 HTTP 1.1

GET / HTTP/1.1
Connection: Upgrade,
HTTP2-Settings Upgrade: h2c

HTTP 2

client v1
v1 protocol

v1 protocol

v1 protocol

v2 protocol

server v1

server v1

server v2

server v2

client v2

client v2

client v1

Figure 5-1. Compatibility versus version control

Chapter 5 ■ appliCation-level protoCols

90

HTTP/2 is a binary format and is not compatible with earlier versions. Nevertheless, there is a
negotiation mechanism of sending an HTTP/1.1 request with upgrade fields to HTTP/2. If the client accepts
it, the upgrade can be made. If the client doesn’t understand the upgrade parameters, the connection
continues with HTTP/1.1.

While originally designed for HTML, HTTP can carry any content. If we just look at HTML, this has been
through a large number of versions with, at times, little attempt to ensure compatibility between versions:

•	 HTML5, which has abandoned any version signaling between dot revisions

•	 HTML versions 1-4 (all different), with versions in the “browser wars” particularly
problematic

•	 Non-standard tags recognized by different browsers

•	 Non-HTML documents often require content handlers that may not be present; does
your browser have a handler for Flash?

•	 Inconsistent treatment of document content (e.g., some stylesheet content will crash
some browsers)

•	 Different support for JavaScript (and different versions of JavaScript)

•	 Different runtime engines for Java

•	 Many pages do not conform to any HTML versions (e.g., with syntax errors)

HTML5 (and indeed many earlier versions) is an excellent example of how not to do version control.
The latest revision at the time of writing is Revision 5. “In this version, new features are introduced to
help Web application authors, new elements are introduced based on research into prevailing authoring
practices,…” . Not only are some new features added, but some older ones (which should not be in much
use any more) have also been removed and no longer work. There is no means for an HTML5 document to
signal which revision it uses.

Message Format
In the last chapter we discussed some possibilities for representing data to be sent across the wire. Now we
look one level up, to the messages that may contain such data.

•	 The client and server will exchange messages with different meanings:

•	 Login request

•	 Login reply

•	 Get record request

•	 Record data reply

•	 The client will prepare a request, which must be understood by the server.

•	 The server will prepare a reply, which must be understood by the client.

Chapter 5 ■ appliCation-level protoCols

91

Commonly, the first part of the message will be a message type.

•	 Client to server:

LOGIN <name> <passwd>
GET <subject> grade

•	 Server to client:

LOGIN succeeded
GRADE <subject> <grade>

The message types can be strings or integers. For example, HTTP uses integers such as 404 to mean “not
found” (although these integers are written as strings). The messages from client to server and vice versa are
disjoint. The LOGIN message from the client to the server is a different message than the LOGIN message from
the server to the client, and they will probably play complementary roles in the protocol.

Data Format
There are two main format choices for messages: byte encoded or character encoded.

Byte Format
In the byte format:

•	 The first part of the message is typically a byte to distinguish between message types.

•	 The message handler examines this first byte to distinguish the message type and
then performs a switch to select the appropriate handler for that type.

•	 Further bytes in the message contain message content according to a predefined
format (as discussed in the previous chapter).

The advantages are compactness and hence speed. The disadvantages are caused by the opaqueness of
the data: it may be harder to spot errors, harder to debug, and require special purpose decoding functions.
There are many examples of byte-encoded formats, including major protocols such as DNS and NFS, up to
recent ones such as Skype. Of course, if your protocol is not publicly specified, then a byte format can also
make it harder for others to reverse-engineer it!

Pseudocode for a byte-format server is as follows:

handleClient(conn) {
 while (true) {
 byte b = conn.readByte()
 switch (b) {
 case MSG_1: ...
 case MSG_2: ...
 ...
 }
 }
}

Chapter 5 ■ appliCation-level protoCols

92

Go has basic support for managing byte streams. The interface io.ReaderWriter has these methods:

Read(b []byte) (n int, err error)Write(b []byte) (n int, err error)

These methods are implemented by TCPConn and UDPConn.

Character Format
In this mode, everything is sent as characters if possible. For example, an integer 234 would be sent as, say,
the three characters 2, 3, and 4 instead of as the one byte 234. Data that is inherently binary may be Base64
encoded to change it into a 7-bit format and then sent as ASCII characters, as discussed in the previous
chapter.

In character format:

•	 A message is a sequence of one or more lines. The start of the first line of the message
is typically a word that represents the message type.

•	 String-handling functions may be used to decode the message type and data.

•	 The rest of the first line and successive lines contain the data.

•	 Line-oriented functions and line-oriented conventions are used to manage this.

The pseudocode is as follows:

handleClient() {
 line = conn.readLine()
 if (line.startsWith(...) {
 ...
 } else if (line.startsWith(...) {
 ...
 }
}

Character formats are easier to set up and easier to debug. For example, you can use telnet to connect
to a server on any port and send client requests to that server. There isn’t a simple tool like telnet to send
server responses to a client, but you can use tools like tcpdump or wireshark to snoop on TCP traffic and see
immediately what clients are sending to, and receiving from, the servers.

There is not the same level of support in Go for managing character streams. There are significant issues
with character sets and character encodings, and we will explore these issues in a later chapter.

If we just pretend everything is ASCII, like it was once upon a time, then character formats are quite
straightforward to deal with. The principal complication at this level is the varying status of “newline” across
different operating systems. UNIX uses the single character \n. Windows and others (more correctly) use
the pair \r\n. On the Internet, the pair \r\n is most common. UNIX systems just need to take care that they
don’t assume \n.

A Simple Example
This example deals with a directory browsing protocol, which is basically a stripped down version of FTP,
but without even the file transfer part. We only consider listing a directory name, listing the contents of a
directory, and changing the current directory—all on the server side, of course. This is a complete worked
example of creating all components of a client-server application. It is a simple program that includes
messages in both directions, as well as a design of messaging protocol.

Chapter 5 ■ appliCation-level protoCols

93

A Standalone Application
Look at a simple non-client-server program that allows you to list files in a directory and change and print
the name of the directory on the server. We omit copying files, as that adds to the length of the program
without introducing important concepts. For simplicity, all filenames will be assumed to be in 7-bit ASCII. If
we just looked at a standalone application first, it would look like Figure 5-2.

The pseudocode would be as follows:

read line from user
while not eof do
 if line == dir
 list directory // local function call
 else

 if line == cd <directory>
 change directory // local function call
 else

 if line == pwd
 print directory // local function call
 else

 if line == quit
 quit
 else
 complain

 read line from user

A non-distributed application would simply link the UI and file access code by local function calls.

UI
File
system
access

Figure 5-2. The standalone application

Chapter 5 ■ appliCation-level protoCols

94

The Client-Server Application
In a client-server situation, the client would be at the user end, talking to a server somewhere else. Aspects
of this program belong solely at the presentation end, such as getting the commands from the user. Some are
messages from the client to the server; some are solely at the server end. See Figure 5-3.

The Client Side
For a simple directory browser, assume that all directories and files are at the server end, and we are
transferring file information only from the server to the client. The client side (including presentation
aspects) will become:

read line from user
while not eof do
 if line == dir
 list directory // network call to server
 else

 if line == cd <directory>
 change directory // network call to server
 else

 if line == pwd
 print directory // network call to server
 else

 if line == quit
 quit
 else
 complain

 read line from user

Where the calls list directory, change directory, and print directory now all involve network
calls to the server. The details are not shown yet and will be discussed later.

UI

network

Client Server

client

I/O

server

I/O

File
system
access

Figure 5-3. The client-server situation

Chapter 5 ■ appliCation-level protoCols

95

Alternative Presentation Aspects
A GUI program would allow directory contents to be displayed as lists, for files to be selected and actions
such as change directory to be performed on them. The client would be controlled by actions associated
with various events that take place on graphical objects. The pseudocode might look like this:

change dir button:
 if there is a selected file
 change directory // remote call to server
 if successful
 update directory label
 list directory // remote call to server
 update directory list

The functions called from the different UIs should be the same—changing the presentation should not
change the networking code.

The Server Side
The server side is independent of whatever presentation is used by the client. It is the same for all clients:

while read command from client
 if command == dir
 send list directory // local call on server
 else

 if command == cd <directory>
 change directory // local call on server
 else

 if command == pwd
 send print directory // local call on server
 else

Protocol: Informal

Client Request Server Response

dir Send list of files

cd <directory> Change dir
 Send an error if failed
 Send ok if succeed

pwd Send current directory

quit Quit

Chapter 5 ■ appliCation-level protoCols

96

Text Protocol
This is a simple protocol. The most complicated data structure that we need to send is an array of strings for
a directory listing. In this case, we don’t need the heavy-duty serialization techniques of the last chapter. In
this case, we can use a simple text format.

But even if we make the protocol simple, we still have to specify it in detail. We choose the following
message format:

•	 All messages are in 7-bit US-ASCII.

•	 The messages are case-sensitive.

•	 Each message consists of a sequence of lines.

•	 The first word on the first line of each message describes the message type. All other
words are message data.

•	 All words are separated by exactly one space character.

•	 Each line is terminated by CR-LF.

Some of the choices made above are weaker in real-life protocols. For example:

•	 Message types could be case-insensitive. This just requires mapping message type
strings down to lowercase before decoding.

•	 An arbitrary amount of whitespace could be left between words. This just adds a little
more complication, compressing whitespace.

•	 Continuation characters such as \ can be used to break long lines over several lines.
This starts to make processing more complex.

•	 Just a \n could be used as line terminator, \r\n can too. This makes recognizing the
end of line a bit harder.

All of these variations exist in real protocols. Cumulatively, they make string processing more complex
than in this case.

Client Request Server Response

send "DIR" Send list of files, one per line, terminated by a blank line

send "CD <directory>" Change dir
 Send "ERROR" if failed
 Send "OK" if succeeded

send "PWD" Send current working directory

We should also specify the transport:

•	 All messages are sent over a TCP connection established from the client to the server.

Chapter 5 ■ appliCation-level protoCols

97

Server Code
The server is FTPServer.go:

/* FTP Server
 */
package main

import (
 "fmt"
 "net"
 "os"
)

const (
 DIR = "DIR"
 CD = "CD"
 PWD = "PWD"
)

func main() {

 service := "0.0.0.0:1202"
 tcpAddr, err := net.ResolveTCPAddr("tcp", service)
 checkError(err)

 listener, err := net.ListenTCP("tcp", tcpAddr)
 checkError(err)

 for {
 conn, err := listener.Accept()
 if err != nil {
 continue
 }
 go handleClient(conn)
 }
}

func handleClient(conn net.Conn) {
 defer conn.Close()

 var buf [512]byte
 for {
 n, err := conn.Read(buf[0:])
 if err != nil {
 conn.Close()
 return
 }

Chapter 5 ■ appliCation-level protoCols

98

 s := string(buf[0:n])
 // decode request
 if s[0:2] == CD {
 chdir(conn, s[3:])
 } else if s[0:3] == DIR {
 dirList(conn)
 } else if s[0:3] == PWD {
 pwd(conn)
 }

 }
}

func chdir(conn net.Conn, s string) {
 if os.Chdir(s) == nil {
 conn.Write([]byte("OK"))
 } else {
 conn.Write([]byte("ERROR"))
 }
}

func pwd(conn net.Conn) {
 s, err := os.Getwd()
 if err != nil {
 conn.Write([]byte(""))
 return
 }
 conn.Write([]byte(s))
}

func dirList(conn net.Conn) {
 // send a blank line on termination
 defer conn.Write([]byte("\r\n"))

 dir, err := os.Open(".")
 if err != nil {
 return
 }

 names, err := dir.Readdirnames(-1)
 if err != nil {
 return
 }
 for _, nm := range names {
 conn.Write([]byte(nm + "\r\n"))
 }
}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

Chapter 5 ■ appliCation-level protoCols

99

Client Code
A command-line client is FTPClient.go:

/* FTPClient
 */
package main

import (
 "bufio"
 "bytes"
 "fmt"
 "net"
 "os"
 "strings"
)

// strings used by the user interface
const (
 uiDir = "dir"
 uiCd = "cd"
 uiPwd = "pwd"
 uiQuit = "quit"
)

// strings used across the network
const (
 DIR = "DIR"
 CD = "CD"
 PWD = "PWD"
)

func main() {
 if len(os.Args) != 2 {
 fmt.Println("Usage: ", os.Args[0], "host")
 os.Exit(1)
 }

 host := os.Args[1]

 conn, err := net.Dial("tcp", host+":1202")
 checkError(err)

 reader := bufio.NewReader(os.Stdin)
 for {
 line, err := reader.ReadString('\n')
 // lose trailing whitespace
 line = strings.TrimRight(line, " \t\r\n")
 if err != nil {
 break
 }

Chapter 5 ■ appliCation-level protoCols

100

 // split into command + arg
 strs := strings.SplitN(line, " ", 2)
 // decode user request
 switch strs[0] {
 case uiDir:
 dirRequest(conn)
 case uiCd:
 if len(strs) != 2 {
 fmt.Println("cd <dir>")
 continue
 }
 fmt.Println("CD \"", strs[1], "\"")
 cdRequest(conn, strs[1])
 case uiPwd:
 pwdRequest(conn)
 case uiQuit:
 conn.Close()
 os.Exit(0)
 default:
 fmt.Println("Unknown command")
 }
 }
}

func dirRequest(conn net.Conn) {
 conn.Write([]byte(DIR + " "))

 var buf [512]byte
 result := bytes.NewBuffer(nil)
 for {
 // read till we hit a blank line
 n, _ := conn.Read(buf[0:])
 result.Write(buf[0:n])
 length := result.Len()
 contents := result.Bytes()
 if string(contents[length-4:]) == "\r\n\r\n" {
 fmt.Println(string(contents[0 : length-4]))
 return
 }
 }
}

func cdRequest(conn net.Conn, dir string) {
 conn.Write([]byte(CD + " " + dir))
 var response [512]byte
 n, _ := conn.Read(response[0:])
 s := string(response[0:n])
 if s != "OK" {
 fmt.Println("Failed to change dir")
 }
}

Chapter 5 ■ appliCation-level protoCols

101

func pwdRequest(conn net.Conn) {
 conn.Write([]byte(PWD))
 var response [512]byte
 n, _ := conn.Read(response[0:])
 s := string(response[0:n])
 fmt.Println("Current dir \"" + s + "\"")
}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

Textproto Package
The textproto package contains functions designed to simplify management of text protocols similar to
HTTP and SNMP.

These formats have some little-known rules with regard to a single logical line continued over multiple
lines such as: “HTTP/1.1 header field values can be folded onto multiple lines if the continuation line begins
with a space or horizontal tab” (HTTP1.1 specification). Formats allowing lines like these can be read using
the ReadContinuedLine() function, in addition to simpler functions like ReadLine().

These protocols also signal status values with lines beginning with three-digit codes such as 404. These
can be read using ReadCodeLine(). They also have key: value lines such as Content-Type: image/gif. Such
lines can be read into a map by ReadMIMEHeader().

State Information
Applications often use state information to simplify what is going on. For example:

•	 Keeping file pointers to a current file location.

•	 Keeping the current mouse position.

•	 Keeping the current customer value.

In a distributed system, such state information may be kept in the client, in the server, or in both.
The important point is to whether one process is keeping state information about itself or about the

other process. One process may keep as much state information about itself as it wants, without causing
any problems. If it needs to keep information about the state of the other process, then problems arise. The
process’ actual knowledge of the state of the other may become incorrect. This can be caused by loss of
messages (in UDP), by failure to update, or by software errors.

An example is reading a file. In single process applications, the file-handling code runs as part of the
application. It maintains a table of open files and the location in each of them. Each time a read or write is
done, this file location is updated. In distributed systems, this simple model does not hold. See Figure 5-4.

Chapter 5 ■ appliCation-level protoCols

102

In the DCE file system shown in Figure 5-4, the file server keeps track of a client’s open files and where
the client’s file pointer is. If a message could get lost (but DCE uses TCP), these could get out of synch. If the
client crashes, the server must eventually time out on the client’s file tables and remove them.

client
reading

file

read n bytes from
file at ptr

NFS File System

n bytes

update

name file ptr
file ptr

File table

file

server

file ptr

name

Figure 5-5. The NFS file system

DCE File System

client
reading

file

file

server

File table

name file ptr

update

read n bytes

n bytes name file ptr

file ptr

Figure 5-4. The DCE file system

Chapter 5 ■ appliCation-level protoCols

103

In NFS, the server does not maintain this state. The client does. Each file access from the client that
reaches the server must open the file at the appropriate point, as given by the client, in order to perform the
action. See Figure 5-5.

If the server maintains information about the client, it must be able to recover if the client crashes. If
information is not saved, then on each transaction, the client must transfer sufficient information for the
server to function.

If the connection is unreliable, additional handling must be in place to ensure that the two do not get
out of synch. The classic example is of bank account transactions where the messages get lost. A transaction
server may need to be part of the client-server system.

Application State Transition Diagram
A state transition diagram keeps track of the current state of an application and the changes that move it to
new states.

The previous example basically only had one state: file transfer. If we add a login mechanism, that
would add an extra state called login, and the application would need to change states between login and file
transfer, as shown in Figure 5-6.

START

LOGIN
failed

LOGIN
succeeded

LOGOUT

Login
File

Transfer

DIR

GET

QUIT

Figure 5-6. The state-transition diagram

Chapter 5 ■ appliCation-level protoCols

104

This state change can also be expressed as a table:

Current State Transition Next State

login login failed login

login succeeded file transfer

file transfer dir file transfer

get file transfer

logout login

quit -

Client State Transition Diagrams
The client state diagram must follow the application diagram. It has more detail though: it writes and then
reads:

Current State Write Read Next State

login LOGIN name password FAILED login

OK file transfer

file transfer CD dir OK file transfer

FAILED file transfer

GET filename #lines + contents file transfer

FAILED file transfer

DIR File names + blank line file transfer

blank line (Error) file transfer

quit none quit

Chapter 5 ■ appliCation-level protoCols

105

Server State Transition Diagrams
The server state diagram must also follow the application diagram. It also has more detail: it reads and then
writes:

Current State Read Write Next State

login LOGIN name password FAILED login

OK file transfer

file transfer CD dir SUCCEEDED file transfer

FAILED file transfer

GET filename #lines + contents file transfer

FAILED file transfer

DIR filenames + blank line file transfer

blank line (failed) file transfer

quit none login

Server Pseudocode
Here is the server pseudocode:

state = login
while true
 read line
 switch (state)
 case login:
 get NAME from line
 get PASSWORD from line
 if NAME and PASSWORD verified
 write SUCCEEDED
 state = file_transfer
 else
 write FAILED
 state = login
 case file_transfer:
 if line.startsWith CD
 get DIR from line
 if chdir DIR okay
 write SUCCEEDED
 state = file_transfer
 else
 write FAILED
 state = file_transfer
 ...

We don’t give the actual code for this server or client since it is pretty straightforward.

Chapter 5 ■ appliCation-level protoCols

106

Conclusion
Building any application requires design decisions before you start writing code. With distributed
applications, you have a wider range of decisions to make compared to standalone systems. This chapter
considered some of those aspects and demonstrated what the resultant code might look like. We only
touched on the elements of protocol design. There are many formal and informal models. The IETF (Internet
Engineering Task Force) created a standard format for its protocol specifications in its RFCs (Requests for
Comments), and sooner or later, every network engineer will need to work with RFCs.

107© Jan Newmarch 2017
J. Newmarch, Network Programming with Go, DOI 10.1007/978-1-4842-2692-6_6

CHAPTER 6

Managing Character Sets and
Encodings

Once upon a time, there was EBCDIC and ASCII. Actually, it was never that simple and has just become
more complex over time. There is light on the horizon, but some estimates are that it may be 50 years before
we all live in the daylight on this!

Early computers were developed in the English-speaking countries of the United States, the UK, and
Australia. As a result of this, assumptions were made about the language and character sets in use. Basically,
the Latin alphabet was used, plus numerals, punctuation characters, and a few others. These were then
encoded into bytes using ASCII or EBCDIC.

The character-handling mechanisms were based on this: text files and I/O consisted of a sequence
of bytes, with each byte representing a single character. String comparison could be done by matching
corresponding bytes; conversions from upper- to lowercase could be done by mapping individual bytes, and
so on.

There are about 6,500 spoken languages in the world (850 of them in Papua New Guinea!). A few
languages use the “English” characters, but most do not. The Romanic languages such as French have
adornments on various characters, so that you can write “j’ai arrêté” with two differently accented vowels.
Similarly, the Germanic languages have extra characters such as “ß”. Even UK English has characters not in
the standard ASCII set: the pound symbol “£” and recently the euro “€”.

But the world is not restricted to variations on the Latin alphabet. Thailand has its own alphabet, with
words looking like this: “ภาษาไทย”. There are many other alphabets, and Japan even has two, Hiragana and
Katagana.

There are also the hierographic languages such as Chinese where you can write “百度一下, 你就知道”.
It would be nice from a technical viewpoint if the world just used ASCII. However, the trend is in the

opposite direction, with more and more users demanding that software use the language that they are
familiar with. If you build an application that can be run in different countries then users will demand that it
uses their own language. In a distributed system, different components of the system may be used by users
expecting different languages and characters.

Internationalization (i18n) is how you write your applications so that they can handle the variety of
languages and cultures. Localization (l10n) is the process of customizing your internationalized application
to a particular cultural group.

i18n and l10n are big topics in themselves. For example, they cover issues such as colors: while white
means “purity” in Western cultures, it means “death” to the Chinese, and “joy” to Egyptians. In this chapter,
we just look at issues of character handling.

Chapter 6 ■ Managing CharaCter SetS and enCodingS

108

Definitions
It is important to be careful about exactly what part of a text-handling system you are talking about. Here is a
set of definitions that have proven useful.

Character
A character is a “unit of information that roughly corresponds to a grapheme (written symbol) of a natural
language, such as a letter, numeral, or punctuation mark” (Wikipedia). A character is “the smallest
component of written language that has a semantic value” (Unicode). This includes letters such as ‘a’ and ‘À’
(or letters in any other language), digits such as “2”, punctuation characters such as “, ” and various symbols
such as the English pound currency symbol “£”.

A character is some sort of abstraction of any actual symbol: the character “a” is to any written “a” as a
Platonic circle is to any actual circle. The concept of character also includes control characters, which do
not correspond to natural language symbols but to other bits of information used to process texts of the
language.

A character does not have any particular appearance, although we use the appearance to help recognize
the character. However, even the appearance may have to be understood in a context: in mathematics, if
you see the symbol π (pi) it is the character for the ratio of circumference to radius of a circle, while if you
are reading Greek text, it is the sixteenth letter of the alphabet: “πρoσ” is the Greek word for “with” and has
nothing to do with 3.14159.

Character Repertoire/Character Set
A character repertoire is a set of distinct characters, such as the Latin alphabet. No particular ordering is
assumed. In English, although we say that “a” is earlier in the alphabet than “z,” we wouldn’t say that “a”
is less than “z”. The “phone book" ordering which puts “McPhee” before “MacRea” shows that “alphabetic
ordering” isn’t critical to the characters.

A repertoire specifies the names of the characters and often a sample of how the characters might look.
For example, the letter “a” might look like “a”, “a” or “a”. But it doesn’t force them to look like that—they
are just samples. The repertoire may make distinctions such as upper- and lowercase, so that “a” and “A”
are different. But it may regard them as the same, just with different sample appearances. (Just like some
programming languages treat upper- and lowercase as different—Go—but some don’t—Basic.). On the
other hand, a repertoire might contain different characters with the same sample appearance: the repertoire
for a Greek mathematician would have two different characters with appearance π. This is also called a
noncoded character set.

Character Code
A character code is a mapping from characters to integers. The mapping for a character set is also called a
coded character set or code set. The value of each character in this mapping is often called a code point.
ASCII is a code set. The code point for “a” is 97 and for “A” is 65 (decimal).

The character code is still an abstraction. It isn’t yet what we will see in text files, or in TCP packets.
However, it is getting close, as it supplies the mapping from human-oriented concepts into numerical ones.

Character Encoding
To communicate or store a character, you need to encode it in some way. To transmit a string, you need to
encode all characters in the string. There are many possible encodings for any code set.

Chapter 6 ■ Managing CharaCter SetS and enCodingS

109

For example, 7-bit ASCII code points can be encoded as themselves into 8-bit bytes (an octet). So ASCII
“A” (with code point 65) is encoded as the 8-bit octet 01000001. However, a different encoding would be
to use the top bit for parity checking. For example, with odd parity ASCII “A” would be the octet 11000001.
Some protocols such as Sun’s XDR use 32-bit word-length encoding. ASCII “A” would be encoded as
00000000 00000000 0000000 01000001.

The character encoding is where we function at the programming level. Our programs deal with
encoded characters. It obviously makes a difference whether we are dealing with 8-bit characters with or
without parity checking, or with 32-bit characters.

The encoding extends to strings of characters. A word-length even parity encoding of “ABC” might be
10000000 (parity bit in high byte) 0100000011 (C) 01000010 (B) 01000001 (A in low byte). The comments
about the importance of an encoding apply equally strongly to strings, where the rules may be different.

Transport Encoding
A character encoding will suffice for handling characters within a single application. However, once you start
sending text between applications, then there is the further issue of how the bytes, shorts, or words are put on
the wire. An encoding can be based on space- and hence bandwidth-saving techniques such as zipping the
text. Or it could be reduced to a 7-bit format to allow a parity checking bit, such as base64.

If we do know the character and transport encoding, then it is a matter of programming to manage
characters and strings. If we don’t know the character or transport encoding then it is a matter of guesswork
as to what to do with any particular string. There is no convention for files to signal the character encoding.

There is however a convention for signaling encoding in text transmitted across the Internet. It is
simple: the header of a text message contains information about the encoding. For example, an HTTP
header can contain lines such as the following:

Content-Type: text/html; charset=ISO-8859-4
Content-Encoding: gzip

This says that the character set is ISO 8859-4 (corresponding to certain countries in Europe) with the
default encoding, but then gziped. The second part—the content encoding—is what we are referring to as
“transfer encoding” (IETF RFC 2130).

But how do you read this information? Isn’t it encoded? Don’t we have a chicken and egg situation?
Well, no. The convention is that such information is given in ASCII (to be precise, US ASCII) so that a
program can read the headers and then adjust its encoding for the rest of the document.

ASCII
ASCII has the repertoire of the English characters plus digits, punctuation, and some control characters. The
code points for ASCII are given by this familiar table:

Oct Dec Hex Char Oct Dec Hex Char
--
000 0 00 NUL '¥0' 100 64 40 @
001 1 01 SOH 101 65 41 A
002 2 02 STX 102 66 42 B
003 3 03 ETX 103 67 43 C
004 4 04 EOT 104 68 44 D
005 5 05 ENQ 105 69 45 E
006 6 06 ACK 106 70 46 F
007 7 07 BEL '\a' 107 71 47 G

Chapter 6 ■ Managing CharaCter SetS and enCodingS

110

010 8 08 BS '\b' 110 72 48 H
011 9 09 HT '\t' 111 73 49 I
012 10 0A LF '\n' 112 74 4A J
013 11 0B VT '\v' 113 75 4B K
014 12 0C FF '\f' 114 76 4C L
015 13 0D CR '\r' 115 77 4D M
016 14 0E SO 116 78 4E N
017 15 0F SI 117 79 4F O
020 16 10 DLE 120 80 50 P
021 17 11 DC1 121 81 51 Q
022 18 12 DC2 122 82 52 R
023 19 13 DC3 123 83 53 S
024 20 14 DC4 124 84 54 T
025 21 15 NAK 125 85 55 U
026 22 16 SYN 126 86 56 V
027 23 17 ETB 127 87 57 W
030 24 18 CAN 130 88 58 X
031 25 19 EM 131 89 59 Y
032 26 1A SUB 132 90 5A Z
033 27 1B ESC 133 91 5B [
034 28 1C FS 134 92 5C \
035 29 1D GS 135 93 5D]
036 30 1E RS 136 94 5E ^
037 31 1F US 137 95 5F _
040 32 20 SPACE 140 96 60 `
041 33 21 ! 141 97 61 a
042 34 22 " 142 98 62 b
043 35 23 # 143 99 63 c
044 36 24 $ 144 100 64 d
045 37 25 % 145 101 65 e
046 38 26 & 146 102 66 f
047 39 27 ' 147 103 67 g
050 40 28 (150 104 68 h
051 41 29) 151 105 69 i
052 42 2A * 152 106 6A j
053 43 2B + 153 107 6B k
054 44 2C , 154 108 6C l
055 45 2D - 155 109 6D m
056 46 2E . 156 110 6E n
057 47 2F / 157 111 6F o
060 48 30 0 160 112 70 p
061 49 31 1 161 113 71 q
062 50 32 2 162 114 72 r
063 51 33 3 163 115 73 s
064 52 34 4 164 116 74 t
065 53 35 5 165 117 75 u
066 54 36 6 166 118 76 v
067 55 37 7 167 119 77 w
070 56 38 8 170 120 78 x
071 57 39 9 171 121 79 y
072 58 3A : 172 122 7A z

Chapter 6 ■ Managing CharaCter SetS and enCodingS

111

073 59 3B ; 173 123 7B {
074 60 3C < 174 124 7C |
075 61 3D = 175 125 7D }
076 62 3E > 176 126 7E ~
077 63 3F ? 177 127 7F DEL

(An interesting four-column version is at Robbie’s Garbage, Four Column ASCII at
https://garbagecollected.org/2017/01/31/four-column-ascii/.)

The most common encoding for ASCII uses the code points as 7-bit bytes, so that the encoding of “A” for
example is 65.

This set is actually US ASCII. Due to European desires for accented characters, some punctuation
characters are omitted to form a minimal set, ISO 646, while there are “national variants” with suitable
European characters. The web site http://www.cs.tut.fi/~jkorpela/chars.html by Jukka Korpela has
more information for those interested. You don’t need these variants for the work in this book, though.

ISO 8859
Octets are now the standard size for bytes. This allows 128 extra code points for extensions to ASCII. A
number of different code sets to capture the repertoires of various subsets of European languages are the ISO
8859 series. ISO 8859-1 is also known as Latin-1 and covers many languages in western Europe, while others
in this series cover the rest of Europe and even Hebrew, Arabic, and Thai. For example, ISO 8859-5 includes
the Cyrillic characters of countries such as Russia, while ISO 8859-8 includes the Hebrew alphabet.

The standard encoding for these character sets is to use their code point as an 8-bit value. For example,
the character “Á” in ISO 8859-1 has the code point 193 and is encoded as 193. All of the ISO 8859 series have
the bottom 128 values identical to ASCII, so that the ASCII characters are the same in all of these sets.

The HTML specifications used to recommend the ISO 8859-1 character set. HTML 3.2 was the last
one to do so, and after that HTML 4.0 recommended Unicode. In 2008 Google made an estimate that of the
pages it sees, about 20% were still in ISO 8859 format while 20% were still in ASCII (See “Unicode nearing
50% of the web” at http://googleblog.blogspot.com/2010/01/unicode-nearing-50-of-web.html). See
also http://pinyin.info/news/2015/utf-8-unicode-vs-other-encodings-over-time/ and https://
w3techs.com/technologies/history_overview/character_encoding for more background information.

Unicode
Neither ASCII nor ISO 8859 cover the languages based on hieroglyphs. Chinese is estimated to have about
20,000 separate characters, with about 5,000 in common use. These need more than a byte, and typically
two bytes has been used. There have been many of these two-byte character sets: Big5, EUC-TW, GB2312,
and GBK/GBX for Chinese, JIS X 0208 for Japanese, and so on. These encodings are generally not mutually
compatible.

Unicode is an embracing standard character set intended to cover all major character sets in use. It
includes European, Asian, Indian, and many more. It is now up to version 9.0 and has 128,172 characters.
The number of code points now exceeds 65,536. That is more than 2^16. This has implications for character
encodings.

The first 256 code points correspond to ISO 8859-1, with US ASCII as the first 128. There is thus a
backward compatibility with these major character sets, as the code points for ISO 8859-1 and ASCII are
exactly the same in Unicode. The same is not true for other character sets: for example, while most of the
Big5 characters are also in Unicode, the code points are not the same. The web site http://moztw.org/
docs/big5/table/unicode1.1-obsolete.txt contains one example of a (large) table mapping from Big5 to
Unicode.

https://garbagecollected.org/2017/01/31/four-column-ascii/
http://www.cs.tut.fi/~jkorpela/chars.html
http://googleblog.blogspot.com/2010/01/unicode-nearing-50-of-web.html
http://pinyin.info/news/2015/utf-8-unicode-vs-other-encodings-over-time/
https://w3techs.com/technologies/history_overview/character_encoding
https://w3techs.com/technologies/history_overview/character_encoding
http://moztw.org/docs/big5/table/unicode1.1-obsolete.txt
http://moztw.org/docs/big5/table/unicode1.1-obsolete.txt

Chapter 6 ■ Managing CharaCter SetS and enCodingS

112

To represent Unicode characters in a computer system, an encoding must be used. The encoding UCS
is a two-byte encoding using the code point values of the Unicode characters. However, since there are now
too many characters in Unicode to fit them all into 2 bytes, this encoding is obsolete and no longer used.
Instead there are:

•	 UTF-32 is a 4-byte encoding, but is not commonly used, and HTML 5 warns explicitly
against using it.

•	 UTF-16 encodes the most common characters into 2 bytes with a further 2 bytes for
the “overflow,” with ASCII and ISO 8859-1 having the usual values.

•	 UTF-8 uses between 1 and 4 bytes per character, with ASCII having the usual values
(but not ISO 8859-1).

•	 UTF-7 is used sometimes, but is not common.

UTF-8, Go, and Runes
UTF-8 is the most commonly used encoding. Google estimated that in 2008 that 50% of the pages that it sees
are encoded in UTF-8 and that proportion is increasing. The ASCII set has the same encoding values in UTF-8,
so a UTF-8 reader can read text consisting of just ASCII characters as well as text from the full Unicode set.

Go uses UTF-8 encoded characters in its strings. Each character is of type rune. This is an alias for
int32. A Unicode character can be up to 4 bytes in UTF-8 encoding so that 4 bytes are needed to represent all
characters. In terms of characters, a string is an array of runes using 1, 2, or 4 bytes per rune.

A string is also an array of bytes, but you have to be careful: only for the ASCII subset is a byte equal to
a character. All other characters occupy 2, 3, or 4 bytes. This means that the length of a string in characters
(runes) is generally not the same as the length of its byte array. They are equal only when the string consists
of ASCII characters only.

The following program fragment illustrates this. If you take a UTF-8 string and test its length, you get the
length of the underlying byte array. But if you cast the string to an array of runes []rune then you get an array
of the Unicode code points, which is generally the number of characters:

str := "百度一下, 你就知道"

println("String length", len([]rune(str)))
println("Byte length", len(str))

prints
String length 9
Byte length 27

A more detailed explanation of strings and runes is given by The Go Blog (see https://blog.golang.
org/strings).

UTF-8 Client and Server
Possibly surprisingly, you need do nothing special to handle UTF-8 text in either the client or the server. The
underlying data type for a UTF-8 string in Go is a byte array, and as we just saw, Go looks after encoding the
string into 1, 2, 3, or 4 bytes as needed. The length of the string is the length of the byte array, so you write
any UTF-8 string by writing the byte array.

https://blog.golang.org/strings
https://blog.golang.org/strings

Chapter 6 ■ Managing CharaCter SetS and enCodingS

113

Similarly to read a string, you just read into a byte array and then cast the array to a string using
string([]byte). If Go cannot properly decode bytes into Unicode characters, then it gives the Unicode
Replacement Character \uFFFD. The length of the resulting byte array is the length of the legal portion of the
string.

So the clients and servers given in earlier chapters work perfectly well with UTF-8 encoded text.

ASCII Client and Server
The ASCII characters have the same encoding in ASCII and in UTF-8. So ordinary UTF-8 character handling
works fine for ASCII characters. No special handling needs to be done.

UTF-16 and Go
UTF-16 deals with arrays of short 16-bit unsigned integers. The package utf16 is designed to manage such
arrays. To convert a normal Go string, that is a UTF-8 string, into UTF-16, you first extract the code points by
coercing it into a []rune and then use utf16.Encode to produce an array of type uint16.

Similarly, to decode an array of unsigned short UTF-16 values into a Go string, you use utf16.Decode to
convert it into code points as type []rune and then to a string. The following code fragment illustrates this:

str := "百度一下, 你就知道"

runes := utf16.Encode([]rune(str))
ints := utf16.Decode(runes)

str = string(ints)

These type conversions need to be applied by clients or servers as appropriate, to read and write 16-bit
short integers, as shown next.

Little-Endian and Big-Endian
Unfortunately, there is a little devil lurking behind UTF-16. It is basically an encoding of characters into 16-
bit short integers. The big question is: for each short, how is it written as two bytes? The top one first, or the
top one second? Either way is fine, as long as the receiver uses the same convention as the sender.

Unicode has addressed this with a special character known as the BOM (byte order marker). This is a
zero-width non-printing character, so you never see it in text. But its value 0xfffe is chosen so that you can
tell the byte order:

•	 In a big-endian system, it is FF FE

•	 In a little-endian system, it is FE FF

Text will sometimes place the BOM as the first character in the text. The reader can then examine these
two bytes to determine what endian-ness has been used.

Chapter 6 ■ Managing CharaCter SetS and enCodingS

114

UTF-16 Client and Server
Using the BOM convention, you can write a server that prepends a BOM and writes a string in UTF-16 as
UTF16Server.go:

/* UTF16 Server
 */
package main

import (
 "fmt"
 "net"
 "os"
 "unicode/utf16"
)

const BOM = '\ufffe'

func main() {

 service := "0.0.0.0:1210"
 tcpAddr, err := net.ResolveTCPAddr("tcp", service)
 checkError(err)

 listener, err := net.ListenTCP("tcp", tcpAddr)
 checkError(err)

 for {
 conn, err := listener.Accept()
 if err != nil {
 continue
 }

 str := "j'ai arrÃªtÃ©"
 shorts := utf16.Encode([]rune(str))
 writeShorts(conn, shorts)

 conn.Close() // we're finished
 }
}

func writeShorts(conn net.Conn, shorts []uint16) {
 var bytes [2]byte

 // send the BOM as first two bytes
 bytes[0] = BOM >> 8
 bytes[1] = BOM & 255
 _, err := conn.Write(bytes[0:])
 if err != nil {
 return
 }

Chapter 6 ■ Managing CharaCter SetS and enCodingS

115

 for _, v := range shorts {
 bytes[0] = byte(v >> 8)
 bytes[1] = byte(v & 255)

 _, err = conn.Write(bytes[0:])
 if err != nil {
 return
 }
 }
}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

While a client that reads a byte stream, extracts and examines the BOM, and then decodes the rest of the
stream is UTF16Client.go:

/* UTF16 Client
 */
package main

import (
 "fmt"
 "net"
 "os"
 "unicode/utf16"
)

const BOM = '\ufffe'

func main() {
 if len(os.Args) != 2 {
 fmt.Println("Usage: ", os.Args[0], "host:port")
 os.Exit(1)
 }
 service := os.Args[1]

 conn, err := net.Dial("tcp", service)
 checkError(err)

 shorts := readShorts(conn)
 ints := utf16.Decode(shorts)
 str := string(ints)

 fmt.Println(str)

 os.Exit(0)
}

Chapter 6 ■ Managing CharaCter SetS and enCodingS

116

func readShorts(conn net.Conn) []uint16 {
 var buf [512]byte

 // read everything into the buffer
 n, err := conn.Read(buf[0:2])
 for true {
 m, err := conn.Read(buf[n:])
 if m == 0 || err != nil {
 break
 }
 n += m
 }

 checkError(err)
 var shorts []uint16
 shorts = make([]uint16, n/2)

 if buf[0] == 0xff && buf[1] == 0xfe {
 // big endian
 for i := 2; i < n; i += 2 {
 shorts[i/2] = uint16(buf[i])<<8 + uint16(buf[i+1])
 }
 } else if buf[1] == 0xff && buf[0] == 0xfe {
 // little endian
 for i := 2; i < n; i += 2 {
 shorts[i/2] = uint16(buf[i+1])<<8 + uint16(buf[i])
 }
 } else {
 // unknown byte order
 fmt.Println("Unknown order")
 }
 return shorts

}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

The client prints "j'ai arrÃªtÃ©" as sent by the server.

Unicode Gotchas
This book is not about i18n issues. In particular, we don’t want to delve into the arcane areas of Unicode.
But you should know that Unicode is not a simple encoding and there are many complexities. For example,
some earlier character sets used non-spacing characters, particularly for accents. This was brought into
Unicode, so you can produce accented characters in two ways: as a single Unicode character, or as a pair of

Chapter 6 ■ Managing CharaCter SetS and enCodingS

117

non-spacing accent plus non-accented character. For example, U+04D6, “Cyrillic capital letter ie with breve”
is a single character, . It is equivalent to U+0415, “Cyrillic capital letter ie” combined with the breve accent
U+0306 “combining breve”. This makes string comparison difficult on occasions. This could potentially be
the cause of some very obscure errors.

There is a package called golang.org/x/text/unicode/norm in the Go experimental tree that can
normalize Unicode strings. It can be installed into your Go package tree:

go get golang.org/x/text/unicode/norm

Note that it is a package in the “sub-repositories” Go Project tree and may not be stable.
There are actually four standard Unicode forms. The most common is NFC. A string can be converted

to NFC form by norm.NFC.String(str). The following program called norm.go forms strings of in two
ways as a single character and as a composed character and prints the strings, their bytes, and then the
normalized form and its bytes.

package main

import (
 "fmt"
 "golang.org/x/text/unicode/norm"
)

func main() {
 str1 := "\u04d6"
 str2 := "\u0415\u0306"
 norm_str2 := norm.NFC.String(str2)
 bytes1 := []byte(str1)
 bytes2 := []byte(str2)
 norm_bytes2 := []byte(norm_str2)

 fmt.Println("Single char ", str1, " bytes ", bytes1)
 fmt.Println("Composed char ", str2, " bytes ", bytes2)
 fmt.Println("Normalized char", norm_str2, " bytes ", norm_bytes2)
}

Here is the output:

Single char bytes [211 150]
Composed char bytes [208 149 204 134]
Normalized char bytes [211 150]

ISO 8859 and Go
The ISO 8859 series are 8-bit character sets for different parts of Europe and some other areas. They all
have the ASCII set common in the low part, but differ in the top part. According to Google, ISO 8859 codes
accounted for about 20% of the web pages it saw, but that has now dropped.

The first code, ISO 8859-1 or Latin-1, has the first 256 characters in common with Unicode. The
encoded value of the Latin-1 characters is the same in UTF-16 and in the default ISO 8859-1 encoding. But
this doesn’t really help much, as UTF-16 is a 16-bit encoding and ISO 8859-1 is an 8-bit encoding. UTF-8 is

Chapter 6 ■ Managing CharaCter SetS and enCodingS

118

a 8-bit encoding, but it uses the top bit to signal extra bytes, so only the ASCII subset overlaps for UTF-8 and
ISO 8859-1. So UTF-8 doesn’t help much either.

But the ISO 8859 series don’t have any complex issues. Each character in each set corresponds to a
unique Unicode character. For example, in ISO 8859-2, the character “Latin capital letter I with ogonek”
has ISO 8859-2 code point 0xc7 (in hexadecimal) and corresponding Unicode code point of U+012E.
Transforming either way between an ISO 8859 set and the corresponding Unicode characters is essentially
just a table lookup.

The table from ISO 8859 code points to the Unicode code points and could be done as an array of 256
integers. But many of these will have the same value as the index. So we just use a map of the different ones,
and those not in the map take the index value.

For ISO 8859-2 a portion of the map is as follows:

var unicodeToISOMap = map[int] uint8 {
 0x12e: 0xc7,
 0x10c: 0xc8,
 0x118: 0xca,
 // plus more
}

A function to convert UTF-8 strings to an array of ISO 8859-2 bytes is as follows:

/* Turn a UTF-8 string into an ISO 8859 encoded byte array
*/
func unicodeStrToISO(str string) []byte {
 // get the unicode code points
 codePoints := []int(str)

 // create a byte array of the same length
 bytes := make([]byte, len(codePoints))

 for n, v := range(codePoints) {
 // see if the point is in the exception map
 iso, ok := unicodeToISOMap[v]
 if !ok {
 // just use the value
 iso = uint8(v)
 }
 bytes[n] = iso
 }
 return bytes
}

In a similar way, you can change an array of ISO 8859-2 bytes into a UTF-8 string:

var isoToUnicodeMap = map[uint8] int {
 0xc7: 0x12e,
 0xc8: 0x10c,
 0xca: 0x118,
 // and more
}

Chapter 6 ■ Managing CharaCter SetS and enCodingS

119

func isoBytesToUnicode(bytes []byte) string {
 codePoints := make([]int, len(bytes))
 for n, v := range(bytes) {
 unicode, ok :=isoToUnicodeMap[v]
 if !ok {
 unicode = int(v)
 }
 codePoints[n] = unicode
 }
 return string(codePoints)
}

These functions can be used to read and write UTF-8 strings as ISO 8859-2 bytes. By changing the
mapping table, you can cover the other ISO 8859 codes. Latin-1, or ISO 8859-1, is a special case—the
exception map is empty as the code points for Latin-1 are the same in Unicode. You could also use the same
technique for other character sets based on a table mapping, such as Windows 1252.

Other Character Sets and Go
There are very, very many character set encodings. According to Google, these generally only have a small
use in Web documents, which will hopefully decrease even further with time. But if your software wants to
capture all markets, then you may need to handle them.

In the simplest cases, a lookup table will suffice. But that doesn’t always work. The character coding ISO
2022 minimized character set sizes by using a finite state machine to swap code pages in and out. This was
borrowed by some of the Japanese encodings and makes things very complex.

Go presently only gives package support for any of these other character sets in the “sub-repositories”
package tree. For example, the package golang.org/x/text/encoding/japanese handles EUC-JP and
Shift JIS.

Conclusion
There hasn’t been much code in this chapter. Instead, there have been some of the concepts of a very
complex area. It’s up to you: if you want to assume everyone speaks U.S. English then the world is simple.
But if you want your applications to be usable by the rest of the world, you need to pay attention to these
complexities.

121© Jan Newmarch 2017
J. Newmarch, Network Programming with Go, DOI 10.1007/978-1-4842-2692-6_7

CHAPTER 7

Security

Although the Internet was originally designed as a system to withstand attacks by hostile agents, it developed
into a cooperative environment of relatively trusted entities. Alas, those days are long gone. Spam mail,
denial of service (DoS) attacks, phishing attempts, and so on are indicative that anyone using the Internet
does so at their own risk.

Applications have to be built to work correctly in hostile situations. “Correctly” no longer means just
getting the functional aspects of the program correct, but also means ensuring privacy and integrity of data
transferred, access only to legitimate users, and other security issues.

This of course makes your programs much more complex. There are difficult and subtle computing
problems involved in making applications secure. Attempts to do it yourself (such as making up your own
encryption libraries) are usually doomed to failure. Instead, you need to use the libraries designed by
security professionals.

Why should you bother, if it makes things harder? Almost every day there are reports of leaked credit
card details, of private servers being run by government officials and being hacked, and reports of systems
being brought down by denial of service attacks. Many of these attacks are possible by coding errors
in network-facing applications, such as buffer overflows, cross-site scripting, and SQL injection. But a
large number of errors can be traced to poor network handling: passwords passed in plain text, security
credentials requested and then not checked, and just trusting the environment you are in. For example, a
colleague recently purchased a home IoT (Internet of Things) device. He used wireshark to see what it was
doing on his network and discovered it was sending RTMP messages with authentication token admin.
admin. An easy attack vector, without even having to crack passwords! Drones made by one well-known
company use encryption with known flaws and can be “stolen” by other drones. An increasingly common
method of stealing data is to act as a “rogue” wireless access point, pretending to be a legitimate access point
in a local coffee shop, but monitoring everything that passes through, including your bank account details.
These are “low hanging fruit”. The scope of data breaches is shown by “World's Biggest Data Breaches” at
http://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/.

This chapter addresses the basic cryptographic tools given by Go that you can build into your
applications. If you don’t and your company loses a million dollars—or worse, your customers lose a million
dollars—then the blame comes back to you.

ISO Security Architecture
The ISO OSI (open systems interconnect) seven-layer model of distributed systems is well known and is
repeated in Figure 7-1.

http://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/

Chapter 7 ■ SeCurity

122

What is less well known is that ISO built a whole series of documents upon this architecture. For
our purposes here, the most important is the ISO Security Architecture model, ISO 7498-2. This requires
purchase, but the ITU has produced a document technically aligned with this, X.800, which is available
from ITU at https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.800-199103-I!!PDF-
E&type=items.

Functions and Levels
The principal functions required of a security system are as follows:

•	 Authentication: Proof of identity

•	 Data integrity: Data is not tampered with

•	 Confidentiality: Data is not exposed to others

•	 Notarization/signature

•	 Access control

•	 Assurance/availability

These are required at the following levels of the OSI stack:

•	 Peer entity authentication (3, 4, 7)

•	 Data origin authentication (3, 4, 7)

•	 Access control service (3, 4, 7)

•	 Connection confidentiality (1, 2, 3, 4, 6, 7)

•	 Connectionless confidentiality (1, 2, 3, 4, 6, 7)

•	 Selective field confidentiality (6, 7)

•	 Traffic flow confidentiality (1, 3, 7)

Application

Presentation

Session

Transport

Network

Data Link

Physical

Application

Presentation

Session

Transport

Network

Data Link

Physical

Figure 7-1. The OSI seven-layer model of distributed systems

https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.800-199103-I!!PDF-E&type=items
https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.800-199103-I!!PDF-E&type=items

Chapter 7 ■ SeCurity

123

•	 Connection integrity with recovery (4, 7)

•	 Connection integrity without recovery (4, 7)

•	 Connection integrity selective field (7)

•	 Connectionless integrity selective field (7)

•	 Non-repudiation at origin (7)

•	 Non-repudiation of receipt (7)

Mechanisms
The mechanisms to achieve this level of security are as follows:

•	 Peer entity authentication

•	 Encryption

•	 Digital signature

•	 Authentication exchange

•	 Data origin authentication

•	 Encryption

•	 Digital signature

•	 Access control service

•	 Access control lists

•	 Passwords

•	 Capabilities lists

•	 Labels

•	 Connection confidentiality

•	 Encryption

•	 Routing control

•	 Connectionless confidentiality

•	 Encryption

•	 Routing control

•	 Selective field confidentiality

•	 Encryption

•	 Traffic flow confidentiality

•	 Encryption

•	 Traffic padding

•	 routing control

Chapter 7 ■ SeCurity

124

•	 Connection integrity with recovery

•	 Encryption

•	 Data integrity

•	 Connection integrity without recovery

•	 Encryption

•	 Data integrity

•	 Connection integrity selective field

•	 encryption

•	 data integrity

•	 Connectionless integrity

•	 Encryption

•	 Digital signature

•	 Data integrity

•	 Connectionless integrity selective field

•	 Encryption

•	 Digital signature

•	 Data integrity

•	 Non-repudiation at origin

•	 Digital signature

•	 Data integrity

•	 Notarization

•	 Non-repudiation of receipt

•	 Digital signature

•	 Data integrity

•	 Notarization

Data Integrity
Ensuring data integrity means supplying a means of testing that the data has not been tampered with.
Usually this is done by forming a simple number out of the bytes in the data. This process is called hashing
and the resulting number is called a hash or hash value.

A naive hashing algorithm is just to sum up all the bytes in the data. However, this still allows almost
any amount of changing the data around and still preserving the hash values. For example, an attacker
could just swap two bytes. This preserves the hash value, but could end up with you owing someone
$65,536 instead of $256.

Hashing algorithms used for security purposes have to be “strong,” so that it is very difficult for an
attacker to find a different sequence of bytes with the same hash value. This makes it hard to modify the

Chapter 7 ■ SeCurity

125

data to the attacker’s purposes. Security researchers are constantly testing hash algorithms to see if they can
break them— that is, find a simple way of coming up with byte sequences to match a hash value. They have
devised a series of cryptographic hashing algorithms that are believed to be strong.

Go has support for several hashing algorithms, including MD4, MD5, RIPEMD-160, SHA1, SHA224,
SHA256, SHA384, and SHA512. They all follow the same pattern as far as the Go programmer is concerned: a
function New (or similar) in the appropriate package returns a Hash object from the hash package.

A hash has an io.Writer, and you write the data to be hashed to this writer. You can query the number
of bytes in the hash value by Size and the hash value by Sum.

A typical case is MD5 hashing. This uses the md5 package. The hash value is a 16-byte array. This is
typically printed out in ASCII form as four hexadecimal numbers, each made of four bytes. A simple program
is MD5Hash.go:

/* MD5Hash
 */

package main

import (
 "crypto/md5"
 "fmt"
)

func main() {
 hash := md5.New()
 bytes := []byte("hello\n")
 hash.Write(bytes)
 hashValue := hash.Sum(nil)
 hashSize := hash.Size()
 for n := 0; n < hashSize; n += 4 {
 var val uint32
 val = uint32(hashValue[n])<<24 +
 uint32(hashValue[n+1])<<16 +
 uint32(hashValue[n+2])<<8 +
 uint32(hashValue[n+3])
 fmt.Printf("%x ", val)
 }
 fmt.Println()
}

This program prints "b1946ac9 2492d234 7c6235b4 d2611184".
A variation on this is HMAC (Keyed-Hash Message Authentication Code), which adds a key to the hash

algorithm. There is little change in using this. To use MD5 hashing along with a key, replace the call to
hash := md5.New() with this:

hash := hmac.New(md5.New, []byte("secret"))

Chapter 7 ■ SeCurity

126

Symmetric Key Encryption
There are two major mechanisms used for encrypting data. Symmetric key encryption uses a single key that
is the same for both encryption and decryption. This key needs to be known to both the encrypting and the
decrypting agents. How this key is transmitted between the agents is not discussed.

As with hashing, there are many encryption algorithms. Many are now known to have weaknesses,
and in general algorithms become weaker over time as computers get faster. Go has support for several
symmetric key algorithms such as AES and DES.

The algorithms are block algorithms. That is, they work on blocks of data. If your data is not aligned to
the block size, you will have to pad it with extra blanks at the end.

Each algorithm is represented by a Cipher object. This is created by NewCipher in the appropriate
package and takes the symmetric key as parameter.

Once you have a cipher, you can use it to encrypt and decrypt blocks of data. We use AES-128, which
has a key size of 128 bits (16 bytes) and a block size of 128 bits. The size of the key determines which version
of AES is used. A program to illustrate this is Aes.go:

/* Aes
 */

package main

import (
 "bytes"
 "crypto/aes"
 "fmt"
)

func main() {
 key := []byte("my key, len 16 b")
 cipher, err := aes.NewCipher(key)
 if err != nil {
 fmt.Println(err.Error())
 }
 src := []byte("hello 16 b block")

 var enc [16]byte
 cipher.Encrypt(enc[0:], src)

 var decrypt [16]byte
 cipher.Decrypt(decrypt[0:], enc[0:])
 result := bytes.NewBuffer(nil)
 result.Write(decrypt[0:])
 fmt.Println(string(result.Bytes()))
}

This encrypts and decrypts the 16-byte block "hello 16 b block" using the shared 16-byte key
"my key, len 16 b".

Chapter 7 ■ SeCurity

127

Public Key Encryption
The other major type of encryption is public key encryption. Public key encryption and decryption requires
two keys: one to encrypt and a second one to decrypt. The encryption key is usually made public in
some way so that anyone can encrypt messages to you. The decryption key must stay private; otherwise,
everyone would be able to decrypt those messages! Public key systems are asymmetric, with different keys
for different uses.

There are many public key encryption systems supported by Go. A typical one is the RSA scheme.
A program generating RSA private and public keys from a random number is GenRSAKeys.go:

/* GenRSAKeys
 */

package main

import (
 "crypto/rand"
 "crypto/rsa"
 "crypto/x509"
 "encoding/gob"
 "encoding/pem"
 "fmt"
 "os"
)

func main() {
 reader := rand.Reader
 bitSize := 512
 key, err := rsa.GenerateKey(reader, bitSize)
 checkError(err)

 fmt.Println("Private key primes", key.Primes[0].String(), key.Primes[1].String())
 fmt.Println("Private key exponent", key.D.String())

 publicKey := key.PublicKey
 fmt.Println("Public key modulus", publicKey.N.String())
 fmt.Println("Public key exponent", publicKey.E)

 saveGobKey("private.key", key)
 saveGobKey("public.key", publicKey)

 savePEMKey("private.pem", key)
}

func saveGobKey(fileName string, key interface{}) {
 outFile, err := os.Create(fileName)
 checkError(err)
 encoder := gob.NewEncoder(outFile)
 err = encoder.Encode(key)

Chapter 7 ■ SeCurity

128

 checkError(err)
 outFile.Close()
}

func savePEMKey(fileName string, key *rsa.PrivateKey) {

 outFile, err := os.Create(fileName)
 checkError(err)

 var privateKey = &pem.Block{Type: "RSA PRIVATE KEY",
 Bytes: x509.MarshalPKCS1PrivateKey(key)}

 pem.Encode(outFile, privateKey)

 outFile.Close()
}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

The program also saves the certificates using gob serialization. They can be read back by the
LoadRSAKeys.go program:

/* LoadRSAKeys
 */

package main

import (
 "crypto/rsa"
 "encoding/gob"
 "fmt"
 "os"
)

func main() {
 var key rsa.PrivateKey
 loadKey("private.key", &key)

 fmt.Println("Private key primes", key.Primes[0].String(), key.Primes[1].String())
 fmt.Println("Private key exponent", key.D.String())

 var publicKey rsa.PublicKey
 loadKey("public.key", &publicKey)

Chapter 7 ■ SeCurity

129

 fmt.Println("Public key modulus", publicKey.N.String())
 fmt.Println("Public key exponent", publicKey.E)
}

func loadKey(fileName string, key interface{}) {
 inFile, err := os.Open(fileName)
 checkError(err)
 decoder := gob.NewDecoder(inFile)
 err = decoder.Decode(key)
 checkError(err)
 inFile.Close()
}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

X.509 Certificates
A Public Key Infrastructure (PKI) is a framework for a collection of public keys, along with additional
information such as owner name and location, and links between them giving some sort of approval
mechanism.

The principal PKI in use today is based on X.509 certificates. For example, web browsers use them to
verify the identity of web sites.

An example program to generate a self-signed X.509 certificate for my web site and store it in a .cer file
is GenX509Cert.go:

/* GenX509Cert
 */

package main

import (
 "crypto/rand"
 "crypto/rsa"
 "crypto/x509"
 "crypto/x509/pkix"
 "encoding/gob"
 "encoding/pem"
 "fmt"
 "math/big"
 "os"
 "time"
)

Chapter 7 ■ SeCurity

130

func main() {
 random := rand.Reader

 var key rsa.PrivateKey
 loadKey("private.key", &key)

 now := time.Now()
 then := now.Add(60 * 60 * 24 * 365 * 1000 * 1000 * 1000) // one year
 template := x509.Certificate{
 SerialNumber: big.NewInt(1),
 Subject: pkix.Name{
 CommonName: "jan.newmarch.name",
 Organization: []string{"Jan Newmarch"},
 },
 NotBefore: now,
 NotAfter: then,

 SubjectKeyId: []byte{1, 2, 3, 4},
 KeyUsage: x509.KeyUsageCertSign | x509.KeyUsageKeyEncipherment | x509.
KeyUsageDigitalSignature,

 BasicConstraintsValid: true,
 IsCA: true,
 DNSNames: []string{"jan.newmarch.name", "localhost"},
 }
 derBytes, err := x509.CreateCertificate(random, &template,
 &template, &key.PublicKey, &key)
 checkError(err)

 certCerFile, err := os.Create("jan.newmarch.name.cer")
 checkError(err)
 certCerFile.Write(derBytes)
 certCerFile.Close()

 certPEMFile, err := os.Create("jan.newmarch.name.pem")
 checkError(err)
 pem.Encode(certPEMFile, &pem.Block{Type: "CERTIFICATE", Bytes: derBytes})
 certPEMFile.Close()

 keyPEMFile, err := os.Create("private.pem")
 checkError(err)
 pem.Encode(keyPEMFile, &pem.Block{Type: "RSA PRIVATE KEY",
 Bytes: x509.MarshalPKCS1PrivateKey(&key)})
 keyPEMFile.Close()
}

func loadKey(fileName string, key interface{}) {
 inFile, err := os.Open(fileName)
 checkError(err)

Chapter 7 ■ SeCurity

131

 decoder := gob.NewDecoder(inFile)
 err = decoder.Decode(key)
 checkError(err)
 inFile.Close()
}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

This can then be read back in by LoadX509Cert.go:

/* LoadX509Cert
 */

package main

import (
 "crypto/x509"
 "fmt"
 "os"
)

func main() {
 certCerFile, err := os.Open("jan.newmarch.name.cer")
 checkError(err)
 derBytes := make([]byte, 1000) // bigger than the file
 count, err := certCerFile.Read(derBytes)
 checkError(err)
 certCerFile.Close()

 // trim the bytes to actual length in call
 cert, err := x509.ParseCertificate(derBytes[0:count])
 checkError(err)

 fmt.Printf("Name %s\n", cert.Subject.CommonName)
 fmt.Printf("Not before %s\n", cert.NotBefore.String())
 fmt.Printf("Not after %s\n", cert.NotAfter.String())

}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

Chapter 7 ■ SeCurity

132

TLS
Encryption/decryption schemes are of limited use if you have to do all the heavy lifting yourself. The
most popular mechanism on the Internet to give support for encrypted message passing is currently TLS
(Transport Layer Security), which was formerly SSL (Secure Sockets Layer).

In TLS, a client and a server negotiate identity using X.509 certificates. Once this is complete, a secret
key is invented between them, and all encryption/decryption is done using this key. The negotiation is
relatively slow, but once it’s complete, the faster secret key mechanism is used. The server is required to have
a certificate; the client may have one if needed.

A Basic Client
We first illustrate connecting to a server that has a certificate signed by a “well known” certificate authority (CA)
such as RSA. The program to get head information from a web server can be adapted to get head information
from a TLS web server. The program is TLSGetHead.go. (We are illustrating TLS.Dial here, and will discuss
HTTPS in a later chapter.)

/* TLSGetHead
 */
package main

import (
 "crypto/tls"
 "fmt"
 "io/ioutil"
 "os"
)

func main() {
 if len(os.Args) != 2 {
 fmt.Println("Usage: ", os.Args[0], "host:port")
 os.Exit(1)
 }
 service := os.Args[1]

 conn, err := tls.Dial("tcp", service, nil)
 checkError(err)

 _, err = conn.Write([]byte("HEAD / HTTP/1.0\r\n\r\n"))
 checkError(err)

 result, err := ioutil.ReadAll(conn)
 checkError(err)

 fmt.Println(string(result))

 conn.Close()
 os.Exit(0)
}

Chapter 7 ■ SeCurity

133

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

When run against an appropriate site such as www.google.com:443:

go run TLSGetHead.go www.google.com:443

It produces output such as this:

HTTP/1.0 302 Found
Cache-Control: private
Content-Type: text/html; charset=UTF-8
Location: https://www.google.com.au/?gfe_rd=cr&ei=L3lvWKSXMdPr8AfvhqKIBg
Content-Length: 263
Date: Fri, 06 Jan 2017 11:02:07 GMT
Alt-Svc: quic=":443"; ma=2592000; v="35,34"

Other sites may produce other responses, but this client is still happy to have set up the TLS session with
a properly authenticating server.

It’s interesting to run this against the site www.gooogle.com (note the extra o!):

go run TLSGetHead.go www.gooogle.com:443

This site actually belongs to Google, as they have probably bought it to reduce fraud risk. The program
throws a fatal error, as the site certificate is not for gooogle with three os:

Fatal error x509: certificate is valid for google.com, *.2mdn.net, *.android.com,
*.appengine.google.com, *.au.doubleclick.net, *.cc-dt.com, *.cloud.google.com, ...

A browser such as Firefox pointed to the same triple-o site will also give a security alert.

Server Using a Self-Signed Certificate
If the server uses a self-signed certificate, as might be used internally in an organization or when
experimenting, the Go package when will generate an error: "x509: certificate signed by unknown
authority". Either the certificate must be installed into the client's operating system (which will be O/S
dependent), or the client must install the certificate as a root CA. We will show this second way.

An echo server using TLS with any certificate is TLSEchoServer.go:

/* TLSEchoServer
 */
package main

import (
 "crypto/rand"
 "crypto/tls"

http://www.google.com:443/
http://www.gooogle.com/

Chapter 7 ■ SeCurity

134

 "fmt"
 "net"
 "os"
 "time"
)

func main() {

 cert, err := tls.LoadX509KeyPair("jan.newmarch.name.pem", "private.pem")
 checkError(err)
 config := tls.Config{Certificates: []tls.Certificate{cert}}

 now := time.Now()
 config.Time = func() time.Time { return now }
 config.Rand = rand.Reader

 service := "0.0.0.0:1200"

 listener, err := tls.Listen("tcp", service, &config)
 checkError(err)
 fmt.Println("Listening")
 for {
 conn, err := listener.Accept()
 if err != nil {
 fmt.Println(err.Error())
 continue
 }
 fmt.Println("Accepted")
 go handleClient(conn)
 }
}

func handleClient(conn net.Conn) {
 defer conn.Close()

 var buf [512]byte
 for {
 fmt.Println("Trying to read")
 n, err := conn.Read(buf[0:])
 if err != nil {
 fmt.Println(err)
 return
 }
 _, err = conn.Write(buf[0:n])
 if err != nil {
 return
 }
 }
}

Chapter 7 ■ SeCurity

135

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

A simple TLS client won't work with this server if the certificate is self-signed, which it is here. We
need to set a configuration as the third parameter to TLS.Dial, which has our certificate installed as a root
certificate. Thanks to Josh Bleecher Snyder in “Getting x509: Certificate Signed by Unknown Authority”
(https://groups.google.com/forum/#!topic/golang-nuts/v5ShM8R7Tdc), for showing how to do this. The
server then works with the TLSEchoClient.go client.

/* TLSEchoClient
 */
package main

import (
 "crypto/tls"
 "crypto/x509"
 "fmt"
 "os"
)

func main() {
 if len(os.Args) != 2 {
 fmt.Println("Usage: ", os.Args[0], "host:port")
 os.Exit(1)
 }
 service := os.Args[1]

 // Load the PEM self-signed certificate
 certPemFile, err := os.Open("jan.newmarch.name.pem")
 checkError(err)
 pemBytes := make([]byte, 1000) // bigger than the file
 _, err = certPemFile.Read(pemBytes)
 checkError(err)
 certPemFile.Close()

 // Create a new certificate pool
 certPool := x509.NewCertPool()
 // and add our certificate
 ok := certPool.AppendCertsFromPEM(pemBytes)
 if !ok {
 fmt.Println("PEM read failed")
 } else {
 fmt.Println("PEM read ok")
 }

https://groups.google.com/forum/#!topic/golang-nuts/v5ShM8R7Tdc

Chapter 7 ■ SeCurity

136

 // Dial, using a config with root cert set to ours
 conn, err := tls.Dial("tcp", service, &tls.Config{RootCAs: certPool})
 checkError(err)

 // Now write and read lots
 for n := 0; n < 10; n++ {
 fmt.Println("Writing...")
 conn.Write([]byte("Hello " + string(n+48)))

 var buf [512]byte
 n, err := conn.Read(buf[0:])
 checkError(err)

 fmt.Println(string(buf[0:n]))
 }
 conn.Close()
 os.Exit(0)
}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

Conclusion
Security is a huge area in itself, and this chapter barely touches on it. However, the major concepts have been
covered. What has not been stressed is how much security needs to be built into the design phase: security
as an afterthought is nearly always a failure.

137© Jan Newmarch 2017
J. Newmarch, Network Programming with Go, DOI 10.1007/978-1-4842-2692-6_8

CHAPTER 8

HTTP

The World Wide Web is a major distributed system, with millions of users. A site may become a web host
by running an HTTP server. While web clients are typically users with a browser, there are many other
“user agents” such as web spiders, web application clients, and so on.

The Web is built on top of the HTTP (Hypertext Transport Protocol), which is layered on top of TCP. HTTP
has been through four publically available versions. Version 1.1 (the third version) is the most commonly used,
but there is expected to be a rapid transition to HTTP/2 and this is now at over 10% of the current traffic.

This chapter is an overview of HTTP, followed by the Go APIs to manage HTTP connections.

URLs and Resources
URLs specify the location of a resource. A resource is often a static file, such as an HTML document, an
image, or a sound file. But increasingly, it may be a dynamically generated object, perhaps based on
information stored in a database.

When a user agent requests a resource, what is returned is not the resource itself, but some
representation of that resource. For example, if the resource is a static file, then what is sent to the user agent
is a copy of the file.

Multiple URLs may point to the same resource, and an HTTP server will return appropriate
representations of the resource for each URL. For example, an company might make product information
available both internally and externally using different URLs for the same product. The internal
representation of the product might include information such as internal contact officers for the product,
while the external representation might include the location of stores selling the product.

This view of resources means that the HTTP protocol can be fairly simple and straightforward, while an
HTTP server can be arbitrarily complex. HTTP has to deliver requests from user agents to servers and return
a byte stream, while a server might have to do any amount of processing of the request.

I18n
There are complications arising from the increasing internationalization (i18n) of the Internet. Hostnames
may be given in an internationalized form known as IDN (Internationalized Domain Name). In order to
preserve compatibility with legacy implementations that do not understand Unicode (such as older e-mail
servers), non-ASCII domain names are mapped into an ASCII representation known as punycode. For
example, the domain name 日本語.jp has the punycode value xn—wgv71a119e.jp. The translation from a
non-ASCII domain to a punycode value is not performed automatically by the Go net libraries (as of Go 1.7),
but there is an extension package called golang.org/x/net/idna that will convert between Unicode and its
punycode value. There is an ongoing discussion at “Figure Out IDNA Punycode Story” (https://github.
com/golang/go/issues/13835) about this topic.

https://github.com/golang/go/issues/13835
https://github.com/golang/go/issues/13835

Chapter 8 ■ http

138

Internationalized domain names open up the possibility of what are called homograph attacks. Many
Unicode characters have a similar appearance, such as the Russian o (U+043E), the Greek o (U+03BF), and the
English o (U+006F). A domain name using a homograph such as google.com (with two Russian o’s could cause
havoc. A variety of defenses are known, such as always displaying the punycode (here xn—ggle-55da.com,
using the Punycode converter).

The path in a URI/URL is more complex to handle, as it refers to a path relative to an HTTP server that
may be running in a particular localized environment, The encoding may not be UTF-8, or even Unicode.
The IRI (internationalized Resource Identifier) manages this by first converting any localized string to UTF-8
and then percent-escaping any non-ASCII bytes. The W3C page entitled “An Introduction to Multilingual
Web Addresses” (https://www.w3.org/International/articles/idn-and-iri/) has more information.
Converting from other encodings to UTF-8 was covered in Chapter 6, while Go has the functions in net/url
of Queryescape/Queryunescape and in Go 1.8 of PathEscape/PathUnescape to do the percent conversions.

HTTP Characteristics
HTTP is a stateless, connectionless, reliable protocol. In the simplest form, each request from a user agent is
handled reliably and then the connection is broken.

In the earliest version of HTTP, each request involved a separate TCP connection, so if many resources
were required (such as images embedded in an HTML page), then many TCP connections had to be set up
and torn down in a short space of time.

HTTP 1.1 added many optimizations in HTTP, which added complexity to the simple structure, but
created a more efficient and reliable protocol. HTTP/2 has adopted a binary form for further efficient gains.

Versions
There are four versions of HTTP:

•	 Version 0.9 (1991): Totally obsolete

•	 Version 1.0 (1996): Almost obsolete

•	 Version 1.1 (1999): Most popular version at present

•	 Version 2 (2015): The latest version

Each version must understand the requests and responses of earlier versions.

HTTP 0.9
Request format:

Request = Simple-Request

Simple-Request = "GET" SP Request-URI CRLF

Response Format
A response is of the form:

Response = Simple-Response

Simple-Response = [Entity-Body]

https://www.punycoder.com/
https://www.w3.org/International/articles/idn-and-iri/
http://dx.doi.org/10.1007/978-1-4842-2692-6_6

Chapter 8 ■ http

139

HTTP 1.0
This version added much more information to the requests and responses. Rather than "grow" the 0.9
format, it was just left alongside the new version.

Request Format
The format of requests from client to server is:

Request = Simple-Request | Full-Request

Simple-Request = "GET" SP Request-URI CRLF

Full-Request = Request-Line
 *(General-Header
 | Request-Header
 | Entity-Header)
 CRLF
 [Entity-Body]

A Simple-Request is an HTTP/0.9 request and must be replied to by a Simple-Response.
A Request-Line has this format:

Request-Line = Method SP Request-URI SP HTTP-Version CRLF

Where

Method = "GET" | "HEAD" | POST |
 extension-method

Here’s an example:

GET http://jan.newmarch.name/index.html HTTP/1.0

Response Format
A response is of the form:

Response = Simple-Response | Full-Response

Simple-Response = [Entity-Body]

Full-Response = Status-Line
 *(General-Header
 | Response-Header
 | Entity-Header)
 CRLF
 [Entity-Body]

The Status-Line gives information about the fate of the request:

Status-Line = HTTP-Version SP Status-Code SP Reason-Phrase CRLF

Chapter 8 ■ http

140

Here’s an example:

HTTP/1.0 200 OK

The status codes in the status line are as follows:

Status-Code = "200" ; OK
 | "201" ; Created
 | "202" ; Accepted
 | "204" ; No Content
 | "301" ; Moved permanently
 | "302" ; Moved temporarily
 | "304" ; Not modified
 | "400" ; Bad request
 | "401" ; Unauthorized
 | "403" ; Forbidden
 | "404" ; Not found
 | "500" ; Internal server error
 | "501" ; Not implemented
 | "502" ; Bad gateway
 | "503" | Service unavailable
 | extension-code

The General-Header is typically the date, whereas the Response-Header is the location, the server, or an
authentication field.

The Entity-Header contains useful information about the Entity-Body to follow:

Entity-Header = Allow
 | Content-Encoding
 | Content-Length
 | Content-Type
 | Expires
 | Last-Modified
 | extension-header

For example, (where the types of field are given after a //):

HTTP/1.1 200 OK // status line
Date: Fri, 29 Aug 2003 00:59:56 GMT // general header
Server: Apache/2.0.40 (Unix) // response header
Content-Length: 1595 // entity header

Content-Type: text/html; charset=ISO-8859-1 // entity header

HTTP 1.1
HTTP 1.1 fixes many problems with HTTP 1.0, but is more complex because of it. This version is done by
extending or refining the options available to HTTP 1.0. For example:

•	 There are more commands such as TRACE and CONNECT

Chapter 8 ■ http

141

•	 HTTP 1.1 tightened up the rules for the request URLs to allow proxy handling. If the
request is directed through a proxy, the URL should be an absolute URL, as in:

 GET http://www.w3.org/index.html HTTP/1.1

Otherwise an absolute path should be used and should include a Host header field,
as in:

 GET /index.html HTTP/1.1
 Host: www.w3.org

•	 There are more attributes such as If-Modified-Since, also for use by proxies

The changes include

•	 Hostname identification (allows virtual hosts)

•	 Content negotiation (multiple languages)

•	 Persistent connections (reduces TCP overheads; this is very complex)

•	 Chunked transfers

•	 Byte ranges (request parts of documents)

•	 Proxy support

HTTP/2
All the earlier versions of HTTP are text-based. The most significant departure for HTTP/2 is that it is
a binary format. In order to ensure backward compatibility, this can't be managed by sending a binary
message to an older server to see what it does. Instead an HTTP 1.1 message is sent with extra attributes,
essentially asking if the server wants to switch to HTTP/2. If it doesn't understand the extra fields it replies
with a normal HTTP 1.1 response and the session continues with HTTP 1.1.

Otherwise the server can respond that it is willing to change, and the session can continue with HTTP/2.
The 0.9 protocol took one page. The 1.0 protocol was described in about 20 pages and includes the 0.9

protocol. The 1.1 protocol takes 120 pages and is a substantial extension to 1.0, whereas HTTP/2 takes about
96 pages. The HTTP/2 specification just adds to the HTTP 1.1 specification.

Simple User Agents
User agents such as browsers make requests and get responses. This involves Go types and associated
method calls.

The Response Type
The response type is as follows:

type Response struct {
 Status string // e.g. "200 OK"
 StatusCode int // e.g. 200
 Proto string // e.g. "HTTP/1.0"

Chapter 8 ■ http

142

 ProtoMajor int // e.g. 1
 ProtoMinor int // e.g. 0

 Header map[string][]string

 Body io.ReadCloser

 ContentLength int64

 TransferEncoding []string

 Close bool

 Trailer map[string][]string

 Request *Request // the original request

 TLS *tls.ConnectionState // info about the TLS connection or nil
}

The HEAD Method
We examine this data structure through examples. Each HTTP request type has its own Go function in the
net/http package The simplest request is from a user agent called HEAD, which asks for information about a
resource and its HTTP server. This function can be used to make the query:

func Head(url string) (r *Response, err error)

The status of the response is in the response field Status, while the field Header is a map of the header
fields in the HTTP response. A program called Head.go to make this request and display the results is as
follows:

/* Head
 */

package main

import (
 "fmt"
 "net/http"
 "os"
)

func main() {
 if len(os.Args) != 2 {
 fmt.Println("Usage: ", os.Args[0], "host:port")
 os.Exit(1)
 }
 url := os.Args[1]

Chapter 8 ■ http

143

 response, err := http.Head(url)
 if err != nil {
 fmt.Println(err.Error())
 os.Exit(2)
 }

 fmt.Println(response.Status)
 for k, v := range response.Header {
 fmt.Println(k+":", v)
 }

 os.Exit(0)
}

When run against a resource, as in this:

go run Head.go http://www.golang.com/

It prints something like this:

200 OK
Date: [Fri, 06 Jan 2017 11:20:37 GMT]
Server: [Google Frontend]
Content-Length: [7902]
Alt-Svc: [quic=":443"; ma=2592000; v="35,34"]
Strict-Transport-Security: [max-age=31536000; preload]
Content-Type: [text/html; charset=utf-8]
X-Cloud-Trace-Context: [6e28ebc86bb1026ae7b784c891d0117c]

The response comes from a server out of our control, and it may pass through other servers on the way.
The fields displayed may be different, and certainly the values of the fields will differ.

The GET Method
Usually, we want to retrieve a representation of a resource rather than just get information about it. The GET
request will do this and can be done using the following:

func Get(url string) (r *Response, finalURL string, err error)

The content of the response is in the response field Body, which is of type io.ReadCloser. We can print
the content to the screen with the program Get.go:

/* Get
 */

package main

Chapter 8 ■ http

144

import (
 "fmt"
 "net/http"
 "net/http/httputil"
 "os"
 "strings"
)

func main() {
 if len(os.Args) != 2 {
 fmt.Println("Usage: ", os.Args[0], "host:port")
 os.Exit(1)
 }
 url := os.Args[1]

 response, err := http.Get(url)
 if err != nil {
 fmt.Println(err.Error())
 os.Exit(2)
 }

 if response.Status != "200 OK" {
 fmt.Println(response.Status)
 os.Exit(2)
 }

 fmt.Println("The response header is")
 b, _ := httputil.DumpResponse(response, false)
 fmt.Print(string(b))

 contentTypes := response.Header["Content-Type"]
 if !acceptableCharset(contentTypes) {Arial
 fmt.Println("Cannot handle", contentTypes)
 os.Exit(4)
 }

 fmt.Println("The response body is")
 var buf [512]byte
 reader := response.Body
 for {
 n, err := reader.Read(buf[0:])
 if err != nil {
 os.Exit(0)
 }
 fmt.Print(string(buf[0:n]))
 }
 os.Exit(0)
}

func acceptableCharset(contentTypes []string) bool {
 // each type is like [text/html; charset=utf-8]
 // we want the UTF-8 only

Chapter 8 ■ http

145

 for _, cType := range contentTypes {
 if strings.Index(cType, "utf-8") != -1 {
 return true
 }
 }
 return false
}

When it runs against http://www.golang.com as follows:

go run Get.go http://www.golang.com

The response header is:

HTTP/2.0 200 OK
Content-Length: 7902
Alt-Svc: quic=":443"; ma=2592000; v="35,34"
Content-Type: text/html; charset=utf-8
Date: Fri, 06 Jan 2017 11:29:12 GMT
Server: Google Frontend
Strict-Transport-Security: max-age=31536000; preload
X-Cloud-Trace-Context: ea9b41b4796f379af487388b1474ed4e

The response body is:

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<meta name="theme-color" content="#375EAB">

 <title>The Go Programming Language</title>
...

(Note that this been sent with HTTP/2. The Go library has performed the version negotiation for you.)
Note that there are important character set issues of the type discussed in the previous chapter. The server

will deliver the content using some character set encoding, and possibly some transfer encoding. Usually this is a
matter of negotiation between user agent and server, but the simple GET command that we used does not include
the user agent component of the negotiation. So the server can send whatever character encoding it wants.

At the time of first writing, I was in China (and Google could be accessed). When I tried this program on
www.google.com, Google's server tried to be helpful by guessing my location and sending me the text in the
Chinese character set Big5! How to tell the server what character encoding is okay for me is discussed later.

Configuring HTTP Requests
Go also supplies a lower-level interface for user agents to communicate with HTTP servers. As you might
expect, not only does it give you more control over the client requests, but it also requires you to spend more
effort in building the requests. However, there is only a small increase in complexity.

The data type used to build requests is the type Request. This is a complex type, and we only show the
principal fields for now. Several fields, and the full Go doc, are omitted.

http://www.golang.com/
http://www.google.com/

Chapter 8 ■ http

146

type Request struct {
 Method string // GET, POST, PUT, etc.
 URL *url.URL // Parsed URL.
 Proto string // "HTTP/1.0"
 ProtoMajor int // 1
 ProtoMinor int // 0

 // A header maps request lines to their values.
 Header Header // map[string][]string

 // The message body.
 Body io.ReadCloser

 // ContentLength records the length of the associated content.
 // The value -1 indicates that the length is unknown.
 // Values >= 0 indicate that the given number of bytes may be read from Body.
 ContentLength int64

 // TransferEncoding lists the transfer encodings from outermost to innermost.
 // An empty list denotes the "identity" encoding.
 TransferEncoding []string

 // The host on which the URL is sought.
 // Per RFC 2616, this is either the value of the Host: header
 // or the host name given in the URL itself.
 Host string
}

There is a lot of information that can be stored in a request. You do not need to fill in all the fields, only
those of interest. The simplest way to create a request with default values is using this, for example:

request, err := http.NewRequest("GET", url.String(), nil)

Once a request has been created, you can modify the fields. For example, to specify that you want to
receive only UTF-8, add an Accept-Charset field to a request as follows:

request.Header.Add("Accept-Charset", "UTF-8;q=1, ISO-8859-1;q=0")

(Note that the default set ISO-8859-1 always gets a value of 1 unless mentioned explicitly in the list. The
HTTP 1.1 specification dates back to 1999!)

A client setting a charset request is simple. But there is some confusion about what happens with the
server's return value of a charset. The returned resource should have a Content-Type that will specify the
media type of the content such as text/html. If appropriate, the media type should state the charset, such
as text/html; charset=UTF-8. If there is no charset specification, then according to the HTTP specification
it should be treated as the default ISO8859-1 charset. But the HTML4 specification states that since many
servers don't conform to this, you can't make any assumptions.

If there is a charset specified in the server's Content-Type, then assume it is correct. If there is none
specified, since more than 50% of pages are in UTF-8 and some are in ASCII, it is safe to assume UTF-8.
Fewer than 10% of pages may be wrong :-(.

Chapter 8 ■ http

147

The Client Object
To send a request to a server and get a reply, the convenience object Client is the easiest way. This
object can manage multiple requests and will look after issues such as whether the server keeps the TCP
connection alive, and so on.

This is illustrated in the following program, ClientGet.go.
The program shows how to add HTTP headers, as we add the header Accept-Charset to only accept

UTF-8. There is a little hiccup here, caused by a bug in Go which has only been fixed in Go 1.8. The Client.
Do function will automatically do a redirect if it gets a 301, 302, 303, or 307 response. Prior to Go 1.8, it didn't
copy across the HTTP headers in this redirect.

If you try against a site such as http://www.google.com, then it will redirect to a site such as http://
www.google.com.au but will lose the Accept-Charset header and return ISO8859-1 (as it should do
according to the 1999 HTTP 1.1 specification!). With that proviso—that the program may not give correct
results on versions prior to Go 1.8—the program is as follows:

/* ClientGet
 */

package main

import (
 "fmt"
 "net/http"
 "net/http/httputil"
 "net/url"
 "os"
 "strings"
)

func main() {
 if len(os.Args) != 2 {
 fmt.Println("Usage: ", os.Args[0], "http://host:port/page")
 os.Exit(1)
 }
 url, err := url.Parse(os.Args[1])
 checkError(err)

 client := &http.Client{}

 request, err := http.NewRequest("HEAD", url.String(), nil)

 // only accept UTF-8
 request.Header.Add("Accept-Charset", "utf-8;q=1, ISO-8859-1;q=0")
 checkError(err)

 response, err := client.Do(request)
 checkError(err)
 if response.Status != "200 OK" {
 fmt.Println(response.Status)
 os.Exit(2)
 }

http://www.google.com/
http://www.google.com.au/
http://www.google.com.au/

Chapter 8 ■ http

148

 fmt.Println("The response header is")
 b, _ := httputil.DumpResponse(response, false)
 fmt.Print(string(b))

 chSet := getCharset(response)
 if chSet != "utf-8" {
 fmt.Println("Cannot handle", chSet)
 os.Exit(4)
 }

 var buf [512]byte
 reader := response.Body
 fmt.Println("got body")
 for {
 n, err := reader.Read(buf[0:])
 if err != nil {
 os.Exit(0)
 }
 fmt.Print(string(buf[0:n]))
 }

 os.Exit(0)
}

func getCharset(response *http.Response) string {
 contentType := response.Header.Get("Content-Type")
 if contentType == "" {
 // guess
 return "utf-8"
 }
 idx := strings.Index(contentType, "charset=")
 if idx == -1 {
 // guess
 return "utf-8"
 }
 chSet := strings.Trim(contentType[idx+8:], " ")
 return strings.ToLower(chSet)
}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

The program is run as follows, for example:

go run ClientGet.go http://www.golang.com

Chapter 8 ■ http

149

Proxy Handling
It is very common now for HTTP requests to pass through specific HTTP proxies. This is in addition to the
servers that form the TCP connection and act at the application layer. Companies use proxies to limit what
their own staff can see, while many organizations use proxy services such as Cloudflare to act as caches,
reducing the load on the organization’s own servers. Accessing web sites through proxies requires additional
handling by the client.

Simple Proxy
HTTP 1.1 laid out how HTTP should work through a proxy. A GET request should be made to a proxy.
However, the URL requested should be the full URL of the destination. In addition, the HTTP header should
contain a Host field, set to the proxy. As long as the proxy is configured to pass such requests through, then
that is all that needs to be done.

Go considers this to be part of the HTTP transport layer. To manage this, it has a class Transport. This
contains a field that can be set to a function that returns an URL for a proxy. If we have an URL as a string for
the proxy, the appropriate transport object is created and then given to a client object as follows:

proxyURL, err := url.Parse(proxyString)
transport := &http.Transport{Proxy: http.ProxyURL(proxyURL)}
client := &http.Client{Transport: transport}

The client can then continue as before.
The following program ProxyGet.go illustrates this

/* ProxyGet
 */

package main

import (
 "fmt"
 "io"
 "net/http"
 "net/http/httputil"
 "net/url"
 "os"
)

func main() {
 if len(os.Args) != 3 {
 fmt.Println("Usage: ", os.Args[0], "http://proxy-host:port

http://host:port/page")
 os.Exit(1)
 }
 proxyString := os.Args[1]
 proxyURL, err := url.Parse(proxyString)
 checkError(err)
 rawURL := os.Args[2]

Chapter 8 ■ http

150

 url,err := url.Parse(rawURL)
 checkError(err)

 transport := &http.Transport{Proxy: http.ProxyURL(proxyURL)}
 client := &http.Client{Transport: transport}

 request, err := http.NewRequest("GET", url.String(), nil)

 urlp, _ := transport.Proxy(request)
 fmt.Println("Proxy ", urlp)
 dump, _ := httputil.DumpRequest(request, false)
 fmt.Println(string(dump))

 response, err := client.Do(request)

 checkError(err)
 fmt.Println("Read ok")

 if response.Status != "200 OK" {
 fmt.Println(response.Status)
 os.Exit(2)
 }
 fmt.Println("Response ok")

 var buf [512]byte
 reader := response.Body
 for {
 n, err := reader.Read(buf[0:])
 if err != nil {
 os.Exit(0)
 }
 fmt.Print(string(buf[0:n]))
 }

 os.Exit(0)
}

func checkError(err error) {
 if err != nil {
 if err == io.EOF {
 return
 }
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

If you have a proxy at, say XYZ.com on port 8080, you can test this as follows:

go run ProxyGet.go http://XYZ.com:8080/ http://www.google.com

Chapter 8 ■ http

151

If you don’t have a suitable proxy to test this, then download and install the Squid proxy (http://www.
squid-cache.org/) to your own computer.

This program used a known proxy passed as an argument to the program. There are many ways that
proxies can be made known to applications. Most browsers have a configuration menu in which you can enter
proxy information: such information is not available to a Go application. Some applications may get proxy
information using the Web Proxy Autodiscovery Protocol (https://en.wikipedia.org/wiki/Web_Proxy_
Autodiscovery_Protocol) from a file often known as autoproxy.pac somewhere in your network. Go does
not (yet) know how to parse these JavaScript files and so cannot use them. Particular operating systems may
have system-specific means of specifying proxies. Go cannot access these. But it can find proxy information if
it is set in operating system environment variables such as HTTP_PROXY or http_proxy using this function:

func ProxyFromEnvironment(req *Request) (*url.URL, error)

If your programs are running in such an environment, you can use this function instead of having to
explicitly know the proxy parameters.

Authenticating Proxy
Some proxies will require authentication, by a username and password in order to pass requests. A common
scheme is “basic authentication” in which the username and password are concatenated into a string
"user:password" and then Base64 encoded. This is then given to the proxy by the HTTP request header
"Proxy-Authorization" with the flag that it is the basic authentication

The following program ProxyAuthGet.go illustrates this, adding the Proxy-Authentication header to
the previous proxy program:

/* ProxyAuthGet
 */

package main

import (
 "encoding/base64"
 "fmt"
 "io"
 "net/http"
 "net/http/httputil"
 "net/url"
 "os"
)

const auth = "jannewmarch:mypassword"

func main() {
 if len(os.Args) != 3 {
 fmt.Println("Usage: ", os.Args[0], "http://proxy-host:port

http://host:port/page")
 os.Exit(1)
 }
 proxy := os.Args[1]

http://www.squid-cache.org/
http://www.squid-cache.org/
https://en.wikipedia.org/wiki/Web_Proxy_Autodiscovery_Protocol
https://en.wikipedia.org/wiki/Web_Proxy_Autodiscovery_Protocol

Chapter 8 ■ http

152

 proxyURL, err := url.Parse(proxy)
 checkError(err)
 rawURL := os.Args[2]
 url, err := url.Parse(rawURL)
 checkError(err)

 // encode the auth
 basic := "Basic " + base64.StdEncoding.EncodeToString([]byte(auth))

 transport := &http.Transport{Proxy: http.ProxyURL(proxyURL)}
 client := &http.Client{Transport: transport}

 request, err := http.NewRequest("GET", url.String(), nil)

 request.Header.Add("Proxy-Authorization", basic)
 dump, _ := httputil.DumpRequest(request, false)
 fmt.Println(string(dump))

 // send the request
 response, err := client.Do(request)

 checkError(err)
 fmt.Println("Read ok")

 if response.Status != "200 OK" {
 fmt.Println(response.Status)
 os.Exit(2)
 }
 fmt.Println("Response ok")

 var buf [512]byte
 reader := response.Body
 for {
 n, err := reader.Read(buf[0:])
 if err != nil {
 os.Exit(0)
 }
 fmt.Print(string(buf[0:n]))
 }

 os.Exit(0)
}

func checkError(err error) {
 if err != nil {
 if err == io.EOF {
 return
 }
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

Chapter 8 ■ http

153

There don’t seem to be publically available test sites for this program. I tested it at work where an
authenticating proxy is used. Setting up such a proxy is beyond the scope of this book. There is a discussion
on how to do this called “How to Set Up a Squid Proxy with Basic Username and Password Authentication”
(see http://stackoverflow.com/questions/3297196/how-to-set-up-a-squid-proxy-with-basic-
username-and-password-authentication).

HTTPS Connections by Clients
For secure, encrypted connections, HTTP uses TLS, which is described in Chapter 7. The protocol of
HTTP+TLS is called HTTPS and uses https:// URLs instead of http:// URLs.

Servers are required to return valid X.509 certificates before a client will accept data from them. If the
certificate is valid, then Go handles everything under the hood and the clients given previously run okay
with https URLs. That is, programs such as the earlier ClientGet.go run unchanged—you just give them an
HTTPS URL.

Many sites have invalid certificates. They may have expired, they may be self-signed instead of by a
recognized certificate authority, or they may just have errors (such as having an incorrect server name).
Browsers such as Firefox put a big warning notice with a “Get me out of here!” button, but you can carry on
at your risk, which many people do.

Go presently bails out when it encounters certificate errors. However, you can configure a client to
ignore certificate errors. This is, of course, not advisable—sites with misconfigured certificates may have
other problems.

In Chapter 7, we generated self-signed X.509 certificates. Later in this chapter, we will give an HTTPS
server using X.509 certificates, and if the self-signed certificates are used, then ClientGet.go will generate
this error:

 x509: certificate signed by unknown authority

A client that removes these errors and continues does so by turning on the Transport configuration flag
InsecureSkipVerify. The unsafe program is TLSUnsafeClientGet.go:

/* TLSUnsafeClientGet
 */

package main

import (
 "fmt"
 "net/http"
 "net/url"
 "os"
 "strings"
 "crypto/tls"
)

func main() {
 if len(os.Args) != 2 {
 fmt.Println("Usage: ", os.Args[0], "https://host:port/page")
 os.Exit(1)
 }

http://stackoverflow.com/questions/3297196/how-to-set-up-a-squid-proxy-with-basic-username-and-password-authentication
http://stackoverflow.com/questions/3297196/how-to-set-up-a-squid-proxy-with-basic-username-and-password-authentication
http://dx.doi.org/10.1007/978-1-4842-2692-6_7
http://dx.doi.org/10.1007/978-1-4842-2692-6_7

Chapter 8 ■ http

154

 url, err := url.Parse(os.Args[1])
 checkError(err)
 if url.Scheme != "https" {
 fmt.Println("Not https scheme ", url.Scheme)
 os.Exit(1)
 }

 transport := &http.Transport{}
 transport.TLSClientConfig = &tls.Config{InsecureSkipVerify: true}
 client := &http.Client{Transport: transport}

 request, err := http.NewRequest("GET", url.String(), nil)
 // only accept UTF-8
 checkError(err)

 response, err := client.Do(request)
 checkError(err)

 if response.Status != "200 OK" {
 fmt.Println(response.Status)
 os.Exit(2)
 }
 fmt.Println("get a response")

 chSet := getCharset(response)
 fmt.Printf("got charset %s\n", chSet)
 if chSet != "UTF-8" {
 fmt.Println("Cannot handle", chSet)
 os.Exit(4)
 }

 var buf [512]byte
 reader := response.Body
 fmt.Println("got body")
 for {
 n, err := reader.Read(buf[0:])
 if err != nil {
 os.Exit(0)
 }
 fmt.Print(string(buf[0:n]))
 }

 os.Exit(0)
}

func getCharset(response *http.Response) string {
 contentType := response.Header.Get("Content-Type")
 if contentType == "" {
 // guess
 return "UTF-8"
 }

Chapter 8 ■ http

155

 idx := strings.Index(contentType, "charset:")
 if idx == -1 {
 // guess
 return "UTF-8"
 }
 return strings.Trim(contentType[idx:], " ")
}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

Servers
The other side to building a client is a web server handling HTTP requests. The simplest—and earliest—servers
just returned copies of files. However, any URL can now trigger an arbitrary computation in current servers.

File Server
We start with a basic file server. Go supplies a multiplexer, that is, an object that will read and interpret
requests. It hands out requests to handlers, which run in their own thread. Thus much of the work of reading
HTTP requests, decoding them, and branching to suitable functions in their own thread is done for us.

For a file server, Go also gives a FileServer object, which knows how to deliver files from the local file
system. It takes a “root” directory, which is the top of a file tree in the local system, and a pattern to match
URLs against. The simplest pattern is /, which is the top of any URL. This will match all URLs.

An HTTP server delivering files from the local file system is almost embarrassingly trivial given these
objects. It is FileServer.go:

/* File Server
 */

package main

import (
 "fmt"
 "net/http"
 "os"
)

func main() {
 // deliver files from the directory /var/www
 fileServer := http.FileServer(http.Dir("/var/www"))

 // register the handler and deliver requests to it
 err := http.ListenAndServe(":8000", fileServer)

Chapter 8 ■ http

156

 checkError(err)
 // That's it!
}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

The server is run as follows:

go run FileServer.go

This server even delivers "404 not found" messages for requests for file resources that don't exist! If the
file requested is a directory, it returns a list wrapped in <pre> ... </pre> tags with no other HTML headers
or markup. If Wireshark or a simple telnet client is used, directories are sent as text/html, HTML files as
text/html, Perl files as text/x-perl, Java files as text/x-java, and so on. The FileServer employs some
type recognition and includes that in the HTTP request, but it does not give the control over markup that a
server such as Apache does.

Handler Functions
In this last program, the handler was given in the second argument to ListenAndServe. Any number of
handlers can be registered first by calls to Handle or HandleFunc, with these signatures:

func Handle(pattern string, handler Handler)
func HandleFunc(pattern string, handler func(ResponseWriter, *Request))

The second argument to ListenAndServe could be nil, and then calls are dispatched to all registered
handlers. Each handler should have a different URL pattern. For example, the file handler might have
URL pattern /, while a function handler might have URL pattern /cgi-bin. A more specific pattern takes
precedence over a more general pattern.

Common CGI programs are test-cgi (written in the shell) and printenv (written in Perl), which print the
values of the environment variables. A handler can be written to work in a similar manner as PrintEnv.go.

/* Print Env
 */

package main

import (
 "fmt"
 "net/http"
 "os"
)
Arial
func main() {
 // file handler for most files
 fileServer := http.FileServer(http.Dir("/var/www"))
 http.Handle("/", fileServer)

Chapter 8 ■ http

157

 // function handler for /cgi-bin/printenv
 http.HandleFunc("/cgi-bin/printenv", printEnv)

 // deliver requests to the handlers
 err := http.ListenAndServe(":8000", nil)
 checkError(err)
 // That's it!
}

func printEnv(writer http.ResponseWriter, req *http.Request) {
 env := os.Environ()
 writer.Write([]byte("<h1>Environment</h1>\n<pre>"))
 for _, v := range env {
 writer.Write([]byte(v + "\n"))
 }
 writer.Write([]byte("</pre>"))
}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

 ■ Note For simplicity, this program does not deliver well-formed HTML. It is missing html, head, and body
tags. running the program on the localhost and pointing a browser to http://localhost/cgi-bin/printenv
produces output like this on my computer:

Environment

XDG_VTNR=7
XDG_SESSION_ID=c2
CLUTTER_IM_MODULE=xim
XDG_GREETER_DATA_DIR=/var/lib/lightdm-data/newmarch
SESSION=gnome-flashback-compiz
GPG_AGENT_INFO=/home/newmarch/.gnupg/S.gpg-agent:0:1
TERM=xterm-256color
SHELL=/bin/bash
...

Using the cgi-bin directory in this program is a bit cheeky: it doesn't call an external program like CGI
scripts do. It just calls the Go function printEnv. Go does have the ability to call external programs using os.
ForkExec, but does not yet have support for dynamically linkable modules like Apache's mod_perl.

Chapter 8 ■ http

158

Bypassing the Default Multiplexer
HTTP requests received by a Go server are usually handled by a multiplexer, which examines the path in the
HTTP request and calls the appropriate file handler, etc. You can define your own handlers. These can be
registered with the default multiplexer by calling http.HandleFunc, which takes a pattern and a function.
The functions such as ListenAndServe then take a nil handler function. This was done in the last example.

However, if you want to take over the multiplexer role then you can give a non-nil function as the handler
function to ListenAndServe. This function will then be responsible for managing the requests and responses.

The following example is trivial, but illustrates the use of this. The multiplexer function simply returns a
"204 No content" for all requests to ServerHandler.go:

/* ServerHandler
 */

package main

import (
 "net/http"
)

func main() {

 myHandler := http.HandlerFunc(func(rw http.ResponseWriter, request *http.Request) {
 // Just return no content - arbitrary headers can be set, arbitrary body
 rw.WriteHeader(http.StatusNoContent)
 })

 http.ListenAndServe(":8080", myHandler)
}

The server may be tested by running telnet against it to give output such as this:

$telnet localhost 8080
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
GET / HTTP/1.0

HTTP/1.0 204 No Content
Date: Tue, 10 Jan 2017 05:32:53 GMT

Or by using this:

curl -v localhost:8080

To give this output:

* Rebuilt URL to: localhost:8080/
* Trying 127.0.0.1...
* Connected to localhost (127.0.0.1) port 8080 (#0)

Chapter 8 ■ http

159

> GET / HTTP/1.1
> Host: localhost:8080
> User-Agent: curl/7.47.0
> Accept: */*
>
< HTTP/1.1 204 No Content
< Date: Wed, 08 Mar 2017 08:46:35 GMT
<
* Connection #0 to host localhost left intact

Arbitrarily complex behavior can be built instead.

HTTPS
For secure, encrypted connections, HTTP uses TLS, which is described in Chapter 7. The protocol of
HTTP+TLS is called HTTPS and uses https:// URLs instead of http:// URLs.

For a server to use HTTPS, it needs an X.509 certificate and a private key file for that certificate. Go at
present requires that these be PEM-encoded as used in Chapter 7. Then the HTTP function ListenAndServe
is replaced with the HTTPS (HTTP+TLS) function ListenAndServeTLS.

The file server program given earlier can be written as an HTTPS server as HTTPSFileServer.go:

/* HTTPSFileServer
 */

package main

import (
 "fmt"
 "net/http"
 "os"
)

func main() {
 // deliver files from the directory /var/www
 fileServer := http.FileServer(http.Dir("/var/www"))

 // register the handler and deliver requests to it
 err := http.ListenAndServeTLS(":8000", "jan.newmarch.name.pem",
 "private.pem", fileServer)
 checkError(err)
 // That's it!
}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

http://dx.doi.org/10.1007/978-1-4842-2692-6_7
http://dx.doi.org/10.1007/978-1-4842-2692-6_7

Chapter 8 ■ http

160

This server is accessed by https://localhost:8000/index.html, for example. If the certificate is a
self-signed certificate, an unsafe client will be needed to access the server contents. For example:

curl -kv https://localhost:8000

If you want a server that supports both HTTP and HTTPs, run each listener in its own go routine.

Conclusion
Go has extensive support for HTTP. This is not surprising, since Go was partly invented to fill a need by Google
for their own servers. This chapter discussed the various levels of support given by Go for HTTP and HTTPS.

161© Jan Newmarch 2017
J. Newmarch, Network Programming with Go, DOI 10.1007/978-1-4842-2692-6_9

CHAPTER 9

Templates

Most server-side languages have a mechanism for taking predominantly static pages and inserting a
dynamically generated component, such as a list of items. Typical examples are scripts in Java Server Pages,
PHP scripting, and many others. Go has adopted a relatively simple scripting language in the template
package.

The package is designed to take text as input and output different text, based on transforming the
original text using the values of an object. Unlike JSP or similar, it is not restricted to HTML files but it is
likely to find greatest use there. We first describe the text/template package and later the html/template
package.

The original source is called a template and will consist of text that is transmitted unchanged, and
embedded commands that can act on and change text. The commands are delimited by {{ ... }} , similar
to the JSP commands <%= ... =%> and PHP’s <?php ... ?>.

Inserting Object Values
A template is applied to a Go object. Fields from that Go object can be inserted into the template, and you
can “dig” into the object to find subfields, etc. The current object is represented as the cursor ., so that to
insert the value of the current object as a string, you use {{.}}. The package uses the fmt package by default
to work out the string used as inserted values.

To insert the value of a field of the current cursor object, you use the field name prefixed by .. For
example, if the current cursor object is of type

type Person struct {
 Name string
 Age int
 Emails []string
 Jobs []*Job
}

You insert the values of Name and Age as follows:

The name is {{.Name}}.
The age is {{.Age}}.

Chapter 9 ■ templates

162

You can loop over the elements of an array or other lists using the range command. So to access the
contents of the Emails array, you use this:

{{range .Emails}}
 The email is {{.}}
{{end}}

During the loop over e-mails, the cursor . is set to each e-mail in turn. On conclusion of the loop, the
cursor reverts to the person. If Job is defined as follows:

type Job struct {
 Employer string
 Role string
}

And we want to access the fields of a person's jobs, we can do it as above with a {{range .Jobs}}.
An alternative is to switch the current object to the Jobs field. This is done using the {{with ...}} ...
{{end}} construction, where now {{.}} is the Jobs field, which is an array:

{{with .Jobs}}
 {{range .}}
 An employer is {{.Employer}}
 and the role is {{.Role}}
 {{end}}
{{end}}

You can use this with any field, not just an array.

Using Templates
Once you have a template, you can apply it to an object to generate a new string, using the object to fill in
the template values. This is a two-step process that involves parsing the template and then applying it to an
object. The result is output to a Writer, as in:

t := template.New("Person template")
t, err := t.Parse(templ)
if err == nil {
 buff := bytes.NewBufferString("")
 t.Execute(buff, person)
}

An example program to apply a template to an object and print to standard output is PrintPerson.go:

/**
 * PrintPerson
 */

package main

Chapter 9 ■ templates

163

import (
 "fmt"
 "text/template"
 "os"
)

type Person struct {
 Name string
 Age int
 Emails []string
 Jobs []*Job
}

type Job struct {
 Employer string
 Role string
}

const templ = `The name is {{.Name}}.
The age is {{.Age}}.
{{range .Emails}}
 An email is {{.}}
{{end}}

{{with .Jobs}}
 {{range .}}
 An employer is {{.Employer}}
 and the role is {{.Role}}
 {{end}}
{{end}}
`

func main() {
 job1 := Job{Employer: "Box Hill Institute", Role: "Director, Commerce and ICT"}
 job2 := Job{Employer: "Canberra University", Role: "Adjunct Professor"}

 person := Person{
 Name: "jan",
 Age: 66,
 Emails: []string{"jan@newmarch.name", "jan.newmarch@gmail.com"},
 Jobs: []*Job{&job1, &job2},
 }

 t := template.New("Person template")
 t, err := t.Parse(templ)
 checkError(err)

 err = t.Execute(os.Stdout, person)
 checkError(err)
}

Chapter 9 ■ templates

164

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

The output from this is as follows:

The name is jan.
The age is 66.

 An email is jan@newmarch.name

 An email is jan.newmarch@gmail.com

 An employer is Canberra University
 and the role is Adjunct Professor

 An employer is Box Hill Institute
 and the role is Director, Commerce and ICT

Note that there is plenty of whitespace as newlines in this printout. This is due to the whitespace we
have in our template. If you want to reduce this whitespace, eliminate the newlines in the template as
follows:

{{range .Emails}} An email is {{.}} {{end}}

An alternative is to use the command delimiters "{{- " and " -}}" to eliminate all trailing whitespace
from the immediately preceding text, and all leading whitespace from the immediately following text,
respectively.

In the example, we used a string in the program as the template. You can also load templates from a
file using the template.ParseFiles() function. For some reason that I don’t understand (and which wasn’t
required in earlier versions), the name assigned to the template must be the same as the basename of the
first file in the list of files. Is this a bug?

Pipelines
The above transformations insert pieces of text into a template. Those pieces of text are essentially arbitrary,
whatever the string values of the fields are. If we want them to appear as part of an HTML document (or
other specialized form), we will have to escape particular sequences of characters. For example, to display
arbitrary text in an HTML document, we have to change < to <. The Go templates have a number of built-
in functions, and one of these is html(). These functions act in a similar manner to UNIX pipelines, reading
from standard input and writing to standard output.

To take the value of the current object . and apply HTML escapes to it, you write a “pipeline” in the
template:

{{. | html}}

And do similarly for other functions.

Chapter 9 ■ templates

165

Defining Functions
The templates use the string representation of an object to insert values, using the fmt package to convert
the object to a string. Sometimes this isn’t what is needed. For example, to avoid spammers getting hold of
e-mail addresses, it is quite common to see the symbol @ replaced by the word “at,” as in “jan at newmarch.
name”. If we want to use a template to display e-mail addresses in that form, we have to build a custom
function to do this transformation.

Each template function has a name that is used in the templates themselves and an associated Go
function. These are linked by this type:

type FuncMap map[string]interface{}

For example, if we want our template function to be emailExpand, which is linked to the Go function
EmailExpander, we add this to the functions in a template as follows:

t = t.Funcs(template.FuncMap{"emailExpand": EmailExpander})

The signature for EmailExpander is typically this:

func EmailExpander(args ...interface{}) string

For the use we are interested in, there should be only one argument to the function, which will be a
string. Existing functions in the Go template library have some initial code to handle non-conforming cases,
so we just copy that. Then it is just simple string manipulation to change the format of the e-mail address. A
program is PrintEmails.go:

/**
 * PrintEmails
 */

package main

import (
 "fmt"
 "os"
 "strings"
 "text/template"
)

type Person struct {
 Name string
 Emails []string
}

const templ = `The name is {{.Name}}.
{{range .Emails}}
 An email is "{{. | emailExpand}}"
{{end}}
`

Chapter 9 ■ templates

166

func EmailExpander(args ...interface{}) string {
 ok := false
 var s string
 if len(args) == 1 {
 s, ok = args[0].(string)
 }
 if !ok {
 s = fmt.Sprint(args...)
 }

 // find the @ symbol
 substrs := strings.Split(s, "@")
 if len(substrs) != 2 {
 return s
 }
 // replace the @ by " at "
 return (substrs[0] + " at " + substrs[1])
}

func main() {
 person := Person{
 Name: "jan",
 Emails: []string{"jan@newmarch.name", "jan.newmarch@gmail.com"},
 }

 t := template.New("Person template")

 // add our function
 t = t.Funcs(template.FuncMap{"emailExpand": EmailExpander})

 t, err := t.Parse(templ)

 checkError(err)

 err = t.Execute(os.Stdout, person)
 checkError(err)
}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

The output is as follows:

The name is jan.

 An email is "jan at newmarch.name"

 An email is "jan.newmarch at gmail.com"

Chapter 9 ■ templates

167

Variables
The template package allows you to define and use variables. As motivation for this, consider how we might
print each person’s e-mail address prefixed by their name. The type we use is again this one:

type Person struct {
 Name string
 Emails []string
}

To access the e-mail strings, we use a range statement such as this:

{{range .Emails}}
 {{.}}
{{end}}

But at that point we cannot access the Name field, as . is now traversing the array elements and Name
is outside of this scope. The solution is to save the value of the Name field in a variable that can be accessed
anywhere in its scope. Variables in templates are prefixed by $. So we write this:

{{$name := .Name}}
{{range .Emails}}
 Name is {{$name}}, email is {{.}}
{{end}}

The program is PrintNameEmails.go:

/**
 * PrintNameEmails
 */

package main

import (
 "text/template"
 "os"
 "fmt"
)

type Person struct {
 Name string
 Emails []string
}

const templ = `{{$name := .Name}}
{{range .Emails}}
 Name is {{$name}}, email is {{.}}
{{end}}
`

Chapter 9 ■ templates

168

func main() {
 person := Person{
 Name: "jan",
 Emails: []string{"jan@newmarch.name", "jan.newmarch@gmail.com"},
 }

 t := template.New("Person template")
 t, err := t.Parse(templ)
 checkError(err)

 err = t.Execute(os.Stdout, person)
 checkError(err)
}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

Here is the output:

Name is jan, email is jan@newmarch.name

Name is jan, email is jan.newmarch@gmail.com

Conditional Statements
Continuing with the Person example, suppose you just want to print out the list of e-mails, without digging
into it. You can do that with a template:

Name is {{.Name}}
Emails are {{.Emails}}

This will print the following:

Name is jan
Emails are [jan@newmarch.name jan.newmarch@gmail.com]

Because this is how the fmt package will display a list.
In many circumstances that may be fine, if that is what you want. Let’s consider a case where it is almost

right, but not quite. There is a JSON package to serialize objects, which we looked at in Chapter 4. This would
produce the following:

{"Name": "jan",
 "Emails": ["jan@newmarch.name", "jan.newmarch@gmail.com"]
}

http://dx.doi.org/10.1007/978-1-4842-2692-6_4

Chapter 9 ■ templates

169

The JSON package is the one you use in practice, but let’s see if we can produce JSON output using
templates. We can do something similar just by the templates we have. This is almost right as a JSON
serializer:

{"Name": "{{.Name}}",
 "Emails": {{.Emails}}
}

It will produce this:

{"Name": "jan",
 "Emails": [jan@newmarch.name jan.newmarch@gmail.com]
}

This has two problems: the addresses aren’t in quotes and the list elements should be , separated.
How about this—look at the array elements, put them in quotes, and add commas?

{"Name": {{.Name}},
 "Emails": [
 {{range .Emails}}
 "{{.}}",
 {{end}}
]
}

This will produce:

{"Name": "jan",
 "Emails": ["jan@newmarch.name", "jan.newmarch@gmail.com",]
}

(Plus some whitespace.)
Again, it’s almost correct, but if you look carefully, you will see a trailing , after the last list element.

According to the JSON syntax (see http://www.json.org/), this trailing , is not allowed. Implementations
may vary in how they deal with this.

What we want is to print every element followed by a , except for the last one. This is actually a bit hard
to do, so a better way is to print every element preceded by a , except for the first one. (I got this tip from
“brianb” at Stack Overflow—http://stackoverflow.com/questions/201782/can-you-use-a-trailing-
comma-in-a-json-object). This is easier, because the first element has index zero and many programming
languages, including the Go template language, treat zero as a Boolean false.

One form of the conditional statement is {{if pipeline}} T1 {{else}} T0 {{end}}. We need the
pipeline to be the index into the array of e-mails. Fortunately, a variation on the range statement gives us
this. There are two forms that introduce variables:

{{range $elmt := array}}
{{range $index, $elmt := array}}

http://www.json.org/
http://stackoverflow.com/questions/201782/can-you-use-a-trailing-comma-in-a-json-object
http://stackoverflow.com/questions/201782/can-you-use-a-trailing-comma-in-a-json-object

Chapter 9 ■ templates

170

So we set up a loop through the array, and if the index is false (0), we just print the element. Otherwise,
we print it preceded by a ,. The template is as follows:

{"Name": "{{.Name}}",
 "Emails": [
 {{range $index, $elmt := .Emails}}
 {{if $index}}
 , "{{$elmt}}"
 {{else}}
 "{{$elmt}}"
 {{end}}
 {{end}}
]
}

The full program is PrintJSONEmails.go:

/**
 * PrintJSONEmails
 */

package main

import (
 "text/template"
 "os"
 "fmt"
)

type Person struct {
 Name string
 Emails []string
}

const templ = `{"Name": "{{.Name}}",
 "Emails": [
{{range $index, $elmt := .Emails}}
 {{if $index}}
 , "{{$elmt}}"
 {{else}}
 "{{$elmt}}"
 {{end}}
{{end}}
]
}
`

func main() {
 person := Person{
 Name: "jan",
 Emails: []string{"jan@newmarch.name", "jan.newmarch@gmail.com"},
 }

Chapter 9 ■ templates

171

 t := template.New("Person template")
 t, err := t.Parse(templ)
 checkError(err)

 err = t.Execute(os.Stdout, person)
 checkError(err)
}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

This gives the correct JSON output.
Before leaving this section, note that the problem of formatting a list with comma separators can be

approached by defining suitable functions in Go that are made available as template functions. To reuse a
well known saying from another programming language, “There’s more than one way to do it!”. The following
program was sent to me by Roger Peppe as Sequence.go:

/**
 * Sequence.go
 * Copyright Roger Peppe
 */

package main

import (
 "errors"
 "fmt"
 "os"
 "text/template"
)

var tmpl = `{{$comma := sequence "" ", "}}
{{range $}}{{$comma.Next}}{{.}}{{end}}
{{$comma := sequence "" ", "}}
{{$colour := cycle "black" "white" "red"}}
{{range $}}{{$comma.Next}}{{.}} in {{$colour.Next}}{{end}}
`

var fmap = template.FuncMap{
 "sequence": sequenceFunc,
 "cycle": cycleFunc,
}

func main() {
 t, err := template.New("").Funcs(fmap).Parse(tmpl)
 if err != nil {
 fmt.Printf("parse error: %v\n", err)
 return
 }

Chapter 9 ■ templates

172

 err = t.Execute(os.Stdout, []string{"a", "b", "c", "d", "e", "f"})
 if err != nil {
 fmt.Printf("exec error: %v\n", err)
 }
}

type generator struct {
 ss []string
 i int
 f func(s []string, i int) string
}

func (seq *generator) Next() string {
 s := seq.f(seq.ss, seq.i)
 seq.i++
 return s
}

func sequenceGen(ss []string, i int) string {
 if i >= len(ss) {
 return ss[len(ss)-1]
 }
 return ss[i]
}

func cycleGen(ss []string, i int) string {
 return ss[i%len(ss)]
}

func sequenceFunc(ss ...string) (*generator, error) {
 if len(ss) == 0 {
 return nil, errors.New("sequence must have at least one element")
 }
 return &generator{ss, 0, sequenceGen}, nil
}

func cycleFunc(ss ...string) (*generator, error) {
 if len(ss) == 0 {
 return nil, errors.New("cycle must have at least one element")
 }
 return &generator{ss, 0, cycleGen}, nil
}

Here is the output:

a, b, c, d, e, f

a in black, b in white, c in red, d in black, e in white, f in red

Chapter 9 ■ templates

173

The HTML / Template Package
The preceding programs all dealt with the text/template package. This applies transformations without
regard to any context in which the text might be used. For example, if the text in PrintPerson.go changes to:

job1 := Job{Employer: "<script>alert('Could be nasty!')</script>", Role: "Director, Commerce
and ICT"}

The program will generate this text:

An employer is <script>alert('Could be nasty!')</script>

This will cause an unexpected effect if downloaded to a browser.
The use of the html command in a pipeline can reduce this, as in {{. | html}}, and will produce the

following:

An employer is <script>alert('Could be nasty!')</script>

Applying this filter to all expressions will become tedious. In addition, it may not catch potentially
dangerous JavaScript, CSS, or URI expressions.

The html/template package is designed to overcome these issues. By the simple step of replacing
text/template with html/template, the appropriate transformations will be applied to the resultant text,
sanitizing it so that it is suitable for web contexts.

Conclusion
The Go template package is useful for certain kinds of text transformations involving inserting values of
objects. It does not have the power of regular expressions for example, but it is faster and in many cases will
be easier to use than regular expressions.

175© Jan Newmarch 2017
J. Newmarch, Network Programming with Go, DOI 10.1007/978-1-4842-2692-6_10

CHAPTER 10

A Complete Web Server

This chapter is principally an illustration of the HTTP chapter, building a complete Web server in Go. It also
shows how to use templates in order to use expressions in text files to insert variable values and to generate
repeated sections. It deals with serialized data and Unicode character sets. The programs in this chapter are
sufficiently long and complex so they are not always given in their entirety, but can be downloaded from the
book’s web site, which is http://www.apress.com/9781484226919.

I am learning Chinese. Rather, after many years of trying, I am still attempting to learn Chinese. Of
course, rather than buckling down and getting on with it, I have tried all sorts of technical aids. I tried text
books, videos, and many other teaching aids. Eventually I realized that the reason for my poor progress
was that there wasn't a good computer program for Chinese flashcards, and so in the interests of learning,
I needed to build one.

I found a program in Python to do some of the task. But sad to say it wasn’t well written and after a few
attempts at turning it upside down and inside out, I came to the conclusion that it was better to start from
scratch. Of course, a web solution would be far better than a standalone one, because then all the other
people in my Chinese class could share it, as well as any other learners out there. And of course, the server
would be written in Go.

I used the vocabulary from the lessons in the book Intensive Spoken Chinese by Zhang Pengpeng
(Sinolingua, 2007, ISBN 978-7-80052577-3) but the program is applicable to any vocabulary sets.

Browser Site Diagram
The resultant program as viewed in the browser has three types of pages, illustrated in Figure 10-1.

Home page
List of Flashcard

sets

Flashcard set
words one at

a time

Flashcard set
all words

Figure 10-1. Browser pages

http://www.apress.com/9781484226919

Chapter 10 ■ a Complete Web Server

176

The home page shows a list of flashcard sets (see Figure 10-2). It consists of a list of flashcard sets
currently available, how you want a set displayed (random card order, Chinese or English shown first, or
random), and whether to display a set of cards or just the words in a set.

The flashcard set shows a flashcard, one at a time. One looks like Figure 10-3.

Figure 10-2. The home page of the web site

Figure 10-3. Typical flashcard showing all the components

Chapter 10 ■ a Complete Web Server

177

The set of words for a flashcard set looks like Figure 10-4.

Browser Files
The browser side has HTML, CSS, and JavaScript files. These are as follows:

•	 Home page (flashcards.html):

•	 html/ListFlashcardsStylesheet.css

•	 Flashcard set (ShowFlashcards.html):

•	 css/CardStyleSheet.css

•	 jscript/jquery.js

•	 jscript/slideviewer.js

•	 Flashcard set words (ListWords.html): None extra

Basic Server
The server is an HTTP server as discussed in the previous chapter. It has a number of functions to handle
different URLs. The functions are outlined here:

Path Function HTML Delivered

/ listFlashCards html/ListFlashcards.html

/flashcards.html listFlashCards html/ListFlashcards.html

/flashcardSets manageFlashCards html/showFlashcards.html

/flashcardSets manageFlashCards html/ListWords.html

/jscript/* fileServer Files from directory /jscript

/html/* fileServer Files from directory /html

Figure 10-4. The list of words in a flashcard set

Chapter 10 ■ a Complete Web Server

178

Omitting the functions themselves for now, the server is Server.go under Ch10 of http://www.apress.
com/9781484226919.

/* Server
 */

package main

import (
 "fmt"
 "net/http"
 "os"
 "html/template"
)

import (
 "dictionary"
 "flashcards"
 "templatefuncs"
)

func main() {
 if len(os.Args) != 2 {
 fmt.Fprint(os.Stderr, "Usage: ", os.Args[0], ":port\n")
 os.Exit(1)
 }
 port := os.Args[1]

 http.HandleFunc("/", listFlashCards)
 fileServer := http.StripPrefix("/jscript/", http.FileServer(http.Dir("jscript")))
 http.Handle("/jscript/", fileServer)
 fileServer = http.StripPrefix("/html/", http.FileServer(http.Dir("html")))
 http.Handle("/html/", fileServer)

 http.HandleFunc("/flashcards.html", listFlashCards)
 http.HandleFunc("/flashcardSets", manageFlashCards)

 // deliver requests to the handlers
 err := http.ListenAndServe(port, nil)
 checkError(err)
 // That's it!
}

func listFlashCards(rw http.ResponseWriter, req *http.Request) {
 ...
}

/*
 * Called from ListFlashcards.html on form submission
 */

http://www.apress.com/9781484226919
http://www.apress.com/9781484226919

Chapter 10 ■ a Complete Web Server

179

func manageFlashCards(rw http.ResponseWriter, req *http.Request) {
 ...
}

func showFlashCards(rw http.ResponseWriter, cardname, order, half string) {
 ...
}

func listWords(rw http.ResponseWriter, cardname string) {
 ...
}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

We now turn to discussion of the individual functions.

The listFlashCards Function
The listFlashCards function is called to create HTML for the top-level page. The list of flashcard names is
extensible and is the set of file entries in the directory flashcardSets. This list is used to create the table in
the top-level page and is best done using the template package:

<table>
 {{range .}}
 <tr>
 <td>
 {{.}}
 </td>
 </tr>
</table>

Where the range is over the list of names. The file html/ListFlashcards.html contains this template
as well as the HTML for the side lists of card order, half card display, and the form buttons at the bottom.
Omitting the side lists and the submit buttons, the HTML is as follows:

<html>
 <head>
 <title>
 Flashcards
 </title>
 <link type="text/css" rel="stylesheet"
 href="/html/ListFlashcardsStylesheet.css">
 </link>
 </head>
 <body>

Chapter 10 ■ a Complete Web Server

180

 <h1>
 Flashcards
 </h1>
 <p>

 <div id="choose">
 <form method="GET" action="http:flashcardSets">

 <table border="1" id="sets">
 <tr>
 <th colspan="2">
 Flashcard Sets
 </th>
 </tr>
 {{range .}}
 <tr>
 <td>
 {{.}}
 </td>
 <td>
 <input type="radio" name="flashcardSets" value="{{.}}" />
 </td>
 </tr>
 {{end}}
 </table>
 </div>
 </p>
 </body>
</html>

The function listFlashCards, which applies the template to this, is as follows:

func listFlashCards(rw http.ResponseWriter, req *http.Request) {

 flashCardsNames := flashcards.ListFlashCardsNames()
 t, err := template.ParseFiles("html/ListFlashcards.html")
 if err != nil {
 http.Error(rw, err.Error(), http.StatusInternalServerError)
 return
 }
 t.Execute(rw, flashCardsNames)
}

The function flashcards.ListFlashCardsNames() just iterates through the flashcards directory,
returning an array of strings (the filenames of each flashcard set):

func ListFlashCardsNames() []string {
 flashcardsDir, err := os.Open("flashcardSets")
 if err != nil {
 return nil
 }
 files, err := flashcardsDir.Readdir(-1)

Chapter 10 ■ a Complete Web Server

181

 fileNames := make([]string, len(files))
 for n, f := range files {
 fileNames[n] = f.Name()
 }
 sort.Strings(fileNames)
 return fileNames
}

The manageFlashCards Function
The manageFlashCards function is called to manage the form submission on pressing the “Show Cards in
Set” button or the “List Words in Set” button. It extracts values from the form request and then chooses
between showFlashCards and listWords:

func manageFlashCards(rw http.ResponseWriter, req *http.Request) {

 set := req.FormValue("flashcardSets")
 order := req.FormValue("order")
 action := req.FormValue("submit")
 half := req.FormValue("half")
 cardname := "flashcardSets/" + set

 fmt.Println("cardname", cardname, "action", action)
 if action == "Show cards in set" {
 showFlashCards(rw, cardname, order, half)
 } else if action == "List words in set" {
 listWords(rw, cardname)
 }
}

The Chinese Dictionary
The previous code was fairly generic: it delivers static files using a FileServer, creates HTML tables using
templates based on a listing of files in a directory, and processes information from an HTML form. To
proceed further by looking at what is displayed in each card, we have to get into the application-specific
detail and that means looking at the source of words (a dictionary), how to represent it and the cards, and
how to send flashcard data to the browser. First, the dictionary.

Chinese is a complex language—aren’t they all :-(. The written form is hieroglyphic, that is “pictograms,”
instead of using an alphabet. But this written form has evolved over time, and even recently split into
two forms: “traditional” Chinese as used in Taiwan and Hong Kong, and “simplified” Chinese as used in
mainland China. While most of the characters are the same, about 1,000 are different. Thus a Chinese
dictionary will often have two written forms of the same character.

Most Westerners like me can’t understand these characters. So there is a “Latinized” form called Pinyin,
which writes the characters in a phonetic alphabet based on the Latin alphabet. It isn’t quite the Latin
alphabet, because Chinese is a tonal language, and the Pinyin form has to show the tones (much like accents
in French and other European languages). So a typical dictionary has to show four things: the traditional
form, the simplified form, the Pinyin, and the English. In addition (just like in English), a word may have

Chapter 10 ■ a Complete Web Server

182

multiple meanings. For example, there is a free Chinese/English dictionary at http://www.mandarintools.
com/worddict.html, and even better, you can download it as a UTF-8 file. In it, the word 好 has this entry:

Traditional Simplified Pinyin English Meanings

好 好 hǎo good /good/well/proper/good to/easy to/very/so/(suffix
indicating completion or readiness)/

There is a little complication in this dictionary. Most keyboards are not good at representing accents
such as the caron in ǎ. So while the Chinese characters are written in Unicode, the Pinyin characters are
not. Although there are Unicode characters for letters such as ǎ, many dictionaries including this one use
the Latin a and place the tone at the end of the word. Here it is the third tone, so hǎo is written as hao3. This
makes it easier for those who only have U.S. keyboards and no Unicode editor to still communicate in Pinyin.
A copy of the dictionary as used by the web server is cedict_ts_u8.

This data format mismatch is not a big deal. Just that somewhere along the line, between the original
text dictionary and the display in the browser, a data massage has to be performed. Go templates allow this
to be done by defining a custom template, so I chose that route. Alternative approaches include doing this as
the dictionary is read in, or in the JavaScript to display the final characters.

The Dictionary Type
We use an Entry to hold the basic information about one word:

type Entry struct {
 Traditional string
 Simplified string
 Pinyin string
 Translations []string
}

The word above would be represented by the following:

Entry{Traditional: 好,
 Simplified: 好,
 Pinyin: `hao3`
 Translations: []string{`good`, `well`,`proper`,
 `good to`, `easy to`, `very`, `so`,
 `(suffix indicating completion or readiness)`}
}

The dictionary itself is just an array of these entries:

type Dictionary struct {
 Entries []*Entry
}

http://www.mandarintools.com/worddict.html
http://www.mandarintools.com/worddict.html

Chapter 10 ■ a Complete Web Server

183

Flashcard Sets
A single flashcard is meant to represent a Chinese word and the English translation of that word. We have
already seen that a single Chinese word can have many possible English meanings. But this dictionary also
sometimes has multiple occurrences of a Chinese word. For example, 好 occurs at least twice, once with the
meaning we have already seen, but also with another meaning, “to be fond of”. It turned out to be overkill,
but to allow for this, each flashcard is given a full dictionary of words. Typically there is only one entry in the
dictionary! The rest of a flashcard is just the simplified and English words to act as possible keys:

type FlashCard struct {
 Simplified string
 English string
 Dictionary *dictionary.Dictionary
}

The set of flashcards is an array of these, plus the name of the set, and information that will be sent to
the browser for presentation of the set: random or fixed order, showing the top or bottom of each card first,
or random.

type FlashCards struct {
 Name string
 CardOrder string
 ShowHalf string
 Cards []*FlashCard
}

We have shown one function for this type already, ListFlashCardsNames(). There is one other
function of interest for this type to load a JSON file for a flashcard set. This uses the techniques of Chapter 4,
serialization.

func LoadJSON(fileName string, key interface{}) {
 inFile, err := os.Open(fileName)
 checkError(err)
 decoder := json.NewDecoder(inFile)
 err = decoder.Decode(key)
 checkError(err)
 inFile.Close()
}

A typical flashcard set is of common words. When the JSON file is pretty printed by Python (print
json.dump(string, indent=4, separators=(',', ':'))), part of it looks like this:

{
 "ShowHalf":"",
 "Cards":[
 {
 "Simplified":"\u4f60\u597d",
 "Dictionary":{
 "Entries":[
 {
 "Traditional":"\u4f60\u597d",

http://dx.doi.org/10.1007/978-1-4842-2692-6_4

Chapter 10 ■ a Complete Web Server

184

 "Pinyin":"ni3 hao3",
 "Translations":[
 "hello",
 "hi",
 "how are you?"
],
 "Simplified":"\u4f60\u597d"
 }
]
 },
 "English":"hello"
 },
 {
 "Simplified":"\u5582",
 "Dictionary":{
 "Entries":[
 {
 "Traditional":"\u5582",
 "Pinyin":"wei4",
 "Translations":[
 "hello (interj., esp. on telephone)",
 "hey",
 "to feed (sb or some animal)"
],
 "Simplified":"\u5582"
 }
]
 },
 "English":"hello (interj., esp. on telephone)"
 },
],
 "CardOrder":"",
 "Name":"Common Words"
}

Fixing Accents
There is one last major task before we can complete the code for the server. The accents as given in the
dictionaries place the accent at the end of the Pinyin word, as in hao3 for hǎo. The translation to Unicode
can be performed by a custom template, as discussed in Chapter 9.

The code for the Pinyin formatter is given here. Don’t bother reading it unless you are really interested
in knowing the rules for Pinyin formatting. The program is PinyinFormatter.go:

package templatefuncs

import (
 "fmt"
 "strings"
)

http://dx.doi.org/10.1007/978-1-4842-2692-6_9

Chapter 10 ■ a Complete Web Server

185

func PinyinFormatter(args ...interface{}) string {
 ok := false
 var s string
 if len(args) == 1 {
 s, ok = args[0].(string)
 }
 if !ok {
 s = fmt.Sprint(args...)
 }
 fmt.Println("Formatting func " + s)
 // the string may consist of several pinyin words
 // each one needs to be changed separately and then
 // added back together
 words := strings.Fields(s)

 for n, word := range words {
 // convert "u:" to "ü" if present
 uColon := strings.Index(word, "u:")
 if uColon != -1 {
 parts := strings.SplitN(word, "u:", 2)
 word = parts[0] + "ü" + parts[1]
 }
 println(word)
 // get last character, will be the tone if present
 chars := []rune(word)
 tone := chars[len(chars)-1]
 if tone == '5' {
 // there is no accent for tone 5
 words[n] = string(chars[0 : len(chars)-1])
 println("lost accent on", words[n])
 continue
 }
 if tone < '1' || tone > '4' {
 // not a tone value
 continue
 }
 words[n] = addAccent(word, int(tone))
 }
 s = strings.Join(words, ` `)
 return s
}

var (
 // maps 'a1' to '\u0101' etc
 aAccent = map[int]rune{
 '1': '\u0101',
 '2': '\u00e1',
 '3': '\u01ce',
 '4': '\u00e0'}
 eAccent = map[int]rune{
 '1': '\u0113',

Chapter 10 ■ a Complete Web Server

186

 '2': '\u00e9',
 '3': '\u011b',
 '4': '\u00e8'}
 iAccent = map[int]rune{
 '1': '\u012b',
 '2': '\u00ed',
 '3': '\u01d0',
 '4': '\u00ec'}
 oAccent = map[int]rune{
 '1': '\u014d',
 '2': '\u00f3',
 '3': '\u01d2',
 '4': '\u00f2'}
 uAccent = map[int]rune{
 '1': '\u016b',
 '2': '\u00fa',
 '3': '\u01d4',
 '4': '\u00f9'}
 üAccent = map[int]rune{
 '1': 'ǖ',
 '2': 'ǘ',
 '3': 'ǚ',
 '4': 'ǜ'}
)

func addAccent(word string, tone int) string {
 /*
 * Based on "Where do the tone marks go?"
 * at http://www.pinyin.info/rules/where.html
 */

 n := strings.Index(word, "a")
 if n != -1 {
 aAcc := aAccent[tone]
 // replace 'a' with its tone version
 word = word[0:n] + string(aAcc) + word[(n+1):len(word)-1]
 } else {
 n := strings.Index(word, "e")
 if n != -1 {
 eAcc := eAccent[tone]
 word = word[0:n] + string(eAcc) +
 word[(n+1):len(word)-1]
 } else {
 n = strings.Index(word, "ou")
 if n != -1 {
 oAcc := oAccent[tone]
 word = word[0:n] + string(oAcc) + "u" +
 word[(n+2):len(word)-1]
 } else {
 chars := []rune(word)
 length := len(chars)

Chapter 10 ■ a Complete Web Server

187

 // put tone on the last vowel
 L:
 for n, _ := range chars {
 m := length - n - 1
 switch chars[m] {
 case 'i':
 chars[m] = iAccent[tone]
 break L
 case 'o':
 chars[m] = oAccent[tone]
 break L
 case 'u':
 chars[m] = uAccent[tone]
 break L
 case 'ü':
 chars[m] = üAccent[tone]
 break L
 default:
 }
 }
 word = string(chars[0 : len(chars)-1])
 }
 }
 }
 return word
}

The ListWords Function
We can now return to the outstanding functions of the server. One was to list the words in a flashcards set.
This populates an HTML table using a template for a flashcards set. The HTML for this uses the template
package to walk over a FlashCards struct and insert the fields from that struct:

<html>
 <head>
 <title>
 Words for {{.Name}}
 </title>

 </head>
 <body>
 <h1>
 Words for {{.Name}}
 </h1>
 <p>
 <table border="1" class="sortable">
 <tr>
 <th> English </th>
 <th> Pinyin </th>

Chapter 10 ■ a Complete Web Server

188

 <th> Traditional </th>
 <th> Simplified </th>
 </tr>
 {{range .Cards}}
 <div class="card">
 <tr>
 <div class="english">
 <div class="vcenter">
 <td>
 {{.English}}
 </td>
 </div>
 </div>

 {{with .Dictionary}}
 {{range .Entries}}
 <div class="pinyin">
 <div class="vcenter">
 <td>
 {{.Pinyin|pinyin}}
 </td>
 </div>
 </div>

 <div class="traditional">
 <div class="vcenter">
 <td>
 {{.Traditional}}
 </td>
 </div>
 </div>

 <div class="simplified">
 <div class="vcenter">
 <td>
 {{.Simplified}}
 </td>
 </div>
 </div>

 {{end}}
 {{end}}
 </tr>
 </div>
 {{end}}
 </table>
 </p>
 <p class ="return">
 Return to Flash Cards list
 </p>
 </body>
</html>

Chapter 10 ■ a Complete Web Server

189

The Go function in Server.go to do this uses the PinyinFormatter discussed in the last section:

func listWords(rw http.ResponseWriter, cardname string) {
 cards := new(flashcards.FlashCards)
 flashcards.LoadJSON(cardname, cards)
 fmt.Println("Card name", cards.Name)

 t := template.New("ListWords.html")

 t = t.Funcs(template.FuncMap{"pinyin": templatefuncs.PinyinFormatter})
 t, err := t.ParseFiles("html/ListWords.html")

 if err != nil {
 fmt.Println("Parse error " + err.Error())
 http.Error(rw, err.Error(), http.StatusInternalServerError)
 return
 }
 err = t.Execute(rw, cards)
 if err != nil {
 fmt.Println("Execute error " + err.Error())
 http.Error(rw, err.Error(), http.StatusInternalServerError)
 return
 }
}

This sends the populated table to the browser, as shown in Figure 10-4.

The showFlashCards Function
The final function to complete the server is showFlashCards. This changes the default values of CardOrder
and ShowHalf in the flashcard set based on the form submitted from the browser. It then applies the
PinyinFormatter and sends the resulting document to the browser. I captured the output of a command-line
session using the UNIX command script and then ran the command:

GET /flashcardSets?flashcardSets=Common+Words&order=Random&half=Chinese&submit=Show+cards+i
n+set HTTP/1.0

Part of the result is as follows:

<html>
 <head>
 <title>
 Flashcards for Common Words
 </title>

 <link type="text/css" rel="stylesheet"
 href="/html/CardStylesheet.css">
 </link>

Chapter 10 ■ a Complete Web Server

190

 <script type="text/javascript"
 language="JavaScript1.2" src="/jscript/jquery.js">
 <!-- empty -->
 </script>

 <script type="text/javascript"
 language="JavaScript1.2" src="/jscript/slideviewer.js">
 <!-- empty -->
 </script>

 <script type="text/javascript"
 language="JavaScript1.2">
 cardOrder = "RANDOM";
 showHalfCard = "CHINESE_HALF";
 </script>
 </head>
 <body onload="showSlides();">

 <h1>
 Flashcards for Common Words
 </h1>
 <p>

 <div class="card">
 <div class="english">
 <div class="vcenter">
 hello
 </div>
 </div>

 <div class="pinyin">
 <div class="vcenter">
 nǐ hǎo
 </div>
 </div>

 <div class="traditional">
 <div class="vcenter">
 你好
 </div>
 </div>

 <div class="simplified">
 <div class="vcenter">
 你好
 </div>
 </div>

Chapter 10 ■ a Complete Web Server

191

 <div class ="translations">
 <div class="vcenter">

 hello

 hi

 how are you?

 </div>
 </div>

 </div>

Presentation on the Browser
The final part of this system is how this HTML is shown in the browser. Figure 10-3 shows a screen of
four parts displaying the English, the simplified Chinese, the alternative translations and the traditional/
simplified pair. How this is done is by the JavaScript program downloaded to the server (this takes place
using the FileServer Go object). The JavaScript slideviewer.js file is actually pretty long and is omitted
from the text. It is included in the program files at http://www.apress.com/9781484226919.

Running the Server
This is the first program in this book that uses our own imported files. All the previous programs have just
used a main file and the Go standard libraries. The imported files in the package’s dictionary, flashcards
and pinyin, need to be organized so that the go command can find them.

The environment variable GOPATH needs to be set to a directory with a subdirectory src containing the
imported source files in the appropriate subdirectories:

src/flashcards/FlashCards.go
src/pinyin/PinyinFormatter.go
src/dictionary/Dictionary.go

The server can then be run on port 8000 (or other port) using a command such as this:

go run Server.go :8000

Conclusion
This chapter has considered a relatively simple but complete web server, using static and dynamic web
pages with form handling and using templates for simplifying coding.

http://www.apress.com/9781484226919

193© Jan Newmarch 2017
J. Newmarch, Network Programming with Go, DOI 10.1007/978-1-4842-2692-6_11

CHAPTER 11

HTML

The Web was originally created to serve HTML documents. Now it is used to serve all sorts of documents as
well as data of different kinds. Nevertheless, HTML is still the main document type delivered over the Web.

HTML has been through a large number of versions, with the current version being HTML5. There have
also been many “vendor” versions of HTML, introducing tags that never made it into the standards.

HTML is simple enough to be edited by hand. Consequently, many HTML documents are “ill formed,”
which means they don’t follow the syntax of the language. HTML parsers generally are not very strict and
will accept many “illegal” documents.

The HTML package itself only has two functions—EscapeString and UnescapeString. These properly
handle characters such as <, converting them to < and back again.

A principal use of this might be to escape the markup in an HTML document so that if it is displayed
in a browser, it will show all the markup (much like Ctrl+U in Chrome on Linux or Option+Cmd+U on Mac
Chrome).

I’m more likely to use this to show the text of a program as a web page. Most programming languages
have the < symbol and many have &. These mess up an HTML viewer unless escaped properly. I like to show
program text directly out of the file system rather than copy and paste it into a document, to avoid getting out
of synch.

The following program EscapeString.go is a web server that shows its URL in preformatted code,
having escaped the troublesome characters:

/*
 * This program serves a file in preformatted, code layout
 * Useful for showing program text, properly escaping special
 * characters like '<', '>' and '&'
 */

package main

import (
 "fmt"
 "html"
 "io/ioutil"
 "net/http"
 "os"
)

Chapter 11 ■ htML

194

func main() {
 http.HandleFunc("/", escapeString)

 err := http.ListenAndServe(":8080", nil)
 checkError(err)
}

func escapeString(rw http.ResponseWriter, req *http.Request) {
 fmt.Println(req.URL.Path)
 bytes, err := ioutil.ReadFile("." + req.URL.Path)
 if err != nil {
 rw.WriteHeader(http.StatusNotFound)
 return
 }

 escapedStr := html.EscapeString(string(bytes))
 htmlText := "<html><body><pre><code>" +
 escapedStr +
 " </code></pre></body></html>"
 rw.Write([]byte(htmlText))
}

func checkError(err error) {
 if err != nil {
 fmt.Println("Error ", err.Error())
 os.Exit(1)
 }
}

When it runs, serving files from the directory including the EscapeString.go program, a browser will
display it correctly using the URL localhost:8080/EscapeString.go.

Run the server with this command:

go run EscapeString.go

Run a client with this command, as an example:

curl localhost:8080/EscapeString.go

The Go HTML/Template Package
There are many attacks that can be made on web servers, the most notable being SQL-injection, where
a user-agent enters data into a web form deliberately designed to be passed into a database and wreak
havoc there. Go does not have any particular support to avoid this, since there are many variances among
databases as to the SQL-injection techniques that can succeed. The SQL Injection Prevention Cheat Sheet
(see https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet) summarizes the
defenses against such attacks. The principal one is to avoid such attacks by using SQL prepared statements,
which can be done using the Prepare function in the database/sql package.

More subtle attacks are based on XSS—cross-site-scripting. This is where an attacker is not trying to
attack the web site itself, but stores malicious code on the server, to attack any of the clients of that web site.

https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

Chapter 11 ■ htML

195

These attacks are based on inserting data into the database strings that, when delivered to a browser for
example, will attack the browser and through it, attack the client of the web site. (There are several variants
of this, discussed at “OWASP: Types of Cross-Site Scripting”—https://www.owasp.org/index.php/Types_
of_Cross-Site_Scripting.)

For example, JavaScript may be inserted where a blog comment was requested to redirect a browser to
an attacker’s site:

<script>
 window.location='http://attacker/'
</script>

The Go html/template package is designed on top of the text/template package. The assumption is
made that whereas the template will be trusted, the data that it deals with may not. What html/template
adds is suitable escaping of the data to try to eliminate the possibility of XSS. It is based on the document
called “Using Type Inference to Make Web Templates Robust Against XSS” by Mike Samuel and
Prateek Saxena. Read that paper at https://rawgit.com/mikesamuel/sanitized-jquery-templates/
trunk/safetemplate.html#problem_definition for the theory behind the package, and the package
documentation itself.

In short, prepare templates as per the text/template package and use the html/template package if
the resultant text is delivered to an HTML agent.

Tokenizing HTML
The package golang.org/x/net/html in the Go sub-repositories contains a tokenizer for HTML. This allows
you to build a parse tree of HTML tokens. It is compliant with HTML5.

It can be used after running this:

go get golang.org/x/net/html

An example program using this is ReadHTML.go:

/* Read HTML
 */

package main

import (
 "fmt"
 "golang.org/x/net/html"
 "io/ioutil"
 "os"
 "strings"
)

func main() {
 if len(os.Args) != 2 {
 fmt.Println("Usage: ", os.Args[0], "file")
 os.Exit(1)
 }

https://www.owasp.org/index.php/Types_of_Cross-Site_Scripting
https://www.owasp.org/index.php/Types_of_Cross-Site_Scripting
https://rawgit.com/mikesamuel/sanitized-jquery-templates/trunk/safetemplate.html#problem_definition
https://rawgit.com/mikesamuel/sanitized-jquery-templates/trunk/safetemplate.html#problem_definition

Chapter 11 ■ htML

196

 file := os.Args[1]
 bytes, err := ioutil.ReadFile(file)
 checkError(err)
 r := strings.NewReader(string(bytes))

 z := html.NewTokenizer(r)

 depth := 0
 for {
 tt := z.Next()

 for n := 0; n < depth; n++ {
 fmt.Print(" ")
 }

 switch tt {
 case html.ErrorToken:
 fmt.Println("Error ", z.Err().Error())
 os.Exit(0)
 case html.TextToken:
 fmt.Println("Text: \"" + z.Token().String() + "\"")
 case html.StartTagToken, html.EndTagToken:
 fmt.Println("Tag: \"" + z.Token().String() + "\"")
 if tt == html.StartTagToken {
 depth++
 } else {
 depth--
 }
 }
 }

}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

When it runs on a simple HTML document such as this:

<html>
 <head>
 <title> Test HTML </title>
 </head>
 <body>
 <h1> Header one </h1>
 <p>
 Test para
 </p>
 </body>
</html>

Chapter 11 ■ htML

197

It produces the following:

Tag: "<html>"
 Text: "
 "
 Tag: "<head>"
 Text: "
 "
 Tag: "<title>"
 Text: " Test HTML "
 Tag: "</title>"
 Text: "
 "
 Tag: "</head>"
 Text: "
 "
 Tag: "<body>"
 Text: "
 "
 Tag: "<h1>"
 Text: " Header one "
 Tag: "</h1>"
 Text: "
 "
 Tag: "<p>"
 Text: "
 Test para
 "
 Tag: "</p>"
 Text: "
 "
 Tag: "</body>"
 Text: "
"
 Tag: "</html>"
Text: "
"

(All the whitespace it produces is correct.)

XHTML/HTML
There is also limited support for XHTML/HTML in the XML package, discussed in the next chapter.

Chapter 11 ■ htML

198

JSON
There is good support for JSON, as discussed in Chapter 4.

Conclusion
There isn’t much to this package. The sub-package html/template was discussed in Chapter 9 on templates.

http://dx.doi.org/10.1007/978-1-4842-2692-6_4
http://dx.doi.org/10.1007/978-1-4842-2692-6_9

199© Jan Newmarch 2017
J. Newmarch, Network Programming with Go, DOI 10.1007/978-1-4842-2692-6_12

CHAPTER 12

XML

XML is a significant markup language mainly intended as a means of representing structured data using
a text format. In the language we used in Chapter 4, it can be considered as a means of serializing data
structures as a text document. It is used to describe documents such as DocBook and XHTML. It is used
in specialized markup languages such as MathML and CML (Chemistry Markup Language). It is used to
encode data as SOAP messages for Web Services, and the Web Service can be specified using WSDL
(Web Services Description Language).

At the simplest level, XML allows you to define your own tags for use in text documents. Tags can be
nested and can be interspersed with text. Each tag can also contain attributes with values. For example, the
file person.xml may contain:

<person>
 <name>
 <family> Newmarch </family>
 <personal> Jan </personal>
 </name>
 <email type="personal">
 jan@newmarch.name
 </email>
 <email type="work">
 j.newmarch@boxhill.edu.au
 </email>
</person>

The structure of any XML document can be described in a number of ways:

•	 A document type definition DTD is good for describing structure

•	 XML schema are good for describing the data types used by an XML document

•	 RELAX NG is proposed as an alternative to both

There is argument over the relative value of each way of defining the structure of an XML document.
We won’t buy into that, as Go does not support any of them. Go cannot check for validity of any document
against a schema, but only for well-formedness. Even well-formedness is an important characteristic of
XML documents, and is often a problem with HTML documents in practice. That makes XML suitable for
representation of even very complex data, while HTML is not.

Four topics are discussed in this chapter: parsing an XML stream, marshalling and unmarshalling Go
data into XML, and XHTML.

http://dx.doi.org/10.1007/978-1-4842-2692-6_4

Chapter 12 ■ XML

200

Parsing XML
Go has an XML parser that’s created using NewDecoder from the encoding/xml package. This takes an
io.Reader as a parameter and returns a pointer to Decoder. The main method of this type is Token, which
returns the next token in the input stream. The token is one of these types—StartElement, EndElement,
CharData, Comment, ProcInst, or Directive.

We will use this type:

type Name struct {
 Space, Local string
}

The XML types are StartElement, EndElement, CharData, Comment, ProcInst, and Directive. They are
described next.

The StartElement Type
The type StartElement is a structure with two field types:

type StartElement struct {
 Name Name
 Attr []Attr
}

where

type Attr struct {
 Name Name
 Value string
}

The EndElement Type
This is also a structure as follows:

type EndElement struct {
 Name Name
}

The CharData Type
This type represents the text content enclosed by a tag and is a simple type:

type CharData []byte

The Comment Type
Similarly for this type:

type Comment []byte

Chapter 12 ■ XML

201

The ProcInst Type
A ProcInst represents an XML processing instruction of the form <?target inst?>:

type ProcInst struct {
 Target string
 Inst []byte
}

The Directive Type
A Directive represents an XML directive of the form <!text>. The bytes do not include the <! and >
markers.

type Directive []byte

A program to print out the tree structure of an XML document is ParseXML.go:

/* Parse XML
 */

package main

import (
 "encoding/xml"
 "fmt"
 "io/ioutil"
 "os"
 "strings"
)

func main() {
 if len(os.Args) != 2 {
 fmt.Println("Usage: ", os.Args[0], "file")
 os.Exit(1)
 }
 file := os.Args[1]
 bytes, err := ioutil.ReadFile(file)
 checkError(err)
 r := strings.NewReader(string(bytes))

 parser := xml.NewDecoder(r)
 depth := 0
 for {
 token, err := parser.Token()
 if err != nil {
 break
 }

Chapter 12 ■ XML

202

 switch t := token.(type) {
 case xml.StartElement:
 elmt := xml.StartElement(t)
 name := elmt.Name.Local
 printElmt(name, depth)
 depth++
 case xml.EndElement:
 depth--
 elmt := xml.EndElement(t)
 name := elmt.Name.Local
 printElmt(name, depth)
 case xml.CharData:
 bytes := xml.CharData(t)
 printElmt("\""+string([]byte(bytes))+"\"", depth)
 case xml.Comment:
 printElmt("Comment", depth)
 case xml.ProcInst:
 printElmt("ProcInst", depth)
 case xml.Directive:
 printElmt("Directive", depth)
 default:
 fmt.Println("Unknown")
 }
 }
}

func printElmt(s string, depth int) {
 for n := 0; n < depth; n++ {
 fmt.Print(" ")
 }
 fmt.Println(s)
}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

Note that the parser includes all CharData, including the whitespace between the tags.
If we run this program against the person data structure given earlier, as follows:

go run ParseXML.go person.xml

It produces the following:

person
 "
 "
 name
 "
 "

Chapter 12 ■ XML

203

 family
 " Newmarch "
 family
 "
 "
 personal
 " Jan "
 personal
 "
 "
 name
 "
 "
 email
 "
 jan@newmarch.name
 "
 email
 "
 "
 email
 "
 j.newmarch@boxhill.edu.au
 "
 email
 "
"
person
"
"

Note that as no DTD or other XML specification has been used, the tokenizer correctly prints out all the
whitespace (a DTD may specify that the whitespace can be ignored, but without it that assumption cannot
be made).

There is a potential trap in using this parser. It reuses space for strings, so that once you see a token, you
need to copy its value if you want to refer to it later. Go has methods such as func (c CharData) Copy()
CharData to make a copy of data.

Unmarshalling XML
Go provides a function called Unmarshal to unmarshal XML into Go data structures. The unmarshalling is
not perfect: Go and XML are different languages.

We consider a simple example before looking at the details. First consider the XML document given
earlier:

<person>
 <name>
 <family> Newmarch </family>
 <personal> Jan </personal>
 </name>

Chapter 12 ■ XML

204

 <email type="personal">
 jan@newmarch.name
 </email>
 <email type="work">
 j.newmarch@boxhill.edu.au
 </email>
</person>

We would like to map this onto the Go structures:

type Person struct {
 Name Name
 Email []Email
}

type Name struct {
 Family string
 Personal string
}

type Email struct {
 Type string
 Address string
}

This requires several comments:

•	 Unmarshalling uses the Go reflection package. This requires that all fields be public,
i.e., start with a capital letter. Earlier versions of Go used case-insensitive matching
to match fields such as the XML string “name” to the field Name. Now, though, case-
sensitive matching is used. To perform a match, the structure fields must be tagged
to show the XML string that will be matched against. This changes Person to the
following:

type Person struct {
 Name Name `xml:"name"`
 Email []Email `xml:"email"`
}

•	 While tagging of fields can attach XML strings to fields, it can't do so with the names
of the structures. An additional field is required, with the field name XMLName. This
only affects the top-level struct, Person:

type Person struct {
 XMLName Name `xml:"person"`
 Name Name `xml:"name"`
 Email []Email `xml:"email"`
}

Chapter 12 ■ XML

205

•	 Repeated tags map to a slice in Go.

•	 Attributes within tags will match to fields in a structure only if the Go field has
the tag ,attr. This occurs with the field Type of Email, where matching the attribute
type of the email tag requires xml:"type,attr".

•	 If an XML tag has no attributes and only has character data, then it matches a string
field by the same name (case-sensitive, though). So the tag xml:"family" with
character data Newmarch maps to the string field Family.

•	 But if the tag has attributes, then it must map to a structure. Go assigns the character
data to the field with tag ,chardata. This occurs with the email data and the field
Address with tag ,chardata.

A program to unmarshal the document above is Unmarshal.go:

/* Unmarshal
 */

package main

import (
 "encoding/xml"
 "fmt"
 "os"
)

type Person struct {
 XMLName Name `xml:"person"`
 Name Name `xml:"name"`
 Email []Email `xml:"email"`
}

type Name struct {
 Family string `xml:"family"`
 Personal string `xml:"personal"`
}

type Email struct {
 Type string `xml:"type,attr"`
 Address string `xml:",chardata"`
}

func main() {
 str := `<?xml version="1.0" encoding="utf-8"?>
<person>
 <name>
 <family> Newmarch </family>
 <personal> Jan </personal>
 </name>

Chapter 12 ■ XML

206

 <email type="personal">
 jan@newmarch.name
 </email>
 <email type="work">
 j.newmarch@boxhill.edu.au
 </email>
</person>`

 var person Person

 err := xml.Unmarshal([]byte(str), &person)
 checkError(err)

 // now use the person structure e.g.
 fmt.Println("Family name: \"" + person.Name.Family + "\"")
 fmt.Println("Second email address: \"" + person.Email[1].Address + "\"")
}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

(Note that the spaces are correct.) The strict rules are given in the package specification.

Marshalling XML
Go also has support for marshalling data structures into an XML document. The function is:

func Marshal(v interface}{) ([]byte, error)

A program to marshal a simple structure is Marshal.go:

/* Marshal
 */

package main

import (
 "encoding/xml"
 "fmt"
)

type Person struct {
 Name Name
 Email []Email
}

Chapter 12 ■ XML

207

type Name struct {
 Family string
 Personal string
}

type Email struct {
 Kind string "attr"
 Address string "chardata"
}

func main() {
 person := Person{
 Name: Name{Family: "Newmarch", Personal: "Jan"},
 Email: []Email{Email{Kind: "home", Address: "jan"},
 Email{Kind: "work", Address: "jan"}}}

 buff, _ := xml.Marshal(person)
 fmt.Println(string(buff))
}

It produces the text with no whitespace:

<Person><Name><Family>Newmarch</Family><Personal>Jan</Personal></Name><Email><Kind>home</Kind>
<Address>jan</Address></Email><Email><Kind>work</Kind><Address>jan</Address></Email></Person>

XHTML
HTML does not conform to XML syntax. It has unterminated tags such as
. XHTML is a cleanup of HTML
to make it compliant with XML. Documents in XHTML can be managed using the techniques above for XML.
XHTML does not appear to be as widely used as originally expected. My own suspicion is that an HTML
parser is usually tolerant of errors and when used in a browser generally makes a reasonable job of rendering
a document, XHTML parsers even in a browser tend to be more strict and often fail to render anything upon
encountering even a single XML error. This is not generally appropriate behavior for user-facing software.

HTML
There is some support in the XML package to handle HTML documents even though they may not be XML
compliant. The XML parser discussed earlier can handle many HTML documents if it is modified by turning
off strict parse checking.

parser := xml.NewDecoder(r)
parser.Strict = false
parser.AutoClose = xml.HTMLAutoClose
parser.Entity = xml.HTMLEntity

Conclusion
Go has basic support for dealing with XML strings. It does not as yet have mechanisms for dealing with XML
specification languages such as XML Schema or Relax NG.

209© Jan Newmarch 2017
J. Newmarch, Network Programming with Go, DOI 10.1007/978-1-4842-2692-6_13

CHAPTER 13

Remote Procedure Call

Socket and HTTP programming both use a message-passing paradigm. A client sends a message to a
server, which usually sends a message back. Both sides are responsible for creating messages in a format
understood by both sides, and in reading the data out of those messages.

However, most standalone applications do not use message passing techniques much. Generally the
preferred mechanism is that of the function (or method or procedure) call. In this style, a program will call
a function with a list of parameters, and on completion of the function call, will have a set of return values.
These values may be the function value, or if addresses have been passed as parameters then the contents of
those addresses might have been changed.

The remote procedure call is an attempt to bring this style of programming into the network world.
Thus a client will make what looks to it like a normal procedure call. The client side will package this into a
network message and transfer it to the server. The server will unpack this and turn it back into a procedure
call on the server side. The results of this call will be packaged up for return to the client.

Diagrammatically it looks like Figure 13-1.

Client
program

Server
procedure

implementations

Server
procedure
stubs

Client
procedure
stubs

Network
routines

Network
routines

1 10 5

4 7

6

2 9

3

8

Figure 13-1. The remote procedure call steps

Chapter 13 ■ remote proCedure Call

210

The steps are as follows:

 1. The client calls the client procedure stubs. The stub packages the parameters
into a network message. This is called marshalling.

 2. Networking routines in the O/S kernel are called by the stub to send the message.

 3. The kernel sends the message(s) to the remote system. This may be connection-
oriented or connectionless.

 4. The server procedure stubs unmarshal the arguments from the network message.

 5. The server procedure stubs execute server procedure implementations.

 6. The procedures complete, returning execution to the server procedure stubs.

 7. The server stubs marshal the return values into a network message.

 8. The return messages are sent back.

 9. The client procedure stubs read the messages using the network routines.

 10. The message is unmarshalled and the return values are set on the stack for the
client program.

There are two common styles for implementing RPC. The first is typified by Sun’s ONC/RPC and
by CORBA. In this, a specification of the service is given in some abstract language such as CORBA IDL
(interface definition language). This is then compiled into code for the client and for the server. The client
then writes a normal program containing calls to a procedure/function/method, which is linked to the
generated client-side code. The server-side code is actually a server itself, which is linked to the procedure
implementation that you write.

In this first way, the client-side code is almost identical in appearance to a normal procedure call.
Generally there is a little extra code to locate the server. In Sun’s ONC, the address of the server must be
known; in CORBA, a naming service is called to find the address of the server; in Java RMI, the IDL is Java
itself and a naming service is used to find the address of the service.

In the second style, you have to use a special client API. You hand the function name and its parameters
to this library on the client side. On the server side, you have to explicitly write the server yourself, as well as
the remote procedure implementation.

This second approach is used by many RPC systems, such as Web Services. It is also the approach used
by Go's RPC.

Go’s RPC
Go's RPC is so far unique to Go. It is different than the other RPC systems, so a Go client will only talk to a Go
server. It uses the Gob serialization system discussed in Chapter 4, which defines the data types that can be
used.

RPC systems generally make some restrictions on the functions that can be called across the network.
This is so that the RPC system can properly determine which value arguments are sent, which reference
arguments receive answers, and how to signal errors.

In Go, the restriction is that

•	 The method's type is exported (begins with a capital letter).

•	 The method is exported.

•	 The method has two arguments, both exported (or built-in) types. The first is for data
passed into the method; the second is for returned results.

http://dx.doi.org/10.1007/978-1-4842-2692-6_4

Chapter 13 ■ remote proCedure Call

211

•	 The method’s second argument is a pointer.

•	 It has a return value of type error.

For example, here is a valid function:

F(T1, &T2) error

The restriction on arguments means that you typically have to define a structure type. Go’s RPC uses the
gob package for marshalling and unmarshalling data, so the argument types have to follow the rules of Gob
as discussed in an earlier chapter.

We will follow the example given in the Go documentation, as it illustrates the important points.
The server performs two trivial operations—they do not require the “grunt” of RPC, but are simple to
understand. The two operations are to multiply two integers and to find the quotient and remainder after
dividing the first by the second.

The two values to be manipulated are given in a structure:

type Values struct {
 A, B int
}

The sum is just an int, while the quotient/remainder is another structure:

type Quotient struct {
 Quo, Rem int
}

We will have two functions, multiply and divide, to be callable on the RPC server. These functions
need to be registered with the RPC system. The Register function takes a single parameter, which is an
interface. So we need a type with these two functions:

type Arith int

func (t *Arith) Multiply(args *Args, reply *int) error {
 *reply = args.A * args.B
 return nil
}

func (t *Arith) Divide(args *Args, quo *Quotient) error {
 if args.B == 0 {
 return errors.New("divide by zero")
 }
 quo.Quo = args.A / args.B
 quo.Rem = args.A % args.B
 return nil
}

The underlying type of Arith is given as int. That doesn’t matter—any type will suffice.
An object of this type can now be registered using Register, and then its methods can be called by the

RPC system.

Chapter 13 ■ remote proCedure Call

212

HTTP RPC Server
Any RPC needs a transport mechanism to get messages across the network. Go can use HTTP or TCP. The
advantage of the HTTP mechanism is that it can leverage the HTTP support library. You need to add an RPC
handler to the HTTP layer, which is done using HandleHTTP, and then start an HTTP server. The complete
code is ArithServer.go:

/**
 * ArithServer
 */

package main

import (
 "fmt"
 "net/rpc"
 "errors"
 "net/http"
)

type Values struct {
 A, B int
}

type Quotient struct {
 Quo, Rem int
}

type Arith int

func (t *Arith) Multiply(args *Values, reply *int) error {
 *reply = args.A * args.B
 return nil
}

func (t *Arith) Divide(args *Values, quo *Quotient) error {
 if args.B == 0 {
 return errors.New("divide by zero")
 }
 quo.Quo = args.A / args.B
 quo.Rem = args.A % args.B
 return nil
}

func main() {

 arith := new(Arith)
 rpc.Register(arith)
 rpc.HandleHTTP()

Chapter 13 ■ remote proCedure Call

213

 err := http.ListenAndServe(":1234", nil)
 if err != nil {
 fmt.Println(err.Error())
 }
}

and it is run by

go run ArithServer.go

HTTP RPC Client
The client needs to set up an HTTP connection to the RPC server. It needs to prepare a structure with the
values to be sent, and the address of a variable in which to store the results. Then it can make a Call with
these arguments:

•	 The name of the remote function to execute

•	 The values to be sent

•	 The address of a variable in which to store the result

A client that calls both functions of the arithmetic server is ArithClient.go:

/**
* ArithClient
 */

package main

import (
 "net/rpc"
 "fmt"
 "log"
 "os"
)

type Args struct {
 A, B int
}

type Quotient struct {
 Quo, Rem int
}

func main() {
 if len(os.Args) != 2 {
 fmt.Println("Usage: ", os.Args[0], "server")
 os.Exit(1)
 }
 serverAddress := os.Args[1]

Chapter 13 ■ remote proCedure Call

214

 client, err := rpc.DialHTTP("tcp", serverAddress+":1234")
 if err != nil {
 log.Fatal("dialing:", err)
 }
 // Synchronous call
 args := Args{17, 8}
 var reply int
 err = client.Call("Arith.Multiply", args, &reply)
 if err != nil {
 log.Fatal("arith error:", err)
 }
 fmt.Printf("Arith: %d*%d=%d\n", args.A, args.B, reply)

 var quot Quotient
 err = client.Call("Arith.Divide", args, ")
 if err != nil {
 log.Fatal("arith error:", err)
 }
 fmt.Printf("Arith: %d/%d=%d remainder %d\n", args.A, args.B, quot.Quo, quot.Rem)

}

When it runs:

go run ArithClient.go localhost

It produces the following:

Arith: 17*8=136
Arith: 17/8=2 remainder 1

TCP RPC Server
A version of the server that uses TCP sockets is TCPArithServer.go:

/**
* TCPArithServer
 */

package main

import (
 "fmt"
 "net/rpc"
 "errors"
 "net"
 "os"
)

Chapter 13 ■ remote proCedure Call

215

type Args struct {
 A, B int
}

type Quotient struct {
 Quo, Rem int
}

type Arith int

func (t *Arith) Multiply(args *Args, reply *int) error {
 *reply = args.A * args.B
 return nil
}

func (t *Arith) Divide(args *Args, quo *Quotient) error {
 if args.B == 0 {
 return errors.New("divide by zero")
 }
 quo.Quo = args.A / args.B
 quo.Rem = args.A % args.B
 return nil
}

func main() {

 arith := new(Arith)
 rpc.Register(arith)

 tcpAddr, err := net.ResolveTCPAddr("tcp", ":1234")
 checkError(err)

 listener, err := net.ListenTCP("tcp", tcpAddr)
 checkError(err)

 /* This works:
 rpc.Accept(listener)
 */
 /* and so does this:
 */
 for {
 conn, err := listener.Accept()
 if err != nil {
 continue
 }
 rpc.ServeConn(conn)
 }

}

Chapter 13 ■ remote proCedure Call

216

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

Note that the call to Accept is blocking and just handles client connections. If the server wants to do
other work as well, it should call this in a go routine.

TCP RPC Client
A client that uses the TCP server and calls both functions of the arithmetic server is TCPArithClient.go:

/**
* TCPArithClient
 */

package main

import (
 "net/rpc"
 "fmt"
 "log"
 "os"
)

type Args struct {
 A, B int
}

type Quotient struct {
 Quo, Rem int
}

func main() {
 if len(os.Args) != 2 {
 fmt.Println("Usage: ", os.Args[0], "server:port")
 os.Exit(1)
 }
 service := os.Args[1]

 client, err := rpc.Dial("tcp", service)
 if err != nil {
 log.Fatal("dialing:", err)
 }
 // Synchronous call
 args := Args{17, 8}
 var reply int

Chapter 13 ■ remote proCedure Call

217

 err = client.Call("Arith.Multiply", args, &reply)
 if err != nil {
 log.Fatal("arith error:", err)
 }
 fmt.Printf("Arith: %d*%d=%d\n", args.A, args.B, reply)

 var quot Quotient
 err = client.Call("Arith.Divide", args, ")
 if err != nil {
 log.Fatal("arith error:", err)
 }
 fmt.Printf("Arith: %d/%d=%d remainder %d\n", args.A, args.B, quot.Quo, quot.Rem)

}

When it’s run:

go run TCPArithClient.go localhost:1234

It produces the following:

Arith: 17*8=136
Arith: 17/8=2 remainder 1

Matching Values
You may have noticed that the types of the value arguments are not the same on the HTTP client and
HTTP server. In the server, we used Values, while in the client we used Args. That doesn’t matter, as we are
following the rules of Gob serialization, and the names and types of the two structures’ fields match. Better
programming practice would say that the names should be the same, of course!

However, this does point out a possible trap in using Go RPC. If we change the structure in the server to
be this:

type Values struct {
 C, B int
}

then Gob has no problems. On the client side, the unmarshalling will ignore the value of C given by the
server and use the default zero value for A. This could cause problems if, say, a divide by A (zero) was done.

Using Go RPC will require a rigid enforcement of the stability of field names and types by the
programmer. We note that there is no version control mechanism to do this, and no mechanism in Gob to
signal any possible mismatches. There is also no required external representation to act as a reference. If you
are just adding fields then it may be okay, but it will still need control. Perhaps adding a version field to the
data structure would help.

JSON
This section adds nothing new to the earlier concepts. It just uses a different “wire” format for the data,
JSON instead of Gob. As such, clients or servers could be written in other languages that understand sockets
and JSON.

Chapter 13 ■ remote proCedure Call

218

JSON RPC Server
A version of the server that uses JSON encoding is JSONArithServer.go:

/* JSONArithServer
 */

package main

import (
 "fmt"
 "net/rpc"
 "net/rpc/jsonrpc"
 "os"
 "net"
 "errors"
)

type Args struct {
 A, B int
}

type Quotient struct {
 Quo, Rem int
}

type Arith int

func (t *Arith) Multiply(args *Args, reply *int) error {
 *reply = args.A * args.B
 return nil
}

func (t *Arith) Divide(args *Args, quo *Quotient) error {
 if args.B == 0 {
 return errors.New("divide by zero")
 }
 quo.Quo = args.A / args.B
 quo.Rem = args.A % args.B
 return nil
}

func main() {

 arith := new(Arith)
 rpc.Register(arith)

 tcpAddr, err := net.ResolveTCPAddr("tcp", ":1234")
 checkError(err)

 listener, err := net.ListenTCP("tcp", tcpAddr)
 checkError(err)

Chapter 13 ■ remote proCedure Call

219

 /* This works:
 rpc.Accept(listener)
 */
 /* and so does this:
 */
 for {
 conn, err := listener.Accept()
 if err != nil {
 continue
 }
 jsonrpc.ServeConn(conn)
 }

}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

It is run by

go run JSONArithServer.go

JSON RPC Client
A client that calls both functions of the arithmetic server is JSONArithClient.go:

/* JSONArithCLient
 */

package main

import (
 "net/rpc/jsonrpc"
 "fmt"
 "log"
 "os"
)

type Args struct {
 A, B int
}

type Quotient struct {
 Quo, Rem int
}

Chapter 13 ■ remote proCedure Call

220

func main() {
 if len(os.Args) != 2 {
 fmt.Println("Usage: ", os.Args[0], "server:port")
 log.Fatal(1)
 }
 service := os.Args[1]

 client, err := jsonrpc.Dial("tcp", service)
 if err != nil {
 log.Fatal("dialing:", err)
 }
 // Synchronous call
 args := Args{17, 8}
 var reply int
 err = client.Call("Arith.Multiply", args, &reply)
 if err != nil {
 log.Fatal("arith error:", err)
 }
 fmt.Printf("Arith: %d*%d=%d\n", args.A, args.B, reply)

 var quot Quotient
 err = client.Call("Arith.Divide", args, ")
 if err != nil {
 log.Fatal("arith error:", err)
 }
 fmt.Printf("Arith: %d/%d=%d remainder %d\n", args.A, args.B, quot.Quo, quot.Rem)

}

It’s run as follows:

go run JSONArithClient.go localhost:1234

It produces the following output:

Arith: 17*8=136
Arith: 17/8=2 remainder 1

Conclusion
RPC is a popular means of distributing applications. Several ways of doing it have been presented here,
based on the Gob or JSON serialization techniques, and using HTTP and TCP for transport.

221© Jan Newmarch 2017
J. Newmarch, Network Programming with Go, DOI 10.1007/978-1-4842-2692-6_14

CHAPTER 14

REST

In previous chapters we looked at HTTP and gave an example of a web system. However, we didn’t give any
particular structure to the system, just what was simple enough for the problem. There is an architectural
style developed by one of the key authors of HTTP 1.1 (Roy Fielding) called REST (REpresentational State
Transfer). In this chapter we look at the REST style and what it means for building web applications. We have
to go back to fundamentals for this.

REST has many components that have to be followed if the term REST can be properly applied.
Unfortunately, it has become a buzzword, and many applications have “bits” of REST but not the full
thing. We discuss the Richardson Maturity Model, which says how far along the path to RESTful-ness an
API has gone.

In the last chapter, we looked at RPCs (remote procedure calls). This is a completely different style than
REST. We also compare the two styles, looking at when it is appropriate to use each style.

URIs and Resources
Resources are the “things” that we want to interact with on a network or the Internet. I like to think of them
as objects, but there is no requirement that their implementation should be object-based—they should just
“look like” a thing, possibly with components.

Each resource has one or more addresses known as URIs (uniform resource identifiers).

 ■ Note The internationalized form is IRIs—internationalized resource identifiers.

These have this generic form:

scheme:[//[user:password@]host[:port]][/]path[?query][#fragment]

Typical examples are URLs (uniform resource locator), where the scheme is http or https, and the host
refers to a computer by its IP address or DNS name, as follows:

https://jan.newmarch.name/IoT/index.html

There are non-HTTP URL schemes such as telnet, news, and ipp (Internet Printing Protocol). These also
contain a location component. There are also others, such as URNs (uniform resource names), which are often
wrappers around other identification systems, and they do not contain location information. For example, the
IETF has a standard URN scheme for books identified by their ISBN, such as the ISBN for this book:

urn:ISBN:978-1-4842-2692-6

ChapTeR 14 ■ ReST

222

These URNs tend not to be widely used but still exist. A list is given by IANA Uniform Resource Names
(URN) Namespaces at https://www.iana.org/assignments/urn-namespaces/urn-namespaces.xhtml.
The original schemes, such as ISBN, are still in wider use.

A formal definition of a resource may be hard to pin down. For example, http://www.google.com
represents Google in some sense (it is the scheme and the host part of an URL), but the host certainly isn’t some
fixed computer somewhere. Similarly, the ISBN for this book represents something about this book, but certainly
not any extant copies (at the time this chapter was written, no copies existed even though the ISBN did!).

Nevertheless, we take the concept of resource as primitive, and URIs are identifiers for these resources.
The IETF at Uniform Resource Identifier (URI): Generic Syntax (https://www.ietf.org/rfc/rfc3986.txt)
is similarly vague: “the term “resource” is used in a general sense for whatever might be identified by a URI”.

A resource may have more than one URI. As a person, I have a number of different identifiers: my tax
file number refers to one aspect of me, my financial affairs; my Medicare number refers to me as a recipient
of health treatments; my name (fairly unique) is often used to refer to different aspects of me. My URL of
https://jan.newmarch.name refers to those aspects of me that I chose to reveal on my web site. And Google,
LinkedIn, Facebook, Twitter, etc. also presumably have URIs of some kind that label those aspects of me that
they have chosen to save.

What is agreed upon is that resources are nouns and not verbs or adjectives. An URL for a bank account
that says http://mybank/myaccount/withdraw is not counted as a resource as it contains the verb withdraw.
Similarly, http://amazon.com/buy/book-id would not label a resource as it contains the verb buy (Amazon
does not have such an URL).

This is the first key to REST for HTTP: identify the resources in your information system and assign
URLs to them. There are conventions in this, the most common one being that if there is a hierarchical
structure then that should be reflected in the URL path. However, that isn’t necessary as the information
should be given in other ways as well.

The REST approach to designing URIs is still a bit of an art form. Legal (and perfectly legitimate) URIs
are not necessarily “good” REST URIs, and many examples of so-called RESTful APIs have URIs that are
not very RESTful at all. 2PartsMagic in RESTful URI design (http://blog.2partsmagic.com/restful-uri-
design/) offers good advice on designing appropriate URIs.

Representations
A representation of a resource is something that captures some information about a resource in some
form. For example, a representation of me from my Tax Office URI might be my tax returns in Australia. A
representation of me from my local pizza cafe would be a record of pizza purchases. A representation of me
from my web site would be an HTML document.

This is one of the keys to REST: URIs identify resources and requests for that resource return a
representation of that resource. The resource itself remains on the server and is not sent to the client at all.
In fact, the resource might not even exist at all in any concrete form. For example, a representation might be
generated from the results of an SQL query that’s triggered by making a request to that URI.

REST does not particularly talk about possibilities for negotiating the representation of a resource.
HTTP 1.1 has an extensive section on how to do this, considering server, client, and transparent negotiation.
The Accept headers can be used by a client to specify, for example:

Accept: application/xml; q=1.0, application/json; q=0.5
Accept-Language: fr
Accept-Charset: utf8

This states that it would prefer the application/xml format but will accept application/json. The
server can either accept one of these or reply with the formats it will accept.

https://www.iana.org/assignments/urn-namespaces/urn-namespaces.xhtml
https://www.ietf.org/rfc/rfc3986.txt
http://blog.2partsmagic.com/restful-uri-design/
http://blog.2partsmagic.com/restful-uri-design/

ChapTeR 14 ■ ReST

223

REST Verbs
You can make certain requests to a URI. If you are making an HTTP request to an URL, HTTP defines the
requests that can made: GET, PUT, POST, DELETE, HEAD, OPTIONS, TRACE, and CONNECT, as well as extensions
such as PATCH. There is only a limited number of these! This is very different than what we have come to
expect from O/O programming. For example, the Java JLabel has about 250 methods, such as getText,
setHorizontalAlignment, etc.

REST is now commonly interpreted as taking just four verbs from HTTP: GET, PUT, POST, DELETE. GET
roughly corresponds to the getter-methods of O/O languages while PUT roughly corresponds to the setter-
methods of O/O languages. If a JLabel were a REST resource (which it isn’t), how would one single GET verb
make up for the hundred or so getter-methods of JLabel?

The answer lies in the PATH component of URIs. A label has the properties of text, alignment, and so on.
These are really sub-resources of the label and could be written as sub-URIs of the label. So if the label had a
URI of http://jan.newmarch.name/my_label, then the subresources could have URIs:

http://jan.newmarch.name/my_label/text
http://jan.newmarch.name/my_label/horizontalAlignment

If you want to manipulate just the text of the label, you can use the URI of the text resource, not getter/
setter-methods on the label itself.

The GET Verb
To retrieve a representation of a resource, you GET the resource. This will return some representation of the
resource. There may be innumerable possibilities to this choice. For example, a request for this book’s index
might return a representation of the index in French, using the UTF-8 character set, as an XML document, or
many other possibilities. The client and server can negotiate these possibilities.

The GET verb is required to be idempotent. That is, repeated requests should return the same results
(to within representation type). For example, multiple requests for the temperature of a sensor should return
the same result (unless of course the temperature has changed).

Idempotency by default allows for caching. This is useful for reducing traffic on the web, and may save
battery power for sensors. Caching cannot always be guaranteed: a resource that returns the number of
times it has been accessed will give a different result each time it is accessed. This is unusual behavior and
would be signaled using the HTTP Cache-Control header.

The PUT Verb
If you want to change the state of a resource, you can PUT new values. There are two principal limitations to PUT:

•	 You can only change the state of a resource whose URI you know

•	 The representation you send must cover all components of the resource

For example, if you only want to change the text in a label, you send the PUT message to the URL
http://jan.newmarch.name/my_label/text, not to http://jan.newmarch.name/my_label. Sending to the
label would require all of the hundred or so fields to be sent.

PUT is idempotent, but is not safe. That is, it changes the state of the resource, but repeated calls change
it to the same state.

PUT and DELETE are not part of HTML, and most browsers do not support them directly. They can be called
in browsers with Ajax support. There are several discussions as to why they are not included. See for example
“Why are there are no PUT and DELETE methods on HTML forms?” at http://softwareengineering.
stackexchange.com/questions/114156/why-are-there-are-no-put-and-delete-methods-on-html-forms.

http://softwareengineering.stackexchange.com/questions/114156/why-are-there-are-no-put-and-delete-methods-on-html-forms
http://softwareengineering.stackexchange.com/questions/114156/why-are-there-are-no-put-and-delete-methods-on-html-forms

ChapTeR 14 ■ ReST

224

The DELETE Verb
This deletes the resource. It is idempotent but not safe.

The POST Verb
POST is the do-everything-else verb to deal with situations not covered by the other verbs. There is agreement
about two uses of POST:

•	 If you want to create a new resource and you don’t know its URI, then POST a
representation of the resource to a URI that knows how to create the resource.
The returned representation should contain the URI of the new resource. This is
important. To interact with a new resource you must know its URI, and the return
from POST tells you that.

•	 If a resource has many attributes, and you only want to change one or a few of them,
then POST a representation with the changed values only

There is intense argument about the respective roles of PUT and POST in edge cases. If you want to create
a new resource and do know the URI it will have, then you could use either PUT or POST. Which one you
choose seems to depend on other factors…

SOAP was designed as an RPC system on top of HTTP. It uses POST for everything. HTML continues to
use POST in forms when it should have the option of using PUT. For these reasons, I do not use POST unless
I absolutely have to. I suppose others have their own principled reasons for using POST instead of PUT, but I
have no idea what they might be :-).

Due to its open-ended scope, POST could be used for almost anything. Many of these uses could be
against the REST model, as is amply illustrated by SOAP. But some of these uses could be legitimate. POST is
usually non-idempotent and not safe, although particular cases could be either.

No Maintained State
Let’s establish this up-front: cookies are out. Cookies are often used to track the state of a user through an
interaction with a server, with a typical example being a shopping cart. A structure is created on the server
side and a cookie is returned to be used to signal that this is the shopping cart to be used.

REST made the decision not to maintain any client state on the server. This simplifies interactions and
also sidesteps the tricky issues of how to restore consistency after the client or server has crashed. If the
server doesn’t need to maintain any state then it leads to a more robust server model.

If you can’t use cookies, what do you do? It’s actually trivial: a cart is created on the server. Under REST,
that can only happen in response to a POST request, which returns a new URI for the new resource. So that is
what you use—the new URI. You can GET, PUT, POST, and DELETE to this URI, to do all things you want to do
directly on the resource without having to do workarounds with cookies.

HATEOAS
HATEOAS stands for “Hypermedia as the Engine of Application State”. It is generally recognized as an awful
acronym, but it has stuck. The basic principle is that navigating from one URI to another, which is related in
some way, should not be done by any out-of-band mechanism but that the new link must be embedded in
some way as a hyperlink within the representation of the first URI.

ChapTeR 14 ■ ReST

225

REST does not state the format of the links. They could be given using the HTML link tag, by URLs
embedded in a PDF document, or by links given in an XML document. Formats that do not have simple
representations for URLs are not considered as hypermedia languages and are not contained in REST.

Also, REST also does not explicitly state the meanings of the links nor how to extract the appropriate
links. Fielding states in his blog “REST APIs must be hypertext-driven” at http://roy.gbiv.com/
untangled/2008/rest-apis-must-be-hypertext-driven:

A REST API should be entered with no prior knowledge beyond the initial URI
(bookmark) and set of standardized media types that are appropriate for the
intended audience (i.e., expected to be understood by any client that might use
the API). From that point on, all application state transitions must be driven
by client selection of server-provided choices that are present in the received
representations or implied by the user’s manipulation of those representations.

IANA maintains a registry of relation types (IANA: Link Relations at http://www.iana.org/
assignments/link-relations/link-relations.xhtml) which can be used. The Web Linking RFP5988
describes the web linking registry. The HTML5 specification has a small number of defined relations, and
points to Microformats rel values at http://microformats.org/wiki/existing-rel-values#HTML5_link_
type_extensions for a larger list.

Mechanisms such as cookies, or external API specifications such as WSDL for SOAP, are effectively
excluded by REST. They are not hyperlinks contained in the representation of a resource.

Representing Links
Links are standardized in HTML documents. The Link tag defines an HTML element that can only appear in
an HTML header section. For example, a book with chapters, etc., might look like this if the links were given
as HTML link elements:

<html>
 <head>
 <link rel= "author" title="Jan Newmarch" href="https://jan.newmarch.name">
 <link rel="chapter" title="Introduction" href="Introduction/">
 ...

Link relations in HTML are of two types: those that are needed for the current document such as CSS
files, and those that point to related resources, as above. The first type is generally downloaded invisibly to
the user. The second type is generally not shown by browsers, but user agents following HATEOAS principles
will use them.

XML has a variety of link specifications. These include XLink and Atom . Atom seems to be more
popular.

Links based on XLink would appear as so:

<People xmlns:xlink="http://www.w3.org/1999/xlink">
 <Person xlink:type="simple" xlink:href="http://...">
 ...
 </Person>
 ...
</People>

http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://www.iana.org/assignments/link-relations/link-relations.xhtml
http://www.iana.org/assignments/link-relations/link-relations.xhtml
http://microformats.org/wiki/existing-rel-values#HTML5_link_type_extensions
http://microformats.org/wiki/existing-rel-values#HTML5_link_type_extensions

ChapTeR 14 ■ ReST

226

Links based on Atom would appear as so:

<People xmlns:atom="http://www.w3.org/2005/Atom">
 <Person>
 <link atom:href="http://..."/>
 ...
 </Person>
 ...
</People>

For JSON, the format is not normalized. The REST cookbook (http://restcookbook.com/Mediatypes/
json/) notes the lack of standardization and points to the W3C specification JSON-LD 1.0: "A JSON-based
Serialization for Linked Data" and to the HAL (Hypertext Application Language). Bodies such as the Open
Connectivity Foundation seem to use their own home-grown format, but that is for CoAP, another REST-
based system.

JSON-LD uses the term @id to signal an URL, as in:

{
 "name": Jan Newmarch:,
 "homepage": {"@id": "https://jan.newmarch.name/"}
}

It is worth noting in this regard that the W3C also has a specification of an HTTP Link header at
https://www.w3.org/wiki/LinkHeader, which may be returned by a server to a client. This is used by
JSON-LD, for example, to point to a specification of the JSON document contained in the body of an HTTP
response.

This can affect the serialization method in passing link information from servers to user agents. The
user agent and server must agree on the format to be used. For HTML (or XHTML), this is standardized. For
XML, a reference can be made in the document to the linking system. For JSON-LD, this can be signaled in
the Accept HTTP header as application/ld+json.

Transactions with REST
How does REST handle transactions and indeed any other processes? They were not discussed in the
original thesis by Fielding.

The Wikipedia entry for HATEOAS gives a poor example of managing transactions. It starts from an
HTTP request of this:

GET /account/12345 HTTP/1.1
Host: somebank.org
Accept: application/xml
 ...

Which returns an XML document as representation of the account:

HTTP/1.1 200 OK
 Content-Type: application/xml
 Content-Length: ...

 <?xml version="1.0"?>
 <account>

http://restcookbook.com/Mediatypes/json/
http://restcookbook.com/Mediatypes/json/
https://www.w3.org/wiki/LinkHeader

ChapTeR 14 ■ ReST

227

 <account_number>12345</account_number>
 <balance currency="usd">100.00</balance>
 <link rel="deposit" href="http://somebank.org/account/12345/deposit" />
 <link rel="withdraw" href="http://somebank.org/account/12345/withdraw" />
 <link rel="transfer" href="http://somebank.org/account/12345/transfer" />
 <link rel="close" href="http://somebank.org/account/12345/close" />
 </account>

This gives the URIs of the related resources deposit, withdraw, transfer, and close. However, the
resources are verbs not nouns, and that is not good at all. How do they interact with the HTTP verbs? Do
you GET a withdraw? POST it? PUT it? What happens if you DELETE a withdraw—is that supposed to roll back a
transaction or what?

The better way, as discussed in, for example, the Stackoverflow posting “Transactions in REST?”
(see http://stackoverflow.com/questions/147207/transactions-in-rest) is to POST to the account
asking for a new transaction to be created:

POST /account/12345/transaction HTTP/1.1

This will return the URL of a new transaction:

http://account/12345/txn123

Interactions are now carried out with this transaction URL, such as by PUTing a new value that performs
and commits the transaction.

PUT /account/12345/txn123
<transaction>
 <from>/account/56789</from>
 <amount>100</amount>
</transaction>

A more detailed discussion of transactions and REST is given by Mihindukulasooriya et. al in “Seven
Challenges for RESTful Transaction Models” (see http://ws-rest.org/2014/sites/default/files/
wsrest2014_submission_4.pdf). Similar models are proposed for managing processes that aren’t just single-step.

The Richardson Maturity Model
Many systems claim to be RESTful. Most are not. I even came across one that claimed that SOAP was
RESTful, a clear case of a warped mental state. Martin Fowler discusses the Richardson Maturity Model,
which classifies systems according to their conformance to REST. (See https://martinfowler.com/
articles/richardsonMaturityModel.html.)

Level 0

The starting point for the model is using HTTP as a transport system for remote
interactions, but without using any of the mechanisms of the web. Essentially what
you are doing here is using HTTP as a tunneling mechanism for your own remote
interaction mechanism, usually based on Remote Procedure Invocation.

Level 1: Resources

The first step toward the Glory of Rest in the RMM is to introduce resources. So now
rather than making all our requests to a singular service endpoint, we now start
talking to individual resources.

http://stackoverflow.com/questions/147207/transactions-in-rest
http://ws-rest.org/2014/sites/default/files/wsrest2014_submission_4.pdf
http://ws-rest.org/2014/sites/default/files/wsrest2014_submission_4.pdf
https://martinfowler.com/articles/richardsonMaturityModel.html
https://martinfowler.com/articles/richardsonMaturityModel.html

ChapTeR 14 ■ ReST

228

Level 2: HTTP Verbs

I’ve used HTTP POST verbs for all my interactions here in level 0 and 1, but some
people use GETs instead or in addition. At these levels it doesn’t make much
difference, they are both being used as tunneling mechanisms allowing you to
tunnel your interactions through HTTP. Level 2 moves away from this, using the
HTTP verbs as closely as possible to how they are used in HTTP itself.

Level 3: Hypermedia Controls

The final level introduces something that you often hear referred to under the ugly
acronym of HATEOAS (Hypertext As The Engine Of Application State). It addresses
the question of how to get from a list of open slots to knowing what to do to book
an appointment.

Flashcards Revisited
In Chapter 10, we considered a web system consisting of a server and HTML pages rendered in a browser,
using JavaScript and CSS to control the browser-side interaction. There was no attempt to do anything
particularly structured, rather just as a traditional web system.

 ■ Recap The web system of Chapter 10 was used to demonstrate language learning using so-called
flashcards. The user is presented with a set of cards one at a time, showing a word in one language and then
hopes to remember the translation, which is shown by “turning over” the card. The system presented a list of
different card sets and then showed the cards one at a time in the selected set.

We now approach the same situation as a HTTP client-server system built using the REST approach. We
will make a number of changes:

•	 URLs will be given appropriate to the situation. These will include the ‘root’ URL / as
well as URLs for each flashcard set and in addition, an URL for each flashcard.

•	 All user interaction code (HTML, JavaScript, and CSS) is omitted. The server will be
talking to an arbitrary user agent, and many will not understand the UI code.

•	 The server will not maintain or manage any client state. In the web example, form
data was sent from the browser to the server, which promptly returned it in a slightly
different form. A client that wants to maintain state should do so itself.

•	 The server will be set up to manage a number of different serialization formats and
will deliver as appropriate after client-server negotiation.

•	 Heavy use will be made of HTTP mechanisms, particularly for error handling and
content negotiation.

URLs
 The URLs for this system and the actions that can be performed are as follows:

http://dx.doi.org/10.1007/978-1-4842-2692-6_10
http://dx.doi.org/10.1007/978-1-4842-2692-6_10

ChapTeR 14 ■ ReST

229

URL Action Effect

/ GET Gets a list of flashcard sets

POST Creates a new flashcard set

/flashcardSets/<set> GET Gets a list of cards in the set

POST Creates a new card for the set

DELETE Deletes the flashcard set if empty

/flashcardSets/<set>/<card> GET Gets the contents of the card

DELETE Deletes the card from the set

This differs a little from the system described in Chapter 10. The main structural difference is that each
card is given its own URL as a member of a flashcard set.

Example URLs that will be handled by the server include these:

Root URL URL for Flashcard Set URL for One Flashcard

/ /flashcardSet/CommonWords /flashcardSet/CommonWords/你好

The Demultiplexer (Demuxer)
REST is based on a small number of actions applied to URLs. A system that attempts to use REST principles
must be URL based.

A server demuxer will examine URLs requested by clients and call handlers based on the URL pattern.
The standard Go demuxer ServeMux uses a particular pattern-matching mechanism: if an URL ends in / it
denotes a subtree of URLs rooted at that URL. If it ends without a / it represents that URL only. An URL is
matched against the handler with the longest pattern match.

We need a handler for the root URL /. That will also match any URL such as /passwords unless another
handler catches it. In this system, no other handler will, so in the handler for / we need to return errors for
such attempts.

A tricky part occurs because we used a hierarchical structure to our URLs. One particular flashcard set
will be /flashcardSets/CommonWords. This will actually be a directory of the cards for that particular set.
We have to register two handlers: one for the URL /flashcardSets/CommonWords, which is the flashcard set
resource, and one for /flashcardSets/CommonWords/ (note the trailing /), which is the subtree containing
the individual cards and their URLs.

The code in the main function to register these is as follows:

http.HandleFunc(`/`, handleFlashCardSets)
files, err := ioutil.ReadDir(`flashcardSets`)
checkError(err)
for _, file := range files {
 cardset_url := `/flashcardSets/` + url.QueryEscape(file.Name())
 http.HandleFunc(cardset_url, handleOneFlashCardSet)
 http.HandleFunc(cardset_url + `/`, handleOneFlashCard)
}

http://dx.doi.org/10.1007/978-1-4842-2692-6_10

ChapTeR 14 ■ ReST

230

Note that we have the function QueryEscape. This is to escape any special characters that might occur
in URLs. For example, a $ in a filename should be encoded as %44;. We do need to use such a function: our
URLs will include Chinese characters, which need to be escape-encoded to be represented in URLs. This
is done by QueryEscape, with one exception: a space in a path should be encoded as %20 but in form data
should be encoded as +. The PathEscape function does this correctly, but is not available until Go 1.8. We
will remove spaces from URLs to avoid this issue.

Content Negotiation
Any web user agent can try to talk to any web server. The typical case of a browser talking to an HTML server
is what we are used to on the Web, but many will be familiar with using other user agents such as curl, wget,
and even telnet! The browser and other tools will use the Content-Type in HTTP replies to work out what to
do with content supplied.

With a Web application, the user agent must be able to understand what the server is delivering,
because it is trying to play a part in an interaction that probably doesn’t have a user to help. RPC systems
often use an external specification that the client and server conform to. That is not the case here.

The solution is that both parties must agree on a content format. This is done at the HTTP level. A client
will state that it will accept a range of formats. If the server agrees, then they carry on. If not, the server will
tell the client which formats it can accept and the client can start afresh if possible.

The negotiation uses MIME types. There are hundreds of standard ones: text/html, application/pdf,
application/xml, … . A browser can render any HTML document it receives. An HTTP-aware music player such
as VLC can play any MP3 file it receives. But for the flashcard application it can’t handle any general format, only
messages that conform to an expected structure. These aren’t any standard MIME types that would be suitable
for negotiating a specialized protocol for this flashcard application. So, we make up our own. The client and the
server have to know that they are dealing with a shared MIME type, or they can’t talk properly.

There are rules from IANA for making up your own MIME types. I use the types application/x.
flashcards. The server will be able to deliver JSON and XML, so the two acceptable MIME types are
application/x.flashcards+xml and application/x.flashcards+json.

HTTP content negotiation says that the user agent can suggest a list of acceptable formats, weighted
between zero and one, as follows:

Accept: application/x.flashcards+xml; q=0.8,
 application/x.flashcards+json; q=0.4

The server can examine the request and decide if it can handle the format. We use the following code in
the server to determine for any type if the user agent has requested it, and with what weighting (zero means
not requested):

const flashcard_xml string = "application/x.flashcards+xml"
const flashcard_json string = "application/x.flashcards+json"

type ValueQuality struct {
 Value string
 Quality float64
}

/* Based on https://siongui.github.io/2015/02/22/go-parse-accept-language/ */
func parseValueQuality(s string) []ValueQuality {
 var vqs []ValueQuality

ChapTeR 14 ■ ReST

231

 strs := strings.Split(s, `,`)
 for _, str := range strs {
 trimmedStr := strings.Trim(str, ` `)
 valQ := strings.Split(trimmedStr, `;`)
 if len(valQ) == 1 {
 vq := ValueQuality{valQ[0], 1}
 vqs = append(vqs, vq)
 } else {
 qp := strings.Split(valQ[1], `=`)
 q, err := strconv.ParseFloat(qp[1], 64)
 if err != nil {
 q = 0
 }
 vq := ValueQuality{valQ[0], q}
 vqs = append(vqs, vq)
 }
 }
 return vqs
}

func qualityOfValue(value string, vqs []ValueQuality) float64 {
 for _, vq := range vqs {
 if value == vq.Value {
 return vq.Quality
 }

 }
 // not found
 return 0
}

If the server does not accept any of the types requested by the user agent, it returns an HTTP code of
406 "Not acceptable" and supplies a list of accepted formats. The code segment to do this in the server is as
follows:

func handleFlashCardSets(rw http.ResponseWriter, req *http.Request) {

 if req.Method == "GET" {
 acceptTypes := parseValueQuality(req.Header.Get("Accept"))

 q_xml := qualityOfValue(flashcard_xml, acceptTypes)
 q_json := qualityOfValue(flashcard_json, acceptTypes)
 if q_xml == 0 && q_json == 0 {
 // can't find XML or JSON in Accept header
 rw.Header().Set("Content-Type", flashcard_xml + `, ` + flashcard_json)
 rw.WriteHeader(http.StatusNotAcceptable)
 return
 }
 ...

ChapTeR 14 ■ ReST

232

This illustrates a common REST pattern for HTTP servers: given an HTTP request, examine it to see if
the server can manage it. If not, return an HTTP error. If okay, attempt to handle it. If the attempt fails, return
an HTTP error. On success, return an appropriate HTTP success code and the results.

GET /
The flashcard sets are all stored in the directory /flashcardSets. The GET / request needs to list all those
files and prepare them in a suitable format for the client. The format is a list of flashcard set names and their
URLs. The URLs are required by HATEOAS: the list of names tell us what the sets are, but the client will need
their URLs in order to move to the stage of interacting with one of them.

The data type for each FlashcardSet in the server contains the name of the set and its URL (as a string):

type FlashcardSet struct {
 Name string
 Link string
}

The set of flashcard sets on the server can be built from the directory of flashcard sets. The ioutil.
ReadDir() will create an array of os.FileInfo. This needs to be converted to a list of filenames as follows:

files, err := ioutil.ReadDir(`flashcardSets`)
checkError(err)
numfiles := len(files)
cardSets := make([]FlashcardSet, numfiles, numfiles)
for n, file := range files {
 cardSets[n].Name = file.Name()
 // should be PathEscape, not in go 1.6
 cardSets[n].Link = `/flashcardSets/` + url.QueryEscape(file.Name())
}

This creates an array of filenames and relative links to the resource on the server as /<name>. For the
CommonWords set, the relative link URL would be /flashcardSets/CommonWords. The scheme (http or https)
and the host (e.g., "localhost") are left up to the client to work out.

Unfortunately, the filename may contain characters not legal in URL path names. The function url.
PathEscape escapes them all correctly, but is not available until Go 1.8. The function url.QueryEscape gets
everything right except for spaces in the filename, which it replaces with + instead of %20;.

Finally, the server figures out if JSON or XML is preferred and runs it through a template to generate the
right output to the client. For XML, the template code is as follows:

t, err := template.ParseFiles("xml/ListFlashcardSets.xml")
if err != nil {
 // parse error occurred in the template. Our error
 http.Error(rw, err.Error(), http.StatusInternalServerError)
 return
}
rw.Header().Set("Content-Type", flashcard_xml)
t.Execute(rw, cardSets)

ChapTeR 14 ■ ReST

233

The XML template is as follows:

<?xml version="1.0" encoding="UTF-8"?>

<cardsets xmlns="http://www.w3.org/2005/Atom">
 {{range .}}
 <cardset href="{{.Link}}">
 <name>
 {{.Name}}
 </name>
 </cardset>
 {{end}}
</cardsets>

For a listing of only two sets, CommonWords and Lesson04, the content sent to the client is as follows:

<?xml version="1.0" encoding="UTF-8"?>

<cardsets xmlns="http://www.w3.org/2005/Atom">

 <cardset href="/CommonWords">
 <name>
 Common Words
 </name>
 </cardset>

 <cardset href="/Lesson04">
 <name>
 Lesson04
 </name>
 </cardset>

</cardsets>

POST /
Here a client is asking for a new flashcard set to be created. The expectation is that the client will supply the
name of the flashcard set. We make it look like form submission data:

name=<new flashcard set name>

This is much simpler than GET in this case. Get the value out of the request as form data. Then check
that the requested name doesn’t have nasties in it like calling the flashcard set /etc/passwd. If it does, return
403 "Forbidden". If it appears to be okay, create a directory with that name. Return a 403 again if it fails
(the directory may already exist). Otherwise, return 201 "Created" and the new relative URL:

if req.Method == "POST" {
 name := req.FormValue(`name`)
 if hasIllegalChars(name) {
 rw.WriteHeader(http.StatusForbidden)
 return

ChapTeR 14 ■ ReST

234

}
// lose all spaces as they are a nuisance
name = strings.Replace(name, ` `, ``, -1)

err := os.Mkdir(`flashcardSets/`+name,
 (os.ModeDir | os.ModePerm))
if err != nil {
 rw.WriteHeader(http.StatusForbidden)
 return
}
rw.WriteHeader(http.StatusCreated)
base_url := req.URL.String()
new_url := base_url + `flashcardSets/` + name
rw.Write([]byte(new_url))

Handling Other URLs
We discussed the code for the server handling the / URL with GET and POST requests. There are two other
types of URL for this application—handling the cards in a set and handling each individual card. In terms of
the coding, though, this presents no new ideas.

•	 Getting a list of cards in a set is another directory listing.

•	 Posting a new card to a set means creating a file in the appropriate directory with
content from the client.

•	 Deleting a set means removing a directory. This is okay if the directory is empty,
creates an error otherwise.

•	 Getting a card means reading the card file and sending its contents.

•	 Deleting a card means removing a file.

There is nothing particularly new about any of these. We have not completed the code for some
operations such as DELETE: these return the HTTP code 501 'Not implemented'. We also return the contents
of individual cards as text/plain: they have a complex JSON/Go structure as used in Chapter 10, but that is
not needed for discussion of the REST aspects of this system.

The Complete Server
The complete server to handle requests to / and from there to other URLs follows. It requires the
flashcard sets and individual cards in order to run, and these are in the ZIP file at http://www.apress.
com/9781484226919 in the Ch14 folder.

/* Server
 */

package main

import (
 "fmt"
 "html/template"

http://dx.doi.org/10.1007/978-1-4842-2692-6_10
http://www.apress.com/9781484226919
http://www.apress.com/9781484226919

ChapTeR 14 ■ ReST

235

 "io/ioutil"
 "net/http"
 "net/url"
 "os"
 "regexp"
 "strconv"
 "strings"
)

type FlashcardSet struct {
 Name string
 Link string
}

type Flashcard struct {
 Name string
 Link string
}

const flashcard_xml string = "application/x.flashcards+xml"
const flashcard_json string = "application/x.flashcards+json"

type ValueQuality struct {
 Value string
 Quality float64
}

/* Based on https://siongui.github.io/2015/02/22/go-parse-accept-language/ */
func parseValueQuality(s string) []ValueQuality {
 var vqs []ValueQuality

 strs := strings.Split(s, `,`)
 for _, str := range strs {
 trimmedStr := strings.Trim(str, ` `)
 valQ := strings.Split(trimmedStr, `;`)
 if len(valQ) == 1 {
 vq := ValueQuality{valQ[0], 1}
 vqs = append(vqs, vq)
 } else {
 qp := strings.Split(valQ[1], `=`)
 q, err := strconv.ParseFloat(qp[1], 64)
 if err != nil {
 q = 0
 }
 vq := ValueQuality{valQ[0], q}
 vqs = append(vqs, vq)
 }
 }
 return vqs
}

ChapTeR 14 ■ ReST

236

func qualityOfValue(value string, vqs []ValueQuality) float64 {
 for _, vq := range vqs {
 if value == vq.Value {
 return vq.Quality
 }

 }
 return 0
}

func main() {
 if len(os.Args) != 2 {
 fmt.Fprint(os.Stderr, "Usage: ", os.Args[0], ":port\n")
 os.Exit(1)
 }
 port := os.Args[1]

 http.HandleFunc(`/`, handleFlashCardSets)
 files, err := ioutil.ReadDir(`flashcardSets`)
 checkError(err)
 for _, file := range files {
 fmt.Println(file.Name())
 cardset_url := `/flashcardSets/` + url.QueryEscape(file.Name())
 fmt.Println("Adding handlers for ", cardset_url)
 http.HandleFunc(cardset_url, handleOneFlashCardSet)
 http.HandleFunc(cardset_url + `/`, handleOneFlashCard)
 }

 // deliver requests to the handlers
 err = http.ListenAndServe(port, nil)
 checkError(err)
 // That's it!
}

func hasIllegalChars(s string) bool {
 // check against chars to break out of current dir
 b, err := regexp.Match("[/$~]", []byte(s))
 if err != nil {
 fmt.Println(err)
 return true
 }
 if b {
 return true
 }
 return false
}

func handleOneFlashCard(rw http.ResponseWriter, req *http.Request) {
 // should be PathUnescape
 path, _ := url.QueryUnescape(req.URL.String())
 // lose initial '/'
 path = path[1:]

ChapTeR 14 ■ ReST

237

 if req.Method == "GET" {
 fmt.Println("Handling card: ", path)
 json_contents, err := ioutil.ReadFile(path)
 if err != nil {
 rw.WriteHeader(http.StatusNotFound)
 rw.Write([]byte(`Resource not found`))
 return
 }
 // Be lazy here, just return the content as text/plain
 rw.Write(json_contents)
 return
 } else if req.Method == "DELETE" {
 rw.WriteHeader(http.StatusNotImplemented)
 } else {
 rw.WriteHeader(http.StatusMethodNotAllowed)
 }
 return
}

func handleFlashCardSets(rw http.ResponseWriter, req *http.Request) {
 if req.URL.String() != `/` {
 // this function only handles '/'
 rw.WriteHeader(http.StatusNotFound)
 rw.Write([]byte("Resource not found\n"))
 return
 }
 if req.Method == "GET" {
 acceptTypes := parseValueQuality(req.Header.Get("Accept"))
 fmt.Println(acceptTypes)

 q_xml := qualityOfValue(flashcard_xml, acceptTypes)
 q_json := qualityOfValue(flashcard_json, acceptTypes)
 if q_xml == 0 && q_json == 0 {
 // can't find XML or JSON in Accept header
 rw.Header().Set("Content-Type", flashcard_xml + `, ` + flashcard_json)
 rw.WriteHeader(http.StatusNotAcceptable)
 return
 }

 files, err := ioutil.ReadDir(`flashcardSets`)
 checkError(err)
 numfiles := len(files)
 cardSets := make([]FlashcardSet, numfiles, numfiles)
 for n, file := range files {
 fmt.Println(file.Name())
 cardSets[n].Name = file.Name()
 // should be PathEscape, not in go 1.6
 cardSets[n].Link = `/flashcardSets/` + url.QueryEscape(file.Name())
 }

 if q_xml >= q_json {
 // XML preferred

ChapTeR 14 ■ ReST

238

 t, err := template.ParseFiles("xml/ListFlashcardSets.xml")
 if err != nil {
 fmt.Println("Template error")
 http.Error(rw, err.Error(), http.StatusInternalServerError)
 return
 }
 rw.Header().Set("Content-Type", flashcard_xml)
 t.Execute(rw, cardSets)
 } else {
 // JSON preferred
 t, err := template.ParseFiles("json/ListFlashcardSets.json")
 if err != nil {
 fmt.Println("Template error")
 http.Error(rw, err.Error(), http.StatusInternalServerError)
 return
 }
 rw.Header().Set("Content-Type", flashcard_json)
 t.Execute(rw, cardSets)

 }
 } else if req.Method == "POST" {
 name := req.FormValue(`name`)
 if hasIllegalChars(name) {
 rw.WriteHeader(http.StatusForbidden)
 return
 }
 // lose all spaces as they are a nuisance
 name = strings.Replace(name, ` `, ``, -1)
 err := os.Mkdir(`flashcardSets/`+name,
 (os.ModeDir | os.ModePerm))
 if err != nil {
 rw.WriteHeader(http.StatusForbidden)
 return
 }
 rw.WriteHeader(http.StatusCreated)
 base_url := req.URL.String()
 new_url := base_url + `flashcardSets/` + name
 // add handlers for the resources
 http.HandleFunc(new_url, handleOneFlashCardSet)
 http.HandleFunc(new_url + `/`, handleOneFlashCard)
 rw.Write([]byte(new_url))
 } else {
 rw.WriteHeader(http.StatusMethodNotAllowed)
 }
 return
}

func handleOneFlashCardSet(rw http.ResponseWriter, req *http.Request) {
 cooked_url, _ := url.QueryUnescape(req.URL.String())
 fmt.Println("Handling one set for: ", cooked_url)

ChapTeR 14 ■ ReST

239

 if req.Method == "GET" {
 acceptTypes := parseValueQuality(req.Header.Get("Accept"))
 fmt.Println(acceptTypes)

 q_xml := qualityOfValue(flashcard_xml, acceptTypes)
 q_json := qualityOfValue(flashcard_json, acceptTypes)
 if q_xml == 0 && q_json == 0 {
 // can't find XML or JSON in Accept header
 rw.Header().Set("Content-Type", flashcard_xml + `, ` + flashcard_json)
 rw.WriteHeader(http.StatusNotAcceptable)
 return
 }

 path := req.URL.String()
 // lose leading /
 relative_path := path[1:]
 files, err := ioutil.ReadDir(relative_path)
 checkError(err)
 numfiles := len(files)
 cards := make([]Flashcard, numfiles, numfiles)
 for n, file := range files {
 fmt.Println(file.Name())
 cards[n].Name = file.Name()
 // should be PathEscape, not in go 1.6
 cards[n].Link = path + `/` + url.QueryEscape(file.Name())
 }

 if q_xml >= q_json {
 // XML preferred
 t, err := template.ParseFiles("xml/ListOneFlashcardSet.xml")
 if err != nil {
 fmt.Println("Template error")
 http.Error(rw, err.Error(), http.StatusInternalServerError)
 return
 }
 rw.Header().Set("Content-Type", flashcard_xml)
 t.Execute(os.Stdout, cards)
 t.Execute(rw, cards)
 } else {
 // JSON preferred
 t, err := template.ParseFiles("json/ListOneFlashcardSet.json")
 if err != nil {
 fmt.Println("Template error")
 http.Error(rw, err.Error(), http.StatusInternalServerError)
 return
 }
 rw.Header().Set("Content-Type", flashcard_json)
 t.Execute(rw, cards)

 }
 } else if req.Method == "POST" {
 name := req.FormValue(`name`)

ChapTeR 14 ■ ReST

240

 if hasIllegalChars(name) {
 rw.WriteHeader(http.StatusForbidden)
 return
 }
 err := os.Mkdir(`flashcardSets/`+name,
 (os.ModeDir | os.ModePerm))
 if err != nil {
 rw.WriteHeader(http.StatusForbidden)
 return
 }
 rw.WriteHeader(http.StatusCreated)
 base_url := req.URL.String()
 new_url := base_url + `flashcardSets/` + name
 _, _ = rw.Write([]byte(new_url))
 } else if req.Method == "DELETE" {
 rw.WriteHeader(http.StatusNotImplemented)
 } else {
 rw.WriteHeader(http.StatusMethodNotAllowed)
 }
 return
}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

It is run as follows:

go run Server.go :8000

Client
The client is relatively straightforward, offering nothing really new. This client asks for the content only in
XML format. A new part is that the content for the flashcard sets includes links as hypertext attributes within
a cardset tag. This may be turned into a field of a struct by the tag label xml:"href,attr" in the Card struct.

This client gets the list of flashcard sets and their URLs in the getFlashcardSets() function (Step 1). This
returns a FlashcardSets struct. This can be used to present a list to a user, say, for selection of a particular set.
Once selected, the URL of that set can be used to interact with the resource.

This client then creates a new flashcard set with name NewSet in the createFlashcardSet() function
(Step 2). The first time it is run, it will create the set and be returned the URL for that set. The second time it
is run, it will get an error from the server as a prohibited operation, since the set already exists.

This client then takes the first set of flashcards from the URLs given by the server and asks for the set of
cards it holds (Step 3). It then picks the first card from the set and gets its content (Step 4).

ChapTeR 14 ■ ReST

241

The client is Client.go:

/* Client
 */

package main

import (
 //"encoding/json"
 "encoding/xml"
 "fmt"
 "io/ioutil"
 "net/http"
 "net/http/httputil"
 "net/url"
 "os"
 "strings"
)

const flashcard_xml string = "application/x.flashcards+xml"
const flashcard_json string = "application/x.flashcards+json"

type FlashcardSets struct {
 XMLName string `xml:"cardsets"`
 CardSet []CardSet `xml:"cardset"`
}

type CardSet struct {
 XMLName string `xml:"cardset"`
 Name string `xml:"name"`
 Link string `xml:"href,attr"`
 Cards []Card `xml:"card"`
}

type Card struct {
 Name string `xml:"name"`
 Link string `xml:"href,attr"`
}

func getOneFlashcard(url *url.URL, client *http.Client) string {
 // Get the card as a string, don't do anything with it
 request, err := http.NewRequest("GET", url.String(), nil)
 checkError(err)

 response, err := client.Do(request)
 checkError(err)
 if response.Status != "200 OK" {
 fmt.Println(response.Status)
 fmt.Println(response.Header)

 os.Exit(2)
 }

ChapTeR 14 ■ ReST

242

 fmt.Println("The response header is")
 b, _ := httputil.DumpResponse(response, false)
 fmt.Print(string(b))

 body, err := ioutil.ReadAll(response.Body)
 content := string(body[:])
 //fmt.Printf("Body is %s", content)

 return content
}

func getOneFlashcardSet(url *url.URL, client *http.Client) CardSet {
 // Get one set of cards
 request, err := http.NewRequest("GET", url.String(), nil)
 checkError(err)

 // only accept our media types
 request.Header.Add("Accept", flashcard_xml)
 response, err := client.Do(request)
 checkError(err)
 if response.Status != "200 OK" {
 fmt.Println(response.Status)
 fmt.Println(response.Header)

 os.Exit(2)
 }

 fmt.Println("The response header is")
 b, _ := httputil.DumpResponse(response, false)
 fmt.Print(string(b))

 body, err := ioutil.ReadAll(response.Body)
 content := string(body[:])
 fmt.Printf("Body is %s", content)

 var sets CardSet
 contentType := getContentType(response)
 if contentType == "XML" {

 err = xml.Unmarshal(body, &sets)
 checkError(err)
 fmt.Println("XML: ", sets)
 return sets
 }
 /* else if contentType == "JSON" {
 var sets FlashcardSetsJson
 err = json.Unmarshal(body, &sets)
 checkError(err)
 fmt.Println("JSON: ", sets)
 }
 */
 return sets
}

ChapTeR 14 ■ ReST

243

func getFlashcardSets(url *url.URL, client *http.Client) FlashcardSets {
 // Get the toplevel /
 request, err := http.NewRequest("GET", url.String(), nil)
 checkError(err)

 // only accept our media types
 request.Header.Add("Accept", flashcard_xml)
 response, err := client.Do(request)
 checkError(err)
 if response.Status != "200 OK" {
 fmt.Println(response.Status)
 fmt.Println(response.Header)

 os.Exit(2)
 }

 fmt.Println("The response header is")
 b, _ := httputil.DumpResponse(response, false)
 fmt.Print(string(b))

 body, err := ioutil.ReadAll(response.Body)
 content := string(body[:])
 fmt.Printf("Body is %s", content)

 var sets FlashcardSets
 contentType := getContentType(response)
 if contentType == "XML" {

 err = xml.Unmarshal(body, &sets)
 checkError(err)
 fmt.Println("XML: ", sets)
 return sets
 }
 return sets
}

func createFlashcardSet(url1 *url.URL, client *http.Client, name string) string {
 data := make(url.Values)
 data[`name`] = []string{name}
 response, err := client.PostForm(url1.String(), data)
 checkError(err)
 if response.StatusCode != http.StatusCreated {
 fmt.Println(`Error: `, response.Status)
 return ``
 //os.Exit(2)
 }
 body, err := ioutil.ReadAll(response.Body)
 content := string(body[:])
 return content
}

ChapTeR 14 ■ ReST

244

func main() {
 if len(os.Args) != 2 {
 fmt.Println("Usage: ", os.Args[0], "http://host:port/page")
 os.Exit(1)
 }
 url, err := url.Parse(os.Args[1])
 checkError(err)

 client := &http.Client{}

 // Step 1: get a list of flashcard sets
 flashcardSets := getFlashcardSets(url, client)
 fmt.Println("Step 1: ", flashcardSets)

 // Step 2: try to create a new flashcard set
 new_url := createFlashcardSet(url, client, `NewSet`)
 fmt.Println("Step 2: New flashcard set has URL: ", new_url)

 // Step 3: using the first flashcard set,
 // get the list of cards in it
 set_url, _ := url.Parse(os.Args[1] + flashcardSets.CardSet[0].Link)

 fmt.Println("Asking for flashcard set URL: ", set_url.String())
 oneFlashcardSet := getOneFlashcardSet(set_url, client)
 fmt.Println("Step 3:", oneFlashcardSet)

 // Step 4: get the contents of one flashcard
 // be lazy, just get as text/plain and
 // don't do anything with it
 card_url, _ := url.Parse(os.Args[1] + oneFlashcardSet.Cards[0].Link)
 fmt.Println("Asking for URL: ", card_url.String())
 oneFlashcard := getOneFlashcard(card_url, client)
 fmt.Println("Step 4", oneFlashcard)
 os.Exit(0)
}

func getContentType(response *http.Response) string {
 contentType := response.Header.Get("Content-Type")
 if strings.Contains(contentType, flashcard_xml) {
 return "XML"
 }
 if strings.Contains(contentType, flashcard_json) {
 return "JSON"
 }
 return ""
}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

ChapTeR 14 ■ ReST

245

It is run as follows:

go run Client.go http://localhost:8000/

Using REST or RPC
The primary difference between REST and RPC is the interaction style. In RPC, you are calling functions,
passing objects or primitive types as arguments, and getting objects or primitive types in return. The
functions are verbs: do this to that. REST, on the other hand, is about interacting with objects, asking them to
show their state or to change it in some way.

The difference is shown by the Go RPC mechanism discussed in the last chapter and the REST
mechanism of this chapter. In Go RPC over HTTP, the server registers functions, while in REST, the server
registers handlers for URLs.

Which is better? Neither. Which is faster? Neither. Which is better for a controlled environment?
Possibly RPC. Which is better for an open environment? Possibly REST.

You will see arguments based on speed and resource allocation. RPC based on binary systems will
probably be faster than text-based HTTP systems. But SOAP is a text-based RPC system using HTTP and is
probably slower than REST. HTTP2 uses a binary format and when conveying binary data such as BSON will
probably be equivalent in speed to other binary systems. Just to confuse things further, the Apache Thrift
RPC allows a choice of data formats (binary, compact binary, JSON, and text) and transports (sockets, files,
and shared memory). One system demonstrates all options!

A more important factor might be how tightly controlled the operational environment is. RPC systems
are tightly coupled, and a failure in one component could bring an entire system down. When there is a
single administrative authority, a limited set of hardware and software configurations and a clear channel for
fixing problems, then an RPC system can work well.

On the other side, the web is uncontrolled. There is no single authority—even such "universal" services
such as DNS are highly distributed. There is a huge variety of hardware, operating systems, and software;
there will be little prospect of enforcing any policies; and if something breaks then there is often no one who
can be pointed at to fix it. In such a case, a loosely-coupled system may be better.

REST over HTTP is a good match for this. HATEOAS allows servers to be reconfigured on the fly,
changing URLs as needed (even pointing to different servers!). HTTP is designed to cache results when it
can. Firewalls are usually configured to allow HTTP traffic and block most other. REST is a good choice here.

It should be noted that REST is not the only HTTP-based system possible. SOAP has already been
mentioned. There are many commercial and highly successful systems that are "almost" REST—Richardson
levels 1 and 2. They do not enjoy the full benefits of the REST/HTTP match but still work.

No doubt in future other models will arise. In the IoT space, CoAP is popular for low-power wireless
systems. It is also REST-based, but in a slightly different way than HTTP-REST.

Conclusion
REST is the architectural model of the web. It can be applied in many different ways, particularly as HTTP
and CoAP. This chapter illustrated REST as applied to HTTP.

247© Jan Newmarch 2017
J. Newmarch, Network Programming with Go, DOI 10.1007/978-1-4842-2692-6_15

CHAPTER 15

WebSockets

The standard model of interaction between a web user agent such as a browser and a web server such as
Apache is that the user agent makes HTTP requests and the server makes a single reply to each one. In the
case of a browser, the request is made by clicking on a link, entering a URL into the address bar, clicking on
the forward or back buttons, etc. The response is treated as a new page and is loaded into a browser window.

This traditional model has many drawbacks. The first is that each request opens and closes a new TCP
connection. HTTP 1.1 solved this by allowing persistent connections, so that a connection could be held
open for a short period to allow for multiple requests (e.g., for images) to be made on the same server.

While HTTP 1.1 persistent connections alleviate the problem of slow loading of a page with many
graphics, it does not improve the interaction model. Even with forms, the model is still that of submitting the
form and displaying the response as a new page. JavaScript helps in allowing error checking to be performed
on form data before submission, but does not change the model.

AJAX (Asynchronous JavaScript and XML) made a significant advance to the user interaction model.
This allows a browser to make a request and just use the response to update the display in place using the
HTML Document Object Model (DOM). But again the interaction model is the same. AJAX just affects
how the browser manages the returned pages. There is no explicit extra support in Go for AJAX, as none is
needed: the HTTP server just sees an ordinary HTTP POST request with possibly some XML or JSON data,
and this can be dealt with using techniques already discussed.

All of these are still browser (or user agent) to server communication. What is missing is server to
browser communications where a browser has set up a TCP connection to a server and reads messages from
the server. This can be filled by WebSockets: the browser (or any user agent) keeps open a long-lived TCP
connection to a WebSockets server. The TCP connection allows either side to send arbitrary packets, so any
application protocol can be used on a WebSocket.

How a WebSocket is started is by the user agent sending a special HTTP request that says “switch to
WebSockets”. The TCP connection underlying the HTTP request is kept open, but both user agent and server
switch to using the WebSockets protocol instead of getting an HTTP response and closing the socket.

Note that it is still the browser or user agent that initiates the WebSockets connection. The browser
does not run a TCP server of its own. While the specification as IETF RFC6455 is complex (see https://
tools.ietf.org/html/rfc6455), the protocol is designed to be fairly easy to use. The client opens an HTTP
connection and then replaces the HTTP protocol with its own WS protocol, reusing the same TCP or a new
connection.

Go has some support for WebSockets in a sub-repository, but actually recommends a third-party
package. This chapter considers both packages.

https://tools.ietf.org/html/rfc6455
https://tools.ietf.org/html/rfc6455

Chapter 15 ■ WebSoCketS

248

WebSockets Server
A WebSockets server starts off by being an HTTP server, accepting TCP connections and handling the
HTTP requests on the TCP connection. When a request comes in that switches that connection to being a
WebSockets connection, the protocol handler is changed from an HTTP handler to a WebSocket handler. So
it is only that TCP connection that gets its role changed, the server continues to be an HTTP server for other
requests, while the TCP socket underlying that one connection is used as a WebSocket.

One of the simple servers discussed in Chapter 8, HTTP registered various handlers such as a file handler
or a function handler. To handle WebSockets requests, we simply register a different type of handler—a
WebSockets handler. Which handler the server uses is based on the URL pattern. For example, a file handler
might be registered for /, a function handler for /cgi-bin/..., and a WebSockets handler for /ws.

An HTTP server that is only expecting to be used for WebSockets might run as follows:

func main() {
 http.Handle("/", websocket.Handler(WSHandler))
 err := http.ListenAndServe(":12345", nil)
 checkError(err)
}

A more complex server might handle both HTTP and WebSockets requests simply by adding more
handlers.

The Go Sub-Repository Package
Go has the sub-repository package called golang.org/x/net/websocket. To use this, you must first
download it:

go get golang.org/x/net/websocket

The package documentation states the following:

This package currently lacks some features found in an alternative and more actively
maintained WebSockets package: https://godoc.org/github.com/gorilla/websocket

This suggests that you might be better off using the alternative package. Nevertheless, we consider this
package here in keeping with the rest of this book of using the packages from the Go team. A later section
looks at the alternative package.

The Message Object
HTTP is a stream protocol. WebSockets are frame-based. You prepare a block of data (of any size) and send it
as a set of frames. Frames can contain strings in UTF-8 encoding or a sequence of bytes.

The simplest way of using WebSockets is just to prepare a block of data and ask the Go WebSockets
library to package it as a set of frame data, send it across the wire, and receive it as the same block. The
websocket package contains a convenience object called Message to do just that. The Message object has two

http://dx.doi.org/10.1007/978-1-4842-2692-6_8
https://godoc.org/github.com/gorilla/websocket

Chapter 15 ■ WebSoCketS

249

methods—Send and Receive—that take a WebSocket as the first parameter. The second parameter is either
the address of a variable to store data in, or the data to be sent. Code to send string data looks like this:

msgToSend := "Hello"
err := websocket.Message.Send(ws, msgToSend)

var msgToReceive string
err := websocket.Message.Receive(conn, &msgToReceive)

Code to send byte data looks like this:

 dataToSend := []byte{0, 1, 2}
 err := websocket.Message.Send(ws, dataToSend)

 var dataToReceive []byte
 err := websocket.Message.Receive(conn, &dataToReceive)

An echo server to send and receive string data is given next. Note that in WebSockets, either side
can initiate sending of messages, and in this server we send messages from the server to a client when it
connects (send/receive) instead of the more normal receive/send server. The server is EchoServer.go:

/* EchoServer
 */
package main

import (
 "fmt"
 "golang.org/x/net/websocket"
 "net/http"
 "os"
)

func Echo(ws *websocket.Conn) {
 fmt.Println("Echoing")

 for n := 0; n < 10; n++ {
 msg := "Hello " + string(n+48)
 fmt.Println("Sending to client: " + msg)
 err := websocket.Message.Send(ws, msg)
 if err != nil {
 fmt.Println("Can't send")
 break
 }

 var reply string
 err = websocket.Message.Receive(ws, &reply)
 if err != nil {
 fmt.Println("Can't receive")
 break
 }

Chapter 15 ■ WebSoCketS

250

 fmt.Println("Received back from client: " + reply)
 }
}

func main() {

 http.Handle("/", websocket.Handler(Echo))
 err := http.ListenAndServe(":12345", nil)
 checkError(err)
}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

It is run as follows:

go run EchoServer.go

A client that talks to this server is EchoClient.go:

/* EchoClient
 */
package main

import (
 "fmt"
 "golang.org/x/net/websocket"
 "io"
 "os"
)

func main() {
 if len(os.Args) != 2 {
 fmt.Println("Usage: ", os.Args[0], "ws://host:port")
 os.Exit(1)
 }
 service := os.Args[1]

 conn, err := websocket.Dial(service, "", "http://localhost:12345")
 checkError(err)
 var msg string
 for {
 err := websocket.Message.Receive(conn, &msg)

Chapter 15 ■ WebSoCketS

251

 if err != nil {
 if err == io.EOF {
 // graceful shutdown by server
 break
 }
 fmt.Println("Couldn't receive msg " + err.Error())
 break
 }
 fmt.Println("Received from server: " + msg)
 // return the msg
 err = websocket.Message.Send(conn, msg)
 if err != nil {
 fmt.Println("Couldn’t return msg")
 break
 }
 }
 os.Exit(0)
}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

It is run as follows:

go run EchoClient.go ws://localhost:12345

The output on the client side is what is sent by the server:

Received from server: Hello 0
Received from server: Hello 1
Received from server: Hello 2
Received from server: Hello 3
Received from server: Hello 4
Received from server: Hello 5
Received from server: Hello 6
Received from server: Hello 7
Received from server: Hello 8
Received from server: Hello 9

The JSON Object
It is expected that many WebSockets clients and servers will exchange data in JSON format. For Go
programs, this means that a Go object will be marshalled into the JSON format, as described in Chapter 4
and then sent as UTF-8 strings, while the receiver will read this string and unmarshal it back into a Go object.

The websocket convenience object called JSON will do this for you. It has Send and Receive methods for
sending and receiving data, just like the Message object.

http://dx.doi.org/10.1007/978-1-4842-2692-6_4

Chapter 15 ■ WebSoCketS

252

We consider a case where a client sends a Person object to a server using WebSockets (which can send
messages both ways). A server that reads the message from the client and prints it to the server’s standard
output is PersonServerJSON.go:

/* PersonServerJSON
 */
package main

import (
 "fmt"
 "golang.org/x/net/websocket"
 "net/http"
 "os"
)

type Person struct {
 Name string
 Emails []string
}

func ReceivePerson(ws *websocket.Conn) {
 var person Person
 err := websocket.JSON.Receive(ws, &person)
 if err != nil {
 fmt.Println("Can't receive")
 } else {

 fmt.Println("Name: " + person.Name)
 for _, e := range person.Emails {
 fmt.Println("An email: " + e)
 }
 }
}

func main() {

 http.Handle("/", websocket.Handler(ReceivePerson))
 err := http.ListenAndServe(":12345", nil)
 checkError(err)
}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

Chapter 15 ■ WebSoCketS

253

A client that sends a Person object in JSON format is PersonClientJSON.go:

/* PersonClientJSON
 */
package main

import (
 "fmt"
 "golang.org/x/net/websocket"
 "os"
)

type Person struct {
 Name string
 Emails []string
}

func main() {
 if len(os.Args) != 2 {
 fmt.Println("Usage: ", os.Args[0], "ws://host:port")
 os.Exit(1)
 }
 service := os.Args[1]

 conn, err := websocket.Dial(service, "",
 "http://localhost")
 checkError(err)

 person := Person{Name: "Jan",
 Emails: []string{"ja@newmarch.name", "jan.newmarch@gmail.com"},
 }

 err = websocket.JSON.Send(conn, person)
 if err != nil {
 fmt.Println("Couldn't send msg " + err.Error())
 }
 os.Exit(0)
}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

The server is run as follows:

go run PersonServerJSON.go

Chapter 15 ■ WebSoCketS

254

The client is run as follows:

go run PersonClientJSON.go ws://localhost:12345

The output on the server side is what is sent by the client:

Name: Jan
An email: ja@newmarch.name
An email: jan.newmarch@gmail.com

The Codec Type
The Message and JSON objects are both instances of the type Codec. This type is defined as follows:

type Codec struct {
 Marshal func(v interface{}) (data []byte, payloadType byte, err error)
 Unmarshal func(data []byte, payloadType byte, v interface{}) (err error)
}

The Codec type implements the Send and Receive methods used earlier.
It is likely that WebSockets will also be used to exchange XML data. We can build an XML Codec object

by wrapping the XML marshal and unmarshal methods discussed in Chapter 12 to give a suitable Codec
object.

We can create a XMLCodec package in this way, called XMLCodec.go:

package xmlcodec

import (
 "encoding/xml"
 "golang.org/x/net/websocket"
)

func xmlMarshal(v interface{}) (msg []byte, payloadType byte, err error) {
 msg, err = xml.Marshal(v)
 return msg, websocket.TextFrame, nil
}

func xmlUnmarshal(msg []byte, payloadType byte, v interface{}) (err error) {
 err = xml.Unmarshal(msg, v)
 return err
}

var XMLCodec = websocket.Codec{xmlMarshal, xmlUnmarshal}

This file should be installed in the src subdirectory of GOPATH:

$GOPATH/src/xmlcodec/XMLCodec.go

http://dx.doi.org/10.1007/978-1-4842-2692-6_12

Chapter 15 ■ WebSoCketS

255

We can then serialize Go objects such as a Person into an XML document and send them from a client
to a server. The server to receive the document and print it to standard output is as follows:

/* PersonServerXML
 */
package main

import (
 "fmt"
 "golang.org/x/net/websocket"
 "net/http"
 "os"
 "xmlcodec"
)

type Person struct {
 Name string
 Emails []string
}

func ReceivePerson(ws *websocket.Conn) {
 var person Person
 err := xmlcodec.XMLCodec.Receive(ws, &person)
 if err != nil {
 fmt.Println("Can't receive")
 } else {

 fmt.Println("Name: " + person.Name)
 for _, e := range person.Emails {
 fmt.Println("An email: " + e)
 }
 }
}

func main() {

 http.Handle("/", websocket.Handler(ReceivePerson))
 err := http.ListenAndServe(":12345", nil)
 checkError(err)
}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

Chapter 15 ■ WebSoCketS

256

The client sending the Person object in XML form is PersonClientXML.go:

/* PersonClientXML
 */
package main

import (
 "fmt"
 "golang.org/x/net/websocket"
 "os"
 "xmlcodec"
)

type Person struct {
 Name string
 Emails []string
}

func main() {
 if len(os.Args) != 2 {
 fmt.Println("Usage: ", os.Args[0], "ws://host:port")
 os.Exit(1)
 }
 service := os.Args[1]

 conn, err := websocket.Dial(service, "", "http://localhost")
 checkError(err)

 person := Person{Name: "Jan",
 Emails: []string{"ja@newmarch.name", "jan.newmarch@gmail.com"},
 }

 err = xmlcodec.XMLCodec.Send(conn, person)
 if err != nil {
 fmt.Println("Couldn't send msg " + err.Error())
 }
 os.Exit(0)
}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

The server is run as follows:

go run PersonServerXML.go

Chapter 15 ■ WebSoCketS

257

The client is run as follows:

go run PersonClientXML.go ws://localhost:12345

The output on the server side is what is sent by the client:

Name: Jan
An email: ja@newmarch.name
An email: jan.newmarch@gmail.com

WebSockets Over TLS
A WebSocket can be built above a secure TLS socket. We discussed in Chapter 8 how to use a TLS socket
using the certificates from Chapter 7. That is used unchanged for WebSockets. That is, we use
http.ListenAndServeTLS instead of http.ListenAndServe.

Here is the echo server using TLS:

/* EchoServerTLS
 */
package main

import (
 "fmt"
 "golang.org/x/net/websocket"
 "net/http"
 "os"
)

func Echo(ws *websocket.Conn) {
 fmt.Println("Echoing")

 for n := 0; n < 10; n++ {
 msg := "Hello " + string(n+48)
 fmt.Println("Sending to client: " + msg)
 err := websocket.Message.Send(ws, msg)
 if err != nil {
 fmt.Println("Can't send")
 break
 }

 var reply string
 err = websocket.Message.Receive(ws, &reply)
 if err != nil {
 fmt.Println("Can't receive")
 break
 }
 fmt.Println("Received back from client: " + reply)
 }
}

http://dx.doi.org/10.1007/978-1-4842-2692-6_8
http://dx.doi.org/10.1007/978-1-4842-2692-6_7

Chapter 15 ■ WebSoCketS

258

func main() {

 http.Handle("/", websocket.Handler(Echo))
 err := http.ListenAndServeTLS(":12345", "jan.newmarch.name.pem",
 "private.pem", nil)
 checkError(err)
}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

The client is the same echo client as before. All that changes is the URL, which uses the wss scheme
instead of the ws scheme:

EchoClient wss://localhost:12345/

That will work fine if the TLS certificate offered by the server is valid. The certificate I am using is not:
it is self-signed, and that is often a signal that you are entering a danger zone. If you want to keep going
anyway, you need to employ the same “remove the safety check” that we did in Chapter 8 by turning
on the TLS InsecureSkipVerify flag. That is done by the program EchoClientTLS.go, which sets up a
configuration using this flag and then calls DialConfig in place of Dial:

/* EchoClientTLS
 */
package main

import (
 "fmt"
 "crypto/tls"
 "golang.org/x/net/websocket"
 "io"
 "os"
)

func main() {
 if len(os.Args) != 2 {
 fmt.Println("Usage: ", os.Args[0], "wss://host:port")
 os.Exit(1)
 }

 config, err := websocket.NewConfig(os.Args[1], "http://localhost")
 checkError(err)
 tlsConfig := &tls.Config{InsecureSkipVerify: true}
 config.TlsConfig = tlsConfig

 conn, err := websocket.DialConfig(config)
 checkError(err)

http://dx.doi.org/10.1007/978-1-4842-2692-6_8

Chapter 15 ■ WebSoCketS

259

 var msg string
 for {
 err := websocket.Message.Receive(conn, &msg)
 if err != nil {
 if err == io.EOF {
 // graceful shutdown by server
 break
 }
 fmt.Println("Couldn't receive msg " + err.Error())
 break
 }
 fmt.Println("Received from server: " + msg)
 // return the msg
 err = websocket.Message.Send(conn, msg)
 if err != nil {
 fmt.Println("Couldn't return msg")
 break
 }
 }
 os.Exit(0)
}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

WebSockets in an HTML Page
The original driver for WebSockets was to allow full duplex interaction between an HTTP user agent such
as a browser and a server. The typical use case is expected to involve a JavaScript program in a browser
interacting with a server. In this section, we build a web/WebSockets server that delivers an HTML page
that sets up a WebSocket and displays information from that server using WebSockets. We are looking at the
situation illustrated in Figure 15-1.

Chapter 15 ■ WebSoCketS

260

The age of the Internet of Things (IoT) is coming. Consequently we can expect data from sensors and
sensor networks to be used to drive actuators and to display information about an IoT network in browsers.
There are innumerable books about using Raspberry Pi's and Arduinos for building sensor networks, but we
will drastically simplify the situation by showing the CPU temperatures on a “sensor,” updating in a web page
every few seconds.

The Linux sensors command from the Debian package lm-sensors writes to standard output the
values of sensors it knows about. The command sensors on my desktop machine produces output such as
the following:

acpitz-virtual-0
Adapter: Virtual device
temp1: +27.8°C (crit = +105.0°C)
temp2: +29.8°C (crit = +105.0°C)

coretemp-isa-0000
Adapter: ISA adapter
Physical id 0: +58.0°C (high = +105.0°C, crit = +105.0°C)
Core 0: +57.0°C (high = +105.0°C, crit = +105.0°C)
Core 1: +58.0°C (high = +105.0°C, crit = +105.0°C)

Browser

GET page

JS
Listening

For
onmessage

Display
Msg message

message

message

Display
Msg

Display
Msg

Page containing
JavaScript

Server

Figure 15-1. Full duplex interaction situation

Chapter 15 ■ WebSoCketS

261

On refresh, typically the temperature on Core 0 and Core 1 may change.
On Windows, a command to do the same is this:

wmic /namespace:\\root\wmi PATH MSAcpi_ThermalZoneTemperature get CurrentTemperature

When this runs, it has output such as

42.4° C

On the Mac, use the command osx-cpu-temp from https://github.com/lavoiesl/osx-cpu-temp.
If you don’t want to go through these steps, just substitute a more mundane program such as the date.
We provide a Go program to deliver HTML documents from the ROOT_DIR directory and to then set up

a WebSocket from the URL GetTemp. The WebSocket on the server side gets the output from sensors every
two seconds and sends it to the client end of the socket. The web/WebSockets server runs on port 12345, for
no particular reason. This program will run under Linux after the lm-sensors package is installed. For other
systems, substitute any other interesting system call for the exec.Command call.

The Go server is TemperatureServer.go:

/* TemperatureServer
 */
package main

import (
 "fmt"
 "golang.org/x/net/websocket"
 "net/http"
 "os"
 "os/exec"
 "time"
)

var ROOT_DIR = "/home/httpd/html/golang-hidden/websockets"

func GetTemp(ws *websocket.Conn) {
 for {

 msg, _ := exec.Command("sensors").Output()
 fmt.Println("Sending to client: " + string(msg[:]))
 err := websocket.Message.Send(ws, string(msg[:]))
 if err != nil {
 fmt.Println("Can't send")
 break
 }
 time.Sleep(2 * 1000 * 1000 * 1000)

 var reply string
 err = websocket.Message.Receive(ws, &reply)

https://github.com/lavoiesl/osx-cpu-temp

Chapter 15 ■ WebSoCketS

262

 if err != nil {
 fmt.Println("Can't receive")
 break
 }
 fmt.Println("Received back from client: " + reply)
 }
}

func main() {
 fileServer := http.FileServer(http.Dir(ROOT_DIR))
 http.Handle("/GetTemp", websocket.Handler(GetTemp))
 http.Handle("/", fileServer)
 err := http.ListenAndServe(":12345", nil)
 checkError(err)
}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

It is run as follows:

go run TemperatureServer.go

The top-level HTML file to kick this off is websocket.html:

<!DOCTYPE HTML>
<html>
 <head>

 <script type="text/javascript">
 function WebSocketTest()
 {
 if ("WebSocket" in window)
 {
 alert("WebSocket is supported by your Browser!");

 // Let us open a web socket
 var ws = new WebSocket("ws://localhost:12345/GetTemp");

 ws.onopen = function()
 {
 alert("WS is opened...");
 };

Chapter 15 ■ WebSoCketS

263

 ws.onmessage = function (evt)
 {
 var received_msg = evt.data;
 // uncomment next line if you want to get alerts on each message
 //alert("Message is received..." + received_msg);
 document.getElementById("temp").innerHTML = "<pre>" + received_msg + "</pre>"
 ws.send("Message received")
 };

 ws.onclose = function()
 {
 // websocket is closed.
 alert("Connection is closed...");
 };
 }

 else
 {
 // The browser doesn't support WebSocket
 alert("WebSocket NOT supported by your Browser!");
 }
 }
 </script>

 </head>
 <body>

 <div id="temp">
 Run temperature sensor
 </div>

 </body>
</html>

The program uses JavaScript to open a WebSockets connection and to handle the onopen, onmessage,
and onclose events. It reads and writes using evt.data and the send function. It presents the data in a
preformatted element, exactly as the data above. It is refreshed every two seconds. The structure of the
HTML document is based on HTML5 - WebSockets from TutorialsPoint (https://www.tutorialspoint.
com/html5/html5_websocket.htm).

The Gorilla Package
The alternative package for WebSockets is the github.com/gorilla/websocket package. To use this, you will
need to run the following:

go get github.com/gorilla/websocket

https://www.tutorialspoint.com/html5/html5_websocket.htm
https://www.tutorialspoint.com/html5/html5_websocket.htm

Chapter 15 ■ WebSoCketS

264

Echo Server
The echo server using this package is EchoServerGorilla.go. It makes the HTTP to WebSockets transition
more explicit by introducing a call to a websocket.Upgrader object. It also more clearly distinguishes
between sending text and binary messages.

/* EchoServerGorilla
 */
package main

import (
 "fmt"
 "github.com/gorilla/websocket"
 "net/http"
 "os"
)

var upgrader = websocket.Upgrader{
 ReadBufferSize: 1024,
 WriteBufferSize: 1024,
}

func Handler(w http.ResponseWriter, r *http.Request) {
 fmt.Println("Handling /")
 conn, err := upgrader.Upgrade(w, r, nil)
 if err != nil {
 fmt.Println(err)
 return
 }

 for n := 0; n < 10; n++ {
 msg := "Hello " + string(n+48)
 fmt.Println("Sending to client: " + msg)
 err = conn.WriteMessage(websocket.TextMessage, []byte(msg))

 _, reply, err := conn.ReadMessage()
 if err != nil {
 fmt.Println("Can't receive")
 break
 }
 fmt.Println("Received back from client: " + string(reply[:]))
 }
 conn.Close()
}

func main() {
 http.HandleFunc("/", Handler)
 err := http.ListenAndServe("localhost:12345", nil)
 checkError(err)
}

Chapter 15 ■ WebSoCketS

265

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

The server is run as follows:

go run EchoServerGorilla

Echo Client
The echo client using this package is EchoClientGorilla.go:

/* EchoClientGorilla
 */
package main

import (
 "fmt"
 "github.com/gorilla/websocket"
 "io"
 "net/http"
 "os"
)

func main() {
 if len(os.Args) != 2 {
 fmt.Println("Usage: ", os.Args[0], "ws://host:port")
 os.Exit(1)
 }
 service := os.Args[1]

 header := make(http.Header)
 header.Add("Origin", "http://localhost:12345")
 conn, _, err := websocket.DefaultDialer.Dial(service, header)
 checkError(err)

 for {
 _, reply, err := conn.ReadMessage()
 if err != nil {

 if err == io.EOF {
 // graceful shutdown by server
 fmt.Println(`EOF from server`)
 break
 }

Chapter 15 ■ WebSoCketS

266

 if websocket.IsCloseError(err, websocket.CloseAbnormalClosure) {
 fmt.Println(`Close from server`)
 break
 }
 fmt.Println("Couldn't receive msg " + err.Error())
 break
 }
 //checkError(err)
 fmt.Println("Received from server: " + string(reply[:]))

 // return the msg
 err = conn.WriteMessage(websocket.TextMessage, reply)
 if err != nil {
 fmt.Println("Couldn't return msg")
 break
 }
 }
 os.Exit(0)
}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

The client is run as follows:

go run EchoClientGorila ws://localhost:12345

Conclusion
The WebSockets standard is an IETF RFC, so no major changes are anticipated. This will allow HTTP user
agents and servers to set up bidirectional socket connections and should make certain interaction styles
much easier. Go has support from two packages for WebSockets.

267© Jan Newmarch 2017
J. Newmarch, Network Programming with Go, DOI 10.1007/978-1-4842-2692-6

Afterword

This book looked at the basics of distributed programming and how this can be done in Go. There are
indefinite extensions to this. For example, you may be interested in how time is managed in distributed
systems, or how replicated databases maintain consistency (or weaker, eventual consistency). You may be
interested in algorithms for load balancing, or in techniques such as map-reduce, as is often used to process
queries across distributed databases, or in how grid computing systems can span thousands of computers
of different types, in different administrative domains. Or in how a dramatically simplified model is used for
cloud computing.

Some of these are classic distributed system problems, and information may be found in books such as
Andrew S. Tanenbaum and Maarten Van Steen's book, Distributed Systems - Principles and Paradigms. The
fundamentals of grid computing may be found in the book by Ian Foster and Carl Kesselman, titled The Grid:
Blueprint for a New Computing Infrastructure, while map-reduce is covered in books on Hadoop (for Java).

If you specifically want Go implementations of distributed frameworks, techniques, or algorithms not
in the standard Go libraries, you should look at sites like Go Projects (see https://github.com/golang/go/
wiki/Projects), which maintains a list of active third-party Go projects.

There are also other books dealing with topics in this area, such as Web Development with Go by Shiju
Varghese, Mastering Go Web Services by Nathan Kozyra, and several others. A good site that lists many books
is Golang books at https://github.com/golang/go/wiki/Books.

My own interests are increasingly in the IoT (Internet of Things) space. Here, you can see Go activity,
with frameworks such as Gobot (https://gobot.io/) and Project Flogo (https://dzone.com/articles/
project-flogo-golang-powered-open-source-iot-integ). The MQTT message passing protocol is getting
some traction in the IoT space, and the Eclipse Paho MQTT Go client (see https://github.com/eclipse/
paho.mqtt.golang) can partake in this. And of course, Go runs on the Raspberry Pi, which is a good starting
point for experiments with the IoT. You can expect more activity in the IoT space using Go, as it can compile
down to the native machine code on several processor types.

Enjoy your Go adventures!

https://github.com/golang/go/wiki/Projects
https://github.com/golang/go/wiki/Projects
https://github.com/golang/go/wiki/Books
https://gobot.io/
https://dzone.com/articles/project-flogo-golang-powered-open-source-iot-integ
https://dzone.com/articles/project-flogo-golang-powered-open-source-iot-integ
https://github.com/eclipse/paho.mqtt.golang
https://github.com/eclipse/paho.mqtt.golang

269© Jan Newmarch 2017
J. Newmarch, Network Programming with Go, DOI 10.1007/978-1-4842-2692-6

��������� A
Abstract syntax notation one (ASN.1)

ASCII characters, 63
Go asn1 package documentation, 62
ASN1basic.go, 63–64
character sets, 63
character strings, 62
data types and data structures, 61, 65
daytime client and server, 66–67
marshal and unmarshal data, 60
marshal and unmarshal structures, 65
pointers, 66
pointer variable, 63
PrintableString and IA5String, 63
structured types, 62
*time.Time, 63
UTC time type, 63

Access transparency, 17
Apache, 247
Arrays, 22
ASCII, 107, 109, 111, 113
Asynchronous communication, 10
Asynchronous JavaScript and XML (AJAX), 247
Authenticating proxy, 151, 153

��������� B
Block algorithms, 126
Body Area Network (BAN), 3
Browser files, 177
Browser site diagram, 175–177

��������� C
Certificate authority (CA), 132
Character, 108

ASCII, 109, 111
code, 108
encoding, 108
ISO 8859, 111
repertoire/set, 108

sets and Go, 119
transport encoding, 109
unicode, 111–112
UTF-8, 112

ASCII client and server, 113
client and server, 112

UTF-16, 113
client and server, 114–116
little-endian and big-endian, 113

Character-handling mechanisms, 107
CharData type, 200
Chinese dictionary, 181–182
Client

Client.go, 241–244
getFlashcardSets() function, 240
XML format, content, 240

Client-server application, 8, 94
Client-server system, 7, 8
Client-side code, 210
Client state transition diagrams, 104
Codec type, 254, 256
Comment type, 200
Communication flows, 9

asynchronous communication, 10
publish/subscribe, 10
streaming communication, 10
synchronous communication, 10

Communications models, 5
message passing, 5–6
remote procedure call, 6–7

Complete server, 234, 236–240
Component distribution, 10

application logic, 10
data access, 10
fat vs. thin, 14
Gartner classification, 11–13
presentation component, 10
three-tier models, 13

Concurrency transparency, 17
Connection models, 5

connectionless, 5
connection oriented, 5

Index

■ INDEX

270

Conn type
interface, 50
IPGetHeadInfo.go program, 50–52
ThreadedIPEchoServer.go program, 52–53
unix for UNIX sockets, 50

Conn.Write method, 53
Content negotiation

acceptable formats, 230
GET /, 232–233
MIME types, 230
POST /, 233–234
range of formats, 230
server, 230–231
user agents, 230

CORBA, 210

��������� D
Data format, 91–92
Data integrity, 124
Data serialization

ASN.1 (see Abstract syntax
notation one (ASN.1))

Base64 encoding and decoding, 82
external data representation

(XDR), 59
JSON (see JavaScript object

notation (JSON))
mutual agreement, 59
protocol buffers

binary encoding, 83
compiled personv3.pb.go file, 84
data types, 83
installing and compiling, 84
ONC RPC, 83
personv3.proto, 83
ProtocolBuffer.go, 85

self-describing data, 59
structured data, 57–58

Decryption key, 127
Default multiplexer, 158–159
Delay Tolerant

Networking (DNT), 29
The Demultiplexer (Demuxer), 229–230
Directive type, 201–203
Distributed computing, fallacies, 18

administrator, 19
homogenous network, 20
infinite bandwidth, 19
reliable network, 18
secure network, 19
topology doesn’t change, 19
zero latency, 19
zero transport cost, 20

Distributed computing models, 7

Distributed systems, 1
acceptance factors, 16–17
continuum of processing, 15
points of failure, 16

Document Object Model (DOM), 247
Dynamic link libraries (DLLs), 6

��������� E
EBCDIC, 107
Echo client, 265–266
Echo server, 264–265
EndElement type, 200
Error values, 26–27
External data representation (XDR), 59

��������� F
Failure transparency, 18
Flashcard sets, 183–184
flashcards.ListFlashCardsNames(), 180
FlashCards struct, 187–189
Functions, 23–24

��������� G
Gartner classification, 11

distributed database, 11
network file service, 12
secure shell, 13
terminal emulation, 12
Web, 12

Gateways, 4
GET method, 143–145
Gob serialization, 59
Go language, 21

character sets and, 119
error values, 26–27
functions, 23–24
GOPATH, 25
hashing algorithms, 125
ISO 8859 and, 117–118
maps, 24
methods, 24
multi-threading, 25
packages, 25
pointers, 23
RPC

HTTP client, 213–214
HTTP server, 212–213
restrictions, 210–211
TCP client, 216–217
TCP server, 214–216

runes, 112
running, 26

■ INDEX

271

self-signed certificate, 133
slices and arrays, 22
Standard Libraries, 26
statements, 25
structures, 22–23
symmetric key encryption, 126
type conversion, 25
types, 22
UTF-16, 113–116

Gorilla package
echo client, 265–266
echo server, 264–265

��������� H
Handler file, 248
Handler functions, 156
Hash, 124
Hashing, 124
Hash value, 124–125
HEAD method, 142–143
Homograph attacks, 138
HTML, 207

EscapeString and UnescapeString, 193
EscapeString.go, 193–194
parsers, 193
ReadHTML.go, 195–197
template package, 194–195
tokenizing, 195–197
WebSockets, 259–263

HTTP 0.9, 138
HTTP 1.0

request format, 139
response format, 139–140

HTTP 1.1, 140–141, 247
HTTP/2, 141
HTTPS, 153
Hypermedia as the Engine of Application

State (HATEOAS)
appropriate links, 225
cookies/external API specifications, 225
IANA, 225
link formats, 225
principle, 224

Hypertext Application Language (HAL), 226
Hypertext Transport Protocol (HTTP)

characteristics, 138
client object, 147–148
configure requests, 145–146
connections by clients, 153–155
HTTP 0.9, 138
HTTP 1.0, 139–140
HTTP 1.1, 140–141
HTTP/2, 141
i18n, 137
proxy (see Proxy, HTTP)

RPC client, 213–214
RPC server, 212
servers (see Servers)
URLs and resources, 137
versions, 138

��������� I
ICMP packet payload, 53
Increasing internationalization (i18n), 137
Internationalization (i18n), 107
Internet, 32-bit unsigned integer, 30
Internet Control Message Protocol (ICMP), 53
Internet of Things (IoT), 29, 260
Internet Printing Protocol (ipp), 221
Internet protocol (IP)

defined, 32
description, 30
IPAddr type, 36–37
IPv4 addresses, 31
IPv6 addresses, 31
LookupHost function, 37
LookupHostname function, 38
mask type, 33, 35–36
process, 32–33
ResolveIPAddr function, 37
String() method, 32

ISO 8859, 111, 117–119
ISO security architecture

functions, 122–123
levels, 122–123
mechanisms, 123–124

��������� J
JavaScript object notation (JSON)

array, 68
client and server, 72–73
Gob package

circular structures, 75
Decoder, 76
Encoder, 76
GobEchoClient.go, 78–79
GobEchoServer.go, 80
Gob marshalling and unmarshalling, 75
Go data types, 75
object, 251, 253
pointer types, 75
SaveGob.go, 76, 78
X.509 serialization, 75

JSONEchoServer.go, 73–74
RPC client, 219–220
RPC server, 218–219
SaveJSON.go, 69–71
string handling, 68
type-dependent default encodings, 69

■ INDEX

272

��������� K
Keyed-Hash Message Authentication Code

(HMAC), 125

��������� L
Links

defined, 225
HTML types, 225
user agent and server, 226
W3C specification JSON-LD 1.0, 226
XML specifications, 225

Linux, 260–261
listFlashCards function, 179, 180
Local area network (LAN), 3
Localization (l10n), 107
Location transparency, 17

��������� M
manageFlashCards function, 181
Maps, 24
Marshalling, 210
Marshalling XML, 206–207
MD5 hashing, 125
Message

format, 90–91
object, 248, 250–251
passing, 5–6

Methods, 24
Metropolitan Area Network (MANs), 3
Middleware model, 14

examples, 14
functions, 15

Migration transparency, 17
Multiplexer, 155
Multi-threading, 25

��������� N
Networking, 3–4
404 not found messages, 156

��������� O
Open systems interconnect (OSI), 29

levels, 122
protocol, 2
seven-layer model, 122

��������� P, Q
PacketConn interface, 53
Packet encapsulation, 4–5
PathEscape function, 230

Performance
transparency, 18

Ping.go program, 53–55
PinyinFormatter, 189
PinyinFormatter.go, 184–187
Pipelines, 164
Pointers, 23
ProcInst type, 201
Protocol design

client code, 99–100
client-server application, 94
client side, 94
data format

byte format, 91–92
character format, 92

issues, 87
message format, 90–91
server code, 97–98
server side, 95
standalone application, 93
state information

client state diagram, 104
DCE file system, 102
NFS file system, 102
server pseudocode, 105
server state diagram, 105
state-transition

diagram, 103
text protocol, 96
textproto package, 101
version control, 90

Protocol layers, 1
alternative protocols, 3
ISO OSI protocol, 2
OSI layers, 2
TCP/IP protocols, 3

Proxy, HTTP
authenticating, 151, 153
simple, 149, 151

Public key encryption, 127
decryption key, 127
encryption key, 127
RSA scheme, 127–128

Public Key Infrastructure (PKI), 129
Punycode, 137

��������� R
Register function, 211
Remote procedure calls (RPCs), 6, 210,221.

See also REST Verbs
HTTP client, 213–214
HTTP server, 212–213
JSON client, 219–220
JSON server, 218
restrictions, 210–211

■ INDEX

273

styles, 210
TCP client, 216–217
TCP server, 214–216

Replication transparency, 17
Representational State Transfer (REST)

cards handling, 234
definition, 221
HTTP client-server system, 228
HTTP verbs, 227
interaction style, 245
representation of, resources, 222
resources, 221
resourcesdefinition, 222
resourcesnon-HTTP URL schemes, 221
resourcesURLs, 221
speed and resource allocation, 245
tightly controlled and uncontrolled, 245
URIs, 222
URLs, 228–229
URL transaction, 227
Wikipedia entry, HATEOAS, 226

Request for Comments (RFCs), 29
REST verbs

DELETE verb, 224
description, 223
GET verb, 223
POST verb, 224
PUT verb, 223

The Richardson Maturity
Model, 227–228

��������� S
Scalability transparency, 17
Secure Sockets Layer (SSL), 132
Self-signed certificate, 133, 135–136
Servers

default multiplexer, 158–159
distribution, 9
file, 155–156
handler functions, 156–157

Server-side code, 210
Server state transition diagrams, 105
Services

host machines, 38
ports, 38–39
TCPAddr type, 39, 40
TCP and UDP methods, 38
types of, 38

SetKeepAlive method, 53
SetReadBuffer method, 53
showFlashCards function, 189–191
SimpleEchoServer.go program, 44–46
Simple proxy, 149, 151

Simple user agents
GET method, 143–145
HEAD method, 142–143
response type, 141–142

Slices, 22
Standalone application, 93
StartElement type, 200
State transition diagram, 103
Stream Control Transmission

Protocol (SCTP), 29
Streaming communication, 10
String, 107
Structured data, 57–58
Sub-repository package

Codec type, 254, 256
JSON object, 251, 253
message object, 248, 250–251
WebSockets in HTML page, 259–263
WebSockets over TLS, 257–259

Sun’s ONC, 210
Symmetric key encryption

block algorithms, 126
definition, 126

Synchronous communication, 10

��������� T
TCP, 247

connections
staying alive method, 47
timeout, 47

RPC client, 216–217
RPC server, 214–216

TCPConn type
daytime server, 42–44
description, 40
TCP client, 40–42

TCP/IP protocols, 3
TCP/IP stack, 29

connection-oriented protocol, 30
IP datagrams, 30
vs. OSI, 30
RFCs, 29
UDP, 30
virtual circuit, 30

Templates
conditional statements, 168–169, 171–173
fmt package, 161
functions defining, 165–166
HTML package, 173
object values inserting, 161–164
parsing, process, 162–164
pipelines, 164
variables, 167

■ INDEX

274

Text protocol, 96
ThreadedEchoServer.go program, 45
Three-tier models, 13
Transparency, 17

access, 17
concurrency, 17
failure, 18
location, 17
migration, 17
performance, 18
replication, 17
scalability, 17

Transport Layer Security (TLS), 153, 159
basic client, 132–133
self-signed certificate, 133, 135–136

Trivial File Transfer Protocol (TFTP), 4
Type conversion, 25

��������� U
UDP datagrams

functions, 47
program, 47–49
source and destination information, 47

Unicode, 108, 111–112
Gotchas, 116–117

Uniform resource identifiers (URIs), 221, 222
Uniform resource locator (URLs), 137, 221
Uniform resource names (URNs), 221
Unmarshal function, 203–206
User Datagram Protocol (UDP), 30
UTF-7, 112
UTF-8, 112

ASCII client and server, 113
client and server, 112

UTF-16, 112–113
client and server, 114–116
little-endian and big-endian, 113

UTF-32, 112

��������� V
Version control, 88–90

��������� W
Web server

accents fixing, 184–187
browser pages, 175
browser

presentation, 191
flashcards, 191
flashcard sets, 183–184
functions, URLs, 177
pinyin, 191
Server.go, 178

WebSockets
HTML page, 259–263
over TLS, 257–259
server, 248

Wide area network (WAN), 3
World Wide Web, 137

��������� X, Y, Z
X.509 certificates, 153, 159

example, 129–131
PKI, 129

XHTML, 207
XML

marshalling, 206–207
parser, 200

CharData type, 200
Comment type, 200
Directive type, 201–203
EndElement type, 200
ProcInst type, 201
StartElement type, 200

unmarshalling, 203–206

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Preface
	Chapter 1: Architecture
	Protocol Layers
	ISO OSI Protocol
	OSI Layers
	TCP/IP Protocol
	Some Alternative Protocols

	Networking
	Gateways
	Packet Encapsulation
	Connection Models
	Connection Oriented
	Connectionless

	Communications Models
	Message Passing
	Remote Procedure Call

	Distributed Computing Models
	Client-Server System
	Client-Server Application
	Server Distribution
	Communication Flows
	Synchronous Communication
	Asynchronous Communication
	Streaming Communication
	Publish/Subscribe

	Component Distribution
	Gartner Classification
	Example: Distributed Database
	Example: Network File Service
	Example: Web
	Example: Terminal Emulation
	Example: Secure Shell

	Three-Tier Models
	Fat versus Thin

	Middleware Model
	Middleware Examples
	Middleware Functions

	Continuum of Processing
	Points of Failure
	Acceptance Factors
	Transparency
	Access Transparency
	Location Transparency
	Migration Transparency
	Replication Transparency
	Concurrency Transparency
	Scalability Transparency
	Performance Transparency
	Failure Transparency

	Eight Fallacies of Distributed Computing
	Fallacy: The Network Is Reliable
	Fallacy: Latency Is Zero
	Fallacy: Bandwidth Is Infinite
	Fallacy: The Network Is Secure
	Fallacy: Topology Doesn’t Change
	Fallacy: There Is One Administrator
	Fallacy: Transport Cost Is Zero
	Fallacy: The Network Is Homogeneous

	Conclusion

	Chapter 2: Overview of the Go Language
	Types
	Slices and Arrays
	Structures
	Pointers
	Functions
	Maps
	Methods

	Multi-Threading
	Packages
	Type Conversion
	Statements
	GOPATH
	Running Go Programs
	Standard Libraries
	Error Values
	Conclusion

	Chapter 3: Socket-Level Programming
	The TCP/IP Stack
	IP Datagrams
	UDP
	TCP

	Internet Addresses
	IPv4 Addresses
	IPv6 Addresses

	IP Address Type
	The IPMask Type
	The IPAddr Type
	Host Lookup

	Services
	Ports
	The TCPAddr Type

	TCP Sockets
	TCP Client
	A Daytime Server
	Multi-Threaded Server

	Controlling TCP Connections
	Timeout
	Staying Alive

	UDP Datagrams
	Server Listening on Multiple Sockets
	The Conn, PacketConn, and Listener Types
	Raw Sockets and the IPConn Type
	Conclusion

	Chapter 4: Data Serialization
	Structured Data
	Mutual Agreement
	Self-Describing Data
	ASN.1
	ASN.1 Daytime Client and Server

	JSON
	A Client and Server

	The Gob Package
	A Client and Server

	Encoding Binary Data as Strings
	Protocol Buffers
	Installing and Compiling Protocol Buffers
	The Compiled personv3.pb.go File
	Using the Compiled Code

	Conclusion

	Chapter 5: Application-Level Protocols
	Protocol Design
	Why Should You Worry?
	Version Control
	The Web

	Message Format
	Data Format
	Byte Format
	Character Format

	A Simple Example
	A Standalone Application
	The Client-Server Application
	The Client Side
	Alternative Presentation Aspects
	The Server Side
	Protocol: Informal
	Text Protocol
	Server Code
	Client Code
	Textproto Package

	State Information
	Application State Transition Diagram
	Client State Transition Diagrams
	Server State Transition Diagrams
	Server Pseudocode

	Conclusion

	Chapter 6: Managing Character Sets and Encodings
	Definitions
	Character
	Character Repertoire/Character Set
	Character Code
	Character Encoding
	Transport Encoding

	ASCII
	ISO 8859
	Unicode
	UTF-8, Go, and Runes
	UTF-8 Client and Server
	ASCII Client and Server

	UTF-16 and Go
	Little-Endian and Big-Endian
	UTF-16 Client and Server

	Unicode Gotchas
	ISO 8859 and Go
	Other Character Sets and Go
	Conclusion

	Chapter 7: Security
	ISO Security Architecture
	Functions and Levels
	Mechanisms

	Data Integrity
	Symmetric Key Encryption
	Public Key Encryption
	X.509 Certificates
	TLS
	A Basic Client
	Server Using a Self-Signed Certificate

	Conclusion

	Chapter 8: HTTP
	URLs and Resources
	I18n
	HTTP Characteristics
	Versions
	HTTP 0.9
	Response Format

	HTTP 1.0
	Request Format
	Response Format

	HTTP 1.1
	HTTP/2

	Simple User Agents
	The Response Type
	The HEAD Method
	The GET Method

	Configuring HTTP Requests
	The Client Object
	Proxy Handling
	Simple Proxy
	Authenticating Proxy

	HTTPS Connections by Clients
	Servers
	File Server
	Handler Functions
	Bypassing the Default Multiplexer

	HTTPS
	Conclusion

	Chapter 9: Templates
	Inserting Object Values
	Using Templates

	Pipelines
	Defining Functions
	Variables
	Conditional Statements
	The HTML / Template Package
	Conclusion

	Chapter 10: A Complete Web Server
	Browser Site Diagram
	Browser Files
	Basic Server
	The listFlashCards Function
	The manageFlashCards Function
	The Chinese Dictionary
	The Dictionary Type

	Flashcard Sets
	Fixing Accents
	The ListWords Function
	The showFlashCards Function
	Presentation on the Browser
	Running the Server
	Conclusion

	Chapter 11: HTML
	The Go HTML/Template Package
	Tokenizing HTML
	XHTML/HTML
	JSON
	Conclusion

	Chapter 12: XML
	Parsing XML
	The StartElement Type
	The EndElement Type
	The CharData Type
	The Comment Type
	The ProcInst Type
	The Directive Type

	Unmarshalling XML
	Marshalling XML
	XHTML
	HTML
	Conclusion

	Chapter 13: Remote Procedure Call
	Go’s RPC
	HTTP RPC Server
	HTTP RPC Client
	TCP RPC Server
	TCP RPC Client
	Matching Values

	JSON
	JSON RPC Server
	JSON RPC Client

	Conclusion

	Chapter 14: REST
	URIs and Resources
	Representations
	REST Verbs
	The GET Verb
	The PUT Verb
	The DELETE Verb
	The POST Verb

	No Maintained State
	HATEOAS
	Representing Links
	Transactions with REST
	The Richardson Maturity Model
	Flashcards Revisited
	URLs

	The Demultiplexer (Demuxer)
	Content Negotiation
	GET /
	POST /

	Handling Other URLs
	The Complete Server
	Client
	Using REST or RPC
	Conclusion

	Chapter 15: WebSockets
	WebSockets Server
	The Go Sub-Repository Package
	The Message Object
	The JSON Object
	The Codec Type
	WebSockets Over TLS
	WebSockets in an HTML Page

	The Gorilla Package
	Echo Server
	Echo Client

	Conclusion

	Afterword
	Index

