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PREFACE

The Engineering Design Handbooks of the U. S. Army Materiel Command
are a coordinated series of handbooks containing basic information and
fundamental data useful in the design and development of Army materiel
and systems.

This text treats a broad class of optimal design problems through use of a
consistent set of computational techniques ideally suited for computer
application to mechanical design problems. No attempt has been made to be
exhaustive in the treatment of optimization techniques or the full range of
mechanical applications. Rather, the class of problems treated is concisely
formulated (in Chapters 4 and following) in terms of design and state
variables that occur in mechanical design. A steepest-descent approach —
which has served as a workhorse, reliable technique in fields such as
aerodynamic system design, control theory, and nonlinear programming — is
developed here for mechanical system design.

Extensive application of design optimization techniques is made in the
field of structural design, as well as in a limited number of specific weapon
design problems. The examples are presented in considerable detail, as they
are encountered in practice, to provide the practicing engineer with insight
into use of the methods for his class of problems. A consistent design
philosophy is maintained throughout the text to assist the designer in
extrapolating the methods to classes of problems that arc only similar
mathematically to the examples treated here.

The text is structured so that it can be understood and used by practicing
engineers with a good background in calculus and matrix theory. Computa-
tional algorithms are stated in considerable detail so that they can be
effectively implemented by junior engineers, with only problem formulation
and general supervision provided by a senior project engineer. As with
virtually all computer aided design techniques, some computing art is
required for effective implementation of these techniques. The detailed
treatment of structural applications in Chapters 5, 7, and 9 should provide
insight into this computational art. References are given to more advanced
literature for proofs of theorems and extensions of methods to other classes
of problems.
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CHAPTER1

ELEMENTS OF COMPUTER AIDED DESIGN

1-1 SYNTHESIS VS ANALYSIS IN ENGI-
NEERING DESIGN

Engineering is defined (Ref. 1) as “the art
or science of making practical application of
the knowledge of pure sciences such as
physics, chemistry, biology, etc.”. Although
broad, this definition implies that the job of
engineering is to synthesize, or put together,
useful systems by applying knowledge and
methods derived from the “pure” sciences.
The meaning of “practical” in the given
definition should be interpreted as best, or
optimal; i.e., the job of engineering design is
to develop the best possible system for the
given application, consistent with the re-
sources allocated to the development phase.
The purpose of this handbook is to present a
class of methods that allow for efficient use
of the computer in the design process.

Since the computer can be viewed simply
as a device to handle large quantities of data
and perform simple algebraic operations and
logic rapidly, it is important to look first into
the role of calculation in design. The usual
approach to design is to conceive of a
candidate system and then test it to see if it
works. Great strides have been made with
digital computers in the past two decades to
allow for numerical analysis as a test of the
idea, or concept, rather than previous cut-and-
try techniques. For example, in structural
design one chooses the configuration and
member sizes, and then tests the structure by
analyzing its response to given loads. If the
structure does not behave as desired, then de-

sign changes are made and the structure is re-
analyzed. This process continues until the
designer is satisfied with his design. This has
been the principal use of the computer in the
design process.

In general, then, before the designer can
assure himself that he has the best system, he
must be capable of analyzing all candidates.
In the past half century, outstanding advances
in engineering analysis have been made. The
digital computer has allowed the engineer to
quantitatively analyze the behavior of systems
that were examined only qualitatively in the
past. The mechanical sciences, particularly,
have benefited from this boom in analysis
capability. Structural analysis, stress analysis,
analysis of mechanisms, and heat transfer
analysis, just to name a few, have made
spectacular advances in the past twenty years.

Until the ecarly 1960’s, and even to the
present day to a lesser extent, the attention of
engineering research has been focused pri-
marily on developing analysis capability. Dur-
ing this period of emphasis on analysis,
inadequate attention was paid to developing a
synthesis, or design, capability that is able to
efficiently use the newly developed analysis
methods. In some of the mechanical sciences,
this problem is particularly acute. In struc-
tural mechanics, for example, it is possible to
analyze a structure under a given loading to
obtain accurate values for stress, displace-
ment, and even natural frequency. It is not
clear, however, how a structure should be laid
out and proportioned to efficiently utilize
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material in order to meet strength require-
ments. A more difficult problem is the pro-
portioning of a structure so as to efficiently
limit displacement and meet constraints on
natural frequency and buckling. For a review
of the state of optimal structural design
through 1967, see Ref. 2.

It appears that the analysis capability
needed for computer aided design is available.
The next problem to be addressed, then, is
the matter of what is meant by best, or
optimum. The idea of best enters very natu-
rally into engineering design efforts. In
profit-motivated industries as well as in
Government laboratories, the objective is to
maximize some return function while satisfy-
ing constraints such as resource allocation,
performance requirements, and human limita-
tions.

Once some return function or measure of
value is chosen and constraints are identified,
the system designer would like to have some
optimal design methodology that is capable of
aiding him in the determination of the best,
or practically best, system. It must be empha-
sized at this point that the search is not for an
automatic optimization technique that can
solve any design problem fed to it. Rather,
the need is for an optimal design methodol-
ogy that can aid the engineer in the imple-
mentation of his concepts and guide him ina
direction which, if continued indefinitely,
would yield a mathematical optimum.

A key challenge to developers of practical
computer aids to designers is to take maxi-
mum advantage of human judgment in the
design process. The potential of interactive
computation and design information display
is only now in a developing stage and holds
promise for significant improvement of the
value of the computer in design.

1-2 THE PHILOSOPHY OF SYSTEM ENGI-
NEERING

In the middle 1950’s a formalized approach
to the development of large-scale, man-made
systems began to appear in the literature, see
Refs. 3, 4, 5. This approach, which has
features common to most problem solving
processes, was given the name “system engi-
neering” and is the very essence of computer
aided design. A feature which sets system
engineering and computer aided design off
from most of the logical problem solving
schemes is the explicit inclusion of key
considerations peculiar to engineering design
of systems. A second important feature of
system engineering is the attention paid to
quantitative description of the system and its
behavior.

The basic idea in system engineering is to
begin with a statement of system require-
ments and objectives, and move in an orga-
nized way toward an optimum system. A
process which illustrates the approach is
shown in Fig. 1-1.

1
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Figure 1-1. A System Engineering Model



The purpose of this text is not to give a
detailed treatment of system engineering, but
rather to present aspects of the theory of
computer aided design, with emphasis on
optimal design. The simplified model of a
system engineering process shows that opti-
mal design is a part of system engineering,
but, indeed, by no means the dominant part.
The purpose of this paragraph is to discuss the
interface of optimal design with the remaining
essential elements of system engineering.

System engineering begins with the identifi-
cation of a need by a potential user of the
system to be developed. It is often the case
that the user knows that he needs a system to
do a job, but he may have difficulty in stating
his needs and objectives quantitatively. It
then becomes the joint responsibility of the
system engineer and user to quantify system
objectives so that a meaningful set of objec-
tives may be established for the development
to follow.

Once the needs and objectives for a system
are identified, it is necessary to define func-
tions that must be performed by the system
and any subsystems that are required. This
process is called function analysis, and its
purpose is to pick out functions or operations
that must be performed in order to accom-
plish the mission required of the system being
developed. These functions then become
lower level objectives for the development of
subsystems. Identification of functions tends
to be qualitative in nature. However, once a
function or operation is identified, it must be
described in quantitative terms, if at all
possible. For example, if a function must
occur quickly, the time allowed should be
specified.

The next step shown in Fig. 1-1 is one of
the most difficult functions in system engi-
neering and certainly the most difficult step
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to describe analytically. Conceptual design, as
its name implies, is the identification of the
various concepts or basic system configura-
tions that might meet the system objectives.
It is desirable in this step to leave the
concepts as general as possible so as not to
eliminate candidate systems that might be
very effective. For example, if the functionto
be performed is to propel a vehicle over the
surface of the earth, conceptual designs might
include wheels, tracks, legs, air cushion, etc.

It is important at this time to identify
ranges of values of parameters describing the
system so that, for any parameter in this
range of values, the system will perform the
functions identified in the previous step, i.e.,
the set of parameters describing admissible
systems is identified. It is at this time that the
experienced designer can be extremely valu-
able in reflecting state-of-the-art capabilities
of technologies involved in the system devel-
opment.

The optimal design step has as its objective
the choice of the undetermined parameters
identified in the previous step. These param-
eters must be in the ranges defined by
technological limitations and system func-
tions. The criterion for choosing system
parameters is maximization of system worth
or value. It should be emphasized that a
mathematically precise optimum may be im-
possible to attain and must therefore serve
only as a goal. Methods for choosing system
parameters should, however, have the prop-
erty that if an optimum does exist, then given
enough patience and computer time, that
optimum should be approached as a limit.

What appears to be the final step in the
system engineering mode] of Fig. 1-1, Descrip-
tion, is, in reality, probably just an inter-
mediate step. Unless the system design pro-
cedure has been unusually effective, the sys-
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tem decided upon will probably not satisfy
the user. More likely, it will probably not
satisfy the system engineering team. Having
the results of one pass through the system
engineering process, the user can probably
remember some constraints which he forgot
to specify and which the optimum system
violates. The designer probably also will see
concepts that he did not see before. Much as
the user, he too will remember technological
constraints which he forgot to specify and
which the optimum system violates. Finally,
the sponsoring activity will undoubtedly de-
cide that it will be all right to decrease the
measure of system value a small amount if it
will save some money.

The next step in the procedure is for each
member of the team to take a deep breath,
sigh, and go back to work, armed with his
hard earned new knowledge. It is for this
purpose that all the feedback paths in the
model of Fig. 1-1 are shown. This iterative
procedure is then continued until the sponsor-
ing activity decides that the system developed
is what it really needs. This will probably be
another human decision, rather than a pro-
grammed mathematical one.

The remaining chapters will be devoted to
the problem of computer aided and optimal
design. If the design methods presented later
are to be of maximum value to the reader, he
must have a clear picture of how these
methods fit into the larger problem of system
engineering. For further literature on the
basic ideas involved in system engineering, see
Refs. 3,4, and 5.

1-3 COMPUTER AIDED DESIGN IN THE
MECHANICAL SCIENCES

The theory of computer aided and optimal
design is developed in subsequent chapters as
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it applies to the mechanical sciences. There
are peculiarities of mechanical design, as
opposed to classical control system design,
which require specialized treatment. Further,
the mathematics involved in mechanical sys-
tem design is quite different from the math-
ematics of control theory. These distinctions
are highlighted throughout the text.

In the chapters that follow, optimal control
theory is interpreted as treating feedback
controllers; i.e., an optimal control system has
active elements that sense errors in output,
due to fluctuations in inputs, and adjust
system controls so as to maximize some
measure of system performance. Optimal de-
sign, on the other hand, is taken as the
problem of choosing system eclements or
parameters describing these elements, which
are fixed for the life of the elements, so that
the system is optimum in some sense. In
control literature this is called open loop
control. The principal difference in the two
problems is that the variables chosen in the
optimal design problem are fixed for the life
of the system, whereas variables in a feedback
control device are to be adjusted according to
inputs as the system operates. Mathematical-
ly, the difference in the two results is that the
control law describes how the system vari-
ables should be adjusted as a function of the
state of the system, whereas an optimum
design is simply a set of parameters describing
system eclements and will not be changed
during the life of the system. This distinction
is not uniform in the control literature but is
used here to identify the class of problems
treated.

In most literature on control problems,
sequential systems are treated, i.e., operations
of the system progress one after another as if .
they were occurring in time in a pre-arranged
order. Many optimal design problems are not



of this kind. For example, in designing a
structure one must be concerned with stresses
due to applied loads. These stresses are
interpreted as the state of the structural
system. They are determined by a boundary-
value problem that cannot be interpreted as a
sequential process (initial-value problem). In
some design problems it is possible to define
auxiliary variables so that the governing equa-
tions form an initial-value problem with addi-
tional constraints. This procedure, however,
generally complicates the problem unneces-
sarily. For this reason the problems in
succeeding chapters are formulated as bound-
ary as opposed to initial-value problems.

In order to illustrate the use of the meth-
ods presented, applications are made pri-
marily in optimal structural design. Applica-
tions are chosen to illustrate the use of the
methods on problems having a number of
design variables which might be found in
engineering applications. Further, since many
of the methods are relatively new, it is
anticipated that improvements in computa-
tional efficiency may be realized in specific
problems if advantage is taken of special
features of the class of problems treated.

It is appropriate to highlight a significant
computational distinction between two
classes of design problem. The reader may
note that Chapters 2 through 5 of this text
deal with problems in which system design
and performance are specified by a finite
number of parameters (real numbers). Chap-
ters 6 through 9, on the other hand, deal with
systems that are described by functions on
some given space or time domain. Mathemati-
cally, these problems are called finite and
infinite dimensional, respectively. Optimiza-
tion theory for these two classes of problems
can be put in the same form, but there are
very real differences in the computational
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techniques available for design optimization.
Since the subject of this handbook is com-
puter aids to design, the practical distinction
is made here. For a unifying mathematical
treatment, the reader is referred to Ref. 7.

Finally, it is important to realize that
engineering design optimization and engineer-
ing analysis are fundamentally different in
nature. In analysis, one is generally assured
that a solution exists and numerical methods
are generally stable. In optimal design, on the
other hand, existence of even a nominal
design satisfying objectives is not assured,
much less existence of an optimal design.
Moreover, even when an optimum exists,
numerical methods for its solution are often
quite sensitive to initial estimates and require
much computational art for iterative con-
vergence. These properties will be observed
over and over in this handbook when example
problems are treated.

It is important that the reader take a
mathematical outlook when doing computer
aided design and optimization. A purely
intuitive approach can lead to erroneous
results that may not be apparent until some-
one happens onto a nominal design which is
vastly superior to a “supposed” optimum
design.

1-4 MATHEMATICAL PRELIMINARIES

The level of mathematical background re-
quired for an understanding of the methods
of optimal design presented in the following
chapters is a course in advanced calculus and
the ability to use matrix notation. Since
engineers often require results of rather deep
mathematical analyses to solve real-world
problems, several results have been accepted
with references given to proofs. The purpose
of this paragraph is to present notation and
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some basic mathematical ideas used through-
out the text.

Since most real-world problems involve
several parameters, it is convenient to utilize
vector notation. For example, rather than
writing x ..., x,, repeatedly, these n variables
are collected into a column vector

Xy

x=- |- (1-1)

Unless otherwise noted, all vector variables
will be column vectors. A vector of the form
(Eq. 1-1) may be interpreted as a point in
n-dimensional real space, R" . The space R" is
simply the collection of all n-vectors of real
mumbers. For example, the real ling isR' and
the plane isR?.

It will often be convenient to deal with a
collection of points in the space R". A
collection of points D in R"” will be called a
set, or a subset of R". A point x inR"” which
is in D will be denoted x€D. This will be the
extent of set notation required in later chap-
ters.

In R”" there is a well defined idea of length
of a vector. This analog of length in the real
world will be denoted

n 1/2
Ix k= |iZi 2 (1-2)

and is called a norm on R”. There are many
norms defined on R" but Eq. 1-2 will be
sufficient for the purposes of this text. Along
with the idea of norm on R" goes the concept
of dot product or inner product. The inner
product of two elementsx and y of R” is

(1-3)

- .T 4
<x,y>=x'y=3Txy
=1

1-6

Two vectors are called orthogonal if their
inner product is zero.

The idea of convergence of a sequence
{ xi}in R" with norm (Eq. 1-2)is much like
convergence of real numbers. That is, i x* =
x if for any £ > O there isanN > O such that
[[x* —x|l < E for all i> N. An important
property of sets in optimization theory is
closedness. A subset D of R is called closed
if every sequence in D which converges has its
limit inD.

Just as the idea of collecting n real numbers
into a vector in R", it is helpful to define a
vector functiong(x) for x€R" as

g, ()

gx)=| - : (1-4)
g (%)

Such a function is called continuous at x if
for any £ > O there is a 6 > O suchthat || g(x)
—g(f)llm < Eif |x—x ||, < 6.The subscripts
m and n on the norms denote the dimension
of the space on which the norm is defined.

It will often be desirable to deal with a set
of functions which satisfy

g (x)<0,i=1,...,m . (1-5)

In this case it is convenient to define inequal-
ity among vectors as

gx) <0 (1-6)

where inequality is taken componentwise, i.e.,
Eq. 1-6 is defined to mean the same thing as
Eq. 1-5.

One of the most useful notations in the
following chapters is the idea of the derivative
of a vector function with respect to its vector



variable. This notation is

dg (x) 0g; (x)

dx ax]. mx n a-7n

where i is a row index and j is a column index.
If f(x) is a real valued function of xER", this
notation is

df x) = ag(x),...
d;cc [ X

» 0 () 1-8
1 T‘] -
The derivative of a real valued function is
often called the gradient of that function and
is denoted

VS (x) = df(’” : (1-9)

The gradient is one of the few standard
symbols which denotes a row vector rather
than a column vector. Likewise, for a real
valued function the matrix of second deriva-
tives may be defined as the matrix

I =V2f(x) = = . (1-10)

An important theorem in the analysis of
functions appearing in optimal design prob-
lems is Taylor's Theorem.

Taylor's Theorem: Let the real valued
function f(x) have £ + 1 continuous deriva-
tives in R” . Then for x€R”, there is a point
E=ox +(1 —a)y with 0 < a< 1, such that

o =fo+ 2 L0y aan
i=1 6x,.
WLy g Y Y, — x,)
27=1i= 1ax ax (y %
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3 ak
+...+—1.. I'._k — f(x),- X
k! it... .t = axll_axnn
Gy =2 - x,)"
b1 I k! fe)
(k+Dlj +. . +i,=k+] a.  ...at

01— x) o, —x)

For proof of this theorem see Ref. 6, page 56.

In many places in the following chapters,
Taylor's Theorem will be used to obtain an
approximate expression for a function at a
point sufficiently near a point where the
function is known. The most common ap-
proximation is the one obtained by deleting
second and higher order terms. For example,
if Ilx — ¥l is small,

f(x)

) —flx) =~ o —x) (1-12)

where by Eq. 1-11 the error in Eq. 1-12 is
at most a constant times ||y — x| if f(x) has
bounded second order derivatives. The left
side of Eq. 1-12 is generally denoted by
6f(x), where ¥ — x is denoted 6x. In this
notation,

8f(x) =ga’:—6x. (1-13)

Eq. 1-13 may be thought of as a total
differential. Even for vector functions g(x),
Eq. 1-13 holds for each component so if

8g (x) = [8g,(x), . . ., 88,,(x)17, then
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6g(x) =dgd(Tx)6x. (1-14)

In later work, g(x) will often be a function
of x€R" and z€RP. In this case, Eq. 1-141is

_ o0g(x,z) S + 0g(x,z) 52

1-15
ox oz ( )

6g(x,z)

where

ag(x,z) | %8:x2)

ox axj o
and
aglx,z) | %82
dz 3z, ‘
7 m X p

Most of the common notation used in later
chapters now has been defined. Special nota-
tion and results required locally for some
development will be defined and used there.

1-6 ILLUSTRATIVE MILITARY COM-

PUTER AIDED DESIGN PROBLEMS

In this paragraph two illustrative military
optimal design problems are formulated, and
computer aided design techniques are out-
lined for their solution. The treatment here is
only for the purpose of introducing concepts.
These examples are treated in more depth in
Chapters 7 and 8.

1-6.1 OPTIMAL DESIGN OF STRUCTURES

The optimization technique described in
this paragraph was initially developed for
application to minimum weight structural
design problems. For this reason, and to give
an engineering feel for application of the
technique, the method will be presented along
with examples from the field of optimal
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structural design.

As a specific example, let us consider a
design problem whereby a highly directional
transmission device, or perhaps a gun, is to be
mounted on a tower or gun mount that is
required to support the device at some given
distance away from the basic supporting
structure, such as the earth. A schematic of
the problem is shown in Fig. 1-2. The basic

g<[

Figure 1-2. Structural Requirement

problem is to design a structure that supports
the device under consideration and which is as
light as possible for purposes of transporta-
tion and erection on the battlefield, or per-
haps mounting on a helicopter. A basic design
requirement for this structure is that the
device mounted on the top shall not have an
angular deflection of more than 8 radians, in
order to hit the receiver or target. The loading
that is to be considered is a wind load of up
to a givenvelocity, which would cause angular
deflection of the top of the tower.

The needs and objectives in this design
problem are well established, so no additional
inputs need be considered at the present time.
Further, the requirement that the tower
support the device with only a given allowable
angular deflection is the only basic function
required of the tower; thus the function
analysis block of Fig. 1-1 is also complete.
The next stage, and one that is quite difficult
to describe analytically, is that of arriving at



conceptual towers which might perform the
given mission.

Four different conceptual designs are
shown in Fig. 1-3. The first two concepts,

bl

Y
=
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Figs. 1-3(A) and (B), involve rigidly fixing the
tower at its base to the fundamental support-
ing structure. In both towers, variable spacing
as a function of height is allowed between
vertical members of the structure. In addition,

bi
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Figure 1-3. Conceptual Designs

one of the concepts allows for varying the
arca of the main structural members as a
function of height. The second set of con-
cepts, Figs. 1-3(C) and (D), involves towers
that are pinned at their base to the supporting
structure and that are supported by guy wires
at the top of the structure. Likewise, in both
of these concepts, variable spacing of the
main vertical members is allowed. In the
second concept, variation of arca along the
length of the tower is also allowed. It should
be noted that the conceptual designs in Fig.
1-3 can have as many subsections with differ-

ent area and spacing as desired. Three are
shown for convenience in the figure.

In each of the conceptual towers of Fig.
1-3, the variables b; through &3 describe the
variable spacing of the members of the tower.
In two of the concepts, Figs. 1-3(B) and (D),
b, through b, specify the variable areas in
the construction of the main vertical member.
These variables serve as design parameters, in
that the designer can choose these variables
and completely specify the design of the
tower.

1-9
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In addition to the design variables, a main
part of the design problem is the behavior of
the structure under wind load, since one of
the major constraints on behavior of the
structure is that the angular deflection of the
top of the tower not exceed an angle . For
this reason, the angular deflection of each of
the joints must be determined, along with
lateral deflection due to lateral wind loading.
This is a relatively routine analysis problem
when one uses the techniques of finite ele-
ment structural analysis. Not shown in Fig.
1-3, but required in the construction, are
cross members which maintain spacing of the
main vertical members. In order to state the
optimal design problem mathematically, first
define vectors of design variables »; and state
variables z,

b=[b,by,...b 1}T

m
(1-16)
= T
z_[z;yz2""zn] :
Using finite element structural analysis tech-
niques, define the stiffness matrix as

A®) = la; O,y (1-17)

where the dependence of stiffness on the
design variables is explicitly shown. Using this
matrix, the structural response is given by the
following matrix equation

A(b)z=q (1-18)
where ¢ is the wind loading matrix.

Now that the relationship between the
design variables and the structural response is
specified by Eq. 1-18, the next step in
formulating an optimal design problem is the
identification of constraints. In order to
prevent dimensions or structural areas from
going to zero, resulting in an unstable struc-
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ture, it is required that the design variables be
bounded uniformly away from zero. This is
given formally by the inequality

b;> b, > 0,i=1,...,m. (1-19)

The fundamental constraint in the present
problem is that the angular deflection at the
top of the tower not exceed the angle 6. This
is expressed analytically by the inequality

lz,l< €. (1-20)

The final step in formulation of an optimal
design problem is to identify the cost func-
tion to be minimized. In the present case, the
cost function is structural weight J and is
given by an expression of the form

m
J=v T cb, (1-21)

i=1

where v is material density and ¢, are weight-
ing factors representing lengths of structural
elements and weight requirements for lateral
stiffners.

We now have an optimal structural design
problem that is well formulated from a
mathematical point of view. The objective is
to find the design variables b, through b,
that satisfy constraint Eqs. 1-19and 1-20,and
which minimize the structural weight as given
by Eq. 1-21. The technique used to solve this
problem, and in fact a large class of optimal
system design problems, is based on a very
simple idea of engineering design. The idea of
the technique is to allow small variations in
some nominal design, and analyze the effect
of these variations on the equations of the
problem and the cost function associated with
the problem. As a result of allowing only
small design changes, certain approximations



may be made that allow the best change in
design variables to be determined in order to
decrease the cost function of the problem as
much as possible, while still not violating
constraints of the design problem. For
example, one might choose as an initial
estimate of the optimal design a uniform
tower as shown in Fig. 1-4. The estimated
design variable in this case is denoted by 5(?).

W

Figure 1-4. Uniform Initial Design

Let 8b be a small change in the design
variable 5(®). Any change in the design
variable will result in a change in the struc-
tural response, denoted by 8z. The nature of
the structural analysis problem guarantees
that small 6b yields small 8z. Further, a
Taylor series approximation of terms appear-
ing in Eq. 1- 18yields

a
0) =1 =
A8z +— (4B )80 =0. (1-22)

If an inequality constraint is violated, such
as

b, < b, (1-23)

H to

then in order to correct the constraint error it
is required that
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8b; > by, —b;. (1-24)

Or, if the angular deflection constraint is
violated, for example,

z > ¢ (1-25)
then, to correct the constraint error it is
required that

6z, < €—1z,. (1-26)

Finally, the change in structural weight due to
the change in design 65 is given by

m
8J =% ¢,8b,. (1-27)

The object of the new problem is to
determine 65 so as to minimize the linearized
cost function of Eq. 1-27, subject to con-
straint Egs. 1-24 and 1-26. Due to the special
nature of this problem, the optimum change
6b can be determined in closed form. For a
detailed derivation of this optimum perturba-
tion, the reader is referred to Chapter 5. For
discussion here, the results of this calculation
will be denoted by

8b=nB+C (1-28)

where the vectors B and C depend on 5(0),
constraint errors, and equations of the prob-
lem. The parameter 1 is an undetermined
parameter that plays the role of a step size,
when viewed in the geometry of design
variable space. For example, if there are only
two design parameters b, and b,, the direc-
tion of the desired change is shown by B in
Fig. 1-5, and n is a step size along that
direction. In the terminology of optimization
theory, B is known as the direction of
steepest descent. It is analogous to the direc-
tion one would go downbhill in order to reduce
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Optimum
L ]

»©

Figure 1.-5. Direction of Steepest Descent

his altitude as rapidly as possible. It is clear
that on normal hills, as in most design cost
functions, the direction of steepest descent
changes, depending on thc loeation on that
hill. For this reason, the direction of steepest-
descent does not generally pass through the
optimum point as shown in Fig, 1-5.

There are many techniques for choosing
the step size . The one used in the steepest

(A) One Design Variable

descent method is based on requesting a
certain rcduetion in the cost function due to
the changed 6b. This request, then, deter-
mines the step sizcn and one can calculate 8
from Eq. 1-28. This 65 is the best change in
the estimated design variable 5(°). This best
change is then addcd to the initial estimate to
obtain a new estimate that corresponds to a
structure of less weight and that still satisfies
the constraints of the problem, i.e.,

b1 =p0) + 5p. (1-29)

This proeess is rcpeated as many times as
required to obtain convergence to the mini-
mum weight strueturc.

The optimum towers for each of the four
basic configurations chosen are shown in Figs.
1-6 and 1-7, with a table of results being given
in Table 1-1. Thesc results were obtained

(B) Two Design Variable

Figure 1-6. Tower With Base Rigidly Fastened to the Earth
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using a finite element model with approxi-
mately forty elements so that the resulting
structure has an essentially continuous distri-
bution of material and spacing. The weights
shown in Table 1-1, corresponding to no
design variables are simply the weights of the
optimum towers having uniform members and
no variation in spacing. Note that there is a
significant reduction in structural weight for
the tapered optimum towers over uniform
towers. Extensive examples of this kind are
presented in Chapters 5, 7, and 9.

1-56.2 APPLICATION OF THE STEEPEST
DESCENT METHOD IN INTERAC-
TIVE COMPUTER AIDED DESIGN

Very often in design problems, it is not
practical to specify a unique cost function to
be minimized, hence the formal optimization
problem described in par. 1-5.1 does not
apply directly. The fact that the vector B in
Eq. 1-28 is a direction of steepest descent,
however, is extremely valuable information to
a designer. The application of this informa-
tion to a structural design problem, using
interactive graphics, is a technique which
shows considerable promise in design.

AMCP 707-192

(A) One Design (B} Two Design
Variable Variable

Figure 1-7. Tower With Base Simply Supported
and Top Supported With Guy Lines

Consider, for example, the problem treated
in par. 1-5.1. The initial estimate of the
optimum tower was taken as a uniform tower.
The components of the vector 65 can be
projected on a cathode ray tube, along with a
picture of the structure as shown in Fig. 1-8.
The algebraic sign of the components of 65,
corresponding to each of the design variables,
is an indication of the effect a change in that
design variable will have on the cost function

TABLE 1-1
WEIGHTS OF TOWERS

Guy-line Guy-line Guy-line

Cantilevered Cantilevered Cantilevered Supported Supported Supported
Number of
Design
Variables 0 1 0 1 2
BestWeight W =244061b W=21114 W= 18279 W=1563.99 W= 13566 W= 1265.71
Height h =637 in. hyax = 91.4 hhax = 802 h=46 . h =465, h = 36.55
Cross-sec-
tional area of
member A=796b A =697 LA =1003 A=384 A =4434 Amax =495
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5b,
sb,

sb,
6b5

sbg
sbg

VLl

Figure 1-8. Sensitivity to Design Variations

of interest. For example, if 6b; were positive,
this would indicate that an increase in the
dimension b, will decrcase the structural
weight. On the other hand if the algebraic sign
of 85, were negative, then an increase in 86,
would increase the structural weight. Like-
wise, the algebraic signs of &b, through
&be indicate the effect that a change in these
element areas will have on structural weight.
These data give the designer valuable informa-
tion, according to which he should change his
nominal design to improve the structure,
while still satisfying all the essential con-
straints.

Traditionally, in structural design by graph-
ics, the designer puts areas and dimensions
into a structural analysis routine and then
requests a stress calculation, the results of
which are shown on the screen of a cathode
ray tube. This technique has been used by
Lockheed-Georgia in the design of the CSA.
While this technique has been quite useful in
structural design, it is extremely difficult for
the designer with only stress information to
determine how he should change just one
element in the structure to reduce overall
structural weight. The difficulty comesin the
interplay between structural constraints. If,
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on the other hand, the designer has trend
information that he can use in altering the
distribution of material in a structure, he can
better use his experience in making design
improvements. This capability can be invalu-
able to large-scale structural designers. It
includes the effect of individual design vari-
able changes on overall structural value, while
taking into account the effect of that design
change on all design constraints.

In real-world structural design problems,
the designer must design his structure for
more than simply light weight. He must be
concerned with structural vibration and
buckling characteristics, since these are major
sources of structural failure. Often, as in par.
1-5.1, it is possible to determine design
perturbations that have a desirable effect on
such structural properties as natural fre-
quency and weight simultaneously. Both of
these factors can then be displayed on a
cathode ray tube as shown in Fig. 1-9. In this
case, 6b! indicates the direction in which the
design variable should be changed to reduce
structural weight, and 862 indicates the direc-
tion in which the variable should be changed
to increase natural frequency. This informa-
tion can then be used by experienced design

1
Sbl
2
Sbl
1 2
Sbl 6b4,6b4
2
1 2
8b by , b
1
. Sba
sbl ., sb2
2 6 6
Sba
VA4 /7 /7 7

Figure 1-9. Sensitivity to Two Performance
Indicators



personnel in making design changes that will
have desirable effects on overall aircraft struc-
tural properties, for example. This is extreme-
ly important in large-scale structural design
due to the difficulty in determining the effect
of changes in an individual design parameter
on several different structural properties.
Computation of these data and interactive
aspects of the techmique are discussed in
Chapter 5.

This design technique is feasible from a
computational point of view in that very little
additional computer time is required to
generate sensitivity information from stress
and vibration analyses that are required. While
most structural optimization work has been
done in the batch mode, it is shown in
Chapter 5 that utilization of the steepest-
descent technique with interactive graphics is
a much more practical way to design struc-
tures, particularly in cases where several
measures of structural performance are im-
portant.

Development and display of sensitivity
information in design is a form of information
transfer to design personnel. This technique
depends on the availability of interactive
graphics software and hardware, which are
currently being developed.

1-6.3 DESIGN OF ARTILLERY RECOIL
MECHANISMS

As an application of this same optimization
technique to a weapon design problem, cer-
tain aspects of the design of a lightweight
artillery piece will now be outlined. The
requirement was stated for a lightweight
artillery piece that can be fired with very
short implacement time. For this reason it
was determined that the weapon must be
capable of being fired while it is resting on its
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tires. A photograph of the first prototype of
this weapon is shown in Fig. 1-10.

The recoil mechanism for this weapon was
designed according to traditional recoil mech-
anism design goals. Namely, the objective in
the design was for a constant retarding force
which is transmitted by the recoil mechanism
to the undercarriage, as shown in Fig. 1-11. A
recoil mechanism was designed which de-
livered approximately this recoil force R(f) as
a function of time.

When the weapon was built and fired, a
nearly constant recoil occurred, as desired;
but, at high angles of fire, the weapon
exhibited unacceptable dynamic response.
During firing, the tires of the weapon com-
pressed and after firing and the subsequent
release of the recoil forces, the weapon
rebounded off the ground approximately 6 in.
This unacceptable behavior required a re-
design cycle for the recoil mechanism with a
design goal of minimizing the dynamic re-
sponse, or hop, of the weapon after firing.

It was determined that the peak recoil
force could be allowed to reach 22,000 Ib
without damaging the support structure. The
optimization problem is then to determine
the recoil force R(¢) as a function time such
that

R(r) <22,000 (1-30)
and the peak dynamic response, denoted by
J= max {h(£)] (1-31)

is as small as possible, where /() is the height
of the tires off the ground at any time ¢.
Graphically, this problem is to determine a
recoil force which lies beneath the 22,000-1b
level in Fig. 1-12, and which minimizes the
peak dynamic response of the weapon. In this
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Figure +10. Howitzer, Towed, 105mm, XM 164

problem, the dynamic response #(#) is deter- The same philosophy of small design
mined by the second order differential equa- changes about some nominal estimate, as in
tions of motion of the artillery piece. the structural design problem of par. 1-5.1,
was employed in this case. A sensitivity
Rt R(t)

22,000
. 20,000+ ’— R
= = :
g 8
: :
F 3
& 8

t
Time, sec Time, sec

Figure 1- 11. Traditional Recoil Design Goal Figure 1- 12. Recoil Distribution in Time
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function is first determined, which indicatcs
the desirable direction of change in the
nominal dcsign variable. For example, taking
thc previously designed constant retarding
force as the nominal base line, a sensitivity
function is determined as shown in Fig. 1-13.
If a constant multiple of this function is
addcd to the retarding force, a reduction will
occur in peak dynamic response and othcr
constraints of the problem will continue to be
satisficd. The dotted curve in Fig. 1-13 shows
the altered design, which gives better charac-
teristics than the original design estimate.

R{1)
22,000
20,000 T ey
3 ... RO ()
2
<
)
g3
&) S
= Sensitivity
Function
pr == - ¢
e p—————
Time, sec

Figure 1- 13. Sensitivity to Gun Hop
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22,000 R(t)

Recoil Force
Rft), b

Time, sec

Figure 1- 14. Optimum Recoil Curve

This sensitivity information could easily be
displayed on the screen of a cathode ray tubc
and could be used by design personncl in
detcrmining desirable changes in the rccoil
dcsign. Even in this relatively simple problcm
it was not clear in what way the design should
be altered to obtain improved responsc of the
artillery piece. This particular problem was
solved in the batch mode by doing many
small step iterations of the kind previously
described until convergence to an optimum
was obtained. The optimum recoil force curve
is shown in Fig. 1-14 and resulted in a pcak
dynamic response of less than 0.5 in. Detailed
solution of this problem is presentcd in
Chapter 8, par. 8-5.
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CHAPTER 2

FINITE DIMENSIONAL UNCONSTRAINED OPTIMIZATION

2-1 INTRODUCTION

In many engineering design problems cer-
tain information which helps to prescribe the
object being designed is specified. However, a
certain number of parameters called design
parameters are left open to the designer’s
choice. These parameters must uniquely
determine the object if the optimal design
problem is to be meaningful. In the discussion
which follows, the design parameters will be

denoted by x,; ..x, or in vector notation
simply as x =(x, ..., x,)T.

In virtually all design problems there are
restrictions on the object being designed.
These may include the performance required,
physical limitations such as size, weight,
resource limitations, and organizational poli-
cy. These restrictions or constraints generally
will involve the design parameters so that the
range of values of design parameters may be
restricted. If the vector of design parameters
(hereafter called the design parameter) is
viewed as an element of real Euclidean space
R, then the effect of the listed restrictions is
to confine the designer’s choice of design
parameters to a subset D of R” called the
admissible set of design parameters. The
nature of this set will be determined by the
nature of the requirements placed on the
system being designed. This aspect of the
optimal design problem will be treated ex-
tensively in later chapters.

When one speaks of optimal design, he

must be able ¢t !:oo0se, out of a collection of
objects which satisfy the restrictions of the
preceding paragraph, that cne which is
“best”. More specifically, out of all design
parameters in the admissible set D, the de-
signer must pick that one, x, which describes
the “best” system. This discussion has still
not given the meaning of “best”. An effective
way of defining “best” is to give a real valued
function whose domain of definition is the
admissible set D, say f(x). “Best”, then, may
be taken as the minimum or maximum of f(x)
for x in D. If the function f(x) is a cost of the
system being designed, then it is to be
minimized. If, on the other hand, f(x) isa
return or profit, it is to be maximized.

The cost or return function will be defined
in each optimal design problem. As a result,
very little can be said about its nature in
general. It is clear, however, that maximizing
a real valued function r(x) is equivalent to
minimizing — r(x). Therefore, optimal d:sign
problems may always be put into 1 form
which may be interpreted as minimization of
a cost function. For convenience this will be
done in the following development.

Example 2-1: As a hypothetical optimal
design problem let the scalar x be the design
parameter and f(x) = (x — 2)? be the cost
function. In Fig. 2-1 the cost function is
plotted versus x. It is clear that the minimum
cost of zero occursat x = 2.

Example 2-1 is included here as an aid to
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intuition in more complex problems. Even
when x is an n-vector, one can think of

plotting the cost function above the x-hyper-
plane to obtain the cost surface. The optimal
design problem is then to find the lowest
point on this surface.

Even though real-world optimal design
problems invariably have constraints placed
on the design parameter, the methods pre-
sented in this chapter will ignore constraints.
There are two reasons for considering this
simplified problem in some detail. First, it
may happen that the design parameter x that
minimizes f(x) lies in the interior of the
admissible set D. In this case the constraints
play no part in locating X. Second, even
though the point x may push some constraint
to its limit and lie on the boundary of D,
there are iterative methods for finding x
which require minimization of an auxiliary
cost function, subject to no constraints at
each iteration. Methods which take con-
straints into account are presented in Chap-
ters 3 and 4.

Two basically different methods of solving
unconstrained minimization problems are pre-
sented in this chapter. The first method,
called the indirect method, is based on de-
rived properties of the cost function at its
minimum; i.e., if one pictures himself as being
at the lowest point of the cost surface (x = 2
in Fig. 2-I), he may notice that the surface is
required to have certain special properties
there. He may then use these special prop-
erties to locate the lowest point on any such
surface. This intuitive idea is made rigorous in
par. 2-2.

The second method of solving optimization
problems is more direct in nature and is
appealing from an engineering point of view.
The designer initially chooses a design param-

2-2

fix)

Figure 2-1. fix)=(x - 2)*

eter which is admissible, say x‘®?. This choice
of design parameter will probably not put him
at the lowest point on the cost surface.
Rather than discarding this nonoptimal point
and picking another trial point at random he
might attempt to find a second point x{)
which is closer to the lowest point of the cost
surface. The designer's view of the cost
surface is limited to only a small area due to
the local nature of mathematical tests which
he may perform. Using only this local
information, he chooses a strategy which
insures that he makes a move to a new point
x®) which is lower than x©). The direct
methods presented in pars. 2-3 to 2-7 arejust
a mathematical implementation of these
elementary ideas.

2-2 NECESSARY CONDITIONS FOR EX-
TREMA

As described in par. 2-1, the approach
taken in the indirect method is to assume f(x)
has a minimum at x and then derive condi-
tions which f(x)} must satisfy there. These
conditions may then be used to find the
minimum point of any real valued function
fx). They are valuable in giving the designer
an insight into the minimization portion of an
optimal design problem, even when he is using
direct computational methods to solve the
problem. Before these ideas may be devel-
oped, several definitions are required.



Definition 2-1: A real valued function f{x)
defined on a subset D of R” has an absolute
minimum at x inD if

FG) <f(x) -

for all x in D. The function g(x) has an
absolute maximum at x if — g(x) has an
absolute minimum there. The minimum is
called strict if only strict inequalities hold in
Eq. 2-1 forx #X.

Note that f(x) can have a strict absolute
minimum at only one point in D whereas it
could have an absolute minimum at several
distinct points in D provided it has the same
value at all these points.

Definition 2-2: A function f(x) defined on
a subset D of R" has a relative minimum
(maximum) at x if there exists an ¥ > 0 so
that f{x) has an absolute minimum (maxi-
mum) in a subset of D whose points satisfy

| x; —J_Ci l<ei=1,..,n

Verbally, this definition says that f(x) has a
relative minimum at x if it has an absolute
minimum in a sufficiently small neighborhood
of x. It is clear that if f{x) has an absolute
minimum at x, then it also has a relative
minimum there. The converse is not neces-
sarily true.

Example 2-2: Locate all relative and abso-
lute maxima and minima of f{x) on 0 < x <
3, where f(x) is given graphically in Fig. 2-2.

The function f(x) has a strict absolute
maximum at x = 1, absolute minima (not
strict) at x = O and 2, relative maxima atx = 1
and 3, and relative minima atx = O and 2.

In Definitions 2-1 and 2-2 no continuity or
differentiability requirements were placed on
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fix)

Figure 2-2. A Cost Function

f(x). Without making some assumptions asto
the regularity of f(x) it is difficult to verify
the required inequalities. Consider the case of
a function f(x) of the real variable x which
has two continuous derivatives. The Taylor
formula is

fE+h)=f(x) +f h
+31—f('§ +0h)h? (2-2)

where 0< 8 < 1. Since f"'(x + Oh) is bounded
for h in a closed bounded set, it is clear that if
f'(x) # 0 then for small enough h the linear
term in i dominates the squared term so that
fx + 1) may be made both larger and smaller
than f(x) through choice of the appropriate
sign of h. Therefore, in order for f(x) to have
a relative minimum or maximum at X it is
necessary that f'(x) =0. It follows directly
from Eq. 2-2 that if f'(X) = 0, then f"(X) > 0
(< 0) is a sufficient condition for f(x) to have
a relative minimum (maximum) at X.

In case x is in R", results analogous to
those just obtained are given in Theorem 2-1.

Theorem 2-1: Necessary Condition: Let
f(x) be defined on a subset D of R” and have
a continuous derivative in a neighborhood of
a point X which is in the interior of D. If f(x)
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has a relative minimum at x then
Vix)=0. (2-3)

Sufficient Condition: Let f{x) have two con-
tinuous derivatives in a neighborhood of X
and let Eq. 2-3 hold. Then if the matrix

9%f

ox;, ax/.

Vifx) = (x) 24

is positive definite, f(x) has a relative mini-
mum at X.

For convenience in later discussions, Defi-
nition 2-3 is made.

Definition 2-3: A point at which Eq. 2-3
holds is called a stationary point of f(x).

It is imperative that the reader be aware of
the hypothesis of Theorem 2-1 which requires
X to be in the interior of the region D. The
theorem does not apply if X is on the
boundary of D. Example 2-2 illustrates this
requirement graphically. Points x = 0 and x =
3 of Fig. 2-2 yield a relative minimum and a
relative maximum, respectively, but neither
point is stationary (i.e., neither satisfies Eq.
2-3). The same example also illustrates the
need for verification of the differentiability
properties of f(x). Even though x = 1 yields
an absolute maximum of f{x) and is in the
interior of D ,it is not a stationary point since
f(x) does not have a continuous derivative
there. This example illustrates the need to
faithfully verify all the hypotheses before
Theorem 2-1 is employed.

In order to verify the sufficiency condition
of Theorem 2-1, one must have a verifiable
test for positive definiteness of a matrix.
Probably the most useful test is the following
(Ref. 2, page 103): A symmetric matrix
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A= (ai].) nxn 15 positive definite if and
only if the determinate of each of the
matrices A, , formed from the first m rows
and first m columns of A, is positive, m =
1,..,n

Example 2-3: Obtain explicit necessary and
sufficient conditions for flx,,x,) to be a
minimum and a maximum at x, where f{(x,,

X2) has two continuous derivatives in D and x
is an interior point of D,

As necessary conditions for either a mini-
mum or a maximum, Eq. 2-3 demands

fe ) =f (D=0,

A sufficient condition for X to be a
minimum point for f(x) is that in addition to
the above equations, the matrices

A4, :fnxl(f) and
Az = fxlxl(@ fxlxz()?)

fx IX2(§) fx 2x2(';)
have positive determinates, i.e.,
fe, 5, > 0andf, , f,

— [fXIXZ(x)]Z > 0

The function f(x) has a relative maximum
at X if the functiong(x) = — f(x) has a relative
minimum there. Therefore, in addition to
— e, ()=~ fx2()?) = 0 sufficient conditions
for g(x) to have a relative minimum at x are

8 x (> Oandg, . () &, x)

_ [‘gx1x2 ()7)]2 > (.

For a relative maximum of f(x) at x then



sufficient conditions are

fox, G<0andf, O @

1

-l @1*>0
1X 2

Thus far in this paragraph only properties
of f(x) precisely at the minimum point have
been investigated. If the designer viewed the
graph of f(x) versus x to be a surface, then
Theorem 2-1 tells him what the surface will
look like when he finds its lowest point.
Theorem 2-1, however, does not tell him that
a lowest point exists. In order to solve his
optimization problems, the designer would
like to have tools which allow him to stand
back from the cost surface and learn some-
thing about its global properties. Two theo-
rems are now stated which give him a better
overall view of the optimization problem.

Theorem 2-2: If f(x) is continuous on a
closed and bounded subset D of R" then f(x)
has an absolute minimum in D.

This theorem does not hold, in general, if
any of the hypotheses are deleted. For ex-
ample, consider the function f(x) =x onD =
(x| 0< x < 1). D isnot closed and f{(x) does
not have an absolute minimum in D. If
D={xl0<x< 1} then D is closed and f(x)
has an absolute minimum at x = 0.

Note: The hypotheses of Theorem 2-2 may be
weakened by demanding that f(x) be only
lower semi-continuous rather than continu-
ous. For proof, see Ref. 1, page 58.

Theorem 2-3 depends on the concept of
convexity.

Definition 2-4: A subset D of R” is called a
convex set if whenever x andy are in D, then
the straight line segment x + 6(y — x), 0< 8
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< 1,is also in D. A real valued function f(x)
defined on a convex set D is called a convex
function on D if for any two points y and z in
D

fly+0cz - < fO)+01f(z) —f)],
0<0 <.

That is, f(x) is convex on D if the straight
line segment f(v) + 8[f(z) — f(»)] is above the
graph of f(x) on the line segment y +6(z —y )
in D, 0 < 8 < 1. For a more dectailed
discussion of convex functions, see Appendix
A

Theorem 2-3 gives the designer valuable
information about the global properties of the
cost function. It is proved in detail in Chapter
4

Theorem 2-3: Let f(x) be a convex func-
tion defined on a convex set D inR” . Then a
relative minimum of f(x) on D is also an
absolute minimum of f(x) onD.

This theorem is of obvious value to the
designer. It assures him that if his design
problem satisfies the hypotheses of Theorem
2-3 and if he has found a relative minimum
then he is through; he has also found the
absolute minimum.

Computational methods for finding ex-
trema based on the theorems of this para-
graph generally involve the solution of non-
linear algebraic equations. In particular, Eq.
2-3, which is in general nonlinear, can be
solved by a numerical method to locate all
admissible interior extrema. Methods for solv-
ing such equations are given in Ref. 3,
Chapter 2. It generally has been found,
however, that direct methods for finding
extrema are superior to the solution of Eq.
2-3. For this reason mno computational
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methods based on the indirect method will be
presented here.

It will be the purpose of the remainder of
this chapter to present methods that the
designer may use to locate interior relative
minima. Relative minima on the boundary of
the admissible region will be treated in Chap-
ters 3 and 4.

2-3 ONE-DIMENSIONAL MINIMIZATION

In the direct minimization methods to
follow, a multidimensional minimization
problem will be reduced to asequence of one-
dimensional minimization problems; i.e., the
problem of determining a scalar a so that a
given function g(&) will be a minimum.

In the problem of minimizing f(x) for x in
R", all the methods of solution presented in
this chapter are based on successive improve-
ments in certain directions; i.e., at a point x‘?
one finds a direction, s, in which f(x) de-
creases. The object is now to move along the
vector x(? + as, by adjusting a, a > 0, until
f(x) is as small as possible. The resulting point
is then called xU *17, and the entire process is
repeated. It is clear that the intermediate
problem of determining a so as to minimize
fxD + as) is one-dimensional. This paragraph
will be devoted to presentation of methods
for solving the one-dimensional problem.

2-3.1 QUADRATIC INTERPOLATION

If the function f(x(? + as) of the scalar
variable a — x‘? and the unit vector s are
fixed — were quadratic in a,then the value of
a which minimizes the function could be
found by setting

C%(f[x(i) +as])=0.

2-6

The object here is to treat more general
functions, but it is possible to make a
quadratic approximation to f [x'? + as]
which will hold near the minimum point.
Then, the minimum point of the approximat-
ing function, which may be easily found, is an
approximation of the true minimum point.

The quadratic approximation of £ [x(P +
as] is constructed by passing a quadratic
curve in a through three computed values of
the function. The distance between the three
trial points will be 6 > O, where 6 is initially
chosen to be a small fraction of the expected
range of a. It is known, however, that if the
starting point of the process is quite far from
the minimum point then the minimum point
of the approximating function may not be
near the true minimum point. To prevent
making large, inaccurate steps in this case, a
maximum allowable step size A is chosen
before the process begins. A reasonable choice
of A is 50% of the expected range of a.

The following algorithm implements the
procedure described :

Step 1. Definea® = Oandj = 1.
Step 2. Compute
fi =fIxD Tt — s
fo =fLxD ol g
fo =flxD + ("t +§)s].
Step 3. A quadratic polynominal in a —
ot = 7 is fitted through (— 6, £, ),

©, o), (6, f2). Its minimum is
5(fi = 1) .

2, S, if fi — 2f

T TS

t f, # 0. If this quantity is zero,

then the approximation is a



straight line with minimum atz =
+ a, depending on which of f; and
f, is smaller.

Step 4. Define
doo=min (|z,,1,4)-sgn(z,,)
and
of =l +do

Step 5. If |da| is less than a specified
tolerance, the process is stopped
and o is taken as the minimum
value of a. Otherwise, replace j
withj+ 1 and return to Step 2.

2-3.2 FIBONACCI SEARCH (OR GOLDEN
SECTION SEARCH)

The Fibonacci search technique is a
method based on isolating a relative minimum
in an interval and successively decreasing the
size of the interval. The process thus gives
successively better estimates for the location
of the minimum point. For a proof that the
method converges very rapidly the reader is
referred to Ref. 4, page 236. Here, only the
basic ideas behind the method will be given,
and an iterative algorithm stated.

Starting at a = 0 one might evaluate f[x(?
+ asj at a = 6 and check to see if the
functional value is smaller than at a= 0. If it
is, one might then evaluate the function at a=
26 and compare with the value of a = 6.
Again if a decrease occurs, one moves on to «
= 36, etc. The process will terminate when
XD+ +1)8s] > £ [xD +k8s]. Tt is
then known that (& — 1)6 < a< (k+ 1)
contains the minimum point and a more
accurate result, if required, may be obtained
by reducing 6 and repeating the process from
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a = (k — 1)6. If the initial step 6 was too
small, many steps will have to be made before
the minimum point is located.

In Fibonacci search the same basic proce-
dure is followed except that if, after a given
step, the functional value has decreased, then
the next step size is taken as 1.618 times the
previous step size. In this way if the minimum
point is a long way from a = 0, the Fibonacci
technique will isolate it much more rapidly
than the previous method with constant step
size. Note that there is a penalty, in that the
interval which contains the minimum point
may have length much greater than 26. This is
illustrated in Fig. 2-3.

fx +as)

T T a

7 '
0 5 2618 52325 o« . 9.6666
‘min

Figure 2-3. Function of Single Variable

Once the minimum point is restricted to
some interval, this interval is broken up into
three subintervals by inserting points located
a distance of 0.382 times the length of the
interval from each end. A test is then per-
formed to see which subinterval the minimum
point lies in. For a given subinterval the
partitioning is shown in Fig. 2-4.

0.382 (au— ap)

]

' i
th a "p oy,

Figure 2-4. Interval Partition
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The search process is terminated when the
minimum point is isolated in a sufficiently
small subinterval.

The Fibonacci search method has the prop-
erty of being best in a certain sense among all
search techniques which isolate a in an
interval. A measure of the effectiveness of any
such technique is the ratio of the length of
the largest interval in which a may lie after n
steps to the length of the original interval
which contained a.It is shown in Ref. 4, page
253, that if £ [x'? +as] has a unique relative
minimum as a function of a,then Fibonacci
search minimizes the number of interval
partitions.

The Fibonacci search technique may now
be given in the form of a computational
algorithm:

Step 1. First an upper bound must be
found for a, e, . It is clear that 0 is
a lower bound, og. For a chosen

small step size § in a,letj be the
smallest integer such that

f |x(“ [ 6(1.618)"]5}
k=0
. j-1
> f|x(’) [z 5(1.618)k]s|
k=0
Then upper and lower bounds on o are

Olu—

w DM~

5(1.618)%

k=0

j-2
o, = T 8(1.618)F,
k=0

Step 2. Compute f [x(? +a, 51, where

Q
|

=q, 10.382(e, — )

o, =a, +0.618(c, — a,).

-1 _
Note that &, = = 8(1.618)% so fIx(D +
=0

ozas] is known.

Step 3. Compare f [x(? +a 5] and f [x)
+ o, 5] and go to Step 4, 5, or 6.

Step 4. 1f f [x? +a,s] < [ [xD +0y5],
then o, < of? < @, . By the choice
of o, and «,, the new points of, =
a, and o, = o hav_e o, = o,
Compute now f[x? + ofs]
where &, =, + 0.382 (¢, — ).
Go to Step 7.

Step 5. If f [x? +a 5] > f [x? +a, 5],
then o, < /Y < . Similar to the
procedure in Step 4, put o, = @,
and o = o, SO that o, = o,.
Compute f[x(? + 0o s] where o, =
o, 10.618(a, —ar).

Go to Step 7.

Step 6. 1f f [x? +a 5] = f [xD + 5],
puto, =c, and o, =,
Return to Step 2.

Step 7. If o, — o is suitably small, put
: 1 '
ol = 7(01; + «,) and stop.

Otherwise, delete the primes on o,
o, o, and o, and return to Step
3.

2-4 THE METHOD OF STEEPEST DE-
SCENT (OR GRADIENT)

The simplest and probably the best known
of the direct methods of minimization is the
Method of Steepest Descent (or Gradient).
This method is based on the fact that if the
cost surface is smooth, then its tangent plane
is a good approximation to the surface near
the point of tangency. The philosophy of the



Method of Steepest Descent is apparent in its
title. One wishes to change x‘? by an incre-
ment dx in such a way that f(x), x = xD +
dx, i1s reduced as much as possible for a given
length of increment. The direction of the
increment dx is called the direction of steep-
est descent.

The direction of steepest descent is given
by Theorem 2-4.

Theorem 2-4: Let f(x) be differentiable in
R". The direction of steepest descent at a
point X is

dx=—avfI(X) 2-4)
where a > 0 is a scalar factor.

The proof of Theorem 2-4 illustrates clear-
ly that the direction of steepest ascent is

dx=aVfT(x) (2-5)

for a > 0. The reader should note carefully
that Eqs. 2-4 and 2-5 give only the direction
in the design parameter space R"” which yields
the maximum rate of change of f(x). Since
the factor « is not determined explicitly, the
size of step is not specified.

In order to start the steepest descent
iterative technique, the designer makes the
best estimate of the design parameter avail-
able, x‘®). The gradient Vf[x°?] is then
computed at x‘°) and a new point x! is
determined by

x(1) = x(0) _ g{0) T [,(0)]

where ol®) » 0 is chosen using methods of
par. 23 so that f [x(©) — avfT(x(®)] is a
minimum as a function of a. If vf [x(®)] #
0 then f [x(1] < £[x©)] ,s0x}) istaken
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as a better estimate of the minimum point
and the process is continued until Vf [x{)] =
0 ordx is sufficiently small. This method may
be given in compact form as the steepest
descent algorithm:

Step 1. Make the best engineering estimate
x(9) of the minimum point.

Step 2. Compute Vf [x‘?] and define a
normalized gradient s =

m vr7 [x®] Find a =

o which minimizes f [x{? +as ]
(where i is the number of iterations
completed). If vf [xP] = 0, ter-
minate the process and x(? is a
relative minimum point.

Step 3. Put x(+1) = x( _ D¢ 1f | D) |
and |7 f [x4*1)] || are less than
predetermined limits, terminate
the process and let x{*1) be the
approximation to the minimum
point. Otherwise return to Step 2.

It is interesting to note that successive.
directions of steepest descent are orthogonal
to one-another in this algorithm-~i.e.,
Vflx G V] gfT [xD = 0). Tosee this, recall
that of? is chosen so that f[x(? —as] isa
minimum in a. The necessary condition of
Theorem 2-1 then requires

=—af=_ 1 zn: af [x(i+l)]
9o oA 1= ox;
i [x(i)] = ___.______1 -
ax; Il vfT x|
VAT D] 9T [xD)
which was to be shown.
In the case where x =[i;] ,Fig. 2-5is a

view of the design variable space. The closed

2-9
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Figure 2-5. Descent Steps
curves in this figure are lines of constant f(x).

A relatively general convergence theorem
pertaining to this algorithm will now be
stated. The proof of this theorem may be
found in Ref. 5, page 80.

Theorem 2-5: Let f(x) be a continuous
function defined on R” and let x(*) be any
point such that the closed set

s={x1 f0 < £1x1]
is bounded, and f(x) is twice continuously

differentiable on S. Let the matrix of second
derivatives of f(x),

2
. {a f(x)}
ox ,.axj

satisfy the condition

\yTHy | < MyTy

for some M, every y in R" ,and every xinS.
Then for the sequence [x(?] generated by
the steepest descent algorithm:

(1) A subsequence xm) converges to a
point x in § for which VA(x) = 0.

o r [x(i’")l decreases monotonically to

fG).

\xl
1]
J Xw'

(3) If x is the only point in S for which
V£(x) = 0, then x'? converges to x.

Several things which Theorem 2-5 does not
say are worthy of note. First, the theorem
does not guarantee that the sequence of
points x? generated by the Method of
Steepest Descent will converge. Further, un-
less the assumption of (3) holds, the sequence
need not converge to an absolute minimum; it
may converge to a relative minimum.

The choice of the initial estimate x(©? can
have a great deal to do with the limit point of
the algorithm if it does converge. If it is not
known beforechand that a unique relative
minimum exists, it is general practice to start
the iterative process at several initial esti-
mates. If the sequence x(? comverges to the
same point ¥ cach time, then one is led to
believe that he has indeed found an absolute
minimum. Logic such as this can cause sleep-
less nights, however, particularly if a decision
involving considerable resources and perhaps
even one's job depends on the outcome. For
this reason, the importance of at least making
a serious attempt to apply theorems such as
those of par. 2-2 cannot be overemphasized.
Theorem 2-3, for example, if properly
applied, may prevent many anxious moments.

In spite of the simplicity of the Method of
Steepest Descent, it has several severe restric-
tions which are discussed in Ref. 5, page 159.
These are:

1. Even though convergence may be
guaranteed by Theorem 2-5, an infinite num-
ber of iterations may be required for the
minimization of even a positive definite qua-
dratic form.

2. Each iteration is calculated indepen-
dently of the others so that no information is



stored which might be used to accelerate
convergence.

3. The rate of convergence depends strong-
ly on properties of the cost function. If the
ratio of the largest and smallest eigenvalues of
the matrix of second derivatives is large, the
steepest descent algorithm generates short
zig-zagging moves. Convergence is, therefore,
very slow.

For an extensive treatment of modifica-
tions of the steepest descent method, which
prevents certain of these difficulties, see Ref.
4, Chapter 7. Several methods, presented in
the next three paragraphs, do not suffer so
severely from the problems just described.

2.5 A GENERALIZED NEWTON METHOD

In the Steepest Descent Method of par. 2-4,
only first-order derivatives that determine the
tangent plane of the cost surface are used to
represent the behavior of this surface. One
would expect that if second derivatives of the
cost function were available, then a quadratic
function could be constructed as an approxi-
mation to the surface. The quadratic approxi-
mation should allow for much better approxi-
mation of the minimum point of the cost
function.

The idea of this method is to first use a
second-degree Taylor formula as an approxi-
mation to f(x). If f(x) is convex, or just con-
vex near a minimum point then the minimum
point of the quadratic should be near the
minimum point of f(x). The minimum point
of the quadratic approximation is then deter-
mined analytically and is taken as a good
approximation of the minimum point of f(x).

In order to utilize Taylor's formula in-
cluding second degree terms, the following
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matrix is required

H(x)=V2f(x) = l:azf(x)]
nxn

0x ,.ax].

Note that it is implicitly assumed here that
f(x) has two derivatives. By Taylor's formula,

FIxO + Ax] = f[xO] + Uf[x(O]Ax
+%AxTH[x(0)]Ax (2-6)

where Ax is a change in x(®). In case f(x) is
locally convex — convex in a neighborhood of
x(®) _ Theorem A-3 shows that H [x(®] is
positive semi-definite. If, in addition,
H [x(O] is positive definite, then it has an
inverse. Further, f [x{®) + Ax] in Eq. 2-6 is
convex in Ax so Theorem 2-3 insures the
existence of a unique minimum point of the
quadratic function in Eq. 2-6. By Theorem
2-1, this unique minimum point is determined
by

T xO1 +H[xOD] Ax=0
or
Ax = _H ' [x(O7] 9T [xO1, (27

and the new estimate of the minimum point is
XD =x(0) Ay,

Since Eq. 2-6 isjust an approximation, x(1?
will probably not be the precise minimum
point of f(x). Realizing that evaluation of
H(x) requires computation of n (n + 1)/2
second derivatives of f(x), one might be
tempted to improve the estimate for the
minimum point before recalculating all these
derivatives.

An easy way of improving the estimate of
the minimum point is to change the length of

2-11
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the step Ax without altering its direction. The
scalar a ~ 1will be determined by methods of
par. 2-3 so as to minimize f [x©® +aAx].

This procedure may now be put down in
the form of a computational algorithm called
Generalized Newton Method:

Step 1. Make an engincering estimate x (%
of the minimum point of f(x).

Step 2. Compute
XD =@ _ oD g0 gfT [xD7] |

where a = of? is chosen which
minimizes

f{x“) —af = [xD] gfT [x?]

as a function of a. Here, the index
i is the number of iterations com-
pleted.

Step 3. If IV [x®P 1 and || x@+1) — x|
are sufficiently small, terminate
the process and take X * 1) asthe
minimum point of f(x). Otherwise,
return to Step 2.

The Generalized Newton Method presented
in this paragraph has been called the best for
minimizing convex cost functions when
second derivatives are available (see Ref. 5,
page 162). Even in the case in which the cost

function is nonconvex, if the starting point
x(® is near enough to a relative minimum

point so that the cost function is convex at
x(®) then good comvergence may still be
expected.

In spite of the advantages of this method, it
still has several shcrtcomings.

1. Even if f(x) is convex, an inverse of
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H(x) may not exist unless H(x) is
strictly positive definite.

2. In nonconvex problems an iteration
does not necessarily decrease f[x(?]
when the current iterate x'” is not near
the minimum point.

3. For many engineering problems, H(x)
will be extremely messy if not im-
possible to compute efficiently.

Even in nonconvex minimization problems
the Generalized Newton Method may be used
in conjunction with a Steepest Descent Meth-
od to form an extremely effective tool. The
Steepest Descent Method has the property of
making good progress even though only a
poor estimate of the minimum point is
available. As a relative minimum is ap-
proached, however, the rate of convergence of
the Steepest Descent Method decreases. At
this point, however, the cost function should
be convex since a minimum point is nearby.
Therefore, the Generalized Newton Method
may be employed for rapid convergence to
the relative minimum point.

2-6 METHODS OF CONJUGATE DIREC-
TIONS

In par. 2-4 it is pointed out that the
Method of Steepest Descent had rather poor
convergence properties in many problems
because it uses omnly first-order approxi-
mations (involving only first-order deriva-
tives). Further, the Steepest Descent Method
is not a learning process in that it does not
store information from past iterations. The
first deficiency is corrected in par. 2-5 where
a Generalized Newton Method employing
second derivatives is presented. This method,
while having outstanding convergence prop-
erties, requires the computation of n(n+1)/2



second-order derivatives at each iteration (x is
in R"). In most engineering design problems
this is an extremely tedious, if not impossible,
task. Further, the Generalized Newton Meth-
od is not a learning process.

The methods presented in this paragraph
require the computation of only first deriva-
tives. However, by making use of information
obtained from previous derivatives, con-
vergence is speeded as the minimum is ap-
proached. In fact, as one of the methods
progresses, it develops an approximation to
the matrix of second derivatives. In this
respect the methods here have the desirable
features of both the Method of Steepest
Descent and the Generalized Newton Method.

All Methods of Conjugate Directions are
based on the philosophy “If a method works
well in minimizing all positive definite qua-
dratic forms, then it ought to work pretty
well on any smooth cost function.”” To be
more specific, Conjugate Gradient Methods
are guaranteed to minimize any positive
definite quadratic form in » iterations (the
design parameter is in R"). Although this
ideal behavior will not carry over to general
cost functions, since a convex cost function
often looks very much like a positive definite
quadratic form, similar behavior could be
expected. Experience has shown that this is
the case.

In order to be more precise, one makes
Definition 2-5.

Definition 2-5: Let A be a symmetric
positive definite # x » matrix and S, i =0,
l,..,n — 1, be nonzero vectors inR". The S
are called conjugate with respect to A if

sl Asi=0,i#j) (2-8)

Since A is positive definite, the conjugate
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vectors S’ are linearly independent. To see
that this is true, form the linear combination

n=1 .
Z aS8'=0,
=0

where the a; are scalars. Multiplying this sum
onthe left by 8/ T 4 yields

n—1 . . . .
a,5'TaS!=a, 51T AST =0

i=0

and since S'TAST # 0, a; = 0. Since j was

arbitrary, ¢, = 0,7 =0, 1,... n — 1,and this is

just the definition of linear independence.

Consider now the problem of minimizing
the convex function

f(x)=BTx +%xTAx 2-9)

where x is in R", B isann x 1 matrix and 4 is
a symmetric, positive definite, » x » matrix.
The central idea of all methods based on
conjugate directions is contained in Theorem
2-6.

Theorem 2-6: Let S°, ... S*~1 be nonzero
vectors in R" which are conjugate with
respect to the positive definite matrix 4.
Choose scalars A = A3, [ =0, ., n — 1,
successively which minimize

flx +As] (2-10)

where f(x) is givenin Eq. 2-9,

, i-1
(D = 5 (0) 4 ,EO A k) gk 2-11)

and x¢©? is any point in R”. Then x‘" is the
absolute minimum point of f(x) over R”.

The two methods that follow are simply

2-13
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based on different ways of generating con-
jugate directions. There are an unlimited
number of ways to generate conjugate direc-
tions. Several ways are discussed in Ref. 6.

2-6.1 THE CONJUGATE GRADIENT
METHOD

Given any set of » linearly independent
vectors and a positive definite n x 71 matrix A
a set of conjugate directions with respect to A
can be generated by a Gram-Schmidt ortho-
gonalization technique. Let v°, .., »?~1
be linearly independent vectors and define S°
=7 Now put

S =l 4y, 80,
For A-conjugacy, it is required that
59T 451 =0 =87 A (" +a;45°)
and

w7850
0y = ———
T 50T 40
Assuming S* , ..., ¥ are A-conjugate, put

+1 = pk+1 0
S =kt b SOty S

For A-conjugacy it is required that

ST g8 =0=~*1T48 +o,,, 8" 45

where the second equality holds by S-con-
jugacy, so

__l)k+ITASr _
Yy, T o =Lk

S TAS

By induction, the resulting directions are
A-conjugate and

2-14

1T
Sk+1 =vk+1 B § vk+ AST
r=0 SrTA Sr

Many sets of vectors v; could be chosen to
generate conjugate directions. A natural
choice, however, is the set of gradient vectors
of f(x), g = VT (1)), where x(? are defined
in Theorem 2-6. Define

S0 = _ gO
kg1l g0
Sl =_gh*l 4+ 3 grAs — S’ (212
i=0 St 4 5t
Alternatively ,
koghriTasi
Fri=—sriey 20 g (213
i=0 Si' 4 8¢
1
Sincef(x)='£xTAx +BTx,
& =VIT[x(h)] = gxk) 4+ g
or from the proof of Theorem 2-6,
) k-1 1
g, =gl +4| £ ADSH]. (2-14)
g=i+1

Now,

ngSi=gi+1TSi+SiTA[ ) )\(Q)SQ]
R=j+1
-

=0,i< k
due to A-conjugacy of the S7 and

(2-15)

Vilx*+D 8% =0, k=0,...,n — 1. (2-16)

From Eqs. 2-13 and 2-14

O | 7
gt s E_Aisz-\

Ti= T . .
§e=g j=0 S'A 8§/

=0,i< k.



Thus, the g%, i = 0, 1. ..., n — 1 are lincarly
independent and the S% i=0,1, .., n — 1 are
A-conjugate.

The Conjugate Direction Method of Theo-
rem 2-6 may now be applied using the
conjugate gradients S*. The result is called the
Conjugate Gradient Method. In order to apply
this method to nonquadratic problems, it is
first necessary to eliminate explicit depen-
dence of the algorithm on the form of f(x).

By definition,

gl =Ax*l +p=Ax/+ADS/] +B

or

gtl=g/ +A DAY (2-18)

By Eq. 2-16
g1 T si=0=g/Tsi+AD 5T 4 87,
Thus,

gi T S/

A0 = -
siTa s/

Substituting for S’ from Eq. 2-12 and using
Eq. 2-15, this is

. iT si
A =2 = (2-19)
ST 4 s

From Egs. 2-18 and 2-19
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gk+1TA Si ) gk+1T gt —gh
sT 45t giTgi

By Eq. 2-17, for i < k, the right side of the
above equation is zcro. Fori =k,

gk”TA Sk gk+1Tgk+l

SkT 4 5% g*T gk

Substituting this result into Eq. 2-12 yields

T
gk+1 gk+1
T
gk’ gk

Sk+1 = k+1 +

—g S¥. (220

Eq. 2-20 now givesan algorithm for determin-
ing the conjugatc dircctions, cven without
knowledge of the matrix 4 .

For a gencral function f(x),
g = vfTx]

and the following algorithm for finding the
unconstraincd minimum of f(x) is called the
Conjugate Gradient Method:

Step 1. Make an cngincering estimate x(©)
of thc minimum point and com-
pute

§° == 9fT (")

Step 2. Fori=0,1, ..., find a =at? which
minimizes f [x? +«S7].

Step 3. Computc
1) = 5 () 4 D) gi
Sl = _ gfT [x(i+1)] 1 gigi
where

gi = VfxE DY gfT x G+ D)
VA D)V fT [(x(D)

2-15
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Step 4. Terminate the process if
17 AP DT | and [IxFD —x@
are sufficiently small. Otherwise,
return to Step 2.

When this algorithm is applied to problems
in which f(x} is not of the form of Eq. 2-9,
convergence will not occur in »n steps.
Fletcher and Reeves recommend that after n
steps the algorithm should be “restarted”, i.e.,
x"*1) should be treated as x(®) in the
algorithm. In a sense, the first few iterations
of the algorithm build up information about
the curvature of the cost surface. After »n
iterations, this information is discarded and a
new estimate of curvature is built up during
the next » iterations. This method then does
not accumulate information about curvature
of the cost surface over the entire iterative
process.

2-6.2 THE METHOD OF FLETCHER AND
POWELL

A second method based on a different set
of conjugate directions was suggested by
Davidon (Ref. 8) and modified by Fletcher
and Powell (Ref. 9). This method is reported
to be one of the most powerful known
methods for general functions f(x), (Ref. 10).
A major reason for the success of this method
is its capability to accumulate information
about the curvature of the cost surface during
the entire iterative process, even though only
first order derivatives of the cost function
need to be computed.

The directions (¥, generated by the al-
gorithm that follows, are conjugate if /(x) is
of the form of Eq. 2-9. This proof is given in
Refs. 7 and 9. In Ref. 6 it is shown that the
method of Fletcher and Powell fits naturally
into a large class of conjugate direction
methods. The derivation is tedious and lends
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little insight into use of the method. For a
direct proof of convergence, etc., the reader is
referred to Ref. 7.

The computational algorithm is:

Step 1. Make an engineering estimate x¢©’
of the minimum point and choose
a symmetric positive definite
matrix H(®),

Step 2. Fori=0,..., compute

SO = _ g gl [xDy,

Step 3. Compute a = o/ which minimizes
flx sy,

Step 4. Compute
o) = gD g
x(*1) = x() 4 g (D)
HOG*) = () 4 4D 4 gD
where

Y = VFT [x (D] 9T [xD]

o - g gT
AT = o1 ,®

@ HD @y, OT g
B = _

yOT g 4, (0)

Step 5. If | V/[x@ D] || and [(x*1) —
x| are sufficiently small, termi-
nate the process. Otherwise return
to Step 2.

Fletcher and Powell (Ref. 9) prove that this
algorithm has the following properties:



1. The matrix H? is positive definite for
all i This implies the method will
always converge to a stationary point
since

d . ;
AL R I

=~ VAOTHO 7T [xD] < 0

provided Vf[x("1 # 0. This means that
fIx?] may be decreased by choosing a
> 0if flx] # 0.

2. When this method is applied to the
positive definite quadratic from Eq. 2-9,
HW convergesto A™ .

This method might be called a learning
process in that only first derivatives are ever
computed, but as the algorithm progresses an
approximation of the matrix of second deriva-
tives is generated. Many experienced re-
searchers in the area of optimization methods
laud this method as one of the best available.

26.3 A CONJUGATE DIRECTION METH-
OD WITHOUT DERIVATIVES

Occasionally in applications, one is faced
with a problem in which computation of
derivatives of the cost function is impossible
or at least prohibitive from a computational
point of view. There are many techniques for
solving this sort of problem given in Ref. 4.
An efficient technique, not presented in
common texts, was developed by Powell (Ref.
11) using conjugate directions.

A computational algorithm is presented
here without proof. For a proof that the
algorithm generates conjugate directions the
reader is referred to Ref. 11. The computa-
tional algorithm is:

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.
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Make an engineering estimate of
the minimum point x0) of f(x).
Choose vectors 8/, j = 1,..., n, in
the coordinate directions of R” .

Finda=¢o, k=1,..,
minimize f{x®-1) +agsk ]

n, which

where
0 = x(®
yk :yk'l +aksk, k = 1,..., n,

and i is the number of iterations
which have been completed. Note
that in the onc dimensional mini-
mization for of, it is possible for
of < .

Find the integer i, 1 < m < n for
which

O™ - fom)
is the largest and define
A=fom Yy - fO™).

Define f, = f(¥°), f» = fO"), and
£3=f2" _y°).

Hf;=f or
(fi =2f2 +f3)x{f; — f, — A)?

A
>—2'(fl - fa)z,
put

XD = yn

Terminate the process if [[x(/*1)
— xD]| is sufficiently small. Other-
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wise return to Step 2 with the
same setof s/, j =1, .., n.

Step 6. If neither of the inequalities of
Step 5 hold, defines =" - 3% and
find a = & which minimizes

fO" t+as).

Put

D =" +as.

Terminate the process if [[x¢*1
— x| is sufficiently small. Other-
wise return to Step 2 with the new
set of vectors =l ..., x™-1 gm*+1

., 8"

, S
For a discussion of use of the
algorithm, see Ref. 11.

2-7 COMPARISON OF THE VARIOUS
METHODS

During the development of the methods
presented in this chapter, theoretical advan-
tages and disadvantages have been pointed
out. As a concrete test of these methods,
three functions will be minimized. Two of the
functions to be treated are terribly behaved
and pose a meaningful test to any general
minimization technique. These functions re-
semble a very deep valley at whose bottom
the curvature in two orthogonal directions is
radically different. The third function is
quadratic and poses no serious obstacle to any
reasonable method. More specifically, these
functions are

fi(xy, x2) =1000x; — x7)?
(2-21)
+(1-x,)?

2-18

Fa(xy, x,, x5, x4) = (x; +10x,)2

+ S - x,)?
(2-22)
+(x2 - 2x3)4
+100x, — x4)°
and
f3(x,, mm x3)=x] +2x; + 2
(2-23)

+ 2NN +

The reader should verify that each of these
functions has a strict absolute minimum
point. These points are (1,1), (0,0,0,0), and
(0,0,0), respectively. Each iterative method
will be started at points (— 1,1), (1,1,1,1),
and (1,1,1) for Eqs. 2-21, 2-22, and 2-23,
respectively. These functions will all be mini-
mized by each of the methods of pars. 2-4
through 2-6. The stopping criterion will be
that each component of the independent
variable must be within 10~ 2 of the known
minimum point.

Results will be presented in tabular form so
that a comparison of the behavior of each of
the methods may be made. For the sake of
uniformity, each table will include the itera-
tion number i, the iterate x? =[x, .,
x, P17, and the value of the cost function.

2-7.1 METHOD OF STEEPEST DESCENT

2-7.1.1 COST FUNCTION: f;(x) = 100(x,
7xf)2 +(1 fxl)z.

Exact solution: (1,1), f,(1,1) =0



TABLE 241

STEEPEST DESCENT METHOD —
ITERATIVE DATA FOR COST
FUNCTION, {x)

/ Flx xlm x;m
0 404.0 -1.0 -1.0
1 19.97 0.2576 —0.3743
2 0.8654 0.0707 0.00067
3 0.318 0.452 0.1910
4 0.3048 0.448 0.199
5 0.2929 0.472 0.211
6 0.2828 0.4685 0.218
29 0.1752 0.5864 0.3373
30 0.1728 0.5846 0.3403
73 0.1081 0.6739 0.4499
74 0.1071 0.6729 0.4517

2-7.1.2 COST FUNCTION: f,(x) = (x,
+10x,)% + 5(x5 — x4)% + (x; — 2x3)* +
10(x1 "x;;)“

Exact solution: (0,0,0,0), />(0) =0

TABLE 2-2

STEEPEST DESCENT METHOD — ITERATIVE
DATA FOR COST FUNCTION £, {x}
(i} fi)

i flx i X3 Xg

122.0 1.0 1.0 1.0 1.0
16.43 0.9055 0.055 1.0 1.0
16.31 0.9019 0.023 0.9958 0.9581
16.03 0.8925 —0.0498 0.969 0.746
15.06 0.886 —0.0756 0.923 0.463
12.25 0.641 —0.063 0.699 -0.156
10 3.00 —1.048 0.0746 —0.1608 —0.9197
2.006 —1.039 0.1522 —0.258 —0.815
1.380 —1.043 0.078 —0.298 -0.752
1.188 —1.033 0.1127 —0.3276 —0.7067
1.047 —1.021 0.090 —0.362 —0.634
15 1.041 -1.015 0.0949 —0.368 —0.619
16 1.040 —-1.012 0.0960 —0.370 —0.61l
38 1.039 —1.008 0.0967 --0.373 -0.603
74 1.039 —-1.008 0.0968 —0.373 —0.6019

oD — O

AER =
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2:7.1.3 COST FUNCTION: f;(x) =x? +2x2
+2x3 +2x,x, +2x,x,

Exact solution: (0,0,0), f3(0) =0.
TABLE 2-3

STEEPEST DESCENT METHOD — ITERATIVE
DATA FOR COST FUNCTION £3{x}

i flx {i)] X3 fi} X2 i) X3 {i)
0 9.0 1.0 1.0 1.0
1 0.0714 0.2857 —0.0715 —0.0715
2 0.01311 0.1632 —0.153 0.0512
3 0.0088 0.1604 —0.114 0.065
4 0.00679 0.1245 —0.062 0.053
5 0.00243 0.078 —0.0625 0.0204
6 0.0018 0.073 —0.0476 0.02727
7 0.00063 0.0218 —0.00305 0.0133
8 0.00006 0.014 -0.00956 0.0035
9 0.00005 0.011 —0.00686 0.00485
10 0.00003 0.004 —0.0036 0.0040

It should be noted that the SteepestDe-
scent Method decreased the cost function
rapidly on the first iteration but in the first
two problems failed to converge to the
minimum point. That is typical behavior for
this method, particularly in problems for
which the cost function has a long sharp
valley. It should be clear that blind use of the
Method of Steepest Descent can yield poor
results.

2-7.2 GENERALIZED NEWTON METHOD

2-7.21 COST FUNCTION: f,(x) = 100(x,
—x1)P+(1 —x,)?

Exact solution: (1,1), ,(1,1)=0

2-19
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TABLE 24

GENERALIZED NEWTON METHOD — ITERATIVE
DATA FOR COST FUNCTION

f] {x)
' £ [x li)] X1 (i} X3 fi)
0 404.0 -10 -10
1 3.981 —0.9950 0.9869
2 3.403 —0.7919 0.5832
3 2.588 —0.5248 0.2241
4 1.549 —0.1832 —0.5105
5 0.953 0.0887 —0.027
6 0.473 0.3642 0.1063
7 0.203 0.5955 0.3347
8 0.053 0.8020 0.6315
9 0.0042 0.9536 0.9049
10 0.0002 0.9900 0.9810
11 2x107¢ 1.0003 1.0007

27.2.2 COST FUNCTION: fo(x) = (x; +
10x,)% + 5(x3 —x4)? *+(x; — 2x3)* +10(x,

_x4)4

Exact solution: (0,0,0,0), f,(0)=0

TABLE 2-5
GENERALIZED NEWTON METHOD — ITERATIVE

DATA FOR COST FUNCTION
f2 x)

P UL R R N N

137.0 1.0 1.0 1.0 20*
2.137 —0.3368 0.0175 0.3396 0.3249
0.0496 —0.0640 0.0250 o 1060 0.1229
0.0025 —0.0591 0.0047 0.0627 0.0617
0.0007 —0.0236 0.0031 0.0263 0.0271
0.00001 —0.0148 0.0014 0.0161 0.0160
1x 107 —0.0070 0.0007 0.0078 0.0079

s wWbh = O

2-20

*Note: The trial starting point (1,1,1,1) was

a singular point for v2f, so an alternate
starting point was chosen and the algorithm

converged.

2-7.2.3 COST FUNCTION: f3(x)=xf +2x§
+ 2x§ +2x,x; T 2x,x,

Exact solution: (0,0,0), f5(0) =0

TABLE 2-6

GENERALIZED NEWTON METHOD —
ITERATIVE DATA FOR COST

FUNCTION 73 {x)
i fa[Xm] Xl(i) XZ(” XS(”
0 9.000 1.0 1.0 1.0
1 2x10° 0.0015 0.0015 0.0015

These results indicate that the Generalized
Newton Method is indeed very powerful.
Even in the second cost function where the
initial estimate caused a singularity in v2f5, a
second starting point yielded good results.
Similar behavior has been noted in the litera-
ture, so one can expect to get good results
with this method. It must be remembered.
however, that this method requires that sec-
ond derivatives of the cost function be com-
puted.

2-7.3 CONJUGATE GRADIENT METHOD

2:7.3.1 COST FUNCTION: f,(x) =
—xp)? (1 -x,)?

100(x,

Exact solution: (1,1), f,(1,1) =0



TABLE 2-7

CONJUGATE GRADIENT METHOD —ITERATIVE
DATA FOR COST FUNCTION

fyix)
i f[Xm1 X3 {i) X3 (i)

0 4040 —-10 -1.0
9649. 0.1143 0.0102
0.0839
1 9649. 0.3258 0.0102
22.19 0.5106 0.2360

2 22.19 0.5005 0.2482
0.5033 0.6307 0.3820

3 0.5033 0.6244 0.3882
0.2226 0.7267 0.5178

4 0.2226 0.7227 0.5212
0.001 637 0,9919 0.9827

8 0.001637 0.9842 0.9868
0.000067 0.000013 0.999754

11 0.000067 0.999884 0.999768

2:7.3.2 COST FUNCTION: f2(x) = (x, +
10x,)% +5(x3 —x,)% +(x; —2x3)* +10(x,

—xa)*
Exact solution: (0,0,0,0), f,(0)=0.

TABLE 2-8

CONJUGATE GRADIENT METHOD — ITERATIVE
DATA FOR COST FUNCTION

f,{x)

’ 2 xN X\(ll Xi(«) PR Y
0 1220 10 10 10 10
292527 09016 00346 09642 1000
292527 08632 0 01787 0 4158 09960
3655 08561 00101 0 3642 0 6573
1 1922 0 8404 0 0563 0 3324 0 4438
1922 08180 0 0860 0 3185 0 4540
12 11 0 7507 0 0685 02651 0 4787
3023 06410 0 0850 02533 0 4104
2 2629 G 3404 00281 02192 02075
G 29 03378 00370 02079 02057
1 G51 03331 Q0319 0 1748 02130
01136 03159 00371 0 1473 0 1698
G 00531 00305 0 0029 00718 00717
0 000751 00293 00031 0 0696 00714
0 000751 00294 00078 00695 00713
0 000558 00297 0 0029 00687 00677
8 0001091 003512 0003519 002338 002503
0000517 0035322 003498 0023112 0023119
0000517 0035318 0 003530 0 073108 0023119
1x10-7 0035305 0003528 0023011 0073115
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2.7.3.3 COST FUNCTION: f3(x)=x? +2x2
+ 22 + 200y x, +2x,x3

Exact solution: (0,0,0), f3(0) =0.

TABLE 29

CONJUGATE GRADIENT METHOD —
ITERATIVE DATA FOR COST
FUNCTION 73({x)

i f3[X(i)] Xl(i) Xz(i) X3(i)
0 9.0 1.0 1.0 1.0
0.1181 0.3829 —0.2340 0.0744
0.0293 0.2571 —0.2285 0.1428
1 0 0 0 0

The numerical results presented here indi-
cate that the Conjugate Gradient Method is
very effective even for the Rosenbrock func-
tion f;(x). The method requires approxi-
mately the same amount of computation per
step as the Steepest Descent Method but
shows spectacularly improved performance.

It should be noted, however, that con-
vergence slows as the minimum point is
approached. In fact, as shown in Table 2-8,
convergence to the required accuracy was not
attained in one case.

2-7.4 FLETCHER-POWELLMETHOD

2-7.4.1 COST FUNCTION: f,(x) = 100(x>
a1 —x)?

Exact solution”: (1,1), f,(1,1) =0.
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TABLE 2-10

FLETCHER-POWELL METHOD —ITERATIVE
DATA FOR COST FUNCTION £ (x)

f, [x(”] fi) fi)

1 X1 Xy
0 404.0 -1.0 -10
1 19.97 0.2570 -0.3746
2 0.7839 0.1146 0.01249
3 0.7570 0.1422 0.005683
4 0.7424 0.1727 0.005740
5 0,5377 0.3378 0.08262
6 0.4013 0.3689 0.1416
7 0.2968 0.4815 0.2151
8 0.2524 0.5616 0.2909
9 0.03621 0.8286 0.6784
10 0.032 16 0.8207 06733
11 0.02568 0.8536 0.7221
12 0.01162 0.9268 0.8511
13 0.00437 09342 0.8733
14 000106 0.9760 0.9504
15 8x107 0.9982 0.9967

2-7.4.2 COST FUNCTION: f,(x) = (x; —
10x2)? + 5(x3 —x4)% + (x5 — 2x3)* + 10(x,

—x)?

Exact solution: (0,0,0,0), f,(0)= 0.

TABLE 2-11

FLETCHER-POWER METHOD —~ITERATIVE DATA
FOR COST FUNCTION 7; (x)

i Pl x, 1 x, x, ¥ %, 11
122.0 1.0 1.0 1.0 1.0
14.4292  0.9017 0.03472 0.9642 1.0

2.3775 0.8630 —0.07820 0.4120 0.9%60
0.6678  0.8430 —0.08740 0.3618 0.4986
0.3353 0.2087 —0.02560 0.3644 0.3305
0.05134  0.1117 0.006686 0.1883 0.1952
0.01059 0.07931 —0.009696 0.1532 0.1526
0.00067 0.02731 -0.0007003 0.06189 0.06276
0.00016 0.02164 —0.002344 0.05417 0.0540%
8.3x 106 0.00267 —0,000035% 0.0191 0.0192
2.1x10®  0.00148 -—0.00a63 0.0172 0.0172
10-7 —0.0057 0.00060 0.00341 0.00342

Boouaunewn—o

—
e

2.7.4.3 COST FUNCTION: f5(x) = x? +2x2
+2x2 + 2x,x, + 22,

Exact solution: (0,0,0), f3(0) = 0.

TABLE 2-12

FLETCHER-POWELL METHOD —
ITERATIVE DATA FOR COST

FUNCTION 73 (x)
i fs [x(i)] Xl(l') sz X3“)
0 9.0 1.0 1.0 1.0
1 0,05319 03830 —0.2340  0.07447
2 0.02857 0.2571 —0.2286 0.1429
3 3xto0? 2x107 —2x107 -—-3x107

2-22

The Fletcher-Powell Method requires slight-
Iy more computation than the Conjugate
Gradient Method. However, its convergence
properties are very good as the minimum
point is approached, in contrast to the be-
havior of the Conjugate Gradient Method.

This method appears to have good prop-
erties in all ranges of the iterative process. It is
more stable than the Generalized Newton
Method in the early stages of computation
and converges more rapidly than the Gradient
and Conjugate Gradient Methods near the
minimum point. In these respects it has the
desirable properties of other methods without
having their undesirable properties.

2-7.5 CONJUGATE DIRECTIONS WITH-
OUT DERIVATIVES

2-7.56.1 COST FUNCTION: f,(x) = 100(x,
—xD?+ (A —x,)?

Exact solution: (1,1), f;(1,1)=0.
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TABLE 2-13 TABLE 2-14 (Continued)

i BT X, 7 X (i)
CONJUGATE DIRECTIONS WITHOUT 3 ! 2 3 Xa
DERIVATIVES METHOD —ITERATIVE DATA
FOR COST FUNCTIONT, (x) 04421 00469 00127 02799 0.4284
2 01415 00469 00127 02799 0.2423
. i (i) (il 01418 00510 00127 02799 0.2423
i i [x™] Xy X2

01210 00510 —0.0015 02799 0.2423
o 4040 10 10 0.0498 0.0510 —0.0015 0.1875 0.2423

1001 0.0049 _1.0000 0.0246 0.0510 -0.0015 0.1875 0.1749

0.9902 0.0049 0.0000 3 0.0022 0.0336 —8812‘: 0.1221 0.1 32;
1 0.9902 0.0261 0.0211 4 0.0020 0638 —0. 0.0794 0.088
0.9485 0.0261 0.0007 5 0.0018 01322 -0.0147 0.0892 0.0940
0.9402 0.0429 0.0174 6 0.0010 ggﬁ?g —88;23 0.0580 0.0603
2 0.7922 0.1287 00016 7 0.0005 R - .00 0.0377 0.0322
07022 0.1815 0.0509 8 00000 0.0078 -0.007 0.0058 0.0050
06172 0.2147 0.0436
3 0.3958 0.4058 0.1440
4 0.2895 0.4785 02422 2-7.5.3 COST FUNCTION: x7 + 2
5 0.2591 0.5308 0.3015 +00 +3 +9
6 0.0770 0.7258 0.5225 ! §
7 0.0282 0.8564 0.7246
8 0.0125 0.8942 0.8033
9 0.0119 0.9116 0.8373 ]
10 0.0116 0.9039 0.8218 Exactsolution: (0,0,0), f3(0) = 0.
11 0.0125 0.9469 0.9065
12 0.0042 1.0363 1.0792
13 0.0002 0.9886 0.9781
14 0.0002 1.0032 1.0079 TABLE 2-15
CONJUGATE DIRECTIONS WITHOUT DERIVATIVES
METHOD ~ITERATIVE DATA FOR
2.75.2 COST FUNCTION: fr(x) = (x, COST FUNCTION r3{x)
+ W - aw + +10(x; —
X4)
(i) (i (i} (i)
. r3[x"] x x X3
Exact solution: (0,0,0,0), f,(0) = 0. ! 2
0 9.0 1.0 1.0 1.0
5.000 —1.0000 1.0000 1.0000
TABLE 2-14 3.000 —1.0000 0.0000 1.0000
1 1.000 —1.0000 0.0000 0.0000
CONJUGATE DIRECTIONS WITHOUT DERIVATIVES 0.000 0.0000 0.0000 0.0000
METHOD —ITERATIVEDATA FOR COST
FUNCTION f; {x)
i R X xg @ 0 The Conjugate Dircctions Without Deriva-
0 1220 10 10 10 10 tives Mcthod is not as cfficicnt as some of the
1091 0.2051 1.0000 1.0000 1.0000 mcthods that requirc computation of deriva-
1845 0-5021 0.1140 1.0000 1.0000 tives. However, thcre arc many problems in
7.667 0.2051 0.1140 0.4819 1.0000 . . i ot : o
1 2371 02051 04140 04819 04284 fvhleh .eomputatlon (?f .dematlves is either
2157 00469 01140 04819 04284 impossible or very diffieult. In these prob-
1.075 0.0469  0.0127 0.4819 0.4284 lems, this method appcars to be effective.
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2-8 AN APPLICATION OF UNCON-
STRAINED OPTIMIZATION TO
STRUCTURAL ANALYSIS

As pointed out ecarlier in this chapter,
optimal design problems are seldom uncon-
strained. There is, however, a large class of
analysis problems which can be solved using
unconstrained optimization methods. In Ap-
pendix B, energy principles which govern
equilibrium, vibration, and stability of struc-
tures are given. The condition for equilibrium
is particularly direct since it requires that, in
problems for which the strain energy is
quadratic, the equilibrinm state, x, minimizes
V of Eq. B-18, Appendix B,

V=oxTKx —xTF. (2-24)

1
2
Even in some problems which are nonlinear
and the total potential energy is not qua-
dratic, the minimum energy principle applies.

In view of the quadratic form of Eq. 2-24,
conjugate direction methods are indicated.
Even for nonquadratic energy expressions,
methods for conjugate directions appear to be
very efficient. For a much more detailed
treatment of this class of equilibrium prob-
lems, see Ref. 12.

A second structural analysis problem for
which unconstrained optimization methods
hold even more promise is the eigenvalue
problem, As shown in Appendix B, vibration
and buckling problems reduce to eigenvalue
problems of the kind

Ky =My . (2-25)

In this problem, the smallest eigenvalue X ,of

the Eq. 2-25 is sought. One method of solving
this problem is to rewrite Eq. 2-25 as

K-'My= . (2-26)

2-24

In this form, an iterative technique such as
the power (or iteration) method (Ref 13,
page 93) may be applied to obtain the largest
ecigenvalue of the matrix K~!M and hence,
the smallest eigenvalue of the original prob-
lem. Even though the power method is
efficient, this approach has the severe dis-
advantage of requiring that K~ ! be com-
puted.

A more promising approach to the above
cigenvalue problem utilizes the Rayleigh
quotient (Ref. 13, page 83), i.e., the smallest
cigenvalue A, of Eq. 2-25 is given by

A = min yTKy
Voy#E0 yTMy

(2-27)

If the vector y is normalized by fixing one of
its elements, the resulting vector denoted ¥,
then Eq. 2-27 reduces to
min yT K~

NS }y—,fﬂ—; . (2-28)

The minimization Eq. 2-28 may now be
solved by any of the methods of the present
chapter. The method of conjugate directions
has been recently applied to solve this class of
problems (Refs. 14, 15). It is interesting to
note that this exact approach to the eigen-
value problem was proposed by the inventor
of conjugate direction methods, M. R.
Hestenes, in 1955 (Ref. 16, page 93j. The
technique was apparently not used in engi-
neering problems, however, until 1966.

Iterative methods of the kind outlined in
this paragraph are particularly appropriate for
iterative optimal design techniques. As dis-
cussed in Chapter 5, the most time consuming
task in iterative design methods is the re-
analysis of the system during each iteration;
i.e, after the design variable is changed
slightly, analysis for stresses, displacements,
and eigenvalues must be done even though it
is expected that these quantities will be very



close to their values before the change in
design variables. By using an iterative tech-
nique such as conjugate directions, the pre-
vious state may be used as an estimate to start

AMCP 706-192

the minimization algorithm. In this way, rapid
convergence to the new state of the system is
attained. This approach has been applied with
good success (Ref. 15).
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CHAPTER 3

LINEAR PROGRAMMING

3-1 INTRODUCTION

In the preceding chapter a function f(x), x
in R", was minimized with no restrictions
placed on the location of the design variable
x. Problems in the real world seldom reduce
to this form. In virtually all engineering design
problems, requirements are placed on the
object being designed, and these requirements
are stated in terms of equations involving the
design variable. More often, these require-
ments may be stated in terms of inequalities
involving the design variable.

Examples of inequality constraints are
abundant in all areas of engineering design.
The following are examples:

1. Optimal structural design

a. Stress must be lessthan orequaltothe
yield strength of the material.

b. Buckling load must be greater than
or equal to applied loads.

c. Deflection of the structure must not
exceed specified limits.

d. Natural frequency must lie within an
allowable range.

2. Optimal circuit design:

a. Voltage must remain within linear
range of components.

b. Powerconsumption must be belogw a
specified level.

c. Capacitance of a proposed capacitor
must be within attainable limits.

3. Acrospace vehicle guidance:

a. Controller thrust must be within the
capability of the thruster.

b. Total fuel consumption for a mission
must be less than or equal to the vehicle’s
storage capacity.

c. Altitude must be greater than or
equal to zero.

This list of typical inequality constraints
could be expanded many-fold. It is clear then
that the inequality constraint must play a
central role in any unified theory of design.

The class of problem considered in this
chapter is very restricted. Only linear func-
tions are to be minimized subject to con-
straints which are linear in the design vari-
ables. In matrix notation this is, minimize

fxy=CTx 3-1)

where C is an n x 1 matrix of constants. The
design variable x is required to satisfy

Ax < B
} (3-2)

x=0

3-1
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where A isanm X n matrix and B isanm x 1
matrix. The inequality, Eq. 3-2, is taken as

. Qoo %; < by i=1,..,n.

M=

J
i.e., when one vector is less than or equal to
another vector, each of the components of
the vectors must satisfy this relation.

Example 3-1: Consider the problem of
minimizing

f)=x, *t2x, (3-3)
subject to the constraints
2x, tx, < 4

>0 (3-4)

The constraints, Eq. 34, are satisfied at all
points in the triangular region of Fig. 3-1. The
lines passing through this region are lines of
constant value of f(x). It is clear that as the
line is translated downward, the value of f(x)
decreases and that the lowest line that still
contains points in the admissible region oc-
curs for x; + 2x, = 0. Since this line
intersects the admissible region only at (0,0),
f{x) takes on an absolute minimum at (0,0).

%1
£ «+ -+
MI\‘Q@\

2y~ 255 2%

Figure 3-1. Graphical Solution of
Example 3-1

¥ -+
"
NS "y
4’"0

2%2 &
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As will be seen in the following paragraph,
this is typical of linear programming prob-
lems.

Before proceeding to the next paragraph, it
is worthwhile to discuss the applicability of
lincar programming. The theory of linear
programming arose out of studies of econom-
ic activities. In economics it is often the case
that behavior of an economic system is
predictable only in a rather crude way, so
frequently a linear relation among variables is
as good a representation as can be expected.

In engineering design, however, it is very
seldom that the behavior of an object or
process can be described by linear expres-
sions. One might be tempted, then, to com-
pletely ignore linear programming. Even
though it is not directly applicable to most
engineering design problems, however, linear
programming is still a very powerful tool
First, even though the computational pro-
cedures of linear programming do not carry
over to the real nonlinear world, many facets
of the behavior of solutions are very similar in
more general programming problems. The
engincer who has mastered linear pro-
gramming will go into the study of the much
more complex nonlinear programming armed
with a powerful tool — intuition. Further, the
solution of many nonlinear problems can be
reduced to the solution of a sequence of
linear programming problems. For a review of
some of these applications of linear pro-
gramming methods see Ref. 1.

3-2 PROPERTIES OF LINEAR PRO-
GRAMS

To formalize the discussion of the previous
paragraph, the following definition is made.

Definition 3-1: The linear programming



problem is the problem of determining that x
in R” which minimizes

BTx ) 3-5)
and which satisfies

Ax = C (3-6)

x>0 (3-7)

where C # Oisanm X 1 matrix, 4 isanm x n
matrix, B is an n X 1 matrix and the
symbolism < (=) as applied to matrices means
that the relation less than or equal to (greater
than or equal to) holds for corresponding
components of the matrices.

It should be pointed out that Eqs. 3-5
through 3-7 do not explicitly cover all linear
optimization problems. For example, it may
be required to maximize a linear objective
function. Further, equality constraints may
be imposed and negative values of the x; may
be allowed. However, all these variations on
the linear programming problem may be put
into the form of the problem previously
considered. An objective function may be
maximized by minimizing its negative, equal-
ity constraints are nothing more than a pair of
inequality constraints (i.e., ¥ = O if and only if
¥ < 0 and —y < 0), and a negative x, may
always be written as the difference between
two new non-negative variables. There is
therefore, no loss of generality in considering
only the problem expressed by Eqgs. 3-5
through 3-7.

Definition 3-2: The constraint set for the
linear programming problem of Def. 3-1 is the
set of points in R” which satisfy Eqs. 3-6 and
3-7.

The constraint set associated with a prob-
lem is just the set of design variables which
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describe an admissible object or process, i.e.,
one which performs the required service but is
not necessarily optimal. In LP the constraint
set is a polyhedron and, according to Def. 24,
this constraint set is convex. Further, accord-
ing to the same definition, the cost function
f(x) for LP is convex. If the constraint set is
bounded and nonempty, it is necessarily also
closed and all the hypotheses of Theorems 2-2
and 2-3 are satisfied. One then concludes that
f(x) has a strict absolute minimum in the
constraint and that is has no other relative
minima.

Further, if f(x) had a minimum in the
interior of the constraint set, the necessary
condition of Theorem 2-1 implies

§£ =c¢.=0,i=1,..,n

0x; !
which contradicts Def. 3-1 of LP. Therefore,
f(x) cannot have a minimum point in the
interior of the constraint set but must take on
its minimum at the boundary. Weyl has
shown, in fact, that the solution must lic on
one of the vertices of the polyhedral con-
straint set (Ref. 2).

In spite of this elementary theory, it is
possible that a linear programming problem
may not have a solution. This may happen for
two reasons. First, the constraint set may be
empty; and second, the constraint set may be
unbounded and the cost function may be
decreased without restriction. In order to
facilitate discussion of these difficulties,
Definition 3-3 is made.

Definition 3-3: If the constraint set of LP
is nonempty (empty), the problem is called
Jeasible (infeasible). If the constraint set is
unbounded and the cost function is not
bounded below, then the problem is called
unbounded.

3-3
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The concept of the dual problem that will
be used in constructing solutions of LP’s will
now be discussed. The dual problem will also
play a major role in obtaining results for more
general optimization problems.

Definition 3-4: The linear programming
problem of maximizing

CTy ) (3-8)
for y in R™ satisfying
L LPD
ATy < B (3-9)
y=-o /

where the matrices 4, B, and C are the same
asin LP, and are called the dual of LP.

The results of Theorem 3-1 relating LP and
LPD are proved in Ref. 3, page 41, and Ref.
4, page 118.

Theorem 3-1: Let x and y be in the
constraint sets of LP and LPD, respectively.
Then

1. Ty < BTx. (3-10)

2. CTy = BTx thenxandy  (3-11)
are the solutions of LP and LPD, respectively.

3. If LP (LPD) is unbounded, then LPD
(LP) is infeasible.

4. If LP (LPD) is feasible and LPD (LP) is
infeasible, then LP (LPD) in unbounded.

These results are useful in constructing
solutions of linear programming problems.
They are also used in providing Theorem 3-2
that is central to linear programming theory.

3-4

Theorem 3-2: Let LP and LPD both be
feasible. Then both have solutions x and y,
respectively, and BTX = C7T5.

The proof of Theorem 3-2 is involved and
does mnot yield a method of constructing
solutions. It may be found in Ref. 3, page 44,
or Ref. 4, page 118.

Since the solution of LP must lic on a
vertex of the polyhedral constraint set, it
suffices to check at most a finite number of
points for the minimum. This procedure is
followed in an organized way by beginning at
any vertex of the constraint set. If the cost
function cannot be decreased by moving
along an edge of the polyhedron that inter-
sects this vertex, then this vertex is the
solution. If, however, the cost function de-
creases by moving along some edge, this
policy is followed until a second vertex is
reached and the cost function has been
reduced. Since there are only a finite number
of vertices and it is impossible to return to a
previously occupied vertex, the process must
terminate at the minimum over the constraint
set.

In order to illustrate the argument pre-
sented in the preceding paragraph, consider
Example 3-2.

Example 3-2: By moving along edges of
the constraint set, solve the LP

minimize f(x,, x, )= — 2x1 —x,
subject to
—-x; = —1
— X2 — 1

—2x; — 2, > = 3



X1,Xq 2 0.

Solution: The polyhedral constraint set is
shown in Fig. 3-2.

a1/2,1)

(1,1/2)

rxl

Figure 3-2. Polyhedral Constraint Set

The vector

_ava(xl L Xp) = o

whose direction as shown in Fig. 3-2 is the
direction of steepest descent of f(x). Starting
at (0,0) a unit movement along the x, -axis
yields a change

df = Vf(0,0)dx = —2

and a unit movement along the x, -axis yields
a change

df = V£(0,0)dx = — 1

so both moves yield a decrease in f{x). Choose
the x,-axis and move to the first vertex (1,0).
The only movement possible is in the
+ x, -direction from (1,0). A unit move in this
direction yields

df = Vi( 1,0)dx = — 1

which decreases £. Move in this direction to
the first vertex (1, 1/2).
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The only move admissible is toward (1/2,
1). A unit move in this direction is obtained
from

which causes a change inf,
a =970 s =+ T Yo=Y

Therefore, f/ may not be decreased in moving
from the vertex (1, 1/2) so this point is the
solution of the problem.

The idea of moving from vertex to vertex is
good for visualization but is poor for higher
dimensional problems. The same idea, how-
ever, can be implemented algebraically. In
order to obtain relations which will be re-
quired for solution of LP, define slack vari-
ablesty,..., u,, so that

Ax - C=u> 0. (3-12)

The cost function of Eq. 3-5 will be denoted
by the variable

w=8Tx, (3-13)

The problem LP now takes the form
Ax _C—-u=0

x=z 0

u=0

w = BTx = minimum

The solution of LP*is the same as the solution
of LP.

3-5
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The information contained in Eqs. 3-12
and 3-13 is contained in the following matrix
equation (called the simplex tableau):

a1 @12 - &in =01 [X1 L3

Q31 22 - Gon | =C2f [*2 Uz
| (3-14)
|

2m1 8m2 - 4mn l —Cn| | % Um

________ +—| |- S

by by by | O]|[1 w

L I . J

Eq. 3-14 may be viewed asm + 1 equations
involving the variables xq,..., X,, %1, .., 4,
w. At present Eq. 3-14 may be interpreted as
determining u,, ..., 4, , and w explicitly in
terms of x,, ..., x, . It might be desirable to
determine some other combination of m + 1
of the variables in terms of the remaining ».
Except in singular cases, this is possible.

Assume now that m + 1 of the variables 54,
...» 8, » and w have been determined explicitly
in terms of the remaining » variables 7, ,..., 7
Eq. 3-14 will then take the form

n-

[ ' ' YT
a1 412 ... @p —Cq ry §1
' ' ' ’
azy1 432 .. Azp —Ca ra Sz
=] G-15)
’ ' ' ’
2m1 8mz2 - 8mn —Cm| |In Sn
' ' '
bl b2 bn 6 IJ w

where primes denote coefficients obtained
when the original set of equations is solved
forsy,.... s, ,and w.

The solution of LP will be constructed

3-6

using a method which is based largely on
Theorem 3-3.

Theorem 3-3: 1f in Eq. 3-15 b/ > 0.i=1,
w.n and —¢ 5 0 j = 1,.., m, then the
solution of LP is

r=0,i=1...n
§;=—cp ] l,...m
w =6

It is clear from this theorem that any
method of choosing the variables s; and 7,
which will terminate with non-negative entries
in the last row and column, except perhaps
for 6, will serve as a method of solving LP.
Before developing such a method, several
definitions will be helpful.

Definition 3-5: In Eq. 3-15, the variables
sr,j = 1,..., m, are called basic variables, while
the variables r,, i = 1,..., n are called nonbasic
variables.

Definition 3-6: The set of variables s, ...
, Will be called a basic point. If ¢;
< 0,j=1,.., m,in Eq. 3-15, then the basic
point will be called a basic feasible point.

Sm,rl yoers T

A certain geometric interpretation may
now be given for the nonbasic variables. In
LP' it is clear that the boundary of the
constraint set of LP is obtained by setting
various combinations of the variables x,, i = 1,
.., n and ) j=1,..,m,equal to zero. In the
space R" of the design variable x, a vertex of
the polyhedral constraint set is obtained by
having »n equality constraints among the x,, / =
1, ..., n, enforced. By the discussion, this
occurs when r, =0,i=1,..., n. An edge of this
polyhedron is a line in R” obtained by setting
r.= 0 forn — 1indices i. From Def. 3-6 and



Ey. 3-15, it is clear that a basic feasible point
corresponds to a vertex of the polyhedral set.
This is true since setting the nonbasic vari-
ables of the basic feasible point equalto zero
yields admissible basic variables. Further, two
vertices lie on the same edge of the constraint
set if they have » — 1 of their nonbasic
variables in common.

The process for interchanging the roles of a
basic and a nonbasic variable thus becomes
the central tool for methods based on Theo-
rem 3-3. Suppose it is desired to make $; a
nonbasic variable and ra basic variable. If alf].
# (O then the ithequation from Eq. 3-15,

' ! ' —
ai1r1 +.. +a1.].rj toota,r, —c; =

may be solved forr; to obtain

’
¢ 9y @i
= h - 7 i
ij ij ij
s, 4
i ij+1
+——— T+ (3-16)
a; a;
I
ain
-, ——r
al. "

Using this expression for #; r; may be
eliminated from the left sides of the remain-
ing equationsin Eq. 3-15. For Xk #£ i this yields

r ?
, Qi1 O
Gy — 77 |
aij

’ !
R @1 %k
akj—l —T‘ rl.
if

-1

al 4 ’
kj , aii+1gkj
5+ Qi — u;:,— L2 (3-17)

i
aij
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13 13
ol @,
Cp — a 7y
if
’ ’
ciak]
o K 5y

It is thus clear how the coefficients in Eq.
3-15 change as the roles of a pair of variables
are interchanged. This process may be de-
scribed concisely in the language of Definition
3-7.

Definition 3-7: The entry a;; # 0, preced-
ing Eq. 3-16, is called the pivotr of the
transformation. The transformation itself is
called apivot step.

The effect of the pivot step on the coef-
ficient matrix of Eq. 3-15 may be illustrated
easily by the diagram

1 o
p o« - - =
p p
N V. (3-18)
BT o
B v LA
14 14

The diagram shown by Eq. 3-18 simply relates
that in the coefficient matrix of Eq. 3-15 the
following changes occur. The pivot is replaced
by its inverse. All other elements in the same
row as the pivot are multiplied by the
negative inverse of the pivot. All other ele-
ments in the same column as the pivot are
multiplied by the inverse of the pivot. All
other elements in the matrix are decreased by
the product of the element in their column
and the row of the pivot, the element in their
row and the column of the pivot and the
inverse of the pivot.
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Example 3-3:

Given 21 —4llr Sy

w
(@)

-5 3 2 1 w_

interchange the role of ; and s,.

Solution: The new matrix relation is
2/3 =3 —14/3]] s, sy
1/3 = 2= 1/3|| ra] = 1y

-5/3 13  11/3JL1 w

It is shown in Ref. 3, page 53, that this
pivoting transformation preserves the dual
linear programming problem.

The pivoting transformation is an organized
tool which allows one to interchange basic
and nonbasic variables. It remains only to
obtain an algorithm which uses this tool and
Theorem 3-3 to construct the solution of LP.

3-3 THE SIMPLEX ALGORITHM

As was shown in par. 3-2, the solution of
the linear programming problem may be
reduced to the choice of pivot points. The
algorithm presented here will have two
phases. The first phase will consist of an
algorithm for obtaining a basic feasible point.
The second phase will operate only with basic
feasible points and will successively reduce
the cost function until the hypotheses of
Theorem 3-3 are satisfied.

For convenience in the discussion which
follows, it is assumed that the choice of basic
and nonbasic variables has been made at a

3-8

given stage of the solution process and the
primes of Eq. 3-15 are dropped, i.c.,

@y, ... @1p —c¢1] [r1] 511

= (3-19)
am1 Admpn —Cm 'n Sm
P I I

Primes will now be used to denote the
coefficients that result from a pivot step
applied to Eq. 3-19. These new coefficients
are determined by applying Eq. 3-18.

3-3.1 DETERMINATION OF A BASIC FEA-
SIBLE POINT

If some elements in the right-hand column
of the matrix of Eq. 3-19 (other than 6) are
negative, then the present choice of variables
is not a basic feasible point. Let — ¢, be the
negative entry nearest the bottom of the
column (again excluding 6). Since when r, =
0,7=1,..,n 5 =-c¢ < 0,if there are
admissible points in the constraint set of LP,
then it must be possible to increase s, by
increasing some r from zero; i.e., there must
be some positive . Choosej, so that Bjo >
0. This fixes the column index of the pivot.

To find an admissible row index i,, con-
sider first that after the pivot step

C.
' ‘o

%440

It is clear then that candidates for the pivot

% io must be limited to indices i for which

— o0 (3-20)

a 7o



With this restriction in mind, consider the
values of ¢; after the pivot step with i # i,.

These are

C, a;;
= (3-21)

arg jo

In order to insure — ¢; = O, [ > k, it is

required that
o7,
—t—— 2 0,i> k i#Fi, . (3-22)
L
tolo
If a,, > O this clearly holds. If a; < O,
I o ijo
however, the requirement, Eq. 3-22, may be

rewritten as
C.
C.
S, >k IFi (3-23)
a, a, . 0
ijo 10J0
Further, fori =k,

Cin%ki

> -0 (3-24)

i . o>
sincea ; 0.

Inequalities, Eqs. 3-23 and 3-24, show thal
if  is chosen so that

Gio _min [ ¢ |i >0 (3-25)
Z ., i»k \a,

a..
folo o Jo

’

then —c; > 0,i>kand — ¢, > —¢,. If — ¢,
is still negative, the process may be repeated.
Otherwise choose the next entry above — ¢,

which is negative and repeat the process.

If all the ¢, i = k arc nonzero, only a finite
number of basic points are possible since the
process is monotone (nonrepeating). If there
exists a point with —¢; > 0,7/=1, ..., m, this
process must find it. The degenerate case in
which some ¢, = 0,7 > k is discussed later.
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The process described may be given quite
simply as the iterative Algorithm LP-A:

Step 1. Choose — ¢, as the lowest negative
entry (with the exception of 6) in
the right-hand column of the co-
efficient matrix of Eq. 3-19.

Step 2. Choose any positive element Ui
in the kth row of the matrix of Eq.
3-19.

Step 3. Choosc i, asin Eq. 3-25

Step 4. Perform the pivot step with pivot
al.ojo.

Step 5. If any — ¢, < 0,i= 1.,k choose
that one with largest index i and
return to Step 1.If —¢, > 0,i=1,
.., m, then a basic feasible solution
has been found and the process
may be terminated.

3-3.2 SOLUTION OF LP

In par. 3-3.1 an algorithm is given for
finding a basic feasible point. Once this has
been accomplished, the object is to find a
second algorithm which successively reduces
w.

Since by Eq. 3-19,w =byr; +... b r +
6, it is clear that if b}.0 < 0 for some; =j;
then w may be reduced by increasingr; from
zero. If a pivot step is performed which makes
T, A basic variable then w will be decreased.
The choice of the basic variable Sto which is
to be made nonbasic must be made in sucha
way that the point obtained after the pivot
step is still a basic feasible point, i.e., so that
—¢ > 0,1 =1, ., m However, this is
precisely the restriction which led to the
choice of i, in par. 3-3.1. Therefore, the same
procedure for choosing i, may be employed
here.

3-9
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Since w'=Ww —¢; by Ja; ;. the pivot step
determined here guaranteces w' < w provided
al —¢; > 0,i =1, ., m In this case,
therefore, only a finite number of pivot steps
may be made, and the process must terminate
at the solution of the linear programming
problem. Termination occurs when b/f > 0,7/=
1,..., n. Theorem 3-3 shows that this is the
solution of the linear programming problem.
The degenerate case where some ¢, = 0 will be
discussed par. 3-3.3.

This process is given explicitly in Algorithm
LP-B:

Step 1. Choose any negative entry (except
6) b, in the bottom row of the
coefficient matrix of Eq. 3-19.

Step 2. Choose i according to Eq. 3-25

with k = 1.

Step 3. Perform the pivot step with pivot
oo

Step4. If any b; < 0, j=1,.., n, choose
one b; < 0 and return to Step 1.
If b/. > 0,7 =1,.., n, then the
solution of LP has been found.

3-3.3 THE DEGENERATE CASE

In both pars. 3-3.1 and 3-3.2 the computa-
tional algorithms could have problems if some
¢; = 0. This situation is called degenerate since
when » constraints are made equalities by
putting 1= 0,j=1,..n,0nchass, =c¢; =0
which means that still another constraint is an
equality. The degeneracy arises from the fact
that in LP the #» dimensional design variable x
= (x,...x,) satisfies n +1 linear equalities.

Therefore, the # + 1 equations are not linearly
independent.

3-10

Viewed geometrically, the difficulty occurs
because the path which successive basic points
follow on the polygonal constraint boundary
may form a closed loop. To prevent this
behavior with only a small error in the final
solution an entry, — ¢;, which is zero, is
replaced by an arbitrarily small parameter E >
0. The problem is not degenerate any longer
and cycling cannot occur. Therefore, the
altered problem will proceed toward the
solution.

Example 34: Use the simplex algorithm to
solve the LP

minimize 2x, t 9x,+ x,
subject to
X; +H4x,+2x, > 5
3x; +txo+2xy 2 4
x, >0
x,20
xy > 0.
First, LP' is:

minimize w where

1 42 -5 |x ”
3 12— x2| = | uy
01 0_ X3 w
1
subject to

x;20, i=1,2,3, u].>0, i=1,2



For the first pivot step in algorithm LP-A,
k = 2. Choose j, = 1 sincc a,, = 3 is the
largest element in the sccond row. i, = 2 is
the only choice availablc in Eq. 3-25 and
il ~4-4s0.
a22

The pivot is a,, = 1. This pivot stcp inter-

changes u, and x, ' The result is

11 4 -6 117||x) ",

-3 1 =2 4|lu| = |x,

=25 9 —17 36.1| x; w
1

Note that this basic point is alrcady a basic
feasible point so that the process now trans-
fers to algorithm LP-B. Sincc b'; is most
negative, choosej, = 1. Now,

—CI— :] i =-4;
a1 a21 3>
s0 iy = 1. The pivot is then a;y = — 11. The

result of a pivot step is to interchangc x, and
u, . This results in the basic feasible point

— /11 4/11 —6/11 1| u,]| X,
311 — V11 =411 1 || u,] = | x2
25/11 — 1/11—=37/11 11| x, W

1]

Choose j, = 3.

2 e 11/6, AL 11/4,

@14 Q23

s0 ig = 1. The pivot is g,, = — 6/11 and a
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pivot step leads to

~1/6  2/3 —11/6 11/67| | 4y] | xs

1/3 13 23 153 ||w X,

17/6 —7/3 376 29/6_| | % | |w
i -

Putj, =2,

Cy Cy

— =_11/4, ——_ =1,
a2, az,

S0 ig = 2and g,, = — 1/3is the pivot. A pivot
step yields

12 =2 12 520\ [u]] [

1 =3 2 1 |{x]|= [=

/2 7 32 s/2d | x, w
Iy

Since this is a basic feasible point and the
first thrce elements in the third row arc
positive, then the solution is immediate. The
nonbasic variables are zero,

Uy =x, = X5 =0
and the basic variables take on the value

x3=5/2, y, = 1l.and w=5/2.

Therefore, the solution to the original LP is

x, =0
X,=0
x3=5/2.

The minimum value of f(x) attained is 5/2.

3-11
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3-4 MINIMUM WEIGHT TRUSS DESIGN

As will become apparent in subsequent
chapters, most optimal design problems are
nonlinear. Even the problems considered in
this paragraph appear at first glance to be
nonlinear. However, it is shown that the
problem can actually be solved as a linear
program. This will not be the case in general.
The class of problems and their solutions that
are discussed in this paragraph are taken from
an outstanding paper by Dorn, Gomory, and
Greenberg (Ref. 5). Similar results have been
reported more recently (Ref. 6).

The problem treated here is minimum
weight design of plane trusses with constraints
on stress. The initial restrictions on the truss
include only the location of joints in the
truss. The loads to be supported by the truss
are applied at joints. A member with non-
negative cross-sectional areca is allowed to
connect each pair of joints. If there are u
joints, there may be u(u — 1)/2 members in
the truss. In general, then, statically indeter-
minate trusses are allowed.

Let A]., j = 1,.., n, denote the cross-
sectional area of jth member and S; the load
in that member due to the external loads
applied to the truss; Sj > 0 denotes tension. If
m = 2u, then equilibrium of the joints of the
truss is specified by the equations

n

2 S =F, =1, m (3-26)
where F; are components of applied forces at
the joints, and g;; are direction cosines of the
clements of the structure intersecting the jth
joint. All a;; are zero if the jth element does
not intersect the point of application of £, In
order to satisfy three equilibrium equations
for the applied loads (including reactions at
supports), itisassumed therearem™® =m — 3
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linearly independent equations in Eq. 3-26.

If o is the maximum allowable stress (both
tensile and compressive) for the material from
which the truss is constructed, then stress
constraints are

1S, 1< oA, . (3-27)

Further, if p is the weight density of the
structural material, the total weight W of the
truss which is to be minimized is

W=p Z AL

2 A (3-28)

where ¢ is the length of the jth member.

The problem of minimizing W of Eq. 3-28
subject to the constraints of Eqs. 3-26 and
3-27 is not the complete truss design problem.
In addition to the equilibrium conditions of
Eq. 3-26, a set of compatibility conditions
between displacements of the joints must be
satisfied. These compatibility conditions will
be nonlinear in the variables S] and 4 ;- In its
complete formuiation, then, the truss design
problem is not a linear programming problem.
It will be shown, however, that if the com-
patibility conditions are ignored and the
problem described by Eqs. 3-26, 3-27, and
3-28 is solved, its solution satisfies the com-
patibility conditions and is, therefore, the
solution of the truss design problem.

Recalling that compatibility relations are
being ignored, it is required that

IS =0A;, j=1,.. 1. (3-29)

This is true since if S | < oA, for somej, then
4; could be reduced with an accompanying
reduction in W. The constraint, Eq. 3-27, is
therefore replaced by Eq. 3-29. The reader

should note that this argument would not be



valid if compatibility conditions were being

enforced, since a reduction in some 4; may
result in a violation of a constraint not
involving 4 ; explicitly.

Since by Eq. 3-29,4; = -(;I-IS]. |, the optimiza-
tion problem is now to minimize

W=t

Q

subject to Eq. 3-26. In order to treat this
problem as a linear programming problem,
define

S, if S, > 0
St =
j
0, ifS].< 0
0, ifS].> 0
SJ._ = .
—S’., 1fS].< 0
Now,
— ot -
5 =5 _SJ
and
— o+ —
1S, 1=} +5;
Denote
T _ -
X =S}, .8F ST S,
cT =(F, ,..,F.)
_ 1
A =(ayt —a),  ap
and
o
T =_
BT = (@, £, 805 %)

In this notation, the problem is of the form
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LP’, namely, find x to minimize

BTx (3-30)
subject to

Ax- C=0 (3-31)

x =z 0 (3-32)

This linear programming problem may now
be solved by the simplex method. Before the
solution of the linear programming problem
can be taken as the solution of the truss
design problem, however, it must be shown
that it satisfies the compatibility conditions.
It is clear that if the truss specified by the
linear programming problem is statically
determinate, it satisfies the compatibility con-
ditions trivially (i.e., there are no compatibil-
ity conditions). For the analysis here, stat-
ically determinate is taken to mean that the
member forces S; are uniquely determined by
the given loads and the equilibrium conditions
of Eq. 3-26.

As pointed out in Ref. 5, page 32, there
will be m* possibility nonzero components of
x (basic variables) in the solution, correspond-
ing to linearly independent columns of the
matrix 4 ; i.e., only m* of the §; will possibly
be nonzero. According to Eq. 3-27, then, only
m* of the areas may be nonzero. Further,
since the rank of 4 is m*, the member forces
are uniquely determined. The resulting truss
is, therefore, statically determinate and hence
is the solution of the original truss design
problem.

It is pointed out (Ref. 5) that the simplex
method for solving many member truss design
problems is relatively time-consuming. It is
proposed that the method be refined for this
class of problems to obtain a practical method
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of solving engineering design problems. Sever-
al examples are solved in considerable detail
in Ref. 5;the results of one of these problems
will be discussed here.

A bridge truss is to be designed to span two
points, 1 and 13 of Fig. 3-3. Three vertical
levels of joints are allowed with five horizon-
tal sets, a total of 15 points, as shown in Fig.
3-3. In the general case there could be
15(14)/2 = 105 members in the truss. Loads
on the floor of the truss are shown in Fig. 3-3.

™

9 12- 15
_f__z. 5. 8- 11- 14
Ll. 7. 10-
[ T
g+ H+g

Figure 3-3. Admissible Joints for Bridge Truss

In the solution presented in Ref. 5, it is
assumed that the truss is symmetric about the
line of joints 7-8-9. This assumption reduces
the number of variables to 57. Further, due to
the assumed symmetry, there are only 14
independent equilibrium conditions. There-
fore, there will be only 14 members which
can be nonzero in the optimum truss. In the
solution presented in Ref. 5 the problem is
made nondimensional by defining a = #/2 and
B=H/V, where h and 2 are the vertical and
horizontal spacing, respectively, and H and V
are applied loads shown in Fig. 3-3.

The solution presented in Ref. 5, page 45,
for a fixed value of B(8 = 1) shows that there
are three subintervals of values of a on each
of which the truss has a constant geometrical
form. For different values of a within a given
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subinterval, the member sizes are different. A
plot of W vs a and the forms of optimal
trusses are shown in Fig. 3-4.

1 2 ‘3 4

Figure 3-4. Optimum Bridge Trusses

The discussion here only touches on the
highlights of the very complete treatment of
the truss design problem in Ref. 5. The
interested reader is encouraged to study this
outstanding article in detail.

Before leaving the truss design problem, a
point of interest in the present results and in
the results obtained in future chapters may be
noted. In Fig. 3-4 it is clear that at two valucs
of a the form of the optimal truss changes
form drastically. Still, even though the
topology of the structure is not continuous in
a, the weight apparently is a continuous
function of a. The same sort of behavior
occurs in a beam design problem with con-
straints on deflection which is discussed in
par. 7-4. These problems might lead one to
suspect that there is some basic mathematical
structure of the optimal structural design
problem that has not been uncovered.

35 AN APPLICATION OF LINEAR PRO-
GRAMMING TO ANALYSIS

. A major application of linear programming
in engineering design is, oddly enough, in



nonlinear programming. It is seldom that a
realistic engineering design problem can be
formulated as an LP. Realistic problems are
generally nonlinear when considered as a
function of both state and design variables.
Several techniques of solution of nonlinear
programming problems are based on approxi-
mation of the nonlinear problem by a linear
one, at least locally. These methods then
require that the approximating LP be solved.
This subject will be deferred until a discussion
of the general theory of nonlinear pro-
gramming has been given.

A second application of linear pro-
gramming which is of concern to the engineer
is in the solution of linear boundary-value
problems that arise in such fields as con-
tinnum mechanics. It should be emphasized
here that this application is not of an optimal
design nature, but rather falls in the field of
engineering analysis.

One of the important methods of solving
linear boundary-value problems is to approxi-
mate the solution by a linear combination of
known functions. The question arises, “How
should the coefficients be chosen so as to
obtain the ‘best’ approximation to the true
solution?”” “Best” may be defined in many
ways. A relatively new concept of “best” will
be discussed in this paragraph.

The general linear boundary-value problem
may be stated in operator notation as

Llz] =Q(x), xin & (3-33)
Blz} =q(x), xonTl (3-34)
where £ is the domain of the independent
variable xeR" and I' is its boundary. The

dependent variable is a vector function of x,
z(x) in R™ . In the case of ordinary differen-
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tial equations onx, ¢ x ¢ x,

m diz
L[Z] = tE Oa’.(x) ‘F (3-35)

and the boundary operator is
Blz] = Azfx,) + Bz(x,). (3-36)

In the case of partial differential equations,

alalz
Lzl = £ a,(x)
la|l<m

[«3

ax, . ox, "
(3-37)
and the boundary operator is
Blz] = A(x)z(x),xonl . (3-38)
The method to be discussed treats both the
partial and ordinary differential equations in

the same way. Let ¢;(x),/ = 1,..., k satisfy the
homogeneous differential equation

L[¢J.] =0,in . (3-39)
Further, let ¢, (x) be found such hat
Lig,1 = Q(x),in Q. (3-40)

Since the operator L is linear the new
function

k
E = ¢0 +]E=l C]' ¢](x) (3'41)

satisfies the differential Eq. 3-33 regardless of
the value of the constants ¢;. The object is
now to find these constants so that z satisfies
the boundary conditions of Eq.3-34 as closely
as possible.
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Define
1BIZ1 —qll=""1Blz) —q; 1. (3-42)

In this notation, z will be the solution of the
boundary-value problem if and only if

HBlz] —qx)1I=0 (3-43)
forall points x onI'.

The method to be treated here attempts to
minimize the error in Eq. 3-43 at a large

number of points x*, Q = 1,...,L, on T.
Define
v="HBIZGD] — g Il (344)

The object now is to choose the constants ¢
so as to minimize y. To sce that this is a linear
programming problem, note that Eq. 3-44 is
equivalent to

Bz(x)] —q,(x) <7 (3-45)
and

-B,[7(x*)] tq,(:xH<y (3-46)
for all i and (.

Note that Eqs. 3-45 and 3-46 are linear in
the ¢, and y. Since the g may be either
positive or negative, it is necessary to define

new constants c}“ = 0 and ¢ =0 such that

G=¢ —q - (3-47)

Now, the problem of choosing vy, c;, ¢ (all
non-negative) which satisfy Eqs. 3-45 and
3-46 and which minimize v is clearly a LP.
Further, it is just a restatement of the best
approximation criterion of Eq. 3-44.
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Example 3-4: Obtain an approximate solu-
tion of

A 9%z . 9%z Loz L (348)
Z=_ —_— — — = —
axi  oaxi  x, ax,

inQ={(x;,x)lIx; < 1,0<x, <} with
o0z _ _
z+zg-0 onTl —{(xl,x2)| Ix, I =1,

x,=0o0rx, =1} (3-49)

where # is the interior unit normal to I'.

Put
. 3
%o =ZX§

e (3-50)
2

= 2 _
9, 2x1 X2

_g.4 2.2 4
é, --8x1 —24x1 x; + 3x2.

/

Note that these functions satisfy Egqs. 3-39
and 3-40.

The domain $2 and its boundary I' are
shown in Fig. 3-5. Partial derivatives with
respect to the interior normal are shown.

X
2

L
on ax2
" 0Z [
—— z
— 1 L8z
3z _2dz , n 7 lon ax
an dx,; t I 1
X
2%z !
on ox

Figure 3-5. Boundary Condition for
Example 3-4



The procedure is now to form

= -:ng toe t 02(2):3 —x3)

+ oy (8x) —24x2x2 +3x))

and, with the aid of the expressions for 3z/dn
in Fig. 3-5, compute z + 9z/9n at L points
around the boundary I'. At a typical point,
eg., (1, 1/2),

Zz Z .1 + (11/41
— = —+c, _
z ¥ an 16 ! €2

—(285/16) ¢,
At this point it is required that
1/16+ (c] —cy) — (11/4) (), —¢3)
—(285/16) (¢%, —¢c,) @ ¥
and
— 1/16—(0'; —c7) +(11/4) (c"2 —c3)

—(285/16) (¢} —c3) < 7.
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Similar inequalities in the ¢}, ¢;; and ¥ will be
obtained at all other boundary points chosen.
Under the requirements ¢; > 0, ¢;> 0, and
y > 0, the problem of minimizing v is then
solved.

Rabinowitz in Ref. 1, page 141, reports
that an approximate solution obtained by the
above method is

1 = —0.5571, ¢,=0.0764, c, =0.0024,
v =0.0053.

This means that at all the boundary points x*,
1z Y oz/on | < 0.0053. A result called a
maximum principle from the theory of
second-order elliptic partial differential equa-
tions then implies

[z(x) —z(x) | < 0.0053, xinQ2

where z(x) is the true solution of Eqs. 3-48
and 3-49. This powerful result guarantees that
the approximate solution z generated by
linear programming is within 0.0053 of the
true solution throughout £2.
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CHAPTER 4

NONLINEAR PROGRAMMING AND FINITE
DIMENSIONAL OPTIMAL DESIGN

4-1 INTRODUCTION TO THE THEORY OF
NONLINEAR PROGRAMMING (NLP)

As pointed out in the preceding chapter,
inequality constraints play a central role in
engineering design problems. The inequalities
treated in Chapter 3, however, are of a rather
special form, namely, they involve only linear
functions of the variables of the problem. It is
a rare real-world design problem which can be
put into this form. In general, the inequality
constraints as well as the cost or return
function in real-world problems are nonlinear.
For this reason, a more general theory than
that presented in Chapter 3 is needed.

The class of problems considered here is
called nonlinear programming, or math-
ematical programming. A vast amount of
literature has been devoted to this class of
problems in recent years. Several books on
the subject which contain reviews of this
literature are Refs. 1, 2, and 3. In view of this
extensive literature, the purpose of this para-
graph is simply to state the nonlinear pro-
gramming problem and present some key
results needed in the study of methods of
optimal design.

4-1.1 NONLINEAR PROGRAMMING
PROBLEMS

For convenience and clarity in the develop-
ment of methods of solution, the nonlinear
programming problem will be stated in two
forms. The first form is given by Definition
4-1.

Definition 4-1: The first nonlinear pro-
gramming problem NLP, is: find xeR" to

minimize f(x) 1 (4-1)
subject to NLP
gx)< 0 4-2)
£ (x)
where  g(x) = .
g, (x)

Unless otherwise specified, it will be
assumed that f(x) and g(x) are continuously
differentiable. Other than this differen-
tiability requirement, f(x) and g(x) are as
general as required for a particular problem.

A second form of nonlinear programming
problem, which may actually be included in
NLP, is given by Definition 4-2.

Definition 4-2: The second nonlinear pro-
gramming problem NLP', is: find xeR” to

minimize f(x) (4-3)

subject to
g(x) < 0, NLP' (4-4)
(4-5)
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g
where  g(x)= . ,
& (xL
and — -
hy ()
h(x) = .
;hp (x)_

Unless otherwise specified, it will be
assumed that f(x), g(x), and A(x) are con-
tinuously differentiable.

Very much as in the linear programming
problem, the points x which satisfy the
constraints of NLP and NLP' are charac-
terized by Definition 4-3.

Definition 4-3: The sets of points xeR"
that satisfy the constraints NLP and NLP' are
called constraint sets. They are denoted

D={xeR"| g(x)< 0)
for NLP, and

D'= {xeR"|g(x) < Oandh(x)=0}
for NLP".

For convenience, Theorem 2-2, which was
stated previously in Chapter 2, is given here
(Theorem 4-1) as it applies to nonlinear
programming problems.

Theorem 4-1: If f(x) is continuous on D
(D' )and this set is closed and bounded inR",
then NLP (NLP") has a solution which is an
absolute minimum of f(x) inD (D’').

This theorem is one of the most easily
obtained yet most powerful results in opti-
mization theory. It guarantees existence of a

4-2

solution with only very mild assumptions.
This result is a consequence of properties of
R™ . In the infinite dimensional optimization
problems of Chapter 6, the space of variables
lacks these properties so that no analogous

result is available.

Theorem 4-2 provides an easy test for
closedness of the constraint set.

Theorem 4-2: If the functions g(x) and
h(x) are continuous, then the sets D and D’
are closed in R" .

The boundedness hypothesis of Theorem
4-1 may be more difficult to check, par-
ticularly in complex problems. One must
show that there exists a number a such that if
xeDorD’, thenx”x < a.

To see that NLP' can actually be included
in NLP, define

Bivm X)=h(x),i=1,..,p
and
gi+m+p (x) =— hl(x)’ = 1,...,p.

Now, NLP' is equivalent to the NLP:

minimize f(x)
subject to
£(x)< 0,
R &1 (.x )
where  g(x) = .
Em+ 2p(x)

This is true since

&x)< 0, ji=m*1,.,m+2p



isjust
hi(x)< 0, ] = l,..,P

and

k()< 0.j=L..,p
which is equivalent to
h(x) = 0.

It should be clear that problems of maxi-
mizing fA(x) are put into the form NLI,’\ or
NLP' simply by defining f(x) = — f(x).
Further, constraints of the form £(x) > 0are
transformed to the proper form simply by
defining g(x) = —g2(x). These transforma-
tions involve no theoretical or practical diffi-
culty. As will be seen in par. 4-2, even though
the transformation of NLP' into NLP involves
no theoretical difficulty, severe practical diffi-
culties occur. The explicit characterization of
equality constraints in NLP' will be useful
later, when methods of constructing solutions
are discussed.

Comparing nonlinear programming prob-
lems with the unconstrained problems of
Chapter 2, one might conclude that the
nature of the cost function f(x) will deter-
mine the location of the minimum point, with
only a check required to wverify that con-
straints are satisfied. Since the linear pro-
gramming problem is a special case of the
nonlinear programming problem, the results
of Chapter 3 show vividly that this conclusion
is false. In the linear problem, the cost
function plays only a minor role in the
simplex algorithm and most of the computa-
tional effort is expended operating on the
constraint functions.

While results from the linear programming
problem yield valuable insight into the non-
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lincar programming problem, one must be
careful not to generalize too much. To
illustrate some differences between linear and
nonlinear programming, two examples will
now be treated.

Example 4-1 :
Minimize
fO)=(x1 =3)* +(x; —3)?
subject to constraints
—x <0
—x, <0
Xy +x; — 4<0,

The constraint set is the shaded triangular
region in Fig. 4-1.

4,0

(0, 0) 4, 0) *1

Figure 4-1. Graphical Solution of Example 4-1

If the constraints are ignored, f(x) takes on
its minimum at the point (3,3). Observing the
circles, which are plots of constant value
curves of f(x), it is clear that the smallest
value f(x) takes on in the shaded triangle is
7(2,2) = 2. This is, therefore, the solution of
the problem.

It should be noted that even though the
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solution occurred on the boundary of the
constraint set, it did not occur at a corner as
it would have if the problem had been linear.

Example 4-2:
Minimize
) =(x; 12 +(x, — 1)?
subject to the constraints
—x; <0
—x, < 0
x; +tx, —4< 0.

The constraint set is just the same as in the
previous problem. The cost function, how-
ever, has been modified.

If the constraints are ignored, f(x) takes on
its minimum at (1,1). Since this combination
of design variables satisfies the constraints, it
is the solution of Example 4-2. The solution
of this nonlinear programming problem,
therefore, occurs in the interior of the con-
straint set. This behavior contrasts sharply
with that of linear programming problems
where the solution must occur on the bound-
ary of the constraint set.

These examples show conclusively that the
properties of NLP, and hence, also NLP’,
differ considerably from those of LP.

Theoretical results and computational
methods for NLP and NLP’ will also be more
complex than those for the linear pro-
gramming problem. The reason for this is
clear. Strong use was made of linearity of the
functions involved in the linear programming
problem, and this linearity is not present in
the nonlinear programming problem. The
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increased complexity of nonlinear as opposed
to the linear problems is not surprising since
increased complexity generally accompanies
this transition in all mathematical disciplines.

Due to the complexity of NLP and NLP’,
methods of obtaining their solutions are
generally computational in nature. Moreover,
in many meaningful engineering problems,
convergence proofs are not available so the
designer must depend heavily on his engineer-
ing intuition. One must be extremely careful
in applying engineering intuition to certain
aspects of optimization problems, however. In
most problems of engineering analysis, exis-
tence and uniqueness of solutions are taken
for granted since these properties hold for
very general classes of problems such as linear
elasticity, dynamics, circuit theory, and struc-
tural analysis. Existence and uniqueness ques-
tions in optimization problems are, however,
by no means trivial. For instance, before the
designer commits himself to a design based on
an optimum obtained by a computational
algorithm, he should seriously consider the
possibility that this optimum is only relative
and an absolute optimum exists that will give
much better results.

Due to the weakness of intuition in dealing
with optimization problems and the inherent
complexity of these problems, the importance
of theoretical results concerning existence,
uniqueness, and necessary and sufficient con-
ditions cannot be overemphasized. The re-
mainder of this paragraph and par. 4-2 are
devoted to these questions, while pars. 4-3
through 4-5 contain methods for obtaining
solution of NLP and NLP’.

4-1.2 GLOBAL THEORY

In nonlinear programming problems one
often obtains a relative minimum of f(x) in



the constraint sct. The question arises, “Is this
relative minimum an absolute minimum?” In
general problems it is difficult to answer this
question. There is a class of problems, how-
ever, in which this question is easily answered.
This class is described by Definition 4-4.

Definition 4-4: If D (D’)is a convex set
and f(x) is convex on D (D”) then NLP (NLP)
is called a convex programming problem.

Theorem A-1, Appendix A, guarantees that
if g;(x), i=1, .., m, are convex functions,
then the set D is convex. Since the equalities
(Eq. 4-5) in NLP’ define a surface inR” ,it is
clear that D’ is the intersection of that
surface with the set { xeR™|g,(x) < 0,i= 1,
... m) . The surface is convex if and only if it
is a plane, or equivalently, if and only if each
hl.(x) is linear in x. Since by Theorem A-6,
Appendix A, the intersection of two convex
sets is convex, D’ is convex if g(x), i= 1, ..,
m, are convex and hl.(x),j = 1,.., p are linear.
The class of problems NLP* which are convex
is, therefore, quite restricted.

As will be clear from what follows, con-
vexity is a very desirable property. However,
in the real world, many optimization prob-
lems are nonconvex. In spite of this fact, the
study of convex problems is justified. Many
results which hold only in convex problems
have led to constructive methods which are
effective for finding local extrema in noncon-
vex problems. Some of these methods would
probably never have been developed if only
general nonconvex problems had been
treated.

One of the powerful results which follows
due to convexity is given in Theorem 4-3.

Theorem 4-3: A relative minimum in a
convex programming problem is an absolute
minimum.
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41.3 LOCAL THEORY

Without convexity it is difficult to say
much about global properties of the solution
of NLP or NPL‘ Considerable theory is
available, however, which characterizes local
minima. The approach in the local theory is
to suppose that f(x) has a relative minimum at
apoint inD or D’ and then find conditions on
Jf(x), g(x), and A(x) which must hold at this
point. In this way, many points in D and D’
may be eliminated as candidates for a relative
extrema and perhaps relative extrema can
even be located using these conditions. Such
conditions, therefore, are called “necessary”.
In some problems it will be possible to obtain
a set of conditions that, if satisfied at a point,
guarantee that this point yields a relative
extremum. Conditions of this kind, of course,
are called “sufficient”.

As often happens in engineering, the engi-
neer needs a powerful result developed in
mathematics to solve his problem. Proof of
this result, however, may be very complex
and, in fact, contribute very little to the
engineer’s insight into his problems. This
appears to be the case in many phases of
optimization theory, in particular, in the
study of necessary a.id sufficient conditions
in nonlinear programming. In the remainder
of this paragraph results will be Forrowed
from mathematical developments.

Before meaningful results may be given for
NLP and NLP’, the following conditions will
be required of the constraint functions g(x)
and A(x).

Definition 4-5: (First-order constraint
qualification): Let x® be a point in the
constraint set D’ (or D if there are no equality
constraints) and let the functions g(x) and
h(x) be differentiable at x°. Then the first-
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order constraint qualification holds at x° if
for any nonzero yeR" such that Vgl.(x°)y e 0
for each i with g,(x®) = 0 and VA(x®)y =0,
then p is tangent to a differentiable arc
passing from x° into the constraint set.

Geometrically, this definition says that if
the vector y is a direction which, to first
order, appears to point from x° into the
constraint set, then there is a curve with » as
tangent which actually passes from x° into
the constraint set. The conditions Vg,(x°)y a
0 forg(x") = 0 and VA(x®) = O are just first
order perturbations of g;(x) and A(x) which
indicate that a small move in the y-direction
ought to do the right thing to g{x) and
h(x). This is illustrated in Fig. 4-2.

Figure 4-2. First-order Constraint
Qualification

While all constraints do not satisfy the
first-order constraint qualification, the follow-
ing theorem (Ref. 1, page 19)identifies a class
of constraints which do.

Theorem 4-4: If g(x) and A(x) are differ-
entiable at x° in D' and if the gradients
vg(x°), for i with g,.(x") = 0, and Vh].(x")
are linearly independent, j = 1,.. ., p, then
the first-order constraint qualification is satis-
fied.

4-6

In this result, and in fact, in the remainder
of this paragraph, the problem NLP' is de-
scribed. It is clear, however, that puttingp =0
in NLP' yields NLP. One of the principal
results of nonlinear programming may now be
stated. For proof the reader is referred to Ref.
1,page 20.

Theorem 4-5: (Kuhn-Tucker Necessity
Theorem): Let the functions f(x), g(x), and
h(x) be differentiable and let the constraint
functions satisfy the first-order constraint
qualifications at a point X in D' of NLP'". In
order that x be a relative minimum for NLP'
it is necessary that there exist multipliers
veR™ and we RP such that

v;2 0,i=1,...m (4-6)
vg)=0,i=1,...,m (4-7)
and
VL(xyw)=0 (4-8)
where

LGeyw) =fx) +vTgx) +wih(x)  (4-9)
is called the Lagrangian.

In a sense, Theorem 4-5 is an existence
theorem. Tt asserts that if X yields a relative
minimum for NLP', then the multipliers v and
w exist and that Eq. 4-8 is satisfied. Occa-
sionally, one will run across an argument
attempting to justify this theorem which
states that

fx)=f(x) +vTg(x) +wl h(x) = L(x,v,w)

since v is defined by Eq. 4-7 and 4 = 0. It is
then claimed that since x yieclds a relative
minimum for f(x) it must yield a relative



minimum for L(x,»,w), so VL(x,y,w) = 0
must hold. This argument is nof valid. For a
rigorous proof of Theorem 4-5 the reader is
referred to Ref. 1.

Theorem 4-6 states additional conditions
which are required to hold if the functions
appearing in NLP' have two derivatives.

Theorem 4-6: (Second-order Necessary
Conditions): Let f(x), g(x), and A(x) have
two continuous derivatives at a point ¥ inD'.
Further, let the vectors Vgl.()ﬂ, for all i with
g,(x) = 0, and VA(x) be linearly independent.
If x yields a relative minimum for NLP', then
it is necessary that there exist ¥ and w
satisfying Eqs. 4-6, 4-7, and 4-8. Further, for
every yeR" such that Vg,(X)y = 0 when g(X)
=0, and VA(x)y =0, it is necessary that

Yy 92LGy,w)y = 0 (4-10)

For proof of this theorem, see Ref. 1, page
25. Note that the existence of v and w
satisfying Eqs. 4-6, 4-7, and 4-9 is a conse-
quence of Theorem 4-5. Even though this
theorem involves second-order conditions, it
still gives only necessary conditions.

A theorem which gives conditions which, if
satisfied at some point, are sufficient to
guarantee that this point yields a relative
minimum for NLP' will now be stated. For
proof of this theorem, see Ref. 1, page 30.

Theorem 4-7: (Second-order Sufficient
Conditions): Let f(x), g(x), and A(x) be twice
differentiable functions at a point x. If for
xeD' there exist v and w satisfying

vz 0,i=1,..,m

v.g,(x)=0,i=1,..,m

VL(xyw)=0
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and if for every nonzero yeR" such that

veg(x)y =0 forv, > 0, vg,(x)y < O forg,(x)
= Oand v, = 0, and VA(X)y = 0, it is true that

YIVILGrw)y > 0 4-11)

then x yields an isolated relative minimum for
NLP'.

It should be noted that there is a gap
between the sufficient conditions of Theorem
4-7 and the necessary conditions of Theorem
4-6. Strict inequality is required in Eq. 4-11
for a larger set of vectors y that may yield
only equality in Eq. 4-10. It is doubtful that a
single, tractable set of conditions exist that
are both necessary and sufficient for the
general problem NLP'.

There is one class of nonlinear pro-
gramming problems in which conditions may
be given that are both necessary and sufficient
for an absolute extremum. This class is the
convex programming problem.

Theorem 4-8: Let f(x) and g,(x), i= 1, ..,
m, be continuously differentiable and convex,
then necessary and sufficient conditions for X

to be an absolute minimum point of NLP are
that there exists ve R™ such that

gx)< 0
vigi()_c)= 0,i=1,..,m
v,z 0,i=1,.,m

and

VI + 2 v, Vg, =0.

The technical presentation of par. 4-1 ends
with this satisfying result. Several comments
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are, however, appropriate at this point. The
analytic necessary and sufficient conditions of
par. 4-1 could be used to construct solutions
of NLP by solving systems of nonlinear
equations. This is particularly true of the
results of Theorem 4-8. If one reads the
current literature, however, he is led to the
distinct conclusion that iterative methods
based on successive improvements are too
effective to bypass in favor of methods that
require solution of complicated, nonlinear,
algebraic equations.

Even if the results of par. 4-1 are never
used by the designer to construct solutions of
nonlinear programming problems, they are
still very powerful tools. Verification of the
hypotheses of one of the theorems may mean
the difference between going onto the com-
puter with the comforting knowledge that a
unique solution exists as opposed to the
frustrating experience of having computer
print-out which may be meaningless.

4-2 THEORY OF FINITE DIMENSIONAL
OPTIMAL DESIGN

The nonlinear programming problems of
par. 4-1 are quite general and may be applied
to a variety of optimization problems. As is
frequently the case with very general formula-
tions of problems, special features of some
problems within the class being studied are
not exploited. This appears to be the case
when general nonlinear programming theory
is applied to solve optimal design problems.
Interpretation of certain of the variables and
constraints in the problem NLP’, in the
contextof optimal design, yields very effective
computational methods of solution. This
paragraph will be devoted to stating the finite
dimensional optimal design problem, drawing
an analogy with NLP’, and stating necessary
and sufficient conditions that follow directly

4-8

from the theorems stated in the preceding
paragraph.

4-2.1 FINITE DIMENSIONAL OPTIMAL
DESIGN PROBLEMS

The class of problems to be treated in this
paragraph is, in a sense, a special case of the
nonlinear programming problem NLP’. How-
ever, by developing a theory for the new class
of problems which takes advantage of its
special features, a more efficient solution
algorithm may be obtained.

The general optimal design problem must
have several of the features of NLP’. Namely,
it is required to have a cost (return) function
which is to be minimized (maximized) and a
set of constraints that describe the perfor-
mance demanded of the object being de-
signed. It is in the representation of con-
straints that the optimal design problem
differs from NLP’.

In most problems of design in the real-
world the object being designed is required to
behave according to some law of physics. This
behavior is described analytically by a set of
variables called statc variables. Further, there
is a second set of variables that describe the
object itself rather than its behavior. These
variables are called design variables since they
are to be chosen by the designer so that the
object being designed performs its required
function. It generally happens that the laws of
physics that determine the state variables
depend on the design variables so the two sets
of variables are related.

To illustrate the difference between state
and design variables, consider the following

design problems:

1. Find the coefficient of damping in an



automobile shock absorber so that peak ac-
celeration in the passenger compartment due
to road conditions is as small as possible.

The coefficient of damping is the design
variable since it describes the object being
designed, and its magnitude is to be fixed by
the designer. Acceleration on the other hand
is a state variable since it describes the
behavior of the object being designed.
Further, this state variable may be determined
by Newton's laws of motion. Note that the
designer has no direct control over the state
variable. He may effect it only indirectly by
adjusting the design variable. This is typical of
state and design variables.

2. Determine the size of beams to be used
in a structure so that when a given set of loads
are applied stresses are within certain given
limits, the deflection of certain points on the
structure is within given limits, and the
structure is as light in weight as possible.

Beam sizes are the design variables in this
problem since they describe the structure
being designed and they must be chosen by
the designer. Stress and deflection, however,
are state variables that are determined by
equilibrium and force deflection relations.
Again, the designer has no direct control over
stress and deflection. He may effect these
quantities only by varying the size of beams
in the structure.

In most real-world design problems the
state and design variables are clearly identi-
fied. In what follows, the state variable will be
an n-vector, ze R*, and the design variable will
be a k-vector, beR¥. The basic elements of the
optimal design problem are described by
Definition 4-6.

Definition 4-6: The finite dimensional
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optimal design problem (OD) is a problem of
determining beR¥ to

minimize f(z,5 ) Y (4-12)
subject to
41 OD
h(z,b)=0 (4-13)
o(z,b)< O (4-14)
where
Fhl (z,b) “!
h(z,b) = . >
h,(z,b)
L _
6,(20) ]
#(z,b) = . . 4-15)
L¢m (z.b)

and all the functions of the problem are re-
quired to have first-order derivatives. Further,
it is required that the (» *k) vectors

26, 09,
oz’ b (“4-16)

arc lincarly independent for all i with ¢,(z,b)
= 0 and that the matrix

oh

- (4-17)

is nonsingular.

. gh .
The assumption that the matrix gz— is

nonsingular guarantees, by the implicit func-
tion theorem (Ref 4, page 181), that for
given b there is a unique solution of Eq. 4-13
for z. Further, the state variable z, determined
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from Eq. 4-13 as a function of b, is differ-
entiable with respect to b. This fact will be
needed later when constructive methods are
developed.

4-2.2 LOCAL THEORY

Since it is very seldom that the state
equations (Eq. 4-13) are linear in both z and
b, convexity of the constraint set and hence
the problem will be rare. For this reason, no
global results based on convexity will be
discussed. In case Eq. 4-13 is linear, however,
global results may be obtained by applying
the Theorems 4-3 and 4-8.

It is clear that if a new variable xeR" * ¥ is
defined as

x= [;] (4-18)

then the problem OD may be put into the
form NLP’. According to Theorem 4-4, the
first-order constraint qualification will be
satisfied for OD (with xeR” * ¥ as indepen-
dent variable) if the row vectors

[an, on,
— = |i=1., 419
[z ~ ab ; " (*-19)

2 2,
5 (z,b), b (z,b) |,
forj with ¢I.(z,b) =0 (4-20)

are linearly independent. Theorem 4-5 may
now be applied to the problem OD.

Theorem 4-9: (First-order Necessary Con-
ditions): Let all the functions appearing in
OD be differentiable at a point z, & which
satisfies Eqs. 4-13, 4-14, and 4-15. Further,
let the vectors, (Eqs. 4-19, 4-20, and 4-21) be

4-10

lincarly independent at z,b. Then there exist
multipliers AeR" and ueR™, with & > 0 such
that for

H=£zb) + N h(z,b) +uTo(z,b)  (421)

W zh=0 422

55 (z,b) = (4-22)

W Ep=0 423

32 (4-23)
and

wo,(2,6)=0,j=1,.. m. (4-24)

The proof of this theorem may be con-
structed by simply writing down the
necessary conditions of Theorem 4-5 in terms
of x and then separating the components of x
asin Eq. 4-18.

In exactly the same way the second-order
necessary and sufficient conditions of
Theorems 4-6 and 4-7, respectively, may
be stated for the problem OD. No essential
simplification of the statements of those
theorems occurs, however, so the theorems
are not restated here.

Theorem 4-9, just as Theorem 4-5, is
difficult to use in constructing solutions of
OD. Considerable difficulty arises because one
does not know which of the inequalities in
OD is an equality. For problems with a small
number of inequality constraints this may not
be a difficult obstacle, particularly if the
designer has a good intuitive idea of which
constraints will be equalities. If, on the other
hand, there are a large number of inequality
constraints, then the number of combinations
of constraints which may be equalities is
large. It is, therefore, difficult to determine
just which combinations will be equalities. An



analytic solution is extremely difficult in this
casc.

Rather than attempt to use the nccessary
conditions to construct candidate solutions, a
more direct approach will be followed. The
remainder of this chapter will be decvoted to
direcct methods of solving NLP, NLP', and
OD.

4-3 SEQUENTIALLY UNCONSTRAINED
MINIMIZATION TECHNIQUES (SUMT)

A favorite method of solving difficult
problems, particularly among mathcmaticians,
is to reduce a difficult problem to a sequence
of casy problems. Each of the easy problems
is solved and if thc method is any good, the
scquence of solutions of casy problcms will
converge to the solution of the difficult
problem. As thc title might imply, SUMT
follows just this pattern. It should bc clear
that a central part of this method must be
results which guarantce convergence, at least
in cases where solutions are known to exist.

The method presented here essentially re-
duccs NLP and NLP' to a sequence of
auxiliary problems which may be solved by
the methods of Chaptcr 2. The cost function
of NLP or NLP' is augmented by a function
called a penalty function. The penalty func-
tion is formed from the constraint functions
in such a way that as a parameter approaches
zcro (or perhaps infinity) the unconstrained
minimum of thc augmented cost function
converges to the solution of NLP or NLP'.
Two basically differcnt ways of doing this are
prescnted here. Each has its computational
and theoretical advantages and disadvantages
that will be described later.

Due to the large body of theory concerning
SUMT, results will be presented in this para-
graph without proof. The reader is referred
for proofs and an extended discussion of
SUMT to the complete and well-written text
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of Fiacco and McCormick (Ref. 1). Theoret-
ical results guarantceing convergence are
prcsented here to indicate the level of the
known theory of SUMT, rather than as a
complete treatment of the subject.

4-3.1 INTERIOR METHOD

The interior SUMT is based on the idea of
using the constraint functions to erect a
barricr at the boundary of the constraint set
D of NLP by adding a penalty function to
f{x) which approachgcs infinity as thc bound-
ary of D is approached from the interior.
Once the solution of the augmentcd problem
is obtained, the pcnalty function is altered so
as to effect f(x) less in the interior of D.This
behavior is illustrated in Fig. 4-3.

f(x} +Penalty Function (1) { ’

\ T

\ m

) \\ /'i
]

/I

)

\ _
l, Penalty \__ 1%,
\

Function (1) ]

N\ 7/

(A)

Jfx] + Penalty
Function (2)

Penalty
Function (2)

(B}

Figure 4-3, Penalty Functions
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As illustrated in Fig. 4-3, when the penalty
function is decreased on the interior of D, the
minimum of the second augmented cost
function x(2) is closer to the solution x than
the minimum of the first augmented cost
function =fl). The idea, of course, is that the
sequence of points x{*) generated in this way
converges to x.

It should be clear why this approach is
discussed only for NLP and not NLP'. The
constraint set of NLP' can have no interior
due to the equality constraints. It is possible
that NLP has no interior and in this case the
interior SUMT is not applicable. In what
follows, it is assumed that the constraint set D
of NLP has an interior.

The sequence of points x) which is to
converge to the minimum point is generated
by minimizing

f(x) +S8(rp) Ix) (4-25)

without regard to constraints, where S(r;) /(x)
is continuous for x in the interior of D and
S(r,) I(X) = + oo for any X such that g].(JE) =0
forany 1a /< m. It is clear that if one begins
an iterative minimization technique of Chap-
ter 2 at a point in the interior of D, then a
relative minimum point will be found which
must lie in the interior of D. Otherwise, the
minimizing sequence would have had to climb
over a portion of the auxiliary cost surface
that is infinitely high and none of the
methods will do this.

In order to obtain the sequence of points
xD, the parameter r, is allowed to approach
zero. To insure that the sequence x(? con-
verges to a relative minimum point, the
functions /(x) and S(r) are required to have
the following properties:

1. I{x) is continnous and non-negative on
the interior of the constraint set D and if

( <M is any sequence of points in R”
converging to x where g].(x) = 0 for some j,
then M7 Kx ky=+oo,

2. S(r) is continuous and if r; > r, > 0,
then S(r;)> S(r;) 0and ifr, isa sequence
of numbers converging to zero, then i™ S(r,)

[— e
=0.

Probably the most common penalty func-
tions I(x) and S(r) are

I(xy=— B -

) i=1 g;(x) (420
and

S =r. (4-27)

Any pair of functions satisfying properties
No. 1 and No. 2 associated with Eq. 4-25,
however, is suitable. It may be to the
designer's advantage to choose another form
for any particular problem. For other suitable
choices of penalty functions, see Ref. 1, page
68.

The algorithm for solving NLP by the
interior point technique is given in Definition
4-7.

Definition 4-7: The interior point sequen-
tially unconstrained minimization algorithm is
given by the following:

Step 1. Define the function

Ux,r)=f(x)+8@) I(x), (4-28)



where S(r) and f(x) satisfy prop-
erties No. 1 and No. 2. Choose 7,
> 0 and x(® in the interior of the
constraint set D.

Step 2. Beginning atx‘®) minimize U(x,7;)
without regard to constraints to
obtain x{(1). Any of the methods
of Chapter 2 may be employed for
this purpose.

Step 3. For i=0,1,2, ..., choose?; . > 0
such that », - ; < r, Beginning at
xD minimize Ulx,r; 1) without
regard to constraints to obtain
x* 1) where i is the iteration in-
dex.

Step4. As r, = oo, if | x0+ 1) —x() || and
[ fIxG* D]—f[xD] | are suffi-
ciently small, terminate the process
and take xU' * 17 as the solution of
NLP. Otherwise return to Step 3.

In order to be sure that this algorithm will
lead to a solution of NLP, one would like to
have a result that as r, —~ 0, a solution is
approached. Such a result is contained in
Theorem 4-10.

Theorem 4-10: In the interior point
algorithm just given let:

f(x), g, x), ..., g,(x) be con-
tinuous on the constraint set D, 4-29

S(») and f(x) satisfy properties No.
1 and No. 2, (4-30)

The interior of D be nonempty, 4-31)
There be a relative minimum point

x inD such that f(xX) < f(x) for all x
# X in some neighborhood of x,
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where x is not an isolated point of
D, (4-32)

{ r, } be a strictly decreasing
sequence which converges to zero. (4-33)

Then for x(°) sufficiently near X
and r; sufficiently small,

Jmox® = x. (4-34)
Further,
M Sy [1xD] =0 (4-35)

A fx0y = I gx@ g = f(x)
(4-36)

{ F1xD ]} is monotone decreasing (4-37)
and

{I [x(i)] } is monotone increasing. (4-38)

For proof of this theorem see Ref. 1, page
47,

It has been noted throughout the previous
development that if NLP is convex — i.e.,
fx), g, (x),....8,(x) are convex — then

nice” things happen: One of these “nice”
things is given in Theorem 4-11.

Theorem 4-11: If NLP is convex with a
unique minimum point X, gx)j=1,...m,
are twice continuously differentiable, and if
Eqs. 4-29 through 4-33 hold, then x* gen-
erated by the given algorithm will converge to
the minimum point.

It should be noted that Step 1 of the
algorithm (Def. 4-7) required a point x(®) in

4-13
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the interior of the constraint set but no
method of obtaining such a point was given.
This question will be addressed later in this
paragraph.

Example 4-3: Solve the LP
flxy,x,) = x; +x, = minimum
g(x, ,x,) = —x; < 0
gz(xl,xz) = _ X, < 0

using the interior point SUMT.

Solution:

1 1
UGr) =x; +x, —r |:—x—' - ——J .

1 %2

The functions f(x), g,(x), and g,(x) are
convex and by Theorem A-5, Appendix
A, soare — 1/g, (x)and 1/g,(x). Since r > 0,
U(x,r) is convex and thus has a unique
minimum. To find it, put

oU 0=1 r

axl (xl)2

ol r

_ = O =1 — 3

ax2 (x2)
SO

X, = rl/2

x, = rif2

2

Asy— 0,x;, ~ 0 and x, — 0 so the solution
of Example 4-3 is

(x;,x,) =(0,0).

4-14

4-3.2 EXTERIOR METHOD

Unlike the interior method, starting points
for the exterior SUMT are not required to be
in the constraint set of NLP. The basic idea in
the exterior method is to add to the cost
function a penalty function that is positive
for points outside the constraint set and zero
inside the constraint set. This, in effect,
discourages the minimum of the new
augmented cost function from being too far
from the constraint set if the original cost
function f(x) is “well behaved” outside the
constraint set. It is clear that this approach
may not be taken if f(x) is undefined or takes
on negatively infinite values outside the con-
straint set. One very appealing aspect of the
exterior method is that it handles equality as
well as inequality constraints without diffi-
culty, so that it can be used on NLP*.

The penalty function employed for the
exterior method will have the form

P(r) E(x) (4-39)

where P(¢)and E(x) are required to satisfy the
conditions:

1. E(x) = 01if x is in the constraint set, and
E(x) > 0if x is outside the constraint set.

2. P(#) is continuous and if fy >t > 0,
then E(z,) > E(z;) > 0. Further, if £, > * o0
then Mm P(z,) = + oo,

Probably the most common choice for P(r)
and E(x) is

P =1 (4-40)
and
Eix)= £ 150 + g0l (4-41)



and

P
E, =2 [K®)?
1

where
E=E, +E,.

The basic idea for the exterior method was
given by R. Courant in 1943 (Ref. 5). He
argued that if

T(x,t)=f(x)+P(t) E(x) (4-42)

were minimized without regard to constraints
using ¢, and 7, with £, > £, then since the
augmented cost function is penalized more
when ¢, is used than when ¢, is used, the
minimum point corresponding to f, should
be closer to the constraint set and hence,
closer to the minimum point of f(x) on the
constraint set.

An explicit algorithm for solving NLP or
NLP' by this method is given in Definition
4-8.

Definition 4-8: The exterior point sequen-
tially unconstrained minimization algorithm is
given by the following:

Step 1. Make an engineering estimate x(®)
of the solution of NLP or NLP".

Step 2. Choose ¢, > 0 and beginning at
x'®) find an unconstrained mini-
mum point of
T(x,t)=f(x) +P(t;) E(x)

denoted x(1).

Step 3. Continue with i =2, — by choosing
t; > 1,, and starting from x(i-1)
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obtain an unconstrained minimum
point of

T(x,t,)=f(x)+P(t,) E(x)
denoted x,

Step4. As ¢, »oo, if I [x() — xD] |
and |f[x®?] — fIxUD]| are
sufficiently small, terminate the
process and take x{ as the solu-
tion of NLP. Otherwise, return to
Step 3.

Very much as in the case of the interior
method, Theorem 4-12 guarantees a certain
measure of success.

Theorem 4-12: In the exterior point al-
gorithm let:

fix), g, ®, ... &, (x) be continuous
forall x. (4-43)

E(x) and P(t) satisfy conditions No.
1 and No. 2 of Eq. 4-39. (4-44)

There be a relative minimum point
X in that admissible domainD such
that f(x) < fix) for all x # X in
some neighborhood of x, where X is
not an isolated point of D. (4-45)

The sequence {7;} is strictly in-
creasing to t oo (4-46)

Then for x() sufficiently close to x, and 7,
sufficiently large,

X =% (4-47)
M PEE?P] =0 (4-48)

4-15
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R X B () (4-49)
T, 1] = £ (4-50)

i—+ oo
{ f1xD1} is monotone decreasing  (4-51)
{ E[x1) is monotone decreasing. (4-52)

For proof of this theorem, see Ref. 1, page
57.

Very much as in the interior method, if the
NLP or NLP' is convex, then convergence is
guaranteed by Theorem 4-13.

Theorem 4-13: If NLP or NLP' is convex
with a unique minimum point, and if Eqs.
4-43, 4-44, and 4-46 hold, then regardless of
the estimates x'®) and ¢,, the sequence x{”
generated by the algorithm given by Theorem
4-12 will converge to the minimum point.

Example 44: Solve

flxy,xy) =x} +2x} = minimum

A(xy,x)=x; +x2 —1=0

by the exterior point SUMT.

T =x3 +2x] +1(x; +x, —1)?

0
—T=2xl +2t(x, +x, =1)=0

0x
oT
— =dx, +2t(x; +x, — 1)=0
00X,
Subtracting,

4x, —2x; =0,0rx; = 2x,.

Then

4-16

4x, +2¢(3x, — 1)=0

and

1 2
t > x, >—and x,; +--,
3 3

The solution is then

1 2
(x1’x2)=(§’§>

4-3.3 MIXED INTERIOR-EXTERIOR
METHOD

Both the interior and the exterior methods
presented in pars. 4-3.1 and 4-3.2 are not
applicable in certain kinds of problems. In
particular, the interior method cannot be used
if the interior of the constraint set is empty,
such as in the case with equality constraints.
The exterior method cannot be used if some
constraint function is not defined or is ill-
behaved outside the constraint. A combina-
tion of the two methods will now be given
which allows the treatment of problems
which may have both these undesirable fea-
tures and thus could not be treated by either
pure interior or exterior methods.

For convenience, consider NLP'

minimize f(x) (4-53)
subject to

&)< 0,i=1,..,m (4-54)

Bi(x)=0.j=1,..p (4-55)



where the set of all points which satisfy the m
inequalities Eq. 4-54, has an interior. As
might be expected, the constraints, Eq. 4-54,
will be dealt with using an interior point
penalty function and the constraints, Eq.
4-55, will be dealt with using an exterior
point penalty function.

The penalty function used here will be

S(r) I0e) + P(1) E(x),

where S(r)I(x), P(¢), and E(x) satisfy condi-
tions No. 1and No. 2 preceding Eq. 4-26, and
No. 1 and No. 2 of Eq. 4-39. It is understood
that J(x) is a function of only the constraint
functions in Eq. 4-54 and E(x) is a function
of only those in Eq. 4-55. A general minimiz-
ing algorithm for NLP is now given in
Definition 4-9.

Definition 4-9: The mixed interior-exterior
sequentially unconstrained minimization al-
gorithm is given by the following:

Step 1. Make an engineering estimate x(°
of the solution of NLP'.

Step 2. Choose 7y > O and ¢, > O and
obtain an unconstrained minimum
of

V(x,ry,t1) =f(x) +S(ry) I(x)
+P(t;)E(x), (4-56)

denoted x{1).

Step 3. Continue with i = 2, ... by choosing
A A .and t; > t; | and starting
from xU1)  finding an uncon-
strained minimum point of

V(x,r'.,ti) =f(x) + S(rl.) I(x)

+ P(t) E(x) (4-57)
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denoted x'?.

Step4. As 7, > 0and ¢, > + oo, if [|Ix() —
x(ED| and | fxP] — flx0D]) are
sufficiently small, terminate the
process and take x? as the solu-
tion of NLP" Otherwise return to
Step 3.

As might be expected from a study of the
two methods which were combined to form
the mixed method, a convergence result is
given by Theorem 4-14.

Theorem 4-14: In the mixed point al-
gorithm let:

8:(x), .., g, (x) be continuous on
the nonempty interior of their con-
straint set and f(x), 4, (x), ..., hp(x)
be continuous for all x. (4-58)

S(), Kx), P(r), and E(x) satisfy
conditions No. 1 and No. 2 preced-
ing Eq. 4-26, and No. 1 and No. 2
of Eq. 4-39. (4-59)

There exist a relative minimum
point X in the admissible domain D'
of Eqs. 4-54 and 4-55 combined,
such that f(x) < f (x)for allx #Xx
in some neighborhood of X, where
X is not an isolated point of D". (4-60)

The sequence ( r; } be strictly de-

creasing to 0 and { t; } be strictly
increasing to t oo, (4-61)

Then for x(® sufficiently close to X,
sufficiently small, and ¢, sufficiently large,

lim

L SN IIxD) =0 (4-62)
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S PUEXY] =0 (4-63)
and
D, r, 1] = f). (4-64)

For proof, see Ref. 1,page 60.

Example 4-5: Solve

f(x1.x3)= —x, *¥x, = minimum

B(x1,x2)= —8fnx,< 0

h(xy,x2)=x, +x; — 150,

Solution:

Since g(x;, x2) is unbounded at x, = 0, it
must be treated by the interior method and
since h(x;,x,) = 0 prevents the constraint set

from having an interior, it must be treated by
the exterior method. From

Vierty=—x,; +x, +

Unx,
+t(x; txp —1)2 (4-65)
., 20, +x, — D=0 (4-66)
a.X1
aw r
0x; x, 1% x,

t26(x; +x, =1 =0 (4-67)

Subtracting Eq. 4-67 from Eq. 4-66,

r
— o 2
x, 8n*x,

SO

4-18

1)
r
i2x2:'
Xy =

Since g(x,,x,) < 0 is satisfied at all times, x,
> 1. Taking the limit as r = O, then, x, = L

As t — oo, it is necessary that x; tx, — 1
— 0 or Eq. 4-66 will be violated. Therefore, in
the limitx,; =0.

The minimum point is, therefore, (x,,x,) =
(0,1).

4-3.4 DETERMINATICN OF AN INTERI-
OR POINT

In order to begin the interior point or the
mixed interior-exterior point algorithm, it is
necessary to have a point x(®) which satisfies
a certain set of inequalities, i.e., a point
interior to a given constraint set. Let this set
of inequalities be

§;(x)< 0,i=1,..,m (4-68)

If there are other inequalities or equalities
which will be treated by the exterior point
method, they are ignored for now.

Let »(9) be a first estimate of an interior
point of the set defined by Eq. 4-68. Denote
the inequalities of Eq. 4-68 which are not
strictly satisfied by

N=(ilg ™15 0}

and the inequalities which are strictly satisfied
by

K= {11g ] <0}.

The object now is to move from y‘?) to
points where successively more inequalities



move from N into K, ie., so that no con-
straint which was previously satisfied is vio-
lated, but constraints which were previously
violated are satisfied. This may be accom-
plished by minimizing the unconstrained cost
function

Upr)= T g0)+Sr) 2 Ig,()
4 ieN ¢ I"iek

with respect to y, where S(r) and I(x) satisfy
the four constraints — No. 1 and No. 2
preceding Eq. 4-26, and No. 1 and No. 2 of
Eq. 4-39 — and 7 is a strictly decreasing
sequence. The result is denoted ¥

As soon as y¥) is such that &[] < 0 for
some i previously in %, that constraint func-
tion is switched to K. In this way, constraint
functions from N may get to K but those in K
may never fall back to N. Once all the
constraints in N are switched to K, the
process is stopped and the resulting ¥ is in
the interior of the constraint set of Eq. 4-68.
If the minimum of U(y,r].) is found as r = 0
and there are still constraints in N, then the
constraint set defined by Eq. 4-68 has no
interior. In this case, NLP is infcasible (has no
solution) or certain of the constraints of Eq.
4-68 will have to be treated by exterior point
methods.

4-4 STEEPEST DESCENT METHODS FOR
NLP

In Chapter 2 a gradient method is pre-
sented for finding the minimum of an uncon-
strained function. Such a direct method has
properties that make it attractive and worth
developing for the solution of NLP. It is clear,
however, that due to constraints the gradient
method studied earlier does not apply directly
to NLP. It is the object of this paragraph to
develop a method which uses only first

AMCP 706-192

derivative information to make successive
improvements in an estimated solution of
NLP. A study of the problem NLP’ will be
better included in the next paragraph.

Geometrically, the method presented here
will first investigate the direction of most
rapid decrease in the cost function f(x). As
seen in par. 2-4, this is — VfT(x). This
direction is then projected onto the tangent
hyperplane to the boundary of the constraint
set at x. A small move in the resulting
direction will then decrease f(x) and will not
cause excessive violation of constraints. This
process is repeated as long as f(x) may be
decreased.

Instead of basing the derivation of the
method on a geometric argument, the work
will all be done analytically. The reason for
this is twofold. First, geometric ideas in
higher dimensions are not always as clear as
those in two and three dimensions. Second,
the analytical method used here will be
employed in deriving algorithms in con-
tinuous problems where geometric concepts
are much more difficult.

Extensive use will be made of matrix
calculus notation in this paragraph.

&1 (x)
Recall that for g(x) = . , Xxe R

8, x)

g _[ %]

ox m X n

Further, the symbol

4-19
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will denote a change inx and a 6 in front of a
quantity which depends on x will denote the
first order change in that quantity due to the
change 8x in x. For example, for the scalar
function f(x),

5f(x) = i bx.
ox

Note that this first order change is just the
first term in a Taylor expansion, Ref. 4, page
84, of f(x), so 8f(x) is an accurate approxima-
tion of the change in f(x) only for small éx.

The method to be developed here resem-
bles an interior method in the sense of par.
4-3. Therefore, the method of generating an
interior point (one which satisfies all the
constraints) presented in par. 4-3 may be
utilized to obtain a starting point. It is
assumed now that his has been done, and that
an estimate x(%) of the solution of NLP is
available which satisfies

g(x(0)y < 0.

4-41 THE DIRECTION OF STEEPEST DE-
SCENT

If the point x(®) is in the interior of the
constraint set, then the gradient method of
par. 2-4 applies and the direction in which
x(9) should be altered is

T
ox = —k L [x07 (4-69)
ox

k> 0.

In the remaining case, the point x¢®) is on
the constraint boundary so g;,[x(®)] = 0 for
some i. For convenience define the set

AX) = {il g =0}, (4-70)

4-20

i.e., the collection of indices of constraint
functions which are equalities at the point x.

The object is now to find a direction of
change 8x, 8x78x = 1,suchthat 8x = kX for
sufficiently small £ > 0 will decrease f(x)
without violating any constraints. The prob-
lem is then to find 6x such that

8f = ¥ [x(D] 8x
0x

is minimum subject to
0 0g, 0 -
Bgi[x( ] = 2 [xD]sx < 0,
ox

ieA[x(9)]
and

8xTox = 1.
For further convenience, define the column

vector of constraint functions which are zero
as

8,(x)
gx) =
ie A[x(9)]

In this notation the problem is

9

minimize L[x(o)]éf 4-71)
ox

subject to

o

& x®]155< 0, (472)

ox

8xT8x = 1. (4-73)

It is assumed that at points where several
g(x) = 0, the gradients are linearly indepen-



dent. This is enough to satisfy the first-order

constraint qualification (Theorem 4-4) for

the constraint, (Eq. 4-72). Theorem 4-5, there-
fore, may be applied to obtain the necessary

conditions

of +3r o + T = @
o HAT %+ ;b . (474

where the components, P\i > 0, of A\ corre-
spond to g; with indices inA4 [x(®].

Assume for the time being that 6g; = O for
all i=A[x(9]. Then taking the transpose of
Eq. 4-74 and premultiplying by 982/9x yiclds

agafT +a_§ aéT -
ox 0x 0x 0x

or since 6 =0,

~ ocT = asT .
ol o al g,
ox 0x ax ax

Since the gradients of gIx‘®] for
ieA[x'9] are assumed linearly independent,
the coefficient matrix of /4 is nonsingular and

-1
oz a§T> a3 ofT
T\ ax ax ax dx

If all components of A arc non-neg-
ative, then the assumption that all
bg, =0, icA[x®)] isvalid and % which solves
the problems of Eqs. 4-71, 4-72, and 4-73, is
obtained directly from Egs. 4-74and 4-75.
On the other hand, if X; < 0 for some
icA[x(?], then this component of g is
removed from g. Equivalently, 4[x‘®] is
redefined as

>

(4-75)

Alx©) = {4 g;[x(®] =0and ).\1.> 0}

and g [x(©)) is redefined as
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g x(0]
glx®] =
icA

With this new £ ,Eq. 4-74 yiclds

1
ox = — —
22,
n mn -1 .
] ag ag ag> og
ax \dx ax ax [x(9)y
d T
L[x((”]. (4-76)

ox

Note that A > 0 is requircd since if 4 [x(®)]
is cmpty, then Eq. 4-76 must reduce to the
ncgative gradicnt dircction.

Putting

_ai (0)
( ™ [x'97]
% 03T } !
9% (0012 )
X {ax [x ]ax [x*%)]
. % 477
p [x<°)] (4-77)

Eq. 4-76bccomes

1 T
S = 0)
bx 2, P

Substituting this into Eq. 4-73,
1 of

(27y)* ax
Solving for 1/2},, 8% becomces

r -1/2
8% =— { EZ[x(O)] PTPi[x(O)]}
ox ax

ofT

—[x (0)] pT Pa [x(O)] =1.

X P . 7
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Eq. 4-78 gives a unit vector 8% in the
constrained direction of steepest descent at x
= x(0, The problem is now onc of deter-
mining just how big a step should be taken,

L€.,

(4-79)

where k > 0 must be chosen.

Before the problem of step size is treated,
however, an algorithm may be stated for
determination of the direction of steepest
descent, namely:

Step 1. Using the method of par. 4-3,
obtain an estimate of the solution
of NLP, x(®, which is in the
constraint set.

Step 2. Letj = 0 denote the number of the
present iteration. Compute
g[x1,j = 1,.., m, and form the
set A[xP]. Compute 9f/dx[x¥]
and 9g,/3x[xU)] for ieA [x')].

Step 3. Compute X in Eq. 4-75. For all 7~\1.

< 0, delete i from A[x?] to form
dix9.

Step 4. Compute P in Eq. 4-77 and 8x in

Eq. 4-78. If P = 0, then this is the
solution of NLP.

Example 4-6: Compute the direction of
steepest descent at the point (2,2) for the
NLP

minimize f(x,, X,) = (x2)2 - X

gl(xl’x2) = xl — x2 < 0

4-22

g (x,xy) = —x; —x, +2< 0.
First,
22,2 =0
8(2,2) = -2,

Thercfore, Alx{1] = { 1'}. As required by
Step 2 of the Algorithm

Q) = [-1,4
X
% 2,2) = (1, — 13
dx

By Stcp 3,

soA = A For Step 4

L L L)

1/2 1/2
1.—11 =
<=1 |:1/2 1/2]
Finally,

8x =

12 12) iz 1Y Y2
(“’_4] {1/2 1/2] [1/2 1/2] [ 4:|>
Jrzzf -1 _ va [30
1/2 1/2 4 3 3/2 °



4-4.2 STEP SIZE DETERMINATION

There are many techniques presented in the
literature for determining the size of step to
be taken in the constrained direction of
steepest descent. Three of these techniques
are presented here. The first technique applies
to a specialized class of problems in which the
constraint functions are linear. The second
and third methods apply to the general
nonlinear problem.

4-4.2.1 ROSEN'S METHOD FOR LINEAR
CONSTRAINTS

If the constraint functions are linear, then
once the direction of steepest descent 8% is
found, it may be followed without leaving the
constraint boundary until a constraint g,(x) =
0, for i not in Alx9]. This algorithm,
therefore, can lead to rather long step sizes.

Constraints here are restricted to the form
GI.Tx b, < 0,i=1, .. m

where G, is an n x 1 matrix of constants. The
step size is to be determined so that k is as
small as possible and still

GTIxD + k8x]1 — b, =0

for some i¢A[xU)]. Only those i need to be
considered for which G iTﬁf > 0, since other-
wise this constraint can never go from strict
inequality to equality. The step size k, there-
fore, is chosen as

P - min b, — G Tx7)
{G,.Taf > 0} G,T6x
ié/i [x]

The point x/*1? therefore is given by
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XUt = (D) 4+ k&%

if 3ffox[xVU*116% <0. The process in the
algorithm for the direction of steepest descent
is repeated from Step 2, and a new step size k
is computed as above. If, on the other hand,
of/ax[xU*1)18% > 0, then a relative mini-
mum has been bypassed. To locate this
relative minimum, do a one-dimensional
search in the direction 8% starting at x& to
obtain xU* 1),

This process may be summarized in Rosen's
Algorithm :

Step 1. Compute
min .
R b, — GTx\D
k = lGl.TBx=0] 4 17
G,Tox
Step 2. Compute

T 1D + ks3] .
ox

If

o

X

[ +k6x18x <O

put
Ut =) 4 k5%
and go to Step 4.
Step 3. If

0 . o
—f [x) +k8x18% > 0,
ox

then find k so as to minimize

flxD +k87].
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Put xU*1) = xU) + k8% and go to
Step 4.

Step4. If || [xU*D] — f[xD] | and |xU* D)
— x| are sufficiently small, ter-
minate and take xY*!) as the
solution of NLP. Otherwise, return
to Step 2 of the constrained

steepest-descent algorithm.

4-4.2.2 FIXED STEP WITH VARIABLE
WEIGHTING

When the auxiliary problem, Eqs. 4-71
through 4-73, was formulated, it would have
been possible to ask for the step size directly
rather than just the direction of steepest
descent. In many cases, the behavior of the
solution is much more sensitive to changes in
one variable than another. For stability of
calculation then, rather than asking for a
direction 6% satisfying Eq. 4-73, the designer
might request a change 8x in x¥) which
satisfies

sxTwéx = ¢2 (4-80)

where W is a positive definite matrix (usually
diagonal) and £ is a predetermined constant.
The elements of W are often chosen so that
expected changes in various components of x,
éx, will contribute approximately the same
magnitude to 8x7 Wéx. The matrix W,there-
fore, is chosen based on the designer's ex-
perience.

The analysis performed in obtaining the
direction of steepest descent follows with
only minor changes. The only changes of
interest, computationally, are

- a5 1 35T\-1 35 -1 ufT
F_(_gw ai) o, T
ox ox ox ox

(4-81)

4-24

P=w-1
B (e Y 5
ox ox ox 0x
(4-82)
and
2
bee ( e |y
of Prwp ofT ox
0x ox
(4-83)

Note that if the step size is made large,
then considerable progress may be made
toward the minimum point. However, since
the constraint functions are nonlinear, viola-
tions may occur at any iteration. After a new
point xU*1) has been computed, the con-
straint functions should be checked. If any
constraints are violated in excess of fixed
tolerance, the method of par. 4-3 may be used
to move xU*1) back into the constraint set.

The computational method is then de-
scribed in Algorithm for Steepest Descent
With Fixed Step Size:

Step 1. Using the method of par. 4-3,
obtain an interior estimate of the
solution of NLP, x{®) which is in
the constraint set. Further, choose
the weighting matrix W and step
size ¢ in Eq. 4-80.

Step2. Let / denote the number of the
present iteration. Compute g;[x" ]
and form the setA [x¥?]. Compute
affox[x1] and ag/ox[x’] for
icA[xV].

Step 3. Compute A in Eq. 4-81. For all ii



< 0, delete i fromA[x"] to form
AlxD].

Step 4. Compute P in Eq. 4-82 and 8x in
Eq. 4-83.

Step 5. Compute xU*1) = x\) +8x. 1f any
constraints are violated excessively,
use the method of par. 4-3 to get
from xU*1) back into the con-
straint set.

Step 6. If 1f[xV* D] —f[xP 1] and [IxV* D
— x| are sufficiently small, ter-
minate. Otherwise, return to Step
2 (possibly with altered £ and V).

44,23 STEEPEST DESCENT WITH CON-
STRAINT TOLERANCES

In par. 4-4.2.2 it was noted that a step may
be made so large as to violate a constraint in
excess of an admissible error. The method of
choosing step size presented here will prevent
this difficulty.

Let reasonable tolerances e; be assigned to
constraint functions g;(x). The object here is
to move in the constrained direction of
steepest descent until some constraint func-
tion gl.(x) violates the tolerance gi(x) > €, 0r
until a minimum of

FIxD + kbx]
1s reached.

A uniform step size in k may be chosen and
steps taken, checking

gl.[x(f) + kéx]

for each icA[x] and each step in k. The
multiplier k is increased monotonically pro-

AMCP 706-192

vided £ [ ~ ¢ # k8x] is decreasing, and con-
straints do not exceed the given error toler-
ances. When either fails to hold, the resulting
point is called xU*+ 1)

If the process is stopped because a con-
straint is violated in excess of its given
tolerance, the method of par. 4-3 is used to
obtain a new point in the constraint set and
the process is repeated until the minimum
point is located.

This method should be most effective when
constraint functions are easily evaluated but
derivatives are costly in computer time. The
basic idea of the method is to prevent an
excessive number of calculations of the con-
strained direction of steepest descent.

4-4.3 A STEEPEST DESCENT METHOD
WITH CONSTRAINT ERROR COM-
PENSATION

In previous subparagraphs, steepest descent
methods were given which at boundary points
generated steps parallel to a constraint bound-
ary in a direction which decreased the cost
function as rapidly as possible. Due to non-
linearity of the constraint functions, and the
finite step size, however, some constraints will
invariably be violated. It is the object in this
paragraph to present a new method motivated
by the article (Ref. 6) which automatically
corrects for violation in constraints.

Let A[x"] = { il g[x?] > 0} be the
indices of constraint functions which are zero
or are violated. As in the preceding develop-
ment of this paragraph first-order Taylor
approximations will be used to approximate
functions appearing in NLP. The linearized
version of NLP at an approximation to the
solution, x| is
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) )
minimize 8§f = (;)—L[x(”]ﬁx (4-84)
X
subject to
. _ 0 s .
88 = —[xN18x < AZ, (4-85)
ox

[gi[x(j)]]

where & = | ;o4 and A § is taken as the
desired change in g, ie., the total change
taken at the designer's discretion. Usually, so
long as the constraints are not violated ex-
cessively, the full violation may be corrected;
ie.

i

Ag =—g,[xP], iedA[xD]. (4-86)

In order that step size is not excessive, it is
required that

5xTox =02 (4-87)

where ¢ is small. Assuming Eq. 4-85 is an
equality, necessary conditions for the
lincarized problem are obtained by using
Theorem 4-5. From

3 o
L= st (—gax_Ag-)
0x 0x

+86xT 6x

and Theorem 4-5, it is necessary that A; > 0,
and

T agT
i +Tg—h+266x= 0 (4-88)
ox ax
and
0g; )
A (2’# 5x —Ag,-> =0, icA.

This set of equations is nonlinear in A and
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X. Assuming Eq. 4-85 is an equality, then the
necessary conditions reduce to only Eq. 4-88
and Eq. 4-85 as an equality. This system is
linear and can be solved. The multiplier A can
then be determined and a check made to see
whether all components are non-negative. If
any component is negative, say k, then the
assumption that Eq. 4-85 is an equality is
violated and it may be concluded that the kth
component of Eq. 4-85 should have been
allowed to be a strict inequality. The index k
is then deleted from A4.

Premultiplying Eq. 4-88 by 98¢/0x and using
Eq. 4-85 yields

Qi@ﬁ+£agi)\+2ﬁag'=0.
ax ax ax ax

It is assumed, as usual, that the gradients of
all constraint functions which arc zero or
violated are linearly independent. Therefore,
the coefficient matrix of A is nonsingular and

-1
_ (% ag'T)
ox Ox
of T -
x [a — t 2pAg 1 (4-89)
ax ax
Substituting Eq. 4-89 into Eq. 4-88 yields

1 6§T<a§ agT >’1 ag"} o T
bx=—— |7 L (2 % L
28 9x \0x dx ox | ox

(4-90)

This expression for 6x could now be substi-
tuted into Eq. 4-87 to find 8. To be more
general, however, put 1/(28) =y > 0 and define



6x1 =
—1
I, a§T<a§ agT) ag] T
ox \ dx Ox PxJ ax
“4-91)
and
g7 (a8 T '
sx2= 2 | & Ag . (4-92)
o) ox

Using this new notation Eq. 4-90 becomes
6x = yéx1 + 8x2. (4-93)

This representation of éx has important prop-
erties givenby Theorem 4-135.

Theorem 4-15: 8x! and 8x2 of Eqs. 4-91
and 4-92 satisfy the conditions

T
l.6x1° 8x2 =0

as

2.§6x2 =Ag~
og

3. —68x! =0
ox x

4 g—f&cl <0
X

A method of choosing v still has not been
given. This parameter is interpreted as a
step-size and may be determined by one-
dimensional search or any other scheme
chosen by the designer. In different applica-
tions, different methods have proved effec-
tive. No single scheme has been found that
seems best. The choice of 4 at this time
constitutes an art as much as a science.

The use of this method may now be
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summarized in the Steepest-descent Al-
gorithm With Constraint Error Compensation.

Step 1. Make an engineering estimate of
the solution of NLP’,

Step 2. Let the iteration number be j > 0.
Compute g;[x?] and form
A[xY ] and g.

Step 3. Compute 98/dx[xV} and
affax(x?] and choose the de-
sired change Ag ing.

Step 4. Compute 8x! and 8x? in Eqs. 4-91
and 4-92.

Step 5. Choose v by a suitable scheme.
Calculate A in Eq. 4-89. If any
components A, are less than zero
for glx”] which are close to
zero, remove these components
from g and return to Step 3. If all
A; = 0, proceed.

Step 6. Form
6x = vdx! + §x2
and
xU*1) = (D 4 gy
Step 7. If [ fIxU* D] —f[x] | and |l 6x ||
are sufficiently small, terminate
the process. Otherwise return to
Step 2.
45 STEEPESTDESCENT SOLUTION OF
THE FINITE DIMENSIONAL OPTIMAL

DESIGN PROBLEM

In this paragraph a steepest-descent method
of solution of the problem OD is developed.
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In many ways, the method of this paragraph
is similar to the method of par. 4-4. Here,
however, a distinction is made between design
and state variables, and the two types of
variables are treated quite differently.

The problem to be solved here is,just as in
par. 4-2: Choose b€R* and zER"to minimize

fz, b) “4-94)
subject to

h(z,b) = 0 oD (4-95)
and

#(z,b) < O (4-96)

where h(z,b) = [h,(z,b), ... h,(zb)]T, and
#(z,b) = [¢,(zb), .., ¢,,(z,b)17T. The state
equations, Eq. 4-95, are put into vector form
here in order to take advantage of the
compact matrix calculus notation.

The steepest descent algorithm for OD is
developed here by first approximating the
nonlincar ¢lements of OD by linear expres-
sions in the various variables. The difference
between the method presented here and that
of par. 4-4 lies in the treatment of the state
variable. In a sense, the state variable is a
nuisance since it does not really describe the
system being designed. The algorithm pre-
sented here is obtained by first climinating
the state variable from the linearized problem
and then solving an explicit problem for an
optimum improvement in the design variable.

Very much as in par. 44, an engineering
estimate of the optimum design is made. It is
denoted by 5(®). Then the state equations,
Eq. 4-95, are solved for the corresponding
state z{®). Any method of analysis may be
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used to solve Eq. 4-95 for z. The object now
is to determine a change in 5'°?, denoted 8b,
such that

b = pl0) 4+ §p (497)

will be an “improved” design. The meaning of
“improved” will be made clear as the analysis
progresses. If the new design variable b(1)
were substituted into Eq. 4-95, this equation
could be solved for the corresponding new
state variable z{!?. Since the matrix
on/3z[z'®,b(®) | is nonsingular, the implicit
function theorem, Ref. 4, page 181, guaran-
tees that if || 66 || is small, then z(1) — z(®)
will be small. The change inz is denoted 8z so
that

Z(1) = 70 4 55 (4-98)

45.1 AN APPROXIMATION OF THE
PROBLEM OD

The basic idea in the approach to OD
presented here is to construct an approxima-
tion of OD which can be solved to obtain an
improvement 6b in 5(®). The approximate
problem is obtained by making linear approxi-
mations to nonlinear functions in OD. Linear
approximations to the changes in f(z,b),
h(z,b), and ¢].(z,b) due to the small changes
8b in b and 8z in z'®) are, by Taylor’s
Formula, Ref. 7, page 56:

57, 5] =%[Z(0), b(O)jcSz
(4-99)
+Z_'£ [Z(O), b(O)] 5b

sh[z©, p(®] =g_h [z, b©] sz
Z
(4-100)
an
_— 0
+ b [Z( ), b(O)]ﬁb



and

5[ 2(, b(O)] =g_j[z(0), b©)] 52
(4-101)
+ 2L 0] 5,
ab

In the development that follows, the argu-
ments [2(9),6(9] of all functions will be
understood unless otherwise explicitly noted.
The symbol 6 in front of a quantity simply
denotes the total differential of that quantity.

Since ~[2(®, (O }= 0 and z(® + 5z isto
satisfy the equation 2[z(?) +8z,5(0)+ §b] =
0, the linearized version of this condition is
simply

(4-102)

Eq. 4-102 is viewed as determining 8z as a
function of 8b. It is clear that Eq. 4-102 can
be solved for 8z since the matrix 8k/3z has
been assumed nonsingular.

Inequality constraints, Eq. 4-96, will be
treated in an approximate manner. The
method employed here is to require that if
$,(z9,6(1 5 0, then

b¢; < Ag,, (4-103)

where A¢; is the required change in the value

of ¢, due to the changes 8z and 65 in 2(® and
5(0).

For convenience of notation, define the set
of indices

A= {fl¢,.[z(°>, 5] > 0} L (4-104)
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The set A (possibly empty) simply contains
all the indices j of constraints that will be
required to satisfy Eq. 4-103. To make
maximum use of vector calculus notation,
define the column matrix

B} ¢, (2.b)
¢ (z,0) =

4-105
jed ( )

If the set A is empty, then ¢ is defined as
zero; i.e., all the constraint functions whose
indices are in A are placed in a column
matrix. In this way, the conditions, Eq.
4-103, may now be written.

5 3¢ -
a—¢6z +—¢> 6bo Ao,

4-106
az ab ( )

where the column matrix A is defined as

A,
s 2%

If A isempty, A is defined to be zero.

(4-107)

The object of the following analysis will be
to choose 85 so that f1z(0 + 82,60 +5b] is
as small as possible. If this nonlinear function
of 6z and 8b is replaced by its Taylor
approximation, the problem is to choose 8z
and 8b to minimize

) a
6f=—f~62 +——f—6b.
az ab

(4-108)

The entire argument up to this point has
been based on the fact that || 651 will be
small. In order to insure that this is the case,
it will be required that

56T Wsb < £2 (4-109)
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for £ small and W a positive definite matrix.
The matrix W will be used in particular
problems to assign weights to the various
components of &b. This is often necessary
when the components of b represent different
physical quantities that may be of different
orders of magnitude. Usually W is diagonal.

To summarize the approximate problem,
&b and 6z are to be chosen to minimize

)
*fﬁz +g 6b

27 3 (4-110)

subject to the constraints

oh ok
bz+— 6b=0,

— 4-111
0z b ( )

0
—682+§é6b<A6

4-112
0z 0b ( )

and

8bT Wb < £, (4-113)

4-5.2 SOLUTION OF THE APPROXIMATE
PROBLEM

Necessary conditions of Theorem 4-9 could
now be applied directly to the approximate
problem, Eqs. 4-110through 4-113. 1If this
course of action is followed, however, an
explicit inverse of 9h/3z must be computed.
Since the dimension n of this matrix is often
quite high, this operation would be very
costly. Instead of applying necessary condi-
tions immediately, Eq. 4-111 will be used to
eliminate the dependence of the remaining
functions of the problem on &z. Necessary
conditions may then be ecasily applied for the
determination of 65.

The obvious method of eliminating depen-
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dence on &z is to solve Eq. 4-111 for 6z as a
function of 8b. This, however, requires the
inversion of the matrix 84/0z. The preceding
approach of applying necessary conditions
was scuttled for just this reason, so another
method of eliminating 6z must be found.
Note that if the terms (9f/dz) 6z and
(9¢/0z) 6z could be found in terms of 5,
then dependence on 8z would be eliminated.
This is the approach that will be taken here
and also in a later chapter on infinite dimen-
sional problems.

Define the column matrix A/ as the solu-
tion of

onT afT
_ }\J =4 _
5 P 4-114)
and the matrix A% as the solution of
onT agT
—_— }\Qg = -
" 3 4-115)

Note that A® is a matrix whose columns are
solutions of

onT . 0p.T

—AT= 4-116

0z 0z ( )
for jeA. Note that Eqs. 4-114 and 4-115
require the repeated solution of equations
with the same matrix on the left and different
right-hand sides. There are efficient computa-
tion codes which can construct all the solu-
tions simultaneously.

To see how these newly defined matrices
are helpful, compute the transpose of both
sides of Eqs. 4-114and 4-115 and multiply
through on the right by 8z to obtain

(4-117)



and

T Mg ¥, (4118)

dz 0z
Note that the terms on the right side of these
equations are exactly the ones which are to be
eliminated from Eqs. 4-110 and 4-112. Fur-
ther, the term (8k/3z) 8z that appears in both
left-hand sides can be obtained from Eq.
4-111 as

Using this relation, Eqs. 4-117 and 4-118
become

LT A
A 35 &b 32 dz
and
_ &Té_}i5b=_¢5
b 0

Substituting these relations into Eqs. 4-110
and 4-112, the approximate problem be-
comes: 6b is to be chosen to minimize

o7 6 (4-119)
subject to the constraints
27 6b< A (4-120)
sbTWoh < &2 (4-121)
where
Jzﬂ_ﬂ N4 (4-122)

ab ab

and
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_a¢T anT
g —;‘i— Jha,ifA is not empty
(4-123)

94 =0,if 4 is empty.

It should be noted that if the limitation,
Eq. 4-121, on the size of || 65|l is not
enforced, then the problem, Eqs. 4-119 and
4-120, is just a linear programming problem
that may be solved by well-established tech-
niques of linear programming. This technique
is similar to that used in Zoutendijk’s method
of feasible directions (Ref. 8). For a discus-
sion of this method the reader is referred to
the literature.

The necessary conditions of Theorem 4-9
may now be applied to this reduced problem.
In order to apply the theorem and in later
calculations, it is required that the matrix gt
have full row rank; i.e., that the rows of ¢67
(columns of ¢%) are lincarly independent.
Further, for use of the theorem it isrequired
that the column vector W6b be linearly
independent of the columns of £8. It may be
noted that these assumptions require that
there can be no more than & — 1 constraint
functions which are zero or positive at any
iteration. This is true since the matrix 2 has
only k& rows and since its columns must be
lincarly independent of ¢¥, there can be at
most k — 1 remaining linearly independent
columns. These assumptions are reasonable
from a physical point of view. If ¢® had rank
k then the equation

2 6b = AG

would uniquely determine &b, and there
would be no optimization problem.

The constraints, Eqs. 4-120 and 4-121, will
be treated differently, so different multiplier
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notation in Theorem 4-9 will be used for
each. First, define

g=0 5o taTed" 6b+vooT Wb,

Theorem 4-9 requires that

OH
551;:0 =T pT T +2uspTw (4-124)

where i, > Oand» > 0

- Py

[,(2786 — Ag) =0, icA (4-125)
and

»(5bT WEb —£3)=0. {4-126)

At this point, a computational difficulty
arises. it is difficult to determine 56 from
Eqs. 4-124,4-125. and 4-126 since it is not
known which of the Constraints. Zgs. 4-120
and 4-121. will be equaiities and which will be
strict inequalities. The question 1s. “Which of
the inequalities, Eq. 4-120 or £q. 4-121. will
become strict inequalities?” This can be inter-
preted geometrically as a question of leaving
the boundary and going into the interior of
the constraint set defined by Zgs. 4-120 and
4-121. Tt has been the experience with this
technique that once a constraint, say ¢,(z. b).
becomes zero, then for several small steps Sh
it will remain zero. This observation has ied to
the foilowing computational procedure. First,
all constraints, Eqs. 4-120 and 4-121, will be
assumed equalities and &5 is determined using
Eqs. 4-124, 4-120, and 4-121. Then the
algebraic signs of the i, and v are checked. If
they are all non-negative, then this is the
desired solution of the problem. If, on the
other hand, some i, or v are negative, then
the constraints corresponding to these multi-
pliers are removed from Eq. 4-120 or Eq.
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4-121 and the problem is again solved with
the reduced number of constraints.

In any method of solution of the approxi-
mate problem, no information is gained if » =
0. Therefore, in the following v > O will be
assumed.

Solving Eq. 4-124 for 85,

1
§h = — Ev—w-l(szf +0% ), (4-127)

it is now assumed (to be checked later) that
Eq. 4-120 is an equality. Substituting for 65
from Eq. 4-127 into the equality Eq. 4-120,

1 ]
-3 W@ + 0By = A6,

Rewriting this equation,

B W= b w0l apng.

Since £%° s required to have full row rank
and W™! is nonsinguiar, the matrix

d i ,if A is empty
M, = (4128)
f W™ e® if 4 is not empty

:s nonsingular. Therefore,

05T ot o7 A
a= fM(;; i\Q"’ wted + 2p Ad)). 4-129)

Note that in the unconstrained case when A is
empty, 1 = 0 since €7 = 0 and A = 0.

Substituting from Eq. 4-129 into Eq. 4-127

1 o0
= — -1 & -1 & -1 J
5b 21JW (I e Md>¢>Q W )Q

+ WML A {4-130)



This expression for 6b could now be
substituted into 657 W8b = £2 to solve for v.
However, in practice it seems just as realistic
to choose v > O in an iterative process as to
choose &. Once v > 0 has been chosen # may
be evaluated in Eq. 4-129. If any components
are negative, the corresponding elements of ¢
are removed and 6b is calculated using the
new ¢ matrix.

To aid in interpreting the meaning of terms
in Eq. 4-130 for 85, define

§pt = w1 (1 - QéM;; b’ w-l)szf (4-131)

and
8p2 =W Qﬂ‘M;; Ad (4-132)
In this notation,
_ ‘l 1 2
6b=——5&b! +8p2. (4-133)
v

The vector 85" may be interpreted as a
constrained gradient with 1/2v taken as a step
size. The matrix which multiplies ¢’ in Eq.
4-131 essentially projects the gradient €7 of
the cost function onto a tangent plane to the
constraint set. The term 85 serves to drive
any errors in constraint functions to zero.
These interpretations are supported by Theo-
rem 4-16.

Theorem 4-16: The vectors 8b' and §b* of
Eqs. 4-131 and 4-132 have the following
properties:

1. 62T wsbt =0

2. 28" sp1 =0
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3 087 b2 =g
T
4. 97 spt < 0.

An obvious check on convergence is to
monitor 84 and the associated reduction in f,
8f. When small 60 occur and essentially no
improvement is made in f, the process is
terminated. This test, however, leaves a great
deal to be desired since the choice of v can
vield very small steps 85 and falsely lead the
designer to believe that the iterative process is
converging.

A much better test is to monitor the
constrained gradient §4*. Since in an uncon-
strained problem the gradient must approach
zero at a minimum, one might expect that
once A$ = 0, the constrained gradient §b'
should approach zero. The real quantity
[I8bY]| could then serve as a convergence
check. Theorem 4-17 makes these ideas more
rigorous.

Theorem 4-17: Let f(z, b),h(z,b), and ¢(z,
b) be continuously differentiable functions. If
the sequences [#%7] and [z2¥7] generated by
the above algorithm converge to the solution,
z, b of the problem OD and if ¢ = 0 for all
sufficiently large j, then it is necessary that
66 approaches zero asj approaches .

45.3 STEEPEST DESCENTALGORITHM

The iterative procedure developed in this
paragraph may be summarized as follows:

Step 1. Make an engineering estimate of
the optimum design variable, (0.

Step 2. In thejth iteration,j » 0, solve Eq.
4-95 for z1/) corresponding to b¥).
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Step 3. Form the vector of constraint
functions ¢ in Eq. 4-105 and solve
Eqs. 4114 and 4-115 for M and
28,

Step4. Compute &/ and 2% in Egs. 4-122
and 4-123.

Step 5. Choose A¢ in Eq. 4-107.
Step 6. Compute M in Eq. 4-108.

Step 7. Compute &b' and 6b% in Eqgs.
4-131 and Eq. 4-132.

Step 8. Choose v > 0 and evaluate & in Eq.
4-129. If any components of i are
negative, take the corresponding
elements out of ¢ and return to
Step 3.

Step 9. Compute
U1 =0~ L gt gy,
2v

Step 10. If |f[xU*1D] — fx®]| and
Il 88 || are sufficiently small, ter-
minate. Otherwise, return to Step
2.

454 USE OF THE COMPUTATIONAL AL-
GORITHM

The algorithm presented in par. 4-5.3 will
certainly not solve all optimization problems.
It is presented primarily to guide the designer
to the proper equations developed in par. 4-5
while he is solving a problem. Almost surely a
complicated real-world optimal design prob-
lem will have some feature which is not
explicitly contained in the general formula-
tion OD. In order to utilize a steepest-descent
philosophy similar to the one developed here,
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the designer should be familiar with the
method of obtaining the given algorithm. In
this way, problems with peculiar features
often can be treated by altering the general
algorithm slightly.

There are two steps in the algorithm of par.
4-5.3 which are not complete. They are Steps
8 and 10. In Step 8, a parameter v is to be
chosen, but no analytical method of choosing
it is given. This is the classical difficulty with
steepest-descent methods. They give a direc-
tion but, unfortunately, they do not allow
analytical determination of a step size (1/(2v)
in this case).

A simple technique for choosing v which
has worked well in a number of problems is
given here as a candidate scheme. Since it is
the 84! component of 6b which tends to
reduce f, the step size determination will be
based on §5'. The basic idea is to choose v in
order to obtain a certain percentage reduction
in £ Let Af (a negative quantity) be the
desired reduction in f for a single iteration
(perhaps a 5% to 10% reduction). Since for
A= 0,

T 1
bf =~ 27" —= b (4-134)
v is chosen as
FTAYS
v = —W. (4-134)

In many problems v has been chosen accord-
ing to Eq. 4-134 on the first iteration and
held constant throughout the iterative pro-
cess. In other problems convergence prop-
erties were improved if v is changed during
the iterative process.
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CHAPTER 6§

FINITE DIMENSIONAL OPTIMAL STRUCTURAL DESIGN

5.1 INTRODUCTION

Throughout this handbook, structural
optimization problems are chosen to illustrate
the use of the design methods developed.
There are two principal reasons for using
structural problems for illustration. First,
there has been great emphasis on helicopter
and man portability of materiel, which places
a premium on structural weight. Illustrative of
Army concern with lightweight structures is
the theme of rhe 1970 Army Mechanics
Conference, “Lightweight Structures” (Ref.
33).

A second key reason for highlighting struc-
zural optimization s its advanced state of
Jdeveiopment, relative 'c other areas of the
mechanical engineering sciences such as dy-
namics of machinery and mechanisms. A few
examples in these related areas are freated in
this handbook. bcut deveiopnient of com-
putational techniques remains ‘¢ be dene. It
‘s relt that if the reacer develops 4 thoreugh
anderstanding of structurai optimization and
computational techniques, he wiil he in a
good position to address problems outside the
vealm of structures. The fact that the math-
ematics of structural analysis parallels that of
related mechanical disciplines strengthens this
feeling.

A cursory review of Army materiel needs
convinces one that light weight is a require-
ment for a majority of weapon systems being
developed by the Army. The high priority
placed on air mobility as well as lightweight

infantry cquipment has presented weapon
system designers with a major challenge. In
the case of air mobility, minimum equipment
weight is a necessary condition for maximum
helicopter payload. In infantry applications
equipment wecight limits the soldier’s fire-
power and mobility.

In sccking lightweight dcsigns. one is
tempted to simply usc lightweight materials
and lower safety factors. it becomes apparent,
however. that structural weight reduction can
significantly degrade systcm performancs. “or
:xample, when the weight of an artiflery riece
:s reduced by 30%, dynamic respcnse e <
Jiring the weapon becomes much more cvere.
In infantrv w~eapons. “he requirement o
reducsa weight has lec esigners ¢ u

weight nrperating mechanisms “or .ngividus
weapons. in lightweight rifles, ‘or sxamp.e.
bolts are much lighter than in orevicus weap-
ons and hence are more sensitive 1o chaneges in
friction lue to dust ine xTernar sartclee
an vere 'ne mor o Genve ity ot apie
ind M1 Rifles. here ire manv elamnies
scme of which wiil be wiscussey later i thes
hiandbock, of instances i wnica simriy re-
ducing wcight of subsystems causcs problems
which did not occur in heavicr designs.

The lightweight objective, then, rcquires
that the developer take an overail system view
and consider the intcraction between weapon
weight and performance of the weapen sys-
tem. As is truc in virtnaliy every design
problem in which the limits of technology are
approached, the iightweight weapen design

2=t



AMCP 706-192

problem must be considered simultaneously
with all other aspects of system design. It is
not practical to expect, therefore, that one
will find lightweight structural design special-
ists operating independently of designers con-
cerned with other aspects of the weapon
development. A technology is needed which
will allow trade-offs concerning weapon-
weight to be integrated into the overall
weapon design process.

The objective in this treatment has been to
formulate the minimum weight structural
design problem with constraints realistically
reflecting the performance requirements of
the weapon system. A detailed formulation
and solution of this structural design problem
is presented in this Chapter as well as Chap-
ters 7 and 9.

5-1.1 LIGHTWEIGHT VS STRUCTURAL
PERFORMANCE TRADE-0FFS

Normally, achieving a lightweight structure
requires a reduction in the amount of material
used. The consequence is an increase in
structural flexibility that causes increased
deflections, decreased mnatural frequencies,
and decreased buckling loads. Consequently,
failure modes that were not previously criti-
cal, may now become limiting factors in
design. For example, in gun supporting struc-
tures, increased deflection often reduces
effectiveness of the weapon system by in-
creasing dispersion. There are many ways in
which such changes in structural performance
can have an impact on overall system
behavior.

The only effective approach to minimum
weight structural design is to formulate the
structural design problem to include con-
straints on performance which are dictated by
functional use of the weapon system. As a
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result, the minimum weight design problem is
often stated with explicit constraints on
structural deflection, natural frequency, buck-
ling load, and strength. A central part of the
design problem, then, is representation of
weapon system performance requirements
that have an impact on structural design. It is
often required that in doing structural design,
dynamic weapon performance must be ana-
lyzed to assure that the proper constraints are
included in the structural design problem.

5-1.2 WEAPON DEVELOPMENT PROB-
LEMS ASSOCIATED WITH LIGHT-
WEIGHT REQUIREMENTS

To further explore some of the trade-offs
between lightweight and weapon system per-
formance, several typical problems en-
countered in weapon development will be
discussed in this paragraph. The discussion
here is presented to highlight some typical
problems, not necessarily to identify all light-
weight structural design problems faced in
weapon development.

5-1.2.1 AIRCRAFT ARMAMENT

Some of the most critical lightweight struc-
tural development problems in weaponry
today are in the field of aircraft armament.
This is due to the very high priority placed by
the Army on improved air mobility and the
need for minimum weight weapon systems to
be carried by helicopters. The combination of
lightweight structural requirements and the
extreme environment under which the struc-
ture must perform in helicopter application,
generates a very difficult class of minimum
weight structural design problems. The weap-
on developer’s interest in structural design for
aircraft armament lies primarily in the area of
weapon and weapon support structures.



The key structural requirement in this
application is accurate aiming of an automatic
weapon during firing. Dynamic response of
the weapon support structure due to inputs
from the weapon and from the airframe,
which vibrates due to aerodynamic inputs,
must be considered in the design problem.
The most difficult feature of the minimum
weight structural design problem for aircraft
weapon applications is the variety of per-
formance and failure constraints which must
be treated in the design process. Constraints
must generally be placed on stresses arising in
the structure, angular deflection of the struc-
ture at the gun mount, and natural frequency
of the supporting structure. These constraints
generally appear in the form of inequalities.
For example, stress is required to be less than
or equal to the allowable stress for the
material. This kind of constraint is very
realistic, from an engineering point of view,
but makes the solution of the optimal design
problem rather difficult.

In addition to altering the geometry and
distribution of material in the structure to
obtain desirable performance, it is also possi-
ble to induce damping into the structure and
to use active feedback control devices to
reduce response. These two methods of re-
ducing dynamic response will require addi-
tional weight on board the helicopter. There
is a trade-off between design of the structure
and design of other means of obtaining
improved weapon system performance. These
trade-offs, then, require that we treat the
aircraft weapon design problem as a system
problem, explicitly accounting for the inter-
action between structural behavior, damping,
and active feedback control.

5-1.2.2 GUN BARREL DESIGN

A second area in which lightweight struc-
tural design is of critical importance is that of
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gun barrel development, particularly for
infantry automatic weapon application. With
a great deal of emphasis being placed on
lightweight infantry weapons, the barrel is a
natural component in which to seek weight
reduction. This is particularly true for rapid
fire weapons in which heavy barrels have
traditionally been used to alleviate tempera-
ture problems. For a particular barrel con-
figuration, decreased mass tends to cause
elevated temperatures and stresses. To com-
plicate matters, material strengths are highly
temperature dependent, making stress con-
straints difficult to handle. Another potential
problem, as one tends toward optimality in
barrel design, is the possibility that material
yield properties will become critically depen-
dent upon strain rates and require their
explicit inclusion in the design process.

Another problem, which can arise in re-
duced weight design, is barrel deflection with
resulting reduction in weapon accuracy.
Deflection constraints must, therefore, be
considered.

The objective of the barrel design problem
is to choose barrel dimensions and structural
material to minimize barrel weight in the
presence of constraints on dollar cost, tem-
perature, stress, and perhaps strain rate. The
optimal design problem must then include
equations of state of stress and temperature as
a function of time, both depending on the
barrel design features.

5-1.2.3 TOWED ARTILLERY

The principal objective in towed artillery
design is to provide support for a large-caliber
tube that will, upon firing, transmit momen-
tum to the earth without doing damage to the
support structure and without undue dynamic
response. The fundamentals of the design
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problem then lic in the field of mechanics
and, in particular, are highly dependent upon
the weight distribution within the artillery
piece.

In traditional artillery design, the support
structure is flexible but has been quite heavy
and stiff in the past so that the flexibility of
the structure was a higher order effect. Also,
heavier carriages reduced the severity of the
dynamic response problem due to their higher
mass. Recent developments, such as the
M102, 105 mm Howitzer, have resulted in a
weapon that weighs approximately 3200 Ib,
as compared to the older M101 which
weighed 4500 1b. As a result of the reduced
weight, problems have arisen in providing a
firm support for the artillery piece on soil
More recent design efforts, including the
XM164, 165 mm Howitzer, and XM 198, 155
mm Howitzer, have resuited in weapons
which are considerably iighter than their
predecessors. As a result of the reduced
itructurat weight of the weapon, dynamic
cesponse in noth of rthese weapons became
criticat and had to be treated asa key design
constraint in development of the recoii mech-
arusm. For a discussion of a particular prob-
iem, the reader Is referred to the artillery
design example of par. 3-5.

Ailthough these are primarily mechanical
system design problems, they have arisen due
tc the lightweight design criterion. For this
reason, when one considers lightweight struc-
tural design he must be willing to fit his
structural design problem into a larger system
design program and clearly understand the
interfaces arising between structural and other
system performance characteristics.

51.2.4 OTHER WEAPON PROBLEMS
The example problems cited in par. 5-1.2
are meant to illustrate the essential featurescf

5-4

J

some of the more complex lightweight struc-
tural design problems faced in weapon devel-
opment. They are simplifications of the real
problems but are difficult enough to illustrate
the need for research in development of
design methods. In view of the current em-
phasis within the Army on air mobility and
lightweight systems, new design methods are
required which are capable of solving these
and many more lightweight design problems.

6-1.3 PLAN FOR TECHNIQUE DEVELOP-
MENT

The remainder of this chapter will be
devoted to formulation and application of a
method of structural optimization. As noted
at the beginning of par. 5-1, an in-depth
treatment of lightweight structural design
provides insight into application of the gen-
eral methods of Chapter 4.

For a comprehensive review of structurai
Optimization through {967, the reader is
referred to Refs. i ana 2. Severai of the major
classes of optimal structural design problems
are outlined in Ref. 2. Some of the key papers
which have appeared in the fiterature since
1967 are listed in Refs. 3 through 8.

52 ELEMENTS OF THE ELASTIC STRUC-
TURAL DESIGN PROBLEM

A class of optimal structural design prob-
lems in which the structure must remain
elastic is treated in this paragraph. The objec-
tive of this paragraph is to show how the
optimization methods of Chapter 4 can bte
used to solve reaiistic optimal design prob-
lems. No attempt is made here to present a
complete theory of optimal structural design
that is capable of solving all problems.

The reader should note that, even for the



class of problems considered here, it is not
possible to blindly apply the techniques of
Chapter 4. A certain amount of knowledge of
structural analysis is required before a reason-
able statement of the design problem and a
method of solution can be obtained. Even
more important, the structural designer needs
to have a thorough knowledge of the opti-
mization methods of Chapter 4 and their
development. As will be seen, in some cases it
is required that parts of the design problem be
interpreted in light of the derivation of the
optimization method. In this way the method
may be adapted for solution of a particular
class of problems.

5-2.1 THE OPTIMALITY CRITERION

The meaning of optimal or best must be
clearly established in each problem of inter-
est. In order to have a problem which may be
solved by the previously developed optimiza-
tion methods, a real valued measure of the
cost of the structure (value of the structure)
must be chosen. Such measures as dollar cost
of the structure, weight of the structure, or
dynamic response of the structure may be
chosen.

Along with the choice of a cost function,
the parameters, or design variables, that repre-
sent all design alternatives must be chosen.
These parameters will often be dimensions of
structural members, arca of member cross
sections, or locations of joints in the struc-
ture. In keeping with the notation of the
preceding chapter, these design variables will
be denoted as bi', i=1,..., m. For con-
venience of notation, these variables will be
put in the vector form b = b, . . ., b, 17.

Invariably, the behavior of the structure
under load will have to be considered in the
design problem. The response of the structure
may include quantities such as stress, displace-
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ment, buckling loads, and natural frequency.
The collection of all variables required to
describe this response due to applied load will
be denoted by the state variable vector z. The
manner in which z is related to the design
variables and applied loads will be discussed in
some detail later in this paragraph.

The cost of the structure must now be
described as a real valued function of the
design and behavior variables. In keeping with
the preceding notation this function will be
denoted as

J = [z 8,%) (5-1)

where { is one or more eigenvalues such as
buckling load and natural frequency. Before a
meaningful discussion of treatment of the
structural design problem may be given, the
behavior of the structure due to loads and
constraints on that behavior must be ana-
lyzed.

5-2.2 STRESS AND DISPLACEMENT DUE
TO STATIC LOADING

It is assumed for now that the structure of
interest is either made up of a finite number
of distinct interconnected members or that
large continuous members in the structure
have been approximated by a finite number
of elements as in finite element techniques.
Further, it is assumed that the entire structure
is described by a vector design variable b.

Let stresses at critical points in the struc-
ture be denoted z,, . .., z, and displacements
required for the analysis and design of the
structure be denoted z,,,,....z . The
behavior of the structure due to any given
load may then be specified by the vector state
varable z = [z,,..., zn]T. Attention will
be restricted here and in the remainder of this

5-5
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chapter to structures which obey Hook’s law,
i.e., stress and displacement are determined
by linear equations. It is clear, however, that
the design variables play a large part in the
response of the structure to loads. The depen-
dence on the design variables enters these
linear equations through the coefficients. The
equations for zwill be denoted

Ab)z=P (5-2)
where P is a matrix of loads and

A(b) = [a,(b)] (5-3)

nXn
is a matrix whose elements depend on the
design variables.

In this formulation of the problem, z and P
may be generalized state and load variables.
Eq. 5-2 may be obtained through direct
application of equilibrium and compatibility
conditions or through application of varia-
tional criterion for equilibrium. In today’s
structural analysis technology, Egs. 5-2 are
very likely to be obtained by finite element
methods (Refs. 19, 20). If the structural
analysis problem is properly formulated, the
matrix A(b) is nonsingular and z may be
obtained by solving Eq. 5-2. It is assumed that
the elements of the matrix A(b) are differ-
entiable with respect to b.

In most real-world structural design prob-
lems the structure is required to carry a whole
family of loads that occur at different times
in the life of the structure. The treatment
here will be limited to a finite number of
loads, denoted P!, i = 1,..., s. Associated
with each load is a state z* determined by Eq.
5-2.

Constraints on behavior of the structure
due to each of the applied loads P may
include bounds on stresses and displacements.

5-6

These constraints can generally be written in
the form

¢z, b, < 0 (5-4)

where ¢(z,b,8) = [¢;b.5), .. ..6,zb]T.
The inequality constraints, Eq. J5-4, arc
required to be satisfied for cach of the states
z' due to different applied loads P’.

It is clear that the Eqs. 5-2 and constraints,
Eqs. 5-4, fit into the formulation of the finite
dimensional optimal design problem of par.
4-5. Treatment of the restrictions imposed by
Eq. 5-4, however, must be delayed until
similar restrictions due to other behavior
constraints are accounted for. The entire
problem will be treated in par. 5-3.

5-2.3 NATURAL FREQUENCY AND

BUCKLING

As pointed out in par. 5-1, the desire to
obtain lightweight structures has led to
resonance problems and, likewise, buckling
problems. It is necessary, then, that a mean-
ingful optimal design methodology be capable
of enforcing constraints on eigenvalues
associated with the system response. The sort
of constraint considered here is

§= %, (5-5)

where ¢ is buckling load or natural frequency
and §, is a lower bound on that eigenvalue.
More general restrictions than those of Eq.
5-5 are included in the general constraint, Eq.
5-4.

Much as in Eq. 5-2, the equations of
vibration or buckling may be written in the

form

K@)y =§M®)y (5-6)



where y = [yi,...,y 17 isan cigenvector

which plays the role of a state variable,

K() = [k;(h)] (5-1

nXn
is generally symmetric positive definite ma-
trix, and

M(b) = [my (b)) (5-8)

nXn
is generally also a symmetric positive definite
matrix. Eq. 5-6 is often obtained through
a finite element formulation of the structural
analysis problem (Refs. 19,20).

There are many methods for obtaining the
eigenvalue and associated eigenvector in Eq.
5-6. The first method requires that the inverse
of K(b) be computed. Multiplying through
Eq. 5-6 by K~ (b,

K- 1pMp)yy =— ¥ (5-9)

I
§
This problem is now in standard form and the
largest eigenvalue of K~ 1(h)M(b) is sought.
The power method of obtaining this eigen-
value is quite effective (Ref. 21). It is par-
ticularly effective when a good estimate of
the eigenvector is available. In the iterative
design technique, a good estimate is generally
available from the previous iteration. The
power method is, therefore, well suited for
use in iterative techniques. This method does
have the severe disadvantage that K~ 1(b)
must be computed for each new 5.

A different method of finding the smallest
eigenvalue and associated eigenvector of Eq.
5-6 without computing K~ !(b) is based on
the Rayleigh quotient as discussed in par. 2-8
and Ref. 23. The smallest eigenvalue of Eq.
5-6 is obtained by choosing a normalized
vector » which minimizes the quotient
yTK(b)y/[yTM(B)y]. The minimum value
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of this quotient is the smallest eigenvalue. A
direct method of minimizing the Rayleigh
quotient is discussed in par. 2-8.

6-2.4 METHOD OF SOLUTION

In the preceding formulation of the opti-
mal design problem, the cost functions and
constraints associated with stress and displace-
ment can be put into the format of the
problem treated in par. 4-5. The constraints
associated with natural frequency and buck-
ling, however, are not of exactly the same
form. One difficulty is that the coefficient
matrix for the eigenvector y, K(b) — §M(b),
must be singular at the solution. This clearly
contradicts the assumption in par. 4-5 that
the state equations uniquely determine the
state variable.

This situation is a direct result of Murphy’s
law “if anything can go wrong it will”.
Actually, it is not realistic to expect that a
mathematical formulation of the kind pre-
sented in par. 4-5 should contain all real-
world design problems. Already, an important
problem has been encountered which requires
an understanding of the development of par.
4-5 in order to include the new problem in
the steepest-descent algorithm. The eigenvalue
problem, fortunately, can be treated very
nicely by the steepest-descent technique.
Development of the method will be done in
par. 5-3.

6-3 STEEPEST DESCENT PROGRAMMING
FOR OPTIMAL STRUCTURAL DE-
SIGN

In order to obtain a steepest-descent al-
gorithm for the design problem with con-
straints on eigenvalues, it is necessary to go
back into the derivation of the algorithm of
par. 4-5. The major effort required here will

5-7
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be the linearization of the structural design
problem to obtain an approximate problem of
the kind described by Eqs. 4-119 through
4-121.

6-3.1 LINEARIZED COST AND CON-
STRAINT FUNCTIONS

Since the cost and constraint functions
depend on z, b, and f, the first order
perturbation in these functions due to small
changes 6z, 6b, and 6§ in z, b, and § is

&f of of

§f =—é8z+ - 6bt — -
o % T TR (5-10)
and
. 3¢ 9¢ Y
§b = — — —~ 5. -
¢ Z 6z+ab 6b+a§ag‘ (5-11)

The problem of writing the perturbed cost
and constraint functions explicitly in terms of
6b now reduces to obtaining explicit ex-
pressions for the terms involving 8z and 6%.

From Eqs. 4-117 and 4-118, and the
perturbed state equation we obtain, just as
Eq. 4-119,

of 4T 0

S 0z= =N - [A(b)z]8b (5-12)
and

9 - 5 2

5, 02 —\? = [A(b)z]8b (5-13)

where M and A? are determined by

o7

AN =
0z

(5-14)

and

5-8

oot
Y= a—z/ (5-15)

for each ¢j = 0. All this follows since #(z,b) in
the general formulation is simply A(d)z in the
present problem so

oh 0
% 2 [4(b)z]

and

oh

az
with 4 symmetric so AT =A.

Thus, the explicit dependence of Eqs. 5-10
and 5-11 on &z can be easily eliminated. Tt
remains to determine 8¢ in terms of 6b. This
problem has been addressed in a completely
rigorous manner by Kato (Ref. 23). Explicit
expressionsare given there under quite restric-
tive hypotheses. A formal development will
be given here which obtains the same result.

It is assumed that the eigenvalues and
eigenvectors of

K(b)y = tM(b)y (5-16)
depend continuously onb and further, that to

first order, the following perturbation equa-
tion is accurate

a
K(b)sy + 3% [K(B)y]16b = 6SM(b)y
(5-17)

J
+ Yy [M(b)y]6b + EM(b)Sy

where y and { satisfy Eq. 5-16.

If K(b) or M(b) is not symmetric, it is



necessary to solve the adjoint eigenvaluc
problem

KT(b)y =¢{MT (b)y (5-18)
that has the same eigenvalue § as Eq. 5-16 but
a different ecigenvector y. Rearranging and

premultiplying by ¥ 7 this is

— )
yTIK(D) — $M(b)18y +¥ % [K(b)y16b
-v75 2 [M(b)y]18b
ob
=y T85M(b)y

Since the first term is a scalar,

FTIK b)Y — (MDY 8y =3y T [KT (b)
— M7 () p.

Since ¥ is an eigenvector of £g. 5-18&,
(K710) —cMT (D)) Y =U

and this sguaticn becomes
" X Y
(57 kol 65T = el | s
i‘}’ o D1y Y b yi.{ 30

=8¢y M(b)y.

Assuming ¥ ¥ M{b)y # 0 which will generaily
be the case.

-}
6§ = E Y 38 [K(b)y]

S-19

_+ 0 i _
— 55T S IMG)) }61; GTMb)y]

Derivation of the perturbation formula, Eq.
5-19, has been strictly formal. The assump-
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tion that Eq. 5-17 holds is highly questionable
from an opcrator thcorctic point of view.
Undcr rcasonablc assumptions on the finite
dimensional cigenvaluc problem treated here
however, Eq. 5-19 is shown to hold (Ref. 23);
i.e., cven though thejustification given here is
not mathcmatically rigorous, the result, Eq.
5-19, holds for a large class of problems.

Dcfining

{3 _
«f {5{K(b)y1 }Ty

1

B
a }T_‘\ )
-5y — M 1 (5-20
s{ab[ ()yJ/ ,‘} { )
and
g7 1 a T, 7

P L TR

: aé’f‘ /(—T
K ——— / 1y M(D
?xab/ S M(b)y)
or
0, if ¢ is cmpty.

Eqs. 5-10 and 5-11bccome

T
§J=27"6b (5-22)
and
s6=2" 5b. (5-23)
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The linearized problem is now to minimize
8/, Eq. 5-22, subject to constraints

%" 56 < A

where A¢ is the desired correction in con-
straint error and

8bT Wob < £*

where W is positive definite and & is small.
This is precisely the same problem in par. 4-5,
Eqs. 4-119through 4-121, so the theoretical
results and steepest-descent algorithm of that
paragraph apply with proper interpretation.

5-3.2 STEEPESTDESCENT ALGORITHM
FOR OPTIMAL STRUCTURAL DE-
SIGN

Step 1. Make an engineering estimate of
the optimum design variable 5(°).

Step 2. Forj =0, 1, .., solve Eq. 5-2 for
2, Eq. 5-6 for ¥ and {7, and
Eq. 5-9 for y (if k() or M(b) is
not symmetric) with » = p9.

Step 3. Form ¢ as in Eq. 4-105. Solve Egs.
5-14 and 5-15 for M and A%,

Step 4. Compute ¢ and 28 in Egs. 5-20
and 5-21.

Step 5. Choose A¢ as the desired reduction
in constraint error.

Step 6. Compute

f 1, if ¢ is empty
M =
?¢ T
i 25" w198 clsewhere.
Step 7. Choose v > 0 and evaluate u =

5-10

— M@ wrr e +20A8). If any
component of ¢ is negative, re-
move the corresponding row from
é and return to Step 3.

Step 8. Compute

8! = W (I — ML 0B iy
and
2 = -l 0P A1 z
b wlg M¢¢A¢»
and form

8b=——+8b' +8b%.
v

Step 9. Compute
pU*L) = p(D 4+ 5p.

Step 10. If all constraints are satisfied and
86" is sufficiently small, termi-
nate. Otherwise, return to Step 2
and continue the process.

All the properties of 85! and 65* derived
in par. 4-5.2 hold in this case. Further, the
discussion of that paragraph regarding such
things as choosing v also hold. The reader
should refer to that paragraph for detailed
discussions.

5-3.3 COMPUTATIONAL
CONSIDERATIONS

Several comments on the computational art
used in solution of these problems are in
order. First, if a feasible design was chosen
initially, large steps could be taken until one
or more constraints were violated, at which
time the step size was reduced. Second, it was
noted that as the optimum was approached,



oscillation occurred. By monitoring the dot
product, 8697+ 6pY- 1), oscillations were
sensed when negative values of the dot prod-
uct occurred. Thus, step size, 1/(2v), was
divided by two when negative values of the
dot product occurred on two successive itera-
tions. Finally, the most effective method of
adjusting step size was to monitor successive
reductions in cost function after feasibility
had occurred. Once insignificant reductions
occurred, the step size was reduced to obtain
finer convergence.

The Power method used to compute the
smallest eigenvalue performs quite well. At
every iteration, the starting value for the
eigenvector is taken from the previous itera-
tion which manifested a very rapid rate of
convergence. An accuracy of 0.1% in each
component of the eigenvector was used to
compute the new eigenvector. The stiffness
matrix for the structure was inverted by the
Gauss-Jordan elimination procedure.

Another comment that is appropriate here
concerns the sign check on the Lagrange
multiplier vector u, called for in Step 7 of the
computational algorithm (par. 5-3.2). The
algebraic sign of each component of the
Langrange multiple vector # was checked at
each iteration. If some of the components
were negative, then the matrix 2% and the
vector A¢ were adjusted accordingly. This
procedure is particularly useful whenever
there were redundant constraint violations. In
some cases, the number of constraints vio-
lated is more than the number of design
variables of the problem, yielding a singular
matrix coefficient of u. In such cases numeri-
cal noise yielded a solution such that some of
the components of the vector 4 were always
negative, indicating that the corresponding
constraints would be strictly satisfied in the
next iteration. In numerical examples, the

AMCP 706-192

number of constraints with positive compo-
nents of ¢ was always less than or equal to the
number of design variables of the problem.
This procedure of adjusting the constraint set
has worked very well and has minimized the
possibility of divergence of the algorithm.

The method presented is relatively auto-
matic in the sense that, for the computer
program developed, the input data given is the
only pertinent design information required
for solution of the problem. All the necessary
matrices and their derivatives are automati-
cally generated in the computer. Any person
with a reasonable knowledge of FORTRAN
language should be able to handle the pro-
gramming without any difficulty. The method
is developed to meet simultaneously displace-
ment, strength, and frequency requirements
on the structure. The technique, therefore,
can be made user oriented.

5-4 OPTIMIZATION OF SPECIAL
PURPOSE STRUCTURES

Several special purpose structural optimiza-
tion problems are solved in this paragraph on
an ad-hoc basis to illustrate the method of
par. 5-3. Subsequent paragraphs will treat
large scale problems in a more unified man-
ner.

5-4.1 A MINIMUM WEIGHT COLUMN

A column is to be constructed by making
its cross section piecewise uniform as shown
in Fig. 5-1. The objective of the design
problem is to choose the element areas so that
the column will support a vertical load P,
without buckling or yielding under compres-
sive load. For the purpose of the present
problem the geometric shape of each column
element is fixed and symmetric about two
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Figure 5-1. Column

orthogonal axes so that the cross-sectional
area b; of the ith element completely specifies
the element. With this assumption, if a isthe
second moment of the cross section of unit
area, then

I=ab} (5-24)

In this problem, weight of the column is to
be minimized so that the cost function is

(5-25)

where vy is material density and L; is the
length of the ith element of the column.

There are two basic constraints that must
be satisfied in this design problem. First, to
insure that the buckling load P is not less than
the applied load Py, it is required that

b1 =Po—P< 0. (5-26)
Second, in order to insure that the column
material does not yield under the applied load
Py, it is necessary that

;= Po/b) — 0, <0,
(5-27)

i=1,..,k

5-12

where o ax is the allowable stress of the

column material in compression.

In order to apply the optimization method
of par. 5-3, the equations which determine
the buckling load in terms of b =/5,,... b, 17
must be obtained. Using the generalized co-
ordinates shown in Fig. 5-2 and Eq. B-4,
Appendix B, the potential energy of the ith
element under the buckling load P is

1 7 . . T . .
PEi=Eu' Kipyu! —Pu" Di(b)u' (5-28)

where

W=, uh, ub, ul]T

is as shown in Fig. 5-2. The matrices K'(5)
and D'(b) are from Eqs. B-4 and B-8, Appen-
dix B

g~
1 2

Figure 5-2. Column Element

12 —6L; —12 —6Ll.“

2 2
Fap? |—6L, 4L} 6L; 2L

i H 14

Kip) = (5-29)

L} -1 e, 12 2,

14 [

—6L, 2L; 2L; AL}

and



1 i 1 Li_
20 15 20 60
Dip) =2 (5-30)
3 1 3 1

L L
20 60 20 15

Summing the total potential energies of all
the clements from Eq. 5-28 and defining a
new variable

y=W1, Yo, on Y2k 17T

=[u}, uy, 03, ul, . 0k,

k ] T
the total potential energy PE of the column
may be written

1 T 1 T
PE =3y K(®b)y —P5yT Db)y

where K(b) and D(d) are made up of elements
of K¥(b) and D'(b) and are symmetric. Apply-
ing the theorem of minimum total potential
energy given in Appendix B, the governing
equations of buckling are

K@)y =PD()y. (531D

Eq. 5-31 is now in the form of Eq. 5-6, with
proper interpretation of notation.

In order to implement the computational
algorithm of par. 5-3, the following vectors
are required :

T

aJ
¥ ==Lt ] (5432)
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T
(4 09; 2
g = = [0,.., 0,— Py/b7, 0, ..., 01,
ab [ > > 0/ 1
i=1,..k (5-33)

since 3 does not depend on P, i= 1,..., k and

2 ket T
35 )y y

0
_p { - [D(b)y]} " / oTDy),

ifg, ;20

Q¢k+l =

[0],if¢, ,, < O. (5-34)

The computations required in Eq. 5-34 are
messy but they can be programmed for
automatic computation.

All expressions required for direct applica-
tion of the steepest descent algorithm of par.
5-3 are now available. Numerical results and
profiles of optimum columns are shown in
Tables 5-1 and 5-2, and Fig. 5-3. Numerical
data for the example problems are E = 3.0 x
107 psi, @ = 0.079577, o, = 20,000 psi,
and 7 = 10.0 in. Computation in each case
required approximately 0.1 sec per iteration

TABLE 5-1
COMPARISON OF UNIFORM
AND OPTIMAL COLUMNS

Volume of Volume of
Optimal Uniform* Material
P, Ib Column, in? Column, in? Savings, %

500 0.806 0.923 127
1000 1.143 1.300 12.1
1500 141 1.600 11.8
2000 1640 1.840 109
4000 2412 2600 72

*Lightest uniform column which will support load P.
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TABLE 5-2

CROSS-SECTIONAL AREAS OF OPTIMUM COLUMNS

Element
No. i P=5001b P=10001b P=15001b P= 2000 Ib P = 4000 Ib
1 0.1070 0.1499 0.1833 02106 0.2947
2 0.1055 0.1480 0.1809 0.2076 0.2875
3 0.1035 0.1442 0.1763 0.2023 0.2789
4 0.1000 0.1383 0.1691 0.1942 0.2683
5 0.0960 0.1303 0.1593 0.1831 0.2505
6 0.0831 0.1198 0.1464 0.1683 0.2302
7 0.0738 0.1064 0.1299 0.1493 0.2020
8 0.0623 0.0892 0.1088 0.1250 0.2000
9 0.0477 0.0668 0.0812 0.1000 0.2000
10 0.0267 0.0500 0.0750 0.1000 0.2000
D together uniform sections of beams as shown
i in Fig. 5-4. The objective is to choose the
= sections so that the beam is as light in weight
B as possible and still satisfies constraints on
: strength and natural frequency. Due to dy-
|| namic inputs to the beam, it is required that
— the natural frequency of the beam be above a
"L_r given limit w, to prevent oscillation prob-
iy 77777777 L
lems.
P= 500 P= 1000 P= 1500
As in the preceding column design prob-
lem, the cross-sectional geometry is chosen,
| but all dimensions of the cross section may be
varied in the same proportion. Thus, if &,
denotes the area of the ith section, then the
second moment of the cross-sectional area is
1, = b} (5-35)
it rrr T
P = 2000 P =4000 P=6974

Figure 5-3. Profiles of Optimal Columns'’

and 15 iterations to converge on an IBM
360-65.

5-42 A MINIMUM WEIGHT VIBRATING
BEAM

A beam is to be designed by piccing
514

where o« is a constant of proportionality
depending on the geometry of the cross
section. The problem at hand is to minimize

Figure 54. Stepped Beam



weight, so the cost function is

J=p X bL, (5-36)
where p is material density and L; is the
length of the ith section,

As a strength constraint, it is required that

¢, =by —b;< 0, i=1,.. k (5-37)

where b > 0 is chosen so that the beam will
support a lateral load. The constraint on
natural frequency can be written as

Ppig “Wo —w< 0 (5-38)

By neglecting compression of the beam,
deformation of a typical element is shown in
Fig. 5-5. By Appendix B, the kinetic encrgy

4y 3

i
} h.

2

Figure 5-5. Typical Element

of an element is#’M'(b)i'[2, where, from Eq.
B-6
156 -22L; 54 13L

2 2
22L‘. arL ;- 13Li 3L;
pb.L

i~

Mip) = -
®) =", 54 —13L, 156 22L,

131, ~3L7 220, 4L}

(5-39)

Likewise, the potential energy of the ith
element is wi” Ki(b)i[2, where, from Eq. B-4
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12 - 61iLi -121, -6LL;
2
—6LL, 4r.L, 6L, 211,

z

i~i i i

. E
il =
K@ =71 - 121, 611, 121,  6LL;

2 2
- 6LL, 21:'[’:' 6I.L, AIL:

(5-40)

Forming a single vector y that contains all
displaccments and rotations for the beam, the
total kinctic and potential encrgies are
PTM®B)W/2 and yTK@®b)y/2, respectively.
Lagrange's cquations, Eq. B-17, are then

M)y (1) + KB)y(1) =0 (5-41)

For harmonic motion of thc structure, y(f) =
¥ sin wt, where y isjust a constant vector, f is
time, and w is natural frequency. Substituting
into Eq. 5-41 and dcfining § = w?, the
cigcnvaluc equation is

K(b)y =M@y (5-42)

The problem of minimizing J of Eq. 5-36,
subject to the constraints of Eqs. 5-37 and
5-38, and with statc Eq. 5-42, is in the form
of the gcncral problem of par. 5-3. The
stcepest-descent computational algorithm of
that paragraph can be applied directly to this
problcm.

As a numcrical cxample, the beam problem
was solved with the data E = 3x107 psi, L =
10in, &« = 1.0, and p = 0.00208 1b-sec? /in®.
The computational algorithm rcquired about
0.6 sec per itcration on an IBM 360-65 system
and approximatcly 15 iterations to converge.
Results for a range of natural frequencies are
given in Table 5-3 and the profile of an
optimum bcam is shown in Fig. 5-6.
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TABLE 5-3 —>
COMPARISON OF OPTIMUM BEAMS A B
N |
Volume of Optimum 2
Frequency, Uniform Volume, Material | |
rad/sec Beam*, in? in? Savings, %
3600 0.935 0.897 4.06 L |
4000 1.155 1.062 8.05
4400 1.397 1.259 9.74
4800 1.663 1.481 10.94
5200 1.951 1.727 11.48 1 3
5600 2.263 1.993 11.93
6000 2.598 2.283 12.12
10000 7.217 6.330 12.29 i T i
VI Y74

*Uniform beam of lowest volume having required
natural frequency.

— | | |

Figure 5-6. Profile of Optimum Beam

643 A MINIMUM WEIGHT PORTAL
FRAME WITH A NATURAL FRE-
QUENCY CONSTRAINT

A portal frame as shown in Fig. 5-7 isto be
proportioned so that it weighs as little as
possible and has its fundamental frequency at
least as large as a specified frequency .
Each member of the planar frame is formed
from several uniform sections whose areas are
to be determined as design variables. As in the
preceding problems, the cross-sectional geom-
etry is taken as fixed and all dimensions of
cross sections varied proportionally. The
seccond moment of the cross-sectional area
about a centroidal axis is /; = ab? where b; is
the cross-sectional area of the ith element.

Neglecting strain energy due to axial defor-
mation of the horizontal member, the ele-
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Figure 5-7. Portal Frame

ment stiffness matrix from Appendix B is

12 —-6L, —12 —6L,

H H

Eab? | — 6L; 4L} 6L 2L}

i I

K@) =

L -2 e, 12 L

1

2 2
~ e, 2 6L 4L

(5-43)

where L, is the length of the ith member and
the element deformation variables are shown
in Fig. 5-8. The potential energy PE of the ith
clement is

o “a
oY

Figure 5-8. Typical Elements



1 .7 .
PE, =5 u' K(b)u' (5-44)

where u’ = [u, uy, uy, uy17.
Likewise, from Appendix B the kinetic
energy KE of the typical element is

KE, = — & M@yt

l\)ly—t

where # denotes time derivative of # and

156 —-22L, 54 13L;

2 2

pbL, |—22L, 4L} —13L; —3L]
b)=—o
Mo)= "0

54 —13L, 156 22L,

2 2
13L, —3L; 22L,  4L]

(5-45)

Taking into account the lateral rigid body
motion of Member 2, the total kinetic energy
of the structure is

1.1 P
KE=2—u" M@’ + EMuA2 (5-46)
1

where M is the mass of Member 2 and &, is
the horizontal velocity of point 4.

Requiring harmonic motion with frequency
w, the displacement vector y(f) made up of
all displacements is

y() =y sin wt
where » is a constant vector. Applying

Lagrange's equations and eliminating time
dependence yields

K(b)y = $M(b)y (5-47)
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where y is the vector of all displacements and
rotation, and £ = w?. The matrices K(b) and
M(b) arc formed from element stiffness and
mass matrices as outlined in Appendix B.

Eq. 5-47 is in exactly the form of Eq. 5-16
and the matrix for this problem is simply
weight of the structure which is

k
J=p % b, (5-48)
i=1

where p is density of the structural material.

The constraints imposed on the problem
include lower limits on cross-sectional area

$;=by —b, 00, i=1,..k (5-49)

where b, > 0 and a lower limit on natural
frequency

$re1 =8 =<0 (5-50)

where §, is the lowest allowable eigenvalue of
Eq. 5-47,%, = w§ .

The steepest-descent algorithm may now be
applied directly. Data for the specific prob-
lems solved are given in Table 5-4. The results
for an aluminum portal frame are given in
Tables 5-5 and 5-6, with a typical profile
shown in Fig. 5-9. The design variable b,
shows the distribution of material for a
minimum weight frame whose frequency of
vibration must be greater than or equal to a

TABLE 54
MATERIAL PROPERTIES FOR ALUMINUM

a, dimensionless 0.07958
p, Ib-sec?/in 2.616x10%
E,\b/in? 10.3x10°
Iy, in.4 0.009825
L, in. 10.0
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TABLE 5-5
COMPARISON OF UNIFORMAND OPTIMAL
FRAMES FOR ALUMINUM

Weight of Weight of
Frequency, Uniform Optimal Weight

rad/sec Frame,lb Frame,lb Reduction,%
2000 3.748 1.729 539
3000 8.434 2.562 69.6
4000 14.994 3.590 76.1
5000 23.428 4.688 80.0
TABLE 5-6

OPTIMAL DESIGN VARIABLE b;
FOR VIBRATING FRAME

w, rad/sec
bi 2000 3000 4000 5000
by 1577 1.964 2907 4.020
b, 0.883 1604 2.484 3.321
by 0552 1.416 1.912 2.622
b4 0.374 0.866 1.290 1.725
b 0.350 0.360 0.671 0.836
b, 0350 0.350 0.350 0.350

Figure 5-9. Optimum Portal Frame for
w =3000 rad/sec

specified value. It can be seen from Table 5-5
that a significant material savingis possible in
comparison to the portal frame with members
of constant cross section.
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The results for the design variables b, are
the same for Members 1 and 3, and Member 2
converges to the lower bound /,, so only the
results for Member 1 are reported. For all
frequencies the values for the 5, for Member 2
are equal to 0.350.

5-4.4 A MINIMUM WEIGHT FRAME WITH
MULTIPLE FAILURE CRITERIA

To illustrate the applicability of the
steepest-descent method for the minimum
weight design of structures with stress, buck-
ling, and displacement constraints, an ex-
ample of a statically loaded frame problem is
presented. Fig. 5-10 shows the geometrical

— B
D!
2
; 1
q(i} 3
’1 i
rrrrvy

Figure 5- 10. Frame With Side Loading

configuration of the frame that is considered.
All members are assumed to be of the same
length L. Member 1 is subjected to a lateral
loading (/). Member 3 has a uniform cross-
sectional area which is prescribed and will not
be allowed to vary. The connections at points
A and B are frictionless pins.

The finite element method is used to
obtain the elastic response of the system fora
given set of design variables, i.e., the cross-
sectional areas of the eclements. As in the
preceding problem, the geometry of each
cross section is the same with all dimensions



of cross section varying proportionally. Thus,
I = ozb,2. where b, is the cross-sectionalarcaof
the ith element. The stiffness matrix K(b,) of
a typical element, Fig. 5-11, can be written as
in par. 5-4.3 with generalized displacements
defined by

i = T
u = luy, uy, us, u,l

- oy
4
Us
uztf | Tua
)u4
u —~—
2 ul\'-/

Figure 511. Typical Elements

From the fundamental beam theory, if R is
the horizontal force transmitted from the
Member 1 to 3, and assuming that Member 2
remains straight without buckling, then
neglecting compression of Member 2, the
deflection at 4 is u, = RL?/(3EL). From
the equilibrium conditions on the transverse
forces and moments at the nodes of Member
1, the generalized displacement z, which is
made up of the element displacements #; can
be evaluated from the following matrix equa-
tion

A)z =F (5-51)

where F is a vector load and A(b) is a
symmetric matrix. In a similar manner, if y is
the displacement vector containing all ele-
ment deflections associated with Member 2,
the buckling load 7 can be determined by
solving the eigenvalue problem

K(b)y = PD(b)y (5-52)
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where the matrix D is derived from the
shortening of Member 2 as in par. 5-4.1 and, as
in the previous problem, K(b) is a stiffness
matrix.

The cost function to be minimized in this
problem is the structural weight of Members 1
and 2 which is simply

k
J=y T b,

where v is the weight density of the material.

The weight of the frame is to be minimized
subject to the following constraints:

1. Stress constraints at the ith node of
Member 1:

¢i =0; - Omaxl

<0, i=1l,.,m (5-53)

where 0; = Mc(b))/[1(b)] is bending stress,
(b)) = B(b)'? is half the depth of the beam
at pointi,i=1,2,. .., m and Omax, is the
maximum allowable stress. The parameter § is

a property of the cross-sectional geometry.
2. Deflection constraint:
1=ty — &0 (5-54)

where u, is the horizontal deflection at the
top of Member 1 and A is the maximum
allowable lateral deflection of the top of the
frame.

3. Buckling constraint:

3EI,

¢m+2=LT u, —P<0 (5-55)

where the first term is just the load R carried
by the column.
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4. Compressive stress constraint at the jth
node of Member 2:

max o

P
¢m+’-+2 =E — 0 <0 (5-56)
7

for b,. in Member 2,

The steepest-descent algorithm can now be
applied directly. Given data are: A = 4 in.;
Imax; = 85000 psi; o, = 5.000 psi;
cross-sectional area of Member 3 is 4 in2; L =
100 in.; E = 3x107 psi, @ = 0.07958, and g =
0.5642. The resulting horizontal forces R that
correspond to increasing constant lateral loads
4, given in Table 5-7, are 285 1b, 409 1b, 458
Ib, and 458 Ib, respectively. For 4 = 20 and
25 Ib/in.,, the displacement in Eq. 5-54 is an
equality. For lower loads it is a strict in-
equality. This was determined automatically
by the algorithm. The results for different
side loadings are given in Tables 5-7 and 5-8.
A profile of an optimal frame is shown in Fig.
5-12. Computation in each case required
approximately 0.5 sec per iteration and 15
iterations to converge on an IBM 360-65.

TABLE 5-7

OPTIMAL DESIGN VARIABLE b; FOR
STATIC FRAME

Cross-SectionalArea by, ink

Member 1 Member 2
Element q, Ibfin. q, Ib/in.
No. i 10 156 20 25 10 156 20 25

149 2.03 276 451 0226 0.271 0.286 0.286

T st

1
2 0.86 120 1.76 3.34 0.366 0.438 0464 0464
3 0.40 0.47 048 2.10 0.407 0.487 0516 0516
4 0.43 053 0.37 0.43 0.366 0438 0464 0.464
5 0.43 053 052 043 0.226 0.271 0.286 0.286
TABLE 5-8
VOLUME OF OPTIMUM FRAME
q, Ib/in.

10 15 20 25
Optimum
Volume, 504.2 533.4 558.0 656.0
in.3
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Figure 5 12. Profile of Optimal Frame
With Multiple Failure
Criterialq =251b/in.)

54.5 A MINIMUM WEIGHT PLATE WITH
FREQUENCY CONSTRAINTS

As a final numcrical example in this para-
graph consider thc problem of minimum
weight design of the simply supported rectan-
gular platc shown in Fig. 5-13 subject to a
natural frequency constraint. The bending
cquation for plates of variable thickness is
given in Eq. 5-58. When the deflection
W(x,y,t) is written in the form

W(x, y, t) =w(x, y) cos wt (5-57)

the governing cquation bccomes

W
W aq
= X

Figure 5- 13. Rectangular Plate
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=hpwiw (5-58)
where
En3(x,y)
D(x,y)= ————— 5-59
* = Da = (5-59)

A(x,y) is the thickness of the plate, which is
the design variable, and p is the density of
plate material.

When the function w(x,») is represented in
the form

wxy)= = A, sin’
1

m,n=

the eigenvalue problem can be solved approxi-
mately by numerical methods. The problem
posed here is solved using a collocation
technique, i.e., the differential equation is
satisfied at discrete points in the region, Fig.
5-14.

The number of discrete points is chosen
equal to the number of terms in the truncated
seriecs of Eq. 5-60. The drivatives of the
function D(x,y) at the grid points are evalu-
ated by the use of finite differences. For a
given set of design variables, i.e., #(x,»), the
lowest eigenvalue, { = pw?, and the associated
eigenvector {4, , } , which plays the role of
y, are determined.
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1 . . . . .
2 . . . . .
3 . . . . .
4 . . . . .
5 . . . . .
AN

Figure 5-14. CollocationPoints

In the steepest-descent algorithm, the cost
function that is to be minimized is

7=p0A 2 . h(x,y;) (5-61)
L=

where AA is the area of the grid squares.

The constraints imposed on the design are

ho —h(x,y;) < O (5-62)
and
§o —§<0 (5-63)

where 4, > 0 and o > O are lower limits on
plate thickness and eigenvalue of Eq. 5-58,
respectively .

The steepest-descent computational al-
gorithm applies in a direct way. It should be
noted that the collocation method for ap-
proximate solutions of the equations for
natural frequency yields nonsymmetric
matrices K and M in Eq. 5-16. Thus in this
formulation of the plate optimization prob-
lem, the adjoint eigenvalue problem, Eq. 5-18,
must be solved along with the original eigen-
value problem. If finite element methods for
plate analysis had been used, symmetric
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matriccs would have been obtained. In this
examplc, as well as in the preceding, a
minimum cffort was expended to make com-
putations efficient. The emphasis has been
placed on getting results. A subsequent effort
will be devoted to making algorithms more
cfficicnt.

Thc minimum weight plate problem was
solved by the algorithm of par. 5-3 with
E = 3.0x107 psi, p = 7.43x107* Ib-sec? /in? ,
v=0.30, and w, = 1375 rad/sec. The uni-
form plate with t = pw? = 1400 was taken as
the initial estimate to the optimization prob-
Icm. The dimensions of the plate are 10.0in.
by 10.0in. and the value of 44 = 0.1 in. The
material is assumed to have a constant density
and so minimum weight is equivalent to
minimum volume. The volume of the uniform
platc is 11.44 in? and the volume of the
optimal plate is 10.8 in.3 which is a 5.6%
matcrial savings. Fig. 5-15 shows 25 colloca-
tion points. The numbers in the network are

vl

0.124 0.116 0.100 0.100 0.100
0.116 0.103 0.100 0.100 0.100
0.100 0.100 0.100 0.104 0.111
0.100 0.100 0.104 0.121 0.128
0.100 0.100 0.111 0.128 0.136

[T~

Figure 5- 15 Optimal Design Variableh(x, y)
for Vibrating Plate

the values of the thickness function A(x,y) at
cach nodal point which is located at the
ccentcr of each square. Double symmetry of
thc optimal plate thickness was observed
about axcs through the point (a/2, £/2).

*This paragraph is based on the dissertation of Dr. J. Arora,
Ref. 34.
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5-6 GENERAL TREATMENT OF TRUSS
DESIGN*

The theory presented in pars. 5-2 and 5-3
will now be applied to the case of gencral
planc and space trusses. These types of
structures are encountered quite frequently in
practical situations. Most common among
thcsc are buildings, transmission towers,
bridges, cooling towers, aircraft structurcs,
and lightweight military structures. In all thcsc
cascs, it is desirable that the structurc simul-
tancously should meet strength, deflection,
and frequency requirements and be of mini-
mum weight. In this chapter, all thesc con-
straints will be considered.

5-6.1 SPECIAL PROBLEM FORMULATION

In the problems to be considered hcre,
gcometry of the truss is assumed to be
specified and the loads are applied only at the
joints. The objective function for the problcm
is taken as the total weight or the volumc of
thc truss, and the design variable for cach
mcmber is taken as its cross-sectional area.
Thc objective function of Eq. 5-1 in this casc
is a linear function of m design variables and
may be written as

m
J= _21 p.L.b, (5-64)
i=

1711

whcre p; and L; are material density and
Icngth of member i, respectively.

The displacement method of structural
analysis is used, and nodal displacements of
the truss are considered as basic state vari-
ablcs. Therefore, the jth component of thc
statc variable represents the jth displaccment
component of the truss. Fig. 5-16 shows a
simplc scheme of designating joints, membcrs,
and displacement components of a truss. Fig.
5-17 shows a bar element with sign conven-
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Figure 5-17. A Truss Element

tion to be used on element forces and
deformations. Basic equations of the displace-
ment method for a truss may be written as

u=pz (5-65)

F=K(b)u (5-66)
and

f=g'F (5-67)

where u is the element deformation vector, F'
is the element force vector, £ is the vector of
external loads applied to structural nodes, and
B is a rectangular transformation matrix,
which transforms the nodal displacement vec-
tor z to the element deformation vector u.
The matrix K (b) is composed of element
stiffness matrices and is given by
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K@) = (5-68)

where m is the total number of elements in
the truss and K ; 18 the stiffness matrix for the
ith element of the truss. The stiffness matrix
for the ith element may be written as

. Ep, 1 -1
K'.—T » | (5-69)

?

where £, is Young's Modulus of Elasticity of
the ith element. Substituting Eqs. 5-65 and
5-66 into Eq. 5-67, one obtains

£= 167K ()81 2
= K(b)z (5-70)

where

K@) =p"K(®b)B (5-71)
is the structure stiffness matrix, which is
identical to A(b) in Eq. 5-2. The mass matrix
M(b) for the truss may also be computed in a
similar way, and it is given by

M(b) =pTM(b)B (5-72)

where M(b) is formed from element mass
matrices and is given by

M@®) = " (5-73)

Here, M.

; 1s the mass matrix for the ith
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element of the russ and is given by

. oL |21
M. = 5-74
o6 1 2. (>-74)

Any nonstructural mass that is attached to
the truss may also be added to the mass
matrix of Eq. 5-72 and it may be written as

M(b) =T M(b)B + M, (5-75)

where M, is a matrix consisting of nonstruc-
tural masses. In the example problems to be
presented later, M, is taken to be a null
matrix. However, there is no particular dif-
ficulty in incorporating this matrix if it is not
zero. Its inclusion will simply change the
lowest natural frequency of the truss. The
derivation of the given structural analysis
equations and matrices is well documented in
the literature (Refs. 20, 24).

In order to apply the algorithm of par.
5-3.2, two main matrices ¢ and ¢ of Eqs.
5-20 and 5-21 must be computed. They can
be assembled very easily once various other
matrices required in them have been com-
puted. In the class of problems treated here
fi(b) does not depend on the design variable,
so 9f()/db = 0. Also, onec obtains from Eq.
5-64

oJ

5;=(91L1, ----- ’mem)
Y_ o o
az—(, ..... , 0)

and 9dJ/af=0; and from Eq. 3-14
A = (0, ....., 0)T. Substitution of these values
into Eq. 5-20yields

=, Ly, ey o LT (5-76)

Assembling the matrix 2 of Eq. 5-21 is
more tedious. It requires a formation of
constraint set ¢ as in Eq. 4-105 which will be
discussed in detail now. The constraint set ¢
may be divided into five subsets, namely,
frequency, stress, buckling and displacement
constraints, and lower and upper bounds on
the design variables. Explanation of these
subsets follows one by one and, for each
subset, matrices 8¢/9¢, 0¢/dq, and d¢/db are
computed.

6-6.1.1 FREQUENCY CONSTRAINTS

In the example problems, only one fre-
quency constraint is considered. However, if
other frequency constraints are also present,
these may be treated in a similar way. Since
the design variable vector b is available at any
iteration, the matrices K(b) and M(b) are
computed from Eqs. 5-71 and 5-72, respec-
tively. The lowest eigenvalue { and the asso-
ciated eigenvector y are then obtained from
Eqs. 5-5 and 5-6, respectively. Premultiplying
both sides of Eq. 5-6 by K-1(b), one obtains

1
KL(0)M(b)y =Ey =5y (5-77)

where vy = 1/¢. The power method is used to
find the largest eigenvalue v of K-1(b)M(b).
This method of obtaining the largest eigen-
value is quite efficient in the present problem,
since a very good approximation to the
eigenvector at each iteration, except for the
first one, is available from the previous
iteration. The lowest eigenvalue is then given
by ¢ =1/y. The frequency constraint may
now be written as

£> 4, (5-78)

where {, corresponds to a given frequency.
In terms of the notation used in Eq.



5-4, Eq. 5-78 may be written as
$b,z2,0=¢, —¢<0 (5-79)

where s is a number assigned to this con-
straint. If this constraint is violated, then
Ad = (5, —5), 06/0b =(0, ....., 0), 86 /0%
=— 1,and 3¢ 2z = (0, ....., 0).

5-5.1.2 STRESS CONSTRAINTS

Since the matrix K(#) is available, Eq. 5-70
can be solved for the unknown displacement
vector z Element forces can then be com-
puted from Eqgs. 5-65 and 5-66. Substitution
of Eq. 5-65 into Eq. 5-66 yields

F =8z (5-80)

where S = IZ(b)B. It may be noticed from Fig.
5-17 that two forces are specified for each
element but the primary force remains con-
stant throughout a bar element. Therefore,
Fi=_F! where superscript i denotes the
element number. Dimensions of the matrix §
may be reduced from 2m Xn to m Xn by
using this relationship. Stresses in the mem-
bers may now be calculated as
F.

H
g, =I. (5-81)
Once the stress for each member becomes
known, it is checked against the critical stress.
A number of these stresses may be violated in
a particular iteration. The stress constraint for
the ith member may be written as

0; < 0% (5-82)

where of is the critical stress for member i. Tt
should be noted that, in terms of the nota-
tions used in Fig. 5-17, compressive stress in a
member is-taken as positive and accordingly
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inequality (Eq. 5-82) holds in such cases. For
tension members, o, and of are negative;
therefore, Eq. 5-82 is written as of < o;. The
expressions that follow are written for the
case of compression members. For tension
members similar expressions can be readily
written. Inequality Eq. 5-82 may be written
as

$.b,z =0, _05<0 (5-83)

where s is an index assigned to this constraint.
In all subsequent constraint subsets, subscript
s on ¢ will have the same meaning. If Eq. 5-83
is violated, then A = — (o, — 0f), 3¢/0¢ =0,

36, 3¢, [10F, 1
— =0fori#j — = —/—-——=F,
ab b, \b,db, b2 1)

i

where aai/az]. and 0F;/db, may be computed
from Eq. 5-80.

5-5.1.3 BUCKLING CONSTRAINTS
Each compression member of the truss is
also checked for the Euler buckling load given

by

7 E,l
2
L

P = (5-84)

where £ and /; are the critical buckling load
and moment of inertia of the ith member,
respectively. It is assumed that the moment of
inertia of the cross section of a member can
be written as

- 2
I, =oub; (5-85)
where ¢; is a constant depending upon the
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cross-sectional geometry of the ith member.
This is a convenient way of expressing the
moment of inertia in terms of the cross-sec-
tional area of a member, because the constant
o, can be specified by the designer quite
readily. Therefore, Eq. 5-84 may now be
written as

2 2
n° E,0b;

Py =y =0;b} (5-86)

where 8, =n?E,/L?. Eq. 5-86 may be writ-
ten in terms of the critical buckling stress o
as

p=0.>.

(5-87)

Now the buckling constraint for the ith
compression member may be written as

¢,b, 2z, f)= 0, —a® a 0. (5-88)

If this buckling constraint is violated, then
Ap = (o, —0b), ¢,/0% =0,

9 . 1 oF. 1
is=0f0ri;&j’._¢i =(— —F— _Fi)_ei'
ab]. ob; b, b, b?
and—¢— = 3‘2 e , o
0z 9z, 0z,

where 9F,/0b; and 90,/dz; may again be
computed from Eq. 5-80. The buckling con-
straints on all other compression members are
treated in a similar way.

5-5.1.4 DISPLACEMENT CONSTRAINTS

The displacement components are known
at this stage; therefore, the constraints on
them may be written as

lz; 1< 2 (5-89)
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where zI“. is the maximum allowable jth
component of displacement. If a particular
component of displacement is positive, then
Eq. 5-89 is written as Z —z‘;. < 0;and if it is
negative, then it is written asz/ -z, < 0. The
expressions that follow are written for the
case of positive displacement, and similar
expressions can also be written for the case of
negative displacement. In terms of the nota-
tion of Eq. 5-4 the constraint for the positive
displacement may be written as

@, (b, z, f)=z]. —z;? < 0 (5-90)

If thejth displacement component exceeds an
allowable limit, then

Ap =—(z.—z% % = $=0,0en.. ,0),
s 7 7" ag— ’
3¢
d == _
and =— =(0...... ,(1j,ﬂ9), ., 0).

All the displacement components are checked
and any other violation is treated in a similar
way.

5-5.1.5 BOUNDS ON DESIGN VARIABLES

It may be necessary to put upper and lower
bounds on each design variable. This con-
straint may be demanded by many practical,
architectural or structural considerations.
Moreover, a lower limit on each design vari-
able is required in the algorithm in order to
avoid the attainment of unrealizable designs
such as negative areas. This constraint may be
written as

bL < b, a bY (5-91)
where b% is the lower and bY is the upper

bound on the ith design variable. Inequality
Eq. 5-91 may be split up into two parts:



(1) Lower Bound on Design Variables:

This constraint is written as b4 < b, or in
terms of notation of Eq. 54

¢ (b.z,f)=bl_b,< 0 (5-92)

Violation of this constraint yields,

i 3, _

By = —(bf =b) 3+=0,
ai, _
-2 =¢0,...,0,-1,0,...,0),and
ob (ith)

3¢,

S =00, ..... ,0

= ( )

(2) Upper Bound on Design Variables:

This constraint is very similar to the previ-
ous one and in the notation of Eq. 5-4 it is
written as

¢, (b2, 0=b, bV <0 (5-93)

If the upper bound on any design variable is
violated, then

. a¢
Ag, = —(b; —by), 3¢ =0
% _(0,...0.1.0,...0).and
ab (ith)
al,=(o,...0).
0z

it may be noticed here that the cross-sectional
arca of any member of the truss may be
assigned a predetermined value by putting the
same upper and lower bound on it. This
situation may be encountered in practice due
to various reasons, and as shown in Example
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Problem par. 4-3.1, the present formulation
handles it without any difficulty.

After all the constraints have been con-
sidered, the matrices 3¢/db, 9¢/at, and
0¢/0z are available and A% can be solved
from Eq. 5-15. This still does not allow
the matrix 2 of Eq. 5-21 to be assem-
bled. The following matrices must also be
computed

0

S;[K(b)z] (5-94)

9 [K(b)y] 5-95

7 Y (5-95)
and

—a~[M(b) ] 5-96

35 y] . (5-96)

These matrices are assembled automatically
from the quantities such as K(d), M(b), z, and
y, which have previously been calculated in
the computer. The procedure of computing
the matrix of Eq. 5-94 will be explained here;
the matrices of Eqs. 5-95 and 5-96 are
calculated in an exactly similar manner. Eq.
5-71 may be written as (see Appendix B):

moor.e .
K() = El g K
1=
where K, is the only quantity which is a
function of b. Now, Eq. 5-94 can be written

as follows, by substituting the above expres-
sion for K(b):

9 - O S AT
5 K= = [(izzlﬁ K,-ﬁ‘)z]

I T =
_,'=21 ob [(Bl Kiﬁl)zj]
(5-97)
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It should be noted here that the summation
sign in Eq. 5-97 represents the summation of
m matrices of dimension (n x m). The
quantity inside the differentiation sign is an
n-dimensional vector whose components may
be dependent upon the design variable vector
b. Therefore, the quantity inside the summa-
tion sign is an n X m matrix for each index i
However, in the present case, since K; is a
function of only 5;, the computation of Eq.
5-97 is greatly simplified. Consideration of
each i in Eq. 5-97 generates a (» X m) matrix
whose only nonzero elements are in its ith
column. Computation of Eq. 5-97 is per-
formed quite readily and automatically in the
computer.

All the information being available, the
matrix 8 of Eq. 5-21 may now be assembled
and the algorithm of par. 5-3.2 may be used
to solve actual problems.

5-5.2 MULTIPLE LOADING CONDITIONS

Most structures are designed to withstand a
multiple loading environment. This is quite
reasonable, because only a certain combina-
tion of loads may act on the structure at a
particular time. This situation is handled in
the par. 5-5.1 formulation by expanding the
state variable vector z to include all states.
The element force vector f is also expanded
accordingly. Formulation of displacement,
stress, and buckling constraints must also take
into consideration all states of the system.
This is handled in the manner that follows.
While formulating a particular displacement
constraint, the value of displacement for each
loading case is checked and each violation is
entered into the reduced constraint vector ¢,
After this, the procedure of calculating the
matrices d¢/db, d¢/9¢, and 3¢/dz is the same
as explained earlier. An exact same procedure
is followed in treating stress and buckling

5-28

constraints. This procedure of taking into
consideration all the loading conditions has
worked out quite satisfactorily in the example
problems.

5-5.3 EXAMPLE PROBLEMS

Several trusses are designed by applying the
procedure presented in this paragraph. A
computer program, based on the algorithm
stated previously, was written in FORTRAN
IV. The computations were performed on the
University of Iowa IBM 360-65 computer.
The stiffness matrix €or the structure was
inverted by the Gauss-Jordan elimination
procedure, and the power method was used to
find the smallest eigenvalue.

Results for three typical trusses are pre-
sented here. All these structures were de-
signed with stress, displacement, buckling,
and frequency constraints. Examples 4-1 and
4-2, par. 4-1.1, are compared with results in
Ref. 25. These were designed with and with-
out frequency and buckling constraints in
order to compare the results with Ref. 25.
Example 4-3, par. 4-3.1, is treated in Ref. 20,
and it was also designed with only stress
constraints in one case to compare results
with Ref. 26. All sample problems had lower
limits on areas of the elements and Example
4-3 had upper limits. The program is general
enough to handle different lower and upper
bounds on stresses in an element, elements of
different materials, and a different buckling
parameter ¢; for each element. The examples
follow:

1. Example 5-1. Five-node Four-bar Truss

Fig. 5-18 shows the geometry and the
dimensions of the truss. Input and output
information is given in Table 5-9. In order to
compare the results with those of Ref. 25, the



Figure 5-18. Four-bar Truss (Example 5-1)

truss was first designed for stress eonstraints,
Fig. 5-19(A), and second for stress and
displacement constraints, Fig. 5-19(B). 1t
may be noted that the results presentcd hcre
are at least as good as those presented in Ref.
25.

The final design weight with only stress
constraints was 9.09 Ib and eomputation time
was 1.820 sec for 12 iterations. The final
dcsign weight reported in Ref. 25 was 9.09 Ib
with a computation time of 4 sec for 5 cycles.
Thc final design weight, with stress and
displacement constraints, was 14.28 Ib and
the computation time was 1.500 sec for 12
iterations. The final design weight reportcd in
Ref. 25 was 14.301b with a computation time
of 10sec for 4 cycles. 1t is difficult to make
an exact comparison of the ecomputation
times because the computer used here is
diffcrent from that used in Ref. 25. The
computation times reported in Ref. 25 are on
IBM 7094-11-7044 DCS Computer.

The truss was also designed by including
buckling and frequency constraints along with
othcr constraints. Two different starting
points were used in optimizing this truss.
Starting Point 1 was infeasible and Starting
Point 2 was feasible. The final design wcight
beginning at Starting Point 1 was 113.48 Ib
and at Starting Point 2 was 113.77 1b. The
slight difference in the two weights was duc
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to the fact that in the first casc the frequency
constraint was violated by 0.154%, whereas in
the second case this violation was 0.143%.
Fig. 5-19 shows variation of the cost function
with respect to the numbcr of iterations for
this problem. It may be noted that for
practical purposcs, convergence was obtained
in six to eight iterations for all the cases.

2. Example 5-2. Transmission Tower

Fig. 5-20 shows the gcometry and the
dimensions of the tower. This example also is
treated in Ref. 25. 1n this problem, the
cross-sectional arca of each member of the

351 | | 1
With Stress & Displacement Constraints
Optimum Weight = 14.28 Ib
o 25 With Only Stress Constraints |
g Optimum Weight = 9.09 1
2
15 i A
5 | | |
0 4 8 12 16
Iteration Number
(A) With Stress Constraints Only
260¢ 1 I |
220 starting Point 2 _
=
- Optimum Weight = 113.77 Ib
5 With All Constraints
B
140 p— Starting Point 1 -
50&/? 1Y 42 1

Iteration Number

(B) WithAll Constraints

Figure 5-19. Iteration vs Weight Curves for
Example 5-1, Four-bar Truss
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TABLE 59
FOUR-BAR TRUSS (EXAMPLE 5-1)

Design Information: For each member, Young's Modulus of Elasticity £,, the specific weight p;, lower limit on
area of cross section blL. ,and the constant «; are 10* kips/in.?, 0.101b/in.>, 0.10in.?, and 1, respectively. There is
no upper limit on member size. The resonant frequency for the truss is 284.6 Hz. For Output 1, the stress limits on
each member are * 25.0kips/in.? and the displacement limits at node five are, 0.0, * 0.3in., and = 0.4in. inthe x; -,
X, -, and x3-directions, respectively. For Output 2, the stress limits for each member are + 15.0kips/in.2, and the
displacement limits at node five are 0.15in. in all three directions. There are three loading conditions for the truss;
they are: in positive x, -, x, -, and x ;- directions, 5, 0, 0; 0, 5, 0; and 0,0, 7.5 kip, respectively, applied at node five.

OUTPUT 1. With Stress and Displacement Constraints Only
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With only stress constraints With displacement constraints, also
Time per iteration = 0.152 sec Time per iteration = 0.124 sec
Total time = 1.820 sec Total time = 1.500 sec
El. Starting Final El. Starting Final
No. Values, Values, No. Values, Values,
in. in.2 in.2 in.
1 0.100 0.130 1 0.500 0.234
2 0.200 0.192 2 0.500 0.319
3 0.200 0.120 3 0.500 0.184
4 0.100 0.100 4 0.500 0.128
Weight, | 40.19 9.09 Weight, 34.86 14.28
b Ib
OUTPUT 2. WithAll Constraints
Starting Point 1 Starting Point 2
Time per iteration = 0.147 sec Time per iteration = 0.172 sec
Total time = 4.710 sec Total time = 4.640 sec
El Starting Final El Starting Final
No. Values, Values, No. Values, Values,
in.2 in.2 in.2 in.
1 1.000 0.543 1 2.000 0.559
2 1.000 1.91 2 4.000 1.883
3 1.000 3.635 3 8.000 3.703
4 1.000 0.479 4 1.000 0.468
nggh" 69.72 113.48 V‘:‘:gh" 257.68 113.77
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Figure 5-20. Transmission Tower (Example 5-2)

truss istreated as an unknown design variable,
and the results obtained are given in Table
5-10. The tower was designed first with only
stress constraints. The final design weight in
this case was 91.13 1b with a computation
time of 38 sec for 12 iterations. The final
design weight reported in Ref. 25 was 91.14
Ib with a computation time of 9 sec for 5

cycles. The values of final design variables
compare quite well with those in Ref. 25. At

the final design point all constraints were
satisfied within 0.006%.

The tower was also designed with stress and
displacement constraints and, finally, with all
the constraints included. The design weight in
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TABLE 5-10
TRANSMISSION TOWER (EXAMPLE 5-2)

Design Information: For each member of the structure, the modulus of elasticity £;, the specific weight pi, the
constant a;, and the stress limits are 10* kips/in.2, 0.10Ib/in.3, 1.0and * 40.0kips/in.%, respectively. The lower
limit on the area of cross section of each member is 0.10in.2 for the case with stress constraintsonly and 0.01 in.?
for other cases. There is no upper limit on the member sizes. The resonant frequency for the structure is 173.92Hz,
and the displacement limits are 0.35 in. on all nodes and in all directions. There are six loading conditions, and they
are as follows (all loads are in kips):

Direction of Load Direction of Load
Load Node Load Node
Cond. X1 X2 X3 Cond. Xy X3 X3
1 1.0 10.0 —-5.0 1 0 10.0 —5.0
2 o] 10.0 —-5.0 2 —-1.0 10.0 —5.0
1 3 0.5 o] o] 2 4 —0.5 o] 0
6 0.5 o] o] 5 —0.5 o] o]
1 1.0 — 10.0 —-5.0 1 o] —10.0 —5.0
2 o] —10.0 —-5.0 2 —-1.0 —10.0 -5.0
3 3 0.5 o] o] 4 4 —0.5 o] o]
6 0.5 0o 0o 5 —0.5 o] o]
5 1 o] 20.0 -5.0 6 1 o] —20.0 —5.0
2 o] —20.0 - 5.0 “ 2 o] 20.0 —5.0
output:
With Stress With Stress and Dis- . .
Constraints Only placement Constraints With All Constraints
El Starting Final Starting Final Starting Final
No. | Values, in.? Values, in.? Values, in.2 Values, in.? Values, in.? Values, in.?
1 0.200 0.100 1.000 0.010 0.500 0.010
2 0.500 0.376 3.000 2.322 2.500 2.092
3 0.500 0.3% 3.000 2.322 2.500 2.075
4 0.500 0.376 3.000 2.322 2.500 2.095
5 0.500 0.376 3.000 2.322 2.500 2.083
6 0.500 0.47 3.000 2.768 2.500 2.357
7 0.500 0.471 3.000 2.768 2.500 2.354
8 0.500 0.471 3.000 2.768 2.500 2.350
9 0.500 0.471 3.000 2.768 2.500 2.335
10 0.200 0.100 1.000 0.010 0.500 0.035
11 0.200 0.100 1.000 0.010 0.500 0.035
12 0.200 0.100 1.000 0.010 0.500 0.087
13 0.200 0.100 1.000 0.010 0.500 0.084
14 0.200 0.100 2.000 0.690 1.500 1,113
15 0.200 0.100 2,000 0.690 1.500 1.113
16 0.200 0.100 2.000 0.690 1.500 1.112
17 0.200 0.100 2.000 0.690 1.500 1.112

5-32




TABLE

Output: (Cont’d.)

510 (Cont'd.)
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With Stress With Stress and Dis- . .
Constraints Only placement Constraints With All Consiraints
El. Starting Final Starting Final Starting Final
No. Values, in.2 Values, in.’ Values, in.’ Values, in.' Values, in.’ Values, in.'
18 0.500 0277 2.000 1.524 2.000 2.056
19 0.500 0.277 2.000 1.524 2.000 2.058
20 0.500 0.277 2.000 1.524 2.000 2.046
21 0.500 0.277 2.000 1.524 2.000 2.058
22 0.500 0.380 3.000 2733 3.000 2.822
23 0.500 0.380 3.000 2.733 3.000 2.808
24 0.500 0.380 3.000 2.733 3.000 2.803
25 0.500 0.380 3.000 2733 3.000 2.785
Wel'ght' 132.37 91.13 772.24 546.18 669.80 590.32

the first case was 546.18 1b with a computa-
tion time of 47 sec for 17 iterations, and the
maximum constraint violation was 0.00011%.
The comparable design weight reported in
Ref. 25 was 555.11 Ib with a computation
time of 24 sec for 7 cycles. This shows that,
when displacement constraints are also in-
cluded, the results obtained with the new
gradient projection method are slightly better
than those of Ref. 25. For a design with all
the constraints included, the final weight was
590.32 1b with a computation time of 129 sec
for 36 iterations, and the maximum violation
of constraint was 0.028%. Fig. 5-21 shows
variation of the cost function with respect to
the iteration number for the last two cases of
this problem. It may be noted that for
practical purposes, convergence was obtained
in only 6 iterations.

3. Example 5-3. 47-Bar Plane Truss

The schematic diagram of the structure
with dimensions is shown in Fig. 5-22. This
example is also treated in Ref. 26 where it is

optimized for a single loading condition. The
design information and the results are shown
in Table 5-11. In order to compare the results
with Ref. 26, the truss was first optimized
with stress constraints only. The final design
weight was 2,993.37 1Ib with a computation

780 I T

740

With All Constraints

Optimum Weight = 590.32 .0

660 With Stress and Displacement

Constraints

Weight 1b

Optimum Weight = 546.18 1b

580 =
520 l 1
0 4 8 12

Iteration Number

Figure 5-21. Iteration vs Weight Curves
for Example 52, Trans-
mission Tower
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Figure 522. 47-Bar Plane Truss (Example 5-3)

time of 115 sec for 17 iterations. At this
point the stress in member 18was violated by
0.24% and all other violations werc less than
0.035%. Another feasible design occurred at
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9th iteration for which the design weight was
2,998.88 1b; maximum constraint violation
was 0.10% for stress in 7th member and all
other violations were less than 0.016%. The



47-BAR PLANE TRUSS (EXAMPLE 6-3)

TABLE 5-11

AMCP 706-192

Design /nformation. For each member of the structure, the modulus of elasticity E,, the specific weight p,, and
the constanta;, are 3.0x 10 kips/in.?, 0.284Ib/in.2, and 1.0 respectively. The resonant frequency for the structure
is 16.0Hz and the displacement limits are 1 in. on all nodesand in all directions. There is one loading condition for

the truss which is shown on Fig. 5-22 . Allowable stress in tension for all members is 21.28kips/in.?

output:
Final Area, in.?
Compression With Stress
El. Lower Area Upper Area Stress Limit, Initial Area, Constraints With All
No. Bound, in.? Bound, in.? kips/in.? in.? Only Constraints
1 3.570 9.620 14.56 5.690 3.570 7.537
2 3.570 9.620 14.56 5.690 3.570 5.7
3 3.570 9.620 14.56 5.690 3.570 3.570
4 3.570 9.620 14.56 5.690 3.570 4.473
5 3.570 9.620 14.56 5.690 3.752 6.505
6 3.570 9.620 14.56 5.690 3.570 6.124
7 3.570 9.620 14.56 5.690 4.212 7.777
8 3.570 9.620 14.56 5.690 5.217 9.529
9 1.930 2.940 15.90 2.210 1.930 1.930
10 1.930 2.940 15.90 2.210 1.930 1.930
11 1.930 2.940 15.90 2.210 2.205 2.199
12 1.930 2.940 15.90 2.20 2.205 2.205
13 1.930 2.940 15.90 2.210 1.930 2.940
14 1.930 2.940 15.90 2,210 1.930 2.940
15 1.930 2.940 15.90 2.210 2.205 2119
16 1.930 2.940 15.90 2.210 2.205 2.205
17 1.360 2.190 15.46 2.100 1.417 2,136
18 1.360 2.190 15.46 2.100 1.815 1.630
19 1.360 2.190 15.46 2.100 1.360 1.360
20 1.360 2.190 15.46 2.100 1.360 1.360
21 0.376 0.376 3.36 0.376 0.376 0.376
22 0.376 0.376 3.36 0.376 0.376 0.376
23 0.376 0.376 3.36 0.376 0.376 0.376
24 0.376 0.376 3.36 0.376 0.376 0.376
25 1.360 2.190 12.32 2.100 1.360 1.455
26 1.360 2.190 12.32 2.100 1.360 1.451
27 1.360 2.190 12.32 2.100 1.360 2.137
28 1.360 2.190 12.32 2.100 1.360 1.360
29 1.360 2.190 12.32 2.100 1.360 1.492
30 1.360 2.190 12.32 2.100 1.360 1.428
3 2.940 6.040 17.47 3.850 2.940 3.774
32 2.940 6.040 17.47 3.850 2.940 2.940
33 2.940 6.040 17.47 3.850 2.940 2.940
34 2.940 6.040 17.47 3.850 2.940 5.592
35 2.940 6.040 17.47 3.850 2.940 3.582
36 2.940 6.040 17.47 3.850 2.940 2.940
37 0.940 1.320 4,93 1.200 0.940 0.940
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TABLE 6-11 (Cont'd.)

output: (Cont'd.)

Final Area, in.?
Compression With Stress

El. Lower Area Upper Area Stress Limit, Initial Area, Constraints With All
No. Bound, in.? Bound, in.? kips/in.? in.2 Only Constraints
38 0.940 1.320 493 1.200 0.940 0.940
39 0.940 1.320 493 1.200 0.940 0.940
40 2.940 6.040 10.75 3.500 2.940 2.940
41 2.940 6.040 10.75 3.500 2.940 2.940
42 2.940 6.040 10.75 3.500 2.940 2.940
43 2.940 6.040 10.75 3.500 2.940 2.940
44 2.940 6.040 10.75 3.500 2.940 2.940
45 2.940 6.040 10.75 3.500 2.940 2.940
46 2.940 6.040 10.75 3.500 2.940 2.940
47 2.940 6.040 10.75 3.500 2.940 2.940

Weight, Ib 3910.30 2993.37 37710

final weight reported in Ref. 26 was 3,328.5
Ib which is considerably higher than the one
reported herein. This may be attributed to the
fact that in Ref. 26 the members are divided
into eight groups so that there are only eight
independent design variables, whereas in this
treatment, area of cross section of each
member of the trussis treated as an unknown
design variable.

The truss also was designed by imposing all
the constraints. The starting point, stress
limits, and upper and lower bounds on the
areas are same as those used in Ref. 26. It
may be noted that members 21, 22, 23, and
24 had the same upper and lower bounds on
arcas. The final design weight was 3,771.0 Ib
with a computation time of 166 sec for 24
iterations. The maximum violation of the
constraint was 0.27% on stress for member

that for practical purposes, convergence oc-
curred in approximately 6 iterations.

4000
s

Optimum Weight = 3771.0

- 3600 = With all Constraints
:“:':b With Only Stress Constraints
g
3200 = \Optimum Weight = 2993.37 lb‘
”""M ,
2900 L 1 5
U 4 8 12

Tteration Number

Figure 523. Iteration vs Weight Curves for
Example 5-3, 47-Bar Plane Truss

11. Fig. 5-23 shows variation of the cost 5.6 A GENERAL TREATMENT OF PLANE

function with respect to the number of
iteration for both the cases. It may be noted

“This paragraph is based on the dissertation of Dr. J. Arora,

FRAME DESIGN*

In this paragraph, an application of the

Ref. 34, gradient projection method to framed struc-
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tures will be presented. Rigid frames are
found quite frequently in practical situations,
including building and vehicle structures. In
the present work, optimization of planar
framed structures using wide flange steel
sections is considered under the assumption
of elastic, working stress analysis. The AISC
Steel Construction Manual (Ref. 27) is used
for the properties of these sections. The
constraints considered are stress, buckling,
displacement, natural frequency, and restric-
tions on design variables.

6-6.1 PROBLEM FORMULATION

In the problems considered here, the
geometry of the frame is assumed to be
specified, i.e., lengths of the members or the
joint coordinates are not treated as design
variables. Multiple loading conditions for the
structure are treated by the procedure ex-
plained in par. 5-4.2. The moment of inertia
for each element is treated as the design
variable; therefore, b is a vector whose ith
component b, is the moment of inertia of the
ith element. In calculating weight or volume
of the structure, element direct stresses, ele-
ment bending stresses, area of cross section,
and the section modulus of each element
must be known. Also, in order to calculate
the allowable compressive stress for an ele-
ment, its least radius of gyration r; must be
known. These quantities are required as con-
tinuous functions, rather than discrete num-
bers, in the present formulation. Since the
moment of inertia of each element is its only
design variable, the quantities area of cross
section, section modulus, and the least radius
of gyration must be expressed in terms of the
moment of inertia of the element. These
relationships of the ith element are written as
follows:

A, =a;b'? (5-98)
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= 3/4
Z, =ch (5-99)
and
r, =db? (5-100)

where 4, is the area of cross section, Z; is the
section modulus, ; is the least radius of
gyration of the ith element of rigid frame, and
a, c;, and di are constants. These constants
can be found by plotting curves of area of
cross section, section modulus, and the least
radius of gyration versus the moment of
inertia of wvarious economical beam and
column sections. These curves have been
drawn by Nakamura (Ref. 28) for wide flange
sections of AISC Steel Construction Manual
(Ref. 27), and the same values are used in this
handbook. This approach of obtaining con-
tinuous relationship for area of cross section,
section modulus, least radius of gyration, and
the moment of inertia has also been used by
other researchers in their work (Refs. 29, 30,
3.

The objective function, Eq. 5-1, for this
problem is again taken as the total weight of
the frame which may be written as

m
J=3

A4,=% pLabM? (5101
2 PiliA= 2 piLiab, -101)

H

The displacement method of structural analy-
sis is used, and nodal displacements of the
frame are considered as basic state variables.
Therefore, the jth component of the state
variable represents the jth displacement com-
ponent of the frame. Fig. 5-24 shows a simple
scheme for designating joints, members, and
displacement components of a frame in the
structure coordinate system. Fig. 5-25 shows
a frame element in the member coordinate
system with the sign convention to be used on
element forces and deformations. It may be
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noted that /¢ and F} are dircct forces on the
clement, F{ and F{ are shearing forces, and
F} and F[ arc thc moments at the end of an
clement. The structural analysis equations
decveloped in par. 5-4 and in Appendix B arc
also used here. The element forces are com-
puted from Eq. 5-80 which may again bc
written as follows:

F =8z (5-102)
where
S =K®)p (5-103)

Dimensions of the matrices K(b) and g arc
adjusted for thc case of frames and F is a
veetor which consists of element forces for all
the elements of the frame. The stiffness and
mass matrices for the framc element arc
different from thc truss element. They arc
given by the following matrices:

-1/2
—ab,; 0 0
0 —12/L? 6/L,
0 —6/L, 2
2 (5-104)
ab, 0 0
0 12/L,  _6/L,
0 —6/L, 4



140 0 0
0 156 22L
piLiabpiz | o 22L 4L?
M, = 420
70 0 0
0 54 13L
0 — 13L —3L?
Now, as before, the matrices £/ and 28 of
Eqs. 5-20 and 5-21, respectively, must be

computed in order to apply the algorithm of
par. 5-3.2. They can be readily assembled
once various other matrices have been com-
puted. Let us first consider computation of
the matrix 27 of Eq. 5-20. The matrix fib),
which is computed from externally applied
loads, is independent of the design variable
vector b if the self weight of the elements is
neglected. This implies that 9f(b)/9b = O.
Also, from Eq. 5-101 one obtains

oJ -1/2
ab=‘5(p1Llalbl .........
~1/2
oL by ) (5-106)
S0 0) 5-107
75 = (0 , (5-107)

and 3J/3¢ = 0. Eq. 5-14 now yiclds, A/ = (0,
...... 0)”. Substituting these values into Eq.
5-20, one obtains

S1JNT
pmLlna b, ) (5-108)

Next, consider computation of the matrix

70

140

0
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0 0
54 - 13L
13L  —3L%
(5-105)
0 0
156  —22L
—22L 41.2

2% of Eq 5-21. It requires formation of the
constraint vector ¢ by considering various
constraints and computation of matrices such
as 0¢/ot, 0é/0z, and d$/db. The treatment of
frequency, displacement, and design variable
constraints in the case of a frame is exactly
the same as in the case of a truss, which is
developed in par. 5-4. So, these features will
not be explained here, except for the fact that
any point where a displacement constraint
must be imposed is treated as a nodal point.
Computation of matrices such as 9/db
[K()z1, 0/ab [K(b)y],and 8/0b [M(b)y] is
also carried out in the way explained in par.
5-4. The only constraint that remains to be
considered is the stress constraint, which will
be considered next.

6-6.2 STRESS CONSTRAINT CALCULA-
TIONS

Let s denote the subscript for this con-
straint. If one can compute aqss/ag and row
vectors 3¢ /dz and aqss/ab for this constraint,
then he can assemble the matrix 2 of Eq.
5-21.

The members of a framed structure are
subjected to direct as well as bending stresses.
Thus, the effect of combined stresses must be
considered in implementing the stress con-
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straints. It should be noted here that a clear
distinction is made between the elements and
the members of a frame. This distinction is
necessitated by the fact that a member must
often be divided into several elements for
structural analysis and implementation of
displacement constraints. On the other hand,
the compressive stress for all elements making
up a member is the same. In the present work,
the members subjected to direct and bending
stresses are required to satisfy the AISC
specification (Ref. 27). The permissible stress,
according to this Steel Construction Manual,
are:

1. Tension:

F, =0.60 Fy (5-109)
2. Bending:

F, =0.66F, (5-110)

where Fy is material yield stress, I, is
allowable tensile stress, and /), is allowable
bending stress.

3. Compression:

On the gross cross-sectional area of axially
loaded compression members, when kL/r, the
largest effective slenderness ratio of any un-
braced segment, is less than C,

(1 ~—;l-e2) Fy
F, =2—s (5-111)
F.S.

where F.S.= factor of safety =

5/3+(3/8)e —(1/8)e3 (5-112)

C, =\/21r2E/Fy (5-113)
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kL 5-114
e=——- -
<. (5-114)

F, = allowable compressive stress
E = Young's modulus

On the cross section of axially loaded col-
umns when kL/r exceeds c,,

149 x 105
F, =——— Ksi (Kip/in?). (5-115)
(kL/ry?

4. Combined Stresses:
a. Axial Compression and Bending:

Members subjected to both axial com-
pression and bending stresses shall be pro-
portioned to satisfy the following require-
ments:

(1) Whenf,/F, < 0.15,

fo v o

F
a

< 1.0 (5-116)
b

(2) Whenf,/F, > 0.15,

fa Cmfb
-+ 7 < 1.0 (5-117)
F, I -Z2\F,

F,

and, in addition at points braced in the plane
of bending,

)
ti— <10 (5-118)
06F, F,
where
F, = axial stress that would be permitted



143X 1)

if axial force alone existed

compressive bending stress that
would be permitted if bending mo-
ment alone existed

Ksi (5-119)
(kLy/r,)

(In Eq. 5-119, for F, L, is the actual
unbraced length (in) in the plane of
bending, r, is the corresponding radius of
gyration (in.), and % is the effective length
factor in the plane of bending.)

f;z =

(b)

computed axial stress

computed bending
stress at the point under con-
sideration

compressive

a coefficient whose value shall be
taken as follows:

For compression members in frames
subject to joint translation (side-
sway):

C,, =085 (5-120)
For restrained compression members
in frames braced against joint trans-
lation and not subject to transverse
loading between their supports in
the plane of bending:

c, =06+04M_

M,

but not lessthan 0.4, (5-121)

where M, /M, is the ratio of the
smaller to larger moments at the
ends of that portion of the member,
unbraced in the plane of bending

AMCP 706-192

under consideration. M, /M, is posi-
tive when the member is bent in
single curvature and negative when it
is bent inreverse curvature.

(¢) For compression members in frames
braced against joint translation in
the plane of loading and subjected to
transverse loading between their
supports, the value of C, may be
determined by rational analysis.
However, in licu of such analysis, the
following values may be used.

1 For members whose ends are
restrained :

C, =085

2. For members whose ends are
unrestrained :

c. =10

m

(5-122)
b. Axial Tension and Bending

Members subject to both axial tension and
bending stresses shall be proportioned to
satisfy the requirements of Eq. 5-118 where
f, and F, are taken, respectively, as the
computed and permitted bending tensile
stress.

Eqs. 5-116, 5-117 and 5-118 are known as
the interaction equations. These equations, of
course, are derived from the linear super-
position of the direct stre-~ under axial load
alone and the bending stress under bending
moment alone. The factor C, /(1 f,/F]) is
used in Eq. 5-117 to account for the magnifi-
cation of the primary bending moment due to
the axial load. This factor depends upon the
type of loading and end conditions of the
member. The value of the coefficient C,, can
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be derived for various types of loadings and
members, but the values recommended in
Eqs. 5-120, 5-121, and 5-122 are conservative
and are used in the present work. For a
detailed development and discussion of these
equations the reader is referred to Ref. 32.

The allowable compressive stress formula,
Eq. 5-115, is derived based on the basic
theory of column buckling. It is obtained by
dividing the Euler buckling stress by a factor
of safety of 1.92. Therefore, F, =#? E/[1.92
x (kL/r)?1 and, taking E = 3.0 x 10* Ksi, F,
= 1.49 x 10°/(kL/r)?. Eq. 5-115 isapplicable
when the largest slenderness ratio kL/r is
greater than or equal to C,. Experiments have
shown that when XL/r < C,,the values of the
failure stress predicted by the Euler critical
stress formula are seldom attained (Ref. 32).
This is due to the presence of residual stresses
and other imperfections in fabrication of the
members. Therefore, when kL/r < C,, the
values of the allowable stress 7, are found
from Eq. 5-111 which is derived based on the
parabolic approximation of the curve—critical
stress £, versus the slenderness ratio kL/7 in
the range £L/r < C,. This approximation is
chosen based on the experimental results
obtained at Lehigh University (Ref. 32). The
value of the constant C, is found by assuming
that the Euler critical stress formula holds
until the critical stress is F' y /2. Therefore,

orC,= (kL/r)zc = \/21rzE/Fy

where L and r must be expressed in the same
units.

2

F /2 =——L—
»'E T e

The factor of safety is used to account for
small imperfections of form and loading, and
variations of support and restraint conditions
from those assumed in computation, which
cause the true effective length to be different
from that calculated. The factor of safety
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given by Eq. 5-112 includes an allowance for
both of these factors and is adjusted to
account for their varying influence. For short
columns, Eq. 5-112 approaches the basic
safety factor in tension (1.67); and, at ¢ = 1,
it becomes 15%higher (1.92), a value which is
then used in the case when kL/r exceeds C,.
Eq. 5-112 is an approximation of a quarter
sine wave between the two limits, the curve
used in the specification as best representing
the influence of the two factors. For a
detailed discussion of the these factors, the
reader is again referred to Ref. 32.

The effective length factor & for ecach
member of the frame is found from the

differential equation

d? P
Ly Xy, (5-123)
dx? | El

where P is the buckling load, and 7 is the
second moment of the cross-sectional area.

The solution of this equation is given by

(x)=D, si P +D F
y(x) 1 Sin I X 4 COS 7 x

(5-129)

In rigid frames, two cases must be discussed:
(1) frames without sidesway, and (2) frames
with sidesway. The transcedental equation
that comes from Eq. 5-124, while satisfying
the boundary conditions for a member of the
frame without sidesway, is given by Ref. 32

[i(c +Gyt + G, G(n/k)? —1|(n/k)
24 4

x sin (w/k) — B(c 4 G m/k)? + 2]

xcos(nfk)y+2=0 (5-125)



where G, and G are given by the following
equations:

_L/LCA (5 126)
4 EIbA /LbA
and
EIcl’}/LcB 5 127)

Gp=—m ™
B
Z:Ibl’?/LbB

The subscripts A and B refer to the two ends
of the member under consideration and the
subscripts ¢ and b refer to the compressed and
restraint members ,respectively. For G, , the
summations extend. over all members that are
connected to joint A and for G the summa-
tions extend over all the members that are
connected to joint B. So, for the first case of
a frame without sidesway, the value of the
effective length factor & must be found by
solving the transcedental Eq. 5-125 for each
member of the frame.

For the second case, i.e., a rigid frame with
sidesway, the transcedental equation that
comes out of Eq. 5-124 — while satisfying the
boundary condition for a member of the
frame —is given by

[G,G (x/k)* —36] sin (n/k)
— 6(G, + Gp)(m/k) cos (w/k) =0,
(5-128)
where G, and G are given by Egs. 5-126
and 5-127, respectively. Thus, for the case of
a frame with sidesway, Eq. 5-128 must be

solved for k for each member of the frame.
The secant method of nonlinear algebraic
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equations is used in finding the roots of Eqgs.
5-125 and 5-128 in the present work.

The interaction Eqs. 5-116, 5-117, and
5-118 are implemented at the point of maxi-
mum bending moment for an element. If
there are no loads between the end points of
an clement, then the maximum bending mo-
ment is at one of the ends; otherwise the
actual point of maximum bending moment is
found and the interaction equations are
implemented there. As an example, consider
the case of a uniformly distributed load on a
frame element (Fig. 5-25); the moment at a
distance x from the left end is given by

= ; wx?
M, =Fy—Fpx—— (5-129)
and
oM., _
=_ Fi_ = }
O 3 — wx 0 (5-130)
or
= _le 5-131
Ymax =~ ", (5-131)
Therefore, from Eq. 5-129
Mgy = _F; +(F21.)2/(2W) . (5-132)

Eq. 5-132 is used in computing the maximum
bending stress required in the interaction
equations. Now, the implementation of the
interaction equations will be considered one
by one and the vectors a&»s/az and a&s/ab will
be computed in each case. For the sake of
simplicity, let N be the direct force on the
clement, M, . be the maximum bending
moment, £; be the effective length factor, and
L, be the length of the member to which the
ith element belongs.
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b. Interaction Equations:
(1) Interaction Eq. 5-116:

Eq. 5-116, for the maximum stress in the
ith element, can be written as

N
G = $ Mmax 6.0 (5-133)

i“a i“b

where Z; is the beam bending stiffness.

In case Eq. 5-133 is violated, then one must
compute Ad_, 3¢ /3%, 8¢ /dz, and 36 /ab.
Therefore, from Eq. 5-133 8¢,/z = 0 and

N M
A = —|—— +—= _10)< 0. (5134)
s T\AF, ZF,

Differentiating Eq. 5-133 with respect to z,

LoN 1 oM,

e A— T 5135
% “TF T ZF, o (5-133)

The value of aM,, ,./3z depends on the
expression that defines M, ox If M, .. oc-

curs at an end of the clement, then

M,,. =F5orFi (5-136)
and

3M, . OF, OF}

. or (5-137)

a9z a9z a9z

If M occurs at a point other than the

max
ends, then Eq. 5-132 gives its value, and
oM 3F; Fi 9F}
S (5-138)
0z az w 0z

Again, differentiating Eq. 5-133 with respect
tob,
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9, 1 (N N o
ab  AF,\ob 2b, b
N oF, 1

a

A2 0b  Z,F,

H

(aMmax 3Mmax abi 5.139
N m, W, (=139

The value of aMm ox /8b can be found from

Eq. 5-136 or Eq. 5-132, which are as follows:

oM,,,. OF} 3F
YT v (5-140)
oM aF. Fi aFi
max =273 +_2___3 (5-141)
ab ab w ab

The value of aF, /9b required in Eq. 5-139
is found from Eq. 5-111 or Eq. 5-115. First, if
k.L;fr; < C,, then Eq. 5-111 gives the value of
F, and

F, F,e [e+ 3
8 (F.S.)

b 4b (F.5.)
1 ab;
1 —¢e? ——e?) | —
x ( el)(l 3 el>] b
Fy €; 3
- e +
k. (F.S) t 8(F.S)

(1)
—e? = e? | — -
X(1=e)\l -3¢} | 5—| -142)

where

(5-143)



When k,L/r;> C,, Eq. 5-115 gives the
value of ¥, and

F b, 2F, ok
b, 2% = — (5-144)
ab 2b,ab k, ab

Substituting the appropriate expressions in
Eq. 5-139, the value of 3¢ /db can be found.

(2) Interaction Eq. 5-117:

Eq. 5-117 for the maximum stress in the
ith element can be written as follows:

N C.M

é = + 2 2% _1.0<0 (5145
s “AF, ¥

where

N
v =(1 =7 )&k
i e

If this constraint is violated, then one must
compute A, 3¢./d¢, 3¢,/dz, and 3¢ /3b. In
this case a«;;s /3¢ = 0 and

5 N C.M
Af = + 22 10} (5-147
A,'Fa ll/1

(5-146)

Differentiating Eq. 5-145 with respect to z
and b, one obtains

¢, _( 1 Cop My o\ ON

+
0z \AF, " Vi¥aA,F) o
(5-148)

M aC,

max m
+<Cm oz +Mmax’az—)/‘p‘

and

¢, 1 foN N & N OF,
% AF \ob 2b, 0b  AF? 3b
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M aC
max m
+<Cm ob Mo ab >N"

C 3 ob.
_ “mMmax i
_— 1 +N/A.F)
Ui v Jap, VAT
1 oN 2N 3k
— S —— - —  (5-149)
A,F,ab kA F, ab’]
where
N
¥y =( AR (5-150)

(3) Interaction Eq. 5-118:

Next, consider Eq. 5-118, which may be
written as follows for the maximum stress in
the ith element

d; _ N +Mmax
$06F,Ai  ZF,

—1.0< 0. (5-151)
Therefore, 3¢,/d¢ =0 and

N
- Mmax
Ap = ————— +t——— - 1.0). (5-152
% (0.6FyAi Z,F, ) (

Differentiating Eq. 5-151 with respect to z
and b, one obtains

al, 1 3N+ 1 oM, ..
— e — (5-153)
0z 06F,A,0z ZF, oz
and
al, 1 V. N b,
@b O6F,A'ab 25, b
(5-154)

+ 1 aMmax 3Mmax E
Z,F,\ ab 4, o)
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It may be noted in the previous equations
that

ab, (ith)
o, (00,10, ..,0) (5-155)

The value of the vectors such as daN/dz,
dN/db, dF} [dz, OF% /b can be found directly
from the Eq. 5-102. The vectors aC, /dz and
aC, /ob are zero for cases prescribed by Eqs.
5-120 and 5-122. For the case prescribed by
Eq. 5-121, they are computed using the chain
rule of differentiation. It remains to find
value of the vector ak'./ab. This vector can be
computed by differentiating Eq. 5-125or Eq.
5-128 with respect to the design variable
vector b. However, due to the fact that both
Gy and G, arcfunctionsof b, this computa-
tion is quite tedious and time consuming on
the computer. Another approach that may be
followed for computing 8ki/8b is to use the
method of finite differences; but this ap-
proach is equally time consuming on the
computer. Moreover, it has been observed in
the numerical computation that the value of
k; does not change appreciably from one
design cycle to another. Therefore, without
significant loss of accuracy, the value of &; in
a particular design cycle is treated as a
constant. However, at the start of each design
cycle, k values for all the members of the
frame are recomputed. Thus, following this
procedure, 3k,/3b = (O, ....., 0). Now, all the
necessary information is available to assemble
matrix A of Eq. 5-20.

66.3 EXAMPLE PROBLEMS

Several rigid frames were optimized using
the computer program based on the algorithm
of par. 5-3.1. All the problems were solved
with stress, displacement, frequency, and de-
sign variable constraints. Example problems
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54 and 5-5 that follow also are treated in
Ref. 28 and were first designed for only stress
constraints in order to compare results with
those of Ref. 28.

1. Example 5-4. Simple Portal Frame

Fig. 5-26 shows the dimension of the
frame. The moment of inertia for each ele-
ment of the frame is treated as an unknown,
and the results obtained are shown in Table
5-12. The frame was first designed with only
stress constraints. The final weight in this case
was 3050.5 Ib with a computation time of
3.74 sec for 13 cycles. At the final design
point, the maximum constraint violation was
0.012% for stress in element 2. Optimal
weight reported in Ref. 28 was 3206 Ib,
which is higher by approximately 5%.

The frame was also designed by including
all the constraints. The resonant frequency
limit for the structure was 25.0 Hz and the
final weight obtained in this case was 3803.0
Ib with a computation time of 14.60 sec for
31 iterations. At the final design point, the
maximum constraint violation was 0.0073%

- 240 in. -
@ ® O
180in. |, .
X2 4
y @ ®
TITiITT %1 rrhm

Figure 5-26. Simple Portal Frame (Example
5-4)
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TABLE 5-12
SIMPLE PORTAL FRAME (EXAMPLE 5-4)

Design Information: For each element of the frame, the modulus of elasticity, the specific weight, and the yield
stress are 3 x 10* kips/in.2, 0.2836lb/in.?, and 36.0kips/in.?, respectively. The constants a;, c; and d; are 0.58,
0.58,and 0.67,respectively. The lower limit on the moment of inertia of each element is 1.0 in.* and there is no
upper limit. The resonant frequency is 25.0Hz and the displacement limits are 05 in. at nodes2, 3, and 4 in both
x;- and x, -directions. There are three loading conditions for the frame; first is uniformly distributed load of — 0.5
kip/in. on elements 2 and 3, second is a load of 45.0 kips in x-direction at node 2,and the third is a load of —45.0
kips inx -direction at node 4.

With All the Constraints
Computationtime = 14.60 sec

El. Starting Values, Final Values, El Starting Values, Final Values,

No. in.? in.? No. in.* in.?

1 1600.0 1091.4 1 1600.0 1995.5

2 1600.0 768.3 2 1600.0 860.3

3 1600.0 768.3 3 1600.0 860.3

4 1600.0 1091.3 4 1600.0 1995.5

W, b 3947.7 3050.5 Wi, tb 3947.7 3803.0

for stress in element 2. Fig. 5-27 shows the in only 5 iterations in the first case and in 7
variation of the objective function as the iterations in the second case. However, in the
iterations progress. It may be noted that, for second case, the cost function continued to
practical purposes, convergence was obtained reduce for a few cycles beyond the 7th

iteration without correcting the constraints.
This was due to the fact that the step size for
4400 I T I — the problem was too large.

With All Constraints

. Optimum Weight = 3803.01b
000" X, L ____ " 1

2. Example 5-5. One-bay Two-story Frame

— The present example is also treated in Ref.
28. Fig. 5-28 shows the dimensions and the
loading conditions for this structure. Input
and output information for this example is
given in Table 5-13. This frame was first

Weight, Ib
Lad
e
e

2900

2400 L~ | 1 1 _L_J designed for stress constraints only. The final
0 4 8 12 16 18 weight in this case was 8292.0 Ib with a
Tteration Number computation time of 21.47 sec for 32 itera-

Figure 5-27. Iteration vs Weight Curves for tiogs. M?Xin.mm .constraint violation at the
Example 5.4, Simple Portal design point in this case was 0.27 percent for

Frame stress in element 3. The comparable final
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weight reported in Ref. 28 was 8810 Ib,

which is again higher by approximately 5.8%.

The frame was also designed while en-
forcing all constraints. The resonant frequen-

cy limit in this case was 15.0 Hz. The final
6K/ft weight obtained in this case was 9722.5 1b

I
/ ® ) L
5% O M 45K Wlth ?1 computgtlon time of 48.84 seg for 32
I 1 @ 4 I iterations. Maximum constraint violation was
0.38 X 103 % for displacement of node 3 in
. the x, -direction. Fig. 5-29 shows variation of
180 in, 2 7 L

6K/ft the cost function with respect to iteration

I : .
number, and it may again be noted that

s @ @ sk

7 5 ® 6 I convergence was obtained in 8 cycles in both
the cases.
180 in. 1 8
Xy 3. Example 5-6. Two-bay Six-story Frame
@ .
7 1 e Figure 5-30 shows the geometry and
240 in. dimensions of the frame. This frame has 21

joints, 30 members, and 54 degrees of free-
dom. The frame was designed for four loading
conditions, and the input and output informa-

Figure 5-28. One-bay, Two-story Frame
(Example 5-5)

TABLE 5-13
ONE-BAY, TWO-STORY FRAME (EXAMPLE 5-5)

Design Information: For each element of the frame, the modulus of elasticity, the specific weight, and the yield
stress are 3 x 10* kips/in.?, 0.28361b/in.%, and 36.0kips/in.?, respectively. The constants a,, ¢, and d,. are 0.58,
0.58,and 0.67,respectively. The lower limit on the moment of inertia of each element is 1.0in.* and there is no
upper limit. The resonantfrequency for the frame is 15.0Hz and the displacement limits are 1.0in. at nodes 2, 3, 4,
5, 6,and 7 in both x, -and x, -directions. There are three loading conditionsfor the structure, and they are as shown
on Fig. 5-28.

With Only Stress Constraints With All the Constraints
Computationtime = 21.47 sec Computationtime = 48.84 sec
El. Starting Values, Final Values, El. Starting Values, Final Values,
No. in.? in.* No. in.? in.?
1 6400.0 3264.8 1 6400.0 3794.0
2 6400.0 901.4 2 6400.0 1436.3
3 6400.0 801.5 3 6400.0 845.7
4 6400.0 801.5 4 6400.0 845.7
5 6400.0 2598.7 5 6400.0 4618.8
6 6400.0 2598.7 6 6400.0 4618.8
7 6400.0 901.4 7 6400.0 1436.3
8 6400.0 3267.4 8 6400.0 3794.0
Wt, b 15790.8 8292.0 Wt, Ib 15790.8 9722.5
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14400 With All Constraints —
Optimum Weight = 9722.51b
o 12800 With Cly Stress Constraints =
% Optimum Weight = 8292.0 b
B
= 11200 —
9600 - Olr O~ o O
LD i A
0 4 8 12 16 18

Iteration Number

Figure 5-29. Iteration Number vs Weight
Curves for Example 5-5; One-
bay, Two-story Frame

tion for the problem is given in Table 5-14.
The frame was first optimized by imposing
the stress constraint only. The optimum
weight in this case was 21706.6 1b with a
computation time of 8.32 min for 21 itcra-
tions. At the final design point, the maximum
constraint violation was 0.025% for stress in
element number 25. Next, the frame was
designed by imposing all the constraints. The
optimum weight in this case was 24290.1 1b
with a computation time of 8.7 min for 20
iterations. At the final design point, the
maximum constraint violation was 0.0072%
for displacement in the x -direction at node
1. All other violations were lcss than that.

Fig. 5-31 shows variation of the cost
function with respect to the iteration numbecr.
The starting point in this case was quitc a
distance away from the optimum point.
Thercfore, a larger step size was used in the
first fow iterations. Also, it was obscrved from
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the first few iterations that reductions in the
values of the design variables for elements 23,
24, 25, 28, 29, and 30 werc relatively smallcr
than those of other elements. This is due to
nature of the gradicnt of objective function
for this problem (Eq. 5-106). So, the values of
these design variables wcre reduced con-
siderably at the 7th iteration. This is shown
by the vertical drop in the graph at the 7th
iteration on Fig. 5-31. In the second case,
wherc all the constraints were considered.
variation of the cost function with respect to
the iteration is shown in Figure 5-32. In this
case, the starting point was infeasible and the
convergence was obtained in 8 iterations.

X2
1 2 3
1 2 f
3 4 5 144in
\ s o 4
6 7 1
8 9 10 144 in.
, : o 4
11 12 f
13 14 15 144in.
10 11 12 {
16 17 f
18 19 20 144 in,
3 14 15 *
21 22 f
23 24 25 144in
16 17 18 ‘
26 27 ’
28 29 30 144 in.
19 20 21
m‘}n——’- Xy mm mL”———L
fe—e240 in. —m{ et 240 in. —>}

Figure 530. Two-bay, Six-story Frame
(Example 5-6)
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TABLE 5-14
TWO-BAY, SIX-STORY FRAME (EXAMPLE 5-6)

Design Information: For each element of the frame the modulus of elasticity, the specific weight, and the yield
stress are 3 x 10* kips/in.?, 0.28361b/in.>, and 36.0 kips/in.?, respectively. The constants 3;, ¢;, andd; are 0.58,
0.58,and 0.67 respectively. The lower and the upper limits on the moment of inertia of each element are 394.5in.*
and 6699.0in.?, respectively. The resonant frequency of the structure is taken as 4.0Hz and the displacement limits
are 2.0in. at all nodes in both x; - and x; -directions. There are four loading conditions for the frame: (1) Uniform-
ly distributed load of —4.0 kips/ft on element 1, 7, 11, 17,21, and 27,and — 1.0kip/ft on elements 2, 6, 12, 16,22,
and 26; (2)Uniformly distributed load of — 4.0kips/ft on elements 2, 6, 16, 22, and 26, and — 1.0kip/ft on
elements 1, 7,11, 17, 21, and 27; (3)Uniformly distributed load of — 1.0kip/ft on elements 1, 2,6, 7, 11, 12, 16,
17, 21, 22, 26, and 27, and loads of 9.0kips each at nodes 1, 4,7, 10, 13, and 16 in direction of the x-axis; (4)
Uniformly distributed load of — 1.0kip/ft on elements 1, 2, 6,7, 11, 12, 16, 17,21, 22, 26,and 27, and loads of
— 9.0kips each at nodes 3,6, 9,12, 15,and 18 in direction of x; - axis.

With Only Stress Constraints With All Constraints
Computationtime = 8.32 min Computationtime = 8.70 min
El Starting Values, Final Values, El Starting Values, Final Values,
No. in.? in? No. in.? in?
1 2400.0 450.6 1 394.5 473.8
2 2400.0 450.6 2 394.5 473.8
3 2400.0 498.6 3 394.5 467.2
4 2400.0 394.9 4 394.5 437.5
5 2400.0 498.6 5 394.5 467.2
6 2400.0 530.8 6 394.5 568.7
7 2400.0 530.8 7 394.5 569.1
8 2400.0 394.3 8 394.5 394.5
9 2400.0 397.1 9 394.5 608.5
10 2400.0 394.1 10 394.5 394.5
11 3200.0 481.8 11 450.0 787.0
12 3200.0 481.7 12 450.0 786.4
13 3200.0 425.3 13 400.0 412.7
14 3200.0 472.7 14 450.0 794.1
15 3200.0 425.3 15 400.0 412.6
16 4000.0 521.9 16 550.0 930.2
17 4000.0 521.7 17 550.0 930.0
18 4000.0 468.3 18 550.0 561.9
19 4000.0 723.5 19 750.0 920.4
20 4000.0 467.5 20 550.0 561.8
i § 4800.0 699.1 2 600.0 1019.1
22 4800.0 699.1 22 600.0 1018.7
23 4800.0 646.3 23 700.0 693.4
24 4800.0 1044.5 24 1100.0 1197.0
25 4800.0 646.5 25 700.0 693.3
26 5600.0 666.4 26 600.0 868.5
27 5600.0 666.4 27 600.0 867.9
28 5600.0 1099.0 28 1200.0 1245.4
29 5600.0 1489.7 29 1600.0 1658.6
30 5600.0 1099.0 30 1200.0 1245.3
Wt, 1b 54290.9 21706.6 W, Ib 21243.6 24290.1
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5-7 INTERACTIVE COMPUTING IN
STRUCTURAL OPTIMIZATION

6-7.1 THE INTERACTIVE APPROACH

Structural optimization techniques trcated
thus far consist of mcthods which seck to
determinc an optimum design, within a well-
defined mathematical structure, by purely
mathematical techniques. A second approach
consists of providing thc designer with an
interactive computing tool with which he can
try nominal designs, get rapid analysis feed-
back, and alter his initial design based on his
knowledge of structural bchavior. Both meth-
ods have been used with varying degrees of
success on a variety of dcsign problems. In
general, the first approach has been used for
problems with well-dcfined optimality cri-
teria, such as minimum weight or maximum
stiffness. The second approach has been used
to aid designers in large scale structural design
problems, primarily airframe design, such as
the Air Force C-5 transport aircraft.

The possibility of utilizing a combination
of thesc two methods for structural design has
been the subject of a recent paper (Ref. 36).
This paragraph presents the specifics of appli-
cation of the steepest-descent technique with
designer interaction. This hybrid approach is
appealing from a numbcr of points of view.
First, the problem of topological design, i.e.,
determination of optimum structural configu-
ration, has been addressed with very limited
success from an analytical point of view.
Topological design, in practice, is donc by
experienced structural designers, occasionally
with the aid of intcractive computation.
Combined analytical and interactive com-
puting mcthods appear to be essential for this
important class of problems. A second prob-
lem arca arises due to the difficulty in
formulating a single optimality condition and
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mathematically precise design constraints.
Often, conflicting design constraints and ob-
jectives arise during design which require
experienced judgment and defy a priori math-
ematical formulation. Such problems appear
to require an interactive computing capability
but should profit from analytical methods
that are used in automated structural optimi-
zation.

Due to unavailability of a large scale,
interactive system, the computations for this
study were simulated. Instructions were pre-
pared and computations were run in the batch
mode. Output data were then displayed and
analyzed just as they would be in the inter-
active mode, and instructions for recomputa-
tion were given by the designer and the
process repeated. The delay in designer inter-
action is felt to degrade performance some-
what, over true interactive computing, since
the designer tends to forget pertinent detailed
data during the time delay. For this reason,
the results of this study should provide a
conservative estimate of the designer's per-
formance in a truly interactive mode.

6-7.2 INTERACTIVE STRUCTURAL DE-
SIGN USING SENSITIVITY DATA

The steepest-descent optimization method
developed in this Chapter has been used to
solve a number of relatively large scale struc-
tural optimization problems with good
success. All these problems, however, have
been well formulated mathematically and
have involved structures with a predetermined
form. Difficulties have occurred when certain
structural elements tend toward zero cross
section. Further, no universal method has
been found to determine the best step-size n

in the optimization algorithm. These and
other inherent difficulties in automated opti-

mization lead one to interject an experienced
designer into the computational, optimization
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algorithm. The result is a hybrid structural
optimization technique.

Reconsidering the design improvement step
of the optimization algorithm, one might
draw a vector picture in design space, as is
depicted in Fig. 5-33. Here, — néb! is the
direction which will yield the greatest re-
duction in J subject to the required con-
straints, and 852 is the design change required
to give the desired constraint error correction.
While useful in this form, there is a better
display of these data for use by the experi-
enced structural designer. The scalar com-
ponents of — §b! and 85* tell the designer
whether he should increase or decrease his
individual design variables to obtain desirable
changes in overall structural response. Fur-
ther, relative importance of design variable
changes is given. For this reason, §56' may be
interpreted as a vector of design sensitivity
coefficients that relate individual design
parameter changes to overall structural
characteristics. It is extremely important to
note, at this point, that these sensitivity
coefficients account for constraints implicitly;
i.e., the direction of change indicated in the

oz nﬁbi

8b*

Figure 5-33. Vector Changein Design
Space



design parameters will not cause significant
violation in specified performance constraints
such as stress limits and deflection limits.

To illustrate these ideas, consider the
simple structural design problem in Fig. 5-34.

Figure 5-34. Three-bar Truss

The cost function here is structural weight. If,
for example, the stress in member 1 is at its
allowable limit under one of the loads, then
the indicated changes in design (— &b},
— &b, —8b)) will not increase the stress in
member 1. To make the design sensitivity
data of maximum use to the designer, con-
sider the graphical display in Fig. 5-35. In this
display, o, arc the stresses in the various
members. This display gives the experienced

Figure 5-35. Display of Design Sensitivity
Data
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designer a clear picture of the manner in
which he should change his design parameters
to reduce total weight, subject to stress
constraints. He can now choose the desired
reduction AJ in weight and take the resulting
design change 85, or if he wishes, he can input
modified design changes through an inter-
active computer terminal.

There are a number of other respects in
which this mode of designer interaction with
the computer alogrithm is beneficial. First, it
often happens in the automated use of the
algorithm that oscillation of admissible de-
signs occurs because too large a design im-
provement has been requested. Such oscilla-
tion can often be identified by the designer
after only a few iterations and the step size
can be reduced to prevent loss of computer
time, which can be significant in large scale
problems. Conversely, if an estimate quite far
from the optimum is chosen to initiate the
algorithm, it often happens that the designer
chooses far too small a step size. The result is
a very small improvement in the design which
can be sensed by the designer and improved
before excessive computation time is ex-
pended.

A second important benefit from designer
interaction with the algorithm arises due to
the occurrence of local minima and singu-
larities in the analytical formulation of the
design problem. The problem of local minima
is illustrated by Fig. 5-36. Virtually all opti-
mization methods seek local optima and do
not solve the global optimization problem. It
is easy for an optimization technique to get
hung up at point B and not get to point 4,
which is the global minima, so the designer
must try different starting points to obtain
the global solution. This is a very time
consuming and indefinite technique with very
few analytical aids to the designer. Part of the
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Jth, 2, %)

Figure 536. Local Optima

difficulty here arises because Figure 5-36 is
the wrong display for the designer in that it
does not utilize his knowledge and experience
with structures.

A much better approach for the designer is
to look at a display such as Figure 5-35. He
can use his experience to restart the optimiza-
tion algorithm at a meaningful distribution of
design variables which may be quite different
from the design which resulted from previous
calculations. His experience, thus, aids him in
starting with different trial designs.

Perhaps even more important than trying
various distributions of design variables, the
designer can utilize the display of Fig. 5-35 to
change the configuration of the structure
based on information he accumulates during
iterative design and based on his experience.
For example, he might try taking member 2
out of the structure and optimize based on
the modified configuration. Very often,
significant gains are made in this manner.
Precisely this behavior occurs in the three
member truss being considered.

There are actually compelling mathematical
reasons for allowing the designer to make
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changes in configuration as outlined. There
are no general optimization methods, to date,
which will remove a member during iterative
design. The reason is that as a member cross
section goes toward zero, as is required to
remove a member, the equations of structural
mechanics and stress constraints become
singular. This sort of behavior is typical when
the configuration of a system is changed and a
different set of equations is required to
describe the behavior. At the present time,
allowing the designer to make changes in
configuration appears to be the most feasible
approach, which requires that he play an
active role in the iterative optimization al-
gorithm.

§-7.3 EXAMPLE PROBLEMS
1. Example 5-7. A Three-member Truss

As an illustrative example of the technique
presented in par. 5-7.2, an elementary opti-
mal design problem will be solved under a
number of loading conditions and a variety of
constraints. The effect of designer-computer
interaction on rate of convergence is ex-
amined as well as the effect of changing
structural configuration.

Figure 5-37(A), shows the geometry and
dimensions of the structure being considered.
This structure has been studied by Schmit
(Ref. 37), Sved and Ginos (Ref. 38), and
Corcoran (Ref. 35). Three independent load-
ing conditions are applied to the structure.
These are as follows: 40K at 45 deg; 30K at
90 deg; 20K at 135 deg. The allowable stress
level for members 1 and 3 is = 5 Ksi and for
member 2 it is = 20 Ksi. The density of the
material is taken as 0.10 lb/in.® and Young’s
modulus as 10* Ksi. Starting from the feasible
solution, &, = 8.0, b, = 2.4,b; = 3.2, Schmit
(Ref. 37) arrived at the solution &, = 7.099,



(B) Corcoran Truss

Figure 5-37. Tiusses (Example 5-7)

b, = 1.849, b5 =2.897, for which J= 15.986
Ib. Sved and Ginos (Ref. 38) have shown that
this is only a local minima and by omitting
member 3, they obtained the solution as
b, =8.5, b, = 1.5 with /= 12.812 1b. They
have also shown that it is impossible to reach
this minimum by an iterative optimization
method unless member 3 is omitted from the
calculations by the designer. Corcoran (Ref.
35) has considered configurational optimiza-
tion of this three-bar truss. By using horizon-
tal coordinates of nodes 1, 2, and 3 also as
design variables, he arrived at an optimum
structure shown in Fig. 5-37(B). As a result of
this configurational optimization procedure,
members 1 and 3 were combined and their
orientation is shown by member 1 of Fig.
5-37(B). Member 2 attained an orientation as
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shown in this figure. The final solution
obtained by Corcoran was b; = 4.241,
b, = 2.038 with J = 7.55 1b.

Considerable experimentation was done
with this problem. Starting from a feasible
point »; =10, b,=35, b, =5, the solution
obtained without interaction was &, = 7.064,
by = 1971, b, = 2.835 and the minimum was
J=15.97 1b. The variation of weight with
respect to iteration number is shown by Curve
1, Fig. 5-38. Next, by adjusting the step size
in interactive computing, the solution was
obtained in only five iterations. This is shown
by Curve 2, Fig. 5-38. It was observed that
member 2 never reached its allowable stress
level. As a second starting point, the area of
member 2 was initially chosen to bring its
stress to the allowable limit. The minimum
reached in this case was the same as before,
Curve 3, Fig. 5-38. Another solution was
obtained by starting from an infeasible point
by =5.0, by = 1.5, b5 =0.10. The solution in
this case was b, =6.98, »,=2.30, b3 =2.68
withJ = 15.971b, Curve 4, Fig. 5-38.

Next, member 3 was omitted from the
structure. Starting from a point 5; = 10,
b, =5, the solution obtained was &, = 8.0,
b,= L5 with J= 12.812 1b, Curve 1, Fig.
5-39, which is same as reported in Ref. 38. At

Weight, 1b

Iteration Number

Figure 5-38. Iteration vs Weight Curves for
Example 5-7, Three-bar Truss
With Stress Constraints Only
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Figure 5-39. Iteration vs Weight Curves for
Example 5-7, Three-bar Truss
With All Constraints

this point an interesting observation was
made. The maximum horizontal and the
vertical deflections of node 4 were as follows:
with three bars, z, =0.689 x 107?% in,
2,=0.595 x 107% in; with two bars,
zy =0.239 x10~Vin,, and z,=0.20 x 10~ in.
Thus, although the optimum weight obtained
by omitting member 3 is approximately 24%
lower than the weight obtained by including
member 3, the deflections of node 4 in the
former case were approximately four times
greater than in the latter case.

One might be led to believe that if
deflection or frequency constraints were en-
forced, then the optimum structure might not
be statically determinate. To investigate this
possibility, displacement as well as buckling
and natural frequency constraints were im-
posed. The deflection limits were taken as
z, =+ 0.005 in. and z,=1 0.005, and the
lower limit on natural frequency was taken as
3830 Hz. With the starting point &; = 10,
b,=5, by =35, the solution obtained was
by =918, b, =216, by=385 and
J =20.59 Ib, Curves 2 and 3, Fig. 5-39. When
member 3 was omitted, the starting point was
taken as #, = 10,56, = 10, Curve 4, Fig. 5-39,
and as 5, = 18, 5, = 10, Curve 3, Fig. 5-39.
The solution obtained in this case was
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b; =16.0,b, = 11.31,and J = 33.94 Ib. Thus,
the optimum weight obtained for this statical-
ly determinate case is approximately 70%
higher than the optimum weight obtained for
the statically indeterminate case.

It was found that interactive computing
yielded convergence more rapidly than was
the case in the batch mode. It is expected that
even more significant reduction in computing
time will occur in large scale problems.

This problem was also solved by omitting
member 2 from computation. The results
obtained in this case are given in Columns 3
and 7 of Table 5-15. The truss optimized by
Corcoran (Ref. 35) was also solved here by
first imposing the stress constraints only and
then by considering all the constraints. The
results of these cases are given in Columns 4
and 8 of Table 5-15.

The key point in the solution is that the
configuration of the optimum design is not
obvious from analytical considerations. A
designer’s experience and insight are required
to select candidate configurations and then
obtain the optimum design analytically. The
global solution in this case must be chosen by
comparing relative minima. It may be ex-
pected, in structures with greater redundancy,
that certain members may be removed during
interactive computation when they are ob-
served to approach their allowable lower
limits.

An interesting point, illustrated by Table
5-15, is that a statically determinate truss is
optimum when only stress constraints are
imposed. Quite the contrary, when the full
range of constraints are imposed, a statically
indeterminate truss is optimum (not consider-
ing the configurational optimization).
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TABLE 5-15

OPTIMUM THREE-MEMBER TRUSSES (EXAMPLE 5-7)

El With Only Stress Constraints With All Constraints
No. Final Area, in.” Final Area, in.
1 2 3 4 5 6 7 8
1 7.064 8.500 7.991 Corcoran 9.180 16.00 8.485 Corcoran
Truss Truss
2 1.971 1.500 — 4.246 2.160 11.310 - 4.247
3 2.835 — 4.243 2.039 3.850 - 8.485 11.410
Wt, Ib 15.970 12.812 17.300 7.555 20.59 33.94 24.000 20.115
Max.
Defl,in.| 0.00689 0.02390| 0.00766| 0.02559 0.005 0.005 0.005 0.005

2. Example 5-8. Transmission Tower

Fig. 5-40 shows the geometry and dimen-
sions of the transmission tower to be studied.
This problem has been considered by
Venkayya and others (Ref. 39). The tower
has 25 members, 10 joints, 18 degrees of
freedom, and is designed for 6 loading condi-
tions. The structure is indeterminate, with a
degree of indeterminacy of seven.

The tower was designed by first imposing
only stress constraints, and then by imposing
stress, displacement, buckling, and natural
frequency constraints. Design information is
given in Table 5-16, and the final results
obtained are shown in Tables 5-17 and 5-18.
Table 5-17 shows the results when only stress
constraints are considered, and Table 5-18
gives the results for the corresponding cases
when all the constraints are considered. For
results given in Column 1 of Table 5-17, all
the members of tower were included in the

computation and the Curve 1 of Fig. 5-41
shows the variation of cost function with the
number of iterations. The computations of
this case were monitored to determine which
cross sections went to their lower bounds.

One set of members which attained their
lower limits of cross-sectional area were num-
bers 10, 11, 12, and 13. It was obscrved that
these members carried small forces and could
be removed without causing collapse of the
tower, so they were removed from the tower.
The final values of areas of cross section of
the resulting structure are given in Column 2
of Table 5-17. Curve 2 of Fig. 5-41 shows the
variation of cost function with respect to the
design cycle. The final weight in this case was
slightly less than the previous case.

The next member that reached its lower
limit was number 1, so it was also removed
from the structure. The results of this case arc
given in Column 3 of Table 5-17 and Curve 3
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Figure 5-40. Transmission Tower (Example 5-8)
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TABLE 5-16

DESIGN INFORMATION FOR TRANSMISSION TOWER (EXAMPLE 5-8)

For each member of the structure, the modulus of elasticity Ei, the specific weight o the constant o (moment
of inertia of jth member, /, = oz,.bl.z), and the stress limits are 10* kips/in.2, 0.10 Ibfin.?, 10, and  40.0 kips/in.?2, re-
spectively. The lower limit on the area of cross section of each member is 0.10 in.> for the case with stress
constraints only and 0.01 in.2 for other cases. There is no upper limit on the member sizes. The resonant frequency
for the structure is 173.92Hz and the displacement limits are 0.35in. on all nodes and in all directions. There are six
loading conditions and they are as follows (all loads are in kips):

Load Directionof Load Load Directionof Load
Cond. | Node x Y z Cond. | Node X 4 z
1 1.0 10.0 —5.0 1 o] 10.0 —5.0
1 2 0 10.0 —-5.0 2 - 1.0 10.0 -5.0
3 05 0 0 4 —0.5 o 0
6 05 0 0 5 —0.5 0 0
1 1.0 — 100 —-5.0 1 0 —10.0 —-50
3 2 o — 10.0 -5.0 2 -1.0 —-100 —-50
3 0.5 o 0 4 —0.5 0 0
6 0.5 0 0 5 —05 0 0
5 1 0 200 -50 6 1 0 —20.0 —5.0
2 o] —200 —50 2 0 20.0 —50

of Fig. 5-41. The final weight in this case was
86.94 1b, which is given slightly less than the
previous case. Finally, members 14, 15, 16,
and 17 were at their lower limits of cross-
sectional area. Removal of any of these
members, however, would cause collapse of
the structure. Members 2 and 5 or 3 and 4
could be removed to make the structure
determinate. The results for a statically
determinate structure, obtained by removing
members 2 and 5, are shown in Column 4 of
Table 5-17. The final weight in this case was
106.97 Ib. It may be noted that this statically
determinate structure yielded only a local
optimum, Curve 4, Fig. 5-41.

Another sequence of removing the mem-
bers that reached their lower limits of area of
cross section was also tried. Members 14, 15,

16, and 17 reached their lower bounds but
removal of all of these members rendered a
structure that was geometrically unstable.
However, members 14 and 16 or 15and 17
could be removed without causing the col-
lapse of the structure. Results with members
15 and 17 removed are given in Column 5 of
Table 5-17 and similar results are obtained by
omitting members 14 and 16 from the com-
putation. The next set of members that were
at their lower bounds and could be removed
without making the structure unstable were
numbers 1, 12, and 13. These were also
removed from the structure and the results
obtained in this case are given in Column 6 of
Table 5-17. Two other members could be
removed from the structure to make it
statically determinate. Results obtained by
removing members 4 and 5, and then numbers
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TABLE 5-17

OPTIMUM TRANSMISSION TOWERS WITH STRESS CONSTRAINTS ONLY

(EXAMPLE 5-8)
Final Area, in.’
El
No. 1 2 3 4 5 6 7 8
1 0.100 0.100 - - 0.100 - - -
2 0.376 0.377 0.346 - 0.384 0.364 0.272 -
3 0.376 0377 0.346 0.100 0.384 0.366 0.272 0.272
4 0.376 0.377 0.346 0.100 0.387 0.363 - 0.272
5 0.376 0.377 0.346 - 0.385 0.365 - -
6 0471 0.470 0.494 0.779 0.465 0.484 0775 0779
7 0471 0.470 0.494 0.779 0.463 0.482 0.779 0.775
8 0471 0.470 0.494 0.779 0.464 0.481 0.779 0.779
9 0471 0.470 0.494 0.779 0.463 0.479 0.779 0.779
10 0.100 - - - 0.103 0.103 0.182 0.182
1 0.100 - — ~ 0.103 0.103 0.182 0.182
12 0.100 - - - 0.100 - - -
13 0.100 - - - 0.100 - - -
14 0.100 0.100 0.100 0.165 0.151 0.152 0.302 0.302
15 0.100 0.100 0.100 0.165 ~ - - -
16 0.100 0.100 0.100 0.165 0.151 0.152 0.302 0.302
17 0.100 0.100 0.100 0.165 - - - -
18 0.277 0.279 0.202 0.413 0.278 0.288 0.413 0.413
19 0277 0279 0.202 0.413 0.277 0.288 0.413 0413
20 0277 0279 0.202 0.413 0.274 0.287 0413 0413
21 0277 0.279 0.292 0.413 0273 0.287 0.413 0.412
2 0.380 0.374 0.363 0.547 0.445 0.436 0.669 0.669
23 0.380 0.374 0.363 0.547 0.334 0.370 0.447 0.447
24 0.380 0.374 0.363 0.547 0.442 0.436 0.669 0.669
25 0.380 0.374 0.363 0.547 0.336 0.370 0.447 0.447
Wt Ib | 91.13 87.90 86.94 106.97 89.94 88.95 113.69 113.68
Max.
Defl.in. | 2.288 2.305 2.311 3.489 2.486 2453 3.614 3615

2 and 5 are given, respectively, in Columns 7
and 8 of Table 5-17. Computations were also
carried out by removing members 2 and 3,
and members 3 and 4 along with members 1,
12, 13, 15, and 17. Results obtained in these
cases were the same as those shown in
Columns 7 and 8 of Table 5-17. For this
reason, these results are not reproduced here.
Finally, another determinate structure, ob-
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tained by removing members 1, 2, 5, 15, 16,
19, and 20 was optimized. The cross-sectional
arcas of various members at the optimum
point were as follows: 3,4(0.100); 6 to
9(0.779); 10,11(0.182); 12,13(0.446);
14,17(0.302); 18,21(0.775); 22,25(0.537);
and 23,24(0.751). The optimum weight in
this case was 118.1 Ib and the maximum
deflection at this point was 3.861 in.



TABLE 5-18

OPTIMUM TRANSMISSION TOWERS WITH ALL CONSTRAINTS
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(EXAMPLE 5-8)
Final Area, in.?
EL
No. 1 2 3 4 5 [ 7 8
1 0.010 0010 — — 0.010 — — —
2 2.092 2.339 2.393 — 2.263 2.389 0.548 —
3 2.075 2.386 2.404 0.548 2.264 2.384 0.548 0.548
4 2.095 2.339 2.393 0.548 2.021 1.826 - 0.548
5 2.083 2.385 2.404 — 1.920 1.915 - —
6 2.357 2.085 2.076 7.132 2.389 2452 6.596 6.699
7 2.354 2.084 2.076 6.857 2.186 2.042 6.483 6.296
8 2.350 2113 2.083 6.895 2411 2.430 6.596 6.686
9 2.335 2112 2.082 7.101 2.095 2.123 6.476 647 1
10 0.035 - - - 0.666 0.621 2.102 2.054
11 0.035 — — — 0.658 0.630 2.102 2.047
12 0.087 — — — 0.090 — — —
13 0.084 — — — 0.071 — — —
14 1.113 1114 1.139 1.785 1.461 1.485 4172 4.101
15 1.113 1.114 1.139 1735 — — — —
16 1.112 1.117 1.146 1727 1.438 1.498 4170 4.167
17 1.112 1.117 1.146 1.798 — - - -
18 2.056 2.047 2.027 4.317 2.161 2.171 4.692 4645
19 2.058 2.034 2.022 4.390 2.158 2.173 4692 4.664
20 2.046 2.047 2.027 4.400 2.403 2.538 4.985 5.108
21 2.058 2.034 2.022 4.328 2.415 2.524 4.989 5.038
22 2.822 2.878 2.886 5655 4187 4035 6.746 6.909
23 2.808 2.878 2.886 5730 2915 2.873 5.086 4.781
24 2.803 2.926 2.895 5743 4.124 4086 6.743 7.039
25 2.785 2.926 2.895 5648 2.908 2.881 5.086 4.749
Wt, Ib | 590.32 596.64 597.82 060.6 625.37 626.70 1427 1139.9
Max.
Defl, in, 0.350 0.350 0.350 0.350 0.350 0.350 0.350 0.350

All these tower configurations were also
optimized by imposing all constraints; i.e.,
stress, displacement, buckling, and natural
frequency. The results of these cases are given
in Table 5-18. Curves 1 to 4 of Fig. 5-42 show
the variation of cost function with respect to
the iteration number for results of Columns 1
to 4 of Table 5-18. It can be observed from
the results of Table 5-18 that, for the casein
which all constraints were imposed, the opti-

mum weight of the tower increased as more
redundant members were removed from the
structure.

5-7.4 INTERACTIVE COMPUTING CON-
CLUSIONS

Computing times for this interactive com-
puting approach are considerably shorter than
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Figure 5-41. lteration vs Weight Curves for
Example 5-8, Transmission
Tower With Stress Constraints
Only

had been experienced when the same prob-
lems were solved in the batch mode. Second,
and probably more significant, interactive
computing allows the designer to alter the
structural configuration in a systematic way
to scck the global optimum design. This is not
to say that a mathematically precise method
of obtaining a global optimum has been
found, for no such method is known. It
appears, however, that thc technique pre-
sentcd here makes strong use of the designer’s
knowlcdge and intuition, and gives him a tool
with which to seck a global optimum in an
organized way.

The results presented for the two examples
solved in par. 5-7 are of interest in their own

8701
83(}-1
7904
7504

7104

Weight, 1b

T T ] 1

0 2 4 6 8 10
Iteration Number

Figure 5-42. lteration vs Weight Curves for
Example 58, Transmission Tower
With All Constraints

right. For the case when only stress con-
straints arc imposed, rcsults of Table 5-15
indicate that minimum weight designs for
trusscs with multiple loading may be statically
decterminate. However, thc rcsults of the
sccond example given in Table 5-17 indicate
that all statically determinate trusses may not
be lighter than the indetcrminate trusses.

For the case when all constraints are
imposed, results of Tablcs 5- 15 and 5- 18 show
that statically indeterminate trusses are lighter
than the determinate trusscs.

REFERENCES

1. Z. Wasiutynski and A. Brandt, “The
Present State of Knowledge in the Field

5-62

of Optimum Design of Structures”, Appl.
Mech. Rev., Vol. 16, No. 5, May 1963,



pp. 341-350.

. C. Y. Sheu and W. Prager, “Recent
Developments in Optimal Structural De-
sign”, Appl. Mech. Rev., Vol. 21, No. 10,
October 1968, pp. 985-992.

. R. A. Ridha, “Minimum Weight Design of
Aircraft Landing Gear Reinforcement
Rings”, Proceedings AIAA/ASME 9th
Structures, Structural Dynamics and
Materials Conference, April 1968.

. W. A Thornton and L. A. Schmit, Jr.,
“Structural Synthesis of an Ablating
Thermostructural Panel”, Proceedings
AIAAJASME 9th Structures, Structural
Dynamics and Materials
April 1968.

Conference,

. L. A, Schmit, Jr. and T. P. Kicher, “A
Structural Synthesis Capability for Inte-
grally Stiffened Cylindrical Shells”, Pro-
ceedings AIAAJASME 9th Structures,
Structural Dynamics and Materials Con-
ference, April 1968.

6. R. Luik and R. J. Melosh, “An Allocation

Procedure for Structural Design”, Pro-
ceedings AIAAJASME 9th Structures,
Structural Dynamics and Materials Con-
ference, April 1968.

7. W. J. Woods and J. H. Sams, 111, “Geo-

metric Optimization in the Theory of
Structural Synthesis”,  Proceedings
ATAAJASME 9th Structures, Structural
Dynamics

April 1968.

and Materials Conference,

. R. L. Barnett and P. C. Hermann, High
Performance Structures, NASA Report,
NASA CR-1038, May 1968.

9. M. I. Schrader, An Algorithm for the

10.

11.

12.

13.

14.

15.

16.

17.

AMCP 706-192

Minimum Weight Design of the General
Truss, Division of Solid Mechanics, Struc-
tures, and Mechanical Design, Case
Western Reserve University, Report No.
24, June 1968.

L. P. Felton and M. F. Rubinstein,
Optimal Structural Design, preprint of
paper presented at SAE, Aeronautic and
Space Engineering and Manufacturing
Meeting, October 1968.

G. Sved and Z. Ginos, “Structural Opti-
mization Under Multiple Loading”, Int.
J. Mech., Sci., Vol. 10, 1968, pp.
803-805.

W. A. Thornton and L. A. Schmit, Jr.,
The Structural Synthesis of an Ablating
Thermostructural Panel, NASA Report,
NASA CR-1215,December 1968.

W. M. Morrow, I1 and L. A. Schmit, Jr.,
Structural Synthesis of a Stiffened Cylin-
der, NASA Report, NASA CR-1217,
December 1968.

W. R. Spillers and J. Farrell, “On the
Analysis of Struc‘ural Design”, J. Math.
Anal. and Appl., Vol. 25, 1969, pp.
285-295.

W. J. Woods, “Substructure Optimization
in the Theory of Structural Synthesis”,
Proceedings AIAA  7th Aerospace
Sciences Meeting, January 1969.

M. J. Turner, “Optimization of Struc-
tures to Satisfy Flutter Requirements”,
Proceedings AIAA Structural Dynamics
and Aeroelasticity Specialist Conference,
April 1969.

C. P. Rubin, “Dynamic Optimization of
Complex Structures”, Proceedings ATAA

5-63



AMCP 706-192

18.

19.

20.

21.

22.

23.

24.

23.

26.

Structural Dynamics and Aeroelasticity
Specialist Conference, April 1969.

R. L. Fox and M. P. Kapoor, “Structural
Optimization in the Dynamics Response
Regime: A Computational Approach”,
Proceedings AIAA Structural Dynamics
and Aeroelasticity Specialist Conference,
April 1969.

W. C. Hurty and M. F. Rubenstein,
Dynamics of Structures, Prentice-Hall,
Englewood Cliffs, N. J., 1966.

0. C. Zienkiewicz, The Finite Element
Method
Mechanics,
1967.

in Structural and Continuum
McGraw-Hill, New York,

R. E. Beckett and J. Hurt, Numerical
Calculations and Algorithms, McGraw-
Hill, New York, 1967.

S. H. Crandall, Engineering Analysis,
McGraw-Hill, New York, 1956.

T. Kato, Perturbation Theory for Linear
Operations, Springer-Verlag, New York,
1966.

J. S. Przemieniecki, Theory of Matrix
Structural Analysis, McGraw-Hill Book
Co., New York, 1968.

V. B. Venkayya, N. S. Khot, and V. S.
Reddy, Energy Distribution in an Opti-
mum Structural Design, Technical Report
AFFDL-TR-68- 158, Wright-Patterson Air
Force Base, Ohio 45433, March 1969.

D. Johnson and D. M. Brotton, “Opti-
mum Elastic Design of Redundant
Trusses”, Journal of the Structural Divi-
sion, Proc. ASCE, Vol. 95, No. ST12,
December, 1969, pp. 2589-2610.

5-64

27.

28.

29.

30.

31.

32.

33.

34.

Manual of Steel Construction, Sixth Edi-
tion, American Institute of Steel Con-
struction, 1967.

Y. Nakamura, Design  of
Framed Structures Using Linear Pro-
gramming, Master’s thesis, Department of
Civil Engineering, M.LT., Cambridge,
Massachusetts, 1966.

Optimum

D. Kavlie and J. Moe, “Application of
Nonlinear Programming to Optimum
Grillage Design with Nonconvex Sets of
Variables”,
Numerical Methods in Engineering, Vol.
1,No. 4, 1969, pp. 351-378.

International Journal for

D. M. Brown, and A. H. S. Ang, “Struc-
tural Optimization by Nonlinear Pro-
gramming”, Journal of the Structural
Division, Proc. ASCE, Vol. 92, No. ST6,
December, 1966, pp. 319-340 and Vol
93, No. STS, October, 1967, pp.
618-619.

F. Moses, and S. Onoda, “Minimum
Weight Design of Structures With Appli-
cation to Elastic Grillages”, International
Journal for Numerical Methods in Engi-
neering, Vol. 1, No. 4, 1969, pp.

311-331.

W. McGuire, Steel Structures, Prentice-
Hall Inc., Englewood Cliffs, N. J., 1968.

Proceedings, Army Symposium on Solid
Mechanics, 1970 — Lightweight Struc-
tures, Army Materials and Mechanics
Research  Center, Watertown, Mass.,
1970.

Y. Arora, Optimal Design of Elastic Struc-
tures Under Multiple Constraint Condi-
tions, Dissertation, University of Iowa,
1971.



35.

36.

37.

P. Corcoran, “Configurational Optimiza-
tion of Structures”, International Journal
of Mechanical Sciences, Vol. 12, 1970,

pp. 459-462.

R. Douty and S. Shore, “Technique for
Interactive Computer Graphics in De-
sign”, Journal of the Structural Division,
ASCE, Vol. 97, No. STI1, January 1971,
pp. 273-288.

L. A. Schmit, “Structural Design by
Systematic  Synthesis”, Second Con-

38.

39.

AMCP 706-192

ference on Electronic Computation,
Structural Division of ASCE, September
1960, pp. 105-132.

G. Sved and Z. Ginos, “Structural Opti-
mization Under Multiple Loading”, Infer-
national Journal of Mechanical Sciences,
Vol. 10, 1968, pp. 803-805.

V. B. Venkayya, N. S. Khot, and V. S.
Reddy, Energy Distribution in an Opti-
mum Structural Design, Technical Report
AFFDL-TR-68- 158, Wright-Patterson Air
Force Base, Ohio 45433, March 1969.

565



AMCP 706-192

CHAPTER 6
THE CALCULUS OF VARIATIONS AND OPTIMAL PROCESS THEORY

6-1 INTRODUCTION

The problems of Chapters 2 through 5 are
all optimal design problems in which the
design variables were elements of R", i.e., a
vector of n real numbers uniquely specified
the design of the system being investigated. In
many important, real-world, optimal design
problems the design of a system cannot be
specified so easily. For example, the thrust
vector acting on a rocket during takeoff must
be continuously oriented in time so that the
rocket remains stable and follows a certain
path. In this example, the angles the thrust
vector makes with the rocket must be speci-
fied at each instant of time during takeoff. It
is clear that a function specifies the thrust
direction rather than a finite number of
parameters.

Examples of this kind of problem abound
in the aircraft guidance literature and in the
optimal control literature. Typical design or
control variables in these problems are thrust,
motor torque, control surface settings, etc.
All these variables must be specified through-
out the entire interval of time an aircraft is in
the air. Similar problems arise in the presently
developing field of optithal structural design.
In this field the design variables are generally
variables that describe the distribution of
material in structural elements.

In order to illustrate the kind of problem
to be treated in this chapter, two classic
examples will be given.

Example 6-1: The shortest path between
two points, (£°,x) and (¢',x'), in the fx
plane is to be found. As shown in Fig. 6-1,the
particular path chosen between the two
points has a length associated with it. The
problem is to choose the curve %(¢), t® @ f a
t' which has the shortest length. For a
smooth curve x(7) the length is given by

1

t dx 2 Ji/2
J(x)= - -
(x) J:O [1 + <dt > } dr. 6-1)

Note that in this example the quantity J(x)
to be minimized is a real number once the
function x(z), t® @ ¢ a t' is chosen. In this
sense J(x) i1s a real valued function of a
function or curve.

Example 6-2: (The Brachistochrone): Giv-
en two points (£°,x°) and (¢! ,x' ) in a vertical
plane that do not lic on the same vertical line,
find a curve x(#), t° < fa !, joining them so
that a particle starting at rest will traverse the
curve without friction from one point to the

@l xly

it x%

Figure 6-1. Shortest Path
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other in the shortest possible time. Candidate
curves are shown in Fig. 6-2.

«°,x%

3

Figure 6-2. Curve for Minimum Time

Let m be the mass of the particle andg be
the acceleration due to gravity. Since the
particle starts at rest at (+°,x®) and there is no
friction,

1
—Emv2 =mg(x — x%) (6-2)

where v is velocity,
ar\ [ax\V |
] ()
dr dr
— d 2 1/2
1+ <i> dt- 63)
dt dr

where 7 is time. Solving Eq. 6-2 for v,
substituting this into Eq. 6-3 and solving for
dr yields

2 12
[1 + (dx) ]
. dt
dr = dt

[2g(x —x0)]17

The total time 7 required for the particle to
remove from (¢¢,x%) to (¢!,x!) is then

6-2

ey

[2g(x — x%) 17

T=J(x)= dt

(6-4)

This notation makes it clear that 7" depends
on the entire curve transversed by the parti-
cle. The Brachistochrone problem, therefore,
is reduced to finding a curve X(¢), £° < t < ¢!,
that passes through the two given points and
makes 7 as small as possible.

In Examples 6-1 and 6-2 it is clear that a
curve, or equivalently a function character-
izing the curve, is to be found as the solution
of the optimization problem. Further, the real
valued quantities to be minimized are deter-
mined by curves or the functions character-
izing those curves. These real valued quanti-
ties, therefore, are functions of functions.
Such a real valued function is called a
functional. The functional notation J(x) in
Eqs. 6-1 and 6-4 is then interpreted as a real
valued function of the function x(2),2° @ t <
t!. The most common kind of functional
encountered in calculus of variations is the
integral.

The optimization problem considered here
might be stated as: find the function x(¢), ¢°
< t < t',that minimizes the functional J(x).
A glance at the functionals defined in Eqs. 6-1
and 6-4 reveals a basic flaw in this statement
of the optimization problem. In both cases,
the functionals are defined only if the func-
tion x(¢) has an integrable derivative on % a ¢
< t!,ie., it doesn't make sense to admit all
functions as candidates for an extremum. The
problem is more reasonably stated: find the
function x(r) t© o ¢ < t', in a class of
functions ), that minimizes the functional



J(x). The admissible class of functions here
plays a role similar to the constraint sets of
Chapters 3, 4, and 5.

The idea of classes of functions required
here is basic to the mathematical field called
Functional Analysis. Classes of functions in
this field are called function spaces. Consider,
for example, the collection of all continuous
functions x(¢#) on 0 < ¢ < 1. The graphs of
several such functions are shown in Fig. 6-3.

RN ,
0 v 1

Figure 6-3. Examples of Continuous Functions

It is clear that there are infinitely many
continuous functions but that not all func-
tions are contained in this class. For example

0, O0< < 1/2
x(t) =

1 12<t< 1

s

is not continuous so it is not in the class.

To expedite the development that follows,
some notation will be introduced. The collec-
tion of continuous functions on 0 < ¢ < 1
described previously is called a function space
and is denoted

C%0,1) = {x(¢), 0< t < 1] x(t)
is continuous } . (6-5)

A large number of important function
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spaces may be described in a similar manner
as

Ci@ab)= {x(t),a< t< b|x() has i
continuous derivatives } . (6-6)

It should be understood here that x(#) may be
a vector valued function and the differ-
entiability requirement in Eq. 6-6 refers to
each component.

Function spaces may be thought of as sets
of elements, where elements in the function
space are really curves or functions. In this
way the problem of minimizing J(x) may be
viewed as picking the element (curve) in the
appropriate function space that makes J(x) as
small as possible. This approach makes mini-
mization of a functional sound very similar to
the programming problems of Chapter 2, With
this mental analogy one may begin his study
of the calculus of variations armed with a
powerful intuitive tool.

The basic ideas of function space theory
are presented very clearly in Ref. 1, Chapter
2.

In connection with vector spaces, it is often
necessary to require that a function is small,
or near the zero function. For this purpose it
is required that size of a function be defined.
This is done by defining a norm as a function-
al [Ix]l on the function space of interest with
the following properties:

x> 0, x| = 0implies x is the zero

function (6-7)
lax | =lal || x| for real « (6-8)
lx+yl<lixli+lyl. (6-9)

Examples of norms include

6-3
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fx] = max [x()] (6-10)
P!

forxe C°(z°,¢') and
1

! 1/2
I x|f= j x¥{(0) dt (6-11)

[}

for square integrable functions x{¢). For a
discussion of the basic ideas of functional
analysis as they apply to optimization theory
the reader is referred to Ref. 1.

With the idea of norm defined, one can
speak of relative minima of functionals. The
functional J(x) has a relative minimum at
XeD if there is a 6 > 0 such that

J(®) < J(x)
for all xe D with
lx-xll<6. (6-12)

This simply saysthat J(x) has a minimum in a
sufficiently small neighborhood of 2. It is
interesting to look at a neighborhood of a
curve in C°(%,¢') where norm is defined by
Eq. 6-10. In this case Eq. 6-12 simply
demands that x(¢) be within 6 of X(#) for all ¢
in f° o t < ¢t'. The neighborhood of * in this
case is simply the collection of all continuous
curves which can be drawn between x(z) + 6
and %(¢) — 6, as shown in Fig. 6-4.

The present chapter will be devoted almost
exclusively to the theory of the calculus of
variations and optimal process theory. Con-
structive methods for these problems will be
treated in the chapters to follow. A knowl-
edge of this basic theory is essential for
successful application of the theory of opti-
mal design. It has been the experience of the
author that most real-world problems require

6-4

xft)

Figure 6-4. A Neighborhood of %(t)

some modification of the basic optimization
problems. Without a thorough knowledge of
the theory, the designer will probably have no
idea of how to modify the existing theory to
suit his purposes.

6-2 THE FUNDAMENTAL PROBLEM OF
THE CALCULUS OF VARIATIONS

Examples 6-1 and 6-2 have features in
common that allow for the formulation of an
entire class of problems containing these two.
For the sake of generality, let the variable x(¢)
be a vector valued function of the real
variable 7, i.e.,

x, 1)

x() = | - (6-13)

x, (D
where x,(¢) are real valued functions of 7.

The problem considered here may be for-
mulated as Definition 6-1.

Definition 6-1 (Fundamental Problem of
the Calculus of Variations): Find a function
x(#) in C2(¢°,#' ) which satisfies



0 _ 40 o .
x;(1°)=x; , forsomeindices I < ia n

X; ()= x}, for some indices 1< j < n

(6-14)
and which minimizes
tl
J(x) = s F(t, x, x"dt (6-15)
tO

where F is a real valued function of all its
arguments and

dx,
ar

= - (6-16)
dx,,

dt

If the reader wishes he may consider x(¢) as
being a real valued function of ¢, the general-
ization to vector valued functions is simply a
matter of notation. The conditions, Eq. 6-14,
specify some or all of the components of x(r)
at the end points of the interval 1° o ¢ < ¢!,
This corresponds to demanding that the
curves in Examples 6-1 and 6-2 pass through
given points.

6-2.1 NECESSARY CONDITIONS FOR
THE FUNDAMENTAL PROBLEM

Only necessary conditions for solution of
the fundamental problem of Def. 6-1 will be
developed here, i.e., the existence of a solu-
tion, %(¢), in C*(¢°,+!) first will be assumed. A
set of conditions that £(¢) must satisfy then
will be derived. These conditions then may be
employed in particular problems to find
functions x(#) that are candidate solutions of
the problem. Hopefully, there will be just one
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such candidate that must then be the solu-
tion. If there are several candidates, other
methods must be used to choose the solution.
This problem will be discussed later.

Graphically, the method of obtaining con-
ditions on the solution, X(z), of the funda-
mental problem will be to allow small changes
in X(¢) and examine the behavior of J(x). An
admissible, small perturbation is illustrated in
Fig. 6-5. The equation for this curve is £(r) +

f’.!‘g.xﬁj

Figure 6-5. Perturbation from Optimum

en(r) where E is a small real number and n(#)
is any member of C?(z°,#' ) such that

n(r®) =0, foriwithx,(t°)=x°
6-17)
171.(t1 )y=0, forjwith )c].(t1 )= x}.l

To examine the effect of this perturbation
of J(x), substitute £ +en in Eq. 6-153,

tl
J(x+en)= j F(t, x +en, X' +en)dt.

r© (6-18)

Recall that x(¢) is a local minimum of J(x)
subject to Eq. 6-14, i.e., any small change in
X(#) increases J(x). For any given function
n(r} in C2(#°,¢') and satisfying Eq. 6-17, %(¢)
+ en(r) is in C2(+°,+') and satisfies Eq. 6-14

6-5
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for all . Therefore, for this n(#), J(2 ten)is a
real valued function of e. Further, for £ = 0,
J(x + en) has a relative minimum and it is
assumed that F(t,x,x") is twice continuously
differentiable in x and x' so that J(2 +en) is a
twice continuously differentiable function of
e. Theorem 2-2 then applies, and it is required
that

52 J(X +en) =0. (6-19)
o€ le

The object now is to transform condition,
Eq. 6-19, into conditions on %(¢). Performing
the differentiation indicated in Eq. 6-19,

a
— J(x ten) -
o€ le=0

e

oF F
(a—n +7-‘n') de =90, (6-20)
/0

where the arguments in the partial derivatives
of f in Eq. 6-20 are £(¢) and £'(z). It is
important to remember that Eq. 6-20 is
required to hold for any n(z) in C2(:°,¢!)
which satisfies Eq. 6-17.

Integrating the second term in the
integrand of Eq. 6-20 yields

1

’ (aF 1£> a
ax drax /) "
tl)

+—aF, [t 2@, F () ]n@t)  (6-21)
0x

’E)F [to )‘5(10) )?'(to)]n(to)=0
axf » 3 .

Since the behavior of 5 inside the interval ¢°
< t < ¢! and at its ends are independent, the
integral and boundary terms in Eq. 6-21 may

6-6

be treated independently, i.e., each is required
to be zero. One of the major results which
follows is a direct application of Lemma 6-1.

Lemma 6-1: If M(¢) is a continuous func-

tionon¢® < r< ¢ and if

’D

t‘
j M(t) n(t) dt =0 (6-22)

forall n(#) in C?(¢°, ') with 5(¢°) = n(¢:}) =0,
thenM(¢$) =0, < t < ¢1.

The ideas involved in the proof are easily
seen graphically. In Fig. 6-6 a point ¢*, ¢° <

Figure 6-6. Graphical Proof of Lemma 6-1

1 < ', is shown where M (") # 0. The curve
0 ;(#) is then constructed so that neither
function is zero in the interval a < ¢ < b.
Their integral over the entire interval is then
nonzero which is a contradiction of Eq. 6-22,
SO Ml.(z‘*) =0.

Since the two terms in Eq. 6-21 must each
be zero,

’ o 4 (a—F dr=0 (6-23)
ax  ar \ax')| " (6-
tD

for all n(#) in C?(¢°,¢'). In any subinterval of
t° < t < ' where x(9 is continuously
differentiable, the quantity



[8F/dx — d/dt (0F/dx")] is continuous.
Therefore Lemma 6-1 implies

F d<aF>_O 24
ox dt \9x (6-24)

in that subinterval.

If, however, X'(#) has a jump discontinuity
at some point ¢ then [3F/ox — d/dt (3F/dx")]
need not be continuous at { and Lemma 6-1
may not be applied over any subinterval
containing 7 Since Eq. 6-24 must hold in
subintervals on both sides of #, this equation
may be integrated from 7 — 6, 6 > 0, to ¢ to
obtain

t
oF oF

_— = —dt+C (6-25)
ox

The vector 8F/dx is piecewise continuous so
the right-hand side of Eq. 6-25 is continuous.
Therefore 3£/dx' is continuous even at 7.

These results may be stated in the form of
a theorem.

Theorem 6-1: The following conditions
must be satisfied by the solution of the
problem of Def. 6-1, x(¢), whose derivative is
piecewise continuous;

oF . .
— 2. x(8),x ()]
ox

BELE SR i
11 o0 BROE @ =0 (6:26)

at points of continuity of x(¢)

a—F, [e', x(e'), X' (¢ n(e")
ox

- %' (22, X(°).x" ()1 n(:°) =0  (6:27)
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forall n(¢°), n(¢') satisfying Eq. 6-14, and

O 03¢ —0),F (G —0)] =
ox

oF  [£+0x(F+0),x"(F+0)]  (6.28)
ox'

at each point 7 of discontinuity of x'(¢).

Condition, Eq. 6-26, is a second-order
differential equation in x(#) and is called the
Euler-Lagrange equation. Condition, Eq. 6-27,
is called a transversality condition. For each i
orj such that n,.(to) or nj(t‘) is not specified
by Eq. 6-14, Eq. 6-27 implies 8F/ax; (:°) = 0
or BF/afo (') = 0. The condition, Eq. 6-28,
at discontinuities (called corners) in x'(¢) is
called the Weierstrass-Erdmann corner condi-
tion.

One further necessary condition will be
important for further development. Define
the Weierstrass E-function as

E(x,x"\w)=F(t,x,w)—F(x,x")
(6-29)

oF , ,
—E' (t,x,x )(W —X ).
The proof of the Weierstrass necessary condi-

tion may be found in Ref. 2, page 149. The
result only will be given here as Theorem 6-2.

Theorem 6-2: If the function x(¢) is the
solution of the problem of Def. 6-1, then it is
necessary that

Elt,x(),X' (£),w] > 0 (6-30)
forall % < ¢ < ¢! and all finite w.
The Weierstrass condition of Theorem 6-2

generally is not used to generate candidate
solutions of the fundamental problem.

6-7
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Rather, when solutions of Eq. 6-26 are
determined, Eq. 6-30 is used to eliminate
unsuitable functions, i.e., it may very well
disqualify a function which satisfies Eq. 6-26.

The derivation of necessary conditions for
the fundamental problem is only very lightly
covered here. Further, the theory of sufficient
conditions is completely neglected. For out-
standing and complete treatments of these
topics see Refs. 2, 3, 4, and 5.

6-2.2 SPECIAL CASES AND EXAMPLES

In many problems the form of the function
Ft,x,x') allows for simplification for the
Euler-Lagrange equation, Eq. 6-26. In any
case, Eq. 6-26 may be written, using the chain
rule of differentiation and the notation

F oF F oF o*F d
=_’ N = s N =-——' n
x o x T e T ey B

e L OF

x*x 7 g lax
to obtain

IT T " e
Fx_Fx't_x Fx’x_x TFxx
= 0. (6-31)

This is simply a second-order differential
equation for x(7).

Several special cases with examples will
now be considered.

Case 1. /* does not depend onx’:
F=F(tx). (6-32)
Eq. 6-31 in this case is

F (,x)=0. (6-33)

6-8

This is simply an algebraic equation be-
tween ¢ and x. Since there will be no
constants of integration, it will not generally
be possible to pass the resulting curve through
particular points. This means that a solution
to such a problem generally will not exist.

Example 6-3: Minimize
1

s x2dt

]

for
x(0)=0, x()=1.
The condition, Eq. 6-33, is
2x=0.

But it is, therefore, impossible to satisfy x(1)
= 1 so the problem has no solution.

To get an idea of what has gone wrong,
note that since x2(¢) = 0 foreacht,

1

g x2()dt= 0

for any curve on 0 < ¢ < 1. It is, therefore,
clear that if there were a curve which mini-
mized / olxzdt, then the minimum value of
the integral would be non-negative.

It was noted that no minimum exists.
However, consider the family of curves

X, (H)=t".

These curves all satisfy the end conditions and

1

J(xn)=[ eon g = —L
o

2n+1




Therefore, it is possible to choose # large
enough so thaxtfl x2dt is as close as desired
to zero. Howevgr, the limit of x (#) as n
approaches infinity is the function

Q, t< 1
xm(t)=
L, r=1,

and this is not even a continuous function.

The class of functions x, () are illustrated in
Fig. 6-7.

a LD

1

Figure 6-7. Minimizing Sequence

In this illustration, a solution of the prob-
lem exists in the class of piecewise continuous
functions but not in the class of twice
continuously differentiable functions. This
problem, therefore, should serve as a warning
that not all innocent looking calculus of
variations problems have solutions.

Case 2. F dependsonly onx’:

F=F(x". (6-34)

Eq. 6-31isin this case

F...x"=0. (6-35)

Example 6-4: Using the formulation of
Example 6-1, find the shortest curve in the f-x

plane which passes through the points (0,0)
and (1,1).

AMCP 706-192

The function F from Eq. 6-1 is
\ . 1/2
F=[1+(x"]".

The form of the Euler-Lagrange equation in
Eq. 6-35 applies in this case to yield

-1+ ¥ =0,
Since (x")2 > 0,[1+(x")?] # 0 and x'(¢) is
required to be continuous so [ 1 +(x')?] # oo
and it, therefore, is required that

x"@)y=0

or

x(ty=at+bh,

where a and b are constants. This implies that
the shortest path between two points in a
plane is a straight line. This shouldn’t shake
anyone up.

The end conditions yield

x(0y=p=0
and
x(ly=a=1

Therefore the solution of the problem is
x(t) =t
Case 3. F dependsonly on ¢ and x':
F=F(t,x'). (6-36)
Eq. 6-26 is, in this case,

4

™ F.(tx')=0

6-9
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or
F(tx)=C (6-37)
where C is an arbitrary constant.

Casc 4. x is a real valued function, and F
depends only onx and x’:

F=Fixx'). (6-38)
Eq. 6-3 11is, in this case,

F,—F. x _F, . x"=0.
Multiplying by x” yields
X'F, —(x')*F, —x'x"F, .=0.

X X

This isjust
d
—(F _Xx'F._.)=0
' T ¥ =0,
S0
F_x'F,.=C (6-39)

where C is an arbitrary constant.

Example 6-5: Solve the Brachistochrone
problem of Example 6-2.

The function F from Eq. 6-4 is

/2
1+(x)2 |
28x

Eq. 6-39 applies in this case and yields

[1+(x')2 v (')
2gx (ng)l/2 [ +(x')2]1/2

=C

6-10

This reduces to

1={ ax11+x21} Ve,
o1

x[1+(x')?} =¢,

where C, is a new constant.

The solution of this differential equation is
a family of cycloids in parametric form

t=C, + “r(s —sins)
2

and

x = (1 —coss).
2

The constants C; and C, are to be deter-
mined so that the cycloid which passes
through the given points is fixed.

It should be noted that each of the
problems treated here reduced to the solution
of a nonlinear differential equation. This is
characteristic of problems of the calculus of
variations. The reader is undoubtedly aware
that it is only in the simplest cases that closed
form solutions of these differential equations
may be obtained. Further, questions of exis-
tence and uniqueness of solutions are by no
means trivial.

6-2.3 VARIATIONAL NOTATION AND
SECOND-ORDER CONDITIONS

ForJ(x) = F(t x,x')dt,

define the first variation of J(x) as

8J(x)= Zide—l(x +ebx) (6-40)



al”
= Flt,x tebx,x'
de

to

tl
oF
=J [—(t,x,x')6x
o ox

_ oF
+—, (t,x,x')6x':| dt.
ox

+66x')dt|

Note that all this does not require that x(¢)
be the solution of the fundamental problem.
If, however, x(¢) = x(t) is the solution of the
fundamental problem, then it is clear from
Eq. 6-19 that it is necessary that

8J(%) =0, (6-41)
for all 8x(¢) for which x(¢) * e8x(t) satisfy the
end conditions in the fundamental problem.

In a way quite similar to the definition of

the first variation, the second variation may
be defined as

2 d2
8% J(x) =;J(x+e<5x)
e

E-0

Performing the differentiation, this is

d!
—_ + sy
J(x) = .F(t,x ebx,x' +edx') dt 0
al”
= 5xT
de
tﬁ
T
i (t,x +edx,x' +edx’)
0x

TaFT
+6x' 5 (t.x +ebx,x’ +edx') | dt
X

t

€=0
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Ta2
0% F
Sx (t,%,x")6x7T
ax?

Ta2
+ Bx'—T (tx,x")8x' | dt
ox'?
Define
F
A=
dx?
’F
B=2
(axax'>
and
_*F
T

With this notation,

tl
83 (x) = I (6xTAbx +or' BSX'
t“
+6x'TCox") dt
If F(t,x,x') has threc derivatives, then by

Taylor's formula

Jix +ebs) = Jx) + Eil.
le=0

(6-42)

where 0 < € < £ If we computed d3J/de3, it
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would involve a sum of terms each containing
third degree terms in 8x and &x’. For 8x and
8x" sufficiently small, this term may bc
neglected to obtain a second-order approxi-
mation when £ = 1 so that

J(x+8x) <J(x)+ 8] +8%.

It is clear then that 6J and 82J play the
role of differentials in the theory of func-

tionals.

Further, if %(t) yields a relative minimum
for the fundamental problem, then J(% +¢dx)
is a relative minimum at £ = 0. It is, therefore,
necessary that

a:J
E > 0.
€=0

This isjust
82J(x) » 0,

or

tl
S (5xTA8x +5xTBSx'

tl)

+5x'TCox"Ydt > 0 (6-43)

for all 8x(¢t) such that ¥ + 8x satisfy the end
conditions for the fundamental problem. In
what follows it will be convenient to limit
8x(t) to those variations which satisfy 5x(r®)
=8xr')=0.

If 8x'(t) is small for all ¢, then 8xf¢) must
also be small since 8x(¢°) = 0. On the othcr
hand, it is possible to choose 6xf¢) which is
zero at the endpoints and small for all ¢, but

6-12

which has large derivatives. One might, there-
forc, be led to belicve that the derivative term
in the incquality of Eq. 6-43 is dominant.
This would then requirc C to bc positive
scmi-dcfinite.

To show that this is the case, assume that
therc is a point £", % < £ < ¢! and a nonzero
veetor b such that A7C(r#)h = — 28 < 0. For
any continuous §x'(t) such that sx'(+*) = p,
there is an intcrval

t* —a< ¢ ¢ p*+ s 0, such that

5x"(t)TClt)ox't) < —B< O

int*—a<re t*+a:

Define
o t—r*
— hsin [1(——)], t*—a<r<sr*ta
i o
5x(f) =
0, clsewhcrc
so that
r—rt*
h cos [L——)] JHr—a<t<s tta
o
8x'(t) =

0, clscwhcre
Now, Eq. 6-43 is

tl
0< f (3xT Adx +5xTBsx' +5x'TCsx") dt

tO



_ %k {— *
+ & sin [ﬂ(t ! )] cos [ﬂ( ! )] hwTBh
T o o
%k
+ cos? [ﬂtat ]hTCh} dt

o "
< M sin?60dé
T

M=m2x ApT AR |

IWTB(HA |

Therefore, integration in the preceding in-
equality yields

However, since @ may be chosen arbitrarily
small and 8> 0, the right side will be negative
for sufficiently small . But this is a con-
tradiction. Therefore, the assumption that
there exist £* and & such that ATCh < 0 is

AMCP 706-192

incorrect. This implies #7 Ch > 0 for all # and

t*. Therefore (Yt) is positive semi-definite.
Since
a%F
Clt) = PN

this result may be stated as Theorem 6-3.

Theorem 6-3. A necessary condition for
the fundamental problem to have a relative
minimum at %(¢) is that

82 F

ax'?

[6.2(1),%(1)]

be positive semi-definite for allz, % < < ¢!,

Gelfand and Fomin (Ref. 2, p. 104) indi-
cate that people are prone to argue that
positive definiteness of 92F/8x'? at cach
point of the solution is a sufficient condition
for an extremum. They point out, however,
that this is not the case and, in fact, that no
local condition can provide sufficient condi-
tions. For a treatment of sufficient conditions
see Refs. 2, 3,4, and 5.

6-2.4 DIRECT METHODS

The direct methods of the calculus of
variations seck to generate a sequence of
functions [x/"/ ()] such that, if & is the
infimum of Jf x/ over all admissible x, then

lim

- Jix"1=¢ . (6-44)

n-—r

Direct methods are capable of showing
existence of solution as well as construction
of approximations of the solution. It is
generally very difficult to prove existence of a
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solution of the nonlinear boundary-value
problem in the necessary conditions for the
fundamental problem. It is often possible,
however, to show that the sequence [x/™/ ()]
converges to a function X(¢) which is the
solution of the fundamental problem, i.e.,

] ]imw Jix(M Y =J(%) =¢ . (6-45)

It is clear, however, that a sequence which
satisfies Eq. 6-44 may very well fail to
converge to an admissible function X(#). This
must necessarily be the case if no solution of
the fundamental problem exists. From an
engineering point of view, one may not be too
concerned with existence of a limit of the
sequence [x/*/ (t)]1 . Provided it is possible to
successively reduce J, consistently better re-
sults are being obtained and the process will
be continued until no further meaningful
reduction in J may be achieved. For an
outstanding treatment of convergence of di-
rect methods, see Ref. 2, page 192, and Ref.
3, page 127.

The problem of primary interest to the
engineer is the construction of a minimizing
sequence. There are many ways of generating
such a sequence, only two of which will be
treated here. These methods are known as the
Ritz Method and the Method of Finite Differ-
ences.

6-2.4.1 THE RITZ METHOD

The Ritz Method is based on the idea of
representing functions by using linear com-
binations of known functions; i.e., given ¢,
i= 1,2, ...which preferably form a complete
set, a function is represented by

)= _El ad(t)
i=

6-14

where @; are constants. Classical, trigo-
nometric Fourier series is an example of this
kind of representation.

In the Ritz Method, the nth function in the
minimizing sequence is formed by

x("(t) = -‘?1 a,6,(t) (6-46)

where the ¢,(7) are chosen so that x("(¢)
satisfics the end conditions associated with
the fundamental problem. This expression it
then substituted into J(x) to obtain

J[x("}] =

1

t
n n
I F[t, T a¢.(1), T a9 (t)]dt. (6-47)
i=1 i=1

tO

The object now is to choose the coefficients
@, i = 1,.. n,sothat J[x"/] is as small as
possible. For this purpose, it should be noted
that the right side of Eq. 6-47 is simply a
function of n parameters. The problem is now
to minimize this function without any other
constraints. For this purpose, any of the

methods of Chapter 2 may be used.

The property

Jix(n*U] < Jx™

follows readily from the method of deter-
mining the ;. It is clear that by choosing
a,., =0, x"*D (1) = xI")(1). However, by
allowing @, , |, to be nonzero, a larger number
of functions are available as candidates for
minimum of J{x™"*1)} than J[x/*/]. The
minimum of J{x{"*1?] will, therefore, cer-
tainly not be greater than that of J[x/*/] and
this is the desired result.



In practice, the rate of convergence of
[x/"/(t)] depends strongly on the functions
¢,.( t) chosen. The number of terms required to
obtain a reasonable approximation of the
solution is greatly reduced if these functions
are chosen based on a reasonable engineering
estimate of the form of the solution. By
making a judicious choice of the ¢,(#), a good
approximation of the solution may be ob-
tained with as few as two or three terms.

Example 6-6. In solving the boundary-
value problem

x"t(1+txt1=0
x(— 1)=x(1)=0,
it is necessary to minimize the functional
1
J(x)= S [x'2 —(1 +£2)x? —2x]dt
(6-48)

subject to the end conditions x(—1) = x(1) =
0.

In order to minimize J(x) of Eq. 6-48, by
the Ritz Method, choose

¢, (1) =(1 - *%).
If for a first approximation n = 2 is chosen,
xCN)=a, (1 —x)+a,(1 —x*). (649)

Substituting x¢?? into Eq. 6-48 and integrat-
ing yields

19 19
J (2) =8 <__ 2 +—
(x(2)) 054 T s 2a,a

LA244 o 1 ga)
3465 2 3 ' 57/
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This is a positive definite quadratic form, so it
has a unique minimum which may be ob-
tained by setting its first derivatives equal to
zero. This yields

38,2, 1,
105" 45 % _3
20 2488 2
P, _a — — —
457" 3465 % 5

The solution of these equations is
a, = 09877
a, = — 0.05433.

Substituting these coefficients into Eq.
649,

(2) = _ 2 + 4
x2) (1) 55(3969 4200¢ 2311%).

In particular,

x(2)(0) = 0.93344.

If the three term approximation

3 =a, (1 =) +a, 1 —t) ta; (1 — %)
is determined in the same manner,

x(3)(0) = 0.93207.
This might lead one to believe that both
x2)¢) and x(3)(t) are good approximations

of the solution.

6-2.4.2 METHOD OF FINITE DIFFER-
ENCES

The Method of Finite Differences, as its
name implies, is simply based on the replace-
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ment of derivatives and the integral by finite
approximations of these continuous opera-
tions. A grid, 1° =tg, 1, ey b,y =t s
placed on the interval £® < ¢ < #' and the
value of x(t) only at the grid points is sought,
i.e., only the parameters x; =x(¢,), i=1,... n,
and perhaps x(to) or x(t,, ), arc sought.

Replacing derivatives by finite differences
and the integral by a finite sum, the problem
is to determine the x; which minimize

n Xiv1 %
Jxp= 2 L F g e, —L *
i=0 to 1

S (P ’i)} '

The problem is now simply an uncon-
strained minimization problem in a finite
dimensional space and may be solved by the
methods of Chapter 2.

6-3 A PROBLEM OF BOLZA
6-3.1 STATEMENT OF THE PROBLEM

Many real-world optimal design problems
cannot realistically be reduced to the finite
dimensional form of Chapter 5. In many
problems the system varies continuously in
time or space, so functions rather than just
parameters must be determined. Examples 6-1
and 6-2, par. 6-1, are extremely simple, yet
even they involve distribution of the con-
trolling factor over space and time.

As has been seen in previous chapters,
optimal design problems involve ideas of
design variables and state variables. Further,
since the system being designed must be
capable of performing certain functions, side
conditions on the state and design variables
occur. It has been observed in previous

6-16

chapters that these side conditions generally
include both equality and inequality con-
straints. An extension to inequality con-
straints will be given in par. 6-4.

The problem to be treated here is given in
Definition 6-2.

Definition 6-2 (Problem of Bolza): The

problem of Bolza is a problem of finding (¢),
b, x(t), £® < t< ", which minimizes

J=go(b, . xI)

i1 (6-50)
+J’ folt.x(t), u(t) b]dt

tl)

subject to the conditions

d
%—f(t,x,u,b), <t 6-51)
t"l
g,(b. ¢, x1) + L, [t,x(t),u(1),b] dt
tﬁ
=0,a=1,..r (6-52)
¢B(t,x,u,b) =0,

B=1,..q.%<t<t" (6-53)

r

where
x;(t) u,(t)
xo=| |, wy=| . |,
x, (1) (1)
b,y
b=| .
b, (6-54)



f‘(t,x,u,b)
fltx,ub) = ﬁ ,

£,(t,%u,b)

and 1° < # < " where (¥ x7) arc inter-
mediate points,j = 1,...,7 — L.

For the problem considered here it will be
required that the conditions, Eqs. 6-53, shall
not determine any component of x(f) ex-
plicitly. This is equivalent to requiring that
the rank of the matrix

o9
[;-E (t.x.u, b)_J (6-55)

u
k
qgXm

shall be ¢ for all admissible values of the
arguments. In case some constraint function
should depend only on xf¢#) and ¢; this
constraint is called a state variable constraint.
This kind of constraint will be discussed in a
later paragraph.

The vector variable x(t) is called the state
variable, u(?) is called the design (or control)
variable, and b is called the design (or control)
parameter. Eqs. 6-52 contain the boundary
conditions on the state variable and functions
which determine the end points of the inter-
val, % and ¢". The independent variable ¢
may be time or a space-type variable, depend-
ing on the problem being considered.

The functions fo, f, L, , and ¢, are assumed
to be continuously differentiable at all points
except (£,x7),j = 1,..,n — 1. At these points
the functions may have jump discontinuities;
i.e., the functions will have limits along any
path, but limits along different paths may
have different values. In general, even for
problems with very regular functions, wu(t)
may have jump discontinuitics. Therefore uft)

AMCP 706-192

is expected to be only piecewise continuous.
The resulting state x{¢), therefore, will have
only a piecewise continuous derivative in
general.

The allowed discontinuities of fo, f, L,
and ¢, play an important role in many
real-world problems. This feature allows for
completely different forms of state equations,
constraints, etc., for different ranges of state
and time. It is, therefore, possible to routinely
account for sudden changes in system be-
havior such as reverse in direction of frictional
force, motion of objects in a space where
physical barriers or restraint surfaces exist,
logic built into the system which changes
configuration as in staging of rockets, etc. It
should be clear that these features are re-
quired in order to treat many realistic prob-
lems.

For a discussion of the effect of these
discontinuities on more detailed necessary
conditions and sufficient conditions, see Ref.
8.

6-3.2A MULTIPLIER RULE

As mentioned in par. 6-3.1, real-world
optimal design problems require at least the
complexity of the Bolza problem of Def. 6-2.
In fact, the system designer requires all the
tools the mathematical theory of optimal
processes can give him. This requirement
points out one of the obstacles to engineers in
utilizing the modern theories of mathematics.
This text cannot possibly present the mathe-
matical theory required of the research math-
ematician who is developing the theory of
optimization. The approach taken here to
by-pass this obstacle is to accept a key
theorem of Functional Analysis and then
proceed to develop the tools required for
solving problems of optimal design. A very
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powerful theorem of Liusternik and Sobolev,
Ref. 6, page 209, will be used to obtain
necessary conditions for the problem of
Bolza.

Theorem 64: If #t), b, !, and i(t) pro-
vide a solution to the Bolza problem of Def.
6-2, then there exist multipliers Aq > 0,7, &
= l...nAft),i=1,.., n and uB(t), g=1,..,
q, not all zero, such that

(6-56)

where

— . . 4 . .
J=Xo&o(b, ¥ xI) +a§l Yo 8, (bt X7)

K

n dx,
+ 2 N | ———f{t.x,ub)

Aofolt,x,ub) (6-57)

i=1 dt

,
+ El Yo Lo (t. %, u,b)
w=

+
©

"M
-

u5(1)¢6(t,x, u,b) } dt.

Note that the symbol 8J is the first
variation of J as defined in par. 6-2. For
proofs of this multiplier rule, the reader is
referred to the literature (Refs. 2,5-9).

This theorem says nothing about the con-
tinuity and differentiability properties of the
solution x{t), 4ft), and the multipliers A.(2)
and #B( t). In general, piecewise continuity is
all that may be expected of uft). Eq. 6-51
then implies x(#) has a piecewise continuous
derivative. The properties of A7) and uy(?)
will be determined when necessary conditions
are derived.
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6-3.3 NECESSARY CONDITIONS FOR
THE BOLZA PROBLEM

The simplest Bolza problem is the one
having all its functions three times continu-
ously differentiable. Even in this case, how-
ever, #(t) may be only piecewise continuous.
To include this possibility, let £* be a point of
discontinuity of any component of uf¢).

Before computing the variation called for
in Eq. 6-56, it should be noted that £°, ¢/, t*,
and " are not fixed but must be determined.
This means that these special points must be
treated as parameters that are to be deter-
mined, much as the design parameter b. At
first glance, this may seem to introduce no
essential complication into the problem. The
behavior of the allowed variations in x(¢),
however, must be treated very carefully.

Let £ be a typical point #/ or * where x(¢)
may very well be discontinuous. The function
x(t) will be changed at f by both the
independent variation in x(#), 8x(t), and the
shift in the point (7, 6f). Denote the total
change in x(¢) due to both of these sources by
Axft). It must be assumed that there are no
other points ¢/ or t* arbitrarily near f, so
limits from the left and right exist. For ¢ # [
x(t) is continuous so the total change Ax(¢) in
x(t) due to 8x(t) and 87 is continuous and

Ax(f) = Ax(f — 0)= Ax(t +0).
where

Ax(f —0)=8x(t —0)+x(f — Q) &F
and

AX(f+0)=8x(t+0)+ Mr+0)61.

It should be noted that this condition
imposes restrictions on 8x(f — 0) and 8x(f +



0). In particular, they are not necessarily the
same so 6x(f) on f° < ¢t < " need not
necessarily be continuous.

Before enforcing Eq. 6-56, put J in the
form

T i i L4 . :
J =N 8o (b, X))+ El 7,8, (0.t x))
a=
¢! n
+ Ao fo(t.x,u,b) + _21 WG]
i
IO

dx; r
X| oy~ fitxub) * I ALy (txub)

q
+ BE.“B(t)%(t’x’u’b)} dt

ey

t fad

(6-58)
where the argument of the pair of braces is
the same as that of the integrand of the first
integral. Note that £* and # are simply typical

elements of their respective classes.

For convenience in the development that
follows, define

. . r
G =Aogo (b, x7) +a2=1 Ye&s (b, ,xh)

H(tx,ub N y,m) = AT (Of(tx,u,b)

— xofo(t,x,u,b)

r
= 2 YLl (txub)
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q
= Z uy (¢, (t.x,ub)
B=1

(6-59)
so that Eq. 6-58 becomes

/
J=G+ I [AT(t)ﬁ - H:l dt
dr

IO

t7

tll'
+ I [KT(t)%—H ] dt (6-60)

M d
T x
+j [7\ (t)7t —H] dt.

t*

Eq. 6-56 may now be applied to yield

G G G
0=— Ax° + +— Axn+— §s0¢ ...
ax® x axn °F a0 5t

oG G
t— &M +—5p
oM aob
a déx
H
+ AT (n 20X of
jo [ ()dt 3 &x
t
oH oH
——bu ——38b | dt
ou ab
t'k
dbéx oH
J[ ) o %
N
oH
——06u —— 6b | dt
ou
M
déx oH
+ ATy — _ 2
jt*[ ()dt 3 bx
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-0
v l:)\T(t) dx(t) _ H(t)] BT
dt td+0

dx(t +0)
_ T (40 -~
l:)\ @ +0) 2

_H(°+0,x, u, b)16t°

t¥*—-0
+ [)\T (f)dx_(t)——H(f):l YA
dt t¥+0
[ dx(:" _ 0)
+ A" - 0)——
dt

_H —0,%, u, b)l&t".

Integrating the first terms in each integrand
by parts yields

G ., 3G 3G
S A0+ T AXT e 510
0 x° Ax ax" ar’
G oG
+  +—5+ —
atn ab 0b

¢ r
dr () Ol
B [,ﬂ ]: dr 5x +$ 5x

of o
+—08u+——258b | dt
du ab

t* i
- 4‘ ( 1 dr — “' [ ] dt
tj e

AT —0) AT (¢ +0)] Ax/
—[H( —0)—H( +0)] 8¢/

AT (12— 0) = AT (1% +0)] Ax (%)
— [H@*+0)—H@* +0)] 6r*
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AT ;7 _0)Ax" _ H(t" —0) 820

AT +0)Ax® +H(® +0)8¢°.

Since the variables Ax*, 8¢/, 8b, 8x(¢), ana
8u(t) are arbitrary, (Ax? are taken as arbitrary
along with 8¢ so that &x' = Ax! — X6+ is
fixed) Lemma 6-1 applies. Application of this
Lemma yields

Theorem 6-5: If (x(t), u(t), b, t, x') isa
solution of the Bolza problem of Def. 6-2,
then there exist multipliers A > 0, A(2), i =
Lo.ny,a=1,..r pﬁ(t), g=1,.. g, not
all zero, satisfying the conditions:

dh aHT .
- T T fort# ¢ -
gt I or (6-61)
aLo fort = ti 6-62
e O for i (6-62)
n
%6 a—Hdz—o 6-63
ab o 0b (6-63)
~T 3
3T A =0
ax°
[ ]
aGT o
e +A(f")=0 (6-64)
T [ ]
G . .
— A = 0) A +0)=0
ox’
. )
G
— +H(@+0)=0
ar® ( )
ro_
o M —0)=0 L (6-65)
dG . :
— —H{ —0)+H({ +0)=0
ari
H(*—0)_H@e*to)y=0 (6-66)



AE* —0)—NE*+0)=0 (6-67)

Note that the necessary conditions, Eqs.

6-601 through 6-67, are linecar and homoge-
neous in the multipliers Ao, \,(7), v, #,(£). Tt
is, therefore, permissible to choose the magni-
tude of one multiplier so that the remaining
multipliers will be uniquely determined. It
seems reasonable that if the necessary condi-
tions obtained by setting 8/ = 0 are to be
related to minimization of J, then Ay should
not be zero. This is indeed the case and if A
is required to be zero by the necessary
conditions, then the Bolza problem is “abnor-
mal” in a sense. Most meaningful problems
arc normal as defined in Refs. 7, 8, and 9 and
require Ay # 0. In solving problems using the
necessary conditions of Theorem 6-5, one
should first verify that Eqs. 6-61 through 6-67
have no solution if A, = 0. It is then
permissible to put Ay = 1 so that the
remaining multipliers are uniquely deter-
mined.

Even though Eqs. 6-61 through 6-67 are
very complicated, it is interesting to note that
they provide just the right number of equa-
tions to solve for all the unknowns. Eqs. 6-51
along with Eq. 6-61 form a system of 2n
first-order differential equations for x(¢) and
A(?). Further, the first and last members of
Eq. 6-64 may be considered as 2n equations
inboundary conditions onA and x. This is the
proper number of boundary conditions. The
second equation of Eqs. 6-64 provides any
jump conditions in A(#) at the intermediate
points #, 0 < j < n. Egs. 6-65 may be
interpreted as determining ¢/, j = 0, 1, .., 1,
and Eq. 6-66 determines *. Eq. 6-67 simply
states that A is continuous even at jump
discontinuitics in u. Finally, Eq. 6-63 deter-
mines the design parameter 5.

It should be clear that this argument only
shows that there are the proper number of
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equations to determine the unknowns. It does
not assert that a solution of Eqs. 6-61 through
6-67 exists. Existence theory for these prob-
lems is a difficult question that is treated in
Refs. 10and 11.

The conditions of Theorem 6-5 are very
nearly the famous Pontryagin Maximum Prin-
ciple (Ref. 12). The condition that completes
the Maximum Principle is an inequality which
follows from the Weierstrass condition of the
calculus of variations. This condition is given
as Theorem 6-6.

Theorem 6-6. In addition to the condi-
tions of Theorem 6-5, the solution of the
Bolza problem must satisfy the condition:

H[tx(£),U b,7\(1),7,0]
< H[t, x(),u(t),b,\(1),v,0] (6-68)
for all admissible ¢ and all ¢, t° < ¢ < (7.

For proof of this theorem see Refs. 8 and
13.

Another useful result is the following iden-
tity:
dH 3H

SE - fort# . i
dt at ot (6-69)

This condition is useful in case // does not
depend explicitly on ¢. Then H is constant
between the points #/, and at these points it
may have discontinuities govermned by the
third equation in Eq. 6-65.

To prove this relation holds, compute
formally

dH _OH 0H du 9H dx oH dh
dt at du dt ax dt ah dt’
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Smce:j:=f,a=0,5;=— 7
dai_fT this i
and == =7, this is
dH _3H ol r d\ _oH
el R it id
dt ot dt dr at

as required.

6-3.4 APPLICATION OF THE BOLZA
PROBLFM

In order to obtain familiarity with the
Bolza problem, several examples will be con-
sidered. In order to illustrate the basic ideas
associated with the Bolza problems, these
examples will be elementary. In real-world
problems the engineer should be prepared for
complexity that will probably force him to
use a numerical method of solution. For
examples of the Bolza problem in the field of
acrodynamics, a field which contributed
greatly to optimal design theory, see Refs.
15,16, and 17.

Example 6-6. Maximum Range Rocket-
assisted Projectile

A projectile of mass m is acted on by a
fixed force I as shown in Fig. 6-8. The angle
of 6(¢) is measured from the x-axis, where the

Figure 6-8. Particle in Motion
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x- and y-axes are fixed in inertial space. In the
problem discussed here, 8(¢) is to be chosen
so as to direct the motion of the particle.
Hence 6() is the control variable.

Denoting horizontal and vertical compo-
nents of velocity of the projectile by u and v,
respectively, the motion of the projectile is
governed by the equations

xX=u
y=v
u=— cos@ " (6-70)
. F .
v=—ysinf —g,
m
d
where =—
dt

The projectile is fired from a gun at time ¢
= 0 with x(0) = y(0) = 0 and initial velocity
w(0) = V cos 8y, »(0) = V sin 8, where V is
the muzzle velocity of the projectile. The
problem at hand is to choose &, and 8(¢) so
that at some future time 7, the projectile will
hit the earth as far as possible from the launch
point, i.e., »(7) = 0, x(T) = maximum.

In the notation of the Bolza problem, 6(¢)
is a design or control variable u(¢), 8, is a
design parameter b, T is terminal time /7, and
(x,y,u,v) is the state. The quantity to be
minimized is

T=go (b, x7y=—x(D.

Boundary conditions on the state variables are



& =x(0)=0

g =y(0)=0
g3 =u(0) — Vcos€, =0 (6-71)
g4 =v(0) — Vsindy, =0

g =y(1)=0.

As defined in Eq. 6-59,
G=_Aox{T) +7,x(0) +7,¥(0)

+y3 [4(0) =V cos 8,1 (6-72)
tys [V(0) — Vsin 4] +v5y(T)
F
H=xu +?\yv+7\u;cose
Fo
+A, ;smﬁfg, (6-73)

where variable named subscripts are used for
the A’s.

Theorem 6-5 yields as necessary conditions

. oH
)\ =_.——=
X 0x
- aH
A =—m—=0
¥ ay
b (6-74)
. 0H
i TR
. oH
V= —gp-= —Ky’
oH >\uF KVF
—_— == ——— Sin@ + —C0S [V] (6'75)
a8 m m
T
G oH .
— a—edt=0=73V51n60
98, J o "0
— 4 Vcose, (6-76)

G (0 3
ax(o)—')’l (0)
¢ =X, (0
ay(0) Y2 = y()
> (6-77)
oG v =) (0
3u(0) Y3 u()
oG (0
a1(0) Ya ,(0)
3G NN )
(T A1)
6,
oy s T 5 (T)
> (6-78)
i—o—)\
w07 (1)
3G _ 5o
w0 L, (1)
a—G—O—H T
ar 0= (T-0 (6-79)
and

A, cos® T}, sin® < N, cosd
+2, sin@ (6-80)
for all admissible ©.

Eqs. 6-74 yield

7\x=£1
Ay=$2
N, =& & ¢
>\|, =%, _E 1
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The last two equations of Eq. 6-78 imply &; =
&, T and &4 = £, T. If we assumc the problem
ismormal, A = 1502 (T) = 1=&; g0

A =1 )
Ay =¢2
. (6-81)
A =T
A=5HT -0

Substituting from Eqs. 6-77 and 6-81 into
Eqs. 6-75 and 6-76

Tsin8, —§&,7Tcos8, =0
and

—(T _t)sin8 +&, (T —1) cosd =0.

For all t # T, this is

—sin8 t&, cos@ =0.

These equations imply

£, =tan 8,
(6-82)
(1) =0,

Integrating the last two cquations in Eq.
6-70,
tF
u(®)=Vcos8y +—rcos b,
m
(6-83)

tF
v(1) = Vsin 8y +—sin 8, — g¢
7]

Integrating again,
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£*’F
x(8) =tV +—cos ¢, )
2m
_ . 1 2
y(®)=tVsing, —71‘ g > (6-84)
PF
+— sinf,.
2m

By use of these equations, the last equationin
Eq. 6-71 yields

1 TF
T(Vsin8, ——gT+—sinfy) =0.
2 2m

This implies
L T
ing, =20
) TR - (6-85)
V+—
2m

The one condition which has not bcen
used is Eq. 6-79. By substitution of Eqs. 6-81
and 6-83 into Eq. 6-73, Eq. 6-79 becomcs

(3
V+m-/ cosf, +§&, (;Vsin 8,

in 8 T)1=0
= i _ =
nvy — g .

By use of Eq. 6-82 this becomes

TF
<V+— > cos? By + <V +—71> sin? 8,
m m

—gTsin8, =0,
or
TF .
VT =gT sinfy. (6-86)

Combining Eqs. 6-85 and 6-86,

TF TF 1
V+— +—— ] == o2
( m> ( 2m) ;8T



or

2 2 3FV
<L__g_> T2 4——— T+V2=0Q
2m? 2 2 m

SO

1/2
3EV | oF*V? F? 2
——— — 4y (— -§->
2m 4m? om: 2
2m? 2 (6-87)

Substituting 7 from Eq. 6-87 into Eq. 6-85
then gives an casy cquation for .

While the results of this problem are not
particularly useful, the solution does illustrate
the use of the various conditions in Theorem
6-5 in gencrating a candidate sclution of the
problem. The reader, howcver, should not be
led to believe that all Bolza problems may be
solved in closed form as in this example,

In morc general problems the adjoint equa-
tions, Eq. 6-61, cannot be solved so easily in
closed form. Further, the equation 8H/du = 0
may not yicld so simple a condition as Eq.
6-75 for thc design variable. It is often of
valuec to kecp a procedure in mind for
determining the various unknowns as in this
problem, ¢ven though more realistic problems
may rcquirc numerical methods at each step
in the procedure.

Example 6-7: Minimum Fuel Orbit Trans-
fer

A rocket equipped with a constant thrust
engine is to transfer from a circular earth
orbit of radius ry to one of radius R > r,
using a minimum of fuel. The time allowed
for this transfer is 7. Further, it is possible to
shut the rocket down during one time interval
of the transfer if desired. The orbits are
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illustrated in Fig. 6-9 and the time scale is
shown in Fig. 6-10.

The times £, and ¢, may actually coincidc,
depending on the problem paramecters. These
times play the role of #/ in the Bolza problem.
The equations'of motion of the spaccceraft arc
taken as

~e
fl

<

7

TS f(0)F si
g Y 7% (tYF sin €
ror m

b (6-88)
. uv+lz(t)Fc050
P o b
r m

m=h(t) 4
where

[,0‘&{&!]
hit)= 0t <t<t

l,fzfaft: T

Center of
Earth

Figure 6-9. Orbit Transfer

Thrust On Thrust Off Thrust On

Figure 6-10. Thrust Program
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and the boundary conditions are and

2
H=2u+), [—V- ——#—2 +hgt}FsinQ1
141
r

r
m

r(0) =rg, u(0)=0

»(0) = (u/re) . m(0) = mo,

. (6-89) . [ v h(DFsin ¢
r(M=R, u(1)=0 v r m

1/2

v(T) = (u/R) / +A,, k(g
where The necessary conditions of Thecorem 6-5
are
r =radius . 2 3y uy
A=, <—72- +r—2>— )\v<—r—2-> ‘

u = radial velocity

. . v
v = tangential velocity A==t —

m = mass of spacecraft

2y
A, = -7\“<—r-> ny <i> + (6-90)
M = gravitation constant r
. h(HF si
F = thrust Ay =N, [U—zsm]
m
4 = 1l te during thrust
mass flow rate during S . [ () F cos ¢]
1 2
¢ = thrust orientation "
Since my, — m(f) is the amount of fucl 0=1, [M]
consumed up to time ¢, the objcct here is to m
minimize - ©-91)
, h(O)F cos ¢
Mow
J=my —m(T).
A, (D=-1 (6-92)
For use in Theorem 6-5, define A(t; —0)=\(ty +0)
(6-93)
G=mg — m(T)+y, [r(0) —ro] +7,u(0) A, —0)=2(t, 10)
1/2
+7a [v(O) — (u/ry) ] H(t;, —0)=H(t; +0)
(6-94)
+7v4 lm(0) —mg ] + ;5 [r(T) — R} H(t; - 0)=H(t, +0)
/2
+vsu(T) + 7, [V(T) — /R ] the ¢; are those shown in Fig. 6-10.
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The prospect of solving this set of equa-
tions in closed form is dim indeed. A general
procedure can be discussed, however, and the
actual solution can be obtained using numeri-
cal methods discussed in a later paragraph.

From Eq. 6-91, ¢(#) may be determined as

#(2) = Arctan < ;“ > (6-95)

v

for t not in¢; < t < t,, where ¢ need not be
defined. The result of Eq. 6-95 may be
substituted into Eqs. 6-88 and 6-90 so that
these equations become a set of cight first-
order differential equations for the state and
adjoint variables. Eqs. 6-89 and 6-92 form a
set of eight boundary conditions for these
variables. Eqs. 6-93 show that the adjoint
variable is continuous and Eqs. 6-94 deter-
mine f; and f;. A numerical procedure may
be used to solve this problem. The resulting
adjoint variables may then be substituted into
Eq. 6-95 to obtain the explicit design (or
control) variable. A problem of this kind is
discussed in Ref. 18. The method used there
to construct a solution is completely different
from the one proposed here.

6-4 PROBLEMS OF OPTIMAL DESIGN
AND CONTROL

The Bolza problem of par. 6-3 is of almost
the generality required for optimal design.
The principal shortcoming of that problem is
in the lack of generality in the constraints. It
has been noted in preceding chapters that
meaningful optimal design problems generally
involve inequality constraints. It is the pur-
pose of this paragraph to extend the Bolza
problem to account for inequality constraints.

The problem treated here is given in Defini-
tion 6-3.
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Definition 6-3 (Problem of Optimal De-
sign): The optimal design problem is a prob-
lem of finding u(¢), b, x(¢), t° < £ < ¢", which
minimize

J =g (b.t),x))

tl)

M
+ j fo lt,x(0),u(2),b]dt (6-96)

subject to the conditions
= txub),®<t< M tF  (6-97)
dt

M

g, (b, xIy+ j L, [6,x(r),u(t),bldt

tO

=0,a=1, ..+ (6-98)

M
g, (bt xTy+ J L, [t,x(6),u(t),bldr

tO

< O,a=r+1], . v (6-99)
$,(tx,ub)=0,6=1,..,q,
(6-100)
< tam
and
b, (tx,ub)<0,8=q"+1,..,4,
(6-101)

<t .

The variables and functions appearing here are
identical to those in Def. 6-2.

The inequalities in this problem are treated
here in the manner presented in Ref. 13. The
inequality constraints are first reduced to
equality constraints, and the results of par.
6-3 are applied. In order to perform this
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reduction, define the slack variables v, & = r
t 1., randwy(®), =4 +1,..49by

t‘fl
g, (b1, x)) + I L, [t x(@),u(®).bldt
IO

(6-102)

and

¢, (1.3, u,b) + wi (1) =0,
(6-103)
B=q'+1...q

The constraints, Eqs. 6-102 and 6-103, are
equivalent to Egs. 6-99 and 6-101, rcspce-
tively, where v, and w,(?) are interpreted as
design parameters and design variables. With
these equality constraints replacing thc in-
equality constraints, the optimal design prob-
lem becomes a Bolza problem. The necessary
conditions of par. 6-3, therefore, may be
applied to this modified problem.

The form of the constraints, Eq. 6-101, has
a great deal to do with the behavior of the
problem. If some function ¢, depends only
on t, x, and b then the problem is compli-
cated in intervals in which ¢, = 0. This kind
of constraint will be referred to as a state
variable inequality constraint and will be
treated separately. If ¢, does depend cxplicit-
ly on u, then the constraint is referred to asa
design variable inequality constraint. This
problem will now be investigated.

6-4.1 DESIGN VARIABLE INEQUALITY
CONSTRAINTS

In order to apply Theorem 6-5 to the
problem of Egs. 6-96, 6-97, 6-98, 6-100,
6-102, and 6-103, the independence of condi-
tions expressed by Eqgs. 6-100and 6-103 must
be verified; ie., the matrix, Eq. 6-55, is
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required to have rank ¢. For this purpose, the
design vector must bc considered as @,
wh)T | where wl = (Wq'+1’ oy Wo)-

The matrix, Eq. 6-55, becomes

3 9y
ou, > ou, » 0 0
09 . 3¢ .
-2 == .0,.,0
au1 aum
(6-104)
y s , 2w g e !
du, u,, a
) 3¢
.. 2 0,..2w
ou, du,, 4

This matrix is requircd to have rank 4. In
order for this to be possible the number of
columns, m +4 — q', must be greater than or
equal to thc numbcr of rows, 4, or m —4° >
0. Further, it is obvious that thc first ¢’ rows
must be linearly indepcndcnt, or the entire
matrix could not possibly have rank 4. Next
note that if w, # 0, then the ath row must be
linearly independent of all the other rows
since it has thc only nonzero element in the m
*+ a — g'th column. Thcrefore, linear inde-
pendence of the rows from 4° + 1 to 4 need
only be considcred for those & with w, = 0.
By Eq. 6-103, this is thc samcas ¢, = 0.

The conclusion 1is, then, that the matrix,
Eq. 6-104, will have rank 4 if and only if the
matrix

2] -
Ak

(6-105)



is of full row rank. This simply says the
gradients of all constraint functions (which
are equalities) with respect to the design
variable must be linearly independent. Assum-
ing this is the case, Theorem 6-5 may be
applied.

Define
¥
G =2Aogo + >:1 Yo 8 (6-106)
as
¥
G'= % 2 (6-107)

r a

r T
H=Nf Nofo = 2 7Ly — 2 b,

(6-108)

(6-109)

The quantities H=H +H and G=G + G’
take the place of H and G in Theorem 6-5.
Necessary conditions for the optimal design
problem are, therefore,

T
ar_ (6-110)
dt Ix
9y 6-111
o (6-111)
o, 6-112
D (6-112)
tTl
0¢ LR 6-113
o ), o (©-11)
tn
L LA 6-114
av aV - (- )
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and the conditions, Eqs. 6-110 through 6-113,
are unchanged. Further, Theorem 6-6 yields

HIt.x(1),U,b,\(2),7,0,5,w]

< Hltx(0)u(),b,A(),0,p,w]  (6-115)
for all admissible U.

The condition, Eq. 6-112, in scalar form is

—2u,w,=0,8=¢"+1,..q. (6-116)

If wy = 0, then by Eq. 6-103 ¢ =0. IfwB
#0, $p< 0 and Mg = 0. Therefore, Eq. 6-116
is equivalent to

Mg (1)8,(t,x,u,6) =0, B =q'+1,..,q.
(6-117)

Condition, Eq. 6-114, is
M

2y,v, t g 2vy,v, dt =0,

tO

a=r"+1, .r
or

2y, v, (1 +17 1% =0, a=r"+1,.,r.
Since 1 +7 _¢° #0,

YV, =0, a=rt 1, r. (6-118)

Ifv, =0, then by Eq. 6-102, the constraint,
Eq. 6-99, is an equality. If v, # 0, then the
constraint, Eq. 6-99, is a strict inequality and
v, = 0. Therefore, Eq. 6-118 is equivalent to

6-29



AMCP 706-192
Ve | 8,01 .x7)

+ L, lex(®)u(t)b] dt } =0,
tﬁ
a=r+1,..r. (6-119)
The conditions, Eqs. 6-116 and 6-118,
imply H' = 0 and G' = 0 so that H=H and G
= (5. The necessary condition, Eq. 6-115, is,
therefore, just

H [£,x(t),U,b\(£),7,0]

< H [£,x(¢)u(8),b,N2),7,0] (6-120)
for all admissible . Tt is further shown (Refs.
5,10,12) that Ay = 0,7, > 0, 2=r" * 1, .,
r, and u,(1) > 0, B = 4' t1, ., 4, ° <
< "

The conditions obtained through applica-
tion of Theorem 6-5 to the optimal design
problem may now be stated as Theorem 6-7.

Theorem 6-7: If [x(2), u(r), b, t!, x'1 is a
solution of the optimal design problem of
Def. 6-3 and if the matrix, Eq. 6-105, has full
row rank, then there exist multipliers Aq > 0,
)\l.(t), i= 1., my,,2=1 ry,>0,a=
rt L w0, p= Lo, du (0> 0,p=4 +
1, ... 4, not all zero, and functions G and H
of Eqgs. 6-106 and 6-108 such that

PRTTY

dh aHT .

—z_—— ., fort#/¢ (6-121)

dt ax

oH ‘

—=0, fort #¢ 6-122

P or ( )
m

oG oH

_— - — dt=0 6-123

b [r" 0b ( )
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and

aGT )
— N =0
Py (%)

T
Py +A(M) =0 b (6-124)
oGT . .
—+tN—0)- N F0)=0
ox/
B6-+H(t° +0)=0 )
ar°
3G
— _H(@" —0)=0 .
" ( ) L (6-125)
¥ —H(t/ —0)TH(E +0)=0
ar
H(t* —0)—H@*+0)=0 (6-126)
Ai* —0)_\t*+0)=0 (6-127)
Hy (D, (Exub)=0, B=1,..,q  (6-128)
Yo { g, (bt x7)

M
+ j L lex(Du(n),b) dt ¢ =0
,o

a=1,.,r (6-129)
dH oH
SN, L J _
it ot Jfort+#¢ (6-130)
H [t,x(6),U,b\£),7,0]

< H [, x(6),u(),b,\(t),7,0] (6-131)

for all admissible U/.



It should be noted that, just as in Theorem
6-5, the number of conditions here is just
equal to the number of unknowns, so one
might be led to belicve that a solution may be
found. Existence of a solution is, however, a
very difficult question that is treated in Refs.
10and 11.

6-4.2 STATE VARIABLE INEQUALITY
CONSTRAINTS

In many meaningful design problems con-
straints may involve restrictions only on the
state variable. This is the case when some ¢B
of Eq. 6-101 depends only on ¢, x, and b. To
study this problem, just one such constraint
needs to be considered, i.e.,

¢,(t.x.0) < 0, <t (6-132)

Let t~ < f< 5, t~ < ¢*,be an interval in
which ¢, of Eq. 6-132 is an equality. It is
clear that 6¢ﬂ/au = 0, so the matrix, Eq.
6-105, has a zero row in this interval and
hence cannot be of full row rank. Theorem
6-7 cannot be applied directly, so further
analysis is required.

In the interval =~ < ¢ < ¥, ¢y = 0 50 it is
necessary that

8<1>[f dx

ox dt’

From Eq. 6-97, dx/dt may be replaced by f
and this relation becomes

dp,  89,11,x(0)b)
0= at

3¢ [£,x(1),b]

+ ————— flt,x(D)u(r).b] .
0x

If the right side of this equation depends ex-

AMCP 706-192

plicitly on u(¢), then this equation is of the
form required in the problem treated in par.
6-4.1. If not, then differentiating through this
equation with respect to ¢ and using the chain
rule of differentiation

2 2 2
0=d¢B=a¢B +2a¢‘Bf
dr? at? (tax

"0 . Mo s
dx? ax dt’

+ /7 (6-133)

where all the arguments are omitted. If the
right side of Eq. 6-133 depends explicitly on
u(¢) then this equation is of the form treated
in par. 6-4.1.

This process continues until

-
0 'A) [4x(4),b] (6-134)
dr'®

involves u(¢) explicitly in its right side and
u(t) can be determined as a function of x(¢)
and b, as in par. 6-4.1. The integer », 3 1
is defined to be the first integer for which this
is true. The constraint, Eq. 6-132, is then
called a v;th order state variable inequality
constraint.

From the theory of ordinary differential
equations (Ref. 14), Eq. 6-134 throughout
i~ < t<tand

%[t“,x(t*),b] =0 (6-135)
d'¢5 B )
— W x(e)b) =0,i=1,.., Vo 1
dr?
(6-136)

are equivalent to ¢, = 0 throughout /=~ <
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t < . This, of course, requires that q&l3
have v, piecewise continuous derivatives,
and f have »;_; piecewise continuous
derivatives in ¢~ < ¢ < t*. The point
¢t~ plays the role of a ¢/ in the problem

stated carlier in this paragraph.

It will be assumed that when the right side
of Eq. 6-134 is used in place of ¢; in
computing the matrix, Eq. 6-105, this matrix
has full row rank. In this case Theorem 6-7
may be employed. To utilize this theorem,
define

(6-137)

where v, = 0 1f ¢ involves u explicitly,

r
G=Xogo+ I A8, (6-138)

-1 d! s _
. T s [£,x(£),b);(6-139)
oar

where this sum on § is extended only over the
indices associated with state variable in-

equality constraints, 7; , are multipliers, and

r
H=XTf - Nofo — zl v, L,
e

(6-140)
q

- Z N7
521 Ms%%s

With G = G +G and H replacing G and A in
Theoiem 6-7, a set of necessary conditions for
this problem are obtained. They are easily
computed and are given here as Theorem 6-8.
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Theorem 6-8: If [x(£), u($), b, ¥, x'} isa
solution of the optimal design problem with
state variable inequality constraints, then
there exist multipliers Ag > 0, A(#), 7= 1,..,
noY, =1 .,y > 0a=r+1 .1
(0, 8=1,-.9 uﬁ(z‘)> 0,8=q'+1, .., 4, and
T i=1,.., Vg and § associated with a state
variable constraint and ¢ﬁ =0t <<t

dx AT )

- J o= ot -

T m Jore#4d, 7, ¢ (6-141)

5 2o, fore# 4t e, 1t (6-142)

26,96 [T, s

ab b 3b (6-143)
to

aGT )

ﬁ —7\(10)=0

aGT

" +A(") =0

aGT ) )

ax_j +)\([I —0)—)\(1" +0)=0 L(6_144)

3G

— A —0)=N(1t" +0)=0

a -

AT —0) Nt +0)=0

G .

F‘FH(ZO +0)=0

o6 —H(" —0)=0

ar"

YRR .

at—j—H(ﬂ —_0)YAEY0)=0 M6-145)

3G 3 .

t_ —H(l_ —0)+H(t7 +0)=0

Hi —0)+ At t0)=0




Hir* —0)—He*+0)=0 (6-146)
Nt* —0) =Nt*+0)=0 (6-147)
By (D9, (txub) =0, B=1,..q (6148)

Y, [ g, (bt x)

t’l
+J L, [t,x(6),u(2),b] dt } =0,
to
a=1..r (6-149)
dH  2H

=—fori#F¢t .,V

6-150
dt at ( )

and
HUtx(6),U,b,\¢),7,01

< }}[t,x(t),u(t),b,)\(t),y,O] (6-151)

for all admissible U.

The full set of necessary conditions em-
bodied in this theorem is awesome from a
computational point of view. The differential
equations for x and A are subject to multi-
point boundary conditions that involve a set
of undetermined multipliers. In a gross sense,
Eqs. 6-147 may be viewed as determining
intermediate points in * < ¢ < ™ and the
associated boundary conditions on x(f) and
A(2).

Use of the theorem is further complicated
by the fact that the design variable may be
determined as the solution of Eq. 6-142
which satisfies Eq. 6-15 1. This means that u
will be determined as a function of x, 4 and
all the multipliers. The expression for » will
generally take different forms in different
subintervals of ° < ¢ < " and the spacing of
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these subintervals is not known before the
solution is computed. The generality of the
problem makes it difficult to discuss all its
intracies without resorting to special cases and
examples.

6-4.3 APPLICATION OF THE THEORY OF
OPTIMAL DESIGN

In order to develop some familiarity with
the methods of the preceding subparagraphs,
several examples will be treated here. These
problems will be idealizations of real-world
problems but will illustrate the basic ideas
which carry over into more complicated
problems.

Example 6-8: Time-optimal Steering of a
Ground Vehicle(Ref. 19)

To illustrate the concepts presented in par.
6-4.2, an optimal vehicle steering problem will
be solved. This problem is chosen because of
its clarity of formulation and solution. A
ground vehicle (a tractor in this case) isto be
steered so that it begins at a given point and is
steered so that it reaches a given straight line
path in the shortest possible time. The vehicle
and the line it is to reach are shown in Fig.
6-11.

Point 4, midway between the rear wheels,
is located by the coordinates x; (¢) and x, (z).

[

v 4G

Lk

Figure 6-11. Ground Vehicle
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Orientation of the vehicle is specified by a
third variable x;(¢). Steering of the vehicle is
accomplished by choosing the angle 6(¢).
From physical grounds it is clear that the
state of the wvehicle is described by x(¢) =
[x(£),x2(£),x3(H17 and the vehicle is con-
trolled through choice of 8(¢).

It is assumed that the rear axle of the
vehicle moves with a constant velocity V. In
this case, motion of the vehicle is governed by
the differential equation

x; =V cosx;

Xy = Vsin x4 (6-152)

.i‘a =atanC

where a = V/L. At the initial time ¢ = 0, x (0)
= x7, x2(0) = x3, and x3(0) = x3. The
terminal time 7 is not determined but it is
required that x,(7) = x; and x3(7) = 0 since
the vehicle must be tangent to the target line
attime T.

The steering angle is limited by

—0,<06<¢ (6-153)
and as an idealization it is assumed that any
steering angle in — 0, < 8 < 0, may be
chosen instantaneously. For a reasonable
problem it is clear that 8, < /2. Further, for
definiteness, assume [x3] < 7/2 and x} > x9.
All other initial conditions can be obtained
from these by reflection in Fig. 6-11.

The problem is now in the form described
in par. 6-3. For use in Theorem 6-7,

G =neT +7, [x,(0) —x91

+2 [x2(0) — x31 + 3 [x3(0) — x9]
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+7a [xz(T)—‘X;] +7s x3 (1)
H=X\;Vcosx; +A, Vsin x3 +Aza tan8
1 (0 —00) — 2 (B0 — 0).

The conditions of Theorem 6-7 are

. oH
A=—— =0
! dx,
oH
A2 =_ —_— =
0x,
(6-154)
: oH .
A, =la—xs =A; Vsin x;
— Ay Vcosx,
oH
—=0=2Azasec’C —puy iU, (6-155)
a0
N (T)=0 (6-156)

Ao =AM (D) V cosx3(T)+ Xy (7)) Vsin x3(T)

+A3(Natan 6(T) (6-157)
B (0 —0y)=0
(6-158)
By (8p —6)=0
and
dH oH _ 0
il (6-159)

The first two equations in Eq. 6-154 yield
A () =&
A (1)=&,

and Eq. 6-156 implies ¢, = 0. The last
equation in Eq. 6-154 is then



);3 =_§&, Vcosxs.

Using the first equation in Eq. 6-152 to
replace V' cos x3, this is

):3 =& 3“?1 .
Therefore,

AN ()= —Eyx, () tE;. (6-160)
The behavior of 6(f) may be isolated to
two different cases. The first is {8(#)| = 8,.
The second is (8(f)| < 84, in which case Eq.
6-158 implies u((f) = p,(f) = 0. Eq. 6-155
then shows that A;(f) = 0. By Eq. 6-160 then
x;(#) is either a constant or £, = £5 = 0. This
and Eq. 6-157 then implies Ao = 0 so0 all 1, are
zero. This is forbidden by Theorem 6-7, so
x1(t) is a constant when [6(¢) | < 84. But if
x,(8) is constant ¥,(r) = O and the first
equation in Eq. 6-152 implies x3(#) = 0. The
last equation in Eq. 6-152 implies ¢(#) = 0.

It is clear then that if [8(#)| < 84 for some
interval of time, the path of the vehicle must
be a straight line parallel to the x,-axis in Fig.
6-11.

Since the last two terms in H are zero, the
only explicit dependence of H on & is through
the term A3(#)a tan 0(s). The inequality, Eq.
6-13 1, states that 6(s) must maximize H. It is
clear then that if A3(#) # 0, then

8(r)=04 sgn [A5(D], (6-161)
where
ng -4
7

Further, it is clear that &(¢) = 0 is possible
only when A;(7) = 0.
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Since x§ < 7/2, for £ small, either 6(¢) =8,
or ¢(fr) = — 8,. From Fig. 6-11, it is
reasonably clear that 6(¢) = 0, and Eq. 6-152
can be integrated to obtain

x1(0) =x9 +R [sin(x} +bt) )

— sinx3]
x,(0) =xg ~R [cos (x3 +br)

(6-162)

0
— CoS x4]

x3(t)=xg +artan 8, ]
where
b =atan 8,

R =V/b.

This path isjust a circular arc with center at

x? — R sin x3, x3 + R cos x3) and
counterclockwise motion.

Similarly, if 6(¢) should become — 8, at
some time £* where x;(¢*) = x§, x,(r*) = x5,

and x3(r*) = x¥ then the path is described by

xy ()= x¥ — R [sin (x¥ — br) )

—sinx}]

x3(£)=xF +Rcos (x5 —br) §  (6-163)
— cos x3]

x3(0)=x¥ —artan8,. J

This path is a circular arc with center at (x§ +
R sin x§, x¥ — R cos x}) and clockwise
motion. Since this circular arc must be tan-
gent to the line x, = x;, the x,-coordinate of
the center must be x, — R =x¥ — R cos x%.
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Note that by Eq. 6-152, x3{(¢) must bc
continuous, so ¥, and X, arc continuous.
Therefore, the tangent to the path of point A
in the (x,,x, }-plane is

de )22
— == =tanx,
dxl X

and this slope is continuous. This means that
segments of the optimal path where 6 = —8,,
0, or 6, must be tangent where they intersect.
With this information, thc solution of the
problem may be constructcd geometrically.

In Fig. 6-12 the initial arc, which is
described by Eq. 6-162, is shown lcaving
(x7,x3). A whole family of second arcs is
shown corresponding to diffcrent values of
XL,

Figure 6-12 Extremal Arcs

From the construction of Fig. 6-12 it is
clear that the point of tangency of the two
circles (xF, xJ) is at thc middle of the linc
joining their centers, i.e.,

*
X

1
= (v : [ * : *
2(xl — R sin x5 +x§ +R sinx})
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1 0 0
x5 =3(X2 +R cosx; +x3 —R cosx).

Further, the relation noted just below Eq.
6-163 is

x; —R =x} _R cos x3.
Thesc cquations yield

1
x¥=x} — Rsinx} +[R2 'Z(x; —R
0 042 1/2
—x; —R cosxy)
1
x::.z(xg +x; +R cos x5 — R).

It may bc noted by examining the family
of paths in Fig. 6-12 that if x; > s=R +xJ +
R cos x3, then the first arc has been followed
beyond a time 7 where x3(f) = 7/2. At the
point x;(f) = x{ —R sinx} +R, x,(r)=xJ +
R cos x§ it would have been possible to
construct a vertical portion of the optimal
path. This construction is shown in Fig. 6-13.

The extremal paths constructed for x} > s
satisfy all the conditions of the theorem so

[x, ©,x, @)

0,0
Geyoxy)

Figure 6- 13. Extremal Arcs With Straight
Section



that they may be optimum. It is clear that for
x3 < s there is only one possible solution of
the problem. Forx) > s this is not the case as
shown for x; = %;. Both the extremals
leading to the path x, = X} satisfy the
necessary conditions of the theorem. It is,
geometrically, relatively clear that these are
the only two possibilities so the one with the
shortest time required to get to x, =X is to
be chosen. The test, Eq. 6-151, may eliminate
one candidate. It seems clear that when the
extremal with straight line exists, it is best.

It should be noted that if x; > s ¥ 2R, it is
impossible to intersect x, = x} with only two
circular arcs so the extremal with a straight
section is required.

This problem illustrates many of the basic
ideas and complexities involved in optimal
design and optimal control theory. Some of
the features are worth noting because they
will arise later:

1. Pieced extremals. The conditions of
Theorem 6-7 give a set of curves or solutions
that must be pieced together to form the
optimal path in state space. In the vehicle
steering problem, these curves or arcs are put
together geometrically. In more complex
problems, this will have to be done analyti-
cally using the conditions of Theorem 6-7.

2. Multiple solutions. As seen in the fore-
going problem, more than one candidate
solution may be constructed. Condition, Eq.
6-13 1, must then be used to choose the best
of these candidates.

3. Singular arcs. It occasionally happens, as
in the vehicle steering problem, that there will
exist a set of values of the state variables and
multipliers such that the function / does not
depend explicitly on the design variable. In
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this case, Eq. 6-122 provides no information.
It is then required that the inequality, Eq.
6-131, must be used to determine the design
variable. For a complete treatment of this

subject, see Ref. 20.

The problem treated in this paragraph is
not as complicated as most optimal design
problems occuring in the real-world. It does,
however, illustrate some of the features and
difficulty encountered in most realistic
optimal design problems. This problem should
convince the reader that the solution of
optimal design problems is not simply a
matter of plugging numbers into formulas.
Even though analytical methods will be
stressed in subsequent work, the effective
solution of this class of problems requires a
sound understanding of the theory of optimal
design.

Example 6-9: A Constrained Brachisto-
chrone Problem.

The problem considered here is similar to
Example 6-4 but with a constraint added. It is
required to find the path through (0,0) which
lies above the line x, = 2 tx, tan « in the
(x;.x,)-plane and that carries a particle,
without friction, to the vertical line x; = x}
in the shortest possible time. The problem is
shown in Fig. 6-14.

This problem will be treated as an optimal
design problem. On the assumption that there

are no discontunities in the velocity vector,
conservation of energy yields

1 2
—mv* = mgx
) 2

or

v =(2gx, )1/2.

6-37



AMCP 706-192

x,=h+x_tana
X, i

Figure 6-14. Bounded Brachistochrone

The equations of motion of the particle are
then

X, =(2gxz)l/2 cos u
i vz (6-164)
X, =(28x,)  sinu

where u is the angle between the x ,-axis and
the tangent to the path on which the particle
is to travel. This angle u specifies the curve, so
it is the design variable. The location of the
particle is specified by the point (x;,x,) so
this is the state variable. The boundary
conditions are

x1{0)=x,(0)=0
(6-165)
xl(ﬂ =x;.

The object is then to find u(z), x (¢}, and
x,(#) such that a particle starting at rest at
(0,0) reaches x(I) = x: in minimuom time 7.
The path is required to satisfy the constraint

¢=x, —x,tana —h < 0. (6-166)

Since the constraint of Eq. 6-166 does not
involve the design variable v explicitly, the
problem contains a state variable inequality

constraint. Computing ¢ and substituting
from Eq. 6-164 yields
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» 1/2 1/2
¢=(2gx,) sinu—(2gx,) tanacosp
=0 (6-167)
which does contain u explicitly. The con-

straint, Eq. 6-166, is, therefore, a first-order
state variable inequality constraint.

In order to employ Theorem 6-8, define
multipliers —;, 77, A; — such that

G=T+7,x,(0) + v, x,(0)
+93 [x () — x}]

G =77(x; —x] tana — h)

- 1/2

H=X,(28x,) cosu > (6-168)

+)\2(2gx2)1/2 sin u

— ni2gxy)'”?

x{(cos u — tan o sin u).

Necessary conditions from Theorem 6-8 are

A =0

)'\2 =~g(2gx2)1/2 [A; cosu
L (6-169)
+X, sinuw — pu(cos u

—tanasinu)]
1/2 .
(2gx3) [—2A; sinu A, cosu
+u(sinu Ytanacosu)) =0 (6-170)

A (T)=0 (6-171)



7" tanatA, (¢ —0)
Y
—)\1 (t—+0)=0
(6-172)
TN —0)
A
_N(1-+0)=0 J
1-H(T-0)=0 (6-173)
~H(@™ —0)*HG +0)=0, (6-174)
and
dA 0 (6-175)
dt )

Ideally, the solution for w(f) might proceed
by solving Eq. 6-170 for » as a function of A
and p. This result could then be substituted
into Eqs. 6-164, 6-167, and 6-169. The
variables A, x, and ¢ could then be determined
and the results substituted back into the
previously derived equation for u. This would
be the desired solution. It is clear that these
steps would be extremely messy so a huristic
argument will be used here to suggest a
solution. This solution can then be checked in
the conditions Eqs. 6-169 through 6-175.

It might be expected that when ¢ # 0, then
the curve is a cycloid as in Example 6-5.
Whenever ¢ = 0 it is clear that ¥ = a. This is,
in fact, the case and as presented in Ref. 21
the solution is a cycloid for

h 2 s
xp=m |1 - -E—a tan «

i.e., the optimum path does not touch the
constraint surface.

For

h 2 1 z « ] tan«
= = I DL
xl T 2 an
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the optimum curve is given by

T ,  O<t<t™
- Wy, < <
2 1

u(t) = a, t-<t<tt
w, (T—1), tH<t=<T

where
- g(Ol—‘lT/Z‘l'cota)ll/2
w, = 2h cot a

_ [g(a * cot a) 1'/2
wy = | F—/—/———

2(x} +h cota)

_ T2 -«

W)
t+ = T—a/(20)2)

and

2 1/2
T= l:;(x} +h cot @) (a * cot a)]

2h T /2
—[——- cot (a——+ cot a)] :
g 2

Fig. 6-15 shows solutions for tan a = 1/2
and several values of h.

The reader may very well get the impres-
sion from these examples that analytical
solutions of general optimal design problems
are extremely difficult to obtain. This is
indeed the case. Therefore, either numerical
methods must be used to solve the equations
given as necessary conditions in the theorems,
or some direct computational method must
be used to solve the optimal design problem.
Some numerical methods of solving the neces-
sary conditions are presented in the next
paragraph. Several optimal structural design
problems are solved in Chapter 7 to illustrate
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0 1
01
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03 B
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N

Figure 6-15. Bounded Brachistochrone
Solution

these methods. Direct methods of solving
optimal design problems are presented in later
chapters.

6-5 METHODS OF SATISFYING NECES-
SARY CONDITIONS

The previous three paragraphs of this chap
ter have been devoted to obtaining necessary
conditions for optimization problems of vary-
ing degrees of difficulty. It has been observed
that these necessary conditions generally
reduce to some sort of boundary-value prob-
lem, usually nonlinecar. The object of this
paragraph is to explore ways in which the
boundary-value problem may be solved. This
topic has received considerable treatment in
the recent literature, so it will be treated only
briefly here.

Two different methods will be discussed
here and will be applied to optimal structural
design problems in the next chapter. The first
method is based on a reduction of the
boundary-value problem to a sequence of
initial-value problems whose solutions con-
verge to the solution of the original problem.
The second method reduces a mnonlinear
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boundary-value problem to a sequence of
linear boundary-value problems whose solu-
tions converge to the solution of the non-
linear problem.

6-6.1 INITIAL VALUE METHODS (OR
SHOOTING TECHNIQUES)

In order to develop the main ideas without
getting bogged down in notation, consider the
problem of finding ¥(t) = ¥, (1), ¥, (D17,
that satisfies

-dy.= P<trar -
dy-=£(1,9), 1 < t 4 (6-176)
and
¥, (%) = y? ,for some i
(6-177)

y; ) = y]’. ,for some j

where the total number of conditions in Eq.
6-177 is n. In order to further simplify
notation, assume the components of ¥(¢) have
been numbered so that the first equation in
Eq. 6-177 holds fori= 1,..., k < n.

Since initial-value problems are so efficient-
ly integrated forward in time, the missing
conditions on y at #° may be estimated as

yl.(t°)=£l.,i=k+1,...,n (6-178)
and Eq. 6-176 integrated from ¢° to ' using
the full set of initial conditions from the first
equation at Eq. 6-177 and Eq. 6-178. The
value of y,(t!) obtained from this integration
will probably not satisfy the second equation
in Eq. 6-177, i.e.,

SAGRIESINEDS T N (6-179)

where ¢ = (¢, ,, ... £,)7 and the notation of



Eq. 6-179 is introduced to illustrate the
dependence of the final values of y on &.

It is clear that a solution of the problem
can be obtained if £ can be found so that Eqs.
6-179 are equalities. To simplify notation,
define the column vectors

yatp = [y}.(t’ ;)] for those/ in Eq. 6-177
and
pl = [y]’] for the same j.
The conditions which are to determine £ are
e =y (6-180)

Any numerical method of solving algebraic
equations may be used to solve Eq. 6-189. If a
scheme like Newton's Method or a Gradient
Method is to be used, it must be possible to
compute

%Jé (1':£%) (6-181)

where £° is an estimate of the solution of Eq.
6-180. These partial derivatives may be ob-
tained or approximated in a number of ways.

The first method of determining the deriva-
tives in Eq. 6-181 is to observe that y(z) =
y(t:£%) and further, that the dependence on §
is very regular (Ref. 14) so that dy(#;£%)/0¢
exists. Differentiating formally with respect
to £ in Eq. 6-176,

d [0 of 9
ol (_y> = _f e (6-182)
dr \ 3% dy 0f
and
o2v
0)=10, .., 0,.... 1,0...01,

9§ ©=1 Y

i=k+1,..n. (6-183)
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The initial value problems, Eqs. 6-182 and
6-183, fori =k t+ 1,.., n may be integrated
from ¢° to #' to obtain the derivatives
required in Eq. 6-181.

Once these derivatives ha\'le been deter-
mined, the new estimate in Newton's
Method is given by

;)]
Bl=g [—y;z—“] et ) — 711

(6-184)

The process is repeated with §' playing the
role previously occupied by £°.

This method of finding the partial deriva-
tives is direct in nature but requires the
solution of Eq. 6-182 n — k times. Further,
both the differential equations, Eq. 6-176 and
6-182, must be programmed.

A second method of constructing the par-
tial derivatives of Eq. 6-181 (or approxima-
tions of them) is to use a difference quotient,
i.e., Eq. 6-176 is solved for £ and & + 6 where
8 =(0, ..., & ..., 0)7 where i indicates the ith
position and £ is small. Therefore

WELE _ y(e g+ 8) —y(9)
af] E

(6-183)

Once these approximate derivatives are
determined, the algorithm, Eq. 6-184, may be
used.

This approximate method of constructing
the partial derivatives requires that the differ-
ential equation,Eq. 6-176,be solved n — k
additional times. It, therefore, requires
approximately the same amount of computa-
tion as the previous scheme, but all the
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computation is performed with the same set
of differential equations. This method is
illustrated in the problems of pars. 7-2 and
7-3.

A third scheme which makes use of differ-
entiation formulas for definite integrals is
developed in par. 7-4.

6-5.2 A GENERALIZED NEWTON METH-
oD

A second method which is used to solve the
necessary conditions for optimization prob-
lems is a Generalized Newton Method of
solving boundary-value problems. It has been
pointed out in the foregoing that Bolza
problems and optimal design problems may
be reduced to nonlinear boundary-value prob-
lems. The method employed here was devel-
oped forjust such problems (Refs. 22, 23).

In order to introduce the Generalized
Newton Method for boundary-value prob-
lems, consider the system of first-order equa-
tions

d
=2 =gt

6-186
p ( )

where

y@ = (), ., yn(t‘)]T and

gw.t) = (g, 0.0), ., 8,017

In addition to satisfying Eq. 6-186, y(¢) is
required to satisfy

y (%) =y}, forsome i
(6-187)
¥ty =y, for some/,

where the total number of conditions in Eq.
6-187 is n.
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The Generalized Newton Method for
solving Eqs. 6-186 and 6-187 is similar in
philosophy to the Newton method of solving
algebraic equations. An estimate of the solu-
tion, ¥0)(¢), is made and the right side of Eq.
6-186 is expanded about »')(¢) using Tay-
lor's formula to obtain

ay' _ of

a Y (0) (1) (0)
” 3 £y %O + e (0]

Y OO0 (6-188)
ay

where »1)(¢) is required to satisfy
y?l )(#%) = y?, for thoseiin Eq. 6-187
¥ (') =y}, for thosej in Eq. 6-187
(6-189)

The boundary-value problem for y{1)(z) is
linear so that if it has a solution, that solution
may be obtained by superposition techniques,
or any other technique for solving linear
boundary-value problems, for that matter
(Ref. 24).

The function »‘!’(s) is taken as an im-
proved estimate for the solution of Eqs. 6-186
and 6-187. This estimate then replaces ¥{%)(¢)
in the preceding analysis. If & is the iteration
number for this process, then y*) () is
determined by

dy(k) of [
—_ == |, (k-1) :| (k)
Py % y @y

+£[t,y% ~ 1)) % (6-190)

of

= yE D @D
ay




and the boundary conditions
y$¥(1%) = y9  for those i in Eq. 6-187
y#)(') = y}, for those j in Eq. 6-187
(6-191)

The sequence of approximations to the
solution [y**)(#)] is considered to have con-
verged when the difference between succes-
sive iterates is sufficiently small. Theorems
given in Ref. 23 show that if the initial
estimate of the solution y¢%?(¢) is sufficiently
accurate, then under rather restrictive condi-
tions, the sequence [¥'*7(#)] converges to the
solution of Eqs. 6-186 and 6-187. Further,
the convergence is quadratic in the sense that
the error at the k + 1st iteration is propor-
tional to the error squared in the kth itera-
tion. This kind of convergence is extremely
nice.

Even though it is difficult or impossible to
verify the hypotheses of the convergence
theorems in Ref. 23, it has been observed in
practice (Ref. 23) that good convergence is
nevertheless obtained in many real-world
problems.

Since the discussion in this paragraph is on
ways of solving optimization problems, the
Generalized Newton Method will be applied
more directly to this class of problems. For
the present, consider only the following prob-
lem:

rl

minimize J = I (¢, x,u)dt (6-192)
rn
subject to
dr X, u) (6-193)
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and
x,(2°) = x for some i
(6-194)
x’.(t‘) = x].l for some j
where the total number of boundary condi-
tions in Eq. 6-194 may be less than, equal to,
or greater than n, x(t) = [x,(f) .., x, (D7,
u(t) =lu, @), ..u,"OT.

Defining
n
H=2ofy + 2 N J,

the necessary conditions of Theorem 6-5 are

db _- _BHT 6-195
dt ax (6- )
0" _ 0 6-196
au ( = )
and
?\r(t") =0,r#1iin Eq. 6-194
(6-197)

A, (') = 0,5 #] in Eq. 6-194.

The argument used in applying the General-
ized Newton Method to the problem of
determining x(¢), u(z), and \) from Eqgs.
6-193, 6-194, and 6-195 through 6-197 as
follows:

1. Solve Eq. 6-187 for
u=ut,x,N) (6-198)

and substitute this expression into Eqs. 6-193
and 6-195.

2. These differential equations then form
2n first-order, nonlinear differential equations
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in 2n variables. Further, there are exactly 2n
boundary conditions in Eqs. 6-194 and 6-197.
This nonlinear boundary-value problem is
now solved by the Generalized Newton Meth-
od.

3. The solution x(¢), A(f) is then sub-
stituted into Eq. 6-198 to obtain the optimal
design function.

Since the Generalized Newton Method, as
presented here, is only capable of solving
two-point boundary-value problems, inequa-
lity constraints may not be treated explicitly.
Rather, the general optimal design problem
with inequality constraints must be reduced
to a problem with only equality constraints.
For example, for problems with constraints of
the form

¢ (txu) < 0, (6-199)

where ¢; depends explicitly on u a trans-
formation may be performed by introducing
an auxiliary design variable (slack variable)
o,(¢) through the relation

o (t,x,u) +al (1) =0. (6-200)
It is clear that with the new variable, Eq.
6-200 is equivalent to Eq. 6-199. The neces-
sary conditions of Theorem 6-5 may now be

applied and the Generalized Newton Method
utilized just as in the preceding case.

In case the optimal design problems with
state variable inequality constraints, a differ-
ent technique for elimination of inequalities
has proved effective. For constraints of the
form

Y,(6,x) < 0 (6-201)
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an auxiliary parameter €, is introduced
through

tl.

Y2 Hly,(D]dt = ¢,

tO

(6-202)

where

0,5< 0
H(s) =
1,52 0.

In a sense, ¢, is a measure of violation of Eq.
6-201. The procedure in solving an optimal
design problem with a constraint of this kind
is to solve a sequence of problems with Eq.
6-202 replacing Eq. 6-201, and ei(k) ap-
proaching zero as k becomes infinite; i.e., a
modified design problem is solved imposing
Eq. 6-202 in place of Eq. 6-201 withe, (%) > 0
chosen. This solution is carried out through
use of the Generalized Newton Method de-
scribed. The problem is then solved again with
0 < €1 < €9 beginning the iteration with
the solution of the preceding problem. The
process is repeated with 0 < e6) < k-1
until changes in successive solutions are suf-
ficiently small.

The Generalized Newton Method presented
here has been discussed by many authors and
generally has received favorable comments.
For a more detailed discussion and examples,
see Refs. 23, 25 through 28. An outstanding
treatment of the Generalized Newton Method
also appears in book form (Ref. 29). A very
rigorous treatment of existence and con-
vergence properties of the method is given
which applies to the control problems dis-
cussed. The reader should note that some
writers follow Bellman in calling the method
described here, “Quasilinearization”.
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CHAPTER 7

OPTIMAL STRUCTURAL DESIGN BY THE INDIRECTMETHOD

7-1 INTRODUCTION

7-1.1 THE CLASS OF PROBLEMS CON-
SIDERED

Since the beginning of engineering disci-
plines, the engineer has attempted to develop
structures and machines that perform some
specified task. In the case of structures, a
frame or truss is required to support a given
system of loads. Likewise, machines and
machine elements are required to support
loads while they perform some function.

The objective of the examples treated here
is to illustrate organized methods that the
enginecer may use to obtain a load-carrying
system which is best in some sense that is
associated with the particular application. In
design of commercial goods, the dollar cost of
an element is probably the index that is to be
minimized (Ref. 1). In military and aerospace
applications, while dollar cost is important,
frequently weight cost is even more essential.
In the example problems presented here, the
criterion of minimum weight will be chosen.

Until very recently, most design procedures
depended on the engineer’s intuition and
experience in proportioning a load-carrying
system. An analysis of the proposed con-
figuration was then made to determine wheth-
er the system met all requirements placed on
it. If not or if the preliminary design was
obviously excessively strong, the procedure
was repea ed until a satisfactory solution was
obtained.

As systems become more complex and
more emphasis is placed on minimum cost,
the designer is unable to make all the trade-
off analyses mentally. A method of design
synthesis, therefore, is necessary which is able
to include all requirements on the system and
the requirement of minimum cost in a unified
design procedure. One such method for opti-
mal structural design is illustrated in this
chapter.

7-1.2 HISTORICAL DEVELOPMENT

Very early in the development of me-
chanics of materials, methods of determining
stress and displacement for given bodies under
the action of given forces were emphasized.
As these methods became better developed,
the question arose as to how a structure might
be proportioned to satisfy certain require-
ments and be best in some sense. Problems of
this kind were considered by Lagrange (Ref.
2) in 1771 and by Clausen (Ref. 3) in 1851.

Until very recent years, methods of the
calculus of variations were not sufficient for
treating realistic design problems. Probably
for this reason, design problems were stated in
terms of a few parameters that specified the
structure. For example, uniform beams of
undetermined depth are placed in a given
configuration. The depths are then deter-
mined so that the structure supports the given
loads and is as light as possible. For a detailed
bibliography of this development through
1963, sec Ref. 4. For a more current bibliog-
raphy, see Ref. 5.
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Another important method of design devel-
oped principally by Prager and Drucker (Refs.
6,7,8) is limit analysis. In this method of
design, the structure is allowed to reach a
state of collapse due to plastic action of the
material. The resulting design is, therefore,
safe for application of the given loads even
though permanent deformation of the struc-
ture results. If the loads must be applied
many times in the life of the structure, it will
generally be required that all material in the
structure must remain in the elastic range at
all times. For this reason, methods had to be
developed for elastic design.

In 1960, Joseph B. Keller published an
article on column design (Ref. 9) which
renewed interest in elastic, minimum weight
design. Several papers have subsequently been
published by Keller and his associates in
which a class of eigenvalue problems is treated
(Refs. 10,11,12). The methods employed in
these papers are elegant but are not easily
adapted to realistic engineering problems.

A new method of optimal design has been
developed by J.E. Taylor and W. Prager since
1967 (Refs. 13,14,15). This method is based
on an energy representation of the structural
clement under consideration. A particularly
nice feature of the method is the ability to
obtain sufficient conditions for certain classes
of design problems. However, no unified
method of constructing solutions has been
presented.

7-1.3 METHODS EMPLOYED

The theorems of Chapter 6 will be em-
ployed here for the solution of optimal design
problems. Use of the results of Chapter 6 to
construct solutions of optimal design prob-
lems is called an indirect method of solution.
This is so, because one first obtains a set of

7-2

conditions that the solution of the optimal
design problems must satisfy. Once this task is
complete, the design problem is reduced to
the determination of solutions of the neces-
sary conditions that are candidate solutions of
the optimal design problem. The term “in-
direct” seems to describe this process quite
well.

As discussed in par. 6-5, any method of
solving the nonlinear boundary-value problem
contained within the necessary conditions is
admissible. In this chapter, two problems will
be solved by shooting techniques. The prob-
lems of par. 7-2 are treated by the shooting
technique of par. 6-5. The problems of par.
7-3, however, are treated by a modified
shooting technique.

7-2 A MINIMUM WEIGHT COLUMN

A lightweight column of length 7 is to be
designed to support a given load P. The
material is specified and has yield strength
0. ax- The particular support considered is
shown in Fig. 7-1. In problems considered

‘P

X -

TITT7T 7

(A) Undeflected (B) Deflected

Figure 7-1. Column Under Consideration

here, the cross section is assumed to depend
on only one design variable, u(¢), 0 < ta T.
The problem is to determine «(#) that mini-
mizes the weight or, equivalently, the volume



T
J = s Alu(r)ldt (7-1)
0

and satisfies the conditions,

EK )dzx +Pc =0
u)—— =
dt? ’

(7-2)
®=0m=0
X =0, W( =
and
P
¢ = A6 0 <0 (7-3)
where

x(¢) = lateral deflection of the column
t = distance measured along the column
A(u) = area of the cross section

() = smallest moment of inertia of the
arca of the cross section about a centroidal
axis. All cross sections are assumed to have
two orthogonal axes of symmetry with P
acting through their intersection.

By defining x; = x and x, = dx,/dt, Eq.
7-2 reduces to the system

dy _ )

dt =x, =/

dX2 - le =f ¢ 74
dt  Elw) '* 74
x1(0)=0,x,(D=0.

The problem is thus reduced to the form of
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the optimal control problem considered in
par. 6-4.

For use in Theorem 6-7, construct

P
H=—NgA@) + A x5 — N [ X1 ]

Elu)
P
‘ Au) max ‘

G= 7\1x1(0) + AzXz(T').

Conditions, Eqgs. 6-121 and 6-124, yield

dy o 8H | Pl }

dt x;  Elw)

da M, ( (7-5)
dt x4 !
A2(0)=0,>\1(7—')=0. ]

The system, Eq. 7-5, reduces to

d?r, PN
ar? EIu)

(7'6)
2 > 4

Eq. 7-6 for A, (¢) is identical to Eq. 6-14 for
x(#). Both problems are homogeneous, how-
ever, so A;(#) and x(¢#) may differ by an
arbitrary constant multiplier, say A, i.e., put
A2 (#) = Agx(#). This problem is normal (Ref.
17), so A # 0 may be chosen as one.

Condition, Eq. 6-128, of Theorem 6-7 is, in
this case, w(P/Aw) — o_,.) = 0. Two
possibilities now exist; either u = 0, or P/A(w)
— 0.y = 0. In the second case, « is just the
algebraic solution of
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PlA(w)=o_, (7-7

<
In the remaining case, # = O and condition,
Eq. 6-122, of Theorem 6-7 is

o a4 P2 o )
dw ou E {au “/1(“)]} =0.

(7-8)

The design variable (¢} is thus determined
in subintervals of [0,7] by either Eq. 7-7 or
7-8. So that the results of the present <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>