Network
Programming

with Go

Essential Skills for Using and
Securing Networks

Jan Newmarc h

Apress’




Network Programming
with Go

Jan Newmarch

ApPress’



Network Programming with Go: Essential Skills for Using and Securing Networks

Jan Newmarch
Oakleigh, Victoria
Australia

ISBN-13 (pbk): 978-1-4842-2691-9 ISBN-13 (electronic): 978-1-4842-2692-6
DOI110.1007/978-1-4842-2692-6

Library of Congress Control Number: 2017941517
Copyright © 2017 by Jan Newmarch

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Technical Reviewer: Ronald Petty
Coordinating Editor: Mark Powers
Copy Editor: Kezia Endsley
Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Cover image designed by Freepik

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM
Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/9781484226919. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper


mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
www.apress.com/9781484226919
http://www.apress.com/source-code

Contents at a Glance

About the AUthOr ... ———————— Xvii
About the Technical ReVIEWET ........svcsssssmssssssssssssmssssssssssssssssssssssssssssnssssssnsassnsass Xix
o = £ T XXi
Chapter 1: ArchiteCture ........cccunnmemmmmmmnnmmmssssssssssnsnse s ssssssnsssnsssssnns 1
Chapter 2: Overview of the Go LaNQUAQE ........cccrrrrsssmmnnmssssnsssssssssnsssssssssnssssssannnss 21
Chapter 3: Socket-Level Programming.......cccuseessmssssssnnssssssssssssssssssssssssnssssssssnnnss 29
Chapter 4: Data Serialization.........ccccciurrrrnssssssssssnnnnmmmssssssssssnnssesssssssssssnseannns 57
Chapter 5: Application-Level Protocols...........ccciuinsssmmnnmsssssnssmssssssssssssssssssssssssnnss 87
Chapter 6: Managing Character Sets and Encodings ........ccccuusssennmnssssnnnssssssnnnns 107
Chapter 7: SECUNtY . ..ccceerrrrrrisssssssssssnssssssssssssssssssssessssssssssssnsssesssssssnnnnnnnnsensssnns 121
Chapter 8: HTTP......ccccccummmnssennmmmsssssnmmssssssssesssssssssssssnsssssssssnsssssssnnnsssssnnnssssssnnnnss 137
Chapter 9: Templates.......ccuccmmmnisennmmmmsssnmmmsssmmmssssnmss——————————————— 161
Chapter 10: A Complete Web Server........ccccemmmmmssnsmmmssssssnmmsssssssmssssssssssssssnnns 175
Chapter 11: HTML ......cccciuiiisemnnmnsssssnmmsssssssmmsssssssssssssssssssssssssssssssnnssssssnnnnsssssnnnnss 193
Chapter 12: XML .....ccccceeemmmmmmmmssssssssssnssmmsssssssssssssssssssssssssssssnnsssssssssssnnnnnnnssssssssns 199
Chapter 13: Remote Procedure Call...........ccusmmmmmssssnnnmmssssssnmsssssssnsssssssnnsssssnnnnns 209
Chapter 14: REST .....cccccceemmiimimmnssssssssnnsssssssssssssssssssssssssssssnssssssssssssssnnnnnssssnsnnsnns 221
Chapter 15: WehSoCKetS.......ccciuuuummmmmmsssnnnmmssssnsnmsssssssnsssssssssssssssssssssssssnnsssssnnnnns 247
Y £ T 267
INA@X.eiiesiiesssnsssansnsnsssn s s s sn s n s ran s 269

iii



Contents

About the AUROK .......cccusmmmmsnnmmsssnmsssnmssssnmsssssssssannesssnnesssnnesssnnesssnnesssnnssssnnssssnnnsss xvii
About the Technical REVIEWET ......ccucussseemmmssssnnnssssssnsnsssssssnsssssssssssssssssnssssssssnnsssssnnns Xix
o T XXi
Chapter 1: ArchiteCture ........cccunnmemmmmmmnnmmmssssssssssnsnse s ssssssnsssnsssssnns 1
ProtoCOl LAYEIS.......c.cocecereectr et s sn e s s n e s 1
ISO OSI PrOTOCOL.......cccececeeeeeeeseee e se e e s e e s ss e s s s s 2

L] T 2
TCP/IP PrOYOCO .....c.cucececrccceeceeseseseseseseseseseseseseseseseseseseseseseseseseeseseseseseseseseseseseseseseeesesesesesesesesesesenes 3
S0mMe AIEINALIVE PIOTOCOIS ........ceeeeeeeeerecerereseeeesresssss s ssssss s sssssss s s sssssssssssssssssssssssssssssnnns 3
0T o 3
GALBWAYS....ccueeeeererserrersersessersessessessessessessessessessesae s s e s ae s s e ss e s s e sr e s e s e neenR e R e R e naenre s e e e nne s e nnnnns 4
Packet ENCApSUIALION.........ccccvvevierieererree e se s sse e see s e sae e sn s snesaesnesassnnesaeen 4
ConNECtion MOMEIS.........coererrerirerrrere et a s e n e e se s ne e 5
0] T (10T T 1) o OO 5
CONNECHIONIESS .....vcvveceririe ettt e bbb e e AR e e AR e e d R e e e b e e e e Rean s 5
Communications MOAEIS........c.coeeueeeeecccccece e e 5
MESSAQE PASSING.......courerriuecrerrrueesesseseese st a s e s e s s s e e s s s ae e se s e Re e e s s Re e e e s aene e e nnnnnaes 5
Remote ProCcedure Call............ ittt a e s e 6
Distributed Computing MOAEIS.........cocvvrvrrerrrrr e 7
Client-Server SYSIEM ... e 8
Client-Server AppPliCAtioN..........cccceeerere e sr e e sn s 8
Server DISTHDULION ..o s nnn e 9



vi

CONTENTS

CoMMUNICAION FIOWS ..ot 9
Synchronous COMMUNICALION............cccrurureerreeeeserer e se s nenn s 10
Asynchronous COMMUNICALION ..........c.eeeeceirerercrerre e nnns 10
Streaming COMMUNICALION ......cccouvueeerirrceserer e 10
PUDIISN/SUDSCIIDE. ... .. 10

Component DiStribDULION.......cccvievirie e s n e sa e snenae s 10
Gartner Classification ... ———————— 11
THIEE-TIier MOUEIS .....ccocccirrrriissirisrss s 13
LT 1T 1 14

Middleware MOGEL...........cccoriinirni e ——— 14
MiddIEWare EXAMPIES .....cceeerererererere e s e ssessesaessessesaesaesaesaesasssesasssssasssssassassassassasssssassssssssssssnssnns 14
Middleware FUNCLIONS .........covvereninininiisiiniiss s 15

ContinuUM Of PrOCESSING .....ceeeerereerrsernesssesessessesesesssssssssssssssssssessssssssssssssssssssssssssssens 15

POINtS Of FAIIUIE ..o 16

AcCCEPANCE FACIOrS........cceeeeceecrecrerierse e s r e r e r e sr e sr e sn e n e sn e n e n e nnennnnns 16

TrANSPAIEINCY .....ceeiererersesessesse s s s s s e e e e e s e s e e s e s nn e e s e s e s e s e s e e e s e s sessnsnnnnnnnnns 17
ACCESS TrANSPAIEINCY ....c.veveueerersesesesessesesessssssesesessssssssessssesssessssssssssssssssssssssssssssssssssssssssssssssssssssssssssans 17
LOCALION TrANSPAIENCY ......ccceererreucererseeeressssesesesssssesssssssssesssssssssassessessssessssssssassssssssssssssssessasssssaneaes 17
Migration TrANSPAIEINCY .......ccevueerererreesererseesesesssesesessssssesesss s s e asss s e sssasssessssssssesssssssssssssessasssnsanenes 17
Replication TraNSPAIENCY........ccccceererreerererreesesessseesesssss e s se e s s s e ssse s e sssss s e ssssesssssessassassssaseaes 17
CONCUITENCY TrANSPAIEINCY ...cveveueeererreseserersssesesssssseessssssssssssssssssssssssessssssssasssssssssssssssssessssssssesssssssassaes 17
Scalability TrANSPAIENCY .......ccceererererererereeseseseeseses s ses e s s ses s e e s ss s e e ss e s s sessesssssssassaes 17
Performance TraNSPAIENCY .........ccoeurrerererersssssesssssesessssssesesesssssssessssssssessssssssssssssssssssssssssssssesssssssaseaes 18
Failure TraNSPAIENCY .......cccoceeeerererereseseisesesesee e e 18

Eight Fallacies of Distributed Computing ........cccvvrvrvrrrrrrrrr e 18
Fallacy: The Network IS Reli@bIe..........ccvevrererierrcrere vt sae e sas e sae e sae e saesassesassesassenes 18
Fallacy: LAtENCY IS ZEI0 ......cccvcerererirersesser sttt sttt sttt sn st sttt et n e se e e e n e sn e e e e e nnennennenans 19
Fallacy: Bandwidth IS INfINITE..........ccervererrertre s st res e ree e sae e sae e s e s s sae e sae e saesasaesassenes 19
Fallacy: The NETWOIK IS SECUIE ......ccceeerererererererersesersesessesessesassessesessssesssssssessssessssessssssssssssessssesssnenes 19



CONTENTS

Fallacy: Topology DOESN't CRANQE ......ccceeeerererererrereesersesessesessesasessssessssesssssssessssessesessesssssssssessssesssnenes 19
Fallacy: There IS One AdMINISTIALOr .........cccvvvriererrererere s res e rae e sae s sss e sa s e s s e saesesassessesessesassenes 19
Fallacy: TranSPOIt COSL IS ZEBI0........cceererererererseressersesessesessesessessssessesessssssssssssessssessssessssssssssssessssessssenes 20
Fallacy: The Network IS HOMOGENEOUS.........ccccvvervirierririrsersir st se e sn e e sassnssns s snsssssssssssenns 20
0] 3T 1] 20
Chapter 2: Overview of the Go LaNQUAQE ........cccsrrrsssmnnnmssssnnssssssssnssssssssnssssssssnnnss 21
713 SRS 22
SHCES ANU AITAYS .....cviveuecerereesessese st e e e s e s s s e se e s se e e e R e e e e s A e ae e e s e e Re s e s s Re s e e nsannas 22
R (0 11 = 22
POINTEIS .. 23
FUNCHIONS ... 23
1T OO SRSRRSR 24
MEENOGS.....c.ccec e ——————————————— 24
MURI-TRFEAAING.....ceceereeerererr e r s re e r e snenn s 25
T 1 T TS 25
TYPE CONVEISION ......ceuerererereses s e e sn e e sn e sn s sn s snesnnsnesnesnnnnnnnnnnn 25
SHAtBMENTS ... —————————— 25
60 L I o PRSPPI 25
RUNNING GO PrOQramS .......coccvceiirirercsses e sn e s s s e e sn s e s nnas 26
Standard LIDraries ... 26
EFTOr VAIUES ..ot s 26
010 T 11 0 o TR 27
Chapter 3: Socket-Level Programming......cccuusesssesssssssssssssssssssssssssssssssssssssssssnnnss 29
THE TCP/IP STACK .....ccererirerer sttt sn s s sn e n e sn e sn e n e nn e nnnnn 29
1D L (o] 2 L0 1O 30
1 OO 30
L TP 30
INTEINEL AQUIESSES ......eeeeeeeereereeree e ae e e sae e sn e e e sn e n e e e e e nennennennas 30
IPVA AQAIESSES .....eveciiisisciss s bbb b s bR 3
IPVG AQAIESSES .....evecrciirisiirs iR 3



CONTENTS

IP AQAIESS TYPE ...ceeeeeeereeeecrierseree e ae e sa e e sassaesnssnesas e s nessnnnnnas 32
THE IPMASK TYPE......eeeceiereeesessee e es st s s a s e s e s s s e s e ne s e e ne e e e nnns 33
THE IPACAAN TYPE ..ot e s e s s Rt seae e e s e e e e nnans 36
HOST LOOKUP ....ceueiteiriertrerines e st e st sas s se et s sa s sa s e s ae e s se s e et s s a et ae e e ae e e aesae e ae e saesesanananns 37

B3 T=] T 3P 38
0] 0 C 38
THE TCPAUAN TYPE ...ceeeerercrceerereresesesesesesesesesesesesesesesesesesesesesesesesesesesesesesesesssssesesesesesesesesesesesesesesssesesenes 39

LI S 10T 40
TOP ClIENE ..cvvvverseeeesssssesesssssessssssssessssssssssssssssssessssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssnees 40
A DAYEIME SEIVEN ... ettt r e s e b A e e R e R e e Re e e e R e e R e e Re e nnis 42
MURT-TRIEAUEU SEIVEN........coeeeieeeereree et nenn s 44

Controlling TCP CONNECLIONS .......ccceerrerenrreressessesessessssssesessessessssessesesssssssesssssssssssnsnnens 46
THMEOUL.....ceeeeet et e e e A e R e e A s Re e e b e Re e e e s e e e e nnans 46
STAYING ALIVE ...ttt a s e s e s e e e b e Re e e e s Re e e e e Re s e e npenn s 46

UDP Datagrams ........cccceecerneerrirsessis e sesssessee s ssee s ssssssessse s e ssnessessssssessnsssnssnessnesnssnnensens 47

Server Listening on Multiple SOCKELS........cccverrrrrcr s e 49

The Conn, PacketConn, and Listener TYPES.......cccvvrrerrerrersersersensenses s s s sessessessessenenns 49

Raw Sockets and the IPCONN TYPE ......cecevververrerrerrirseresresses s ses e e e e e e sassassassnsnes 52

010 T 11 0 o 55

Chapter 4: Data Serialization..........cccccussemmmmnnssnnnmnnsssnmmmssssmmssssss——— 57

StrUCUred DAt ..........ccoeercrerce e 57

Mutual AGreEMENL..........ccceeerrererrerrere e sn s sn e nn e nas 99

Self-DesCribing DAta .........ccccveerverrerierierser s n e a e n e n s 59

ASN.T ...ttt e E e AR EnE e 60
ASN.1 Daytime Client @nd SEIVET ..........ccorureecrerirencrerse e se e se s ss s 66

USON. e 68
A ClENt ANU SEIVEN .....ccovieeerererreesisesre e e s s e s s e s s e e s s se s e s sse s e e nsssn e nsnsns 72

L 10 o o2 T3 Vo T SR 75
A CHENE @NU SEIVET ... ne e e e e ne e e e neenenenes 78

viii



CONTENTS

Encoding Binary Data as Strings.........ccceiernnerennesnsesessssess s ssesessenns 81
ProtoCol BUFfEIS.....cciuiuiiiiiire s 83
Installing and Compiling ProtoCol BUFFEIS ........ccccveereriererrerererseseresesesssersesessesessesessessssessesessssssassansens 84
The Compiled PersonV3.ph.go FilE ......ccveererrererererreressereesersesesseressesssessesessssessesessesassessssessessssssnaes 84
Using the COMPIlEA COUE.........cceererererererrerrererseseresereressessesessesessessssessssessesesssssssessssesassessesessssssassansens 85
0] 3T 1] 86
Chapter 5: Application-Level ProtoColS ......cuccemeeemmnmsmssssssssssssssssssssssssssssssssssssssnns 87
ProtoCOl DESIGN .......cceceeirieririr s r s n s n s n e nn e n e nnnnnnnas 87
WhY ShOUIA YOU WOITY 2.t ses s s sss s s sss s nnes 88
VErsion CONIOL.......couvuieimimisiiiss s 88
LT PP 89
MeSSage FOrMAL..........c.ccoceveicircersr s sn e nn e nn s 90
DF: L B 0] )
BYEE FOMMAL ..ot e e e p s 91
Character FOIMAL...........cccociieniiee e 92
A SIMPIE EXAMPIE ...cveeceirieererieererseesesssssesssessssssssssssssesssssssssssssssssssssasssssssssssssanessenns 92
A Standalone APPIICALION.........ccvererrererrererere e re s s s rae s ae e saerasaesas e sae e sae e saesesaesas e saesenae e eaeenans 93
The Client-Server APPHCALION .........vccveererere sttt rrs e ree e s e ra s e ae e sae e saesesaesas e sas e sae e saenenaes 94
THe ClIENT SIUE......ccirieriiiiriiss s 94
Alternative PreSentation ASPECTS.........cvrrerererererersersssersssersesessessssessssessssessesessssessessssessssessssessenessenssaes 95
THE SEIVEE SIUE ....evvercsissiriiess s 95
Protocol: INFOrMal ... —————— 95
TEXE PrOTOCOL.....cciciciiisis it 96
3= T g 1 N 97
01T o o 99
Lo o101 (O o T e Vo SO SSS 101
State Information ... —————— 101
Application State Transition Diagram ... e 103
Client State Transition DIAgrams ...........ccoueviirnnnesne e s sr s e s r e 104

ix



CONTENTS

Server State TranSition DIAgIraMS ........ccceccvereriererseresrerssserssesesesessssessssessesessessssessssessssessssssssssssesassens 105
SEIVEr PSEUAOCOUE. ......cuiiririsissis st b 105
CONCIUSION....covitisicc it ———— 106
Chapter 6: Managing Character Sets and Encodings ........ccccussssennsnssssnnssssssnnnns 107
DEfINILIONS ...t —————— 108
1 T T T 108
Character Repertoire/Character Set...........covrrinnnnic e e 108
Character COUR ...ttt b bbb bbb 108
Character ENCOAING ..........cccocrererueeirenseecress s sss e s e e e nnnnsnas 108
TranSPOrt ENCOUING.......ccueceeeereeeesirieecse st p e ne e ne s 109
ASCIL...eeeeeeeeetrereee e se s s s ae e s s e e e s e e ae e e n e e nRe e e nen e e nnn e nnn 109
L0 1 111
UNICOR ...ttt s 111
UTF-8, GO, @NA RUNES ......coviiiieirieiiieisss s sssessssssssssssssssssssssssssssssssssssssssssssssassssssssnnns 112
UTF-8 Client @nd SEIVEX ..o ns 112
ASCII Client and SEIVEN ..o 113
LU LT 1o o 113
Little-Endian and Big-ENdian...........ccooevirininininennnene s sse s sssssssssssesssssssssssssssssssssssssssses 113
UTF-16 Client and SEIVEN ..o 114
Unicode GOLChAS ... ————— 116
IS0 8859 AN GO.......coveririrrrririsisii s ————————— 117
Other Character Sets and GO.........c.cocvcvevnnnm - 119
00 3T 1o N 119
Chapter 7: SECUNitY.....ccciuruisenmmrssssnnnnmssssnsssmssssnsnssssssnssssssssnnnssssssnnnsssssnnnnsssssnnnnss 121
ISO Security ArCHItECIUIE .......cccoeeeeeeereerecre s e sresn e sr e e sn e nesassnennenrnnens 121
FUNCLIONS AN LEVEIS ...ttt bbb 122
MECHANISMNS ... s 123
D1 T | OSSR 124
Symmetric Key ENCryption.........ccccoveeenmiiesnicne s sss e ssesessssssessssessesssnsssens 126

Public Key ENCryption.........ccocvcrcrcrsr st se s sns e snssns s s snnnns 127



CONTENTS

X.509 CertifiCales.......ccovrerrrerernseresrssessse s se s sne e 129
TLS ettt R e Re e R e Re e e e Re e e Re R e e Rernnnan 132
A BASIC ClIBNL....ccciriiriissss i s 132
Server Using a Self-Signed CertifiCate ..........ccouvrverrrerrrererrerereressersssersesessessssesessessssessssessssessesessens 133
0] 3T 1] N 136
Chapter 8: HTTP ....ccciieeemenmiiniisnsssssssssnssssssssssssssssssssssssssssnssssssssssssssnnnnnnnsssnnsnnsnnn 137
URLS and RESOUICES .......cocrueermrmiirmnsiissnssiss s ss s s ss s s s s sssasnes 137
L TSR 137
HTTP CharaCteriStiCs .........coverereresesesisesisisisisisssesesess s 138
Lo £ 0] 138
o I 2 R T 138
0 01 2 OO 139
0 I 2 T TR 140
0 I TR 141
SIMPIE USEI AGENLS ... se s s e s sr s sre e s sne e snsnnnens 141
THE RESPONSE TYPE....ucvereecrirrsseesesesseseseses e e ss e s s sesss s sns e s sss e s s se s e s sse e e s nsansssnsns 14
The HEAD METNOU........cccoveeeceerirecsisissec s se s n e ns s e 142
THe GET METNOM ...t e p e 143
Configuring HTTP REQUESTS......cocerrereererereeseeseessessessssasssssasssssassessassasssssassassssssssssssssnnns 145
The Client ODJECT ........ccvcrcrrr s 147
ProxXy Handling .........ccooeevennimnenrnesssssessssess s ss s sss s ssssssssssssssssssssssssssssssssnssnes 149
SIMPIE PrOXY...cviecciirceserisee et a e s e s s R e e e e Re e e e nne e e e nsnnnas 149
AULNENTICALING PIOXY ....voveecceerereescsisisseese s et ss s nesssssssssnsans 151
HTTPS Connections DY CHENTS..........cccvveriernnnensesserses s sesses e ses e ses e sessnssnssassssnenns 153
R3] T £ 155
FilB SBIVET ... s 155
Handler FUNCLIONS..........covvininiiiic s 156
Bypassing the Default MURIPIEXET ... r s 158
115 SRS 159
CONCIUSION....ccueccci e s 160

xi



CONTENTS

Chapter 9: Templates.......ccocunmmmsesmnnmmmmmss s —————————————————- 161
Inserting Object ValUES..........coceeeeeererecesee e ss s snssnssnesn e snssnesn e nnenns 161

USING TEMPIALES ... p e e e p e p e s 162
PIPEIINES ..ottt e n e n e nn e n e nnennenen 164
Defining FUNCHIONS ......cocveirrerer et sn s sn s sn e sn e nns 165
L1 L 10 T 167
Conditional Statements ..o s 168
The HTML/Template Package.........cccvverrerrerserrersensensensessessessessessessessesssssessessssssssasssnans 173
0] T (1 0 o 173
Chapter 10: A Complete Web Server......cccuemmsmmmmmmmmmssssssssnsmssmmmsssssssssssssnns 175
Browser Site Diagram .........ccccveveiserinsissesssssesses s se s sn e sn s snssnssne e nnans 175
BrOWSEK FIlS ...ceevicireircrisserie s s s s sn s sn s s sns s 177
BASIC SBIVEN ...t 177
The listFlashCards FUNCLION ..o 179
The manageFlashCards FUNCHON .........cccccieeicennsiernee e 181
The ChineSe DICLIONAIY .......ccccvverrerrerrerserserserses s e se e sessnssassassnssnssnssnssnssassnsses 181

THE DICHIONAIY TYPE ..eeeveereerereererereesereeseraeres e ras e ssesesaesesaesassessssessesesassesassassesassesassesssssssessssesssesssnsnaes 182
FIASNCAIT SELS......ccoviecrerccreree s 183
FiXiNG ACCENES ....cc.ererirer sttt n s sn e e sn e n e s nn e sn e nn e n 184
The LiStWOords FUNCLION.........cccovicrercce e 187
The showFlashCards FUNCLION ...........cccevecenmrnicnerscsers e 189
Presentation on the BroWSEr ... 191
RUNNING The SEIVEL ..ottt sn s sn s sn s sn e sn e 191
0] T (1 0 o 191
Chapter 11: HTML ...cccceeeesiiiiniiissssssssssssssssssssssssssssssssssssssnssssssssssssssnnnnnnnssssnsnnsnns 193
The Go HTML/Template Package........c.ccccvrerrerrersmrsensessesssssesses s s s s ses s e snssnssnssensns 194
TOKENIZING HTIVL ...t ss s sn s s s sns s s s sns s sne s s sns s nns s snssnnens 195
XHTML/HTIMIL......ccececccese e e se e e se s s ss s sssesasansnsns 197

xii



CONTENTS

JSON. e ————————————————————————————— 198
00] o [T [0 o PSSR 198
Chapter 12: XML......coccccummmmsmnmmmmsssssnmmssssssnmmsssssssssssssssnssssssssnsssssssnnsssssnnnnsssssnnnnss 199
ParSing XIML .......coveriririniere s se st se s se s se e se s se e e sn s sn s sn s sn s sn s sn e snesnnnns 200
The StartEIEMENT TYPE...cce et s e e e a e ae e s e s sa e e sae e ae e sae e e aesae e sae e naen 200
The ENAEIEMENT TYPE ...eeeeeeeeeceeer ittt ss s s sa st sa s sn e a et sn e n e a e sa e e e e e nn e sn e nn e e s 200
THe CharData TYPE......cceeereererererrereererseserseressesasersesessesessesassessssessesessssasssssssessssessssesssssssessssessenessssnaes 200
THE COMMENE TYPE ....eeeeereerererereree e rae s sa s e e sae e sae s s e s s e ae e aesesae e saesae e sae e sae e sae e saesaenenannenas 200
TRE ProCINST TYPE ..t e e e a e e e r e e se e e e e e sn e e e n e e s 201
THE DIFECHIVE TYPE ..uveuereeereerererererseseraesersessssessssessssesssssssessssessssessesessssassesassesassesssssssessssessssessenessssnaes 201
UNMarshalling XML ..o e ssessesnessesnesnsssssnesnssnesnssnssnssnssnssnssssnnnns 203
MarSRAIING XIVIL........coeiieeenereseseses s s ses s n s s snannnas 206
{3 I 207
HTIML ...ttt n e e e n e e nn e n e nn s nn e n e nnnn 207
CONCIUSION.....ccveceereerrereeree e ss e a e sae s r e a e s e aesae s e saesa e ea e s e e e saesaesaenaenaennennenennnens 207
Chapter 13: Remote Procedure Call...........ccusmmmmmssssnnnmmssssssnmssssssssssssssssnsssssnnnnns 209
6T 21 o OSSR 210
HTTP RPC SEIVE .......ceeeeeeceristeees s ss s se s se s ss s sessass s s sssesssessnsssssssssssnsnsnnns 212
o I S o 0 T | OO 213
TOP BPC SEIVEN ... e se s se s ss s ss s s s e s st snse e s sas s s nsnsnssssnsnsns 214
TCOP RPC ClIENT.......coveeeeecerertre st se e ses s se st a s s e e et a e e e s ae e s e e e ne e naas 216
MAECRING VAIUES ...t s s s s e sa s e e 217
SON. .. AR R e R Re e Rernnnan 217
JSON RPC SEIVE ......ceeeeeeeeeeeeeessssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssnsssssssns 218
JSON RPC CHENL ......oviveecetcree i s e sa s s anae e s asn e nn s 219
CONCIUSION.....ccueeeeceerrerrerse e s e se e sre e s e sae s e sessesresae s s e snesresaenrennesnesrennesnnnnsnnennennnnnans 220
Chapter 14: REST .....cccccmemmiiininisssssssssnsnssssssssssssssssssssssssssssssssssssssssssnnnnnnssssnsnnsnns 221
URIS @Nd RESOUICES .....ccuerrerrerrerreerersessessessessessesssssssssssssssssssssssssssssssssssssssssssssssssssnsansans 221
RepresSentations ..........cocvcrcerceriensensen s e n e nn e nnnnn 222

xiii



CONTENTS

RESTVEIDS ...ttt et 223
THE GET VBID .ttt e s e p e nnnn s 223
THE PUT VEID .ottt p et ne s e s e npans 223
THE DELETE VEID......vvveeeeeeesssssessssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssnssssssssnns 224
THE POST VEID ..vvvonrvvveeseeessssssessssssssssssssssesssssssssssssssssssssssssssesssssssssssssssssssssssssssssssssssssssssssnssssssssans 224

No Maintained State..........ccoveerrerrrerre e 224

HATEQAS ...ttt se e s se s e ss st nesan s nnneans 224

Representing LiNKS.........cuccevierenrnsesensesessssesssssessssessessssessssssssssssssssssssssssssssssssssssssssns 225

Transactions With REST ..o s 226

The Richardson Maturity Model ... s 227

Flashcards ReViSIted ...........cucieericerinmiesncssss s s s s snssnsnes 228
URLS .vvvuvevevvssssesssssssssssssssssesssssssssessssssssssssssssssessssssssssssssssssessssssssssssssssssesssssssssssssssssssssssssssssssssssssssens 228

The DemultipleXer (DEMUXEN)......cvvrrerrerrersersersersessersessesssssessessessessssssssssssssassssssssassssans 229

Content Negotiation...........cceeeeeeerere s e sr e sr e srssne e snssnesnennnnns 230
GET / wvuuueeeesssssesesssssssssssssssssssssssssssssssssssssssssssssssssssessssssssssssssssssassssssssssssssssssssssssssssssssssssssssssensssens 232
POST /.t 233

Handling Other URLS ..o s s s sssssssssssssssssssssssnssnes 234

The COMPIELE SEIVEL.......ccocvcerirer sttt sa s s sn e e n s 234

= 0 | 240

USING REST OF RPC ...t sns e s sss s s sne s s sns s snssnnse s 245

003 T 1] o] 245

Chapter 15: WehS0oCKetS.......ccciuuiummmmmssssnmnmmssssnsnmsssssnsnssssssssnsssssssnnssssssnnnsssssnnnnns 247

WEDSOCKELS SEIVET .......eeecereeeeresese e sens 248

The Go Sub-Repository Package...........ccvverrerrersersessesses s ses s sss s e s e snnnes 248
The MESSAQE ODJECT ........ccoeeerereecere e nn s 248
The JSON ODJECT.......cccvriririririririii s 251
QLTI 00 LT o T 254
WeEDSOCKELS OVEr TLS.......ciiiiiiiiniinisiniss s 257
WebS0CKEtS in @n HTML PAQE ...t 259

xiv



CONTENTS

The GOrilla PACKAGE.........cceeerrerererrentseresse et ses s e 263
ECRO SEIVE ...ttt ae e s pe e pnpe e 264

ECRO CHENT........eeeeeee ettt enn e e sn e e e 265
003 T 1o 266
AREIWOId.......coriimnnsssnnnsssnnsssssnsssssnnssssnsssssnsssssnnssssnsssssnsssssnnssssnnssssnnssssnnnsssnnssssnnnsss 267
1T = 269

XV



About the Author

Jan Newmarch is head of ICT (higher education) at Box Hill Institute, adjunct
professor at Canberra University, and adjunct lecturer in the School of
Information Technology, Computing and Mathematics at Charles Sturt
University. He is interested in more aspects of computing than he has time to
pursue, but the major thrust over the last few years has developed from user
interfaces under UNIX into Java, the Web, and then into general distributed
systems. Jan developed a number of publicly available software systems in
these areas. For the last few years, he has been looking at sound for Linux
systems and programming the Raspberry Pi’s GPU. He is now exploring
aspects of the IoT. He lives in Melbourne, Australia and enjoys the food and
culture there, but is not so impressed by the weather.

xvii




About the Technical Reviewer

Ronald Petty, M.B.A., M.S. is the founder of Minimum Distance LLC, a
management consulting firm based in San Francisco. He spends his time
helping technology-based startups do the right thing. He is also an
instructor at UC Berkeley Extension.

Xix



Preface

It's always fun to learn a new programming language, especially when it turns out to be a major one. Prior
to the release of Go in 2009, I was teaching a Master’s level subject in network programming at Monash
University. It's good to have a goal when learning a new language, but this time, instead of building yet
another wine cellar program, I decided to orient my lecture notes around Go instead of my (then) standard
delivery vehicle of Java.

The experiment worked well: apart from the richness of the Java libraries that Go was yet to match, all
the programming examples transferred remarkably well, and in many cases were more elegant than the
original Java programs.

This book is the result. I have updated it as Go has evolved and as new technologies such as HTTP/2
have arisen. But if it reads like a textbook, well, that is because it is one. There is a large body of theoretical
and practical concepts involved in network programming and this book covers some of these as well as the
practicalities of building systems in Go.

In terms of language popularity, Go is clearly rising. It has climbed to 16th in the TIOBE index, is 18th
in the PYPL (Popularity of Programming Language), and is 15th in the RedMonk Programming Language
rankings. It is generally rated as one of the fastest growing languages.

There is a growing community of developers both of the core language and libraries and of the
independent projects. I have tried to limit the scope of this book to the standard libraries only and to the
“sub-repositories” of the Go tree. While this eliminates many excellent projects that no doubt make many
programming tasks easier, restricting the book to the official Go libraries provides a clear bound.

This book assumes a basic knowledge of Go. The focus is on using Go to build network applications,
not on the basics of the language. Network applications are different than command-line applications,
are different than applications with a graphical user interface, and so on. So the first chapter discusses
architectural aspects of network programs. The second chapter is an overview of the features of Go that we
use in this book. The third chapter on sockets covers the Go version of the basics underlying all
TCP/IP systems. Chapters 4, 5, and 6 are more unusual in network programming books. They cover the
topics of what representations of data will be used, how a network interaction will proceed, and for text,
which language formats are used. Then in Chapter 7, we look at the increasingly important topic of security.
In Chapter 8, we look at one of the most common application layer protocols in use, HTTP. The next four
chapters are about topics related to HTTP and common data formats carried above HTTP—HTML and
XML. In Chapter 13, we look at an alternative approach to network programming, remote procedure calls.
Chapters 14 and 15 consider further aspects of network programming using HTTP.

xxi


http://dx.doi.org/10.1007/978-1-4842-2692-6_4
http://dx.doi.org/10.1007/978-1-4842-2692-6_5
http://dx.doi.org/10.1007/978-1-4842-2692-6_6
http://dx.doi.org/10.1007/978-1-4842-2692-6_7
http://dx.doi.org/10.1007/978-1-4842-2692-6_8
http://dx.doi.org/10.1007/978-1-4842-2692-6_13
http://dx.doi.org/10.1007/978-1-4842-2692-6_14
http://dx.doi.org/10.1007/978-1-4842-2692-6_15

CHAPTER 1

Architecture

This chapter covers the major architectural features of distributed systems. You can’t build a system without
some idea of what you want to build. And you can’t build it if you don't know the environment in which it
will work. GUI programs are different than batch processing programs; games programs are different than
business programs; and distributed programs are different than standalone programs. They each have their
approaches, their common patterns, the problems that typically arise, and the solutions that are often used.

This chapter covers the high-level architectural aspects of distributed systems. There are many ways of
looking at such systems, and many of these are dealt with.

Protocol Layers

Distributed systems are hard. There are multiple computers involved, which have to be connected in some
way. Programs have to be written to run on each computer in the system and they all have to cooperate to
get a distributed task done.

The common way to deal with complexity is to break it down into smaller and simpler parts. These
parts have their own structure, but they also have defined means of communicating with other related parts.
In distributed systems, the parts are called protocol layers and they have clearly defined functions. They
form a stack, with each layer communicating with the layer above and the layer below. The communication
between layers is defined by protocols.

Network communications requires protocols to cover high-level application communication all the way
down to wire communication and the complexity handled by encapsulation in protocol layers.

© Jan Newmarch 2017 1
J. Newmarch, Network Programming with Go, DOI 10.1007/978-1-4842-2692-6_1



CHAPTER 1 © ARCHITECTURE

ISO OSI Protocol

Although it was never properly implemented, the OSI (Open Systems Interconnect) protocol has been a
major influence in ways of talking about and influencing distributed systems design. It is commonly given as
shown in Figure 1-1.

Application Application
Presentation Presentation
Session Session
Transport Transport
Network Network
Data Link Data Link
Physical Physical

—_—

Figure 1-1. The Open Systems Interconnect protocol

OSI Layers

The function of each layer from bottom to top is as follows:

e  The Physical layer conveys the bit stream using electrical, optical, or radio
technologies.

e The Data link layer puts the information packets into network frames for
transmission across the physical layer, and back into information packets.

e The Network layer provides switching and routing technologies.

e The Transport layer provides transparent transfer of data between end systems and
is responsible for end-to-end error recovery and flow control.

e The Session layer establishes, manages, and terminates connections between
applications.

e The Presentation layer provides independence from differences in data
representation (e.g., encryption).

e The Application layer supports application and end-user processes.



CHAPTER 1 * ARCHITECTURE

TCP/IP Protocol

While the OSI model was being argued, debated, partly implemented, and fought over, the DARPA Internet
research project was busy building the TCP/IP protocols. These have been immensely successful and have
led to The Internet (with capitals). This is a much simpler stack, as shown in Figure 1-2.

application application 0SI 5-7
A A
Y Y
TCP ubpP 0SI 4
A A
Y Y
IP 0SI 3
A
Y
h/w interface 0SI1-2

Figure 1-2. The TCP/IP protocols

Some Alternative Protocols

Although it almost seems like it, the TCP/IP protocols are not the only ones in existence and in the long run
may not even be the most successful. Wikipedia’s list of network protocols (see https://en.wikipedia.
org/wiki/List_of network_protocols (0OSI_model)) hasa huge number more, at each of the ISO layers.
Many of these are obsolete or of little use, but due to advances in technology in all sorts of areas—such as the
Internet in Space and the Internet of Things—there will always be room for new protocols.

The focus in this book is on the TCP/IP (including UDP) layer, but you should be aware that there are
other ones.

Networking

A network is a communications system for connecting end systems called hosts. The mechanisms of
connection might be copper wire, Ethernet, fiber optic, or wireless, but that won’t concern us here. A local
area network (LAN) connects computers that are close together, typically belonging to a home, small
organization, or part of a larger organization.

A Wide Area Network (WAN) connects computers across a larger physical area, such as between cities.
There are other types as well, such as MANs (Metropolitan Area Network), PANs (Personal Area Networks),
and even BANs (Body Area Network).

An internet is a connection of two or more distinct networks, typically LANs or WANSs. An intranet is an
internet with all networks belonging to a single organization.

There are significant differences between an internet and an intranet. Typically, an intranet will be
under a single administrative control, which will impose a single set of coherent policies. An internet, on the
other hand, will not be under the control of a single body, and the controls exercised over different parts may
not even be compatible.


https://en.wikipedia.org/wiki/List_of_network_protocols_(OSI_model
https://en.wikipedia.org/wiki/List_of_network_protocols_(OSI_model

CHAPTER 1 © ARCHITECTURE

A trivial example of such differences is that an intranet will often be restricted to computers by a small
number of vendors running a standardized version of a particular operating system. On the other hand, an
internet will often have a smorgasbord of different computers and operating systems.

The techniques of this book are applicable to internets. They are also valid with intranets, but there you
will also find specialized, non-portable systems.

And then there is the “mother” of all internets: The Internet. This is just a very, very large internet that
connects us to Google, my computer to your computer, and so on.

Gateways

A gateway is a generic term for an entity used to connect two or more networks. A repeater operates at

the physical level and copies information from one subnet to another. A bridge operates at the data link
layer level and copies frames between networks. A router operates at the network level and not only moves
information between networks but also decides on the route.

Packet Encapsulation

The communication between layers in either the OSI or the TCP/IP stacks is done by sending packets of
data from one layer to the next, and then eventually across the network. Each layer has administrative
information that it has to keep about its own layer. It does this by adding header information to the packet it
receives from the layer above, as the packet passes down. On the receiving side, these headers are removed
as the packet moves up.

For example, the TFTP (Trivial File Transfer Protocol) moves files from one computer to another. It uses
the UDP protocol on top of the IP protocol, which may be sent over Ethernet. This looks like the diagram
shown in Figure 1-3.

data
TFTP
header data
UDP TFTP
header header data
IP UDP TFTP
header header header data
ethernet IP UDP TFTP data
header header header header

Figure 1-3. The TFTP (Trivial File Transfer Protocol)



CHAPTER 1 * ARCHITECTURE

The packet transmitted over Ethernet is of course the bottom one.

Connection Models

In order for two computers to communicate, they must set up a path whereby they can send at least one
message in a session. There are two major models for this:

e  Connection oriented

e Connectionless

Connection Oriented

A single connection is established for the session. Two-way communications flow along the connection. When
the session is over, the connection is broken. The analogy is to a phone conversation. An example is TCP.

Connectionless

In a connectionless system, messages are sent independent of each other. Ordinary mail is the analogy.
Connectionless messages may arrive out of order. An example is the IP protocol. UDP is a connectionless
protocol above IP and is often used as an alternative to TCP, as it is much lighter weight.
Connection-oriented transports may be established on top of connectionless ones—TCP over IP.
Connectionless transports may be established on top of connection-oriented ones—HTTP over TCP.
There can be variations on these. For example, a session might enforce messages arriving, but might not
guarantee that they arrive in the order sent. However, these two are the most common.

Communications Models

In a distributed system there will be many components running that have to communicate with each other.
There are two primary models for this, message passing and remote procedure calls.

Message Passing

Some non-procedural languages are built on the principle of message passing. Concurrent languages often
use such a mechanism, and the most well known example is probably the UNIX pipeline. The UNIX pipeline
is a pipeline of bytes, but this is not an inherent limitation: Microsoft’s PowerShell can send objects along
its pipelines, and concurrent languages such as Parlog can send arbitrary logic data structures in messages
between concurrent processes.

Message passing is a primitive mechanism for distributed systems. Set up a connection and pump some
data down it. At the other end, figure out what the message was and respond to it, possibly sending messages
back. This is illustrated in Figure 1-4.



CHAPTER 1 © ARCHITECTURE

Requestor Responder

Send(Msg, Responder)

Receive(Msg, Requestor)

Send(Reply, Requestor)

Receive(Reply, Responder)

Figure 1-4. The message passing communications model

Event-driven systems act in a similar manner. At a low level, node. js runs an event loop waiting for I/O
events, dispatching handlers for these events and responding. At a higher level, most user interface systems
use an event loop waiting for user input, while in the networking world, Ajax uses the XMLHttpRequest to
send and receive requests.

Remote Procedure Call

In any system, there is a transfer of information and flow control from one part of the system to another. In
procedural languages, this may consist of the procedure call, where information is placed on a call stack and
then control flow is transferred to another part of the program.

Even with procedure calls, there are variations. The code may be statically linked so that control
transfers from one part of the program’s executable code to another part. Due to the increasing use of library
routines, it has become commonplace to have such code in dynamic link libraries (DLLs), where control
transfers to an independent piece of code.

DLLs run in the same machine as the calling code. it is a simple (conceptual) step to transfer control to
a procedure running in a different machine. The mechanics of this are not so simple! However, this model
of control has given rise to the remote procedure call (RPC), which is discussed in much detail in a later
chapter. This is illustrated by Figure 1-5.



Client Process

main()

{

» 1pc(a, b,c)

— receive(c=2) \

send(x=a, y=b) —

\

N

Server Process

Ly receive(x, y)
A4

rpc(x, y, 2)
{

}
v
™ send(z)

Figure 1-5. The remote procedure call communications model

CHAPTER 1

ARCHITECTURE

There are many examples of this: some based on particular programming languages such as the Go
rpc package (discussed in Chapter 13) or RPC systems covering multiple languages such as SOAP and

Google’s grpc.

Distributed Computing Models

At the highest level, we could consider the equivalence or the non-equivalence of components of a
distributed system. The most common occurrence is an asymmetric one: a client sends requests to a server,
and the server responds. This is a client-server system.
If both components are equivalent, both able to initiate and to respond to messages, then we have a
peer-to-peer system. Note that this is a logical classification: one peer may be a 16,000 core supercomputer,

the other might be a mobile phone. But if both can act similarly, then they are peers.

These are illustrated as shown in Figure 1-6.

client-server

peer-to-peer

A
<«

A <>

A’

Figure 1-6. Client-sever versus peer-to-peer systems


http://dx.doi.org/10.1007/978-1-4842-2692-6_13

CHAPTER 1 © ARCHITECTURE
Client-Server System
Another view of a client-server system is shown in Figure 1-7.
User Client Server
request
Client | = | Server
process | «<——— | Process
response
System System
hardware hardware

Figure 1-7. The client-server system

This view may be held by a developer who needs to know the components of a system. It is also the view
that may be held by a user: a user of a browser knows it is running on her system but is communicating with

servers elsewhere.

Client-Server Application

Some applications may be seamlessly distributed, with the user unaware that it is distributed. Users will see

their view of the system, as shown in Figure 1-8.

Client Server
Clie Application
proc
System System
hardware hardware

Figure 1-8. The user’s view of the system



CHAPTER 1 * ARCHITECTURE

Server Distribution

A client-server system need not be simple. The basic model is a single client, single server system, as shown
in Figure 1-9.

Client Server

Figure 1-9. The single client, single server system

However, you can also have multiple clients, single server, as illustrated in Figure 1-10.

Client ——— > Master [¢<— Client

/N

Slave Slave

Figure 1-10. The multiple clients, single server system

In this system, the master receives requests and instead of handling them one at a time itself, it passes
them to other servers to handle. This is a common model when concurrent clients are possible.
There are also single client, multiple servers, as shown in Figure 1-11.

— > . >

Client Server Server

«— |

Figure 1-11. The single client, multiple servers system

This type of system occurs frequently when a server needs to act as a client to other servers, such as
a business logic server getting information from a database server. And of course, there could be multiple
clients with multiple servers.

Communication Flows

The previous diagrams have shown the connection views between high-level components of a system. Data
will flow between these components and it can do so in multiple ways, discussed in the following sections.



CHAPTER 1 © ARCHITECTURE

Synchronous Communication

In a synchronous communication, one party will send a message and block, waiting for a reply. This is often
the simplest model to implement and is just relies on blocking I/0. However, there may need to be a timeout
mechanism in case some error means that no reply will ever be sent.

Asynchronous Communication

In asynchronous communication, one party sends a message and instead of waiting for a reply carries
on with other work. When a reply eventually comes, it is handled. This may be in another thread or by
interrupting the current thread. Such applications are harder to build but are much more flexible to use.

Streaming Communication

In streaming communication, one party sends a continuous stream of messages. Online video is a good
example. The streaming may need to be handled in real time, may or may not tolerate losses, and can be
one-way or allow reverse communication as in control messages.

Publish/Subscribe

In pub/sub systems, parties subscribe to topics and others post to them. This can be on a small or massive
scale, as demonstrated by Twitter.

Component Distribution

A simple but effective way of decomposing many applications is to consider them as made up of three parts:
e  Presentation component
e  Application logic
e  Data access

The presentation component is responsible for interactions with the user, both displaying data and
gathering input. It may be a modern GUI interface with buttons, lists, menus, etc., or an older command-line
style interface, asking questions and getting answers. It could also encompass wider interaction styles, such
as the interaction with physical devices such as a cash register, ATM, etc. It could also cover the interaction
with a non-human user, as in a machine-to-machine system. The details are not important at this level.

The application logic is responsible for interpreting the users’ responses, for applying business rules, for
preparing queries, and for managing responses from the third component.

The data access component is responsible for storing and retrieving data. This will often be through a
database, but not necessarily.

10



CHAPTER 1 * ARCHITECTURE

Gartner Classification

Based on this threefold decomposition of applications, Gartner considered how the components might be

distributed in a client-server system. They came up with five models, shown in Figure 1-12.

presentation presentation presentation presentation presentation
logic . logic
logic logic presentation
data
logic data logic
data data data data
distributed remote distributed remote distributed
data data transaction presentation presentation

Figure 1-12. Gartner’s five models

Example: Distributed Database

e  Gartner classification: 1 (see Figure 1-13)

presentation

logic

data

data

Figure 1-13. Gartner example 1

Modern mobile phones make good examples of this. Due to limited memory, they may store a small
part of a database locally so that they can usually respond quickly. However, if data is required that is not
held locally, then a request may be made to a remote database for that additional data.

Google maps is another good example. All of the maps reside on Google’s servers. When one is
requested by a user, the “nearby” maps are also downloaded into a small database in the browser. When the
user moves the map a little bit, the extra bits required are already in the local store for quick response.

11



CHAPTER 1 © ARCHITECTURE

Example: Network File Service

Gartner classification 2 allows remote clients access to a shared file system, as shown in Figure 1-14.

presentation

logic

data

Figure 1-14. Gartner example 2

There are many examples of such systems: NFS, Microsoft shares, DCE, etc.

Example: Web

An example of Gartner classification 3 is the Web with Java applets or JavaScript, and CGI scripts or similar
(Ruby on Rails, etc.) on the server side. This is a distributed hypertext system, with many additional
mechanisms, as illustrated in Figure 1-15.

presentation

logic

logic

data

Figure 1-15. Gartner example 3

Example: Terminal Emulation

An example of Gartner classification 4 is terminal emulation. This allows a remote system to act as a normal
terminal on a local system, as shown in Figure 1-16.

presentation

logic
data

Figure 1-16. Gartner example 4

Telnet is the most common example of this.

12



Example: Secure Shell

The secure shell on UNIX allows you to connect to a remote system, run a command there, and display the
presentation locally. The presentation is prepared on the remote machine and displayed locally. Under
Windows, remote desktop behaves similarly. See Figure 1-17.

presentation

presentation

logic
data

Figure 1-17. Gartner example 4

Three-Tier Models

Of course, if you have two tiers, then you can have three, four, or more. Some of the three-tier possibilities are

shown in Figure 1-18.

CHAPTER 1

data data data data
logic logic
data
logic logic logic logic
data
logic logic

presentation presentation presentation presentation

Figure 1-18. Three-tier models

ARCHITECTURE

The modern Web is a good example of the rightmost of these. The backend is made up of a database,
often running stored procedures to hold some of the database logic. The middle tier is an HTTP server such
as Apache running PHP scripts (or Ruby on Rails, or JSP pages, etc.). This will manage some of the logic and
will have data such as HTML pages stored locally. The frontend is a browser to display the pages, under the
control of some JavaScript. In HTML 5, the frontend may also have a local database.

13



CHAPTER 1 © ARCHITECTURE

Fat versus Thin

A common labeling of components is “fat” or “thin”. Fat components take up lots of memory and do complex
processing. Thin components on the other hand, do little of either. There don't seem to be any “normal” size
components, only fat or thin!

Fatness or thinness is a relative concept. Browsers are often labeled as thin because all they do is display
web pages. However, Firefox on my Linux box takes nearly half a gigabyte of memory, which I don't regard as

small at all!

Middleware Model

Middleware is the “glue” connecting components of a distributed system. The middleware model is shown

in Figure 1-19.

Client processes

Client
middleware

Server processes

Logal Network
services services

0/S and h/w

Exchange
protocol

network protocol

Server

middleware

Local
services

Network
services

0/S and h/w

Figure 1-19. The middleware model

Components of middleware include the following:

e  The network services such as TCP/IP

e  The middleware layer is application-independent software using the network services

e Database access

e Managers of services such as identity

e  Security modules

Middleware Examples

Examples of middleware include the following:

e  Primitive services such as terminal emulators, file transfer, and e-mail

e  Basic services such as RPC

e Integrated services such as DCE (Distributed Computing Environment)

14




CHAPTER 1

e Distributed object services such as CORBA and OLE/ActiveX

e  Mobile object services such as RMI and Jini

e  The World Wide Web

Middleware Functions

The functions of middleware can include these:

e Initiation of processes at different computers

e  Session management

e Directory services to allow clients to locate servers

L4 Remote data access

e  Concurrency control to allow servers to handle multiple clients

e  Security and integrity

e  Monitoring

e Termination of processes, both local and remote

Continuum of Processing

The Gartner model is based on a breakdown of an application into the components of presentation,
application logic, and data handling. A finer grained breakdown is illustrated in Figure 1-20.

TYPE

Interactive
processing

ACTIVITY

Application __|

processing

Database _
processing

keyboard/mouse input

screen handling
graphics/sound/video control
command/menu/dialog interpretation
help processing

data input validation

application logic

error recovery

transaction construction
transaction validation
database access

data management and storage

DIVISION
(Client)

Host
application

Intelligent
terminal

GUI front ene
application

Client/server

__ transaction

processing

Networked SQL
data base

—— Filesharing

application
(Server)

Figure 1-20. Breakdown of an application into its components of presentation

ARCHITECTURE

15



CHAPTER 1 * ARCHITECTURE

Points of Failure

Distributed applications run in a complex environment. This makes them much more prone to failure than
standalone applications on a single computer. The points of failure include:

e (Client-side errors
e  The client side of the application could crash
e  The client system may have hardware problems

e  The client’s network card could fail

e  Network errors
e  Network contention could cause timeouts
e  There may be network address conflicts
e  Network elements such as routers could fail

¢  Transmission errors may lose messages

e  Client-server errors

e The client and server versions may be incompatible
e  Server errors

e  The server’s network card could fail

e  The server system may have hardware problems

e  The server software may crash

e The server’s database may become corrupted

Applications have to be designed with these possible failures in mind. Any action performed by one
component must be recoverable if failure occurs in some other part of the system. Techniques such as
transactions and continuous error checking need to be employed to avoid errors. It should be noted that while a
standalone application may have a lot of control over the errors that can occuy, that is not the case with distributed
systems. For example, the server has no control over network or client errors and can only be prepared to handle
them. In many cases, the cause of an error may not be available: did the client crash or did the network go down?

Acceptance Factors

The acceptance factors of a distributed system are similar to those of a standalone system. They include the
following:

e  Reliability

e  Performance

e  Responsiveness
e  Scalability

e  Capacity

e  Security

16



CHAPTER 1 * ARCHITECTURE

Currently users often tolerate worse behavior than from a standalone system. “Oh, the network is slow”
seems to be an acceptable excuse. Well, it isn’t really, and developers should not get into the mindset of
assuming that factors under their control can have ignorable effects.

Transparency

The “holy grails” of distributed systems are to provide the following:
e Access transparency
e  Location transparency
e  Migration transparency
e Replication transparency
e  Concurrency transparency
e  Scalability transparency
e  Performance transparency

e  Failure transparency

Access Transparency

The user should not know (or need to know) if access to all or parts of the system are local or remote.

Location Transparency

The location of a service should not matter.

Migration Transparency

If part of the system moves to another location, it should make no difference to a user.

Replication Transparency

It should not matter if one or multiple copies of the system are running.

Concurrency Transparency

There should be no interference between parts of the system running concurrently. For example, if I am
accessing the database, then you should not know about it.

Scalability Transparency

It shouldn’t matter if one or a million users are on the system.

17



CHAPTER 1 * ARCHITECTURE

Performance Transparency

Performance should not be affected by any of the system or network characteristics.

Failure Transparency

The system should not fail. If parts of it fail, the system should recover without the user knowing the failure
occurred.

Most of these transparency factors are observed more in the breach than in the observance. There are
notable cases where they are almost met. For example, when you connect to Google, you don’t know
(or care) where the servers are. Systems using Amazon Web Services are able to scale up or down in response
to demand. Netflix has what almost seems cruel testing strategies, regularly and deliberately breaking large
sections of its system to ensure that the whole still works.

Eight Fallacies of Distributed Computing

Sun Microsystems was a company that performed much of the early work in distributed systems, and even
had a mantra” “The network is the computer” Based on their experience over many years, a number of the
scientists at Sun came up with the following list of fallacies commonly assumed:

1. The network is reliable.
Latency is zero.
Bandwidth is infinite.

The network is secure.
Topology doesn't change.
There is one administrator.

Transport cost is zero.

© N o a s~ N

The network is homogeneous.

Fallacy: The Network Is Reliable

A paper by Bailis and Kingsbury entitled “The Network is Reliable” (see http://queue.acm.org/detail.
cfm?id=2655736) examines this fallacy. It finds many instances, such as Microsoft reporting on their
datacenters giving 5.2 device failures per day and 40.8 link failures per day.

The Chinese government uses “DNS poisoning” as one of its techniques to censor what it considers to
be undesirable web sites. China also runs one of the DNS root servers. In 2010, this server was misconfigured
and poisoned the DNS servers of many other countries. This made many non-Chinese web sites inaccessible
outside of China as well as inside (see http://www.pcworld.com/article/192658/article.html).

There are many other possible cases, such as DDS (distributed denial of service) attacks making web
sites unavailable. At Box Hill Institute, a contractor once put a back hoe through the fiber cable connecting
our DHCP server to the rest of the network, and so we went home for the rest of the day.

The network is not reliable. The implications are that any networked program must be prepared to deal
with failure. This led to the design choices of Java's RMI and most later frameworks, with application design
allowing for each network call possibly failing.

18


http://queue.acm.org/detail.cfm?id=2655736
http://queue.acm.org/detail.cfm?id=2655736
http://www.pcworld.com/article/192658/article.html

CHAPTER 1 * ARCHITECTURE

Fallacy: Latency Is Zero

Latency is the delay between sending a signal and getting a reply. In a single-process system, latency can
depend on the amount of computation performed in a function call before it can return, but on the network,
it is usually caused by simply having to traverse transports and be processed by all sorts of nodes such as
routers on the way.

The ping command is a good way of showing latency. A ping to Google’s Australia server takes about
20 milliseconds from Melbourne. A ping to Baidu's Chinese servers takes about 200 msecs'.

By contrast, Williams (see http://www.eetimes.com/document.asp?doc_id=1200916) discusses
the latency of the Linux scheduler and comes up with a mean latency of 88 microseconds. The latency of
network calls is thousands of times greater.

Fallacy: Bandwidth Is Infinite

Everyone who goes to make a cup of tea or coffee while a download takes place knows this is a fallacy. I run
my own web server, and on ADSL2 get an upload speed of 800 Kbps. I am unfortunate enough to have HFC
to my home, and the disastrous Australian National Broadband Network will upgrade this to 1000 Kbps
perhaps. In three years time, by 2020.

In the meantime, I use a local wireless connection to give me 75 Mbps up and down and it still isn’t fast
enough!

Fallacy: The Network Is Secure

There is a strong push by technology companies for strong crypto to be used for all network
communications, and an equally strong push by governments all over the world for weaker systems or for
backdoors “only for particular governments” This seems to apply equally well to demoncratic (my accidental
misspelling may be accurate!) as well as totalitarian governments.

In addition, of course, there are the general “baddies,” stealing and selling credit card numbers and
passwords by the millions.

Fallacy: Topology Doesn’t Change

Well it does. Generally this may affect latency and bandwidth. But the more hard-coding of routes, or of IP
addresses, the more prone to failure network applications will become.

Fallacy: There Is One Administrator

So what? No problem when everything is working fine. It's when it goes wrong that problems start—who to
blame, who to fix it?

'From my Melbourne, Australia location I see the ping time by

ping www.google.com.au

PING google.com.au (216.58.203.99) 56(84) bytes of data.

64 bytes from syd09s15-in-f3.1e100.net (216.58.203.99): icmp seq=1 tt1l=50 time=27.1 ms
64 bytes from syd09s15-in-f3.1e100.net (216.58.203.99): icmp_seq=2 ttl=50 time=19.7 ms

19


http://www.eetimes.com/document.asp?doc_id=1200916
http://www.google.com.au/

CHAPTER 1 * ARCHITECTURE

A major research topic for years was grid computing, which distributed computing tasks across typically
many university and research organizations to solve huge scientific problems. This had to resolve many
complex issues due to not only multiple administrators but also different access and security problems,
different maintenance schedules, and so on. The advent of cloud computing has solved many of these issues,
reducing the number of administrators and systems, so that cloud computing is more resilient than many
grid systems.

Fallacy: Transport Cost Is Zero

Once I've bought my PC, the transport cost from CPU to monitor is zero (well, minor electricity!). But we all
pay our IP providers money each month because they have to build server rooms, lay cables, and so on. It's
just a cost that has to be factored in.

Fallacy: The Network Is Homogeneous

The network isn't homogenous and neither are the endpoints—your and my PCs, iPads, Android devices,
and mobile phones for example. Let alone with the IoT bringing a myriad of connected devices into the
picture. There are continual attempts by vendors for product lockin, and continually restrictive work
environments trying to simplify their control systems, which succeed to some extent. But when they fail,
systems dependent on homogeneity fail too.

Conclusion

This chapter has tried to emphasize that distributed computing has its own unique features compared to
other styles of computing. Ignoring these features can only lead to failure of the resultant systems. There are
continual attempts to simplify the architectural model, with the latest being “microservices” and “serverless”
computing, but in the end the complexities still remain.

These have to be addressed using any programming language, and subsequent chapters consider how
Go manages them.

20



CHAPTER 2

Overview of the Go Language -

There is a continual stream of programming languages being invented. Some are highly specialized, others
are quite generic, while a third group is designed to fill broad but to some extent niche areas. Go was created
in 2007 and released publically in 2009. It was intended to be a systems programming language, augmenting
(or replacing) C++ and other statically compiled languages for production network and multiprocessing
systems.

Go joins a group of modern languages including Rust, Swift, Julia, and several others. Go’s particular
features are a simple syntax, fast compilation of multiple program units, a form of O/O programming based on
“structural” typing, and of course the benefit of lessons learned from large-scale programs in C, C++, and Java.

The language popularity listings in early 2017 such as TIOBE (see http://www.tiobe.com/tiobe-index/)
rank Go as currently the 14th most popular language. PYPL (see http://pypl.github.io/PYPL.html) places it
at number 19. This is alongside the 20+ year old languages of Java, Python, C, C++, JavaScript, and more.

This book assumes you are an experienced programmer with some or extensive knowledge of Go at
some level. This could be by an introductory text such as Introducing Go by Caleb Doxsey (O'Reilly) or The
Little Go Book by Karl Seguin, or by reading the more formal documentation such as The Go Programming
Language Specification at https://golang.org/ref/spec.

If you are an experienced programmer, you can skip this chapter. If not, this chapter points out the bits
of Go that are used in this book, but you should go elsewhere to get the necessary background. There are
several tutorials on the Go web site at http://golang.org:

e  Getting started

e  Atutorial for the Go programming language
e  Effective Go

¢  GolLang tutorials

Installing Go is best done from the Go programing language web site. At the time of writing, Go 1.8 has
just been released. Most of the examples in this book will run using Go 1.6, with a few pointers to Go 1.8. You
don’t actually need to install Go to test the programs: Go has a “playground” accessible from the main page
which can be used to run code. There are also several REPL (Read-Eval-Print Loop) environments, but these
are third party.

The book predominantly uses libraries and packages from the Go Standard Library (https://golang.
org/pkg/). The Go team also built a further set of packages as “sub-repositories,” which often do not have
the same support as the Standard Library. These are occasionally used. They will need to be installed using

u,n

the go get command. These have package names including an “x,” such as golang.org/x/net/ipva.

© Jan Newmarch 2017 21
J. Newmarch, Network Programming with Go, DOI 10.1007/978-1-4842-2692-6_2


http://www.tiobe.com/tiobe-index/
http://pypl.github.io/PYPL.html
https://golang.org/ref/spec
http://golang.org/
https://golang.org/pkg/
https://golang.org/pkg/

CHAPTER 2 © OVERVIEW OF THE GO LANGUAGE

Types

There are pre-defined types of Boolean, numeric, and string types. The numeric types include uint32,

int32, float32, and other sized numbers, as well as bytes (uint8) and runes. Runes and strings are dealt

with extensively in Chapter 7, as issues of internationalization can be significant in distributed programs.
There are more complex types, discussed next.

Slices and Arrays

Arrays are sequences of elements of a single type. Slices are segments of an underlying array. Slices are often
more convenient to deal with in Go. An array can be created statically:

var x [128]int
Or dynamically as a pointer:
xp := new([128]int)
A slice may be created along with its underlying array:
x := make([]int, 50, 100)
or
x := new([100]int)[0:50]

These last two are both of type [ ] int (as shown by reflect.TypeOf(x)).
Elements of an array or slice are accessed by their index:

x[1]

The indices are from 0 to len(x)-1.
A slice may be taken of an array or slice by using the lower (inclusive) and upper (exclusive) indices of
the array or slice:

[5]int{-1, -2, -3, -4, -5}
a[1:4] // s is now [-2, -3, -4]

Structures

Structures are similar to those in other languages. In Chapter 4, we consider serialization of data and use the
example of the following structs:

type Person struct {
Name Name
Email []Email

22


http://dx.doi.org/10.1007/978-1-4842-2692-6_7
http://dx.doi.org/10.1007/978-1-4842-2692-6_4

CHAPTER 2 © OVERVIEW OF THE GO LANGUAGE

type Name struct {
Family  string
Personal string

}

type Email struct {
Kind string
Address string

A compound struct can be declared as follows:

person := Person{
Name: Name{Family: "Newmarch", Personal: "Jan"},
Email: []Email{Email{Kind: "home",
Address: "jan@newmarch.name"},
Email{Kind: "work",
Address: "j.newmarch@boxhill.edu.au"}}}

The visibility of a structure’s fields is controlled by the case of the first character of the field’s name. If
itis uppercase, it is visible outside of the package it is declared in; if it is lowercase, it is not. In the previous
example, all the fields of all the structures are visible.

Pointers

Pointers behave similarly to pointers in other languages. The * operator dereferences a pointer, while the &
operator takes the address of a variable. Go simplifies the use of pointers so that most of the time you don’t
have to worry about them. The most we do in this book is check if a pointer value is nil, which will usually
signify an error, or conversely, if a possible error value is not nil, as described in the next section.

Functions

Functions are defined using a notation unique to Go. Why the familiar C syntax (or any other for that
matter) is not used is explained in the Go’s Declaration Syntax blog (see https://blog.golang.org/
gos-declaration-syntax). We leave it to the textbooks to explain the details of the syntax.

Every Go program must have a main function declared as follows:

func main() { ... }
We will frequently use a function checkError defined as follows:
func checkError(err error) {
if err != nil {

fmt.Fprintf(os.Stderr, "Fatal error: %s", err.Error())
os.Exit(1)

It takes one parameter and has no return value. It starts with a lowercase letter, so it is local to the
package in which it is declared.

23


mailto:jan@newmarch.name
mailto:j.newmarch@boxhill.edu.au
https://blog.golang.org/gos-declaration-syntax
https://blog.golang.org/gos-declaration-syntax

CHAPTER 2 © OVERVIEW OF THE GO LANGUAGE

Functions that return values will often return an error status as well as a substantive value, as in this
function from Chapter 3:

func readFully(conn net.Conn) ([]byte, error) { ... }

It takes net.Conn as a parameter and returns an array of bytes and an error status (nil if no error
occurred).
In this book, no more complex definitions than this are used.

Maps

A map is an unordered group of elements of one type, indexed by a key of another type. We do not use maps
much in this book, although one place is in Chapter 10, where the values of fields of an HTTP request may be
accessed through a map using the field name as key.

Methods

Go does not have classes in the sense that languages like Java do. However, types can have methods
associated with them, and these act similar to methods of more standard O/O languages.

We will make heavy use of the methods defined for the various networking types. This will happen from
the very first programs of the next chapter. For example, the type IPMask is defined as an array of bytes:

type IPMask []byte

A number of functions are defined on this type, such as:
func (m IPMask) Size() (ones, bits int)

A variable of type IPMask can have the method Size() applied, as follows:
var m IPMask
ones, bits := m.Size()

Learning how to use methods of the network-related types is a principal aim of this book.

We won'’t be defining our own methods much in this book. That’s because to illustrate the Go libraries
we don’t need many of our own complex types. A typical use will be pretty-printing a type like the Person
type defined previously:
func (p Person) String() string {

s := p.Name.Personal + " "
for , v := range p.Email {

s += "\n" + v.Kind +
}

return s

+ p.Name.Family

+ v.Address

There is more extensive use in Chapter 10, where a number of types and methods on these types, are
used. This is because we do need our own types when we are building more realistic systems.

24


http://dx.doi.org/10.1007/978-1-4842-2692-6_3
http://dx.doi.org/10.1007/978-1-4842-2692-6_10
http://dx.doi.org/10.1007/978-1-4842-2692-6_10

CHAPTER 2 © OVERVIEW OF THE GO LANGUAGE

Multi-Threading

Go has a simple mechanism for starting additional threads using the go command. In this book, that is all we
will need. Complex tasks such as synchronizing multiple threads are not needed here.

Packages

Go programs are built from linked packages. The packages used by any block of code have to be imported,
by an import statement at the head of the code file. Our own programs are declared to be in package main.
Apart from Chapter 10 again, nearly all of the programs in this book are in the main package.
Most packages are imported from the Standard Library. Some are imported from the sub-repositories
such as golang.org/x/net/ipva.

Type Conversion

The only one we need to worry about in this book is conversion of strings to byte arrays and vice versa.
To convert a string to a byte array, you do:

var b []byte
b = []byte("string")

To convert the whole of an array/slice to a string, use this:

var s string
s = string(b[:])

Statements

A function or method will be composed of a set of statements. These include assignments, if and switch
statements, for and while loops, and several others.

Apart from syntax, these have essentially the same meaning as in other programming languages. Nearly
all of the statements types will be used in later chapters.

GOPATH

There are two ways of organizing workspaces for projects: put every project in a shared workspace or have a
separate workspace for each project. My preference is for the second, whereas apparently the preference by
most Go programmers is for the first.

Either way is supported by the go tool by the environment variable GOPATH. This can be set to a list of
directories (a : separated list in Linux/UNIX a ; separated list on Windows, and a list on Plan9). It defaults to
the directory go in the user’s home directory if it’s unset.

For each directory in GOPATH, there will be three sub-directories—src, pkg, and bin. The directory
src will typically contain one directory per package name, and under that will be the source files for that
package. For example, in Chapter 10 we have a complete web server that uses packages we define of
dictionary and flashcards. The src/flashcards directory contains the file FlashCards. go.

25


http://dx.doi.org/10.1007/978-1-4842-2692-6_10
http://dx.doi.org/10.1007/978-1-4842-2692-6_10

CHAPTER 2 © OVERVIEW OF THE GO LANGUAGE

Running Go Programs

A Go program must have a file defining the package main. Most of the programs in this book are defined
in a single file, such as the program IP.go in Chapter 3. The simplest way to run it is from the directory
containing the file:

go run IP.go <IP address>
Alternatively, you can build an executable and then run it:

go build IP.go
./IP <IP address>

Programs that require packages other than the standard ones will require GOPATH to be set. For example,
the programs in Chapter 10 require (under Linux):

export GOPATH=$PWD
go run Server.go <port>

Standard Libraries

Go has an extensive set of Standard Libraries. Not as large as C, Java, or C++, for example, but those
languages have been around for a long time. The Go packages are documented at https://golang.org/pkg/
We will use these extensively in this book, particularly the net, crypto, and encoding packages.

In addition, there is a sub-repositories group of packages available from the same page. These are less
stable, but sometimes have useful packages, which we will use occasionally.

As well as these, there is a large set of user-contributed packages. They will not be used in the body
of this book which deals with principles, but in practice you may find many of them very useful. Some are
discussed in the concluding chapter.

Error Values

We discussed in the last chapter that a major difference between distributed and local programming is the
greatly increased likelihood of errors occurring during execution. A local function call may fail because of
simple programming errors such as divide by zero; more subtle errors may occur such as out-of-memory
errors, but their possible occurrences are generally predictable.

On the other hand, almost any function that utilizes the network can fail for reasons beyond the
application’s control. Networking programs are consequently riddled with error checks. This is tedious, but
necessary. Just like operating system kernel code is always error checking—errors need to be managed.

In this book, we generally exit a program with errors with appropriate messages on the client side, and
for servers, attempt to recover by dropping the offending connection and carrying on.

26


http://dx.doi.org/10.1007/978-1-4842-2692-6_3
http://dx.doi.org/10.1007/978-1-4842-2692-6_10
https://golang.org/pkg/

CHAPTER 2 © OVERVIEW OF THE GO LANGUAGE

Languages like C generally signal errors by returning “illegal” values such as negative integers, null
pointers, or by raising a signal. Languages like Java raise exceptions, which can lead to messy code and are
often slow. The standard Go functions give an error in an extra parameter return from a function call.

For example, in the next chapter, we discuss the function in the net package:
func ResolveIPAddr(net, addr string) (*IPAddr, error)

Typical code to manage this is:

addr, err := net.ResolveIPAddr("ip", name)
if err 1= nil {

}

Conclusion

This book assumes a knowledge of the Go programming language. This chapter just highlighted those parts
that will be needed for later chapters.

27



CHAPTER 3

Socket-Level Programming

There are many kinds of networks in the world. These range from the very old networks, such as serial links,
through to wide area networks made from copper and fiber, to wireless networks of various kinds, both for
computers and for telecommunications devices such as phones. These networks obviously differ at the
physical link layer, but in many cases they also differ at higher layers of the OSI stack.

Over the years there has been a convergence to the “Internet stack” of IP and TCP/UDP. For
example, Bluetooth defines physical layers and protocol layers, but on top of that is an IP stack so that
the same Internet programming techniques can be employed on many Bluetooth devices. Similarly,
developing Internet of Things (IoT) wireless technologies such as LoRaWAN and 6LoWPAN include an
IP stack.

While IP provides the networking layer 3 of the OSI stack, TCP and UDP deal with layer 4. These
are not the final word, even in the Internet world: SCTP (Stream Control Transmission Protocol)
has come from the telecommunications world to challenge both TCP and UDP, while to provide
Internet services in interplanetary space requires new, under development protocols such as DTN
(Delay Tolerant Networking). Nevertheless, IP, TCP, and UDP hold sway as principal networking
technologies now and at least for a considerable time into the future. Go has full support for this style
of programming

This chapter shows how to do TCP and UDP programming using Go, and how to use a raw socket for
other protocols.

The TCP/IP Stack

The OSI model was devised using a committee process wherein the standard was set up and then
implemented. Some parts of the OSI standard are obscure, some parts cannot easily be implemented, and
some parts have not been implemented.

The TCP/IP protocol was devised through a long-running DARPA project. This worked by
implementation followed by RFCs (Request for Comments). TCP/IP is the principal UNIX networking
protocol. TCP/IP stands for Transmission Control Protocol/Internet Protocol.

The TCP/IP stack is shorter than the OSI one, as shown in Figure 3-1.

© Jan Newmarch 2017 29
J. Newmarch, Network Programming with Go, DOI 10.1007/978-1-4842-2692-6_3




CHAPTER 3 * SOCKET-LEVEL PROGRAMMING

application application 0SI 5-7
A A
Y Y
TCP uDP 0SI 4
A A
Y Y
IP 0sI3
A
Y
h/w interface 0SI 1-2

Figure 3-1. TCP/IP stack versus the OSI

TCP is a connection-oriented protocol, whereas UDP (User Datagram Protocol) is a connectionless
protocol.

IP Datagrams

The IP layer provides a connectionless and unreliable delivery system. It considers each datagram
independently of the others. Any association between datagrams must be supplied by the higher layers.
The IP layer supplies a checksum that includes its own header. The header includes the source and
destination addresses.
The IP layer handles routing through an internet. It is also responsible for breaking up large datagrams
into smaller ones for transmission and reassembling them at the other end.

UDP

UDP is also connectionless and unreliable. What it adds to IP is a checksum for the contents of the datagram
and port numbers. These are used to give a client-server model, which you'll see later.

TCP

TCP supplies logic to give a reliable connection-oriented protocol above IP. It provides a virtual circuit that
two processes can use to communicate. It also uses port numbers to identify services on a host.

Internet Addresses

In order to use a service, you must be able to find it. The Internet uses an address scheme for devices such
as computers so that they can be located. This addressing scheme was originally devised when there were
only a handful of connected computers, and very generously allowed up to 2A32 addresses, using a

32-bit unsigned integer. These are the so-called IPv4 addresses. In recent years, the number of connected

30



CHAPTER 3 * SOCKET-LEVEL PROGRAMMING

(or atleast directly addressable) devices has threatened to exceed this number, and there is a
progressive transition to IPv6. The transition is patchy, and shown for example in the graph by Google
(https://www.google.com/intl/en/ipv6/statistics.html). Sadly—from my viewpoint—few of the
Australian IP providers support IPv6.

IPv4 Addresses

The address is a 32-bit integer that gives the IP address. This addresses down to a network interface card
on a single device. The address is usually written as four bytes in decimal with a dot . between them, as in
127.0.0.10r66.102.11.104.

The IP address of any device is generally composed of two parts: the address of the network in which
the device resides, and the address of the device within that network. Once upon a time, the split between
network address and internal address was simple and was based on the bytes used in the IP address.

e Inaclass A network, the first byte identifies the network, while the last three identify
the device. There are only 128 class A networks, owned by the very early players in
the Internet space such as IBM, the General Electric Company, and MIT".

e  (Class B networks use the first two bytes to identify the network and the last two to
identify devices within the subnet. This allows up to 2416 (65,536) devices on a subnet.

e (Class C networks use the first three bytes to identify the network and the last one to
identify devices within that network. This allows up to 28 (actually 254, not 256, as
the bottom and top addresses are reserved) devices.

This scheme doesn’t work well if you want, say, 400 computers on a network. 254 is too small, while
65,536 (-2) is too large. In binary arithmetic terms, you want about 512 (-2). This can be achieved by using a
23-bit network address and 9 bits for the device addresses. Similarly, if you want up to 1024 (-2) devices, you
use a 22-bit network address and a 10-bit device address.

Given an IP address of a device and knowing how many bits N are used for the network address gives
a relatively straightforward process for extracting the network address and the device address within that
network. Form a “network mask” which is a 32-bit binary number with all ones in the first N places and all
zeroes in the remaining ones. For example, if 16 bits are used for the network address, the maskis 1111111
1111111110000000000000000. It’s a little inconvenient using binary, so decimal bytes are usually used. The
netmask for 16-bit network addresses is 255.255.0.0, for 24-bit network addresses it is 255.255.255.0,
while for 23-bit addresses it would be 255.255.254.0 and for 22-bit addresses it would be 255.255.252.0.

Then to find the network of a device, bit-wise AND its IP address with the network mask, while
the device address within the subnet is found with bit-wise AND of the one’s complement of the mask
with the IP address. For example, the binary value of the IP address 192.168.1.3 is 1100000010101
0000000000100000011 (using the IP Address Subnet Mask Calculator). If a 16-bit netmask is used,
the network is 1100000010101000 0000000000000000 (or 192.168.0.0), while the device address is
0000000000000000 0000000100000011 (or 0.0.1.3).

IPv6 Addresses

The Internet has grown vastly beyond original expectations. The initially generous 32-bit addressing scheme
is on the verge of running out. There are unpleasant workarounds such as NAT (Network Address Translation)
addressing, but eventually we will have to switch to a wider address space. IPv6 uses 128-bit addresses. Even
bytes becomes cumbersome to express such addresses, so hexadecimal digits are used, grouped into four
digits and separated by a colon :. A typical address might be FE80:CD00:0000:0CDE:1257:0000:211E:729C.

'Recently MIT have returned their class A network to the pool. http://www.iana.org/assignments/ipv4-address-
space/ipv4-address-space.xml.

31


https://www.google.com/intl/en/ipv6/statistics.html
https://www.fukatani.org/~hi-lo/cgi-bin/fk-ip_calc.cgi
http://www.iana.org/assignments/ipv4-address-space/ipv4-address-space.xml
http://www.iana.org/assignments/ipv4-address-space/ipv4-address-space.xml

CHAPTER 3 * SOCKET-LEVEL PROGRAMMING

These addresses are not easy to remember! DNS will become even more important. There are tricks
to reducing some addresses, such as leading zeroes and repeated digits. For example, “localhost” is
0:0:0:0:0:0:0:1, which can be shortened to : : 1.

Each address is divided into three components: the first is the network address used for Internet
routing and is the first 64 bits of the address. The next part is 16 bits for the netmask. This is used to divide
the network into subnets. It can give anything from one subnet only (all zeroes) to 65,535 subnets (all 1s).
The last part is the device component, of 48 bits. The above address would be FE80:CD00:0000: 0CDE for the
network, 1257 for the subnet, and 0000:211E:729C for the device.

IP Address Type

Finally we can start using some of the Go language network packages. The package net defines many types,
functions, and methods of use in Go network programming. The type IP is defined as an array of bytes:

type IP []byte

There are several functions to manipulate a variable of type IP, but you are likely to use only some of
them in practice. For example, the function ParseIP(String) will take a dotted IPv4 address or a colon IPv6
address, while the IP method String() will return a string. Note that you may not get back what you started
with: the string form 0f 0:0:0:0:0:0:0:11s : :1.

A program that illustrates this process is IP.go:

/* IP
*/

package main

import (
"fmt"
"net"
n OS "

)

func main() {
if len(os.Args) != 2 {
fmt.Fprintf(os.Stderr, "Usage: %s ip-addr\n", os.Args[0])
os.Exit(1)
}

name := os.Args[1]

addr := net.ParseIP(name)
if addr == nil {
fmt.Println("Invalid address")
} else {
fmt.Println("The address is ", addr.String())
}

os.Exit(0)

32



CHAPTER 3 * SOCKET-LEVEL PROGRAMMING

This can be run for example as follows:
go run IP.go 127.0.0.1

Here is the response:
The address is 127.0.0.1

Or it could be run as:
go run IP.go 0:0:0:0:0:0:0:1

With this response:

The address is ::1

The IPMask Type

An IP address is typically divided into the components of a network address, a subnet, and a device portion.
The network address and subnet form a prefix to the device portion. The mask is an IP address of all binary
ones to match the prefix length, followed by all zeroes.

In order to handle masking operations, you use this type:
type IPMask []byte

The simplest function to create a netmask uses the CIDR notation of ones followed by zeroes up to the
number of bits:

func CIDRMask(ones, bits int) IPMask

A mask can then be used by a method of an IP address to find the network for that IP address:
func (ip IP) Mask(mask IPMask) IP

An example of the use of this is the following program called Mask. go:

/* Mask
*/

package main

import (
"fmt"
"net"
"osh
"strconv"
)

33



CHAPTER 3 * SOCKET-LEVEL PROGRAMMING

func main() {
if len(os.Args) != 4 {
fmt.Fprintf(os.Stderr, "Usage: %s dotted-ip-addr ones bits\n", os.Args[0])

os.Exit(1)
}
dotAddr := os.Args[1]
ones, _ := strconv.Atoi(os.Args[2])
bits,  := strconv.Atoi(os.Args[3])

addr := net.ParseIP(dotAddr)

if addr == nil {
fmt.Println("Invalid address")
os.Exit(1)

}

mask := net.CIDRMask(ones, bits)

network := addr.Mask(mask)

fmt.Println("Address is ", addr.String(),
"\nMask length is ", bits,
"\nLeading ones count is ", ones,
"\nMask is (hex) ", mask.String(),
"\nNetwork is ", network.String())

os.Exit(0)

This can be compiled to Mask and run as follows:
Mask <ip-address> <ones> <zeroes>
Or it can be run directly as follows:
go run Mask.go <ip-address> <ones> <zeroes>
For an IPv4 address of 103.232.159.187 on a /24 network, we get the following:

go run Mask.go 103.232.159.187 24 32
Address is 103.232.159.187

Mask length is 32

Leading ones count is 24

Mask is (hex) ffffffoo

Network is 103.232.159.0

For an IPv6 address fda3:97c:1eb:fff0:5444:903a:33f0:3a6b where the network component is
fda3:97c:1eb, the subnet is fff0, and the device part is 5444:903a:33f0:3a6b, we get the following:

go run Mask.go fda3:97c:1eb:fff0:5444:903a:33f0:3a6b 52 128
Address is fda3:97c:1eb:fff0:5444:903a:33f0:3a6b

Mask length is 128

Leading ones count is 52

Mask is (hex) Fffffffffffff0000000000000000000

Network is fda3:97c:1eb:f000::

34



CHAPTER 3 * SOCKET-LEVEL PROGRAMMING

IPv4 netmasks are often given in the 4-byte dotted notation such as 255.255.255.0 for a /24 network.
There is a function to create a mask from such a 4-byte IPv4 address:

func IPv4Mask(a, b, c, d byte) IPMask
Also, there is a method of IP that returns the default mask for IPv4:
func (ip IP) DefaultMask() IPMask

Note that the string form of a mask is a hex number, such as ffffff00 for a /24 mask.
The following program called IPv4Mask.go illustrates these:

/* IPv4Mask
*/

package main

import (
"fmt"
"net"
"os"
)

func main() {
if len(os.Args) != 2 {
fmt.Fprintf(os.Stderr, "Usage: %s dotted-ip-addr\n", os.Args[0])
os.Exit(1)
}
dotAddr := os.Args[1]

addr := net.ParseIP(dotAddr)

if addr == nil {
fmt.Println("Invalid address")
os.Exit(1)

}

mask := addr.DefaultMask()

network := addr.Mask(mask)

ones, bits := mask.Size()

fmt.Println("Address is ", addr.String(),
"\nDefault mask length is ", bits,
"\nLeading ones count is ", ones,
"\nMask is (hex) ", mask.String(),
"\nNetwork is ", network.String())

o0s.Exit(0)

For example, running this:

go run Mask.go 192.168.1.3

35



CHAPTER 3 * SOCKET-LEVEL PROGRAMMING

In my home network gives the following result:

Address is 192.168.1.3
Default mask length is 32
Leading ones count is 24
Mask is (hex) ffffffoo
Network is 192.168.1.0

The IPAddr Type

Many of the other functions and methods in the net package return a pointer to an IPAddr. This is simply a
structure containing an IP (and a zone which may be needed for IPv6 addresses).

type IPAddr {

IP IP
Zone string

A primary use of this type is to perform DNS lookups on IP hostnames. The zone may be needed for
ambiguous IPv6 addresses with multiple network interfaces.
func ResolveIPAddr(net, addr string) (*IPAddr, error)

Where net is one of ip, ip4, or ip6. This is shown in the program called ResolveIP.go:

/* ResolveIP
*/

package main

import (
II_Fmt n
n net n
"og™
)

func main() {
if len(os.Args) != 2 {
fmt.Fprintf(os.Stderr, "Usage: %s hostname\n", os.Args[0])
fmt.Println("Usage: ", os.Args[0], "hostname")
os.Exit(1)
}

name := os.Args[1]

addr, err := net.ResolveIPAddr("ip", name)

if err 1= nil {
fmt.Println("Resolution error", err.Error())
os.Exit(1)

36



CHAPTER 3 * SOCKET-LEVEL PROGRAMMING

fmt.Println("Resolved address is ", addr.String())
0s.Exit(0)
Running this:
go run ResolveIP.go www.google.com
Returns the following:
Resolved address is 172.217.25.164
If the first parameter to ResolveIPAddr () for the net type is given as ip6 instead of ip, I get this result:
Resolved address is 2404:6800:4006:801::2004

You may get different results, depending on where Google appears to live from your address’s
perspective.

Host Lookup

The ResolveIPAddr function will perform a DNS lookup on a hostname and return a single IP address. How
it does this depends on the operating system and its configuration. For example, a Linux/UNIX system may
use /etc/resolv.conf or /etc/hosts with the order of the search setin /etc/nsswitch.conf

Some hosts may have multiple IP addresses, usually from multiple network interface cards. They may
also have multiple hostnames, acting as aliases. The LookupHost function will return a slice of addresses.
func LookupHost(name string) (cname string, addrs []string, err error)

One of these addresses will be labeled as the “canonical” hostname. If you want to find the canonical
name, use this:

func LookupCNAME(name string) (cname string, err error).
For www. google. com, it prints both the IPv4 and IPv6 addresses:

172.217.25.164
2404:6800:4006:806: :2004

This is shown in the following program called LookupHost. go:

/* LookupHost
*/

package main

import (
||_Fmt n
n net n
"og™
)

37


http://www.google.com/

CHAPTER 3 * SOCKET-LEVEL PROGRAMMING

func main() {
if len(os.Args) != 2 {
fmt.Fprintf(os.Stderr, "Usage: %s hostname\n", os.Args[0])
os.Exit(1)

}

name := os.Args[1]

addrs, err := net.LookupHost(name)
if err 1= nil {
fmt.Println("Exrror: ", err.Error())

o0s.Exit(2)

}

for , s := range addrs {
fmt.Println(s)

}

os.Exit(0)

Note that this function returns strings, not IP address values. When it runs:
go run LookupHost.go
It prints something similar to this:

172.217.25.132
2404:6800:4006:807::2004

Services

Services run on host machines. They are typically long lived and are designed to wait for requests and
respond to them. There are many types of services, and there are many ways in which they can offer their
services to clients. The Internet world bases many of these services on two methods of communication—
TCP and UDP—although there are other communication protocols such as SCTP waiting in the wings to take
over. Many other types of service, such as peer-to-peer, remote procedure calls, communicating agents, and
many others, are built on top of TCP and UDP.

Ports

Services live on host machines. We can locate a host using a IP address. But on each computer may be many
services, and a simple way is needed to distinguish between them. The method used by TCP, UDP, SCTP,
and others is to use a port number. This is an unsigned integer between 1 and 65,535 and each service will
associate itself with one or more of these port numbers.

There are many “standard” ports. Telnet typically uses port 23 with the TCP protocol. DNS uses port 53,
either with TCP or with UDP. FTP uses ports 21 and 20, one for commands, the other for data transfer. HTTP
usually uses port 80, but it often uses ports 8000, 8080, and 8088, all with TCP. The X Window System often
takes ports 6000-6007, both on TCP and UDP.

On a UNIX system, the commonly used ports are listed in the file /etc/services. Go has a function to
look up ports on all systems:

func LookupPort(network, service string) (port int, err error)

38



CHAPTER 3 * SOCKET-LEVEL PROGRAMMING

The network argument is a string such as "tcp" or "udp", while the service is a string such as "telnet"

or "domain" (for DNS).
A program using this is LookupPort. go:

/* LookupPort
*/

package main

import (
"fmt"
n net n
n OS n
)

func main() {
if len(os.Args) != 3 {
fmt.Fprintf(os.Stderr,
"Usage: %s network-type service\n",
os.Args[0])
os.Exit(1)
}
networkType := os.Args[1]
service := os.Args[2]

port, err := net.LookupPort(networkType, service)
if err 1= nil {
fmt.Println("Error: ", err.Error())

0s.Exit(2)
}
fmt.Println("Service port ", port)
o0s.Exit(0)
}
For example, running LookupPort tcp telnet prints service port 23.
The TCPAddr Type

The TCPAddr type is a structure containing an IP, a port, and a zone. The zone is required to distinguish
between possible ambiguous IPv6 link-local and site-local addresses, as different network interface cards

(NICs) may have the same IPv6 address.

type TCPAddr struct {
Ip IP
Port int
Zone string



CHAPTER 3 * SOCKET-LEVEL PROGRAMMING

The function to create a TCPAddr is ResolveTCPAddr:
func ResolveTCPAddr(net, addr string) (*TCPAddr, error)

Where net is one of tcp, tcp4, or tcp6 and the addr is a string composed of a hostname or IP address,
followed by the port number after a :, such as www.google.com:80 or 127.0.0.1:22. If the address is an
IPv6 address, which already has colons in it, then the host part must be enclosed in square brackets, such
as [ ::1]:23. Another special case is often used for servers, where the host address is zero, so that the TCP
address is really just the port name, as in :80 for an HTTP server.

TCP Sockets

When you know how to reach a service via its network and port IDs, what then? If you are a client, you need
an API that will allow you to connect to a service and then to send messages to that service and read replies
back from the service.

If you are a server, you need to be able to bind to a port and listen at it. When a message comes in, you
need to be able to read it and write back to the client.

The net.TCPConn is the Go type that allows full duplex communication between the client and the
server. Two major methods of interest are as follows:

func (c *TCPConn) Write(b []byte) (n int, err error)
func (c *TCPConn) Read(b []byte) (n int, err error)

A TCPConn is used by both a client and a server to read and write messages.
Note that a TCPConn implements the io.Reader and io.Writer interfaces so that any method using a
reader or writer can be applied to a TCPConn.

TCP Client

Once a client has established a TCP address for a service, it “dials” the service. If successful, the dial
returns a TCPConn for communication. The client and the server exchange messages on this. Typically
a client writes a request to the server using the TCPConn and reads a response from the TCPConn. This
continues until either (or both) side closes the connection. A TCP connection is established by the
client using this function:

func DialTCP(net string, laddr, raddr *TCPAddr) (c *TCPConn, err error)

Where laddr is the local address, which is usually set to nil, and raddr is the remote address of
the service. The net string is one of "tcp4", "tcp6", or "tcp", depending on whether you want a TCPv4
connection, a TCPv6 connection, or don’t care.

A simple example can be provided by a client to a web (HTTP) server. We will deal in substantially more
detail with HTTP clients and servers in a later chapter, so for now we will keep it simple.

One of the possible messages that a client can send is the HEAD message. This queries a server for
information about the server and a document on that server. The server returns information, but does not

return the document itself. The request sent to query an HTTP server could be as follows:

"HEAD / HTTP/1.0\r\n\r\n"

40



CHAPTER 3 * SOCKET-LEVEL PROGRAMMING

This asks for information about the root document and the server. A typical response might be:

HTTP/1.1 200 OK

Server: nginx/1.10.0 (Ubuntu)

Date: Tue, 28 Feb 2017 10:33:01 GMT
Content-Type: text/html

Content-Length: 2152

Last-Modified: Mon, 13 Oct 2008 02:38:03 GMT
Connection: close

ETag: "48f2b48b-868"

Accept-Ranges: bytes

We first give the program (GetHeadInfo.go) to establish the connection for a TCP address, send the
request string, and then read and print the response. Once compiled, it can be invoked as follows:

GetHeadInfo www.google.com:80
The program is GetHeadInfo.go:
/* GetHeadInfo

*/
package main

import (
"fmt"
"io/ioutil”
"net"
"osh

)

func main() {
if len(os.Args) != 2 {
fmt.Fprintf(os.Stderr, "Usage: %s host:port ", os.Args[0])
os.Exit(1)

}

service := os.Args[1]

tcpAddr, err := net.ResolveTCPAddr("tcp4", service)
checkError(err)

conn, err := net.DialTCP("tcp", nil, tcpAddr)
checkError(err)

_, err = conn.Write([]byte("HEAD / HTTP/1.0\r\n\r\n"))
checkError(err)

result, err := ioutil.ReadAll(conn)
checkError(err)

41



CHAPTER 3 * SOCKET-LEVEL PROGRAMMING

fmt.Println(string(result))

o0s.Exit(0)

}

func checkError(err error) {
if err 1= nil {
fmt.Fprintf(os.Stderr, "Fatal error: %s", err.Error())
os.Exit(1)

The first point to note is the almost excessive amount of error checking that is going on. This is
normal for networking programs: the opportunities for failure are substantially greater than for standalone
programs. Hardware may fail on the client, the server, or on any of the routers and switches in the middle;
communication may be blocked by a firewall; timeouts may occur due to network load; the server may crash
while the client is talking to it. The following checks are performed:

1. There may be syntax errors in the address specified.

2. The attempt to connect to the remote service may fail. For example, the service
requested might not be running, or there may be no such host connected to the
network.

3. Although a connection has been established, writes to the service might fail if the
connection has died suddenly, or if the network times out.

4. Similarly, the reads might fail.

Reading from the server requires a comment. In this case, we read essentially a single response from
the server. This will be terminated by end-of-file on the connection. However, it may consist of several TCP
packets, so we need to keep reading until the end of file. The io/ioutil function ReadAll will look after
these issues and return the complete response. (Thanks to Roger Peppe on the golang-nuts mailing list.)

There are some language issues involved. First, most of the functions return a dual value, with the
possible error as second value. If no error occurs, then this will be nil. In C, the same behavior is gained by
special values such as NULL, or -1, or zero being returned—if that is possible. In Java, the same error checking
is managed by throwing and catching exceptions, which can make the code look very messy.

A Daytime Server

About the simplest service that we can build is the daytime service. This is a standard Internet service,
defined by RFC 867, with a default port of 13, on both TCP and UDP. Unfortunately, with the (justified)
increase in paranoia over security, hardly any sites run a daytime server any more. Never mind; we can
build our own. (For those interested, if you install inetd on your system, you usually get a daytime server
thrown in.)

A server registers itself on a port and listens on that port. Then it blocks on an “accept” operation,
waiting for clients to connect. When a client connects, the accept call returns, with a connection object.
The daytime service is very simple and just writes the current time to the client, closes the connection, and
resumes waiting for the next client.

The relevant calls are as follows:

func ListenTCP(net string, laddr *TCPAddr) (1 *TCPListener, err error)
func (1 *TCPListener) Accept() (c Conn, err error)

42



CHAPTER 3 * SOCKET-LEVEL PROGRAMMING

The argument net can be set to one of the strings "tcp"”, "tcp4", or "tcp6". The IP address should be
set to zero if you want to listen on all network interfaces, or to the IP address of a single network interface
if you only want to listen on that interface. If the port is set to zero, then the O/S will choose a port for you.
Otherwise, you can choose your own. Note that on a UNIX system, you cannot listen on a port below 1024
unless you are the system supervisor, root, and ports below 128 are standardized by the IETE The example
program chooses port 1200 for no particular reason. The TCP address is given as : 1200—all interfaces,
port 1200.

The program is DaytimeServer.go:

/* DaytimeServer
*/
package main

import (
"fmt"
"net"
IIOSII
|Itimell

)

func main() {

service := ":1200"
tcpAddr, err := net.ResolveTCPAddr("tcp", service)
checkError(err)

listener, err := net.ListenTCP("tcp", tcpAddr)
checkError(err)

for {
conn, err := listener.Accept()
if err 1= nil {
continue
}

daytime := time.Now().String()
conn.Write([]byte(daytime)) // don't care about return value
conn.Close() // we're finished with this client

}

func checkError(err error) {
if err 1= nil {
fmt.Fprintf(os.Stderr, "Fatal error: %s", err.Error())
os.Exit(1)

If you run this server, it will just wait there, not doing much. When a client connects to it, it will respond
by sending the daytime string to it and then return to waiting for the next client.

43



CHAPTER 3 * SOCKET-LEVEL PROGRAMMING

Note the changed error handling in the server as compared to a client. The server should run forever,
so that if any error occurs with a client, the server just ignores that client and carries on. A client could
otherwise try to mess up the connection with the server and bring it down!

We haven't built a client. That is easy, just changing the previous client to omit the initial write.
Alternatively, just open a telnet connection to that host:

telnet localhost 1200
This will produce output such as the following:

$telnet localhost 1200
Trying 127.0.0.1...
Connected to localhost.

Escape character is '~]'.
2017-01-02 20:13:21.934698384 +1100 AEDTConnection closed by foreign host.

Where 2017-01-02 20:13:21.934698384 +1100 AEDT is the output from the server.

Multi-Threaded Server

echo is another simple IETF service. The SimpleEchoServer.go program just reads what the client types and
sends it back:

/* SimpleEchoServer
*/
package main

import (
ll_Fmt n
n net n

0s

)

func main() {

service := ":1201"
tcpAddr, err := net.ResolveTCPAddr("tcp4”, service)
checkError(err)

listener, err := net.ListenTCP("tcp", tcpAddr)
checkError(err)

for {
conn, err := listener.Accept()
if err != nil {
continue
}

handleClient(conn)
conn.Close() // we're finished

44



CHAPTER 3 * SOCKET-LEVEL PROGRAMMING

func handleClient(conn net.Conn) {
var buf [512]byte

for {
n, err := conn.Read(buf[0:])
if err != nil {
return
}
fmt.Println(string(buf[o0:]))
_, err2 := conn.Write(buf[0:n])
if err2 != nil {
return
}
}

}

func checkError(err error) {
if err 1= nil {
fmt.Fprintf(os.Stderr, "Fatal error: %s", err.Error())
os.Exit(1)

While it works, there is a significant issue with this server: it is single-threaded. While a client has a
connection open to it, no other client can connect. Other clients are blocked and will probably time out.
Fortunately, this is easily fixed by making the client handler a go routine. We have also moved closing the
connection into the handler, as it now belongs there. The program is called ThreadedEchoServer. go:

/* ThreadedEchoServer
*/
package main

import (
||_Fmt n
n net n

0s

)

func main() {

service := ":1201"
tcpAddr, err := net.ResolveTCPAddr("tcp", service)
checkError(err)

listener, err := net.ListenTCP("tcp", tcpAddr)
checkError(err)

for {
conn, err := listener.Accept()
if err != nil {
continue
}

45



CHAPTER 3 * SOCKET-LEVEL PROGRAMMING

// run as a goroutine
go handleClient(conn)

}
func handleClient(conn net.Conn) {
// close connection on exit

defer conn.Close()

var buf [512]byte

for {
// read up to 512 bytes
n, err := conn.Read(buf[0:])
if err 1= nil {
return
}
fmt.Println(string(buf[o:]))
// write the n bytes read
_, err2 := conn.Write(buf[0:n])
if err2 != nil {
return
}
}

}

func checkError(err error) {
if err 1= nil {
fmt.Fprintf(os.Stderr, "Fatal error: %s", err.Error())
os.Exit(1)

Controlling TCP Connections

Timeout

The server may want to time out a client if it does not respond quickly enough, i.e., does not write a request to
the server in time. This should be a long period (several minutes), because the users may be taking their time.
Conversely, the client may want to time out the server (after a much shorter time). Both do this as follows:
func (c *IPConn) SetDeadline(t time.Time) error

This is done before any reads or writes on the socket.
Staying Alive
A client may want to stay connected to a server even if it has nothing to send. It can use this:
func (c *TCPConn) SetKeepAlive(keepalive bool) error

There are several other connection control methods, which are documented in the net package.

46



CHAPTER 3 * SOCKET-LEVEL PROGRAMMING

UDP Datagrams

In a connectionless protocol, each message contains information about its origin and destination. There is
no “session” established using a long-lived socket. UDP clients and servers make use of datagrams, which
are individual messages containing source and destination information. There is no state maintained by
these messages, unless the client or server does so. The messages are not guaranteed to arrive, or may arrive
out of order.

The most common situation for a client is to send a message and hope that a reply arrives. The most
common situation for a server is to receive a message and then send one or more replies back to that client.
In a peer-to-peer situation, though, the server may just forward messages to other peers.

The major difference between TCP and UDP handling for Go is how to deal with packets arriving from
multiple clients, without the cushion of a TCP session to manage things. The major calls needed are as follows:

func ResolveUDPAddr(net, addr string) (*UDPAddr, error)

func DialUDP(net string, laddr, raddr *UDPAddr) (c *UDPConn, err error)
func ListenUDP(net string, laddr *UDPAddr) (c *UDPConn, err error)

func (c *UDPConn) ReadFromUDP(b []byte) (n int, addr *UDPAddr, err error
func (c *UDPConn) WriteToUDP(b []byte, addr *UDPAddr) (n int, err error)

The client for a UDP time service doesn’t need to make many changes; just change the ...TCP... calls
to ...UDP... calls in the program UDPDaytimeClient.go:

/* UDPDaytimeClient
*/
package main

import (
"fmt"
n net n
n OS "

)

func main() {
if len(os.Args) != 2 {
fmt.Fprintf(os.Stderr, "Usage: %s host:port", os.Args[0])
os.Exit(1)

}

service := os.Args[1]

udpAddr, err := net.ResolveUDPAddr("udp", service)
checkError(err)

conn, err := net.DialUDP("udp", nil, udpAddr)
checkError(err)

_, err = conn.Write([]byte("anything"))
checkError(err)

47



CHAPTER 3 * SOCKET-LEVEL PROGRAMMING

var buf [512]byte
n, err := conn.Read(buf[0:])
checkError(err)

fmt.Println(string(buf[0:n]))

os.Exit(0)

}

func checkError(err error) {
if err 1= nil {
fmt.Fprintf(os.Stderr, "Fatal error
os.Exit(1)

, err.Error())

While the server has to make a few more changes in the program UDPDaytimeServer.go:

/* UDPDaytimeServer
*/
package main

import (
" _Fmt "
"net"
"os"
"time"

)

func main() {
service := ":1200"
udpAddr, err := net.ResolveUDPAddr("udp", service)
checkError(err)

conn, err := net.ListenUDP("udp", udpAddr)

checkError(err)
for {

handleClient(conn)
}

}
func handleClient(conn *net.UDPConn) {
var buf [512]byte
_, addr, err := conn.ReadFromUDP(buf[0:])

if err != nil {
return
}

48



CHAPTER 3 * SOCKET-LEVEL PROGRAMMING

daytime := time.Now().String()

conn.WriteToUDP([ Jbyte(daytime), addr)
}

func checkError(err error) {
if err 1= nil {
fmt.Fprintf(os.Stderr, "Fatal error ", err.Error())
os.Exit(1)

The server is run as follows:
go run UDPDaytimeServer.go
A client on the same host is run as follows:
go run UDPDaytimeClient.go localhost:1200
The output will be something like this:

2017-03-01 21:37:03.988603994 +1100 AEDT

Server Listening on Multiple Sockets

A server may be attempting to listen to multiple clients not just on one port, but on many. In this case, it has
to use some sort of polling mechanism between the ports.

In C, the select() call lets the kernel do this work. The call takes a number of file descriptors. The
process is suspended. When I/0 is ready on one of these, a wakeup is done, and the process can continue.
This is cheaper than busy polling. In Go, you can accomplish the same by using a different go routine for
each port. A thread will become runnable when the lower-level select () discovers that I/O is ready for this
thread.

The Conn, PacketConn, and Listener Types

So far we have differentiated between the API for TCP and the API for UDP, using for example DialTCP and

DialUDP returning a TCPConn and UDPConn, respectively. The Conn type is an interface and both TCPConn and

UDPConn implement this interface. To a large extent, you can deal with this interface rather than the two types.
Instead of separate dial functions for TCP and UDP, you can use a single function:

func Dial(net, laddr, raddr string) (c Conn, err error)
The net can be any of tcp, tcp4 (IPv4-only), tcpé (IPv6-only), udp, udp4 (IPv4-only), udp6 (IPv6-only),
ip, ip4 (IPv4-only), and ip6 IPv6-only) and several UNIX-specific ones such as unix for UNIX sockets. It will

return an appropriate implementation of the Conn interface. Note that this function takes a string rather than
address as the raddr argument, so that programs using this can avoid working out the address type first.

49



CHAPTER 3 * SOCKET-LEVEL PROGRAMMING

Using this function makes minor changes to the programs. For example, the earlier program to get HEAD

information from a web page can be rewritten as IPGetHeadInfo.go:

/* IPGetHeadInfo

*/

package main

import (

)

n bytes n
“'Fmt“

10
"net"

0s

func main() {

}

if len(os.Args) != 2 {
fmt.Fprintf(os.Stderr, "Usage: %s host:port", os.Args[0])
os.Exit(1)

}

service := os.Args[1]

conn, err := net.Dial("tcp", service)
checkError(err)

_, err = conn.Write([]byte("HEAD / HTTP/1.0\r\n\r\n"))
checkError(err)

result, err := readFully(conn)
checkError(err)

fmt.Println(string(result))

o0s.Exit(0)

func checkError(err error) {

}

if err 1= nil {
fmt.Fprintf(os.Stderr, "Fatal error: %s", err.Error())
os.Exit(1)

func readFully(conn net.Conn) ([]byte, error) {

50

defer conn.Close()

result := bytes.NewBuffer(nil)
var buf [512]byte



CHAPTER 3

for {
n, err := conn.Read(buf[0:])
result.Write(buf[0:n])
if err 1= nil {
if err == io.EOF {
break
}
return nil, err
}
}

return result.Bytes(), nil

This can be run on my own machine as follows:
go run IPGetHeadInfo.go localhost:80
It prints the following about the server running on port 80:

HTTP/1.1 200 OK

Server: nginx/1.10.0 (Ubuntu)

Date: Wed, 01 Mar 2017 10:42:39 GMT
Content-Type: text/html

Content-Length: 2152

Last-Modified: Mon, 13 Oct 2008 02:38:03 GMT
Connection: close

ETag: "48f2b48b-868"

Accept-Ranges: bytes

Writing a server can be similarly simplified using this function:

func Listen(net, laddr string) (1 Listener, err error)

SOCKET-LEVEL PROGRAMMING

This returns an object implementing the Listener interface. This interface has a method:

func (1 Listener) Accept() (c Conn, err error)

This will allow a server to be built. Using this, the multi-threaded Echo server given earlier becomes

ThreadedIPEchoServer.go:

/* ThreadedIPEchoServer
*/
package main

import (
ll_Fmt n
n net n
"og™
)

51



CHAPTER 3 * SOCKET-LEVEL PROGRAMMING

func main() {

service := ":1200"
listener, err := net.Listen("tcp", service)
checkError(err)

for {
conn, err := listener.Accept()
if err 1= nil {
continue
}

go handleClient(conn)

}

func handleClient(conn net.Conn) {
defer conn.Close()

var buf [512]byte

for {
n, err := conn.Read(buf[0:])
if err != nil {
return
}
_, err2 := conn.Write(buf[0:n])
if err2 1= nil {
return
}
}

}

func checkError(err error) {
if err != nil {
fmt.Fprintf(os.Stderr, "Fatal error: %s", err.Error())
os.Exit(1)

If you want to write a UDP server, there is an interface called PacketConn and a method to return an
implementation of this:

func ListenPacket(net, laddr string) (c PacketConn, err error)

This interface has the primary methods ReadFrom and WriteTo that handle packet reads and writes.

The Go net package recommends using these interface types rather than the concrete ones. But by
using them, you lose specific methods such as SetKeepAlive of TCPConn and SetReadBuffer of UDPConn,
unless you do a type cast. It is your choice.

Raw Sockets and the IPConn Type

This section covers advanced material that most programmers are unlikely to need. it deals with raw sockets,
which allow programmers to build their own IP protocols, or use protocols other than TCP or UDP.

52



CHAPTER 3 * SOCKET-LEVEL PROGRAMMING

TCP and UDP are not the only protocols built above the IP layer. The site http://www.iana.org/
assignments/protocol-numbers lists about 140 of them (this list is often available on UNIX systems in the
file /etc/protocols). TCP and UDP are only numbers 6 and 17, respectively, on this list.

Go allows you to build so-called raw sockets, to enable you to communicate using one of these other
protocols, or even to build your own. But it gives minimal support: it will connect hosts and write and read
packets between the hosts. In the next chapter, we look at designing and implementing your own protocols
above TCP; this section considers the same type of problem, but at the IP layer.

To keep things simple, we use almost the simplest possible example: how to send an IPv4 ping message
to a host. Ping uses the echo command from the ICMP protocol. This is a byte-oriented protocol, in which
the client sends a stream of bytes to another host, and the host replies. The format of the ICMP packet
payload is as follows:

The first byte is 8, standing for the echo message.

¢  The second byte is zero.

e  The third and fourth bytes are a checksum on the entire message.
e The fifth and sixth bytes are an arbitrary identifier.

e The seventh and eight bytes are an arbitrary sequence number.

e  Therest of the packet is user data.

The packet can be sent using the Conn.Write method, which prepares the packet with this payload. The
replies received include the IPv4 header, which takes 20 bytes. (See for example, the Wikipedia article on the
Internet Control Message Protocol, ICMP.)

The following program called Ping.go will prepare an IP connection, send a ping request to a host, and
get a reply. You may need root access in order to run it successfully:

/* Ping

*/

package main

import (
"bytes"
"fmt"
"io"
"net"
"os"

)

// change this to my own IP address or set to 0.0.0.0
const myIPAddress = "192.168.1.2"
const ipv4HeaderSize = 20

func main() {
if len(os.Args) != 2 {
fmt.Println("Usage: ", os.Args[0], "host")
os.Exit(1)

}

localAddr, err := net.ResolveIPAddr("ip4", myIPAddress)

53


http://www.iana.org/assignments/protocol-numbers
http://www.iana.org/assignments/protocol-numbers

CHAPTER 3 * SOCKET-LEVEL PROGRAMMING

54

if err 1= nil {
fmt.Println("Resolution error", err.Error())
os.Exit(1)

}

remoteAddr, err := net.ResolveIPAddr("ip4", os.Args[1])
if err 1= nil {
fmt.Println("Resolution error", err.Error())
os.Exit(1)

}

conn, err := net.DialIP("ip4:icmp", localAddr, remoteAddr)
checkError(err)

var msg [512]byte

msg[0] = 8 // echo

msg[1] = 0 // code O

msg[2] = 0 // checksum, fix later
msg[3] = 0 // checksum, fix later
msg[4] = 0 // identifier[o]

msg[5] = 13 // identifier[1] (arbitrary)

msg[6] = 0 // sequence[0]
msg[7] = 37 // sequence[1] (arbitrary)
len :=

(o)

// now fix checksum bytes
check := checkSum(msg[0:1en])
msg[2] = byte(check >> 8)
msg[3] = byte(check & 255)

// send the message
_, err = conn.Write(msg[o0:1len])
checkError(err)

fmt.Print("Message sent: ")
for n :=0; n < 8; n++ {

fmt.Print(" ", msg[n])
}

fmt.Println()

// receive a reply
size, err2 := conn.Read(msg[o0:])
checkError(err2)

fmt.Print("Message received:")

for n := ipv4HeaderSize; n < size; n++ {
fmt.Print(" ", msg[n])

}

fmt.Println()
o0s.Exit(0)



CHAPTER 3 * SOCKET-LEVEL PROGRAMMING

func checkSum(msg []byte) uint16 {
sum := 0

// assume even for now
for n := 0; n < len(msg); n += 2 {

sum += int(msg[n])*256 + int(msg[n+1])
}

sum = (sum >> 16) + (sum & Oxffff)
sum += (sum >> 16)

var answer uint16 = uint16(“sum)
return answer

}

func checkError(err error) {
if err 1= nil {
fmt.Fprintf(os.Stderr, "Fatal error: %s", err.Error())
os.Exit(1)

}

func readFully(conn net.Conn) ([]byte, error) {
defer conn.Close()

result := bytes.NewBuffer(nil)
var buf [512]byte

for {
n, err := conn.Read(buf[0:])
result.Write(buf[0:n])
if err != nil {
if err == io.EOF {
break
}
return nil, err
}
}

return result.Bytes(), nil
It is run using the destination address as an argument. The received message should differ from the sent
message in only the first type byte and the third and fourth checksum bytes, as follows:

Message sent: 8 0 247 205 0 13 0 37
Message received: 0 0 255 205 0 13 0 37

Conclusion

This chapter considered programming at the IP, TCP, and UDP levels. This is often necessary if you want to
implement your own protocol or build a client or server for an existing protocol.

55



CHAPTER 4

Data Serialization

A client and server need to exchange information via messages. TCP and UDP provide the transport
mechanisms to do this. The two processes also need to have a protocol in place so that message exchange
can take place meaningfully.

Messages are sent across the network as a sequence of bytes, which has no structure except as a linear
stream of bytes. We address the various possibilities for messages and the protocols that define them in the
next chapter. In this chapter, we concentrate on a component of messages—the data that is transferred.

A program will typically build complex data structures to hold the current program state. In conversing
with a remote client or service, the program will be attempting to transfer such data structures across the
network—that is, outside of the application’s own address space.

Structured Data

Programming languages use structured data such as the following:
e  Records/structures
e  Variantrecords
e  Array: Fixed size or varying
e  String: Fixed size or varying
e Tables: Arrays of records
e Non-linear structures such as
e  Circular linked lists
e  Binary trees
e  Objects with references to other objects

None of the IP, TCP, or UDP packets know the meaning of any of these data types. All that they can
contain is a sequence of bytes. Thus an application has to serialize any data into a stream of bytes in order
to write it, and deserialize the stream of bytes back into suitable data structures on reading it. These two
operations are known as marshalling and unmarshalling, respectively'.

'T’m treating serialization and marshalling as synonomous. There are a variety of opinions on this, some more
language-specific than others. See, for example, “What is the difference between Serialization and Marshaling?”

© Jan Newmarch 2017 57
J. Newmarch, Network Programming with Go, DOI 10.1007/978-1-4842-2692-6_4


http://stackoverflow.com/questions/770474/what-is-the-difference-between-serialization-and-marshaling

CHAPTER 4 ' DATA SERIALIZATION

For example, consider sending the following variable length table of two columns of variable length
strings:

fred programmer
liping analyst
sureerat manager

This could be done by in various ways. For example, suppose that it is known that the data will be an
unknown number of rows in a two-column table. Then a marshalled form could be:

3 // 3 rows, 2 columns assumed
4 fred // 4 char string,col 1

10 programmer // 10 char string,col 2

6 liping // 6 char string, col 1

7 analyst // 7 char string, col 2

8 sureerat // 8 char string, col 1

7 manager // 7 char string, col 2

Variable length things can alternatively have their length indicated by terminating them with an
“illegal” value, such as \0 for strings. The previous table could also be written with the number of rows again,
but each string terminated by \0 (the newlines are for readability, not part of the serialization):

3

fred\o
programmer\0
liping\o
analyst\o
sureerat\o
manager\0

Alternatively, it may be known that the data is a three-row fixed table of two columns of strings of length
8 and 10, respectively. Then a serialization of the table could be (again, the newlines are not part of the
serialization):

fred\0\0\0\0
programmer
liping\o\o
analyst\0o\o\o
sureerat
manager\0\0\0

Any of these formats is okay, but the message exchange protocol must specify which one is used or allow it
to be determined at runtime.

58



CHAPTER 4 '~ DATA SERIALIZATION

Mutual Agreement

The previous section gave an overview of the issue of data serialization. In practice, the details can be
considerably more complex. For example, consider the first possibility, marshalling a table into the stream:

3

4 fred

10 programmer
6 liping

7 analyst

8 sureerat

7 manager

Many questions arise. For example, how many rows are possible for the table—that is, how big an
integer do we need to describe the row size? If it is 255 or less, then a single byte will do, but if it is more,
then a short, integer, or long may be needed. A similar problem occurs for the length of each string. With the
characters themselves, to which character set do they belong? 7-bit ASCII? 16-bit Unicode? The question of
character sets is discussed at length in a later chapter.

This serialization is opaque or implicit. If data is marshalled using this format, then there is nothing in
the serialized data to say how it should be unmarshalled. The unmarshalling side has to know exactly how
the data is serialized in order to unmarshal it correctly. For example, if the number of rows is marshalled as
an 8-bit integer, but unmarshalled as a 16-bit integer, then an incorrect result will occur as the receiver tries
to unmarshal 3 and 4 as a 16-bit integer, and the receiving program will almost certainly fail later.

An early well-known serialization method is XDR (external data representation) used by Sun’s RPC,
later known as ONC (Open Network Computing). XDR is defined by RFC 1832 and it is instructive to see
how precise this specification is. Even so, XDR is inherently type-unsafe as serialized data contains no type
information. The correctness of its use in ONC is ensured primarily by compilers generating code for both
marshalling and unmarshalling.

Go contains no explicit support for marshalling or unmarshalling opaque serialized data. The RPC
package in Go does not use XDR, but instead uses Gob serialization, described later in this chapter.

Self-Describing Data

Self-describing data carries type information along with the data. For example, the previous data might get
encoded as follows:

table
uint8 3
uint 2
string
uint8 4
[Ibyte fred
string
uint8 10
[]byte programmer
string
uint8 6
[]byte liping

59



CHAPTER 4 ' DATA SERIALIZATION

string

uint8 7

[Ibyte analyst
string

uint8 8

[]byte sureerat
string

uint8 7

[ ]byte manager

Of course, a real encoding would not normally be as cumbersome and verbose as in the example:
small integers would be used as type markers and the whole data would be packed in as small a byte array
as possible. (XML provides a counter-example, though.) However, the principle is that the marshaller will
generate such type information in the serialized data. The unmarshaller will know the type-generation rules
and will be able to use them to reconstruct the correct data structure.

ASN.1

Abstract Syntax Notation One (ASN.1) was originally designed in 1984 for the telecommunications industry.
ASN.1 is a complex standard, and a subset of it is supported by Go in the package asn1. It builds self-
describing serialized data from complex data structures. Its primary use in current networking systems is as
the encoding for X.509 certificates, which are heavily used in authentication systems. The support in Go is
based on what is needed to read and write X.509 certificates.

Two functions allow us to marshal and unmarshal data:

func Marshal(val interface{}) ([]byte, error)
func Unmarshal(val interface{}, b []byte) (rest []byte, err error)

The first marshals a data value into a serialized byte array, and the second unmarshals it. However, the
first argument of type interface deserves further examination. Given a variable of a type, we can marshal it by
just passing its value. To unmarshal it, we need a variable of a named type that will match the serialized data.
The precise details of this are discussed later. But we also need to make sure that the variable is allocated to
memory for that type, so that there is actually existing memory for the unmarshalling to write values into.

We illustrate with an almost trivial example in ASN1.go of marshalling and unmarshalling an integer. We
can pass an integer value to marshal to return a byte array, and unmarshal the array into an integer variable,
as in this program:

/* ASN1
*/

package main

import (
"encoding/asn1"
"fmt"
|IOSII

)

60



CHAPTER 4 '~ DATA SERIALIZATION

func main() {
val := 13
fmt.Println("Before marshal/unmarshal: ", val)
mdata, err := asni.Marshal(val)
checkError(err)

var n int
_, errl := asnil.Unmarshal(mdata, 8&n)
checkError(erri)

fmt.Println("After marshal/unmarshal: ", n)

}

func checkError(err error) {
if err 1= nil {
fmt.Fprintf(os.Stderr, "Fatal error: %s", err.Error())
os.Exit(1)

The program is run as follows:
go run ASN1.go

The unmarshalled value, is of course, 13.

Once we move beyond this, things get harder. In order to manage more complex data types, we have to
look more closely at the data structures supported by ASN.1, and how ASN.1 support is done in Go.

Any serialization method will be able to handle certain data types and not handle some others. So in
order to determine the suitability of any serialization such as ASN.1, you have to look at the possible data
types supported versus those you want to use in your application. The following ASN.1 types are taken from
http://www.obj-sys.com/asn1tutorial/node4.html.

The simple types are as follows:

e  BOOLEAN: Two-state variable values

e  INTEGER: Models integer variable values

e  BIT STRING: Models binary data of arbitrary length

e OCTET STRING: Models binary data whose length is a multiple of eight
e  NULL: Indicates effective absence of a sequence element

e  OBJECT IDENTIFIER: Names information objects

e  REAL: Models real variable values

e  ENUMERATED: Models values of variables with at least three states

e  CHARACTER STRING: Models values that are strings of characters from a specified
character set

61


http://www.obj-sys.com/asn1tutorial/node4.html

CHAPTER 4 ' DATA SERIALIZATION

Character strings can be from certain character sets:
e  NumericString:0,1,2,3,4,5,6,7,8,9, and space

e PrintableString: Upper- and lowercase letters, digits, space, apostrophe, left/right
parenthesis, plus sign, comma, hyphen, full stop, solidus, colon, equal sign, and
question mark

o TeletexString (T61String): The Teletex character setin CCITT’s T61, space,
and delete

e VideotexString: The Videotex character set in CCITT’s T.100 and T.101, space,
and delete

e VisibleString (ISO646String): Printing character sets of international ASCII,
and space

e  IA5String: International Alphabet 5 (International ASCII)

e  GraphicString 25: All registered G sets, and space GraphicString

e  There are additional string types as well as these, notably UTF8String
And finally, there are the structured types:

e  SEQUENCE: Models an ordered collection of variables of different types

e  SEQUENCE OF: Models an ordered collection of variables of the same type

e  SET: Models an unordered collection of variables of different types

e  SET OF: Models an unordered collection of variables of the same type

e CHOICE: Specifies a collection of distinct types from which to choose one type

e  SELECTION: Selects a component type from a specified CHOICE type

e ANY: Enables an application to specify the type

Note ANY is a deprecated ASN.1 Structured Type. It has been replaced with X.680 Open Type.

Not all of these are supported by Go. Not all possible values are supported by Go. The rules, as given in
the Go asn1 package documentation, are as follows:

e An ASN.1 INTEGER can be written to an int or int64. If the encoded value does not fit
in the Go type, Unmarshal returns a parse error.

e AnASN.1BIT STRING can be written to a BitString.

e  An ASN.10CTET STRING can be written to a [ ]byte.

e AnASN.10BJECT IDENTIFIER can be written to an ObjectIdentifier.
e An ASN.1 ENUMERATED can be written to an Enumerated.

e An ASN.1 UTCTIME or GENERALIZEDTIME can be written to a *time.Time.

e AnASN.1 PrintableString or IA5String can be written to a string.

62



CHAPTER 4 '~ DATA SERIALIZATION

e  Any of the above ASN.1 values can be written to an interface{}. The value stored in
the interface has the corresponding Go type. For integers, that type is int64.

e  An ASN.1 SEQUENCE OF xor SET OF x can be written to a slice if an x can be written
to the slice’s element type.

e An ASN.1 SEQUENCE or SET can be written to a Go struct if each of the elements in the
sequence can be written to the corresponding element in the struct.

Go places real restrictions on ASN.1. For example, ASN.1 allows integers of any size, while the Go
implementation will only allow up to signed 64-bit integers. On the other hand, Go distinguishes between
signed and unsigned types, while ASN.1 doesn’t. So for example, transmitting a value of uint64 may fail if it
is too large for int64.

In a similar vein, ASN.1 allows several different character sets, while the Go package states that it only
supports PrintableString and IA5String (ASCII). ASN.1 now has Unicode UTF8 string type, and this is
supported by Go, but not currently documented.

We have seen that a value such as an integer can be easily marshalled and unmarshalled. Other basic
types such as Booleans and reals can be similarly dealt with. Strings composed entirely of ASCII characters
or UTF8 characters can be marshalled and unmarshalled. This code works as long as the string is composed
only of ASCII or UTF8 characters:

s := "hello"
mdata, _ := asni.Marshal(s)

var newstr string
asnil.Unmarshal(mdata, &newstr)

ASN.1 also includes some “useful types” not in this list, such as UTC time. Go supports this UTC time
type. This means that you can pass time values in a way that is not possible for other data values. ASN.1
does not support pointers, but Go has special code to manage pointers to time values. The function Now()
returns *time.Time. The special code marshals this, and it can be unmarshalled into a pointer variable to a
time.Time object. Thus this code works:

t := time.Now()
mdata, err := asni.Marshal(t)

var newtime = new(time.Time)
_, errl := asnl.Unmarshal(newtime, mdata)

Both LocalTime and new handle pointers to a *time.Time, and Go looks after this special case. The
program ASN1basic.go illustrates these:

/* ASN.1 Basic
*/

package main

import (
"encoding/asn1"
n 'Fmt n

0s
"time"

63



CHAPTER 4 ' DATA SERIALIZATION

func main() {

t := time.Now()
fmt.Println("Before marshalling: ", t.String())

mdata, err := asni.Marshal(t)
checkError(err)
fmt.Println("Marshalled ok")

var newtime = new(time.Time)
_, errl := asni.Unmarshal(mdata, newtime)
checkError(err1)

fmt.Println("After marshal/unmarshal: ", newtime.String())

s := "hello \uooObc"
fmt.Println("Before marshalling:

> S)
mdata2, err := asni.Marshal(s)

checkError(err)
fmt.Println("Marshalled ok")

var newstr string
_, err2 := asnl.Unmarshal(mdata2, 8newstr)
checkError(err2)

fmt.Println("After marshal/unmarshal: ", newstr)

}

func checkError(err error) {
if err 1= nil {
fmt.Println("Fatal error ", err.Error())
os.Exit(1)

When it runs as follows:
go run ASNibasic.go
It prints something similar to this:

Before marshalling: 2017-03-02 22:31:16.878943019 +1100 AEDT
Marshalled ok

After marshal/unmarshal: 2017-03-02 22:31:16 +1100 AEDT
Before marshalling: hello %

Marshalled ok

After marshal/unmarshal: hello /%

64



CHAPTER 4 '~ DATA SERIALIZATION

In general, you will probably want to marshal and unmarshal structures. Apart from the special case
of time, Go will happily deal with structures, but not with pointers to structures. Operations such as new
create pointers, so you have to dereference them before marshalling/unmarshalling them. Go normally
dereferences pointers for you when needed, but not in this case, so you have to dereference them explicitly.
These both work for a type T:

// using variables

var t1 T

t1=...

mdatal, _ := asni.Marshal(t)

var newT1 T
asnil.Unmarshal(&newT1, mdatal)

// using pointers

var t2 = new(T)

*t2 = ...

mdata2, _ := asnl.Marshal(*t2)

var newT2 = new(T)
asnil.Unmarshal(newT2, mdata2)

Any suitable mix of pointers and variables will work as well. We don’t give a full example here, as it
should be straightforward enough to apply the rules.

The fields of a structure must all be exportable, that is, field names must begin with an uppercase letter.
Go uses the reflect package to marshal/unmarshal structures, so it must be able to examine all fields. This
type cannot be marshalled:

type T struct {

Field1 int
field2 int // not exportable

ASN.1 only deals with the data types. It does not consider the names of structure fields. So the following
type T1 can be marshalled/unmarshalled into type T2 as the corresponding fields are the same types:

type T1 struct {

F1 int
F2 string
}
type T2 struct {
FF1 int
FF2 string
}

Not only must the types of each field match, but the number must match as well. These two types
don’t work:

type T1 struct {
F1 int
}

65



CHAPTER 4 ' DATA SERIALIZATION

type T2 struct {
F1 int
F2 string // too many fields

We don't give full code examples for these since we won'’t be using these features.

ASN.1 illustrates many of the choices that can be made by those implementing a serialization method.
Pointers could have been given special treatment by using more code, such as the enforcement of name
matches. The order and number of strings will depend on the details of the serialization specification,
the flexibility it allows, and the coding effort needed to exploit that flexibility. It is worth noting that other
serialization formats will make different choices, and implementations in different languages will also
enforce different rules.

ASN.1 Daytime Client and Server

Now (finally) let’s turn to using ASN.1 to transport data across the network.
We can write a TCP server that delivers the current time as an ASN.1 Time type, using the techniques of
the last chapter. A server is ASNDaytimeServer.go:

/* ASN1 DaytimeServer
*/
package main

import (
"encoding/asn1"
"fmt"
"net"Calibri
"os"
"time"

)

func main() {

service := ":1200"
tcpAddr, err := net.ResolveTCPAddr("tcp", service)
checkError(err)

listener, err := net.ListenTCP("tcp", tcpAddr)
checkError(err)

for {
conn, err := listener.Accept()
if err 1= nil {
continue
}

daytime := time.Now()
// Ignore return network errors.
mdata, _ := asnil.Marshal(daytime)

66



conn.Write(mdata)
conn.Close() // we're finished

}

func checkError(err error) {
if err 1= nil {

CHAPTER 4 '~ DATA SERIALIZATION

fmt.Fprintf(os.Stderr, "Fatal error: %s", err.Error())

os.Exit(1)

This can be compiled to an executable such as ASN1DaytimeServer and run with no arguments. It will

wait for connections and then send the time as an ASN.1 string to the client.
A client is ASNDaytimeClient.go:

/* ASN.1 DaytimeClient
*/
package main

import (

"bytes"
"encoding/asn1"
"fmt"

"io"

"net"

llosll

"time"

)

func main() {
if len(os.Args) != 2 {

fmt.Fprintf(os.Stderr, "Usage: %s host:port", os.Args[0])

os.Exit(1)

}

service := os.Args[1]

conn, err := net.Dial("tcp", service)
checkError(err)

result, err := readFully(conn)
checkError(err)

var newtime time.Time
_, errl := asni.Unmarshal(result, &newtime)
checkError(erri)

fmt.Println("After marshal/unmarshal: ", newtime.String())

0s.Exit(0)

67



CHAPTER 4 ' DATA SERIALIZATION

func checkError(err error) {
if err 1= nil {
fmt.Fprintf(os.Stderr, "Fatal error: %s", err.Error())
os.Exit(1)

}

func readFully(conn net.Conn) ([]byte, error) {
defer conn.Close()

result := bytes.NewBuffer(nil)
var buf [512]byte

for {
n, err := conn.Read(buf[0:])
result.Write(buf[0:n])
if err != nil {
if err == io.EOF {
break
}
return nil, err
}
}

return result.Bytes(), nil

This connects to the service given in a form such as localhost:1200, reads the TCP packet, and
decodes the ASN.1 content back into a string, which it prints.

Note that neither of these two—the client or the server—are compatible with the text-based clients and
servers of the last chapter. This client and server are exchanging ASN.1 encoded data values, not textual strings.

JSON

JSON stands for JavaScript Object Notation. It was designed to be a lightweight means of passing data
between JavaScript systems. It uses a text-based format and is sufficiently general that it has become used as
a general-purpose serialization method for many programming languages.

JSON serializes objects, arrays, and basic values. The basic values include string, number, Boolean
values, and the null value. Arrays are a comma-separated list of values that can represent arrays, vectors,
lists, or sequences of various programming languages. They are delimited by square brackets [ ... ].
Objects are represented by a list of “field: value” pairs enclosed in curly braces{ ... }.

For example, the table of employees given earlier could be written as an array of employee objects:

[

{"Name": "fred", "Occupation": "programmer"},
{"Name": "liping", "Occupation": "analyst"},
{"Name": "sureerat", "Occupation": "manager"}

]

There is no special support for complex data types such as dates, no distinction between number types,
no recursive types, etc. JSON is a very simple language, but nevertheless can be quite useful. Its text-based
format makes it easy to use and debug, even though it has the overheads of string handling.

68



CHAPTER 4 '~ DATA SERIALIZATION

From the Go JSON package specification, marshalling uses the following type-dependent default

encodings:
¢ Boolean values encode as JSON Booleans.
¢  Floating point and integer values encode as JSON numbers.

e  String values encode as JSON strings, with each invalid UTF-8 sequence replaced by
the encoding of the Unicode replacement character U+FFFD.

e Array and slice values encode as JSON arrays, except that [ ]byte encodes as a
Base64-encoded string.

e  Struct values encode as JSON objects. Each struct field becomes a member of
the object. By default the object’s key name is the struct field name converted to
lowercase. If the struct field has a tag, that tag will be used as the name instead.

e  Map values encode as JSON objects. The map’s key type must be string; the object
keys are used directly as map keys.

e  Pointer values encode as the value pointed to. (Note: This allows trees but not
graphs!). A nil pointer encodes as the null JSON object.

e Interface values encode as the value contained in the interface. A nil interface value
encodes as the null JSON object.

e Channel, complex, and function values cannot be encoded in JSON. Attempting to
encode such a value causes Marshal to return InvalidTypeError.

e JSON cannot represent cyclic data structures and Marshal does not handle them.
Passing cyclic structures to Marshal will result in an infinite recursion.

A program to store JSON serialized data into the file person.json is SaveJSON.go:

/* SaveJSON
*/

package main

import (
"encoding/json"
"fmt"
IIOSII

)

type Person struct {
Name Name
Email []Email

}

type Name struct {
Family  string
Personal string

69



CHAPTER 4 ' DATA SERIALIZATION

type Email struct {
Kind string
Address string

}

func main() {
person := Person{
Name: Name{Family: "Newmarch", Personal: "Jan"},
Email: []Email{Email{Kind: "home", Address: "jan@newmarch.name"},
Email{Kind: "work", Address: "j.newmarch@boxhill.edu.au"}}}

saveJSON("person.json", person)

}

func savelSON(fileName string, key interface{}) {
outFile, err := os.Create(fileName)
checkError(err)
encoder := json.NewEncoder(outFile)
err = encoder.Encode(key)
checkError(err)
outFile.Close()

}

func checkError(err error) {
if err 1= nil {
fmt.Println("Fatal error ", err.Error())
os.Exit(1)

To load it back into memory, use LoadJSON. go:

/* LoadJSON
*/

package main

import (
"encoding/json"
ll_Fmt n

0s

)

type Person struct {
Name Name
Email []Email

70



type Name struct {
Family  string
Personal string

type Email struct {
Kind string
Address string

func (p Person) String() string {
s := p.Name.Personal + " "
for _, v := range p.Email {
s += "\n" + v.Kind +
}

return s

+ p.Name.Family

+ v.Address

func main() {
var person Person
loadJSON("person.json", &person)

fmt.Println("Person", person.String())

func loadJSON(fileName string, key interface{}) {
inFile, err := os.Open(fileName)
checkError(err)
decoder := json.NewDecoder(inFile)
err = decoder.Decode(key)
checkError(err)
inFile.Close()

}

func checkError(err error) {
if err 1= nil {
fmt.Println("Fatal error ", err.Error())
os.Exit(1)

The serialized form is (formatted nicely):

{"Name" : {"Family": "Newmarch",
"Personal”:"Jan"},

"Email":[{"Kind":"home","Address":"jan@newmarch.name"},

]

{"Kind": "work", "Address":"j.newmarch@boxhill.edu.au"}

CHAPTER 4 '~ DATA SERIALIZATION

71



CHAPTER 4 ' DATA SERIALIZATION

A Client and Server

A client to send a person’s data and read it back 10 times is JSONEchoClient.go:

/* JSON EchoClient
*/
package main

import (
"bytes"
"encoding/json"
"fmt"
llioll
"net"

0s

type Person struct {
Name Name
Email []Email

type Name struct {
Family string
Personal string

type Email struct {
Kind string
Address string

func (p Person) String() string {
s := p.Name.Personal + " "
for , v := range p.Email {
s += "\n" + v.Kind +
}

return s

+ p.Name.Family

+ v.Address

func main() {
person := Person{
Name: Name{Family: "Newmarch", Personal: "Jan"},
Email: []Email{Email{Kind: "home", Address: "jan@newmarch.name"},
Email{Kind: "work", Address: "j.newmarch@boxhill.edu.au"}}}

if len(os.Args) != 2 {
fmt.Println("Usage: ", os.Args[0], "host:port")
os.Exit(1)

}

service := os.Args[1]

72



CHAPTER 4 '~ DATA SERIALIZATION

conn, err := net.Dial("tcp", service)
checkError(err)

encoder := json.NewEncoder(conn)
decoder := json.NewDecoder(conn)

for n := 0; n < 10; n++ {
encoder.Encode(person)
var newPerson Person
decoder .Decode(8newPerson)
fmt.Println(newPerson.String())

}

0s.Exit(0)

}

func checkError(err error) {
if err 1= nil {
fmt.Println("Fatal error ", err.Error())
os.Exit(1)

}

func readFully(conn net.Conn) ([]byte, error) {
defer conn.Close()

result := bytes.NewBuffer(nil)
var buf [512]byte

for {
n, err := conn.Read(buf[0:])
result.Write(buf[0:n])
if err 1= nil {
if err == io.EOF {
break
}
return nil, err
}
}

return result.Bytes(), nil

The corresponding server is JSONEchoServer . go:
/* JSON EchoServer

*/
package main

73



CHAPTER 4 ' DATA SERIALIZATION

import (
"encoding/json"
"fmt"
"net"
"os"

)

type Person struct {
Name Name

Email []Email

type Name struct {
Family  string
Personal string

type Email struct {
Kind string
Address string

func (p Person) String() string {
s := p.Name.Personal + " "
for , v := range p.Email {
s += "\n" + v.Kind +
}

return s

+ p.Name.Family

+ v.Address

func main() {

service := "0.0.0.0:1200"
tcpAddr, err := net.ResolveTCPAddr("tcp", service)
checkError(err)

listener, err := net.ListenTCP("tcp", tcpAddr)
checkError(err)

for {
conn, err := listener.Accept()
if err 1= nil {
continue
}

encoder := json.NewEncoder(conn)
decoder := json.NewDecoder(conn)

for n := 0; n < 10; n++ {
var person Person
decoder.Decode(&person)

74



CHAPTER 4 '~ DATA SERIALIZATION

fmt.Println(person.String())
encoder.Encode(person)

}

conn.Close() // we're finished

}

func checkError(err error) {
if err 1= nil {
fmt.Println("Fatal error ", err.Error())
os.Exit(1)

The Gob Package

Gob is a serialization technique specific to Go. It is designed to encode Go data types specifically and does
not at present have substantial support for or by any other languages. It supports all Go data types except for
channels, functions, and interfaces. It supports integers of all types and sizes, strings and Booleans, structs,
arrays, and slices. At present, it has some problems with circular structures such as rings, but that will
improve over time.

Gob encodes type information into its serialized forms. This is far more extensive than the type
information in say an X.509 serialization, but far more efficient than the type information contained in an
XML document. Type information is only included once for each piece of data, but includes, for example,
the names of struct fields.

This inclusion of type information makes Gob marshalling and unmarshalling fairly robust to changes
or differences between the marshaller and unmarshaller. For example, this struct:

struct T {
a int
b int

Can be marshalled and then unmarshalled into a different struct, where the order of fields has changed:

struct T {
b int
a int

It can also cope with missing fields (the values are ignored) or extra fields (the fields are left
unchanged). It can cope with pointer types, so that the previous struct could be unmarshalled into this one:
struct T {

*a int
**kph int

75



CHAPTER 4 ' DATA SERIALIZATION

To some extent it can cope with type coercions so that an int field can be broadened into an int64, but
not incompatible types such as int and uint.

To use Gob to marshal a data value, you first need to create an Encoder. This takes a Writer as a
parameter and marshalling will be done to this write stream. The encoder has a method called Encode,
which marshals the value to the stream. This method can be called multiple times on multiple pieces of data.
Type information for each data type is only written once, though.

You use a Decoder to unmarshal the serialized data stream. This takes a Reader and each read returns
an unmarshalled data value.

A program to store Gob serialized data into the file person.go is SaveGob. go:

/* SaveGob
*/

package main

import (
"encoding/gob"
n 'Fmt n

0s

)

type Person struct {
Name Name
Email []Email

}

type Name struct {
Family  string
Personal string

}

type Email struct {
Kind string
Address string

}

func main() {
person := Person{
Name: Name{Family: "Newmarch", Personal: "Jan"},
Email: []Email{Email{Kind: "home", Address: "jan@newmarch.name"},
Email{Kind: "work", Address: "j.newmarch@boxhill.edu.au"}}}

saveGob("person.gob", person)

}

func saveGob(fileName string, key interface{}) {
outFile, err := os.Create(fileName)
checkError(err)
encoder := gob.NewEncoder (outFile)

76



err = encoder.Encode(key)
checkError(err)
outFile.Close()

}

func checkError(err error) {
if err 1= nil {
fmt.Println("Fatal error ", err.Error())

os.Exit(1)
}
}
To load it back into memory, use LoadGob . go:
/* LoadGob
*/

package main

import (
"encoding/gob"
"fmt"
IIOSII

)

type Person struct {
Name Name
Email []Email

}

type Name struct {
Family string
Personal string

}

type Email struct {
Kind string
Address string

}

func (p Person) String() string {
s := p.Name.Personal + " "
for , v := range p.Email {
s += "\n" + v.Kind +
}

return s

+ p.Name.Family

+ v.Address

CHAPTER 4 '~ DATA SERIALIZATION

7



CHAPTER 4 ' DATA SERIALIZATION

func main() {
var person Person
loadGob("person.gob", &person)

fmt.Println("Person"”, person.String())

}

func loadGob(fileName string, key interface{}) {
inFile, err := os.Open(fileName)
checkError(err)
decoder := gob.NewDecoder(inFile)
err = decoder.Decode(key)
checkError(err)
inFile.Close()

}

func checkError(err error) {
if err 1= nil {
fmt.Println("Fatal error ", err.Error())
os.Exit(1)

A Client and Server

A client to send a person’s data and read it back 10 times is GobEchoClient.go:

/* Gob EchoClient
*/
package main

import (
"bytes"
"encoding/gob"
"fmt"
"io"
"net"

0s

)

type Person struct {
Name Name
Email []Email
}

type Name struct {
Family string
Personal string

78



CHAPTER 4

type Email struct {
Kind string
Address string

}

func (p Person) String() string {
s := p.Name.Personal + " "
for , v := range p.Email {
s += "\n" + v.Kind +
}

return s

+ p.Name.Family

+ v.Address

}

func main() {
person := Person{
Name: Name{Family: "Newmarch", Personal: "Jan"},

DATA SERIALIZATION

Email: []Email{Email{Kind: "home", Address: "jan@newmarch.name"},
Email{Kind: "work", Address: "j.newmarch@boxhill.edu.au"}}}

if len(os.Args) != 2 {
fmt.Println("Usage: ", os.Args[0], "host:port")
os.Exit(1)

}

service := os.Args[1]

conn, err := net.Dial("tcp", service)
checkError(err)

encoder gob.NewEncoder (conn)
decoder := gob.NewDecoder(conn)

for n := 0; n < 10; n++ {
encoder.Encode(person)
var newPerson Person
decoder.Decode(&newPerson)
fmt.Println(newPerson.String())

}

o0s.Exit(0)

}

func checkError(err error) {
if err 1= nil {
fmt.Println("Fatal error ", err.Error())
os.Exit(1)

79



CHAPTER 4 ' DATA SERIALIZATION

func readFully(conn net.Conn) ([]byte, error) {

defer conn.Close()

result := bytes.NewBuffer(nil)
var buf [512]byte

for {
n, err := conn.Read(buf[0:])
result.Write(buf[0:n])
if err 1= nil {
if err == io.EOF {
break
}
return nil, err
}
}

return result.Bytes(), nil

The corresponding server is GobEchoServer.go:

/* Gob EchoServer
*/
package main

import (
"encoding/gob"
"fmt"
"net"
“OS"

)

type Person struct {
Name Name

Email []Email
}

type Name struct {
Family  string
Personal string

}

type Email struct {
Kind string
Address string

80



CHAPTER 4 '~ DATA SERIALIZATION

func (p Person) String() string {
s := p.Name.Personal + " "
for , v := range p.Email {

+ p.Name.Family

s += "\n" + v.Kind + ": " + v.Address
}
return s
}
func main() {
service := "0.0.0.0:1200"
tcpAddr, err := net.ResolveTCPAddr("tcp", service)
checkError(err)

listener, err := net.ListenTCP("tcp", tcpAddr)
checkError(err)

for {
conn, err := listener.Accept()
if err 1= nil {
continue
}

encoder := gob.NewEncoder(conn)
decoder := gob.NewDecoder(conn)

for n := 0; n < 10; n++ {
var person Person
decoder.Decode(8person)
fmt.Println(person.String())
encoder.Encode(person)

}

conn.Close() // we're finished

}

func checkError(err error) {
if err 1= nil {
fmt.Println("Fatal error ", err.Error())
os.Exit(1)

Encoding Binary Data as Strings

Once upon a time, transmitting 8-bit data was problematic. It was often transmitted over noisy serial lines
and could easily become corrupted. 7-bit data, on the other hand, could be transmitted more reliably
because the 8th bit could be used as check digit. For example, in an “even parity” scheme, the check digit
would be set to one or zero to make an even number of 1s in a byte. This allows detection of errors of a single
bit in each byte.

81



CHAPTER 4 ' DATA SERIALIZATION

ASClII is a 7-bit character set. A number of schemes have been developed that are more sophisticated
than simple parity checking, but which involve translating 8-bit binary data into 7-bit ASCII format.
Essentially, the 8-bit data is stretched out in some way over the 7-bit bytes.

Binary data transmitted in HTTP responses and requests is ofte