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1 Introduction

In the analysis of the coastal water process, numerical models are often
employed to simulate flow and water quality problems. The rapid develop-
ment of computing technology has furnished a large number of models to
be employed in engineering or environmental problems. To date, a variety
of coastal models are available, and the modelling techniques have become
quite mature. The numerical technique can be based on the finite element
method (Kliem et al. 2006; Jones and Davies 2007), finite difference method
(Buonaiuto and Bokuniewicz 2008; Tang et al. 2009), boundary element
method (Karamperidou et al. 2007; Duan et al. 2009), finite volume method
(Aoki and Isobe 2007; Qi et al. 2009), or Eulerian-Lagrangian method
(Cheng et al. 1984). The time-stepping algorithm can be implicit (Holly and
Preissmann 1977), semi-implicit (Ataie-Ashtiani and Farhadi 2006), explicit
(Ghostine et al. 2008), or characteristic-based (Ataie-Ashtiani 2007; Perera
et al. 2008). The shape function can be of the first order, second order, or a
higher order. The modelling can be simplified into different spatial dimen-
sions, i.e. a one-dimensional model (Chau and Lee 1991a; Abderrezzak
and Paquier 2009), two-dimensional depth-integrated model (Leendertse
1967; Tang et al. 2009), two-dimensional lateral-integrated model (Wu et al.
2004; Elfeki et al. 2007), two-dimensional layered model (Chau et al. 1996;
Tucciarelli and Termini 2000), three-dimensional model (Blumberg et al.
1999; Chau and Jiang 2001, 2002; Carballo et al. 2009), and so forth. An
analysis of coastal hydraulics and water quality often demands the appli-
cation of heuristics and empirical experience, and is accomplished through
some simplifications and modelling techniques according to the experience
of specialists (Yu and Righetto 2001). However, the accuracy of the pre-
diction is to a great extent dependent on open boundary conditions, model
parameters, and the numerical scheme (Martin et al. 1999)

The adoption of a proper numerical model for a practical coastal prob-
lem is a highly specialized task. Ragas et al. (1997) compared eleven UK
and USA water quality models utilized to find the allowable levels and types
of discharge and concluded that model selection was a complicated process
of matching model features with the particular situation. These predictive
tools inevitably involve certain assumptions and/or limitations, and can be
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applied only by experienced engineers who possess a comprehensive under-
standing of the problem domain. This leads to severe constraints on the use
of models, and large gaps in understanding and expectations between the
developers and practitioners of a model.

Over the past two decades, there has been a widespread interest in the
field of artificial intelligence (AI) (Abbott 1989; Chau 1992a; Abbott 1993;
Garrett 1994; Chau and Zhang 1995; Chau and Ng 1996; Ragas et al.
1997; Recknagel et al. 1997; Maier et al. 2001; Chau and Cheng 2002;
Chen and Mynett 2003; Chau 2006b; Kalra and Deo 2007; Muttil and
Chau 2007; Chen et al. 2008; Preis and Ostfeld 2008; Schories et al. 2009).
The recent advance in AI technologies are making it possible to incorpo-
rate machine learning capabilities into numerical modelling systems so as
to bridge the gaps between developers and practitioners of a model, and
lessen the burdens on human experts. The development of these intelligent
management systems is facilitated by employing some shells under the estab-
lished development platforms such as MathLab, Visual Basic, C++, and so
forth. Owing to the complexity of the numerical simulation of flow and/or
water quality, there is an increasing demand to couple AI with these math-
ematical models in order to cover more and more characteristics contained
in advanced computer technology.

In this book, the development and current progress of integration of dif-
ferent AI technologies into coastal modelling are reviewed and discussed.
The algorithms and methods investigated include knowledge-based sys-
tems (KBS) (Chau 2006; Schories et al. 2009), genetic algorithms (Chen
et al. 2008; Preis and Ostfeld 2008), genetic programming (Kalra and
Deo 2007; Muttil and Chau 2007), artificial neural networks (Recknagel
et al. 1997; Chau and Cheng 2002), and fuzzy inference systems (Maier
et al. 2001; Chen and Mynett 2003). KBSs have apparent advantages
over the other systems in facilitating more transparent transfers of know-
ledge in the use of models and in providing intelligent manipulation of
calibration parameters. This book may furnish some useful advice to inex-
perienced engineers on how to establish a numerical model, although an
understanding of the underlying theories is still necessary.



2 Coastal modelling

2.1 Introduction

In this chapter the derivation of the governing equations of hydrodynam-
ics and mass transport in coastal modelling is introduced. The time-varying
coastal problem in general is expressed in terms of partial differential equa-
tions with the partial derivatives in both temporal and spatial domains.
Moreover, the assumptions involved are presented.

2.2 Hydrodynamic modelling

For a fluid which is incompressible and Newtonian, the following equations
of motion can be stated (Batchelor 1967; Chau and Jin 1998).

Conservation of mass:

ui,i = 0 (2.1)

Conservation of momentum:

ui,t + (uiuj)′j + fi = 1
ρ
σij,j (2.2)

Here ui and fi are the i-th component of the velocity and body force vectors
respectively, in the Cartesian system of coordinated xi(i = 1, 2); t is the time
variable, ρ is the fluid density, ′j = ∂/∂xj and σij is the stress tensor. Express-
ing the stress tensor in terms of the pressure and the rate of strain tensor,
equation (2.2) becomes the Navier–Stokes equations

ui,t + (uiuj)′j + 1
ρ

p,i + fi =υui,jj (2.3)

with υ being the kinematic viscosity of the fluid and p being the pressure.
For geophysical flows, fi contains the acceleration due to gravity and

the Coriolis force. Geophysical flows, and real engineering flows in gen-
eral, are almost invariably turbulent and have scales of motion spanning a
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range of several orders of magnitude. In most engineering problems, it is
not necessary to know the exact fine structure of the flow. Only the aver-
age values and the overall effects of turbulent fluctuations are studied. The
most commonly accepted averaging process is that of Reynolds, who intro-
duced the concept of first replacing an instantaneous value with a mean and
fluctuating component and then taking an average over time.

Inserting decompositions for ui and p into the Navier–Stokes equations,
and averaging over a time interval T gives the Reynolds equation

ui,t + (uiuj)′ j + 1
ρ

p′ i + fi = 1
ρ
τij,j (2.4)

where τij = 2μsij + qij, μ is the dynamic viscosity of the fluid, sij is the rate of
strain tensor and qij is the Reynolds stress tensor.

Geophysical flows of the type to be considered later are nearly horizontal
and without appreciable vertical acceleration. The neglect of all dynamic
processes such as local acceleration, advective acceleration and all diffusive
effects in the vertical direction gives the assumption of hydrostatic pressure
distribution, which is common to all shallow water formulations. Thus the
momentum equation for the vertical direction (i = 3), considering a right-
hand set of axes fixed to the earth and orientated as shown in Figure 2.1,
becomes simply

1
ρ

p′3 + g = 0 (2.5)

or after integration

p = ρg(η− x3) + pa (2.6)

x2

x1

x3

Figure 2.1 Orientation of a right hand set of axes
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pa

( m.w.l.)

H

η

Figure 2.2 Definition sketch for the depth-averaged equations

with reference to the definition sketch of Figure 2.2.
The integration over the vertical water-column now proceeds with the

use of Leibnitz’s rule (Wylie 1975). The momentum equation is integrated
in the i-th direction, term by term. The density ρ has been assumed to be
constant.

The depth-averaged velocity components are introduced and are
defined by

Ui = 1
(H + η)

∫ η

−H

uidx3 (2.7)

as well as the equivalence (Kuipers and Vreugdenhill 1973)

ui = Ui + (ui − Ui) (2.8)

to treat the non-linear terms and to retain the same basic equation
form for the depth averaged quantities as existed for the time averaged
quantities.

The treatment of the momentum equations, after rearrangement, gives

(hUi)′t +
[
hUiUj + δij

1
2

g(h2 − H2)
]

′ j
= hFi + g(h − H)H′ i

+ 1
ρ

(
τ i

wind − τ i
friction

)+ 1
ρ

∫ η

−H

[(
τij − ρ(ui − Ui)(uj − Uj)

)
dx3

]
′ j (2.9)

where h = H + η. Here, for simplicity, pa is assumed to be constant; how-
ever, the inclusion of an atmospheric pressure depending on the location
pa = pa(x) can be readily accommodated.
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The only equation left which has to be integrated through the depth is the
continuity equation (2.1). Carrying out vertical integration term by term,
and invoking again Leibnitz’s Rule, we get∫ η

−H

ui,idx3 = 0 (2.10)

Applying the kinematic boundary conditions and inserting depth averaged
velocity components, we finally get

h′ i + (hUi)′t = 0 (2.11)

2.3 Water quality modelling

The basic governing equation of general mass transfer or convection–
diffusion is

(ρc)′t + (ρuic)′ i = [Ei(ρc)′ i]′ i + ri (2.12)

where Ei are horizontal diffusion coefficients and ri is the net internal input
rate (Fischer and List 1979).

Integrating each term over the vertical from the bottom to the free surface
and utilizing Leibnitz’s Rule, we obtain the following equation:

∂

∂t
(hc) + ∂

∂xi
(hUic) = ∂

∂xi

(
hDij

∂c
∂xi

)
− khc + S (2.13)

where c is the depth-averaged concentration, Dij is the dispersion coefficient,
k is the decay coefficient and S is the source term.

2.4 Governing equations

Ignoring the effect of the longitudinal turbulent shear stresses, wind stress
and the Coriolis force, the two-dimensional governing equations for tidal
hydrodynamics and mass transport are:

Conservation of mass:

∂h
∂t

+ ∂(hu)
∂x

+ ∂(hv)
∂y

= 0 (2.14)

Conservation of x-momentum:

∂(hu)
∂t

+ ∂

∂x

[
hu2 + 1

2
g(h2 − H2)

]
+ ∂

∂y
(huv) = g(h − H)

∂H
∂x

− gu
C2

z

(u2 + v2)1/2 + ∂

∂x

[
2μh
ρ

(
∂u
∂x

)]
+ ∂

∂y

[
μh
ρ

(
∂v
∂x

+ ∂u
∂y

)]
(2.15)
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Conservation of y-momentum:

∂(hv)
∂t

+ ∂

∂x
(huv) + ∂

∂y

[
hv2 + 1

2
g(h2 − H2)

]
= g(h − H)

∂H
∂y

− gv
C2

z

(u2 + v2)1/2 + ∂

∂x

[
μh
ρ

(
∂v
∂x

+ ∂u
∂y

)]
+ ∂

∂y

[
2μh
ρ

(
∂v
∂y

)]
(2.16)

Scalar transport:

∂

∂t
(hc) + ∂

∂x
(huc) + ∂

∂y
(hvc) = ∂

∂x
≥
(

hD
∂c
∂x

)
+ ∂

∂y

(
hD

∂c
∂y

)
(2.17)

in which u and v are the depth-averaged components of the velocity in the
coordinate directions x and y, h is the total height of fluid, H is the depth
measured with respect to the mean water level, g and ρ are the gravity
acceleration and density respectively, Cz and μ are the Chezy coefficient and
eddy viscosity coefficient, c is a scalar representing pollutant concentration
and D is the coefficient representing combined diffusion and dispersion in
the x and y directions.

2.5 Conclusions

In this chapter the derivation of the governing equations of hydrodynamics
and mass transport in coastal modelling has been introduced. Moreover,
the assumptions involved have been presented. In the next chapter, we
will discuss the conventional numerical tools used to address coastal engi-
neering problems. The notion of “generations” of modelling to describe
the trend of development will be introduced. The feasibility of the incorp-
oration of artificial intelligence techniques into contemporary modelling will
be discussed. Several common features for different numerical discretization
methods to a simple partial differential equation will be highlighted. Some
basic differences between these numerical methods will also be mentioned.



3 Conventional modelling
techniques for coastal engineering

3.1 Introduction

In this chapter, we will discuss the conventional numerical tools used
to address coastal engineering problems. The notion of “generations” of
modelling to describe the trend of development will be introduced. The
feasibility of the incorporation of artificial intelligence techniques into
contemporary modelling will be discussed. Several common features for
different numerical discretization methods to a simple partial differen-
tial equation will be highlighted. Some basic differences between these
numerical methods will also be mentioned.

3.2 Mechanistic modelling

Numerical modelling can be defined as a process that transforms knowl-
edge on physical phenomena into digital formats, simulates for the actual
behaviours, and translates the numerical results back to a comprehensible
knowledge format (Abbott 1989). In mechanistic models, the equation for
the transport of pollutants can be expressed as:

∂SD
∂t

+ ∂SUD
∂x

+ ∂SVD
∂y

+ ∂Sω
∂σ

= ∂

∂x

(
ASH

∂S
∂x

)
+ ∂

∂y

(
ASH

∂S
∂y

)
+ ∂

∂σ

[
KH

D
∂S
∂σ

]
− KSDS + SS (3.1)

where (U,V,ω) are mean fluid velocities in the (x,y,σ ) directions; S is the
density of the pollutant; D = η + H, where η is the elevation of the sea
surface above the undisturbed level, and H is the undisturbed mean depth
of the water; and KH is the vertical turbulent flux coefficient, which can be
derived from the second moment q2 ∼ q2l turbulence energy model (Chau
2004a). Ks is the decay rate of pollutant; Ss is the source of the pollutant; and
As is the horizontal turbulent coefficient. Pollutant transport equations can
then be written in discretized forms, depending on which algorithm is used.
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3.2.1 Model manipulation

Model manipulation is always entailed, particularly during the initial estab-
lishment of the model, since quite different results might arise from a slight
change in the parameters. The procedure is a mixture of feedback and
modification. Knowledge of model manipulation comprises real physical
observations, numerical representation of water movement or water quality,
the discretization of governing equations for physical and chemical pro-
cesses, schemes to solve the discretized equations effectively and accurately,
and an analysis of output. Experienced modellers can reason from the fail-
ure of a model according to a comparison of the modelling results with real
data, as well as a heuristic judgement of key environmental behaviour. The
knowledge mentioned in the above may be employed unconsciously. How-
ever, many model users do not have the requisite knowledge to gather their
input data, establish algorithmic models, and assess their results. The result
may be inferior designs, resulting in the underutilization, or sometimes even
the total failure, of these models.

The ultimate goal of model manipulation in coastal engineering is to
obtain satisfactory modelling. As such, a balance should be found between
modelling accuracy and speed. It is observed that modellers usually maintain
certain fundamental parameters unaltered during the manipulation pro-
cess. For example, when researchers were accustomed to two-dimensional
coastal modelling, they altered only the bottom friction coefficient (Chau
and Jin 1995). In water quality modelling, Baird and Whitelaw (1992)
proposed that the algal behaviour was associated closely not only to its
respiration rate but also the water temperature. Model users would then
consider variations in the intensity of sunlight within the water column
when modelling the phenomenon of eutrophication (Chau and Jin 1998).
These examples indicated that human intelligence employed existing knowl-
edge to decrease the number of selections so as to enhance the effectiveness
of model manipulation. Each time, they tend to vary a minimum number
of parameters. This is understandable because if they make adjustment to
many parameters simultaneously, they may easily get lost as to the direction
of the manipulation. To this end, artificial intelligence techniques are capa-
ble of mimicking a more comprehensive process as well as of complementing
the deficiency of human reasoning.

3.2.2 Generations of modelling

The notion of “generations” of modelling to delineate the trend of devel-
opment was introduced by Abbott (1989) and Cunge (1989). The so-called
third generation modelling is a system to solve specific domain problems.
It is only intelligible to the modeller and special users well-trained over
a long period. It has included very few features to facilitate understand-
ing by other users or to handle other user-friendly interface problems.
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Typical examples are some sophisticated convection–dispersion models of
the Eulerian-Lagrangian type (Cheng et al. 1984), two-dimensional or three-
dimensional finite difference numerical models on tidal flow (Chau et al.
1996; Blumberg et al. 1999) and on a specific water quality phenomenon
such as eutrophication (Chau and Jin 1998), finite element modelling
of floodplain flow (Tucciarelli and Termini 2000), the depth-averaged
turbulence k-e model (Yu and Righetto 2001), etc.

Some previous efforts have been devoted to coping with a much wider
range of end-users. The fourth generation of modelling has become much
more meaningful to a much wider range of end-users. It furnishes a menu of
parameter specifications, automatic grid formation, preprocessing and post-
processing features, and features for the management of real gleaned data
for simulation, etc. These tools act as intelligent front-ends to backup the
manipulation of the numerical models for specific hydraulic (Knight and
Petridis 1992) or water quality (Recknagel et al. 1994) problems. Never-
theless, they do not address the core problem of the elicitation and transfer
of knowledge. The modern age is characterized by a boom in knowledge,
and the fourth generation of modelling triggers the technological research to
transform the knowledge of hydrodynamic and water quality computation
into the products.

3.2.3 Incorporation of artificial intelligence (AI) into modelling

During the past two decades, the general availability of sophisticated per-
sonal computers with ever-expanding capabilities has generated increasing
complexity in terms of computational ability in the storage, retrieval,
and manipulation of information flows. With the recent advances in AI
technology, there has been an increasing demand for a more integrated
approach, more than just the need for better models. This claim is justi-
fied from the fact of relatively low utilization of models in the industry
in comparison to the number of reported models. It is anticipated that
this increased capability will both add value to the contemporary decision-
making tool to users and streamline the coastal planning and control
process.

3.3 Temporal and spatial discretizations

Many temporal and spatial discretization methods have been used in
the coastal engineering field: the finite difference method (Buonaiuto and
Bokuniewicz 2008; Tang et al. 2009), finite element method (Kliem et al.
2006; Jones and Davies 2007), boundary element method (Karamperidou
et al. 2007; Duan et al. 2009), finite volume method (Aoki and Isobe 2007;
Qi et al. 2009), method of characteristics (Ataie-Ashtiani 2007; Perera et al.
2008), fractional step method (Ataie-Ashtiani and Farhadi, 2006; Abd-el-
Malek and Helal 2009), etc. Walters et al. (2009) compared a class of
unstructured grid models furnishing a flexible spatial discretization where
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the continuity equation reduced to a finite volume approximation whilst
momentum equations were approximated with finite difference, finite ele-
ment, or finite volume methods, respectively. Results indicated that the
performance of each method relied upon the classes of problems to be
encountered, namely, hydraulics, coastal, global ocean flows, etc. Amongst
these differences, restrictions on grid irregularity and stability of the Coriolis
term were more important.

As mentioned above, two widely used discretization techniques are the
finite difference method and the finite element method. A basic distinction
between them is that the former generates the numerical equations at a given
point based on the values at neighbouring points, whilst the latter generates
equations for each element independently of all the other elements. It is
only when the finite element equations are coupled together and assembled
into the global matrices that the interaction between elements is taken into
consideration. Another distinction is in the application of the boundary con-
ditions. For the finite difference method, fixed-value boundary conditions
can be directly inserted into the solution whilst the discretized equation has
to be modified to account for derivative boundary conditions. For the finite
element method, the treatment is totally different. Derivative boundary con-
ditions are already considered during the formation of element equations
whilst fixed-value boundary conditions have to be applied to the global
matrices.

Several common features exist for different numerical discretization
methods to a simple partial differential equation. First of all, the governing
equations have to be transformed into discretized equations for the values
of the variable at a finite number of points in the domain under considera-
tion, using an appropriate temporal and spatial discretization scheme. The
form of equations generated can be explicit or implicit. If an implicit form
is generated, a set of simultaneous equations have to be solved. Prior to the
computation, appropriate boundary conditions have to be set correspond-
ing to the actual situation. A set of initial conditions is involved to start the
computation for the time-dependent problem.

When these discrete equations are solved to obtain a set of values for
the variables at points in the domain, our basic requirement of the solution
is accuracy. The concepts for this in numerical modelling are convergence
and stability. Convergence is the ability of a set of numerical equations to
represent the analytical or exact solution to a problem, if it exists. A stable
solution is accomplished if the errors in the discrete solution do not grow
along with the numerical process so that the equation will move towards a
converged solution. If a diverging solution is obtained, it is probable that
some mistakes have been made. Some possible causes are:

• a poor spatial mesh not matching with the orthogonal nature of the
scheme;

• inappropriate representation of the boundary conditions;
• improper/unrealistic representation of the initial conditions;
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• insufficient upwinding for the convection terms; and
• inappropriate representation of the turbulence model.

Cheng et al. (1984) analysed a Eulerian-Lagrangian method (ELM)
of solution for the convection–dispersion equation and for treatment of
anisotropic dispersion in natural coordinates, in which the Lagrangian
concept was employed in a Eulerian computational grid system. Results
indicated that the use of second-order Lagrangian polynomials in the
interpolation would not generate artificial numerical dispersion.

Chau and Jin (1995) presented a two-layered, two-dimensional mathe-
matical model using a finite difference method which could be employed to
mimic flows with density stratification in a natural water body with compli-
cated topography. In the model the turbulent exchange across the interface
was treated empirically and a time-splitting finite difference method with
two fractional steps was used to solve the governing equations. The model
was calibrated and verified by comparing the numerical results with data
measured in Tolo Harbour, Hong Kong. The numerical results simulated
the field measurements very closely. The computation indicated that the
model simulated the two-layer, two-dimensional tidal flow with density
stratification in Tolo Harbour very well. The computed velocity hodographs
illustrated that the tidal circulations at various positions in each layer
had different patterns and that the characteristics of the patterns were
not related to the type of the tide except for their scales. The computed
Lagrangian pathlines demonstrated that the tidal excursion was related to
the tidal type, especially in the inner harbour and side coves.

Chau et al. (1996) implemented an unsteady finite difference mathemati-
cal model of depth-averaged two-dimensional (2-D) flow for Tolo Harbour
in Hong Kong employing the numerically generated boundary-fitted orthog-
onal curvilinear grid system and the grid “block” technique. The model
overcame the Courant–Friedrichs–Lewy stability criterion constraint and
provided more freedom in the specification of a flexible initial condition.
The error bars and the root mean square errors between the simulated and
the field data demonstrated that this model reproduced the depth-averaged
2-D flow in Tolo Harbour reasonably, and the computational results con-
curred with the available field data. It could be noted from the numerical
model that the flow exchange or tidal flushing in the inner part of the
harbour and in the small side coves was quite limited.

Flow and transport in a natural water body often interact with density
stratification and in such cases the stratification might be character-
ized as a two-layered system. Chau and Jin (1998) proposed a rigor-
ous, two-layered, two-dimensional finite difference numerical model for
eutrophication dynamics in coastal waters using a numerically generated,
boundary-fitted, orthogonal curvilinear grid system. The model mimicked
the transport and transformation of nine water quality constituents perti-
nent to eutrophication. The architecture of the model followed a generally
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accepted framework, with the exception of the interaction between the two
layers via vertical advection and turbulent diffusion. Some kinetic coeffi-
cients were calibrated with field data specifically for the scenario in Tolo
Harbour, Hong Kong. The pollution sources were unsteady, and hourly
solar radiation was prescribed. From the in situ sampling analysis, sedi-
ment oxygen demand and nutrient releases from sediment were included
in the model. The hydrodynamic variables were predicted simultaneously
with another hydrodynamic model detailed in Chau et al. (1996). The
simulated results indicated that the model successfully simulated the strati-
fication tendency in all the water quality constituents, demonstrating an
obvious bottom water anoxic condition during the summer. The result was
consistent with the density stratification and the unsteady layer-averaged
2-D eutrophication processes which were observed in Tolo Harbour.

Blumberg et al. (1999) applied the Estuarine, Coastal and Ocean Model
with a single curvilinear and orthogonal grid system to conduct three-
dimensional simulations of estuarine circulation in the New York Harbor
complex, Long Island Sound, and the New York Bight from the semidiurnal
to the annual scales. It took into consideration several model-forcing func-
tions, comprising meteorological data, water level elevation, temperature
and salinity fields along the open boundary, freshwater inflows, waste-
water treatment plants, and point sources from combined sewer overflows.
A result comparison was performed with field observation data of water
levels, currents, temperature and salinity, from an extensive hydrodynamic
monitoring programme.

Tucciarelli and Termini (2000) applied a split methodology for a two-
dimensional solution of the diffusive shallow water equations to simulate
flood flow on a river floodplain, by splitting the unknowns of the momen-
tum and continuity equations into one kinematic and one parabolic compo-
nent. The former was determined using the slope of the water level surface
computed in the previous time-step and a zero-order approximation of the
water head whilst the latter was computed by applying a standard finite
element Galerkin procedure.

Yu and Righetto (2001) presented the developments and applications of
a turbulence depth-averaged two-equation closure model in order to deter-
mine the distribution of turbulence eddy viscosity and diffusivity as well as
other physical variables. Results on the computed distributions and vari-
ations of velocity, temperature and concentration fields for two unsteady
case studies in the Rhine River and in the Yangtse River were compared
with those computed by different turbulence two-equation closure models
as well as with experimental results and field data.

Lachaume et al. (2003) utilized a two-dimensional numerical wave tank
model to investigate the shoaling, breaking, postbreaking of waves, and the
transformation of solitary waves over plane slopes. It coupled a boundary
element model and a volume of fluid model in addressing potential flow
equations and Navier–Stokes equations, respectively. The salient properties
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of waves breaking over various slopes, such as shape, internal velocities and
type of breaking, were computed. A comparison of the results was made
against existing laboratory experiments.

Chau (2004a) delineated a real-time three-dimensional finite difference
numerical model for eutrophication dynamics in coastal waters of Tolo
Harbour, Hong Kong. The difficulties encountered and subtleties of the
modelling as well as some principal kinetic parameters were highlighted.
Long-term time-series modelling results due to time-varying pollution
sources in Tolo Harbour were also detailed.

Umeyama and Shintani (2004) computed the wave profiles during the
run-up and breaking of internal waves over a sloping boundary by using
the method of characteristics. Comparison was made against laboratory
experiments conducted in a 2-D wave tank, in which a fluid consisting of
fresh water and salt water was mixed to imitate the density-stratified ocean.
Moreover, a set of luminance data analysed by an image processing tech-
nique was employed to reveal the profile of internal waves and the mixture
of the upper-layer and lower-layer water and to compare with the predicted
density variation as a result of the mixing process.

Kliem et al. (2006) developed and implemented a two-dimensional shal-
low water model with an unstructured mesh for simulation of tide and
storm surges in the North Sea/Baltic Sea. Three simulations were made:
a ten-day simulation of the M2 tide only, a one-year full tidal simulation,
and a one-year predictive simulation including both tides and atmospheric
forcing. The results of sea level predictions were compared with those of a
benchmarking finite difference model.

Ataie-Ashtiani and Farhadi (2006) utilized a meshless moving-particle
semi-implicit (MPS) method with a fractional step method of discretization
to split each time step into two steps to simulate incompressible inviscid
flows with free surfaces in a typical dam-break problem. The motion of
each particle was computed through interactions with neighbouring parti-
cles covered with a variety of kernel functions. The kernel function having
the ability to improve the stability of the MPS method was determined by
numerical experiments. Results illustrated the advantage of this method
in furnishing an accurate prediction of the free water surface for coastal
engineering problems involving an irregular free surface.

Jones and Davies (2007) employed a finite element model to determine the
spatial distribution of the tides with different tidal harmonic constituents,
namely, M2, S2, N2, K1, O1, M4 and M6, in the west coast of Britain. Com-
parisons of the results were made against both field observations and a
standard finite difference model. Results indicated that the refinement of
detailed topography and associated mesh sizes in near-coastal regions by
the finite element model contributed to an improvement in accuracy over
the benchmarking model.

Aoki and Isobe (2007) presented a one-way nested model with
a structured finite difference Princeton Ocean Model (POM) for the
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Tsushima-Korea Straits, and an unstructured finite volume model for
Fukuoka Bay divided into triangular-cell grids in hindcasting the wind-
induced sea-level variations at Hakata tidal station in winter. A result
comparison was made against the benchmarking finite difference POM
for both the Tsushima-Korea Straits and Fukuoka Bay. It was shown that
the nested model constructed with structured and unstructured models
outperformed the benchmarking model.

Ataie-Ashtiani (2007) developed a quasi-three-dimensional numerical
model, by using the method of characteristics to solve the advection–
dispersion equation, for quantification of groundwater flow and pertinent
contaminant transport discharged from layered coastal aquifers into the
coastal zone. A variety of feasible scenarios were modelled. It was found
that the amount of discharged contaminant was highly dependent on the
value of hydraulic conductivity. Moreover, results indicated that over-
simplification of the seaward boundary condition, in numerical simulations,
might cause an incorrect estimate of temporal and spatial variations of the
discharged contaminant into coastal water.

Karamperidou et al. (2007) undertook a preliminary study of seawater
intrusion problem in the coastal aquifer of Eleftherae-N. Peramos, Greece,
by employing a numerical water flow model coupling boundary elements
and moving points. The effects of some simplifying assumptions made in
the numerical simulation tool on the accuracy of the results were presented.
Evaluation was also made of some possible scenarios with lower water
demand. Some methods to alleviate the local seawater intrusion problem
were highlighted.

Gilbert et al. (2007) reported on the use of a numerical wave tank, based
on a higher-order boundary element method, with an explicit second-order
time stepping, in driving simulations of flow and sediment transport around
partially buried obstacles. The suspended sediment transport was mod-
elled in the near-field in a Navier–Stokes model employing an immersed-
boundary method and an attached sediment transport simulation module
whilst turbulence was represented by large eddy simulation. Applications
were presented for both single frequency waves and modulated frequency
wave groups.

Buonaiuto and Bokuniewicz (2008) employed a finite difference model
on the basis of the wave action balance equation to compute wave-driven
currents and in turn to investigate the intermittent movement of sediment
throughout the Shinnecock Inlet ebb shoal complex. In order to determine
the distribution of hydrodynamic forces and investigate the dominant pat-
tern of morphology change, various combinations of incident waves and
tide were simulated in the inlet modelling system for three configurations of
Shinnecock Inlet at three different dates.

Daoud et al. (2008) developed a two-dimensional implicit finite volume
scheme for modelling the flow pattern in a closed artificial lagoon and along
the coastline near Damietta Port in Egypt, incorporating the effects of the
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Coriolis force, surface wind stress, and waves. The scheme employed a
non-uniform rectilinear forward-staggered grid with Cartesian coordinates,
the Euler implicit technique for time integration, the deferred correction
method for treatment of the convective flux, and a second-order central
difference approximation for discretization of the viscous terms. Compre-
hensive validation of the performance of the model was performed under
different sources of external forces and different combinations of boundary
conditions.

Perera et al. (2008) presented a three-dimensional numerical model of
the finite-difference method and method of characteristics to solve the par-
tial difference equations of groundwater flow and solute transport and the
advection term of mass transport equation, respectively, in order to under-
stand the density-dependent solute transport process taking place in the sea-
water intrusion problem in the Motooka area of Fukuoka Prefecture, Japan.
The transition zone approach, which coupled the groundwater flow and
mass transport equation to solve the density dependent flow, was adopted.

Abualtayef et al. (2008) delineated the development and application of
a three-dimensional multilayer hydrostatic model, coupling the fractional
step method, the finite difference method in the horizontal plane and the
finite element method in the vertical plane, in order to compute wetting and
drying in tidal flats due to tidal motion in Saigo fishery port and the Ariake
Sea. Results indicated good agreement with available field observations.

Qi et al. (2009) developed and implemented an unstructured-grid finite
volume model in order to study the wind-induced surface waves in the
Gulf of Maine and New England Shelf, United States, which is a coastal
ocean region with complex irregular geometry. The flux-corrected transport
algorithm, the implicit Crank–Nicolson method, and options of explicit or
implicit second-order upwind finite volume schemes were adopted in fre-
quency space, directional space and geographic space, respectively. It was
shown that the performance of the second-order finite volume method was
similar to a benchmarking third-order finite difference method.

Tang et al. (2009) presented a finite difference discretized numerical
model for synchronously coupling wave, current, sediment transport and
seabed morphology for the simulation of multi-physics coastal ocean pro-
cesses. Validation of the results by this model was made against analytical
solutions. Moreover, the performance of the numerical model was tested
against some typical case studies, namely, simulation of dam-break flow
over a mobile-bed and evolution of a wave-driven sand dune. In such
cases, the interactions among waves, currents, and seabed morphology were
demonstrated.

Duan et al. (2009) modelled the initial stage of plunging wave impact
obliquely on coastal structures through an oblique collision of an asym-
metrical water wedge and an asymmetrical solid wedge, by employing
a boundary element method through the Cauchy theorem in the com-
plex plan. Through the numerical experiment, some insights were gained
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into wave elevation, pressure distribution, forces and moments, effects of
different impact angles and effects of oblique impact, etc.

Abd-el-Malek and Helal (2009) applied a fractional steps technique for
time-stepping in the numerical solution of the shallow water equations in
order to study the water velocity, concentration, temperature distribution,
and most important of all, the pollution problem in Lake Mariut, Egypt.
The Riemann invariants of the equations were interpolated at each time
step along the characteristics of the equations using a cubic spline inter-
polation. Equations were evolved without the requirement of the iterative
steps involved in the multidimensional interpolation problem. The efficient
and simple method rendered it appropriate for problems necessitating small
time steps and grid sizes and for parallel computing.

3.4 Conclusions

In this chapter, we have briefly discussed the conventional numerical tools
used to address coastal engineering problems. The notion of “generations”
of modelling to describe the trend of development was introduced. The
feasibility of the incorporation of artificial intelligence techniques into con-
temporary modelling was presented. Several common features for different
numerical discretization methods for a simple partial differential equation
were highlighted. Some basic differences between these numerical methods
were also mentioned. In the following two chapters, the two most widely
used computational fluid dynamics tools, namely, finite difference methods
and finite element methods, will be delineated with more details. A real
prototype application case study will also be introduced.



4 Finite difference methods

4.1 Introduction

This chapter describes finite difference methods often employed in coastal
hydraulics in general, and highlights a three-dimensional hydrodynamic and
pollutant transport numerical model with an orthogonal curvilinear coor-
dinate in the horizontal direction and a sigma coordinate in the vertical
direction. This model is based on the Princeton Ocean Model (POM). In this
model a second moment turbulence closure sub-model is embedded, and the
stratification caused by salinity and temperature is considered. Furthermore,
in order to adapt to estuary locations where the flow pattern is complex,
the horizontal time differencing is implicit with the use of a time-splitting
method instead of the explicit method in POM. An efficient as well as simple
open boundary condition is employed for pollutant transport in this math-
ematical model. This model is applied to the Pearl River estuary, which is
the largest river system in South China with Hong Kong at the eastern side
of its entrance. The distribution and transport of chemical oxygen demand
(COD) in the Pearl River Estuary (PRE) is modelled. The computation is
verified and calibrated with field measurement data. The computed results
mimic the field data well, which show that the trans-boundary or inter-
boundary effects of pollutants, between the Guangdong Province and the
Hong Kong Special Administrative Region due to the wastewater discharged
from the Pearl River Delta Region (PRDR), are quite strong.

4.2 Basic philosophy

The finite difference method is most widely used in engineering practice.
The foundation of the finite difference method is the following: functions
of continuous arguments which describe the state of flow are replaced by
functions defined on a finite number of grid points within the computational
domain. The original partial derivatives in partial differential equations in
temporal and spatial terms represent the time-varying and spatially varying
nature of the system. The derivatives are then replaced by divided differ-
ences. This method is based upon the use of Taylor series to build a set
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of equations that describe the derivatives of a variable as the differences
between the values of the variable at various points in space or time (Smith
1985). The different ways in which derivatives and integrals are expressed
by discrete functions are called finite difference schemes. These difference
equations link the values of variables at a set of points to the derivatives.
This grid of points is employed to represent the spatial domain throughout
the execution of the model. By the application of a finite difference method,
the differential equations are reduced to a system of algebraic equations for
which two possibilities for solution may be distinguished. These are called
explicit and implicit schemes.

In the explicit scheme, the unknown values at a grid point at an instant
(n + 1)
t are expressed entirely as functions of known data at a number
of adjacent grid points at instant n
t (Dronkers 1969, Harleman and Lee
1969); Given the initial conditions, the values at t = 0, and the boundary
conditions, we can proceed step by step to obtain the grid function for all
t = n
t. In explicit schemes the system of algebraic equations can be called
uncoupled.

In the implicit scheme, the system of algebraic equations is coupled since
the spatial derivatives are evidently expressed as a weighted average of the
variables at the two time levels (Cunge et al. 1980). Because of the coupling
between the equations, a simple formula for the solution of individual points
cannot be obtained, and a whole set of algebraic equations must be solved
simultaneously.

In the following few sections, some aspects of finite difference methods
as applied to progressively more complete differential equation descriptions
in coastal hydraulics are delineated. For all cases, the basic Navier–Stokes
equation system governs completely general flow fields in three-dimensional
configurations. In each case, the system is simplified by enforcing different
assumptions with different degrees of restrictions on certain physical and/or
geometric aspects.

4.3 One-dimensional models

In fact, one-dimensional models are not often used. The advances of com-
puting technology in these few decades mean that the computing effort
is no longer a controlling factor. In general, higher accuracy attached to
higher dimensional models will be the more deciding factor in the choice of
numerical model.

Chau and Lee (1991) implemented an accurate as well as efficient solu-
tion to the non-linear de Saint-Venant equation describing unsteady open
channel flow. The time history of stages and discharges within individ-
ual segments in any channel could be simulated in a connected, essentially
one-dimensional network, subject to initial and boundary conditions. The
mathematical model developed was based on the four-point operators
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Preissmann implicit finite difference scheme. Real hydraulic features, includ-
ing branched channels and tidal flats, were simulated. The model was
subjected to carefully chosen analytical test problems which embraced many
essential realistic features of coastal hydrodynamic applications. The model
was then applied to study the tidal dynamics and potential flood hazards in
the Shing Mun River network, Hong Kong.

Laguzzi et al. (2001) applied a robust 1-D finite difference scheme (Delft’s
scheme) and the Conjugated Gradients method to solve the river channel
network. A characteristic of the Delft scheme was its ability to tackle steep
fronts, subcritical and supercritical flow. It was demonstrated that dam-
break/dike breaks could be readily simulated using the controlled structures
from the 1-D system and that the study of flood events on natural river
basins, polders, channel-networked regions, urban areas and coastal areas
could be facilitated. The results were also compared with those generated
by a 2-D rectangular grid hydrodynamic model.

Vennell (2007) presented a 1-D finite difference model to compute the
amplitudes of the transient waves generated by a small fast-moving storm
crossing a topographic step on to a continental shelf and across a ridge.
By applying this model, large transients were generated by storms whose
translation speed was faster than the shallow-water wave speed. The paper
also discussed the influence of a finite-width shelf on the enhancement of
coastal storm surge.

Alho and Aaltonen (2008) illustrated the capability of one-dimensional
jökulhlaup simulation (HEC-RAS modelling software) and compared sim-
ulation results with those from a two-dimensional model (TELEMAC-2D
modelling software) to determine the potential and limitations of one-
dimensional modelling for the simulation of extreme glacial outburst floods.
They showed that one-dimensional modelling of jökulhlaup propagation
provided results broadly comparable to data derived from more complex
simulations.

Abderrezzak and Paquier (2009) presented and tested a one-dimensional
numerical model for simulating unsteady flow and sediment transport in
open channels employing an explicit finite difference scheme. The bed
morphodynamics was represented by the Exner equation and an additional
equation describing the nonequilibrium sediment transport. The pertinence
of the model was examined for two hypothetical cases. Application of the
model was made to simulate the morphological changes taking place in the
Ha! Ha! River (Quebec) after the failure of the Ha! Ha! Dyke in July 1996.

4.4 Two-dimensional models

Whilst 2-D depth-averaged models are often employed in most cases in
coastal engineering, 2-D laterally averaged models will be used when the
relationship between the pertinent parameters and the water depth is of
great concern.
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4.4.1 2-D depth-integrated models

Lin and Chandler-Wilde (1996) developed and applied a 2-D depth-
integrated, conformal boundary-fitted, curvilinear model for predicting the
depth-mean velocity field and the spatial concentration distribution in estu-
arine and coastal waters, using the ADI finite difference scheme with a
staggered grid. The conformally generated mesh could provide greater
detail where it was needed close to the coast, with larger mesh sizes fur-
ther offshore. It accomplished minimization of the computing effort and
maximization of accuracy simultaneously.

Song et al. (1999) established a 2-D horizontal plane numerical model
for coastal regions of shallow water. Application of the model was made
to simulate the circulating flow in the area induced by wind and the tidal
flow field of the radial sandbanks in the South Yellow Sea. A key feature of
this model was the simultaneous computation of velocity profiles when the
equations of the value of difference between the horizontal current veloc-
ity and its depth-averaged velocity in the vertical direction were solved. Its
performance was compared with that of a quasi-3-D numerical model

Chau and Jin (2002) delineated a robust unsteady two-layered, 2-D
finite difference numerical model for eutrophication in coastal waters.
The modelling was based upon the numerically generated boundary-fitted
orthogonal curvilinear grid system and integrated with a hydrodynamic
model. It simulated the transport and transformation of nine water quality
constituents associated with eutrophication in the waters, i.e. three organic
parameters (carbon, nitrogen and phosphorus), four inorganic parameters
(dissolved oxygen, ammonia, nitrite + nitrate and orthophosphate), and
two biological constituents (phytoplankton and zooplankton). Key kinetic
coefficients were calibrated with the field data. The hydrodynamic, pollu-
tion source and solar radiation data in the model were real-time simulated.

Bingham and Agnon (2005) derived a Boussinesq method that was fully
dispersive in order to solve for highly non-linear steady waves. Amongst
several implementation methods, one of them was the finite difference fast-
Fourier transform implementation of the method, which was delineated
and applied to more general problems including Bragg resonant reflection
from a rippled bottom, waves passing over a submerged bar, and non-linear
shoaling of a spectrum of waves from deep to shallow water.

Vennell (2007) developed a 2-D finite difference numerical model in order
to illustrate the topographic transients generated by sub- and supercritical
storms moving across a ridge. In such case, long surface gravity waves were
found to be radiated when storms were crossing topography with topo-
graphic transients possibly feeding the required energy. This might be the
first one to discuss the generation mechanism for this type of long waves as
a result of changes in the depth-dependent amplitude of the atmospherically
forced pressure wave beneath a storm. The results were compared to those
computed by a 1-D finite difference model.
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Tang et al. (2009) presented a framework for synchronously coupling
nearshore waves, currents, sediment transport, and seabed morphology
for the accurate simulation of multi-physics coastal ocean processes. The
governing equations were discretized using 2-D finite difference methods.
The key characteristics of this framework were the simulation of dam-
break flow over a mobile-bed and evolution of a wave-driven sand dune
and the illustration of the interactions among waves, currents, and seabed
morphology.

4.4.2 2-D lateral-integrated models

Wu et al. (2004) developed a semi-implicit shallow water flow numerical
model based on the unsteady Reynolds-averaged Navier–Stokes equations
with the hydrodynamic pressure assumption. Moreover, the equations were
transformed into the sigma-coordinate system and the eddy viscosity was
calculated with the standard k-epsilon turbulence model. The model was
applied to the 2-D vertical plane flow of a current over two steep-sided
trenches for predicting the flow in a channel with a steep-sided submerged
breakwater at the bottom.

Liu et al. (2005) studied the significance of wave field near structures in
coastal and offshore engineering by simulation of the wave profile and flow
field for waves propagating over submerged bars. A PLIC-VOF (Piecewise
Linear Interface Construction) model was employed to trace the free surface
of wave and finite difference method to solve vertical 2-D Navier–Stokes
equations. In order to demonstrate that the PLIC-VOF model was effective
and it could compute the wave field precisely, a comparison of the numerical
results was undertaken with their experimental counterparts for two typical
kinds of submerged bars.

Elfeki et al. (2007) employed a two-dimensional fully implicit finite dif-
ference model for the unsteady groundwater flow to study the influence of
temporal variations in the regional hydraulic gradient and in the bound-
ary conditions on the spreading of solute plumes in homogeneous aquifers.
It was illustrated that transient flow conditions had a significant impact
on contaminant transport if the amplitude and period of the oscillations
were relatively large and that this tidal variation could have an effect on the
spreading of solutes and on salt-water intrusion.

4.5 Three-dimensional models

Mestres et al. (2003) modelled the spreading of the plume induced by the
freshwater discharge from the Ebro River into north-western Mediterranean
coastal waters. The coastal current field was obtained with a finite dif-
ference hydrodynamic model and a Lagrangian code that solves the 3-D
convection–diffusion equation and reproduces turbulent diffusion using a
“random-walk” algorithm. It was found that local hydrodynamics near the
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river mouth, and consequently the spreading of the river plume, were highly
dependent on the driving river discharge and wind field characteristics.

Pinho et al. (2004) delineated the hydroinformatic components and dif-
ferent methodologies for analysing the performance of numerical meshes,
a conditioned mesh refinement procedure, a three-dimensional finite dif-
ference hydrodynamic model with an alternative technique for the exter-
nal mode computation, 2-D and 3-D water quality models for coastal
waters and a methodology for GIS model results integration. They sug-
gested that the modular approach adopted in the development of this
hydroinformatic environment was a very suitable and versatile methodol-
ogy for decision support systems to be applied in coastal zones environment
management.

Marinov et al. (2006) employed a 3-D hydrodynamic finite difference
multi-purpose model for coastal and shelf seas (COHERENS) in Sacca di
Goro, a coastal lagoon. The numerical model could be coupled to biologi-
cal, resuspension and contaminant transport models and resolve mesoscale
to seasonal scale processes. The investigation was mainly on the physical
aspects of the modelling as an important background for the future inves-
tigation of nutrient dynamics, biogeochemical processes and contaminant
transport in Sacca di Goro. An analysis was also made of the differences in
temperature and salinity fields computed before and after an intervention to
improve lagoon-Adriatic Sea exchange.

Abualtayef et al. (2008) developed and applied a three-dimensional multi-
layer hydrostatic model of tidal motions in the Ariake Sea. The governing
equations were solved using the fractional step method, which combined
the finite difference method in the horizontal plane and the finite element
method in the vertical plane. A 3-D, time-dependent, hydrostatic, tidal cur-
rent model with ability to compute wetting and drying in tidal flats due to
tidal motion was introduced. The model was successfully applied to Saigo
fishery port and the Ariake Sea.

Carballo et al. (2009) investigated the residual circulation of the Ria de
Muros, a large coastal embayment in north-west Spain, by employing a
three-dimensional baroclinic finite difference model. Various driving forces,
including tide, winds, river inflows and density forcing at the open bound-
ary, were considered. The model was then applied to compute the residual
circulation induced by the relevant agents of the Ria hydrodynamics – the
tide, an upwelling-favourable wind characteristic of spring and summer,
a downwelling-favourable wind typical of winter, and freshwater inflows
associated with high river runoff.

4.6 A 3-D hydrodynamic and pollutant transport model

The three-dimensional hydrodynamic and pollutant transport numerical
model (Chau and Jiang 2001) was evolved from the POM (Princeton Ocean
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Model; Mellor 1996). The following are the key characteristics of this
model:

1. The curvilinear and orthogonal coordinate system and the sigma coor-
dinate system are employed in the horizontal and vertical directions,
respectively.

2. Semi-implicit treatment is applied on the horizontal and vertical
time differencing (Casulli and Cheng 1992). Whilst implicit treat-
ment is only applied on the vertical flux term and the decay term
during time integration of the governing equation, explicit treatment
is applied for all remaining terms in the equation. For the hori-
zontal time differencing of external mode, a time-splitting method
is employed. The allowable time step is therefore larger than that
entailed by the Courant–Friedrichs–Lewy (CFL) stability criterion(
dt<dx

/(√
2gh + UMAX/

√
2
))

.

3. Considerations are made of the implementation of complete thermody-
namics and the thermal structure of the estuary, including the density
and salinity stratification as a function of temperature variation in both
horizontal and vertical direction.

4. An embedded, second moment, turbulence closure sub-model is
included to furnish vertical mixing coefficients.

Details on the hydrodynamic equations and the corresponding solution
method can be found in Mellor (1996) whilst details on the equations for
the orthogonal curvilinear transformation can be found in Chau and Jin
(1995). The level of confidence, accuracy, previous calibrations and usage
of the POM are detailed in Quamrul and Blumberg (1999) and Blumberg
and Mellor (1987). More details of the hydrodynamic model of the PRE
can be found in Chau and Jiang (2001) for this pollutant transport study.
The density structure of the transporting seawater in this model is computed
as a spatial and temporal function via satisfying the momentum equations,
the temperature equation, and the salinity transport equations under the
constraint of the prescribed boundary conditions. The major discrepancy
between this model and the POM is in the second characteristic described
in the above. It should be noted that in this model the horizontal time differ-
encing is semi-implicit with the use of a time-splitting method, whilst in the
POM the horizontal time differencing is entirely explicit, with the time step
based on the CFL condition. The allowable time step in the POM model
is therefore restricted to a value much smaller than its counterpart in this
model. This characteristic will become an advantage for an application to
certain domains with complex flow patterns and/or with large currents gen-
erated by tide and river discharges, such as in the application case to be
described in the latter part of this chapter, namely, the Pearl River estuary.
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As stated in the above, in this model, a sigma (σ ) coordinate condition
and an orthogonal curvilinear coordinate are employed in the vertical and
horizontal directions, respectively. In the σ stretching system, σ spans the
range from σ = 0 at the surface of water to σ =−1 at the bottom. It should
be noted that the σ coordinate is more appropriate for simulating current
flow and salinity transportation than the Z system (Leendertse et al. 1973)
owing to its ability to furnish the same number of layers independent of
water depth. Thus, it is most suitable in dealing with domains of large
topographic variability. Owing to the ability of the curvilinear coordinate to
replace the stagger grid in the Cartesian coordinate system and to enhance
the representation of the numerical mode, it has been widely used in recent
years. In fact, two kinds of curvilinear coordinate exist, namely, orthogo-
nal and non-orthogonal. Although the orthogonal coordinate gets a simple
motion equation, it is unable to generate a grid for a complex geometrical
domain. Thus, for a domain with a complex boundary, a non-orthogonal
coordinate system is often employed.

4.6.1 Hydrodynamic equations

The governing equations of the dynamics of a coastal cycle comprise fast-
moving external gravity waves as well as slow-moving internal gravity
waves. Simons (1974) presented a splitting technique to decompose the
three-dimensional motion equations into a two-part sub-mode. Whilst ver-
tical structure is an internal mode, the vertically averaged part becomes an
external mode. In this way, the advantage is that it allows the computation
of free surface elevation, and at the same time little sacrifice needs to be
made in computational time. This is attained by isolating the solution pro-
cess of the velocity transport from those of the main part three-dimensional
computation processes of velocity and the thermodynamic properties (Mel-
lor 1996). The following paragraphs show the governing equations of the
two sub-modes.

By using the σ coordinate system, the internal model is a vertical structure
mode depicted by the original three-dimensional equations.

Continuity equation:

∂UD
∂x

+ ∂VD
∂y

+ ∂ω

∂σ
+ ∂η

∂t
= 0 (4.1)

Momentum equation:

∂UD
∂t

+ ∂U2D
∂x

+ ∂UVD
∂y

+ ∂Uω
∂σ

− fVD + gD
∂η

∂x

+ gD2

ρ0

∫ 0

σ

(
∂ρ

∂x
− σ

D
∂D
∂x

∂ρ

∂σ

)
dσ = ∂

∂σ

(
KM

D
∂U
∂σ

)
+ Fx (4.2)
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∂VD
∂t

+ ∂UVD
∂x

+ ∂V2D
∂y

+ ∂Vω
∂σ

+ fUD + gD
∂η

∂y

+ gD2

ρ0

∫ 0

σ

(
∂ρ

∂y
− σ

D
∂D
∂y

∂ρ

∂σ

)
dσ = ∂

∂σ

(
KM

D
∂V
∂σ

)
+ Fy (4.3)

Temperature and salinity transport equations:

∂TD
∂t

+ ∂TUD
∂x

+ ∂TVD
∂y

+ ∂Tω
∂σ

= ∂

∂σ

(
KH

D
∂T
∂σ

)
+ FT (4.4)

∂SD
∂t

+ ∂SUD
∂x

+ ∂SVD
∂y

+ ∂Sω
∂σ

= ∂

∂σ

(
KH

D
∂S
∂σ

)
+ FS (4.5)

Turbulence energy equation:

∂q2D
∂t

+ ∂Uq2D
∂x

+ ∂Vq2D
∂y

+ ∂ωq2

∂σ
= ∂

∂σ

(
Kq

D
∂q2

∂σ

)

+ 2KM

D

[(
∂U
∂σ

)2

+
(
∂V
∂σ

)2
]

+ 2g
ρ0

KH
∂ρ̃

∂σ
− 2Dq3

B1l
+ Fq (4.6)

∂q2lD
∂t

+ ∂Uq2lD
∂x

+ ∂Vq2lD
∂y

+ ∂ωq2l
∂σ

= ∂

∂σ

(
Kq

D
∂q2l
∂σ

)

+ E1l
KM

D

[(
∂U
∂σ

)2

+
(
∂V
∂σ

)2
]

+ E1E3l
g
ρ0

KH
∂ρ̃

∂σ
− W̃

Dq3

B1
+ Fl (4.7)

The definitions of the horizontal viscosity and diffusion terms are as follows:

Fx = ∂

∂x
(Hτxx)+ ∂

∂y

(
Hτxy

)
(4.8)

Fy = ∂

∂x

(
Hτxy

)+ ∂

∂y

(
Hτyy

)
(4.9)

Fϕ = ∂

∂x
(Hqx)+ ∂

∂y

(
Hqy

)
(4.10)

where
τxx = 2AM

∂U
∂x

; τxy = τyx = AM

(
∂U
∂y

+ ∂V
∂x

)
; τyy = 2AM

∂V
∂y

; qx = AH
∂ϕ

∂x
; qy = AH

∂ϕ

∂y
;

φ denotes T,S, q2, q2l; U,V,ω denotes mean water velocities in the x,y,σ
directions, respectively; η is the elevation of seawater surface above the
undisturbed level; f is the Coriolis parameter; D = η+ H; H is the depth of
the water; g is the Earth’s gravitational acceleration; ρ0 is the fluid density;
ρ is the fluid density after subtraction of the horizontally averaged density;
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ρ̃ is the buoyant fluid density; T is temperature; S is salinity; q2 is the tur-
bulence energy; l is the mixing length; KM, KH, Kq are vertical turbulent
flux coefficients; AM, AH are horizontal turbulent coefficients; W̃ is the wall
proximity function; and B1, E1, E3 are empirical constants to be determined
from laboratory experiments.

It can be observed from the above equations that a q2 ∼ q2l turbulence
model is considered and that two prognostic equations are involved, which
are in essence identical to those employed in the K ∼ ε approach (Davies
et al. 1995).

The external mode is written as two-dimensional dynamic equations after
the depth integration of the continuity and momentum equations:

Continuity equation:

∂UD
∂x

+ ∂VD
∂y

+ ∂η

∂t
= 0 (4.11)

Momentum equation:

∂UD
∂t

+ ∂U
2
D

∂x
+ ∂UVD

∂y
− F̃x − fVD + gD

∂η

∂x

=〈wu( − 1)〉− gD
ρ0

∫ 0

−1

∫ 0

σ

(
D
∂ρ

∂x
− σ∂D

∂x
∂ρ

∂σ

)
dσ (4.12)

∂VD
∂t

+ ∂UVD
∂x

+ ∂V
2
D

∂y
− F̃y + fUD + gD

∂η

∂y

=〈wv( − 1)〉− gD
ρ0

∫ 0

−1

∫ 0

σ

(
D
∂ρ

∂y
− σ∂D

∂y
∂ρ

∂σ

)
dσ (4.13)

where [wu( − 1), wv( − 1)] =−CZ

(
U2 + V2

)1/2
(U, V), σ →−1. U, V denote

the vertically integrated velocities;
(
U, V

)
= ∫ 0

−1 (U, V)dσ ; F̃x, F̃y represent

horizontal turbulence diffusion terms; 〈wu( − 1)〉 and 〈wv( − 1)〉 denote
bottom stress components; and Cz represents Chezy’s coefficient.

In the above momentum equations, the velocity advection, the horizontal
diffusion, and density gradient represented by the second and third terms,
the fourth term, and the eighth term, respectively, are integrated vertically
from the corresponding terms of internal equations. Moreover, the bottom
stress is generated from the velocity obtained in the internal mode. How-
ever, during the computation of the internal mode, the elevation of the water
surface is acquired from the external mode. It should be noted that the trun-
cation errors in internal and external modes are different. In other words,
the vertical integrals of the internal mode velocity may differ slightly from
U, V. Hence, (U,V) is adjusted to fulfil the following condition:

∫ 0

−1 Udσ =U
so as to eliminate the current velocity of the internal mode.
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Detailed descriptions of the internal mode can be found in Blumberg
and Mellor (1980, 1987) and Mellor (1996). The method is basically semi-
implicit, i.e. the treatment of all terms of momentum equations is explicit
except for that of the vertical flux (the first term in the right hand side)
which is in an implicit manner. Whilst all equations here are based on
Cartesian coordinates, detailed descriptions of equations under orthogonal
curvilinear coordinates can be found in Chau and Jin (1995). Moreover, the
solution of the external mode in the original POM was entirely explicit and
employed a C grid. The determination of the time step is made by taking into
consideration the Courant–Friedrichs–Lewy (CFL) condition, which entails

the satisfaction of the following condition: dt< dx
/(√

2gh + UMAX/
√

2
)

.

It should be noted that, for cases with small grid sizes, the correspond-
ing time step will be very small in order to have a stable computation,
which in turns entails lengthy duration. In the development of the three-
dimensional numerical model tailored for the Pearl River estuary with the
smallest size of generated orthogonal curvilinear grid being 50 m, as shown
in the latter part of this chapter, for implementation on a personal com-
puter a semi-implicit method is employed in the external mode. Thus, a
time-splitting alternating direction implicit scheme (ADI) on the “Arakawa
C” grids (Chau and Jin 1995) as shown in Figure 4.1 is employed in
this case.

x-direction:
Continuity equation:

η∗
i,j − ηn

i,j


t
+ U

∗
i+1,j

(
Dn

i,j + Dn
i+1,j

)− U
∗
i,j

(
Dn

i−1,j + Dn
i,j

)
2
x

+ V
n

i,j+1

(
Dn

i,j + Dn
i,j+1

)− V
n

i,j

(
Dn

i,j−1 + Dn
i,j

)
2
y

= 0 (4.14)

j+1

j

j–1

i–1 i i+1

v(i,j)

v(i,j+1)

u(i+1,j)u(i,j)

Δ x

Δy
η(i,j)

Figure 4.1 The “Arakawa C” grids
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Momentum equation:

U
∗
i,j − U

n

i,j


t
+ g

η∗
i+1,j − η∗

i,j


x
− f

V
n

i−1,j + V
n

i−1,j+1 + V
n

i,j + V
n

i,j+1

4
= An (4.15)

y-direction:
Continuity equation:

ηn+1
i,j − η∗

i,j


t
+ V

n+1

i,j+1

(
D∗

i,j + D∗
i,j+1

)− V
n+1

i,j

(
Dn

i,j + Dn
i,j+1

)
2
y

− V
n

i,j+1

(
Dn

i,j + Dn
i,j+1

)− V
n

i,j

(
Dn

i,j−1 + Dn
i,j

)
2
y

= 0 (4.16)

Momentum equation:

V
n+1

i,j − V
n

i,j


t
+ g

ηn+1
i,j+1 − ηn+1

i,j


y
+ f

U
∗
i−1,j + U

∗
i−1,j+1 + U

∗
i,j + U

∗
i,j+1

4
= Bn (4.17)

At the end of each time step the following equation has to be fulfilled:

U
n+1

i,j = U
∗
i,j (4.18)

where η∗ and U
∗

are two intermediate unknowns water stage and veloc-
ity at the first time-splitting step in the x-direction. An and Bn are terms
acquired from the internal sub-mode. In this way, equations in each direc-
tion are written in a tri-diagonal matrix and then solved with the use of
the double-sweep algorithm method (Leendertse and Crittion 1971). The
solution process comprises two time-splitting steps, namely, advancing the
solution from time level nt to t∗ in the x-direction to determine U

∗
,η∗, and

then from t∗ to (n+1)t in the y-direction to determine V
n+1

,ηn+1. As the last
step, U

n+1 = U
∗

is assumed.
It should be noted that the numerical scheme used here is semi-implicit.

Hence, implicit treatments are applied on the terms of vertical diffusion in
the internal mode and the elevation gradation term in the external mode.
Another constraint on the time step of numerical computation entails that
it cannot exceed the limits associated with the advection terms, the Coriolis
term, the baroclinic pressure gradient term and horizontal diffusion term.
Nevertheless, the semi-implicit numerical algorithm allows the time step to
have a value much greater than that required by the CFL condition. When
this model was applied in the Pearl River estuary as shown in the latter
part of this chapter, the maximum time steps of the external and internal
modes were 100 seconds and 60 seconds, respectively. In that application
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case, in order to make it simple, the same time step, namely 60 seconds, was
employed in both of the two sub-modes. As a comparison, if the POM is
applied in the same case study under the same grid, the maximum time steps
are 6 seconds and 100 seconds for external and internal modes, respectively.
Whilst this model needs a core memory of 14.8 mega words’ and about 20
seconds per hour run, the POM requires 14.2 mega words’ memory and 28
seconds per hour run.

It should also be highlighted that an advantage of numerical models
employing sigma coordinates is the capability to address an ocean applica-
tion with a large topographic variability. On the other hand, this model has
the drawback of hydrostatic inconsistency due to the bottom topography
effect. The horizontal density gradient along the constant σ layer is the
major factor generating this inconsistency. In order to reduce this effect,
several strategies adopted by Mellor et al. (1997) have been employed in
this model. The topography is examined and the depth of water (H) is
adjusted in order that it can suit the equation provided by Haney (1990)∣∣ σ

H
∂H
∂x

∣∣ δx< δσ . Moreover, prior to computing fluxes, a climatological den-
sity (or temperature and salinity) is subtracted. Thus, the equation of the
climatological density (or temperature and salinity) fields is as follows:

dρclim

dt
= a(ρ− ρclim) (4.19)

where a is the inverse of decay time; ρ and ρclim are density and climatolog-
ical density, respectively. The value of a adopted in this Pearl River estuary
model is (1/t), where t is the period of major tidal constituent. A value of
t = 0.5175 days, which equals the period of M2, is selected in this model (Ip
and Wai 1990).

4.6.2 Pollutant transport equation

The governing equation of pollutant transport is as follows:

∂SD
∂t

+ ∂SUD
∂x

+ ∂SVD
∂y

+ ∂Sω
∂σ

= ∂

∂x

(
ASH

∂S
∂x

)
+ ∂

∂y

(
ASH

∂S
∂y

)
+ ∂

∂σ

(
KH

D
∂S
∂σ

)
− KSDS + SS (4.20)

where U,V,ω are the mean fluid velocities in the x,y,σ directions, respec-
tively; S is the pollutant density as a function of x,y,σ , t, which in this case
study is the density of the COD; D = η+ H, where η is the elevation of the
seawater surface above the mean water level, H is the mean water depth;
and KH is the vertical turbulent flux coefficient, which can be found from the
second moment (q2 ∼q2�) turbulence energy model (Mellor 1996). The term
q2/2 is the turbulent kinetic energy and � is the turbulence length scale. For



Finite difference methods 31

this numerical model, an equation is written for q2, representing turbulent
kinetic energy, and a second equation is written for q2�, representing turbu-
lent dissipation. Ks is the decay rate of the pollutant and Ss is the pollutant
source. As is the horizontal turbulence coefficient, which can be determined
from the Smagorinsky formula (Oey et al. 1985):

As = C
x
y

[(
∂U
∂x

)2

+ 1
2

(
∂V
∂x

+ ∂U
∂y

)2

+
(
∂V
∂y

)2
] 1

2

(4.21)

where C is a constant between 0.1 and 0.2. In this application study, a
constant of 0.12 is selected, which appears to have worked well from the
calibration results against standard idealized tests employed to verify the
accuracy and precision of this model.

By employing the “Arakawa C” grids (Figure 4.1), the pollutant transport
form are written in differencing form as follows:

δt (SD)+ δx

(
S

x
D

x
U
)

+ δy

(
S

y
D

y
V
)

+ δσ
(
S
σ

ω
)

= δx

(
H

x
A

x

s δxS
)

+ δy

(
H

y
A

y
s δyS

)
+ δσ

(
K
σ

HδσS+
D

)
− KSDS+ + Ss (4.22)

In equation (4.22), for any parameter F as a function of x,y,σ , t, i.e.,
F = F(x,y,σ , t), the following equations can be written:

δtF = 1
2
t [F (x,y,σ , t +
t)− F (x,y,σ , t −
t)] (4.23)

F
x = 1

2

[
F
(
x + 
x

2
,y,σ , t

)+ F
(
x − 
x

2
,y,σ , t

)]
(4.24)

δxF = 1

x

[
F
(
x + 
x

2
,y,σ , t

)− F
(
x − 
x

2
,y,σ , t

)]
(4.25)

S+ = S (x,y,σ , t +
t) (4.26)

It should be noted that, in the differencing equation (4.22), all compo-
nents can be determined from the previous time step of the hydrodynamic
model, except for the following three unknowns: S(x, y,σ , t+
t), S(x, y,σ +

σ , t +
t), and S(x, y,σ −
σ , t +
t) in the first term of the left-hand
side and the third and fourth term of the right-hand side of the equation,
respectively. Equation (4.22) is therefore re-written as follows:

AS (x,y,σ −
σ , t +
t)+ BS (x,y,σ , t +
t)

+ CS (x,y,σ +
σ , t +
t)= D (4.27)

where A, B,C,D are known coefficients. It can be observed that equa-
tion (4.27) is a tri-diagonal matrix in the vertical direction which can be
solved with the technique detailed in Richtmyer and Morton (1967).
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The validation of this model has been undertaken by performing sev-
eral tests involving idealized geometries and forcing functions, the same as
those previously applied to the POM during its development stage. They
include not only simple tests on checking the ability of the model to con-
serve its various constituents, but also more rigorous tests involving both
barotropic and baroclinic responses of an idealized coastal basin with or
without topography to evolve different large-scale oceanographic phenom-
ena (Blumberg and Mellor 1987). It was shown that the model reproduced
the expected physics and produces identical results to those from the well-
tested POM (Chau and Jiang 2001). These results furnished a high degree
of confidence that the numerical accuracy of the scheme is consistently high
and that the level of numerical diffusion is not larger than the physical
diffusion computed in the model.

4.7 Advantages and disadvantages

The relative merits of the numerical schemes can be compared on the
basis of the computational stability, convergence, accuracy, and efficiency.
The convergence and stability of a scheme depend strongly upon the finite
difference formulation used and upon the initial and boundary conditions.

It is noted that the difference quotients used are, in fact, a truncated
Taylor’s series. The degree of the approximation represented by the finite
difference analogues is called the “truncation error” or “order of approxi-
mation”. The truncation error may be found by expanding the various terms
in the differential equations into a Taylor’s series. But even when the solu-
tion of the difference equations converges to a solution of the differential
equations, it is not necessary that the numerical solution of these differ-
ence equations approaches the required solution. It is possible that when
the computation progresses, waves are generated by the computational pro-
cedure that overshadow the actual solution, and the solution is unstable.
These spurious solutions are caused by the inevitable rounding errors, which
influence the required solution of the finite difference equations.

For a given problem the rate of growth of the instability depends on the
choice of 
x and 
t. The instability may be controlled and marked by the
natural damping supplied by the friction term. If natural attenuation and
dispersion (due, for example, to the friction term in the momentum equa-
tion) are much stronger than numerical damping and dispersion, there is
no need to worry too much about them. Such is the case for many practi-
cal applications. However, numerical damping can be a nuisance when the
waves are of relatively small length and friction is negligible – such as in the
case of steep front waves in canals and some tidal rivers.

The concept of convergence assumes that a sequence of computations
with an increasingly finer mesh tends toward the exact solution. By so defin-
ing it may loosely be considered as an indication of accuracy. Thus the
convergence qualities of a scheme may be of decisive importance as to a
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modelling system’s usefulness. In practice, the convergence can be achieved
by using reasonably small 
x and 
t. If convergence is ensured, its rapidity
depends on the order of approximation. But the order of approximation of
derivatives by finite differences may well be a meaningless notion for real
computational grids because the time and space intervals 
t, 
x and the
derivatives of variables may well not be small.

Because all numerical methods are approximations, the question of
numerical accuracy must be considered. One measure of accuracy is
the degree of difference between observed real-life data (such as mea-
sured hydrographs) and computed results. This criterion is obviously
most important but it is practically impossible to formulate. There might
be several reasons for discrepancy between a mathematical model and
the prototype, such as inaccurate simplifications and approximations in
the basic equations failing to simulate the complexity of the prototype,
insufficiently accurate measuring techniques, insufficient data, phenomena
which are not taken into account and poor schematization of topographic
features.

An additional factor which should be considered in comparing different
computational methods is the computer time required and the difficul-
ties in programming. No generally agreed yardsticks have been established
concerning this aspect. The precise comparison depends on the particu-
lar scheme and equations used and the logic in programming. For explicit
schemes the computational effort depends mainly on the time increment 
t
used, which is determined by some stability criteria for given 
x. How-
ever, the maximum values of 
x that can be used are often limited by the
channel geometry and accuracy criterion; this can sometimes result in exces-
sively small
t and long computer time. Generally speaking, compared to an
implicit scheme, the computational effort per time step is less for an explicit
scheme; however, the number of time steps may be unreasonably large (due
to stability constraints).

The explicit method appears to be superior to both the implicit method
and the methods of characteristics in terms of simplicity of the program-
ming. However, all explicit finite difference schemes, when applied to the
hyperbolic flow equation, are conditionally stable. The allowable time step
is thus limited by the grid size used and the numerical consideration,
and not necessarily by the time-scale of the physical phenomena under
consideration.

4.8 Applications and case studies

A prototype application of the numerical model is on the Pearl River estuary,
which includes four outlets of the Pearl River system and the main part of
Hong Kong seawaters. So far, this is probably the first application of this
type of model (3-D and baroclinic) in the PRDR. It is certain that the model,
as a decision-supporting tool, has a significant value from an engineering
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point of view for exploring the dynamics and circulation of the PRDR. The
computation is then calibrated and verified with field observation data.

4.8.1 Description of the Pearl River estuary

The Pearl River estuary (PRE) has been considered one of the most impor-
tant zones in South China. With the rapidly developing economy in this
area, the environment has been gradually deteriorating, thus in turns attract-
ing more and more attention on this area of estuary. Since the coupled
hydrodynamic and pollutant transport numerical model is an efficient tool
for environmental impact assessment and feasibility study of projects, the
model has been applied to this estuary with calibration.

The study area (Figure 4.2) is a delta estuary comprising four main
river outlets (namely, Hu men, Jiao men, Hongqi men, Heng men) in the
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north-west of the PRE and the Shenzhen River outlet into the Deep Bay.
Whilst the water depth at the open end of the estuary ranges between 20 m
and 28 m, it becomes shallower toward the inner bay. Overall, the mean
depth of the estuary is 7 m. The average net discharges of the four outlets for
different seasons are listed in Table 4.1 for years from 1985 to 1995 (Pang
and Li 1998). It can be observed that the variations in discharge are large
in different years. The predominant tide in the PRE is a semi-diurnal and
irregular tide with a mean tidal range of 1.0 m or so. Whilst at the entrance
to the estuary, the mean tidal range is 0.85–0.9 m, its value increases into
the inner estuary to 1.6 m at the Hu men River mouth (Kot and Hu 1995).
During the wet season, which occurs from May to September, the runoff
of the rivers is strongest, to become the predominant hydrodynamic forc-
ing in the Pearl River estuary. During the dry season, which is between
December and March, the tidal current is the major forcing function
(Lu 1997).

Figures 4.3 and 4.4 show the horizontal grid of the orthogonal curvilin-
ear coordinate system and the corresponding transformed grid, respectively.
There are 3,400 grids in each of the six vertical layers, and each layer has the
same δσ with a value of 1/6. The number of layer and grid points is selected
in order to attain reasonable accuracy in both horizontal and vertical dis-
cretizations, but at the same time not to affect adversely the computational
efficiency.

4.8.2 Boundary and initial conditions

The tide elevation is the model forcing at the two open boundaries, namely,
the southern boundary (South China Sea) and the eastern boundary (Lei Yu
Mun). Its value can be interpolated from the observed data at two tidal sta-
tions, namely, Macau and North Point, by using the tidal wave propagating
speed

√
gh (Huang and Lu 1995). The current velocities of external and

internal modes at the open boundaries are determined from the radiation
condition; for example ∂v

∂t
− ci

∂v
∂y

= 0, ci =
√

H/Hmax at the open boundary in
the South China Sea. The salinity, temperature and turbulence kinetic and
turbulence dissipation at these open boundary conditions are determined as
follows:

Ebb time:

∂A
∂t

+ U
∂A
∂x

= 0 (4.28)

Flood time:

A = Aset(t,σ ) (4.29)
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Figure 4.3 The orthogonal curvilinear grid

where A represents the salinity, temperature, turbulence kinetic and tur-
bulence dissipation. During the ebb process, at open boundaries, A are
computed using the “upwind” differenced advection equation. During the
flood stage, A is linearly interpolated from its value at the end of the ebb
process to a constant A according to the depth and observed data. The open
boundary conditions of four outlets in the north-western part of the study
area are determined by water discharges.

Simple treatment is often applied to the open boundary condition for
pollutant transport (Leendertse and Crittion 1971). For example, employing
grids near the eastern open boundary at Lei Yu Mun, the equations are as
follows:

Pn+1
i,j = PsetUn+1

i− 1
2 ,j
<0 (4.30)
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Figure 4.4 The transformed grid

dP
dt

= 0 that is
Pn+1

i,j − Pn−1
i,j

2
t
+ Un+1

i− 1
2 ,j

Pn
i,j − Pn

i−1,j


x
= 0 Un+1

i− 1
2 ,j
>0 (4.31)

where Pset denotes the prescribed along-boundary component of pollutant
density. Equation (4.30) is for flood tide while equation (4.31) applies
during the ebb tide condition. The value Pset can be applied if it is known.
However, it is often unknown and an assumed value has to be used accord-
ing to the best available data. In this way, the open boundary condition
stated above is reasonable if either the boundary condition is known or
the level of water exchange and/or flushing outside the model domain is
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so strong that no internal pollutant build-up occurs at the open boundary.
It is noted that no COD data are available in the PRE, and the exchange
capacity at the entrance of the PRE is not strong enough that the Pset = 0
approach can be employed. For the flood condition, a simple and efficient
open boundary condition for pollutant transport is employed:

Pn+1
i,j − Pn−1

i,j

2
t
+ Un+1

i− 1
2 ,j

(a − 1)Pn
i−1,j


x
= 0 Un+1

i− 1
2 ,j
<0 (4.32)

Under this approach, the same equation (4.31) is used at ebb tide, but at
flood tide equation (4.32) is used to replace equation (4.30). Equation (4.31)
denotes that there is no spatial gradient in concentration. Equation (4.32)
denotes the proportion of pollutant concentration brought back by the
flood tide. The constant coefficient, a, in equation (4.32) ranges from 0
to 1, which is dependent on the level of water exchange/flushing outside
the model domain. If the level of flushing is strong, the value of a becomes
small; otherwise, the value becomes larger and approaches 1. Figure 4.5
shows the COD concentration at the boundary corresponding to different
a values when stable computation is attained. Moreover, a lower limit is
imposed on the boundary condition in equation (4.32), namely, Pi,j = 0 if
Pi,j < 0. As shown in Figure 4.5, this condition happens in some tidal peri-
ods at small a values. In this case study, a=0.9 is selected, which appears to
work well according to the internal COD calibration. According to the ini-
tial background COD condition, if the COD concentration at the boundary
is less than 1.8 mg/L, it is prescribed to become 1.8 mg/L.
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Figure 4.5 Time variation of COD density at the open boundary at different a values
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In the motion equations, the solution of convection and diffusion terms
requires the value of velocity at the outer boundary. Two kinds of closed
boundary conditions have been attempted in this model, namely, no-slip
condition for ∂u/∂y assuming u = 0, and free slip condition with ∂u/∂y = 0.
In this model, these two methods are weighted together to obtain the semi-
slip boundary condition: ∂u/∂y=βu/
y, 0≤β≤1. Sensitivity tests with dif-
ferent β values have been performed, which revealed little change in results.

The initial pollutant density of COD in the model domain was assumed
to have a constant background value of 1.8 mg/L. After a number of com-
putational tidal periods (in this model 100 tidal periods, which is about 50
days), a steady state concentration gradient is attained.

4.8.3 Calibrations

A hydrological survey was conducted by the Hong Kong Civil Engineering
Department Port Development Division for one whole year. The field data
obtained at three tidal elevation stations and three tidal current stations
were employed to calibrate this model. Figure 4.2 shows the location of
these stations. The observed data of tidal elevation on two tidal stations,
Macau and North Point, are employed as boundary conditions. Simulation
of one month’s hydrodynamics of the Pearl River estuary is performed.

For calibration of the computer simulations, the results of tidal elevation,
flow velocity and flow direction have been verified with the correspond-
ing observed data. Owing to the lack of detailed salinity data, comparison
of salinity results is only made with previous study by others. The com-
parison of simulated and observed tidal elevations for the whole month at
West Lamma is shown in Figure 4.6. However, a typical day of compar-
ison can demonstrate better the slight differences between the computed
and simulated results more effectively. Figure 4.7 shows the simulated and
observed results of tidal elevation at three different elevation stations for
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Figure 4.6 Comparison of computed and observed tidal elevations at West Lamma
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Figure 4.8 Flow field during ebb tide in mean season at different layers

24 hours, which shows that the computational results concur well with the
measured data. It is apparent that the tidal amplitude at an inner station
such as Tap Shek Kok is larger than that at the outer stations such as West
Lamma.

Figure 4.8 shows the horizontal tidal current pattern in the Pearl River
estuary during an ebb tide in mean season (representing April, October and
November) at the surface, middle, and bottom layers, respectively. It can be
observed that the current velocities at the sea surface are slightly larger than
that in the bottom. The flow directions at the surface layer and bottom layer
may be slightly non-uniform, especially under low to medium current. The
maximum flow velocity of 2.5 m/s or so occurs at narrow channels in Ma
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Figure 4.9 Calibration of tidal flow direction and velocity for one day at three
stations

Wan Channel and Kap Shui Mun with water depth generally deeper than
20 m. The current speed in north-west Lantau Island water areas, Urmston
Road and West East Channel are higher than other locations. This can be
justified because the bathymetry of these locations causes lateral contraction
in the flow channel and in turns generates faster flow. The simulated current
pattern in general agrees well with the field data (Kot and Hu 1995).

Figure 4.9 shows the results comparisons of direction and magnitude
of depth-averaged velocities at three tidal stations between computed and
observed data from 15:30 21st to 22nd June. The root-mean-square (rms)
errors of the computed tidal level, flow direction and velocity for the one
month comparisons are 0.14 m, 17 degrees, and 0.07 m/s, respectively. The
computed flow direction and velocity agree well with the field data, which
serves as another proof that the model can simulate well the field data. It
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Figure 4.10 Computed salinity contours for different layers during the wet season

can also be noted that the start-up of the simulation needs about 2 to 3
hours prior to produce the convergence to the accurate solution compared
with the field data.

Simulations of the distribution of salinity in the wet and dry seasons are
also made. The measured data including tidal level and salinity at open
boundaries between June and July are employed as boundary conditions
during the wet season. Owing to a lack of data during the winter season,
the same tidal levels are employed to simulate the salinity distribution in
this dry period. The salinity values at the open boundaries are determined
from the dry season salinity horizontal and vertical patterns furnished in
Kot and Hu (1995) and Broom and Ng (1995). The discharges of the four
rivers during wet and dry seasons are as shown in Table 4.1. Figure 4.10
shows the distribution of salinity during ebb tide in three layers during the
wet season. It can be observed that, during the wet season, a sharp change
of salinity is a common phenomenon in the Pearl River estuary. It is also
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Figure 4.11 Computed salinity contours for different layers during the dry season

shown that the stratification is discernible only in the outer bay, not in
the inner bay. This is possibly because the water depth is less and the
turbulence is stronger there. Figure 4.11 shows the distribution of salin-
ity during ebb tide in three layers during the dry season. It can be noted
that the sharp gradient of salinity or stratification is less notable and that
the seawater intrusion is located even farther at the inner delta area. Thus,
in the inner delta, although the gradient of salinity is smaller, the averaged
salinity is higher than that in the summer season. It is found that the pat-
tern of the distribution of salinity is similar to that described by Kot and
Hu (1995).
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Table 4.2 Summary statistics of wastewater flow and COD load from Guangdong
Province (unit: million ton)

Source 1990 1991 1992 1993 1994 1995 1996

Domestic 1110.12 1058.47 1310.49 1492.91 1981.31 2123.69 2122.22
Industrial 1402.5 1392.24 1419.39 1397.62 1315.31 1609.79 1508.74
Total

wastewater
2512.62 2510.9 2801.03 2959.9 3372.07 3816.57 3714.05

COD 0.69 0.72 0.78 0.8 0.94 1.12 1.06

Source: Guangdong Province Yearbook Editorial Committee (1996).

A key objective of the application of the numerical model is to examine
pollutant transport in the PRE and to study the distribution of pollu-
tants during different seasons. Figure 4.2 shows four main river outlets
discharging pollutants to the PRE located in the north-west PRDR and
another from the Shenzhen River near Deep Bay. Since no direct COD
data from the different river outlets are available, the loadings of COD
at different river outlets in this model are determined in the following
paragraph.

Table 4.2 lists the domestic and industrial wastewater flow from the
Guangdong Province based on the Guangdong Yearbook Editorial Com-
mittee (1996). An empirical relationship between the COD loading rate
and the domestic and industrial wastewater flow rates can be found
accordingly:

WCOD = 0.00027Qd + 0.000305Qi (4.33)

where WCOD is the COD loading rate, Qi is the flow rate of the indus-
trial wastewater, and Qd is the flow rate of the domestic wastewater.
With the use of this empirical equation, the COD loading rates from
eight cities around the PRDR can be determined from the pertinent waste-
water flows. Table 4.3 shows the computed COD loading rates from
eight cities around the PRDR for 1996. Since the Pearl River comprises a
river network system, the COD loading data at different main river out-
lets are approximated from the COD loading of the eight cities shown
in Table 4.3. Whilst Table 4.4 lists the COD loading at the five main
river outlets, the COD loading data in the Hong Kong Special Admin-
istration Region (HKSAR) are estimated from the Hong Kong strategic
sewage disposal plan (Sin et al. 1995). All COD loadings are assumed
to be point sources discharged continuously at specific locations. Another
assumption in this model is that there is no sink term representing loss rate
of COD.
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Table 4.4 Net water discharge and COD load of different river outlets during
different seasons

Hu men Jiao men Hongqi men Heng men Shengzhen

Wet(108 m3/day) 2.09 1.99 0.77 1.31 0.06
Mean(108 m3/day) 1.56 1.44 0.51 0.89 0.06
Dry(108 m3/day) 0.68 0.59 0.17 0.37 0.06
COD(kg/day) 115068 309000 70285 12300 89877

4.8.4 Simulated results

In this model, the assumed COD loadings from the PRDR and the HKSAR
in different seasons have been employed to simulate the distribution of COD
generated by these pollutant sources together with the background sources.
Moreover, the evaluation of the effect of the pollutant sources from the
PRDR on Hong Kong seawaters is made via a sensitivity analysis.

As a result, the computed salinity contours indicate very slight vertical
density stratification and strong vertical mixing. The difference of COD
concentrations between the top and bottom levels is very small, which in
turns justifies the use of a vertically averaged value. Figure 4.12 shows the
average distribution of COD in the study area during different seasons at
ebb tide. It can be observed that the COD concentration in the western
PRE depends on the season. During the wet season, the COD concentra-
tion in north-western PRE is lower. The reason may be the higher dilution
associated with the larger average discharge flow. On the other hand, the
concentration in south-western PRE during the wet season is higher than
that in the dry season. This may be because of the higher conveyance in the
wet season. However, the variation of COD concentration with season in
the eastern PRE is small. This may be explained by the fact that a tidal cur-
rent dominates the hydrodynamic forcing and that the boundary condition
remain unchanged at different seasons.

Model calibration was performed at two sections, namely, the longitudi-
nal section A1–A8 and the latitudinal section C1–C7. The field observation
data was monitored by Wen et al. (1994). Figure 4.13 displays both the
simulated and measured COD data for these two sections during different
seasons. It can be found that the simulated results tend to overestimate the
actual measured data in most cases, except at the western side of the estu-
ary. Nevertheless, given the condition that there is a lack of actual COD
loading data from different river outlets, the accuracy of the results by this
model can be considered quite satisfactory. For future works, an improve-
ment of the accuracy of the results can be accomplished by the collection of
the actual COD loadings from all river outlets.
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A     

C     

B     

Mean season
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Figure 4.12 Mean COD distribution (in mg/L) at various seasons

A model sensitivity analysis is also undertaken to estimate the impact of
sewage pollutants, such as COD, discharged from the PRDR on water qual-
ity in the seawaters of HKSAR. This was performed by imposing the COD
sewage loading from the PRDR and at the same time assuming the back-
ground COD value to be 0 mg/L. Figure 4.14 shows the results from the
wet season whose pollutant transport has the highest value amongst differ-
ent times. It is found that the impact of COD from the five river outlets
in the PRDR can be up to the north-western part of Lantau Island whilst
its impact on other areas of Hong Kong seawaters is less significant. The
increase in COD concentration generated by the loadings of the five out-
lets is greater than 0.25 mg/L near Lantau Island. During the wet season,
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Figure 4.14 Increment of COD density (mg/L) resulting from sewage loading from
the PRDR during wet season

the COD is transported over an extensive area with the assistance of the
highest flow value, and in turns influences the water quality of Hong Kong
seawaters to the largest extent.

4.9 Conclusions

In this chapter, a three-dimensional coupled hydrodynamic and pollutant
transport model has been formulated, verified and applied to the Pearl
River estuary, which is one of the most quickly developing regions in China.
Hong Kong and Macau are at its entrance. In this model, the external and
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internal gravity waves are split into a two-dimensional mode and a three-
dimensional mode, respectively. In the external mode, implicit treatment is
applied to the tidal elevation gradient term whilst the other terms are inte-
grated or acquired from the internal mode. In the internal mode, implicit
treatment is applied to the vertical flux term of momentum equation whilst
tidal elevation values are obtained directly from the external modes. A con-
sistent time step is selected in both internal and external mode. In this way,
the time step is larger than that allowed in the POM model and thus less
computational time is imposed to attain a stable computation.

The model is applied to the Pearl River estuary taking into considera-
tion the stratification resulting from both salinity and temperature. The
simulated results of tidal elevation, both direction and magnitude of cur-
rent velocity, are compared with real observation data. Results indicate
good agreement between the two sets of data. The distributions of salin-
ity in different depth layers during both the wet and dry seasons are
shown. It demonstrates the development of a complicated and efficient
three-dimensional model, which works well in a typical estuary, namely,
the Pearl River estuary. It is shown that a three-dimensional, numerical
model based on an orthogonal curvilinear grid system in the horizontal
direction and a sigma coordinate system in the vertical direction for pre-
dicting water quality constituents is developed. A simple and efficient open
boundary condition for pollutant transport is employed in this model. The
model is employed to simulate the distribution of COD in the PRE and to
assess the transboundary pollution between Guangdong and Hong Kong.
Although the pollutant load data at the five main river outlets to the PRE
are not available directly, the COD loading rates are determined based on
the available pollutant sources. Results indicate that the pollutants from the
PRDR have significant effects on the Hong Kong seawaters, in particular
during the wet season, when the water discharge from the upstream of the
estuary is large.



5 Finite element methods

5.1 Introduction

This chapter describes finite element methods often employed in coastal
hydraulics in general and highlights a characteristic-based Galerkin method
suited for advection-dominated problems (Chau et al. 1991; Chau 1992b).
A two-step algorithm is also presented which significantly reduces the com-
putational cost. It is shown for the 1-D scalar advection equation that
the time-discretized equation can also be obtained by following a char-
acteristics approach. The governing hydrodynamic and mass transport
equations are written in conservative form, in order to exploit the full
power for the numerical technique. An error analysis of the scheme using
linear elements for spatial discretization is given for the one-dimensional
advection-dominated equation. Remarks on advantages and disadvantages
of the characteristic-Galerkin method are then made. Two applications of
this robust finite element model in engineering practice have been attempted.
The model is first applied to compute tidal current and advective mass trans-
port in Tolo Harbour, Hong Kong. A scalar pollutant is released at the Yung
Shue Au fish culture zone in Three Fathoms Cove. The flushing rates of
semi-enclosed bays in the harbour are determined numerically via a solution
of the full equations with a realistic tidal boundary condition and over half
spring-neap cycle. The model is also applied to study the effect of proposed
massive reclamation under the Hong Kong Port and Airport Development
Strategy (PADS) project on tidal current in Victoria Harbour, Hong Kong,
which is a more difficult task since there are two open boundaries.

5.2 Basic philosophy

The fundamental theoretical concept of finite element methods involves
the formulating a variational boundary value problem statement of system
energy and generating a discretized approximation of its extremum employ-
ing the pertinent concepts and procedures. It was originally developed by
structural engineers to analyse large aircraft systems (Turner et al. 1956).
Widespread applications of finite element methods to various non-structural
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problems, including fluid mechanics, began in the 1970s (Oden 1972; Baker
1973; Chung and Chiou 1976). To this end, the concept of force balance in
structural mechanics was replaced by a robust theoretical analysis founded
in the equivalent variational Rayleigh–Ritz methods (Rayleigh 1877; Ritz
1909).

It is noted that the direct application of these classical theoretical con-
cepts for cases in fluid mechanics is not feasible. Yet, for most of these
cases, the algorithm constructions can be regarded as specific criteria within
a weighted residual framework. In other words, instead of the error in
the approximate satisfaction of the conservation equations, the integral
with respect to selected weights is set to zero (Finlayson 1972). Whilst in
classical mechanics, one often directly applies the momentum equations
(Newton’s Second Law), finite element principles have evolved employing
the alternative approach of energy minimization. In fact, the collocation
method within weighted residuals produces the same effect as quotients
in finite difference methods. This provides a link between finite element
variational principles and finite difference handling of partial differen-
tial equations in fluid mechanics fields. Currently, the Galerkin criteria
weighted-residuals formulation is often employed as the most representa-
tive extension from the classical concepts. It generalizes the weights to be
functions and defines them as identical to the approximation functions for
the conservation variables (Galerkin 1915). In fact, the least squares method
is yielded when the weights are defined to be the differential approximation
error.

In the following few sections, some aspects of finite element methods as
applied to progressively more complete differential equation descriptions
in coastal hydraulics are delineated. For all cases, the basic Navier–Stokes
equation system governs completely general flow fields in three-dimensional
configurations. In each case, the system is simplified by enforcing different
assumptions with different degrees of restrictions on certain physical and/or
geometric aspects.

5.3 One-dimensional models

In fact, one-dimensional models are not often used. The advances of com-
puting technology in these few decades mean that the computing effort
is no longer a controlling factor. In general, higher accuracy attached to
higher dimensional models will be the more deciding factor in the choice of
numerical model.

Hagen et al. (2001) proposed a localized truncation error analysis (LTEA)
as a means to efficiently generate meshes that incorporate estimates of
flow variables and their derivatives. Three different LTEA-based finite ele-
ment grid generation methodologies were examined and compared with two
common algorithms: the wavelength to Delta x ratio criterion and the topo-
graphical length scale criterion. Errors were compared on a per node basis.
It was demonstrated that solutions based on LTEA meshes were, in general,
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more accurate in both local and global terms, and were more efficient. Ana-
lyses and results from this 1-D study could be considered to have laid the
groundwork for developing an efficient mesh-generating algorithm suitable
for higher dimensional models.

Muttin (2008) presented two numerical finite element models, namely, a
1-D model (FORBAR) and a 3-D model (SIMBAR), in simulating an oil-spill
boom, a long floating structure used to deviate or to stop floating pollu-
tion during an oil-spill crisis. The objectives of these models were mainly to
furnish as much mechanical information as required to optimize the contin-
gency system and to formulate appropriate emergency action plans in time,
i.e. deviative strategy or stopping strategy. The models were applied in the
case of the Elorn River in France. Comparisons of the results were made
with the observed field data as the benchmarking yardstick.

5.4 Two-dimensional models

Whilst 2-D depth-averaged models are often employed in most cases in
coastal engineering, 2-D laterally averaged models will be used when the
relationship between the pertinent parameters and the water depth is of
great concern.

5.4.1 2-D depth-integrated models

Fernandes et al. (2002) used a two-dimensional depth-averaged finite ele-
ment flow model (TELEMAC-2D) to model the hydrodynamics of the Patos
Lagoon during the 1998 El Niño event. The model was initially calibrated
against measurements taken over a period of time. Then model validation
was carried out by comparing measurements and predictions for a reference
station in the estuarine area for a different period. Results indicated that
velocities in the lagoon and estuary during the extreme conditions observed
in the El Niño period were much stronger from those during the normal
periods.

Keen et al. (2004) applied a 2-D finite element hydrodynamic model to
simulate the oceanographic and sedimentological processes that produced
the event beds in Mississippi Sound and the inner shelf of the north-east
Gulf of Mexico. The simulation was employed to validate whether or not
the simulated cores were consistent with the observed stratigraphy and
geochronology and whether or not the event beds were probably produced
by an unnamed hurricane in 1947 and by Hurricane Camille in 1969.

Sentchev et al. (2006) presented a two-dimensional (2-D) finite element
spectral in time model to describe the Stokes drift of the major tidal con-
stituents in the English Channel, assimilating high frequency radar surface
velocities and coastal tidal gauge data. The assimilated sea surface height
and depth-averaged velocities, based on six major tidal constituents, were
employed for the mapping of the residual transport through the Channel,
tidal dissipation, and for estimation of the energy flux. Error charts for the
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sea surface elevation demonstrated that some local coastal areas within the
channel might need better coverage by observations.

Mattocks and Forbes (2008) developed a real-time, event-triggered storm
surge prediction system for the State of North Carolina to assist government
officials with evacuation planning, decision-making and resource deploy-
ment during tropical storm landfall and flood inundation events. The system
was accomplished through a two-dimensional, depth-integrated version of
the ADCIRC (Advanced Circulation) coastal ocean model with winds from
a synthetic asymmetric gradient wind vortex.

5.4.2 2-D lateral-integrated models

Sakr (1999) developed a two-dimensional finite element model,
2D-VDTRAN, to simulate density-dependent solute transport in solving the
problem of seawater intrusion for the case of a confined coastal aquifer in
which there is steady seaward flow of fresh water. Dispersion and diffu-
sion of the salt-water component, as well as the density effect, were taken
into account. A feature of this study was that different combinations of
parameter values were tried in dimensionless form, resulting in four named
parameters: seepage factor; dispersion-to-advection ratio; geometry ratio;
and time-scale factor. The limitation of the sharp-interface approach in
coastal aquifers for conditions of both steady state and unsteady state was
also investigated in this study.

In order to mitigate seawater intrusion problems, Sherif and Hamza
(2001) presented a two-dimensional finite element model (2D-FED) with
a variable density flow to verify a technique for restoration of the balance
between freshwater and saline water in coastal aquifers. Simulations were
undertaken in the vertical view, and equiconcentration and equipotential
lines were plotted for different locations of brackish water pumping. Results
indicated that brackish water pumping exerted a significant influence on the
width of the dispersion zone and that the quality of the pumped water was
related to the pumping location. The method was applied to the Madras
aquifer in India.

Choi et al. (2002) delineated a 2-D finite element model for the laterally
unbounded density current developing on a slope, which solved the layer-
averaged equations numerically using the Beam and Warming scheme. The
computed flow profiles were compared with the numerical solution whilst
the front velocity was compared with the measured data. The model was
also applied to a laterally unbounded density current developing on a tilted
surface.

Young et al. (2005) developed a two-dimensional laterally averaged reser-
voir model to study the density currents generated in a thermally stratified
reservoir due to inflow with sediment concentration. The governing equa-
tions were solved using the Galerkin’s weighted residual finite element
method, with an arbitrary Lagrangian-Eulerian scheme. The model was also
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applied to simulate the field-scale hydrodynamic and temperature structures
in the Te-Chi reservoir at Taiwan. Prediction of the different regimes of den-
sity currents such as the turbidity current, underflow and interflow were
preformed for sediment-laden inflow during the days of heavy rainfall due
to storms.

5.5 Three-dimensional models

Kodama et al. (2001) presented a verification of the newly improved
multiple-level finite element model for application of 3-D tidal current
analysis in Tokyo Bay. The improvement included additional effects due
to various forcing factors, as well as a new numerical treatment of the
open boundary condition in order to effectively eliminate the spurious
reflective waves often generated by various numerical methods simulat-
ing free surface flows. Numerical experiments were conducted to carefully
examine the tidal circulations affected by the interaction of the forcing
factors, namely, Coriolis force, river inflows and wind shears. This study
has also resulted in the enhancement of the accuracy of numerical sim-
ulations of three-dimensional flow in coastal waters by employing this
model.

Chen et al. (2003) developed an unstructured grid, three-dimensional
primitive equation ocean model for the study of coastal oceanic and estu-
arine circulation, which was applied to the Bohai Sea and the Satilla
River. The irregular bottom slope was represented using a sigma-coordinate
transformation, and the horizontal grids comprised unstructured triangular
cells. The model combines the advantages of a finite element method for
geometric flexibility and a finite difference method for simple discrete com-
putation. It was concluded that currents, temperature, and salinity in the
model computed in the integral form of the equations could provide a bet-
ter representation of the conservative laws for mass, momentum, and heat
in the coastal region with complex geometry.

Escribano et al. (2004) presented a three-dimensional numerical model
using the finite element method to diagnose coastal currents off Antofagasta,
in a well-known upwelling region of northern Chile. Steady-state conditions
were simulated under the absence of wind or with the dominant upwelling-
favourable wind in the zone. A 3-D particle tracking program was further
used to diagnose and provide deeper understanding of expected particle
trajectories over a steady-state period.

Wai et al. (2004) described a 3-D finite element sediment transport model
integrating waves and currents to continuously account for different-scale
activities, with application to simulate actual situations in the Pearl River
Estuary, China. The wave action equation, which took into account wave
refraction and diffraction as well as tidal hydrodynamic modification, was
employed to compute the wave parameters. During the time marching
process, the computation of the wave and current forcing was coupled
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in order that the effects due to short-term activities could be taken into
account.

Ghostine et al. (2008) studied the numerical resolution of the three-
dimensional Saint Venant equations for the study of flood propagation.
A discontinuous finite element space discretization with a second-order
Runge–Kutta time discretization was used to solve the governing equa-
tions. It was found that the explicit time integration coupled with the use
of orthogonal shape functions rendered the method computationally more
efficient than comparable second-order finite volume methods.

Abualtayef et al. (2008) presented the development and application of
a three-dimensional multilayer hydrostatic model of tidal motions in the
Ariake Sea, which was able to compute wetting and drying in tidal flats.
The governing equations were derived from 3-D Navier–Stokes equations
and were solved using the fractional step method, integrating the finite dif-
ference method in the horizontal plane and the finite element method in the
vertical plane.

5.6 Characteristic-Galerkin method

5.6.1 Formulation of the discretized equations

The hydrodynamic and mass transport equations, when written in the fully
conservative form, have the form:

∂U
∂t

+ ∂Fi

∂xi
= R (5.1)

In the above U is the vector of independent variables, which depends on
the position vector x and the time t; Fi is the advective flux vector in the ith
space coordinate and is a function of U and x. R is a self-adjoint operator on
U that contains zero (source) and second-order (diffusion) space derivatives
and may also depend on x. The vector R can be written as:

R = Rs + ∂Rdi

∂xi
(5.2)

where Rs is a source term and Rdi denotes the diffusion fluxes.
A second-order Taylor series expansion is developed for U in time about

t = tn in the form

Un+1 = Un +
t
(
∂U
∂t

)n

+ 
t2

2

(
∂2U
∂t2

)n

(5.3)

The time derivatives can be replaced in terms of space derivatives as follows:

∂U
∂t

= R − ∂Fi

∂xi
= Rs + ∂Rdi

∂xi
− ∂Fi

∂xi
(5.4)
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and

∂2U
∂t2

= ∂

∂t

(
Rs + ∂Rdi

∂xi
− ∂Fi

∂xi

)
= G

∂U
∂t

+ ∂
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(
∂Rdi

∂xi

)
− ∂

∂xi

(
∂Fi

∂t

)
(5.5)

where G = ∂Rs/∂U.
Since only approximations possessing C0 continuity are considered,

all derivatives higher than second order have to be dropped. The time-
discretized equation is then

Un+1 = Un +
t
(

Rs + ∂Rdi

∂xi
− ∂Fi

∂xi

)n

+ 
t2

2

{
G

(
Rs − ∂Fi
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)
− ∂

∂xi

[
Ai

(
Rs − ∂Fj

∂xj

)]}n

(5.6)

with A = ∂F/∂U.
To complete the discretization process we shall consider the following

approximations:

U = UiNi,Fj = Fi
jNi,Rs = Ri

sNi

where Ni is the piecewise linear shape function associated with node i, and

Rdj = Rdj
ePe,G = GePe,Aj = Aj

ePe

where Pe is the piecewise constant shape function associated with element e.
Figure 5.1 shows the discretization of linear elements in a solution domain
in finite element method and Figure 5.2 shows the linear shape function Ni

corresponding to a triangular element ijk. Equation (5.6) is then weighted
with the shape functions Nj to give

(M
U)i =
t
∫
�

(
Rs + ∂Rdi

∂xj
− ∂Fj
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Nid�+ 
t2

2

∫
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− ∂
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(
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)]}n

Nid� (5.7)

where � is the problem spatial domain; 
U = Un+1 − Un; and the entries in
the consistent mass matrix M are given by

Mij =
∫
�

NiNjd� (5.8)
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Figure 5.1 Discretization of linear elements in a solution domain in the finite
element method
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Figure 5.2 Linear shape function Ni corresponding to a triangular element ijk

Applying Green’s theorem to equation (5.7), we have
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with nj being the components of the outward unit normal to the
boundary �.

The algorithm is in essence a finite element implementation of the Lax–
Wendroff finite difference scheme used in high-speed flow computations
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(Roache 1976). The main, and essential, difference lies, however, in the
consistent mass matrix M, which links the contribution of neighbouring
nodes; in a finite difference context the matrix M is “lumped”, i.e. diagonal.
For computational reasons it is nevertheless convenient to use a lumped
form ML, and the full effects M can be obtained by a simple iteration
(Donea 1984). Thus the solution of the discretized equation (5.9) can be
implemented as written

M
U = f n (5.10)

and an iterative solution is obtained from

ML
Uk = f n − (M − ML)
Uk−1 (5.11)

with 
U0 = 0; three iterations are generally sufficient.

5.6.2 Two-step algorithm

The algorithm described above possesses excellent accuracy characteristics
and it has been shown to work well in practice. However, when it is applied
to systems of equations, it has the disadvantage of requiring the evaluation
and subsequent multiplication of the matrices A and G. These operations
are very time consuming and their vectorization will require the storing of
these matrices for each element. In order to avoid this, the computation
of the right hand side of equation (5.9) can be reorganized using the fol-
lowing two-step algorithm, which reduces the overall computational cost to
approximately a half for the shallow water equations, and even less, when
these are solved in a coupled manner with additional equations such as mass
transport.

Considering the Taylor series expansion correct to first order and neglect-
ing diffusion effects:

Un+1/2 = Un + 
t
2

(
Rs − ∂Fi

∂xi

)
(5.12)

Approximate Un+1/2 in a piecewise constant manner with Un, Rs and Fi inter-
polated as before. A suitable weighted residual form of equation (5.12) is
then∫

�
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∫
�

UnPed�+ 
t
2

∫
�

(
Rs − ∂Fi

∂xi

)n

Ped� (5.13)

This expression leads immediately to the distribution of U and completes
the first step.
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Again use Taylor series expansions to write
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Rn+1/2
s = Rn

s + 
t
2

(
∂Rs

∂t

)n

= Rn
s + 
t

2

[
G

(
Rs − ∂Fj

∂xj

)]n

(5.15)

Expressions (5.14) and (5.15) can now be used to construct an alterna-
tive representation for the undesirable terms appearing in the one-step
scheme. The distributions of Fn+1/2

i and Rn+1/2
s are approximated in a piece-

wise constant fashion by using directly the form of Un+1/2 calculated in
the first step, whereas Fn

i and Rn
s are interpolated as before. Weighting

equations (5.14) and (5.15) with piecewise constant shape functions Pe, the
following relations are found[
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where the overbar denotes the average value over the element e.
Using these expressions, equation (5.9) can be rewritten as
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5.6.3 A characteristics-based approach

The time-discretized equation (5.6) can also be obtained by following a
characteristics approach. This will be shown for the 1-D scalar advection
equation. Consider the transport equation, now written as

∂φ

∂t
+ A

∂φ

∂x
= 0 (5.19)

with A being a function of φ only, i.e. A = A(φ).
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Along the characteristic lines,

ḋx
dt

= A (5.20)

equation (5.19) reduces to

Dφ
Dt

= 0 (5.21)

or φ= constant. Thus, starting from a given initial distribution and a given
spatial discretization, equation (5.21) may be used to construct the solution
at later times with a continuous mesh updating via equation (5.19).

This computational drawback of mesh updating can be avoided as fol-
lows. Introduce a characteristic coordinate ξ , such that ξ is a constant along
a characteristic, and consider the situation over a time interval tn ≤ t ≤ tn+1.
Figure 5.3 shows the characteristic ξ = constant which passes through the
point P with coordinates (xp, tn) and the point Q with coordinates (x, tn+1).
We can write

ϕ(x, tn+1) =ϕ(xp, tn) (5.22)

and, using (5.20),

xp = x −
tAp (5.23)

with Ap being the value of A at P.

ξ = constant

xxxp

P

t

t 
n+1

t 
n

Q

Figure 5.3 Path of a characteristic over the time interval (tn, tn+1)
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Using (5.23) in (5.22) and expanding as a Taylor series results in

ϕn+1 =ϕn +
tAp
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2
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(
∂2ϕ
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(5.24)

with

ϕn+1 =ϕ (x, tn+1
)

(5.25)

and

ϕn =ϕ (x, tn) (5.26)

correct to second order. The value of Ap is approximated also by performing
a Taylor series expansion

Ap = A −
tA
(
∂A
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(5.27)

with

A = A (ϕn) (5.28)

Combining (5.27) and (5.24) we obtain
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or, rearranging,

ϕn+1 =ϕn −
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2
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A2 ∂ϕ
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)
(5.30)

It can be observed that this is the same result that would be produced
by applying equations (5.6)–(5.19). Thus the characteristics nature of the
methodology presented has been shown.

5.6.4 The conservative hydrodynamic and mass transport equations

In order to exploit the full power of the numerical technique presented in
the preceding section, it is essential to write the hydrodynamic and mass
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transport equations in conservative form. Then, in the absence of diffusive
mechanisms, the equations can be written as:

∂U
∂t

+ ∂F1

∂x1
+ ∂F2

∂x2
= Rs (5.31)

which, integrated over a given spatial domain �, yields after application of
Gauss’s divergence theorem

∂
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⎛⎝∫
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Ud�
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∫
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(
F1n1 + F2n2

)
d�+

∫
�

Rsd� (5.32)

This equation states that for any arbitrary domain, the ratio by which the
total amount of U increases is given by the integral of the normal flux
Fn over the boundary � of the domain �, plus the amount of U gener-
ated inside the domain (i.e. Rs). The components of the vector U are the
physical conserved quantities: mass, momentum and any additional quan-
tity which is being solved simultaneously with the shallow water dynamics
(e.g. pollutant, concentration, temperature, etc.).

The usual forms of the hydrodynamic and mass transport equations
found in the literature (Dronkers 1964; Benque et al. 1982) may not satisfy
such requirements even in those cases where the equation is called conserva-
tive. Even if they are conservative, they may not be accurate. The equation
presented here is equivalent in the differential form to the standard long-
wave shallow water equation. The essential difference, however, lies in the
different grouping of the various terms.

The tidal hydrodynamic and mass transport equations in the fully
conservative form read:

∂U
∂t

+ ∂F1

∂x
+ ∂F2

∂y
= Rs + ∂Rd1

∂x
+ ∂Fd2

∂y
(5.33)

with

U =

⎡⎢⎢⎣
h
hu
hv
hc

⎤⎥⎥⎦ , F1 =

⎡⎢⎢⎣
hu

hu2 + 1/2g(h2 − H2)
huv
huc

⎤⎥⎥⎦ ,

F2 =

⎡⎢⎢⎣
hv
huv

hv2 + 1/2g(h2 − H2)
hvc

⎤⎥⎥⎦
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Rs =

⎡⎢⎢⎣
0

g(h − H)∂H/∂x − gu/C2
z (u2 + v2)1/2 + fhv

g(h − H)∂H/∂y − gv/C2
z (u2 + v2)1/2 − fhu

0

⎤⎥⎥⎦ (5.34)

Rd1 =

⎡⎢⎢⎣
0

2μh/ρ(∂u/∂x)
μh/ρ(∂v/∂x + ∂u/∂y)

hD(∂c/∂x)

⎤⎥⎥⎦ ,Rd2 =

⎡⎢⎢⎣
0

μh/ρ(∂v/∂x + ∂u/∂y)
2μh/ρ(∂v/∂y)

hD(∂c/∂y)

⎤⎥⎥⎦
and then can be solved by a characteristic Galerkin scheme, which has
two distinct advantages: i) the small storage requirements render it suit-
able for microcomputers; and ii) it offers the vectorization properties and
allows the coupled hydrodynamics and transport equations to be solved
simultaneously.

5.6.5 Accuracy analysis of advection-dominated problems

We consider the general one-dimensional advection-dominated equation:

ct + ucx = 0 (5.35)

where c may be regarded as the concentration of a material substance.
Assuming constant velocity and coefficients, the accuracy of a time-stepping
numerical scheme can be analysed using a procedure similar to that adopted
in long-wave computations (Leendertse 1967).

The general solution to equation (5.35) is written as a Fourier series of
the following form:

c =
∞∑

n=−∞
Cnei(βnt+σnx) (5.36)

where βn is the frequency of the nth Fourier component, σn = 2π/Ln is the
wavenumber, Ln is the wavelength, and i = √−1. On substitution of equa-
tion (5.36) into (5.35) the following advection relationship between βn and
σn can be obtained:

βn =−uσn (5.37)

Because equation (5.35) is linear, we need only consider one Fourier compo-
nent. From (5.36) and (5.37) we obtain the ratio of the analytical solution
at t +
t to that at time t (eigenvalue) as:

λ= c (t +
t)
c (t)

= |λ| eiθ = e−iuσ
t (5.38)
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where the amplitude decay is 1 in this case and the exponential describes
the translation of the analytical wave.

The error committed by the numerical solution of an advection-
dominated problem described by (5.35) can be calculated. Adopting the
CG method, the governing equation is first discretized in time:

cn+1 = cn − un
tcn
x + 1

2
(un
t)2 cn

xx (5.39)

Using linear elements for spatial discretization, application of the Galerkin
method gives the following discretized equations for an interior node i:

1
6

(
cn+1

i+1 + 4cn+1
i + cn+1

i−1

)= 1
6

(
cn

i+1 + 4cn
i + cn

i−1

)− 1
2

Cr
(
cn

i+1 − cn
i−1

)
+ 1

2
Cr2

(
cn

i+1 − 2cn
i + cn

i−1

)
(5.40)

where cn
i = c(i
x,n
t), and Cr = u
t/
x is the Courant number.

Noting that cn
i+1 = cn

i e
iσ
x, cn

i−1 = cn
i e

−iσ
x, the numerical eigenvalue,
λ∗ = cn+1

i /cn
i = |λ∗|eiθ∗ can be obtained as:

λ∗ = 1 + 3Cr2 (cos p − 1)
(cos p + 2)

− i
3Cr sinp
(cos p + 2)

(5.41)

where p = σ
x = 2π
x/L.
The scheme is stable if |λ∗| ≤ 1, i.e.[

1 + 3Cr2 (cos p − 1)
(cos p + 2)

]2

+
[

3Cr sinp
(cos p + 2)

]2

≤ 1 (5.42)

or, after simplification,

Cr ≤ 1/
√

3 = 0.57 (5.43)

This gives a stability criterion which is more restrictive than that of
conventional explicit finite difference schemes, Cr ≤ 1.

The numerical error per time step is measured by the complex ratio
P = λ∗/λ, which depends on the Courant number of the scheme and the
wavelength of interest. The amplitude ratio |P| gives the degree of damping
or amplification, while the relative celerity θ ∗/θ measures the phase error
relative to the analytical wave.

The numerical propagation factors P and θ ∗/θ for the characteristic-
Galerkin scheme are plotted in Figure 5.4 and Figure 5.5 respectively as
a function of the number of grid points per wavelength L/
x for represen-
tative Courant numbers of 0.1, 0.3 and 0.5. The amplitude ratio converges
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Figure 5.4 Amplitude of the characteristic-Galerkin method for the pure advection
equation for different Courant numbers

to unity for all wavelength as the Courant number approaches zero. From
Figure 5.4 it can be seen that for Cr ≤ 0.3, the scheme displays minimal
amplitude error for L/
x≥5. The characteristic-Galerkin scheme is slightly
damped for the short waves. Considerable insight can be gained by exam-
ining the phase characteristics in Figure 5.5. It is interesting to note that
the characteristic-Galerkin method has optimal phase characteristics at a
Courant number of Cr ≈ 0.3; a slight phase lead of the short waves is
noted. It has been proven in Lee et al. (1987) that the overall performance
of the numerical propagation characteristics of the characteristic-Galerkin
method is superior to those of the related classical Lax–Wendroff method
and the implicit Crank–Nicolson scheme and is comparable to that of a
characteristic-based finite difference scheme which uses Hermitian cubic
interpolating polynomials (Holly and Preissmann 1977). The numerical
calculations performed as part of this study were carried out based on a
modified version of a code originated at the Institute for Numerical Method
in Engineering, University College of Swansea (Peraire et al. 1986).

5.7 Verification of the numerical scheme

Before the model can be reliably applied to prototype problems, the stability
and accuracy of the numerical schemes are studied in extensive analytical
tests with idealized geometries. Model results are compared against exact
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Figure 5.5 Phase portraits of the characteristic-Galerkin scheme for the pure advec-
tion equation for different Courant numbers

analytical solutions. Under these circumstances guidelines on the appropri-
ate choice of mesh size and time step can be developed. In this section,
we present detailed test results in many applications. Special attention is
placed on computed velocities, which are more difficult to simulate than
wave heights. The accuracy of the velocity results depends, amongst other
factors, on how faithfully the bottom topography is represented.

The scheme is first subjected to five relevant two-dimensional analyti-
cal tests which embrace many essential realistic features of environmental
and coastal hydrodynamic applications: pure advection of a Gaussian hill,
pure rotation of a Gaussian hill, advective diffusion in a plane shear flow,
continuous source in tidal flow, and long waves entering a rectangular chan-
nel with quadratic bottom bathymetry. The numerical results are compared
with exact solutions. For the first three test cases, the numerical results are
also compared with those of a fractional step method (FS method) which has
been proven with unconditional L∞ stability and with insignificant numeri-
cal damping effect in a steady-state test case (Wu and Chen 1985; Wu 1986).
The FS method employs linear elements, a lumped mass matrix solution and
linear interpolation of characteristics.

5.7.1 Pure advection of a Gaussian hill

The scheme is asked to purely advect a Gaussian concentration distribution
at a constant velocity u=0.5 m/s in a uniform long channel, i.e. D=0m2/s.
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The sharp Gaussian distribution is described by only ten computational
points on a uniform grid with 
x =
y = 200m.

The initial concentration is given by

c0 (x)= exp

(
− (x − 2000)2

2σ 2
0

)
(5.44)

where σ0 = 264 m.
The exact solution is

c (x, t)= exp

(
− (x − 2000 − ut)2

2σ 2
0

)
(5.45)

At a Courant number of 0.24, the numerical solutions by the CG and FS
method are taken at t = 9600 s, corresponding to a transported distance of
4.8 km. For the CG scheme, the peak concentration is reduced by only about
10 per cent at t =9600 s. The results reveal minor node-to-node oscillations
in the y-direction. Both the results at y =
y and at y = 2
y perform simi-
larly. For the FS method, the corresponding peak concentration is reduced
by as much as 70 per cent. It is demonstrated that the FS method gives unac-
ceptably large numerical damping when the Peclet number (u
x/D) is large.

5.7.2 Pure rotation of a Gaussian hill

This problem concerns the transport by convection of a 2-D Gaussian
concentration-hill in a flow in anticlockwise rigid body rotation. The
mathematical problem is governed by the equation

∂c
∂t

+ u
∂c
∂x

+ v
∂c
∂y

= 0 (5.46)

with initial and boundary conditions

c(x,y, 0) = c0(x,y)

c(x,y, t) → 0 as x2 + y2 → ∞

where

c(x,y, t) is the concentration field,
u(y) =−ωy is the x-velocity,
v(x) =ωx is the y-velocity,
ω is the angular frequency of rotation (= 2π/3000), period = 3000 s,
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c0(x,y) is the initial concentration field, defined as

c0 (x,y)= exp

(
− x2

2σ 2
0

− (y − 1800)2

2σ 2
0

)
(5.47)

(0,1800) is the centre of mass of the initial concentration field, and
σ0 is the standard deviation of the initial concentration field (= 264 m).
The exact solution is of the form

c (x,y, t)= exp

(
− (x − ut)2

2σ 2
0

− (y − 1800 − vt)2

2σ 2
0

)
(5.48)

A uniform grid size (
x=
y=200 m) is employed. The numerical solution
is performed in a 2-D grid defined as follows:

x,y ∈ [ − 3400, 3400]
x(i, j) = 200(i − 1)−3400 i=1, 35
y(i, j) = 200(j − 1)−3400 j=1, 35

where x(i, j), y(i, j) are the nodal coordinates (indices i and j refer to the
x- and y-directions respectively). The time step 
t chosen is 10 s. The
advection number (umax
t/
x) based on the maximum velocity is around
0.3. All of these and the following calculations were performed on a
microcomputer.

Comparison of the computed results was made after a quarter revolution
for a rotation period of 3000 s. Figure 5.6 shows the three-dimensional view
of the computed result. For the CG scheme, although the concentration is
described by only about ten grid points, the peak concentration is dissipated
by only 10 per cent, with minimal phase distortion at the tails. For the FS
scheme to deal with advection-dominated problems, the numerical damping
is too excessive (about 80 per cent). This may be related to the linear back-
tracking of characteristics and mass lumping of this particular scheme (Wu
1986). This is evident in the unrealistically large eddy viscosity coefficient
reported in their tidal circulation simulation of the Bohai Sea.

5.7.3 Advective diffusion in a plane shear flow

This problem concerns the transport of small sources in a plane shear flow
with diffusion. The problem was presented by Carter and Okubo (1965)
and related discussion can be found in Okubo and Karweit (1969).

For the simple case of a steady 2-D unidirectional flow, with velocity u0

along the x-axis, shear λ= du/dy, and a constant diffusion coefficient D,
the governing equation is

∂c
∂t

+ (u0 + λy)
∂c
∂x

= D
[
∂2c
∂x2

+ ∂2c
∂y2

]
(5.49)
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Figure 5.6 Three-dimensional view of the computed concentration hill for pure
advection of a rotating cone

subject to initial and boundary conditions of

c(x,y, 0) = c0(x,y)

c(x,y, t) → 0 as |x| or |y| → ∞

When the initial condition is a point source of mass m at x = x0 = 7200,
y = y0 = 0, and t = 0, the solution is

c(x,y, t) = m
4πDt(1 + λ2t2/12)1/2

exp

(
− (x − x′ − 0.5λyt)2

4Dt (1 + λ2t2/12)
− y2

4Dt

)
(5.50)

where x′ = x0 + u0t.
To allow numerical solution based on a finite source size, calcula-

tion should begin at time t = t0 with a concentration distribution given
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by the above equation using m = 4πDt0(1 + λ2t2
0/12)1/2 i.e. the initial

peak concentration should be unity. In this example, t0 is taken to be
2400 s.

Computation is made for the advective diffusion of an initial finite source
in a plane shear flow, u(y) = u0 + λy at time t = 4800 s, where u0 = 0.5 m/s,
λ=5.0×10−4, and the diffusivity D=10m2/s. The grid size is 200 m (
x=

y = 200 m) and the time step is 96 s. The advection number based on the
maximum velocity is around 0.3. The computed and exact solutions are in
excellent agreement. It is again shown that the accuracy of the CG scheme
is far better than that of the FS scheme.

5.7.4 Continuous source in a tidal flow

The governing equation for this problem is as follows:

∂c
∂t

+ (uf + ut sin2π t/T)
∂c
∂x

= D
∂2c
∂x2

− kc + S (5.51)

The concentration distribution resulting from a step steady injection of mass
at x = 0, t = 0, in a time-varying flow is considered (Li and Lee 1985). The
advective x-velocity consists of a net downstream component in the +x
direction uf, and a reversing sinusoidal component of amplitude ut and
period T:

u (t)= uf + ut sin (2π t/T) (5.52)

The steady forcing term S(x, t) = S(x) is modelled by the linear shape func-
tion corresponding to the source node at x = 0. The analytical periodic
steady-state solution corresponding to a finite source for a representa-
tive case, using uf = 0.03 m/s, ut = 0.61 m/s, T = 12.4 hr, D = 6m2/s,
k=0.034/day is performed. The computed solution at both high water
slack (HWS) and low water slack (LHS) by the CG scheme is shown in
Figure 5.7 for a representative case, using 
t = T/24 and 
x = 3050 m.
Starting from c(x, 0) = 0, the computed steady state reached in about
90 cycles is essentially described by an equilibrium concentration profile
which oscillates up and down the channel with the phase of the advec-
tive flow. The solution at t = 90T is compared with the exact solution
corresponding to the triangular-shaped source forcing. It is seen that the
results with the CG method, without any grid refinement near the source,
are in very good agreement with the analytical solution. Further, the results
show negligible oscillations around the upstream front of the concentration
distribution.
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5.7.5 Long wave in a rectangular channel with quadratic bottom
bathymetry

The linearized shallow water equations with bottom frictional dissipation
can be written as:

ηt +
(
uh

)
x
+ (

vh
)

y
,ut + gηx + τu = 0, vt + gηy + τv = 0 (5.53)

where u, v are the velocities in the x- and y-directions, η is the free surface
elevation above the undisturbed level, and τ is the linear friction coefficient.

The analytical solution to long wave propagation in a rectangular chan-
nel with quadratic bottom bathymetry has been given by Lynch and Gray
(1978):

z(x, t) = Re
{[

Axα + Bxβ
]
e

i2π t
T

}
(5.54)

u(x, t) = Re
{[

Aαx(α−1) + Bβx(β−1)
] i2π
ψ2H0T

e
i2π t

T

}
(5.55)

where i = unit complex vector

A = aβxβ1/(βxβ1xα2 −αxα1xβ2)
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B =−aαxα1/(βxβ1xα2 −αxα1xβ2)

A = amplitudeofsurfaceoscillationattheopenend

α,β =−0.5 ± (0.25 −ψ2)1/2

h (x)= H0x2

ψ2 = 2π
2π/T − τ i

TgH0

A standing oscillation in uniform channel of length l=10 km with quadratic
bottom bathymetry of mean water depth varying from 12 m at the open
end to 3 m at the closed end is considered. Figure 5.8 shows the elevation
of the schematized channels. A surface sinusoidal oscillation of amplitude
a = 0.5 m and period T = 44, 640 s is prescribed at the open end. At a
solid boundary, the normal velocity is made to vanish, except at the corner
nodes where the no-slip condition is imposed. A constant linearized bottom
friction coefficient of τ = 0.100 × 10−3/s is assumed. This example is solved

a

12 m

h (x)
3 m

� = 10 km

h (x) = H0 x 
2

x = x1x = x2

x
�

Figure 5.8 Elevation view of schematized channel with quadratic bottom bathy-
metry and mean water depth ranging from 3 m to 12 m
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by the two-dimensional version of the CG method written in conservative
form.

By employing the CG method, the channel is divided into ten segments of
uniform dimension (
x =
y = 1000 m). The finite element grid comprises
40 triangular elements and 33 nodes. The wavelength can be estimated
as L = T

√
(gh) = 484 ∼ 242km > 4∗l and L/
x = 242 ∼ 484. A “cold

start” condition is employed as the initial value to the problem. Starting
from zero elevations and velocities, the periodic steady-state is reached in
about 5–6 cycles. At a Courant number of 0.4, the computed periodic
steady-state water elevation and water velocities in the 10 km quadratic
bottom bathymetry test case are compared with the analytical solution. The
agreement with the exact solution is very good.

Extensive comparisons of the results have been performed with ana-
lytical test problems which embrace many essential realistic features of
environmental and coastal hydrodynamic applications: pure advection of
a Gaussian hill, pure advection of a rotating cone, advective diffusion in
a plane shear flow, dispersion of a continuous source in a tidal flow, and
long-wave propagation with bottom frictional dissipation in a channel with
quadratic bottom bathymetry. They serve as a check on the developed
codes and give an insight into the choice of Courant number in prototype
applications of similar dimensions.

However, it is oversimplified to consider real estuaries in the above forms
which can be solved analytically. Real estuaries usually incorporate non-
linear effects of complicated topography and bed frictional resistance so that
it is worthwhile investigating the effectiveness of the scheme in the cases of
real prototype applications.

5.8 Advantages and disadvantages

When compared to the finite difference method, the finite element method
can be more easily adapted to handle cases with irregular geometries.

As the algorithms presented are explicit and solve steady-state or periodic
problems by a semi-dynamic relaxation procedure, the storage requirements
are small, and the method can be used on mini- and microcomputers if
necessary. This aspect is of some importance to practising engineers who
may wish to make use of such computations.

Because linear elements are used, exact integration can be easily carried
out. Therefore numerical integration is not needed. This represents a con-
siderable saving in computer time. Moreover, the restriction in the Courant
criterion limit is more than compensated for by the gain in accuracy. The
scheme is particularly attractive in situations where the Courant stability
constraint does not result in an excessively small time step.

The algorithms are fully vectorizable, thus allowing the user to take
advantage of the dramatic speed-up factors which can be obtained on the
new generation of supercomputers. The equations are written in vector
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form, which means that additional effects such as pollutant dispersion or
temperature distribution can be included in a straightforward manner. If
desired, additional equations modelling the hydrodynamic transport of any
number of scalar variables can be solved together with the shallow water
equations. The additional scalar transport equations can indeed be consid-
ered in the general formulation by only adding additional components to
the unknown, flux and source vectors.

The hydrodynamic and mass transport equations are written in a fully
conservative form. The complete derivation starting from the Navier–Stokes
equations is presented. The main difference with respect to the existing
hydrodynamic and mass transport equations lies in the grouping of the
pressure terms, which in the standard formulations are represented in the
primitive form. This fully conservative form, together with the numerical
scheme employed, leads to an algebraic system of equations which pre-
serves, in a discrete manner, the conservation of the mass and momentum.
The solution algorithm is based on an explicit time integration procedure
which exploits the conservative properties of the governing equations and
incorporates accurate treatment of convective terms with minimal numer-
ical damping. Checks have been made on the mass conservation of the
scheme for both one-dimensional and two-dimensional test cases. For the
test case of pure advection of a Gaussian hill, the ratio of total masses to
initial masses in the whole domain remains almost unity after 100 time
steps.

5.9 Prototype application I: mariculture management

In previous sections, it has been demonstrated that the numerical model
is capable of solving the hydrodynamic and mass transport equations cor-
rectly. In this section, the characteristic-Galerkin method is used to study a
prototype problem: tidal flushing for two fish culture zones located in Tolo
Harbour, Hong Kong. Simulations are first performed with the mean tide
used as the forcing function at the open boundary; the dynamic steady-state
flow field and tidal flushing rates at the two fish culture zones are com-
puted. The coupled hydrodynamic and mass transport equations are solved
for seven days, about half a spring-neap cycle. The open boundary condi-
tion is provided by a synthetic tide of 42 tidal constituents derived from an
extended harmonic analysis of long-term records. The predictive ability of
the model is assessed.

5.9.1 General description of Tolo Harbour

Tolo Harbour, lying in the north-eastern part of the New Territories, Hong
Kong, is a nearly land-locked water body with a tidal inlet to Mirs Bay in
the eastern waters. It has an area of about 52 km2 and extends about 20 km
from south-west to north-east with an entrance width of less than 1.5 km.
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The elongated inlet, Tolo Channel, connects the harbour to Mirs Bay, which
is one of the major south-facing bays along the South China coast.

The water depth at the entrance to Tolo Harbour is about 25 m, but tapers
off to about 2 m along the south-west and north-west shoreline where the
new towns of Shatin and Taipo are located. Over 1,000 hectares of the
harbour have been or are being reclaimed to form part of the two new
towns, which will have a predicted population of about 850,000 on com-
pletion. Therefore, a rather heavy pollution loading will be exerted upon
this region. Due to its enclosed nature, the waste assimilation capacity is
very limited. Of special interest is the computation of flushing rates for the
two fish culture zones located in the inner coves of Yim Tin Tsai West and
Three Fathoms Cove (Figure 5.9).

Despite the slight stratification observed during the wet season, Tolo
Harbour can be considered a vertically fully-mixed estuary for most of the
year, and a two-dimensional vertically averaged model can be applied. The
ratio of average freshwater inflow per tidal period to tidal prism is in the
order of 0.01 and the freshwater inflow has an insignificant effect upon the
dynamics of the typical harbour circulation. Therefore, the flow is mainly
driven by the tidal forcing at the entrance to the harbour.

From the tidal records, it can be observed that tides in this area are pre-
dominantly semi-diurnal of the mixed type. The tides are often distorted due
to amplification of the shallow water constituents. Therefore the observed
tide is more complicated than a simple harmonic tide, and is composed of

Yim Tin Tsai West

Tai Po

Tolo Harbour

Shatin

Fish culture zone

Tolo Channel

Three Fathoms Cove

0 1 km

N

Figure 5.9 General layout of Tolo Harbour
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a number of harmonic tidal constituents with period down to about three
hours.

5.9.2 Dynamic steady-state simulation: M2 tidal forcing

The first step in the numerical simulation is to construct the spatial grid
for the region concerned. Laying out a good grid is the most fundamental
aspect of finite element modelling and is essential for an efficient solution.
This process requires skill on behalf of the modeller, which can be acquired
only through experience. The following guidelines are adopted (Wang and
Connor 1975; Norton and King 1976):

(a) The problem’s overall boundaries are sketched out first with as few
corners as possible. It is wise to begin any new problem with the crudest
approximation possible and then later make refinements as they become
necessary. Since some inaccuracies are to be expected in the data, the
boundary should be reasonably far away from any area of interest.

(b) Once the network’s overall limits have been set it is usually advisable
to construct a series of lines more or less parallel to the long axis of
the problem. The position and frequency of these lines should reflect
the areas of special importance in the problem, the expected hydraulic
gradients, and the degree of relief in the bottom contours.

(c) Once the longitudinal lines have been located, transverse lines can be
drawn, again recognizing the requirements and details of the specific
problem. After the basic grid has been established, the triangular struc-
ture can be filled in with special attention to corners and other areas
where gradients are expected to be large.

(d) Grid dimensions should change gradually, and for accuracy the elements
must not degenerate. For triangular elements, no apex angle should
approach zero and preferably they should be almost equilateral.

A compromise must be found between accuracy and computational effi-
ciency. The grid size is chosen under such requirements that it is small
enough to provide adequate resolution for the physical phenomena con-
cerned, but large enough to keep the computational effort required to the
minimum. In this case, a grid size of about 1,000 m is generally used in Tolo
Harbour and the grid formed contains 93 unknown nodal points and 125
linear triangular elements. A finer grid of 500 m is adopted in the two bays
of interest: Three Fathoms Cove and Yim Tin Tsai West. Five grid points are
also located consistent with the fish culture zone covering the four corners
and the middle point with grid size down to 200 m (Figure 5.10).

Generally, hydrodynamics and mass transport are coupled problems, and
the scalar transport equation can indeed be considered in the general formu-
lation by adding only one additional component to the unknown, flux and
source vectors. In practice, however, the time scales of the two phenomena



80 Finite element methods

Figure 5.10 Spatial grid of Tolo Harbour

can be very different, in which case the coupling becomes very weak. Based
on the stability consideration, the allowable time step for the transport
equation is 465 s, 93 times that of the shallow water equation. This repre-
sents an unnecessary expense if the whole set of equations (hydrodynamics
and transport) is to be solved simultaneously.

The method adopted here is to solve the whole set of equations in a
semi-coupled form. As the allowable time step for the transport equation
is 93 times that for the current calculation, the tidal current computation
is advanced 93 steps before the advective diffusion equation is solved; by
the nature of the explicit scheme, this can easily be achieved. At this stage
the solution has been advanced by a time step of 465s, and the transfer of
information between hydrodynamics and transport can be performed before
repeating the same process again. In this manner, the transport equation is
not solved every time step, and the essential effects of the coupling are still
retained.

As the mean freshwater inflow is very small, they are neglected in the
simulations. Thus only two types of boundary conditions are required. At
the land boundary, the forcing is given by the known time history of the
elevation. For the grid chosen, the only forcing is at the ocean boundary
located at the entrance to Tolo Channel where the width is small, and the
tilting of the water surface along the open boundary can be assumed to be
small and safely neglected.

For the dynamic steady-state simulation, a semi-diurnal sinusoidal M2
forcing with an amplitude equal to 0.85 m and a period equal to 44,640.0 s
(12.4 hr) is used to represent the mean tide in Tolo Harbour, which has
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an average tidal range of 1.7 m. Based on the stability considerations, a
time step of 5 s resulting in a Courant number of 0.25 is used in all steady-
state simulations. As there is no prior knowledge about the flow field, all
the simulations are “cold-started”, i.e. all the variables are assumed to be
zero initially. The adopted values of the Manning’s coefficient and the eddy
viscosity coefficient are 0.035 and 50 m2/s respectively.

With the selected model coefficients, the tidal circulation in Tolo Harbour
caused by a pure sinusoidal tide is studied. The results clearly indicate a
near-standing wave character for the tidal propagation, and velocities are
approximately 90◦ out of phase with the surface elevation variation. The
phase lag between the ocean boundary and the interior at Taipo and Shatin
is only about 5–8 min. Also the amplification of the wave amplitude is very
small. The computed tidal currents are in general agreement with field obser-
vations. It was found that after one cycle the results tend to repeat, and
maximum currents of about 0.3 m/s and 1–3 cm/s are found in the outer
harbour and inside the weakly flushed fish culture zone respectively.

Using the computed tidal current of a repeating tide as input, the advec-
tive diffusion is also solved. Lateral turbulent mixing and vertical shear
dispersion are modelled by a gradient-type relation, and the lumped dis-
persion coefficient is evaluated locally as D = |u|h, where |u| is the absolute
value of the computed time-varying velocity and h is the local mean depth.
In fact, the results obtained by assuming D = 0.6|u|h are similar; the results
are not sensitive to the exact value of the dispersion coefficient.

A unit mass of conservative tracer/pollutant is initially discharged from
the middle of each fish culture zone, and the tracer mass inside the zone,
affected by both tidal advection and dispersion, is tracked for ten tidal
cycles. When the pollutant was released in the fish culture zone in Three
Fathoms Cove, the tidal flushing effect and the mass in the adjacent seg-
ments at high water slack are computed. It is found that the exponential
rule is followed after about seven tidal cycles and the flushing rate is deter-
mined to be about 0.13/day with flushing time equalling eight days. The
results are consistent with the field observation data. The flushing rate at
Yim Tin Tsai West is much weaker.

5.9.3 Real tide simulation for seven days (42 tidal constituents)

The flushing rates of the two zones are compared by solving the coupled
hydrodynamic and tracer mass transport equations simultaneously for seven
days, about half a spring-neap cycle. The open boundary condition is pro-
vided by a synthetic tide of 42 tidal constituents derived from an extended
harmonic analysis of long-term records.

With initial concentrations specified as discussed above, the concentration
field is subsequently tracked for seven days. Pollutant decay is neglected
in this test case. Mass conservation is maintained at the landward end; at
the seaward end, no conditions are imposed during ebb, while a prescribed



82 Finite element methods

concentration, equal to a fraction of the average value during the previous
ebb, is prescribed. A sensitivity analysis has been carried out to study the
effect of this fraction on the results. It is found that the variation of this
fraction from 0.3 to 0.5 has an insignificant effect on the result and hence a
value of 0.5 is adopted.

The magnitude of the ebb current inside Three Fathoms Cove ranges
from 0.01 m/s to 0.03 m/s during neap tide and spring tide, respectively.
The Lagrangian pathlines in Three Fathoms Cove are also computed. It is
observed that the fishermen, by their practical experience, also align their
fish rafts within the fish culture zone roughly in this direction. The mass in
the two fish culture zones is continuously tracked (Figure 5.11); an expo-
nential decay can be discerned, and the flushing rate for the fish culture zone
in Three Fathoms Cove is around 0.1 per day, consistent with observations.
The flushing rate at Yim Tin Tsai West is much weaker.

By employing the robust CG model, a successful simulation has been
made of the realistic tidal variation and scalar transport in Tolo Harbour.
The flushing rates of semi-enclosed bays in the harbour have been deter-
mined via a solution of the full equations over half a spring-neap cycle. The
numerical results can be gainfully applied in water quality modelling and
mariculture management. All the computations are performed on a micro-
computer. The run time for the prototype case, with 7,452 time steps per
periodic tidal cycle, is 20 minutes for each cycle. Since the grid is rather
coarse in most of Tolo Harbour, the above serves only as an initial demon-
stration of the method and a preliminary calculation. The computational
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results are to be ascertained by a full grid. More refined calculations with
the use of an automatic mesh generator are needed. A finer grid, constructed
by the application of an automatic mesh generation technique, is adopted
in the next prototype application.

5.10 Prototype application II: the effect of reclamation
on tidal current

In the last section, the mathematical model was applied to mariculture man-
agement in Tolo Harbour, i.e. a land-locked water body. In this section,
the model is applied to study the effect of the proposed massive reclama-
tion under the Hong Kong Port and Airport Development Strategy project
(PADS) on tidal current in Victoria Harbour, Hong Kong, which is a difficult
task since there are two open boundaries.

5.10.1 General description of Victoria Harbour

Victoria Harbour is a tidal bay located between Hong Kong Island and
Kowloon Peninsula. Two sections of Victoria Harbour are chosen as the
model limit, and tidal forcings at both ends are imposed. The harbour has
two tidal inlets from the South China Sea – one at Lei Yu Mun on the eastern
side and the other adjacent to Stonecutter Island on the western side. The
width varies from approximately 500 m at Lei Yu Mun to 6,000 m at the
western end of the harbour. Figure 5.12 shows the location of the study
area. It extends about 12 km from east to west; the water depth varies from
6 m along the shoreline to 21 m at Lei Yu Mun and adjacent to the central
portion of the harbour.

5.10.2 Hydrodynamic simulation for an M2 tidal forcing

For modelling flow and transport processes in natural flow systems, the use
of the finite element method with irregular triangular meshes finds wide
application. The optimal configuration of a finite element mesh for a par-
ticular flow problem depends to a greater or lesser degree upon each of the
following three criteria: adequate resolution of bathymetry, hydrodynami-
cal considerations, numerical accuracy. Since the manual generation of finite
element meshes which simultaneously comply with each of the above crite-
ria is a cumbersome and extremely difficult task, computer assistance in the
automatic generation, refinement and smoothing of such meshes is highly
desirable.

In recent years, much attention has been given to the automatic genera-
tion of irregular computational grids. A review of various methods is given
by Thacker (1980). Although the application of some techniques has proved
most successful as a means of generating meshes for constant depth systems,
the case of irregular bathymetry introduces considerable problems owing
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Figure 5.12 General layout of Victoria Harbour

to the often conflicting requirements of hydrodynamic and topographical
criteria (Westwood and Holz 1986).

An automatic mesh generator (Lo 1991; Lo 1992; Lo and Lee 1994) is
employed. Figure 5.13 shows the grid layout for Victoria Harbour. The grid
formed contains 273 unknown nodal points and 455 linear triangular ele-
ments. A grid size of around 300 m is used for the main part of the harbour.
The bathymetry of the harbour is determined and interpolated using linear
shape functions. The bathymetry representation is acceptable, when com-
pared with the original bathymetry of the harbour. Based on published tidal
harmonic constituents, a mean M2 semi-diurnal tidal forcing of range 1.7 m
with a tidal phase difference of 10◦ is imposed at the two open boundaries.

As there is no prior knowledge about the flow field, all the simulations
are “cold-started”, i.e. all the variables are assumed to be zero initially. The
time step chosen is 5 s. In the model, the adopted values of Manning’s n and
the eddy viscosity coefficient are 0.025 and 50 m2/s respectively.

Figure 5.14 shows an example of the computed maximum ebb cur-
rent at a Courant number of approximately 0.3. A maximum current of
around 0.5 m/s is found in the harbour at Lei Yu Mun. Similar magni-
tude of maximum currents has been found in the harbour by employing an
alternating-direction-implicit finite difference model (Choi, Lee and Cheung
1989).
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Figure 5.13 Spatial grid of Victoria Harbour by the automatic mesh generator

0.5 m/s

Figure 5.14 Computed maximum ebb current in Victoria Harbour for a mean tide
(
η= 1.7 m)

Comparison is also made with the Hong Kong Tidal Stream Atlas (Hydro-
graphic Department 1975). It is found that the maximum tidal current in the
Tidal Stream Atlas is, in general, larger. However, as no allowance is made
for the diurnal inequality in the tidal streams, errors as great as ±1 knot
may occur. A sensitivity analysis has been carried out to study the effect of
different tidal phase differences imposed at the two open boundaries and
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the effect of different tidal amplitudes imposed at the two boundaries. It
is found that both these factors will affect significantly the magnitudes of
the computed velocities. Their effects are that larger tidal phase differences
between the two open boundaries and a larger tidal amplitude at the Lei Yu
Mun side contribute to larger tidal currents inside the harbour.

However, since it is found from the Tide Table (Hong Kong Observa-
tory 1994) that the tidal phase differences between Lei Yu Mun and Tsuen
Wan will not exceed 10◦, this value is adopted. If the tidal amplitude at Lei
Yu Mun is higher than that at the western end by 10 per cent, the agree-
ment between the computed velocities and the tidal stream atlas is much
better. Numerical experiments have been performed and comparisons of
tidal velocities over a periodic cycle have been made between the computed
results and the tidal stream atlas at a few control points inside the harbour,
i.e. Lei Yu Mun, Kowloon Bay, Tsimshatsui and Stonecutter Island.

It is noted that the magnitude of the tidal current is greatest at Lei Yu
Mun, becomes smaller near Kowloon Bay and adjacent to Tsimshatsui,
and then becomes weak near Stonecutter Island at the western end of the
harbour. It is also observed that there is an almost constant phase differ-
ence between the computed tidal velocities and those published in the tidal
stream atlas at different locations. The phase comparison has been recon-
ciled by a shift in time origin. It is concluded that both the magnitude and
phase of the computed tidal current agree well with those published in the
tidal stream atlas, to an accuracy permitted by the latter.

5.10.3 Real tide simulation for four principal tidal constituents

From the published tidal constituents, it can be observed that tides in this
area are predominantly semi-diurnal of the mixed type (F number equals
1.17). Tidal forcing with the four principal tidal harmonic constituents at
Quarry Point and at Tsuen Wan, as presented in Table 5.1, is imposed at
the two open boundaries. It is also noted that mean sea level is different
at the two open boundaries. The mean sea level at Quarry Point is 1.38 m
above chart datum whilst that at Tsuen Wan is 1.47 m above chart datum.
In order to give a realistic tidal pattern of the harbour, the numerical model
is run for three days around the time of spring tide and for another three
days around the neap tide in January 1987.

The maximum tidal currents during a typical spring tide and neap tide
are 0.6 m/s and 0.4 m/s respectively at Lei Yu Mun, whilst the maximum
velocity during a mean M2 tidal forcing from the above section is 0.5 m/s at
the same place. The results obtained seem to be reasonable.

5.10.4 Effect of reclamation

The total population of Hong Kong is just under six million, with about
60 per cent concentrated around the Victoria Harbour area. Because the
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Table 5.1 Tidal harmonic constants at Quarry Bay and Tsuen Wan

Location Mean tide
level (mCD)

Harmonic
constituent

Local
amplitude (m)

Local
phase (rad)

Frequency
(rad/hr)

Quarry Bay 1.38 O1 0.34 1.4266 0.2434
K1 0.40 1.2254 0.2625
M2 0.39 1.2494 0.5059
S2 0.16 1.0647 0.5236

Tsuen Wan 1.47 O1 0.33 1.2870 0.2434
K1 0.41 1.2254 0.2625
M2 0.42 1.0748 0.5059
S2 0.18 0.9948 0.5236

upland areas are difficult to develop and are prone to landslides, much of the
densely populated existing urban areas is on low-lying land created through
coastal land reclamations in the past 100 years. Since 1841, drastic changes
of the coastline have taken place within Victoria Harbour. New reclama-
tions are currently being constructed and are being planned for the Port and
Airport Development Strategy (PADS).

Figure 5.15 shows a map of Victoria Harbour showing the position of the
coastline during 1990 and the coastline proposed for PADS. Since the area
of the proposed reclamation is massive in comparison with the total water
area in Victoria Harbour (∼1/3), it is of interest to study its effect on tidal
flows inside the harbour.

From the previous section, it has been shown that the tidal velocity can be
well represented by a mean M2 tidal forcing. The harbour after reclamation
is subjected to the same mean M2 tidal forcing at the two open boundaries.
An assumption is made that the proposed reclamation will not affect the
tidal level or the phase imposed at the two open boundaries.

After the proposed reclamation, the new grid formed contains 201
unknown nodal points and 316 linear triangular elements. A grid size of
around 300 m, similar to the previous case, is used for the main part of
the harbour. A mean M2 semi-diurnal tidal forcing of range 1.7 m with a
tidal phase difference of 10◦ is imposed at the two open boundaries. All the
simulations are “cold-started”. The same parameters (time step, Manning’s
n, eddy viscosity coefficient, etc.) are adopted as in the previous case. A
maximum current of order of magnitude 0.2 m/s is found in the harbour at
Lei Yu Mun. Figure 5.16 shows the comparison of tidal velocities over a
periodic cycle before and after the proposed reclamation at a control point
inside the harbour, i.e. Lei Yu Mun.

It is observed that the tidal current is reduced significantly by about 50
per cent at Lei Yu Mun and near Kowloon Bay due to the proposed massive
reclamation. The reduction in magnitude becomes less (about 30 per cent)
adjacent to Tsimshatsui whilst the effect is only very slight near Stonecutter



KOWLOON

Kai Tak

Key –

Coastline 1990

Coastline proposed for the
Port and Airport Development
Strategy

HONG KONG ISLAND
0 1 2 km

N

Figure 5.15 Map of Victoria Harbour showing the position of the coastline during
1990 and the coastline proposed for PADS

0.5

0.4

0.3

0.2

0.1

0

–0.1

–0.2

–0.3

–0.4

–0.5
0.7 1.1 1.3 1.5 1.7 1.90.9

V
el

oc
ity

 (
m

/s
)

after reclamation before reclamation
t/T

Figure 5.16 Effect of reclamation on tidal velocities over a periodic cycle at Lei Yu
Mun



Finite element methods 89

Island (about 10 per cent). It is also seen that the proposed reclamation
will affect the phase of the tidal current at Lei Yu Mun (about one hour)
whilst its effect is very slight at the other control locations. This significant
decrease in velocity is alarming, and remains to be further examined using
a larger computational domain. A case with deeper water depths around
Lei Yu Mun (30 m) has been tested and it is found that the computed tidal
current is not related to the water depths.

5.11 Conclusions

It is desirable to be able to predict, accurately and efficiently, water levels
and currents as well as pollutant transport in tidal estuaries under realis-
tic synthetic tidal boundary condition and over at least half a spring-neap
cycle. Appropriate coastal development and environmental measures can be
formulated based on these computations. In coastal waters changes in water
quality often occur over much larger time scales than those of tidal current.
Hence, an effective way is needed to interface between hydrodynamic and
water quality models.

The governing equations of hydrodynamic and mass transport are uti-
lized to describe unsteady constant density flow in a water body which may
be subject to tidal forcing, upstream freshwater inflows and/or pollutant
release.

An explicit characteristic-based Galerkin finite element scheme suited for
advection-dominated problems has been analysed and implemented for the
solution of the coupled hydrodynamic and mass transport equations. It
is shown for the 1-D scalar advection equation that the time-discretized
equation can also be obtained by following a characteristics approach. An
understanding of the computational stability, accuracy and efficiency has
been gained from an analysis of the numerical scheme. As the scheme uses
linear elements, exact integration can be carried out. The algorithm is fully
vectorizable: thus the power of the new generation of supercomputer can
be fully exploited. Also, this renders the coupling of tidal current and mass
transport straightforward. The small storage requirement also renders the
scheme suitable for microcomputer calculations.

The accuracy of the numerical solution is tested against several 2-D
representative analytical solutions which embrace many essential realis-
tic features of environmental and coastal hydrodynamic applications: pure
advection of a Gaussian hill, pure rotation of a Gaussian hill, advective dif-
fusion in a plane shear flow, continuous source in a tidal flow and long
waves entering a rectangular channel with quadratic bottom bathymetry.
Excellent agreement has been recorded with the analytical solution.

The effectiveness of the numerical modelling of estuaries can only be
demonstrated by practical applications as well as by validation with field
data. The model has been applied to study hydrodynamics and mass trans-
port in two harbours with different characteristics: Tolo Harbour, which
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is semi-enclosed, and Victoria Harbour, which has two open boundaries.
It is proved that the characteristic-Galerkin scheme is able to reproduce
the observed characteristic physical behaviour of tidal dynamics as well as
pollutant transport.

The results demonstrate the efficiency and accuracy of this robust explicit
finite element scheme for the solution of 2-D hydrodynamic and mass
transport problems. All the computations have been performed on a micro-
computer which is readily available in a design office. There is much
potential for the practical us of the model in solving prototype problems.

Future developments of this topic include: a) a more detailed study of
tidal flushing time and effect of reclamation on tidal hydraulics; b) an inves-
tigation of numerical procedures to partially remove the Courant stability
restriction; and to treat tidal flats; and c) the use of the model to study water
quality in 2-D laterally averaged density-stratified estuarine flows.



6 Soft computing techniques

6.1 Introduction

During the past few decades, physically based or process models based
on mathematical descriptions of water motion such as those described
in the last few chapters have been widely used in coastal management.
Conventionally, the emphasis on computer-aided decision-making tools has
been placed primarily on their algorithmic processes, and in particular on
the formulation of new models, improved solution techniques, and effec-
tiveness (Leendertse 1967). In a water quality model, which addresses a
typical coastal problem, phytoplankton dynamics are based on theories of
the dependence of growth and decay factors on physical and biotic envi-
ronmental variables (e.g. solar radiation, nutrients, flushing) – expressed
mathematically and incorporated in advective diffusion equations. Classi-
cal process-based modelling approaches can give a good simulation of the
water quality variables including algal biomass level, but usually require a
lengthy data calibration process. They require a lot of input data and rely
upon many uncertain kinetic coefficients. They sometimes make simplified
approximations of various interrelated physical, chemical, biochemical,
and biological processes (Sacau-Cuadrado et al. 2003; Patel et al. 2004;
Arhonditsis and Brett 2005). Difficulties are often encountered in modelling
coastal waters with limited data on the water quality and the cost of water
quality monitoring. While a large amount of research has already taken
place in numerical modelling, a complementary approach to corroborate
the numerical results should be welcome owing to computational limita-
tions and uncertainties in modelling the complex physical process of coastal
dynamics.

Moreover, the current technique for the numerical simulation of water
resources has become a highly specialized task, involving certain assump-
tions and/or limitations, and can be manipulated only by experienced
engineers who have a thorough understanding of the underlying theories.
This has led to significant constraints on the use of models, thus generating
a discrepancy between the developers and users of models. The models are
often not user-friendly enough. They lack the ability to transfer knowledge
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in the application and interpretation of the model, to offer expert support
to novice users, and to achieve effective communication from developers
to users. Many users of a model do not possess the requisite knowledge to
glean their input data, build algorithmic models, and evaluate the results of
their model. The result may be the production of inferior designs and the
under-utilization or even total failure of these models. Recently, there has
been an increase in demand for an integrated approach. Thus, the problem
is to present the information, knowledge, and experience in a format that
facilitates comprehension by a broad range of users from novices to experts
(Abbott 1989).

During the past decade, the information revolution has fundamentally
altered the traditional planning, modelling, and decision-making method-
ologies of water-related technologies. The recent advances in artificial
intelligence (AI) technologies are making it possible to integrate machine
learning (ML) capabilities into numerical modelling systems in order to
bridge the gaps and lessen the demands on human experts. Information
technology now plays an essential role in the sustainable development
and management of water resources. In addition, the general availability
of sophisticated personal computers with ever-expanding capabilities has
given rise to increasing complexity in terms of computational ability in the
storage, retrieval, and manipulation of information flow. In this context,
hydroinformatics, which only received its proper name in 1991 (Abbott
1991), is a new and emerging technology that has now become one of
the most important branches of research and application in hydraulics and
water resources (Chen et al. 2006). Hydroinformatics has been defined
broadly to be the application of modern information technologies to the
solution of problems pertinent to the aquatic environment, comprising
integration of traditional fields of computational hydraulics with novel
developments in information technology and computer science. It comprises
the integration of information acquired from diverse sources, from field data
to data from hydraulic and numerical models, to data from non-engineering
fields such as economics, ecology, and even social science (Odgaard 2001).
The First International Conference on Hydroinformatics was held in 1994
(Verwey et al. 1994), and successive conferences in the same series have
since been organized every two years (Müller 1996; Babovic and Larsen
1998; Iowa Institute of Hydraulic Research 2000; Falconer et al. 2002;
Liong et al. 2004; Goubesville et al. 2006; Universidad de Concepción
2009). In parallel, the Journal of Hydroinformatics, focusing on contem-
porary developments in this hot topic, has been published since 1999.

In the last decade soft computing techniques have become more and
more popular. These novel models rely upon the methods of computational
intelligence and machine learning, and thus assume the presence of a con-
siderable amount of data delineating the underlying physics or phenomenon
of the modelled system. Expert knowledge is frequently incorporated in
mechanistic models to link environmental conditions to the hydrodynamic
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and water quality parameters. Since the formalization of problem-specific
human expert knowledge is often difficult and tedious, data-driven machine
learning techniques are a feasible alternative to extract knowledge from
field datasets. It can be shown that data-driven models can complement
knowledge-based expert approaches and hence improve model reliability.
A general introduction to some contemporary soft computing techniques is
provided in this chapter.

6.2 Soft computing

Soft computing is one of the latest approaches for the development of sys-
tems that possess computational intelligence. Soft computing techniques,
including artificial neural networks, fuzzy logic, knowledge-based systems
(KBS) and evolutionary algorithms, employ different computing paradigms
to handle dynamic, non-linear and noisy data. They are especially useful
when the underlying physical relationships are not fully understood (Zadeh
1994). Soft computing is a powerful data-modelling tool that is able to cap-
ture and represent highly non-linear complex input/output relationships and
to complement physics-based models. Soft computing techniques are algo-
rithms that estimate hitherto unknown mapping (or dependence) between
a system’s inputs and its outputs from the available data. Once a depen-
dence is discovered, it can be used to predict (or effectively deduce) the
system’s future outputs from the known input values. The use of soft com-
puting is particularly an option when, for example, the physical world is
not fully defined, the model certains many uncertainties (model coefficients,
boundary conditions, input parameters etc), it is extremely difficult and
time-consuming to develop an accurate analytical model based on known
mathematical and scientific principles, and/or there is a high cost involved
in large-scale water quality monitoring.

Soft computing is computationally very fast and requires far fewer input
parameters and input conditions than deterministic models. These novel
techniques are ideally suited to model coastal dynamics since such mod-
els can be set up rapidly and are known to be effective in handling dynamic,
non-linear and noisy data, especially when underlying physical relationships
are not fully understood, or when the required input data needed to drive
the process-based models are not available (Chen et al. 2006). Soft comput-
ing techniques are particularly useful when some information and/or data
are missing. When compared with the full set of data required by process-
based models, soft computing requires only a good number of representative
data for training purpose. Numerical experiments can be done readily to
determine the key variables and the optimal number of dependent vari-
ables. A potential application of a trained data-driven model is to provide
its simulated values at desired locations where no measured data are avail-
able and yet are required for water quality models. This model could be used
as a new prediction tool, which complements the process-based model, to
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identify the important parameters for enabling selective monitoring of water
quality parameters and quick water quality assessment.

The new technologies with the widest applicability in the field are arti-
ficial neural networks (ANN), support vector machines (SVM), particle
swarm optimization (PSO), data mining, knowledge-based systems, fuzzy
systems, genetic algorithms (GA) and genetic programming (GP). Appli-
cations of these innovative techniques have recently been recorded in the
literature. Chen et al. (2008) presented a comprehensive review of the use
of artificial intelligence techniques for modelling environmental systems. Lin
et al. (2008) employed an integrated hydrodynamic and ANN modelling
approach to predict faecal indicator levels in estuarine receiving waters.
Sylaios et al. (2008) developed a spreadsheet tool for the fuzzy modelling of
chlorophyll concentrations in coastal lagoons in Greece with a raw dataset
consisting of four predictor variables, i.e. water temperature, dissolved oxy-
gen content, dissolved inorganic nitrogen concentration, and solar radiation
levels. Preis and Ostfeld (2008) used a coupled model tree-genetic algorithm
scheme for flow and water quality predictions in watersheds. Chen (2003)
evaluated the trophic state of reservoirs by applying genetic programming.
However, these applications were adopted only for a specific situation and
might not be able to accomplish the desired performance under other cir-
cumstances. Moreover, different hybrid systems have started to emerge
recently that can incorporate a variety of computer-aided tools to facilitate
decision-making by model users. Talib et al. (2008) forecast algal dynam-
ics in two shallow lakes by recurrent artificial neural networks and hybrid
evolutionary algorithms. Zou et al. (2007) delineated an adaptive neural
network embedded genetic algorithm approach for inverse water quality
modelling. C.-F. Chen et al. (2008) determined optimal water resource man-
agement through a fuzzy multiobjective programming and genetic algorithm
for a case study in Taiwan. Pinthong et al. (2009) developed a hybrid genetic
and neurofuzzy computing algorithm to enhance the efficiency of water
management for a multipurpose reservoir system in Thailand.

Chau (2006a) reviewed the state-of-the-art in the integration of differ-
ent AI technologies into coastal modelling. The algorithms and methods
reviewed comprise KBSs, genetic algorithms, artificial neural networks and
fuzzy inference systems. Although KBSs had apparent advantages over
other methods in rendering more transparent transfers of knowledge in the
use of models and in providing the intelligent manipulation of calibration
parameters, it is certain that other AI methods make their individual con-
tributions towards accurate and reliable predictions of coastal processes.
The integrated model might be very powerful, since the advantages of each
technique can be coupled.

An ANN, constituted by highly interconnected neurons, is a massively
parallel-distributed information processing system that mimics the human
brain and nervous system. It uses processing elements connected by links
of variable weights to form black box representations of systems. A typical
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ANN comprises several layers of interconnected neurons, each of which is
connected to other neurons in the ensuing layer. Data are presented to the
neural network via an input layer, while an output layer holds the response
of the network to the input. One or more hidden layers may exist between
the input layer and the output layer. All hidden and output neurons process
their inputs by multiplying each input by its weight, summing the product,
and then processing the sum using a non-linear transfer function to generate
a result. The data-driven models have the ability to learn complex model
functions from examples. The major advantage is the ANN’s capability to
learn from the data but not require deep understanding of the process of
the problem being studied. However, its drawback is its low transparency,
resulting from the inability to interpret its internal working in a physically
meaningful way.

Fuzzy logic is very useful in modelling complex and imprecise systems.
Under fuzzy set theory, the elements of a fuzzy set are mapped to a uni-
verse of membership values using a function-theoretic form belonging to the
close interval from zero to one. An important step in applying fuzzy meth-
ods is assessment of the membership function of a variable, which parallels
the estimation of probability in stochastic models. Membership functions
in fuzzy set theory, which are appropriate for modelling the preferences of
the decision-maker, can be obtained on the basis of actual statistical sur-
veys. Modelling based on fuzzy logic is a simple approach, which operates
on an “if–then” principle, where “if” is a vector of fuzzy explanatory vari-
ables or premises in the form of fuzzy sets with membership functions, and
“then” is a consequence also in the form of a fuzzy set. Fuzzy logic has been
used in a number of applications but generally as a refinement to conven-
tional optimization techniques in which the usual crisp objective and some
or all of the constraints are replaced by fuzzy constraints. Fuzzy set theory
concepts can be useful in water quality modelling, as they can provide an
alternative approach to deal with those problems in which the objectives
and constraints are not well defined or information about them is not pre-
cise. They can represent knowledge in a way that can be easily interpreted
by humans. However, the number of rules will increase exponentially with
an increase in the number of inputs and the number of fuzzy subsets per
input variable.

Evolutionary algorithms (EA), such as GA and GP, are search techniques
based on the mechanism of natural genetics and biologically inspired oper-
ations. GAs can be employed as an optimization method to minimize or
maximize an objective function. GP differs from the traditional GA in that
it typically operates on parse trees instead of bit strings. They apply the con-
cept of the artificial survival of the fittest coupled with a structured exchange
of information using randomized genetic operators taken from nature
to compose an efficient search mechanism. This form of search evolves
throughout iterative generations by improving the features of potential solu-
tions and mimicking the natural population of biological creatures. EA can
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be applied to the evolution of models with more transparent knowledge
representations, which facilitates understanding of model predictions and
model behaviour. They may also help in determining the patterns, regulari-
ties and relationships which exist and drive a certain phenomenon, such as
algal abundance. Through a variety of operations to generate an enhanced
population of strings from an old population, they exploit useful infor-
mation subsumed in a population of solutions. Various genetic operators
that have been identified and used include crossover, deletion, dominance,
intra-chromosomal duplication, inversion, migration, mutation, selection,
segregation, sharing, and translocation. They hold the ability of global
searching, yet may not necessarily lead to the best possible local solution.

A KBS is an interactive computer-based decision-making tool that emu-
lates the intensive expert knowledge in a specific domain area. Typi-
cally it mimics the reasoning processes of experts, offers expert advice,
and addresses domain problems requiring specific training. KBSs, which
improve productivity and efficiency, can reduce the gap between a large
workload and insufficient manpower. Basic components of a KBS are sys-
tem context, knowledge base and inference engine. Additional components
which are required to contribute a more functional system are knowledge
acquisition, a user interface and explanation facilities. A knowledge-based
decision support system, serving both as a design aid and as a training tool,
will allow water engineers to become acquainted with up-to-date simula-
tion tools and fill the existing gaps between researchers and practitioners
in the application of recent technology in solving real prototype problems.
This may lead to a better understanding of the advantages, applicability,
and limitations of the different methodologies.

It can be observed that each of the above techniques has its own advan-
tages and disadvantages, and that their performances depend highly upon
each individual case. Recently, hybrid approaches (e.g. Loia et al. 2000;
Zou et al. 2007; S.H. Chen et al. 2008; Talib et al. 2008) have also become
possible. For example, Pinthong et al. (2009) employed a hybrid learning
algorithm that combined the gradient descent and the least-square methods
to train a genetic-based neurofuzzy network by adjusting the parameters of
the neurofuzzy system. Although an individual algorithm has been mostly
attempted in previous studies, it might also be feasible to develop hybrid
systems incorporating a variety of tools that suit best in the particular
situation.

It is not possible to start from scratch to develop advanced soft com-
puting models. Some commercially available computer software and tools
might be acquired in order to utilize the advances already made in this
direction and to facilitate the development of the models. With rapid devel-
opments in recent years, many successful shells are now available. The usual
requirements are the latest microcomputer-based soft computing shells
that incorporate user-friendly interfaces, graphics capabilities and debug-
ging tools under an Internet client/server network. It should have modular
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capabilities to interface with external programs in a Windows environment.
Various kinds of Windows-type displays, such as form, checkbox group, list
box, command button, textbox, option button, picture box, etc., should be
available. The platform for developing the models is mainly the personal
microcomputer, because of its widespread popularity in design offices. The
prototype models thus developed will have the widest application in real-life
situations.

6.3 Data-driven machine learning (ML) algorithms

During the past two decades, researchers have had at their disposal many
fourth generation coastal models, ranging from numerical, mathematical
and statistical methods to techniques based on AI. ML is an area of com-
puter science, a sub-area of AI concentrating on the theoretical foundations
(Solomatine 2002). An ML technique is an algorithm that estimates hith-
erto unknown mapping (or dependence) between a system’s inputs and its
outputs from the available data (Mitchell 1997). Once a dependence is
discovered, it can be used to predict (or effectively deduce) the system’s
future outputs from the known input values. The growing development
of computer-aided analysis, which is easily accessible to all researchers,
has facilitated the application of various ML techniques in coastal mod-
elling. These techniques include ANN (Recknagel et al. 1997; Chau and
Cheng 2002), fuzzy and neuro-fuzzy techniques (Maier et al. 2001; Chen
and Mynett 2003), evolutionary based techniques (Bobbin and Recknagel
2001; Jeong et al. 2003), etc. Although most of these studies are applied to
freshwater environments (i.e., limnological or riverine systems), a few have
been applied to saltwater eutrophic areas (Scardi and Harding 1999; Scardi,
2001; Lee et al. 2003; Muttil et al. 2004).

Recknagel et al. (1997) developed an ANN model for prediction of algal
blooms in four different freshwater systems and compared its performance
against several benchmarking conventional approaches. The water-specific
limnological time-series comprised biomass of the ten dominating algae
species as observed for 12 years and the measured environmental driving
variables.

Yabunaka et al. (1997) delineated the application of a back propagation
ANN model to predict algal bloom by forecasting growth of five phyto-
plankton species and the chlorophyll-a concentration in Lake Kasumigaura,
Japan. Results illustrated that the ANN model was able to learn the relation-
ship between the selected water quality parameters and algal bloom under
appropriate training and validation.

Maier et al. (1998) employed backpropagation ANNs to make a four-
week forecast of cyanobacteria Anabaena spp. in the River Murray at
Morgan, Australia, on the basis of seven years of weekly data for eight
variables. Satisfactory results were obtained in terms of both the incidence
and magnitude of a growth peak of the cyanobacteria. Evaluations were
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also made on the use of lagged versus unlagged inputs, the predominant
variables in determining the onset and duration of cyanobacterial growth.

Scardi and Harding (1999) delineated the development of a backpropaga-
tion ANN model for the prediction of primary production of phytoplankton
in Chesapeake Bay, United States. Results comparisons of two multilayer
perception architectures with different numbers of input variables were
made with benchmarking conventional empirical models. Whilst the archi-
tecture with more numbers of input variables was demonstrated to be able
to furnish more accurate results in this case study, the results of a sensitivity
analysis were also presented.

Jeong et al. (2001) proposed a recurrent ANN for time-series modelling
of phytoplankton dynamics and for predicting the timing and magnitudes
of chlorophyll-a in the hypertrophic Nakdong River, Korea, on the basis of
a four-year database at a study site located upstream of the river mouth.
Meteorological, hydrological and limnological parameters were selected
as input variables whilst chlorophyll-a concentration was the output vari-
able. A sensitivity analysis was also undertaken to determine relationships
amongst seasons, specific input variables and chlorophyll-a as well as the
time lag of input data which would furnish the most accurate solution.

Scardi (2001) presented and discussed some approaches that could
enhance neural network models to overcome the problem imposed by the
limited amount of available data in phytoplankton primary production
modelling in saltwater eutrophic areas. An adopted approach that could
accomplish this purpose was to select additional inputs from a broader
range of variables as copredictors. Moreover, information acquired from
existing models could be effectively exploited and embedded into the ANN
models by a metamodelling approach via a constrained training procedure.

Wei et al. (2001) developed an ANN model to predict the timing and mag-
nitude of algal blooms in order to quantify the interactions between abiotic
factors and algal genera in Lake Kasumigaura, Japan. Algal responses to the
orthogonal combinations of certain external environmental factors, includ-
ing chemical oxygen demand, pH, total nitrogen and total phosphorus, were
simulated successfully. Specific combinations of environmental factors that
would enhance the proliferation of some algae as well as other combinations
that would inhibit bloom formation were found.

Maier et al. (2001) employed a B-spline associative memory networks
(AMNs) fuzzy model to forecast concentrations of the cyanobacterium
Anabaena spp. in the River Murray at Morgan, South Australia, four weeks
in advance. This method enabled the information that was stored in trained
networks to be expressed in the form of a fuzzy rule base. The performance
of the model was evaluated and compared with that of a benchmarking
ANN model, in terms of forecasting accuracy and model transparency. It
was found that whilst the accuracy of the forecasts acquired employing the
AMN was only marginally better, it had the advantage of furnishing more
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explicit information about the relationship between the model inputs and
outputs.

Bobbin and Recknagel (2001) presented an application of an evolu-
tionary algorithm to the problem of knowledge discovery on blue-green
algae dynamics in a hypertrophic lake. Patterns in chemical and phys-
ical parameters of the lake and the corresponding presence or absence
of highly abundant algae species were discovered by the machine learn-
ing algorithm. Learnt patterns were represented explicitly as classification
rules, exhibiting hypothesized favourable environmental conditions for
three different species of blue-green algae. Evaluation illustrated that mod-
els could be evolved which differentiate algae species based on the furnished
environmental attributes.

Recknagel (2001) presented a preview of forthcoming developments in
applications of machine learning to ecological modelling and projected that
newly emerging adaptive agents were able to furnish a novel framework
for the discovery and forecasting of emergent ecosystem structures and
behaviours in response to environmental changes. He proposed that ANNs
would be very useful for non-linear ordination and visualization of eco-
logical data via Kohonen networks, and ecological time-series modelling
via recurrent networks, whilst GAs would be innovative for hybridizing
deductive models, and evolving predictive rules, process equations and
parameters.

Recknagel et al. (2002) performed a more detailed comparison of poten-
tials and accomplishments of ANNs and GAs in predicting algal blooms.
They found that GAs outperformed ANNs for a case study in the eutrophic
freshwater Lake Kasumigaura, Japan. Several advantages of employing GAs
are noted including the ability to evolve, refine and hybridize numerical and
linguistic models, higher accuracy in seven-days-ahead predictions of algal
blooms, and provision of more transparent explanation.

The use of an accurate water stage prediction is to allow the pertinent
authority to issue a forewarning of an impending flood and to imple-
ment early evacuation measures when needed. Existing methods including
rainfall-runoff modelling or statistical techniques require exogenous input
together with a number of assumptions. Chau and Cheng (2002) employed
ANN to forecast real-time water levels in Shing Mun River of Hong Kong
with different lead times according to the upstream gauging stations or
stage/time history at the station itself. The network was trained by employ-
ing two different algorithms. It was shown that the ANN approach, which
was able to furnish model-free estimates in deducing the output from the
input, was a proper forewarning tool. It was seen from the training and
verification modelling that the water elevation forecast results were highly
accurate and were acquired with very small computational effort. Both these
two factors were significant in water resources management. Also, sensi-
tivity analysis was undertaken to evaluate the most appropriate network
characteristics including the number of input neurons, number of hidden
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layers, number of neurons in a hidden layer, number of output neurons,
learning rate, momentum factor, activation function, number of training
epochs, termination criterion, etc. in this case study. The findings resulted
in the reduction of any redundant data collection as well as the fulfilment
of cost-effectiveness.

Róz̀yński and Jansen (2002) employed a data-intensive principal oscil-
lation pattern technique to set up a data-driven model of bed dynamics
in order to analyse a non-tidal and mildly sloping nearshore zone at the
Coastal Research Station Lubiatowo in Poland. Three reasonable patterns
of long-term bed dynamics were generated. The modelling results were
fairly accurate at bar locations where bed evolution was slow enough to be
grasped by annual records. It was reported that, in terms of the explained
variance, the POP model outperformed conventional empirical orthogonal
functions modes.

Gournelos et al. (2002) studied the erosional process of north-eastern
coastal Attica by the construction of an erosion risk map based on a
web-geographic information system (GIS) and soft computing technology.
The geology of this area was characterized by the alpine formation, with
Mesozoic limestones and post-alpine deposits. Factors taken into consider-
ation in the study included the effect of rapid urbanization during the last
decade, the recent occurrence of a severe fire incident with enormous effect
on the vegetation cover, the outcropping of post-alpine vulnerable forma-
tions which might accelerate erosion during possible intense rainfall, etc.
The authors proposed that such an approach could become a helpful tool
in regional planning and environmental management.

Lee et al. (2003) presented an ANN model with a back propagation learn-
ing algorithm to predict the algal bloom dynamics of the coastal waters of
Hong Kong of a eutrophic sub-tropical nature. It was shown that results
were quite in contrast to previous studies in freshwater systems by others,
which suggested that more complicated neural networks of algal blooms
would have better performance. They found that, in a eutrophic sub-tropical
coastal water, the algal concentration was essentially dependent upon the
antecedent algal concentrations during the previous one to two weeks,
though it entailed a minimum sampling interval of one week.

Chen and Mynett (2003) developed a fuzzy logic (FL) model which
coupled data mining techniques and heuristic knowledge to predict algal
biomass concentration in the eutrophic Taihu Lake, China. The self-
organizing feature map technique and empirical knowledge were applied
jointly to define the membership functions and to induce inference rules.
Results illustrated the potentials of exploring “embedded information” by
coupling data mining techniques and heuristic knowledge.

Jeong et al. (2003) simulated the dynamics of bloom-forming algae
in a eutrophic river–reservoir hybrid system at lower Nakdong River,
Korea, using both a GP algorithm and multivariate linear regression
(MLR). Results indicated that an inductive-empirical approach was more
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appropriate than MLR or a mechanistic model in mimicking the dynam-
ics of bloom-forming algal species in a river–reservoir transitional system.
The GP model was very successful in predicting the temporal dynamics and
magnitude of blooms while MLR resulted in insufficient predictability.

Existing methods of water stage prediction including rainfall-runoff mod-
elling or statistical techniques entail exogenous input together with a
number of assumptions. The use of artificial neural networks has been
found to be a cost-effective technique. But their training, usually with a
backpropagation algorithm or other gradient algorithms, is found to have
some drawbacks, including very slow convergence and easily getting stuck
in a local minimum. Chau (2004b) developed a particle swarm optimiza-
tion (PSO) model to train perceptrons, which was shown to be feasible and
effective by forecasting real-time water levels in the Shing Mun River of
Hong Kong with different lead times according to the upstream gauging
stations or stage/time history at the station itself. It was shown from the ver-
ification simulations that faster and more accurate results can be obtained.
Chau (2004c) presented a hybrid split-step PSO model for training percep-
trons. It was shown that the results were both more accurate and faster
to accomplish, when compared with the benchmark backward propagation
algorithm and the original PSO algorithm.

Choudhury et al. (2004) employed an ANN-based model, with back-
propagation learning, for classifying the occurrence and non-occurrence of
seasonal thunderstorms over the eastern coastal region of India. Certain
types of thunderstorms might possess great potential to cause serious dam-
age to human life and property. In their study, soft computing techniques
were used to forecast damaging weather conditions with greater reliability
on the basis of recorded weather data. The results were the extraction of
certain rules from the trained network, which were proposed to be able
to furnish the prediction of oncoming thunderstorms, based on relevant
weather parameters, in human-understandable form.

In order to allow the key stakeholders to have more float time to take
appropriate precautionary and preventive measures, an accurate prediction
of water quality pollution is very significant. Since a variety of existing water
quality models involve exogenous input and different assumptions, artifi-
cial neural networks have the potential to be a cost-effective solution. Chau
(2005) presented the application of a split-step PSO model for training per-
ceptrons to forecast real-time algal bloom dynamics in Tolo Harbour, Hong
Kong. The advantages of the global search capability of the PSO algorithm
in the first step and the local fast convergence of the Levenberg–Marquardt
algorithm in the second step were coupled. The results indicated that, when
compared with the benchmarking backward propagation algorithm and the
usual PSO algorithm, it accomplished a higher accuracy in a much shorter
time.

Cheng et al. (2005) implemented several ANN models with a feed-
forward and backpropagation network structure coupled by employing a
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multitude of training algorithms for predicting daily and monthly river flow
discharges in Manwan Reservoir. These models were compared with a con-
ventional auto-regression time-series flow prediction model so as to test
their applicability and performance. Results illustrated that the ANN mod-
els furnished better accuracy in predicting river flow than the benchmarking
conventional time-series model. Amongst these models, the scaled conju-
gate gradient algorithm acquired the highest correlation coefficient and the
smallest root mean square error. This ANN model was ultimately adopted
in the real water resource project of Yunnan Power Group.

Habib and Meselhe (2006) made use of advanced computation-intensive
techniques, such as neural networks and local non-parametric regression, to
model highly non-linear, non-unique, and complex stage-discharge relation-
ships for coastal low-gradient streams in south-western Louisiana. Whilst it
was quite difficult for conventional methods, such as parametric regression,
to model the exhibited multiple loops successfully, it was shown that both
neural network and local regression models were able to reproduce the fea-
tures at the outlet of the stream. Moreover, it was shown that the models
had higher prediction accuracy with high flows than with low flows.

Muttil and Chau (2007) used two extensively used ML techniques, ANN
and genetic programming (GP), for determining the significant input vari-
ables. The efficacy of these techniques was first illustrated on a test problem
with known dependence and then they were applied to a real-life case study
of water quality data in Tolo Harbour, Hong Kong. These ML techniques
overcame some of the constraints of the contemporary techniques for input
variable selection. The interpretation of the weights of the trained ANN
and the GP evolved equations illustrated their capability of identifying the
ecologically significant variables accurately. The significant variables deter-
mined by the ML techniques also showed that chlorophyll-a itself was the
most significant input in forecasting the algal blooms. This indicated an
auto-regressive nature or persistence in the algal bloom dynamics, which
was possibly associated with the long flushing time in the semi-enclosed
coastal waters. The study also concurred with the previous understanding
that the algal blooms in coastal waters of Hong Kong had a typical life cycle
of the order of one to two weeks.

Pape et al. (2007) compared the performance of several data-driven
models in predicting the temporal evolution of near-shore sandbars, using
daily observations of an outer sandbar at the double-barred Surfers Par-
adise, Gold Coast, Australia. Whilst previous results by conventional
process-based models suggested that the evolution of sandbars depended
non-linearly on the wave forcing, and that a time-series of sandbar positions
exhibited dependencies spanning several days, their results were quite differ-
ent. Their results demonstrated that non-linear effects exposed themselves
for larger prediction horizons, and that there was no significant difference
between non-recurrent and recurrent methods, denoting that the effects of
dependencies spanning several days were of no significance.
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Uddameri and Honnungar (2007) used an information-analytic technique
called rough sets to understand groundwater vulnerability characteristics in
18 different counties of South Texas, in which the coastal semi-arid region
was undergoing significant growth causing an enormous burden on its lim-
ited water resources. They proposed the coupling of rough sets with GIS
to cluster counties exhibiting similar vulnerability characteristics and to
acquire other pertinent insights. It was found that the groundwater vul-
nerability exhibited greater variability along the coast than in the interior
sections. This might shed a new way for regional planners and environmen-
tal managers with a role in sustainable water resources management and
land use development.

The determination of the longshore sediment transport rate is entailed
for the planning, operation, design and maintenance of harbour and coastal
engineering facilities. Singh et al. (2007) presented a novel method based
on a combination of two soft computing tools, namely neural networks and
genetic programming, as an alternative approach to the conventional empir-
ical equations. This hybrid method was found to generate better results than
the use of neural networks or genetic programming solely. It was believed
that a better prediction was due to the combined effect of the ability of
the neural network to approximate a non-linear function and the efficiency
of the genetic programming to make an optimum search over the solution
domain.

Information on tidal currents is useful in taking operation- and planning-
related decisions such as the towing of vessels and monitoring of oil slick
movements. Charhate et al. (2007) discussed a few alternative approaches
based on the soft computing tools of ANNs and GP, as well as the hard
mathematical approaches of stochastic and statistical methods for real-time
prediction of tidal currents in the Gulf of Khambhat, India. A univari-
ate time-series of coastal currents was employed to forecast their future
values. It was found that the soft computing schemes of GP and ANN per-
formed better than the traditional hard technique of harmonic analysis in
the present application.

The significance of continuous wave data measurements in providing
real-time wave information for coastal and ocean related activities and in
forming a wave database useful for predicting future events using statistical
or stochastic techniques are well recognized. However, sometimes the loss
of data from wave buoys is inevitable. Kalra and Deo (2007) employed one
of the latest soft computing tools, GP, to restore missing wave heights for
six selected buoy locations along the west coast of India. The performance
of GP was evaluated to be reliable in terms of the error statistics of bias,
root mean square error, correlation coefficient and scatter index between the
restored wave records and field observations. Londhe (2008) presented the
use of soft computing techniques such as ANN and GP to retrieve the lost
data by forming a network of wave buoys in the Gulf of Mexico. In order
to retrieve lost data at a location, a network for each buoy was developed
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as the target buoy with five other input buoys. The comparison of result
performance showed the superiority of GP over ANN as evident by higher
correlation coefficient between observed and predicted wave heights.

Kumar et al. (2008) delineated the development of a comprehensive
tsunami travel times atlas furnishing expected times of arrival (ETA) to
various coastal destinations on the Indian Ocean rim for inclusion in the
real-time tsunami warnings. They proposed the application of soft comput-
ing tools such as ANN for the prediction of the ETA in a real-time mode.
They reasoned that ANN had an advantage in producing ETAs in a much
faster time and also simultaneously preserving the consistency of prediction.
It was suggested that modern technology could prevent or help minimize the
loss of life and property.

An accurate and timely prediction of river flow flooding can provide
time for the authorities to take pertinent flood-protection measures such as
evacuation. Various data-derived models including LR (linear regression),
NNM (the nearest-neighbour method) ANN and SVR (support vector
regression) have been successfully applied to water level prediction. Of
these, SVR is particularly highly valued, because it has the advantage over
many data-derived models of overcoming overfitting of training data. How-
ever, SVR is computationally time-consuming when used to solve large-size
problems. In the context of river flow prediction, equipped with an LR
model as a benchmark and genetic algorithm-based ANN (ANN-GA) and
NNM as counterparts, Wu et al. (2008) proposed a novel distributed SVR
(D-SVR) model. It implemented a local approximation to training data
because partitioned original training data was independently fitted by each
local SVR model. ANN-GA and LR models were also used to help deter-
mine input variables. A two-step GA algorithm was employed to find the
optimal triplets (C, ε,σ ) for the D-SVR model. The validation results
revealed that the proposed D-SVR model could carry out the river flow
prediction better in comparison with others, and dramatically reduced the
training time compared with the conventional SVR model. The pivotal
factor contributing to the performance of D-SVR might be that it imple-
mented a local approximation method and the principle of structural risk
minimization.

One of the important issues in coastal and offshore engineering is wave
parameters prediction. Mahjoobi et al. (2008) presented alternative models
based on ANNs, a fuzzy inference system (FIS) and an adaptive-network-
based fuzzy inference system (ANFIS) to hindcast the wave parameters
(significant wave height, peak spectral period and mean wave direction) in
Lake Ontario. Wind speed, wind direction, fetch length and wind dura-
tion were used as input variables. Result comparisons indicated that the
error statistics of various soft computing models were similar. Mahjoobi
and Adeli Mosabbeb (2009) employed SVM, a strong machine learning and
data mining tool, to predict significant wave height in Lake Michigan. Field
observations of current wind speed as well as data for up to six previous
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hours were used as input variables. Comparisons indicated that the error
statistics of the SVM model marginally outperformed conventional ANN,
simultaneously requiring much less computational time.

6.4 Knowledge-based expert systems

When compared with other AI techniques, KBS is quite distinct and has
apparent advantages over the others in allowing more transparent transfers
of knowledge in the application and interpretation of the model, offering
expert support to novice users, and achieving effective communication from
developers to users.

Ranga Rao and Sundaravadivelu (1999) presented a knowledge-based
expert system, KNOWBESTD, employing a shell LEVEL5 OBJECT for
the design of berthing structures such as quays, wharfs, piers, jetties and
dolphins. The most economical design of a typical berthing structure,
accomplished through the assistance of this expert system, was demon-
strated. These structures would be checked against the limit state of cracking
in order to attain an important goal of corrosion prevention. The usefulness
of this system was that since construction and maintenance of these struc-
tures were very expensive, significant monetary savings could be achieved
when an optimal as well as sustainable design was adopted.

Moore et al. (1999) described the development of a coastal manage-
ment expert system and the application of the system to characterize beach
morphology on the rapidly eroding Holderness coast, eastern England. It
was a decision-making support tool that applied expert knowledge to help
the coastal zone manager in monitoring and managing coasts with long-
term erosion problems. The constituent features of a composite ridge-type
landform were elicited and stored as expert knowledge or rules, in terms
of positional relationships and morphometric parameters including slope,
aspect and convexity. These rules were employed on consecutive digital
elevation models to extract a geomorphological feature.

Chau et al. (2002) addressed a prototype knowledge management system
on flow and water quality to mimic human expertise during the problem-
solving by integrating artificial intelligence with various types of descriptive
knowledge, procedural knowledge, and reasoning knowledge in the coastal
hydraulic and transport processes. The system was developed through uti-
lizing Visual Rule Studio, a hybrid expert system shell, as an ActiveX
Designer under the Microsoft Visual Basic 6.0 environment, which coupled
the advantages of both production rules and object-oriented programming
technology. The architecture, the development and the implementation of
the prototype system were described in detail. In accordance with the suc-
cinct features and conditions of a variety of flow and water quality models,
three kinds of class definitions, Section, Problem and Question, were cate-
gorized and the corresponding knowledge rule sets were also set up. During
the inference process, both forward chaining and backward chaining were
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employed collectively. Application of the prototype knowledge management
system was illustrated by employing a typical example case.

Anuchiracheeva et al. (2003) presented the method of effective systemati-
zation, analysis and visual display of local knowledge using a GIS for use
in fisheries management at Bang Saphan Bay, Thailand, in order to facili-
tate its use by policymakers. Field observations of location fished, time of
fishing, techniques and technology used, and species targeted were acquired
from local fishers and then mapped using GIS. Thus, local fisheries knowl-
edge could be converted into geo-spatial data form, and the succinct results
could be employed easily to guide fishery management and planning.

Fdez-Riverola and Corchado (2003) developed a hybrid neuro-symbolic
problem-solving model in order to forecast parameters of a complex and
dynamic environment, such as the prediction of the red tides appearing in
the coastal waters of the north-west of the Iberian peninsula. This model
attempted to solve the difficult problems of predicting the parameter values
that determined the characteristic behaviour of a system when the gov-
erning equations of that system were unknown. The system employed a
case-based reasoning model to couple a growing cell structures network, a
radial basis function network and a set of Sugeno fuzzy models to retrieve,
adapt and review the proposed solution and, all in all, to furnish an accurate
prediction.

Dai et al. (2004) delineated a knowledge base for watershed assessment
for sediment (WAS), which was tailored for protection of the fish habitat
and control of excessive sediment, and was applied as a decision support
tool to evaluate the condition of a coastal watershed in northern California,
United States. The WAS model furnished a means to assemble key pieces
of information and reasoning that support land use or regulatory decisions,
and to communicate among diverse audiences the basis for those decisions.
In this way, experts from diverse fields could contribute to an integrated
assessment of watershed conditions, which was a complex problem often
with ill-defined issues and lacking data.

Chau (2006b) presented the integration of the recent advances in AI tech-
nology with contemporary numerical models to form an integrated KBS on
flow and water quality. A hybrid application of the latest AI technologies,
namely, KBS, artificial neural networks and fuzzy inference systems, was
adopted for this domain problem. This prototype system could act as both
a design aid and a training tool, thus enabling hydraulic engineers and envi-
ronmental engineers to become acquainted with up-to-date flow and water
quality simulation tools. More importantly, it could fill the existing gaps
between researchers and practitioners in the application of recent technol-
ogy in addressing real prototype problems in Hong Kong. This integrated
system could quickly help policymakers arriving at decisions and offer a
convenient and open information service on water quality for the general
public.
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Schories et al. (2009) developed a classification approach within the
European Water Framework Directive for the outer coastal waters of the
German Baltic Sea, with focus on the known recent presence and depth dis-
tribution of two specific species of plant. The boundaries of the ecological
status according to the Water Framework Directive were computed based
on modelling. This model allowed the adaption of the boundaries calcula-
tions to new knowledge about historical data and the ecophysiological light
demand of plants.

Pereira and Ebecken (2009) employed a machine-learning approach to
determine the ecological status of coastal waters at Cabo Frio Island in
Rio de Janeiro, based on patterns of the occurrence of fauna as well as
its relationship with other environmental parameters. This location has
been suffering from anthropogenic impact. Models of crisp and fuzzy rules
were tested as classifiers. Results indicated that it was possible to access
hidden patterns of water masses within a set of association rules, which
might be useful for decision-making, system management and sustainable
management of marine resources.

6.5 Manipulation of conventional models

During the past decade, the general availability of sophisticated personal
computers with ever-expanding capabilities has given rise to increasing
complexity in terms of computational ability in the storage, retrieval, and
manipulation of information flows. With the recent advances in AI technol-
ogy, there has been an increasing demand for a more integrated approach
in addition to the need for better models. Justification for this claim comes
from the relatively low utilization of models in the industry when compared
to the number of reported and improved models. It is expected that this
enhanced capability will both increase the value of the decision-making tool
to users and expedite the water resources planning and control process.

Chau and Chen (2001) presented a fifth generation numerical modelling
system in coastal zones, by employing the recent advances in AI technolo-
gies. The expert system technology was coupled into the modelling system
for coastal water processes with conventional numerical computational
tools, data and graphical preprocessing and postprocessing techniques.
Five kinds of knowledge bases were established in the system to delineate
the existing expert knowledge about model parameters, relations between
parameters and physical conditions, and various possible selections for
parameters and rules of inference. The inference engine was tailored to be
driven by the confidence of correctness, and the rule base was constructed
with the factor of confidence to link different relations. The decision tree
was such as to drive the inference engine to explore the route of the
selection procedure on modelling. The decision tree relied upon the real
problem specifications and could be adjusted during the dialogue between
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the system and the user. The forward chaining and backward chaining
inference techniques were mixed together in the system to help matching
the parameters in the model and the possible selections with confidence
higher than the threshold value. The expert system technology was success-
fully incorporated into the system to furnish assistance for model parameter
selection or model selection, and to render the numerical model system more
accessible for non-expert users.

It was noted that the outcomes of the algorithmic execution of numer-
ical flow and water quality models often differed from those expected,
in particular when the model was built initially. This required the mod-
eller to undertake the manipulation procedure, which comprised feedback
and modification. Hence, it was desirable that expert system technology be
incorporated into the modelling system to offer help for the novice user
who lacked the required knowledge to set up the model and evaluate the
results. Chau (2003) developed and implemented a prototype expert system
on the manipulation of numerical coastal flow and water quality models
by using an expert system shell. It was demonstrated that, through the suc-
cessful development of this prototype system, the expert system technology
could be integrated into numerical modelling for mimicking the manipula-
tion process. It helped the user to set up an appropriate strategy for arriving
at a balance between accuracy and effectiveness and to tune the model to
attain successful simulation of real phenomena. It was capable of bridging
the existing gap between numerical modellers and practitioners in this field.

Currently, the numerical simulation of flow and/or water quality is
becoming more and more sophisticated. There arises a demand on the inte-
gration of recent knowledge management (KM) and artificial intelligence
technology with conventional hydraulic algorithmic models in order to
assist novice application users in the selection and manipulation of various
mathematical tools. Chau (2007) proposed an ontology-based KM system
(KMS), which used a three-stage life cycle for the ontology design and a
Java/XML-based scheme for automatically generating knowledge search
components. The prototype KMS on flow and water quality was developed
to mimic human expertise during the problem-solving by integrating artifi-
cial intelligence with various knowledge involved in the coastal hydraulic
and transport processes. The ontology was categorized into information
ontology and domain ontology so as to realize the objective of a seman-
tic match for knowledge search. The application of the prototype KMS was
illustrated through a case study.

Sheng and Kim (2009) evaluated the predictive skills of an integrated
physical-biogeochemical modelling system for shallow estuarine and coastal
ecosystems in the Indian River Lagoon estuarine system. Model skills for
hydrodynamic and water quality simulations were assessed in terms of
the absolute relative errors and the relative operating characteristic scores.
Both methods illustrated that the modelling system had skills in simulating
water level, salinity, dissolved oxygen, chlorophyll, dissolved nutrients, etc.
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Moreover, results suggested that model skills could be improved with more
detailed sediment-water quality data, addition of a coastal ocean domain,
and improved knowledge of model parameters/coefficients.

6.6 Conclusions

A general introduction to some contemporary soft computing techniques
is given in this chapter. Out of the various possible ML techniques, we
considered ANN, fuzzy logic and evolutionary algorithms to represent dis-
tinct attributes. ANN is the most widely used method in water resources
variable modelling (Maier and Dandy 2000). Fuzzy logic and evolution-
ary algorithms have an advantage in their ability to generate equations or
formulae relating input and output variables, which might provide physi-
cal insight into the ecological processes involved. Further, Recknagel (2001)
has reported that ANN and genetic algorithms currently appear to be the
most innovative for ecological modelling. Knowledge-based expert systems
were highlighted for their ability to transfer knowledge in the application
and interpretation of models, to offer expert support to novice users, and to
achieve effective communication from developers to users. We present more
details of these techniques one by one in the following chapters.



7 Artificial neural networks

7.1 Introduction

An artificial neural network (ANN) is a computing paradigm tailored to
mimic natural neural networks (Haykin 1999). It can be defined as “a
computational mechanism able to acquire, represent, and compute a map-
ping from one multivariate space of information to another, given a set of
data representing that mapping” (Garrett 1994). A typical ANN comprises
an input layer that receives inputs from the environment, an output layer
that generates the network’s response, and some intermediate hidden layers.
Maier and Dandy (2000) furnished a comprehensive review on using neu-
ral network models to predict and forecast water resources variables. The
basis of ANNs is our current understanding of the brain and its pertinent
nervous systems. Numerous processing elements connected by links of vari-
able weights are grouped together to constitute black box representations
of systems. In this chapter, the characteristics of ANNs and the commonly
used backpropagation forward-feeding ANN are delineated. Two real appli-
cations of ANN are also demonstrated. The first application case study
presents the analysis of algal dynamics data from a coastal monitoring sta-
tion. The second application is for prediction of long-term flow discharges
in Manwan based on historical records.

7.2 Supervised learning algorithm

An ANN comprises typically several layers of interconnected neurons, each
of which is in turn linked to other neurons in the following layer. Data are
fed to the neural network through an input layer. The output layer then
keeps the response of the network to the input. In many cases, a certain
number of hidden layers may exist between the input layer and the output
layer. The mechanism is such that all hidden and output neurons process
their inputs by multiplying each input by its weight, adding their product,
and then applying a non-linear transfer function to the sum to produce a
resulting output. It is one of the data-driven models and has the ability to
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learn complex model functions from examples after appropriate training
(Rumelhart et al. 1994).

Training can be defined as the process of adjusting the connection weights
in the neural network in order to attach the best matches between the net-
work’s response and the targeted response. Whilst this step can be addressed
by employing an optimization method, the backpropagation method avoids
this costly procedure by employing an approximation to a gradient descent
method. In the forward pass, each neuron computes a response from the
weighted sum of its inputs from neurons linked to it, employing a preset
activation function. The output in a layer acts as one of the inputs of other
neurons in the next layer.

ANNs have found applications in prediction of water quality variables
such as algal concentrations (Chau 2005), cyanobacterial concentrations
(Maier and Dandy 1997), ecological modelling (Lek and Guegan 1999),
phosphorus (Zou et al. 2002), salinity levels (Bastarache et al. 1997), and so
on. Kralisch et al. (2003) used an ANN approach to attain optimization and
balance of watershed management in order to compromise between water
quality demands and the consequent restrictions for the farming indus-
try. Maier et al. (2004) employed ANNs to forecast treated water quality
parameters as well as optimal alum doses.

Recknagel et al. (1997) developed an ANN model for prediction of algal
blooms in four different freshwater systems and compared its performance
against several benchmarking conventional approaches. The water-specific
limnological time-series comprised biomass of the ten dominating algae
species as observed for 12 years and the measured environmental driving
variables.

Scardi (2001) presented and discussed some approaches that could
enhance neural network models to overcome the problem imposed by
the limited amount of available data in phytoplankton primary produc-
tion modelling in saltwater eutrophic areas. An adopted approach that
could accomplish this purpose was to select additional inputs from a
broader range of variables as copredictors. Moreover, information acquired
from existing models could be effectively exploited and embedded into
the ANN models by a metamodelling approach via a constrained training
procedure.

Zou et al. (2002) employed a three-layer feed-forward backpropagation
ANN to mimic the relationship between the parameters and the steady-
state response of a mechanistic total phosphorus model in the Triadelphia
Reservoir spanning three years of data. Figure 7.1 shows the architecture
of this typical ANN. There were three nodes in the input layer, namely,
settling velocity, recycling velocity and burial velocity. There were six hidden
nodes in the hidden layer, and the concentration of phosphorus was the
only node in the output layer. It was illustrated that, in this case study, the
ANN technique has the ability to accurately approximate the input–output
response of a water quality model. For both the training and testing sets,
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Figure 7.1 Architecture of a three-layer feed-forward backpropagation ANN

the prediction results of phosphorus concentration by the ANN agree with
those generated by the benchmarking mechanistic model.

Cheng et al. (2005) implemented several ANN models with a feed-
forward and backpropagation network structure coupled by employing a
multitude of training algorithms for predicting daily and monthly river flow
discharges in Manwan Reservoir. These models were compared with a con-
ventional auto-regression time-series flow prediction model so as to test
their applicability and performance. Results illustrated that the ANN mod-
els furnished better accuracy in predicting river flow than the benchmarking
conventional time-series model. Amongst these models, the scaled conju-
gate gradient algorithm acquired the highest correlation coefficient and the
smallest root mean square error. This ANN model was ultimately adopted
in the real water resource project of Yunnan Power Group.

Londhe (2008) presented the use of soft computing techniques like ANN
and GP to retrieve lost data by forming a network of wave buoys in the
Gulf of Mexico. In order to retrieve lost data at a location, a network for
each buoy was developed as the target buoy with five other input buoys.
The comparison of result performance showed the superiority of GP over
ANN, as evidenced by a higher correlation coefficient between observed and
predicted wave heights.

It is observed that most of the studies were performed for limnological
systems (Yabunaka et al. 1997; Recknagel et al. 1998; Karul et al. 2000)
or riverine systems (Whitehead et al. 1997; Maier et al. 1998; Cheng et al.
2005), while literature on ANN modelling of coastal systems was relatively
scarce (Barciela et al. 1999). It is noted that, in many studies, the effective-
ness of ANN as a predictive tool might not be fully addressed. For example,
the water quality dynamics at the current moment were often related via
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the model to other environmental variables simultaneously, which ren-
dered them not too useful for real predictions. Moreover, most studies used
almost all available environmental parameters as input variables without
accounting for the optimal choice among them.

In fact, there are many options during the process of setting up an ANN
model, namely, the choice of appropriate model inputs and network archi-
tecture, the division and preprocessing of the input data, the optimization of
the connection weights, the adoption of performance criteria, and the vali-
dation of the model (Maier and Dandy 2000). Each of the above parameters
can have a significant effect on the accuracy of a prediction.

7.3 Backpropagation neural networks

An ANN is one of the various available contemporary forms of artificial
intelligence, which simulate the functioning of the human brain and nervous
system. It obtains knowledge via a learning process involving the determi-
nation of an optimal set of connection weights and threshold values for
the neurons. The capability of “training” and “learning” the output with
the provision of a given input renders ANNs once to address large-scale,
arbitrarily complex, non-linear problems (Sivakumar et al. 2002). Though
there are numerous types of ANNs, the feed-forward neural network or
the multilayer perceptron, which is organized as layers of computing ele-
ments or neurons linked via weights between layers, is nowadays the most
popularly used.

A typical neural network comprises several layers. Figure 7.1 shows that
the basic structure of a network is usually composed of three types of
layers: the input layer, which receives inputs from the environment; the
hidden layer or layers; and the output layer, which outputs the network’s
response to the corresponding input. The architecture of an ANN is deter-
mined by the following parameters: weights, which link neurons; a transfer
function that controls the production of output in a neuron; and learn-
ing rules. Each neuron computes a response from the weighted sum of its
inputs and bias (threshold value) from neurons linked to it, employing a
preset activation or transfer function, which is often an S-shaped sigmoid
function or a hyperbolic-tangent functions. The sigmoid function is char-
acterized by the bounds of zero and one as the lower and upper limits,
respectively, monotonically increasing, and continuous and differentiable
within the entire domain. The logistic function shown as follows is one of
the most commonly used sigmoid functions for ANNs:

f (x)= 1
1 + exp (−x)

(7.1)

where x is in the range [−∞,+∞].
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The feed-forward ANN is organized as layers of neurons linked by
weighted connections between layers. One of the most common learning
rules for the feed-forward network is the backpropagation algorithm, and
a neural network with such a type of learning algorithms is termed a back-
propagation network (BPN). Its training is composed of two key processes,
namely, forward pass and backward pass. During the forward pass, the
input data are multiplied by the initial weights. Simple summation of the
weighted inputs then yields the net to each neuron. The output of a neuron
is acquired when the activation or transfer function is applied to the net
of a neuron. The output of the neuron, when it is transmitted to the next
layer, becomes an input. The above procedure is then repeated until the
output layer is arrived at. Whilst the neuron response is computed from the
weighed sum of its inputs and bias with a predetermined activation function
in the forward pass, the weights are adjusted based on the error between the
computed and target outputs in the backward pass. The error is then dis-
tributed to neurons in each layer by the derivatives of the objective function
with respect to the weights, which can be moved in the direction in which
the error declines most quickly by using a gradient descent method.

Mathematically, the representation is as follows:

Hj =
k∑

i=1

wijxi + θj, j = 1, . . . ,h (7.2)

where Hj is the weighted sum of outputs of the jth hidden node from the
previous layer, wij is the connection weight from the ith input neuron to the
jth hidden neuron, xi is the input value, k is the number of input nodes, θj

is a threshold or bias, and h is the number of hidden nodes. Each hidden
node is then transformed via a sigmoid function to generate a hidden node
output HOj as follows:

HOj = f (Hj) = 1
1 + exp [1 − (Hj + θj)]

(7.3)

Similarly, at the output layer, the following equation can be written:

IOn =
h∑

j=1

wjnHOj, n = 1, . . . ,m (7.4)

where IOn is the weighted sum of outputs of the nth output node from
the previous hidden layer, wjn is the connection weight from the jth hidden
neuron to the nth output neuron, and m is the number of output nodes. The
neural output value On is then obtained by applying the sigmoidal function
to IOn.
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For backpropagation networks, the derivative of the activation function is
employed to effect adjustment of the network weights. Hence, at the end of
each forward pass, the error between the computed outputs of the network
and the target outputs is computed.

The mean square error E for all input patterns is shown as follows:

E = 1
2N

N∑
p=1

m∑
n=1

(Tpn − Opn)2 (7.5)

where N is the number of data input patterns, Tpn is the target value for the
pth pattern, and Opn is the neural network output value for the pth pattern.

The termination criterion is reached when the error is smaller than a
preset value. If the error is larger than a predetermined value, the proce-
dure continues with a backward pass; otherwise, the training is stopped.
During the backward pass, the weights in the network are adjusted by
employing the error value. It should be mentioned that the modification of
weights in the output layer is usually different from the hidden layers. This is
because, in the output layer, the target outputs are given whilst in the inter-
mediate hidden layers, there are no target values. Hence, backpropagation
employs the derivatives of the objective or fitting function with respect to
the weights in the entire network to distribute the error to neurons in each
layer of the network (Tokar and Johnson 1999). A gradient descent method
is often used which moves the weights in a direction in which the error
reduces in a quicker manner:

δn = On (1 − On) (Tn − On) (7.6)

where δn is the gradient for each neuron on the output layer, Tn is the correct
teaching value for the output unit n, and On is the neural network output.
The error gradient δj is then recursively computed for the hidden layers as
follows:

δj = HOj(1 − HOj)
m∑

n=1

δnwjn (7.7)

The errors are propagated backwards until the input layer. The error
gradients are then employed to update the network weights as follows:


wji(r) = ηδjxi (7.8)


wji(r + 1) = wji(r) +
wji(r) (7.9)

where r is the iteration number, and η is the learning rate which furnishes the
step size during the gradient descent. Whilst a larger value of learning rate
can speed up the convergence process, it also results in oscillations in the
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solution. Thus, in choosing an appropriate learning rate, a compromise has
to be made between reliability of results and speed of training time.

Another commonly used form of the weight change, allowing the use of
a larger value of learning rate, is as follows:


wji (r)= ηδjxi +α
wji (r − 1) (7.10)

where α is the momentum coefficient employed to enhance the conver-
gence. In the above equation, the momentum coefficient effectively makes
the weight change at iteration r proportional to the previous weight change
at iteration r−1, thus reducing the possibility of oscillations.

Though an ANN can be considered a flexible and powerful mapping tool,
an adequate initialization of weights and biases has a significant influence
on the performance of the network, and an inappropriate assignment of
weights and biases can result in local convergence. More in-depth discus-
sions on ANNs are found in Rumelhart et al. (1986), Simpson (1990), and
Haykin (1999).

7.4 Advantages and disadvantages of artificial neural networks

The major advantage of ANNs over other modelling techniques is their
capability to simulate complex and non-linear processes without having
to determine the exact form of the relationship between input and output
variables. The learning process in ANNs involves only the adjustment and
modification of the connection weights amongst neurons in different layers.
Pattern matching, combinatorial optimization, data compression, and func-
tion optimization are contemporary application areas and topics that have
been addressed by ANN techniques. ANNs, being a developing and promis-
ing technique nowadays, have become very popular for both prediction
and forecasting in different fields. Their capability to address uncertainty
in complex situations for wide-ranging application domains is proven from
the literature in recent years (Serodes and Rodriguez 1996; Whitehead et al.
1997; Maier et al. 1998; Chau and Cheng 2002; Cheng et al. 2005).

It should be noted that the initialization of weights and biases may
also have some effects on the network performance, and hence improper
assigned values can result in local convergence. The major drawback of the
conventional BPN with a gradient descent learning algorithm is the slow
convergence rate. Thus, among others, although the steepest descent method
is the simplest and most popular, it lacks effectiveness owing to slow con-
vergence and its vulnerability to getting stuck in a local minimum. In real
ANN applications, the steepest descent method is seldom used. Different
algorithms have been developed to overcome this drawback. Haykin (1999)
discussed several data-driven optimization training algorithms such as the
Levenberg–Marquardt (LM) algorithm and the scaled conjugate gradient
(SCG) algorithm.
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Another point that needs attention is that ANNs cannot extrapolate
beyond the range of the training data. Hence they may not be capable
of controlling for data trends or heteroscedasticity. If ANNs are to take
a significant role in coastal modelling, careful selection of various input and
output parameters at different steps as well as a thorough comprehension
of the boundaries of applicability are required. Moreover, an ANN is cur-
rently considered as a black box tool only. More attention should be paid to
extracting some knowledge from the learning process. More effort can be
given to the application of this technique to coastal modelling in the future.

Wu et al. (2009) endeavoured to couple three data-preprocessing
techniques – moving average (MA), singular spectrum analysis (SSA), and
wavelet multi-resolution analysis (WMRA) – with an ANN in order to
enhance the estimate of daily flows. Six models, including the original ANN
model without data preprocessing – ANN-MA, ANN-SSA1, ANN-SSA2,
ANN-WMRA1, and ANN-WMRA2 – were developed and assessed. The
ANN-MA, ANN-SSA1, ANN-SSA2, ANN-WMRA1 and ANN-WMRA2
were developed by employing the original ANN model coupled with MA,
SSA and WMRA, respectively. Two different means were used for SSA and
WMRA. The models were applied to two daily flow series in two water-
sheds in China, Lushui and Daning, for three different prediction horizons,
namely, one-, two-, and three-day-ahead forecasting. Results indicated that,
among the six models, the ANN-MA has the highest accuracy and is able
to eradicate the lag effect. It was also noted that the performances from the
different means used for SSA and WMRA did not affect the results. More-
over, in that case study, the models based on the SSA performed better than
their counterparts of the WMRA at all forecasting horizons. It indicated
that the SSA was more effective than the WMRA in enhancing the ANN
performance.

7.5 Prototype application I: algal bloom prediction

The first prototype application of ANN is for real-time algal bloom predic-
tion at Tolo Harbour in the north-eastern coastal waters of Hong Kong.
The nature of the data employed and details of the modelling are shown in
the following sections.

7.5.1 Description of the study site

Figure 7.2 shows the location of Tolo Harbour, which is a semi-enclosed bay
in the northeastern coastal waters of Hong Kong and is connected to the
open sea via Mirs Bay. It is generally recognized that the water quality grad-
ually deteriorates from the better flushed outer “Channel Subzone” towards
the more enclosed and densely populated inner “Harbour Subzone”.

Over the past few decades, the nutrient enrichment exhibited by the
eutrophication phenomenon in the harbour resulting from municipal and
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Figure 7.2 Location of Tolo Harbour

livestock waste discharges has long been a major environmental concern and
threat. Two major treatment plants at Shatin and Taipo are continuously
releasing organic loads. There are also non-point sources from runoff and
direct rainfall, as well as waste from mariculture. The eutrophication effect
has generated frequent algal blooms and red tides, which occurred particu-
larly in the weakly flushed tidal inlets inshore. As a consequence, occasional
massive fish kills are caused owing to severe dissolved oxygen depletion or
toxic red tides. Numerous studies have been made, which concluded that the
ecosystem health state of the Tolo Harbour had been progressively deteri-
orating since the early 1970s (Morton 1988, Xu et al. 2004). During this
period, serious stresses to the marine coastal ecosystem were caused by the
nutrient enrichment in the harbour due to urbanization, industrialization,
livestock rearing, etc. Frequent occurrences of red tides and associated fish
kills were recorded in the late 1980s, which was possibly the worst period.
Morton (1988) considered that the Tolo Harbour was “Hong Kong’s First
Marine Disaster” and that the inner harbour was effectively dead. At that
time, since Tolo Harbour had entered a critical stage, the Hong Kong Gov-
ernment decided to develop and implement an integrated action plan, the
Tolo Harbour Action Plan (THAP). Through the implementation of THAP
in 1988, significant effectiveness in the reduction of pollutant loading and
in the enhancement of the water quality was recorded.
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During the past few decades, a number of field and process-based mod-
elling studies on eutrophication and dissolved oxygen dynamics of this
harbour have been reported (e.g., Chan and Hodgkiss 1987; Chau and Jin
1998; Lee and Arega 1999; Chau, 2004a; Xu et al. 2004).

In this study, an ANN model for real-time algal bloom prediction at Tolo
Harbour is developed and implemented. The data used in this study are
mainly the monthly/biweekly water quality data collected by the Hong Kong
Government’s Environmental Protection Department as part of its rou-
tine water quality monitoring programme. The data from the most weakly
flushed monitoring station, TM3 (location shown in Figure 7.2), are chosen
so as to separate the ecological process from the hydrodynamic effects as far
as possible. All data of ecological variables are collected and presented as
depth-averaged. In order to obtain the daily values, linear interpolation of
the biweekly observed data is performed. Moreover, some meteorological
data including wind speed, solar radiation and rainfall recorded by the
Hong Kong Observatory are employed. No interpolation is thus required
on these sets of data since they are recorded in a daily manner. The data are
split into two portions: data between 1988 and 1992 for training, and data
between 1993 and 1996 for testing the models. A more detailed description
of the water quality data in this study site can be found in Lee and Arega
(1999) and Lee et al. (2003).

7.5.2 Criterion of model performance

The evaluation of the performance of the predictions for ANN is made by
two goodness-of-fit measures: the root mean square error (RMSE) and the
correlation coefficient (CC). Visual comparison can be made on time-series
plots.

RMSE =
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where subscripts m and s = the measured and simulated chlorophyll-a lev-
els, respectively; p = total number of data pairs considered; and Xm and
Xs = mean value of the measured and simulated data, respectively. RMSE
furnishes a quantitative indication of the model error in units of the vari-
able, with the attribute that larger errors draw greater attention than smaller
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ones. The coefficient of correlation between the measured and simulated
data can be considered a qualitative evaluation of the model performance.

7.5.3 Model inputs and output

The model comprises nine input variables and one output variable. Nine
input variables are chosen to be the most influential factors on the algal
dynamics of Tolo Harbour:

1. chlorophyll-a, Chl-a (μg/L);
2. total inorganic nitrogen, TIN (mg/L);
3. dissolved oxygen, DO (mg/L);
4. phosphorus, PO4 (mg/L);
5. secchi-disc depth, SD (m);
6. water temperature, Temp (◦C);
7. daily rainfall, Rain (mm);
8. daily solar radiation, SR (MJ/m2); and
9. daily average wind speed, WS (m/s).

These are determined after taking careful consideration of previous com-
puter modelling and field observation studies in the weakly flushed embay-
ment in Tolo Harbour (Chau et al. 1996; Lee and Arega, 1999; Lee at al.
2003). The sole model output is chlorophyll-a, which serves as a good indi-
cator of the algal biomass. The model is applied to attain one-week-ahead
prediction of algal blooms. This time period is selected after having taken
considerations of the ecological process at Tolo Harbour and practical con-
straints of data collection. A time lag of 7–13 days is introduced for each
of the input variables. It should be noted that, with a targeted one-week
lead-time of the prediction, the time lag has to start from 7.

7.5.4 Significant input variables

The selection of the appropriate model input variables is very significant
for any machine learning (ML) technique. As shown in the last section,
the selection of input variables is in general according to a priori knowl-
edge of causal variables and physical/ecological insight of the modeller into
the problem domain. Moreover, the use of lagged input variables results in
better predictions in a complex and dynamical system. Maier and Dandy
(2000) have made a thorough review of 43 international journal papers
published between 1992 and 1998, which employed ANNs for simulation
and prediction of water resources variables. They found that the modelling
process is not performed in a correct manner in many articles, and that
arbitrary selection of model inputs is an area of great concern.

In this model, ANN networks are trained to find an empirical rela-
tionship between the nine selected input variables with time lag of 7–13
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days and the chlorophyll-a concentration at time t. For each of the nine
input variables, there are seven time-lagged variables, rendering a total of
63 (= 9 × 7) input variables. In order to reduce the computational effort,
there is a necessity to find out the significant input variables, out of these 63
variables.

A fully connected feed-forward multiple layer perceptron (MLP) neural
network trained with a backpropagation algorithm with momentum term
was employed for the prediction of algal blooms. A single hidden layer
was adopted. Hence, the resulting MLP neural network structure comprises
three layers: an input layer, a hidden layer and an output layer.

There are 63 input nodes in the input layer, corresponding to the input
variables determined in the last section. Great care has to be exercised in the
determination of the optimal number of nodes in the hidden layer, which
significantly affects the performance of the trained network. It is gener-
ally recognized that networks with fewer hidden nodes are preferred, owing
to better generalization capability and less over-fitting problem. Moreover,
with smaller numbers of nodes, less computational effort is accomplished.
Nevertheless, a balance has to be struck. If the number of nodes is too small,
it might not be able to capture the underlying behaviour of the data, and
the performance of the network will deteriorate. In order to determine the
optimal number of nodes in the hidden layers, a trial and error procedure
was undertaken by gradually varying the number from 2 to 10. Ultimately,
the optimal number of hidden nodes is found to be six. The output layer
of the networks comprises only one neuron, which is the chlorophyll-a
concentration to be predicted at time t.

The trial and error method is also used to determine the learning rate and
the momentum coefficient. For this neural network run, the optimal values
for the learning rate and the momentum coefficient are found to be 0.05
and 0.1, respectively. The hyperbolic-tangent function (tanh) is chosen as
the transfer function for both the hidden and the output layers.

Figure 7.3 shows the network structure employed to forecast the algal
biomass with a one-week lead-time. Based on the model formulation and
training details as described above, simulations are then performed. It is
noted that, after 500 epochs in all the simulations, the backpropagation
training is stopped. Again, this number was adopted by trial and error. It
can be observed that 500 epochs are good enough to train the network
without any over-training.

An analysis of the network weights is undertaken to select the significant
input variables in this case study. It is noted that, in the trained network,
the connection weights along the paths from the input nodes to the hidden
nodes indicate the relative predictive significance of the independent vari-
ables. There are a total of 63 input nodes in this neural network. A new
term, the contribution factor, is devised to measure the significance of any
input variable in forecasting the network’s output, relative to the remaining
variables within the same network. The definition of the contribution factor



122 Artificial neural networks

Chl-at

Chl-a(t–p)

TIN(t–p)

DO(t–p)

PO4(t–p)

SD(t–p) 

Temp(t–p)

Rain(t–p) 

SR(t–p) 

WS(t–p)  

wij
wjn

Layer 

Layer i

j

Layer n

Figure 7.3 ANN model for the forecasting of algal blooms (p=7 . . .13 for one-week
forecast; p = 14 . . .20 for biweekly forecast)

of the ith variable, CFi, is as follows:

CFi =

h∑
j=1

ABS
(
wij

)
k∑

i=1

h∑
j=1

ABS
(
wij

) × 100 (7.13)

where h is the number of hidden nodes, k is the number of input variables,
wij are the weights from input layer i to the hidden layer j (see Figure 7.3),
and ABS denotes the absolute function.

Table 7.1 lists the contribution factor of each of the 63 input variables
computed by employing equation (7.13). As can be observed in the table,
the sum of the contribution factors of all the 63 input variables should add
up to 100 per cent. The definition of the contribution factor is designed
such that a higher value for a particular variable denotes the greater con-
tribution exerted by that variable on the prediction, mainly based on the
weights of the trained neural network. It can be observed from this analy-
sis that Chl-a at (t−7), having a contribution factor of 9.17 per cent, is the
most significant constituent in predicting the one-week-ahead algal biomass.
Other variables are PO4, TIN, DO and SD, having a contribution factor
larger than 2.00 per cent. The variables considered to be more significant
are shaded in Table 7.1.

From Table 7.1, it is apparent that, apart from Chl-a at (t−7) being the
most significant in predicting itself, all Chl-a values during the preceding one
to two weeks are also significant. This indicates an auto-regressive nature
or “persistence” for the algal dynamics, which is common for geophysical
time-series. Such an auto-regressive nature is frequently exhibited by these
types of time-series owing to their inherent inertia or carryover process in
the physical system. Numerical modelling can contribute to comprehension
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Table 7.1 Contribution factors on the basis of the weights of the trained ANN for
one-week predictions

Input
variables

Contribution factors of the input variables (%)∗ Sum

(t−7) (t−8) (t−9) (t−10) (t−11) (t−12) (t−13)

Chl-a 9.17 2.62 3.35 2.27 2.18 1.89 3.05 24.53
TIN 3.37 1.54 1.18 1.68 1.50 1.23 2.27 12.77
DO 3.12 2.06 1.37 1.41 1.13 1.05 1.55 11.68
PO4 4.11 1.62 1.04 0.72 1.04 1.69 2.55 12.77
SD 1.08 1.20 1.11 1.22 1.37 1.70 2.98 10.66
Temp 1.42 1.01 1.28 1.00 0.78 1.02 1.70 8.20
Rain 0.95 1.31 0.97 1.08 1.15 1.18 1.31 7.95
SR 1.00 0.56 0.69 0.65 0.68 0.42 0.69 4.70
WS 1.09 0.89 1.06 1.05 1.13 0.73 0.79 6.74

Sum of contribution factors of all variables = 100

∗ Shaded variables have a contribution factor greater than 2%.

of the physical system by revealing factors about the process that estab-
lishes persistence into the series. In this case study, the long flushing time
or residence time in the semi-enclosed coastal waters might be the key fac-
tor causing the auto-regressive nature of chlorophyll dynamics as revealed
by the ML techniques. It should be pointed out that, in the inner and outer
Channel Subzones, the tidal currents are very small, with the average current
velocity being 0.04 m/s and 0.08 m/s, respectively (EPD 1999). The weak
tidal flushing in the harbour is therefore due to its landlocked nature. Lee
and Arega (1999) suggested that the flushing times in the inner Harbour
Subzone are on the order of one month.

Results indicate that the nutrients, i.e. PO4 and TIN, together with DO
and SD to a lesser extent, are also significant input variables, though not as
highly significant as Chl-a. Because the growth and reproduction of phyto-
plankton rely heavily on the availability of various nutrients, the significance
of nutrients can be easily understood. Moreover, the DO level is also closely
associated with algal growth dynamics under subtropical coastal water con-
ditions with mariculture activities. This is because DO is required for the
respiration of organisms and also for some chemical reactions. Xu et al.
(2004) observed that PO4, TIN and DO have an increasing trend from
the early 1970s to the late 1980s or the early 1990s, and then decline in
the 1990s. As discussed in the above section, the decline can be attributed
mainly to the implementation of THAP in 1988. Our training data in this
case study are from 1988 to 1992, during which the trends are increasing
for PO4, TIN and DO. The significance of these variables appears to be
reasonable.

It has been mentioned in the earlier section that the daily values are
acquired by linear interpolation of the biweekly water quality data. It should
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be observed that once interpolation is employed to generate time-series from
longer sampling frequency to a shorter time step, future observations are,
in effect, employed to drive the predictions (Lee et al. 2003). One of the
approaches to refrain from using this “future data” in the predictions is
to forecast the algal dynamics with a lead-time at least equal to the time
interval of the original observation. Thus, in this case study, a biweekly or
greater lead-time forecast would be sufficient to eliminate this “interpola-
tion effect”. It is worthwhile undertaking a biweekly forecast employing
the same data and identifying the significant input variables again, simi-
lar to steps performed in the one-week forecast. In this biweekly forecast,
a time lag of 14–20 days is applied for each of the input variables, and
Chl-a is again forecasted at time t. Table 7.2 lists the significant variables
for the biweekly forecast. Similar to the one-week forecast, those input vari-
ables with contributions of more than 2 per cent in terms of ANN weights
are shaded. From Tables 7.1 and 7.2, it can be noted that the significant
input variables for biweekly forecast are almost the same as those for the
one-week forecast. The only exception is Temp, which is shown to be sig-
nificant in the biweekly analysis but not in the one-week forecast. Now that
the biweekly predictions are free of the interpolation effect and the results
are similar to those for the one-week forecast, it is justifiable to state that
the significant input variables from one-week predictions are reasonable.
Though the one-week forecast is to some extent driven by interpolation
of data, it still contains adequate physical knowledge establishing a cause–
effect relationship between the time-lagged input variables and future algal
biomass.

The results of one-week-ahead predictions employing ANN are discussed
in more detail in the next section. In order to reduce the computational

Table 7.2 Contribution factors on the basis of the weights of the trained ANN for
biweekly predictions

Input
variables

Contribution factors of the input variables (%)∗ Sum

(t−14) (t−15) (t−16) (t−17) (t−18) (t−19) (t−20)

Chl-a 2.79 1.54 1.23 1.24 1.07 0.54 2.46 10.87
TIN 5.53 2.34 1.27 1.02 1.91 2.68 3.71 18.46
DO 2.42 1.96 1.86 1.39 0.63 0.80 1.19 10.26
PO4 3.35 1.92 0.85 0.28 0.42 0.93 2.04 9.78
SD 3.50 2.38 1.38 0.20 1.06 2.27 3.66 14.45
Temp 4.04 3.09 2.39 1.78 1.18 0.94 1.36 14.79
Rain 1.89 1.55 1.23 1.08 1.38 1.26 1.57 9.96
SR 0.70 0.45 0.59 0.40 0.47 0.27 1.59 4.46
WS 1.19 0.63 1.14 0.83 1.00 1.02 1.15 6.95

Sum of contribution factors of all variables = 100

∗ Shaded variables have a contribution factor greater than 2%.
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effort, only the variables considered as significant, namely, Chl-a, PO4, TIN,
DO and SD, are applied as input variables for the predictions. Seven to
thirteen days of time-lagged inputs are employed for each significant input
variable.

7.5.5 Results and discussion

In the following, different neural network runs, with different combinations
of the significant input variables, are performed. The concentration of Chl-a
is forecast with a one-week lead-time. These neural network simulations are
performed with selection of input variable based on the model formulation
and training details delineated in the previous section.

Results indicate that the best forecast is the case with solely time-lagged
Chl-a as an input. Figure 7.4 shows the comparison of the simulated and
observed Chl-a values under both training and testing conditions with solely
time-lagged Chl-a as inputs. Figure 7.5 shows a blow-up of the forecast
for a shorter period, i.e. May 1993 to September 1994, under the testing
condition.

Table 7.3 shows the goodness-of-fit measures for the Chl-a forecast under
different scenarios. It is apparent that the forecast performance deteriorates
with an increase in the number of input variables, and that the best per-
formance occurs when time-lagged Chl-a is employed as, the sole input
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Table 7.3 Performance measures for the ANN one-week prediction

Input variables∗ Training Testing

RMSE CC RMSE CC

Chl-a, PO4, TIN, DO, SD 1.87 0.96 4.02 0.82
Chl-a, PO4, TIN, DO 2.16 0.94 4.49 0.86
Chl-a, PO4, TIN 2.14 0.95 3.00 0.91
Chl-a, PO4 2.42 0.94 2.76 0.92
Chl-a 2.55 0.93 2.24 0.95

∗ All input variables are at 7–13 days’ time lag.

variable. This result is contrary to some previous research studies, which
endeavoured to incorporate a multitude of input variables. For example,
Jeong et al. (2003) initially selected 19 input variables, though at the end
of their study, suggested that only four of them were needed to forecast
biovolume of cyanobacteria with good performance; Jeong et al. (2001)
adopted 16 input variables to forecast time-series changes of algal biomass
by using a time-delayed recurrent neural network; Wei et al. (2001) incorpo-
rated eight environmental input variables to forecast the evolution of four
dominant phytoplankton genera by using an ANN; Recknagel et al. (1997)
selected ten input variables in a feed-forward ANN model for the forecast of
algal bloom in lakes in Japan, Finland and Australia; Yabunaka et al. (1997)
adopted ten environmental variables as ANN inputs to forecast the concen-
trations of five freshwater phytoplankton species. The result that solely algal
biomass with a time lag is adequate for forecasting the biomass itself might
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cast doubt on the necessity to purchase expensive equipment such as auto-
matic nutrient analysers for ammonia and nitrate nitrogen in coastal waters
algal bloom warning detecting systems.

It is seen from the time-series plots in Figure 7.4 that the forecast can track
the algal dynamics with reasonable degree of accuracy. Nevertheless, it can
be observed, from a closer examination of the forecast blow-up shown in
Figure 7.5, that there is a phase error of one week or so. Hence it might not
be appropriate to use these biweekly data for short-term forecasts of algal
blooms. It is recommended to use input data at a higher frequency in order
to enhance the performance of the forecast. In fact, biweekly forecasts with
the same significant input variables are also performed in this study, and the
phase error is even more than its counterpart of the one-week forecast.

7.6 Prototype application II: long-term prediction of discharges

Numerical models are often used to predict both long-term flow discharges
in reservoirs. Results of the forecasts can be widely employed for purposes
including environmental protection, flood prevention, drought protection,
reservoir control, water resource distribution, etc. They therefore have a
significant impact on decision control for reservoirs and hydropower sta-
tions which might have high economic value. Conventional methods used
to forecast the long-term discharges include factor analysis, hydrological
analysis methods, historical evolution method, time-series analysis, multi-
ple linear regression method, etc. The current most popular methods are
time-series analysis and the multiple linear regression method. The basis
of time-series analysis is the decomposition of various factors into trend
and cycle. Autoregressive moving-average models as suggested by Box and
Jenkins (1976) are also widely employed. The ANN model has been gain-
ing more applications in the forecast of discharges since the 1990s. The
ASCE Task Committee (2000a, 2000b) provided a comprehensive review
of the application of ANNs to this field. An application of an ANN in the
long-term prediction of flow is presented in the following section. Evalua-
tion of the prediction effectiveness of the ANN model is investigated for the
prototype case study in Manwan hydropower station.

7.6.1 Scaled conjugate gradient (SCG) algorithm

The SCG algorithm (Fitch et al. 1991; Hagan et al. 1996) is used in this case
study. The procedure is as follows (Moller 1993):

1. The weight matrix w is initialized, ranging from −0.5 to 0.5:

�d0 =−�g0 (7.14)

where g0 is the gradient of the error function and d0 is an initialized
searching direction.
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2. At the commencement of the kth generation, the learning rate αk is

determined from linear search via the function f
(

�w +αk
�dk

)
, where �dk

is the searching direction at the the kth generation. Adjustment of the
weight matrix is made via the following equation:

wk+1 = wk +αk
�dk (7.15)

3. If either the error is less than the threshold value or the predetermined
training generation is reached at the (k + 1)th generation, the training
process is stopped automatically.

4. Otherwise, the new searching direction �dk+1 is computed. If (k + 1) is
an integer multiple of the dimension number of the weight matrix w,
then

�dk+1 =−�gk+1 (7.16)

Otherwise,

�dk+1 =−�gk+1 +βk
�dk (7.17)

βk =
(
gkgT

k

)(
g0gT

0

) (7.18)

5. Loop back to step 2.

7.6.2 Prediction of discharges in Manwan hydropower station

In this case study, a three-layer feed-forward backpropagation ANN model
is used to forecast discharge in Manwan. There are four input neurons (Qt,
Qt−1, Qt−2 and Qt−3), four hidden neurons, and one output neuron (Qt+1).
Huang and Foo (2002) opined that the SCG algorithm converges faster and
acquires a higher accuracy compared with other training algorithms. The
daily flow measurements from 2001 to 2003 and monthly flow data from
1953 to 2003 are investigated. Preprocessing of all data is made to the raw
data so that they are normalized to range from −1 to 1.

In the ANN model, daily data from 2001 are employed for training pur-
poses whilst those from between 2002 and 2003 are used for verification. As
can be seen in Figure 7.6, the minimum error is only 0.00598 after training
for 361 epochs. During the verification period, the correlation coefficient
between the forecast and measured values and the RMSE are 0.97 and
0.0087, respectively, as shown in Figure 7.7. It is shown that the forecast
of daily flow results is excellent. In a similar fashion, monthly data from
between 1953 and 1993 are employed for training purposes, whilst those
from between 1994 and 2003 are for verification. It can be shown that the
forecast of monthly flow results is satisfactory.
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Figure 7.6 Training results of daily flow data at Manwan Hydropower by the ANN
model

7.6.3 Results and discussion

It is generally recognized that there are many available algorithms in train-
ing ANNs, and that each of them has its own advantages and drawbacks.
Hence, it is worthwhile comparing the performance of the gradient descent,
LM and SCG algorithms in this case study. In order to have the same basis
of comparison, all three algorithms undergo the training process under the
same conditions. Table 7.4 details the performance comparison of various
algorithms for monthly flow prediction in Manwan. Results show that the
gradient descent algorithm has the slowest convergence, the smallest corre-
lation coefficient and the largest RMSE. Amongst the three algorithms, the
SCG algorithm is the most accurate and the LM algorithm converges in the
fastest manner.

Amongst various available time-series prediction models, the auto-
regression time-series model is very often used. It has been employed
conventionally in flow prediction owing to the simplicity of both the model
structure and the data requirements (Wang 2000). It is therefore employed
as the benchmarking tool in order to gauge the performance of this ANN
model for flow prediction in Manwan. The same training and verification
sets are used for both models so as to have the same basis for comparison.
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Table 7.4 Performance comparison of different training algorithms for monthly
flow forecasting at Manwan Hydropower

Training algorithm Correlation
coefficient

Normalized
RMSE

Number of
sampling points

Gradient descent 0.799 0.057 1000
LM 0.878 0.036 71
SCG 0.890 0.03 415

Table 7.5 Performance comparison between the ANN model and the time-series
model for the forecasting of monthly discharge at Manwan Hydropower

Correlation coefficient Normalized RMSE

ANN model Time-series model ANN model Time-series model

0.89 0.84 0.03 0.108

In this case study, results indicate that the ANN exhibits distinct advantages
over conventional time-series models in terms of accuracy performance.
Table 7.5 presents a performance comparison of the ANN model and the
time-series model for monthly flow forecast in Manwan. Whilst the correla-
tion coefficient of the ANN model, 0.89, is larger than that of the time-series
model, 0.84, the RMSE of the ANN model, 0.03, is much smaller than its
counterpart of the time-series model, 0.108.

7.7 Conclusions

The first application case study presents the analysis of algal dynamics
data from a coastal monitoring station using ANN. The interpretation of
ANN weights is employed to identify the most significant input variables,
which appear to be consistent with ecological reasoning. Results indicate
that chlorophyll-a alone with a time lag is sufficient as input for forecast-
ing itself. The phenomenon suggests an auto-regressive nature of the algal
dynamics in this semi-enclosed coastal zone. Results show that although the
use of biweekly data can mimic the long-term trends of algal biomass in
a reasonable manner, it might not be appropriate to use these data for the
short-term forecast of algal blooms. It is recommended to use input data at
a higher frequency in order to enhance the performance of the forecast.

Secondly, an ANN model is employed to forecast long-term flow dis-
charges in Manwan on the basis of historical records. The daily flow mea-
surements from 2001 to 2003 and monthly flow data from 1953 to 2003
are investigated. The results indicate that the ANN model can give good
prediction performance. The correlation coefficients between the forecast
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and field values are 0.97 and 0.89 for daily and monthly discharges, respec-
tively. Different training algorithms are tried, with performance compared.
It is found that the SCG algorithm is the most accurate amongst them.
Moreover, results indicate that ANN exhibits distinct advantages over a
conventional time-series model in terms of accuracy performance.



8 Fuzzy inference systems

8.1 Introduction

Fuzzy logic and fuzzy set theory were introduced by Zadeh (1965). There
has been a rapid growth in the number and variety of their applications dur-
ing the past few decades. The applications range from consumer products
such as cameras, washing machines and microwave ovens to industrial pro-
cess control, decision-support systems, medical instrumentation, portfolio
selection, etc. A recent trend is the use of fuzzy logic in combination with
neurocomputing and genetic algorithms. In fact, fuzzy logic, neurocomput-
ing and genetic algorithms are all principal constituents of soft computing.
Amongst various hybrid combinations of methodologies in soft computing,
an appropriate combination of fuzzy logic and neurocomputing should be
highlighted. The resulting adaptive-network-based fuzzy inference system
(ANFIS) is an effective system that operates through a parallel and fault-
tolerant architecture on both linguistic descriptions of the parameters and
the numeric values. In this chapter, the characteristics of fuzzy logic, fuzzy
inference systems and ANFIS are delineated. A real application of ANFIS
is also demonstrated, for the prediction of long-term flow discharges in
Manwan based on historical records.

8.2 Fuzzy logic

Fuzzy logic is very useful in simulating imprecise and complex systems
(Zadeh and Kacprzyk 1992). Under fuzzy set theory, mapping is made
from elements of a fuzzy set to a universe of membership values using a
function-theoretic form belonging to the close interval between zero and
one. A key process in applying fuzzy methods is the determination of the
membership function of a variable. This process is analogous to the estima-
tion of probability in stochastic models. Membership functions in fuzzy set
theory, having the capability of simulating the preferences of the decision-
maker, can be acquired according to real statistical surveys. It is quite sim-
ple to model based on fuzzy logic since it only operates on an “if–then”
principle, i.e. “if” is a vector of fuzzy explanatory variables or premises
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with membership functions and “then” is a consequence. Both the “if” and
the “then” clause are in the form of a fuzzy set.

An optimization problem having a vague objective or constraints can
be solved as a fuzzy optimization problem. Fuzzy set theory can furnish
an alternative approach to addressing those problems without well-defined
objectives and constraints or without precise information. Although fuzzy
logic has been employed in a multitude of applications, it is often employed
as a refinement to conventional optimization techniques in which fuzzy con-
straints are used to replace the conventional crisp objective and some or all
of the constraints (Cheng and Chau 2001; Cheng et al. 2002). Silvert (1997)
applied fuzzy set theory concepts to ecological impact classifications. Chang
et al. (2001) employed the fuzzy synthetic evaluation approach to identify
the quality of river water. Chen and Mynett (2003) employed data mining
techniques and heuristic knowledge in modelling the fuzzy logic of eutrophi-
cation in Taihu Lake. Liou et al. (2003) applied a two-stage fuzzy set the-
ory to evaluate river quality in Taiwan. Marsili-Libelli (2004) delineated
the design of a bloom predictor based on the daily fluctuations of simple
parameters for water quality such as dissolved oxygen, oxidation–reduction
potential, pH, and temperature.

A comparison between the simulated and measured results of flow
or water quality is a typical example of the application of fuzzy logic.
Improvements in modelling results rely heavily on the technology of pattern
recognition. The normalized root-mean-square error (NRMSE) between key
field data and the modelling results is computed to evaluate the performance
of the model and its pertinent model parameters. The NRMSE might include
different cases, namely, a time-series of data at a single location within the
model domain, instantaneous measurements at many locations, or a combi-
nation of both of the above cases. In this case, the expression of NRMSE is
as follows:

NRMSE =

N∑
i=1

n∑
t=1

(Ti,t − Oi,t)2

N∑
i=1

n∑
t=1

(Ti,t − T)2

(8.1)

where N is the number of spatial data locations for comparison, n is the
number of time intervals in a time-series of data for comparison, Ti,t is the
target values of the ith spatial location and tth time step, Oi,t is the computed
value of the ith spatial location and tth time step, and T̄ is the average target
value.

Figure 8.1 shows the membership functions for NRMSE, in which the
fuzzy logic of literal classification is represented by four categories: very
small, small, large, and very large. Another application of fuzzy infer-
ence can be shown in the representation of rule sets within the knowledge
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Figure 8.1 Membership functions for the normalized root-mean-square error with
four categories

base of a knowledge-based system. In this case, a more human-like fuzzy
format, instead of a crisp threshold format, can be employed.

The study of fuzzy logic and fuzzy set theory was pioneered by Zadeh
(1965) in the 1960s. It was commonly used in modelling ambiguity and
uncertainty in decision-making. The key idea for fuzzy logic is the allowance
for something to be partial truth, instead of having to be just either “true”
or “false” in a crisp manner. Similarly, in fuzzy set theory, it is possible to
have partial belonging to a set, usually termed a fuzzy set. The degree of
“belongingness” to a set or category is represented numerically by a mem-
bership function. Its range lies between 0 and 1.0 and its type or shape
might be triangular-shaped, trapezoidal-shaped, bell-shaped, and so on. As
a demonstration, a triangular membership function, which is the simplest
and most popularly employed, can be expressed as follows (Shrestha et al.
1996):

μT (x) = x − t1

t2 − t1
It1,t2 (x)+

t3 − x
t3 − t2

It2,t3 (x) (8.2)

where μT(x) = grade of membership of x in T with t1 ≤ t2 ≤ t3, I(...)(x)=an
indicator function, with value equal to non-zero when x is within the inter-
val indicated and zero otherwise, and μT(x) is greater than zero within the
interval (t1, t3).

In general, fuzzy logic programming can be employed in two different
ways. The first is to endeavour to simulate the behaviour of a human expert
whilst the second is to map a set of outputs to a set of inputs in a fuzzy
inference method (Russell and Campbell 1996). In order to simulate the
thinking of a human expert, input variables are usually specified by cate-
gory, such as “low”, “high”; and fuzzy rules are developed according to the
expert’s knowledge and experience. However, if no expertise is available,
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the number of membership functions or the number of categories of input
variables assigned to each input variable can be selected empirically.

8.3 Fuzzy inference systems

A fuzzy inference system (FIS) executes a non-linear mapping between its
input space and the output space. This mapping is attained by a number of
fuzzy if–then rules, each of which delineates the local behaviour of the map-
ping. In fuzzy modelling, the parameters of the if–then rules, usually termed
“antecedents” or “premises”, specify a fuzzy region of the input space
whilst the output parameters, usually named “consequents”, define the
corresponding output. The process of fuzzy inference involves fuzzy logic
operators, membership functions, if–then rules, etc. As shown in Figure 8.2,
the basic structure of a FIS consists of three conceptual components: a rule
base, a database, and a reasoning mechanism. The rule base comprises a
selection of fuzzy rules. The database defines the membership functions
(MF) employed in the fuzzy rules. The reasoning mechanism executes the
inference procedure upon the rules in order to determine an output. Three
types of fuzzy inference systems are often employed nowadays: Mamdani-
type (Mamdani and Assilian 1975), Sugeno-type (Takagi and Sugeno 1985;
Sugeno and Kang 1988) and Tsukamoto-type (Tsukamoto 1979). The key
difference of these three types of inference systems is basically in the manner
of determination of outputs.

The FIS is similar to an ANN in terms of the conceptual set-up. Their
objectives are both to identify the transformation of a set of inputs to the
corresponding set of outputs through “training” or “learning”. On the other
hand, an ANN tends to behave more like a “black box” operation whilst a
fuzzy logic system is more transparent. This is because an expert’s knowl-
edge and experience can be incorporated into the inference process when it
is required. Jang (1993) delineated different types of fuzzy inference systems

1x is Ax

y

1y is B

y is B2x is A2

f1 = p1 x + q1y + r1

f2 = p2 x + q2y + r2

∑ f

Rule 1

Rule 2

rule base database

reasoning mechanism

knowledge base

Figure 8.2 Basic structure of fuzzy inference system
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and categorized them into three types on the basis of the types of fuzzy
reasoning and fuzzy if–then rules employed. Takagi and Sugeno’s fuzzy if-
then rules are used in the application case study. The output of each rule
is the summation of a linear combination of input variable and a constant
term whilst the final output is the weighted averaged of each rule’s output.
Figure 8.3 shows the fuzzy reasoning for two input variables.

A fuzzy rule base has to be established after fuzzy reasoning has been
defined. Usually, the fuzzy rule base can be constructed according to expert
knowledge or measured data. In cases of lack of expertise, the simplest
approach can be used, i.e. the rule base is established by combining all
categories of variables. An exemplary case with three input variables and
a single output variable is illustrated in the following paragraphs.

It is assumed that the three input variables x,y and z are each divided
into three categories and that equally spaced triangular membership func-
tions are adopted. Literal description can be given to indicate the attributes
of the categories, such as “low”, “medium” and “high.” As a general rule,
the number of rules in the fuzzy rule base is cn, where c denotes the number
of categories per variable and n represents the total number of variables.
Certainly there is no limitation on the number of categories. The optimal
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number of categories can be determined via a trial and error procedure,
after having compared the simulation result with different numbers of cate-
gories. The rule base takes the form of an output oi,j,k for any combination
of category i, of input variable x, category j, of input y, and category k, of
input variable z, amounting to a total of 27 rules (= 33) in this case. The
following is part of the rule set:

If x is low, y is low, and z is low then the output o1,1,1 = a1x + b1y +
c1z + d1;

If x is low, y is low, and z is medium then the output o1,1,2 = a2x + b2y +
c2z + d2;

If x is low, y is low, and z is high then the output o1,1,3 = a3x + b3y +
c3z + d3;

...
If x is high, y is high, and z is high then the output o3,3,3 = a27x + b27y +

c27z + d27;

where a(...),b(...), c(...), and d(...) are parameters of fuzzy output functions. After
the training process of the adaptive networks, these parameters can be
determined.

Once a rule is triggered, memberships for x, y, and z are computed. The
result of the application of a specific T-norm operation, such as multiplica-
tion, max, min, and square, will furnish the weight wi,j,k to be assigned to
the corresponding output oi,j,k. In the application case study in this chapter,
multiplication operation is adopted. At the end, the outputs from all rules
that are triggered are coupled to furnish a single weighted average output
as follows:

o =
∑

wi,j,k·oi,j,k∑
wi,j,k

(8.3)

where i, j and k are index of categories of x, y and z, respectively. Following
the above procedure, the values of the output o can be computed for all
possible combination of values of variables x, y and z. Over the past two
decades, FIS has been successfully applied in fields including decision ana-
lysis, expert systems, automatic control, data classification, and computer
vision.

8.4 Adaptive-network-based fuzzy inference system (ANFIS)

In order to render the FIS model a prediction model, these parameters,
including t1, t2 and t3 of each triangular membership function and ai, bi,
ci and di of the consequence part of each rule, have to be determined by
some learning laws. If a neural network is employed to train the parameters
of the FIS, it is known as a neural FIS. Jang (1993) integrated an FIS with an
adaptive network, termed an ANFIS. The underlying principle of the ANFIS
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was that a FIS was mapped into a neural network structure and the param-
eters were optimized using a hybrid learning algorithm in accordance with
the least squares approach and backpropagation learning. As a matter of
fact, a multitude of learning algorithms, such as simply the backpropaga-
tion algorithm, could be employed instead. However, as demonstrated by
Jang (1993), this hybrid learning algorithm had the apparent advantage of
quick convergence.

Since then, the ANFIS has been successfully applied to different domains,
including prediction of workpiece surface roughness (Lo 2003), pesticide
prediction in ground water (Sahooa et al. 2005), validation in financial
time-series (Koulouriotis et al. 2005), etc. In particular, a neuro-fuzzy sys-
tem for modelling time-series on flow discharges was presented by Nayak
et al. (2004). Ponnambalam et al. (2002) employed an ANFIS for minimiza-
tion of the variance of reservoir systems operations benefits, and attained a
satisfactory result. This is generally recognized that a fuzzy system based
on hybrid algorithms can enhance the intelligence of systems working in
uncertain, imprecise, and noisy environments. This is because it possesses
the attributes of both systems, namely, learning abilities, optimization abili-
ties, and connectionist structures for neural networks, and also human-like
“if–then” rule reasoning, and the readiness to integrate expert knowledge
for fuzzy systems.

8.4.1 ANFIS architecture

In the Sugeno model (or Takagi–Sugeno model) proposed by Takagi and
Sugeno (1985), a typical rule in a Sugeno fuzzy model has the form

If x is A and y is B, then z = f(x,y)

where A and B denote fuzzy sets of antecedent, and z= f (x, y) represents the
precise function. Often z= f (x,y) are polynomials of input variables x and y.
The function z = f (x,y) is a first-order polynomial of the input variables in
the commonly used first-order Sugeno model. The output level z is set to
be a constant for a zero-order Sugeno model. For a first-order Sugeno fuzzy
model having two inputs x and y and one output z, a typical rule set with
two fuzzy if–then rules can be expressed as:

Rule 1: If x is A1 and y is B1, then f1 = p1x + q1y + r1

Rule 2: If x is A2 and y is B2, then f2 = p2x + q2y + r2

Figure 8.4 shows the fuzzy reasoning mechanism for this Sugeno model
employed to determine an output function (f ) from a known input vector
[x, y]. The Sugeno FIS, which is computationally efficient, can work together
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with other linear techniques, optimization and adaptive techniques. When
an FIS is developed employing the framework of adaptive neural networks,
it is known as an ANFIS.

In a typical ANFIS configuration, the parameters defining the shape of
the membership functions and the consequent parameters for each rule
are determined by the backpropagation learning algorithm and the least-
squares method, respectively. In the following section, the neuro-fuzzy
network is a five-layer feed-forward network that employs neural network
learning algorithms integrated with fuzzy reasoning in order to map an
input space to an output space. Figure 8.5 shows the ANFIS architecture
with details as described below.
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Figure 8.5 ANFIS architecture with five layers
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Layer 1: input nodes

Each node in this layer generates the membership grade of an input variable.
The output of the node, O1,i, is determined by

O1,i =μAi (x) , i = 1, 2 (8.4)

or

O1,i =μBi−2 (y) , i = 3, 4 (8.5)

where x (or y) is the input to the node; Ai(or Bi−2) is a fuzzy set associ-
ated with this node. This fuzzy set is dependent on the shape of the MFs in
the node, which can be any appropriate functions that are continuous and
piecewise differentiable such as Gaussian, generalized bell shaped, trape-
zoidal shaped or triangular shaped functions. If a generalized bell function
is adopted as the MF, the output O1,i becomes

μA (x)= 1

1 +
∣∣∣∣x − ci

ai

∣∣∣∣2b
(8.6)

where {ai,bi,Ci} is the parameter set that determines the actual shapes of the
MF which is subjected to the limiting range between 0 and 1; and {ai, bi, ci}
are termed premise parameters.

Layer 2: rule nodes

The node in this layer is multiplied to the incoming signals, represented as∏
. The output O2,i, representing the firing strength of a rule, is defined to be

O2,i = wAi (x)μBi
(y), i = 1, 2 (8.7)

Thus, the outputs O2,i of this layer represent the products of the correspond-
ing degrees from layer 1.

Layer 3: average nodes

The node of this layer, termed N, denotes the normalized firing strengths as
follows:

O3,i = w = wi

w1 + w2
, i = 1, 2 (8.8)

Layer 4: consequent nodes

Node i in this layer assesses the contribution of the ith rule towards the
model output, with equation below:

O4,i = wif = wi (pi + qi + ri) (8.9)
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where wi is the output of layer 3 and {pi,qi, ri} is the consequent parame-
ter set.

Layer 5: output nodes

The only node in this layer that determines the overall output of the ANFIS
is represented by the following:

Overall output = O5,1 =
∑

wifi =
∑

i wifi∑
i wi

(8.10)

8.4.2 Hybrid learning algorithm

The ANFIS architecture comprises two parameter sets for optimization:
the premise parameters {ai,bi, ci}, which define the shape of the MFs, and the
consequent parameters {pi,qi, ri}, which delineate the overall output of the
system. It can be observed from the ANFIS architecture in Figure 8.5 that
when the values of the premise parameters are known, the overall output
can be written as a linear combination of the consequent parameters. The
output f in Figure 8.5 can be expressed symbolically as

f = w1f1 + w2f2

= (w1x)p1 + (w1y)q1 + (w1) r1 + (w2x)p2 + (w2y)q2 + (w2) r2 (8.11)

which is a linear function in terms of the consequent parameters
p1,q1, r1,p2,q2, r2. As such, a hybrid learning algorithm, which integrates the
backpropagation gradient descent and the least squares estimate method,
has the capability of outperforming the original backpropagation algo-
rithm (Rumelhart et al. 1986). The consequent parameters are first updated
employing the least squares algorithm. The antecedent parameters are then
updated by backpropagating the errors. In particular, during the forward
pass of the hybrid learning algorithm, node outputs proceed until layer 4
and the consequent parameters are determined by the least squares method.
During the backward pass, the error signals propagate backwards and
the premise parameters are then updated by gradient descent algorithm.
Table 8.1 gives a summary of the activities in both forward and backward

Table 8.1 Summary of the activities in forward and backward passes for
ANFIS

Forward pass Backward pass

Premise parameters Fixed Gradient descent
Consequent parameters Least-squares estimate Fixed
Signals Node outputs Error signals
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passes. Jang and Sun (1995) furnish more details about the hybrid learning
algorithm.

8.5 Advantages and disadvantages of fuzzy inference systems

It is generally recognized that, in coastal engineering problems, many indi-
cators are often in conflict with each other, significant observations may be
lacking, and potentially valuable information may be non-quantitative in
nature. One of the advantages of the fuzzy inference method is that it is
capable of representing real-life hydrodynamic and water quality problems,
which are often difficult to deal with by standard mathematical and statis-
tical approaches. Nevertheless, fuzzy logic also has its drawbacks. By itself,
it cannot help much with user-friendly interactions between the users and
the system. Moreover, the choice of many parameters, including the number
of categories, shape of the membership function, and method of combining
partial memberships, can greatly affect the results. For accurate representa-
tions of the simulation, it is necessary to have the appropriate choice of all
pertinent parameters as well as to undergo rigorous validation. This might
not be an easy task, particularly for novice users.

8.6 Applications and case studies

In this case application, the ANFIS is used to predict flood propagation
in a channel reach. The study site is at Manwan Hydropower in the
Lancangjiang River, which is a large river in Asia. It originates from the
Qinghai-Tibet Plateau, penetrates Yunnan from the north-west to the south,
flows through several countries, namely, Laos, the Union of Myanmar,
Thailand, Cambodia and Vietnam, and ultimately exits into the South
China Sea. The total length of the Lancangjiang River is 4,500 miles or
so, covering a catchment area of approximately 744,000 square miles. The
Manwan Hydropower is located at the middle reaches of the Lancangjiang
River between the counties of Yunxian and Jingdong. The drainage area
at the Manwan dam site is 114,500 square miles. The total length of river
reach upstream of Manwan amounts to 1,579 miles, with a mean elevation
of 4,000 metres. At the dam site, the average yearly runoff is 1,230 cubic
metres, most of which is contributed by rainfall whilst about 10 per cent
comes from snow melt. Moreover, most of the annual rainfall, amounting
to 70 per cent, is precipitated during the wet season, which is between June
and September each year.

Figure 8.6 shows the monthly flow data at Manwan Reservoir from
January 1953 to December 2003, which are investigated in this study. The
data set from 1953 to 1998 and that from 1999 to 2003 are employed
for training and validation, respectively. Following the suggestion by Mas-
ters (1993), the data sets of river flow are preprocessed and normalized to
within the range of zero to one prior to the simulation process.
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Figure 8.6 Monthly discharge data of the Manwan Reservoir from 1953 to 2003

8.6.1 Model development and testing

There are no universal rules for developing an ANFIS, although a general
framework can be figured out following previous successful applications in
various fields. It is apparent that a key objective of an ANFIS is to generalize
a relationship of the form of

Y = f (Xn) (8.12)

where Xn is an n-dimensional input vector comprising variables
x1, . . . , xi, . . . , xn, and Y is the output variable. In modelling of flow data
series, values of xi are usually flow values at different time lags, and the
value of Y is in general the flow at the imminent period. Yet, the optimal
number as well as which antecedent flow values showed be incorporated
in the vector Xn so as to attain the best performance is unknown a priori.
Therefore, in this study, a trial and error procedure is adopted. Initially,
an ANFIS model is set up with a single antecedent flow in the input vec-
tor. Then, a new ANFIS model is developed one at each time, with the
input vector being adjusted by successively adding flow at another time lag.
Altogether, six ANFIS models are developed as follows:

Model n Qt = f (Qt−1 Qt−n) n = 1, . . . , 6

where Qt corresponds to the river flow discharge at time t.
The model performance is evaluated in terms of the following perfor-

mance indices:
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1. The coefficient of correlation (CORR) given by

CORR =
1
n

n∑
i=1

(
Qo(i) − Qo

)
(Qf (i) − Qf )√

1
n

n∑
i=1

(
Qo (i)− Qo

)2 ×
√

1
n

n∑
i=1

(
Qf (i)− Qf

)2
(8.13)

where Qo(i) and Qf (i) are the observed and predicted discharges,
respectively, Qo, Qf denote the mean observed and predicted dis-
charges, respectively, and n is the total number of data points.

2. The root mean square error (RMSE) given by

RMSE =
√√√√1

n

n∑
i=1

(Qf (i)− Qo (i))
2 (8.14)

8.6.2 Results and discussion

Table 8.2 shows the resulting performance indices of ANFIS, namely, CORR
and RMSE, employing the Gaussian membership function and the trape-
zoidal membership function, respectively, for all models. The membership
function of every input parameter within the architecture can be divided into
two categories: small and large. The results illustrate that Model 3, compris-
ing antecedent flows at three different time lags in input, acquires the maxi-
mum CORR and minimum RMSE during validation, no matter whether the
membership function is of Gaussian or trapezoidal shape. As such, Model
3 with three antecedent input data is chosen as the best-fit model for delin-
eating the flow of the Manwan Hydropower. Moreover, the effect of the
choice of membership function on the model performance is also investi-
gated. In this case, six different membership functions are attempted using
Model 3: the triangular membership function (TRIMF), the trapezoidal
membership function (TRAPMF), the generalized bell membership function
(GBELLMF), the Gaussian membership function (GAUSSMF), the Gaussian
combination membership function (GAUSS2MF), the spline-based member-
ship function (PIMF) and the sigmoidal membership function (DSGMF).
Table 8.3 presents the result performance of Model 3 coupling with differ-
ent membership functions. It can be observed that the TRAPMF performs
the best, with the maximum CORR and minimum RMSE during validation,
whilst the GBELLMF attains the worst result.
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Table 8.3 Performance indices for Model 3 by using different membership
functions

Membership
function

Training Validation

RMSE CORR RMSE CORR

TRIMF 0.079641 0.9093 0.097281 0.88339
TRAPMF 0.075795 0.91823 0.097094 0.88877
GBELLMF 0.075036 0.91993 0.10304 0.86983
GAUSSMF 0.075927 0.91793 0.099208 0.87957
GAUSS2MF 0.074961 0.9201 0.098256 0.88327
PIMF 0.075463 0.91898 0.98573 0.88652
DSGMF 0.07424 0.92169 0.99168 0.87999

8.6.3 Result comparison with an ANN model

It is noted that, during the past two decades, the ANN model has been
commonly applied in flow prediction. One of the advantages of the ANN
approach over conventional mechanistic models is that it is not necessary to
represent information about the complex nature of the underlying process
explicitly in mathematical form. Therefore an ANN model is established
employing the same input parameters to the ANFIS Model 3 in order to act
as a benchmarking model for comparison purposes. In the ANN model, the
scaled conjugate gradient algorithm (Fitch et al. 1991; Moller 1993) is used
for training, and the optimized number of hidden neurons is determined by
trial and error procedure. The optimized ANN architecture comprises three
hidden neurons. The same training and verification sets are used for both
models so as to have the same basis of comparison. Figures 8.7 and 8.8
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Figure 8.7 Result comparison of ANFIS and ANN flow forecasting models during
training period (1953–1998)
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Figure 8.8 Result comparison of ANFIS and ANN flow forecasting models during
validation period (1999–2003)

Table 8.4 Performance indices of ANN and ANFIS models

Training Validation

RMSE CORR RMSE CORR

ANFIS 0.075795 0.91823 0.097094 0.88877
ANN 0.080755 0.90662 0.099927 0.87766

show the performances of both ANN and ANFIS models during training
period and validation periods, respectively. Table 8.4 presents the perfor-
mance indices of both ANN and ANFIS models during the training and
validation periods. It can be observed that, for flow forecasts in Manwan,
ANFIS exhibits some advantages over the ANN model in terms of model
performance. The correlation coefficient of the ANFIS model during vali-
dation period, having a value of 0.88877, is higher than that of the ANN
model, which is 0.87766. In terms of the RMSE, the value for ANFIS model
is 0.097094, which is better than its counterpart of the ANN model of
0.099927.

8.7 Conclusions

In the case study in Manwan Hydropower, an ANFIS model is employed
to forecast long-term flow discharges on the basis of available historical
records. The monthly data are split into two parts: data between 1953
and 1998 are employed for training whilst data between 1999 and 2003
are employed for validation. Results illustrate that the ANFIS model is
capable of furnishing good forecast performance. The RMSE are 0.075795
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and 0.097094 for training and validation, respectively whilst the correla-
tion coefficients between the forecast and the measured values are 0.91823
and 0.88877 for training and validation, respectively. Different member-
ship functions and different numbers of input variables at successively
increasing numbers of time lags for ANFIS have been tried, which indi-
cate that a combination of the TRAPMF and three antecedent flows in
input produces the best performance in the monthly forecast of discharges
in Manwan Hydropower. Moreover, a benchmarking comparison is made
with an appropriate ANN model, which indicates that the ANFIS model
is capable of furnishing an even better performance. This illustrates its dis-
tinct capability and advantages in simulating flow discharge times series
with non-linear attributes.



9 Evolutionary algorithms

9.1 Introduction

Evolutionary algorithms employ computational models of natural evolu-
tionary processes in developing problem-solving systems (Goldberg 1989).
This form of search evolves throughout generations by enhancing the
attributes of potential solutions and simulating the natural population of
biological entities. In this chapter, several types of evolutionary algorithms,
including genetic algorithms (GA), genetic programming (GP), and parti-
cle swarm optimization (PSO), are delineated. Three real applications of
evolutionary algorithms are also demonstrated. The first application case
study presents the use of GP for modelling and prediction of algal blooms in
Tolo Harbour, Hong Kong. The second application is for flood forecasting
at a prototype channel reach of the Yangtze River in China by employing
a GA-based artificial neural network (ANN) in comparison with several
benchmarking models. The third application is the use of a PSO training
algorithm for ANNs in stage prediction of Shing Mun River.

9.2 Genetic algorithms (GA)

Holland (1975) pioneered the GA as an optimization method to mini-
mize or maximize an objective function. It is a powerful global search
algorithm based on the concepts of natural genetics and the mechanisms
of biologically inspired operations (Holland 1992). An extensive descrip-
tion of GA can be found in Goldberg (1989). GA in essence applies the
concept of the artificial survival of the fittest integrated with a structured
information exchange employing randomized genetic operators simulated
from nature in order to formulate an efficient search mechanism. GA works
on the collective learning process within a population of individuals, each
of which denotes a search point in the space of potential solutions. There
are several differences of GA from conventional optimization algorithms,
namely, working on a coding of parameter sets, population processing,
probabilistic operators, and separation of domain knowledge from search.
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Moreover, GA is not constrained by assumptions about continuity or
existence of derivatives.

GA endeavours to exploit efficiently useful information subsumed in a
population of solutions with better performance. It accomplishes this objec-
tive by using a multitude of operations to generate a novel and enhanced
population of strings from an old population. The iterative process to gen-
erate and test a population of strings simulates a natural population of
biological entities where successive generations of entities are conceived,
born, and brought up until they are ready to reproduce. GA searches from
a population of strings and overcomes many peaks in parallel at the same
time, thus lowering the chance of locating local optima. GA entails that
alternative solutions are coded as strings. These strings may consist of con-
catenation of some substrings, each of which denotes a design variable.
Different coding schemes have been employed successfully in solving differ-
ent types of problems. In a population of strings, individuals and characters
are known as chromosomes and artificial genes, respectively.

The first step in a GA is the random generation of an initial population.
The fitness value of each individual, which is a measure of optimality of
the objective function, is then evaluated. It is this criterion that gauges
the effect of the population’s evolution employing different operators in
order to generate new and hopefully better solutions. Various genetic
operators that have been identified and employed in GAs comprise repro-
duction, crossover, deletion, dominance, intra-chromosomal duplication,
inversion, migration, mutation, selection, segregation, sharing, transloca-
tion, etc. Amongst them, reproduction, crossover and mutation are in
common use. Figure 9.1 shows a typical flow chart detailing how a typical
GA generates the solution.

Reproduction is tailored to employ fitness to guide the evolution of chro-
mosomes. The reproduction operator works on the principle of survival
of the fittest in the population. Amongst many strings, an old string is
copied into the new population on the basis of its fitness value. Hence,
under this operator, strings with better objective function values, denoting
more highly fit, get more offspring in the mating pool. In fact, there are
many methods to implement the reproduction operator and any one of them
that biases selection toward fitness can be applicable. Crossover is the pro-
cess by which chromosomes chosen from a source population are mixed to
generate offspring to become potential members of a successor population
under the hope that quality offspring might be produced by quality parents.
The crossover operator results in the rearrangement of individual genetic
information from the mating pool and the generation of new solutions to
the problem. This operator is applied to each offspring in the population
with a preset crossover probability. A variety of crossover operators, such
as uniform, single point, two points and arithmetic crossover, are available.
A mutation operator is employed to maintain the diversity in the popula-
tion and to keep away from local minima by preventing the individuals in



152 Evolutionary algorithms

Start

Population initialization

Code representation

Numerical  analysis

Fitness evaluation

Termination 
criterion met?

Output results

Stop

Genetic 
operation Crossover

Reproduction

Mutation

No

Yes

Figure 9.1 Flow chart of a typical GA

a population from becoming too closely related. This operator is applied to
each offspring in the population with a preset mutation probability.

Since the early studies on the subject, different applications has been
made and GAs have illustrated their capacity to yield good solutions even
in highly complex and multiple-parameter domains (Chau and Albermani
2003; Cheng et al. 2002). GAs were shown to be able to reveal the existence
of patterns, regularities and relationships that drive a certain phenomenon,
such as algal abundance. Mulligan and Brown (1998) employed GAs to cal-
ibrate water quality models. Bobbin and Recknagel (2001a) employed a GA
to build inducing explanatory rules for the forecasting of algal blooms. Ng
and Perera (2003) used GAs to calibrate a river water quality model. Cho
et al. (2004) employed GAs to optimize regional wastewater treatment in a
river water quality management model.

In coastal modelling, as a typical example, a GA was employed to deter-
mine an appropriate combination of parameter values in a flow and water
quality mechanistic model (Chau 2002). It should be noted that many model
parameters might not be directly obtained from field measurements, and
that the inappropriate use of their values might generate large errors or even
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lead to numerical instability. The percentage errors of peak value, peak time
and total volume of coastal constituents were key performance measures
for model predictions. The calibration of parameters relied on observed
data on tidal as well as water quality constituents gleaned over a five-year
period in the Pearl River. Another two-year record was employed to verify
these parameters. A sensitivity analysis on crossover probability, mutation
probability, population size, and maximum number of generations was also
undertaken in order to determine the most fitting algorithm parameters.
Results illustrate that the application of a GA was capable of simulating the
important characteristics of the coastal process and that the calibration of
models was efficient and robust. Readers are referred to Chau (2002) for
more details.

9.3 Genetic programming (GP)

The basic search strategy behind genetic programming (GP), as a type of
evolutionary algorithm, is similar to that of a GA, which imitates biological
evolution as described in the last section. The key difference of GP from
a conventional GA is that it operates on parse trees rather than bit strings
(Koza 1992). In GP, a parse tree is set up from a terminal set, which denotes
the variables in the problem, and a function set. For illustration purposes, a
simple case is considered here in which the terminal set comprises a single
variable x and some constants, and the function set comprises the operators
for multiplication, division, addition and subtraction. Then, the space of
available parse trees comprises all polynomials of any form over x and the
constants. Figure 9.2 shows one of the parse trees for the model representing
the equation of y =−0.2x + 0.3.

GP proceeds similarly to GA by initially producing a population of ran-
dom parse trees, computing their fitness as a measure of how well they fit
the given problem, and then selecting the better parse trees for reproduc-
tion and rearrangement of chromosomes to constitute a new population of
offspring. Iteration of this process of selection and reproduction is made

+

* 0.3

x –0.2

Figure 9.2 Example of GP parse tree denoting the equation of −0.2x + 0.3
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until some termination criterion is reached. The rearrangement of chromo-
somes is made by a crossover operator, representing random swapping of
sub-trees of the parse trees between selected individuals at a predetermined
crossover probability. Readers are referred to Babovic and Abbott (1997),
Babovic and Keijzer (2000) and Bobbin and Recknagel (2001b) for more
comprehensive descriptions of GP.

9.4 Particle swarm optimization (PSO)

The particle swarm optimization (PSO) algorithm was originally developed
as a tool for modelling social behaviour. It is found to have the ability
to optimize complex numerical functions (Kennedy and Eberhart 1995;
Kennedy 1997). PSO lies somewhere between evolutionary programming
and GA, and is another type of evolutionary technique under the domain of
computational intelligence (Clerc and Kennedy 2002). It is an optimization
paradigm that simulates the ability of human societies to process knowl-
edge with roots in two key component methodologies: artificial life such as
bird flocking, fish schooling and swarming; and evolutionary computation
(Clerc and Kennedy 2002).

The underlying principle of the PSO algorithm is based on the assumption
that potential solutions will be flown through hyperspace with accelera-
tion towards more optimum solutions. Similar to GA, it is a populated
search method in acquiring optimized solutions for non-linear functions.
However, it achieves this goal by resembling the movement of organisms
in a bird flock or fish school, instead of using genetic operators as in GA.
Particles or individuals are terms used to represent candidate solutions to
the problem. In PSO, the evolution of generations of a population of these
particles is accomplished solely by cooperation and competition within the
group of particles themselves. In other words, in any time step, each par-
ticle endeavours to modify its flying pattern on the basis of the previous
flying experiences of both itself and its companions. In the flying process,
each particle keeps track of its coordinates in hyperspace associated with
its previous best fitness solution, and also of the entire swarm representing
the overall best value obtained thus far by any other individual within the
population.

In the PSO algorithm, it is convenient to adopt vectors to represent par-
ticles, as in most optimization problems. The population is evolving, taking
consideration of the quality attributes of the previous best individual val-
ues as well as the previous best group values. Moreover, the allocation of
responses between the individual and group values is such that a diversity
of response is ensured.

Owing to its advantage in a capability to locate the global optimum and
fast convergence, it is adopted to train the multilayer perceptrons address-
ing matrices’ learning problems. A three-layered perceptron is selected for
this application case to be trained by a PSO. In the following sections,
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W[1] and W[2] denote the connection weight matrix linking the input layer
and the hidden layer, and that linking the hidden layer and the output layer,
respectively. The ith particle in the PSO is represented by

Wi ={W[1]
i ,W[2]

i } (9.1)

The location denoting the previous best fitness value of any individual is
kept tracked and expressed by

Pi ={P[1]
i ,P[2]

i } (9.2)

It is supposed that the index of the best particle among all the particles in
the current population is denoted by the symbol b. Then, it is apparent that
the best matrix is expressed by

Pb ={P[1]
b ,P[2]

b } (9.3)

The velocity of individual i is represented by

Vi ={V[1]
i ,V[2]

i } (9.4)

Now it is assumed that m and n denote the index of matrix row and column,
respectively. Thus, the new values of the individuals become

V ′′[j]
i (m,n)= V[j]

i (m,n)

+
{
rα

[
P[j]

i (m,n)− W[j]
i (m,n)

]
+ sβ

[
P[j]

b (m,n)− W[j]
i (m,n)

]}
t

(9.5)

and

W ′′[j]
i = W[j]

i + V[j]
i t (9.6)

where j = 1, 2; m = 1, . . ., Mj; n = 1, . . ., Nj; Mj and Nj are the row and col-
umn sizes of the matrices W, P, and V; r and s are positive constants; α
and β are random numbers ranging between 0 and 1; t is the incremental
time step between observations and can often be converted to unity; and V ′′

and W ′′ represent the new values of velocity and weight matrix, respectively.
Equation (9.5) is used to determine the new velocity of the particle on the
basis of its previous velocity and the distances of its current position from
the best experiences of its own and also of the entire group. Equation (9.5)
can be explained in the context of social behaviour. The equation com-
prises two distinct components: the cognition component, represented by
the second term on the right-hand side of the equation, denoting the private
thinking of the particle itself; and the social part, represented by the third
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element on the right-hand side, denoting the collaboration among the parti-
cles as a group. With this new velocity known, equation (9.6) computes its
new position.

The equation for the fitness or objective function of the ith individual is
formulated in term of an output mean squared error of the neural networks
as below:

f (Wi)= 1
S

S∑
k=1

[
O∑

l=1

{tkl − pkl (Wi)}2

]
(9.7)

where f is the fitness value, tkl is the target output; pkl is the predicted output
based on Wi; S is the number of training set samples; and O is the number
of output neurons.

9.5 Advantages and disadvantages of evolutionary algorithms

A principal advantage of GA is its ability to search for the global optimum
solution to a complex problem. Nevertheless, GA is an algorithmic process
so that it cannot help much to furnish too many user-friendly interactions
with the users. The accuracy and performance of a prediction depend very
much on the appropriate selection of various GA parameters, including
crossover probability, mutation probability, population size, and maximum
number of generations. In order to accomplish a reliable prediction, it is
necessary to choose these parameters carefully, possibly via a trial and error
procedure. Moreover, similar to many other soft computing techniques, a
GA cannot extrapolate beyond the range of the training data. The major
drawback of GA is that it may not necessarily result in the best possible
solution because of the limitation on local searching capability.

The major advantage of GP for the modelling process is its capabil-
ity of generating models that establish an intelligible structure, namely, a
formula or equation. Hence GP might be particularly appropriate to deal
with instances which are “data rich, theory poor”, in comparison to other
techniques. This is because GP can self-adapt, through the genetic loop, a
population of function trees so as to ultimately formulate an “optimal” and
physically interpretable model.

The key advantages of PSO are the relatively simple and computationally
efficient coding and its adaptability and tracking to the change of the pre-
vious best group fitness value. The stochastic PSO algorithm was proven to
be capable of locating the global optimum with high probability and high
convergence rate (Clerc and Kennedy 2002).

9.6 Prototype application I: algal bloom prediction by GP

The first prototype application is for real-time algal bloom prediction at
Tolo Harbour in the north-eastern coastal waters of Hong Kong by GP. The
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nature of the data employed and details of the modelling are shown in the
following sections.

9.6.1 Description of the study site

Tolo Harbour is a semi-enclosed bay in the north-eastern coastal waters
of Hong Kong and is connected to the open sea via Mirs Bay. It is gener-
ally recognized that the water quality gradually deteriorates from the better
flushed outer “Channel Subzone” towards the more enclosed and densely
populated inner “Harbour Subzone”.

In Tolo Harbour, the nutrient enrichment exhibited by the eutrophica-
tion phenomenon resulting from municipal and livestock waste discharges
has long been a major environmental concern and threat over the past
few decades. Two major treatment plants at Shatin and Taipo are continu-
ously releasing organic loads. There are also non-point sources from runoff
and direct rainfall, as well as waste from mariculture. The eutrophication
effect has generated frequent algal blooms and red tides, which occurred
particularly in the weakly flushed tidal inlets inshore. As a consequence,
occasional massive fish kills are caused owing to severe dissolved oxygen
depletion or toxic red tides. Numerous studies have been made, which con-
cluded that the state of health of the ecosystem of Tolo Harbour had been
progressively deteriorating since the early 1970s (Morton 1988; Xu et al.
2004). During this period, serious stresses to the marine coastal ecosystem
were caused by the nutrient enrichment in the harbour due to urbanization,
industrialization, livestock rearing, etc. Frequent occurrences of red tides
and associated fish kills were recorded in the late 1980s, which was possi-
bly the worst period. Morton (1988) considered that the Tolo Harbour was
“Hong Kong’s First Marine Disaster” and that the inner harbour was effec-
tively dead. At that time, since Tolo Harbour had entered a critical stage, the
Hong Kong Government decided to develop and implement an integrated
action plan, Tolo Harbour Action Plan (THAP). Significant effectiveness in
the reduction of pollutant loading and in the enhancement of the water
quality was recorded through the implementation of THAP in 1988.

There have been a number of field and process-based modelling research
studies on eutrophication and dissolved oxygen dynamics of this harbour
during the past few decades (e.g., Chan and Hodgkiss 1987; Chau and Jin
1998; Lee and Arega 1999, Chau 2004a; Xu et al. 2004).

The development and implementation of a GP model for real-time algal
bloom prediction at Tolo Harbour is presented in this study. The data used
in this study are mainly the monthly/biweekly water quality data collected
by the Hong Kong Government’s Environmental Protection Department as
part of its routine water quality monitoring programme. The data from the
most weakly flushed monitoring station, TM3, are chosen so as to separate
the ecological process from the hydrodynamic effects as far as possible. All
data of ecological variables are collected and presented as depth-averaged.
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In order to obtain the daily values, linear interpolation of the biweekly
observed data is performed. Moreover, some meteorological data includ-
ing wind speed, solar radiation and rainfall recorded by the Hong Kong
Observatory are employed. No interpolation is thus required on these sets
of data since they are recorded in a daily manner. The data are split into
two portions: data between 1988 and 1992 for training, and data between
1993 and 1996 for testing the models. Lee and Arega (1999) and Lee et al.
(2003) furnish more detailed descriptions of the water quality data in this
study site.

9.6.2 Criterion of model performance

The objective function used for the evolution of the GP models is the min-
imization of the root mean square error (RMSE) of the prediction over the
training period. The evaluation of the performance of the predictions for
GP is made by two goodness-of-fit measures, the root mean square error
(RMSE) and correlation coefficient (CC). Visual comparison can be made
on time-series plots.

RMSE =

√√√√√ p∑
i=1

[(Xm)i − (Xs)i]
2

p
(9.8)

CC =

p∑
i=1

[
(Xm)i −

(
Xm

)
i

][
(Xs)i −

(
Xs

)
i

]
√

p∑
i=1

[
(Xm)i −

(
Xm

)
i

]2 [
(Xs)i −

(
Xs

)
i

]2
(9.9)

where subscripts m and s = the measured and simulated chlorophyll-a levels,
respectively; p = total number of data pairs considered; Xm and Xs = mean
value of the measured and simulated data, respectively. RMSE furnishes a
quantitative indication of the model error in units of the variable, with the
attribute that larger errors draw greater attention than smaller ones. The
coefficient of correlation between the measured and simulated data can be
considered a qualitative evaluation of the model performance.

9.6.3 Model inputs and output

In the GP models, there are nine input variables and one output variable.
Nine input variables are chosen to be the most influential factors on the
algal dynamics of Tolo Harbour:

1. chlorophyll-a, Chl-a (μg/L);
2. total inorganic nitrogen, TIN (mg/L);
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3. dissolved oxygen, DO (mg/L);
4. phosphorus, PO4 (mg/L);
5. secchi-disc depth, SD (m);
6. water temperature, Temp (◦C);
7. daily rainfall, Rain (mm);
8. daily solar radiation, SR (MJ/m2); and
9. daily average wind speed, WS (m/s).

This is determined after taking careful consideration of previous computer
modelling and field observation studies in the weakly flushed embayment in
Tolo Harbour (Chau et al. 1996; Lee and Arega, 1999; Lee at al. 2003). The
sole model output is chlorophyll-a, which serves as a good indicator of the
algal biomass. The model is applied to attain one-week prediction of algal
blooms. This time period is selected after having taken consideration of the
ecological process at Tolo Harbour and practical constraints of data collec-
tion. A time lag of 7–13 days is introduced for each of the input variables.
The time lag has to commence from seven for a targeted one-week lead-time
of the forecasting.

9.6.4 Significant input variables

The selection of the appropriate model input variables is very signifi-
cant for GP, similar to other machine learning (ML) techniques such as
ANN. As shown in the last section, the selection of input variables is in
general according to a priori knowledge of causal variables and physi-
cal/ecological insight of the modeller into the problem domain. Moreover,
the use of lagged input variables results in better predictions in a complex
and dynamical system.

In GP models, evolution of the GP equations is performed in order to
determine an empirical relationship between the nine selected input vari-
ables with time lag of 7–13 days and the chlorophyll-a concentration at time
t. For each of the nine input variables, there are seven time-lagged variables,
rendering a total of 63 (=9×7) input variables. In order to reduce the com-
putational effort, there is a necessity to determine, from these 63 variables,
the significant input variables.

In this study, an endeavour is made to employ the evolutionary search
capabilities of GP to choose the significant input variables. Table 9.1 lists
the GPKernel parameters employed for all the GP runs. In the table, the
parameters “maximum initial tree size” and “maximum tree size” denote
the maximum size of the tree of the initial population and of the popula-
tion in subsequent generations, respectively. Their corresponding values are
constrained to 45 and 20, respectively. This constraint is imposed because
GP tends to evolve uncontrollably large trees if there is no limitation on the
tree size. In fact, a maximum tree size of 20 furnishes simple expressions
that are intelligible. It is noted that, when “maximum tree size” is limited to



160 Evolutionary algorithms

Table 9.1 Values of key parameters employed
in GP runs

Parameter Value

Maximum initial tree size 45
Maximum tree size 20
Crossover rate 1
Mutation rate 0.05
Population size 500
Elitism used Yes

20, there will only be four to eight variables in the evolved equation. There-
fore the evolutionary process will select only about four to eight significant
variables from the total of 63 input variables.

Preprocessing of the data is required so as to refrain from acquiring a
functional relationship comprising dimensionally non-homogeneous terms
within the evolved GP model. All the variables are therefore normalized or
non-dimensionalized initially, which can be performed by simply dividing
all the variables by their respective maximum values.

GPKernel, which was developed by DHI Water & Environment, is avail-
able at http://www.d2k.dk, is the software employed in this study. GPKernel
is a command line based tool for finding functions on data. All compu-
tations were carried out on a Pentium PC with 1021 MB RAM for each
adopted function and variable set, and GPKernel is executed for 30 CPU
minutes in order to acquire the optimal solution.

Table 9.2 lists the four different function sets employed for the GP runs.
For each function set, 20 GP equations are evolved by employing different
initial seeds. Hence a total number of 80 GP equations were evolved for
the one-week forecast. It can be observed that small and simple function
sets are employed. The main reason is that GP is very creative at captur-
ing simple functions and generating whatever it requires by combination.
During the evolution process, GP often ignores the more complicated func-
tions in favour of the simple ones (Banzhaf et al. 1998). Moreover, a simple
function set results in the evolution of simple GP models, which are more

Table 9.2 Function sets employed
for the GP runs

Function set

+, −, ×, /
+, −, ×, /, ex

+, −, ×, /, x2

+, −, ×, /, xy
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Table 9.3 Number of input variable selections in 80 GP runs for one-week forecst

Input
variables

Number of terms of time-lagged input variables∗ Total
terms

(t−7) (t−8) (t−9) (t−10) (t−11) (t−12) (t−13)

Chl-a 229 53 65 58 51 46 23 525
TIN 14 7 10 1 3 2 5 42
DO 18 14 5 5 10 6 14 72
PO4 38 10 9 4 2 4 1 68
SD 13 17 4 11 2 1 2 50
Temp 4 3 2 1 5 7 5 27
Rain 0 0 0 0 0 1 1 2
SR 0 0 1 0 0 2 1 4
WS 0 0 0 0 0 0 0 0

Total number of terms in 80 GP models= 790

∗ Shaded variables contribute to more than 2% of the 790 terms in the 80 GP models

intelligible. It is believed that GP has the capability of choosing the input
variables which are beneficial to the model and thus the GP evolved equa-
tions would contain the most significant ones out of the 63 input variables.
In other words, the number of times the variable is selected in the evolved
equations should give a good indication of its significance.

Table 9.3 lists the total number of times each of the 63 input variables is
selected in the 80 evolved equations. In the table, the significant variables,
which are defined to be those with number of terms more than two per cent
of the total number of terms in the 80 GP equations, are shaded. In this case
study, the total number of terms in the 80 equations is 790 and variables that
contribute more than two per cent of 790 are those with 16 or more terms.
It can be observed from this analysis that Chl-a at t−7 is the most significant
constituent in predicting the one-week-ahead algal biomass. Other vari-
ables are PO4, DO, TIN and SD, having a contribution factor larger than
2 per cent.

It is apparent from Table 9.3 that, apart from Chl-a at t−7 being the
most significant in predicting itself, all Chl-a values during the previous one
to two weeks are also significant. This indicates an auto-regressive nature
or “persistence” for the algal dynamics, which is common for geophysical
time-series. Such an auto-regressive nature is frequently exhibited by these
types of time-series owing to their inherent inertia or carryover process in
the physical system. Numerical modelling can contribute to the compre-
hension of the physical system by revealing factors about the process that
establish persistence into the series. In this case study, the long flushing
time or residence time in the semi-enclosed coastal waters might be the
key factor causing the auto-regressive nature of chlorophyll dynamics as
revealed by the ML techniques. This was also proposed in a recent ANN
study of algal dynamics in Tolo Harbour (Lee et al. 2003). It should be
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pointed out that, in the inner and outer Channel Subzones, the tidal cur-
rents are very small, with the average current velocities being 0.04 m/s and
0.08 m/s, respectively (EPD 1999). The weak tidal flushing in the harbour is
therefore due to its landlocked nature. Lee and Arega (1999) suggested that
the flushing times in the inner Harbour Subzone were in the order of one
month, and hence the retention time was quite long.

It can be observed from the results that the nutrients, i.e. PO4 and TIN,
together with DO and SD to a lesser extent, are also significant input vari-
ables, though not as highly significant as Chl-a. Because the growth and
reproduction of phytoplankton rely heavily on the availability of various
nutrients, the significance of nutrients can be easily understood. Moreover,
the DO level is also closely associated with algal growth dynamics under
subtropical coastal waters conditions with mariculture activities. This is
because DO is required for the respiration of organisms and also for some
chemical reactions. Xu et al. (2004) observed that PO4, TIN and DO have
an increasing trend from the early 1970s to the later 1980s or the early
1990s, and then decline in the 1990s. As discussed in the above section, the
decline can be attributed mainly to the implementation of THAP in 1988.
Our training data in this case study are from 1988 to 1992, during which
the trends are increasing for PO4, TIN and DO. Thus it is reasonable that
these variables are significant.

It should be noted that the daily values are acquired by linear interpo-
lation of the biweekly water quality data. It should be observed that once
interpolation is employed to generate time-series from longer sampling fre-
quency to a shorter time step, future observations are, in effect, employed
to drive the predictions (Lee et al. 2003). One of the approaches to refrain
from using these “future data” in the predictions is to forecast the algal
dynamics with a lead-time at least equal to the time interval of the ori-
ginal observation. Thus, in this case study, a biweekly or more lead-time
forecast would be sufficient to free from this “interpolation effect”. It is
worthwhile undertaking a biweekly forecast employing the same data and
identifying the significant input variables again, similar to steps performed
in the one-week forecast. In this biweekly forecast, a time lag of 14–20 days
is applied for each of the input variables and Chl-a is again forecasted at
time t.

Table 9.4 lists the significant variables for the biweekly forecast by GP.
Similar to the one-week forecast, those input variables with contribution
more than two per cent in terms of number of terms in GP equations are
shaded. From Tables 9.3 and 9.4, it can be noted that the significant input
variables for biweekly forecast are almost the same as those for the one-
week forecast. The only exception is Temp, which is shown to be significant
in the biweekly analysis but not in the one-week forecast. Now that the
biweekly predictions are free of the interpolation effect, the results are sim-
ilar to those for the one-week forecast. It is thus justifiable to state that
the significant input variables from one-week predictions are reasonable.
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Table 9.4 Number of input variable selections in 80 GP runs for biweekly forecast

Input
variables

Number of terms of time-lagged input variables∗ Total
terms

(t−14) (t−15) (t−16) (t−17) (t−18) (t−19) (t−20)

Chl-a 140 18 71 111 13 9 6 368
TIN 10 5 4 1 0 4 10 34
DO 31 10 11 2 3 3 11 71
PO4 24 10 2 1 3 9 15 64
SD 35 9 3 5 2 0 7 61
Temp 14 8 2 3 2 1 9 39
Rain 0 0 0 1 0 0 2 3
SR 0 1 3 11 10 11 13 49
WS 0 0 0 1 0 1 0 2

Total number of terms in 80 GP models= 691

∗ Shaded variables contribute to more than 2% of the 691 terms in the 80 GP models

Though the one-week forecast is to some extent driven by interpolation of
data, adequate physical knowledge establishing a cause–effect relationship
between the time-lagged input variables and future algal biomass is still
built-in.

In the next section, the results of one-week ahead predictions employ-
ing GP are discussed in more details. In order to reduce the computational
effort, only the variables considered as significant, namely, Chl-a, PO4, TIN,
DO and SD, are applied as input variables for the predictions. For each
significant input variable, 7–13 days of time-lagged inputs are included.

9.6.5 Results and discussion

During the evolution of GP models, the concentration of Chl-a is forecast
with a one-week lead-time by applying the significant input variables delin-
eated in the previous section. Five different GP runs are performed with each
of the four function sets as shown in Table 9.2. Almost the same control-
ling parameters as those employed for the input variable selection shown
in Table 9.1 are used for the GP runs. The only exception is the parameter
“maximum tree size”, which is increased to 45 in order to attain a lower
RMSE.

Results show that the best GP model, as indicated by the one with
minimum RMSE, was evolved with the function set comprising the basic
math operators (+, −, ×, /). This reinforces our belief of the understand-
ing that GP entails simple function sets to generate models with the best
forecasting capability and also gives confirmation to our decision to adopt
simple function sets as shown in Table 9.1. Figure 9.3 shows a compari-
son of the simulated and observed Chl-a values under both training and
testing conditions with solely time-lagged Chl-a as inputs, which is the
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Figure 9.3 One-week forecasting of chlorophyll-a by employing GP model

best GP model. Figure 9.4 shows a blow-up of the forecast for a shorter
period.

Table 9.5 shows the performance measures for the Chl-a forecast under
different scenarios for GP predictions. It is apparent that the forecast perfor-
mance deteriorates with increase in the number of input variables, and
that the best performance occurs when time-lagged Chl-a is employed as
sole input variable. This result is in contrast to some previous research
studies, which endeavoured to incorporate a multitude of input variables.
For example, Jeong et al. (2003) initially selected 19 input variables, though
at the end of their study suggested that only four of them were needed to
forecast biovolume of cyanobacteria with good performance; Jeong et al.
(2001) adopted 16 input variables to forecast time-series changes of algal
biomass by using a time-delayed recurrent neural network; Wei et al. (2001)
incorporated eight environmental input variables to forecast the evolution
of four dominant phytoplankton genera by using an ANN; Recknagel et al.
(1997) selected ten input variables in a feed-forward ANN model for the
forecast of algal bloom in lakes in Japan, Finland and Australia; Yabunaka
et al. (1997) adopted ten environmental variables as ANN inputs to forecast
the concentrations of five freshwater phytoplankton species. The result that
solely algal biomass with a time lag is adequate for forecasting the biomass
itself might cast doubt on the need to purchase other expensive equipment
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Figure 9.4 Blow-up of one-week forecasting of chlorophyll-a by employing GP
model

such as automatic nutrient analysers for ammonia and nitrate nitrogen as
part of algal bloom warning detecting systems in coastal waters.

Results from the time-series plots in Figure 9.3 indicate that the fore-
cast can track the algal dynamics with a reasonable degree of accuracy.
Nevertheless, it can be observed, from a closer examination of the forecast
blow-up as shown in Figure 9.4, that there is a phase error of one week or
so. Hence it might not be appropriate to use these biweekly data for short-
term forecasting of algal blooms. It is recommended to use input data at
a higher frequency in order to enhance the performance of the forecast. In
fact, biweekly forecasts with the same significant input variables are also
performed in this study. The phase error is even more than its counterpart
of the one-week forecast and hence is not shown.

Table 9.5 Performance measures for the one-week forecast by GP

Input variables∗ Training Testing

RMSE CC RMSE CC

Chl-a, PO4, DO, SD 2.67 0.92 2.54 0.93
Chl-a, PO4, DO 2.55 0.92 2.50 0.93
Chl-a, PO4 2.37 0.93 2.32 0.94
Chl-a 2.55 0.93 1.99 0.95

∗ All input variables are of 7–13 days time lag
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9.7 Prototype application II: flood forecasting in river
by ANN-GA

It is generally recognized that a conventional backward propagation neu-
ral network with a gradient descent learning algorithm has the drawback of
slow convergence, thus entailing very long computational time. On the other
hand, GA is known to have the capability to search for the global optimum
solution to a complex problem, but it may not necessarily result in the best
possible solution owing to a shortage of the capability of local searching,
which is just the advantage of ANN. Hence, in this section, a hybrid learn-
ing algorithm (ANN-GA) is developed for flood prediction. A GA is used to
optimize initial parameters including weights and biases of an ANN whilst
training is continued by the ANN itself. This section presents the appli-
cation of a hybrid algorithm, namely, a genetic algorithm-based artificial
neural network (ANN-GA), for water stage/flooding prediction in a reach
of the Yangtze River in China. Several benchmark models, namely, a linear
regression (LR) model, a conventional ANN model, and a conventional GA
model, are employed to gauge the performance of this ANN-GA model.

9.7.1 Algorithm of ANN-GA flood forecasting model

GA, which applies biological principles to computational algorithms to
attain the optimum solutions, is a robust method for searching for the opti-
mum solution in a complex and dynamic problem. Though it may not be
able to result in the best feasible solution in all cases, it can often accomplish
the required accuracy (Goldberg and Kuo 1987). For comparison of its per-
formance against a linear model, a linear model with GAs for optimizing
parameters is expressed below:

xt+1 = axt + bxt−1 + cxt−2 − d (9.10)

where a, b, c and d are parameters.
The objective of this problem is to determine the optimal parameters so

that cumulative errors between simulated and measured data are minimal.
Thus, the fitness function can be written as follows:

f
(
a,b, c,d

)=
p∑

i=1

∑
|(Xm)i − (Xs)i| (9.11)

In this case study, the ranking selection method (Baker 1985) is adopted and
the probability prob(rank) is expressed as follows:

prob
(
rank

)= q (1 − q)rank−1 (9.12)

where q is a user-defined parameter, and rank is the position of an individual
ranked in either ascending or descending order. The objective of the ranking
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selection is to furnish a higher chance for a good chromosome to be cho-
sen for the next generation. After the computation of prob(rank), roulette
wheel selection, which is based on cumulative prob(rank), is employed here
(Goldberg and Deb 1989). Moreover, a two-point crossover and a simple
mutation operator are adopted.

A genetic-algorithm-based artificial neural network (ANN-GA) model is
developed and implemented here. It is possible that a hybrid integration of
ANN and GA algorithms may furnish better performance by taking advan-
tage of the characteristics of both algorithms. This ANN-GA model might
be able to speed up the convergence of an ANN model and also enhance the
local searching capability of a GA model at the same time. In this algorithm,
a GA is used to optimize initial parameters including weights and biases of
the ANN whilst training is continued by the ANN itself. The objective of
the GA sub-model is to determine optimal parameters so as to accomplish
minimal cumulative errors between the simulated and actual data. The fit-
ness function of the GA sub-model employed for initializing weights and
biases is written as below:

min J (W, θ)=
p∑

i=1

∣∣Yi − f (Xi,W, θ)
∣∣ (9.13)

where W is the weight, θ is the bias or threshold value, i is the data
sequence, p is the total number of training data pairs, Xi is the ith input
data, Yi is the ith measured data, and f (Xi,W, θ ) denotes simulated out-
put. Figure 9.5 shows the overall flow chart of the ANN-GA model, where
pc is the crossover probability, pm is the mutation probability, Gmax is the
maximum number of generation, and Nmax is the population size.

9.7.2 The study site and data

The ANN-GA model is applied to a river reach in the middle portion
of the Yangtze River, as shown in Figure 9.6. The Yangtze is the largest
river in China and passes through the capital of Hubei province, Wuhan.
The Yangtze River is characterized by intrinsically unsteady but roughly
seasonal flow behaviour. Generally speaking, the peak flow and the dry
weather flow happen during the summer and winter months, respectively.
Hence water year is roughly divided into two seasons: a wet season and
a dry season, between June and October and between November and the
next May, respectively. As a typical example to illustrate the drastic change
in water stage, its value at Luo-Shan station is at 17.3 m during the dry
season, but becomes 31.0 m during the wet season. The mean water eleva-
tions at this station during the dry and wet seasons are 20.8 m and 27.1 m,
respectively.

The objective of this study is to predict the water levels of the down-
stream station, Han-Kou, based on the known water levels of the upstream
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Figure 9.5 Flow chart for the ANN-GA model

station, Luo-Shan, at different lead times. The lateral inflow is neglected
since its value is small in comparison with the discharge of the main stream.
By using the Muskingum method, coupled with on-site measured data, the
travel time of flood between Luo-Shan and Han-Kou is determined to be
about 24 hours. In other words, the phase difference between the flood
wave at Han-Kou and its counterparts at Luo-Shan is one day or so. It is
believed that water elevations during the previous few days at Lou-Shan
will exert some effects to the water stage at Han-Kou. Hence it is feasible to
determine the correlation function between a time-series having D points of
time spacing 
 apart, x [t − (D − 1)
] , · · · ,x (t −
) , x (t) and a predicted
value x(t +p) at a prescribed time in the future. According to the data avail-
ability and the phase lag found between the two locations, the following
values are adopted for these parameters: p=1 day and 
=1 day. Since it is
expected that the choice of D will have a significant impact on the results,
a trial and error method is undertaken in order to find the optimal value
of D. In this case study, values from 1 to 4 are attempted. Daily averaged
water stages of the Luo-Shan and Han-Kou stations in 1984, 1985, 1986
and 1987 are employed in the model.
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Figure 9.6 Map showing studied reach in the Yangtze River

The over-fitting problem is often considered a big challenge in pattern
recognition. This problem occurs when the output endeavours to fit the
training data too well. Both the underlying mapping and the noise are
mimicked. Thus, when the model is applied to a new set of data with dif-
ferent noise, the fitting is not good. Smith (1993) proposed a multitude
of techniques to overcome this problem, such as limiting the number of
hidden nodes, adopting smaller weights, and limiting the number of train-
ing epochs. Shahin et al. (2002) recommended splitting the raw data into
three sets, which is followed in this case study. Preprocessing is made to the
data, which are randomly split into three independent sets, namely, train-
ing, testing, and validation sets, with proportions of 50 per cent, 25 per
cent and 25 per cent, respectively. Hence, from the entire data record, 1,456
input-output data pairs are set up with the following format:

{x [t − (D − 1)] , . . . , x (t − 2) ,x (t − 1) ,x (t) , x (t + 1)} (9.14)
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Table 9.6 Statistical parameters for training, testing, and validation sets at
Luo-Shan station

Data sets Statistical parameters

Mean Standard
deviation

Range

Training set 23.44 3.71 17.35–31.04
Testing set 23.44 3.71 17.39–30.96
Validation set 23.44 3.71 17.37–30.93

which denotes the correlation among water stages at Luo-Shan during the
previous few days and the water elevation at Han-Kou in the ensuing day.
In order to ensure that the model is not required to extrapolate beyond
the range of the training data, investigations have been made to analyse the
training, testing and validation sets. The statistical parameters, including the
mean, standard deviation, minimum, maximum and range for the training,
testing, and validation sets respectively are shown in Table 9.6. It can be
seen that the criterion is satisfied.

As in Application I in Section 9.6, two popular performance measures,
namely, the RMSE and CC, are used to gauge the goodness-of-fit of the
forecast resulting from training, testing and validation. RMSE furnishes a
quantitative indication of the model error in units of the variable, with the
attribute that larger errors draw greater attention than smaller ones. The
coefficient of correlation between the measured and simulated data can be
considered a qualitative evaluation of the model performance.

9.7.3 Results and discussion

At first, a conventional GA model is used with a floating-point cod-
ing. Hence, each chromosome comprises four variables, a, b, c and d.
The ranges of each variable are preset with reference to coefficients of
the LR model: the range of a, b, c is between −2.0 and 2.0, and
the range of d is between −10.0 and 10.0. After a trial and error
process, the following values of the parameters are adopted: the size
of population popsize = 300, the crossover probability pc = 0.9, muta-
tion probability pm − 0.1, and q = 0.08. Following the initiation step,
the genetic operations are applied. In each generation, pc × popsize and
pm × popsize chromosomes are randomly selected for crossover and muta-
tion operation, respectively. The reproduction operation is according to the
cumulative prop(rank), as expressed in equation (9.12). Since the objec-
tive is to minimize the cumulative errors, a smaller value of the fitness
function denotes a higher rank. The optimal values for a, b, c and d are
determined to be 1.620, −1.005, 0.395 and −5.073, respectively. Table 9.7
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Table 9.7 Comparison of different values for D in GA model

D Training set Validation set

RMSE CC RMSE CC

4 0.235 0.9958 0.245 0.9957
3 0.240 0.9959 0.238 0.9960
2 0.2417 0.9958 0.243 0.9958
1 0.2423 0.9958 0.244 0.9958

shows the performance of the GA model. It can be observed that the GA
model accomplishes the best performance when D equals 3, which is simi-
lar to the LR model. Because of the high linearization of this problem, the
advantage of GAs over LR might not be revealed. In fact, a key advantage of
a GA is its robustness in searching for the optimum solution for a complex
and non-linear problem. Nevertheless, this case study indicates its charac-
teristic of acquisition of a comparatively near-to-global optimal solution,
but not a guarantee of the most optimal result. This is possibly because GA
involves so many random operations, including selection, initialization, and
crossover and mutation operations. Hence, although it is able to acquire a
comparatively near-to-global optimal solution, it is not easily once to search
for the optimal solution randomly.

In the ANN-GA model, three inputs and one output are adopted so as to
provide comparison on the same basis. A trial and error procedure is used
to determine the optimal architecture of the ANN-GA models with differ-
ent number of hidden nodes ranging from 1 to 7, which is 3-3-1. Table 9.8
shows the performances for training and testing sets with different num-
bers of hidden nodes. In the table, RMSE_tra and RMSE_tst denote the
performance of training set and testing set, respectively, and the stopping
epochs for different hidden layers nodes are identified by bold and italic
type. Figure 9.7 presents the results and absolute errors of water levels for
the validation data set with the ANN-GA model. A similar procedure is
applied to an ANN model. Table 9.9 shows the results comparison between
the ANN and ANN-GA models, which indicates that the integration with
GA is able to accelerate the convergence of the conventional ANN model.
With the same RMSE_vali, the ANN-GA model requires only 135 s whilst
the ANN model takes 4,096 s, a more than 30-fold difference.

Table 9.10 summarizes the performance comparison of LR, ANN, GA
and ANN-GA models with various measures: RMSE_tes, RMSE_vali,
training time, and number of parameters. It can be observed from both
RMSE_vali and RMSE_tra that the ANN-GA model, among the various
algorithms, performs the best in accuracy. This is because the ANN-GA
model possesses the ability to contort itself into a complex form in order to
accommodate the temporal changes of the input–output data pairs. This is
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Table 9.8 Sensitivity analysis of the numbers of hidden nodes in ANN-GA model

Epochs Nodes 1 2 3 4 5 6 7

1 RMSE_tra 3.3313 3.5354 3.3792 4.0290 3.1916 4.5184 5.1050
RMSE_tes 3.3212 3.5325 3.3295 4.0870 3.2609 4.4393 4.9882

50 RMSE_tra 0.2272 0.2914 0.2526 0.2244 0.2384 0.2521 0.2557
RMSE_tes 0.2880 0.2997 0.2912 0.2838 0.2513 0.2632 0.2607

100 RMSE_tra 0.2192 0.2197 0.2234 0.2183 0.2179 0.2189 0.2322
RMSE_tes 0.2473 0.2440 0.2555 0.2751 0.2483 0.2575 0.2432

200 RMSE_tra 0.2184 0.2185 0.2156 0.2150 0.2146 0.2144 0.2234
RMSE_tes 0.2458 0.2465 0.2360 0.2525 0.2604 0.2622 0.2471

300 RMSE_tra 0.2183 0.2183 0.2152 0.2129 0.2137 0.2137 0.2202
RMSE_tes 0.2458 0.2459 0.2491 0.2754 0.2691 0.2846 0.2465

500 RMSE_tra 0.2182 0.2182 0.2131 0.2121 0.2120 0.2132 0.2125
RMSE_tes 0.2457 0.2457 0.2727 0.2949 0.2960 0.2965 0.2747

750 RMSE_tra 0.2182 0.2182 0.2121 0.2113 0.2106 0.2121 0.2094
RMSE_tes 0.2456 0.2456 0.2987 0.3174 0.2974 0.3032 0.2939

1000 RMSE_tra 0.2182 0.2182 0.2118 0.2108 0.2098 0.2116 0.2089
RMSE_tes 0.2456 0.2456 0.2963 0.3242 0.2923 0.3139 0.3008
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Figure 9.7 Results and absolute errors of water level for validation data set with the
ANN-GA model

in contrast to an LR model, which can only fit a linear function to input–
output data pairs. It is quite reasonable that an ANN-GA model with 16
parameters can behave more flexibly than an LR model with four parame-
ters. This is analogous to the performance comparison between a power or
polynomial function and a simple linear function. Results illustrate that the
coupling of GA shortens the training time of the conventional ANN model
whilst the integration of ANN improves the local searching capability and
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Table 9.10 Performance comparison for different models

Model RMSE_tra(m) RMSE_vali(m) Training time(s) Number of
parameters

LR 0.238 0.237 4
ANN 0.268 0.272 4096 16
GA 0.240 0.238 65 4
ANN-GA 0.213 0.226 135 16

hence the accuracy of a traditional GA model. The better performance of
the ANN-GA model, in comparison with the ANN or GA model, is justified
since the hybrid model is able to take advantage of the local optimization
of ANN and the global optimization of GA. It is therefore hoped that the
ANN-GA algorithm will have great potential for further developments and
applications in future.

9.8 Prototype application III: water stage forecasting by
PSO-based ANN

In this case study, PSO is employed to train multilayer perceptrons for river
stage forecasting. With this model, real-time water levels in the Shing Mun
River of Hong Kong with different lead times are forecast according to the
upstream gauging stations or stage/time history at the station itself.

9.8.1 The study site and data

In this case study, the potential flood hazard in the Shing Mun River net-
work, Hong Kong, is investigated. Chau and Lee (1991a, 1991b) and Chau
and Chen (2001) furnish more details regarding the location map of the
Shing Mun River and its tributaries. Along most of its length, the main con-
veyance channel is of trapezoidal shape with side slope of 1 in 1.5. The
tributaries of the river system comprise three minor streams: the Tin Sam,
Fo Tan, and Siu Lek Yuen nullahs. Surface discharge from an extensive
catchment area of about 5,200 ha flows into Sha Tin Hoi via the Shing Mun
River. The maximum daily runoff is typically less than 5 per cent of the
annual flow (Chau and Lee 1991a, 1991b).

In accordance with the daily observed levels both at Fo Tan and at Tin
Sam station, located 2 km upstream, water stages at Fo Tan with a lead
time of one or two days are predicted. Daily water stages between 1999
and 2001 are used in the study. Data from 1999 to 2000 and data in 2001
are used for training and validation purposes, respectively. The data series
chosen for training and validation are analysed carefully to ensure that each
data set comprises both high and low discharge periods of the year and also
rapid changes in water stages.
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In this study, initially two models are developed. In both models, the
architecture is 1-3-1: an input layer with one neuron, a hidden layer with
three neurons, and output layer with one neuron. The input neuron denotes
the water elevation at the current day whilst the output node represents
the water elevation after one day or two days, following Thirumalaiah
and Deo (1998). This approach has been found to have better results than
using two neurons with both a one-day- and two-days-ahead forecast in the
output layer. In the training stage, the single input neuron denotes time-
series information on water elevations. Moreover, the number of nodes
in the hidden layer is determined after a trial and error process during
the course of training. A third model with a seven-days-ahead forecast is
also tested so as to assess the performance of the model in longer-term
forecast.

The stopping criterion is set to be 20,000 training epochs. The sigmoid
function is adopted as the transfer function at both the hidden and out-
put nodes. Preprocessing of data is performed first, and all source data are
normalized to within zero and one, corresponding to the minimum and
maximum variable values over the entire data set, respectively. The PSO
parameters adopted are as follows: the number of population is 40; the
maximum and minimum velocity values are 0.25 and −0.25, respectively.
All these values are acquired through a trial and error procedure.

9.8.2 Results and discussion

In order to gauge the performance of the PSO-based multi-layer ANN, it
is evaluated together with a benchmarking BP-based network. For com-
parison on the same basis, the training process of the BP-based perceptron
starts by employing the best initial population of the corresponding PSO-
based perceptron. In this study, evaluation of the models is based on three
performance criteria: the coefficient of efficiency (R2), root mean squared
error (RMSE) and mean relative error (MRE). The coefficient of efficiency
is defined as follows:

coefficient of efficiency = 1 – sum of squared errors divided by
total sum of squares

Tables 9.11 and 9.12 present result comparisons for the two different per-
ceptrons using input water level data at Fo Tan station and Tin Sam station,
respectively. It can be seen that the PSO-based perceptron performs better in
both the training process and the validation process than those by the BP-
based perceptron. Moreover, the accuracy of water stage prediction at Fo
Tan station made by employing the data gleaned at the upstream station is
generally higher compared to its counterparts with the input data gleaned at
Fo Tan station itself. This can possibly be justified by the lead time entailed
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Table 9.11 Results for forecasting at Fo Tan based on data at the same station

Algorithm Lead time (days) Training Validation

Goodness-of-fit Measure

R2 RMSE MRE R2 RMSE MRE

BP-based 1 0.96 0.16 0.09 0.96 0.21 0.12
2 0.93 0.24 0.15 0.92 0.29 0.24
7 0.89 0.35 0.27 0.88 0.43 0.38

PSO-based 1 0.99 0.08 0.04 0.99 0.12 0.06
2 0.99 0.14 0.07 0.98 0.16 0.09
7 0.95 0.25 0.18 0.92 0.32 0.21

Table 9.12 Results for forecasting at Fo Tan based on data at Tin Sam (upstream of
Fo Tan)

Algorithm Lead time (days) Training Validation

Goodness-of-fit Measure

R2 RMSE MRE R2 RMSE MRE

BP-based 1 0.97 0.14 0.07 0.96 0.16 0.10
2 0.94 0.21 0.12 0.93 0.24 0.20
7 0.91 0.30 0.22 0.89 0.41 0.32

PSO-based 1 0.99 0.07 0.04 0.99 0.09 0.05
2 0.99 0.11 0.06 0.98 0.14 0.08
7 0.96 0.22 0.16 0.93 0.29 0.18

for flowing from the upstream section to the downstream section and the
correlation between the water stages at the two locations.

9.9 Conclusions

In this chapter, three types of evolutionary algorithms – genetic algorithms
(GA), genetic programming (GP), and particle swarm optimization (PSO) –
are delineated. Three real applications of evolutionary algorithms are also
demonstrated.

In the first case study, GP is employed for the analysis of algal dynamics
data from a coastal monitoring station in Tolo Harbour, Hong Kong. It is
apparent that the interpretation of GP equations is able to identify key input
variables that comply with ecological reasoning. It is seen that chlorophyll-a
itself is sufficient as input variable to forecast itself at a time lag, indicat-
ing an auto-regressive nature of the algal dynamics in the semi-enclosed
coastal waters in Tolo Harbour. Results for the forecast of chlorophyll-a
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indicate that the use of biweekly data can mimic long-term trends of algal
biomass reasonably well. However, it might not be appropriate to use these
biweekly data for short-term forecast of algal blooms. It is recommended to
use input data at a higher frequency in order to enhance the performance of
the forecast.

It is shown from the second case study that, when prudent treatment
has been taken to prevent over-fitting problems, the ANN-GA model gener-
ates accurate flood forecasting of the channel reach between Luo-Shan and
Han-Kou stations in the Yangtze River. It is illustrated that this model is
capable of avoiding the complication of a conventional mechanistic model,
and in particular the requirement to collect a large quantity of site-specific
parameters. It couples the advantage of ANN for fast convergence and local
optimization with the advantage of GA for global searching capability. It
should be noted that the accomplishment of more accurate performance
may be in return for additional modelling parameters and possibly larger
computation effort when compared with the empirical LR and GA models.
Nevertheless, hybrid models such as ANN-GA model are feasible alterna-
tives to conventional models. It is worth exploring different types of hybrid
techniques because it might unveil a novel solution approach with more
accurate performance.

The third case study is the use of a PSO-based perceptron approach for
real-time water level forecasting in the Shing Mun River of Hong Kong with
different lead times according to the upstream gauging stations or stage/time
history at the station itself. It can be observed from the training and veri-
fication period that the water level forecast results are more accurate when
compared with the benchmarking BP-based perceptron. Moreover, the accu-
racy of water stage prediction at Fo Tan station made by employing the data
gleaned at the upstream station is generally higher than its counterparts with
the input data gleaned at Fo Tan station itself. The initial result shows that
the PSO technique can act as an alternative training algorithm for ANNs
in water resources applications. More rigorous testing on more complex
problems will be undertaken in future works.

A comprehensive investigation into the application of various evolution-
ary algorithms to coastal modelling has yet to be undertaken, but the early
indications of their use in this regard are promising.
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10.1 Introduction

In the past decade, the potential of artificial intelligence (AI) techniques for
providing assistance in the solution of engineering problems has been rec-
ognized. AI deals with the development of cognitive models and computer
programs to emulate the intelligence of human beings. In the early work
on AI, researchers attempted to develop general problem solvers, which are
categorized as weak methods. However, these efforts were met with a num-
ber of impediments. Their power was found to be quite limited in so far as
solving practical complex problems was concerned. One of the reasons is
that they may lead to combinatorial explosion as the complexity of prob-
lems increases. Another important reason was that most of the problems
these methods solved were common-sense reasoning tasks, i.e. they did not
require any special kind of knowledge to solve. It was then suggested that AI
techniques could be made more effective by adding domain knowledge. This
led to the development of knowledge-based systems (KBS). In this chapter,
the characteristics of knowledge-based systems are described. Several real
applications of knowledge-based systems are also demonstrated.

10.2 Knowledge-based systems

Knowledge-based systems are defined in a variety of ways by different
researchers. In fact, different terminology, namely, “knowledge-based sys-
tem”, “expert system” or “knowledge-based expert system”, has been used
to represent this type of system. Sriram et al. (1985) defined the expert sys-
tem as that which performs tasks that require a great deal of specialized
knowledge that experts in a particular field acquire from long experi-
ence with such tasks. Fenves (1989) delineated the system as the practical
problem-solving tools that can reach a level of performance comparable
to that of a human expert in some specialized problem-solving domains.
Dym and Levitt (1991) referred to the system as a computer program that
performs a task normally done by an expert or consultant and which,
in so doing, uses captured heuristic knowledge. Gaschnig et al. (1981)
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described a knowledge-based expert system as an interactive computer pro-
gram incorporating judgement, experience, rules of thumb, intuition, and
other expertise to provide knowledgeable advice about a variety of tasks.

The terminology of an expert system entails it to subsume expert knowl-
edge possessed by an expert whereas, as a matter of fact, only a few systems
can be claimed to resemble a human expert (Kumar 1995). Adeli (1988)
used a less ambitious term for most developed systems as “knowledge-based
systems”. Nevertheless, they can still be referred to as “expert systems” or
“knowledge-based expert systems” owing to their objectives in mimicking
the reasoning process and decision-making of human experts. In this chap-
ter, the terminology “knowledge-based system” is used in order to reflect the
fact that it uses domain-specific knowledge in the knowledge base, which
contributes significantly to the system.

10.2.1 Components of knowledge-based systems

Figure 10.1 shows the organization and operating environment of a typ-
ical knowledge-based system, which consists of the following main basic
components: knowledge base, inference engine and system context.

1. Knowledge base – The heart and core of any knowledge-based system
is the knowledge base, which comprises the crucial problem-solving
knowledge in the specific problem domain. The knowledge base is
a collection of general facts, documented definitions, well-established

User interface

Explanation facility

Knowledge acquisition facility

Session context

Inference mechanism

Knowledge base

User

Expert

External numerical models

Figure 10.1 Typical components of a KBS system
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theory, rules of thumb, heuristic information, judgemental data and
causal models of the behaviour specific to the problem domain.

2. Inference engine or inference mechanism – The inference engine, being
a knowledge processor that incorporates reasoning methods, monitors
the execution of the program by using the knowledge base to mod-
ify and manipulate the context. It acts upon the working memory
and the knowledge in the knowledge base to solve the stated prob-
lem and generate an explanation for the solution. It also determines
the problem-solving strategy on sequencing as well as firing of the
production rules or procedural methods.

3. Working memory or context – The working memory or context is a
workspace for the problem constructed by the inference mechanism
from the information provided by the user and the knowledge base. It
contains facts as well as all the information that describes the prob-
lem being solved, and reflects the current state of the solution process,
including both information provided by the user about the problem
and the intermediate to final results derived by the system. The organ-
ization of the context depends on the nature of the problem domain.
The working memory builds up dynamically as a particular problem
is being considered: hence its contents change at different stages of the
problem. The context is used by the inference mechanism to guide the
decision-making process.

Besides the three main modules described above, the system should also be
provided with three other components that are not necessarily part of every
knowledge-based system but are required to contribute a more functional
system. They are described as follows:

1. Knowledge acquisition facility – The knowledge acquisition module,
which assists in the translation of knowledge acquired from experts
to the required internal format of the system, serves as an inter-
face between the human experts and the knowledge-based system.
It provides a means for entering domain-specific knowledge into the
knowledge base and revising this knowledge when necessary. It may
include a debugging facility, which helps to ensure the correct transla-
tion of knowledge into the required format and to check different types
of available knowledge representations such as production rule system,
procedural method and declarative format.

2. User interface – The function of the user interface module is to accept a
problem description from the user and to access and query the system in
order to analyse the problem or augment the capability of the system.
It provides a friendly interface between the user and the knowledge-
based system, usually as a command language for directing execution
or in the form of menus, multiple windows, icons or graphics. The
interface is responsible for translating the input as specified by the user
to the form used by the knowledge-based system, and for handling the



Knowledge-based systems 181

interaction between the user and the knowledge-based system during
the decision making process.

3. Explanation facility – The explanation module provides the user with
explanations of the reasoning inferences used by the knowledge-based
system at any point during the consultation session. This explanation
can be a priori – why a certain fact is requested – or a posteriori – how
a conclusion was reached. It may also contain a help facility, which
assists and directs the user to operate the system effectively.

10.2.2 Characteristics of knowledge-based systems

The main concept behind knowledge-based systems is to separate the
domain-dependent knowledge and the domain-independent control rules to
manipulate the knowledge.

Genuine knowledge-based systems may be said to have the following
attributes (Adeli 1986; Maher 1987):

• Knowledge-based systems are knowledge-intensive.
• The knowledge for problem-solving is represented principally in sym-

bolic terms rather than numerical terms.
• Knowledge-based systems tend to mimic the decision-making and

reasoning processes of human experts in solving a specific complex
problem, by providing expert advice, answering questions, and justi-
fying their conclusions.

• Knowledge-based systems can explain the reasoning behind their reach-
ing a particular solution.

• Knowledge-based systems often employ heuristics and rules of thumb
as well as compiled knowledge in a specific domain of knowledge to
improve the efficiency of search.

• There is usually a separation between the domain knowledge and the
methods of manipulating that knowledge in knowledge-based systems.

• Knowledge-based systems have transparent knowledge bases and thus
it is usually easy to expand the knowledge bases.

• Domain knowledge is usually divided into many separate independ-
ent entities or modules. Knowledge representation and process that
employ the knowledge are transparent in order not to be obscured by
the implementation language.

• The systems are usually highly interactive.

10.2.3 Comparisons with conventional programs

Knowledge-based systems are very much different in nature from con-
ventional algorithmic models. The conventional algorithmic program is
constituted by data and program whereas a typical knowledge-based
system can be divided into three major parts: an explicit knowledge
base, an inference engine and context (Fenves 1989). Also, traditional
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programs deal with numerical processing whilst knowledge-based systems
are involved with symbolic processing. For a conventional program, the
order of execution of statements is predetermined. Updates need consider-
able effort other than by the programmer. The programmer must ensure
completeness and uniqueness of the solution. The user, perceiving the pro-
gram as a black box, has no idea why certain results have been produced.
By contrast, knowledge-based systems eliminate the above impediments by
partitioning between the knowledge base and the control strategy. This
allows for incremental addition of knowledge without manipulation of the
overall program structure, and hence the programmer need not guarantee
completeness. By ranking several alternatives with inexact inference meth-
ods, several solutions with different confidence factors can be provided for
a particular input condition. The user can also question the results through
the explanation module.

10.2.4 Development process of knowledge-based systems

Conventionally, two types of person are involved during the development of
knowledge-based systems: the knowledge engineer and the domain expert.
The former is the one who is responsible for acquiring expert knowledge
from the domain expert and then transforming it into a knowledge repre-
sentation format appropriate to that knowledge-based system, whilst the
latter possesses the necessary problem-solving heuristics and knowledge for
the specific domain problem. However, the recent view is that it is prefer-
able to combine these two separate roles into a single identity. It is believed
that a knowledge engineer who is also conversant in the application domain
problem is highly desirable, since he or she is able to be fully aware of all
the pertinent issues and thus can avoid the potential occurrence of misunder-
standing or communication problems with the domain expert. Otherwise,
the knowledge engineering process for implementation and development of
a knowledge-based application is quite similar in nature to its counterparts
of other generic software life cycles, with steps in the development process
as follows (Maher et al. 1988):

1. Problem identification – First of all, the domain problem, together with
its nature, overall objectives, domain experts, available resources and
computing facilities, needs to be identified.

2. System architecture – The overall architecture and framework of the
system are established according to various factors, including the rea-
soning processes employed by the expert in solving the problem,
availability of data, problem-solving strategies, information flow of
data, etc.

3. Knowledge acquisition – This step signifies the process of gleaning the
expert domain knowledge by the knowledge engineer from the domain
expert.
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4. Development and implementation – This step consists of structuring
the acquired knowledge into the representation format of the adopted
development tool, designing an appropriate and user-friendly consul-
tation and user interface, and coding for the control strategy. Together
they constitute a prototype or a partial knowledge-based system, which
can be operational but not yet verified.

5. Validation and verification – After a prototype system has been devel-
oped, it should be validated and then verified subject to a wide range
of real applications. All syntactic and logical errors in the system are
then detected and ratified by expanding or modifying the knowledge
employed by the program.

Because knowledge is always being updated, knowledge engineering
inevitably deals with an iterative process, and it is always necessary to
expand, modify or fine-tune the behaviour of the system to be aligned
with the desired result. The increase of depth of knowledge and breadth
of the capabilities of the system, and the improvement of the user interfaces
and the explanation facilities of the prototype system lead to the enhance-
ment of the overall capability of later versions of the system, compared to
earlier ones. However, it is sometimes difficult to demarcate distinctly the
steps in the system development, which often overlap. In practice, various
generic development processes consisting of a different organization of steps
have been suggested, which are determined largely by the preference of the
knowledge engineer as well as the nature of the specific domain problem.
Another example of the classification of the hierarchy in the system develop-
ment process is described by Badiru (1992). Under this hierarchical process,
maintenance is considered the additional final step after commissioning of
the system.

10.2.5 Development tools for knowledge-based systems

One of the most important considerations during the development of
knowledge-based systems, which may substantially affect the success of
the system, is adoption of the appropriate development tool. Nowadays,
a number of development languages as well as tools are available, which
can be broadly classified into the following major groups (Dym and Levitt
1991):

1. General-purpose conventional programming languages – The conven-
tional programming languages such as Fortran, Pascal and C, which are
tailored for algorithmic sequencing, have been used for symbolic pro-
gramming, but are found to be not too efficient in mimicking human
reasoning. Therefore special programming languages designed for arti-
ficial intelligence are required to accomplish effective representation



184 Knowledge-based systems

and operation of symbolic processing in the development of
knowledge-based systems. Amongst them, the high-level, general-
purpose programming languages most commonly used to develop
knowledge-based systems are Prolog and Lisp. However, the program-
ming effort required will be tremendous (Adeli 1988).

2. General-purpose representation tools – These tools, being program-
ming environments tailor-made for general-purpose knowledge repre-
sentation, are not limited to a certain type of inference control and
strategy. They therefore facilitate the implementation of a range of
applications in different fields. However, the main disadvantage of
these tools, just like their counterparts in the general-purpose pro-
gramming languages, is the demanding requirement of the application
developers to write and maintain an enormous amount of program-
ming code in order to produce a working knowledge-based system.
Nevertheless, they score over general-purpose programming languages
in that they furnish better environments, such as powerful database
interfaces and friendly user interface utilities for application implemen-
tation, and they are implemented on a variety of hardware platforms.
Typical examples of some general-purpose tools are OPS5 (Forgy
1981), SRL (Wright and Fox 1983) and UNITS (Stefik 1979). Prolog
can also be categorized under general-purpose representation tools
because it possesses an inference engine and represents knowledge in
declarative knowledge format.

3. Domain-independent development shells – Expert system program-
ming environments, often known as expert system shells, have been
developed in order to facilitate the implementation of knowledge-based
systems. These expert system shells encapsulate specified inference con-
trol strategies as well as knowledge representation techniques. They
usually provide the system builder with one or more knowledge repre-
sentation forms and inference mechanisms from which an application
can be built by adding domain-specific knowledge. This is very help-
ful in rapid prototyping of the knowledge-based system. They furnish
the framework skeleton of knowledge-based systems, which typically
contain the medium of knowledge representation, inference engine and
user interface. The application developer is required merely to fill in
the domain knowledge and the system can then carry out the requi-
site function of a functional knowledge-based system with the desired
representation technique and inference strategy. Both the number and
variety of the commercial expert system shells are increasing rapidly.
Some typical examples are Visual Rule Studio (Rule Machines Cor-
poration 1998), AGE (Nii and Aiello 1979), EMYCIN (van Melle
1979), EXPERT (Weiss and Kulikowski 1979), Hearsay-III (Erman
et al. 1981), Insight 2+ (Level Five Research 1986), Level 5 Object
(Information Builders, Inc. 1995), VP-Expert (Friederich and Gargano
1989) and Loops (Bobrow and Stefik 1983).
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4. Special-purpose integrated development environments – Special-
purpose development environments are considered to be of a higher
level than the usual expert system development shells since they sub-
sume all the properties of the domain-independent shells together with
additional powerful functions such as integrated editors, debugging
tools and user interface development facilities. These high-level tools
can furnish a single knowledge engineering development environment,
which can at the same time integrate the salient features of the artificial
intelligence languages appropriately and efficiently. Typical examples
of this type of approach are ART (Clayton 1985) and KEE (Intellicorp
1986).

Of course, different classification methods can be employed for these
development tools, if all available tools can be covered completely.
Adeli (1988) differentiated the environments for the development of
knowledge-based systems into three principal groups: the early research
tools, the large systems requiring mainframe computers, and the small
shells available on microcomputers. Badiru (1992), however, grouped
the development environment in terms of networking or independent
usage: that is, a single user operating a personal computer or mul-
tiple users working simultaneously under the connected engineering
workstations.

There exist a wide range of available tools for the development of
knowledge-based systems. In addition, owing to the recent advent of arti-
ficial intelligence technology, new and more powerful commercial products
are emerging at an extremely fast rate together with quickly varying capa-
bilities. However, any of these tools could more or less serve the main
purpose of most knowledge-based system applications whilst none of the
tools was only tailor-made or could only be applied for a particular pur-
pose (Kumar 1995). Details of the criteria for the selection of the most
appropriate knowledge-based system software as well as a survey of these
commercial tools are presented in Fazio et al. (1988), Sakr and Hosain
(1989) and Mohan (1990).

10.2.6 Knowledge representation

A number of representation formalisms have been developed to represent
complex knowledge structure. The most widely used one is the produc-
tion rule system model; other forms of representation commonly used are
logic, frame-based schemes, semantic networks and, more recently, the
object-oriented approach and the blackboard architecture. The capabil-
ity of these representation schemes to express information on declarative
and procedural knowledge differs widely. Most systems employ declara-
tive knowledge representation formalism, which is in fact a collection of
relationships between symbols. In the following sections, the conventional
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rule-based expert systems and the recently popular blackboard architecture
are described in more detail.

10.3 Rule-based expert systems

In rule-based representation, the knowledge is encoded in a collection of
antecedent-consequent pairs or If–Then rules, and uncertainty in the knowl-
edge is represented by means of confidence factors. If the antecedent of
a rule (If statement or statements) is found to be true, then the inference
engine may fire the rule, inferring the Then statement or statements. Each
rule, which represents an independent chunk of knowledge, is useful for
representing the interaction between declarative and procedural knowledge.
The production rule system brings the advantages of simplicity and homo-
geneity, permitting self-examination; the main disadvantage is its limited
capability to represent the relationship between various pieces of knowl-
edge. It uses unordered data-sensitive rules as the fundamental unit of
computation, which are in stark contrast to the sequenced instructions
employed by conventional procedural programs. Production rule systems
are most appropriate when the knowledge to be represented occurs natu-
rally in a rule form, where the relationships between rules are extremely
complex, and where frequent changes in the knowledge are anticipated.

10.3.1 Problem-solving strategy

Broadly speaking, two problem-solving approaches exist, namely, the state-
space method and the problem-reduction method. The former searches for a
solution in a space of possible solutions whereas the latter first decomposes
a problem into a number of sub-problems which then combine together to
form the solution to the problem. Although knowledge-based systems are
considered strong problem solvers through employing domain knowledge
in the solution strategy to reduce the search space, the search technique
is still crucial. Commonly used search methods include depth-first search,
breadth-first search and best-first search (Fenves 1989). A reasoning or
search process is usually carried out in either of two directions, namely,
forward chaining and backward chaining. The direction of search is also
named control strategy, problem-solving strategy or inference mechanism,
with details summarized below.

1. Forward chaining (also referred to as bottom-up, data-driven, forward
reasoning or antecedent-driven control strategy) – In this strategy, the
system works from an initial state of known facts towards a goal
state. Hence this strategy becomes useful in circumstances with a large
number of proven hypotheses or goals but with relatively few known
input data. A special case of forward-chaining mechanism is known
as event-driven, in cases where the problem-solving mechanism is also
controlled by the events occurring during the solution process.
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2. Backward chaining (also termed top-down, goal-driven, backward rea-
soning or consequent-driven control strategy) – When this strategy is
employed, the system attempts to validate a goal or hypothesis by
matching all known facts in the system context with the antecedent
entailed to fire this hypothesis. This process can also be considered
as an inverse order search by the state-space method, commencing
in the opposite direction from the goal state to the initial state. The
backward-chaining strategy is most efficient when there exist only a
very few known goal states. In practice, the backward chaining strategy
is often employed in knowledge-based systems of a diagnostic type.

3. Hybrid chaining – This strategy is a combination of forward chaining
strategy and backward chaining strategy.

All these control strategies together constitute the fundamental search tech-
niques. They may be called by other problem-solving methods and hence
become embedded within other methods. Various types of commonly used
problem-solving methods exist, include backtracking, constraint handling,
plan-generate-test, means-end analysis, hierarchical planning and least com-
mitment principle, agenda control and top-down refinement (Kumar 1995).
These methods have so far been applied to solve a range of hypothetical rea-
soning problems. However, they are often classified as weak methods since
the applications of these methods in solving actual complex problems are
quite limited.

The production rule system has been the most favourable and ver-
satile representation approach for constructing knowledge-based system.
However, it is often found, in particular for complex engineering prob-
lems, that using rules alone cannot represent thoroughly all the complex
objects and concepts. Model-based reasoning systems, which encapsulate
several knowledge representation formalisms including rules, frames and
object-oriented programming, emerged. Frames were used extensively to
represent the generic components of the engineering problems whilst slots
in a frame and their behaviours were inherited by instances of the com-
ponents included in the engineering system. Because of its modularity,
data abstraction and inheritance characteristics, object-oriented program-
ming will probably subsume other approaches in the very near future.
Since each knowledge representation scheme has both its pros and cons,
the recent trend is to combine various techniques in order to take advan-
tage of the capabilities of each technique to suit the specific domain
problem.

10.4 Blackboard architecture

The blackboard architecture is intended to support the development of sys-
tems in certain domains characterized by interaction between a multitude
of knowledge sources, and hence provides a framework for integrating



188 Knowledge-based systems

knowledge from several sources into a single system. Through the inte-
gration of rules, frames and object-oriented programming technique, a
variety of knowledge sources representing specialized expertise are grouped
into individual knowledge modules. The blackboard system encapsulates
information-sharing through the common data structure called a black-
board. As shown in Figure 10.2, the blackboard compiles the data entries as
well as acting as the sole communication link between various knowledge
sources (Hayes-Roth 1983). As such, the blackboard, acting in the role of
the global system context, stores the current state of the problem, includ-
ing problem data, intermediate parameters and final outputs. A common
analogy of the blackboard system may be made with problem-solving in
domains where a number of experts in different areas of specialism coop-
erate over the solution which any one of them could never achieve alone.
In order to facilitate this process, they agree to use a blackboard to post
or write any partial result they can contribute separately. Each expert takes
turns to write on the blackboard and, in cases where more than one expert
wishes to write simultaneously, the conflict is resolved by some predefined
strategy. The blackboard architecture has been used successfully in solving
a wide range of tasks, such as speech recognition, signal processing, and
planning (Engelmore and Morgan 1988).

The blackboard architecture employs a hierarchical type of knowledge
base and opportunistic reasoning whereby several knowledge sources con-
tribute to the reasoning strategy. The blackboard model is often employed to
solve complex problems, which are first partitioned into sub-problems. The
problem-solving behaviour on the whole relies very much on the interaction
of individual processors, known as knowledge modules, since each of these
modules undertakes an individual hypothetical solution to the sub-problem
at different abstraction levels of the domain problem. The communica-
tion between various modules takes place only via the blackboard, which
undertakes the key role in integration and development of various hypo-
thetical solutions. A blackboard system consists of a number of knowledge
sources communicating via a blackboard and is controlled by an inference
mechanism. The major components of a typical blackboard system are the
blackboard, knowledge sources, entries and inference mechanism, which are
shown as follows (Engelmore and Morgan 1988):

• The blackboard represents a global data structure that consists of
entries generated by the knowledge sources during the problem solving-
process. It is typically partitioned into a number of levels, each of
which represents different stages or aspects of the solution process.
Normally, knowledge sources are specific to certain levels in the black-
board. The activation of a certain knowledge source depends on
the entries generated at certain levels in the blackboard while the
actions of the knowledge source modify entries at some other levels.
The blackboard has the primary role of keeping track of incremental
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Figure 10.2 Details of the blackboard architecture

changes made in the problem state and thereby of handling the com-
munication among various knowledge sources, until the final solution
is attained. The main units in the blackboard are hypotheses, which are
either primary guesses about particular aspects of the problem or partial
solutions. Hypotheses at various levels are related through structural
relationships.

• Knowledge sources collectively comprise the knowledge encompassed
in the knowledge-based system. They contribute significantly to the
creation of entries, which are posted on the blackboard. As an anal-
ogy in a production rule system, knowledge sources may be considered
equivalent to a collection of production rules. In such an analogy, the
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antecedent of each rule typically represents the presence or absence of
some entries on the blackboard whilst the consequent suggests some
actions to be taken leading to some changes to the blackboard entries.

• Entries are the immediate results and current state of the solution gen-
erated by the knowledge-based system. In a typical system, each entry
has a certainty factor as well as a specification.

• The inference mechanism usually consists of two main components:
the agenda (or scheduler) and the monitor in a typical blackboard
model. The agenda keeps track of all the events in the blackboard and
calculates the priority of execution for knowledge sources that were
generated as a result of the activation of other knowledge sources. It
is a list of knowledge sources or rules to be executed in the next cycle.
Based on the success or failure of a particular rule, new rules may get
added into the knowledge base or some may be deleted from it. The
basis of giving priorities to the rules on the agenda may vary from sys-
tem to system. The monitor takes the element with the highest priority
and executes it. Several problem-solving strategies can be implemented
using the monitor.

10.5 Advantages and disadvantages of knowledge-based systems

It is necessary to evaluate thoroughly both the advantages and the draw-
backs of a knowledge-based system, prior to its adoption and application. In
fact, since enormous effort is entailed in developing a functional knowledge-
based system, the advantages it offers provide significant justifications for
its selection. In this section, the advantages as well as the drawbacks of
knowledge-based systems are detailed.

10.5.1 Advantages of knowledge-based systems

The most significant advantage of knowledge-based systems is their capacity
to solve ill-structured problems such as interpretation and design, which are,
by contrast, considered the major shortcomings of conventional algorithmic
programs. Also, knowledge-based systems provide an integrated environ-
ment for the combination of advanced computer technology together with
human expertise knowledge. Many advantages are derived mainly from
the separation of the knowledge base from the inference control mecha-
nism (Andriole 1985; Rychener 1988). The major advantages offered by
knowledge-based systems are listed as follows:

• Knowledge-based systems provide an effective development environ-
ment for software programming, particularly in the engineering field,
which often incorporates quite extensively the application of empirical
and heuristic knowledge.
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• Knowledge-based systems help to convey and distribute human exper-
tise and knowledge from experienced experts to non-experts, through
their ability to explain the reasoning process behind the intermediate
and final answers.

• Through the establishment of a knowledge-based system, the solution
of a domain problem can be standardized and formalized, thus ensuring
consistency of the outcome.

• Knowledge-based systems render it possible for the novice user to
reach real-time expert-level decisions at relatively low cost. Since
they are often implemented in an interactive as well as a decentral-
ized client/server environment, various advantages of popularity of
microcomputer facilities should also be taken into account.

• When compared with conventional numerical software, the transparent
knowledge base facilitates the extension of knowledge-based systems
much more easily, allowing them to enhance their capability gradually
as their problem domain evolves or new knowledge is discovered. This
in turn gives a good chance for the knowledge engineer and the domain
expert to investigate the subtle and complicated areas of the problems,
possibly through machine learning.

• Knowledge-based systems may have particular value during consulta-
tions for some difficult cases since it can be ensured that, in knowledge-
based systems, most of the available data have been utilized whereas
human beings may sometimes overlook obscure considerations.

• Knowledge-based systems enhance the chance as well as the consistency
of good decision-making, through ensuring objectivity by weighing
knowledge without bias and thus minimizing the influence of personal
and emotional behaviours of the users.

• Knowledge-based systems free the mind and time of human experts
to enable them to concentrate on more creative activities. The ready
availability of the system, and its serving as an example of good strategy
in approaching a problem, can improve the training environment in
industrial settings.

• The modular structure that is commonly adopted in knowledge-based
systems leads to dynamic and easy coupling with other programs.

10.5.2 Drawbacks of knowledge-based systems

Successful applications of knowledge-based systems have been found to be
those applications that combine facts and heuristics in solving problems
to allow merging of human knowledge with computer capability (Dym
1987) whereas those domain problems that are deterministic or numeri-
cal in nature are not suitable for knowledge-based systems. Adeli (1988)
has summarized some of the drawbacks of knowledge-based systems, when
compared with human experts in solving a specific domain problem, as
follows.
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• The performance of knowledge-based system degenerates very sharply
in the vicinity of the boundaries or limits of their expertise knowledge.

• Knowledge-based systems lack common sense and intuition, if this
knowledge has not been properly represented in the knowledge base,
whilst the human expert may consider them taken for granted.

• It remains a problem to capture rare expertise, which still entails efforts
by researchers and domain experts.

• Many knowledge-based systems require expensive and sophisticated
artificial intelligence hardware platforms for their normal operation.
However, this drawback has been gradually overcome by the recent
advances in microcomputer technology.

• Knowledge-based systems currently lack a common user-friendly natu-
ral language interface so as to ensure easy operation by non-experts.

• Knowledge-based systems are not strong in solving problems regard-
ing induction or analogy, although they are particularly suitable for
problems needing deduction.

• Knowledge-based systems do not know how to learn, if an algorithm
for machine learning is not incorporated, whilst the knowledge of the
human experts can evolve through their experience.

10.6 Applications and case studies

As a result of years of research in artificial intelligence, knowledge-based
systems have emerged covering a wide range of applications in different
disciplines. During the last decade, knowledge-based systems have been
applied to emulate domain problems owing to their reliability and produc-
tivity characteristics (Adeli and Al-Rijleh 1987; Kangari and Boyer 1987;
Rouhani and Kangari 1987; Shwe and Adeli 1991; Chau 1992a; Chau and
Yang 1994; Chau and Zhang 1995; Chau and Yang 1996; Chau et al. 2002;
Anuchiracheeva et al. 2003; Fdez-Riverola and Corchado 2003; Dai et al.
2004; Chau 2006; Pereira and Ebecken 2009; Schories et al. 2009). Never-
theless, it has been found that the nature of some problem-solving tasks may
render them unsuitable for knowledge-based system formulation. Thus,
prior to the implementation of a potential knowledge-based system appli-
cation, it should be ensured that the following features might be achieved
(Adeli and Balasubramanyum 1988).

• Reliability – The knowledge-based system must be able to accomplish
a high standard of reliability, accuracy and performance covering the
whole range of its intended application areas. This requires that the
system has the specialized knowledge that distinguishes human experts
from novices.

• Transparency – In order to allow the system users to thoroughly com-
prehend the knowledge it encapsulates, the knowledge-based system
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must be able to expound explicitly the reasoning mechanism it employs
as well as its lines of action.

• Usefulness – This will rely highly on the nature of the application
domain problem for which the knowledge-based system is developed.

The range of potential knowledge-based system applications covers a spec-
trum bounded by derivation problems and formation problems at the two
ends. In derivation problems, the problem conditions are described as parts
of a solution description. This description is completed through applying
rules so that the given facts are well integrated into the solution. In forma-
tion problems the problem conditions are given in the form of properties
that the solution as a whole must satisfy. In real life, most problems fall
between these two extreme categories. The following classes of problems are
normally encountered at the derivation end of the spectrum: interpretation,
diagnosis and monitoring. Formation problems are usually examples of the
generate-and-test paradigm, i.e. a possible candidate solution is generated
by one part of the system and is then tested for suitability by another part
of the system. Formation problems fall into two subclasses: constraint satis-
faction and optimization problems. In constraint satisfaction, it is required
only that the solution satisfy a set of constraints, while in optimization an
attempt is made to find the optimal solution. Planning and design are classes
of problems usually encountered at this end of the spectrum.

Areas of early applications of knowledge-based systems technology
include medical diagnosis, mineral exploration, chemical spectroscopy,
design, data interpretation, planning, and education. All these applications
of knowledge-based system can be broadly classified into the following
categories:

1. Design – Design is the process of developing an appropriate configu-
ration for an object that can satisfy all application constraints. Some
typical examples are:

• SEAWALL is an expert system for the design of gravity-type
vertical seawalls by employing a shell Vp-Expert, together with
external executable programs written in Turbo Pascal (Chau
1992).

• THRUSTBLOCK is a knowledge-based expert system on design of
thrust blocks for water pipelines (Chau and Ng 1996).

• R1 is a design system employed to configure VAX-11/780 com-
puter components for Digital Equipment Corporation in accor-
dance with the requests made by the customers (McDermott
1980).

2. Diagnosis – Diagnosis is the process of inferring a malfunction situa-
tion through observed irregularities and data interpretation. This is the
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application area to which knowledge-based system technology has been
most successfully applied. Some typical examples are shown as follows:

• CADUCEUS was designed for the diagnosis of diseases on internal
medicine (Pople 1982).

• MYCIN was developed to assist physicians in the diagnosis and
treatment of meningitis as well as bacteraemia infections (Shortliffe
1976).

3. Interpretation – The interpretation process consists of observing data
and explaining the meaning through inferring the corresponding prob-
lem state. Some typical examples are shown as follows:

• DENDRAL is a knowledge-based system for performing spectro-
scopic analysis of an unknown molecule and hence for prediction
of its molecular structure (Lindsay et al. 1980).

• Dipmeter Adviser is a knowledge-based system for interpretation
of the log data in a geophysical oil well (Davis et al. 1981).

• PROSPECTOR is a knowledge-based system for the identification
of the geological ore-bearing formations (Duda et al. 1979).

4. Monitoring – The purpose of monitoring tasks is to make comparison
of observations with the standard in order to plan for vulnerability. A
typical example is:

• Ventilation Manager is a knowledge-based system for monitoring
the ventilation therapy of a patient (Fagan et al. 1979).

5. Planning – Planning is a pre-arranged process that results in a set
of actions aimed to generate an anticipated outcome. Some typical
examples are:

• COASTAL_WATER is an integrated knowledge-based system as
a tool of knowledge transfer for personnel on water resources
planning and management in coastal waters (Chau 2004d).

• ONTOLOGY_KMS is an ontology-based knowledge manage-
ment system (KMS) for simulating human expertise during
problem-solving by incorporating artificial intelligence and cou-
pling various descriptive knowledge, procedural knowledge and
reasoning knowledge involved in the coastal hydraulic and trans-
port processes (Chau 2007).

• RIVER_NET is an integrated knowledge-based system for flu-
vial hydrodynamics, which couples the synthetic utilization of
computer-aided design and artificial intelligence techniques (Chau
and Yang 1992; Chau and Yang 1993).
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• RUNOFF is a knowledge-based system for flow routing in a
river network, which assists in decision-making on selection of
numerical models and parameters (Chau and Zhang 1995).

• MOLGEN is a knowledge-based system for planning experiments
on molecular genetics (Stefik 1981).

10.6.1 COASTAL_WATER

This prototype KBS on numerical modelling of flow and/or water quality
in coastal waters was written using the shell Visual Rule Studio, which
is a hybrid application development tool that integrates object-oriented
techniques and expert system technology with traditional and procedural
programming. Visual Rule Studio installs as an integral part of Microsoft
Visual Basic 6.0 as a form of ActiveX Control (in the Visual Basic develop-
ment language), which is a type of ActiveX file type with the extension
.ocx. Moreover, the shell is able to treat not only symbolic problems,
but also numerical and graphical problems, which is a characteristic of
this problem. The basic structure of an object consists of name, proper-
ties, and attributes. The attributes consist of name, type, facets, method,
rules and demons. Figure 10.3 shows the structure of a Visual Rule Studio
object.

The steps and elements of numerical modelling of flow and/or water
quality in coastal waters are carefully examined and, on the basis of this
investigation, the main steps of the simulation procedures are then categor-
ized. A database system for the modelling of coastal waters, with particular
emphasis on Hong Kong situations, is developed. A knowledge base is devel-
oped, merged and then interfaced with the conventional number-crunching

Class

Name

Properties

Attributes

Facets Methods Rules Demons

Name

Type

Instance Attributes Value

Figure 10.3 Structure of a Visual Rule Studio object
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type of analysis and simulation programs to form an integrated automatic
modelling of coastal waters incorporated with the facilities of expert advice.

The architecture of COASTAL_WATER is shown in Figure 10.4. Besides
the usual components in a typical expert system, namely, knowledge base,
session context, inference mechanism, user interface module, knowledge
acquisition module and explanation module, it also incorporates executable
numerical models. In this prototype system, the knowledge base contains the
knowledge on numerical modelling of flow and/or water quality from the
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literature and domain experts. Since it is a complex task to select a model,
the main aim of the prototype system is to establish the knowledge rules
based on the analysis of these conditions. Through the operation of these
rules, the most effective model can be chosen with respect to accuracy and
computational efficiency according to the types and tasks of project.

The knowledge base incorporates the whole set of inference rules relating
to the manipulation direction and the user’s requirements. The follow-
ing example gives a typical production rule, which incorporates the fuzzy
description:

RULE to determine the model dimensions: 3 of 9
IF the water depth is very deep
AND
the density stratification in the vertical direction is not significant
THEN
the two-dimensional horizontal numerical model is selected with a
confidence factor of 80

The IF clause of the above rule statement describes the premises that the
water depth should be very deep and that the density stratification should
not be significant in order for the conclusion to be fulfilled and hence for
the rule to be triggered. The THEN statement of the rule gives the conclu-
sion that the two-dimensional horizontal numerical model is selected with
a confidence factor 80. The confidence factor is employed as the deter-
mining factor to control the inference process and the selection of each
parameter. Its range is basically from 0 to 100, representing the degree of
confidence with which the statement is known. The confidence factors are
set by experts based on heuristics and experience. The rule base is designed
to provide the link between the specifications made by the user and the
recommended parameter selection by matching the highest confidence fac-
tor. In the above example rule statement, the water depth and the vertical
density difference are expressed as a fuzzy description. As an alternative
method, the user can also enter their exact numerical values during the
query process. The system can then transform the numerical values into the
corresponding fuzzy description by a fuzzy member curve, which computes
the pertinent confidence of membership prior to searching the rule base for
conclusions.

Several commonly used numerical models that have been successfully
applied to solve practical engineering problems are incorporated into
this prototype system. The numerical models, which can be executed to
generate the numerical simulation of real phenomena, are the central com-
ponent of traditional numerical modelling systems. These well-proven and
validated models have often been developed in conventional languages
such as Fortran. These external models implement the numerical analysis
and result representation tasks. Visual Rule Studio provides the function
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of causing external files to execute. After the external program has finished
its execution, control is returned to the knowledge-base file from which it
was called under the Visual Rule Studio environment.

In order to develop a practical engineering KBS, the main task is to create
the domain knowledge bases utilizing the built-in reasoning mechanisms of
Visual Rule Studio. Reasoning in Visual Rule Studio can proceed in two
ways: “forward chaining”, which emphasizes the premises of rules; and
“backward chaining”, which focuses on the conclusions of rules. The infer-
ence engine is the mechanism used to solve problems, i.e. to find goals. The
inference engine accomplishes this by managing and manipulating the rule
base. In order to reach its goal, Visual Rule Studio’s inference engine system-
atically searches for new values to assign to appropriate variables that are
present in the knowledge bases. Thus it has the capability to add knowledge
to the knowledge base.

The inference engine begins to search for a value to be assigned to its
associated goal. If the value assigned to that goal is not known, the infer-
ence engine searches the rule base for an assigned value. Initially, not all
values of variable that might aid in the search are known. Thus the search
must systematically accumulate new knowledge by considering rules from
the rule base which might yield helpful facts in the process of finding the
goal. Visual Rule Studio does this via a backward chaining method. The
effective use of Visual Rule Studio’s control strategy when designing the sys-
tem can create tremendously complicated reasoning paths to simulate the
heuristic decision-making involved in the domain experts’ engineering
routines.

In the development of the prototype system, it was designed with a view
that warnings would be issued when necessary and extra text would be pro-
vided to help the user answer the questions. It would be very instructive to
see immediately the rules that lead to the result for recommended numeri-
cal techniques or model parameters. The user interface is implemented by
several rules in the knowledge base. The consultation screens are designed
to help the users to grasp the physical idea of water resources processes.
Figure 10.5 shows a sample screen displaying a graphical user interface
incorporated into numerical processing.

When the inference engine has reasoned about the knowledge bases, it
calls the numerical modelling program to load and execute the input data
files which are generated in the knowledge base. During the running of the
numerical model, the output data are saved into files. The output of the
numerical modelling program includes the variation of tidal levels, veloci-
ties, water quality variables, etc. They can then be processed by Microsoft
Excel and translated into graphs, which are convenient for engineers to
evaluate. This system has been verified and validated by applying it to
several real prototype problems in Hong Kong’s coastal waters. The appli-
cation case studies involve the establishment of several numerical models
on coastal flow and water quality in Hong Kong, which encapsulate a few
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Figure 10.5 Sample screen displaying graphical user interface incorporated into
numerical processing

strategically chosen locations such as the Pearl River Estuary. The areas
around the Pearl River Estuary have been prospering during the past decade
at such a dramatic rate it has resulted in a worsening and deteriorating water
quality. Figure 10.6 shows a sample screen showing an interactive graphical
display of the topography at the Pearl River Estuary.

10.6.2 ONTOLOGY_KMS

In this work, the layered KM system is built with The KArlsruhe ONtology
and Semantic Web (KAON), which is an ontology development envi-
ronment (University of Karlsruhe 2009). Its characteristics include the
open source and distributed component-based J2EE architecture (Sun
Microsystems Inc. 2009). The ontology-based KMS therefore has the advan-
tages of high flexibility and robustness. The ontology, comprising concepts,
properties, and instances, is grouped into reusable ontology-instance models
(Motik et al. 2002). Under this development environment, a property may
be featured as symmetric, transitive or inverse with other concepts, which
has the capability to support a lightweight inference mechanism. In this way,
the ontology furnishes a search engine with the functionality of semantic
match in a KM system.
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Figure 10.6 Sample screen showing an interactive graphical display of the topo-
graphy at the Pearl River Estuary

The building of an ontology is often recognized to be the first basic step
in facilitating KM activities (Guarino 1997). Figure 10.7 presents the frame-
work of an ontology-based KMS on flow and water quality modelling, in
which a three-level architecture for intelligent decision support is adopted.
This comprises the application level, the description level and the object
level, which are listed in descending order. It should be noted that ontologies
are identified in the description level and, through this arrangement, users in
the application level are able to access the object-level sources in an intelli-
gent manner. Diverse knowledge sources and information, under the format
of numerical data, text streams, validated models, meta-models, movie clips
or animation sequences, and so on, collectively termed knowledge objects
(KOs), are included in the object level (Nemati et al. 2002).

In this work, the ontology is divided into two groups, namely, the infor-
mation ontology and the domain ontology (Abecker et al. 1998). The
information ontology represents a meta-model comprising generic concepts
and attributes of KOs, which are represented by the Dublin Core (Dublin
Core Metadata Initiative 2009). On the other hand, key concepts, attributes,
instances and relations of flow and water quality modelling are located in
the domain ontology, whose principal role is to attain the functionality of
semantic match during the search of KOs. Figure 10.8 shows part of the
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domain ontology of flow and water quality modelling. It can be observed
that there exist various forms of relations, namely, the inheritance relations,
functional relations, structural relations, behaviour relations and so on.

During the manipulation stage, when an end-user accesses the knowl-
edge base, the ontology can support tasks of KM as well as searching. The
knowledge base and the ontology are linked to one another via both ontol-
ogy formalization and ontology implementation, which furnishes a route
for the extension of the information ontology. During the maintenance
stage, knowledge engineers or domain experts can add, update, revise and
delete the information ontology or the domain ontology via a knowledge
acquisition module.

One of the most difficult issues in flow and water quality modelling is
how to select an appropriate model together with the associated parame-
ters. The KM system is able to represent knowledge in a fashion that is
appropriate for the modelling of application decision knowledge, to isolate
the policies and decisions from application logic and to supply the intelli-
gent support during problem-solving by visual window interfaces. The KMS
is tailored so that the application rules are isolated into identifiable and
reusable components.

In order to demonstrate the application of the prototype KMS, a case
study on the eutrophication problem in Tolo Harbour of Hong Kong is
presented. The study area is a nearly land-locked embayment with a narrow
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outlet connecting with Mirs Bay – one of the major south-facing bays in
the South China Sea. The water depth varies from about 2 m in the inner
part to over 20 m in the outer part of Tolo Channel and about 12 m on
average. The average diurnal tidal difference is about 0.97 m, mean high tide
is 1.75 m, and mean low tide is 0.78 m. For most of the year, little freshwater
is discharged into the harbour, and it could be considered as an embayment.
During the summer, however, the differences in surface and bottom water
temperature and salinity, caused by solar radiation and rainfall, result in
an obviously lighter surface layer and definite mesolimnion in the water
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column – a two-layered system. Density stratification weakens the vertical
mixing and may remove the connection between benthic grazers and near-
surface biomass by inhibiting vertical transport. In winter, higher dissolved
oxygen levels in the bottom waters are generally recorded due to increased
turbulent mixing within the water body, resulting from the strong north-
east monsoon. However, during the summer, fewer bottom waters suffer
from serious oxygen depletion, even approaching anoxic status, although
the dissolved oxygen content in most of the surface was commonly found
to be at satisfactory levels, even at super-saturation. Thus, it is necessary
to simulate unsteady water quality transport in a density-stratified natural
water body. The readers are referred to Chau and Jin (1998) for details of
the eutrophication modelling.

The questionnaires are first entered through the user interfaces based
on the background of the eutrophication problem for Tolo Harbour in
Hong Kong. After the input data have been entered, a summary of the
input requirements is shown in the left frame of questionnaires as shown
in Figure 10.9. When the command button INFER is clicked, the process
of model selection can be automatically attained on the basis of Rule Sets I
and Rule Sets II. The right frame shows the inference result about the fea-
tures of the suggested model for this example, which has been verified to be
consistent with the decisions reached by several domain experts.

Figure 10.9 Display screen of model selection for the application example
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10.7 Conclusions

In this chapter, the characteristics of knowledge-based systems (KBSs) are
presented. The applications of KBSs in coastal hydraulics and engineering
are discussed. As a real application case study, an integrated prototype KBS,
which assists in making decisions on the modelling process of flow and
water quality, was developed and implemented. It incorporates an ANN
for training of water quality parameters and a fuzzy rule base for represen-
tation of the heuristic knowledge. It is shown that the hybrid application
of these latest AI technologies is appropriate to act as a repository for
heuristic knowledge. The knowledge base is transparent and can easily be
updated, which renders the prototype KBS an ideal tool for incremental pro-
gramming. The prototype system has been successfully calibrated in Hong
Kong conditions. This prototype system, serving both as a design aid and
as a training tool, is able to allow hydraulic engineers and environmen-
tal engineers to become acquainted with up-to-date flow and water quality
simulation tools. Moreover, the system can quickly assist policymakers in
reaching decisions and also furnish a convenient and open information
service on water quality for the general public.
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Contemporary coastal models are inevitably highly specialized, involve
certain assumptions and/or limitations, and are operable only by experi-
enced engineers who acquire a thorough understanding of the underlying
theories. This has resulted in significant constraints on the use of models,
thus producing a discrepancy between the developers and users of models.
These models are usually not user-friendly enough. They lack the capacity
to transfer knowledge in the application and interpretation of the model,
in furnishing expert backup to novice users, and in accomplishing effective
communication from developers to users. Many users of a model do not
have the specific knowledge to glean their input data, establish algorithmic
models and assess the results of their model. The result may be the outcome
of inferior designs and the under-utilization or even total failure of these
models. Recently, there has been increased need for an integrated approach.
Thus, the problem is to present the information, knowledge, and experience
in a format that facilitates understanding by a broad range of users from
novices to experts (Abbott 1986).

During the past two decades, the information revolution has funda-
mentally changed the traditional planning, modelling, and decision-making
methodologies of water-related technologies. The recent advances in artifi-
cial intelligence (AI) technologies are making it possible to integrate machine
learning capabilities into numerical modelling systems so as to bridge the
gaps and lessen the burdens on human experts. Information technology now
takes a significant role in the sustainable development and management of
water resources. In addition, the general availability of sophisticated per-
sonal computers with ever-expanding capabilities has generated increasing
complexity in terms of computational ability in the storage, retrieval and
manipulation of information flow.

This book has reviewed the state-of-the-art of contemporary numerical
modelling and progress in the integration of AI into coastal modelling.
Attempts to integrate various AI technologies, including knowledge-based
systems (KBSs) (Chau et al. 2002; Schories et al. 2009), genetic algorithms
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(GAs) (Chau 2002; Pinthong et al. 2009), genetic programming (GP) (Kalra
and Deo 2007; Muttil and Chau 2007), artificial neural networks (ANNs)
(Recknagel et al. 1997; Chau and Cheng 2002) and fuzzy inference systems
(Maier et al. 2001; Cheng et al. 2002) into numerical modelling systems
have been detailed and discussed. KBSs have apparent advantages over
the others in facilitating more transparent transfers of knowledge in the
use of models and in providing the intelligent manipulation of calibration
parameters. KBSs may furnish meaningful advice to inexperienced engineers
on how to establish a numerical model, although they still need to have
an understanding of the problem domain. Of course, the other AI meth-
ods also have their individual contributions towards accurate and reliable
coastal predictions. With the increase in capability of AI technologies, it
is believed that the resulting tool might be very powerful, in view of the
possible coupling of the advantages of each technique (Chau 2006a).

To date, individual applications of these innovative AI techniques have
been recorded in the literature. However, they were usually adopted for
specific situations in an isolated manner. Since the application of different
AI technologies is not mutually exclusive, one of the promising directions is
the hybrid combination of two or more of the methods as mentioned above
to generate an even more versatile coastal modelling system. For example,
the use of a hybrid algorithm integrating KBS and ANN is feasible for estab-
lishing rules in the KBS on the basis of implicit relationships derived from
the ANN. In fact, there is a great deal of potential in extracting the knowl-
edge embedded in the connection weights of trained ANN models, as well
as in the highly transparent knowledge representation paradigm of KBS.
Similarly, it is also feasible to use GAs to locate the global optimization in
ANNs as well as the fuzzy representation of rule sets in KBSs. It is strongly
trusted that the integration of AI modules will enhance the applicability of
modelling systems in real practice.

Wu et al. (2009) endeavoured to couple three data-preprocessing
techniques – moving average (MA), singular spectrum analysis (SSA) and
wavelet multi-resolution analysis (WMRA) – with an ANN in order to
enhance the estimate of daily flows. Six models, including the original ANN
model without data preprocessing, ANN-MA, ANN-SSA1, ANN-SSA2,
ANN-WMRA1, and ANN-WMRA2, were developed and assessed. The
ANN-MA, ANN-SSA1, ANN-SSA2, ANN-WMRA1 and ANN-WMRA2
were developed by employing the original ANN model coupled with MA,
SSA and WMRA, respectively. Two different means were used for SSA and
WMRA. The models were applied to two daily flow series in two water-
sheds in China, Lushui and Daning, for three different prediction horizons,
namely, one-, two-, and three-day-ahead forecasting. Results indicated that,
among the six models, the ANN-MA has the highest accuracy and is able
to eradicate the lag effect. It was also noted that the performances from the
different means used for SSA and WMRA did not affect the results. More-
over, in that case study, the models based on the SSA performed better than
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their counterparts of the WMRA at all forecasting horizons. It indicated
that the SSA was more effective than the WMRA in enhancing the ANN
performance.

Last but not least, it is observed that most of the above studies have
been undertaken for fresh water riverine systems and applications to coastal
systems have been very scarce. More works can be undertaken to find
applications of AI in this area to a fuller extent.
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