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PREFACE 

The Engineering Design Handbooks of the U. S. Army Materiel Command 
are a coordinated series of handbooks containing basic information and 
fundamental data useful in the design and development of Army materiel 
and systems. 

This text treats a broad class of optimal design problems through use of a 
consistent set of computational techniques ideally suited for computer 
application to mechanical design problems. No attempt has been made to be 
exhaustive in the treatment of optimization techniques or the full range of 
mechanical applications. Rather, the class of problems treated is concisely 
formulated (in Chapters 4 and following) in terms of design and state 
variables that occur in mechanical design. A steepest-descent approach — 
which has served as a workhorse, reliable technique in fields such as 
aerodynamic system design, control theory, and nonlinear programming — is 
developed here for mechanical system design. 

Extensive application of design optimization techniques is made in the 
field of structural design, as well as in a limited number of specific weapon 
design problems. The examples are presented in considerable detail, as they 
are encountered in practice, to provide the practicing engineer with insight 
into use of the methods for his class of problems. A consistent design 
philosophy is maintained throughout the text to assist the designer in 
extrapolating the methods to classes of problems that are only similar 
mathematically to the examples treated here. 

The text is structured so that it can be understood and used by practicing 
engineers with a good background in calculus and matrix theory. Computa- 
tional algorithms are stated in considerable detail so that they can be 
effectively implemented by junior engineers, with only problem formulation 
and general supervision provided by a senior project engineer. As with 
virtually all computer aided design techniques, some computing art is 
required for effective implementation of these techniques. The detailed 
treatment of structural applications in Chapters 5,7, and 9 should provide 
insight into this computational art. References are given to more advanced 
literature for proofs of theorems and extensions of methods to other classes 
of problems. 
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CHAPTER 1 

ELEMENTS OF COMPUTER AIDED DESIGN 

1-1 SYNTHESIS VS ANALYSIS  IN  ENGI- 
NEERINGDESIGN 

Engineering is defined (Ref. 1) as "the art 
or science of making practical application of 
the knowledge of pure sciences such as 
physics, chemistry, biology, etc.". Although 
broad, this definition implies that the job of 
engineering is to synthesize, or put together, 
useful systems by applying knowledge and 
methods derived from the "pure" sciences. 
The meaning of "practical" in the given 
definition should be interpreted as best, or 
optimal; i.e., the job of engineering design is 
to develop the best possible system for the 
given application, consistent with the re- 
sources allocated to the development phase. 
The purpose of this handbook is to present a 
class of methods that allow for efficient use 
of the computer in the design process. 

Since the computer can be viewed simply 
as a device to handle large quantities of data 
and perform simple algebraic operations and 
logic rapidly, it is important to look first into 
the role of calculation in design. The usual 
approach to design is to conceive of a 
candidate system and then test it to see if it 
works. Great strides have been made with 
digital computers in the past two decades to 
allow for numerical analysis as a test of the 
idea, or concept, rather than previous cut-and- 
try techniques. For example, in structural 
design one chooses the configuration and 
member sizes, and then tests the structure by 
analyzing its response to given loads. If the 
structure does not behave as desired, then de- 

sign changes are made and the structure is re- 
analyzed. This process continues until the 
designer is satisfied with his design. This has 
been the principal use of the computer in the 
design process. 

In general, then, before the designer can 
assure himself that he has the best system, he 
must be capable of analyzing all candidates. 
In the past half century, outstanding advances 
in engineering analysis have been made. The 
digital computer has allowed the engineer to 
quantitatively analyze the behavior of systems 
that were examined only qualitatively in the 
past. The mechanical sciences, particularly, 
have benefited from this boom in analysis 
capability. Structural analysis, stress analysis, 
analysis of mechanisms, and heat transfer 
analysis, just to name a few, have made 
spectacular advances in the past twenty years. 

Until the early 1960's, and even to the 
present day to a lesser extent, the attention of 
engineering research has been focused pri- 
marily on developing analysis capability. Dur- 
ing this period of emphasis on analysis, 
inadequate attention was paid to developing a 
synthesis, or design, capability that is able to 
efficiently use the newly developed analysis 
methods. In some of the mechanical sciences, 
this problem is particularly acute. In struc- 
tural mechanics, for example, it is possible to 
analyze a structure under a given loading to 
obtain accurate values for stress, displace- 
ment, and even natural frequency. It is not 
clear, however, how a structure should be laid 
out  and proportioned  to   efficiently utilize 
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material in order to meet strength require- 
ments. A more difficult problem is the pro- 
portioning of a structure so as to efficiently 
limit displacement and meet constraints on 
natural frequency and buckling. For a review 
of the state of optimal structural design 
through 1967, see Ref. 2. 

It appears that the analysis capability 
needed for computer aided design is available. 
The next problem to be addressed, then, is 
the matter of what is meant by best, or 
optimum. The idea of best enters very natu- 
rally into engineering design efforts. In 
profit-motivated industries as well as in 
Government laboratories, the objective is to 
maximize some return function while satisfy- 
ing constraints such as resource allocation, 
performance requirements, and human limita- 
tions. 

Once some return function or measure of 
value is chosen and constraints are identified, 
the system designer would like to have some 
optimal design methodology that is capable of 
aiding him in the determination of the best, 
or practically best, system. It must be empha- 
sized at this point that the search is not for an 
automatic optimization technique that can 
solve any design problem fed to it. Rather, 
the need is for an optimal design methodol- 
ogy that can aid the engineer in the imple- 
mentation of his concepts and guide him in a 
direction which, if continued indefinitely, 
would yield a mathematical optimum. 

A key challenge to developers of practical 
computer aids to designers is to take maxi- 
mum advantage of human judgment in the 
design process. The potential of interactive 
computation and design information display 
is only now in a developing stage and holds 
promise for significant improvement of the 
value of the computer in design. 

1-2 THE PHILOSOPHY OF SYSTEM ENGI- 
NEERING 

In the middle 1950's a formalized approach 
to the development of large-scale, man-made 
systems began to appear in the literature, see 
Refs. 3, 4, 5. This approach, which has 
features common to most problem solving 
processes, was given the name "system engi- 
neering" and is the very essence of computer 
aided design. A feature which sets system 
engineering and computer aided design off 
from most of the logical problem solving 
schemes is the explicit inclusion of key 
considerations peculiar to engineering design 
of systems. A second important feature of 
system engineering is the attention paid to 
quantitative description of the system and its 
behavior. 

The basic idea in system engineering is to 
begin with a statement of system require- 
ments and objectives, and move in an orga- 
nized way toward an optimum system. A 
process which illustrates the approach is 
shown in Fig. 1-1. 

I 
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Figure 1-1. A System Engineering Model 
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The purpose of this text is not to give a 
detailed treatment of system engineering, but 
rather to present aspects of the theory of 
computer aided design, with emphasis on 
optimal design. The simplified model of a 
system engineering process shows that opti- 
mal design is a part of system engineering, 
but, indeed, by no means the dominant part. 
The purpose of this paragraph is to discuss the 
interface of optimal design with the remaining 
essential elements of system engineering. 

System engineering begins with the identifi- 
cation of a need by a potential user of the 
system to be developed. It is often the case 
that the user knows that he needs a system to 
do a job, but he may have difficulty in stating 
his needs and objectives quantitatively. It 
then becomes the joint responsibility of the 
system engineer and user to quantify system 
objectives so that a meaningful set of objec- 
tives may be established for the development 
to follow. 

to describe analytically. Conceptual design, as 
its name implies, is the identification of the 
various concepts or basic system configura- 
tions that might meet the system objectives. 
It is desirable in this step to leave the 
concepts as general as possible so as not to 
eliminate candidate systems that might be 

very effective. For example, if the function to 
be performed is to propel a vehicle over the 
surface of the earth, conceptual designs might 
include wheels, tracks, legs, air cushion, etc. 

It is important at this time to identify 
ranges of values of parameters describing the 
system so that, for any parameter in this 
range of values, the system will perform the 
functions identified in the previous step, i.e., 
the set of parameters describing admissible 
systems is identified. It is at this time that the 
experienced designer can be extremely valu- 
able in reflecting state-of-the-art capabilities 
of technologies involved in the system devel- 
opment. 

Once the needs and objectives for a system 
are identified, it is necessary to define func- 
tions that must be performed by the system 
and any subsystems that are required. This 
process is called function analysis, and its 
purpose is to pick out functions or operations 
that must be performed in order to accom- 
plish the mission required of the system being 
developed. These functions then become 
lower level objectives for the development of 
subsystems. Identification of functions tends 
to be qualitative in nature. However, once a 
function or operation is identified, it must be 
described in quantitative terms, if at all 
possible. For example, if a function must 
occur quickly, the time allowed should be 
specified. 

The next step shown in Fig. 1-1 is one of 
the most difficult functions in system engi- 
neering and certainly the most difficult step 

The optimal design step has as its objective 
the choice of the undetermined parameters 
identified in the previous step. These param- 
eters must be in the ranges defined by 
technological limitations and system func- 
tions. The criterion for choosing system 
parameters is maximization of system worth 
or value. It should be emphasized that a 
mathematically precise optimum may be im- 
possible to attain and must therefore serve 
only as a goal. Methods for choosing system 
parameters should, however, have the prop- 
erty that if an optimum does exist, then given 
enough patience and computer time, that 
optimum should be approached as a limit. 

What appears to be the final step in the 
system engineering model of Fig. 1-1, Descrip- 
tion, is, in reality, probably just an inter- 
mediate step. Unless the system design pro- 
cedure has been unusually effective, the sys- 
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tern decided upon will probably not satisfy 
the user. More likely, it will probably not 
satisfy the system engineering team. Having 
the results of one pass through the system 
engineering process, the user can probably 
remember some constraints which he forgot 
to specify and which the optimum system 

violates. The designer probably also will see 
concepts that he did not see before. Much as 
the user, he too will remember technological 
constraints which he forgot to specify and 
which the optimum system violates. Finally, 
the sponsoring activity will undoubtedly de- 
cide that it will be all right to decrease the 
measure of system value a small amount if it 
will save some money. 

The next step in the procedure is for each 
member of the team to take a deep breath, 
sigh and go back to work, armed with his 
hard earned new knowledge. It is for this 
purpose that all the feedback paths in the 
model of Fig. 1-1 are shown. This iterative 
procedure is then continued until the sponsor- 
ing activity decides that the system developed 
is what it really needs. This will probably be 
another human decision, rather than a pro- 
grammed mathematical one. 

The remaining chapters will be devoted to 
the problem of computer aided and optimal 
design. If the design methods presented later 
are to be of maximum value to the reader, he 
must have a clear picture of how these 
methods fit into the larger problem of system 
engineering. For further literature on the 
basic ideas involved in system engineering, see 
Refs. 3, 4, and 5. 

it applies to the mechanical sciences. There 
are peculiarities of mechanical design, as 
opposed to classical control system design, 
which require specialized treatment. Further, 
the mathematics involved in mechanical sys- 
tem design is quite different from the math- 
ematics of control theory. These distinctions 
are highlighted throughout the text. 

In the chapters that follow, optimal control 
theory is interpreted as treating feedback 
controllers; i.e., an optimal control system has 
active elements that sense errors in output, 
due to fluctuations in inputs, and adjust 
system controls so as to maximize some 
measure of system performance. Optimal de- 
sign, on the other hand, is taken as the 
problem of choosing system elements or 
parameters describing these elements, which 
are fixed for the life of the elements, so that 
the system is optimum in some sense. In 
control literature this is called open loop 
control. The principal difference in the two 
problems is that the variables chosen in the 
optimal design problem are fixed for the life 
of the system, whereas variables in a feedback 
control device are to be adjusted according to 
inputs as the system operates. Mathematical- 
ly, the difference in the two results is that the 
control law describes how the system vari- 
ables should be adjusted as a function of the 
state of the system, whereas an optimum 
design is simply a set of parameters describing 
system elements and will not be changed 
during the life of the system. This distinction 
is not uniform in the control literature but is 
used here to identify the class of problems 
treated. 

1-3 COMPUTER AIDED DESIGN  IN THE 
MECHANICAL SCIENCES 

The theory of computer aided and optimal 
design is developed in subsequent chapters as 

In most literature on control problems, 
sequential systems are treated, i.e., operations 
of the system progress one after another as if 
they were occurring in time in a pre-arranged 
order. Many optimal design problems are not 
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of this kind. For example, in designing a 
structure one must be concerned with stresses 
due to applied loads. These stresses are 
interpreted as the state of the structural 
system. They are determined by a boundary- 
value problem that cannot be interpreted as a 
sequential process (initial-value problem). In 
some design problems it is possible to define 
auxiliary variables so that the governing equa- 
tions form an initial-value problem with addi- 
tional constraints. This procedure, however, 
generally complicates the problem unneces- 
sarily. For this reason the problems in 
succeeding chapters are formulated as bound- 
ary as opposed to initial-value problems. 

In order to illustrate the use of the meth- 
ods presented, applications are made pri- 
marily in optimal structural design. Applica- 
tions are chosen to illustrate the use of the 
methods on problems having a number of 
design variables which might be found in 
engineering applications. Further, since many 
of the methods are relatively new, it is 
anticipated that improvements in computa- 
tional efficiency may be realized in specific 
problems if advantage is taken of special 
features of the class of problems treated. 

It is appropriate to highlight a significant 
computational distinction between two 
classes of design problem. The reader may 
note that Chapters 2 through 5 of this text 
deal with problems in which system design 
and performance are specified by a finite 
number of parameters (real numbers). Chap- 
ters 6 through 9, on the other hand, deal with 
systems that are described by functions on 
some given space or time domain. Mathemati- 
cally, these problems are called finite and 
infinite dimensional, respectively. Optimiza- 
tion theory for these two classes of problems 
can be put in the same form, but there are 
very   real  differences  in the  computational 

techniques available for design optimization. 
Since the subject of this handbook is com- 
puter aids to design, the practical distinction 
is made here. For a unifying mathematical 
treatment, the reader is referred to Ref. 7. 

Finally, it is important to realize that 
engineering design optimization and engineer- 
ing analysis are fundamentally different in 
nature. In analysis, one is generally assured 
that a solution exists and numerical methods 
are generally stable. In optimal design, on the 
other hand, existence of even a nominal 
design satisfying objectives is not assured, 
much less existence of an optimal design. 
Moreover, even when an optimum exists, 
numerical methods for its solution are often 
quite sensitive to initial estimates and require 
much computational art for iterative con- 
vergence. These properties will be observed 
over and over in this handbook when example 
problems are treated. 

It is important that the reader take a 
mathematical outlook when doing computer 
aided design and optimization. A purely 
intuitive approach can lead to erroneous 
results that may not be apparent until some- 
one happens onto a nominal design which is 
vastly superior to a "supposed" optimum 
design. 

1-4 MATHEMATICAL PRELIMINARIES 

The level of mathematical background re- 
quired for an understanding of the methods 
of optimal design presented in the following 
chapters is a course in advanced calculus and 
the ability to use matrix notation. Since 
engineers often require results of rather deep 
mathematical analyses to solve real-world 
problems, several results have been accepted 
with references given to proofs. The purpose 
of this paragraph is to present notation and 
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some basic mathematical ideas used through- 
out the text. 

Two vectors are called orthogonal if their 
inner product is zero. 

Since most real-world problems involve 
several parameters, it is convenient to utilize 
vector notation. For example, rather than 
writing x x..., xn repeatedly, these n variables 
are collected into a column vector 

(1-1) 

The idea of convergence of a sequence 
{ x' (in R" with norm (Eq. 1-2) is much like 
convergence of real numbers. That is, j^ x' = 

x if for any E > 0 there is anN > 0 suchthat 
\\x' — x || < E for all i> N. An important 
property of sets in optimization theory is 
closedness. A subset D of R" is called closed 
if every sequence in D which converges has its 
limit inD. 

Unless otherwise noted, all vector variables 
will be column vectors. A vector of the form 
(Eq. 1-1) may be interpreted as a point in 
n-dimensional real space, R" . The spaced" is 
simply the collection of all n-vectors of real 
numbers. For example, the real line is A1 and 
the plane is R2. 

It will often be convenient to deal with a 
collection of points in the space R". A 
collection of points D in R" will be called a 
set, or a subset of R". A point x inR" which 
is in D will be denoted xeD. This will be the 
extent of set notation required in later chap- 
ters. 

In R" there is a well defined idea of length 
of a vector. This analog of length in the real 
world will be denoted 

1/2 

(1-2) 

and is called a norm onÄ". There are many 
norms defined onÄ" but Eq. 1-2 will be 
sufficient for the purposes of this text. Along 
with the idea of norm on Rn goes the concept 
of dot product or inner product. The inner 
product of two elementsx andy oiRn is 

(1-3) 
x, y > =x'y 

i -1 

Just as the idea of collecting n real numbers 
into a vector in R", it is helpful to define a 
vector functiong(x) for x&R" as 

g(x)- (1-4) 

Such a function is called continuous at x if 
for any E > 0 there is a 6 > 0 such that \\g(x) 
—g(x) || < £ if \\'x — x \\n < 6.The subscripts 
m and n on the norms denote the dimension 
of the space on which the norm is defined. 

It will often be desirable to deal with a set 
of functions which satisfy 

gAx)<0,i=\, m (1-5) 

In this case it is convenient to define inequal- 
ity among vectors as 

g(x)<0 (1-6) 

where inequality is taken componentwise, i.e., 
Eq. 1-6 is defined to mean the same thing as 
Eq.   1-5. 

One of the most useful notations in the 
following chapters is the idea of the derivative 
of a vector function with respect to its vector 
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variable. This notation is 

dgjx) 

dx 

bgj (x) 

öX. m x n (1-7) 

+ . . . + I: a* /(*) 

Oi -xji.-.iyn-xjn 

where i is a row index and / is a column index. 

If fix) is a real valued function of x&R", this 
notation is 

dfjx) 
dx 

d/(x),...,a/(x) 
OX. dx„ 

(1-8) 

The derivative of a real valued function is 

often called the gradient of that function and 

is denoted 

V/(x)s 
dfjx) 

dx 
(1-9) 

The gradient is one of the few standard 

symbols which denotes a row vector rather 
than a column vector. Likewise, for a real 

valued function the matrix of second deriva- 
tives may be defined as the matrix 

d2f(x) 

dx2' 
= 72f(x) = 

d2f{x) 

OX;   OXj 
(1-10) 

An important theorem in the analysis of 

functions appearing in optimal design prob- 

lems is Taylor's Theorem. 

Taylor's Theorem: Let the real valued 
function fix) have k + 1 continuous deriva- 

tives in Rn . Then for xeR", there is a point 

£ = ax + (1 — u)y with 0 < a < 1, such that 

"    ofix) 
/O0 =/(*)+  2   -^-t-ty-x,) (1-11) 

; =   1     dx- ' ' 

1 n      n     d2f(x) 
— 2    2   
2 /'=1      1=1       3jC;    9X; 

+— 2    2   . ' : '  (yt -x;.)0,.-x.) 

1 L 9^+1/(g) 

(fc + i)i / +. ..+/„ = fc + i ai:.    ...a+ 

(yi-xi)71--- (y„ -*„)'"• 

For proof of this theorem see Ref. 6, page 56. 

In many places in the following chapters, 
Taylor's Theorem will be used to obtain an 
approximate expression for a function at a 

point sufficiently near a point where the 
function is known. The most common ap- 

proximation is the one obtained by deleting 

second and higher order terms. For example, 

if \\x ~y\\ is small, 

f(y) -fix) =* —— (y-x) 
dx 

(1-12) 

where by Eq. 1-11 the error in Eq. 1-12 is 

at most a constant times \\y — x\\2 if f(x) has 

bounded second order derivatives. The left 

side of Eq. 1-12 is generally denoted by 

8f(x), where y — x is denoted Sx. In this 
notation, 

«/<*) ; dx ' Sx. (1-13) 

Eq. 1-13 may be thought of as a total 
differential. Even for vector functions g(x), 

Eq. 1-13 holds for each component so if 

8g(x)=[d8l(x),.. ., 6gm(x)]T, then 
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dg(x) „ 
&g(x) = ——5x. 

dx 
(1-14) 

In later work, g(x) will often be a function 
of x&R" and zsRp. In this case, Eq. l-14is 

d8(X'Z)-   -dgiX'ZUz       (1-15) "su/;    - 
dx     ~"        dz 

lere 

dg(x,z) 

dx 

dgt{x,z) 

dx- 
m  X   n 

and 

dgjx.z) 
dz dz, 

_I m X p 

Most of the common notation used in later 
chapters now has been defined. Special nota- 
tion and results required locally for some 
development will be defined and used there. 

1-5  ILLUSTRATIVE      MILITARY      COM- 
PUTER AIDED DESIGN PROBLEMS 

In this paragraph two illustrative military 
optimal design problems are formulated, and 
computer aided design techniques are out- 
lined for their solution. The treatment here is 
only for the purpose of introducing concepts. 
These examples are treated in more depth in 
Chapters 7 and 8. 

1-5.1  OPTIMAL DESIGN OF STRUCTURES 

The optimization technique described in 
this paragraph was initially developed for 
application to minimum weight structural 
design problems. For this reason, and to give 
an engineering feel for application of the 
technique, the method will be presented along 
with  examples  from the  field  of optimal 

structural design. 

As a specific example, let us consider a 
design problem whereby a highly directional 
transmission device, or perhaps a gun, is to be 
mounted on a tower or gun mount that is 
required to support the device at some given 
distance away from the basic supporting 
structure, such as the earth. A schematic of 
the problem is shown in Fig.   1-2. The basic 

Figure 1-2. Structural Requirement 

problem is to design a structure that supports 
the device under consideration and which is as 
light as possible for purposes of transporta- 
tion and erection on the battlefield, or per- 
haps mounting on a helicopter. A basic design 
requirement for this structure is that the 
device mounted on the top shall not have an 
angular deflection of more than 6 radians, in 
order to hit the receiver or target. The loading 
that is to be considered is a wind load of up 
to a given velocity, which would cause angular 
deflection of the top of the tower. 

The needs and objectives in this design 
problem are well established, so no additional 
inputs need be considered at the present time. 
Further, the requirement that the tower 
support the device with only a given allowable 
angular deflection is the only basic function 
required of the tower; thus the function 
analysis block of Fig. 1-1 is also complete. 
The next stage, and one that is quite difficult 
to describe analytically, is that of arriving at 
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conceptual towers which might perform the 
given mission. 

Four   different   conceptual   designs   are 
shown in Fig.   1-3. The first two concepts, 

Figs. 1-3(A) and (B), involve rigidly fixing the 
tower at its base to the fundamental support- 
ing structure. In both towers, variable spacing 
as a function of height is allowed between 
vertical members of the structure. In addition, 

*-Z6 

Figure 1-3.   Conceptual Designs 

one of the concepts allows for varying the 
area of the main structural members as a 
function of height. The second set of con- 
cepts, Figs. 1-3(C) and (D), involves towers 
that are pinned at their base to the supporting 
structure and that are supported by guy wires 
at the top of the structure. Likewise, in both 
of these concepts, variable spacing of the 
main vertical members is allowed. In the 
second concept, variation of area along the 
length of the tower is also allowed. It should 
be noted that the conceptual designs in Fig. 
1-3 can have as many subsections with differ- 

ent area and spacing as desired. Three are 
shown for convenience in the figure. 

In each of the conceptual towers of Fig. 
1-3, the variables b{ through b3 describe the 
variable spacing of the members of the tower. 
In two of the concepts, Figs. 1-3(B) and (D), 
64 through bb specify the variable areas in 
the construction of the main vertical member. 
These variables serve as design parameters, in 
that the designer can choose these variables 
and completely specify the design of the 
tower. 
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In addition to the design variables, a main 
part of the design problem is the behavior of 
the structure under wind load, since one of 
the major constraints on behavior of the 
structure is that the angular deflection of the 
top of the tower not exceed an angle 6. For 
this reason, the angular deflection of each of 
the joints must be determined, along with 
lateral deflection due to lateral wind loading. 
This is a relatively routine analysis problem 
when one uses the techniques of finite ele- 
ment structural analysis. Not shown in Fig. 
1-3, but required in the construction, are 
cross members which maintain spacing of the 
main vertical members. In order to state the 
optimal design problem mathematically, first 
define vectors of design variables b( and state 
variables z, 

ture, it is required that the design variables be 
bounded uniformly away from zero. This is 
given formally by the inequality 

bi>bio> 0,i=\,. ,m. (1-19) 

The fundamental constraint in the present 
problem is that the angular deflection at the 
top of the tower not exceed the angle 0. This 
is expressed analytically by the inequality 

u,u e. (i-20) 

The final step in formulation of an optimal 
design problem is to identify the cost func- 
tion to be minimized. In the present case, the 
cost function is structural weight J and is 
given by an expression of the form 

b=[b,,b2,. ..bm]T 

Z = [Z,, Zi, ■  ■ -zn]      ■ 

(1-16) 

Using finite element structural analysis tech- 
niques, define the stiffness matrix as 

A(b)=laij(b)]nxn (1-17) 

where the dependence of stiffness on the 
design variables is explicitly shown. Using this 
matrix, the structural response is given by the 
following matrix equation 

A(b)z=q 

where q is the wind loading matrix. 

(1-18) 

Now that the relationship between the 
design variables and the structural response is 
specified by Eq. 1-18, the next step in 
formulating an optimal design problem is the 
identification of constraints. In order to 
prevent dimensions or structural areas from 
going to zero, resulting in an unstable struc- 

/ = 7.2   cibi (1-21) 

where y is material density and c( are weight- 
ing factors representing lengths of structural 
elements and weight requirements for lateral 
stiffners. 

We now have an optimal structural design 
problem that is well formulated from a 
mathematical point of view. The objective is 
to find the design variables bt through b 
that satisfy constraint Eqs. 1-19 and 1-20, and 
which minimize the structural weight as given 
by Eq. 1-21. The technique used to solve this 
problem, and in fact a large class of optimal 
system design problems, is based on a very 
simple idea of engineering design. The idea of 
the technique is to allow small variations in 
some nominal design, and analyze the effect 
of these variations on the equations of the 
problem and the cost function associated with 
the problem. As a result of allowing only 
small design changes, certain approximations 
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may be made that allow the best change in 
design variables to be determined in order to 
decrease the cost function of the problem as 
much as possible, while still not violating 
constraints of the design problem. For 
example, one might choose as an initial 
estimate of the optimal design a uniform 
tower as shown in Fig. 1-4. The estimated 
design variable in this case is denoted by b^°\ 

66,. >*,„-*,- (1-24) 

Or,   if  the  angular deflection constraint  is 
violated, for example, 

z > e 
i 

(1-25) 

then,   to  correct the  constraint  error it  is 
required that 

8z, < e - z i. (1-26) 

/////////////////// 

Figure 1-4. Uniform initial Design 

Let 8b be a small change in the design 
variable 6(0). Any change in the design 
variable will result in a change in the struc- 
tural response, denoted by 8z. The nature of 
the structural analysis problem guarantees 
that small 6b yields small 8z. Further, a 
Taylor series approximation of terms appear- 
ing in Eq. 1-18 yields 

A(b^)8z+-^-(A(b)z\      m)8b = 0.   (1-22) 

ff an inequality constraint is violated, such 
as 

bs < b, (1-23) 

then in order to correct the constraint error it 
is required that 

Finally, the change in structural weight due to 
the change in design 6b is given by 

5/ = 7/£i c.bb.. (1-27) 

The object of the new problem is to 
determine 6b so as to minimize the linearized 
cost function of Eq. 1-27, subject to con- 
straint Eqs. 1-24 and 1-26. Due to the special 
nature of this problem, the optimum change 
8b can be determined in closed form. For a 
detailed derivation of this optimum perturba- 
tion, the reader is referred to Chapter 5. For 
discussion here, the results of this calculation 
will be denoted by 

8b = rjB + C (1-28) 

where the vectors B and C depend on 6(0), 
constraint errors, and equations of the prob- 
lem. The parameter 77 is an undetermined 
parameter that plays the role of a step size, 
when viewed in the geometry of design 
variable space. For example, if there are only 
two design parameters bt and b2, the direc- 
tion of the desired change is shown by B in 
Fig. 1-5, and r\ is a step size along that 
direction. In the terminology of optimization 
theory, B is known as the direction of 
steepest descent. It is analogous to the direc- 
tion one would go downhill in order to reduce 
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Optimum 

Figure 1-5. Direction of Steepest Descent 

his altitude as rapidly as possible. It is clear 
that on normal hills, as in most design cost 
functions, the direction of steepest descent 
changes, depending on the location on that 
hill. For this reason, the direction of steepest- 
descent does not generally pass through the 
optimum point as shown in Fig. 1-5. 

There  are many techniques for choosing 
the step size r\. The one used in the steepest 

descent method is based on requesting a 
certain reduction in the cost function due to 
the changed 6b. This request, then, deter- 
mines the step size 77 and one can calculate bb 
from Eq. 1-28. This 6b is the best change in 
the estimated design variable M°\ This best 
change is then added to the initial estimate to 
obtain a new estimate that corresponds to a 
structure of less weight and that still satisfies 
the constraints of the problem, i.e., 

6(l)=ft(0)+fife. (1-29) 

This process is repeated as many times as 
required to obtain convergence to the mini- 
mum weight structure. 

The optimum towers for each of the four 
basic configurations chosen are shown in Figs. 
1-6 and 1-7, with a table of results being given 
in Table   1-1. These results were obtained 

(A) One Design Variable (B)  Two Design Variable 

Figure 7-6. Tower With Base Rigidly Fastened to the Earth 
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using a finite element model with approxi- 
mately forty elements so that the resulting 
structure has an essentially continuous distri- 
bution of material and spacing. The weights 
shown in Table 1-1, corresponding to no 
design variables are simply the weights of the 
optimum towers having uniform members and 
no variation in spacing. Note that there is a 
significant reduction in structural weight for 
the tapered optimum towers over uniform 
towers. Extensive examples of this kind are 
presented in Chapters 5, 7, and 9. 

1-5.2 APPLICATION OF THE STEEPEST 
DESCENT METHOD IN INTERAC- 

TIVE COMPUTER AIDED DESIGN 

Very often in design problems, it is not 
practical to specify a unique cost function to 
be minimized, hence the formal optimization 
problem described in par. 1-5.1 does not 
apply directly. The fact that the vector B in 
Eq. 1-28 is a direction of steepest descent, 
however, is extremely valuable information to 
a designer. The application of this informa- 
tion to a structural design problem, using 
interactive graphics, is a technique which 
shows considerable promise in design. 

(A)  One Design 
Variable 

(B)    Two Design 
Variable 

Figure 1-7. Tower With Base Simply Supported 
and Top Supported With Guy Lines 

Consider, for example, the problem treated 
in par. 1-5.1. The initial estimate of the 
optimum tow er was taken as a uniform tower. 
The components of the vector 6b can be 
projected on a cathode ray tube, along with a 
picture of the structure as shown in Fig. 1-8. 
The algebraic sign of the components of 8b, 
corresponding to each of the design variables, 
is an indication of the effect a change in that 
design variable will have on the cost function 

TABLE 1-1 

WEIGHTS OF TOWERS 

Cantilevered Cantilevered 
Guy-line Guy-line Guy-line 

Cantilevered        Supported      Supported      Supported 

Number of 
Design 
Variables 

Best Weight     W 
Height h 
Cross-sec- 
tional area of 
member A 

= 2440.6 lb 
63.7 in. 

= 7.96 lb 

W = 2111.4 
h_   =91.4 

A = 6.97 

W = 1827.9 W= 1563.99 W= 1356.6 W= 1265.71 
hmax = 80-2 h = 46 ,h        =46.5, , ,h        = 36.55 

A       = 10.03 A = 3.84 A = 4.434 Amax = 495 
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Figure 1-8.  Sensitivity to Design Variations 

of interest. For example, if 5b 1 were positive, 
this would indicate that an increase in the 
dimension A, will decrease the structural 
weight. On the other hand if the algebraic sign 
of 5b! were negative, then an increase in 5b 1 
would increase the structural weight. Like- 
wise, the algebraic signs of 5b4 through 
5b6 indicate the effect that a change in these 
element areas will have on structural weight. 
These data give the designer valuable informa- 
tion, according to which he should change his 
nominal design to improve the structure, 
while still satisfying all the essential con- 
straints. 

Traditionally, in structural design by graph- 
ics, the designer puts areas and dimensions 
into a structural analysis routine and then 
requests a stress calculation, the results of 
which are shown on the screen of a cathode 
ray tube. This technique has been used by 
Lockheed-Georgia in the design of the C5A. 
While this technique has been quite useful in 
structural design, it is extremely difficult for 
the designer with only stress information to 
determine how he should change just one 
element in the structure to reduce overall 
structural weight. The difficulty comes in the 
interplay  between structural constraints. If, 

on the other hand, the designer has trend 
information that he can use in altering the 
distribution of material in a structure, he can 
better use his experience in making design 
improvements. This capability can be invalu- 
able to large-scale structural designers. It 
includes the effect of individual design vari- 
able changes on overall structural value, while 
taking into account the effect of that design 
change on all design constraints. 

In real-world structural design problems, 
the designer must design his structure for 
more than simply light weight. He must be 
concerned with structural vibration and 
buckling characteristics, since these are major 
sources of structural failure. Often, as in par. 
1-5.1, it is possible to determine design 

perturbations that have a desirable effect on 
such structural properties as natural fre- 
quency and weight simultaneously. Both of 
these factors can then be displayed on a 
cathode ray tube as shown in Fig. 1-9. In this 
case, 5bl indicates the direction in which the 
design variable should be changed to reduce 
structural weight, and 5b2 indicates the direc- 
tion in which the variable should be changed 
to increase natural frequency. This informa- 
tion can then be used by experienced design 

861 
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Figure 1-9.  Sensitivity to Two Performance 
Indicators 
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personnel in making design changes that will 
have desirable effects on overall aircraft struc- 
tural properties, for example. This is extreme- 
ly important in large-scale structural design 
due to the difficulty in determining the effect 
of changes in an individual design parameter 
on several different structural properties. 
Computation of these data and interactive 
aspects of the technique are discussed in 
Chapter 5. 

This design technique is feasible from a 
computational point of view in that very little 
additional computer time is required to 
generate sensitivity information from stress 
and vibration analyses that are required. While 
most structural optimization work has been 
done in the batch mode, it is shown in 
Chapter 5 that utilization of the steepest- 
descent technique with interactive graphics is 
a much more practical way to design struc- 
tures, particularly in cases where several 
measures of structural performance are im- 
portant. 

Development and display of sensitivity 
information in design is a form of information 
transfer to design personnel. This technique 
depends on the availability of interactive 
graphics software and hardware, which are 
currently being developed. 

1-5.3 DESIGN   OF   ARTILLERY   RECOIL 
MECHANISMS 

As an application of this same optimization 
technique to a weapon design problem, cer- 
tain aspects of the design of a lightweight 
artillery piece will now be outlined. The 
requirement was stated for a lightweight 
artillery piece that can be fired with very 
short implacement time. For this reason it 
was determined that the weapon must be 
capable of being fired while it is resting on its 

tires. A photograph of the first prototype of 
this weapon is shown in Fig. 1-10. 

The recoil mechanism for this weapon was 
designed according to traditional recoil mech- 
anism design goals. Namely, the objective in 
the design was for a constant retarding force 
which is transmitted by the recoil mechanism 
to the undercarriage, as shown in Fig. 1-11. A 
recoil mechanism was designed which de- 
livered approximately this recoil force R(t) as 
a function of time. 

When the weapon was built and fired, a 
nearly constant recoil occurred, as desired; 
but, at high angles of fire, the weapon 
exhibited unacceptable dynamic response. 
During firing, the tires of the weapon com- 
pressed and after firing and the subsequent 
release of the recoil forces, the weapon 
rebounded off the ground approximately 6 in. 
This unacceptable behavior required a re- 
design cycle for the recoil mechanism with a 
design goal of minimizing the dynamic re- 
sponse, or hop, of the weapon after firing. 

It was determined that the peak recoil 
force could be allowed to reach 22,000 lb 
without damaging the support structure. The 
optimization problem is then to determine 
the recoil force R(f) as a function time such 
that 

R(t)< 22,000 (1-30) 

and the peak dynamic response, denoted by 

/ = max [h(t)] 
t 

(1-31) 

is as small as possible, where h (t) is the height 
of the tires off the ground at any time t. 
Graphically, this problem is to determine a 
recoil force which lies beneath the 22,000-lb 
level in Fig. 1-12, and which minimizes the 
peak dynamic response of the weapon. In this 

1-15 



AMCP 706-192 

Figure \-10.   Howitzer, Towed,  105mm, XM 164 

problem, the dynamic response h (t) is deter- 
mined by the second order differential equa- 
tions of motion of the artillery piece. 

The same philosophy of small design 
changes about some nominal estimate, as in 
the structural design problem of par. 1-5.1, 
was   employed   in  this   case.  A   sensitivity 

20,000 - 

R(t) 

Time, sec 

Figure 1-11.  Traditional Recoil Design Goal 

22,000 

Time, sec 

Figure 1-12. Recoil Distribution in Time 
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function is first determined, which indicates 
the desirable direction of change in the 
nominal design variable. For example, taking 
the previously designed constant retarding 
force as the nominal base line, a sensitivity 
function is determined as shown in Fig. 1-13. 
ff a constant multiple of this function is 
added to the retarding force, a reduction will 
occur in peak dynamic response and other 
constraints of the problem will continue to be 
satisfied. The dotted curve in Fig. 1-13 shows 
the altered design, which gives better charac- 
teristics than the original design estimate. 

22,000 

22,000 
20,000 ■ • 

'3   - 
o •-— 
a! as 

R/t) 

R<°> (tj 

Sensitivity 
' Function 

Time, sec 

Figure 1-13. Sensitivity to Gun Hop 

Pi OS 

Time, sec 

Figure 1-14. Optimum Recoil Curve 

This sensitivity information could easily be 
displayed on the screen of a cathode ray tube 
and could be used by design personnel in 
determining desirable changes in the recoil 
design. Even in this relatively simple problem 
it was not clear in what way the design should 
be altered to obtain improved response of the 
artillery piece. This particular problem was 
solved in the batch mode by doing many 

small step iterations of the kind previously 
described until convergence to an optimum 
was obtained. The optimum recoil force curve 
is shown in Fig. 1-14 and resulted in a peak 
dynamic response of less than 0.5 in. Detailed 
solution of this problem is presented in 
Chapter 8, par. 8-5. 
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CHAPTER 2 

FINITE DIMENSIONAL UNCONSTRAINED OPTIMIZATION 

2-1   INTRODUCTION 

In many engineering design problems cer- 
tain information which helps to prescribe the 
object being designed is specified. However, a 
certain number of parameters called design 
parameters are left open to the designer's 
choice. These parameters must uniquely 
determine the object if the optimal design 
problem is to be meaningful. In the discussion 
which follows, the design parameters will be 
denoted by xl ■■■•*„   or in vector notation 
simply as x = (xl,—,xn)T. 

In virtually all design problems there are 
restrictions on the object being designed. 
These may include the performance required, 
physical limitations such as size, weight, 
resource limitations, and organizational poli- 
cy. These restrictions or constraints generally 
will involve the design parameters so that the 
range of values of design parameters may be 
restricted. If the vector of design parameters 
(hereafter called the design parameter) is 
viewed as an element of real Euclidean space 
R" , then the effect of the listed restrictions is 
to confine the designer's choice of design 
parameters to a subset D of R" called the 
admissible set of design parameters. The 
nature of this set will be determined by the 
nature of the requirements placed on the 
system being designed. This aspect of the 
optimal design problem will be treated ex- 
tensively in later chapters. 

When one speaks of optimal design, he 

must be able t hoose, out of a collection of 
objects which satisfy the restrictions of the 
preceding paragraph, that one which is 
"best". More specifically, out of all design 
parameters in the admissible set D, the de- 
signer must pick that one, x, which describes 
the "best" system. This discussion has still 
not given the meaning of "best". An effective 
way of defining "best" is to give a real valued 
function whose domain of definition is the 
admissible set/), say f(x). "Best", then, may 
be taken as the minimum or maximum of fix) 
for x in D. If the function/(x) is a cost of the 
system being designed, then it is to be 
minimized. If, on the other hand, f(x) is a 
return or profit, it is to be maximized. 

The cost or return function will be defined 
in each optimal design problem. As a result, 
very little can be said about its nature in 
general. It is clear, however, that maximizing 
a real valued function r(x) is equivalent to 
minimizing —r(x). Therefore, optimal design 
problems may always be put into J form 
which may be interpreted as minimization of 
a cost function. For convenience this will be 
done in the following development. 

Example 2-1: As a hypothetical optimal 
design problem let the scalar x be the design 
parameter and f(x) = (x — 2)2 be the cost 
function. In Fig. 2-1 the cost function is 
plotted versus x. It is clear that the minimum 
cost of zero occurs at x = 2. 

Example 2-1 is included here as an aid to 

2-1 



AMCP 706-192 

intuition in more complex problems. Even 
when x   is an n-vector,  one  can think  of 

plotting the cost function above the x-hyper- 
plane to obtain the cost surface. The optimal 
design problem is then to find the lowest 
point on this surface. 

Even though real-world optimal design 
problems invariably have constraints placed 
on the design parameter, the methods pre- 
sented in this chapter will ignore constraints. 
There are two reasons for considering this 
simplified problem in some detail. First, it 
may happen that the design parameter x that 
minimizes fix) lies in the interior of the 
admissible set D. In this case the constraints 
play no part in locating X. Second, even 
though the point x may push some constraint 
to its limit and lie on the boundary of D, 
there are iterative methods for finding x 
which require minimization of an auxiliary 
cost function, subject to no constraints at 
each iteration. Methods which take con- 
straints into account are presented in Chap- 
ters 3 and 4. 

Two basically different methods of solving 
unconstrained minimization problems are pre- 
sented in this chapter. The first method, 
called the indirect method, is based on de- 
rived properties of the cost function at its 
minimum; i.e., if one pictures himself as being 
at the lowest point of the cost surface (x = 2 
in Fig. 2-1), he may notice that the surface is 
required to have certain special properties 
there. He may then use these special prop- 
erties to locate the lowest point on any such 
surface. This intuitive idea is made rigorous in 
par. 2-2. 

The second method of solving optimization 
problems is more direct in nature and is 
appealing from an engineering point of view. 
The designer initially chooses a design param- 

Figure2-1. ffx)=(x- 2)1 

eter which is admissible, say x(0). This choice 
of design parameter will probably not put him 
at the lowest point on the cost surface. 
Rather than discarding this nonoptimal point 
and picking another trial point at random he 
might attempt to find a second point x(1) 

which is closer to the lowest point of the cost 
surface. The designer's view of the cost 
surface is limited to only a small area due to 
the local nature of mathematical tests which 
he may perform. Using only this local 
information, he chooses a strategy which 
insures that he makes a move to a new point 
x^   which is lower than xM. The direct 

methods presented in pars. 2-3 to 2-7 arejust 
a mathematical implementation of these 
elementary ideas. 

2-2  NECESSARY CONDITIONS   FOR   EX- 
TREMA 

As described in par. 2-1, the approach 
taken in the indirect method is to assume/(x) 
has a minimum at x and then derive condi- 
tions which f{x) must satisfy there. These 
conditions may then be used to find the 
minimum point of any real valued function 
f(x). They are valuable in giving the designer 
an insight into the minimization portion of an 
optimal design problem, even when he is using 
direct computational methods to solve the 
problem. Before these ideas may be devel- 
oped, several definitions are required. 
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Definition 2-1: A real valued function/(x) 
defined on a subset D of R" has an absolute 
minimum at x in D if 

fix) </(*) (2-1) 

for all x in D. The function g(x) has an 
absolute maximum at x if — g(x) has an 
absolute minimum there. The minimum is 
called strict if only strict inequalities hold in 
Eq. 2-lforx#X. 

Note that fix) can have a strict absolute 
minimum at only one point in D whereas it 
could have an absolute minimum at several 
distinct points in D provided it has the same 
value at all these points. 

Definition 2-2: A function fix) defined on 
a subset D of R" has a relative minimum 
(maximum) at x if there exists an E > 0 so 
that f(x) has an absolute minimum (maxi- 
mum) in a subset of D whose points satisfy 

I*.- I< e, / = 1 .... n. 

Verbally, this definition says that/(x) has a 
relative minimum at x if it has an absolute 
minimum in a sufficiently small neighborhood 
of x. It is clear that if fix) has an absolute 
minimum at x, then it also has a relative 
minimum there. The converse is not neces- 
sarily true. 

Example 2-2: Locate all relative and abso- 
lute maxima and minima of fix) on 0 < x < 
3, where fix) is given graphically in Fig. 2-2. 

The function fix) has a strict absolute 
maximum at x = 1, absolute minima (not 
strict) at x = 0 and 2, relative maxima at x = 1 
and 3, and relative minima atx = 0 and 2. 

In Definitions 2-1 and 2-2 no continuity or 
differentiability requirements were placed on 

Figure 2-2. A Cost Function 

fix). Without making some assumptions as to 
the regularity of fix) it is difficult to verify 
the required inequalities. Consider the case of 
a function fix) of the real variable x which 
has two continuous derivatives. The Taylor 
formula is 

fix+h)=fix)+f'ix)h 

+-^£%x + 6h)h2 
(2-2) 

where 0< 6 < 1. Since f"(x + Oh) is bounded 
for A in a closed bounded set, it is clear that if 
f'{x) + 0 then for small enough h the linear 
term in h dominates the squared term so that 
fix +h) may be made both larger and smaller 
than f(x) through choice of the appropriate 
sign of h. Therefore, in order for/(x)to have 
a relative minimum or maximum at x it is 
necessary that /'(3c) = 0. It follows directly 
from Eq. 2-2 that if fix) = 0, then/"(x) > 0 
(< 0) is a sufficient condition for/(x) to have 
a relative minimum (maximum) at X 

In case x is in R", results analogous to 
those just obtained are given in Theorem 2-1. 

Theorem 2-1: Necessary Condition: Let 
fix) be defined on a subset D ofR" and have 
a continuous derivative in a neighborhood of 
a point x which is in the interior of D. If fix) 
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has a relative minimum at x then 

V/(x) = 0 (2-3) 

Sufficient Condition: Let f(x) have two con- 
tinuous derivatives in a neighborhood of x 
and let Eq. 2-3 hold. Then if the matrix 

V2Ax) = 
a2/ 

dXj dx. 
(2-4) 

is positive definite, fix) has a relative mini- 
mum at X 

For convenience in later discussions, Defi- 
nition 2-3 is made. 

Definition 2-3: A point at which Eq. 2-3 
holds is called a stationary point of f(x). 

It is imperative that the reader be aware of 
the hypothesis of Theorem 2-1 which requires 
x to be in the interior of the region D. The 
theorem does not apply if x is on the 
boundary of D. Example 2-2 illustrates this 
requirement graphically. Points x = 0 and x = 
3 of Fig. 2-2 yield a relative minimum and a 
relative maximum, respectively, but neither 
point is stationary (i.e., neither satisfies Eq. 
2-3). The same example also illustrates the 
need for verification of the differentiability 
properties of fix). Even though x = 1 yields 
an absolute maximum of fix) and is in the 
interior of D ,it is not a stationary point since 
fix) does not have a continuous derivative 
there. This example illustrates the need to 
faithfully verify all the hypotheses before 
Theorem 2-1 is employed. 

A = (a.)nX„ is positive definite if and 
only if the determinate of each of the 
matrices A m , formed from the first m rows 
and first m columns of A, is positive, m = 
1,...,«. 

Example 2-3: Obtain explicit necessary and 
sufficient conditions for fixi,x2) to be a 
minimum and a maximum at x, where fix!, 

x2) has two continuous derivatives inZ) and x 
is an interior point of D. 

As necessary conditions for either a mini- 
mum or a maximum, Eq. 2-3 demands 

A sufficient condition for x to be a 
minimum point for/(.x) is that in addition to 
the above equations, the matrices 

Ai^fXlXl(x)^nd 

A2 = 

have positive determinates, i.e.. 

fXlXlix)>0^dfXiXiix)fX2X2ixl 

-WXlx2ix)]2 > 0. 

The function fix) has a relative maximum 
at x if the functiong(x) = — fix) has a relative 
minimum there. Therefore, in addition to 
— fx (3c) = — fx (3c) = 0 sufficient conditions 
for Hx) to have a relative minimum at x are 

fxlXl&fxlXi&> 

In order to verify the sufficiency condition 
of Theorem 2-1, one must have a verifiable 
test for positive dsfiniteness of a matrix. 
Probably the most useful test is the following 
(Ref.   2,   page   103):   A   symmetric  matrix 

**,*, <*>> 0and^^, &gxx    £) 11 11 2   2 

-tg,,    (*)]2> 0. 

For a relative maximum oi fix) at x  then 
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sufficient conditions are 

/        (je)< Oand/,        (*)/,   „   (?) 

[/,     (?)]2>o. 

Thus far in this paragraph only properties 
of fix) precisely at the minimum point have 
been investigated. If the designer viewed the 
graph of fix) versus x to be a surface, then 
Theorem 2-1 tells him what the surface will 
look like when he finds its lowest point. 
Theorem 2-1, however, does not tell him that 
a lowest point exists. In order to solve his 
optimization problems, the designer would 
like to have tools which allow him to stand 
back from the cost surface and learn some- 
thing about its global properties. Two theo- 
rems are now stated which give him a better 
overall view of the optimization problem. 

Theorem 2-2: If fix) is continuous on a 
closed and bounded subset D ofRn ,then/(x) 
has an absolute minimum in D. 

< 1, is also in D. A real valued function f{x) 
defined on a convex set D is called a convex 
function onD if for any two pointsy and z in 
D 

fly + 6(z-y)] <f(y) + 6[f(z)-f(y)], 

Q< d a 1. 

That is, f(x) is convex onfl if the straight 
line segment f(y) + 8[/(z) -fiy)] is above the 
graph of f{x) on the line segment^ +0(z — y) 
in D, 0 < 8 < 1. For a more detailed 
discussion of convex functions, see Appendix 
A. 

Theorem 2-3 gives the designer valuable 
information about the global properties of the 
cost function. It is proved in detail in Chapter 

Theorem 2-3: Let fix) be a convex func- 
tion defined on a convex set D inRn . Then a 
relative minimum of fix) on D is also an 
absolute minimum of/(x) onD. 

This theorem does not hold, in general, if 
any of the hypotheses are deleted. For ex- 
ample, consider the function/(x) = x onD = 
(x\ 0< x < 1). D is not closed and/O) does 
not have an absolute minimum in D. If 
Z)={x|0<x< 1} then D is closed and fix) 
has an absolute minimum at x = 0. 

Note: The hypotheses of Theorem 2-2 may be 
weakened by demanding that fix) be only 
lower semi-continuous rather than continu- 
ous. For proof, see Ref. 1, page 58. 

Theorem 2-3 depends on the concept of 
convexity. 

Definition 2-4: A subset D of R" is called a 
convex set if whenever x andj are inD, then 
the straight line segment x + 6iy — x), 0< 8 

This theorem is of obvious value to the 
designer. It assures him that if his design 
problem satisfies the hypotheses of Theorem 
2-3 and if he has found a relative minimum 
then he is through; he has also found the 
absolute minimum. 

Computational methods for finding ex- 
trema based on the theorems of this para- 
graph generally involve the solution of non- 
linear algebraic equations. In particular, Eq. 
2-3, which is in general nonlinear, can be 
solved by a numerical method to locate all 
admissible interior extrema. Methods for solv- 
ing such equations are given in Ref. 3, 
Chapter 2. It generally has been found, 
however, that direct methods for finding 
extrema are superior to the solution of Eq. 
2-3.    For   this    reason   no   computational 
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methods based on the indirect method will be 
presented here. 

It will be the purpose of the remainder of 
this chapter to present methods that the 
designer may use to locate interior relative 
minima. Relative minima on the boundary of 
the admissible region will be treated in Chap- 
ters 3 and 4. 

2-3 ONE-DIMENSIONAL    MINIMIZATION 

In the direct minimization methods to 
follow, a multidimensional minimization 
problem will be reduced to a sequence of one- 
dimensional minimization problems; i.e., the 
problem of determining a scalar a so that a 
given function^(a) will be a minimum. 

In the problem of minimizing f(x) for x in 
R", all the methods of solution presented in 
this chapter are based on successive improve- 
ments in certain directions; i.e., at a point x(,) 

one finds a direction, s, in which f(x) de- 
creases. The object is now to move along the 
vector x(,) + as, by adjusting a, a > 0, until 
f(x) is as small as possible. The resulting point 
is then called x('+1 \ and the entire process is 
repeated. It is clear that the intermediate 
problem of determining a so as to minimize 
/(x(,) +as) is one-dimensional. This paragraph 
will be devoted to presentation of methods 
for solving the one-dimensional problem. 

2-3.1  QUADRATIC INTERPOLATION 

If the function /Qc(,) + as) of the scalar 
variable a — x^ and the unit vector s are 
fixed — were quadratic in a,then the value of 
a which minimizes the function could be 
found by setting 

^-(f[x^+as])=0. 
da x 

The object here is to treat more general 
functions, but it is possible to make a 
quadratic approximation to / [xM + ots] 
which will hold near the minimum point. 
Then, the minimum point of the approximat- 
ing function, which may be easily found, is an 
approximation of the true minimum point. 

The quadratic approximation of / [xM + 
asj is constructed by passing a quadratic 
curve in a through three computed values of 
the function. The distance between the three 
trial points will be 6 > 0, where 6 is initially 
chosen to be a small fraction of the expected 
range of a. It is known, however, that if the 
starting point of the process is quite far from 
the minimum point then the minimum point 
of the approximating function may not be 
near the true minimum point. To prevent 
making large, inaccurate steps in this case, a 
maximum allowable step size A is chosen 
before the process begins. A reasonable choice 
of A is 50% of the expected range of a. 

The following algorithm implements the 
procedure described: 

Step 1. Define a0 = Oand/ = 1. 

Step 2. Compute 

h =/[x('>+(«/-' -6)s 

/o=/[*(0+«/-1 s] 

h =/[JC(0+(a/-1 +6)s]. 

Step 3. A quadratic polynominal in a — 
a1'1 = z is fitted through (— 6, /,), 
(0, /o),  (6, fi).   Its minimum  is 

2-~2(/1-2/0+/2y
lt/l    lu 

+ f2 =£ 0. If this quantity is zero, 
then    the    approximation    is    a 
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straight line with minimum at ? = 
± A , depending on which of/j and 
f2 is smaller. 

Step 4. Define 

da. = min(|zJ,A)-sgn(zm) 

and 

ai = al'x + da 

Step 5. If | da | is less than a specified 
tolerance, the process is stopped 
and a* is taken as the minimum 
value of a. Otherwise, replace /' 
withj + 1 and return to Step 2. 

2-3.2   FIBONACCI  SEARCH (OR GOLDEN 
SECTION SEARCH) 

The Fibonacci search technique is a 
method based on isolating a relative minimum 
in an interval and successively decreasing the 
size of the interval. The process thus gives 
successively better estimates for the location 
of the minimum point. For a proof that the 
method converges very rapidly the reader is 
referred to Ref. 4, page 236. Here, only the 
basic ideas behind the method will be given, 
and an iterative algorithm stated. 

Starting at a = 0 one might evaluate/[x*1' 
+ as] at a = 6 and check to see if the 
functional value is smaller than at a = 0. If it 
is, one might then evaluate the function at a = 
26 and compare with the value of a = 6. 
Again if a decrease occurs, one moves on to a 
= 36, etc. The process will terminate when 
/ [*<«'> +(fc + l)5s] > f [xu) + kSs]. It is 
then known that (k — 1)5 < a < (k + 1)5 
contains the minimum point and a more 
accurate result, if required, may be obtained 
by reducing 6 and repeating the process from 

a = (k — 1)5. If the initial step 6 was too 
small, many steps will have to be made before 
the minimum point is located. 

In Fibonacci search the same basic proce- 
dure is followed except that if, after a given 
step, the functional value has decreased, then 
the next step size is taken as 1.618 times the 
previous step size. In this way if the minimum 
point is a long way from a = 0, the Fibonacci 
technique will isolate it much more rapidly 
than the previous method with constant step 
size. Note that there is a penalty, in that the 
interval which contains the minimum point 
may have length much greater than 26. This is 
illustrated in Fig. 2-3. 

f& w +«] 

5    2.6186       5.2326 9.6666 

Figure 2-3. Function of Single Variable 

Once the minimum point is restricted to 
some interval, this interval is broken up into 
three subintervals by inserting points located 
a distance of 0.382 times the length of the 
interval from each end. A test is then per- 
formed to see which subinterval the minimum 
point lies in. For a given subinterval the 
partitioning is shown in Fig. 2-4. 

0.382 (a-aj 0.382 (a   - a„) u       * 
-* »> 

Figure 2-4. Interval Partition 
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The search process is terminated when the 

minimum point is isolated in a sufficiently 

small subinterval. 

The Fibonacci search method has the prop- 

erty of being best in a certain sense among all 

search techniques which isolate a in an 

interval. A measure of the effectiveness of any 

such technique is the ratio of the length of 

the largest interval in which a may lie after n 

steps to the length of the original interval 

which contained a. It is shown in Ref. 4, page 

253, that if/ [x(,) + as] has a unique relative 

minimum as a function of a,then Fibonacci 

search minimizes the number of interval 

partitions. 

The Fibonacci search technique may now 

be given in the form of a computational 
algorithm: 

Step 1. First an upper bound must be 
found for a.,au. It is clear that 0 is 
a lower bound, ae. For a chosen 

small step size 5 in a,let j be the 

smallest integer such that 

/ \x(i) + [ X   S(1.618)*]s 
I k = o I 

> f JC
(,

'> + [ 2   6(1.618)*]s 
fc = o 

Then upper and lower bounds on <xu> are 

/-i 
Note that a   =   2   6(1.618)*  so/[x(l) + 

a      k = o 
otas] is known. 

Step 3. Compare/ [JC
(0
 +aas] and/ [xu) 

+ ubs]   and go to Step 4, 5, or 6. 

Step 4. If/ [x(,) + <y] < / [x(,) +abs] , 
then a2 < a*'-1 < <xb. By the choice 

of a and ab , the new points «s = 

a,   and a'   =  a,    have a'.   = a . 
' u boa 

Compute now / [JC
(,)
 + a'as] 

where a'a = ae + 0.382 (a'u - a't). 

Go to Step 7. 

Step 5. If/ [JC<'> +aes] > f [x™ + abs], 

then a   «s a(,) < a, . Similar to the a u 
procedure  in Step 4, put a'g = aa 

and  a'   = au   so that a.'a   = otb. 

Compute/[.x^'' + a.'bs] where ot'b = 

0^+0.618(0^-^). 

Go to Step 7.     - 

Step 6. If/ [x(,) +aas]   = / [x(0 + <V]> 

put ae = aa and aj, = «6 - 

Return to Step 2. 

Step 7. If a^ — a£ is suitably small, put 

«(')   =   -j-(a'u   
+ a's)   and   stop. 

Otherwise, delete the primes on a'q, 

afl, c^, and c/  and return to Step 

3. 

a   = 2   5(1.618)* 
* = o 

a0 =;S   5(1.618)*. 
fc = o 

Step 2. Compute/ [x(,) +<xbs], where 

aa =ac +0.382(au -as) 

a6 =ac +0.618(au - a8). 

2-4 THE    METHOD   OF   STEEPEST   DE- 
SCENT (OR GRADIENT) 

The simplest and probably the best known 
of the direct methods of minimization is the 
Method of Steepest Descent (or Gradient). 
This method is based on the fact that if the 

cost surface is smooth, then its tangent plane 
is a good approximation to the surface near 
the point of tangency. The philosophy of the 
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Method of Steepest Descent is apparent in its 
title. One wishes to change x(,) by an incre- 
ment dx in such a way that /(x), x = x(,) + 
dx, is reduced as much as possible for a given 
length of increment. The direction of the 
increment dx is called the direction of steep- 
est descent. 

The direction of steepest descent is given 
by Theorem 2-4. 

Theorem 2-4: Let f(x) be differentiable in 
R". The direction of steepest descent at a 
point x is 

dx = -aV/r(x) 

where a > 0 is a scalar factor. 

(2-4) 

as a better estimate of the minimum point 
and the process is continued until 7/ [x(y)] = 
0 oxdx is sufficiently small. This method may 
be given in compact form as the steepest 
descent algorithm: 

Step 1. Make the best engineering estimate 
x'0) of the minimum point. 

Step 2. Compute  V/[x(0]   and define a 
normalized     gradient    s = 

II ?/[*"> Ill vW'l-Find^ 
a(') which minimizes / [x(i) + as ] 
(where i is the number of iterations 
completed). If V/ [x(0J = 0, ter- 
minate the process and x(z) is a 
relative minimum point. 

The proof of Theorem 2-4 illustrates clear- 
ly that the direction of steepest ascent is 

dx = aVfT (x) (2-5) 

for a > 0. The reader should note carefully 
that Eqs. 2-4 and 2-5 give only the direction 
in the design parameter spaced" which yields 
the maximum rate of change of f{x). Since 
the factor a is not determined explicitly, the 
size of step is not specified. 

In order to start the steepest descent 
iterative technique, the designer makes the 
best estimate of the design parameter avail- 
able, x(0). The gradient V/[x(0>] is then 
computed at x(0) and a new point x(1) is 
determined by 

r(D = r(0) x(0) V/r[x(0)] 

Step 3. Put x(i+1) = x(0 - a.0)s. If 11 „(0 

and IIV / [x(,+ 1 *] || are less than 
predetermined limits, terminate 
the process and let x(,+ 1) be the 
approximation to the minimum 
point. Otherwise return to Step 2. 

It is interesting to note that successive, 
directions of steepest descent are orthogonal 
to one-another in this algorithm—i.e., 
V/[x (' + 1)] V/r[x(,) =0]. To see this, recall 
that a(,) is chosen so that /[jc(i) —as] is a 
minimum in a. The necessary condition of 
Theorem 2-1 then requires 

0 = 
df 

da 
1 9/ 

7/U (0, ■ 2   ——ix 
/ = 1    ox- 

(1 + 1)1 

dx, 

V/[x' 

«-0)1   = 1 

V/7" [x('> ] 

0+1) 7/r[x(')] 

where a<0) > 0 is chosen using methods of 
par. 2-3 so that / [x(0) - aV/r(x(0)) ] is a 
minimum as a function of a. If V/ [x(0)] =£ 
Othen/[x(1)]   </[x(0)]  , so x( l} is taken 

which was to be shown. 

In the case where x =1 x'    , Fig. 2-5 is a 

view of the design variable space. The closed 
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Figure 2-5. Descent Steps 

curves in this figure are lines of constant f(x), 

A relatively general convergence theorem 
pertaining to this algorithm will now be 
stated. The proof of this theorem may be 
found in Ref. 5, page 80. 

Theorem 2-5: Let f(x) be a continuous 
function defined on R" and let x(0) be any 
point such that the closed set 

S= \x\ f(x)<f[xw] j 

is bounded, and Ax) is twice continuously 
differentiable on S. Let the matrix of second 
derivatives of fix), 

H(x)-- 
92/(x) 

dxfix, 

satisfy the condition 

I yTHy I < MyTy 

for some M, every y mRn , and every xinS. 
Then for the sequence [x^ ] generated by 
the steepest descent algorithm: 

(1) A  subsequence x 'm    converges to a 
point 3c in.? for which V/(x) = 0. 

(2) / [x■ m 'l   decreases monotonically to 

(3) If x is the only point in S for which 
V/(3c) = 0, thenx(') converges to x. 

Several things which Theorem 2-5 does not 
say are worthy of note. First, the theorem 
does not guarantee that the sequence of 
points xw generated by the Method of 
Steepest Descent will converge. Further, un- 
less the assumption of (3) holds, the sequence 
need not converge to an absolute minimum; it 
may converge to a relative minimum. 

The choice of the initial estimate x'0-* can 
have a great deal to do with the limit point of 
the algorithm if it does converge. If it is not 
known beforehand that a unique relative 
minimum exists, it is general practice to start 
the iterative process at several initial esti- 
mates. If the sequence x{,) converges to the 
same point x each time, then one is led to 
believe that he has indeed found an absolute 
minimum. Logic such as this can cause sleep- 
less nights, however, particularly if a decision 
involving considerable resources and perhaps 
even one's job depends on the outcome. For 
this reason, the importance of at least making 
a serious attempt to apply theorems such as 
those of par. 2-2 cannot be overemphasized. 
Theorem 2-3, for example, if properly 
applied, may prevent many anxious moments. 

In spite of the simplicity of the Method of 
Steepest Descent, it has several severe restric- 
tions which are discussed in Ref. 5, page 159. 
These are: 

1. Even though convergence may be 
guaranteed by Theorem 2-5, an infinite num- 
ber of iterations may be required for the 
minimization of even a positive definite qua- 
dratic form. 

2. Each iteration is calculated indepen- 
dently of the others so that no information is 
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stored  which  might be used to accelerate 
convergence. 

3. The rate of convergence depends strong- 
ly on properties of the cost function. If the 
ratio of the largest and smallest eigenvalues of 
the matrix of second derivatives is large, the 
steepest descent algorithm generates short 
zig-zagging moves. Convergence is, therefore, 
very slow. 

For an extensive treatment of modifica- 
tions of the steepest descent method, which 
prevents certain of these difficulties, see Ref. 
4, Chapter 7. Several methods, presented in 
the next three paragraphs, do not suffer so 
severely from the problemsjust described. 

2-5 A GENERALIZED NEWTON METHOD 

In the Steepest Descent Method of par. 2-4, 
only first-order derivatives that determine the 
tangent plane of the cost surface are used to 
represent the behavior of this surface. One 
would expect that if second derivatives of the 
cost function were available, then a quadratic 
function could be constructed as an approxi- 
mation to the surface. The quadratic approxi- 
mation should allow for much better approxi- 
mation of the minimum point of the cost 
function. 

The idea of this method is to first use a 
second-degree Taylor formula as an approxi- 
mation to fix). K fix) is convex, or just con- 
vex near a minimum point then the minimum 
point of the quadratic should be near the 
minimum point of fix). The minimum point 
of the quadratic approximation is then deter- 
mined analytically and is taken as a good 
approximation of the minimum point of fix). 

In order to utilize Taylor's formula in- 
cluding second degree terms, the following 

matrix is required 

Hix) = W2fix) ■■ 92/0c) 
dx.dx.. 

»  X n 

Note that it is implicitly assumed here that 
fix) has two derivatives. By Taylor's formula, 

f[x(0) + Ax] ~/[x(0)] + V/[x(0)]£x 

+ ^AxTH[x<-0)]Ax    (2-6) 

where Ax is a change inx(0). In case/(x) is 
locally convex — convex in a neighborhood of 
x(0)- Theorem A-3 shows that H U(0)] is 
positive semi-definite. If, in addition, 
H [x(0)] is positive definite, then it has an 
inverse. Further,/ [x(0) +Ax] in Eq. 2-6 is 
convex in Ax so Theorem 2-3 insures the 
existence of a unique minimum point of the 
quadratic function in Eq. 2-6. By Theorem 
2-1, this unique minimum point is determined 
by 

V/r[x(0)] +//U(0)] Ax = 0 

or 

Ax -H   l [*«»]   V/r[*(0)] ,       (2-7) 

and the new estimate of the minimum point is 
Xd)=x(0)+Ax 

Since Eq. 2-6 is just an approximation, JC
(1

 > 
will probably not be the precise minimum 
point of fix). Realizing that evaluation of 
Hix) requires computation of n (n + l)/2 
second derivatives of fix), one might be 
tempted to improve the estimate for the 
minimum point before recalculating all these 
derivatives. 

An easy way of improving the estimate of 
the minimum point is to change the length of 
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the step Ax without altering its direction. The 
scalar a ~ 1 will be determined by methods of 
par. 2-3 so as to minimize / [x(0) +a&x]. 

This procedure may now be put down in 
the form of a computational algorithm called 
Generalized Newton Method: 

Step 1. Make an engineering estimate x(0) 

of the minimum point of f(x). 

Step 2. Compute 

x(i+i) =XV) -««)#-V0] V/r[x(,)] , 

where a = a*'' is chosen which 
minimizes 

/{*<''> -a//"1 [x<'>] V/r[x(0]} 

as a function of a. Here, the index 
i is the number of iterations com- 
pleted. 

Step 3. If IIV/ [x<° 1II and II x(i+1 > - *<''> || 
are sufficiently small, terminate 
the process and take x(l + x) as the 
minimum point of f{x). Otherwise, 
return to Step 2. 

The Generalized Newton Method presented 
in this paragraph has been called the best for 
minimizing convex cost functions when 
second derivatives are available (see Ref. 5, 
page 162). Even in the case in which the cost 
function is nonconvex, if the starting point 
x(0) is near enough to a relative minimum 
point so that the cost function is convex at 
x(0), then good convergence may still be 
expected. 

In spite of the advantages of this method, it 
still has several shci-tcomings. 

1. Even if f(x) is convex, an inverse of 
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H(x)   may   not   exist   unless H{x)   is 
strictly positive definite. 

2. In nonconvex problems an iteration 
does not necessarily decrease /[x(,)] 
when the current iterate x(r) is not near 
the minimum point. 

3. For many engineering problems, H(x) 
will be extremely messy if not im- 
possible to compute efficiently. 

Even in nonconvex minimization problems 
the Generalized Newton Method may be used 
in conjunction with a Steepest Descent Meth- 
od to form an extremely effective tool. The 
Steepest Descent Method has the property of 
making good progress even though only a 
poor estimate of the minimum point is 
available. As a relative minimum is ap- 
proached, however, the rate of convergence of 
the Steepest Descent Method decreases. At 
this point, however, the cost function should 
be convex since a minimum point is nearby. 
Therefore, the Generalized Newton Method 
may be employed for rapid convergence to 
the relative minimum point. 

2-6 METHODS  OF   CONJUGATE   DIREC- 
TIONS 

In par. 2-4 it is pointed out that the 
Method of Steepest Descent had rather poor 
convergence properties in many problems 
because it uses only first-order approxi- 
mations (involving only first-order deriva- 
tives). Further, the Steepest Descent Method 
is not a learning process in that it does not 
store information from past iterations. The 
first deficiency is corrected in par. 2-5 where 
a Generalized Newton Method employing 
second derivatives is presented. This method, 
while having outstanding convergence prop- 
erties, requires the computation of n(n+ l)/2 
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second-order derivatives at each iteration (x is 
in/?"). In most engineering design problems 
this is an extremely tedious, if not impossible, 
task. Further, the Generalized Newton Meth- 
od is not a learning process. 

vectors S' are linearly independent. To see 
that this is true, form the linear combination 

2   a,S' = Q, 
j'=0     ' 

The methods presented in this paragraph 
require the computation of only first deriva- 
tives. However, by making use of information 
obtained from previous derivatives, con- 
vergence is speeded as the minimum is ap- 
proached. In fact, as one of the methods 
progresses, it develops an approximation to 
the matrix of second derivatives. In this 
respect the methods here have the desirable 
features of both the Method of Steepest 
Descent and the Generalized Newton Method. 

All Methods of Conjugate Directions are 
based on the philosophy "If a method works 
well in minimizing all positive definite qua- 
dratic forms, then it ought to work pretty 
well on any smooth cost function." To be 
more specific, Conjugate Gradient Methods 
are guaranteed to minimize any positive 
definite quadratic form in n iterations (the 
design parameter is in R"). Although this 
ideal behavior will not carry over to general 
cost functions, since a convex cost function 
often looks very much like a positive definite 
quadratic form, similar behavior could be 
expected. Experience has shown that this is 
the case. 

In order to be more precise, one makes 
Definition 2-5. 

Definition 2-5: Let A be a symmetric 
positive definite n x n matrix and S', i = 0, 
1,..., n — 1, be nonzero vectors in/?". TheS' 

are called conjugate with respect to A if 

SiT AS' = 0,i*j. (2-8) 

Since A  is positive definite, the conjugate 

where the a. are scalars. Multiplying this sum 
T on the left by S'  A yields 

"z   a.S'7AS' = a,SiTAS' = 0 
i=o   ' ' 

and since S' AS' ¥= 0, a. = 0. Since ;' was 
arbitrary, a;. = 0,/' = 0, 1,.... n — 1, and this is 
just the definition of linear independence. 

Consider now the problem of minimizing 
the convex function 

f(x)=BTx+-xTAx (2-9) 

where x is in./?", B is an n x 1 matrix and^l is 
a symmetric, positive definite, n x n matrix. 
The central idea of all methods based on 
conjugate directions is contained in Theorem 
2-6. 

Theorem 2-6: Let S°, .... S*1-1 be nonzero 
vectors in R" which are conjugate with 
respect to the positive definite matrix A. 
Choose scalars X = A('\ i = 0, ..., n — \, 
successively which minimize 

/[x(0 +AS'] 

where fix) is given in Eq. 2-9, 

fc = 0 

(2-10) 

(2-11) 

and x(0) is any point in/?". Thenx*") is the 
absolute minimum point off(x) over/?". 

The two  methods that follow are simply 
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based on different ways of generating con- 
jugate directions. There are an unlimited 

number of ways to generate conjugate direc- 

tions. Several ways are discussed in Ref. 6. 

2-8.1    THE     CONJUGATE    GRADIENT 
METHOD 

Given any set of n linearly independent 

vectors and a positive definite n x m matrix A 

a set of conjugate directions with respect to A 

can be generated by a Gram-Schmidt ortho- 
gonalization technique. Let v°, ..., vn~' 

be linearly independent vectors and define S° 
= v°. Now put 

S' = vl +a10S°. 

For A-conjugacy, it is required that 

S^AS1 = 0=S°TA(vi +a10S°) 

and 

vl TAS° 
10        S°TAS° 

AssumingS1 ,..., 5* areA-conjugate, put 

5* + i=v* + i+aJt + 1>05«+...+a|t + 1^S*. 

For A-conjugacy it is required that 

S* + 1 TA Sr = 0 = vk + 1 TA Sr + ak+, rS
rT A Sr 

where  the second equality holds by S-con- 
jugacy, so 

J + 1T 
ASr 

Tt + l.r 
SrT ASr 

,r= 1,..., k. 

By   induction,  the   resulting  directions  are 

A-conjugate and 

rfr+l - ,jt + l v*H 
k+lT 

ASr 

r=0    SrTASr 

Many sets of vectors v. could be chosen to 
generate conjugate directions. A natural 

choice, however, is the set of gradient vectors 

of Ax), g' = Vfix^), where x(,) are defined 
in Theorem 2-6. Define 

S°=-g° 

5* + ! =_gk 
; + lT k    gki 

+1 + s — S' 
AS1 

Alternatively. 

i=0   SiTASl 

k + iT , 

(2-12) 

k       pk+l '    A    O! 

^ + 1=-5* + 1 + Z i — S< 
i-O      <ji 

(2-13) 
Sl'ASl 

Since Ax) =~xTAx +BTx, 
2 

gk=VfT[x(k)] =AxM+B, 

or from the proof of Theorem 2-6, 

gk =gi+1 +A 

Now, 

k-\ 
S     X<e)S8 

2 = /+ 1 
(2-14) 

gkTSi=gi+lTSi +SiTA 
k-l 

8 = 1+1 

= 0,i< k (2-15) 

due to A-conjugacy of the 5' and 

Vf[x<-k + 1)]Sk = 0,k=0,..., n - 1.  (2-16) 

FromEqs. 2-13 and 2-14 

S' + 2  -^—— 5' 
;'=0   5M S' 

0,i< k. (2-17) 
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Thus, the g\ i = 0, 1, ..., n — 1 are linearly 

independent and the S', i= 0,1, ..., n — 1 are 

/4-conjugate. 

The Conjugate Direction Method of Theo- 

rem 2-6 may now be applied using the 

conjugate gradients Sl. The result is called the 

Conjugate Gradient Method. In order to apply 

this method to nonquadratic problems, it is 

first necessary to eliminate explicit depen- 

dence of the algorithm on the form of f(x). 

By definition, 

yk+\T k + lT ,   ,+ 1 
g^i'AS'      8^' fe'+i -g>) 

SiTASl g'V 

By Eq. 2-17, for i < k, the right side of the 

above equation is zero. For / = k, 

gk+xTASk      g k+\Tgk+l 

SkTASk kT    k 
gk    gk 

Substituting this result into Eq. 2-12 yields 

(ek + \T *+i\ 

  IS*. (2-20) 
gkTgk     ) 

gi+i =Ax'+l +B=A[x'+\(J)S>] +B 

or 

si+1 = gJ + X(/)AS>. (2-18) 

By Eq. 1 !-16 

g/+lTS' = o=g'T S'+X^S'1 'AS' 

Thus, 

X<" = - 
giTs> 

S'TA S> 

Substituting for S' from Eq. 2-12 and using 

Eq. 2-15, this is 

X0) g'TS' 

S'TA S> 
(2-19) 

FromEqs. 2-18 and 2-19 

AS' 

Now, 

SiTA S' 
(gi+i -g'). 

Eq. 2-20 now gives an algorithm for determin- 

ing the conjugate directions, even without 

knowledge of the matrix^ . 

For a general function/(x), 

gi = v/r[>>] 

and the following algorithm for finding the 

unconstrained minimum of fix) is called the 
Conjugate Gradient Method: 

Step 1. Make an engineering estimate x(0) 

of the minimum point and com- 

pute 

s° = -v/r[*(0)] 

Step 2. For i = 0,1, ..., find a = a(0 which 

minimizes/ [x^ + aS']. 

Step 3. Compute 

x(«+l) =xO)+aii)si 

Si+1 =- V/rU(/+1)] +ß'S' 

where 

• _ 7/[x(i+1)]y/7U"+1)] 

V/[x(°]V/rtx('>]       ' 
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Step 4. Terminate the process if 
IIV/[*(''+1)]llandlU<!'+1) _x('>|| 
are  sufficiently   small.  Otherwise, 
return to Step 2. 

When this algorithm is applied to problems 
in which f(x) is not of the form of Eq. 2-9, 
convergence will not occur in n steps. 
Fletcher and Reeves recommend that after n 
steps the algorithm should be "restarted", i.e., 
x(« + i) should be treated as x(0) in the 
algorithm. In a sense, the first few iterations 
of the algorithm build up information about 
the curvature of the cost surface. After n 
iterations, this information is discarded and a 
new estimate of curvature is built up during 
the next n iterations. This method then does 
not accumulate information about curvature 
of the cost surface over the entire iterative 
process. 

2-6.2 THE METHOD OF FLETCHER AND 
POWELL 

A second method based on a different set 
of conjugate directions was suggested by 
Davidon (Ref. 8) and modified by Fletcher 
and Powell (Ref. 9). This method is reported 
to be one of the most powerful known 
methods for general functions/(x), (Ref. 10). 
A major reason for the success of this method 
is its capability to accumulate information 
about the curvature of the cost surface during 
the entire iterative process, even though only 
first order derivatives of the cost function 
need to be computed. 

The directions S^'\ generated by the al- 
gorithm that follows, are conjugate if f(x) is 
of the form of Eq. 2-9. This proof is given in 
Refs. 7 and 9. In Ref. 6 it is shown that the 
method of Fletcher and Powell fits naturally 
into a large class of conjugate direction 
methods. The derivation is tedious and lends 

little insight into use of the method. For a 
direct proof of convergence, etc., the reader is 
referred to Ref. 7. 

The computational algorithm is: 

Step 1. Make an engineering estimate x(0) 

of the minimum point and choose 
a symmetric positive definite 
matrix H(0). 

Step 2. For i = 0,..., compute 

S«=-^>V/r[#]. 

Step 3. Compute a = oS'^ which minimizes 
/[JC

(/
> +aS(i)]. 

Step 4. Compute 

aU) =aV)S(i) 

x«+i)=x(/)+0(fl 

//0'+i)=Jtf(')+x(')+£(0 

where 

,(0 

A™ = 

VfT[xV+D] _ V/r[*(0] 

B (0
 = _ HWyWyU)THl° 

yU)T Hd) yd) 

Step 5.  If || V/[x('+1>] || and ||x(,+ 1> 
Ai)v are sufficiently small, termi- 
nate the process. Otherwise return 
to Step 2. 

Fletcher and Powell (Ref. 9) prove that this 
algorithm has the following properties: 
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1. The matrix H^ is positive definite for 
all i. This implies the method will 
always converge to a stationary point 
since 

da |a_0 

= - V/[jt(,'>]#(0V/r[.*('')] < 0 

Step 1. Make an engineering estimate of 
the minimum point JT

(0)
 of fix). 

Choose vectors s', j = 1,..., n, in 
the coordinate directions of Rn . 

Step 2. Find a = c/, k = 1,..., n, which 
minimize/[x'*"1' +oisk] 

where 

provided V/Uw ] =£ 0. This means that 
/[JC

(2)
] may be decreased by choosing a 

> 0if/[x(o] =£0. 

y° =xw 

yk =yk-\  +aksk^ k = it_f n> 

2. When this method is applied to the 
positive definite quadratic from Eq. 2-9, 
//(,) converges to A'1. 

This method might be called a learning 
process in that only first derivatives are ever 
computed, but as the algorithm progresses an 
approximation of the matrix of second deriva- 
tives is generated. Many experienced re- 
searchers in the area of optimization methods 
laud this method as one of the best available. 

2-6.3 A CONJUGATE DIRECTION METH- 
OD WITHOUT DERIVATIVES 

Occasionally in applications, one is faced 
with a problem in which computation of 
derivatives of the cost function is impossible 
or at least prohibitive from a computational 
point of view. There are many techniques for 
solving this sort of problem given in Ref. 4. 
An efficient technique, not presented in 
common texts, was developed by Powell (Ref. 
11) using conjugate directions. 

A computational algorithm is presented 
here without proof. For a proof that the 
algorithm generates conjugate directions the 
reader is referred to Ref. 11. The computa- 
tional algorithm is: 

and i is the number of iterations 
which have been completed. Note 
that in the one dimensional mini- 
mization for ak, it is possible for 
ak < 0. 

Step 3. Find the integer m, 1 < m < n for 
which 

f(ym-1)-f(ym) 

is the largest and define 

A = f(ym-1)-f(ym). 

Step 4. Define A =f(y°), h =f(yn), and 

f3 =f(2yn -y°). 

Step 5.  If/3 > /\ or 

(fi ~2f2+fi)x(fl -f3 -A)2 

put 

c(l'+l) =yn _ 

Terminate the process if ||JC
(
'
+1) 

— x(,)|l is sufficiently small. Other- 
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wise   return to   Step  2 with the 
same set of s'\ j = 1,,.., n. 

Step 6. If neither of the inequalities of 
Step 5 hold, defines = y " -y") and 
find a = ä which minimizes 

/2O1, x2, x3, x4) = (xy + 10x2)
2 

+ (x2 -2x3)
4 

(2-22) 

f(yn +sis) 

Put 

xO+l) =yn +üs 

Terminate the process if IIx 0+1) 

— x (0| is sufficiently small. Other- 
wise return to Step 2 with the new 
set of vectors ^ ..., xm~l, sm + l, 
..., s", s 

For  a discussion  of use of the 
algorithm, see Ref. 11. 

2-7 COMPARISON    OF    THE    VARIOUS 
METHODS 

During the development of the methods 
presented in this chapter, theoretical advan- 
tages and disadvantages have been pointed 
out. As a concrete test of these methods, 
three functions will be minimized. Two of the 
functions to be treated are terribly behaved 
and pose a meaningful test to any general 
minimization technique. These functions re- 
semble a very deep valley at whose bottom 
the curvature in two orthogonal directions is 
radically different. The third function is 
quadratic and poses no serious obstacle to any 
reasonable method. More specifically, these 
functions are 

/,(*,, x2)=100(x2 -x
2)2 

+ (1 -x,)2 

2-18 

(2-21) 

+ KK*! -x4)
4 

and 

/3(x1(^x3)=x^ +2x;  +: 
(2-23) 

The reader should verify that each of these 
functions has a strict absolute minimum 
point. These points are (1,1), (0,0,0,0), and 
(0,0,0), respectively. Each iterative method 
will be started at points (— 1,1), (1,1,1,1), 
and (1,1,1) for Eqs. 2-21, 2-22, and 2-23, 
respectively. These functions will all be mini- 
mized by each of the methods of pars. 2-4 
through 2-6. The stopping criterion will be 
that each component of the independent 
variable must be within 10" 2 of the known 
minimum point. 

Results will be presented in tabular form so 
that a comparison of the behavior of each of 
the methods may be made. For the sake of 
uniformity, each table will include the itera- 
tion number i, the iterate x(,) = [x^, .... 

(<)i T , and the value of the cost function. 

2-7.1   METHOD  OF  STEEPEST DESCENT 

2-7.1.1  COST FUNCTION: f^x) =  100(x2 

-x2)2 +(1 -x,)2. 

Exact solution: (1,1), /i(l,l) =0 
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0 
1 
2 
3 
4 
5 
6 

29 
30 
73 
74 

TABLE 2-1 

STEEPEST DESCENT METHOD - 
ITERATIVE DATA FOR COST 

FUNCTIONS U) 

fix <»i (/) (/> 

404.0 
19.97 

0.8654 
0.318 

0.3048 
0.2929 
0.2828 
0.1752 
0.1728 
0.1081 
0.1071 

-1.0 
0.2576 
0.0707 
0.452 
0.448 
0.472 

0.4685 
0.5861 
0.5846 
0.6739 
0.6729 

-1.0 
-0.3743 
0.00067 
0.1910 
0.199 
0.211 
0.218 

0.3373 
0.3403 
0.4499 
0.4517 

2-7.1.2   COST   FUNCTION: f2(x)    =    (xt 

+ 10x2)
2 + 5(x3   - jc4)

2   + (x2   - 2JC3)
4
  + 

IOC*!   -X4)4 

Exact solution: (0,0,0,0), /2(0) = 0 

2-7.1.3  COST FUNCTION: f3(x)=x] + 2x\ 
+ 2x2 +2JC,X2 +2X2X3 

Exact solution: (0,0,0), /3(0) = 0. 

TABLE 2-3 

STEEPEST DESCENT METHOD - ITERATIVE 
DATA FOR COST FUNCTION f3(x) 

fix11') U) m Si) 

0 9.0 1.0 1.0 1.0 
1 0.0714 0.2857 -0.0715 -0.0715 
2 0.01311 0.1632 -0.153 0.0512 
3 0.0088 0.1604 -0.114 0.065 
4 0.00679 0.1245 -0.062 0.053 
5 0.00243 0.078 -0.0625 0.0204 
6 0.0018 0.073 -0.0476 0.02727 
7 0.00063 0.0218 -0.00305 0.0133 
8 0.00006 0.014 -0.00956 0.0035 
9 0.00005 0.011 -0.00686 0.00485 

10 0.00003 0.004 -0.0036 0.0040 

TABLE 2-2 

STEEPEST DESCENT METHOD - ITERATIVE 
DATA FOR COST FUNCTION f2 (x) 

flx(i)] 01 
*2 

to (i) XA 
(I) 

0 122.0 1.0 1.0 1.0 1.0 
1 16.43 0.9055 0.055 1.0 1.0 
2 16.31 0.9019 0.023 0.9958 0.9581 
5 16.03 0.8925 -0.0498 0.969 0.746 
6 15.06 0.886 -0.0756 0.923 0.463 
9 12.25 0.641 -0.063 0.699 -0.156 

10 3.00 -1.048 0.0746 -0.1608 -0.9197 
11 2.006 -1.039 0.1522 -0.258 -0.815 
12 1.380 —1.043 0.078 -0.298 -0.752 
13 1.188 —1.033 0.1127 -0.3276 -0.7067 
14 1.047 —1.021 0.090 -0.362 -0.634 
15 1.041 -1.015 0.0949 -0.368 -0.619 
16 1.040 -1.012 0.0960 -0.370 -0.611 
38 1.039 -1.008 0.0967 -0.373 -0.603 
74 1.039 -1.008 0.0968 -0.373 -0.6019 

It should be noted that the Steepest De- 
scent Method decreased the cost function 
rapidly on the first iteration but in the first 
two problems failed to converge to the 
minimum point. That is typical behavior for 
this method, particularly in problems for 
which the cost function has a long sharp 
valley. It should be clear that blind use of the 
Method of Steepest Descent can yield poor 
results. 

2-7.2 GENERALIZED   NEWTON  METHOD 

2-7.2.1  COST FUNCTION: /, (x) =  100(x2 

-x\)2 +(1 -x,)2 

Exact solution: (1,1), ft (1,1) = 0 
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TABLE 2 4 

GENERALIZED NEWTON METHOD - ITERATIVE 
DATA FOR COST FUNCTION 

Mx) 

*Note: The trial starting point (1,1,1,1) was 
a singular point for X72f2 so an alternate 
starting point was chosen and the algorithm 

converged. 

/ Mx'"] *.'" x   W x
7 

0 404.0 -1.0 -1.0 
1 3.981 -0.9950 0.9869 
2 3.403 -0.7919 0.5832 
3 2.588 -0.5248 0.2241 
4 1.549 -0.1832 -0.5105 
5 0.953 0.0887 -0.0271 
6 0.473 0.3642 0.1063 
7 0.203 0.5955 0.3347 
8 0.0531 0.8020 0.6315 
9 0.0042 0.9536 0.9049 

10 0.0002 0.9900 0.9810 
11 2x 10 "6 1.0003 1.0007 

2-7.2.2 COST   FUNCTION: f2(x)  =  (x,   + 
\0x2)

2 +50c3 -x4)2 + (*i - 2x3)
4 + lOOcj 

-x4y 

Exact solution: (0,0,0,0), f2 (0)= 0 

TABLE 2-5 

GENERALIZED NEWTON METHOD - ITERATIVE 
DATA FOR COST FUNCTION 

f2M 

i   f2\*m] *i 
0) x2 

in in x4 
0) 

0 137.0 1.0 1.0 1.0 2.0* 
1 2.137 -0.3368 0.0175 0.3396 0.3249 
2 0.0496 -0.0640 0.0250 0.1060 0.1229 
3 0.0025 -0.0591 0.0047 0.0627 0.0617 
4 0.0007 -0.0236 0.0031 0.0263 0.0271 
5 0.00001 -0.0148 0.0014 0.0161 0.0160 
6 lx ID"6 -0.0070 0.0007 0.0078 0.0079 

2-7.2.3 COST FUNCTION: f3(x) = x] +2x 
+   2x\ +2x!X2 +2*2*3 

Exact solution: (0,0,0), /3(0) = 0. 

TABLE 2-6 

GENERALIZED NEWTON METHOD - 
ITERATIVE DATA FOR COST 

FUNCTION f3ix) 

f3[xu)] (/) (/I (/I 

0        9.000 
i     2xicr5 

1.0 
0.0015 

1.0 
0.0015 

1.0 
0.0015 

These results indicate that the Generalized 
Newton Method is indeed very powerful. 
Even in the second cost function where the 
initial estimate caused a singularity in v2f2, a 
second starting point yielded good results. 
Similar behavior has been noted in the litera- 
ture, so one can expect to get good results 
with this method. It must be remembered, 
however, that this method requires that sec- 
ond derivatives of the cost function be com- 
puted. 

2-7.3 CONJUGATE  GRADIENT   METHOD 

2-7.3.1 COST FUNCTION: /,(x) =  100(x2 

-x2)2 +(1 -JC,)2 

Exact solution:   (1,1), /, (1,1) = 0. 
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TABLE 2-7 

CONJUGATE GRADIENT METHOD-ITERATIVE 
DATA FOR COST FUNCTION 

Mx) 

2-7.3.3  COST FUNCTION: f3{x) = x\ + 2x 2   4.T..2 

i fix'"] „ W x2 

0 404.0 -1.0 -1.0 
9649. 0.1143 0.0102 

0.0839 
1 9649. 0.3258 0.0102 

22.19 0.5106 0.2360 
2 22.19 0.5005 0.2482 

0.5033 0.6307 0.3820 
3 0.5033 0.6244 0.3882 

0.2226 0.7267 0.5178 
4 0.2226 0.7227 0.5212 

0.001637 0,9919 0.9827 
8 0 .001637 0.9842 0.9868 

0 .000067 0.000013 0.999754 
11 0 .000067 0.999884 0.999768 

2-7.3.2 COST FUNCTION: f2{x) = (x, + 
10x2)

2 +5(x3 -x4)
2 +(x2 _2x3)

4 + 10(x1 

-x4)4 

Exact solution:  (0,0,0,0), /2(0) = 0. 

TABLE 2-8 

CONJUGATE GRADIENT METHOD - ITERATIVE 
DATA FOR COST FUNCTION 

f7W 

t   [xM\ i,W *,|,) x   M x,U) 

0                1220 1 0 1 0 10 1 0 

2925 27 0 9016 0 0346 0 9642 1000 

2925 27 0 8632 0 01787 0 4158 0 9960 

36 55 0 85G1 0 0101 0 3642 0 6573 
1                 192 2 0 8404 0 0563 0 3324 0 4438 

192 2 0 8180 0 0860 0 3185 0 4540 
12 11 0 7507 0 0685 0 2651 0 4787 

3 023 06410 0 0850 0 2533 0 4104 

2               26 29 0 3404 0 0281 0 2192 0 2075 
x; 2'J 0 3378 0 0370 0 2079 0 2057 
1 G51 0 3331 Q 0319 0 1748 0 2130 

0 1130 0 3159 0 0371 0 1473 0 1698 
G              00531 0 0305 0 0029 0 0718 0 0717 

0 000751 0 0293 0 0031 0 0696 00714 
0 000751 0 0294 0 0078 0 0695 00713 
0 000556 0 0297 0 0029 0 068/ 000?7 

8        0001091 0 03519 0 003519 0 02338 0 02503 
0 000517 0 035322 0 03498 0 0231 12 0 0231 19 
0 0005 17 0035318 0 003530 0 073108 0 0231 19 

1 K 10-7 0 035305 0 003528 0 023011 0 0731 15 

+ 2Xj   +2xlX2   +2*2*3 

Exact solution: (0,0,0), /3(0) = 0. 

TABLE 2-9 

CONJUGATE GRADIENT METHOD - 
ITERATIVE DATA FOR COST 

FUNCTION f3(x) 

M* 
<;>! (/) 

<i 
(/) .w 

0 9.0 
0.1181 
0.0293 

1 0 

1.0 1.0 1.0 
0.3829 -0.2340 0.0744 
0.2571 -0.2285 0.1428 

0                 0 0 

The numerical results presented here indi- 
cate that the Conjugate Gradient Method is 
very effective even for the Rosenbrock func- 
tion fi(x). The method requires approxi- 
mately the same amount of computation per 
step as the Steepest Descent Method but 
shows spectacularly  improved performance. 

It should be noted, however, that con- 
vergence slows as the minimum point is 
approached. In fact, as shown in Table 2-8, 
convergence to the required accuracy was not 
attained in one case. 

2-7.4  FLETCHER-POWELLMETHOD 

2-7.4.1  COST  FUNCTION: fx(x) = 100(*2 

~x2)2+(l -*,)2 

Exact solution": (1,1), /, (1,1) = 0. 
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TABLE 2-10 

FLETCHER-POWELL METHOD-ITERATIVE 
DATA FOR COST FUNCTION fx (x) 

M*wl x2 

404.0 -1.0 - 1.0 
19.97 0.2570 -0.3746 

0.7839 0.1 146 0.01249 
0.7570 0.1422 0.005683 
0.7424 0.1727 0.005740 
0,5377 0.3378 0.08262 
0.4013 0.3689 0.1416 
0.2968 0.4815 0.2151 
0.2524 0.5616 0.2909 

0.03621 0.8286 0.6784 
0.032 16 0.8207 0.6733 
0.02568 0.8536 0.7221 
0.01 162 0.9268 0.851 1 
0.00437 0.9342 0.8733 
0.00106 0.9760 0.9504 
8x 10'^ 0.9982 0.9967 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

2-7.4.2 COST FUNCTION: f2(x) = (x, - 
10JC2)

2
 + 5(x3 -xA)

2 + (x2 -2x3)
A + 10(JC! 

-*4)
4 

Exact solution: (0,0,0,0), f2 (0)= 0. 

TABLE 2-11 

FLETCHER-POWER METHOD-ITERATIVE DATA 
FOR COST FUNCTION f2 U) 

2-7.4.3 COST FUNCTION: f3(x)=x2
l +2x2

2 
+ 2x\ +2XiX2 +2x2x3 

Exact solution: (0,0,0), /3(0) = 0. 

TABLE 2-12 

FLETCHER-POWELL METHOD- 
ITERATIVE DATA FOR COST 

FUNCTION f3(x) 

f3[*li)] (/) (/) (/) 

0 9.0 1.0 1.0 1.0 
1 0,05319 0.3830 -0.2340 0.07447 
2 0.02857 0.2571 -0.2286 0.1429 
3 3x 10"13 2x icr7 -2x icr7 -3x 1CT7 

The Fletcher-Powell Method requires slight- 
ly more computation than the Conjugate 
Gradient Method. However, its convergence 
properties are very good as the minimum 
point is approached, in contrast to the be- 
havior of the Conjugate Gradient Method. 

This method appears to have good prop- 
erties in all ranges of the iterative process. It is 
more stable than the Generalized Newton 
Method in the early stages of computation 
and converges more rapidly than the Gradient 
and Conjugate Gradient Methods near the 
minimum point. In these respects it has the 
desirable properties of other methods without 
having their undesirable properties. 

«x1'»! (/') 

0 122.0 1.0 1.0 1.0 1.0 
1 14.4292 0.9017 0.03472 0.9642 1.0 
2 2.3775 0.8630 -0.07820 0.4120 0.9960 
3 0.6678 0.8430 -0.08740 0.3618 0.4986 
4 0.3353 0.2087 -0.02560 0.3644 0.3305 
5 0.05134 0.1117 0.006686 0.1883 0.1952 
6 0.01059 0.07931 -0.009696 0.1532 0.1526 
7 0.00067 0.02731 -0.0007003 0.06189 0.06276 
8 0.00016 0.02164 -0.002344 0.05417 0.05409 
9 8.3 x 10 "6 0.00267 -0,0000359 0.0191 0.0192 

no 2.1x 10"6 0.00148 -0.000 63 0.0172 0.0172 
ii 10-7 -0.0057 0.00060 0.00341 0.00342 

2-7.5 CONJUGATE    DIRECTIONS    WITH- 
OUT DERIVATIVES 

2-7.5.1  COST FUNCTION:/,(*) =  100(x2 

-x\)2 +(l-x,)2 

Exact solution: (1,1), /i(l,l) = 0. 
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TABLE 2-13 

CONJUGATE DIRECTIONS WITHOUT 
DERIVATIVES METHOD-ITERATIVE DATA 

FOR COST FUNCTIONS, M 

TABLE 2-14 (Continued) 

fx\x Oh li) x2 
li) 

0 404.0 -1.0 -1.0 

100.1 0.0049 -1.0000 

0.9902 0.0049 0.0000 

1 0.9902 0.0261 0.0211 

0.9485 0.0261 0.0007 

0.9402 0.0429 0.0174 

2 0.7922 0.1287 -0.0016 

0.7022 0.1815 0.0509 

0.6172 0.2147 0.0436 

3 0.3958 0.4058 0.1440 

4 0.2895 0.4785 0.2422 

5 0.2591 0.5308 0.3015 

6 0.0770 0.7258 0.5225 

7 0.0282 0.8564 0.7246 

8 0.0125 0.8942 0.8033 

9 0.01 19 0.91 16 0.8373 

10 0.0116 0.9039 0.8218 
11 0.0125 0.9469 0.9065 

12 0.0042 1.0363 1.0792 

13 0.0002 0.9886 0.9781 
14 0.0002 1.0032 1.0079 

2-7.5.2 COST    FUNCTION: f2(x)    =    (*, 
-llijl + ^ . . x^ +$ßti    2xi"| +10Oi - 

Exact solution: (0,0,0,0), /2(0) = 0. 

TABLE 2-14 

CONJUGATE DIRECTIONS WITHOUT DERIVATIVES 
METHOD-ITERATIVEDATA FORCOST 

FUNCTION f2 W 

i h [xW] v 1» „ li) x2 *3 dt „ li) x4 

0.4421 0.0469 0.0127 0.2799 0.4284 
2 0.1415 0.0469 0.0127 0.2799 0.2423 

0.1418 0.0510 0.0127 0.2799 0.2423 

0.1210 0.0510 -0.0015 0.2799 0.2423 

0.0498 0.0510 -0.0015 0.1875 0.2423 

0.0246 0.0510 -0.0015 0.1875 0.1749 

3 0.0082 0.0536 -0.0104 0.1291 0.1324 

4 0.0020 0.638 -0.0181 0.0794 0.0882 

5 0.0018 0.1322 -0.0147 0.0892 0.0940 

6 0.0010 0.0828 -0.0109 0.0580 0.0603 

7 0.0005 0.0412 -0.0057 0.0377 0.0322 

8 0.0000 0.0078 -0.007 0.0058 0.0050 

2-7.5.3 COST FUNCTION: &ß) = x] +\ 
+ 2x2, +»ill +2fi»| 

Exact solution: (0,0,0), f3 (0) = 0. 

TABLE 2-15 

CONJUGATE DIRECTIONS WITHOUT DERIVATIVES 
METHOD-ITERATIVE DATA FOR 

COST FUNCTION f3(x) 

f3[xW] 0) 0) (i) 

0 9.0 1.0 1.0 1.0 

5.000 -1.0000 1.0000 1.0000 

3.000 -1.0000 0.0000 1.0000 

1 1.000 -1.0000 0.0000 0.0000 
0.000 0.0000 0.0000 0.0000 

f2[x<"]       x, (i) li) (i) x4 
li) 

0        122.0 1.0 1.0 1.0 1.0 
109.1 0.2051 1.0000 1.0000 1.0000 
18.45 0.2051 0.1140 1.0000 1.0000 
7.667 0.2051 0.1140 0.4819 1.0000 

1        2.371 0.2051 0.1140 0.4819 0.4284 
2.157 0.0469 0.1140 0.4819 0.4284 
1.075 0.0469 0.0127 0.4819 0.4284 

The Conjugate Directions Without Deriva- 
tives Method is not as efficient as some of the 
methods that require computation of deriva- 
tives. However, there are many problems in 
which computation of derivatives is either 
impossible or very difficult. In these prob- 
lems, this method appears to be effective. 
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2-8 AN APPLICATION OF UNCON- 
STRAINED OPTIMIZATION TO 
STRUCTURAL ANALYSIS 

As pointed out earlier in this chapter, 
optimal design problems are seldom uncon- 
strained. There is, however, a large class of 
analysis problems which can be solved using 
unconstrained optimization methods. In Ap- 
pendix B, energy principles which govern 
equilibrium, vibration, and stability of struc- 
tures are given. The condition for equilibrium 
is particularly direct since it requires that, in 
problems for which the strain energy is 
quadratic, the equilibrium state, x, minimizes 
V of Eq. B-18, Appendix B, 

V = TTX
T
KX -xTF. (2-24) 

Even in some problems which are nonlinear 
and the total potential energy is not qua- 
dratic, the minimum energy principle applies. 

In view of the quadratic form of Eq. 2-24, 
conjugate direction methods are indicated. 
Even for nonquadratic energy expressions, 
methods for conjugate directions appear to be 
very efficient. For a much more detailed 
treatment of this class of equilibrium prob- 
lems, see Ref. 12. 

A second structural analysis problem for 
which unconstrained optimization methods 
hold even more promise is the eigenvalue 
problem, As shown in Appendix B, vibration 
and buckling problems reduce to eigenvalue 
problems of the kind 

Ky = \My . (2-25) 

In this problem, the smallest eigenvalue X , of 
the Eq. 2-25 is sought. One method of solving 
this problem is to rewrite Eq. 2-25 as 

1 

In this form, an iterative technique such as 
the power (or iteration) method (Ref. 13, 
page 93) may be applied to obtain the largest 
eigenvalue of the matrix K~lM and hence, 
the smallest eigenvalue of the original prob- 
lem. Even though the power method is 
efficient, this approach has the severe dis- 
advantage of requiring that I'1 be com- 
puted. 

A more promising approach to the above 
eigenvalue problem utilizes the Rayleigh 
quotient (Ref. 13, page 83), i.e., the smallest 
eigenvalue X, of Eq. 2-25 is given by 

yTKy min 
1    y^O  yTMy 

(2-27) 

If the vector y is normalized by fixing one of 
its elements, the resulting vector denoted y, 
then Eq. 2-27 reduces to 

min    yTKy 
A   —   ^    x^f.—^   ■ 1      y    y  My 

(2-28) 

K - 'My- (2-26) 

The minimization Eq. 2-28 may now be 
solved by any of the methods of the present 
chapter. The method of conjugate directions 
has been recently applied to solve this class of 
problems (Refs. 14, 15). It is interesting to 
note that this exact approach to the eigen- 
value problem was proposed by the inventor 
of conjugate direction methods, M. R. 
Hestenes, in 1955 (Ref. 16, page 93j. The 
technique was apparently not used in engi- 
neering problems, however, until 1966. 

Iterative methods of the kind outlined in 
this paragraph are particularly appropriate for 
iterative optimal design techniques. As dis- 
cussed in Chapter J, the most time consuming 
task in iterative design methods is the re- 
analysis of the system during each iteration; 
i.e., after the design variable is changed 
slightly, analysis for stresses, displacements, 
and eigenvalues must be done even though it 
is expected that these quantities will be very 
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close to their values before the change in 
design variables. By using an iterative tech- 

nique such as conjugate directions, the pre- 

vious state may be used as an estimate to start 

the minimization algorithm. In this way, rapid 

convergence to the new state of the system is 

attained. This approach has been applied with 

good success (Ref. 15). 
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CHAPTER 3 

LINEAR PROGRAMMING 

3-1   INTRODUCTION 

In the preceding chapter a function fix), x 
in R", was minimized with no restrictions 
placed on the location of the design variable 
x. Problems in the real world seldom reduce 
to this form. In virtually all engineering design 
problems, requirements are placed on the 
object being designed, and these requirements 
are stated in terms of equations involving the 
design variable. More often, these require- 
ments may be stated in terms of inequalities 
involving the design variable. 

Examples of inequality constraints are 
abundant in all areas of engineering design. 
The following are examples: 

1. Optimal structural design 

a. Stress mustbelessthanorequaltothe 
yield strength of the material. 

b. Buckling load must be greater than 
or equal to applied loads. 

c. Deflection of the structure must not 
exceed specified limits. 

d. Natural frequency must lie within an 
allowable range. 

2. Optimal circuit design: 

a. Voltage must remain within linear 
range of components. 

b. Power consumption must be belo,w a 
specified level. 

c. Capacitance of a proposed capacitor 
must be within attainable limits. 

3. Aerospace vehicle guidance: 

a. Controller thrust must be within the 
capability of the thruster. 

b. Total fuel consumption for a mission 
must be less than or equal to the vehicle's 
storage capacity. 

c. Altitude must be greater than or 
equal to zero. 

This list of typical inequality constraints 
could be expanded many-fold. It is clear then 
that the inequality constraint must play a 
central role in any unified theory of design. 

The class of problem considered in this 
chapter is very restricted. Only linear func- 
tions are to be minimized subject to con- 
straints which are linear in the design vari- 
ables. In matrix notation this is, minimize 

fix) = CTx (3-1) 

where C is an n x 1 matrix of constants. The 
design variable x is required to satisfy 

Ax <5 

x> 0 
(3-2) 
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where A is an m x n matrix and B is an m x 1 
matrix. The inequality, Eq. 3-2, is taken as 

2    a....x < bp i= 1, ...,H . 
/ = l 

i.e., when one vector is less than or equal to 
another vector, each of the components of 
the vectors must satisfy this relation. 

Example   3-1: Consider  the   problem   of 
minimizing 

(3-3) fix) = xi + 2*2 

subject to the constraints 

2*i 
+ x2 .,1 

xi > 0      | 

X2 

W 
> 0. 

(3-4) 

The constraints, Eq. 34, are satisfied at all 
points in the triangular region of Fig. 3-1. The 
lines passing through this region are lines of 
constant value of fix). It is clear that as the 
line is translated downward, the value of fix) 
decreases and that the lowest line that still 
contains points in the admissible region oc- 
curs for x, + 2x2 = 0. Since this line 
intersects the admissible region only at (0,0), 
fix) takes on an absolute minimum at (0,0). 

Figure 3-1.  Graphical Solution of 
Example 3-1 

As will be seen in the following paragraph, 
this is typical of linear programming prob- 
lems. 

Before proceeding to the next paragraph, it 

is worthwhile to discuss the applicability of 
linear programming. The theory of linear 
programming arose out of studies of econom- 
ic activities. In economics it is often the case 
that behavior of an economic system is 
predictable only in a rather crude way, so 
frequently a linear relation among variables is 
as good a representation as can be expected. 

In engineering design, however, it is very 
seldom that the behavior of an object or 
process can be described by linear expres- 
sions. One might be tempted, then, to com- 
pletely ignore linear programming. Even 
though it is not directly applicable to most 
engineering design problems, however, linear 
programming is still a very powerful tool. 
First, even though the computational pro- 
cedures of linear programming do not carry 
over to the real nonlinear world, many facets 
of the behavior of solutions are very similar in 
more general programming problems. The 
engineer who has mastered linear pro- 
gramming will go into the study of the much 
more complex nonlinear programming armed 
with a powerful tool — intuition. Further, the 
solution of many nonlinear problems can be 
reduced to the solution of a sequence of 
linear programming problems. For a review of 
some of these applications of linear pro- 
gramming methods see Ref. 1. 

3-2   PROPERTIES    OF    LINEAR    PRO- 

GRAMS 

To formalize the discussion of the previous 
paragraph, the following definition is made. 

Definition   3-1: The  linear programming 
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problem is the problem of determining that x 
mR" which minimizes 

B1 x 

and which satisfies 

Ax> C 

x > 0 

>      LP 

(3-5) 

(3-6) 

(3-7) 

where C ¥= 0 is an m x 1 matrix, A is an m x n 
matrix, B is an n x 1 matrix and the 
symbolism < (») as applied to matrices means 
that the relation less than or equal to (greater 
than or equal to) holds for corresponding 
components of the matrices. 

It should be pointed out that Eqs. 3-5 
through 3-7 do not explicitly cover all linear 
optimization problems. For example, it may 
be required to maximize a linear objective 
function. Further, equality constraints may 
be imposed and negative values of the x. may 
be allowed. However, all these variations on 
the linear programming problem may be put 
into the form of the problem previously 
considered. An objective function may be 
maximized by minimizing its negative, equal- 
ity constraints are nothing more than a pair of 
inequality constraints (i.e., y = 0 if and only if 
y «s 0 and — y < 0), and a negative x. may 
always be written as the difference between 
two new non-negative variables. There is 
therefore, no loss of generality in considering 
only the problem expressed by Eqs. 3-5 
through 3-7. 

describe an admissible object or process, i.e., 
one which performs the required service but is 
not necessarily optimal. In LP the constraint 
set is a polyhedron and, according to Def. 2-4, 
this constraint set is convex. Further, accord- 
ing to the same definition, the cost function 
f{x) for LP is convex. If the constraint set is 
bounded and nonempty, it is necessarily also 
closed and all the hypotheses of Theorems 2-2 
and 2-3 are satisfied. One then concludes that 
fix) has a strict absolute minimum in the 
constraint and that is has no other relative 
minima. 

Further, if fix) had a minimum in the 
interior of the constraint set, the necessary 
condition of Theorem 2-1 implies 

df   -     -n  ■    i —  = c, - 0, i = ],...,« 
dx,       ' 

which contradicts Def. 3-1 of LP. Therefore, 
fix) cannot have a minimum point in the 
interior of the constraint set but must take on 
its minimum at the boundary. Weyl has 
shown, in fact, that the solution must lie on 
one of the vertices of the polyhedral con- 
straint set (Ref. 2). 

In spite of this elementary theory, it is 
possible that a linear programming problem 
may not have a solution. This may happen for 
two reasons. First, the constraint set may be 
empty; and second, the constraint set may be 

unbounded and the cost function may be 
decreased without restriction. In order to 
facilitate discussion of these difficulties, 
Definition 3-3 is made. 

Definition 3-2: The constraint set for the 
linear programming problem of Def. 3-1 is the 
set of points mR" which satisfy Eqs. 3-6 and 
3-7. 

The constraint set associated with a prob- 
lem is just the set of design variables which 

Definition 3-3: If the constraint set of LP 
is nonempty (empty), the problem is called 

feasible (infeasible). If the constraint set is 
unbounded and the cost function is not 
bounded below, then the problem is called 
unbounded. 
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The concept of the dual problem that will 
be used in constructing solutions of LP's will 
now be discussed. The dual problem will also 
play a major role in obtaining results for more 
general optimization problems. 

Definition 3-4: The linear programming 
problem of maximizing 

CTy 

iory mRm satisfying 

ATy < B 

y > o 

> LPD 

(3-8) 

(3-9) 

where the matrices^, B, and C are the same 
as in LP, and are called the dual of LP. 

The results of Theorem 3-1 relating LP and 
LPD are proved in Ref. 3, page 41, and Ref. 
4, page 118. 

Theorem 3-1: Let x and y be in the 
constraint sets of LP and LPD, respectively. 
Then 

1. CTy < BTx. (3-10) 

2. ff CTy = BTx thenxandy (3-11) 
are the solutions of LP and LPD, respectively. 

3. If LP (LPD) is unbounded, then LPD 
(LP) is infeasible. 

4. If LP (LPD) is feasible and LPD (LP) is 
infeasible, then LP (LPD) in unbounded. 

These results are useful in constructing 
solutions of linear programming problems. 
They are also used in providing Theorem 3-2 
that is central to linear programming theory. 

Theorem 3-2: Let LP and LPD both be 
feasible. Then both have solutions x and yt 

respectively, andBTx = CTy. 

The proof of Theorem 3-2 is involved and 
does not yield a method of constructing 
solutions. It may be found in Ref. 3, page 44, 
or Ref. 4, page 118. 

Since the solution of LP must lie on a 
vertex of the polyhedral constraint set, it 
suffices to check at most a finite number of 
points for the minimum. This procedure is 
followed in an organized way by beginning at 
any vertex of the constraint set. If the cost 
function cannot be decreased by moving 
along an edge of the polyhedron that inter- 
sects this vertex, then this vertex is the 
solution. If, however, the cost function de- 
creases by moving along some edge, this 
policy is followed until a second vertex is 
reached and the cost function has been 
reduced. Since there are only a finite number 
of vertices and it is impossible to return to a 
previously occupied vertex, the process must 
terminate at the minimum over the constraint 
set. 

In order to illustrate the argument pre- 
sented in the preceding paragraph, consider 
Example 3-2. 

Example 3-2: By moving along edges of 
the constraint set, solve the LP 

minimize/(*!, x2) = — 2x i — x2 

subject to 

— xy > — 1 

— x2 > — 1 
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Xi,x2 > 0. 

Solution: The polyhedral constraint set is 
shown in Fig. 3-2. 

(1/2,1) 

(1,1/2) 

 *-xl 

Figure 3-2. Polyhedral Constraint Set 

The vector 

-otVfT(Xl ,x2) = <x 

whose direction as shown in Fig. 3-2 is the 
direction of steepest descent of f(x). Starting 
at (0,0) a unit movement along the xt -axis 
yields a change 

df = V/(0,0)dx = -2 

and a unit movement along the x2 -axis yields 
a change 

df = V/(0,0)dx = - 1 

so both moves yield a decrease in/(x). Choose 
the xx-axis and move to the first vertex (1,0). 
The only movement possible is in the 
+ x2 -direction from (1,0). A unit move in this 
direction yields 

df = Vf( 1,0) dx = - 1 

The only move admissible is toward (1/2, 
1). A unit move in this direction is obtained 
from 

dx: 

V?' 
2 

2. 

which causes a change inf, 

df = Vf(\M2)dx = + y/T- ^1=^Z> o. v 2 2 

Therefore, / may not be decreased in moving 
from the vertex (1, 1/2) so this point is the 
solution of the problem. 

The idea of moving from vertex to vertex is 
good for visualization but is poor for higher 
dimensional problems. The same idea, how- 
ever, can be implemented algebraically. In 
order to obtain relations which will be re- 
quired for solution of LP, define slack vari- 
ables w!,..., u    so that 

Ax ~ C = u > 0. (3-12) 

The cost function of Eq. 3-5 will be denoted 
by the variable 

w=BTx. (3-13) 

The problem LP now takes the form 

Ax - C - u = 0 

x > 0 

u > 0 

w = BTx = minimum 

LP'. 

which decreases f. Move in this direction to 
the first vertex (1, 1/2). 

The solution of LP' is the same as the solution 
of LP. 
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The information contained in Eqs. 3-12 

and 3-13 is contained in the following matrix 

equation (called the simplex tableau): 

an    al2   ...   aln      _ct      xt        ux 

-c2 

«ml   am2 

bx      b2 bn     ! 0 

(3-14) 

Eq. 3-14 may be viewed asm + 1 equations 
involving the variables xt ,..., xn, ult... ,um, 

w. At present Eq. 3-14 may be interpreted as 

determining ux , ..., um , and w explicitly in 

terms of xl,..., xn . It might be desirable to 

determine some other combination of m + 1 

of the variables in terms of the remaining n. 

Except in singular cases, this is possible. 

Assume now that m + 1 of the variables .?i, 

..., sm , and w have been determined explicitly 

in terms of the remaining« variables^ ,..., rn . 

Eq. 3-14 will then take the form 

[- 

«11 «12 

«21 «22 

«mi a'mi 

b\ b'2 

«2H      - C2 

umn       <-m 

r2 «2 

(3-15) 

b'n I 

where primes denote coefficients obtained 
when the original set of equations is solved 
forsj,..., sm ,and w. 

The  solution of LP will be  constructed 

3-6 

using a method which is based largely on 
Theorem 3-3. 

Theorem 3-3: If in Eq. 3-15 b'. » 0, i = 1, 
..., n, and_c^ > 0, j = 1, ..., m, then the 
solution of LP is 

rt = 0, i = 1,..., n 

Si = -^J= 1,..., m 

w = 6. 

It is clear from this theorem that any 
method of choosing the variables sf and r, 
which wiU terminate with non-negative entries 
in the last row and column, except perhaps 
for 6, will serve as a method of solving LP. 
Before developing such a method, several 
definitions will be helpful. 

Definition 3-5: In Eq. 3-15, the variables 
s.,j = 1 m, are called basic variables, while 
the variables r., i = 1,..., n are called nonbasic 
variables. 

Definition 3-6: The set of variables Sj,..., 
s
m • ri >■••> r„ will be called abasicpoint. If c. 

< 0,;' = 1,..., m, in Eq. 3-15, then the basic 

point  will be  called a basic feasible point. 

A certain geometric interpretation may 

now be given for the nonbasic variables. In 

LP' it is clear that the boundary of the 

constraint set of LP is obtained by setting 

various combinations of the variables xt, / = 1, 

..., n and «;-, / = 1,..., m, equal to zero. In the 
spaced" of the design variable x, a vertex of 
the polyhedral constraint set is obtained by 

having n equality constraints among the xv i = 
1, ..., n, enforced. By the discussion, this 
occurs when r. = 0, i = 1,..., n. An edge of this 
polyhedron is a line inR" obtained by setting 

r. = 0 for n — 1 indices i. From Def 3-6 and 
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Ey. 3-15, it is clear that a basic feasible point 

corresponds to a vertex of the polyhedral set. 

This is true since setting the nonbasic vari- 

ables of the basic feasible point equal to zero 

yields admissible basic variables. Further, two 

vertices lie on the same edge of the constraint 

set if they have n — 1 of their nonbasic 

variables in common. 

The process for interchanging the roles of a 

basic and a nonbasic variable thus becomes 
the central tool for methods based on Theo- 
rem 3-3. Suppose it is desired to make s. a 

nonbasic variable and r, a basic variable. If a'., 

i= 0 then the ith equation from Eq. 3-15, 

a   rx +...+ai/rj+... +ainrn _c,=s; 

may be solved for r. to obtain 

»V = r '"I '    a.-     a.. v       v 

y-i 

+ ... + *kn 

a- a, ■ in   kj 

aU 

j-i 

Li"k/ 

It is thus clear how the coefficients in Eq. 

3-15 change as the roles of a pair of variables 

are interchanged. This process may be de- 

scribed concisely in the language of Definition 

3-7. 

Definition 3-7: The entry aL =£ 0, preced- 

ing Eq. 3-16, is called the pivot of the 
transformation. The transformation itself is 

called a.pivot step. 

The effect of the pivot step on the coef- 

ficient matrix of Eq. 3-15 may be illustrated 

easily by the diagram 

V1 

aH 
;+i 

a!. r"' 
v 

(3-16) r l a 
p (X — — — 

-> p 

V 
P 

"ÖJ3 
fl 

7J _p P 

(3-18) 

Using this expression for rjt r- may be 

eliminated from the left sides of the remain- 
ing equations in Eq. 3-15. For k # / this yields 

'ii"kj 

*k\ 

"kj- 

aij-xakj 

aU 
/-I 

*kj+1 ■ aii+rakj 
au 

'/♦,    (3-17) 

The diagram shown by Eq. 3-18 simply relates 

that in the coefficient matrix of Eq. 3-15 the 

following changes occur. The pivot is replaced 

by its inverse. All other elements in the same 

row as the pivot are multiplied by the 

negative inverse of the pivot. All other ele- 

ments in the same column as the pivot are 

multiplied by the inverse of the pivot. All 
other elements in the matrix are decreased by 

the product of the element in their column 
and the row of the pivot, the element in their 
row and the column of the pivot and the 
inverse of the pivot. 

3-7 
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Example 3-3: 

Given ~  2 1 -4~ ~rT ■Sl" 

3 6 1 ?2 = «2 

- 5 3 2_ _1_ _w_ 

interchange the role of rl and £2. 

Solution:  The new matrix relation is 

2/3    -3   -14/3 

1/3    -  2 -   1/3 

-5/3      13       II/3JLI. 

It is shown in Ref. 3, page 53, that this 
pivoting transformation preserves the dual 
linear programming problem. 

The pivoting transformation is an organized 
tool which allows one to interchange basic 
and nonbasic variables. It remains only to 
obtain an algorithm which uses this tool and 
Theorem 3-3 to construct the solution of LP. 

3-3 THE SIMPLEX ALGORITHM 

As was shown in par. 3-2, the solution of 
the linear programming problem may be 
reduced to the choice of pivot points. The 
algorithm presented here will have two 
phases. The first phase will consist of an 
algorithm for obtaining a basic feasible point. 
The second phase will operate only with basic 
feasible points and will successively reduce 
the cost function until the hypotheses of 
Theorem 3-3 are satisfied. 

For convenience in the discussion which 
follows, it is assumed that the choice of basic 
and nonbasic variables has been made at a 

given stage of the solution process and the 
primes of Eq. 3-15 are dropped, i.e., 

am 1 

-Cl ?i S\ 

~~ cm rn Sm 

8 1 W 

(3-19) 

Primes will now be used to denote the 
coefficients that result from a pivot step 
applied to Eq. 3-19. These new coefficients 
are determined by applying Eq. 3-18. 

3-3.1  DETERMINATION OF A BASIC FEA- 

SIBLE POINT 

If some elements in the right-hand column 
of the matrix of Eq. 3-19 (other than 6) are 
negative, then the present choice of variables 
is not a basic feasible point. Let — ck be the 
negative entry nearest the bottom of the 
column (again excluding 6). Since when r. = 
0, / = 1, ..., n, sk = — ck < 0, if there are 
admissible points in the constraint set of LP, 
then it must be possible to increase sk by 
increasing some r. from zero; i.e., there must 
be some positive ak.. Choose/'0 so that ak, > 
0. This fixes the column index of the pivot. 

To find an admissible row index 
sider first that after the pivot step 

con- 

!o/o 

It is clear then that candidates for the pivot 
a. ,   must be limited to indices i for which 

'0^0 

-> 0. (3-20) 

"To 

3-8 
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With this restriction in mind, consider the 
values of c'. after the pivot step with i ¥= i0. 

These are 

■ c'. = — c,+ 
'o '/o 

% !o 

(3-2 1) 

In order  to  insure  — c't >  0, i >   k, it is 
required that 

.0.+°'°*"'°   > 0,i>k,i*L 
<o/o 

(3-22) 

ff a.,.    >   0 this clearly holds.  If au    <  0, 
i/o J '/ o 

however, the requirement, Eq. 3-22, may be 
rewritten as 

C- ig 
—L >      , i > k, ; # /'0 

Further, for / = k, 

(3-23) 

(3-24) 

The process described may be given quite 
simply as the iterativeAlgorithm LP-A: 

Step 1. Choose — ck as the lowest negative 
entry (with the exception of 6) in 
the right-hand column of the co- 
efficient matrix of Eq. 3-19. 

Step 2.  Choose any positive element ak, 
in the kth row of the matrix of Eq. 
3-19. 

Step 3. Choose z'0 asinEq. 3-25 

Step 4. Perform the pivot step with pivot 
a.   ■  . 'o/o 

Step 5. If any — cj < 0, i= 1,..., k, choose 
that one with largest index / and 
return to Step 1. If - c. > 0,i= 1, 
.... m, then a basic feasible solution 
has been found and the process 
may be terminated. 

3-3.2 SOLUTION OF LP 

since a n   > 0. 
K/O 

Inequalities, Eqs. 3-23 and 3-24, show thai 
if iQ is chosen so that 

^ = min   [X   I _fL   > 0 \ (3-25) 
Vo   i>k Wo   ' aHo 

then — c\ > 0, i > k and — c'k > — ck. If — ck 

is still negative, the process may be repeated. 
Otherwise choose the next entry above — ck 

which is negative and repeat the process. 

If all the cjy i > k are nonzero, only a finite 
number of basic points are possible since the 
process is monotone (nonrepeating). If there 
exists a point with — c. > 0, i=\, ..., m, this 
process must find it. The degenerate case in 
which some c, = 0, / > k is discussed later. 

In par. 3-3.1 an algorithm is given for 
finding a basic feasible point. Once this has 
been accomplished, the object is to find a 
second algorithm which successively reduces 
w. 

Since by Eq. 3-19, w = b^rx +... + bnr   + 
6, it is clear that if b.    <  0 for some; =/„ /o ° 
then w may be reduced by increasing r.   from 
zero. If a pivot step is performed which makes 
r. a basic variable then w will be decreased, /o 
The choice of the basic variable s.   which is 

'0 
to be made nonbasic must be made in such a 
way that the point obtained after the pivot 
step is still a basic feasible point, i.e., so that 
— c. > 0, i = 1. ..., m. However, this is 
precisely the restriction which led to the 
choice of i0 in par. 3-3.1. Therefore, the same 
procedure for choosing ('0 may be employed 
here. 

3-9 
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Since w'= w — ci0bj0/ajo/0, the pivot step 
determined here guarantees w' < w provided 
all — c. > 0, i = 1, ..., m. In this case, 
therefore, only a finite number of pivot steps 
may be made, and the process must terminate 
at the solution of the linear programming 
problem. Termination occurs when*' > 0,/ = 
1,..., n. Theorem 3-3 shows that this is the 
solution of the linear programming problem. 
The degenerate case where some c( = 0 will be 
discussed par. 3-3.3. 

Viewed geometrically, the difficulty occurs 
because the path which successive basic points 
follow on the polygonal constraint boundary 
may form a closed loop. To prevent this 
behavior with only a small error in the final 
solution an entry, — c., which is zero, is 
replaced by an arbitrarily small parameter E > 
0. The problem is not degenerate any longer 
and cycling cannot occur. Therefore, the 
altered problem will proceed toward the 
solution. 

This process is given explicitly mAlgorithm 
LP-B: 

Example 3-4: Use the simplex algorithm to 
solve the LP 

Step 1. Choose any negative entry (except 
6) b, in the bottom row of the 
coefficient matrix of Eq. 3-19. 

Step 2. Choose ;'0 according to Eq. 3-25 
withfc = 1. 

Step 3. Perform the pivot step with pivot 

Step 4. If any bf < 0, j = 1,..., n, choose 
one bj < 0 and return to Step 1. 
If bj > 0, / = 1, ..., n, then the 
solution of LP has been found. 

3-3.3 THE DEGENERATE CASE 

In both pars. 3-3.1 and 3-3.2 the computa- 
tional algorithms could have problems if some 
c. = 0. This situation is called degenerate since 
when n constraints are made equalities by 
putting r. = 0, / = 1,..., n, one has s. = c(. = 0 
which means that still another constraint is an 
equality. The degeneracy arises from the fact 
that in LP the n dimensional design variable x 
= (Xj, ■■■,xn) satisfies n +1 linear equalities. 

Therefore, the n + 1 equations are not linearly 
independent. 

minimize 2Xi + 9x2+ x3 

subject to 

x1 + Ax 2+2*3 s. 5 

3^! +x2 + 2x3 > 4 

xl > 0 

*2 s> 0 

Xi > 0. 

First, LP is: 

minimize w where 

'14 2-5' 

3    1 2 -    «•      X7 

L2  0   1      0. 

subject to 

xi > 0,   /= 1,2, 3, w. > 0, /= 1, 2 

3-10 



AMCP 706-192 

For the first pivot step in algorithm LP-A, 
k = 2. Choose j0 = 1 since a21 = 3 is the 
largest element in the second row. i0 = 2 is 
the only choice available in Eq. 3-25 and 

C2 

a22 
1 - 4> 0. 

The pivot is a22 
=  1- This pivot step inter- 

changes u2 
and x2' The result is 

11    4    -6    11 

3      1-24 

L-25   9    - 17   36. 

Note that this basic point is already a basic 
feasible point so that the process now trans- 
fers to algorithm LP-B. Since b't is most 
negative, choose;0 = l.Now, 

ci C2    _4_ 

*1 «1 

"2 - x2 

*3 _w_ 

I- 

Ml a2l 

so z0 = 1. The pivot is then at t = — 11. The 
result of a pivot step is to interchange Xj and 
M, . This results in the basic feasible point 

Z. l/ll      4/11 -6/11      1 

3/11  - 1/11 -4/11       1 

_25/ll   - 1/11 -37/11   11J 

"l Xi 

«2 = x2 

x3 
w_ 

j_, 

pivot step leads to 

- 1/6      2/3  -11/6 11/6" 

1/3 - 1/3        2/3 1/3 

_ 17/6  -7/3      37/6 29/6_ 

Put/0=2, 

Cy C2 

    = -11/4,    =   1, 
fl12 a1 2 

so i0 = 2 and a2 2 = — 1/3 is the pivot. A pivot 
step yields 

«1 ^3 

«2 ^2 

*l W 

.1- = 

"1/2 -2 - 1/2   5/2" 

1 - 3 2       1 

J/2 7 3/2   5/2_ 

u, x{ 

■«2 
= 

»2 

■«1 
W 

.1- 

Since this is a basic feasible point and the 
first three elements in the third row are 
positive, then the solution is immediate. The 
nonbasic variables are zero, 

«i = Xj =x2 =0 

and the basic variables take on the value 

*3 = 5/2, u2 = 1, and w = 5/2. 

Therefore, the solution to the original LP is 

Choose /'0 = 3. 

c, c2 
  = 11/6,   = 11/4, 
«13 Q23 

so J'Q =  1. The pivot is a22 = — 6/11 and a 

x2 = 0 

x3=5/2. 

The minimum value of f(x') attained is 5/2. 

3-11 
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3-4 MINIMUM WEIGHT TRUSS DESIGN 

As will become apparent in subsequent 
chapters, most optimal design problems are 
nonlinear. Even the problems considered in 
this paragraph appear at first glance to be 
nonlinear. However, it is shown that the 
problem can actually be solved as a linear 
program. This will not be the case in general. 
The class of problems and their solutions that 
are discussed in this paragraph are taken from 
an outstanding paper by Dorn, Gomory, and 
Greenberg (Ref. 5). Similar results have been 
reported more recently (Ref. 6). 

linearly independent equations in Eq. 3-26. 

ff a is the maximum allowable stress (both 
tensile and compressive) for the material from 
which the truss is constructed, then stress 
constraints are 

I Sf I < oAf (3-27) 

Further, if p is the weight density of the 
structural material, the total weight W of the 
truss which is to be minimized is 

W-. p  £ V/ (3-28) 

The problem treated here is minimum 
weight design of plane trusses with constraints 
on stress. The initial restrictions on the truss 
include only the location of joints in the 
truss. The loads to be supported by the truss 
are applied at joints. A member with non- 
negative cross-sectional area is allowed to 
connect each pair of joints. If there are ß 

joints, there may be M(M — 0/2 members in 
the truss. In general, then, statically indeter- 
minate trusses are allowed. 

Let A., j 1, .... n, denote the cross- 
sectional area of jth member and S. the load 
in that member due to the external loads 
applied to the truss; S. > 0 denotes tension. If 
m = 2;u,then equilibrium of the joints of the 
truss is specified by the equations 

where fi. is the length of the jth member. 

The problem of minimizing W of Eq. 3-28 
subject to the constraints of Eqs. 3-26 and 
3-27 is not the complete truss design problem. 
In addition to the equilibrium conditions of 
Eq. 3-26, a set of compatibility conditions 
between displacements of the joints must be 
satisfied. These compatibility conditions will 
be nonlinear in the variables S. and A,. In its 
complete formuiation, then, the truss design 
problem is not a linear programming problem. 
It will be shown, however, that if the com- 
patibility conditions are ignored and the 
problem described by Eqs. 3-26, 3-27, and 
3-28 is solved, its solution satisfies the com- 
patibility conditions and is, therefore, the 
solution of the truss design problem. 

jZ 1 a« St ■F, i=l, (3-26) 

where F. are components of applied forces at 
the joints, and a., are direction cosines of the 
elements of the structure intersecting the jth 
joint. All a., are zero if the jth element does 
not intersect the point of application of F.. In 
order to satisfy three equilibrium equations 
for the applied loads (including reactions at 
supports), it is assumed there are m*   = m — 3 

Recalling that compatibility relations are 
being ignored, it is required that 

I a. 1 =aA;., /= 1,..., n. (3-29) 

This is true since if IS, I < aA- for some;, then 
A. could be reduced with an accompanying 
reduction in W. The constraint, Eq. 3-27, is 
therefore replaced by Eq. 3-29. The reader 
should note that this argument would not be 

3-12 
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valid if compatibility conditions were being 

enforced, since a reduction in some A. may 
result in a violation of a constraint not 
involving,4. explicitly. 

Since by Eq. 3-29,4- = —\S-1, the optimiza- 
tion problem is now to minimize 

LP', namely, find* to minimize 

BTx 

subject to 

Ax- C = 0 

(3-30) 

(3-31) 

W=— 2   |S|£, 
x> 0. (3-32) 

a t =i /' / 

subject to Eq. 3-26. In order to treat this 
problem as a linear programming problem, 
define 

s; = { 

si=< 

Now, 

srs;sr 

Sj, ifSf> 0 

0,   if Sf < 0 

0,   if 5) > 0 

-Sjt if 5) < 0 

and 

\Si\=S*+Sr 

Denote 

*  =(s? ,...s; ,s; ,...,s- > 

CT =(Ft  Fm), 

A   -(aift  -av)m x2„ 

This linear programming problem may now 
be solved by the simplex method. Before the 
solution of the linear programming problem 
can be taken as the solution of the truss 
design problem, however, it must be shown 
that it satisfies the compatibility conditions. 
It is clear that if the truss specified by the 
linear programming problem is statically 
determinate, it satisfies the compatibility con- 
ditions trivially (i.e., there are no compatibil- 
ity conditions). For the analysis here, stat- 
ically determinate is taken to mean that the 
member forces 5 are uniquely determined by 
the given loads and the equilibrium conditions 
of Eq. 3-26. 

As pointed out in Ref. 5, page 32, there 
will be m* possibility nonzero components of 
x (basic variables) in the solution, correspond- 
ing to linearly independent columns of the 
matrix A ; i.e., only m* of the Sy will possibly 
be nonzero. According to Eq. 3-27, then, only 
m* of the areas may be nonzero. Further, 
since the rank of A is m*, the member forces 
are uniquely determined. The resulting truss 
is, therefore, statically determinate and hence 
is the solution of the original truss design 
problem. 

and 

BT =±.ih,...,K,K...An) 

In this notation, the problem is of the form 

It is pointed out (Ref. 5) that the simplex 
method for solving many member truss design 
problems is relatively time-consuming. It is 
proposed that the method be refined for this 
class of problems to obtain a practical method 
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of solving engineering design problems. Sever- 
al examples are solved in considerable detail 
in Ref. 5; the results of one of these problems 
will be discussed here. 

subinterval, the member sizes are different. A 
plot of W vs a and the forms of optimal 
trusses are shown in Fig. 3-4. 

A bridge truss is to be designed to span two 
points, 1 and 13 of Fig. 3-3. Three vertical 
levels of joints are allowed with five horizon- 
tal sets, a total of 15 points, as shown in Fig. 
3-3. In the general case there could be 
15(14)/2 = 105 members in the truss. Loads 
on the floor of the truss are shown in Fig. 3-3. 

n 
9- 12- 15- 

i_* 
H+-: 

11- 14- 

10- 

I t    r 

Figure 3-3. Admissible Joints for Bridge Truss 

In the solution presented in Ref. 5, it is 
assumed that the truss is symmetric about the 
line of joints 7-8-9. This assumption reduces 
the number of variables to 57. Further, due to 
the assumed symmetry, there are only 14 
independent equilibrium conditions. There- 
fore, there will be only 14 members which 
can be nonzero in the optimum truss. In the 
solution presented in Ref. 5 the problem is 
made nondimensional by defining a = h/Z and 
ß = H/V, where h and 2 are the vertical and 
horizontal spacing, respectively, and H and V 
are applied loads shown in Fig. 3-3. 

The solution presented in Ref. 5, page 45, 
for a fixed value of ß(ß = 1) shows that there 
are three subintervals of values of a on each 
of which the truss has a constant geometrical 
form. For different values of a within a given 

3-14 

24 

22 

20 

18 
16 

14i 
,2 

<3V?t> 

Figure 3-4. Optimum Bridge Trusses 

The discussion here only touches on the 
highlights of the very complete treatment of 
the truss design problem in Ref. 5. The 
interested reader is encouraged to study this 
outstanding article in detail. 

Before leaving the truss design problem, a 
point of interest in the present results and in 
the results obtained in future chapters may be 
noted. In Fig. 3-4 it is clear that at two values 
of a the form of the optimal truss changes 
form drastically. Still, even though the 
topology of the structure is not continuous in 
a, the weight apparently is a continuous 
function of a. The same sort of behavior 
occurs in a beam design problem with con- 
straints on deflection which is discussed in 
par. 7-4. These problems might lead one to 
suspect that there is some basic mathematical 
structure of the optimal structural design 
problem that has not been uncovered. 

3-5 AN APPLICATION OF  LINEAR PRO- 
GRAMMING TO ANALYSIS 

. A major application of linear programming 
in engineering  design is, oddly  enough, in 
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nonlinear programming. It is seldom that a 
realistic engineering design problem can be 
formulated as an LP. Realistic problems are 
generally nonlinear when considered as a 
function of both state and design variables. 
Several techniques of solution of nonlinear 
programming problems are based on approxi- 
mation of the nonlinear problem by a linear 
one, at least locally. These methods then 
require that the approximating LP be solved. 
This subject will be deferred until a discussion 
of the general theory of nonlinear pro- 
gramming has been given. 

A second application of linear pro- 
gramming which is of concern to the engineer 
is in the solution of linear boundary-value 
problems that arise in such fields as con- 
tinuum mechanics. It should be emphasized 
here that this application is not of an optimal 
design nature, but rather falls in the field of 
engineering analysis. 

One of the important methods of solving 
linear boundary-value problems is to approxi- 
mate the solution by a linear combination of 
known functions. The question arises, "How 
should the coefficients be chosen so as to 
obtain the 'best' approximation to the true 
solution?" "Best" may be defined in many 
ways. A relatively new concept of "best" will 
be discussed in this paragraph. 

The general linear boundary-value problem 
may be stated in operator notation as 

tial equations onXj o x o x2 

m d'z 
L[z]=   2   fl(jt)   —- 

i = o '        ax' 

and the boundary operator is 

Biz] = Az(xy) +Bz(x2). 

(3-35) 

(3-36) 

In the case of partial differential equations, 

L[z] =    2       ajx). 
la Km 

aV1...a*„ " 

and the boundary operator is 

Biz] = A(x)z(x),xonr . 

(3-37) 

(3-38) 

The method to be discussed treats both the 
partial and ordinary differential equations in 
the same way. Let 0-00, / = 1,.... k satisfy the 
homogeneous differential equation 

L[<t>A =0,inJ2. (3-39) 

Further, let 0O (x) be found such hat 

L14>0] = Q{x),mSl. (3-40) 

Since the operator L   is linear   the new- 
function 

L[z]=Q(x),    xinft 

B [z] =q(x),   x onT 

(3-33) 

(3-34) 

where Q, is the domain of the independent 
variable X<ER" and T is its boundary. The 
dependent variable is a vector function of x, 
z(x) in Rm . In the case of ordinary differen- 

2=0+2     c-0.(x) 
u      / = 1      '     ' 

(3-41) 

satisfies the differential Eq. 3-33 regardless of 
the value of the constants c The object is 
now to find these constants so that z satisfies 
the boundary conditions of Eq.3-34 as closely 
as possible. 

3-15 
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Define 

\\B[z] -q \Bi[z] -<?,. |.   (3-42) 

In this notation, z will be the solution of the 
boundary-value problem if and only if 

\\B[z{ _<?(*) ||=0 

for all points x onF. 

(3-43) 

The method to be treated here attempts to 
minimize the error in Eq. 3-43 at a large 
number of points xR, Q = 1,. . ., L, on T. 
Define 

Example 3-4: Obtain an approximate solu- 
tion of 

_ d2z       d^z_      1      dz 
dxj       ox\       x    dx 

m£l={{xl,x2)\\xl | < 1, 0 < x2 < 1 } with 

z + -£- = 0onr = {(*,,* )| |JC  | = 1, 
on i    J.        L 

x2 = 0 or x2 = 1 (3-49) 

where n is the interior unit normal to T. 

7=   s   II £[!(**)] -?(**) (3-44) Put 

The object now is to choose the constants c. 
so as to minimize y. To see that this is a linear 
programming problem, note that Eq. 3-44 is 
equivalent to 

5,.[z(x8)] -<7,.(x*)< T 

and 

-B,[7(xe)] +<?,(xe)< y 

for all i and Q. 

(3-45) 

(3-46) 

Note that Eqs. 3-45 and 3-46 are linear in 
the c, and y. Since the 9 may be either 
positive or negative, it is necessary to define 
new constants cj > 0 and cj > 0 such that 

c,=cj -cf ■ (3-47) 

Now, the problem of choosing y, c+, cT (all 
non-negative)   which   satisfy Eqs.  3-45   and 
3-46 and which minimize 7 is clearly a LP. 
Further, it is just a restatement of the best 
approximation criterion of Eq. 3-44. 

\ (3-50) 

03 =%x\ -24x\x\ + Zx\. 

Note that these functions satisfy Eqs. 3-39 
and 3-40. 

The domain $2 and its boundary Y are 
shown in Fig. 3-5. Partial derivatives with 
respect to the interior normal are shown. 

X 
2 dz _     dz 

dn ~    dx2 

\ 

dz _ dz 
an    dx. 

—*■ n 
. n 

t 

n 

n 

1 
dz _ 
dn~ 

dz 
dx 

dz _ dz 
dn    dx„ 

Figure 3-5. Boundary Condition for 
Example 3-4 
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The procedure is now to form 

*= \x\ ^c^c,{2x\ -x\) 

+ c3(&x* -2Ax\x\ + 3*«) 

and, with the aid of the expressions for dz/dn 
in Fig. 3-5, compute z + dz/dn at L points 
around the boundary T. At a typical point, 
e.g., (1, 1/2), 

_      (E       1 
z +   —   = — +c, -(1 1/4lc, 

a«        16 

_(285/16)c3. 

At this point it is required that 

1/16 + (c\ -c~) - (11/4) (c+
2-c-) 

-(285/16)(C
+

3-C3)Q7 

and 

_1/16_(C; _c-) + (ll/4)(c+
2-c2) 

-(285/16) (c+ -cp<7- 

AMCP 706-192 

Similar inequalities in the c*, cT, and 7 will be 
obtained at all other boundary points chosen. 
Under the requirements c* > 0, c~> 0, and 
y > 0, the problem of minimizing 7 is then 
solved. 

Rabinowitz in Ref. 1, page 141, reports 
that an approximate solution obtained by the 
above method is 

Cl =-0.5571, c2 = 0.0764, c3 = 0.0024, 

7 = 0.0053. 

This means that at all the boundary points xe, 
I 7 + dz/dn I < 0.0053. A result called a 
maximum principle from the theory of 
second-order elliptic partial differential equa- 
tions then implies 

|Z(JC) -z(x) 1 < 0.0053, x in ft 

where z(x) is the true solution of Eqs. 3-48 
and 3-49. This powerful result guarantees that 
the approximate solution z generated by 
linear programming is within 0.0053 of the 
true solution throughout SI. 
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CHAPTER 4 

NONLINEAR PROGRAMMING AND FINITE 
DIMENSIONAL OPTIMAL DESIGN 

4-1   INTRODUCTION TO THE THEORY OF 
NONLINEAR PROGRAMMING (NLP) 

As pointed out in the preceding chapter, 
inequality constraints play a central role in 
engineering design problems. The inequalities 
treated in Chapter 3, however, are of a rather 
special form, namely, they involve only linear 
functions of the variables of the problem. It is 
a rare real-world design problem which can be 
put into this form. In general, the inequality 
constraints as well as the cost or return 
function in real-world problems are nonlinear. 
For this reason, a more general theory than 
that presented in Chapter 3 is needed. 

The class of problems considered here is 
called nonlinear programming, or math- 
ematical programming. A vast amount of 
literature has been devoted to this class of 
problems in recent years. Several books on 
the subject which contain reviews of this 
literature are Refs. 1,2, and 3. In view of this 
extensive literature, the purpose of this para- 
graph is simply to state the nonlinear pro- 
gramming problem and present some key 
results needed in the study of methods of 
optimal design. 

4-1.1   NONLINEAR 
PROBLEMS 

PROGRAMMING 

For convenience and clarity in the develop- 
ment of methods of solution, the nonlinear 
programming problem will be stated in two 
forms. The first form is given by Definition 
4-1. 

Definition   4-1: The  first   nonlinear   pro- 
gramming problem NLP, is: find xeR" to 

minimize f(x) 

subject to 

g(x) < 0 

where      g(x) = 

\ NLP 

(4-1) 

(4-2) 

Unless otherwise specified, it will be 
assumed that f(x) and g(x) are continuously 
differentiable. Other than this differen- 
tiability requirement, f(x) and g(x) are as 
general as required for a particular problem. 

A second form of nonlinear programming 
problem, which may actually be included in 
NLP, is given by Definition 4-2. 

Definition 4-2: The second nonlinear pro- 
gramming problem NLP', is: find xeR" to 

minimize f(x) 

subject to 

g(x)«; 0, NLP' 

(4-3) 

(4-4) 

(4-5) 
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gl (x) 
where      g(x) = 

Jm(x)_ 
and I—         -. 

Ä,(X) 

h(x) = 

-V*>_ 

Unless otherwise specified, it will be 
assumed that f(x), g(x), and h(x) are con- 
tinuously differentiable. 

Very much as in the linear programming 
problem, the points x which satisfy the 
constraints of NLP and NLP' are charac- 
terized by Definition 4-3. 

Definition 4-3: The sets of points x&Rn 

that satisfy the constraints NLP and NLP' are 
called constraint sets. They are denoted 

D = {x^R" | g(x) < 0 ) 

for NLP, and 

D' = { x^R" | g(x) <   0 and h(x) = 0 } 

for NLP'. 

For convenience, Theorem 2-2, which was 
stated previously in Chapter 2, is given here 
(Theorem 4-1) as it applies to nonlinear 
programming problems. 

Theorem 4-1:  If f(x) is continuous on D 
(D'Jand this set is closed and bounded ini?" , 

then NLP (NLP') has a solution which is an 
absolute minimum of/Cx) mD  (D') . 

This theorem is one of the most easily 
obtained yet most powerful results in opti- 
mization theory. It guarantees existence of a 

solution with only very mild assumptions. 
This result is a consequence of properties of 
R" . In the infinite dimensional optimization 
problems of Chapter 6, the space of variables 
lacks these properties so that no analogous 

result is available. 

Theorem 4-2 provides an easy test for 
closedness of the constraint set. 

Theorem 4-2: If the functions g(x) and 
h(x) are continuous, then the sets D and D' 
are closed in Rn . 

The boundedness hypothesis of Theorem 
4-1 may be more difficult to check, par- 
ticularly in complex problems. One must 
show that there exists a number a such that if 
xeD or D1, then xTx < a. 

To see that NLP' can actually be included 
in NLP, define 

8i + m (x) = hl(x)J= l,..-,p 

and 

gi + m+p(x)=- ft.(x), i= 1,...,p. 

Now, NLP' is equivalent to the NLP: 

minimize f(x) 

subject to 

£00 * 0, 

where      g(x) = 
gi  (■*) 

gm+lp(X> 

This is true since 

£,-(*)< 0, i=m + 1,..., m +2p 
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is just 

hjix)* 0,j = l,...,P 

and 

-*/*)< 0,/= l...,p 

which is equivalent to 

h(x) = 0. 

It should be clear that problems of maxi- 
A 

mizing fix) are put into the form NLP or 
NLP' simply by defining fix) = — fix). 
Further, constraints of the form g(x) > Oare 
transformed to the proper form simply by 
defining g(x) = — g(x). These transforma- 
tions involve no theoretical or practical diffi- 
culty. As will be seen in par. 4-2, even though 
the transformation of NLP' into NLP involves 
no theoretical difficulty, severe practical diffi- 
culties occur. The explicit characterization of 
equality constraints in NLP' will be useful 
later, when methods of constructing solutions 
are discussed. 

Comparing nonlinear programming prob- 
lems with the unconstrained problems of 
Chapter 2, one might conclude that the 
nature of the cost function fix) will deter- 
mine the location of the minimum point, with 
only a check required to verify that con- 
straints are satisfied. Since the linear pro- 
gramming problem is a special case of the 
nonlinear programming problem, the results 
of Chapter 3 show vividly that this conclusion 
is false. In the linear problem, the cost 
function plays only a minor role in the 
simplex algorithm and most of the computa- 
tional effort is expended operating on the 
constraint functions. 

While results from the linear programming 
problem yield valuable insight into the non- 

linear programming problem, one must be 
careful not to generalize too much. To 
illustrate some differences between linear and 
nonlinear programming, two examples will 
now be treated. 

Example 4-1 : 

Minimize 

fM = (Xi -3)2 +(x2 -3)2 

subject to constraints 

— xx < 0 

—x2 < 0 

x, +x2 - 4<0. 

The constraint set is the shaded triangular 
region in Fig. 4-1. 

(4,0) 

(0, 0) (4,0) 1 

Figure 4-1.  Graphical Solution of Example 4-1 

If the constraints are ignored,/(x) takes on 
its minimum at the point (3,3). Observing the 
circles, which are plots of constant value 
curves of fix), it is clear that the smallest 
value f{x) takes on in the shaded triangle is 
/(2,2) = 2. This is, therefore, the solution of 
the problem. 

It should be noted that even though the 
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solution occurred on the boundary of the 
constraint set, it did not occur at a corner as 
it would have if the problem had been linear. 

Example 4-2: 

Minimize 

f(x)=(Xl _1)2 +(x2 -l)
2 

subject to the constraints 

— X[ < 0 

— x2 < 0 

*i +x2 ™4< 0. 

The constraint set is just the same as in the 
previous problem. The cost function, how- 
ever, has been modified. 

If the constraints are ignored, ftx) takes on 
its minimum at (1,1). Since this combination 
of design variables satisfies the constraints, it 
is the solution of Example 4-2. The solution 
of this nonlinear programming problem, 
therefore, occurs in the interior of the con- 
straint set. This behavior contrasts sharply 
with that of linear programming problems 
where the solution must occur on the bound- 
ary of the constraint set. 

These examples show conclusively that the 
properties of NLP, and hence, also NLP', 
differ considerably from those of LP. 

Theoretical results and computational 
methods for NLP and NLP' will also be more 
complex than those for the linear pro- 
gramming problem. The reason for this is 
clear. Strong use was made of linearity of the 
functions involved in the linear programming 
problem, and this linearity is not present in 
the   nonlinear   programming   problem.   The 

increased complexity of nonlinear as opposed 
to the linear problems is not surprising since 
increased complexity generally accompanies 
this transition in all mathematical disciplines. 

Due to the complexity of NLP and NLP', 
methods of obtaining their solutions are 
generally computational in nature. Moreover, 
in many meaningful engineering problems, 
convergence proofs are not available so the 
designer must depend heavily on his engineer- 
ing intuition. One must be extremely careful 
in applying engineering intuition to certain 
aspects of optimization problems, however. In 
most problems of engineering analysis, exis- 
tence and uniqueness of solutions are taken 
for granted since these properties hold for 
very general classes of problems such as linear 
elasticity, dynamics, circuit theory, and struc- 
tural analysis. Existence and uniqueness ques- 
tions in optimization problems are, however, 
by no means trivial. For instance, before the 
designer commits himself to a design based on 
an optimum obtained by a computational 
algorithm, he should seriously consider the 
possibility that this optimum is only relative 
and an absolute optimum exists that will give 
much better results. 

Due to the weakness of intuition in dealing 
with optimization problems and the inherent 
complexity of these problems, the importance 
of theoretical results concerning existence, 
uniqueness, and necessary and sufficient con- 
ditions cannot be overemphasized. The re- 
mainder of this paragraph and par. 4-2 are 
devoted to these questions, while pars. 4-3 
through 4-5 contain methods for obtaining 
solution of NLP and NLP'. 

4-1.2  GLOBAL THEORY 

In nonlinear programming problems one 
often obtains a relative minimum of f(x) in 
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the constraint set. The question arises, "Is this 
relative minimum an absolute minimum?" In 
general problems it is difficult to answer this 
question. There is a class of problems, how- 
ever, in which this question is easily answered. 
This class is described by Definition 4-4. 

Definition 4-4: If D (D') is a convex set 
and fix) is convex onfl (D') then NLP (NLP') 
is called a convex programming problem. 

Theorem A-l, Appendix A, guarantees that 
if gj(x)> i= 1, —, rn, are convex functions, 
then the set D is convex. Since the equalities 
(Eq. 4-5) in NLP' define a surface inR" , it is 
clear that D' is the intersection of that 
surface with the set { xe^lg^x) =s 0, i = 1, 
..., m) . The surface is convex if and only if it 
is a plane, or equivalently, if and only if each 
hXx) is linear in x. Since by Theorem A-6, 
Appendix A, the intersection of two convex 
sets is convex, D' is convex if g((x), i = 1,..., 
m, are convex and hXx),j = 1,..., p are linear. 
The class of problems NLP' which are convex 
is, therefore, quite restricted. 

As will be clear from what follows, con- 
vexity is a very desirable property. However, 
in the real world, many optimization prob- 
lems are nonconvex. In spite of this fact, the 
study of convex problems is justified. Many 
results which hold only in convex problems 
have led to constructive methods which are 
effective for finding local extrema in noncon- 
vex problems. Some of these methods would 
probably never have been developed if only 
general nonconvex problems had been 
treated. 

One of the powerful results which follows 
due to convexity is given in Theorem 4-3. 

Theorem 4-3: A relative minimum in a 
convex programming problem is an absolute 
minimum. 

4-1.3  LOCAL THEORY 

Without convexity it is difficult to say 
much about global properties of the solution 
of NLP or NPL'. Considerable theory is 
available, however, which characterizes local 
minima. The approach in the local theory is 
to suppose that/(x) has a relative minimum at 
a point inD orD' and then find conditions on 
fix), gix), and h(x) which must hold at this 
point. In this way, many points inZ) and D' 
may be eliminated as candidates for a relative 
extrema and perhaps relative extrema can 
even be located using these conditions. Such 
conditions, therefore, are called "necessary". 
In some problems it will be possible to obtain 
a set of conditions that, if satisfied at a point, 
guarantee that this point yields a relative 
extremum. Conditions of this kind, of course, 
are called "sufficient". 

As often happens in engineering, the engi- 
neer needs a powerful result developed in 
mathematics to solve his problem. Proof of 
this result, however, may be very complex 
and, in fact, contribute very little to the 
engineer's insight into his problems. This 
appears to be the case in many phases of 
optimization theory, in particular, in the 
study of necessary a.id sufficient conditions 
in nonlinear programming. In the remainder 
of this paragraph results will be borrowed 
from mathematical developments. 

Before meaningful results may be given for 
NLP and NLP', the following conditions will 
be required of the constraint functions g(x) 
and h(x). 

Definition 4-5: (First-order constraint 
qualification): Let x° be a point in the 
constraint setD' (orZ> if there are no equality 
constraints) and let the functions gix) and 
h(x) be differentiable at x°. Then the first- 
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order constraint qualification holds at x° if 
for any nonzero yeR" suchthat Vgj(x°)y o 0 
for each i with g.(x°) = 0 and Vh(x°)y = 0, 
then y is tangent to a differentiable arc 
passing from x° into the constraint set. 

Geometrically, this definition says that if 
the vector y is a direction which, to first 
order, appears to point from x° into the 
constraint set, then there is a curve with y as 
tangent which actually passes from x° into 
the constraint set. The conditions W,(*0)j Q 
0 forg,U°) = 0 and Vh(x°) = 0 are just first 
order perturbations of g{(x) and h(x) which 
indicate that a small move in the y-direction 
ought to do the right thing to gt(x) and 
h(x). This is illustrated in Fig. 4-2. 

2 j,w = o 

Figure 4-2.  First-order Constraint 
Qualification 

While all constraints do not satisfy the 
first-order constraint qualification, the follow- 
ing theorem (Ref. 1, page 19) identifies a class 
of constraints which do. 

Theorem 4-4: If g(x) and h(x) are differ- 
entiable at x° in D' and if the gradients 
Vg;-(*°), for i wifhg.(jc°) = 0, and Vh^x0) 
are linearly independent, ; = 1,. . ., p, then 
the first-order constraint qualification is satis- 
fied. 

In this result, and in fact, in the remainder 
of this paragraph, the problem NLP' is de- 
scribed. It is clear, however, that putting/» = 0 
in NLP' yields NLP. One of the principal 
results of nonlinear programming may now be 
stated. For proof the reader is referred to Ref. 
1, page 20. 

Theorem 4-5: (Kuhn-Tucker Necessity 
Theorem): Let the functions f(x), g(x), and 
h{x) be differentiable and let the constraint 
functions satisfy the first-order constraint 
qualifications at a point x mD' of NLP'. In 
order that x be a relative minimum for NLP' 
it is necessary that there exist multipliers 
veRm and we Ä'' suchthat 

Vj T> 0, i = 1,..., m (4-6) 

VjgjCx) = 0, i= 1, ..., m (4-7) 

and 

V L(x,v,w) =0 (4-8) 

where 

L(x,v,w) =f(x) + vTg(x) + wTh(x)       (4.9) 

is called the Lagrangian. 

In a sense, Theorem 4-5 is an existence 
theorem. It asserts that if x yields a relative 
minimum for NLP', then the multipliers v and 
w exist and that Eq. 4-8 is satisfied. Occa- 
sionally, one will run across an argument 
attempting to justify this theorem which 
states that 

fix) =f(x) + vTg(x) + wTh(x) =L(x,v,w) 

since v is defined by Eq. 4-7 and h = 0. It is 
then claimed that since x yields a relative 
minimum  for f(x)   it must yield a relative 
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minimum for L(x,v,w), so VL(x,v,w) = 0 
must hold. This argument is not valid. For a 
rigorous proof of Theorem 4-5 the reader is 
referred to Ref. 1. 

Theorem 4-6 states additional conditions 
which are required to hold if the functions 
appearing in NLP' have two derivatives. 

Theorem 4-6: (Second-order Necessary 
Conditions): Let fix), g(x), and Mx) have 
two continuous derivatives at a point x inD'. 
Further, let the vectors \/gt(x), for all i with 
gfx) = 0, and Vh(x) be linearly independent. 
If x yields a relative minimum for NLP', then 
it is necessary that there exist v and w 
satisfying Eqs. 4-6, 4-7, and 4-8. Further, for 
every y<= R" suchthat Vgffiy = Owheng.(J) 
= 0, and Vh(x)y = 0, it is necessary that 

yT S72L(x,v,w)y > 0 (4-10) 

For proof of this theorem, see Ref. l,page 
25. Note that the existence of v and w 
satisfying Eqs. 4-6, 4-7, and 4-9 is a conse- 
quence of Theorem 4-5. Even though this 
theorem involves second-order conditions, it 
still gives only necessary conditions. 

A theorem which gives conditions which, if 
satisfied at some point, are sufficient to 
guarantee that this point yields a relative 
minimum for NLP' will now be stated. For 
proof of this theorem, see Ref. 1, page 30. 

Theorem 4-7: (Second-order Sufficient 
Conditions): Let f(x), g(x), and h(x) be twice 
differentiable functions at a point x. If for 
XED' there exist v and w satisfying 

and   if for every  nonzero yeR"   such that 
Vgj(x)y = 0 for v( > 0, Vgt(x)y < 0 ioig^x) 
= 0 and v. = 0, and Vh(x)y = 0, it is true that 

y' V   L{x,v,w)y > 0 (4-11) 

then x yields an isolated relative minimum for 
NLP'. 

It should be noted that there is a gap 
between the sufficient conditions of Theorem 
4-7 and the necessary conditions of Theorem 
4-6. Strict inequality is required in Eq. 4-11 
for a larger set of vectors y that may yield 
only equality in Eq. 4-10. It is doubtful that a 
single, tractable set of conditions exist that 
are both necessary and sufficient for the 
general problem NLP'. 

There is one class of nonlinear pro- 
gramming problems in which conditions may 
be given that are both necessary and sufficient 
for an absolute extremum. This class is the 
convex programming problem. 

Theorem 4-8: Let/(x) andg(-(x), i= 1,..., 
m, be continuously differentiable and convex, 
then necessary and sufficient conditions forx 
to be an absolute minimum point of NLP are 
that there exists veRm such that 

g0t)< 0 

vigi(x)= 0, i= l,...,m 

vi > 0, i= 1,..., m 

and 

v. > 0,i= 1,..., m 

Vjgjix) = 0,i= 1,..., m 

VL(x,v,w) = 0 

7/(3?) + £   v VgAx) = 0. 
i=i   ■     ' 

The technical presentation of par. 4-1 ends 
with this satisfying result.  Several comments 
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are, however, appropriate at this point. The 
analytic necessary and sufficient conditions of 
par. 4-1 could be used to construct solutions 
of NLP by solving systems of nonlinear 
equations. This is particularly true of the 
results of Theorem 4-8. If one reads the 
current literature, however, he is led to the 
distinct conclusion that iterative methods 
based on successive improvements are too 
effective to bypass in favor of methods that 
require solution of complicated, nonlinear, 
algebraic equations. 

Even if the results of par. 4-1 are never 
used by the designer to construct solutions of 
nonlinear programming problems, they are 
still very powerful tools. Verification of the 
hypotheses of one of the theorems may mean 
the difference between going onto the com- 
puter with the comforting knowledge that a 
unique solution exists as opposed to the 
frustrating experience of having computer 
print-out which may be meaningless. 

from the theorems stated in the preceding 
paragraph. 

4-2.1   FINITE    DIMENSIONAL   OPTIMAL 
DESIGN PROBLEMS 

The class of problems to be treated in this 
paragraph is, in a sense, a special case of the 
nonlinear programming problem NLP'. How- 
ever, by developing a theory for the new class 
of problems which takes advantage of its 
special features, a more efficient solution 
algorithm may be obtained. 

The general optimal design problem must 
have several of the features of NLP'. Namely, 
it is required to have a cost (return) function 
which is to be minimized (maximized) and a 
set of constraints that describe the perfor- 
mance demanded of the object being de- 
signed. It is in the representation of con- 
straints that the optimal design problem 
differs from NLP'. 

4-2 THEORY OF FINITE DIMENSIONAL 
OPTIMAL DESIGN 

The nonlinear programming problems of 
par. 4-1 are quite general and may be applied 
to a variety of optimization problems. As is 
frequently the case with very general formula- 
tions of problems, special features of some 
problems within the class being studied are 
not exploited. This appears to be the case 
when general nonlinear programming theory 
is applied to solve optimal design problems. 
Interpretation of certain of the variables and 
constraints in the problem NLP', in the 
context of optimal design, yields very effective 
computational methods of solution. This 
paragraph will be devoted to stating the finite 
dimensional optimal design problem, drawing 
an analogy with NLP', and stating necessary 
and sufficient conditions that follow directly 

In most problems of design in the real- 
world the object being designed is required to 
behave according to some law of physics. This 
behavior is described analytically by a set of 
variables called state variables. Further, there 
is a second set of variables that describe the 
object itself rather than its behavior. These 
variables are called design variables since they 
are to be chosen by the designer so that the 
object being designed performs its required 
function. It generally happens that the laws of 
physics that determine the state variables 
depend on the design variables so the two sets 
of variables are related. 

To illustrate the difference between state 
and design variables, consider the following 
design problems: 

1. Find the coefficient of damping in an 
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automobile shock absorber so that peak ac- 
celeration in the passenger compartment due 
to road conditions is as small as possible. 

The coefficient of damping is the design 
variable since it describes the object being 
designed, and its magnitude is to be fixed by 
the designer. Acceleration on the other hand 
is a state variable since it describes the 
behavior of the object being designed. 
Further, this state variable may be determined 
by Newton's laws of motion. Note that the 
designer has no direct control over the state 
variable. He may effect it only indirectly by 
adjusting the design variable. This is typical of 
state and design variables. 

2. Determine the size of beams to be used 
in a structure so that when a given set of loads 
are applied stresses are within certain given 
limits, the deflection of certain points on the 
structure is within given limits, and the 
structure is as light in weight as possible. 

Beam sizes are the design variables in this 
problem since they describe the structure 
being designed and they must be chosen by 
the designer. Stress and deflection, however, 
are state variables that are determined by 
equilibrium and force deflection relations. 
Again, the designer has no direct control over 
stress and deflection. He may effect these 
quantities only by varying the size of beams 
in the structure. 

In most real-world design problems the 
state and design variables are clearly identi- 
fied. In what follows, the state variable will be 
an n-vector, zeÄ", and the design variable will 
be a k-vector, beRk. The basic elements of the 
optimal design problem are described by 
Definition 4-6. 

Definition    4-6: The   finite   dimensional 

optimal design problem (OD) is a problem of 
determining beRk to 

minimize f{z,b) 

subject to 

h(z,b) = 0 

<j>{z,b) < 0 

where 

OD 

(4-12) 

(4-13) 

(4-14) 

h(z,b) 

<S>{z,b) ■ 

ht(z,b) 

hn (z,b) 

~<t>dz,b) 

(4-15) 

J 
and all the functions of the problem are re- 
quired to have first-order derivatives. Further, 
it is required that the (n + k) vectors 

3«,    9*i 

9z   '  db 
(4-16) 

are linearly independent for all i with <t>t(z,b) 
= 0 and that the matrix 

(4-17) 
d_h_ 

dz 

is nonsingular. 

The   assumption  that   the   matrix mr is 

nonsingular guarantees, by the implicit func- 
tion theorem (Ref. 4, page 181), that for 
given b there is a unique solution of Eq. 4-13 
forz. Further, the state variable z, determined 
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from Eq. 4-13 as a function of b, is differ- 
entiable with respect to b. This fact will be 
needed later when constructive methods are 
developed. 

4-2.2 LOCAL THEORY 

Since it is very seldom that the state 
equations (Eq. 4-13) are linear in both z and 
b, convexity of the constraint set and hence 
the problem will be rare. For this reason, no 
global results based on convexity will be 
discussed. In case Eq. 4-13 is linear, however, 
global results may be obtained by applying 
the Theorems 4-3 and 4-8. 

It is clear that if a new variable X<ER" 
+ is 

defined as 

(4-18) 

then the problem OD may be put into the 
form NLP'. According to Theorem 4-4, the 
first-order constraint qualification will be 
satisfied for OD (with xeR" + * as indepen- 
dent variable) if the row vectors 

<iht    bhi 

8z~' db 
i = 1, .... n (4-19) 

30, 30, 
-r-{z,b\ ~{z,b) 
Oz db 

for; with 4>-(z,b) = 0 (4-20) 

are linearly independent. Theorem 4-5 may 
now be applied to the problem OD. 

Theorem 4-9: (First-order Necessary Con- 
ditions): Let all the functions appearing in 
OD be differentiable at a point z, b which 
satisfies Eqs. 4-13, 4-14, and 4-15. Further, 
let the vectors, (Eqs. 4-19, 4-20, and 4-21) be 

linearly independent at z,b. Then there exist 
multipliers AeJ?" and peRm, with ß > 0 such 
that for 

H=f(z,b) + \Th(z,b) +jiT<t>{z,b)        (4-21) 

dH 

db 
(z,b) = 0 

— (z,6) = 0 
oz 

and 

M/0/(z,6) = O, /=!,..., 

(4-22) 

(4-23) 

(4-24) 

The proof of this theorem may be con- 
structed by simply writing down the 
necessary conditions of Theorem 4-5 in terms 
of x and then separating the components of x 
asinEq. 4-18. 

In exactly the same way the second-order 
necessary and sufficient conditions of 
Theorems 4-6 and 4-7, respectively, may 
be stated for the problem OD. No essential 
simplification of the statements of those 
theorems occurs, however, so the theorems 
are not restated here. 

Theorem 4-9, just as Theorem 4-5, is 
difficult to use in constructing solutions of 
OD. Considerable difficulty arises because one 
does not know which of the inequalities in 

OD is an equality. For problems with a small 
number of inequality constraints this may not 
be a difficult obstacle, particularly if the 
designer has a good intuitive idea of which 
constraints will be equalities. If, on the other 
hand, there are a large number of inequality 
constraints, then the number of combinations 
of constraints which may be equalities is 
large. It is, therefore, difficult to determine 
just which combinations will be equalities. An 

4-10 
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analytic solution is extremely difficult in this 
case. 

Rather than attempt to use the necessary 
conditions to construct candidate solutions, a 
more direct approach will be followed. The 
remainder of this chapter will be devoted to 
direct methods of solving NLP, NLP', and 
OD. 

4-3 SEQUENTIALLY UNCONSTRAINED 
MINIMIZATION TECHNIQUES (SUMT) 

A favorite method of solving difficult 
problems, particularly among mathematicians, 
is to reduce a difficult problem to a sequence 
of easy problems. Each of the easy problems 
is solved and if the method is any good, the 
sequence of solutions of easy problems will 
converge to the solution of the difficult 
problem. As the title might imply, SUMT 
follows just this pattern. It should be clear 
that a central part of this method must be 
results which guarantee convergence, at least 
in cases where solutions are known to exist. 

The method presented here essentially re- 
duces NLP and NLP' to a sequence of 
auxiliary problems which may be solved by 
the methods of Chapter 2. The cost function 
of NLP or NLP' is augmented by a function 
called a penalty function. The penalty func- 
tion is formed from the constraint functions 
in such a way that as a parameter approaches 
zero (or perhaps infinity) the unconstrained 
minimum of the augmented cost function 
converges to the solution of NLP or NLP'. 
Two basically different ways of doing this are 
presented here. Each has its computational 
and theoretical advantages and disadvantages 
that will be described later. 

Due to the large body of theory concerning 
SUMT, results will be presented in this para- 
graph without proof. The reader is referred 
for proofs and an extended discussion of 
SUMT to the complete and well-written text 

of Fiacco and McCormick (Ref. 1). Theoret- 
ical results guaranteeing convergence are 
presented here to indicate the level of the 
known theory of SUMT, rather than as a 
complete treatment of the subject. 

4-3.1   INTERIOR METHOD 

The interior SUMT is based on the idea of 
using the constraint functions to erect a 
barrier at the boundary of the constraint set 
D of NLP by adding a penalty function to 
fix) which approaches infinity as the bound- 
ary of D is approached from the interior. 
Once the solution of the augmented problem 
is obtained, the penalty function is altered so 
as to effect fix) less in the interior of D.This 
behavior is illustrated in Fig. 4-3. 

f(x) + Penalty Function UK     ' 

I 

/ I 

•   Penalty ""^^»«^^ 
Function (1.) / 

\ / 

,ru 

(A) 

Figure 4-3. Penalty Functions 
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As illustrated in Fig. 4-3, when the penalty 
function is decreased on the interior of D, the 
minimum of the second augmented cost 
functionx(2) is closer to the solutions than 
the minimum of the first augmented cost 
function J'. The idea, of course, is that the 
sequence of points x(,) generated in this way 
converges to x. 

It should be clear why this approach is 
discussed only for NLP and not NLP'. The 
constraint set of NLP' can have no interior 
due to the equality constraints. It is possible 
that NLP has no interior and in this case the 
interior SUMT is not applicable. In what 
follows, it is assumed that the constraint set D 
of NLP has an interior. 

The sequence of points xw which is to 
converge to the minimum point is generated 
by minimizing 

1. I(x] is continuous and non-negative on 
the interior of the constraint set D and if 
| .^^ is any sequence of points in R" 
converging to x where g(x) = 0 for some/, 
then^ /(**) = +« 

2. S(r) is continuous and if r{ > r2 > 0, 
then S(r1) > S(r2) 0 and if r. is a sequence 
of numbers converging to zero, then j™^ S(r.) 
= 0. 

Probably the most common penalty func- 
tions I(x} and S(r) are 

I(x} = -   S    - 

and 

S(r)=r. 

1 
(4-26) 

(4-27) 

/(x)+S(r.) /(*) (4-25) 

without regard to constraints, where S(r.) I(x) 
is continuous for x in the interior of D and 
S(r() I(x) = + °° for any x such that g;(x) = 0 
for any 1 Q / < m. It is clear that if one begins 
an iterative minimization technique of Chap- 
ter 2 at a point in the interior of D, then a 
relative minimum point will be found which 
must lie in the interior of D. Otherwise, the 
minimizing sequence would have had to climb 
over a portion of the auxiliary cost surface 
that is infinitely high and none of the 
methods will do this. 

In order to obtain the sequence of points 
x(!\ the parameter r. is allowed to approach 
zero. To insure that the sequence xM con- 
verges to a relative minimum point, the 
functions I(x] and S(r) are required to have 
the following properties: 

Any pair of functions satisfying properties 
No. 1 and No. 2 associated with Eq. 4-25, 
however, is suitable. It may be to the 
designer's advantage to choose another form 
for any particular problem. For other suitable 
choices of penalty functions, see Ref. l,page 
68. 

The  algorithm  for  solving NLP  by  the 
interior point technique is given in Definition 
4-7. 

Definition 4- 7: The interior point sequen- 
tially unconstrained minimization algorithm is 
given by the following: 

Step 1. Define the function 

U{x.f)=f{x)+Sif) I(x), (4-28) 

4-12 
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where S(r) and I(x) satisfy prop- 
erties No.   1 and No. 2. Choose r 
> 0 and x^0) in the interior of the 
constraint setD. 

Step 2. Beginning atx(0) minimize U(x,rQ) 
without regard to constraints to 
obtain x^\ Any of the methods 
of Chapter 2 may be employed for 
this purpose. 

Step 3. For i = 0,1,2,..., choose r - j > 0 
such that r{ < r.. Beginning at 
x^!) minimize U(x,r. * t) without 
regard to constraints to obtain 
x^l+ l\ where i is the iteration in- 
dex. 

Step 4. As r.^oo.if ||xO'+i> _x(0 II  and 
|/[X('+ D]_/[^(0] |   are suffi. 

ciently small, terminate the process 
and take x1-' + 1> as the solution of 
NLP. Otherwise return to Step 3. 

where x is not an isolated point of 
D, (4-32) 

{  r. }    be   a   strictly   decreasing 
sequence which converges to zero.  (4-33) 

Then for xW>  sufficiently near x 

andr. sufficiently small, 

Further, 

.1^ S(rt) I[xu)] = 0 

(4-34) 

(4-35) 

(4-36) 

f{xu']\  is monotone decreasing   (4-37) 

and 

{ / [x(,)]}    is monotone increasing.   (4-38) 

In order to be sure that this algorithm will 
lead to a solution of NLP, one would like to 
have a result that as rt 0, a solution is 
approached.   Such a result is contained in 
Theorem 4-10. 

Theorem   4-10: In   the   interior   point 
algorithm just given let: 

Ax), gl(x), . ■ ., gm(x) be con- 
tinuous on the constraint set D, (4-29) 

S(r) and I(x) satisfy properties No. 
land No. 2, (4-30) 

The interior of D be nonempty, (4-31) 

There be a relative minimum point 
x inD such that/(x) < /(x) for all x 
^ x  in some neighborhood of x, 

For proof of this theorem see Ref. I, page 
47. 

It has been noted throughout the previous 
development that if NLP is convex — i.e., 
Ax), gl(x), . ..,gm(x) are convex - then 
"nice" things happen: One of these "nice" 
things is given in Theorem 4-11. 

Theorem 4-11: If NLP is convex with a 
unique minimum point x, gÄx), j- 1, . .., m, 
are twice continuously differentiable, and if 
Eqs. 4-29 through 4-33 hold, then x(0 gen- 
erated by the given algorithm will converge to 
the minimum point. 

It should be noted that Step 1 of the 
algorithm (Def. 4-7) required a point x(0) in 

4-13 
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the interior of the constraint set but no 

method of obtaining such a point was given. 

This question will be addressed later in this 

paragraph. 

Example 4-3: Solve the LP 

/(jCj, x2) = Xj  + x2 = minimum 

gi(xl ,x2) = - x1  <  0 

g2(x1,x2) = - x2 < 0 

using the interior point SUMT. 

Solution: 

U(x,r) = Xj +x2 —r 
x,       x2 J 

4-3.2  EXTERIOR METHOD 

Unlike the interior method, starting points 

for the exterior SUMT are not required to be 

in the constraint set of NLP. The basic idea in 

the exterior method is to add to the cost 

function a penalty function that is positive 

for points outside the constraint set and zero 
inside the constraint set. This, in effect, 

discourages the minimum of the new 
augmented cost function from being too far 

from the constraint set if the original cost 

function f(x) is "well behaved" outside the 

constraint set. It is clear that this approach 

may not be taken if/(x) is undefined or takes 

on negatively infinite values outside the con- 

straint set. One very appealing aspect of the 

exterior method is that it handles equality as 

well as inequality constraints without diffi- 

culty, so that it can be used on NLP'. 

The functions f(x), g1(x), and g2(x) are 

convex and by Theorem A-5, Appendix 

A, so are — 1/gjfx^and l/g2(x). Since r > 0, 

U(x,r) is convex and thus has a unique 

minimum. To find it, put 

dU 

bx. 
= 0= 1 

(x,)2 

dU 

dx (x,)2 

so 

0=1- 
2 v^2 

,1/2 

The  penalty   function employed  for the 
exterior method will have the form 

P(t) E(x) (4-39) 

w'here P{t)andE(x) are required to satisfy the 

conditions: 

1. E(x) = 0 if x is in the constraint set, and 

E(x) > 0 if A; is outside the constraint set. 

2. P(t) is continuous and if t2 > tx > 0, 

then E(t2) > £(/j) > 0. Further, if tj -»• +°° 
then ._f™ F(r.) = + « 

Probably the most common choice for P(l) 

and E(x) is 

,1/2 

As Y -*■ 0, jCj -*■ 0 and x2 -* 0 so the solution 

of Example 4-3 is 

(xltx2) = (0,0). 

4-14 

Pit) = t 

and 

£,(*)= 2   IgAx) + \g,(x)\ 

(4-40) 

(4-41) 
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and 

= 2    [/*,■(*)]: 

where 

E = Ei +E,. 

The basic idea for the exterior method was 
given by R. Courant in 1943 (Ref. 5). He 
argued that if 

T(x,t)=f(x)+P(t)E(x) (4-42) 

were minimized without regard to constraints 
using tx and t2 with t2 > tv, then since the 
augmented cost function is penalized more 
when t2 is used than when tx is used, the 
minimum point corresponding to t2 should 
be closer to the constraint set and hence, 
closer to the minimum point of f(x) on the 
constraint set. 

An explicit algorithm for solving NLP or 
NLP' by this method is given in Definition 
4-8. 

obtain an unconstrained minimum 
point of 

T(x,tl)=f(x)+P(t1)E(x) 

denoted x((). 

Step4. As r. ->«, if II [x(/) - x(M)] II 
and '|/[*(0] - flxu-1}] I are 
sufficiently small, terminate the 
process and take JC

(,)
 as the solu- 

tion of NLP. Otherwise, return to 
Step 3. 

Very much as in the case of the interior 
method, Theorem 4-12 guarantees a certain 
measure of success. 

Theorem 4-12: In the exterior point al- 
gorithm let: 

f{x), g^ $, ..., gm (x) be continuous 
for all x. (4-43) 

Eix) and^(f) satisfy conditions No. 
1 and No. 2 of Eq. 4-39. (4-44) 

Definition 4-8: The exterior point sequen- 
tially unconstrained minimization algorithm is 
given by the following: 

Step 1. Make an engineering estimate x(0) 

of the solution of NLP or NLP'. 

Step 2. Choose tx > 0 and beginning at 
x(0) find an unconstrained mini- 
mum point of 

T(x,tl)=fix)+Pitl)E(x) 

denoted x(1). 

Step 3. Continue with i = 2, — by choosing 
ti >  t(i  and starting from x(,'x) 

There be a relative minimum point 
x in that admissible domain!) such 
that f{x) < fix) for all x ¥= x in 
some neighborhood of x, where x is 
not an isolated point of D. (4-45) 

The sequence I tf \ is strictly in- 
creasing to  + ». (4-46) 

Then for x(0) sufficiently close to x, and t. 
sufficiently large, 

lim    xW=x (4-47) 

lim />(/,)£[*<»] = 0 (4-48) 
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lim 

lim 

/[*(/)] =/(*) 

™  ru», /.] =/(S) 

(4-49) 

(4-50) 

[f[xM]} is monotone decreasing (4-5ij 

{ E [xw ]) is monotone decreasing. (4-52) 

For proof of this theorem, see Ref. l,page 
57. 

Very much as in the interior method, if the 
NLP or NLP' is convex, then convergence is 
guaranteed by Theorem 4-13. 

Theorem 4-13: If NLP or NLP' is convex 
with a unique minimum point, and if Eqs. 
4-43, 4-44, and 4-46 hold, then regardless of 
the estimates x(0) and t{, the sequence x(!) 

generated by the algorithm given by Theorem 
4-12 will converge to the minimum point. 

Example 4-4:  Solve 

fix i ,x2) = x j + 2x1 = minimum 

h(xl,x2) =*i +x\ —1=0 

by the exterior point SUMT. 

T(x,t) = x\ +2x2
2 

+ t(xi +x2 -I)2 

— = 2JC, +2r(x, + x2 -1) = 0 
dx1 

dT 
— = 4x2 +2t(x1 + x2 - 1) = 0 
ox2 

Subtracting, 

4x2 —2x\ =0,orx1 =2x2. 

Then 

4-16 

4x2 +2?(3x2 - 1) = 0 

and 

2 + 3/ 

As 

1     ,       ,2 t^-°°,x2 -*—and x, +-. 
3 3 

The solution is then 

1    2 
(x1,x2) = [ — 

3 '3 

4-3.3  MIXED INTERIOR-EXTERIOR 
METHOD 

Both the interior and the exterior methods 
presented in pars. 4-3.1 and 4-3.2 are not 
applicable in certain kinds of problems. In 
particular, the interior method cannot be used 
if the interior of the constraint set is empty, 
such as in the case with equality constraints. 
The exterior method cannot be used if some 
constraint function is not defined or is ill- 
behaved outside the constraint. A combina- 
tion of the two methods will now be given 
which allows the treatment of problems 
which may have both these undesirable fea- 
tures and thus could not be treated by either 
pure interior or exterior methods. 

For convenience, consider NLP' 

minimize fix) 

subject to 

gt(x) <, 0,i= 1, ..., m 

A/(x)=0,/= 1, ...,/> 

(4-53) 

(4-54) 

(4-55) 
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where the set of all points which satisfy the m 

inequalities Eq. 4-54, has an interior. As 

might be expected, the constraints, Eq. 4-54, 
will be dealt with using an interior point 

penalty function and the constraints, Eq. 

4-55, will be dealt with using an exterior 

point penalty function. 

The penalty function used here will be 

where S(r)I(x), P(t), and E(x) satisfy condi- 

tions No. 1 and No. 2 preceding Eq. 4-26, and 
No. 1 and No. 2 of Eq. 4-39. It is understood 
that I(x) is a function of only the constraint 
functions in Eq. 4-54 and E(x) is a function 

of only those in Eq. 4-55. A general minimiz- 
ing algorithm for NLP is now given in 

Definition 4-9. 

Definition 4-9: The mixed interior-exterior 

sequentially unconstrained minimization al- 

gorithm is given by the following: 

Step 1. Make an engineering estimate x(0) 

of the solution of NLP'. 

Step 2. Choose rx > 0 and tx > 0 and 

obtain an unconstrained minimum 

of 

V(x,r1,t1)=f(x)+S(.r1)I(x) 

+ P(ti)E(x),    (4-56) 

denoted x(1). 

Step 3. Continue with i = 2, ... by choosing 

r. < rr_2 and t{ > ti_1 and starting 
from x('_1* finding an uncon- 

strained minimum point of 

V(x,ri,ti)=f(x)+S(.rj)I(x) 

denoted x(,). 

Step 4. As r. -»■ 0 and tf -»+■», if \\xO) - 

x(,'-1)|| and|/[*<'>] -/[^'-^Jlare 

sufficiently small, terminate the 

process and take x(,) as the solu- 

tion of NLP'. Otherwise return to 

Step 3. 

As might be expected from a study of the 

two methods which were combined to form 

the mixed method, a convergence result is 

given by Theorem 4-14. 

Theorem 4-14: In the mixed point al- 
gorithm let: 

gi(x), ..., gm(x) be continuous on 
the nonempty interior of their con- 

straint set and Rx),hl(x),..., h Ax) 

be continuous for allx. (4-58) 

5(r), I(x), P(t), and E(x) satisfy 

conditions No. 1 and No. 2 preced- 

ing Eq. 4-26, and No. 1 and No. 2 
of Eq. 4-39. (4-59) 

There exist a relative minimum 

point x in the admissible domain D' 

of Eqs. 4-54 and 4-55 combined, 
such that f(x) < f (x) for all x =£ x 

in some neighborhood of x, where 

x is not an isolated point of D'. (4-60) 

The sequence ( ri J be strictly de- 

creasing to 0 and { t(} be strictly 
increasing to+°°. (4-61) 

Then  for x^   sufficiently   close  to  x,   r. 

sufficiently small, and ti sufficiently large, 

lim 

+ P(tt) E(x) (4-57) S(r.)I[x^] =0 (4-62) 
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lim 
P(t.)E[xw] =0 (4-63) 

and 

lim 
V[je('\ rt, tt] =/(*). (4-64) 

For proof, see Ref. l,page 60. 

Example 4-5: Solve 

f(Xi,x2)
= —JCj +x2 = minimum 

g(Xi,x2)= -£«x2 < Ö 

h(xl,x2)=xl +x2 - 1=0. 

Solution: 

Since g(xlt x2) is unbounded at x2 = 0, it 
must be treated by the interior method and 

since h(xy,x2) = 0 prevents the constraint set 
from having an interior, it must be treated by 

the exterior method. From 

2A: 2 
x2=&- 

Since g(xlfx2) < 0 is satisfied at all times, x2 

>  1. Taking the limit as r -*■ 0, then, x2 -*■ 1. 

As t -> + oo, it is necessary that x, +x2 — 1 

-* 0 or Eq. 4-66 will be violated. Therefore, in 
the limit JC! = 0. 

The minimum point is, therefore, (xltx2) = 
(0,1). 

4-3.4 DETERMINATION   OF AN   INTERI- 
OR POINT 

In order to begin the interior point or the 
mixed interior-exterior point algorithm, it is 
necessary to have a point x(0) which satisfies 
a certain set of inequalities, i.e., a point 
interior to a given constraint set. Let this set 
of inequalities be 

8j{x) < 0,i= 1,.... m. (4-68) 

V(x,r,t)= -Xi +x2 + 
9.nx2 

+ t{xl +x2 - l)2 

av i 
— = -1 +2t(x1 +x2 - 1)=0 
dx-i 

OV r 
1 

dx2 x2SLn7 x2 

+ 2t(Xl +x, - D=0 

Subtracting Eq. 4-67 from Eq. 4-66, 

x2 S.n2 x2 

(4-65) 

(4-66) 

(4-67) 

ff there are other inequalities or equalities 

which will be treated by the exterior point 
method, they are ignored for now. 

Let >>(0) be a first estimate of an interior 

point of the set defined by Eq. 4-68. Denote 

the inequalities of Eq. 4-68 which are not 

strictly satisfied by 

N= ( i\gt\y«»] > 0} 

and the inequalities which are strictly satisfied 
by 

K=  {/|*,[y<°>] < 0}. 

The object now is to move from j><0) to 
points where   successively more inequalities 
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move from N into K; i.e., so that no con- 
straint which was previously satisfied is vio- 
lated, but constraints which were previously 
violated are satisfied. This may be accom- 
plished by minimizing the unconstrained cost 
function 

U(y,r.)=   £   gt(y) + S(r.)   2   /[g 00) 
I       i<=N   ' '   ieK        ' 

with respect to y, where S(r) and I(x) satisfy 
the four constraints — No. 1 and No. 2 
preceding Eq. 4-26, and No. 1 and No. 2 of 
Eq. 4-39 — and r. is a strictly decreasing 
sequence. The result is denoted y^: 

As soon as JJ(;)
 is such that gt [j>

(/) ] < 0 for 
some i previously mN, that constraint func- 
tion is switched to K. In this way, constraint 
functions fromiV may get to K but those mK 
may never fall back to N. Once all the 
constraints in N are switched to K, the 
process is stopped and the resulting y^ is in 
the interior of the constraint set of Eq. 4-68. 
If the minimum of U(y,r) is found as r. -* 0 
and there are still constraints in N, then the 
constraint set defined by Eq. 4-68 has no 
interior. In this case, NLP is infeasible (has no 
solution) or certain of the constraints of Eq. 
4-68 will have to be treated by exterior point 
methods. 

4-4 STEEPEST DESCENT METHODS FOR 
NLP 

In Chapter 2 a gradient method is pre- 
sented for finding the minimum of an uncon- 
strained function. Such a direct method has 
properties that make it attractive and worth 
developing for the solution of NLP. It is clear, 
however, that due to constraints the gradient 
method studied earlier does not apply directly 
to NLP. It is the object of this paragraph to 
develop   a   method   which   uses   only   first 

derivative information to make successive 
improvements in an estimated solution of 
NLP. A study of the problem NLP' will be 
better included in the next paragraph. 

Geometrically, the method presented here 
will first investigate the direction of most 
rapid decrease in the cost function/(x). As 
seen in par. 2-4, this is — yfT{x). This 
direction is then projected onto the tangent 
hyperplane to the boundary of the constraint 
set at x. A small move in the resulting 
direction will then decrease f{x) and will not 
cause excessive violation of constraints. This 
process is repeated as long as f(x) may be 
decreased. 

Instead of basing the derivation of the 
method on a geometric argument, the work 
will all be done analytically. The reason for 
this is twofold. First, geometric ideas in 
higher dimensions are not always as clear as 
those in two and three dimensions. Second, 
the analytical method used here will be 
employed in deriving algorithms in con- 
tinuous problems where geometric concepts 
are much more difficult. 

Extensive use will be made of matrix 
calculus notation in this paragraph. 

Recall that for g(x) = 

dx m X  n 

Further, the symbol 

x^R" 

8x = 

5x„ 
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will denote a change in x and a 6 in front of a 
quantity which depends onx will denote the 
first order change in that quantity due to the 
change bx in x. For example, for the scalar 
function/(JC), 

«/to 
dx 

bx. 

i.e.,  the  collection of indices of constraint 
functions which are equalities at the point x. 

The object is now to find a direction of 
change bx, bxT bx = 1,suchthat bx = kbx for 
sufficiently small k > 0 will decrease f(x) 
without violating any constraints. The prob- 
lem is then to find bx such that 

Note that this first order change is just the 
first term in a Taylor expansion, Ref. 4, page 
84, of f(x), so bf(x) is an accurate approxima- 
tion of the change in /(x) only for small 8x. 

¥ = ^ [*<»>] si 
ox 

is minimum subject to 

The method to be developed here resem- 
bles an interior method in the sense of par. 
4-3. Therefore, the method of generating an 
interior point (one which satisfies all the 
constraints) presented in par. 4-3 may be 
utilized to obtain a starting point. It is 
assumed now that his has been done, and that 
an estimate x(0) of the solution of NLP is 
available which satisfies 

g(xW) <   0. 

S&[*<°>]   =   —' [X<°>]5JC <   0, 
' ox 

i<=A[x<-°)] 

and 

bxTbx =  1. 

For further convenience, define the column 
vector of constraint functions which are zero 
as 

4-4.1  THE DIRECTION OF STEEPEST DE- 
SCENT 

If the point x^0) is in the interior of the 
constraint set, then the gradient method of 
par. 2-4 applies and the direction in which 
x(0) should be altered is 

5x 
dx 

(4-69) 

8M = 
gXx) 

I6^[X(°'] 

In this notation the problem is 

minimize -—[x^°•* ] bx 
ox 

subject to 

(4-71) 

k > 0. 

In the remaining case, the point x(0) is on 
the constraint boundary sog;[x

(0)] = 0 for 
some i. For convenience define the set 

AM = { /1   gtM = 0 } , 

4-20 

(4-70) 

— [*<°>]6f< 0, 
ox 

bxTbx = 1 

(4-72) 

(4-73) 

It is assumed that at points where several 
gAx) = 0, the gradients are linearly indepen- 
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dent. This is enough to satisfy the first-order 
constraint   qualification  (Theorem  4-4) for 
the constraint, (Eq. 4-72).   Theorem 4-5, there- 
fore, may be applied to obtain the necessary 
conditions 

%- + X^  f;  + 2X.W  = 0,        (4-74) 

where the components, X; >   0, of X corre- 
spond to gj with indices inA [x(0) ]. 

Assume for the time being that 8gj = 0 for 
all fey4[x(0)]. Then taking the transpose of 
Eq. 4-74 and premultiplying by bg/bx yields 

bg of + 91 ogT r + -.    °8  ,-_n r— -—+ —  r  X + 2h0  — 5x = 0, 
dx  dx        ax  ox u   «A: 

or since 6# = 0, 

ä£3£L+9£dg^   -  = 0 

bx  bx ax  ax 

Since the gradients of g,[x(0)] for 
fe/l[x(0)] are assumed linearly independent, 
the coefficient matrix of h is nonsingular and 

bg bgT \   l bg bf 

bx   bx bx   bx 
(4-75) 

|[x(0)]   = 

g,[*(0)] 

With this new g , Eq. 4-74 yields 

6x : _1 
2X o 

dx 
r/_9| 3F\ 
x   \ bx  bx  I 

1 
31 
bx j i»<"»i 

bx 
(4-76) 

Note that XQ > 0 is required since if A [x(0) ] 
is empty, then Eq. 4-76 must reduce to the 
negative gradient direction. 

Putting 

" l!"",'lr"<0)i 
bg 
bx 

Eq. 4-76becomes 

(4-77) 

If all components of X are non-neg- 
ative, then the assumption that all 
bg. = 0, fev4fx(0)] isvahdandSx which solves 
the problems of Eqs. 4-71, 4-72, and 4-73, is 
obtained directly from Eqs. 4-74 and 4-75. 
On the other hand, if X;. < 0 for some 
fe^4[x(0)], then this component of g is 
removed from g. Equivalently, /4[x(0)] is 
redefined as 

i[x(0>] = {i\ g.[x(0)] =0andX.> 0} 

and g [x(0 * ] is redefined as 

6* = -^   ^^^(0)] 2X0       dx 

Substituting this into Eq. 4-73, 

1        bf 
(2X„)Z bx ^o> 

bfT 

bx 

Solvingfor 1/2X0, 5x becomes 

i bf 
8x 

{ ^^ 

9/r 

—lx™]PTP — [x<°>] 
bx bx 

XP [x 
bx 

(0)i 

1/2 

(4-78) 
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Eq. 4-78 gives a unit vector 5x in the 
constrained direction of steepest descent at x 
= JC

(0)
. The problem is now one of deter- 

mining just how big a step should be taken, 
i.e., 

Sx = kbx 

where k > 0 must be chosen. 

(4-79) 

g2(xl,x2) = — x1   - x2  + 2 <   0. 

First, 

*i(2,2) = 0 

g2(2,2) = - 2. 

Therefore, /l[x(1)] =  { l } . As required by 
Step 2 of the Algorithm 

Before the problem of step size is treated, 
however, an algorithm may be stated for 
determination of the direction of steepest 
descent, namely: 

Step 1. Using the method of par. 4-3, 
obtain an estimate of the solution 
of NLP, x(0), which is in the 
constraint set. 

Step 2. Let / > 0 denote the number of the 
present iteration. Compute 

£,-[*(y)]> / = 1, -, m, and form the 
set A[xW>]. Compute df/dx[x^] 
and dg./dx[x^] for is A [x(l)]. 

Step 3. Compute X in Eq. 4-75. For all X. 
< 0, delete i from A [xü) ] to form 
at*«»]. 

Step 4. Compute P in Eq. 4-77 and 8x in 
Eq. 4-78. ff P = 0, then this is the 
solution of NLP. 

3/ 
^-(2, 2)   =    [- 1,4] 
ox 

3-^- (2, 2)    =   [1, -  13 
dx 

By Step 3, 

[1,- 11 

x [1,-1] > 0 

soA=k. For Step 4 

P °1 r 11 H = _ 
[u 1 J L-! J [1,-1] 

-1 

x [1,- 1] = 
1/2  1/2 
1/2  1/2 

Finally, 

Example 4-6: Compute the direction of 
steepest descent at the point (2,2) for the 
NLP 

minimize f(xl, x2)  = (x2)
2   — x1 

Si ixl,x2) = x1   - x2   <   0 

4-22 

8x = 

[1,-4] 

1/2 1/2 
1/2 1/2 

1/2 1/2 

1/2 1/2 
1/2 l/2~ 

1/2 1/2 

- 1 

4 

1/2 

3 
3/2 

3/2 
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4-4.2 STEP SIZE DETERMINATION X(/ + D   = XU)   + ÄTÖJC 

There are many techniques presented in the 
literature for determining the size of step to 

be taken in the constrained direction of 

steepest descent. Three of these techniques 

are presented here. The first technique applies 

to a specialized class of problems in which the 

constraint functions are linear. The second 

and third methods apply to the general 
nonlinear problem. 

if df/dx[xa + l)]8x <0. The process in the 
algorithm for the direction of steepest descent 

is repeated from Step 2, and a new step size k 

is computed as above. If, on the other hand, 
dfldx[xU+1)]5x > 0, then a relative mini- 

mum has been bypassed. To locate this 
relative minimum, do a oneKÜmensional 

search in the direction 8x starting at x^ to 

obtain x(J+1). 

4-4.2.1   ROSEN'S   METHOD  FOR  LINEAR 
CONSTRAINTS 

ff the constraint functions are linear, then 

once the direction of steepest descent 8x is 
found, it may be followed without leaving the 

constraint boundary until a constraint£,-(*) = 
0, for i not in A [x^ ]. This algorithm, 

therefore, can lead to rather long step sizes. 

Constraints here are restricted to the form 

G{
Tx - b} <   0, i =  1, ... m 

where Gf is an n x 1 matrix of constants. The 

step size is to be determined so that k is as 

small as possible and still 

G,.r[x(/) + k8x]  - b. = 0 

for some i£A [x^ ]. Only those i need to be 

considered for which G? bx > 0, since other- 

wise this constraint can never go from strict 

inequality to equality. The step size k, there- 
fore, is chosen as 

mm 

j Gfbx > 0 

I i4A[x<-')] 

G:
TSx 

The point x(/+1 * therefore is given by 

This process may be summarized inRosen's 

A Igor it hm : 

Step 1. Compute 

mm 

k = IG(
T
8X =0 

Step 2. Compute 

^ [*<>> + 

bi-Gfx^' 

Gjbx 

dx 
[x"> +k8x] . 

If 

dx 
[xU) +k8x]3x < 0 

put 

x(/+i)=x(/)+fc5x 

and go to Step 4. 

Step 3. If 

7\f 
— [x<» +k8x]8x > 0, 
dx 

then find A: so as to minimize 

/[x(» +k8x] . 

4-23 
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Put x(/+1> 
Step 4. 

x(/) + k8x and go to P=W -l 

Step4. If If [x(/+1)]-f[x(')]|and||x(>'+1) 

— xl;)|| are sufficiently small, ter- 
minate and take x(;+1) as the 
solution of NLP. Otherwise, return 
to Step 2 of the constrained 

steepest-descent algorithm. 

4-4.2.2   FIXED    STEP   WITH   VARIABLE 
WEIGHTING 

When the auxiliary problem, Eqs. 4-71 
through 4-73, was formulated, it would have 
been possible to ask for the step size directly 
rather than just the direction of steepest 
descent. In many cases, the behavior of the 
solution is much more sensitive to changes in 
one variable than another. For stability of 
calculation then, rather than asking for a 
direction 8x satisfying Eq. 4-73, the designer 
might request a change 8x in x(;) which 
satisfies 

8xTW8x = e2 (4-80) 

where W is a positive definite matrix (usually 
diagonal) and £ is a predetermined constant. 
The elements of W are often chosen so that 
expected changes in various components of x, 
8x, will contribute approximately the same 
magnitude to 8xTW8x. The matrix W, there- 
fore, is chosen based on the designer's ex- 
perience. 

The analysis performed in obtaining the 
direction of steepest descent follows with 
only minor changes. The only changes of 
interest, computationally, are 

\dx bx   I bx bx 

(4-81) 

dx    \dx dx   I        dx 

and 

8x = ~ 
b±prWP^ 
ox bx 

1/2 

(4-82) 

tbf_ 
bx 

(4-83) 

Note that if the step size is made large, 
then considerable progress may be made 
toward the minimum point. However, since 
the constraint functions are nonlinear, viola- 
tions may occur at any iteration. After a new 
point x(/+1) has been computed, the con- 
straint functions should be checked. If any 
constraints are violated in excess of fixed 
tolerance, the method of par. 4-3 may be used 
to move x(/+1) back into the constraint set. 

The computational method is then de- 
scribed in Algorithm for Steepest Descent 
With Fixed Step Size: 

Step 1. Using the method of par. 4-3, 
obtain an interior estimate of the 
solution of NLP, A:'

0
-

1
, which is in 

the constraint set. Further, choose 
the weighting matrix W and step 
size£inEq. 4-80. 

Step 2. Let / denote the number of the 
present iteration. Computeg([x^] 
and form the set^4 [x(/) ]. Compute 
bf/dxlx^] and bg/bx[x°">] for 
i^A [x°"> ]. 

Step 3. Compute X in Eq. 4-81. For all X. 
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< 0, delete i from/4 [x^] to form 
A[xV>]. 

Step 4. Compute P in Eq. 4-82 and Sx in 
Eq. 4-83. 

Step 5. Compute xu+1) = x(i) + Sx. If any 
constraints are violated excessively, 
use the method of par. 4-3 to get 
from x*'+1' back into the con- 
straint set. 

Step 6. ff |/[x(/+1)] -/[*<»] | andll^'+1) 

— JC
(/)

|| are sufficiently small, ter- 
minate. Otherwise, return to Step 
2 (possibly with altered 2 and W). 

4-4.2.3 STEEPEST  DESCENT WITH CON- 
STRAINT TOLERANCES 

In par. 4-4.2.2 it was noted that a step may 
be made so large as to violate a constraint in 
excess of an admissible error. The method of 
choosing step size presented here will prevent 
this difficulty. 

Let reasonable tolerances e(. be assigned to 
constraint functions gt(x). The object here is 
to move in the constrained direction of 
steepest descent until some constraint func- 
tion g{(x) violates the tolerance g(.(x) > ep or 
until a minimum of 

f[xW+k8x] 

is reached. 

A uniform step size in k may be chosen and 
steps taken, checking 

gt[xW +kSx] 

for each ieA [x(/) ]  and each step in k. The 
multiplier k is increased monotonically pro- 

vided f [ - ( * )kbx ] is decreasing, and con- 
straints do not exceed the given error toler- 
ances. When either fails to hold, the resulting 
point is called x^+1'. 

If the process is stopped because a con- 
straint is violated in excess of its given 
tolerance, the method of par. 4-3 is used to 
obtain a new point in the constraint set and 
the process is repeated until the minimum 
point is located. 

This method should be most effective when 
constraint functions are easily evaluated but 
derivatives are costly in computer time. The 
basic idea of the method is to prevent an 
excessive number of calculations of the con- 
strained direction of steepest descent. 

4-4.3 A STEEPEST DESCENT METHOD 
WITH CONSTRAINT ERROR COM- 
PENSATION 

In previous subparagraphs, steepest descent 
methods were given which at boundary points 
generated steps parallel to a constraint bound- 
ary in a direction which decreased the cost 
function as rapidly as possible. Due to non- 
linearity of the constraint functions, and the 
finite step size, however, some constraints will 
invariably be violated. It is the object in this 
paragraph to present a new method motivated 
by the article (Ref. 6) which automatically 
corrects for violation in constraints. 

Let A[xiJ>] = { i\ gt[x
(i>] > 0 } be the 

indices of constraint functions which are zero 
or are violated. As in the preceding develop- 
ment of this paragraph first-order Taylor 
approximations will be used to approximate 
functions appearing in NLP. The linearized 
version of NLP at an approximation to the 
solution, x^\ is 
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AMCP 706-192 

3/    ,., 
minimizes/ = —[xU)]8x 

dx 

subject to 

dx 

(4-84) 

(4-85) 

where g 
g,[x(/)] 

and A g is taken as the 
desired change in g, i.e., the total change 
taken at the designer's discretion. Usually, so 
long as the constraints are not violated ex- 
cessively, the full violation may be corrected; 
i.e. 

A$ = -S,[*W)],   ie A [*<»]. (4-86) 

In order that step size is not excessive, it is 
required that 

8xT8x =ß2 (4-87) 

where £ is small. Assuming Eq. 4-85 is an 
equality, necessary conditions for the 
linearized problem are obtained by using 
Theorem 4-5. From 

+ ß8xT8x 

and Theorem 4-5, it is necessary that A. > 0, 
and 

df     dgT 

ox        ax (4-88) 

and 

\ax 
Sx-Agf)    =0,   ieA. 

This set of equations is nonlinear in A and 

4-26 

x. Assuming Eq. 4-85 is an equality, then the 
necessary conditions reduce to only Eq. 4-88 
and Eq. 4-85 as an equality. This system is 
linear and can be solved. The multiplier A can 
then be determined and a check made to see 
whether all components are non-negative. If 
any component is negative, say k, then the 
assumption that Eq. 4-85 is an equality is 
violated and it may be concluded that the kth 
component of Eq. 4-85 should have been 
allowed to be a strict inequality. The index k 
is then deleted from^4. 

Premultiplying Eq. 4-88 by dg/dx and using 
Eq. 4-85 yields 

d± ML + 3jL 3|L x + 20Sg = 0. 
ax ax ax ax 

It is assumed, as usual, that the gradients of 
all constraint functions which are zero or 
violated are linearly independent. Therefore, 
the coefficient matrix of A is nonsingular and 

X = -   ^~ 
3| 3I7" 
dx dx 

x [all 9/l + 2ßAg 1. 
ax   ax 1 

(4-89) 

Substituting Eq. 4-89 into Eq. 4-88 yields 

dgT I dg dgT 1 
SJC =- — 

20 
/-■ 

dx   \ dx   dx dx dx 

dg- I dg- df 
ax   Wax -m- 

dx 
Ag 

(4-90) 

This expression for 8x could now be substi- 
tuted into Eq. 4-87 to find 0. To be more 
general, however, put 1/(20) = 7 > 0 and define 
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6x1   = 

dx  \dx dx    I       dx. 
df*_ 
dx 

and 

dx2 ai(^)1 M 

(4-91) 

(4-92) 

Using this new notation Eq. 4-90 becomes 

6x = 76X1   + 8x2. (4-93) 

This representation of Sx has important prop- 
erties given by Theorem 4-15. 

Theorem 4-15:   Sx1  and Sx2 of Eqs. 4-91 
and 4-92 satisfy the conditions 

1. 6x1 T Sx2  =0 

2.  *■ 5x2 

ax A# 

3.^8*»   =0 
9x 

9x 
<   0 

A method of choosing 7 still has not been 
given. This parameter is interpreted as a 
step-size and may be determined by one- 
dimensional search or any other scheme 
chosen by the designer. In different applica- 
tions, different methods have proved effec- 
tive. No single scheme has been found that 
seems best. The choice of 7 at this time 
constitutes an art as much as a science. 

The   use  of this  method   may   now  be 

summarized    in   the   Steepest-descent   Al- 
gorithm  With Constraint Error Compensation. 

Step 1. Make an engineering estimate of 
the solution of NLP'. 

Step 2. Let the iteration number be j > 0. 
Compute gf{x^] and form 
A [xU) ] and g. 

Step 3. Compute    dg/dxlx^^l    and 
9//9x[x(/)]    and choose the   de- 
sired change Ag ing. 

Step 4. Compute Sx1 and bx2 in Eqs. 4-91 
and 4-92. 

Step 5. Choose 7 by a suitable scheme. 
Calculate X in Eq. 4-89. If any 
components A. are less than zero 
for gj[x^] which are close to 
zero, remove these components 
from g and return to Step 3. If all 
X; > 0, proceed. 

Step 6. Form 

6x = 75*1   + 8x2 

and 

JCU+1)  = XW + 8x. 

Step 7. If l/[x0+1)] -/[*<»] I and II Sx || 
are sufficiently small, terminate 
the process. Otherwise return to 
Step 2. 

4-5 STEEPEST DESCENT SOLUTION OF 
THE FINITE DIMENSIONAL OPTIMAL 
DESIGN PROBLEM 

In this paragraph a steepest-descent method 
of solution of the problem OD is developed. 
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In many ways, the method of this paragraph 
is similar to the method of par. 4-4. Here, 
however, a distinction is made between design 
and state variables, and the two types of 
variables are treated quite differently. 

used to solve Eq. 4-95 for z- The object now 
is to determine a change in M0), denoted bb, 
such that 

^D = M°> + 8b (4-97) 

The problem to be solved here isjust as in 
par. 4-2: Choose beRk  and zeR"to minimize 

subject to 

h(z, b) = 0 

and 

<t>(z, b) <   0 

OD 

(4-94) 

(4-95) 

(4-96) 

where h(z,b) = [hl(z,b), ..., hn(z,b)]T, and 
<t>(z,b) = [<t>xiz,b), ..., <t>m(z,b)]T. The state 
equations, Eq. 4-95, are put into vector form 
here in order to take advantage of the 
compact matrix calculus notation. 

The steepest descent algorithm for OD is 
developed here by first approximating the 

nonlinear elements of OD by linear expres- 
sions in the various variables. The difference 
between the method presented here and that 
of par. 4-4 lies in the treatment of the state 
variable. In a sense, the state variable is a 
nuisance since it does not really describe the 
system being designed. The algorithm pre- 
sented here is obtained by first eliminating 
the state variable from the linearized problem 
and then solving an explicit problem for an 
optimum improvement in the design variable. 

will be an "improved" design. The meaning of 
"improved" will be made clear as the analysis 
progresses. If the new design variable fc(1) 

were substituted into Eq. 4-95, this equation 
could be solved for the corresponding new 
state variable z(1). Since the matrix 
9fc/3z[z(°\M°* ] is nonsingular, the implicit 
function theorem, Ref. 4, page 181, guaran- 
tees that if II 6b || is small, then z(1) -z(0) 

will be small. The change inz is denoted bz so 
that 

Z(D = z(0) + fe- (4-98) 

4-5.1 AN      APPROXIMATION     OF    THE 
PROBLEM  OD 

The basic idea in the approach to OD 
presented here is to construct an approxima- 
tion of OD which can be solved to obtain an 
improvement 6b in M0'. The approximate 
problem is obtained by making linear approxi- 
mations to nonlinear functions in OD. Linear 
approximations to the changes in f(z,b), 
h(z,b), and <pÄz,b) due to the small changes 
bb in £(°) and bz in z^0' are, by Taylor's 
Formula, Ref. 7, page 56: 

5/[z(0)j(0)]^[z(»)j(0)]fc 

(4-99) 

bb 

Very much as in par. 4-4, an engineering 
estimate of the optimum design is made. It is 
denoted by ä

(0)
. Then the state equations, 

Eq. 4-95, are solved for the corresponding 
state z(0). Any method of analysis may be 

bh[z<0\b^]=~[z<°\bW]bz 

(4-100) 
dh 

+ TT [*<»>. ><»>]«* 
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and 

50 [z<°\M°>]= —[z<°\6<°>]Sz 

(4-101) 

301 + _irz(0)p 6(0)] 6fc. 
bbL J 

In the development that follows, the argu- 
ments [z(0),6(0)] of all functions will be 
understood unless otherwise explicitly noted. 
The symbol 6 in front of a quantity simply 
denotes the total differential of that quantity. 

SinceMz(0), £(0)] = 0 and z(0) + bz is to 
satisfy the equation /J[Z

(0)
 +8z,Z>(0)+ bb] = 

0, the linearized version of this condition is 
simply 

The set A (possibly empty) simply contains 
all the indices j of constraints that will be 
required to satisfy Eq. 4-103. To make 
maximum use of vector calculus notation, 
define the column matrix 

4>(z,b)- 
<t>jU,b) 

(4-105) 

If the set A is empty, then 0 is defined as 
zero; i.e., all the constraint functions whose 
indices are in A are placed in a column 
matrix. In this way, the conditions, Eq. 
4-103, may now be written. 

30 30 
-^5z+—  6bo A0, 
bz bb 

(4-106) 

 bz+—6ö = 0. 
bz bb 

(4-102) 

Eq. 4-102 is viewed as determining bz as a 
function of bb. It is clear that Eq. 4-102 can 
be solved for bz since the matrix bh/bz has 
been assumed nonsingular. 

Inequality constraints, Eq. 4-96, will be 
treated in an approximate manner. The 
method employed here is to require that if 
0,[z(o),fr(o)] > 0,then 

Stfy < A0;, (4-103) 

where A<fy is the required change in the value 
of <t>, due to the changes bz and 6b inz(0) and 

For convenience of notation, define the set 
of indices 

where the column matrix A$ is defined as 

A$- 
A0y 

je A 
(4-107) 

If A is empty, A0 is defined to be zero. 

The object of the following analysis will be 
to choose bb so that/[z(0) +6z,6(0) +bb] is 
as small as possible. If this nonlinear function 
of bz and bb is replaced by its Taylor 
approximation, the problem is to choose bz 
and bb to minimize 

3/ bf 
bf = ~bz+ — bb. 

bz bb 
(4-108) 

The entire argument up to this point has 
been based on the fact that II 6b || will be 
small. In order to insure that this is the case, 
it will be required that 

A = ij\ 07.[z
(O), 6(0>] > 0> . (4-104) bbTWbb < £2 (4-109) 
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for £ small and W a positive definite matrix. 
The matrix W will be used in particular 
problems to assign weights to the various 
components of 8b. This is often necessary 
when the components of b represent different 
physical quantities that may be of different 
orders of magnitude. Usually W is diagonal. 

To  summarize the approximate problem, 
8b and 8z are to be chosen to minimize 

— 8z +— 6b 
dz db 

subject to the constraints 

(4-1 10) 

dence on 8z is to solve Eq. 4-111 for 8z as a 
function of 8b. This, however, requires the 
inversion of the matrix dh/dz. The preceding 
approach of applying necessary conditions 
was scuttled for just this reason, so another 
method of eliminating 8z must be found. 
Note that if the terms (df/dz) 8z and 
(30/dz) 8z could be found in terms of 8b, 
then dependence on 8z would be eliminated. 
This is the approach that will be taken here 
and also in a later chapter on infinite dimen- 
sional problems. 

Define the column matrix XJ as the solu- 
tion of 

dh „    , dh 
— 8z+—6b=0, 
dz db 

(4-111) 
dz dz 

(4-1 14) 

— 8z + — 8b < A<£ 
bz db 

and 

8bTW8b< £*. 

(4-1 12) 

(4-113) 

4-5.2 SOLUTION OF THE APPROXIMATE 
PROBLEM 

Necessary conditions of Theorem 4-9 could 
now be applied directly to the approximate 
problem, Eqs. 4-1 lOthrough 4-113. If this 
course of action is followed, however, an 
explicit inverse of dh/dz must be computed. 
Since the dimension n of this matrix is often 
quite high, this operation would be very 
costly. Instead of applying necessary condi- 
tions immediately, Eq. 4-111 will be used to 
eliminate the dependence of the remaining 
functions of the problem on 8z. Necessary 
conditions may then be easily applied for the 
determination of 8b. 

The obvious method of eliminating depen- 

4-30 

and the matrix X^ as the solution of 

Zhüx$ = df_ 
dz dz 

(4-115) 

Note that X* is a matrix whose columns are 
solutions of 

dhT ^ = 3^ 
dz dz 

(4-1 16) 

for j&A. Note that Eqs. 4-114 and 4-115 
require the repeated solution of equations 
with the same matrix on the left and different 
right-hand sides. There are efficient computa- 
tion codes which can construct all the solu- 
tions simultaneously. 

To see how these newly defined matrices 
are helpful, compute the transpose of both 
sides of Eqs. 4-114 and 4-115 and multiply 
through on the right by 8z to obtain 

dz dz 
(4-1 17) 
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and 

X*    — 6z = —6z. 
9z 9z 

(4-1 18) 

—X^if^ is not empty 

£* =0, if ^ is empty. 
(4-123) 

Note that the terms on the right side of these 

equations are exactly the ones which are to be 
eliminated from Eqs. 4-110 and 4-112. Fur- 
ther, the term (dh/dz) 5z that appears in both 

left-hand sides can be obtained from Eq. 

4-111 as 

— Sz = - — 8b. 
dz db 

Using  this  relation,  Eqs.   4-117 and 4-1 li 

become 

\J    —8b = -—8z 
db dz 

and 

,T bh 90 „ 
- X*    — 8b = — 8z. 

db dz 

Substituting these relations into Eqs. 4-110 

and 4-112, the approximate problem be- 

comes: 8b is to be chosen to minimize 

ZjT 6b 

subject to the constraints 

£*    6b < A0 

8bTW8b«. £2 

(4-1 19) 

(4-120) 

(4-121) 

It should be noted that if the limitation, 

Eq. 4-121, on the size of II 6b || is not 

enforced, then the problem, Eqs. 4-119 and 
4-120, is just a linear programming problem 

that may be solved by well-established tech- 

niques of linear programming. This technique 

is similar to that used inZoutendijk's method 

of feasible directions (Ref. 8). For a discus- 

sion of this method the reader is referred to 

the literature. 

The necessary conditions of Theorem 4-9 

may now be applied to this reduced problem. 
In order to apply the theorem and in later 

calculations, it is required that the matrix £* 
have full row rank; i.e., that the rows of S* 

(columns of 2*) are linearly independent. 
Further, for use of the theorem it isrequired 
that the column vector W6b be linearly 

independent of the columns of £*. It may be 

noted that these assumptions require that 

there can be no more than k — 1 constraint 

functions which are zero or positive at any 

iteration. This is true since the matrix 2* has 

only k rows and since its columns must be 

linearly independent of £*, there can be at 

most k — 1 remaining linearly independent 

columns. These assumptions are reasonable 

from a physical point of view. If 8* had rank 
k then the equation 

8$ 6b = A0" 

where 

db        db 
\J 

and 

(4-122) 

would   uniquely   determine   8b,   and  there 
would be no optimization problem. 

The constraints, Eqs. 4-120 and 4-121, will 
be treated differently, so different multiplier 
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notation in Theorem 4-9 will be used for 
each. First, define 

H = S.jTdb+ilT^T 6b+v8bTW8b. 

Theorem 4-9 requires that 

M 
 =0=ZJ    +jiT$    + 2v8bTW (4-124) 
dSb 

where £r- > 0 and v > 0 

AJ.(fi*'6ft-A0i)=o,i&4 

and 

v{8bT W8b -42) = 0. 

(4-125) 

(4-126) 

At this point, a computational difficulty 
arises, it is difficult to determine 5b from 
Eqs. 4-124, 4-125, and 4-126 since it is not 
known which of the Constraints. Eqs. 4-120 
and 4-3 21. will be equalities and which will be 
strict inequalities. The question is. "Which of 
the inequalities, Eq. 4-120 or Eq. 4-121. will 
become strict inequalities?" This can be inter- 
preted geometrically as a question of leaving 
the boundary and going into the interior of 
the constraint set defined by Eqs. 4-120 and 
4-121. It has been the experience with this 
technique that once a constraint, say <j>,(z, b). 
becomes zero, then for several small steps Sb 
it will remain zero. This observation has ied to 
the following computational procedure. First, 
all constraints, Eqs. 4-120 and 4-121, will be 
assumed equalities and Sb is determined using 
Eqs. 4-124, 4-120, and 4-121. Then the 
algebraic signs of the £,. and v are checked. If 
they are all non-negative, then this is the 
desired solution of the problem. If, on the 
other hand, some ji; or v are negative, then 
the constraints corresponding to these multi- 
pliers  are removed  from Eq. 4-120 or Eq. 

4-121  and the problem is again solved with 
the reduced number of constraints. 

In any method of solution of the approxi- 
mate problem, no information is gained if v = 
0. Therefore, in the following v > 0 will be 
assumed. 

Solving Eq. 4-124 for 8b, 

Sb = -—W-'i^+^il). 
2v 

(4-127) 

It is now assumed (to be checked later) that 
Eq. 4-120 is an equality. Substituting for 6b 
from Eq. 4-127 into the equality Eq. 4-120, 

1       r 
— £*   IV"1 aJ + Z$ji) = A<§. 
2v 

Rewriting this equation, 

■.it1 TV-' e*£ = - e*' w~" s.J -2vi±4>. 

Since £^"   is required to have full row rank 
and W~s is nonsinguiar, the matrix 

00 

1       , if A is empty 
,4-128) 

I ^' W~: S*, if A is not empty 

;s nonsinguiar. Therefore, 

M = -M~\ ffi*r W~l 2J + 2v &$).     (4-129) 

Note that in the unconstrained case when A is 
empty, p = O since £^    =0 and A$ = 0. 

Substituting from Eq. 4-129 into Eq. 4-127 

Sb = - — W'1 (l - Z*M-\ £*rW",)fi/ 

+ W~l ^M'\ A<5. (4-130) 
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This expression for 6b could now be 
substituted into 8bTW8b = £2 to solve for v. 
However, in practice it seems just as realistic 
to choose v > 0 in an iterative process as to 
choose £. Once v > 0 has been chosen A may 
be evaluated in Eq. 4-129. If any components 
are negative, the corresponding elements of $ 
are removed and 6b is calculated using the 
new $ matrix. 

To aid in interpreting the meaning of terms 
in Eq. 4-130 for 8b, define 

8b1 =W-lll-^M'^^T W-lJiJ  (4-131) 

and 

8b2 = W'1 2*M:\ A<Ä 

In this notation, 

6b = 8bl +8b2. 
2v 

(4-132) 

(4-133) 

The vector 8b1 may be interpreted as a 
constrained gradient with 1/2P taken as a step 
size. The matrix which multiplies %J in Eq. 
4-131 essentially projects the gradient iJ of 
the cost function onto a tangent plane to the 
constraint set. The term 8b2 serves to drive 
any errors in constraint functions to zero. 
These interpretations are supported by Theo- 
rem 4-16. 

3. £*   8b2 =A<? 

4. -ZjT8bl < 0. 

An obvious check on convergence is to 
monitor 8b and the associated reduction in/, 
8f. When small 6b occur and essentially no 
improvement is made in f, the process is 
terminated. This test, however, leaves a great 
deal to be desired since the choice of v can 
yield very small steps 8b and falsely lead the 
designer to believe that the iterative process is 
converging. 

A much better test is to monitor the 
constrained gradient 8bl. Since in an uncon- 
strained problem the gradient must approach 
zero at a minimum, one might expect that 
once A$ = 0, the constrained gradient 8b1 

should approach zero. The real quantity 
\\8bl || could then serve as a convergence 
check. Theorem 4-17 makes these ideas more 
rigorous. 

Theorem 4-17: Let/(z, b),h{z,b), and0(z, 
b) be continuously differentiable functions. If 
the sequences [b^] and [z(;)] generated by 
the above algorithm converge to the solution, 
z, b of the problem OD and if 0 = 0 for all 
sufficiently large /', then it is necessary that 
6b1 approaches zero as/ approaches00. 

45.3 STEEPEST DESCENTALGORITHM 

Theorem 4-16: The vectors 8b{ and 8b2 of 
Eqs. 4-131 and 4-132 have the following 
properties: 

1. 8b2TW8b1 =0 

2. e*7 8b1 =0 

The iterative procedure developed in this 
paragraph may be summarized as follows: 

Step 1. Make an engineering estimate of 
the optimum design variable, b(0). 

Step 2. In the /th iteration, / > 0, solve Eq. 
4-95 for z(/) corresponding to b^'K 
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Step 3. Form the vector of constraint 
functions $ in Eq. 4-105 and solve 
Eqs.  4-114 and 4-115 for XJ and 

Step 4. Compute 27 and ß* in Eqs. 4-122 
and 4-123. 

Step 5. ChooseA0 in Eq. 4-107. 

Step 6. ComputeM^ inEq. 4-108. 

Step 7. Compute 8b' and 8b2 in Eqs. 
4-131 andEq. 4-132. 

Step 8. Choose 7 > 0 and evaluate A in Eq. 
4-129. If any components of ß are 
negative, take the corresponding 
elements out of 4> and return to 
Step 3. 

Step 9. Compute 

bV+D=bU) sb1 +5b2. 
2v 

Step 10. If |/[x(/+1)] - /•[*<>>] | and 
II Sb1 || are sufficiently small, ter- 
minate. Otherwise, return to Step 
2. 

4-5.4  USE OF THE COMPUTATIONAL AL- 
GORITHM 

the designer should be familiar with the 
method of obtaining the given algorithm. In 
this way, problems with peculiar features 
often can be treated by altering the general 
algorithm slightly. 

There are two steps in the algorithm of par. 
4-5.3 which are not complete. They are Steps 
8 and 10. In Step 8, a parameter 7 is to be 
chosen, but no analytical method of choosing 
it is given. This is the classical difficulty with 
steepest-descent methods. They give a direc- 
tion but, unfortunately, they do not allow 
analytical determination of a step size (l/(2c) 
in this case). 

A simple technique for choosing 7 which 
has worked well in a number of problems is 
given here as a candidate scheme. Since it is 
the 8b1 component of 6b which tends to 
reduce f, the step size determination will be 
based on 8b1. The basic idea is to choose 7 in 
order to obtain a certain percentage reduction 
in f. Let A/ (a negative quantity) be the 
desired reduction in / for a single iteration 
(perhaps a 5% to 10% reduction). Since for 
A<?~0, 

8f=-2jT — 8b1 

2v 

7 is chosen as 

(4-134) 

The algorithm presented in par. 4-5.3 will 
certainly not solve all optimization problems. 
It is presented primarily to guide the designer 
to the proper equations developed in par. 4-5 
while he is solving a problem. Almost surely a 
complicated real-world optimal design prob- 
lem will have some feature which is not 
explicitly contained in the general formula- 
tion OD. In order to utilize a steepest-descent 
philosophy similar to the one developed here, 

2jT8bl 

2A/    ' 
(4-134) 

In many problems 7 has been chosen accord- 
ing to Eq. 4-134 on the first iteration and 
held constant throughout the iterative pro- 
cess. In other problems convergence prop- 
erties were improved if 7 is changed during 
the iterative process. 
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CHAPTER 5 

FINITE DIMENSIONAL OPTIMAL STRUCTURAL DESIGN 

5-1   INTRODUCTION 

Throughout this handbook, structural 
optimization problems are chosen to illustrate 
the use of the design methods developed. 
There are two principal reasons for using 
structural problems for illustration. First, 
there has been great emphasis on helicopter 
and man portability of materiel, which places 
a premium on structural weight. Illustrative of 
Army concern with lightweight structures is 
the theme of rhe 1970 Army Mechanics 
Conference, "Lightweight Structures" (Ref. 
33). 

A second key reason for highlighting struc- 
tural optimization ;s its advanced state of 
development, relative to other areas of the 
mecnanical engineering sciences such as dy- 
namics of machinery and mechanisms. A few 
examples in these related areas are treated in 
this handbook, but development of com- 
putational techniques remains to be done. It 
is felt that if the reacer develops a thorough 
understanding of structural optimization and 
computational techniques, he will be in a 

good position to address problems outside the 
realm of structures. The fact that the math- 
ematics of structural analysis parallels that of 
related mechanical disciplines strengthens this 
feeling. 

A cursory review of Army materiel needs 
convinces one that light weight is a require- 
ment for a majority of weapon systems being 
developed by the Army. The high priority 
placed on air mobility as well as lightweight 

infantry equipment has presented weapon 
system designers with a major challenge. In 

the case of air mobility, minimum equipment 
weight is a necessary condition for maximum 
helicopter payload. In infantry applications 
equipment weight limits the soldier's fire- 
power and mobility. 

In seeking lightweight designs, one is 
tempted to simply use lightweight materials 
and lower safety factors. It becomes apparent, 
however, that structural weight reduction can 
significantly degrade system performance. For 

example, when the weight of an artillery ~iece 
is reduced by 30%, dynamic response ! ;e :c 

firing ehe weapon becomes much more evere. 

In infantry .veapons. "he requirement c- 

reduced weight has Sec designers :o ;<jhtei 

weight oceratins mechanisms "nr „nüividua 
weapons, m lightweight rifles, 'or examp.e. 

bolts are much lighter than ;n crevicus weac- 
ons and hence are more sensitive to changes in 

friction tue to lust ;n< external t>ar~'cles 

man vere 'ne mcr SU;;::YC xhts hi &i, M\-< 

ind Ml Rifles, '"here ;!"•;- manv e'.amrsies. 

some of which will be discusseu later in this 

handbook, of instances m vnicn simply re- 
ducing weight of subsystems causes problems 
which did not occur in heavier designs. 

The lightweight objective, then, requires 
that the developer take an overall system view 
and consider the interaction between weapon 
weight and performance of the weapon sys- 
tem. As is true in virtually every design 
problem in which the limits of technology are 
approached, the  iightweight weapon design 
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problem must be considered simultaneously 
with all other aspects of system design. It is 
not practical to expect, therefore, that one 
will find lightweight structural design special- 
ists operating independently of designers con- 
cerned with other aspects of the weapon 
development. A technology is needed which 
will allow trade-offs concerning weapon- 
weight to be integrated into the overall 
weapon design process. 

The objective in this treatment has been to 
formulate the minimum weight structural 
design problem with constraints realistically 
reflecting the performance requirements of 
the weapon system. A detailed formulation 
and solution of this structural design problem 
is presented in this Chapter as well as Chap- 
ters 7 and 9. 

5-1.1   LIGHTWEIGHT   VS   STRUCTURAL 
PERFORMANCE TRADE-OFFS 

Normally, achieving a lightweight structure 
requires a reduction in the amount of material 
used. The consequence is an increase in 
structural flexibility that causes increased 
deflections, decreased natural frequencies, 
and decreased buckling loads. Consequently, 
failure modes that were not previously criti- 
cal, may now become limiting factors in 
design. For example, in gun supporting struc- 
tures, increased deflection often reduces 

effectiveness of the weapon system by in- 
creasing dispersion. There are many ways in 
which such changes in structural performance 
can have an impact on overall system 
behavior. 

The only effective approach to minimum 
weight structural design is to formulate the 
structural design problem to include con- 
straints on performance which are dictated by 
functional use of the weapon system. As a 

result, the minimum weight design problem is 
often stated with explicit constraints on 
structural deflection, natural frequency, buck- 
ling load, and strength. A central part of the 
design problem, then, is representation of 
weapon system performance requirements 
that have an impact on structural design. It is 
often required that in doing structural design, 
dynamic weapon performance must be ana- 
lyzed to assure that the proper constraints are 
included in the structural design problem. 

5-1.2 WEAPON DEVELOPMENT PROB- 
LEMS ASSOCIATED WITH LIGHT- 
WEIGHT REQUIREMENTS 

To further explore some of the trade-offs 
between lightweight and weapon system per- 
formance, several typical problems en- 
countered in weapon development will be 
discussed in this paragraph. The discussion 
here is presented to highlight some typical 
problems, not necessarily to identify all light- 
weight structural design problems faced in 
weapon development. 

5-1.2.1 AIRCRAFT ARMAMENT 

Some of the most critical lightweight struc- 
tural development problems in weaponry 
today are in the field of aircraft armament. 
This is due to the very high priority placed by 
the Army on improved air mobility and the 
need for minimum weight weapon systems to 
be carried by helicopters. The combination of 
lightweight structural requirements and the 
extreme environment under which the struc- 
ture must perform in helicopter application, 
generates a very difficult class of minimum 
weight structural design problems. The weap- 
on developer's interest in structural design for 
aircraft armament lies primarily in the area of 
weapon and weapon support structures. 
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The key structural requirement in this 
application is accurate aiming of an automatic 
weapon during firing. Dynamic response of 
the weapon support structure due to inputs 
from the weapon and from the airframe, 
which vibrates due to aerodynamic inputs, 
must be considered in the design problem. 
The most difficult feature of the minimum 
weight structural design problem for aircraft 
weapon applications is the variety of per- 
formance and failure constraints which must 
be treated in the design process. Constraints 
must generally be placed on stresses arising in 
the structure, angular deflection of the struc- 
ture at the gun mount, and natural frequency 
of the supporting structure. These constraints 
generally appear in the form of inequalities. 
For example, stress is required to be less than 
or equal to the allowable stress for the 
material. This kind of constraint is very 
realistic, from an engineering point of view, 
but makes the solution of the optimal design 
problem rather difficult. 

In addition to altering the geometry and 
distribution of material in the structure to 
obtain desirable performance, it is also possi- 
ble to induce damping into the structure and 
to use active feedback control devices to 
reduce response. These two methods of re- 
ducing dynamic response will require addi- 
tional weight on board the helicopter. There 
is a trade-off between design of the structure 
and design of other means of obtaining 
improved weapon system performance. These 
trade-offs, then, require that we treat the 
aircraft weapon design problem as a system 
problem, explicitly accounting for the inter- 
action between structoral behavior, damping, 
and active feedback control. 

5-1.2.2 GUN BARREL DESIGN 

A second area in which lightweight struc- 
tural design is of critical importance is that of 

gun barrel development, particularly for 
infantry automatic weapon application. With 
a great deal of emphasis being placed on 
lightweight infantry weapons, the barrel is a 
natural component in which to seek weight 
reduction. This is particularly true for rapid 
fire weapons in which heavy barrels have 
traditionally been used to alleviate tempera- 
ture problems. For a particular barrel con- 
figuration, decreased mass tends to cause 
elevated temperatures and stresses. To com- 
plicate matters, material strengths are highly 
temperature dependent, making stress con- 
straints difficult to handle. Another potential 
problem, as one tends toward optimality in 
barrel design, is the possibility that material 
yield properties will become critically depen- 
dent upon strain rates and require their 
explicit inclusion in the design process. 

Another problem, which can arise in re- 
duced weight design, is barrel deflection with 
resulting reduction in weapon accuracy. 
Deflection constraints must, therefore, be 
considered. 

The objective of the barrel design problem 
is to choose barrel dimensions and structural 
material to minimize barrel weight in the 
presence of constraints on dollar cost, tem- 
perature, stress, and perhaps strain rate. The 
optimal design problem must then include 
equations of state of stress and temperature as 
a function of time, both depending on the 
barrel design features. 

5-1.2.3 TOWED ARTILLERY 

The principal objective in towed artillery 
design is to provide support for a large-caliber 
tube that will, upon firing, transmit momen- 
tum to the earth without doing damage to the 
support structure and without undue dynamic 
response.  The  fundamentals of the design 

5-3 



AMCP 706-192 

problem then lie in the field of mechanics 
and, in particular, are highly dependent upon 
the weight distribution within the artillery 
piece. 

In traditional artillery design, the support 
structure is flexible but has been quite heavy 
and stiff in the past so that the flexibility of 
the structure was a higher order effect. Also, 
heavier carriages reduced the severity of the 
dynamic response problem due to their higher 
mass. Recent developments, such as the 
Ml02, 105 mm Howitzer, have resulted in a 
weapon that weighs approximately 3200 lb, 
as compared to the older Ml01 which 
weighed 4500 lb. As a result of the reduced 
weight, problems have arisen in providing a 
firm support for the artillery piece on soil. 
More recent design efforts, including the 
XM164, 105 mm Howitzer, and XM198, 155 
mm Howitzer, have resulted in weapons 
which are considerably iighter than their 
predecessors. As a result of the reduced 
:tructurai weight of the weapon, dynamic 
.response in both of these weapons became 
critical and had to be treated as a key design 
constraint in development of the recoil mech- 
anism. For a discussion of a particular prob- 
iem, :he reader Is referred to the artillery 
design example of par. 8-5. 

some of the more complex lightweight struc- 
tural design problems faced in weapon devel- 
opment. They are simplifications of the real 
problems but are difficult enough to illustrate 
the need for research in development of 
design methods. In view of the current em- 
phasis within the Army on air mobility and 
lightweight systems, new design methods are 
required which are capable of solving these 
and many more lightweight design problems. 

5-1.3 PLAN  FOR TECHNIQUE DEVELOP- 
MENT 

The remainder of this chapter will be 
devoted to formulation and application of a 
method of structural optimization. As noted 
at the beginning of par. 5-1, an in-depth 
treatment of lightweight structural design 
provides insight into application of the gen- 
eral methods of Chapter 4. 

For a comprehensive review of structural 
Optimization through 1967, the reader is 
referred to Refs. i ana 2. Several of the major 
classes of optimal structural design problems 
are outlined in Ref. 2. Some of the key papers 
which have appeared in the literature since 
i 967 are listed in Refs. 3 through i 8. 

Although these are primarily mechanical 
system design problems, they have arisen due 
to the lightweight design criterion. For this 
reason, when one considers lightweight struc- 
tural design he must be willing to fit his 
structural design problem into a larger system 
design program and clearly understand the 
interfaces arising between structural and other 
system performance characteristics. 

5-1.2.4 OTHER WEAPON PROBLEMS 

The example problems cited in par. 5-1.2 
are meant to illustrate the essential features of 

5-2  ELEMENTS OF THE ELASTäC STRUC- 
TURAL DESIGN PROBLEM 

A class of optimal structural design prob- 
lems in which the structure must remain 
elastic is treated in this paragraph. The objec- 
tive of this paragraph is to show how the 
optimization methods of Chapter 4 can be 
used to solve realistic optimal design prob- 
lems. No attempt is made here to present a 
complete theory of optimal structural design 
that is capable of solving all problems. 

The reader should note that, even for the 
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class of problems considered here, it is not 
possible to blindly apply the techniques of 
Chapter 4. A certain amount of knowledge of 
structural analysis is required before a reason- 
able statement of the design problem and a 
method of solution can be obtained. Even 
more important, the structural designer needs 
to have a thorough knowledge of the opti- 
mization methods of Chapter 4 and their 
development. As will be seen, in some cases it 
is required that parts of the design problem be 
interpreted in light of the derivation of the 
optimization method. In this way the method 
may be adapted for solution of a particular 
class of problems. 

ment, buckling loads, and natural frequency. 
The collection of all variables required to 
describe this response due to applied load will 
be denoted by the state variable vector z. The 
manner in which z is related to the design 
variables and applied loads will be discussed in 
some detail later in this paragraph. 

The cost of the structure must now be 
described as a real valued function of the 
design and behavior variables. In keeping with 
the preceding notation this function will be 
denoted as 

/ = /(*, b, r> (5-1) 

5-2.1  THE OPTIMALITY CRITERION 

The meaning of optimal or best must be 
clearly established in each problem of inter- 
est. In order to have a problem which may be 
solved by the previously developed optimiza- 
tion methods, a real valued measure of the 
cost of the structure (value of the structure) 
must be chosen. Such measures as dollar cost 
of the structure, weight of the structure, or 
dynamic response of the structure may be 
chosen. 

Along with the choice of a cost function, 
the parameters, or design variables, that repre- 
sent all design alternatives must be chosen. 
These parameters will often be dimensions of 
structural members, area of member cross 
sections, or locations of joints in the struc- 
ture. In keeping with the notation of the 
preceding chapter, these design variables will 
be denoted as b., i = 1,..., m. For con- 
venience of notation, these variables will be 
put in the vector form b = [b1  . . ., bm ]T. 

Invariably, the behavior of the structure 
under load will have to be considered in the 
design problem. The response of the structure 
may include quantities such as stress, displace- 

where f is one or more eigenvalues such as 
buckling load and natural frequency. Before a 
meaningful discussion of treatment of the 
structural design problem may be given, the 
behavior of the structure due to loads and 
constraints on that behavior must be ana- 
lyzed. 

5-2.2 STRESS AND DISPLACEMENT DUE 
TO STATIC LOADING 

It is assumed for now that the structure of 
interest is either made up of a finite number 
of distinct interconnected members or that 
large continuous members in the structure 
have been approximated by a finite number 
of elements as in finite element techniques. 
Further, it is assumed that the entire structure 
is described by a vector design variable b. 

Let stresses at critical points in the struc- 
ture be denoted zx, ..., zr and displacements 
required for the analysis and design of the 
structure be denoted zr+1 , . . ., z . The 
behavior of the structure due to any given 
load may then be specified by the vector state 
variable z = [zy ,. .., zn ]T. Attention will 
be restricted here and in the remainder of this 
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chapter to structures which obey Hook's law, 
i.e., stress and displacement are determined 
by linear equations. It is clear, however, that 
the design variables play a large part in the 
response of the structure to loads. The depen- 
dence on the design variables enters these 
linear equations through the coefficients. The 
equations for z will be denoted 

A(b)z=P 

where P is a matrix of loads and 

A(b)=[alf(b)]nx „ 

(5-2) 

(5-3) 

is a matrix whose elements depend on the 
design variables. 

In this formulation of the problem, z and P 
may be generalized state and load variables. 
Eq. 5-2 may be obtained through direct 
application of equilibrium and compatibility 
conditions or through application of varia- 
tional criterion for equilibrium. In today's 
structural analysis technology, Eqs. 5-2 are 
very likely to be obtained by finite element 
methods (Refs. 19, 20). If the structural 
analysis problem is properly formulated, the 
matrix A(b) is nonsingular and z may be 
obtained by solving Eq. 5-2. It is assumed that 
the elements of the matrix A(b) are differ- 
entiable with respect to b. 

In most real-world structural design prob- 
lems the structure is required to carry a whole 
family of loads that occur at different times 
in the life of the structure. The treatment 
here will be limited to a finite number of 
loads, denoted P', i = 1,..., s. Associated 
with each load is a state z' determined by Eq. 
5-2. 

Constraints on behavior of the structure 
due to each of the applied loads P may 
include bounds on stresses and displacements. 

These constraints can generally be written in 
the form 

0(z, b, r) < 0 (5-4) 

where Mz.b.S) = [*x(*.*,£), ■ • .,4>,{zM)\T■ 
The inequality constraints, Eq. 5-4, are 
required to be satisfied for each of the states 
z' due to different applied loads P'. 

It is clear that the Eqs. 5-2 and constraints, 
Eqs. 5-4, fit into the formulation of the finite 
dimensional optimal design problem of par. 

4-5. Treatment of the restrictions imposed by 
Eq. 5-4, however, must be delayed until 
similar restrictions due to other behavior 
constraints are accounted for. The entire 
problem will be treated in par. 5-3. 

5-2.3 NATURAL 

BUCKLING 

FREQUENCY  AND 

As pointed out in par. 5-1, the desire to 
obtain lightweight structures has led to 
resonance problems and, likewise, buckling 
problems. It is necessary, then, that a mean- 
ingful optimal design methodology be capable 
of enforcing constraints on eigenvalues 
associated with the system response. The sort 
of constraint considered here is 

f> fo (5-5) 

where £ is buckling load or natural frequency 
and f0 is a lower bound on that eigenvalue. 
More general restrictions than those of Eq. 
5-5 are included in the general constraint, Eq. 
5-4. 

Much as in Eq. 5-2, the equations of 
vibration or buckling may be written in the 
form 

K(b)y = tM(b)y (5-6) 

5-6 
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where y =   fri ,.. .,yn ]T is an eigenvector 
which plays the role of a state variable, 

w) = [k..mnxn (5-7) 

is generally  symmetric positive definite ma- 
trix, and 

M(b) = [m{l{b)] „ x „ (5-8) 

is generally also a symmetric positive definite 
matrix. Eq. 5-6 is often obtained through 
a finite element formulation of the structural 
analysis problem (Refs. 19,20). 

There are many methods for obtaining the 
eigenvalue and associated eigenvector in Eq. 
5-6. The first method requires that the inverse 
of K(b) be computed. Multiplying through 
Eq. 5-6 by K~ 1(b), 

K-\b)M(b)y=- y (5-9) 

This problem is now in standard form and the 
largest eigenvalue of K"l(b)M(b) is sought. 
The power method of obtaining this eigen- 
value is quite effective (Ref. 21). It is par- 
ticularly effective when a good estimate of 
the eigenvector is available. In the iterative 
design technique, a good estimate is generally 
available from the previous iteration. The 
power method is, therefore, well suited for 
use in iterative techniques. This method does 
have the severe disadvantage that K~l (b) 
must be computed for each new b. 

A different method of finding the smallest 
eigenvalue and associated eigenvector of Eq. 
5-6 without computing K~ l (b) is based on 
the Rayleigh quotient as discussed in par. 2-8 
and Ref. 23. The smallest eigenvalue of Eq. 
5-6 is obtained by choosing a normalized 
vector y which minimizes the quotient 
yTK(b)y/[yTM(b)y].   The    minimum value 

of this quotient is the smallest eigenvalue. A 
direct method of minimizing the Rayleigh 
quotient is discussed in par. 2-8. 

5-2.4 METHOD OF SOLUTION 

In the preceding formulation of the opti- 
mal design problem, the cost functions and 
constraints associated with stress and displace- 
ment can be put into the format of the 
problem treated in par. 4-5. The constraints 
associated with natural frequency and buck- 
ling, however, are not of exactly the same 
form. One difficulty is that the coefficient 
matrix for the eigenvector y, K(b) — £M(b), 
must be singular at the solution. This clearly 
contradicts the assumption in par. 4-5 that 
the state equations uniquely determine the 
state variable. 

This situation is a direct result of Murphy's 
law "if anything can go wrong it will". 
Actually, it is not realistic to expect that a 
mathematical formulation of the kind pre- 
sented in par. 4-5 should contain all real- 
world design problems. Already, an important 
problem has been encountered which requires 
an understanding of the development of par. 
4-5 in order to include the new problem in 
the steepest-descent algorithm. The eigenvalue 
problem, fortunately, can be treated very 
nicely by the steepest-descent technique. 
Development of the method will be done in 
par. 5-3. 

5-3 STEEPEST DESCENT PROGRAMMING 
FOR OPTIMAL STRUCTURAL DE- 
SIGN 

In order to obtain a steepest-descent al- 
gorithm for the design problem with con- 
straints on eigenvalues, it is necessary to go 
back into the derivation of the algorithm of 
par. 4-5. The major effort required here will 

5-7 
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be the linearization of the structural design 

problem to obtain an approximate problem of 

the kind described by Eqs. 4-1 19 through 
4-121. 

5-3.1   LINEARIZED     COST    AND     CON- 
STRAINT FUNCTIONS 

dz 
(5-15) 

for each 0, > 0. All this follows since h{z,b) in 

the general formulation is simply A(b)z in the 

present problem so 

Since the cost and constraint functions 

depend on z, b, and f, the first order 

perturbation in these functions due to small 
changes 8z, 8b, and Sf in z, b, and f is 

Sf=5LSz + KSb+v6i        (510) 
oz ob ob 

dh        d 

Tb ' Yb [A(b)z] 

and 

dh 

7z=A 

and 

50 = — 8z + — 8b + — 5f ■. 
dz db 9?   " 

(5-11) 

The problem of writing the perturbed cost 

and constraint functions explicitly in terms of 
6b now reduces to obtaining explicit ex- 

pressions for the terms involving 8z and 5f. 

with A symmetric so A T =A. 

Thus, the explicit dependence of Eqs. 5-10 

and 5-11 on 5z can be easily eliminated. It 

remains to determine 6f in terms of 6b. This 

problem has been addressed in a completely 
rigorous manner by Kato (Ref. 23). Explicit 

expressions are given there under quite restric- 
tive hypotheses. A formal development will 
be given here which obtains the same result. 

From Eqs. 4-117 and 4-1 18, and the 

perturbed state equation we obtain, just as 

Eq. 4-1 19, 

9/ ,T    9 
— 5z = -X/    --[A(b)z]8b 
dz db 

and 

30 
6z = -X* — [A(b)z]8b 

öz ob 

where \J and X* are determined by 

A\J =~ 
dz 

and 

(5-12) 

(5-13) 

(5-14) 

It  is  assumed that  the  eigenvalues and 
eigenvectors of 

K(b)y = W(b)y (5-16) 

depend continuously onb and further, that to 
first order, the following perturbation equa- 

tion is accurate 

K(b)8y+ -i [K(b)y]8b = 8$M(b)y 
ob 

(5-17) 

+ — [M(b)y]8b + W(b)8y 
ob 

where y and f satisfy Eq. 5-16. 

If K(b)  or M(b)  is not symmetric, it is 

5-8 



AMCP 706-192 

necessary   to   solve   the  adjoint  eigenvalue 
problem 

K1 (b)y = W1 Wy (5-18) 

that has the same eigenvalue f asEq. 5-16 but 
a different  eigenvector y.  Rearranging and 
premultiplying by y T this is 

yT[K(b)-^M(b))8y+yT — [K{b)y]8b 
ob 

-yTt^r [M(b)y]8b 
ob 

= yTS$M(b)y 

Since the first term is a scalar, 

yT \Kyb) - $M(b)} 8y = 8yT [KT(b) 

- CMT fb)ß. 

Sincey is an eigenvector of Eq. 5-! 8, 

[KT',b) -mT(b)]y=ü 

and this aquation becomes 

■i 
y< — [K(b)y] -Sy> — [M(b)y] \ -5Ö 

in ob f 

= &Sy M(b)y. 

Assuming y T M{b)y =£ 0 which will generally 

be the case. 

6? = \ yT — [K(b)y] 
\        6b 

(5-19) 

- KyT — [M(b)y] j ob    [yTM(b)y] 

Derivation of the perturbation formula, Eq. 
5-19, has been strictly formal. The assump- 

tion that Eq. 5-17 holds is highly questionable 

from an operator theoretic point of view. 

Under reasonable assumptions on the finite 

dimensional eigenvalue problem treated here 
however, Eq. 5-19 is shown to hold (Ref. 23); 

i.e., even though the justification given here is 

not mathematically rigorous, the result, Eq. 

5-19, holds for a large class of problems. 

Defining 

"=£- >^''^ 
+ | ~/lyTM(b)y] \ 

lid )r_ 
x |      — [K(b)y]      y 

\   \ ob ) 

and 

? j— [M(b)y\\   yj (5-20) 

-4-  -\—[A{b)z]}    ^ 
db       ] ob j 

'  +i \—[K(b)y]\   y 
X      \\ ob \ 

: i  3 1 7 _ 'l 
' -?{—W(b)y]\   y I 

S 3ö 

\x^l/[y^M(b)y] 
ob I 

or 

, 0, if $ is empty. 

Eqs. 5-10 and 5-11 become 

8J = äJ    6b 

and 

50 = ß*r5ö. 

(5-22) 

(5-23) 

5-9 
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The linearized problem is now to minimize 
bJ, Eq. 5-22, subject to constraints 

T 
$   bb < A$ 

where A0 is the desired correction in con- 
straint error and 

bbTWbb< %2 

where W is positive definite and % is small. 
This is precisely the same problem in par. 4-5, 
Eqs. 4-119 through 4-121, so the theoretical 
results and steepest-descent algorithm of that 
paragraph apply with proper interpretation. 

5-3.2 STEEPEST DESCENT ALGORITHM 
FOR OPTIMAL STRUCTURAL DE- 
SIGN 

Step 1. Make an engineering estimate of 
the optimum design variable 6(0). 

Step 2. For/ = 0, 1, ..., solve Eq. 5-2 for 
zu\ Eq. 5-6 for/'' and f0), and 
Eq. 5-9 for y (if k(b) or M(b) is 
not symmetric) with b = b^. 

Step 3. Form 0 as in Eq. 4-105. Solve Eqs. 
5-14 and 5-15 for \J and X*. 

Step 4. Compute £7 and £5 in Eqs. 5-20 
and 5-21. 

-M~* (ß*T W1 & + 2vA$). If any 
component of ß is negative, re- 
move the corresponding row from 
$ and return to Step 3. 

Step 8. Compute 

8b1 = W1 (/ - 9?M[\ S?' W1 nJ 

and 

bb2 = W-l$M-];A A<£ 

and form 

bb^-^-bb1 +bb2. 
2v 

Step 9. Compute 

fcO+i) =bU) +5b. 

Step 10. If all constraints are satisfied and 
bb1 is sufficiently small, termi- 
nate. Otherwise, return to Step 2 
and continue the process. 

All the properties of bb1 and bb2 derived 
in par. 4-5.2 hold in this case. Further, the 
discussion of that paragraph regarding such 
things as choosing v also hold. The reader 
should refer to that paragraph for detailed 
discussions. 

Step 5. Choose A$ as the desired reduction 
in constraint error. 

5-3.3 COMPUTATIONAL 
CONSIDERATIONS 

Step 6. Compute 

M^ = 
1, if $ is empty 

S*   W'1^, elsewhere. 

Step 7. Choose 7 >  0 and evaluate ß 

5-10 

Several comments on the computational art 
used in solution of these problems are in 
order. First, if a feasible design was chosen 
initially, large steps could be taken until one 
or more constraints were violated, at which 
time the step size was reduced. Second, it was 
noted that as the optimum was approached, 
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oscillation occurred. By monitoring the dot 
product, 8b^ * 6öü_1), oscillations were 
sensed when negative values of the dot prod- 
uct occurred. Thus, step size, l/(2i>), was 
divided by two when negative values of the 
dot product occurred on two successive itera- 
tions. Finally, the most effective method of 
adjusting step size was to monitor successive 
reductions in cost function after feasibility 
had occurred. Once insignificant reductions 
occurred, the step size was reduced to obtain 
finer convergence. 

The Power method used to compute the 
smallest eigenvalue performs quite well. At 
every iteration, the starting value for the 
eigenvector is taken from the previous itera- 
tion which manifested a very rapid rate of 
convergence. An accuracy of 0.1% in each 
component of the eigenvector was used to 
compute the new eigenvector. The stiffness 
matrix for the structure was inverted by the 
Gauss-Jordan elimination procedure. 

Another comment that is appropriate here 
concerns the sign check on the Lagrange 
multiplier vector p, called for in Step 7 of the 
computational algorithm (par. 5-3.2). The 
algebraic sign of each component of the 
Langrange multiple vector p was checked at 
each iteration. If some of the components 
were negative, then the matrix $ and the 
vector A$ were adjusted accordingly. This 
procedure is particularly useful whenever 
there were redundant constraint violations. In 
some cases, the number of constraints vio- 
lated is more than the number of design 
variables of the problem, yielding a singular 
matrix coefficient of p. In such cases numeri- 
cal noise yielded a solution such that some of 
the components of the vector p were always 
negative, indicating that the corresponding 
constraints would be strictly satisfied in the 
next  iteration.   In numerical  examples, the 

number of constraints with positive compo- 
nents of M was always less than or equal to the 
number of design variables of the problem. 
This procedure of adjusting the constraint set 
has worked very well and has minimized the 
possibility of divergence of the algorithm. 

The method presented is relatively auto- 
matic in the sense that, for the computer 
program developed, the input data given is the 
only pertinent design information required 
for solution of the problem. All the necessary 
matrices and their derivatives are automati- 
cally generated in the computer. Any person 
with a reasonable knowledge of FORTRAN 
language should be able to handle the pro- 
gramming without any difficulty. The method 
is developed to meet simultaneously displace- 
ment, strength, and frequency requirements 
on the structure. The technique, therefore, 
can be made user oriented. 

5-4 OPTIMIZATION OF SPECIAL 
PURPOSE STRUCTURES 

Several special purpose structural optimiza- 
tion problems are solved in this paragraph on 
an ad-hoc basis to illustrate the method of 
par. 5-3. Subsequent paragraphs will treat 
large scale problems in a more unified man- 
ner. 

5-4.1 A MINIMUM WEIGHT COLUMN 

A column is to be constructed by making 
its cross section piecewise uniform as shown 
in Fig. 5-1. The objective of the design 
problem is to choose the element areas so that 
the column will support a vertical load P0 

without buckling or yielding under compres- 
sive load. For the purpose of the present 
problem the geometric shape of each column 
element is fixed and symmetric about two 

5-11 
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fimnnniiii J7TTT 
Figure 5-1. Column 

orthogonal axes so that the cross-sectional 
area bt of the ith element completely specifies 
the element. With this assumption, if a is the 
second moment of the cross section of unit 
area, then 

/. = a b:
2 (5-24) 

where  er    v   is the allowable stress of the max 
column material in compression. 

In order to apply the optimization method 
of par. 5-3, the equations which determine 
the buckling load in terms of b = [b,,..., bk ]T 

must be obtained. Using the generalized co- 
ordinates shown in Fig. 5-2 and Eq. B-4, 
Appendix B, the potential energy of the ith 
element under the buckling load P is 

PEt=-if KKbW -Pu'T'D'ibW    (5-28) 

where 

is as shown in Fig. 5-2. The matrices K'{b) 
and D'{b) are from Eqs. B-4 and B-8, Appen- 
dix B 

In this problem, weight of the column is to 
be minimized so that the cost function is 

J = yXibjLi (5-25) 

where y is material density and Li is the 
length of the ith element of the column. 

There are two basic constraints that must 
be satisfied in this design problem. First, to 
insure that the buckling load P is not less than 
the applied load ^o > it is required that 

u\jZ\ui 

Figure 5-2.  Column Element 

,+i^Po-P<0. (5-26) 

Second, in order to insure that the column 
material does not yield under the applied load 
P0, it is necessary that 

i= l,...,k 

5-12 

(5-27) 

Eabf 
«'(*)=- 

and 

12   ~6L{ - 12   -6Lt 

-6L.     4i(
2 6Lt     2L) 

- 12      6Lt 12      2Lt 

-6L,     2L; 2Li     AL] 

(5-29) 
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fi fi
T -dli- = [o,...,o,-p0/b;,o,...,oi, 

(5-30) 

Summing the total potential energies of all 
the elements from Eq. 5-28 and defining a 

new variable 

y= [yi.yi, -,^atl7- 

= [u\, u\,u\,u\, ..., uk, uk]T 

the total potential energy PE of the column 
may be written 

PE=-yT K(b)y - P-yT D(b)y 

where K{b) and .0(6) are made up of elements 

of K'(b) and D'(b) and are symmetric. Apply- 

ing the theorem of minimum total potential 

energy given in Appendix B, the governing 

equations of buckling are 

db 

i= 1,..., k (5-33) 

since 0. does not depend on P, i = 1,..., k and 

{ 9 
db 

[K(b)y]\   y 

p\7b[Dib)y]\Tyi 

if^+1 > 0 

[0],if^+1 < 0. 

(yTDy), 

(5-34) 

The computations required in Eq. 5-34 are 
messy but they can be programmed for 

automatic computation. 

All expressions required for direct applica- 

tion of the steepest descent algorithm of par. 
5-3 are now available. Numerical results and 

profiles of optimum columns are shown in 
Tables 5-1 and 5-2, and Fig. 5-3. Numerical 
data for the example problems are E = 3.0 x 

107 psi, a = 0.079577, amax = 20,000 psi, 
and L = 10.0 in. Computation in each case 

required approximately 0.1 sec per iteration 

K(b)y=PD(b)y. (5-3 1) 

Eq. 5-31 is now in the form of Eq. 5-6, with 

proper interpretation of notation. 

In order to implement the computational 

algorithm of par. 5-3, the following vectors 
are required: 

,T    dJ 
= 3ö = t7Ll,7L2'""7i*] (5"32) 

TABLE 5-1 
COMPARISON OF UNIFORM 

AND OPTIMAL COLUMNS 

Volume of      Volume of 
Optimal Uniform*        Material 

P, lb      Column, in?   Column, in?   Savings, % 

500 0.806 0.923 12.7 
1000 1.143 1.300 12.1 
1500 1.411 1.600 11.8 
2000 1.640 1.840 10.9 
4000 2.412 2.600 7.2 

'Lightest uniform column which will support load P. 

5-13 
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TABLE 5-2 
CROSS-SECTIONAL AREAS OF OPTIMUM COLUMNS 

Element 
No. i P = 500 lb P= 1000 1b P= 1500 lb P= 2000 1b P = 4000 lb 

1 0.1070 0.1499 0.1833 0.2106 0.2947 
2 0.1055 0.1480 0.1809 0.2076 0.2875 
3 0.1035 0.1442 0.1763 0.2023 0.2789 
4 0.1000 0.1383 0.1691 0.1942 0.2683 
5 0.0960 0.1303 0.1593 0.1831 0.2505 
6 0.0831 0.1 198 0.1464 0.1683 0.2302 
7 0.0738 0.1064 0.1299 0.1493 0.2020 
8 0.0623 0.0892 0.1088 0.1250 0.2000 
9 0.0477 0.0668 0.0812 0.1000 0.2000 

10 0.0267 0.0500 0.0750 0.1000 0.2000 

> l\ >} > > 

P= 500 

i I'I 1111 ri 

I 
] * = 100 D 

P = 2000 P = 4000 P = 6974 

Figure 5-3. Profiles of Optimal Columns' 

and   15 iterations to converge  on an IBM 
360-65. 

5-4.2 A   MINIMUM WEIGHT VIBRATING 
BEAM 

together uniform sections of beams as shown 
in Fig. 5-4. The objective is to choose the 
sections so that the beam is as light in weight 
as possible and still satisfies constraints on 
strength and natural frequency. Due to dy- 
namic inputs to the beam, it is required that 
the natural frequency of the beam be above a 
given limit co0 to prevent oscillation prob- 
lems. 

As in the preceding column design prob- 
lem, the cross-sectional geometry is chosen, 
but all dimensions of the cross section may be 
varied in the same proportion. Thus, if bi 

denotes the area of the ith section, then the 
second moment of the cross-sectional area is 

■ ab. (5-35) 

where a is a constant of proportionality 
depending on the geometry of the cross 
section. The problem at hand is to minimize 

A   beam   is to  be  designed by  piecing 

5-14 

Figure 5-4. Stepped Beam 



AMCP 706-192 

weight, so the cost function is 

J = p  2   biLi 
i = i 

(5-36) 

where p is material density and L(. is the 
length of the ith section. 

As a strength constraint, it is required that 

0. =b0 -bj < 0,   i= 1,-. * (5-37) 

where b0 > 0 is chosen so that the beam will 
support a lateral load. The constraint on 
natural frequency can be written as 

0fc + 1 ="o - OJ <  0. (5-38) 

K\b) =- 

12/. ■ eify   -12/,    -6/./. 

-6/Z,       4/.L, 6/./.      2/x; 

■12/, 6/,£(        12/, 6/,L, 

-6/^       2/A
2 6/,i,      4/,4 

(5-40) 

Forming a single vector y that contains all 
displacements and rotations for the beam, the 
total kinetic and potential energies are 
yTM(b)y/2 and yTK(b)y/2, respectively. 
Lagrange's equations, Eq. B-17, are then 

M(b)y(t) + K{b)y{t) = 0 (5-41) 

By neglecting compression of the beam, 
deformation of a typical element is shown in 
Fig. 5-5. By Appendix B, the kinetic energy 

77 '■). 

Figure 5- 5.   Typical Element 

of an element is ülM'(b)ü'/2, where, from Eq. 
B-6 

756  -22L,     54 13/,, 

22Li      4L'-13A,   -3Lf 

54    -13L.      756       227,.. M\b) -■ 
420 

137,,  -3L)    227,,       4L* 

(5-39) 

Likewise, the  potential  energy   of  the   ith 
element is u'TK'(b)u'/2, where, from Eq. B-4 

For harmonic motion of the structure, y(t) = 
y sin ut, where y isjust a constant vector, / is 
time, and w is natural frequency. Substituting 
into Eq. 5-41 and defining f = co2, the 
eigenvalue equation is 

K(b)y = W(b)y (5-42) 

The problem of minimizing J of Eq. 5-36, 
subject to the constraints of Eqs. 5-37 and 
5-38, and with state Eq. 5-42, is in the form 
of the general problem of par. 5-3. The 
steepest-descent computational algorithm of 
that paragraph can be applied directly to this 
problem. 

As a numerical example, the beam problem 
was solved with the data E = 3 x 107 psi, L = 
10 in., a = 1.0, and p = 0.00208 lb-sec2 /in3. 

The computational algorithm required about 
0.6 sec per iteration on an IBM 360-65 system 
and approximately 15 iterations to converge. 
Results for a range of natural frequencies are 
given in Table 5-3 and the profile of an 
optimum beam is shown in Fig. 5-6. 

5-15 
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TABLE 5-3 
COMPARISON OF OPTIMUM BEAMS 

Volume of Optimum 
Frequency Uniform Volume, Material 
rad/sec Beam*, in? in? Savings, % 

3600 0.935 0.897 4.06 
4000 1.155 1.062 8.05 
4400 1.397 1.259 9.74 
4800 1.663 1.481 10.94 
5200 1.951 1.727 11.48 
5600 2.263 1.993 11.93 
6000 2.598 2.283 12.12 

10000 7.217 6.330 12.29 

'Uniform beam of lowest volume having required 
natural frequency. 

't 
/77777777 //////// 

Figure 5-7.  Portal Frame 

ment stiffness matrix from Appendix B is 

Figure 5-6. Profile of Optimum Beam 

5-4.3 A MINIMUM WEIGHT PORTAL 
FRAME WITH A NATURAL FRE- 
QUENCY CONSTRAINT 

A portal frame as shown in Fig. 5-7 is to be 
proportioned so that it weighs as little as 
possible and has its fundamental frequency at 
least as large as a specified frequency coQ. 
Each member of the planar frame is formed 
from several uniform sections whose areas are 
to be determined as design variables. As in the 
preceding problems, the cross-sectional geom- 
etry is taken as fixed and all dimensions of 
cross sections varied proportionally. The 
second moment of the cross-sectional area 
about a centroidal axis is/; = ubf where b. is 
the cross-sectional area of the ith element. 

Neglecting strain energy due to axial defor- 
mation of the horizontal member, the ele- 

K(bt) 
Eabf 

Lf 

12 -61, -12 ~6Lt 

6L. AL) 6L, 1L\ 

12 6L, 12 6L,. 

61. 2L) 6Lt 4L? 

(5-43) 

where L. is the length of the ith member and 
the element deformation variables are shown 
in Fig. 5-8. The potential energy PE of the ith 
element is 

t 

y ') 

"l     JU2 

Figure 5-8.  Typical Elements 
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PE, =- I/K^U* 

where «' = [Wj, «2> w3> "4!' 

(5-44) 
where y is the vector of all displacements and 
rotation, and f = w2. The matrices A'(ft) and 
Af(ft) are formed from element stiffness and 
mass matrices as outlined in Appendix B. 

Likewise,  from Appendix B the kinetic 
energy KE of the typical element is 

KE,  = j ü'TM(bty&' 

Eq. 5-47 is in exactly the form of Eq. 5-16 
and the matrix for this problem is simply 
weight of the structure which is 

J = p 2 b,L. 
i- 1 

(5-48) 

where u denotes time derivative of« and 

m,)- PbiLi 

420 

156    -221..      54        13L. 

-22L.        4L? - 13Z,,.   -3Z.J 

54      -131,      156      22L. 

13/..  — 3L?      22L.      4L? 

(5-45) 

Taking into account the lateral rigid body 
motion of Member 2, the total kinetic energy 
of the structure is 

KE = X-ui Af (&,.)«'' +  - MüI       (5-46) 
1 2 2 

where M is the mass of Member 2 and uA is 
the horizontal velocity of points . 

Requiring harmonic motion with frequency 
co, the displacement vector y{t) made up of 
all displacements is 

y(t) = y sin cof 

where y is a constant vector. Applying 
Lagrange's equations and eliminating time 
dependence yields 

where p is density of the structural material. 

The constraints imposed on the problem 
include lower limits on cross-sectional area 

<t>i = b0 -b.Q 0,  i= 1,..., * 

here b0 

frequency 

(5-49) 

where bQ  >  0 and a lower limit on natural 

t+i=?o-f<0 (5-50) 

where f 0 is the lowest allowable eigenvalue of 
Eq. 5-47, r0 = w2 . 

The steepest-descent algorithm may now be 
applied directly. Data for the specific prob- 
lems solved are given in Table 5-4. The results 
for an aluminum portal frame are given in 
Tables 5-5 and 5-6, with a typical profile 
shown in Fig. 5-9. The design variable bi 

shows the distribution of material for a 
minimum weight frame whose frequency of 
vibration must be greater than or equal to a 

TABLE 5-4 
MATERIAL PROPERTIES FOR ALUMINUM 

K(b)y = $M(b)y (5-47) 

a, dimensionless 
p, lb-sec2/in.4 

E, lb/in.2 

/0.in.4 
L,   in. 

0.07958 
2.616X104 

10.3x10* 
0.009825 
10.0 
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TABLE 5-5 
COMPARISON OF UNIFORM AND OPTIMAL 

FRAMES FOR ALUMINUM 

Weight of Weight of 
Frequency, Uniform Optimal Weight 
rad/sec Frame, lb Frame, lb Reduction, % 

2000 3.748 1.729 53.9 
3000 8.434 2.562 69.6 
4000 14.994 3.590 76.1 
5000 23.428 4.688 80.0 

TABLE 5-6 
OPTIMAL DESIGN VARIABLE b| 

FOR VIBRATING FRAME 

b|      2000 
co, rad/sec 

3000 4000 5000 

*>1 
1.577 1.964 2.907 4.020 

b. 0.883 1.604 2.484 3.321 

b, 0.552 1.416 1.912 2.622 

b, 0.374 0.866 1.290 1.725 

b, 0.350 0.360 0.671 0.836 
be 0.350 0.350 0.350 0.350 

i ri 111 f 11 

Figure 5-9. Optimum Portal Frame for 
co =3000 rad/sec 

specified value. It can be seen from Table 5-5 
that a significant material saving is possible in 
comparison to the portal frame with members 
of constant cross section. 

The results for the design variables bi are 
the same for Members 1 and 3, and Member 2 
converges to the lower bound /0, so only the 
results for Member 1 are reported. For all 
frequencies the values for the b{ for Member 2 
are   equal   to   0.350. 

5-4.4 A MINIMUM WEIGHT FRAME WITH 
MULTIPLE FAILURE CRITERIA 

To illustrate the applicability of the 
steepest-descent method for the minimum 
weight design of structures with stress, buck- 
ling, and displacement constraints, an ex- 
ample of a statically loaded frame problem is 
presented.  Fig.   5-10 shows the geometrical 

Figure 5-10. Frame With Side Loading 

configuration of the frame that is considered. 
All members are assumed to be of the same 
length L. Member 1 is subjected to a lateral 
loading q(i). Member 3 has a uniform cross- 
sectional area which is prescribed and will not 
be allowed to vary. The connections at points 
A and B are frictionless pins. 

The finite element method is used to 
obtain the elastic response of the system for a 
given set of design variables, i.e., the cross- 
sectional areas of the elements. As in the 
preceding problem, the geometry of each 
cross section is the same with all dimensions 
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of cross section varying proportionally. Thus, 
I. = abj where b, is the cross-sectionalareaof 
the ith element. The stiffness matrix K{b^) of 
a typical element, Fig. 5-11, can be written as 
in par. 5-4.3 with generalized displacements 
defined by 

u' = [t/j, U2, M3, u4]
T. 

where the matrix D is derived from the 
shortening of Member 2 as in par. 5-4.1 and, as 
in the previous problem, K(b) is a stiffness 
matrix. 

The cost function to be minimized in this 
problem is the structural weight of Members 1 
and 2 which is simply 

S~\ 

c h 

Figure 511.   Typical Elements 

From the fundamental beam theory, if R is 
the horizontal force transmitted from the 
Member 1 to 3, and assuming that Member 2 
remains straight without buckling, then 
neglecting compression of Member 2, the 
deflection at A is uA =RL3/(3EI3). From 
the equilibrium conditions on the transverse 
forces and moments at the nodes of Member 
1, the generalized displacement z, which is 
made up of the element displacements u{ can 
be evaluated from the following matrix equa- 
tion 

A(b)z=F (5-51) 

where F is a vector load and A{b) is a 
symmetric matrix. In a similar manner, if y is 
the displacement vector containing all ele- 
ment deflections associated with Member 2, 
the buckling load P can be determined by 
solving the eigenvalue problem 

/ = 7 2 btLt 

where y is the weight density of the material. 

The weight of the frame is to be minimized 
subject to the following constraints: 

1. Stress constraints at the ith node of 
Member 1: 

°/-%ax1 <0,   i= 1,...,«       (5-53) 

where of = Mcib^lUib^} is bending stress, 
c(bt) = ß(b!.)1 >2 is half the depth of the beam 
at point i, i = 1,2,. . ., m and 0max is the 
maximum allowable stress. The parameter ß is 
a property of the cross-sectional geometry. 

2. Deflection constraint: 

K + I
=U

A -   As 0 (5-54) 

K(b)y=PD(b)y (5-52) 

where uA is the horizontal deflection at the 
top of Member 1 and A is the maximum 
allowable lateral deflection of the top of the 
frame. 

3. Buckling constraint: 

3EI3 

4>m + i = -[l~ uA-p*° (5-55) 

where the first term is just the load.fi carried 
by the column. 
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4. Compressive stress constraint at the jth 
node of Member 2: 

*w+/+2 =X ~amax2  <  ° 

for bj in Member 2, 

(5-56) 

The steepest-descent algorithm can now be 
applied directly. Given data are: A =4 in.; 
%aJ,   =   85,000 psi; am =   5,000 psi; 
cross-sectional area of Member 3 is 4 in?; I = 
100in.;£= SxlO1 psi, a = 0.07958, and ß = 
0.5642. The resulting horizontal forces R that 
correspond to increasing constant lateral loads 
4, given in Table 5-7, are 285 lb, 409 lb, 458 
lb, and 458 lb, respectively. For 4 = 20 and 
25 lb/in., the displacement in Eq. 5-54 is an 
equality. For lower loads it is a strict in- 
equality. This was determined automatically 
by the algorithm. The results for different 
side loadings are given in Tables 5-7 and 5-8. 
A profile of an optimal frame is shown in Fig. 
5-12. Computation in each case required 
approximately 0.5 sec per iteration and 15 
iterations to converge on an IBM 360-65. 

TABLE 5-7 
OPTIMAL DESIGN VARIABLE 

STATIC FRAME 
bj FOR 

Cross-SectionalArea b., in. 

Member 1 Member 2 
Element q, lb/in. q, b/in. 

No.   i 10 15      20 25 10 15 20 25 

1 1.49 2.03  2.76 4.51 0.226 0.271 0.286 0.286 

2 0.86 1.20   1.76 3.34 0.366 0.438 0.464 0.464 

3 0.40 0.47   0.48 2.10 0.407 0.487 0.516 0.516 
4 0.43 0.53   0.37 0.43 0.366 0.438 0.464 0.464 

5 0.43 0.53  0.52 0.43 0.226 0.271 0.286 0.286 

TABLE 5-8 
VOLUME OF OPTIMUM FRAME 

10 
q, lb/in. 

15 20 25 

Optimum 
Volume, 504.2 533.4 558.0      656.0 
in.3 

TTTTTTT 

:y 

Figure 5-12. Profile of Optimal Frame 
With Multiple Failure 
Criteria (q = 25 lb/in.) 

54.5 A  MINIMUM WEIGHT PLATE WITH 
FREQUENCY CONSTRAINTS 

As a final numerical example in this para- 
graph consider the problem of minimum 
weight design of the simply supported rectan- 
gular plate shown in Fig. 5-13 subject to a 
natural frequency constraint. The bending 
equation for plates of variable thickness is 
given in Eq. 5-58. When the deflection 
W{x,y,t) is written in the form 

W(x, y, t) = w(x, y) cos wf 

the governing equation becomes 

(5-57) 

Figure 5-13. Rectangular Plate 
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£>V4w + 2 — — V2w + 2— — V2w 
9y 3x dy oy 

where 

+ V2Z)-V2w -(1 -v) 
d2D 32w 
3x2   3y2 

a2£> a2w   32z?a2w 

3x3.y 9;c9>'     3.y2   3x2 

= h pco2 w (5-58) 

Figure 5-14. Collocation Points 

D(x,y) = 
Eh3(x,y) 
12(1 -v2) 

(5-59) 

fcCx,>0 is the thickness of the plate, which is 
the design variable, and p is the density of 
plate material. 

When the function w(x,y) is represented in 
the form 

w{x,y)=    2     A,,    sm sin  
a b m ,« = 1 

(5-60) 

the eigenvalue problem can be solved approxi- 
mately by numerical methods. The problem 
posed here is solved using a collocation 
technique, i.e., the differential equation is 
satisfied at discrete points in the region, Fig. 
5-14. 

The number of discrete points is chosen 
equal to the number of terms in the truncated 
series of Eq. 5-60. The drivatives of the 
function D(x,y) at the grid points are evalu- 
ated by the use of finite differences. For a 
given set of design variables, i.e., h(x,y), the 
lowest eigenvalue, J = pco2, and the associated 
eigenvector {Amn I , which plays the role of 
y, are determined. 

In the steepest-descent algorithm, the cost 
function that is to be minimized is 

j = p(\A . 2   h(Xj,y) (5-61) 

where AA is the area of the grid squares. 

The constraints imposed on the design are 

ho-Hxpy/)<0 (5-62) 

and 

?o - ? < 0 (5-63) 

where h0 > 0 and f0 > 0 are lower limits on 
plate thickness and eigenvalue of Eq. 5-58, 
respectively. 

The steepest-descent computational al- 
gorithm applies in a direct way. It should be 
noted that the collocation method for ap- 
proximate solutions of the equations for 
natural frequency yields nonsymmetric 
matrices K and M in Eq. 5-16. Thus in this 
formulation of the plate optimization prob- 
lem, the adjoint eigenvalue problem, Eq. 5-18, 
must be solved along with the original eigen- 
value problem. If finite element methods for 
plate   analysis   had   been   used,   symmetric 
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matrices would have been obtained. In this 
example, as well as in the preceding, a 
minimum effort was expended to make com- 
putations efficient. The emphasis has been 
placed on getting results. A subsequent effort 
will be devoted to making algorithms more 
efficient. 

The minimum weight plate problem was 
solved by the algorithm of par. 5-3 with 
E = 3.0xl07 psi, p = 7.43 xlCT4 lb-sec2/in.4 , 
v = 0.30, and co0 = 1375 rad/sec. The uni- 
form plate with t = pw2 = 1400 was taken as 
the initial estimate to the optimization prob- 
lem. The dimensions of the plate are 10.0 in. 
by 10.0 in. and the value of h0 =0.1 in. The 
material is assumed to have a constant density 
and so minimum weight is equivalent to 
minimum volume. The volume of the uniform 
plate is 11.44 in.3 and the volume of the 
optimal plate is 10.8 in.3 which is a 5.6% 
material savings. Fig. 5-15 shows 25 colloca- 
tion points. The numbers in the network are 

0 
a 
2 

0.124 0.116 0.100 0.100 0.100 

0.116 0.103 0.100 0.100 0.100 

0.100 0.100 0.100 0.104 0.111 

0.100 0.100 0.104 0.121 0.128 

h 0.100 0.100 0.111 0.128 0.136 
2< ' 

5-5 GENERAL   TREATMENT  OF   TRUSS 

DESIGN* 

The theory presented in pars. 5-2 and 5-3 
will now be applied to the case of general 
plane and space trusses. These types of 
structures are encountered quite frequently in 
practical situations. Most common among 
these are buildings, transmission towers, 
bridges, cooling towers, aircraft structures, 
and lightweight military structures. In all these 
cases, it is desirable that the structure simul- 
taneously should meet strength, deflection, 
and frequency requirements and be of mini- 
mum weight. In this chapter, all these con- 
straints will be considered. 

5-5.1 SPECIAL PROBLEM FORMULATION 

In the problems to be considered here, 
geometry of the truss is assumed to be 
specified and the loads are applied only at the 
joints. The objective function for the problem 
is taken as the total weight or the volume of 
the truss, and the design variable for each 
member is taken as its cross-sectional area. 
The objective function of Eq. 5-1 in this case 
is a linear function of m design variables and 
may be written as 

/=  2 21 PiLtbt (5-64) 

Figure 5-15. Optimal Design Variable h(x, y) 
for Vibrating Plate 

the values of the thickness function h(x,y) at 
each nodal point which is located at the 
center of each square. Double symmetry of 
the optimal plate thickness was observed 
about axes through the point (a/2, b/2). 

*This paragraph is based on the dissertation of Dr. J. Arora, 
Ref. 34. 

where p.  and £(.  are material  density  and 
length of member i, respectively. 

The displacement method of structural 
analysis is used, and nodal displacements of 
the truss are considered as basic state vari- 
ables. Therefore, the jth component of the 
state variable represents the jth displacement 
component of the truss. Fig. 5-16 shows a 
simple scheme of designating joints, members, 
and displacement components of a truss. Fig. 
5-17 shows a bar element with sign conven- 
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2\© v4 

Figure 5-16. Description of a Truss 

Figure 5-17. A Truss Element 

tion to be used on element forces and 
deformations. Basic equations of the displace- 
ment method for a truss may be written as 

u = ßz 

F=K(b)u 

and 

f=fF 

(5-65) 

(5-66) 

(5-67) 

where u is the element deformationvector, F 
is the element force vector, f is the vector of 
external loads applied to structural nodes, and 
ß is a rectangular transformation matrix, 
which transforms the nodal displacement vec- 
tor z to the element deformation vector u. 
The matrix K (b) is composed of element 
stiffness matrices and is given by 

K(b) 

Kt 

K„ 

(5-68) 

where m is the total number of elements in 
the truss and K. is the stiffness matrix for the 
ith element of the truss. The stiffness matrix 
for the ith element may be written as 

K.. 
'  Li 

1 

1 

I 

1 
(5-69) 

where E{ is Young's Modulus of Elasticity of 
the ith element. Substituting Eqs. 5-65 and 
5-66 into Eq. 5-67, one obtains 

/= [ß'K(jb)ß]z 

= K(b)z 

where 

K(b)=ßTK(b)ß 

(5-70) 

(5-71) 

is the structure stiffness matrix, which is 
identical to A(b) in Eq. 5-2. The mass matrix 
M(b) for the truss may also be computed in a 
similar way, and it is given by 

M(b)=ßJM(b)ß (5-72) 

where M(b) is   formed   from  element  mass 
matrices and is given by 

M(b) = 

M, 

'M_ 

(5-73) 

Here, Mt  is   the   mass  matrix   for  the  ith 
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element of the  russ and is given by 

M,=- 
PMt 2     1 

1     2 

Any nonstructural mass that is attached to 
the trass may also be added to the mass 
matrix of Eq. 5-72 and it may be written as 

M(b)=ßTM(b)ß+M0 

Assembling the matrix C* of Eq. 5-21 is 
more tedious. It requires a formation of 
constraint set $ as in Eq. 4-105 which will be 

(5-74) discussed in detail now. The constraint set $ 
may be divided into five subsets, namely, 
frequency, stress, buckling and displacement 
constraints, and lower and upper bounds on 
the design variables. Explanation of these 
subsets follows one by one and, for each 
subset, matrices 9#/9?, 9#/9<?, and 9$/9£> are 

(5-75) computed. 

where M, is a matrix consisting of nonstruc- 
tural masses. In the example problems to be 
presented later, MQ is taken to be a null 
matrix. However, there is no particular dif- 
ficulty in incorporating this matrix if it is not 
zero. Its inclusion will simply change the 
lowest natural frequency of the truss. The 
derivation of the given structural analysis 
equations and matrices is well documented in 
the literature (Refs. 20, 24). 

In order to apply the algorithm of par. 
5-3.2, two main matrices %J and 2* of Eqs. 
5-20 and 5-21 must be computed. They can 
be assembled very easily once various other 
matrices required in them have been com- 
puted. In the class of problems treated here 
fib) does not depend on the design variable, 
so df(b)/db = 0. Also, one obtains from Eq. 
5-64 

bJ 
db = (Pi^i. .Pm^iJ 

9/ 

and     9//9f = 0;     and     from     Eq.      5-14 
\J = (0, , 0)T. Substitution of these values 
into Eq. 5-20 yields 

5-5.1.1   FREQUENCY CONSTRAINTS 

In the example problems, only one fre- 
quency constraint is considered. However, if 
other frequency constraints are also present, 
these may be treated in a similar way. Since 
the design variable vector b is available at any 
iteration, the matrices K(b) and M{b) are 
computed from Eqs. 5-71 and 5-72, respec- 
tively. The lowest eigenvalue f and the asso- 
ciated eigenvector^ are then obtained from 
Eqs. 5-5 and 5-6, respectively. Premultiplying 
both sides of Eq. 5-6 by K'lib), one obtains 

K-HbW(b)y=jy = yy (5-77) 

where y = 1/f. The power method is used to 
find the largest eigenvalue y of K'l(b)M{b). 
This method of obtaining the largest eigen- 
value is quite efficient in the present problem, 
since a very good approximation to the 
eigenvector at each iteration, except for the 
first one, is available from the previous 
iteration. The lowest eigenvalue is then given 
by f = 1/7- The frequency constraint may 
now be written as 

J>?„ (5-78) 

«y=(Piii- >PmLm)T- (5-76) 
where f0   corresponds to a given frequency. 
In   terms   of   the   notation   used   in   Eq. 
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5-4, Eq. 5-78 may be written as 

$,&, z, f) = ro - f < 0 (5-79) 

where  s  is a number assigned to this con- 
straint.   If this constraint  is violated,  then 
A<?s = _(ro _f), fy/db =(0, ,0),3#,/3? 
= - l,andd#s/3z =(0, , 0). 

5-5.1.2  STRESS CONSTRAINTS 

Since the matrix K{b) is available, Eq. 5-70 
can be solved for the unknown displacement 
vector z. Element forces can then be com- 
puted from Eqs. 5-65 and 5-66. Substitution 
of Eq. 5-65 into Eq. 5-66 yields 

F= Sz (5-80) 

where S = K(b)ß. It may be noticed from Fig. 
5-17 that two forces are specified for each 
element but the primary force remains con- 
stant throughout a bar element. Therefore, 
F'2 = — F[, where superscript i denotes the 
element number. Dimensions of the matrix S 
may be reduced from 2m X n to m X n by 
using this relationship. Stresses in the mem- 
bers may now be calculated as 

Fi 

inequality (Eq. 5-82) holds in such cases. For 
tension members, a. and a? are negative; 
therefore, Eq. 5-82 is written as a? «s a.. The 
expressions that follow are written for the 
case of compression members. For tension 
members similar expressions can be readily 
written. Inequality Eq. 5-82 may be written 
as 

$,&, z, f) = ff, -oCt< 0 (5-83) 

where s is an index assigned to this constraint. 
In all subsequent constraint subsets, subscript 
s on $ will have the same meaning. If Eq. 5-83 
is violated, then A$s = - (a. - af), 9<£/3? = 0, 

3#.   /1 *F,      1 3tf>s 

— = 0 for i¥=j, —" =1  —- F. , 
dbf db;   \bt bbi    b

2.   ''' 

and • 
90s      /dat doi 

(5-81) 

dz      \ dz!'       ' bzn I 

where dojdz. and 9F./9ft/ may be computed 
from Eq. 5-80. 

5-5.1.3   BUCKLING CONSTRAINTS 

Each compression member of the truss is 
also checked for the Euler buckling load given 
by 

Once the stress for each member becomes 
known, it is checked against the critical stress. 
A number of these stresses may be violated in 
a particular iteration. The stress constraint for 
the ith member may be written as 

a, < ac. (5-82) 

where ac
t is the critical stress for member i. It 

should be noted that, in terms of the nota- 
tions used in Fig. 5-17, compressive stress in a 
member is- taken as positive and accordingly 

P? 
*2V,- 

L2 (5-84) 

where P? and I{ are the critical buckling load 
and moment of inertia of the ith member, 
respectively. It is assumed that the moment of 
inertia of the cross section of a member can 
be written as 

h = v; (5-85) 

where a. is a constant depending upon the 

5-25 



AMCP 706-192 

cross-sectional geometry of the ith member. 
This is a convenient way of expressing the 
moment of inertia in terms of the cross-sec- 
tional area of a member, because the constant 
a. can be specified by the designer quite 
readily. Therefore, Eq. 5-84 may now be 
written as 

(5-86) 

where 0. =n2Eiaj/Lf. Eq. 5-86 may be writ- 
ten in terms of the critical buckling stress a* 
as 

Lp=0,.b,.. (5-87) 

where za is the maximum allowable /th 
component of displacement. If a particular 
component of displacement is positive, then 
Eq. 5-89 is written as z- — z? < 0;and if it is 
negative, then it is written aszi?- z- < 0. The 
expressions that follow are written for the 
case of positive displacement, and similar 
expressions can also be written for the case of 
negative displacement. In terms of the nota- 
tion of Eq. 5-4 the constraint for the positive 
displacement may be written as 

4>s(b,z, f) = zj-z° < 0 (5-90) 

If thejth displacement component exceeds an 
allowable limit, then 

Now   the   buckling   constraint   for  the   ith 
compression member may be written as 

A0s=-rz/.-zp) -£ =0,^ =0, ,0), 

i,{b.z,f)=ot -of Q 0. (5-88) and 

If this buckling  constraint is violated, then 
A0s=_(a. -a»),30,/3f =0, 

—s = 0 for i # /, —5 

dh. db,. b,  db<     ui    ''      ' 

and 30, 
dz 

bo, 
dz, 

3a, 

3z„ 

where dFj/db, and da./3z. may again be 
computed from Eq. 5-80. The buckling con- 
straints on all other compression members are 
treated in a similar way. 

5-5.1.4 DISPLACEMENT CONSTRAINTS 

*r=(0' ■w)--
o;- 

All the displacement components are checked 
and any other violation is treated in a similar 
way. 

5-5.1.5 BOUNDS ON DESIGN VARIABLES 

It may be necessary to put upper and lower 
bounds on each design variable. This con- 
straint may be demanded by many practical, 
architectural or structural considerations. 
Moreover, a lower limit on each design vari- 
able is required in the algorithm in order to 
avoid the attainment of unrealizable designs 
such as negative areas. This constraint may be 
written as 

The displacement components are known 
at this stage; therefore, the constraints on 
them may be written as 

I*, I«    z* (5-89) 

b\ < bt Q bl (5-91) 

where bL, is the lower and bu, is the upper 
bound on the ith design variable. Inequality 
Eq. 5-91 may be split up into two parts: 
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(1) Lower Bound o n Design Variables: 

This constraint is written as bL
t < bt or in 

terms of notation of Eq. 5^ 

(5-92) 4>s(b,z,f) = -bL
t-b < 0 

Violation of this constraint yields, 

A0S=-O>' ' -K), 3*f = 0, 

db 
0,-1, 

(ith) 
o,... , 0), and 

90, 
^ =(0, . 
az 

..., 0) 

Problem par.  4-3.1, the present formulation 
handles it without any difficulty. 

After all the constraints have been con- 
sidered, the matrices d(j>/db, 90/3?, and 
90/9z are available and X* can be solved 
from Eq. 5-15. This still does not allow 
the matrix ß* of Eq. 5-21 to be assem- 
bled. The following matrices must also be 
computed 

db 

d_ 

db 

[K(b)z] 

[K(b)y] 

(5-94) 

(5-95) 

(2) Upper Bound on Design Variables: 

This constraint is very similar to the previ- 
ous one and in the notation of Eq. 5-4 it is 
written as 

4>s(b,z, S) = bt -b
u

t < 0 (5-93) 

ff the upper bound on any design variable is 
violated, then 

A0S = -(bi-by), 
9f 

Ü*i =(0,. . .,0, 1,0, . . .,0),and 
db (ith) 

ai,=(o,...,o). 
dz 

it may be noticed here that the cross-sectional 
area of any member of the truss may be 
assigned a predetermined value by putting the 
same upper and lower bound on it. This 
situation may be encountered in practice due 
to various reasons, and as shown in Example 

and 

db 
[M(b)y] • (5-96) 

These matrices are assembled automatically 
from the quantities such as K(b),M(b), z, and 
y, which have previously been calculated in 
the computer. The procedure of computing 
the matrix of Eq. 5-94 will be explained here; 
the matrices of Eqs. 5-95 and 5-96 are 
calculated in an exactly similar manner. Eq. 
5-71 may be written as (see Appendix B): 

K(b) = . 2  ß' K.ß' 
z = I ' 

where Kt is the only quantity which is a 
function of b. Now, Eq. 5-94 can be written 
as follows, by substituting the above expres- 
sion for K(b): 

9 9 „r - 
2   ßl Kß 

(=i   db 
(tfTk,ff)2 

(5-97) 
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It should be noted here that the summation 
sign in Eq. 5-97 represents the summation of 
m matrices of dimension (n x m). The 
quantity inside the differentiation sign is an 
n-dimensional vector whose components may 
be dependent upon the design variable vector 
b. Therefore, the quantity inside the summa- 
tion sign is an n x m matrix for each index i 
However, in the present case, since Kt is a 
function of only bf, the computation of Eq. 
5-97 is greatly simplified. Consideration of 
each i in Eq. 5-97 generates a (n x m) matrix 
whose only nonzero elements are in its ith 
column. Computation of Eq. 5-97 is per- 
formed quite readily and automatically in the 
computer. 

All the information being available, the 
matrix 2* of Eq. 5-21 may now be assembled 
and the algorithm of par. 5-3.2 may be used 
to solve actual problems. 

5-5.2 MULTIPLE LOADING CONDITIONS 

Most structures are designed to withstand a 
multiple loading environment. This is quite 
reasonable, because only a certain combina- 
tion of loads may act on the structure at a 
particular time. This situation is handled in 
the par. 5-5.1 formulation by expanding the 
state variable vector z to include all states. 
The element force vector / is also expanded 
accordingly. Formulation of displacement, 
stress, and buckling constraints must also take 
into consideration all states of the system. 
This is handled in the manner that follows. 
While formulating a particular displacement 
constraint, the value of displacement for each 
loading case is checked and each violation is 
entered into the reduced constraint vector 0. 
After this, the procedure of calculating the 
matrices d<j>/db, 90/3f, and 9<A/3z is the same 
as explained earlier. An exact same procedure 
is followed  in treating  stress and buckling 

constraints. This procedure of taking into 
consideration all the loading conditions has 
worked out quite satisfactorily in the example 
problems. 

5-5.3 EXAMPLE PROBLEMS 

Several trusses are designed by applying the 
procedure presented in this paragraph. A 
computer program, based on the algorithm 
stated previously, was written in FORTRAN 
IV. The computations were performed on the 
University of Iowa IBM 360-65 computer. 
The stiffness matrix €or the structure was 
inverted by the Gauss-Jordan elimination 
procedure, and the power method was used to 
find the smallest eigenvalue. 

Results for three typical trusses are pre- 
sented here. All these structures were de- 
signed with stress, displacement, buckling, 
and frequency constraints. Examples 4-1 and 
4-2, par. 4-1.1, are compared with results in 
Ref. 25. These were designed with and with- 
out frequency and buckling constraints in 
order to compare the results with Ref. 25. 
Example 4-3, par. 4-3.1, is treated in Ref. 26, 
and it was also designed with only stress 
constraints in one case to compare results 
with Ref. 26. All sample problems had lower 
limits on areas of the elements and Example 
4-3 had upper limits. The program is general 
enough to handle different lower and upper 
bounds on stresses in an element, elements of 
different materials, and a different buckling 
parameter a. for each element. The examples 
follow: 

1. Example 5-1. Five-node Four-bar Truss 

Fig. 5-18 shows the geometry and the 
dimensions of the truss. Input and output 
information is given in Table 5-9. In order to 
compare the results with those of Ref. 25, the 
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60 in. 

Figure 5-18. Four-bar Truss (Example 5-1) 

trass was first designed for stress constraints, 
Fig. 5-19(A), and second for stress and 
displacement constraints, Fig. 5-19(B). It 
may be noted that the results presented here 
are at least as good as those presented in Ref. 
25. 

The final design weight with only stress 
constraints was 9.09 lb and computation time 
was 1.820 sec for 12 iterations. The final 
design weight reported in Ref. 25 was 9.09 lb 
with a computation time of 4 sec for 5 cycles. 
The final design weight, with stress and 
displacement constraints, was 14.28 lb and 
the computation time was 1.500 sec for 12 
iterations. The final design weight reported in 
Ref. 25 was 14.30 lb with a computation time 
of 10 sec for 4 cycles. It is difficult to make 
an exact comparison of the computation 
times because the computer used here is 
different from that used in Ref. 25. The 
computation times reported in Ref. 25 are on 
IBM 7094-11-7044 DCS Computer. 

The trass was also designed by including 
buckling and frequency constraints along with 
other constraints. Two different starting 
points were used in optimizing this trass. 
Starting Point 1 was infeasible and Starting 
Point 2 was feasible. The final design weight 
beginning at Starting Point 1 was 113.48 lb 
and at Starting Point 2 was 113.77 lb. The 
slight difference in the two weights was due 

to the fact that in the first case the frequency 
constraint was violated by 0.154%, whereas in 
the second case this violation was 0.143%. 
Fig. 5-19 shows variation of the cost function 
with respect to the number of iterations for 
this problem. It may be noted that for 
practical purposes, convergence was obtained 
in six to eight iterations for all the cases. 

2. Example 5-2. Transmission Tower 

Fig. 5-20 shows the geometry and the 
dimensions of the tower. This example also is 
treated in Ref. 25. In this problem, the 
cross-sectional area of each member of the 

4' 8 12 
Iteration Number 

(A) With Stress Constraints Only 

26 (K 1               1               1 
220 

/Starting Point 2                                _ 

.OptimumWeight = 113.77 lb 
y         / With All Constraints 

140 — /Cv            > Starting Point 1             — 

fini 1              h             h          li 

Iteration Number 

(B)  With AII Constraints 

Figure 5-19. Iteration vs Weight Curves for 
Example 5-1, Four-bar Truss 
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TABLE 5-9 

FOUR-BAR TRUSS (EXAMPLE 5-1) 

Design Information: For each member, Young's Modulus of Elasticity Ejt the specific weight p/r lower limit on 
area of cross sectionbL. ,and the constant a(. are 104 kips/in.2, 0.10lb/in.3, 0.10in.2,and 1, respectively. There is 
no upper limit on member size. The resonant frequency for the truss is 284.6 Hz. For Output 1, the stress limits on 
each member are ±25.0kips/in.2 and the displacement limitsat node five are, 0.0, ± 0.3in., and ± 0.4in. inthex,-, 
x2-, andx3-directions, respectively. For Output 2,the stress limits for each member are ± 15.0kips/in.2, and the 
displacement limitsat node five are 0.15 in. in all three directions. There are three loading conditionsfor the truss; 
they are: in positivexj-, x2-, andx3- directions, 5, 0, 0; 0, 5, 0; and 0,0, 7.5 kip, respectively, applied at node five. 

OUTPUT 1. With Stress and Displacement Constraints Only 

With only stress constraints 
Time per iteration = 0.152 sec 

Total time = 1.820 sec 

With displacement constraints, also 

Time per iteration = 0.124 sec 
Total time = 1.500 sec 

El. 
No. 

Starting 

Values, 
in.2 

Final 

Values, 

in.2 

El. 

No. 
Starting 

Values, 

in,2 

Final 
Values, 

in.2 

1 
2 

3 
4 

0.100 
0.200 

0.200 

0.100 

0.130 

0.192 
0.120 
0.100 

1 

2 
3 
4 

0.500 

0.500 

0.500 

0.500 

0.234 

0.3L9 

0.184 

0.128 

Weight, 

lb 
10.19 9.09 

Weight, 

lb 
34.86 14.28 

OUTPUT2.  With All Constraints 

Starting Point 1 
Time per iteration = 0.147 sec 

Total time = 4.710 sec 

Starting Point 2 
Time per iteration = 0.172 sec 

Total time = 4.640 sec 

El. 

No. 

Starting 

Values, 
in.2 

Final 
Values, 

in.2 

El. 
No. 

Starting 

Values, 
in.2 

Final 

Values, 
in.2 

1 

2 

3 

4 

1.000 

1.000 

1.000 

1.000 

0.543 

1.961 

3.635 

0.479 

1 
2 
3 
4 

2.Ö0Ö 
4.000 

8.000 
1.000 

0.559 

1.883 

3.703 
0.468 

Weight, 
lb 

69.72 113.48 
Weight, 

lb 
257.68 113.77 
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Figure 5-20.   Transmission Tower (Example 5-2) 

trass is treated as an unknown design variable, 
and the results obtained are given in Table 
5-10. The tower was designed first with only 
stress constraints. The final design weight in 
this case was 91.13 lb with a computation 
time of 38 sec for 12 iterations. The final 
design weight reported in Ref. 25 was 91.14 
lb with a computation time of 9 sec for 5 

cycles. The values of final design variables 
compare quite well with those in Ref. 25. At 
the final design point all constraints were 
satisfied within 0.006%. 

The tower was also designed with stress and 
displacement constraints and, finally, with all 
the constraints included. The design weight in 
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TABLE 5-10 

TRANSMISSION TOWER (EXAMPLE 5-2) 

Design Information: For each member of the structure, the modulus of elasticity £), the specific weight pi, the 
constanta/, and the stress limits are 104 kips/in.2, 0.10lb/in.3, l.Oand ± 40.0kips/in.2, respectively. The lower 
limit on the area of cross section of each member is O.lOin.2 for the case with stress constraints only and 0.01 in.2 

for other cases. There is no upper limit on the member sizes. The resonant frequency for the structure is 173.92 Hz, 
and the displacement limits are 0.35 in. on all nodes and in all directions. There are six loading conditions, and they 
are as follows (all loads are in kips): 

Load Node 
Direction of Load 

Load Node 
Direction of Load 

Cond. xl                       x2                     x3 Cond. x,                 x2 *3 

1 1.0              10.0        -5.0 1 0                  10.0 -5.0 
2 0                 10.0        -5.0 2 - 1.0              10.0 -5.0 

1 3 0.5               0                0 2 4 -0.5                0 0 
6 0.5               0                0 5 -0.5                0 0 

1 1.0         -10.0        -5.0 1 0              -10.0 -5.0 

2 0             -10.0        -5.0 2 -1.0          -10.0 -5.0 
3 3 0.5               0                0 4 4 -0.5                0 O 

6 0.5               0                0 5 -0.5                0 0 

5 
1 0                 20.0        -5.0 

6 
1 0              -20.0 -5.0 

2 0             -20.0       -5.0 2 0                  20.0 -5.0 

output: 

With Stress 
Constraints Only 

With Stress and Dis- 
placement Constraints 

With All Constraints 

El. Starting Final Starting Final Starting Final 
No. Values, in.2 Values, in.2 Values, in.2 Values, in.2 Values, in.2 Values, in.2 

1 0.200 0.100 1.000 0.010 0.500 0.010 
2 0.500 0.376 3.000 2.322 2.500 2.092 
3 0.500 0.376 3.000 2.322 2.500 2.075 
4 0.500 0.376 3.000 2.322 2.500 2.095 
5 0.500 0.376 3.000 2.322 2.500 2.083 
6 0.500 0.47i 3.000 2.768 2.500 2.357 
7 0.500 0.471 3.000 2.768 2.500 2.354 
8 0.500 0.471 3.000 2.768 2.500 2.350 
9 0.500 0.471 3.000 2.768 2.500 2.335 

10 0.200 0.100 1.000 0.010 0.500 0.035 
11 0.200 O.IOO 1.000 0.010 0.500 0.035 
12 0.200 0.1OO 1.000 0.010 0.500 0.087 
13 0.200 0.100 1.000 0.010 0.500 0.084 
14 0.200 0.100 2.000 0.690 1.500 1.113 
15 0.200 0.100 2.000 0.690 1.500 1.113 
16 0.200 0.100 2.000 0.690 1.500 1.112 
17 0.200 0.100 2.000 0.690 1.500 1.112 
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TABLE 5-10 (Cont'd.) 

Output: (Cont'd.) 

With Stress 
Constraints Only 

With Stress and Dis- 
placement Constraints 

With All Constraints 

El. Starting Final Starting Final Starting Final 
No. Values, in.2 Values, in.' Values, in.' Values, in.' Values, in.' Values, in.' 

18 0.500 0.277 2.000 1.524 2.000 2.056 
19 0.500 0.277 2.000 1.524 2.000 2.058 
20 0.500 0.277 2.000 1.524 2.000 2.046 
21 0.500 0.277 2.000 1.524 2.000 2.058 
22 0.500 0.380 3.000 2.733 3.000 2.822 
23 0.500 0.380 3.000 2.733 3.000 2.808 
24 0.500 0.380 3.000 2.733 3.000 2.803 
25 0.500 0.380 3.000 2.733 3.000 2.785 

Weight, 
lb 

132.37 91.13 772.24 546.18 669.80 590.32 

the first case was 546.18 lb with a computa- 
tion time of 47 sec for 17 iterations, and the 
maximum constraint violation was 0.00011%. 
The comparable design weight reported in 
Ref. 25 was 555.11 lb with a computation 
time of 24 sec for 7 cycles. This shows that, 
when displacement constraints are also in- 
cluded, the results obtained with the new 
gradient projection method are slightly better 
than those of Ref. 25. For a design with all 
the constraints included, the final weight was 
590.32 lb with a computation time of 129 sec 
for 36 iterations, and the maximum violation 
of constraint was 0.028%. Fig. 5-21 shows 
variation of the cost function with respect to 
the iteration number for the last two cases of 
this problem. It may be noted that for 
practical purposes, convergence was obtained 
in only 6 iterations. 

3. Example 5-3. 4 7-Bar Plane Truss 

The schematic diagram of the structure 
with dimensions is shown in Fig. 5-22. This 
example is also treated in Ref. 26 where it is 

optimized for a single loading condition. The 
design information and the results are shown 
in Table 5-11. In order to compare the results 
with Ref. 26, the truss was first optimized 
with stress constraints only. The final design 
weight was 2,993.37 lb with a computation 

780 

520 

/W:*h All Constraints 

Optimum Weight = 590.32 ,b 

With Stress and Displacement 
I Constraints 

4 8 
Iteration Number 

12 

Figure 5-21. Iteration vs Weight Curves 
for Example 5-2, Trans- 
mission Tower 
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15.68K 

6.72K 

-5@5ft-0in- 

18 10 3     17      @)      13      ©      14 

15.68K 

6.72K 

2 ft    6 in. 

2 ft    6 in. 

F/gure 5-22. 47-Bar Plane Truss (Example 5-3) 

time of 115 sec for 17 iterations. At this 
point the stress in member 18 was violated by 
0.24% and all other violations were less than 
0.035%. Another feasible design occurred at 

9th iteration for which the design weight was 
2,998.88 lb; maximum constraint violation 
was 0.10% for stress in 7th member and all 
other violations were less than 0.016%. The 
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TABLE 5-11 

47-BAR PLANETRUSS (EXAMPLE 5-3) 

Design Information: For each member of the structure, the modulus of elasticity Er the specific weight p:, and 
the constanta. are 3.Ox 104 kips/in.2, 0.284lb/in.3, and 1.0,respectively. The resonant frequency for the structure 
is 16.0 Hz and the displacement limits are 1 in. on all nodesand in all directions. There is one loading condition for 
the truss which is shownon Fig. 5-22 .Allowable stress in tension for all members is 21.28kips/in.2 

output: 

Compression 

Final Area, in.2 

With Stress 

El. Lower Area Upper Area Stress Limit, Initial Area, Constraints With All 

No. Bound, in.2 Bound, in.2 kips/in.2 in.2 Only Constraints 

1 3.570 9.620 14.56 5.690 3.570 7.537 
2 3.570 9.620 14.56 5.690 3.570 5.771 
3 3.570 9.620 14.56 5.690 3.570 3.570 
4 3.570 9.620 14.56 5.690 3.570 4.473 
5 3.570 9.620 14.56 5.690 3.752 6.505 
6 3.570 9.620 14.56 5.690 3.570 6.124 
7 3.570 9.620 14.56 5.690 4.212 7.777 
8 3.570 9.620 14.56 5.690 5.217 9.529 
9 1.930 2.940 15.90 2.210 1.930 1.930 

10 1.930 2.940 15.90 2.210 1.930 1.930 
11 1.930 2.940 15.90 2.210 2.205 2.199 
12 1.930 2.940 15.90 2.210 2.205 2.205 
13 1.930 2.940 15.90 2.210 1.930 2.940 
14 1.930 2.940 15.90 2,210 1.930 2.940 
15 1.930 2.940 15.90 2.210 2.205 2.119 
16 1.930 2.940 15.90 2.210 2.205 2.205 
17 1.360 2.190 15.46 2.100 1.417 2.136 
18 1.360 2.190 15.46 2.100 1.815 1.630 
19 1.360 2.190 15.46 2.100 1.360 1.360 
20 1.360 2.190 15.46 2.100 1.360 1.360 
21 0.376 0.376 3.36 0.376 0.376 0.376 
22 0.376 0.376 3.36 0.376 0.376 0.376 
23 0.376 0.376 3.36 0.376 0.376 0.376 
24 0.376 0.376 3.36 0.376 0.376 0.376 
25 1.360 2.190 12.32 2.100 1.360 1.455 
26 1.360 2.190 12.32 2.100 1.360 1.451 
27 1.360 2.190 12.32 2.100 1.360 2.137 
28 1.360 2.190 12.32 2.100 1.360 1.360 
29 1.360 2.190 12.32 2.100 1.360 1.492 
30 1.360 2.190 12.32 2.100 1.360 1.428 
31 2.940 6.040 17.47 3.850 2.940 3.774 
32 2.940 6.040 17.47 3.850 2.940 2.940 
33 2.940 6.040 17.47 3.850 2.940 2.940 
34 2.940 6.040 17.47 3.850 2.940 5.592 
35 2.940 6.040 17.47 3.850 2.940 3.582 
36 2.940 6.040 17.47 3.850 2.940 2.940 
37 0.940 1.320 4.93 1.200 0.940 0.940 
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TABLE 5-11 (Cont'd.) 

output: (Cont'd.) 

Compression 

Final Area in.2 

With Stress 
El. Lower Area Upper Area Stress Limit, Initial Area, Constraints With All 
No. Bound, in.2 Bound, in.2 kips/in.2 

in.2 Only Constraints 

38 0.940 1.320 4.93 1.200 0.940 0.940 
39 0.940 1.320 4.93 1.200 0.940 0.940 
40 2.940 6.040 10.75 3.500 2.940 2.940 
41 2.940 6.040 10.75 3.500 2.940 2.940 
42 2.940 6.040 10.75 3.500 2.940 2.940 
43 2.940 6.040 10.75 3.500 2.940 2.940 
44 2.940 6.040 10.75 3.500 2.940 2.940 
45 2.940 6.040 10.75 3.500 2.940 2.940 
46 2.940 6.040 10.75 3.500 2.940 2.940 
47 2.940 6.040 10.75 3.500 2.940 2.940 

Weight, lb 3910.30 2993.37 3771.0 

final weight reported in Ref. 26 was 3,328.5 
lb which is considerably higher than the one 
reported herein. This may be attributed to the 
fact that in Ref. 26 the members are divided 
into eight groups so that there are only eight 
independent design variables, whereas in this 
treatment, area of cross section of each 
member of the truss is treated as an unknown 
design variable. 

The truss also was designed by imposing all 
the constraints. The starting point, stress 
limits, and upper and lower bounds on the 
areas are same as those used in Ref. 26. It 
may be noted that members 21, 22, 23, and 
24 had the same upper and lower bounds on 
areas. The final design weight was 3,771.0 lb 
with a computation time of 166 sec for 24 
iterations. The maximum violation of the 
constraint was 0.27% on stress for member 
11. Fig. 5-23 shows variation of the cost 
function with respect to the number of 
iteration for both the cases. It may be noted 

that for practical purposes, convergence oc- 
curred in approximately 6 iterations. 

4000 

3600 

3200   - 

2900 

V With Only Stress Constraints 

VOptimum    Weight = 2993.37 lb 

4 8 

Iteration Number 

*This paragraph is based on the dissertation of Dr. J. Arora, 
Ref. 34. 

Figure 5-23. Iteration vs Weight Curves for 
Example 5-3, 47-Bar Plane Truss 

5-6 A GENERAL TREATMENT OF PLANE 
FRAME DESIGN* 

In this paragraph,  an application of the 
gradient projection method to framed struc- 
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tures will be presented. Rigid frames are 
found quite frequently in practical situations, 
including building and vehicle structures. In 
the present work, optimization of planar 
framed structures using wide flange steel 
sections is considered under the assumption 
of elastic, working stress analysis. The AISC 
Steel Construction Manual (Ref. 27) is used 
for the properties of these sections. The 
constraints considered are stress, buckling, 
displacement, natural frequency, and restric- 
tions on design variables. 

5-6.1  PROBLEM FORMULATION 

In the problems considered here, the 
geometry of the frame is assumed to be 
specified, i.e., lengths of the members or the 
joint coordinates are not treated as design 
variables. Multiple loading conditions for the 
structure are treated by the procedure ex- 
plained in par. 5-4.2. The moment of inertia 
for each element is treated as the design 
variable; therefore, ft is a vector whose ith 
component b{ is the moment of inertia of the 
ith element. In calculating weight or volume 
of the structure, element direct stresses, ele- 
ment bending stresses, area of cross section, 
and the section modulus of each element 
must be known. Also, in order to calculate 
the allowable compressive stress for an ele- 
ment, its least radius of gyration r. must be 
known. These quantities are required as con- 
tinuous functions, rather than discrete num- 
bers, in the present formulation. Since the 
moment of inertia of each element is its only 
design variable, the quantities area of cross 
section, section modulus, and the least radius 
of gyration must be expressed in terms of the 
moment of inertia of the element. These 
relationships of the ith element are written as 
follows: 

z. 
1 =cfir 

and 

ri =dfir 

A, =a1b1
l/2 (5-98) 

(5-99) 

(5-100) 

where At is the area of cross section, Zf is the 
section modulus, r. is the least radius of 
gyration of the ith element of rigid frame, and 
a, ct, and df are constants. These constants 
can be found by plotting curves of area of 
cross section, section modulus, and the least 
radius of gyration versus the moment of 
inertia of various economical beam and 
column sections. These curves have been 
drawn by Nakamura (Ref. 28) for wide flange 
sections of AISC Steel Construction Manual 
(Ref. 27), and the same values are used in this 
handbook. This approach of obtaining con- 
tinuous relationship for area of cross section, 
section modulus, least radius of gyration, and 
the moment of inertia has also been used by 
other researchers in their work (Refs. 29, 30, 
31). 

The objective function, Eq. 5-1, for this 
problem is again taken as the total weight of 
the frame which may be written as 

/= 2   pAJi^V   P^pA,1'1      (5-101) 
/=;   '  '   '    i=i   '  ' ' ' 

The displacement method of structural analy- 
sis is used, and nodal displacements of the 
frame are considered as basic state variables. 
Therefore, the jth component of the state 
variable represents the jth displacement com- 
ponent of the frame. Fig. 5-24 shows a simple 
scheme for designating joints, members, and 
displacement components of a frame in the 
structure coordinate system. Fig. 5-25 shows 
a frame element in the member coordinate 
system with the sign convention to be used on 
element forces and deformations. It may be 
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noted that FJ and FJ are direct forces on the 
element, F[ and Fs' are shearing forces, and 
F'z and F'6 are the moments at the end of an 
element. The structural analysis equations 
developed in par. 5-4 and in Appendix B are 
also used here. The element forces are com- 
puted from Eq. 5-80 which may again be 
written as follows: 

Figure 5-24. Description of a Frame 

"2 

M 

'■F'  U' Z2 .w kips/in. 

I   I   I   f\   4   t   I   \   t   I   I   t   I F'   F' r4'    4 

>*«3 ~/A»i 

Figure 5-25. A Frame Element 

F = Sz 

where 

S = K(b)ß 

(5-102) 

(5-103) 

Dimensions of the matrices K(b) and ß are 
adjusted for the case of frames and F is a 
vector which consists of element forces for all 
the elements of the frame. The stiffness and 
mass matrices for the frame element are 
different from the truss element. They are 
given by the following matrices: 

K.= 

«fii 
1/2 1/2 

— aibi 

0 

0 

1/2 

0 0 

12/L) 6/1, 

6/£. 4 

0 0 

12/L,2 
- 6/1,. 

6/Lj 2 

afii 0 0 

0 -niL) 6/L, 

0 -6/Lj 2 

-1/2 
aibi 0 0 

0 12/1,. -6/i, 

0 - 61L. 4 

(5-104) 
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pj.L,.a.ö/i/2 

M.. =- 
420 

140 

0 

0 

70 

0 

0 

0 

0 

0 70 

156    22L   0 

22L    4L2   0 

0   140 

0 

0 

0 

54  - 13L 

13L  - 3Z,2 

0 

54    13L   0     156  -22L 

13L -3L2 0   -22L   4L2 

(5-105) 

Now, as before, the matrices HJ and £0 of 
Eqs. 5-20 and 5-21, respectively, must be 
computed in order to apply the algorithm of 
par. 5-3.2. They can be readily assembled 
once various other matrices have been com- 
puted. Let us first consider computation of 
the matrix 2J of Eq. 5-20. The matrix f{b), 
which is computed from externally applied 
loads, is independent of the design variable 
vector b if the self weight of the elements is 
neglected. This implies that df(b)/db = 0. 
Also, from Eq. 5-101 one obtains 

_&Z_     }  , -1/2 

ab    2' 

bJ 
9z 

^ m    mm    m 

= (0, 0), 

1/2 

) (5-106) 

(5-107) 

and 3//d? = 0. Eq. 5-14 now yields, \J = (0, 
  0)r.  Substituting these values into Eq. 
5-20. one obtains 

ey=-(p, £,*,£," 
1/2 

f>m
L

m*>  bm~     ) (5-108) 

Next, consider computation of the matrix 

£* of Eq 5-21. It requires formation of the 
constraint vector <p by considering various 
constraints and computation of matrices such 
as 90/9f, d<J>/dz, and d$/db. The treatment of 
frequency, displacement, and design variable 
constraints in the case of a frame is exactly 
the same as in the case of a truss, which is 
developed in par. 5-4. So, these features will 
not be explained here, except for the fact that 
any point where a displacement constraint 
must be imposed is treated as a nodal point. 
Computation of matrices such as d/db 
[K(b)z], 3/96 [K(b)y], and d/db [M(b)y] is 
also carried out in the way explained in par. 
5-4. The only constraint that remains to be 
considered is the stress constraint, which will 
be considered next. 

5-G.2 STRESS   CONSTRAINT   CALCULA- 
TIONS 

Let s denote the subscript for this con- 
straint. If one can compute 90s/9f and row- 
vectors 90s/9z and 90s/96 for this constraint, 
then he can assemble the matrix fi* of Eq. 
5-21. 

The members of a framed structure are 
subjected to direct as well as bending stresses. 
Thus, the effect of combined stresses must be 
considered  in implementing  the stress con- 
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straints. It should be noted here that a clear 
distinction is made between the elements and 
the members of a frame. This distinction is 
necessitated by the fact that a member must 
often be divided into several elements for 
structural analysis and implementation of 
displacement constraints. On the other hand, 
the compressive stress for all elements making 
up a member is the same. In the present work, 
the members subjected to direct and bending 
stresses are required to satisfy the AISC 
specification (Ref. 27). The permissible stress, 
according to this Steel Construction Manual, 
are: 

1. Tension: 

F, =0.60F (5-109) 

2. Bending: 

(5-110) 

where F    is   material  yield   stress,  F,   is 
c  1 

bending stress. 

3. Compression: 

Fb = 0.66 Fy 

allowable tensile stress, and Fb is allowable 

On the gross cross-sectional area of axially 
loaded compression members, when kL/r, the 
largest effective slenderness ratio of any un- 
braced segment, is less than C 

2 
F.S. 

(5-111) 

where  F.S. = factor of safety = 

5/3 +(3/8)e -(I/8)e3  (5-112) 

Cc =y/2*EIFy 

kL 
rC„ 

(5-114) 

Fa - allowable compressive stress 

E = Young's modulus 

On the cross section of axially loaded col- 
umns when kL/r exceeds C,, 

1.49 x  105 
F  = ,Ksi (Kip/in?).    (5-115) 

(kL/r)2 

4. Combined Stresses: 

a. Axial Compression and Bending: 

Members subjected to both axial com- 
pression and bending stresses shall be pro- 
portioned to satisfy the following require- 
ments: 

(1) When/■/F, < 0.15, 

f       f Js. +J± < 1.0 
a b 

(2) When/a/Fa > 0.15, 

(5-116) 

cmfb 

(\ -^-\F. 
F' 

< 1.0 (5-117) 

and, in addition at points braced in the plane 
of bending, 

f«    +.ß 
0.6Fy      Fb 

1.0 (5-1 18) 

where 

(5-113) F   =   axial stress that would be permitted 
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if axial force alone existed 

compressive bending stress that 
would be permitted if bending mo- 
ment alone existed 

1.43X  1J5 

F'e   = ,Ksi 
(*V>>2 

(5-119) 

(In Eq. 5-119, for F'e, L, is the actual 
unbraced length (in.) in the plane of 
bending, rb is the corresponding radius of 
gyration (in.), and k is the effective length 
factor in the plane of bending.) 

fa   =  computed axial stress 

fb - computed compressive bending 
stress at the point under con- 
sideration 

Cm - a coefficient whose value shall be 
taken as follows: 

(a) For compression members in frames 
subject to joint translation (side- 
sway): 

C„ = 0.85. (5-120) 

(b) For restrained compression members 
in frames braced against joint trans- 
lation and not subject to transverse 
loading between their supports in 
the plane of bending: 

Cm =0.6 + 0.4-^1- 
M2 

but not less than 0.4,   (.5-121) 

where M1/M2 is the ratio of the 
smaller to larger moments at the 
ends of that portion of the member, 
unbraced  in the plane of bending 

under consideration. Ml /A/2 is posi- 
tive when the member is bent in 
single curvature and negative when it 
is bent in reverse curvature. 

(c) For compression members in frames 
braced against joint translation in 
the plane of loading and subjected to 
transverse loading between their 
supports, the value of Cm may be 
determined by rational analysis. 
However, in lieu of such analysis, the 
following values may be used. 

J_ For   members   whose   ends  are 
restrained: 

Cm = 0.85 

2. For   members   whose   ends  are 
unrestrained: 

C„ = 1.0 

b. Axial Tension and Bending 

(5-122) 

Members subject to both axial tension and 
bending stresses shall be proportioned to 
satisfy the requirements of Eq. 5-118 where 
fb   and F.   are taken, respectively, as the 
computed 
stress. 

and   permitted   bending  tensile 

Eqs. 5-116, 5-117 and 5-118 are known as 
the interaction equations. These equations, of 
course, are derived from the linear super- 
position of the direct stre-1 under axial load 
alone and the bending stress under bending 
moment alone. The factor Cm/(1 — faIF'e) is 
used in Eq. 5-117 to account for the magnifi- 
cation of the primary bending moment due to 
the axial load. This factor depends upon the 
type of loading and end conditions of the 
member. The value of the coefficient Cm can 
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be derived for various types of loadings and 
members, but the values recommended in 
Eqs. 5-120, 5-121, and 5-122 are conservative 
and are used in the present work. For a 
detailed development and discussion of these 
equations the reader is referred to Ref. 32. 

The allowable compressive stress formula, 
Eq. 5-115, is derived based on the basic 
theory of column buckling. It is obtained by 
dividing the Euler buckling stress by a factor 
of safety of 1.92. Therefore, F = ir2 £7/1.92 
x (kL/r)2 ] and, taking E = 3.0 x 104 Ksi, Fa 

= 1.49 x 10s KkL/r)2. Eq. 5-115 is applicable 
when the largest slenderness ratio kL/r is 
greater than or equal to Cc. Experiments have 
shown that when kL/r < Cc , the values of the 
failure stress predicted by the Euler critical 
stress formula are seldom attained (Ref. 32). 
This is due to the presence of residual stresses 
and other imperfections in fabrication of the 
members. Therefore, when kL/r < C , the 
values of the allowable stress F„ are found 
from Eq. 5-111 which is derived based on the 
parabolic approximation of the curve-critical 
stress Fa versus the slenderness ratio kL/r in 
the range kL/r < Cc. This approximation is 
chosen based on the experimental results 
obtained at Lehigh University (Ref. 32). The 
value of the constant C, is found by assuming 
that the Euler critical stress formula holds 
until the critical stress isF12. Therefore, 

■a2E 
Fy'2 ~ {kL/r)\ 

OTCc = (kL/r)l = y/27r2E/F 

where L and r must be expressed in the same 
units. 

The factor of safety is used to account for 
small imperfections of form and loading, and 
variations of support and restraint conditions 
from those assumed in computation, which 
cause the true effective length to be different 
from that  calculated. The factor of safety 

given by Eq. 5-112 includes an allowance for 
both of these factors and is adjusted to 
account for their varying influence. For short 
columns, Eq. 5-112 approaches the basic 
safety factor in tension (1.67); and, at e = 1, 
it becomes 15%higher (1.92), a value which is 
then used in the case when kL/r exceeds Cc. 
Eq. 5-112 is an approximation of a quarter 
sine wave between the two limits, the curve 
used in the specification as best representing 
the influence of the two factors. For a 
detailed discussion of the these factors, the 
reader is again referred to Ref. 32. 

The effective length factor k for each 
member of the frame is found from the 

differential equation 

dly      Py     n 
—T +— =0, 
dx2       El 

(5-123) 

where P is the buckling load, and / is the 
second moment of the cross-sectional area. 

The solution of this equation is given by 

P P 
y{x)=Dx sin/—— x + D2 cos /-— x 

yj    El TJ   El 

(5-129) 

In rigid frames, two cases must be discussed: 
(1) frames without sidesway, and (2) frames 
with sidesway. The transcedental equation 
that comes from Eq. 5-124, while satisfying 
the boundary conditions for a member of the 
frame without sidesway, is given by Ref. 32 

1 
—(G. 
2     A 

+ GB + G.GJn/k)2 -1 Or/*) 

x sin (ir/k) ~(GA +Gß)(n/k)2 + 2 

x cos (ir/k) + 2 = 0 (5-125) 
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where GA  and Q   are given by the following 
equations: 

equations is used in finding the roots of Eqs. 
5-125 and 5-128 in the present work. 

*KJL 
GA = 

cA'    cA 
A      2/„„ /A 

(5-126) 
bA '   bA 

and 

GD = 
ZIrjL cB'    cB 

B     Zhslhi 
{5-12 7) 

The subscripts A and B refer to the two ends 
of the member under consideration and the 
subscripts c and b refer to the compressed and 
restraint members Respectively. For GA , the 
summations extend, over all members that are 
connected to joints and for G, the summa- 
tions extend over all the members that are 
connected to joint B. So, for the first case of 
a frame without sidesway, the value of the 
effective length factor k must be found by 
solving the transcedental Eq. 5-125 for each 
member of the frame. 

For the second case, i.e., a rigid frame with 
sidesway, the transcedental equation that 
comes out of Eq. 5-124 —while satisfying the 
boundary condition for a member of the 
frame—is given by 

[GAG,   i-nlk)2 -36] sin(V^) 

- 6{GA + GB )(ir/k) cos (v/k) = 0, 

(5-12«; 

where GA and G, are given by Eqs. 5-126 
and 5-127, respectively. Thus, for the case of 
a frame with sidesway, Eq. 5-128 must be 
solved for k for each member of the frame. 
The   secant  method   of nonlinear algebraic 

The interaction Eqs. 5-116, 5-117, and 
5-118 are implemented at the point of maxi- 
mum bending moment for an element. If 
there are no loads between the end points of 
an element, then the maximum bending mo- 
ment is at one of the ends; otherwise the 
actual point of maximum bending moment is 
found and the interaction equations are 
implemented there. As an example, consider 
the case of a uniformly distributed load on a 
frame element (Fig. 5-25); the moment at a 
distance x from the left end is given by 

M„ = F! F'2x ■ (5-129) 

and 

dM 

dx 
(5-130) 

or 

F' 

Therefore, from Eq. 5-129 

^m«=-^3+^2')2/(2H') 

(5-131) 

(5-152; 

Eq. 5-132 is used in computing the maximum 
bending stress required in the interaction 
equations. Now, the implementation of the 
interaction equations will be considered one 
by one and the vectors 9<Äs/9z and 90s/d6 will 
be computed in each case. For the sake of 
simplicity, let ./V be the direct force on the 
element, M max be the maximum bending 

moment, kj be the effective length factor, and 
L- be the length of the member to which the 
ith element belongs. 
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b. Interaction Equations: 

(1)  Interaction Eq. 5-116: 

30s        i    /bN     N db? 

bb     AiFa \bb      2b.. bb 

Eq. 5-116, for the maximum stress in the 
ith element, can be written as 

N 

*,= 
Mmax 

AiFa ZiF„ 
-1.0< 0.      (5-133) 

N    3F 

AtFl   bb      ZtFb 

dM
max     ™max bb} 

■rr) (5-139) 
bb 4b.      bb 

where Zj is the beam bending stiffness. 

In case Eq. 5-133 is violated, then one must 
compute A0s, 90s/9f, b$s/bz, and bQjbb. 
Therefore, from Eq. 5-133 30Jbz = Oand 

N      M_ 
A0  = -' s       U..F     Z..F, r b 

1.0] < 0.     (5-134) 

Differentiating Eq. 5-133 with respect to z, 

1    bN        1    Mf 
b<t>, =   +- 

s    ^,.Fa 9z     Z,.^      3* 
(5-135) 

The value of dMm ax /bb can be found from 
Eq. 5-136 or Eq. 5-132, which are as follows: 

(5-140) 
™ma*     *Fi 3 bF'6 

bb bb 
or 

bb 

m^.=m+^li 
ab ab      w   ab 

(5-141) 

The value of bFaßb required in Eq. 5-139 
is found from Eq. 5-111 or Eq. 5-115. First, if 
kjLl/rj < Cc> then Eq. 5-111 gives the value of 
F„ and 

The value of bMmax/bz depends on the 
expression that defines M, ajc. If Mmax oc- 
curs at an end of the element, then 

V* bF 
V       I 

bb     4bf(F.S.) L'+8(F.S.) 

Mm/IV =F'3OTF'6 max ° ° 
(5-136) 

and 

bM_ bFk      bFl 

bz bz bz 
(5-137) 

If Mmax   occurs at a point other than the 
ends, then Eq. 5-132 gives its value, and 

dM_ bF',    F\ bF1, 

bz bz       w   bz 
(5-138) 

Again, differentiating Eq. 5-133 with respect 
tob, 

x(l-ej)[l-_«j 
b^ 

bb 

3 
e.+- Vf 

k. (F.S.)   I    '    8 (F.S.) 

(1      ^   Mi  ' 
1 --e2 ] '— 

2   ' I   bb 
(5-142) 

where 

riCc' 
(5-143) 
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When  k.Ljr.* Cc,   Eq.   5-115  gives the 
value of F_ and 

bM_ bC 
+[C   + M        )I4>X -*     hb max   bb    /'^l 

bF    _FäJ>bJ_ 2Fa dk. 

ab       lb, ab     k.     ab 
(5-144) 

C, m Mmax 

<^l   $2 

bb.. 

4b 
(1 +N/AiF'e)-ft- 

Substituting the appropriate expressions in 
Eq. 5-139, the value of bQjbb can be found. 

(2) Interaction Eq. 5-117: 

Eq. 5-117 for the maximum stress in the 
ith element can be written as follows: 

1    bN 2N     3/c.l 
iTÜ—rT-ET-TT,      (5-149) A,F' ab      k^Fl ab'] 

where 

^2  = ('-£} (5-150; 

0 = 
N 

AtFa 

+   n 
M

max 

where 

- 1.0« 0      (5-145) 

*i = 
(' -#'F" 

(5-146) 

If this constraint is violated, then one must 
compute A$s, 30S/3J, bifrjbz, and bfijdb. In 
this case 3<Ä_/3f = 0 and 

,1       /   "      C„M„„ \ 

(3) Interaction Eq. 5-118: 

Next, consider Eq. 5-118, which may be 
written as follows for the maximum stress in 
the ith element 

N . Mmax 
7 + -1.0« 0..(5-151) r°    0.6FyAi     ZtFb 

Therefore, 30s/3f = 0 and 

Ai=J     N      +ggf-i.0\   (5-152; 
S       \0.6FyAf    ZtFb ] 

Differentiating Eq. 5-145 with respect to z 
andb, one obtains 

_9^ 
bz \AiFa  

+ 4>l ^AtF'J bz 

bM bC , max n 
+ \C   +M        

"•    bz max bz 

(5-148) 

and 

30s 1 JbN     N   Q N   bFa 

bb  ~ A.F\X>~ 2b, bb   ~' A.Fl  db 

Differentiating Eq. 5-151 with respect to z 
and b, one obtains 

ai,        i     M     \  bMmax 
+     (5-153) 

bz     0.f>FyAt bz     ZiFb     bz 

and 

ai, _       1 V       TV  bb, 

Hb'o.ßFyA,1 Ib~ ~ lb, bb 
(5-154) 

1    (Mm„     3Mmax bb\ 
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It may be noted in the previous equations 
that 

db! (ith) 
—-(0,.....0,1,0,  ,0) 
ab 

(5-155) 

The value of the vectors such as dN/dz, 
dNIdb, dF'2/dz, öFißb can be found directly 
from the Eq. 5-102. The vectors dCm/dz and 
dCm/db are zero for cases prescribed by Eqs. 
5-120 and 5-122. For the case prescribed by 
Eq. 5-121, they are computed using the chain 
rule of differentiation. It remains to find 
value of the vector dk./db. This vector can be 
computed by differentiating Eq. 5-125 or Eq. 
5-128 with respect to the design variable 
vector b. However, due to the fact that both 
GA and GB arefunctionsof b, this computa- 
tion is quite tedious and time consuming on 
the computer. Another approach that may be 
followed for computing akjdb is to use the 
method of finite differences; but this ap- 
proach is equally time consuming on the 
computer. Moreover, it has been observed in 
the numerical computation that the value of 

kt does not change appreciably from one 
design cycle to another. Therefore, without 
significant loss of accuracy, the value of k. in 
a particular design cycle is treated as a 
constant. However, at the start of each design 
cycle, k values for all the members of the 
frame are recomputed.  Thus, following this 
procedure, dkjdb = (0, , 0). Now, all the 
necessary information is available to assemble 
matrix A of Eq. 5-20. 

5-6.3  EXAMPLE PROBLEMS 

Several rigid frames were optimized using 
the computer program based on the algorithm 
of par. 5-3.1. All the problems were solved 
with stress, displacement, frequency, and de- 
sign variable constraints. Example problems 

54 and 5-5 that follow also are treated in 
Ref. 28 and were first designed for only stress 
constraints in order to compare results with 
those of Ref. 28. 

1. Example 5-4. Simple Portal Frame 

Fig. 5-26 shows the dimension of the 
frame. The moment of inertia for each ele- 
ment of the frame is treated as an unknown, 
and the results obtained are shown in Table 
5-12. The frame was first designed with only 
stress constraints. The final weight in this case 
was 3050.5 lb with a computation time of 
3.74 sec for 13 cycles. At the final design 
point, the maximum constraint violation was 
0.012% for stress in element 2. Optimal 
weight reported in Ref. 28 was 3206 lb, 
which is higher by approximately 5%. 

The frame was also designed by including 
all the constraints. The resonant frequency 
limit for the structure was 25.0 Hz and the 
final weight obtained in this case was 3803.0 
lb with a computation time of 14.60 sec for 
31 iterations. At the final design point, the 
maximum constraint violation was 0.0073% 

© 

-240 in.- 

® 

180 in. 

,.   (D 
"777 -*-*i rm 

© 

© 
777 

Figure 5-26. Simple Portal Frame (Example 
5-4) 
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TABLE 5-12 

SIMPLE PORTAL FRAME (EXAMPLE 5-4) 

Design Information: For each element of the frame, the modulus of elasticity, the specific weight, and the yield 
stress are 3 x 10* kips/in.2, 0.2836lb/in.3, and 36.0kips/in.2, respectively. The constants a,-, c- and dj are 0.58, 
0.58,and 0.67,respectively. The lower limit on the moment of inertia of each element is 1.0 in.4 and there is no 
upper limit. The resonant frequency is 25.0 Hz and the displacement limits are 0.5 in. at nodes2, 3, and 4 in both 
xv and x2 -directions. There are three loading conditions for the frame; first is uniformly distributed load of — 0.5 
kip/in. on elements 2 and 3, second is a load of 45.0 kips inx-direction at node 2,and the third is a load of —45.0 
kips inx,-direction at node 4. 

With All the Constraints 
Computation time = 14.60 sec 

El. 
No. 

Starting Values, 
in.4 

Final Values, 
in.4 

El. 
No. 

Starting Values, 
in.4 

Final Values, 
in.4 

1 
2 
3 
4 

1600.0 
1600.0 
1600.0 
1600.0 

1091.4 
768.3 
768.3 

1091.3 

1 
2 
3 
4 

1600.0 
1600.0 
1600.0 
1600.0 

1995.5 
860.3 
860.3 

1995.5 

Wt, lb 3947.7 3050.5 Wt, lb 3947.7 3803.0 

for stress in element 2. Fig. 5-27 shows the 
variation of the objective function as the 
iterations progress. It may be noted that, for 
practical purposes, convergence was obtained 

4400 

3900 

1 i r- 
■ With All Constraints 

■ Optimum Weight = 3803.0 lb 

i With Only Stress Constraints 

■ Optimum Weight = 3050.5 lb 

0 4 8 12 16     18 

Iteration Number 

Figure 5-27. Iteration vs Weight Curves for 
Example 5-4, Simple Portal 
Frame 

in only 5 iterations in the first case and in 7 
iterations in the second case. However, in the 
second case, the cost function continued to 
reduce for a few cycles beyond the 7th 
iteration without correcting the constraints. 
This was due to the fact that the step size for 
the problem was too large. 

2. Example 5-5. One-bay Two-story Frame 

The present example is also treated in Ref. 
28. Fig. 5-28 shows the dimensions and the 
loading conditions for this structure. Input 
and output information for this example is 
given in Table 5-13. This frame was first 
designed for stress constraints only. The final 
weight in this case was 8292.0 lb with a 
computation time of 21.47 sec for 32 itera- 
tions. Maximum constraint violation at the 
design point in this case was 0.27 percent for 
stress  in element 3. The comparable final 
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weight   reported   in Ref.   28 was  8810 lb, 
which is again higher by approximately 5.8%. 

, 6K/ft 
/ © 45K   ©uiuuuniirn]    45K 

180 in. 

45K 

180 in. 

0) 

3 0' 4 

JL 
6K/ft 

mimnimii 
® 

■ 240 in. - 

© 

III 

45K 

III 

® 

Figure 5-28. One-bay, Two-story Frame 
(Example 5-5) 

The frame was also designed while en- 
forcing all constraints. The resonant frequen- 
cy limit in this case was 15.0 Hz. The final 
weight obtained in this case was 9722.5 lb 
with a computation time of 48.84 sec for 32 
iterations. Maximum constraint violation was 
0.38 X 10"3 % for displacement of node 3 in 
the x{ -direction. Fig. 5-29 shows variation of 
the cost function with respect to iteration 
number, and it may again be noted that 
convergence was obtained in 8 cycles in both 
the cases. 

3. Example 5-6. Two-bay Six-story Frame 

Figure 5-30 shows the geometry and 
dimensions of the frame. This frame has 21 
joints, 30 members, and 54 degrees of free- 
dom. The frame was designed for four loading 
conditions, and the input and output informa- 

TABLE 5-13 

ONE-BAY, TWO-STORY FRAME (EXAMPLE 5-5) 

Design Information: For each element of the frame, the modulus of elasticity, the specific weight, and the yield 
stress are 3 x 104 kips/in.2, 0.2836lb/in.3, and 36.0kips/in.2, respectively. The Constantsa., c;, and d,.are 0.58, 
0.58,and 0.67,respectively. The lower limit on the moment of inertia of each element is 1.0in.4 and there is no 
upper limit. The resonantfrequency for the frame is 15.0Hz and the displacement limits are l.Oin.at nodes2, 3,4, 
5, 6, and 7 in both x, -andx2 -directions. There are three loading conditionsfor the structure, and they are as shown 
on Fig. 5-28. 

With Only Stress Constraints 
Computation time = 21.47 sec 

With All the Constraints 
Computationtime = 48.84 sec 

El. 
No. 

Starting Values, 
in.4 

Final Values, 
in.4 

El. 
No. 

Starting Values, 
in.4 

Final Values, 
in.4 

1 
2 
3 
4 
5 
6 
7 
8 

6400.0 
6400.0 
6400.0 
6400.0 
6400.0 
6400.0 
6400.0 
6400.0 

3264.8 
901.4 
801.5 
801.5 

2598.7 
2598.7 
901.4 

3267.4 

1 
2 
3 
4 
5 
6 
7 
8 

6400.0 
6400.0 
6400.0 
6400.0 
6400.0 
6400.0 
6400.0 
6400.0 

3794.0 
1436.3 
845.7 
845.7 

4618.8 
4618.8 
1436.3 
3794.0 

Wt, lb 15790.8 8292.0 Wt, lb 15790.8 9722.5 
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16000/) 

14400 

■a 
1, 

, With All Constraints 

Optimum Weight = 9722.5 lb 

, With QiLy Stress Constraints 

Optimum Weight = 8292.0 lb 

r^a^^oKs^o^Ki^ 

4 8 

Iteration Number 

Figure 5-29. Iteration Number vs Weight 
Curves for Example 5-5; One- 

bay, Two-story Frame 

lion for the problem is given in Table 5-14. 
The frame was first optimized by imposing 
the stress constraint only. The optimum 
weight in this case was 21706.6 lb with a 
computation time of 8.32 min for 21 itera- 
tions. At the final design point, the maximum 
constraint violation was 0.025% for stress in 
element number 25. Next, the frame was 
designed by imposing all the constraints. The 
optimum weight in this case was 24290.1 lb 
with a computation time of 8.7 min for 20 
iterations. At the final design point, the 
maximum constraint violation was 0.0072% 
for displacement in the xl -direction at node 
1. All other violations were less than that. 

Fig. 5-31 shows variation of the cost 
function with respect to the iteration number. 
The starting point in this case was quite a 
distance away from the optimum point. 
Therefore, a larger step size was used in the 
first few iterations. Also, it was observed from 

the first few iterations that reductions in the 
values of the design variables for elements 23, 
24, 25, 28, 29, and 30 were relatively smaller 
than those of other elements. This is due to 
nature of the gradient of objective function 
for this problem (Eq. 5-106). So, the values of 
these design variables were reduced con- 
siderably at the 7th iteration. This is shown 
by the vertical drop in the graph at the 7th 
iteration on Fig. 5-31. In the second case, 
where all the constraints were considered, 
variation of the cost function with respect to 
the iteration is shown in Figure 5-32. In this 
case, the starting point was infeasible and the 
convergence was obtained in 8 iterations. 

X 2 

1 
2 3 

1 2 t 
3 4 5 144 in 

5 6 \ 
6 7 \ 

8 9 10 144 in. 

7 
8 9 ' ' 

11 12 

13 14 15 144 in. 

10 11 12 f 
16 17 I 

18 19 20 144*1. 

13 
14 15 \ 

21 22 I 
23 24 25 144 31. 

16 
17 18 \ 

26 27 \ 
28 29 30 144 in. 

19 20 21 \ mm i mm m ft 

L 240 in. 240 in. —■ i * 

Figure 5-30.   Two-bay, Six-story Frame 
(Example 5-6) 
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TABLE 5-14 

TWO-BAY, SIX-STORY FRAME (EXAMPLE5-6) 

Design Information: For each element of the frame the modulus of elasticity, the specific weight, and the yield 
stress are 3x 104 kips/in.2, 0.2836lb/in.3, and 36.0 kips/in.2, respectively. The constantsa^c., andd.are 0.58, 
0.58,and 0.67 respectively. The lower and the upper limits on the moment of inertia of each elementare 394.5in.4 

and 6699.Oin.4, respectively. The resonant frequency of the structure is taken as 4.0Hz and the displacement limits 
are 2.Oin. at all nodes in bothx!- and x2-directions. There arefour loading conditionsfor the frame: (1) Uniform- 
ly distributed load of -4.0 kips/ft on element 1, 7,11, 17,21, and 27,and — 1.0kip/ft on elements2, 6,12,16,22, 
and 26; (2)Uniformly distributed load of - 4.0kips/ft on elements 2, 6, 16, 22, and 26,and — 1.0kip/ft on 
elements 1, 7,11, 17, 21,and 27; (3)Uniformly distributed load of - 1.0kip/ft on elements 1, 2,6,7, 11, 12,16, 
17, 21, 22, 26,and 27, and loads of 9.Okips each at nodes 1, 4, 7, 10, 13, and 16 in direction of the x-axis; (4) 
Uniformly distributed load of - 1.0kip/ft on elements 1, 2,6,7,11, 12, 16,17,21,22, 26,and 27, and loads of 
- 9.Okips each at nodes 3,6, 9,12,15, and 18 in direction of xt ■ axis. 

i/Vith Only Stress Constraints With All Constraints 
~omputationtime = S.32 min Computationtime= 8.70 min 

El. Starting Values, Final Values, El. Starting Values, Final Values, 
No. in.4 in.4 No. in.4 in.4 

1 2400.0 450.6 1 394.5 473.8 
2 2400.0 450.6 2 394.5 473.8 
3 2400.0 498.6 3 394.5 467.2 
4 2400.0 394.9 4 394.5 437.5 
5 2400.0 498.6 5 394.5 467.2 
6 2400.0 530.8 6 394.5 568.7 
7 2400.0 530.8 7 394.5 569.1 
8 2400.0 394.3 8 394.5 394.5 
9 2400.0 397.1 9 394.5 608.5 

10 2400.0 394.1 10 394.5 394.5 
11 3200.0 481.8 11 450.0 787.0 
12 3200.0 481.7 12 450.0 786.4 
13 3200.0 425.3 13 400.0 412.7 
14 3200.0 472.7 14 450.0 794.1 
15 3200.0 425.3 15 400.0 412.6 
16 4000.0 521.9 16 550.0 930.2 
17 4000.0 521.7 17 550.0 930.0 
IS 4000.0 468.3 18 550.0 561.9 
19 4000.0 723.5 19 750.0 920.4 
20 4000.0 467.5 20 550.0 561.8 
2L 4800.0 699.1 21 600.0 1019.1 
22 4800.0 699.1 22 600.0 1018.7 
23 4800.0 646.3 23 700.0 693.4 
24 4800.0 1044.5 24 1100.0 1197.0 
25 4800.0 646.5 25 700.0 693.3 
26 5600.0 666.4 26 600.0 868.5 
27 5600.0 666.4 27 600.0 867.9 
28 5600.0 1099.0 28 1200.0 1245.4 
29 5600.0 1489.7 29 1600.0 1658.6 
30 5600.0 1099.0 30 1200.0 1245.3 

Wt, lb 54290.9 2L706.6 Wt, lb 21243.6 24290.1 
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54000° 

48000 

With Only Stress Constraints 

Optimum Weight = 21706.6 lb 

24000 

18000 
4 8 12 

Iteration Number 

16   18 

Figure 5-31. Iteration Number vs Weight Curves 
for Example 5-6; Two-bay, Six- 
story Frame, With Stress Constraints 
Only 

25200 

24400 

23600 

22800 

22000 

21200t 

Optimum Weight = 24290.1 lb 

With All Constraints 

0 4 8 12 16   1 

Iteration Number 

Figure 5-32. Iteration vs Weight Curves for 
Example 54>; Two-bay, Six- 
story Frame, With All Constraints 

5-7 INTERACTIVE    COMPUTING   IN 

STRUCTURAL OPTIMIZATION 

5-7.1  THE INTERACTIVE APPROACH 

Structural optimization techniques treated 
thus far consist of methods which seek to 
determine an optimum design, within a well- 
defined mathematical structure, by purely 
mathematical techniques. A second approach 
consists of providing the designer with an 
interactive computing tool with which he can 
try nominal designs, get rapid analysis feed- 
back, and alter his initial design based on his 
knowledge of structural behavior. Both meth- 
ods have been used with varying degrees of 
success on a variety of design problems. In 
general, the first approach has been used for 
problems with well-defined optimality cri- 
teria, such as minimum weight or maximum 
stiffness. The second approach has been used 
to aid designers in large scale structural design 
problems, primarily airframe design, such as 
the Air Force C-5 transport aircraft. 

The possibility of utilizing a combination 
of these two methods for structural design has 
been the subject of a recent paper (Ref. 36). 
This paragraph presents the specifics of appli- 
cation of the steepest-descent technique with 
designer interaction. This hybrid approach is 
appealing from a number of points of view. 
First, the problem of topological design, i.e., 
determination of optimum structural configu- 
ration, has been addressed with very limited 
success from an analytical point of view. 
Topological design, in practice, is done by 
experienced structural designers, occasionally 
with the aid of interactive computation. 
Combined analytical and interactive com- 
puting methods appear to be essential for this 
important class of problems. A second prob- 
lem area arises due to the difficulty in 
formulating a single optimality condition and 
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mathematically precise design constraints. 
Often, conflicting design constraints and ob- 
jectives arise during design which require 
experienced judgment and defy a priori math- 
ematical formulation. Such problems appear 
to require an interactive computing capability 
but should profit from analytical methods 
that are used in automated structural optimi- 
zation. 

Due to unavailability of a large scale, 
interactive system, the computations for this 
study were simulated. Instructions were pre- 
pared and computations were run in the batch 
mode. Output data were then displayed and 
analyzed just as they would be in the inter- 
active mode, and instructions for recomputa- 
tion were given by the designer and the 
process repeated. The delay in designer inter- 
action is felt to degrade performance some- 
what, over true interactive computing, since 
the designer tends to forget pertinent detailed 
data during the time delay. For this reason, 
the results of this study should provide a 
conservative estimate of the designer's per- 
formance in a truly interactive mode. 

5-7.2  INTERACTIVE    STRUCTURAL   DE- 
SIGN USING SENSITIVITY DATA 

The steepest-descent optimization method 
developed in this Chapter has been used to 
solve a number of relatively large scale struc- 
tural optimization problems with good 
success. All these problems, however, have 
been well formulated mathematically and 
have involved structures with a predetermined 
form. Difficulties have occurred when certain 
structural elements tend toward zero cross 
section. Further, no universal method has 
been found to determine the best step-size 17 
in the optimization algorithm. These and 
other inherent difficulties in automated opti- 
mization lead one to interject an experienced 
designer into the computational, optimization 

algorithm. The result is a hybrid structural 
optimization technique. 

Reconsidering the design improvement step 
of the optimization algorithm, one might 
draw a vector picture in design space, as is 
depicted in Fig. 5-33. Here, — 776ft1 is the 
direction which will yield the greatest re- 
duction in J subject to the required con- 
straints, and 5ft2 is the design change required 
to give the desired constraint error correction. 
While useful in this form, there is a better 
display of these data for use by the experi- 
enced structural designer. The scalar com- 
ponents of — 8b1 and 5b2 tell the designer 
whether he should increase or decrease his 
individual design variables to obtain desirable 
changes in overall structural response. Fur- 
ther, relative importance of design variable 
changes is given. For this reason, 6ft1 may be 
interpreted as a vector of design sensitivity 
coefficients that relate individual design 
parameter changes to overall structural 
characteristics. It is extremely important to 
note, at this point, that these sensitivity 
coefficients account for constraints implicitly; 
i.e., the direction of change indicated in the 

Figure 5-33.   Vector Change in Design 
Space 
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design parameters will not cause significant 
violation in specified performance constraints 
such as stress limits and deflection limits. 

To   illustrate   these   ideas,   consider  the 
simple structural design problem in Fig. 5-34. 

Figure 5-34.  Three-bar Truss 

The cost function here is structural weight. If, 
for example, the stress in member 1 is at its 
allowable limit under one of the loads, then 
the indicated changes in design (—50 5, 
-8b\, —Sbi) will not increase the stress in 
member 1. To make the design sensitivity 
data of maximum use to the designer, con- 
sider the graphical display in Fig. 5-35. In this 
display, a. are the stresses in the various 
members. This display gives the experienced 

Figure 5-35. Display of Design Sensitivity 
Data 

designer a clear picture of the manner in 
which he should change his design parameters 
to reduce total weight, subject to stress 
constraints. He can now choose the desired 
reduction A/ in weight and take the resulting 
design change 8b, or if he wishes, he can input 
modified design changes through an inter- 
active computer terminal. 

There are a number of other respects in 
which this mode of designer interaction with 
the computer alogrithm is beneficial. First, it 
often happens in the automated use of the 
algorithm that oscillation of admissible de- 
signs occurs because too large a design im- 
provement has been requested. Such oscilla- 
tion can often be identified by the designer 
after only a few iterations and the step size 
can be reduced to prevent loss of computer 
time, which can be significant in large scale 
problems. Conversely, if an estimate quite far 
from the optimum is chosen to initiate the 
algorithm, it often happens that the designer 
chooses far too small a step size. The result is 
a very small improvement in the design which 
can be sensed by the designer and improved 
before excessive computation time is ex- 
pended. 

A second important benefit from designer 
interaction with the algorithm arises due to 
the occurrence of local minima and singu- 
larities in the analytical formulation of the 
design problem. The problem of local minima 
is illustrated by Fig. 5-36. Virtually all opti- 
mization methods seek local optima and do 
not solve the global optimization problem. It 
is easy for an optimization technique to get 
hung up at point B and not get to point A, 
which is the global minima, so the designer 
must try different starting points to obtain 
the global solution. This is a very time 
consuming and indefinite technique with very 
few analytical aids to the designer. Part of the 
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J(b, z, () 

Figure 5-36. Local Optima 

difficulty here arises because Figure 5-36 is 
the wrong display for the designer in that it 
does not utilize his knowledge and experience 
with structures. 

A much better approach for the designer is 
to look at a display such as Figure 5-35. He 
can use his experience to restart the optimiza- 
tion algorithm at a meaningful distribution of 
design variables which may be quite different 
from the design which resulted from previous 
calculations. His experience, thus, aids him in 
starting with different trial designs. 

Perhaps even more important than trying 
various distributions of design variables, the 
designer can utilize the display of Fig. 5-35 to 
change the configuration of the structure 
based on information he accumulates during 
iterative design and based on his experience. 
For example, he might try taking member 2 
out of the structure and optimize based on 
the modified configuration. Very often, 
significant gains are made in this manner. 
Precisely this behavior occurs in the three 
member truss being considered. 

There are actually compelling mathematical 
reasons for allowing the designer to make 

changes in configuration as outlined. There 
are no general optimization methods, to date, 
which will remove a member during iterative 
design. The reason is that as a member cross 
section goes toward zero, as is required to 
remove a member, the equations of structural 
mechanics and stress constraints become 
singular. This sort of behavior is typical when 
the configuration of a system is changed and a 
different set of equations is required to 
describe the behavior. At the present time, 
allowing the designer to make changes in 
configuration appears to be the most feasible 
approach, which requires that he play an 
active role in the iterative optimization al- 
gorithm. 

5-7.3  EXAMPLE PROBLEMS 

1. Example 5-7. A Three-member Truss 

As an illustrative example of the technique 
presented in par. 5-7.2, an elementary opti- 
mal design problem will be solved under a 
number of loading conditions and a variety of 
constraints. The effect of designer-computer 
interaction on rate of convergence is ex- 
amined as well as the effect of changing 
structural configuration. 

Figure 5-37(A), shows the geometry and 
dimensions of the structure being considered. 
This structure has been studied by Schmit 
(Ref. 37), Sved and Ginos (Ref. 38), and 
Corcoran (Ref. 35). Three independent load- 
ing conditions are applied to the structure. 
These are as follows: 40K at 45 deg; 30K at 
90 deg; 20K at 135 deg. The allowable stress 
level for members 1 and 3 is ± 5 Ksi and for 
member 2 it is ± 20 Ksi. The density of the 
material is taken as 0.10 lb/in.3 and Young's 
modulus as 104 Ksi. Starting from the feasible 
solution, bx = 8.0, b2 = 2.4,b3 = 3.2, Schmit 
(Ref. 37) arrived at the solution bt = 7.099, 
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(A) Three-bar Truss 

(B) Corcoran Truss 

Figure 5-37.  Trusses (Example 5-7) 

shown in this figure. The final solution 
obtained by Corcoran was bl = 4.241, 
b2 = 2.038 with J = 7.55 lb. 

Considerable experimentation was done 
with this problem. Starting from a feasible 
point bt = 10, b 2~ 5, b, =5, the solution 
obtained without interaction was bx = 7.064, 
b2 = 1.971, b, = 2.835 and the minimum was 
/= 15.97 lb. The variation of weight with 
respect to iteration number is shown by Curve 
1, Fig. 5-38. Next, by adjusting the step size 
in interactive computing, the solution was 
obtained in only five iterations. This is shown 
by Curve 2, Fig. 5-38. It was observed that 
member 2 never reached its allowable stress 
level. As a second starting point, the area of 
member 2 was initially chosen to bring its 
stress to the allowable limit. The minimum 
reached in this case was the same as before, 
Curve 3, Fig. 5-38. Another solution was 
obtained by starting from an infeasible point 
&i = 5.0, b2 = 1.5, b3 = 0.10. The solution in 
this case was bx = 6.98, b 2 = 2.30, b3 = 2.68 
with./ = 15.971b, Curve 4, Fig. 5-38. 

b2 = 1.849,^3 =2.897, for which J= 15.986 
lb. Sved and Ginos (Ref. 38) have shown that 
this is only a local minima and by omitting 
member 3, they obtained the solution as 
by = 8.5, b2 = 1.5 with /= 12.812 lb. They 
have also shown that it is impossible to reach 
this minimum by an iterative optimization 
method unless member 3 is omitted from the 
calculations by the designer. Corcoran (Ref. 
35) has considered configurational optimiza- 
tion of this three-bar truss. By using horizon- 
tal coordinates of nodes 1, 2, and 3 also as 
design variables, he arrived at an optimum 
structure shown in Fig. 5-37(B). As a result of 
this configurational optimization procedure, 
members 1 and 3 were combined and their 
orientation is shown by member 1 of Fig. 
5-37(B). Member 2 attained an orientation as 

Next, member 3 was omitted from the 
structure. Starting from a point bx = 10, 
b2 = 5, the solution obtained was ö, = 8.0, 
b2= 1.5 with J= 12.812 lb, Curve 1, Fig. 
5-39, which is same as reported in Ref. 38. At 

. Curve 2 

!urve 1 

Iteration Number 
Figure 538. Iteration vs Weight Curves for 

Example 5-7, Three-bar Truss 
With Stress Constraints Only 
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Iteration Number 

Figure 5-39. Iteration vs Weight Curves for 
Example 5-7, Three-bar Truss 
With All Constraints 

bi = 16.0,b2 = 11.31,and J= 33.94 1b. Thus, 
the optimum weight obtained for this statical- 
ly determinate case is approximately 70% 
higher than the optimum weight obtained for 
the statically indeterminate case. 

It was found that interactive computing 
yielded convergence more rapidly than was 
the case in the batch mode. It is expected that 
even more significant reduction in computing 
time will occur in large scale problems. 

this point an interesting observation was 
made. The maximum horizontal and the 
vertical deflections of node 4 were as follows: 
with three bars, zv =0.689 x 10~2 in., 
z 2= 0.595 x 10~2 in.; with two bars, 
zi = 0.239 xl0_1ia, and z2= 0.20 x lO'Mn. 
Thus, although the optimum weight obtained 
by omitting member 3 is approximately 24% 
lower than the weight obtained by including 
member 3, the deflections of node 4 in the 
former case were approximately four times 
greater than in the latter case. 

One might be led to believe that if 
deflection or frequency constraints were en- 
forced, then the optimum structure might not 
be statically determinate. To investigate this 
possibility, displacement as well as buckling 
and natural frequency constraints were im- 
posed. The deflection limits were taken as 
zx =±0.005 in. and z2 = ± 0.005, and the 
lower limit on natural frequency was taken as 
3830 Hz. With the starting point bx = 10, 
b2 = 5, b3 = 5, the solution obtained was 
*i = 9.18, b2=2A6, 03=3.85, and 
J = 20.59 lb, Curves 2 and 3, Fig. 5-39. When 
member 3 was omitted, the starting point was 
taken ash] = 10, b2 = 10, Curve 4, Fig. 5-39, 
and as bx = 18, b2 = 10, Curve 5, Fig. 5-39. 
The   solution   obtained   in  this   case  was 

This problem was also solved by omitting 
member 2 from computation. The results 
obtained in this case are given in Columns 3 
and 7 of Table 5-15. The truss optimized by 
Corcoran (Ref. 35) was also solved here by 
first imposing the stress constraints only and 
then by considering all the constraints. The 
results of these cases are given in Columns 4 
and 8 of Table 5-15. 

The key point in the solution is that the 
configuration of the optimum design is not 
obvious from analytical considerations. A 
designer's experience and insight are required 
to select candidate configurations and then 
obtain the optimum design analytically. The 
global solution in this case must be chosen by 
comparing relative minima. It may be ex- 
pected, in structures with greater redundancy, 
that certain members may be removed during 
interactive computation when they are ob- 
served to approach their allowable lower 
limits. 

An interesting point, illustrated by Table 
5-15, is that a statically determinate truss is 
optimum when only stress constraints are 
imposed. Quite the contrary, when the full 
range of constraints are imposed, a statically 
indeterminate truss is optimum (not consider- 
ing the configurational optimization). 
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TABLE 5-15 

OPTIMUM THREE-MEMBER TRUSSES (EXAMPLE 5-7) 

El 
No. 

With Only Stress Constraints With All Constraints 
Final Area, in/ Final Area, in.' 

1 2 3 4 5 6 7 8 

1 

2 

3 

7.064 

1.971 

2.835 

8.500 

1.500 

7.991 

4.243 

Corcoran 
Truss 

9.180 

2.160 

3.850 

16.00 

11.310 

8.485 

8.485 

Corcoran 
Truss 

4.246 

2.039 

4.247 

11.410 

Wt, lb 15.970 12.812 17.300 7.555 20.59 33.94 24.000 20.115 

Max. 
Defl, in. 0.00689 0.02390 0.00766 0.02559 0.005 0.005 0.005 0.005 

2. Example 5-8. Transmission Tower 

Fig. 5-40 shows the geometry and dimen- 
sions of the transmission tower to be studied. 
This problem has been considered by 
Venkayya and others (Ref. 39). The tower 
has 25 members, 10 joints, 18 degrees of 
freedom, and is designed for 6 loading condi- 
tions. The structure is indeterminate, with a 
degree of indeterminacy of seven. 

The tower was designed by first imposing 
only stress constraints, and then by imposing 
stress, displacement, buckling, and natural 
frequency constraints. Design information is 
given in Table 5-16, and the final results 
obtained are shown in Tables 5-17 and 5-18. 
Table 5-17 shows the results when only stress 
constraints are considered, and Table 5-18 
gives the results for the corresponding cases 
when all the constraints are considered. For 
results given in Column 1 of Table 5-17, all 
the members of tower were included in the 

computation and the Curve 1 of Fig. 5-41 
shows the variation of cost function with the 
number of iterations. The computations of 
this case were monitored to determine which 
cross sections went to their lower bounds. 

One set of members which attained their 
lower limits of cross-sectional area were num- 
bers 10, 11, 12, and 13. It was observed that 
these members carried small forces and could 
be removed without causing collapse of the 
tower, so they were removed from the tower. 
The final values of areas of cross section of 
the resulting structure are given in Column 2 
of Table 5-17. Curve 2 of Fig. 5-41 shows the 
variation of cost function with respect to the 
design cycle. The final weight in this case was 
slightly less than the previous case. 

The next member that reached its lower 
limit was number 1, so it was also removed 
from the structure. The results of this case are 
given in Column 3 of Table 5-17 and Curve 3 

5-57 



AMCP 706-192 

75 in. 

Figure 5-40. Transmission Tower (Example 5-8) 
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TABLE 5-16 

DESIGN INFORMATION FOR TRANSMISSION TOWER (EXAMPLE 5-8) 

For each member of the structure, the modulus of elasticity E., the specific weight p/V the constant a. (moment 
of inertia of /th member,/. = ai>.2), andthe stress limitsare 104 kips/in.2, 0.10 lb/in.3, 1.0, and ± 40.0 kips/in.2, re- 
spectively. The lower limit on the area of cross section of each member is 0.10 in.2 for the case with stress 
constraints only and 0.01 in.2 for other cases. There is no upper limit on the member sizes. The resonant frequency 
for the structure is 173.92Hz andthe displacement limitsare 0.35 in. on all nodesand in all directions. There are six 
loading conditions and they are as follows (all loads are in kips): 

Load 
Cond. Node 

Direction of Load Load 
Cond. Node 

Directionof Load 

x                 Y                   z X V                       z 

1 1.0             10.0         -5.0 1 0 10.0              -5.0 

1 
2 0                10.0          - 5.0 

2 
2 - 1.0 10.0              -5.0 

3 0.5               0                 0 4 -0.5 0                      0 
6 0.5               0                 0 5 -0.5 0                      0 

1 1.0        -10.0          -5.0 1 0 -10.0              -5.0 

3 
2 0            -10.0         -5.0 

4 
2 - 1.0 - 10.0              - 5.0 

3 0.5              0                 0 4 -0.5 0                      0 

6 0.5              0                 0 5 -0.5 0                      0 

5 
1 0                20.0          - 5.0 

6 
1 O -20.0              -5.0 

2 0            - 20.0          - 5.0 2 0 20.0              - 5.0 

of Fig. 5-41. The final weight in this case was 
86.94 lb, which is given slightly less than the 
previous case. Finally, members 14, 15, 16, 
and 17 were at their lower limits of cross- 
sectional area. Removal of any of these 
members, however, would cause collapse of 
the structure. Members 2 and 5 or 3 and 4 
could be removed to make the structure 
determinate. The results for a statically 
determinate structure, obtained by removing 
members 2 and 5, are shown in Column 4 of 
Table 5-17. The final weight in this case was 
106.97 lb. It may be noted that this statically 
determinate structure yielded only a local 
optimum, Curve 4, Fig. 5-41. 

Another sequence of removing the mem- 
bers that reached their lower limits of area of 
cross section was also tried. Members 14, 15, 

16, and 17 reached their lower bounds but 
removal of all of these members rendered a 
structure that was geometrically unstable. 
However, members 14 and 16 or 15 and 17 
could be removed without causing the col- 
lapse of the structure. Results with members 
15 and 17 removed are given in Column 5 of 
Table 5-17 and similar results are obtained by 
omitting members 14 and 16 from the com- 
putation. The next set of members that were 
at their lower bounds and could be removed 
without making the structure unstable were 
numbers 1, 12, and 13. These were also 
removed from the structure and the results 
obtained in this case are given in Column 6 of 
Table 5-17. Two other members could be 
removed from the structure to make it 
statically determinate. Results obtained by 
removing members 4 and 5, and then numbers 
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TABLE 5-17 

OPTIMUM TRANSMISSION TOWERS WITH STRESS CONSTRAINTS ONLY 
(EXAMPLE 5-8) 

El. 

Final Area, in.2 

No. 1 2 3 4 5 6 7 8 

1 0.100 0.100 — _ 0.100 — — _ 
2 0.376 0.377 0.346 - 0.384 0.364 0.272 - 
3 0.376 0.377 0.346 0.100 0.384 0.366 0.272 0.272 
4 0.376 0.377 0.346 0.100 0.387 0.363 - 0.272 
5 0.376 0.377 0.346 - 0.385 0.365 - - 
6 0.471 0.470 0.494 0.779 0.465 0.484 0.775 0.779 
7 0.471 0.470 0.494 0.779 0.463 0.482 0.779 0.775 
8 0.471 0.470 0.494 0.779 0.464 0.481 0.779 0.779 
9 0.471 0.470 0.494 0.779 0.463 0.479 0.779 0.779 

10 0.100 - - - 0.103 0.103 0.182 0.182 
11 0.100 - - - 0.103 0.103 0.182 0.182 
12 0.100 - - - 0.100 - - - 
13 0.100 - - - 0.100 - - - 
14 0.100 0.100 0.100 0.165 0.151 0.152 0.302 0.302 
15 0.100 0.100 0.100 0.165 - - - - 
16 0.100 0.100 0.100 0.165 0.151 0.152 0.302 0.302 
17 0.100 0.100 0.100 0.165 - - - — 
18 0.277 0.279 0.292 0.413 0.278 0.288 0.413 0.413 
19 0.277 0.279 0.292 0.413 0.277 0.288 0.413 0.413 
20 0.277 0.279 0.292 0.413 0.274 0.287 0.413 0.413 
21 0.277 0.279 0.292 0.413 0.273 0.287 0.413 0.412 
22 0.380 0.374 0.363 0.547 0.445 0.436 0.669 0.669 
23 0.380 0.374 0.363 0.547 0.334 0.370 0.447 0.447 
24 0.380 0.374 0.363 0.547 0.442 0.436 0.669 0.669 
25 0.380 0.374 0.363 0.547 0.336 0.370 0.447 0.447 

Wt, lb 91.13 87.90 86.94 106.97 89.94 88.95 113.69 113.68 

Max. 
Defl. in. 2.288 2.305 2.311 3.489 2.486 2.453 3.614 3.615 

2 and 5 are given, respectively, in Columns 7 
and 8 of Table 5-17. Computations were also 
carried out by removing members 2 and 3, 
and members 3 and 4 along with members 1, 
12, 13, 15, and 17. Results obtained in these 
cases were the same as those shown in 
Columns 7 and 8 of Table 5-17. For this 
reason, these results are not reproduced here. 
Finally,  another determinate   structure,  ob- 

tained by removing members 1,2, J, 15, 16, 
19, and 20 was optimized. The cross-sectional 
areas of various members at the optimum 
point were as follows: 3,4(0.100); 6 to 
9(0.779); 10,11(0.182); 12,13(0.446); 
14,17(0.302); 18,21(0.775); 22,25(0.537); 
and 23,24(0.751). The optimum weight in 
this case was 118.1 lb and the maximum 
deflection at this point was 3.861 in. 
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TABLE 5-18 

OPTIMUM TRANSMISSION TOWERS WITH ALL CONSTRAINTS 
(EXAMPLE 5-8) 

El. 
No. 

Final Area, n.2 

1 2 3 4 5 6 7 8 
1 0.010 0.010 — — 0.010 — — — 
2 2.092 2.339 2.393 - 2.263 2.389 0.548 - 
3 2.075 2.386 2.404 0.548 2.264 2.384 0.548 0.548 
4 2.095 2.339 2.393 0.548 2.021 1.826 - 0.548 
5 2.083 2.385 2.404 - 1.920 1.915 - - 
6 2.357 2.085 2.076 7.132 2.389 2.452 6.596 6.699 
7 2.354 2.084 2.076 6.857 2.186 2.042 6.483 6.296 
8 2.350 2.113 2.083 6.895 2.411 2.430 6.596 6.686 
9 2.335 2.1 12 2.082 7.101 2.095 2.123 6.476 6.47 1 

10 0.035 - - - 0.666 0.621 2.102 2.054 
11 0.035 - - - 0.658 0.630 2.102 2.047 
12 0.087 - - - 0.090 - - — 
13 0.084 - - - 0.071 - - - 
14 1.113 1.114 1.139 1.785 1.461 1.485 4.172 4.101 
15 1.113 1.114 1.139 1.735 - - - - 
16 1.112 1.117 1.146 1.727 1.438 1.498 4.170 4.167 
17 1.112 1.117 1.146 1.798 - - - - 
18 2.056 2.047 2.027 4.317 2.161 2.171 4.692 4.645 
19 2.058 2.034 2.022 4.390 2.158 2.173 4.692 4.664 
20 2.046 2.047 2.027 4.400 2.403 2.538 4.985 5.108 
21 2.058 2.034 2.022 4.328 2.415 2.524 4.989 5.038 
22 2.822 2.878 2.886 5.655 4.187 4.035 6.746 6.909 
23 2.808 2.878 2.886 5.730 2.915 2.873 5.086 4.781 
24 2.803 2.926 2.895 5.743 4.124 4.086 6.743 7.039 
25 2.785 2.926 2.895 5.648 2.908 2.881 5.086 4.749 

Wt, lb 590.32 596.64 597.82 060.6 625.37 626.70 142.7 1139.9 

Max. 
Defl, in, 0.350 0.350 0.350 0.350 0.350 0.350 0.350 0.350 

All these tower configurations were also 
optimized by imposing all constraints; i.e., 
stress, displacement, buckling, and natural 
frequency. The results of these cases are given 
in Table 5-18. Curves 1 to 4 of Fig. 5-42 show 
the variation of cost function with respect to 
the iteration number for results of Columns 1 
to 4 of Table 5-18. It can be observed from 
the results of Table 5-18 that, for the casein 
which all constraints were imposed, the opti- 

mum weight of the tower increased as more 
redundant members were removed from the 
structure. 

5-7.4  INTERACTIVE 
CLUSIONS 

COMPUTING   CON- 

Computing times for this interactive com- 
puting approach are considerably shorter than 
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140 

Curve 4 

*     100- 

Figure 5-41. Iteration vs Weight Curves for 
Example 5-8, Transmission 
Tower With Stress Constraints 
Only 

had been experienced when the same prob- 
lems were solved in the batch mode. Second, 
and probably more significant, interactive 
computing allows the designer to alter the 
structural configuration in a systematic way 
to seek the global optimum design. This is not 
to say that a mathematically precise method 
of obtaining a global optimum has been 
found, for no such method is known. It 
appears, however, that the technique pre- 
sented here makes strong use of the designer's 
knowledge and intuition, and gives him a tool 
with which to seek a global optimum in an 
organized way. 

The results presented for the two examples 
solved in par. 5-7 are of interest in their own 

870-1 

2 4 6 

Iteration Number 

Figure 5-42.  Iteration vs Weight Curves for 
Example 5-8, Transmission Tower 
With Al I Constraints 

right. For the case when only stress con- 
straints are imposed, results of Table 5-15 
indicate that minimum weight designs for 
trusses with multiple loading may be statically 
determinate. However, the results of the 
second example given in Table 5-17 indicate 
that all statically determinate trusses may not 
be lighter than the indeterminate trusses. 

For the case when all constraints are 
imposed, results of Tables 5-15 and J-18 show 
that statically indeterminate trusses are lighter 
than the determinate trusses. 
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CHAPTER 6 

THE CALCULUS OF VARIATIONS AND OPTIMAL PROCESSTHEORY 

6-1   INTRODUCTION 

The problems of Chapters 2 through 5 are 
all optimal design problems in which the 
design variables were elements of R", i.e., a 
vector of n real numbers uniquely specified 
the design of the system being investigated. In 
many important, real-world, optimal design 
problems the design of a system cannot be 
specified so easily. For example, the thrust 
vector acting on a rocket during takeoff must 
be continuously oriented in time so that the 
rocket remains stable and follows a certain 
path. In this example, the angles the thrust 
vector makes with the rocket must be speci- 
fied at each instant of time during takeoff. It 
is clear that a function specifies the thrust 
direction rather than a finite number of 
parameters. 

Examples of this kind of problem abound 
in the aircraft guidance literature and in the 
optimal control literature. Typical design or 
control variables in these problems are thrust, 
motor torque, control surface settings, etc. 
All these variables must be specified through- 
out the entire interval of time an aircraft is in 
the air. Similar problems arise in the presently 
developing field of optimal structural design. 
In this field the design variables are generally 
variables that describe the distribution of 
material in structural elements. 

In order to illustrate the kind of problem 
to be treated in this chapter, two classic 
examples will be given. 

Example 6-1: The shortest path between 
two points, {t°,x°) and (t\xl), in the t-x 
plane is to be found. As shown in Fig. 6-1, the 
particular path chosen between the two 
points has a length associated with it. The 
problem is to choose the curve x(t), t° a t Q 

tl which has the shortest length. For a 
smooth curve x(t) the length is given by 

J(x) = 

fl 

1 + 
dx 
dt 

1/2 

dt. (6-1) 

Note that in this example the quantity J(x) 
to be minimized is a real number once the 
function x(J), t° Q t Q f1 is chosen. In this 
sense J(x) is a real valued function of a 
function or curve. 

Example 6-2: (The Brachistochrone): Giv- 
en two points (t°,x°) and (t1 ,x*) in a vertical 
plane that do not lie on the same vertical line, 
find a curve x(t), t° < t a t' Joining them so 
that a particle starting at rest will traverse the 
curve without friction from one point to the 

(/',!') 

Figure 6-1. Shortest Path 
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other in the shortest possible time. Candidate 
curves are shown in Fig. 6-2. 

Figure 6-2. Curve for Minimum Time 

Let m be the mass of the particle andg be 
the acceleration due to gravity. Since the 
particle starts at rest at (t°,x°) and there is no 
friction, 

— mv2 = mg(x — x°) 

where v is velocity, 

(6-2) 

dr/    +\dT/ 

1/2 

1 + fdx 
dt 

1/2 -dt- 
dr' 

(6-3) 

where T is time. Solving Eq. 6-2 for v, 
substituting this into Eq. 6-3 and solving for 
dr yields 

1 + 
dr = 

dt 

[2g(x -x0)}1'2 

The total time T required for the particle to 
remove from(f°,x°) to (t{,xl) is then 

T = J(x) 
[2g(x - x0)] ln 

(6-4) 

This notation makes it clear that T depends 
on the entire curve transversed by the parti- 
cle. The Brachistochrone problem, therefore, 
is reduced to finding a curve x{t), t° < t a t1 , 
that passes through the two given points and 
makes T as small as possible. 

In Examples 6-1 and 6-2 it is clear that a 
curve, or equivalently a function character- 
izing the curve, is to be found as the solution 
of the optimization problem. Further, the real 
valued quantities to be minimized are deter- 
mined by curves or the functions character- 
izing those curves. These real valued quanti- 
ties, therefore, are functions of functions. 
Such a real valued function is called a 
functional. The functional notation J(x) in 
Eqs. 6-1 and 6-4 is then interpreted as a real 
valued function of the function x(t),t° Q(< 

t1 . The most common kind of functional 
encountered in calculus of variations is the 
integral. 

The optimization problem considered here 
might be stated as: find the function x(t), t° 
<« t < t1 , that minimizes the functional/(x). 
A glance at the functional defined in Eqs. 6-1 
and 6-4 reveals a basic flaw in this statement 
of the optimization problem. In both cases, 
the functional are defined only if the func- 
tion x{t) has anintegrable derivative on(° Q / 
■s tl, i.e., it doesn't make sense to admit all 
functions as candidates for an extremum. The 
problem is more reasonably stated: find the 
function x(t) t° Q t < t', in a class of 
functions D,   that minimizes the functional 
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J(x). The admissible class of functions here 
plays a role similar to the constraint sets of 
Chapters 3, 4, and 5. 

The idea of classes of functions required 
here is basic to the mathematical field called 
Functional Analysis. Classes of functions in 
this field are called function spaces. Consider, 
for example, the collection of all continuous 
functions x{t) on0< (< 1. The graphs of 
several such functions are shown in Fig. 6-3. 

Figure 6-3. Examples of Continuous Functions 

It is clear that there are infinitely many 
continuous functions but that not all func- 
tions are contained in this class. For example 

spaces may be described in a similar manner 
as 

C'(a,b) = {x(t), a-i t< b \ x(t) has i 
continuous derivatives ( .    (6-6) 

It should be understood here that x(t) may be 
a vector valued function and the differ- 
entiability requirement in Eq. 6-6 refers to 
each component. 

Function spaces may be thought of as sets 
of elements, where elements in the function 
space are really curves or functions. In this 
way the problem of minimizing J{x) may be 
viewed as picking the element (curve) in the 
appropriate function space that makes J(x) as 
small as possible. This approach makes mini- 
mization of a functional sound very similar to 
the programming problems of Chapter 2. With 
this mental analogy one may begin his study 
of the calculus of variations armed with a 
powerful intuitive tool. 

The basic ideas of function space theory 
are presented very clearly in Ref.  1, Chapter 
2. 

x(t) = 
0 <s t «t   1/2 

1, 1/2 < t <   1 

is not continuous so it is not in the class. 

To expedite the development that follows, 
some notation will be introduced. The collec- 
tion of continuous functions on 0 <s t < 1 
described previously is called a function space 
and is denoted 

C°(0,1)= \x(.t),0< t<  1 \x(t) 
is continuous } . (6-5) 

A   large   number   of  important   function 

In connection with vector spaces, it is often 
necessary to require that a function is small, 
or near the zero function. For this purpose it 
is required that size of a function be defined. 
This is done by defining a norm as a function- 
al IMI on the function space of interest with 
the following properties: 

|| x || > 0, || x || = 0 implies x is the zero 
function (6-7) 

|| «JC || = || a ||  || x || for real a (6-8) 

\\x+y || < || * || + || j; || . (6-9) 

Examples of norms include 
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max x(t) (6-10) 

for xeC°(?V; and 

x\\ = f" J ,u 
x2(f)df 

1/2 

(6-11) 

for square integrable functions x(f)- For a 

discussion of the basic ideas of functional 

analysis as they apply to optimization theory 

the reader is referred to Ref. 1. 

With the idea of norm defined, one can 

speak of relative minima of functionals. The 
functional J(x) has a relative minimum at 

xeD if there is a 6 > 0 such that 

/(x) < J(x) 

for allxe£> with 

< 6 (6-12) 

This simply says that J(x) has a minimum in a 
sufficiently small neighborhood of 2. It is 

interesting to look at a neighborhood of a 
curve in C°(t°,tl) where norm is defined by 
Eq. 6-10. In this case Eq. 6-12 simply 

demands that x(t) be within 6 of x(t) for all t 

in t° Q t ss t1. The neighborhood of x in this 
case is simply the collection of all continuous 
curves which can be drawn between x(t) + 6 

andx(t) — 6, as shown in Fig. 6-4. 

The present chapter will be devoted almost 
exclusively to the theory of the calculus of 

variations and optimal process theory. Con- 

structive methods for these problems will be 
treated in the chapters to follow. A knowl- 
edge of this basic theory is essential for 

successful application of the theory of opti- 
mal design. It has been the experience of the 
author that most real-world problems require 

xft) 

i(t)+i  -J 
_ - - ~Z xft) 

X(t) - 5 

Figure 6-4. A Neighborhood of x(t) 

some modification of the basic optimization 
problems. Without a thorough knowledge of 

the theory, the designer will probably have no 

idea of how to modify the existing theory to 

suit his purposes. 

6-2 THE   FUNDAMENTAL   PROBLEM  OF 
THE CALCULUS OF VARIATIONS 

Examples 6-1 and 6-2 have features in 
common that allow for the formulation of an 

entire class of problems containing these two. 
For the sake of generality, let the variable x(t) 

be a vector valued function of the real 

variable t, i.e., 

x(t) = 

x,(0 

(6-13) 

xn(t)_ 

where x;(f) are real valued functions of t. 

The problem considered here may be for- 

mulated as Definition 6-1. 

Definition 6-1 (Fundamental Problem of 

the Calculus of Variations): Find a function 
x(0 inC2^0,/1) which satisfies 
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x.(t°) = x° ,   for some indices k ia« 

x- (tl) = x J,    for some indices 1 <s ;' °s n 

and which minimizes 

f J(x) =   \     Fit, x, x')dt 

(6-14) 

(6-15) 

where F is a real valued function of all its 
arguments and 

' dxx 

dt 

L- dt 

(6-16) 

such candidate that must then be the solu- 
tion. If there are several candidates, other 
methods must be used to choose the solution. 
This problem will be discussed later. 

Graphically, the method of obtaining con- 
ditions on the solution, x{t), of the funda- 
mental problem will be to allow small changes 
inx(0 and examine the behavior of J(x). An 
admissible, small perturbation is illustrated in 
Fig. 6-5. The equation for this curve is x(t) + 

Figure 6-5. Perturbation from Optimum 

If the reader wishes he may consider x(t) as 
being a real valued function of /, the general- 
ization to vector valued functions is simply a 
matter of notation. The conditions, Eq. 6-14, 
specify some or all of the components of x(t) 
at the end points of the interval t° Q / < t'. 
This corresponds to demanding that the 
curves in Examples 6-1 and 6-2 pass through 
given points. 

6-2.1   NECESSARY     CONDITIONS      FOR 
THE FUNDAMENTAL PROBLEM 

Only necessary conditions for solution of 
the fundamental problem of Def. 6-1 will be 
developed here, i.e., the existence of a solu- 
tion, x(t), inC2(?°,f') first will be assumed. A 
set of conditions that x(t) must satisfy then 
will be derived. These conditions then may be 
employed in particular problems to find 
functions x(t) that are candidate solutions of 
the problem. Hopefully, there will be just one 

67?(0 where £ is a small real number and TJ(0 

is any member of C2(t°,tl) such that 

Vj(.t°) = 0,    for i withx.(/°) = xj
0' 

rift1) = 0,    for/' with ^.(f') = xj 
1 

) (6-17) 

To examine the effect of this perturbation 
of J{x), substitute x +er\ inEq. 6-15, 

I t
1 

J(x + er})= |     F{t, x + er), x' + er\')dt 

t° 
(6-18) 

Recall that x(t) is a local minimum of J(x) 
subject to Eq. 6-14, i.e., any small change in 
x{t) increases J{x). For any given function 
■q(t) mC2{t°,t') and satisfying Eq. 6-17, x{t) 
+ er?(0 is in C2(t°,tx) and satisfies Eq. 6-14 
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for all E. Therefore, for this r\(t), J(2 + 617) is a 

real valued function of e. Further, for E - 0, 

J(x + erj) has a relative minimum and it is 
assumed that F(t,x,x') is twice continuously 

differentiable in x and x' so that J(2 + erj) is a 
twice continuously differentiable function of 

E. Theorem 2-2 then applies, and it is required 

that 

n 

— J(x + eri) 
ae k=o 

0. (6-19) 

The object now is to transform condition, 

Eq. 6-19, into conditions onx(f). Performing 

the differentiation indicated in Eq. 6-19, 

be treated independently, i.e., each is required 
to be zero. One of the major results which 
follows is a direct application of Lemma 6-1. 

Lemma 6-1: If M(t) is a continuous func- 
tion on t° <i t < t1 and if 

f M(t) 77(f) dt = 0 (6-22) 

for all 77(f) in C2(f°, t1) withr?(f°) = 77a1) = 0, 

then M(t) = 0, f° < t < tl. 

The ideas involved in the proof are easily 
seen graphically. In Fig. 6-6 a point t*, t° < 

ae ie=o 

— V+ — r}'}dt = G, 
ÖX X I 

(6-20) 

4 ( 

where the arguments in the partial derivatives 
of / in Eq. 6-20 are x(t) and x'{t). It is 

important to remember that Eq. 6-20 is 
required to hold for any rj(t) in C2(t°,tl) 

which satisfies Eq. 6-17. 

Integrating    the    second    term    in    the 

integrand of Eq. 6-20 yields 

oF       d   OF 

dx       dt  ox' 
;    Vdt 

Figure 6-6. Graphical Proof of Lemma 6-1 

t* < t1 , is shown where M^t*) =£ 0. The curve 

77.(t) is then constructed so that neither 

function is zero in the interval a < t < b. 
Their integral over the entire interval is then 

nonzero which is a contradiction of Eq. 6-22, 

so M{(t*) = 0. 

Since the two terms in Eq. 6-21 must each 
be zero, 

i-^-T [t',x(tl),x'(ti)~]r,(t1)    (6-21) 
ox 

dF I! dx   "  dt \ox') 
r}dt = 0    (6-23) 

Since the behavior of 77 inside the interval t° 

< t < tl and at its ends are independent, the 
integral and boundary terms in Eq. 6-21 may 

for all 77(f) in C2(t°,tl). In any subinterval of 

t° < t < tl where x(t) is continuously 

differentiable,  the  quantity 
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[dF/dx   —   d/dt  (dF/dx')]    is   continuous. 

Therefore Lemma 6-1 implies 

dF 

dx     dt \dx 

dF 
= 0 (6-24) 

in that subinterval. 

If, however, x(t) has ajump discontinuity 

at some point i then [dF/dx — d/dt (dF/dx1)] 

need not be continuous at i and Lemma 6-1 

may not be applied over any subinterval 

containing t. Since Eq. 6-24 must hold in 

subintervals on both sides of t, this equation 

may be integrated from t — 6, 6 > 0, to t to 
obtain 

— - f' 17'" J 
dF 

dx 
dt + C. (6-25) 

The vector dF/dx is piecewise continuous so 

the right-hand side of Eq. 6-25 is continuous. 

Therefore dF/dx' is continuous even at t. 

These results may be stated in the form of 
a theorem. 

Theorem 6-1: The following conditions 

must be satisfied by the solution of the 

problem of Def. 6-1, x(t), whose derivative is 

piecewise continuous; 

— W,*(r),*'(r)] 
dx 

d I  dF 

at points of continuity of x(t) 

■^7[r
,,x(rI).i'(',)]r?(r1) 

dx 

(6-26) 

dx 
■   [t°,x(to),x'(to)]r)O°) = 0      (6-27) 

forallt?(?°), r\{tl) satisfying Eq. 6-14, and 

f£-[f_0,Jc(/-0),Jc'(f-0)] 
dx 

ML    fff 0,x(f+0),x'(f+0)]       (6.28) 

dx' 

at each point t of discontinuity of x'(t). 

Condition, Eq. 6-26, is a second-order 

differential equation in x(t) and is called the 
Euler-Lagrange equation. Condition, Eq. 6-27, 

is called a transversality condition. For each i 

or; such that i?-(/°) or rjAt1) is not specified 

by Eq. 6-14, Eq. 6-27 implies dF/dx] (t°) = 0 

or dF/dx'. (r1) = 0. The condition, Eq. 6-28, 

at discontinuities (called corners) in x(t) is 
called the Weierstrass-Erdmann corner condi- 

tion. 

One further necessary condition will be 

important for further development. Define 

the Weierstrass E-function as 

E(t,x,x',w) = F(t,x,w) -F(t,x,x') 

(6-29) 
dF 
 Jtx.x'Kw-x'). 

ax 

The proof of the Weierstrass necessary condi- 
tion may be found in Ref. 2, page 149. The 
result only will be given here as Theorem 6-2. 

Theorem 6-2: If the function x{t) is the 

solution of the problem of Def. 6-1, then it is 

necessary that 

EU,x(t),i'(.t),w] > 0 (6-30) 

for all t° < t < t' and all finite w. 

The Weierstrass condition of Theorem 6-2 

generally is not used to generate candidate 
solutions    of    the    fundamental    problem. 
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Rather, when solutions of Eq. 6-26 are 
determined, Eq. 6-30 is used to eliminate 
unsuitable functions, i.e., it may very well 
disqualify a function which satisfies Eq. 6-26. 

The derivation of necessary conditions for 
the fundamental problem is only very lightly 
covered here. Further, the theory of sufficient 
conditions is completely neglected. For out- 
standing and complete treatments of these 
topics see Refs. 2, 3,4, and 5. 

6-2.2 SPECIAL CASES AND EXAMPLES 

In many problems the form of the function 
Ftt,x,x') allows for simplification for the 
Euler-Lagrange equation, Eq. 6-26. In any 
case, Eq. 6-26 may be written, using the chain 
rule of differentiation and the notation 

3F d2F 
F* ~?)x'Fx' ~dx"F'x'    dtdx 

,   and 

Fx'x a 
2F 
\ax 

to obtain 

Fx-Fx;-x'TFl'x-x"TF*'* 

0. (6-31) 

This   is   simply   a  second-order   differential 
equation for x(t). 

Several special cases with examples will 
now be considered. 

Case 1. F does not depend on*'; 

F = F{t,x). (6-32) 

Eq. 6-3 1 in this case is 

F(t,x)=0. (6-33) 

This is simply an algebraic equation be- 
tween t and x. Since there will be no 
constants of integration, it will not generally 
be possible to pass the resulting curve through 
particular points. This means that a solution 
to such a problem generally will not exist. 

Example 6-3: Minimize 

1    x2dt 

J 0 

for 

x(0) = 0, x(l) = 1. 

The condition, Eq. 6-33, is 

2x = 0. 

But it is, therefore, impossible to satisfyx(l) 
= 1 so the problem has no solution. 

To get an idea of what has gone wrong, 
note that since x2(t) > 0 for each t, 

1x2 (t)dt > 0 

0 

for any curve on 0 *s t <   1. It is, therefore, 
clear that if there were a curve which mini- 
mized   / l x2dt, then the minimum value of / o 
the integral would be non-negative. 

It  was  noted  that   no   minimum  exists. 
However, consider the family of curves 

x, (t)=t". 

These curves all satisfy the end conditions and 

J(x„)=   I    t2ndt=- 
2n+ 1 
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Therefore, it is possible to choose n large 
enough so that / x*dt is as close as desired 
to zero. However, the limit of *„(0 as n 
approaches infinity is the function 

x   (0! 

and this is not even a continuous function. 
The class of functions xn (t) are illustrated in 
Fig. 6-7. 

o 1 t 

Figure 6-7.  Minimizing Sequence 

In this illustration, a solution of the prob- 
lem exists in the class of piecewise continuous 
functions but not in the class of twice 
continuously differentiable functions. This 
problem, therefore, should serve as a warning 
that not all innocent looking calculus of 
variations problems have solutions. 

Case 2. F depends only onx': 

F=F(x'). (6-34) 

Eq. 6-3 1 is in this case 

Fx,x.x" = 0. (6-35) 

Example 6-4: Using the formulation of 
Example 6-1, find the shortest curve in the t-x 
plane which passes through the points (0,0) 
and (1,1). 

The function F from Eq. 6-1 is 

F=[\+{x,)2]ll\ 

The form of the Euler-Lagrange equation in 
Eq. 6-35 applies in this case to yield 

- [i + u')2]"3/2 x"=0. 

Since OO2 > 0, [ 1 + (x')2 ] * 0 and x'(t) is 
required to be continuous so [ 1 + (x')2 ] =£ °° 
and it, therefore, is required that 

x"(t) = 0 

or 

x{t) =at + b, 

where a and b are constants. This implies that 
the shortest path between two points in a 
plane is a straight line. This shouldn't shake 
anyone up. 

The end conditions yield 

x(0) = b = 0 

and 

x(l) =a= 1 

Therefore the solution of the problem is 

x(t) = t. 

Case 3. F depends only on t and x': 

F = F(t,x'). (6-36) 

Eq. 6-26 is, in this case, 

— Fx.(t,x') = 0 
dt   x 
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or 

Fx.(t.x') = C 

where C is an arbitrary constant. 

(6-37) 

Case 4. x is a real valued function, and F 
depends only on* and*': 

F=F(x,x'). 

Eq. 6-3 1 is, in this case, 

Fx-Fx'xx'-Fx.x.x
H = 0. 

Multiplying by x' yields 

x'Fx-(x'PFx.x-x'x"Fx.x. = 0. 

(6-38) 

This is just 

—(F-x'F,)=0, 
dt x 

so 

F-x'Fx.=C 

where C is an arbitrary constant. 

(6-39) 

Example   6-5:  Solve the  Brachistochrone 
problem  of Example 6-2. 

The function F from Eq. 6-4 is 

1 +(x >)2 
1/2 

2gx 

Eq. 6-39 applies in this case and yields 

~\+(x')2~ 

_    2gx 

1/2 (x'P 
l/2                                1/2 

{2gx)      [\+(x'P] 

= C 

This reduces to 

1={ 2gx[1+|VJ2]} 1/2C, 

or 

xi^+fx')1] = C, 

where Cj is a new constant. 

The solution of this differential equation is 
a family of cycloids in parametric form 

t = C2 + £r(s - sins) 
2 

and 

x = £*- (1 — coss). 
2 

The constants C\ and C2 are to be deter- 
mined so that the cycloid which passes 
through the given points is fixed. 

It should be noted that each of the 
problems treated here reduced to the solution 
of a nonlinear differential equation. This is 
characteristic of problems of the calculus of 
variations. The reader is undoubtedly aware 
that it is only in the simplest cases that closed 
form solutions of these differential equations 
may be obtained. Further, questions of exis- 
tence and uniqueness of solutions are by no 
means trivial. 

6-2.3 VARIATIONAL     NOTATION    AND 
SECOND-ORDER CONDITIONS 

ForJ(x)= F(t,x,x')dt, 

define the first variation ofJ(x) as 

8J(x) = -d-J(x+e8x) 
de e = o 

(6-40) 
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A" de Jf„ 

+ e8x')dt 

F(t,x + eSx,x' 

e=o 

n- 3F 
— (t,x,x')bx 
dx 

dF 
+ —,(t,x,x)bx 

dx' 
dt. 

Note that all this does not require that x(t) 
be the solution of the fundamental problem. 
If, however, x(t) = x(t) is the solution of the 
fundamental problem, then it is clear from 
Eq. 6-19 that it is necessary that 

8J(x) = 0, (6-41) 

for all 8x(t) for which x(t) + ebx(t) satisfy the 

end conditions in the fundamental problem. 

In a way quite similar to the definition of 

the first variation, the second variation may 
be defined as 

d2 

b2 J(x) = — J(x + eSx) 
de E = 0 

Performing the differentiation, this is 

d2 

J(x)-- T" I    F(t,x +e8x,x' +i 8x') dt 
e=o 

bF1 

dx 

Sx1 

(t,x +ebx,x' +e5x') 

TdFT 

+ 8x' — (t,x + ebx.x + ebx') 
dx' 

dt 
e=o 

Td2F 
rx~ä^ {t-x'x')bxT 

T
b2F 

+ 28x —, (t,x,x')bxf 

dxdx 

Td2F 
+ 8x' — (t,x,x')bx' 

dx2 dt 

Define 

d2F 

dx2 

5 = 2 
d2F 

dxdx' 

and 

C = 
d2F 

dx' 

With this notation, 

I" 
If0 

b2J(x)=\     (bxTASx + oJBbx' 

+ 8x'TC8x')dt 

If F(t,x,x') has three derivatives, then by 
Taylor's formula 

J(x+ebx)=J(x) + —\ 
de 

le=o 

d2J 

"de2 e< +■ 

e=o 

d*J 

"d? 
e=e 

(6-42) 

where 0 < e < E. If we computed d3J/de3, it 
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would involve a sum of terms each containing 
third degree terms in 8x and 8x'. For 8x and 
8x' sufficiently small, this term may be 
neglected to obtain a second-order approxi- 
mation when E = 1 so that 

J(x + 8x)~J(x) + 8J + 82J. 

It is clear then that 6J and 82J play the 
role of differentials in the theory of func- 

tionals. 

Further, if x(t) yields a relative minimum 
for the fundamental problem, then/fx + e8x) 
is a relative minimum at E = 0. It is, therefore, 
necessary that 

d2J 
de2 > 

e=o 

This is just 

82J( x)> 0 

which has large derivatives. One might, there- 
fore, be led to believe that the derivative term 
in the inequality of Eq. 6-43 is dominant. 
This would then require C to be positive 
semi-definite. 

To show that this is the case, assume that 
there is a point t", t° < t < t1 and a nonzero 
vector h such that hTC(t*)h = - 2ß < 0. For 
any continuous bx'(t) such that dx'ft*) = h, 
there is an interval 

t*-«< t< t*
+a> 0, suchthat 

bx'(t)TC(t)bx'(t)< -ß< 0 

inf*-a< t < t* + OL- 

Define 

/ OL 
— h sin 
7T 

Sx(t) = ' 

I \,t*-a< t< t*+a 

0, elsewhere 
or 

(8xTA8x+8xTB8x' 

+ 8x'TC8x')dt> 0      (6-43) 

so that 

Sx'(t) ■■ 

I         \ir{t - r*)l     ^ 
h cos       , t* — <x< t < t + a 

0, elsewhere 

for all 8x(t) such that x + 8x satisfy the end 
conditions for the fundamental problem. In 
what follows it will be convenient to limit 
8x(t) to those variations which satisfy 8x(t°) 
= 8x(tl) = 0. 

Now, Eq. 6-43 is 

0 < I       (8xTA8x + 8xTB8x' + 8x'TC8x') dt 

If 8x'(t) is small for all /, then 8x(t) must 
also be small since 8x(t°) = 0. On the other 
hand, it is possible to choose 8x(t) which is 
zero at the endpoints and small for all t, but 

hTAh 
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[at«]. 

incorrect. This implies /;  C/i s> 0 for all A and 

Bh t .   Therefore C(t) is positive semi-definite. 

Since 

+ COS2 \hTCh) dt C(t) = 
d2F 

dx'2 

J  — IT 

sin2 6 dd 

J —it 

Isin0 II cos 0 \d6 

•/ — 7T 

cos2 0tf0, 

where 

M_ nyx     \hTA(t-)h  I 

P= max      \hTB{t)h  I 
f 

Therefore, integration in the preceding in- 
equality yields 

0< 
\7r 

M+ — P- -et- 
1   \ 

a    I 

However, since a may be chosen arbitrarily 

small and ß > 0, the right side will be negative 
for sufficiently small a. But this is a con- 
tradiction. Therefore, the assumption that 
there exist t* and h such that hTCh <  0 is 

this result may be stated as Theorem 6-3. 

Theorem 6-3: A necessary condition for 
the fundamental problem to have a relative 

minimum at x(t) is that 

b2F 
- [t,x(t),x'(t)] 

dx 

be positive semi-definite for allf, t° < t < t1. 

Gelfand and Fomin (Ref. 2, p. 104) indi- 
cate that people are prone to argue that 
positive definiteness of d2F/bx'2 at each 
point of the solution is a sufficient condition 
for an extremum. They point out, however, 
that this is not the case and, in fact, that no 
local condition can provide sufficient condi- 
tions. For a treatment of sufficient conditions 
see Refs. 2, 3,4, and 5. 

6-2.4  DIRECT METHODS 

The direct methods of the calculus of 
variations seek to generate a sequence of 
functions [x>n> (t)] such that, if £ is the 

infimum oiJ(x) over all admissible x, then 

lim 
J[x<">\ =£ . (6-44) 

Direct methods are capable of showing 
existence of solution as well as construction 

of approximations of the solution. It is 
generally very difficult to prove existence of a 
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solution of the nonlinear boundary-value 
problem in the necessary conditions for the 
fundamental problem. It is often possible, 
however, to show that the sequence [x(n) (t)] 
converges to a function x(t) which is the 
solution of the fundamental problem, i.e., 

where a. are constants. Classical, trigo- 
nometric Fourier series is an example of this 
kind of representation. 

In the Ritz Method, the nth function in the 
minimizing sequence is formed by 

lim 
J[x<n>] =J(x) = Z. (6-45) x<n>(t)= 2  a.4>t(t) (6-46) 

It is clear, however, that a sequence which 
satisfies Eq. 6-44 may very well fail to 
converge to an admissible function £(?/ This 
must necessarily be the case if no solution of 
the fundamental problem exists. From an 
engineering point of view, one may not be too 
concerned with existence of a limit of the 
sequence [x<nl (t)] .Provided it is possible to 
successively reduce /, consistently better re- 
sults are being obtained and the process will 
be continued until no further meaningful 
reduction in / may be achieved. For an 
outstanding treatment of convergence of di- 
rect methods, see Ref. 2, page 192, and Ref. 
3, page 127. 

The problem of primary interest to the 
engineer is the construction of a minimizing 
sequence. There are many ways of generating 
such a sequence, only two of which will be 
treated here. These methods are known as the 
Ritz Method and the Method of Finite Differ- 
ences. 

6-2.4.1  THE RITZ METHOD 

The Ritz Method is based on the idea of 
representing functions by using linear com- 
binations of known functions; i.e., given 4>/t), 

i = 1,2, . . . which preferably form a complete 
set, a function is represented by 

y(t) = 2   a.<t>.(t) 
/ = l    ' ' 

where the 4>/t) are chosen so that x^nHt) 
satisfies the end conditions associated with 
the fundamental problem. This expression k 
then substituted into J(x) to obtain 

J[x<n>] = 

I'1 

FL.Z afaU),  ß  arfft^dt. (6-47) 

The object now is to choose the coefficients 
ap i = 1, ..., n, so that J[x^"^ ] is as small as 
possible. For this purpose, it should be noted 
that the right side of Eq. 6-47 is simply a 
function of« parameters. The problem is now 
to minimize this function without any other 
constraints. For this purpose, any of the 
methods of Chapter 2 may be used. 

The property 

J[x(" + l>} < J[X("1] 

follows readily from the method of deter- 
mining the af. It is clear that by choosing 
an+l = 0, x(n+1) (0 = x'"'(t). However, by 
allowing a„+l to be nonzero, a larger number 
of functions are available as candidates for 
minimum of J[x<-n+1)] than J[x<") ]. The 
minimum of /[x(" + 1)] will, therefore, cer- 
tainly not be greater than that of J[x<n> ] and 
this is the desired result. 
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In practice, the rate of convergence of 
[x<")(t)] depends strongly on the functions 
<t>/t) chosen. The number of terms required to 
obtain a reasonable approximation of the 
solution is greatly reduced if these functions 
are chosen based on a reasonable engineering 
estimate of the form of the solution. By 
making a judicious choice of the 4>/t), a good 
approximation of the solution may be ob- 
tained with as few as two or three terms. 

Example 6-6: In solving the boundary- 
value problem 

x" + (1 +t2)x +1=0 

x(- 1) = x(\) = 0, 

it is necessary to minimize the functional 

J(x)- i: [x'2 _(i + t2)x2 -2x]dt 

(6-48) 

subject to the end conditions x(—\) = x(l) = 
0. 

In order to minimize J(x) of Eq. 6-48, by 
the Ritz Method, choose 

<t>i(0 = (\-t2i). 

If for a first approximation n = 2 is chosen, 

x<-2H0=ai(l ~x2) + a2(l -x
4).    (6-49) 

Substituting x<2) into Eq. 6-48 and integrat- 
ing yields 

This is a positive definite quadratic form, so it 
has a unique minimum which may be ob- 
tained by setting its first derivatives equal to 
zero. This yields 

38 20 1 
 a, + a2     —=0 
105   '      45   2 - 3 

20       , 2488           2 
•a, +      — a2 =0. 

45 3465 

.1244  ,       1 2 
+ a, — — a, — — a 

3465   2 -I     ~~ «2 
3 5 

The solution of these equations is 

«! = 0.9877 

a2 = - 0.05433. 

Substituting  these   coefficients   into   Eq. 
6^9, 

x<2)(t) =75fe(3969 - 4200r2 + 23lr4). 

In particular, 

x<2)(0) = 0.93344. 

If the three term approximation 

xO~> =aj(l _?2) +a2(i -t*) +a3(\ -t
6) 

is determined in the same manner, 

^O) (0) = 0.93207. 

This might lead one to believe that both 
x(2V^ and x^Ht) are good approximations 
of the solution. 

6-2.4.2  METHOD    OF    FINITE    DIFFER- 
ENCES 

The Method of Finite Differences, as its 
name implies, is simply based on the replace- 
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ment of derivatives and the integral by finite 

approximations of these continuous opera- 

tions. A grid, t° = t0, ti , ..., tn+1 = t' , is 

placed on the interval t° < t < tl and the 

value of xft) only at the grid points is sought, 
i.e., only the parametersx( =x(tj), i = 1,..., n, 

and perhaps x(t0) or x(tn+l), are sought. 

Replacing derivatives by finite differences 

and the integral by a finite sum, the problem 

is to determine the x. which minimize 

J(x,)= 2 
1 = 0 

t;X.,  
' ' t. i+i-h 

x   Oi+l-ti))  • 

The problem is now simply an uncon- 

strained minimization problem in a finite 

dimensional space and may be solved by the 
methods of Chapter 2. 

chapters that these side conditions generally 

include both equality and inequality con- 
straints. An extension to inequality con- 

straints will be given in par. 6-4. 

The problem to be treated here is given in 
Definition 6-2. 

Definition 6-2 (Problem of Bolza): The 

problem of Bolza is a problem of finding u(t), 

b, x(t), t° < t < tn, which minimizes 

J = g0(b,t',x>) 

(' 

(6-50) 
+ f0[t,x(t),u(t),b]dt 

t" 

subject to the conditions 

dx 

lit 
•f(t,x,u,b), t° < t< t" (6-5 1) 

6-3 A PROBLEM OF BOLZA 

6-3.1 STATEMENT OF THE PROBLEM 

Many real-world optimal design problems 

cannot realistically be reduced to the finite 
dimensional form of Chapter 5. In many 

problems the system varies continuously in 

time or space, so functions rather than just 

parameters must be determined. Examples 6-1 

and 6-2, par. 6-1, are extremely simple, yet 
even they involve distribution of the con- 

trolling factor over space and time. 

As has been seen in previous chapters, 

optimal design problems involve ideas of 

design variables and state variables. Further, 
since the system being designed must be 
capable of performing certain functions, side 
conditions on the state and design variables 
occur.   It   has   been  observed   in previous 

gjb,t',x')+  I      La[t,x(t),u(t),b]dt 
J t> 

= 0, a = 1,..., r (6-52) 

<j>ß(t,x,u,b) = 0, 

ß= ],..., q,t° < tu t"       (6-53) 

where 

x(t) = 

xt(t) 

xjt) 

u(t)- 

ut(t) 

ujt) 

b, 

(6-54) 
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f(t, x, u, b) : 

f(t,x,u,b) 

f(t,x,u,b) 

and t°  <   t' <   tv, where (t',x') are inter- 
mediate points, / = 1, ...,77 - 1. 

For the problem considered here it will be 
required that the conditions, Eqs. 6-53, shall 
not determine any component of x(t) ex- 
plicitly. This is equivalent to requiring that 
the rank of the matrix 

30, 

Lbuk 
(t, x, u, b) (6-55) 

q X m 

shall be q for all admissible values of the 
arguments. In case some constraint function 
should depend only on x(t) and t; this 
constraint is called a state variable constraint. 
This kind of constraint will be discussed in a 
later paragraph. 

The vector variable x(t) is called the state 
variable, u(t) is called the design (or control) 
variable, and b is called the design (or control) 
parameter. Eqs. 6-52 contain the boundary 
conditions on the state variable and functions 
which determine the end points of the inter- 
val, t° and /". The independent variable t 
may be time or a space-type variable, depend- 
ing on the problem being considered. 

The functions f0,f,La, and <j>a are assumed 
to be continuously differentiable at all points 
except (t'.x1), j = 1,..., TJ — 1. At these points 
the functions may have jump discontinuities; 
i.e., the functions will have limits along any 
path, but limits along different paths may 
have different values. In general, even for 
problems with very regular functions, u(t) 
may havejump discontinuities. Therefore u(t) 

is expected to be only piecewise continuous. 
The resulting state x(t), therefore, will have 
only a piecewise continuous derivative in 
general. 

The allowed discontinuities of f0, f, La, 
and 4>a play an important role in many 
real-world problems. This feature allows for 
completely different forms of state equations, 
constraints, etc., for different ranges of state 
and time. It is, therefore, possible to routinely 
account for sudden changes in system be- 
havior such as reverse in direction of frictional 
force, motion of objects in a space where 
physical barriers or restraint surfaces exist, 
logic built into the system which changes 
configuration as in staging of rockets, etc. It 
should be clear that these features are re- 
quired in order to treat many realistic prob- 
lems. 

For a discussion of the effect of these 
discontinuities on more detailed necessary 
conditions and sufficient conditions, see Ref. 
8. 

6-3.2A MULTIPLIER RULE 

As mentioned in par. 6-3.1, real-world 
optimal design problems require at least the 
complexity of the Bolza problem of Def. 6-2. 
In fact, the system designer requires all the 
tools the mathematical theory of optimal 
processes can give him. This requirement 
points out one of the obstacles to engineers in 
utilizing the modern theories of mathematics. 
This text cannot possibly present the mathe- 
matical theory required of the research math- 
ematician who is developing the theory of 
optimization. The approach taken here to 
by-pass this obstacle is to accept a key 
theorem of Functional Analysis and then 
proceed to develop the tools required for 
solving problems of optimal design. A very 
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powerful theorem of Liusternik and Sobolev, 

Ref. 6, page 209, will be used to obtain 
necessary conditions for the problem of 

Bolza. 

Theorem 6-4: If dt), b, t', and x(t) pro- 

vide a solution to the Bolza problem of Def. 

6-2, then there exist multipliers X0 > 0, ya, ot 

= 1,..., r, \/t), i = 1,..., n, and ftß(t), ß = 1,.... 

q, not all zero, such that 

6.7=0, 

where 

(6-56) 

J = X0g0 (b, t', x') +   2yaga (b, t', x>) 
a = I    "   a 

\0f0(t,x,u,b) (6-57) 

6-3.3  NECESSARY     CONDITIONS 
THE BOLZA PROBLEM 

FOR 

The simplest Bolza problem is the one 

having all its functions three times continu- 

ously differentiable. Even in this case, how- 

ever, lit) may be only piecewise continuous. 

To include this possibility, let /* be a point of 

discontinuity of any component of vit). 

Before computing the variation called for 

in Eq. 6-56, it should be noted that t°, t'\ t*, 

and tn are not fixed but must be determined. 

This means that these special points must be 
treated as parameters that are to be deter- 

mined, much as the design parameter b. At 

first glance, this may seem to introduce no 
essential complication into the problem. The 

behavior of the allowed variations in xft), 

however, must be treated very carefully. 

+ 2   Xft) 
i = \     ' 

dxt 

~dT 
■f.(t,x,u,b) 

+   2   y L(t,x,u,b) _ 1    'a    a a = 1 

+   2   ixjt)<t>„(t,x,u,b) } dt. 
0 = 1  ß    e 

Note that the symbol 6/ is the first 
variation of / as defined in par. 6-2. For 

proofs of this multiplier rule, the reader is 

referred to the literature (Refs. 2,5-9). 

This theorem says nothing about the con- 

tinuity and differentiability properties of the 

solution x(t), tit), and the multipliers \/t) 

and pJt). In general, piecewise continuity is 

all that may be expected of tit). Eq. 6-51 

then implies x(t) has a piecewise continuous 
derivative. The properties of \/t) and ßß(t) 

will be determined when necessary conditions 
are derived. 

Let i be a typical point t' or t * where x(t) 

may very well be discontinuous. The function 
x(t) will be changed at i by both the 
independent variation in x(t), Sx(t), and the 

shift in the point (t, Si). Denote the total 
change in x(i) due to both of these sources by 

Ax(i). It must be assumed that there are no 

other points t' or t* arbitrarily near i, so 

limits from the left and right exist. For t¥= i, 

xft) is continuous so the total change Axft) in 

xft) due to Sx(t) and Si is continuous and 

Ax(i) = Ax(i - 0) = Ax(i + 0). 

where 

Ax(i -0) = 8x(i -0)+ i(i -0)Si 

and 

Ax(i +0) = bx(i +0) + x(i+0)S i. 

It should be noted that this condition 
imposes restrictions on 8x(i — 0) and bx(j + 
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0). In particular, they are not necessarily the 
same so Sx(t) on f° <s t < tv need not 
necessarily be continuous. 

Before  enforcing  Eq. 6-56, put J in the 
form 

J=\0g0(b,t',x') +   2   laga{b,t',x') 

I      {\0fo(t,x,u, 

\dxt 

b) + 2 \,.(f) 

+  2,  \La(t,x,u,b) 

-  2 p{i)<j>Jt,x,u,b) 

r^-59) 

so that Eq. 6-58 becomes 

J=G + n dt 
dt 

\T(t)—-H]dt (6-60) 

,    dx 
(O-r -H] dt. 

dt 

+ 2iiiftWß(t,x,u,b) \ dt 

i> *+r n * 
f5-J8) 

where the argument of the pair of braces is 
the same as that of the integrand of the first 
integral. Note that t* and t' are simply typical 
elements of their respective classes. 

For convenience in the development that 
follows, define 

G - Kgo(b,t>,x>) +2     -v s (b t1 x1') 
a-l      'asav   '     '      ' 

H«,x,u,bXy,n) = \TU)fU,x,u,b) 

- ~k0fo(t,x,u,b) 

Eq. 6-56 may now be applied to yield 

r>    3C   .   « .      , 9G . 3G 

+■— 5?" +—8b 
9r" 9ö 

i>'»f a* Sx 

'dH „       9// 
 5M — — 56 

9« öö 
rff 

LI a?      9JC 

9# „       9// 
 5« 66 

9« aö 
dt 

n . T, , dSx     9// 

"^7« £„('.*.«.*) 9// ,. 9// 
du ab 

dt 
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XTit)*m_Hit) 
dt 

f -0 
■Of 

t> + 0 

\T(t° +0) 

-#(r° +0 

rfx(f + 0) 

It 

,x, u, b)\8t° 

\T(t) 
dx(t) 

dt 
H(t) 

f*-0 
■ 8t* 

t* + 0 

X(r" - 0) 
dxit" -0) 

* 

J' -Hit7' -0,x, u, b) lot". 

Integrating the first terms in each integrand 

by parts yields 

9G       n dG   A   „     dG p . 
0 =—„ Ax° + ... +  Ax" +—- 5f° 

dx° dx* dt° 

dG , dG 
+ ...+T—5f* +^-(5ft 

3r> 36 

1 t' L    dt dx 

dH dH 
+ 5«+ 8b    dt 

du db 

If r f" 
dt 

+ [\T(t' -0)-\T(t> +0))Ax' 

[Hit' -0)-H(t> +0)]6t' 

+ [\T (t*-O)-\T(t*+0)] Ax(t*) 

[H(t* + 0)-H(t*+Q)] 8t* 

+ \T(tr> _0)Ax" -Hit" -0)6?" 

-\T(t° +0)Ax° +H(t° + 0)8t°. 

Since the variables Ax', St', 8b, 8x(t), ana 
8u{t) are arbitrary, (Ax1 are taken as arbitrary 

along with 8t' so that 8x' = Ax' — x'8t' is 

fixed) Lemma 6-1 applies. Application of this 

Lemma yields 

Theorem 6-5: If (x(t), u(t), b, t'\ x') is a 

solution of the Bolza problem of Def. 6-2, 

then there exist multipliers X0 > 0, X^f), i = 

1,.... n, ya, a= \,...,r, nß(t),ß= l,...,q, not 

all zero, satisfying the conditions: 

dh        dHT 

dt üx 
Tfor t =£ t! 

ML 
du 

0, for t # ft 

1/" 
dH 
— dt = 0 

l£_r-\(r°) = o 

(6-61) 

(6-62) 

(6-63) 

3x° 

dGT 

~dx^ 
+ \(tr>) = 0 

—r + \(f> -0J-\(t' +0)=0 
dx' 

¥L+H(t° +0)=0 

a_ 
3f 

dG 
Mi 

I 
(6-64) 

-#(f -0)=0 

-H{t> -0) + H(t> +0J=0 

>  (6-65) 

H(t* -0)-H(t* + 0) = 0 (6-66) 
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X(f* -0)-Mt* +0)=0 (6-67) 

Note that the necessary conditions, Eqs. 
6-61 through 6-67, are linear and homoge- 
neous in the multipliers X0, \(0, 7a, Pß(t). It 
is, therefore, permissible to choose the magni- 
tude of one multiplier so that the remaining 
multipliers will be uniquely determined. It 
seems reasonable that if the necessary condi- 
tions obtained by setting 6/ = 0 are to be 
related to minimization of J, then X0 should 
not be zero. This is indeed the case and if X0 

is required to be zero by the necessary 
conditions, then the Bolza problem is "abnor- 
mal" in a sense. Most meaningful problems 
are normal as defined in Refs. 7, 8, and 9 and 
require X 0 ¥= 0. In solving problems using the 
necessary conditions of Theorem 6-5, one 
should first verify that Eqs. 6-61 through 6-67 
have no solution if X0 =0. It is then 
permissible to put X0 = 1 so that the 
remaining multipliers are uniquely deter- 
mined. 

Even though Eqs. 6-61 through 6-67 are 
very complicated, it is interesting to note that 
they provide just the right number of equa- 
tions to solve for all the unknowns. Eqs. 6-51 
along with Eq. 6-61 form a system of 2n 
first-order differential equations for x{t) and 
X(f). Further, the first and last members of 
Eq. 6-64 may be considered as 2n equations 
in boundary conditions onX and x. This is the 
proper number of boundary conditions. The 
second equation of Eqs. 6-64 provides any 

jump conditions in \{t) at the intermediate 
points t', 0 < j < r). Eqs. 6-65 may be 
interpreted as determining t>, j = 0, 1,..., 77, 
and Eq. 6-66 determines t*. Eq. 6-67 simply 
states that X is continuous even at jump 
discontinuities in u. Finally, Eq. 6-63 deter- 
mines the design parameter b. 

It should be clear that this argument only 
shows that there are the proper number of 

equations to determine the unknowns. It does 
not assert that a solution of Eqs. 6-61 through 
6-67 exists. Existence theory for these prob- 
lems is a difficult question that is treated in 
Refs. 10 and 11. 

The conditions of Theorem 6-5 are very 
nearly the famous Pontryagin Maximum Prin- 
ciple (Ref. 12). The condition that completes 
the Maximum Principle is an inequality which 
follows from the Weierstrass condition of the 
calculus of variations. This condition is given 
as Theorem 6-6. 

Theorem 6-6: In addition to the condi- 
tions of Theorem 6-5, the solution of the 
Bolza problem must satisfy the condition: 

H[t,x(t),U,b,\(t),y,0] 

< H[t,x(t),u(t),bMt),y,0] (6-68) 

for all admissible U and all t, t° =s t < tv. 

For proof of this theorem see Refs. 8 and 
13. 

Another useful result is the following iden- 
tity: 

dH__dH_ 
dt     at 

,fort*f'. (6-69) 

This condition is useful in case H does not 
depend explicitly on/. Then H is constant 
between the points t>', and at these points it 
may have discontinuities governed by the 
third equation in Eq. 6-65. 

To   prove   this   relation   holds,   compute 
formally 

dH    M    m du    dH dx    dH dh 
 + + +  
dt      at     du dt     ax dt     ah dt 
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dx        M M d\> 
Since—- = /, — = 0, — = - —— , 

dt du dx dt 

M        _ 
and —— =f , this is 

dH_-_dH__ d>J_        fTdX_ bH 

dt      dt       dt dt      at 

as required. 

x- andy-axes are fixed in inertial space. In the 

problem discussed here, 6(t) is to be chosen 

so as to direct the motion of the particle. 
Hence 6{t) is the control variable. 

Denoting horizontal and vertical compo- 

nents of velocity of the projectile by u and v, 

respectively, the motion of the projectile is 

governed by the equations 

6-3.4 APPLICATION OF THE BOLZA 
PROBLEM 

In order to obtain familiarity with the 

Bolza problem, several examples will be con- 

sidered. In order to illustrate the basic ideas 

associated with the Bolza problems, these 

examples will be elementary. In real-world 

problems the engineer should be prepared for 

complexity that will probably force him to 

use a numerical method of solution. For 

examples of the Bolza problem in the field of 

aerodynamics, a field which contributed 

greatly to optimal design theory, see Refs. 
15,16, and 17. 

Example 6-6: Maximum Range Rocket- 

assisted Projectile 

A projectile of mass m is acted on by a 
fixed force F as shown in Fig. 6-8. The angle 

of 0(t) is measured from the x-axis, where the 

where 

x = u 

y=v 

.     F 
u =— cos 0 

m 

.     F 
v = — sin 6 — g, 

dt 

(6-70) 

The projectile is fired from a gun at time t 

= 0 with x(0) = y(0) = 0 and initial velocity 
w(0) = V cos 0O, "(0) = V sin 0O, where V is 

the muzzle velocity of the projectile. The 

problem at hand is to choose B0 and d(t) so 

that at some future time T, the projectile will 

hit the earth as far as possible from the launch 
point, i.e., y(T) = 0,x(T) = maximum. 

In the notation of the Bolza problem, 0(f) 
is a design or control variable u{t), d0 is a 
design parameter b, T is terminal time f, and 
(x,y,u,v) is the state. The quantity to be 

minimized is 

J = go(l>,t',x') = -x(T). 

Figure 6-8. Particle in Motion Boundary conditions on the state variables are 
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gl =x(0) = 0 

g2 = y(0)=Q 

g3 =u(0) - Vcose,  =0 (6.71) 

g4 = v(0) - Vsin ö0 = 0 

Ss =y(T) = 0. 

As defined in Eq. 6-59, 

G = _\ox(T)+7ix(0) +y2y(0) 

+ 73 ["(0) -Vcosd0] (6-72) 

+ 74 [v(0)- Fsin0o] + fsy{T) 

F 
H = \u +X v+\ —cose 

K»(isind^ (6-73) 

where variable named subscripts are used for 
the A's. 

Theorem 6-5 yields as necessary conditions 

dH 

\ = 

X  =• 

= 0 

= -X„ 

(6-74) 

dH 
dy 

dH 
du 

dH 
—$*-■■ 

dH \F \F 

—- = 0 = - sinö+ cos 6       (6-75) 
do m m 

dG |      dH 
— — dt = 0 ■■ 
de0 - J o ae° 

73 VsinÖ0 

dG 

3x(0) = 7i = \(0) 

dG 

MO) 
= T2 = \(0) 

dG 
du{0) = 73 = X„(0) 

dG 

3v(0) 74 = \(0) / 

dG 
dx(T) 

1 

Vo=     \(T) 

dG 
dy(D 

= x5 = \(T) 

dG 
du(T) 

= 0 = \(T) 

dG 
dv{T) 

0 = \(T) 

dG 
dT~ 

= H(T-0) 

and 

\ cos ® + Xv sin 0 < X   cos 6 

+ \ sine 

for aU admissible ©. 

. 74 K cos e, (6-76) 

Eqs. 6-74 yield 

Xv = £4 - £2 ' 

(6-77) 

►      (6-78) 

(6-79) 

(6-80) 
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The last two equations of Eq. 6-78 imply |3 = 

%i T and £4 = £2 T. If we assume the problem 

is normal, X0 
= 1 so X (D = 1 = £t   so 

X, = 1 

\,   =*2 

\=r 

X   =i2(.T-t) 

(6-81) 

;2F 
x(0 =r v +—cose, 

2m ' 

y(t)=tV sine, t2g 

t2F 
+ sinö0. 

2m 

(6-84) 

By use of these equations, the last equation in 

Eq. 6-71 yields 

1 TF 
T(VSm8, -—gT+—smdo)=0. 

2 2m 

Substituting from Eqs. 6-77 and 6-81 into 
Eqs. 6-75 and 6-76 

TsinS,  -i7Tcos8, =0 

and 

This implies 

sin 8, 
-8T 

2m 

(6-85; 

_ (T _ t) sin 8 + £2 (T- t) cos 0=0. 

For all t ¥= T, this is 

- sin 8 + £2 cos d = 0. 

The one condition which has not been 
used is Eq. 6-79. By substitution of Eqs. 6-81 

and 6-83 into Eq. 6-73, Eq. 6-79 becomes 

TF 

V+ m-J cos d0 + i-i I ysin 8, 

These equations imply 

£2 =tan8, 

8(0=60 

(6-82) 

TF 
+ sinö0 ~gT 

m h 
By use of Eq. 6-82 this becomes 

V+— ) cos2 60 +   [V+— I sin2 0O 

Integrating the last two equations in Eq. 
6-70, 

tF 
u{t)= V cos d0 +— cos 0O 

m 

tF 
v(t) = V sin 60 +— sin 0O - St 

m 

(6-83) 

Integrating again, 

6-24 

-gTsm8, =0, 

or 

TF 
V+  =^rsin0o. 

m 

Combining Eqs. 6-85 and 6-86, 

TF\   /     TF\       1 
V+—        K+—      = — g2T2 

m /    \      2m )       2 

(6-86) 
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or 

F2      e2\ 3FV 
  _*_      T2 +—   T+ V2 = 0 
2m2     1 } 2 m 

so 

T = - 

3FV 
 -t 
2 m 

9F2V2 

4m2 4P (— A \2m2     2 / 

1/2 

2(-^ — (6-87) 

Substituting T from Eq. 6-87 into Eq. 6-85 

then gives an easy equation for 6 0. 

While the results of this problem are not 

particularly useful, the solution does illustrate 

the use of the various conditions in Theorem 
6-5 in generating a candidate sclution of the 

problem. The reader, however, should not be 
led to believe that all Bolza problems may be 

solved in closed form as in this example. 

In more general problems the adjoint equa- 

tions, Eq. 6-61, cannot be solved so easily in 
closed form. Further, the equation dll/du = 0 

may not yield so simple a condition as Eq. 
6-75 for the design variable. It is often of 

value to keep a procedure in mind for 

determining the various unknowns as in this 

problem, even though more realistic problems 

may require numerical methods at each step 

in the procedure. 

Example 6-7: Minimum Fuel Orbit Trans- 

fer 

A rocket equipped with a constant thrust 

engine is to transfer from a circular earth 

orbit of radius r0 to one of radius R > r0 

using a minimum of fuel. The time allowed 
for this transfer is T. Further, it is possible to 
shut the rocket down during one time interval 
of the  transfer if desired.  The orbits are 

illustrated in Fig. 6-9 and the time scale is 

shown in Fig. 6-10. 

The times ?i and t2 may actually coincide, 

depending on the problem parameters. These 

times play the role of t' in the Bolza problem. 

The equations'of motion of the spacecraft are 

taken as 

.     v2     M     h{t)F sine 
u =—  - —   *  

uv , h(t)F cos 6 
v  =— f  

m =h(t) 4 

where 

(6-88) 

Figure 6-9.   Orbit Transfer 

Thrust On           Thrust Off           Thrust On 
 1 1 1 

Figure 6-70.   Thrust Program 
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•    (6-89) 

and the boundary conditions are 

r(0) =r0. «(0) = 0 

v(0)=(M//-o)
l/2,m(0) = wo, 

r(T)=R, u(T) = 0 

v(r> = (M/^)1/2 

where 

r   =radius 

w = radial velocity 

7 = tangential velocity 

m = mass of spacecraft 

fi = gravitation constant 

F = thrust 

4 = mass flow rate during thrust 

<t> - thrust orientation 

Since m0 — m(t) is the amount of fuel 
consumed up to time t, the object here is to 

minimize 

J - m0 — m(T). 

For use in Theorem 6-5, define 

G = m0 - m(T) + 7i [r(0) - r0 ] + y2 a(0) 

+ 73[f(0)-(M//-0)
1/2] 

+ 74[w(0)-w0] +7s Wr)-Ä] 

+ 76"(7") + 77rv(71-(M//?)1/2l 

6-26 

and 

H = \u + X. 

+ X. 

r2 »j 1 

1 MV    h (t)F sin <p 

+ \nh(t)q. 

The necessary conditions of Theorem 6-5 

arc 

i*f)-4f 
K = -X+x — 

\.=-\A — )+ X, 
•ft 

\»=\, 
MO-F sinift 

L       W 

+ X. 
ft(0-F COS0 

o = x„ h(t)F cos<p 

m 

, h(t)F cos (p 

XM(D = -1 

X(r, -o;=\(r, +0) 

\(t2 -0)=\(t2 
+o) 

Hit, -0)=H(t1 +0) 

H{t2 -0)=H(t2 +0) 

the ti are those shown in Fig. 6-10. 

(6-90) 

(6-91) 

(6-92) 

(6-93) 

(6-94) 
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The prospect of solving this set of equa- 
tions in closed form is dim indeed. A general 
procedure can be discussed, however, and the 
actual solution can be obtained using numeri- 
cal methods discussed in a later paragraph. 

From Eq. 6-91, <p{t) may be determined as 

4>(t) = Arctan ( —JL (6-95) 

for t not in /x <: t *s t2, where 0 need not be 
defined. The result of Eq. 6-95 may be 
substituted into Eqs. 6-88 and 6-90 so that 
these equations become a set of eight first- 
order differential equations for the state and 
adjoint variables. Eqs. 6-89 and 6-92 form a 
set of eight boundary conditions for these 
variables. Eqs. 6-93 show that the adjoint 
variable is continuous and Eqs. 6-94 deter- 
mine tx and t2. A numerical procedure may 
be used to solve this problem. The resulting 
adjoint variables may then be substituted into 
Eq. 6-95 to obtain the explicit design (or 
control) variable. A problem of this kind is 
discussed in Ref. 18. The method used there 
to construct a solution is completely different 
from the one proposed here. 

6-4 PROBLEMS    OF    OPTIMAL    DESIGN 
AND CONTROL 

The Bolza problem of par. 6-3 is of almost 
the generality required for optimal design. 
The principal shortcoming of that problem is 
in the lack of generality in the constraints. It 
has been noted in preceding chapters that 
meaningful optimal design problems generally 
involve inequality constraints. It is the pur- 
pose of this paragraph to extend the Bolza 
problem to account for inequality constraints. 

The problem treated here is given in Defini- 
tion 6-3. 

Definition 6-3 (Problem cf Optimal De- 
sign): The optimal design problem is a prob- 
lem of finding u(t), b, x(t), t° <s t < tn, which 
minimize 

J = g0(b,t'\x') 

+   I      fn [t,x(t),u(t),b]dt (6-96) 1/' 
subject to the conditions 

t# = f(t, x, u, b), t° < t < t", t # t'     (6-97) 

c ga{b,t>,x>)+   I     La [t,x{t),u{t)Mdt 

= 0, a= 1, ...,r (6-98) 

ga(b,t',x')+   I     La [t,x(t),u(t),b]dt 

(6-99) 

(6-100) 

<  0, a/ = r + 1,..., Y 

(pß(,t,x,u,b) = 0,ß= 1, ...,q' 

t° a to t* 

and 

<pß(t,x,u,b)< 0,ß = q' + 1, ...,4, 

t° < t< t*. 
K (6-101) 

The variables and functions appearing here are 
identical to those in Def. 6-2. 

The inequalities in this problem are treated 
here in the manner presented in Ref. 13. The 
inequality constraints are first reduced to 
equality constraints, and the results of par. 
6-3   are  applied.   In order to  perform this 
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reduction, define the slack variables va, a = r' 
+ 1,..., r and w At), ß = 4' + 1,..., q by 

I. ga(b,t',x')+  |      I„[/,x(0,K(f),*]df 

(6-102) 
+ v2 =0,SL = /+ L...,i 

and 

^(U,«,i)) + ws
2(O = 0, 

)3 = </'+!,...,? 

(6-103) 

The constraints, Eqs. 6-102 and 6-103, are 
equivalent to Eqs. 6-99 and 6-101, respec- 
tively, where va and w (t) are interpreted as 
design parameters and design variables. With 
these equality constraints replacing the in- 
equality constraints, the optimal design prob- 
lem becomes a Bolza problem. The necessary 
conditions of par. 6-3, therefore, may be 
applied to this modified problem. 

The form of the constraints, Eq. 6-101, has 
a great deal to do with the behavior of the 
problem. If some function 0. depends only 
on t, x, and b then the problem is compli- 
cated in intervals in which 0 = 0. This kind 
of constraint will be referred to as a state 
variable inequality constraint and will be 
treated separately. If <Pß does depend explicit- 
ly on u, then the constraint is referred to as a 
design variable inequality constraint. This 
problem will now be investigated. 

6-4.1   DESIGN   VARIABLE 
CONSTRAINTS 

INEQUALITY 

In order to apply Theorem 6-5 to the 
problem of Eqs. 6-96, 6-97, 6-98, 6-100, 
6-102, and 6-103, the independence of condi- 
tions expressed by Eqs. 6-100 and 6-103 must 
be  verified;  i.e.,   the   matrix,   Eq.  6-55, is 

required to have rank q. For this purpose, the 
design vector must be considered as (uT, 
wT)T, where wT = (w -+1, 

The matrix, Eq. 6-55, becomes 

WJ- 

90t 
3«, 

3«! 

901 
3«„ 

9^ 

3«„ 

0, ..., 0 

,0,...,0 

V+i 
3«! 3w„ 

2w,'+l 

(6-104) 

3*<             ^     n       9  , ...,      , 0,..., 2vv 
3"i 9"m * 

This matrix is required to have rank 4. In 
order for this to be possible the number of 
columns, m +4 — q', must be greater than or 
equal to the number of rows, 4, or m — 4' > 
0. Further, it is obvious that the firsts' rows 
must be linearly independent, or the entire 
matrix could not possibly have rank 4. Next 
note that if wa =£ 0, then the ath row must be 
linearly independent of all the other rows 
since it has the only nonzero element in the m 
+ a — q'Ü\ column. Therefore, linear inde- 
pendence of the rows from 4' + 1 to 4 need 
only be considered for those a with wa = 0. 
By Eq. 6-103, this is the same as 0a = 0. 

The conclusion is, then, that the matrix, 
Eq. 6-104, will have rank 4 if and only if the 
matrix 

30/ 

"iiT. , 0,- = 0 (6-105) 
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is of full row rank. This simply says the 

gradients of all constraint functions (which 
are equalities) with respect to the design 

variable must be linearly independent. Assum- 

ing this is the case, Theorem 6-5 may be 
applied. 

and the conditions, Eqs. 6-1 lOthrough 6-113, 

are unchanged. Further, Theorem 6-6 yields 

H[t,x(t),U,bMt),yfl,v,w] 

< H[t,x(t),uV),bMt),0,v,w]       (6-1 15) 

Define 

G =\0io +  2 yaga (6-106) 

G'=     2     yavl (6-107) 
a=r+1     a   " 

//=X^/_X0/0_   2 yaLa_ Su 
a~ 1 ß=1   K 

(6-108) 

#' = -     2       7„^ - ■i,,^' 
(6-109) 

The quantities tf = # + H' and G = G + G' 

take the place of H and G in Theorem 6-5. 

Necessary conditions for the optimal design 

problem are, therefore, 

for all admissible U. 

The condition, Eq. 6-112, in scalar form is 

-2ßpwp = 0,ß = q' + 1,..., q . (6-116) 

If wß = 0, then by Eq. 6-103 <f>ß = 0. If w 

J=0,<t>ß< 0 and /* = 0. Therefore, Eq. 6-116 

is equivalent to 

HßU)<t>ß(t,x,u,b) = 0, ß = q'+l,..., q . 

(6-117) 

Condition, Eq. 6-114, is 

dt = 0, 1y v   + 'a   a 
f 
I 'a   a 
J    fO 

d\ _ 

dt dx 

M 

du 
= 0 

ffl' 
= 0 

dG f 
db "J, 
dC f 
bv " 

d_H_ 

db 
dt = 0 

dt = 0 

(6-110) 

(6-111) 

(6-112) 

(6-113) 

(6-114) 

u=r' + 1,.... r 

or 

2yava(] +(i - t°) = 0, a = r'+ 1, ...,/-. 

Since 1 + ?" _ f° =£0, 

7ava =0, a =r' + 1,. (6-118) 

If v =0, then by Eq. 6-102, the constraint, 
Eq. 6-99, is an equality. If va ¥= 0, then the 
constraint, Eq. 6-99, is a strict inequality and 
ya = 0. Therefore, Eq. 6-118 is equivalent to 
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7a      ga(b,t',x') 

La[t,x(t),u(.0,b] dt = 0. 

a?=r'+ 1,..., (6-119) 

The   conditions,  Eqs.   6-116  and   6-1 18, 

imply H' = 0 and G' = 0 so that H=H and G 

= G. The necessary condition, Eq. 6-115, is, 

therefore,just 

H [t,x(t),U,bMt),7,0] 

< H [t,x(OMt),bMt),7,0] (6-120) 

for all admissible U. It is further shown (Refs. 

5,10,12) that X0 > 0, ya > 0, *> = r' + 1,..., 

r, and M„(0 > 0, |3 = 4' + 1, ..., 4, f° < 
t <   f. 

The conditions obtained through applica- 
tion of Theorem 6-5 to the optimal design 

problem may now be stated as Theorem 6-7. 

Theorem 6-7: If [x(t), u(t), b, t>, x'] is a 
solution of the optimal design problem of 
Def. 6-3 and if the matrix, Eq. 6-105, has full 

row rank, then there exist multipliers X0 > 0, 
\(t), i = 1,..., m, ya, a = 1,..., r, ya > 0, a = 

/•' + l,..,r. nß(t),p = l,.... 4,*i,(0 > 0,p = 4' + 

1, ..., 4, not all zero, and functions G and H 
of Eqs. 6-106 and 6-108 such that 

dh 

dt 

M 

du 

9G 

db 

3HT 

,fOTt=t t' 

■=0, fOTt^t' 

r dH 

db 
dt = 0 

(6-121) 

(6-122) 

(6-123) 

dGT 

3GT 

3x" 
+ X(r*)=0 

—j+\(t> -0)-Mti + 0)=o 
ox' 

ft3- + H{t° +0) = 0 

(6-124) 

> (6-125) 
9G 
  _H{tr> -0)=0 

%6--H(t> - 0) + H(t> +0)=0 

it' 

H{t* -0J-H(t* + 0J=0 (6-126) 

X(f* -0)-Mt*+0)=0 (6-127) 

ßßit)4>ß(t,x,u,b) = 0, ß=\,...,q      (6-128) 

7a |   ga{b.t',x') 

tv \ 

J t< 
+ 1    La[r,jc(r)p«(0,ö] dt \ =0 

a= l,...,r (6-129) 

 ,for^?; (6-130) 

and 

tf [f(x(r),C/,&,X(0,7,0] 

« //[r,x(f),u(f),ö,X(/),7,0] (6-131) 

for all admissible U. 
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It should be noted that, just as in Theorem 

6-5, the number of conditions here is just 

equal to the number of unknowns, so one 

might be led to believe that a solution may be 

found. Existence of a solution is, however, a 

very difficult question that is treated in Refs. 

10 and 11. 

6-4.2 STATE    VARIABLE 
CONSTRAINTS 

In many meaningful design problems con- 

straints may involve restrictions only on the 

state variable. This is the case when some <p„ 
of Eq. 6-101 depends only on t, x, and b. To 

study this problem, just one such constraint 

needs to be considered, i.e., 

<j>M,x,b)< 0,t° < t< r" . (6-132) 

Let t~ < t< t+, t~ < t+, be an interval in 

which <S>„ of Eq. 6-132 is an equality. It is 

clear that b(j>Jbu = 0, so the matrix, Eq. 

6-105, has a zero row in this interval and 

hence cannot be of full row rank. Theorem 

6-7 cannot be applied directly, so further 

analysis is required. 

In the interval t 
necessary that 

< t < r = 0 so it is 

dt 
= 0 

b<t>ß b<j>ß dx 

bt dx   dt 

From Eq. 6-97, dx/dt may be replaced by / 

and this relation becomes 

dt 

b<t>ß[t,x{t)M 

bt 

d<t>M,xU),b] 
+   f[t,x(t)Mt),b] 

ox 

If the right side of this equation depends ex- 

plicitly on u(t), then this equation is of the 
form required in the problem treated in par. 

6-4.1. If not, then differentiating through this 

equation with respect to t and using the chain 

rule of differentiation 

d2K      *K »2*fl 

""** bt2 + 2 Utax 
INEQUALITY 

+ /r" 
°24>ß 

f + 3v 

df 
(6-133) 

where all the arguments are omitted. If the 

right side of Eq. 6-133 depends explicitly on 

u{t) then this equation is of the form treated 

in par. 6-4.1. 

This process continues until 

O-/0 [t,x{t)M 

dt"» 
(6-134) 

involves u(t) explicitly in its right side and 

u(t) can be determined as a function of x(t) 

and b, as in par. 6-4.1. The integer i> A 1 

is defined to be the first integer for which this 

is true. The constraint, Eq. 6-132, is then 

called a f^th order state variable inequality 

constraint. 

From the theory of ordinary differential 

equations (Ref. 14), Eq. 6-134 throughout 

t~ < t < f+ and 

At-,x(r),b] =0 (6-135) 

d0ß 
- [r,x(r),b] =0, i = \,...,p._. 

dt1 ß 

(6-136) 

are equivalent to 0    = 0 throughout t~   < 
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t < t+. This, of course, requires that <j>„ 

have v piecewise continuous derivatives, 

and / have v&l piecewise continuous 
derivatives in t~ < t < t+. The point 

t~ plays the role of a t' in the problem 

stated earlier in this paragraph. 

It will be assumed that when the right side 

of Eq. 6-134 is used in place of </>„ in 
computing the matrix, Eq. 6-105, this matrix 

has full row rank. In this case Theorem 6-7 

may be employed. To utilize this theorem, 
define 

Theorem 6-8: If [x{t), u{t), b, t!, x'] is a 

solution of the optimal design problem with 
state variable inequality constraints, then 
there exist multipliers X0 > 0, \.(/), i = 1, —, 
n, ya, a = 1, ..., r, ya > 0, a = r' + I, ..., r, 

Hv(t),ß= l,...,qi,M/J(r)>0,j3 = q'+l,...,4>and 

TT i = 1,..., v and ß associated with a state 
variable constraint and 4>   = 0 in?" < t< t+, 

d\       3HT 

—r= --— ,foi t¥=t', r, t+ 

at ux 

ML- 
3u 

0, for t ± t1, r, t+ 

(6-141) 

(6-142) 

,.*«<o 

V/»=l  d» 
(6-137) 

dt» 

•<t>, = 0 

where v& = 0 if 0ß involves u explicitly, 

G = XQg0+   2   \ga 
et=l 

(6-138) 

-        V*~l  { dl%    -      -,      ) 
G = 2  2     \ T-   [t ,x(t),b] \ (6-139) 

1=0 dt1 

where this sum on/3 is extended only over the 
indices associated with state variable in- 
equality constraints, T~    are multipliers, and 

ff = X'/-X0/0-   2   yaLa 
a=l 

fl?, "uV* 

(6-140) 

With G = G + G and H replacing G and H in 
Theoiem 6-7, a set of necessary conditions for 
this problem are obtained. They are easily 
computed and are given here as Theorem 6-8. 

3G    3G 
■+ 

3b     3b 

3GT 

LJ: 3H_ 

3b 
■dt = 0 (6-143) 

-\(t°) =0 

+ \(t> -0)-\(t> +0)=0 

3x° 

3GT 

dx* 

3GT 

~3xi~ 

 +\(r -0)-\(r +0)=0 
ax- 

\{t -0)-\(t+ +0)=0 

— +H(t°+0)=Q 

d€- -Hit" -0)=0 
dt* 

— -H(t' - 0) + H(t' + 0) = 0 

3G 
  -H(r -0)+H{t- +0)=0 
at- 

H{t+ -0)+H{t+ +0)=0 

<6-144) 

»(6-145) 
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H(t* -0)-HU* + 0)=0 

X(t* -0)-X(t* + 0J=0 

ltß(t)4>ßV,x,u,b) = 0,   0=1, 

(6-146) 

(6-147) 

., q      (6-148) 

Ja    8a{b,tl,xl) 

i: L, [t,x(.t),uU)M dt\   =0, 

a= 1,..., r 

dH    3H   ^      ^ 

and 

< #U,x(0,"(OAX(0,7,0] 

for all admissible £/. 

(6-149) 

(6-150) 

(6-151) 

The full set of necessary conditions em- 
bodied in this theorem is awesome from a 
computational point of view. The differential 
equations for x and \ are subject to multi- 
point boundary conditions that involve a set 
of undetermined multipliers. In a gross sense, 
Eqs. 6-147 may be viewed as determining 
intermediate points in f° < t < tn and the 
associated boundary conditions on x{t) and 
MO- 

Use of the theorem is further complicated 
by the fact that the design variable may be 
determined as the solution of Eq. 6-142 
which satisfies Eq. 6-15 1. This means that u 
will be determined as a function of x, b and 
all the multipliers. The expression for u will 
generally take different forms in different 
subintervals of t° < t < t" and the spacing of 

these subintervals is not known before the 
solution is computed. The generality of the 
problem makes it difficult to discuss all its 
intracies without resorting to special cases and 
examples. 

6-4.3 APPLICATION OF THE THEORY OF 
OPTIMAL DESIGN 

In order to develop some familiarity with 
the methods of the preceding subparagraphs, 
several examples will be treated here. These 
problems will be idealizations of real-world 
problems but will illustrate the basic ideas 
which carry over into more complicated 
problems. 

Example 6-8: Time-optimal Steering of a 
Ground Vehicle (Ref. 19) 

To illustrate the concepts presented in par. 
6-4.2, an optimal vehicle steering problem will 
be solved. This problem is chosen because of 
its clarity of formulation and solution. A 
ground vehicle (a tractor in this case) is to be 
steered so that it begins at a given point and is 
steered so that it reaches a given straight line 
path in the shortest possible time. The vehicle 
and the line it is to reach are shown in Fig. 
6-11. 

Point A, midway between the rear wheels, 
is located by the coordinatesx^U) andx2(f)- 

/v 

Figure 6-11.  Ground Vehicle 
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Orientation of the vehicle is specified by a 
third variable x3(t). Steering of the vehicle is 
accomplished by choosing the angle 0(f). 

From physical grounds it is clear that the 
state of the vehicle is described by x(t) = 

[x1(t),x2(t),x3(t)]T and the vehicle is con- 

trolled through choice of d(t). 

It is assumed that the rear axle of the 

vehicle moves with a constant velocity V. In 

this case, motion of the vehicle is governed by 

the differential equation 

i, = Fcosx, 

i2 = V sin x3 

■■ a tan e 

(6-152) 

where a = V/L. At the initial time t = 0,*J(0) 
= x\, JC2(0) = x°2, and x3(0) = x\. The 

terminal time T is not determined but it is 
required that x2(T) = x\ and x3(T) = 0 since 

the vehicle must be tangent to the target line 

at time T. 

The steering angle is limited by 

e0 < e < e, (6-153) 

and as an idealization it is assumed that any 

steering angle in — 80 < 9 < 60 may be 
chosen instantaneously. For a reasonable 

problem it is clear that 60 < ir/2. Further, for 

definiteness, assume lx3\ < TT/2 and x^ > x°. 

AU other initial conditions can be obtained 
from these by reflection in Fig. 6-11. 

The problem is now in the form described 
in par. 6-3. For use in Theorem 6-7, 

G=\0T+7l [Xl(0)-x°\ 

+ 72 lx2(0)-x°2] +y3[x3(0)-x°] 

+ 74 [x2(T)-x\] +-ysx3{T) 

H = Xj V cos x3 + X2 V sin x3 + \3a tan8 

-Mi (0 - 0O) - 02 (0o -0)- 

The conditions of Theorem 6-7 are 

bH 
X, =__ =0 

M 
x2 = -— =0 

OX 2 

A, =——— =XiKsin^3 
9^3 

X2 V cos x3 

77-= 0 =\3a sec2 e-Mi +M2 

(6-154) 

bH 

be 
(6-155) 

\!(T)=0 (6-156) 

X0 = Xi (T) V cos x3 (T) + \2 (T) Ksin x3(T) 

(6-157) + \3(T)a tan 6(T) 

Pl(6-80) = 0 

M2O0 -fl) = o 

and 

(6-158) 

dH    bH 

dt      at 
0. (6-159) 

The first two equations in Eq. 6-154 yield 

A2 (0 = f2 

and  Eq.   6-156  implies  J,   =0.   The last 
equation in Eq. 6-154 is then 
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X3 = -S2 ^cosx3. 

Using the first equation in Eq. 6-152 to 
replace V cosx3, this is 

X3  =-£2*l- 

Therefore, 

MO = -£2*i(0 +£3- (6-160) 

The behavior of 0(f) may be isolated to 
two different cases. The first is |0(f)l = 8,. 
The second is 10(01 < 00, in which case Eq. 
6-158 implies Mi(0 = iMO = 0. Eq. 6-155 
then shows that X3(f) = 0. By Eq. 6-160 then 
Xi (f) is either a constant or £2 

= £3 = 0. This 
and Eq. 6-157 then implies X0 = 0 so all X. are 
zero. This is forbidden by Theorem 6-7, so 
*i(0 is a constant when \9(t) | < 0O. But if 
*i(0 is constant *i(0 = 0 and the first 
equation in Eq. 6-152 implies x3(t) = 0. The 
last equation in Eq. 6-152 implies 0(f) = 0. 

It is clear then that if 10(01 < 0O for some 
interval of time, the path of the vehicle must 
be a straight line parallel to the x2-axis in Fig. 
6-11. 

Since the last two terms in H are zero, the 
only explicit dependence of H on 0 is through 
the term \3{t)a tan 0(f). The inequality, Eq. 
6-131, states that 0(f) must maximize//. It is 
clear then that if X3(f) ¥= 0, then 

0(f) = 0„ sgn [X3(01 

where 

(6-161) 

Since x° < 7r/2, forf small, either 0(f) =0O 

or 0(f) = - 0O. From Fig. 6-11, it is 
reasonably clear that 0(f) = 0O and Eq. 6-152 
can be integrated to obtain 

x1(t)=x°l +R [sinQc° +bt)   * 

— sin x° ] 

x2(t) = x°2 -R [cos (x°3+bt) 

COS X? ] 

x3(t) =x° + at tan 0O, 

where 

(6-162) 

b =<ztan 0O 

R = V/b. 

This path is just a circular arc with center at 

(Xj    -  R   sin x",   Xj   + R   cos x°3)   and 
counterclockwise motion. 

Similarly, if 0(f) should become — 8, at 
sometime t* where x^f*) =x*, x2(t*) =x*, 
and x3(f *) = x| then the path is described by 

x1(t)=x*-R [sin (x*-bt)  ' 

sinx. 

x2(f) = x| +R [cos (X? -of) 

cosxJ] 

x3(f) = x* -af tan0o. 

V     (6-163) 

sgn^r =—, 
q 

Further,  it is clear that 0(f) = 0 is possible 
only when A3(f) = 0. 

This path is a circular arc with center at (x* + 
R sin x*, x* — R cos X3) and clockwise 
motion. Since this circular arc must be tan- 
gent to the line x2 =x\, thex2-coordinate of 
the center must be x2 — R = x* — R cos x*. 
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Note that by Eq. 6-152, x3(t) must be 
continuous, so xt and x2 are continuous. 
Therefore, the tangent to the path of points 
in the (xltx2)-plane is 

dx2    x2  =-r- = tan x3 
(IX x       Xj 

and this slope is continuous. This means that 
segments of the optimal path where 6 = — d0, 
0, or 60 must be tangent where they intersect. 
With this information, the solution of the 
problem may be constructed geometrically. 

In Fig. 6-12 the initial arc, which is 
described by Eq. 6-162, is shown leaving 
(x\,x\). A whole family of second arcs is 
shown corresponding to different values of 

<*?.*%> 

Figure 6-12. Extremal Arcs 

From the construction of Fig. 6-12 it is 
clear that the point of tangency of the two 
circles (x*, x*) is at the middle of the line 

joining their centers, i.e., 

**=T(*i ~
R

 
sin*3 +xf + R sinxj) 

x*=~r(*2 +R cosx" +x* -R cosxj). 

Further, the relation noted just below  Eq. 
6-163 is 

x\ -R =x* -R COSX3 

These equations yield 

x* = x\-R sinx° +\R
2
 -—{xl

2 -R 

-x°2 -R cosx°)2   1/2 

X*=^(*2+*2+«COSX°3-.R). 

It may be noted by examining the family 
of paths in Fig. 6-12 that if x\ > s=R + x° + 
R cos X3, then the first arc has been followed 
beyond a time t where x3(f) = ir/2. At the 
point xt(f) = x" -R sinx" +R, x2(i) = x°7 + 
R cos X3 it would have been possible to 
construct a vertical portion of the optimal 
path. This construction is shown in Fig. 6-13. 

The extremal paths constructed for x2 > s 
satisfy all the conditions of the theorem so 

lx1('),x2(")) 

(44) 

Figure 6-13. Extremal Arcs With Straight 
Section 

6-36 



AMCP 708-192 

that they may be optimum. It is clear that for 
x\ < s there is only one possible solution of 
the problem. For x\ > s this is not the case as 
shown for x\ = x\. Both the extremals 

leading to the path x2 - x
2 satisfy the 

necessary conditions of the theorem. It is, 
geometrically, relatively clear that these are 
the only two possibilities so the one with the 
shortest time required to get to x2 = x\ is to 
be chosen. The test, Eq. 6-151, may eliminate 
one candidate. It seems clear that when the 
extremal with straight line exists, it is best. 

It should be noted that if x\ > s + 2R, it is 
impossible to intersect x2 = xl with only two 
circular arcs so the extremal with a straight 
section is required. 

This problem illustrates many of the basic 
ideas and complexities involved in optimal 
design and optimal control theory. Some of 
the features are worth noting because they 
will arise later: 

1. Pieced extremals. The conditions of 
Theorem 6-7 give a set of curves or solutions 
that must be pieced together to form the 
optimal path in state space. In the vehicle 
steering problem, these curves or arcs are put 
together geometrically. In more complex 
problems, this will have to be done analyti- 
cally using the conditions of Theorem 6-7. 

2. Multiple solutions. As seen in the fore- 
going problem, more than one candidate 
solution may be constructed. Condition, Eq. 
6-13 1, must then be used to choose the best 
of these candidates. 

3. Singular arcs. It occasionally happens, as 
in the vehicle steering problem, that there will 
exist a set of values of the state variables and 
multipliers such that the function // does not 
depend explicitly on the design variable. In 

this case, Eq. 6-122 provides no information. 
It is then required that the inequality, Eq. 
6-131, must be used to determine the design 
variable. For a complete treatment of this 

subject, see Ref. 20. 

The problem treated in this paragraph is 
not as complicated as most optimal design 
problems occuring in the real-world. It does, 
however, illustrate some of the features and 
difficulty encountered in most realistic 
optimal design problems. This problem should 
convince the reader that the solution of 
optimal design problems is not simply a 
matter of plugging numbers into formulas. 
Even though analytical methods will be 
stressed in subsequent work, the effective 
solution of this class of problems requires a 
sound understanding of the theory of optimal 
design. 

Example 6-9: A Constrained Brachisto- 
chrone Problem. 

The problem considered here is similar to 
Example 6-4 but with a constraint added. It is 
required to find the path through (0,0) which 
lies above the line x2 - h + x x tan a in the 
(x1,x2)-plane and that carries a particle, 
without friction, to the vertical line xl = x\ 
in the shortest possible time. The problem is 
shown in Fig. 6-14. 

This problem will be treated as an optimal 
design problem. On the assumption that there 
are no discontunities in the velocity vector, 
conservation of energy yields 

1 
-mv   = mgx2 

or 

V = (2gX2)l/2. 
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x   =h +x. tana z 1 

Figure 6-/4.  Bounded Brachistochrone 

1/2 1/2 
0 = (2g*2)     sin H - (2gx2)      tan a cos ^ 

0 (6-167) 

which does contain u explicitly. The con- 

straint, Eq. 6-166, is, therefore, a first-order 
state variable inequality constraint. 

In order to employ Theorem 6-8, define 

multipliers —yf, T~, X. — such that 

The equations of motion of the particle are 

then 

Xi = {2gx2)     cosu 

x2 = (2gx2)      sin u 

(6-164) 

where u is the angle between the x ,-axis and 

the tangent to the path on which the particle 
is to travel. This angle u specifies the curve, so 

it is the design variable. The location of the 

particle is specified by the point (xl,x2) so 
this is the state variable. The boundary 
conditions are 

Xl{0) = x2(0) = 0 

Xi{T)=x\. 

(6-165) 

The object is then to find u(t), xt(t), and 

x2(t) such that a particle starting at rest at 

(0,0) reaches x(T) = x\ in minimum time T. 

The path is required to satisfy the constraint 

4> = x2 —xl tana —h<0. (6-166) 

Since the constraint of Eq. 6-166 does not 
involve the design variable u explicitly, the 
problem contains a state variable inequality 
constraint. Computing <j> and substituting 
from Eq. 6-164 yields 

G = r+7,x1(0) + 72x2(0) 

+ 73 1*1(7')-*}]' 

G ~T~ (*j — x\ tan a — h) 

1/2 
H=Xi(2gx2)      cos« >   (6-168) 

1/2 
+ X2(2gx2)      sin« 

-"(2gx2) 

x(cos u — tan a sin u). 

Necessary conditions from Theorem 6-8 are 

X, =0 

1/2 
X2 = -g(2gx2)      [Xj cos« 

+ X2 sin« —/x(cos u 

- tan a sinu)\ 

1/2 
(2gx2)      [-X, sinw+X2 COSJ; 

+ ^(sin u +tan a cosu)] = 0    (6-170) 

\2(T)=0 (6-171) 

»   (6-169) 
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-T~ tana + Xj (r -0) 

-X, (t- + 0)=0 

T~ +\2{r -o) 

-\2(t- + 0)=0 

l-H(T-0) = 0 

-H{r -0) + H((- +0)=0, 

and 

i 

dH 

dt 
- 0. 

(6-172) 

(6-173) 

(6-174) 

(6-175) 

Ideally, the solution for u(t) might proceed 
by solving Eq. 6-170 for u as a function of A 

and n- This result could then be substituted 
into Eqs. 6-164, 6-167, and 6-169. The 

variables A, x, and n could then be determined 

and the results substituted back into the 
previously derived equation for^i. This would 

be the desired solution. It is clear that these 
steps would be extremely messy so a huristic 
argument will be used here to suggest a 

solution. This solution can then be checked in 
the conditions Eqs. 6-169 through 6-175. 

It might be expected that when 0 =£ 0, then 

the curve is a cycloid as in Example 6-5. 
Whenever <p = 0 it is clear that u = a. This is, 

in fact, the case and as presented in Ref. 21 

the solution is a cycloid for 

h 2 
> -IT — - a 

\2 
tana 

i.e., the optimum path does not touch the 

constraint surface. 

For 

1-    — a ) tan a 

the optimum curve is given by 

/IT 
 Wi(, 0 < t < t 
2 

u(t) = < a,      t-< t< t+ 

K  u2(T-t),      t+ < t< T 

where 

r(a -IT/2 +cot a;1 

2h cot a 1 

"g (a + cot SL)   j1/2 

,2(x\ +hcota) [ 
w2 

TT/2 —a 
t~ =  

t+ = T-a/(2u>2) 

and 

1   1/2 

— (x\ + h cot a)(a + cot a.) 
g 

2h ir 
— cot   (a.—-+cota 
g 2 

112 

Fig. 6-15 shows solutions for tan a = 1/2 

and several values of h 

The reader may very well get the impres- 
sion from these examples that analytical 
solutions of general optimal design problems 
are extremely difficult to obtain. This is 

indeed the case. Therefore, either numerical 

methods must be used to solve the equations 

given as necessary conditions in the theorems, 

or some direct computational method must 

be used to solve the optimal design problem. 
Some numerical methods of solving the neces- 

sary conditions are presented in the next 

paragraph. Several optimal structural design 

problems are solved in Chapter 7 to illustrate 
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Figure 6-15. Bounded Brachistochrone 
Solution 

boundary-value problem to a sequence of 
linear boundary-value problems whose solu- 
tions converge to the solution of the non- 
linear problem. 

6-5.1   INITIAL    VALUE    METHODS   (OR 
SHOOTING TECHNIQUES) 

In order to develop the main ideas without 
getting bogged down in notation, consider the 
problem of finding y(t) = {y^t),..., yn(t)]T, 
that satisfies 

■^■=f(t,y)J° < t* t1 (6-176) 

these methods. Direct methods of solving 
optimal design problems are presented in later 
chapters. 

6-5  METHODS OF   SATISFYING   NECES- 
SARY CONDITIONS 

The previous three paragraphs of this chap 
ter have been devoted to obtaining necessary 
conditions for optimization problems of vary- 
ing degrees of difficulty. It has been observed 
that these necessary conditions generally 
reduce to some sort of boundary-value prob- 
lem, usually nonlinear. The object of this 
paragraph is to explore ways in which the 
boundary-value problem may be solved. This 
topic has received considerable treatment in 
the recent literature, so it will be treated only 
briefly here. 

Two different methods will be discussed 
here and will be applied to optimal structural 
design problems in the next chapter. The first 
method is based on a reduction of the 
boundary-value problem to a sequence of 
initial-value problems whose solutions con- 
verge to the solution of the original problem. 
The   second   method   reduces   a   nonlinear 

and 

^■(f0) = y°j ,for some! 

yftl)=yl
i , for some/' 

(6-177) 

where the total number of conditions in Eq. 
6-177 is n. In order to further simplify 
notation, assume the components of y{t) have 
been numbered so that the first equation in 
Eq. 6-177 holds fori = 1,..., k < n. 

Since initial-value problems are so efficient- 
ly integrated forward in time, the missing 
conditions onj' at t° may be estimated as 

yAt°) = t.,i = k + l,...,n (6-178) 

and Eq. 6-176 integrated from t° to tx using 
the full set of initial conditions from the first 
equation at Eq. 6-177 and Eq. 6-178. The 
value of yXt1) obtained from this integration 
will probably not satisfy the second equation 
inEq. 6-177, i.e., 

y,-(t1;!:)*y1
ri = k+ 1,...,« (6-179) 

where £ = (£k + 1, .... £„)r and the notation of 
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Eq.   6-179   is  introduced  to   illustrate  the 
dependence of the final values of y on|. 

It is clear that a solution of the problem 
can be obtained if % can be found so that Eqs. 
6-179 are equalities. To simplify notation, 
define the column vectors 

Ht1 ;D = iyjU1 ;£)] for those; inEq. 6-177 

and 

y1 = lyj ] for the same/. 

The conditions which are to determine £ are 

yV1;Z)=y1. (6-180) 

Any numerical method of solving algebraic 
equations may be used to solve Eq. 6-189. If a 
scheme like Newton's Method or a Gradient 
Method is to be used, it must be possible to 
compute 

dy 
as (t'\?) (6-181) 

where £° is an estimate of the solution of Eq. 
6-180. These partial derivatives may be ob- 
tained or approximated in a number of ways. 

The first method of determining the deriva- 
tives in Eq. 6-181 is to observe that y(t) = 
y(t-£°) and further, that the dependence on £ 
is very regular (Ref. 14) so that by{.t&°)ß$ 
exists. Differentiating formally with respect 
to £ inEq. 6-176, 

(6-182) 
dt 

zy\    a/  ay 

and 

(0)= [0,..., 0,..., 1,0 . .01 

The initial value problems, Eqs. 6-182 and 
6-183, for i = k + 1,..., n may be integrated 
from t° to tl to obtain the derivatives 
required inEq. 6-181. 

Once these derivatives have been deter- 
mined, the new estimate |_ in Newton's 
Method is given by 

£1=?0 W1;*0) 
a? 

[y(t1;H0)-y1 

(6-184) 

The process is repeated with £' playing the 
role previously occupied by £°. 

This method of finding the partial deriva- 
tives is direct in nature but requires the 
solution of Eq. 6-182 n — k times. Further, 
both the differential equations, Eq. 6-176 and 
6-182, must be programmed. 

A second method of constructing the par- 
tial derivatives of Eq. 6-181 (or approxima- 
tions of them) is to use a difference quotient, 
i.e., Eq. 6-176 is solved for £ and £ + 5 where 
5 = (0, ..., e, ..., 0)r where i indicates the ith 
position and E is small. Therefore 

<W ;6) ^ y«1 ;$ + S) - yjt1 ;Q 

(6-185) 

/ = *+!,. (6-183) 

Once these approximate derivatives are 
determined, the algorithm, Eq. 6-184, may be 
used. 

This approximate method of constructing 
the partial derivatives requires that the differ- 
ential equation, Eq. 6-176, be solved n — k 
additional times. It, therefore, requires 
approximately the same amount of computa- 
tion  as the  previous   scheme,  but   all the 
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computation is performed with the same set 

of differential equations. This method is 

illustrated in the problems of pars. 7-2 and 
7-3. 

A third scheme which makes use of differ- 
entiation formulas for definite integrals is 

developed in par. 7-4. 

6-5.2 A GENERALIZED NEWTON METH- 
OD 

A second method which is used to solve the 
necessary conditions for optimization prob- 

lems is a Generalized Newton Method of 

solving boundary-value problems. It has been 
pointed out in the foregoing that Bolza 
problems and optimal design problems may 

be reduced to nonlinear boundary-value prob- 

lems. The method employed here was devel- 
oped forjust such problems (Refs. 22, 23). 

In order to introduce the Generalized 
Newton Method for boundary-value prob- 

lems, consider the system of first-order equa- 

tions 

dy 
-£ =g(y,t) (6-186) 
dt 

where 

y(0 =  LM')> ■- yn(t)]T and 

g(y,t) = Igify.t), .... g„(y,t)]T 

In addition to  satisfying Eq.  6-186, y{t) is 

required to satisfy 

yf{t0) = yf, for some i 

yft1) = y)> f°r some;', 

(6-187) 

where the total number of conditions in Eq. 
6-187 is n. 

The Generalized Newton Method for 

solving Eqs. 6-186 and 6-187 is similar in 

philosophy to the Newton method of solving 

algebraic equations. An estimate of the solu- 

tion, y<0Ht), is made and the right side of Eq. 
6-186 is expanded about ;v(0)(f) using Tay- 
lor's formula to obtain 

^-  =^-lt,y^\t)]y^+f[t,/°Ht)] 
dt dy 

dy 
„(0) Ityv'VHy^'V)     (6-188) 

where y^Ht) is required to satisfy 

>'J1)(r°)=>',0,forthoseiinEq. 6-187 

y)l)(tl )=y}, for thosej in Eq. 6-187 

(6-189) 

The boundary-value problem for >>(1)(0 is 
linear so that if it has a solution, that solution 

may be obtained by superposition techniques, 
or any other technique for solving linear 

boundary-value problems, for that matter 
(Ref. 24). 

The function y^Ht) is taken as an im- 

proved estimate for the solution of Eqs. 6-186 

and 6-187. This estimate then replacesy(0){t) 

in the preceding analysis. If k is the iteration 

number for this process, then yik)(t) is 

determined by 

dyW      df 
^ \t,y 
dy   I 

(*- i) 
dt dy 

+f[t.y(k-l\t)} 

9/ 

(t) ,,(*) 

•(6-190) 

dy 
[t,y<-k- D {t)\y(k-l\t) 
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and the boundary conditions 

y\k\t°) = yf ,for those i inEq. 6-187 

yfht1) = yj, for those/' in Eq. 6-187 

(6-191) 

The sequence of approximations to the 
solution \y^k\t)] is considered to have con- 
verged when the difference between succes- 
sive iterates is sufficiently small. Theorems 
given in Ref. 23 show that if the initial 
estimate of the solution >,(0)(?) is sufficiently 
accurate, then under rather restrictive condi- 
tions, the sequence [y^Ht)] converges to the 
solution of Eqs. 6-186 and 6-187. Further, 
the convergence is quadratic in the sense that 
the error at the k + 1st iteration is propor- 
tional to the error squared in the kth itera- 
tion. This kind of convergence is extremely 
nice. 

Even though it is difficult or impossible to 
verify the hypotheses of the convergence 
theorems in Ref. 23, it has been observed in 
practice (Ref. 23) that good convergence is 
nevertheless obtained in many real-world 
problems. 

Since the discussion in this paragraph is on 
ways of solving optimization problems, the 
Generalized Newton Method will be applied 
more directly to this class of problems. For 
the present, consider only the following prob- 
lem: 

minimize J 

subject to 

dx 

I' f(t,x,u)dt       (6-192) 

and 

x((t°) = xf for some i 

xJt1) = x.   for some / 
(6-194) 

where the total number of boundary condi- 
tions in Eq. 6-194 may be less than, equal to, 
or greater than n, x(t) = [x,(0 ■-, xn(t)]T, 
u(t) = [u,   {t), .... «mU)]T. 

Defining 

// = X0/„   +;2   X./,, 

the necessary conditions of Theorem 6-5 are 

dh 

dt 
_ -_ M 

ax 

du 
= 0 

and 

\V°) = 0, r^iinEq. 6-194 

X a1) =0,s=tj inEq. 6-194. 

(6-195) 

(6-196) 

•    (6-197) 

The argument used in applying the General- 
ized Newton Method to the problem of 
determining x{t), u(t), and \(t) from Eqs. 
6-193, 6-194, and 6-195 through 6-197 as 
follows: 

1.  Solve Eq. 6-187 for 

u =u(t,x,\) (6-198) 

dt 
= fU.x.u) (6-193) 

and substitute this expression into Eqs. 6-193 
and 6-195. 

2. These differential equations then form 
2n first-order, nonlinear differential equations 
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in 2n variables. Further, there are exactly 2n 
boundary conditions inEqs. 6-194and 6-197. 
This nonlinear boundary-value problem is 
now solved by the Generalized Newton Meth- 
od. 

an   auxiliary   parameter   e;   is   introduced 
through 

^f{t)H[^Ji(t)]dt = ei (6-202) 

3. The solution x(t), \(t) is then sub- 
stituted into Eq. 6-198 to obtain the optimal 
design function. 

Since the Generalized Newton Method, as 
presented here, is only capable of solving 
two-point boundary-value problems, inequa- 
lity constraints may not be treated explicitly. 
Rather, the general optimal design problem 
with inequality constraints must be reduced 
to a problem with only equality constraints. 
For example, for problems with constraints of 
the form 

<j>,(t,x,ü) < 0, (6-199) 

where 4>t depends explicitly on u a trans- 
formation may be performed by introducing 
an auxiliary design variable (slack variable) 
aft) through the relation 

4>i(t,x,u)+<xf{t)=0. (6-200) 

It is clear that with the new variable, Eq. 
6-200 is equivalent to Eq. 6-199. The neces- 
sary conditions of Theorem 6-5 may now be 
applied and the Generalized Newton Method 
utilized just as in the preceding case. 

In case the optimal design problems with 
state variable inequality constraints, a differ- 
ent technique for elimination of inequalities 
has proved effective. For constraints of the 
form 

where 

H(s) 
0, s< 0 

\,s> 0. 

In a sense, e. is a measure of violation of Eq. 
6-201. The procedure in solving an optimal 
design problem with a constraint of this kind 
is to solve a sequence of problems with Eq. 
6-202 replacing Eq. 6-201, and ej

(k) ap- 
proaching zero as k becomes infinite; i.e., a 
modified design problem is solved imposing 
Eq. 6-202 in place of Eq. 6-201 withe/0) > 0 
chosen. This solution is carried out through 
use of the Generalized Newton Method de- 
scribed. The problem is then solved again with 

c(i) 

4>,(t,x) < 0 (6-201) 

0 < eK ' < e( ' beginning the iteration with 
the solution of the preceding problem. The 
process is repeated with 0 < e(fc) < e^-1' 
until changes in successive solutions are suf- 
ficiently small. 

The Generalized Newton Method presented 
here has been discussed by many authors and 
generally has received favorable comments. 
For a more detailed discussion and examples, 
see Refs. 23, 25 through 28. An outstanding 
treatment of the Generalized Newton Method 
also appears in book form (Ref. 29). A very 
rigorous treatment of existence and con- 
vergence properties of the method is given 
which applies to the control problems dis- 
cussed. The reader should note that some 
writers follow Bellman in calling the method 
described here, "Quasilinearization". 
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CHAPTER 7 

OPTIMAL STRUCTURAL DESIGN BY THE INDIRECT METHOD 

7-1   INTRODUCTION 

7-1.1  THE   CLASS  OF   PROBLEMS CON- 
SIDERED 

Since the beginning of engineering disci- 
plines, the engineer has attempted to develop 
structures and machines that perform some 
specified task. In the case of structures, a 
frame or truss is required to support a given 
system of loads. Likewise, machines and 
machine elements are required to support 
loads while they perform some function. 

The objective of the examples treated here 
is to illustrate organized methods that the 
engineer may use to obtain a load-carrying 
system which is best in some sense that is 
associated with the particular application. In 
design of commercial goods, the dollar cost of 
an element is probably the index that is to be 
minimized (Ref. 1). In military and aerospace 
applications, while dollar cost is important, 
frequently weight cost is even more essential. 
In the example problems presented here, the 
criterion of minimum weight will be chosen. 

Until very recently, most design procedures 
depended on the engineer's intuition and 
experience in proportioning a load-carrying 
system. An analysis of the proposed con- 
figuration was then made to determine wheth- 
er the system met all requirements placed on 
it. If not or if the preliminary design was 
obviously excessively strong, the procedure 
was repea ed until a satisfactory solution was 
obtained. 

As systems become more complex and 
more emphasis is placed on minimum cost, 
the designer is unable to make all the trade- 
off analyses mentally. A method of design 
synthesis, therefore, is necessary which is able 
to include all requirements on the system and 
the requirement of minimum cost in a unified 
design procedure. One such method for opti- 
mal structural design is illustrated in this 
chapter. 

7-1.2  HISTORICAL DEVELOPMENT 

Very early in the development of me- 
chanics of materials, methods of determining 
stress and displacement for given bodies under 
the action of given forces were emphasized. 
As these methods became better developed, 
the question arose as to how a structure might 
be proportioned to satisfy certain require- 
ments and be best in some sense. Problems of 
this kind were considered by Lagrange (Ref. 
2) in 1771 and by Clausen (Ref. 3) in 1851. 

Until very recent years, methods of the 
calculus of variations were not sufficient for 
treating realistic design problems. Probably 
for this reason, design problems were stated in 
terms of a few parameters that specified the 
structure. For example, uniform beams of 
undetermined depth are placed in a given 
configuration. The depths are then deter- 
mined so that the structure supports the given 
loads and is as light as possible. For a detailed 
bibliography of this development through 
1963, see Ref. 4. For a more current bibliog- 
raphy, see Ref. 5. 
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Another important method of design devel- 
oped principally by Prager and Drucker (Refs. 
6,7,8) is limit analysis. In this method of 
design, the structure is allowed to reach a 
state of collapse due to plastic action of the 
material. The resulting design is, therefore, 
safe for application of the given loads even 
though permanent deformation of the struc- 
ture results. If the loads must be applied 
many times in the life of the structure, it will 
generally be required that all material in the 
structure must remain in the elastic range at 
all times. For this reason, methods had to be 
developed for elastic design. 

In 1960, Joseph B. Keller published an 
article on column design (Ref. 9) which 
renewed interest in elastic, minimum weight 
design. Several papers have subsequently been 
published by Keller and his associates in 
which a class of eigenvalue problems is treated 
(Refs. 10,11,12). The methods employed in 
these papers are elegant but are not easily 
adapted to realistic engineering problems. 

A new method of optimal design has been 
developed by J.E. Taylor and W. Prager since 
1967 (Refs. 13,14,15). This method is based 
on an energy representation of the structural 
element under consideration. A particularly 
nice feature of the method is the ability to 
obtain sufficient conditions for certain classes 
of design problems. However, no unified 
method of constructing solutions has been 
presented. 

7-1.3 METHODS EMPLOYED 

The theorems of Chapter 6 will be em- 
ployed here for the solution of optimal design 
problems, Use of the results of Chapter 6 to 
construct solutions of optimal design prob- 
lems is called an indirect method of solution. 
This is so, because one first obtains a set of 

conditions that the solution of the optimal 
design problems must satisfy. Once this task is 
complete, the design problem is reduced to 
the determination of solutions of the neces- 
sary conditions that are candidate solutions of 
the optimal design problem. The term "in- 
direct" seems to describe this process quite 
well. 

As discussed in par. 6-5, any method of 
solving the nonlinear boundary-value problem 
contained within the necessary conditions is 
admissible. In this chapter, two problems will 
be solved by shooting techniques. The prob- 
lems of par. 7-2 are treated by the shooting 
technique of par. 6-5. The problems of par. 
7-3, however, are treated by a modified 
shooting technique. 

7-2 A MINIMUM WEIGHT COLUMN 

A lightweight column of length T is to be 
designed to support a given load P. The 
material is specified and has yield strength 
amax- The particular support considered is 
shown in Fig.  7-1. In problems considered 

7-7777-7- / / ff f 

(A) Undeflected (B) Deflected 

Figure 7-1.  Column Under Consideration 

here, the cross section is assumed to depend 
on only one design variable, u(t), 0 < to T. 
The problem is to determine u(t) that mini- 
mizes the weight or, equivalently, the volume 
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J=    1    A[u{t)\dt 

Jo 

and satisfies the conditions, 

EI(u)—^ +Px =0, 
at 

*(0) = 0, -£CD = 0 
at 

(7-1) 

(7-2) 

and 

A{u) 
a        < 0 m ax (7-3) 

where 

x(?) = lateral deflection of the column 

t = distance measured along the column 

A(u) = area of the cross section 

/(«) = smallest moment of inertia of the 
area of the cross section about a centroidal 
axis. All cross sections are assumed to have 
two orthogonal axes of symmetry with P 
acting through their intersection. 

By defining x, = x and x2 = dxt/dt, Eq. 
7-2 reduces to the system 

dxi 

~dt 

dx 

= *2 =/i 

Px, 
dt EI(u)      2 

xl(0) = 0,x2(.T) = 0 

(7-4) 

the  optimal  control problem considered in 
par. 6-4. 

For use in Theorem 6-7, construct 

' Px, 
H- — \0A(u) + XjX2 — X2 

. Eliu) 

M 
_A(u)       max_ 

G = X1x,(0) + X2x2(7T). 

Conditions, Eqs. 6-121 and 6-124, yield 

d\i _      M_ _   P\2 

dt   ~~  dxi  ~ EI(u) 

d\2 _      dH 
dt dx2 

Xj(0) = o,x,(r) = o. 

The system, Eq. 7-5, reduces to 

(7-5) 

d2\2 

dt2 

P\2 

EI(u) 

X2(0) = 0, 
d\2 

=0 

(7-6) 

Eq. 7-6 for X2(f) is identical to Eq. 6-14 for 
x(t). Both problems are homogeneous, how- 
ever, so X2(r) and x(t) may differ by an 
arbitrary constant multiplier, say X0, i.e., put 
X2(0 = \0x(t). This problem is normal (Ref. 
17), so X0 7^ 0 may be chosen as one. 

The problem is thus reduced to the form of 

Condition, Eq. 6-128, of Theorem 6-7 is, in 
this case, ß(P/A(u) _ amax) = 0. Two 
possibilities now exist; eitherM 

= 0, oiP/A(u) 
— °m ax = 0. In the second case, u is just the 
algebraic solution of 
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P/A(u) = a (7-7) 

In the remaining case, n = 0 and condition, 

Eq. 6-122, of Theorem 6-7 is 

M___M _tfh [1//(u)1 
9M 9M        £   I 3« 

0. 

(7-8) 

The design variable u(t) is thus determined 

in subintervals of [0,T] by either Eq. 7-7 or 

7-8. So that the results of the present method 

may be compared with those obtained by 
Keller (Ref. 9), choose A = u and / = au2. 

This corresponds to having the geometric 

shape of the cross section fixed and allowing 

all dimensions to vary as u1/2. 

With this form of A{u) and I(u), Eqs. 7-7 

and 7-8 become 

Pl« = "max 

and 

(7-9) 

dx 
x(0) = 0, — (T)= 0 

at 

where the choice on the right side of Eq. 7-12 
must correspond to the selection inEq. 7-11. 

This boundary-value problem is solved by 

an iterative method based on Newton's 
Algorithm. The missing initial condition is 

taken as dx/dt(0) = C. Integration of the 

resulting initial value problem from 0 to T 

yields an error dx/dt(T;C) in the final value. 

This notation is chosen to emphasize the 

dependence of x on the estimate C of the 

missing initial condition. The objective is to 

find C so that dx/dt(T;Q = 0. Once C is 

found, the initial value problem for x(t) may 

be solved and u(t) determined from Eq. 7-11. 

In order to employ Newton's Algorithm, 

d/dC [dx/dt(T;Q] is needed. It is obtained 

by formally differentiating Eq. 7-12 with 

respect to C to obtain 

2Px2 

Eau* 
(7-10) 

Condition, Eq. 6-131, of Theorem 6-7 
requires that the expression for u be chosen 

which satisfies the constraint, Eq. 7-3, and 

makes H as large as possible. This criterion 

yields the choice between 

a(0! UP 
{Pia      ) or ( — 

""'      ' Ea 

1/3 

x2/3|(7-ll) 

When Eq. 7-11 is substituted into Eq. 7-2, 

d2x 

dt2 ' 

Px_ 

Eoi 

Ea 

IP 

(%ax/^)2 or 

2/3 

v- "4/3 (7-12; 

£1. 
dt2 EaP 

or 

3 \m) 
1/3 

x-w r (7-13) 

f(0) = 0,—(0)= 1 
dt 

where the choice on the right side of Eq. 7-13 

must correspond to the selection in Eq. 7-11. 
The order of taking derivatives has been 
changed and the notation f = dx/dC intro- 

duced in obtaining Eq. 7-13. 

The iterative method for determining C is 
then: 

Step 1. Make estimate C= CQ 
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Step 2. Integrate the differential equation 
inEq. 7-12 with 

dx 
— (0)= C0, x(0) = 0, and Eq. 7-13. 
at 

A FORTRAN program was written to 
perform the iterative procedure. The program 
was run on an IBM 360-65 Computer and 
required approximately 0.1 sec per iteration 
and only four to six iterations to converge. 

Step 3. Make the adjustment in C 

Cl = C0 
dx _   /<# 
— (P /— (71 
dt      / dr  ' 

Step 4. Return to Step 2 with new esti- 
mate C= Ct , and repeat. 

The equations derived here must be 
changed only slightly to solve column prob- 
lems with other end conditions and other 
forms of cross section. 

The results for this design problem are 
given in Table 7-1 and Fig. 7-2. For loads 
above 6794 lb, the cross-sectional area is 
determined by ^4 = P/omiX and the resulting 
column is stable. A meaningful optimal design 
problem then exists only for P < 6794. 

7-3 A MINIMUM WEIGHT STRUCTURE 
WITH ANGULAR DEFLECTION RE- 
QUIREMENTS 

7-3.1  STATEMENT OF THE PROBLEM 

For a numerical example of this problem, 
let the cross section be circular with variable 
radius. In this case a = l/(47r). For the exam- 
ple, let omax = 20,000 psi,£ = 3x10' psi, and 
7= 10 in. 

The problem considered in this paragraph is 
the design of a portable communication tower 
of height L which will support a line-of-site 
transmission unit, a laser transmitter, for 
example. In order for the transmission beam 

P, lb 

TABLE 7-1 

RESULTS FOR COLUMN PROBLEM 

Volume, in.3 
Volume of 

Uniform Column', in. Saving,'. 

50 0.260 

100 0.361 

200 0.507 

500 0.806 

1000 1.140 

1500 1.408 

2000 1.640 

3000 2.048 

4000 2.412 

5000 2.765 

6794 3.397 

0.291 
0.412 
0.595 
0.923 
1.300 
1.600 
1.840 
2.260 
2.600 
2.910 
3.397 

10.6 
12.4 
14.7 
12.7 
12.3 
11.9 
10.9 
9.3 
7.3 
5.2 
0.0 

1 Minimum Weight Uniform Column 
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A r 

P=S0        P=100        P=500  P=1000 P= 1500 

P - 5000 

p = ei94 P = 2000   P = 3000 

Figure 7-2. Profiles of Optimal Columns 

to hit the receiving unit, the top of the tower 
on which the transmitter unit is mounted 
must undergo only a certain allowable rota- 
tion 6 when the tower is exposed to a given 
extreme uniform wind load Q pounds per unit 
length of tower. 

It is required that the tower be as light- 
weight as possible so that it may be trans- 
ported and erected without the aid of heavy 
machinery. For this reason, the design crite- 
rion is minimum weight. However, one addi- 
tional requirement must be placed on the 
tower. In transportation and election it must 
be strong enough so that it is not damaged by 
rough treatment. Therefore, it is required that 
the moment of inertia of the cross-sectional 
area of the tower be greater than a prede- 
termined limit I0 everywhere. 

The general configuration of the tower is 
shown in Fig. 7-3. Three vertical members 
with cross-sectional area A{t) are arranged on 
the vertices of an equilateral triangle of 
altitude hit). Here t is a coordinate measured 
along the length of the tower. In order to 
maintain the spacing of the vertical elements, 
small cross members are inserted. 

A(t) 

Figure 7-3.  Tower Considered 

It is assumed that the tower is constructed 
of a given material with density p. Further, it 
is assumed that ßh cubic units of material are 
required per unit height of tower in order to 
maintain the spacing of the vertical elements. 
The coefficient ß is to be determined from 
design experience. For this configuration the 
total weight of the tower is 

W=   \      3p lA(t)+ßh(t)) dt. 

Jo 

Since 3p is a constant, W is minimized if and 
only if 

V = i: [A(t) + ßh«)] dt (7-14) 

is minimum. The objective in the design 
problem is to choose/4(f) and h(t) for 0 < t < 
L, so that V is as small as possible and the 
given conditions are met. 

Lateral deflection of the tower due to the 
lateral wind load is determined by elementary 
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beam  theory.   The differential equation for 
displacement is (Ref. 14) 

EJ(t)x" = -M(t) 

where 

(7-15) 

E        = Young's modulus of the material 

I(t)    = minimum moment of inertia of 
the cross-sectional area of the 
tower 

x        = lateral displacement 

d2x 

dt2 

Mit)   = bending moment of tower. 

The moment of inertia of the cross section is 

considered in par. 6-4, define 

XI  —^ 

x^ =34 

with this notation and that of par. 6-4, the 
second-order equation 7-2 is equivalent to 

Xj - x2 — ft 

M _ 
El 

(7-17) 

The design problem will now be solved for 
two admissible configurations of the tower. 

In order to compare results obtained for 
the various configurations considered, a tower 
with properties of Table 7-2 will be treated. 

I«)=-A(t){h(t)]2. (7-16) 

In order to prevent damage in handling, it is 
required that 

I(t) > I0 > 0,   0 < t < L. 

or in the notation of par. 6-4, 

<j>=I0 -I(t)< 0,0< t-i L. 

If I(t) = /0 gives a tower with angular 
deflection less than or equal to 6 at the top, 
then this is the optimal tower and no further 
work is required. On the other hand, if this 
tower has angular deflection greater than 8, 
then the tower is not admissible and it is 
required that the angular displacement is 
equal to 0. This is the only situation con- 
sidered here. 

In order to fit this problem into the form 

TABLE 7-2 

CONSTANTS 

L  = 360 in. 

Q = 8.35lb/in. 

E =  3x 107 lb/in. 

6    = O.OOOlrad 

ß    = 0.25in. 

/„ =  172.8in? 

7-3.2 TOWER WITH  ONE  DESIGN VARI- 
ABLE 

For the problems considered in this para- 
graph, A(t) will be held constant with the 
value of A. Two ways of mounting the tower 
on the earth will be chosen. The first method 
will be to fix the base of the tower rigidly to 
the earth and leave the top unsupported. The 
second method will be to pin the lower end to 
the earth and support the top with guy lines. 
Since^4 is constant 
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r J 0 
V=   I     [A+h(t)]dt 

r Jo 
=AL+ß h(t)dt. 

Minimization of V in this case is equivalent 

to minimization of 

J = r Jo 
h{t)dt. (7-18) 

In the notation of par 6-4, 

/o =h(t). 

7-3.2.1 METHOD 1. TOWER WITH BASE 
RIGIDLY FASTENED TO THE 
EARTH 

The tower considered here is shown in Fig. 

7-4. The bending moment M(t) due to the 

Figure 7-4. Loading of Tower 

wind load Q is 

M(t)=-^(L-t)2 (7-19) 

where t is measured upward from the bottom 
of the tower; the other symbols are defined in 

7-8 

par 7-3.1. Eqs. 7-7 7 become 

x, — X-i 

, _ 3Q(L - t)2 

= fi 

h AEAh2 

with boundary conditions 

*,(0) = 0 

x2(0)=0 

x2(D = e 

(7-20) 

(7-21) 

The problem stated here will now be solved 
using Theorem 6-7. Define 

H = Xi x-i + Xj 
3g(l - t)2 

L   2EAh2 Xnh 

"('•-■M 
and 

G = yiXl(0)+y2x2(0) + y3[x2(L)-d]. 

The conditions of Theorem 6-7 yield 

A', = 0 

X2 = — Xi 

o=- = -x0-x2 
~6Q(L-t)2~ 

2EAhl 

4 
+ 11—Ah 

(7-22) 

(7-23) 

X1(I)=0. (7-24) 

The general solution of Eq. 7-22 is 
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X,(0 = Si 

Xa(0 = -€a -fi*- 

Condition, Eq. 7-24, implies £1 = 0, so 

Ai (0 = 0 

MO = -$a 
f7-2j; 

For the determination of A<7), two cases 
must be considered: 

Case 1: 4> = 0. In this case 

-Ah2 -I0 =0 

so 

/! = 3^o 
2A 

1/2 

= Ai 

Case 2: <t> < 0. In this case Eq. 6-128 is 

M0 = O 

Since Cases 1 and 2 cover all possibilities, 

1/3 

h ■It 3gagtf-Q2 

2£4 
or 

34 
24 

1/2 
(7-27; 

where by Eq. 6-131, the choice in Eq. 7-27 
must be made which makes 

H=-h 

a maximum. 

3tag(I-Q2 

4&4A2 

Let /* be a point of transition from one 
expression in Eq. 7-27 to the other. Since 
Theorem 6-7 requires H to be continuous, 
when the two expressions of Eq. 7-27 evalu- 
ated at t* are substituted into//, a common 
value must occur. 

Evaluate H as a function of both h2 and 
hi- 

and since <t> =£ 0,ju = 0. Substituting this result 
into Eq. 7-25, 

X       6£ag(J,-Q'_n r7-26; 

If X0 = 0, then, §2 
= 0 and from Eq. 7-26, 

Xi = X2 = 0. This, however, violates the 
condition stated in the first sentence of 

Theorem 6-7. Therefore, X0 =£ 0 and it is 

permissible to choose X0 = 2. 

Further, since X0 > 0, £2 > 0 in order that 

Eq. 7-26 hold. Eq. 7-26 then yields 

A = 
3£»Q(£-Q2 

2£,4 
= A, 

//(/i,) = ^i =-Ai 

1 "36aß(£-02" 
2 2EA 

A, -- 
hl 

J  A2 

H(h2) = H2 =-h2 

3{aß(£-02 

2£,4 

= -A2  
2 /* 
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Then 

3                   1  h2 
H2 -H, = h2 + A, + ö 2        l 2   2 2 h2 

2h] 
(2Ai +Aj)(A, -A2)

2 

If h2 < hi at any point i, thenA2 violates 

the constraint and h=hi.lfh2=h1 at any t, 
there are no alternative choices forA. If h2 > 

hi at any point t, the choice h = hi must 
maximize H{t); this implies H2 —//[ < 0. But 

this is impossible from the above because h i 

and h2 are always non-negative. Therefore, if 
h2 > hi , then it is required that h=h2. From 

this, it is concluded that 

form for 0 < t < t*. The problem is now to 

determine %2. 

The condition which has not yet been 

satisfied is x2(L) = 0. Substituting Eq. 7-27 

into Eq. 7-20 yields 

xi 

1 30 
1/3 

2  V 2EA 

for 0 < t < t* 

Q{L - t)2 

2/3     -2/3 
(L - t) '    %2       , 

^      2EI0 

, for t* < t < I 

r7-29; 

A(0 = maxtAjCr), A2(f)] withx2(0) = 0. 

Since h(t) is defined as the maximum of two 

continuous functions, h is continuous. It 

follows that all points t* of transition from 

one value of Eq. 7-27 to another can be found 

by equating the two expressions of h(t). 

The point t   is then determined by 
1/2 

hi(t*) = 
3/p 

2A 

_    3{aQ(j,_/»)i 
 2fe — 

1/3 

= Ä,(f*). 

This solution yields two values of f*. The 
requirement 0 «s ;* < L results in a unique 

value of/* 

3£' ■/a ii/4. 
2 Ai\ Q2 (7-28) 

For 0 < t < L, the first form of A in Eq. 
7-27 is monotone decreasing and is zero at f = 

L. It is, therefore, clear that the second form 
of A must hold forf* < t <z L and the first 

Integrating Eq. 7-29 first from 0 to f* (as 

given by Eq. 7-28) and then from t* to L 

yields 

3L5/3   /   3Q\1/3    -2/3 

**(L)=  15" I IS)     b 

£
1/V0

/12(23/4x3+10/0
/6)_r3/2 

(24)1/410ß1/2//4 

(7-30) 

Eq. 7-50 is solved numerically for £2. Once 

£2 is determined, then Eqs. 7-27 and 7-28 
completely specify the tower. Results are 
shown in Table 7-3(A) and Fig. 7-5(A). 

This design problem has been solved analyt- 

ically. As will become apparent as more 
realistic problems are treated, one should not 
expect to obtain solutions in this way. In 

most problems, numerical methods must be 
applied to solve the differential equations 
arising in the Theorem 6-7. 
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TABLE 73(A) 
WEIGHTS OF SIMPLY SUPPORTED 
TOWERS, ONE DESIGN VARIABLE 

A = 6.0 in. 

A = 6.6 in.2 

A = 6.9 in.2 

A = 7.2 in.2 

A = 7.9 in.2 

W = 2121.5 1b 

W = 2112.4 lb 

W = 2111.41b 

W = 2112.31b 

W = 2119.5 lb 

TABLE 73(B) 

WEIGHTS OF GUY-LINE SUPPORTED 

TOWERS, ONE DESIGN VARIABLE 

A = 3.9 in/ 

A = 4.2 in.2 

A = 4.434 in.' 

A = 4.5 in.2 

A = 4.8 in.2 

W = 1362.11b 

W = 1357.6 1b 

W = 1356.61b 

W = 1356.7 1b 

W = 1358.81b 

Cantilevered 

Number of 
Design 

Variables 0 

Best Weight       W = 2440.6 1b 

h = 63.7 in. 

A  = 7.96 in.2 

Cantilevered 

TABLE 73(C) 
WEIGHTS OF TOWERS 

hmax = 914in 

6.97 in.2 

Cantilevered 

Guy-line 

Supported 

Guy-line 

Supported 

12 0 1 

W= 2111.4 1b W=   1827.91b W =   1563.991b      W=   1356.61b 

h = 46 in. 

10.03 in.2   A   = 3.84 in.2 

hmax = 80 2 in hmax = 46 5 in 

4.434 in.2 

Guy-line 

Supported 

W -   1265.71 lb 

hmax = 36 55 in 

■■ 4.95 in.2 > 
3 o 
■o 
■«1 o 
O) 

(O 
M 
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(A) One Control Variable (B)  Two Control Variables 

Figure 7-5.  Tower With Base Rigidly Fastened 
to the Earth 

7-3.2.2 METHOD 2. TOWER WITH BASE 
PINNED TO EARTH AND WITH 

TOP SUPPORTED BY GUY LINES 

The tower considered here is shown in Fig. 

7-6. It is convenient here to locate the 
coordinate system at the top of the tower. 

The bending moment generated by the uni- 
form wind load Q is M = - g/2 t(t - L) so 

the differential equation for bending is 

EI(h)x" = — t(t-L) . 

Define xt = x and x2 = x[; this is equiva- 

lent to 

xi ~ xi — /i 

, _  Qt{f - L) _ 

2EI =/2 

(7-31) 

The boundary conditions in this case are 

*!(())= 0 

jca(0) =e } (7-32) 

x1(L)=0 

The quantity to be minimized is still given 

by Eq. 6-17. In the problem considered here, 

H = \iX2 +X2 

3Qt(t-L) 

4EAh2 

_X0A-M(/o ~4^2) 

G = ylXl(0)+y2[x2(0)-d] +y3Xl{L) 

Conditions of Theorem 6-7 are 

dXj _ 3/7 

dt       dx 
= 0 

d\2 _ dH 

dt  ~ dx-. 
= -X, 

Figure 7-6.   Tower With Guy Lines 

so 

Xj(0 = -b -iit. 

Also, 

\2(L) = 0 

This equation implies %2 = — £i I, so 
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X2 =f,(£ -t). 

Two cases must now be considered: 

Case 1. 0 = 0. In this case 

^Ah2 -/0=0 

so 

Ä1 
37o 
2A 

1/2 

(7-33) 

Case   2. <j>   <    0.   In   this   case M 

Substituting into dH/dh = 0, 

Xo 2£^ =° 

As in the previous case X0 =£ 0 so it is 
permissible to put X0 = 2 and obtain 

3$iQf(£-02 

2 £4 

1/3 

(7-34) 

Eqs.  7-33 and 7-34 along with Eq. 6-131 
yield 

h(t) or 

3^Qt(L-t)2 

2EA 

1/3 

(7-35) 

the  choice  in Eq.   7-35  being made which 
makes 

H=- h 

largest. 

3^Qt(L-t)2 

4EAh2 

The problem  is thus  solved when £,   is 
determined. In this case, analytical integration 

of Eq. 7-31 and solution of the boundary 
conditions, Eq. 7-32, for £x are not feasible. 
Therefore, the shooting technique of par. 6-5 
is employed. Numerical results for this prob- 
lem are given in Fig. 7-7(A) and Table 7-3(B). 

(A) One Control 
Variable 

(B) 'Two Control 
Variables 

Figure 7-7.   Tower With Base Simply Supported 
and Top Supported With Guy Lines 

The modification of Newton's Algorithm 
consists of using a correction of at most 10% 
of the values of the unknown iteration param- 
eters. It has been found in particular problems 
that where the Newton Method fails to 
converge, this method will converge. The rate 
of convergence, particularly for the first few- 
iterations, is slowed by the modification, 
however. 

7-3.3 TOWER WITH TWO DESIGN VARI- 
ABLES 

The same two methods of supporting the 
towers will again be considered. Here, how- 
ever, both A and h will be allowed to vary 

7-13 
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along the tower and play the role of design 

variables. 

Eqs. 7-16 and 7-17 remain the same in the 
present problem. However, fromEq. 7-14 

f0=A(t) + ßh{t). 

7-3.3.1 METHOD 1. TOWER WITH BASE 
RIGIDLY FASTENED TO THE 
EARTH 

Fig. 7-4 applies and Eqs. 7-19, 7-20, and 

7-21 hold in this problem. Substitution into 

Eq. 6-108 yields 

H = \\X2  + X2 

3Q(L - t)2 

4EAh2 

H[I0 - \ Ah2 

-\0(A+ßh) 

The equations for Xt and X2 are just as in the 

preceding work, so again, 

Xi (t) = 0 

X2(0 = -b • 

Since h plays the role of wj and^l the role of 

u2, Eq. 6-122 is: 

dH 

3/i 
.W-*^-,f,*-o 

7— = — X0 +   + M   -, 
5A ° 4EAh 3 

2 h2 =0. 

(7-36) 

As before, two cases must be considered: 

Case 1. 4» < 0. This implies p = 0. From 
Eq. 7-36, it is clear that X0 = 0 implies £2 = 0 

which contradicts Theorem 6-7. Therefore, it 

is permissible to take X0 
=  1- The system is 

then two equations for h and A with solution 

h(t) - (3iQ 
ß2E 

1/4 

a -t) V
2 

A{t) 
3t2Qß'< 

1/3 

(1-0 
I/2 

) (7-37) 

Case 2. 0=0. This is 

■jAh2=I0 (7-38) 

Eq. 7-38 along with Eq. 7-36 is a system of 

three equations in h, A, and n and solving for 

h and A yields 

«"-(-£ 
1/3 

A{t) ■ 
3/0|32 

. (7-39) 

The design variables are chosen by Eqs. 

7-37 and 7-39, depending on which makes H 

largest. The problem with differential equa- 

tions, Eq. 7-20, and boundary conditions, Eq. 

7-21, is now treated by the shooting tech- 

nique of par. 6-5. Numerical results are given 

in Table 7-3(C). 

7-3.3.2 METHOD 2. TOWER WITH BASE 
PINNED TO EARTH AND WITH 

TOP SUPPORTED BY GUY LINES 

Fig. 7-6 applies and Eqs. 7-31 and 7-32 

hold for this problem. Substituting into Eq. 

6-108 yeilds 

H = X1x2 +X2 
3Qt(t - L) 

AEAh2 

i 

X0(A + ßh) - Ji0 —jAh 

7-14 
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The equations for A,   and X2 are just as in 
the preceding case, so again 

Xi =n 

Xj ={,(£-/) 

Eqs. 6-122 forthe design variables are 

<sh 2EAh2 

+ M ■? Ah = 0 

»--    A,*i3Qftf_Q'     1     (7"40) 

dA '      4EA2h2 

+ p^ h2 =0 

As before, two cases must be considered: 

Case 1. <j>< 0. This implies M = 0. 

From Eq. 7-40, it is clear that if X0 =0, then 
£i = 0, and Xi = X2 = 0. This contradicts the 
theorem, so X0 =£0 and it is permissible to 
take X0 = 1. The system is then a set of two 
equations for A and A which yields 

hit) 3£ig 
ß2E 

1/4 

,1/4  (£ _ 0l/2 

1/4 
(7-41) 

A,t)-\(BfL)   ^a-ry/j 

Case 2. 0 = 0. This is 

(7-42) 

Eq. 7-42 along with Eq. 7-40 is a system of 
three equations for h, A , and M- Eliminating ju 
and solving for A and/4 yields 

hit) 

Ait) = 

3/oY/3 

40 

3/o0 

I (7-43) 

The design variables are chosen as in Eqs. 
7-41 or 7-43, depending on which makes H 
largest. The problem with differential equa- 
tions and boundary conditions, Eq. 7-20, is 
now solved by the shooting technique. Nu- 
merical results are given in Table 7-3(C). 

7-3.4 DISCUSSION OF RESULTS 

For both types of tower considered (simply 
supported and towers with top supported by 
guy lines), the variables A and h could be 
fixed at constant values, large enough that 
deflection requirements are met. For a given 
configuration of the tower, there is one pair 
of constant values A and h which yield a 
tower at least as light as any other combina- 
tion of constant A and h. For both types of 
tower, finding these values is a matter of 
simple algebra. Results for both towers are 
given in Table 7-3(C), referred to as towers 
with no design variables. With/4 held constant 
and h{t) treated as a design variable, the 
problem can be solved for several different 
values of A for both types of tower. Sum- 
maries of these solutions are given in Table 
7-3(A) and Table 7-3(B). If the tower weights 
are then plotted as a function of fixed values 
of A, a minimum, or best, weight canbe found 
(Table 7-3(C)). These optimum towers show a 
reduction in weight over the no design vari- 
able case of 13.5%and 13%for the simply 
supported and guy-line supported towers, 

respectively. Results for solutions of the 
problem when both^4(/) and hit) are treated 
as design variables are also given in Table 
7-3(C). These represent reductions in weight, 
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over the case where only the spacing h(t) is 
allowed to vary, of 6.1% and 6.7% for the 
simply supported and guy-line supported 
towers, respectively. Similarly, these towers 
represent respective reductions in weight over 
the completely uniform (no design variables) 
tower of 18.8% and 19%. 

All four configurations of the structure 
described in the preceding subparagraphs have 
been successfully prescribed by a digital com- 
puter approach. An IBM 360-65 Computer 
was used and the programs employed Runge- 
Kutta integration with the Newton's Method 
described in the text. Convergence depended 
on getting a good starting value for the 
multiplier £. This was made more difficult by 
the fact that £ has no physical significance so 
that, consequently, engineering intuition was 
no help. To find a sufficiently close starting 
value for £, (i.e., a value for which the error is 
of order two or less) several different values 
of £ were investigated, each increasing from 
the previous value by a factor of 10, and the 
first value very close to zero. Once a starting 
value that would allow Newton's Method 
iterate effectively was found, convergence 
occurred in ten or less iterations, taking less 
than two minutes of computer time. This 
time could be reduced with increased sophisti- 
cation of the computer program. 

maximum deflection at a given point could be 
among these. 

Note that Figs. 7-5 and 7-6 are not scale 
drawings of the towers, but are representative 
of the general shape of the respective towers, 
as viewed on one face. Sample profiles of the 
four possible structures are presented in Table 
7-3(A), (B), and (C). 

7-4 MINIMUM WEIGHT DESIGN OF 
BEAMS WITH INEQUALITY CON- 
STRAINTS ON STRESS AND DEFLEC- 
TION 

The problems treated thus far in this 
chapter have only design variable inequality 
constraints. In engineering design one often 
encounters problems in which it is required 
that the state of the system satisfies inequal- 
ity constraints. As seen in Chapter 6, state 
variable constraints are more tedious to treat 
and have features not encountered in prob- 
lems without state constraints. A class of 
beam design problems including state variable 
constraints is presented in this paragraph to 
illustrate some of the features and difficulties 
that can arise in this difficult class of prob- 
lems. While the problems solved are of limited 
practical value, they do illustrate typical 
features that can arise in state variable con- 
strained problems. 

Other optimal design problems can be 
approached with the method of this para- 
graph. Also, different parameters could be 
treated as variables. For instance, several 
materials of different densities and stiffness 
characteristics could be used in the same 
structure, and the choice could be left as a 
design parameter. The loading could be a 
function of the height above the ground 
rather than be constant. Other restrictions 
might also be imposed; maximum width or 

7-4.1  STATEMENT OF THE PROBLEM 

Beams which are loaded in a general way 
(such as in Fig. 7-8) are considered in this 
paragraph. The cross sections of the beams are 
assumed to depend on a vector parameter u(t) 
= [ux{t), u2{t), ..., um(t)} and to be sym- 
metric with respect to vertical and horizontal 
axes. The vertical axis of symmetry is as- 
sumed to lie in the plane of loading. The 
beams are made of a homogeneous, isotropic, 
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M~ rmTKl\ fl^rrjmh) 4 
M, 

r 
M7 RT 

V
MT 

where d is the distance above the neutral axis 
of the cross section. 

For each t, let dj [t,u(t),M(t),V(t)) , i = 1 
and 2, be the distances from the neutral axis 
where 

Figure 7-8. Beam Loaded in a General Way 

linearly elastic material with Young's modulus 
E. Small deflection, elementary beam theory 
is used throughout this paragraph. Also, the 
effect of the weight of the beam on deflection 
is neglected. 

Since,  for a  particular  beam,  the cross 
section is determined by u(t), 

A(t) =A[u(t)] (cross-sectional area), 

(7-44) 

7(0 =I{u(t)\ (moment of inertia), 

(7-45) 

b(t,d) = b[u(t),d]     (width of cross section 
atd), 

(7-46) 

Q{t,d) = Q[u(t),d]    (first moment of area 
above d, about the 
neutral axis), 

(7-47) 

ap(0 = 2 

\l2(t)b2lt,dl(t)])( 

11/2 

and 

t.     l | M\t)d\(.t) 

1/2 

l2U) 

V2(t)Q2U,d2(t)f 
I2{t)b2[t,di(t)], 

respectively, are the maximum principal 
stresses that occur in the cross section at t. 
The values dt and d2 may be determined by 
the methods of ordinary calculus, for each t. 

The problem is to determine u(t) so that 
the beam, subjected to a given ioading, 
contains as little material as possible and still 
satisfiesthe following conditions: 

1. Principal normal stress is less than or 
equal to some allowable normal stress 

and 

2. Principal   shear  stress  is less than  or 
equal to   some allowable shear stress 

C(0 = C[u(t)] (half-depth of beam), 

(7-48) 
3. Stiffness is bounded away from zero 

(otherwise  an  infinitesimal  change  in 
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load  can cause the deflection to be 
discontinuous). 

4. Beam   deflection   at   each   point   is 
bounded by two given functions   Xx (t) 
and X2(t), i.e., X^t) < x(t) <s    X2(t) 
withX,(f) < X2(t). 

In structural design problems, it is fre- 
quently sufficient to require only that the 
maximum flexural stress be less than <Jmax 

and the maximum direct shear stress be less 
than 7-max. These conditions are considerably 
easier to enforce than the conditions on 
maximum principal stress. 

If the beam is subjected to several loadings, 
then the problem is more tedious but is no 
more difficult mathematically. Corresponding 
to each loading there is a a deflection curve, 
bending stress, and shear stress that must 
satisfy the stated conditions. 

Further, since the beams are made of 
homogeneous material, the weight of a beam 
will be minimum if and only if its volume is 
minimum. Therefore, in the following the 
quantity to be minimized will be volume. 

The given problem is now stated mathe- 
matically: A vector function w(f) is sought 
which causes the functional 

J A [u{t)\ dt (7-49) 

to be a minimum subject to the following 
conditions: 

where q(t) is distributed load; 

S,[x<'>(0), xa\T}] = 0, s = 1, .... B, i < 3; 

(7-51) 

a (t) < a py ' max (7-52) 

for  all  f  in (0,T), where M(t)  is bending 
moment; 

TpW-<   Tmax (7-53) 

for all t in (0,70 where V(t) is shear; 

/[«(/)] >/o. (7-54) 

where I0 is a constant greater than zero; and 
for all/in (0,71, 

Xi(t) <  x(t) < X2(t) (7-55) 

It is assumed that the functions appearing 
above have the following properties: 

1. q has a piecewise continuous derivative 
in (0,70. 

2. A,  I,   C,   and Q are piecewise twice 
continuously differentiable. 

3. X,   and X2   have  continuous  second 
derivatives in (0,70. 

A   solution   is   sought   with  the  following 
properties: 

1. uXt), j = 1, ...,m, are piecewise continu- 
ous in (0,71. 

d2 d2x\ 
q(t) (7-50) 

2. x(t) is piecewise four times continuous- 
ly differentiable in (0,70- 

at all but a finite number of points in (0, T), 
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maximum direct shear stress are to be 

bounded by amax and rmax , respectively, 

constraints, Eqs. 7-52 and 7-53, are replaced 
by 

|o(r)| = 
\M{t)\ C[u(t)] 

I[u(t)] 
(7-56) 

and 

\T(t)\ = 
W(t)\Q[u(t),d3(t)] 

I[u(.t)]b[u(t),d3(t)] 
(7-57) 

for all t in (0,T) where d3(t) = d3 [t,u{t), 
M{t), V(t)\ is the distance from the neutral 

axis where the absolute value of the direct 

shear stress is largest. The distance d3{t) may 

be determined by the methods of ordinary 

calculus. 

In the case of beam design with multiple 

loading requirements, there is still just one 

design variable u{t). However, c rresponding 

to each loading there is an additional state 

variable (deflection) that must satisfy condi- 

tions identical in form to Eqs. 7-50 through 

7-55. The problem is to determine u(t) so that 

the functional, Eq. 7-49, is minimum subject 

to the condition that Eqs. 7-50 through 7-55 

are satisfied for each loading. 

7-4.2 NECESSARY CONDITIONS FOR THE 
BEAM DESIGN PROBLEM 

The treatment which follows applies only 

to statically determinate beams, i.e., beams 

loaded in such a way that reactions at all 

supports (and hence also shear and bending 

moment) are determined completely by the 
conditions for equilibrium of the beam. 

Changes in formulation of the problem which 

are necessary to consider statically indeter- 

minate problems will be indicated below. 

In the statically determinate case, the 

differential equation, Eq. 7-50, and the 

boundary conditions, Eq. 7-5 1, reduce to 

d2x 

dt2 

Mjt) 

EI{u) 
(7-58) 

and 

g ,[x(0),x'(0),jc(r),*'(O] =0, 

5= 1,2. (7-59) 

The boundary-value problem, Eqs. 7-58 

and 7-59, is equivalent to a boundary-value 

problem with a system of first-order equa- 

tions. The new problem may be written as 

dxx 

~ 

dx2 

~~dT 
Mjt) 

EI{u) 

(7-60) 

(7-61) 

and 

gs[x1(.0)>x2(0),xl(D,x2(T)] =0, 

s = 1, 2 (7-62) 

w here x t is defined to be x. In terms of this 
notation, Eq. 7-57 becomes 

jr,(r)< JC,(O< Jr2(0. 

It is now clear that the beam design 
problem is contained in the class of problems 

to which par. 6-4 applies. The quantities 

appearing in par. 6-4 will now be identified 

with the physical quantities associated with 
beam so that necessary conditions for the 
beam design problem may be stated. 

Conditions,   Eqs.   7-52,   7-53,   and   7-54, 
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correspond to Eqs. 6-101; Eq. 7-55 corre- 
sponds to two restrictions of the type ex- 
pressed by Eq. 6-132. The differential equa- 
tions, Eqs. 7-60 and 7-61, correspond to Eqs. 
6-97, where 

/l   =*2 

/»=■ 

M(t) 
EI(u) 

(7-63) 

(7-64) 
(7-66) 

EI(u) 
*2 (0,04=0 

and in Eq. 6-96 

fo=A(u). 

and 

(7-65) 

The ends of the beam are located at the 
known points / = 0 and t = T. Therefore, t° 
and t' in the general variational problem are 
known. Also, boundary conditions will 
generally be separated; i.e., some conditions 
will be given at 0 and others at T. 

The state variable constraints, Eq. 7-55, are 
of second-order since 

j* v*2 — xO — Xj — x\ - X2 —x2 

is not an explicit function of u, but 

05,05  <  0 

(7-67) 

EI{u) 
+ X"1(t),4>5 =0 

Since the only explicit dependence of Eqs. 
7-52, 7-53, 7-54, 7-63, 7-64, and 7-65 on t is 
through M{t) and V(t), the points of discon- 
tinuity of functions (f in par. 6-4) are 
denoted wa , including points of discontinuity 
of M{t) or V(t); i.e., the o)a correspond to 
points of application of concentrated loads or 
moments. Therefore, the w   are known. 

At each point f~, the deflection curve is 
tangent to one of the curves 

mr(*a -x1)=X"2(t)-x'i(t) xi =X1{t) (7-68) 

or 

X'i(t) + 
EI(u) 

is an explicit function of u. The same argu- 
ment holds for xx —Xl > 0. 

In terms of the notation of Eq. 6-101, 

*'=Vf)-%x*° 

*        P max 

X2{t) (7-69) 

and there is a neighborhood of t~ in which 
this is the only point of tangency. 

At each t~, the deflection curve becomes 
tangent to one of the curves, Eqs. 7-68 or 
7-69. Further, there is a neighborhood of t~ 
in which Eq. 7-55 is a strict inequality to the 
left of t~, and Eq. 7-68 or Eq. 7-69 holds to 
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the right of t~. At the corresponding point t*, 

the deflection curve leaves Eq. 7-68 or Eq. 
7-69. Eq. 7-68 or Eq. 7-69 then holds in {t~, 

/*), and Eq. 7-55 is again a strict inequality 

immediately to the right oft:. 

If x,(0) or *i(r) is not fixed by the 

boundary conditions of Eq. 7-62, then one 

part of Eq. 7-55 may be an equality at 0 or 7. 

In this case 0'5' of Eqs. 7-66 and 7-67 need not 
be zero. 

The t* are points where one or more of 

Eqs. 7-52, 7-53, and 7-54 changes from strict 

inequality to equality. Condition, Eq. 6-105, 

is assumed to hold at these points. 

According to Eqs. 6-106, 6-108 

H = - X0,4 («) + Xt x2 — X2 

M{t) 

Eliu) 

Hi 01   — 11242 —  11343 

M4 04,2   ~Ms 05,2 

G=  2   7sgs + ZyB+a(t-o>a) 
s - 1 a 

M7-70) 

G = T0|4>6   04 (tß ) + T7]4)6 04 Op 

+ 7"Ö,5,5   05 (^)+ '"1,5,6   05 OJ) 

+ '"0,4,f 04(^) + '"l,4,/- 04 0r") 

+ TÖ.S.r 05 0,") + Tl,5,r 05 (0      , 

Theorem 6-9 and Eq. 7-70 yield Theorem 
7-1. 

Theorem 7-1: Necessary conditions for the 
minimum weight beam problem are: 

dxt 
= x2 (7-71) 

and 

dx2 

It 
M{t) 
Eliu) 

(7-72 

at all but a finite number of points ir 1(0,7) 

X0 > 0 

*i=*i 

x2 =h -Hit 

and 

Xo + X? + X^ > 0 

for all t in (0,7), where £j and £2 may have 
different values in subintervals of (0,7) which 

are bounded by the tt and t~; 

A.Q  — A2  
du. du. 

Mit) 

Eliu) 

-—  [Ml 01   +M2 02  +M3 03 
au. 

(7-73) 

+ M4 04.2 +M5 05,2l =0,/= 1, ..., m 

M,-0, = O,i= 1,2,3, (7-74) 

and 

M4 04.2 = MS 05,2 =0 (7-75) 

at all but a finite number of points in (0,7); 

X.(«a+0)-V«a -0) = 0, 

i= 1,2 (7-76) 
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M^ + 0)_A,0;_0)-rö4r 

+ rösr=0 (7-77) 

\2(t~r + o)-\2o;-o)-T~l4l. 

+ r~lSr =0 (7-78) 

Xi(^+0)-X,(f- -0)-rÖ4S 

+ To 56=0 (7-79) 

X2(f-+0)-X2(r--0)-r746 

+ TTs6=0 (7-80) 

H(&a+0)-H(ua-0)+yB + a=0 

H(t~r + 0) _//(?r _ 0) - T~04 X'2 (g 

-Ü^X'Ut^ + T^rXW;) 

+ ÜSrX'l(t'r)=0 (7-81) 

^(/- +o) _H{t- -O)-7ö46 ^ap 

-TT46 ^'Op+röss X'i(/-) 

+ T75 6 ^i'(C) = 0 (7-82) 

//a;+o)-//(r*-o)=o 

and 

H(t+
B +0)-H{t* _0)=0 

for all <x, r, 6, and ??; at each of the points S = 

tr and t~ , either 

0, (S) = <j>\ (S) = 0 (7-83) 

or 

02 (5) = 02 (S) = 0; (7-84) 
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the boundary conditions gs = 0, s = 1, 2, must 
be satisfied along with the conditions 

fc. 

V°) = I?1^äv«- i= 1,2 (7-85) 

and 

3*, 
(7-86) \.{T)= i   7  —,i= 1 2- 

and the Weierstrass condition 

H(xe U, X., t) < #(*,, u, x,, /; 

must be satisfied for each t in (0,T), where £/ 
is any function which along with*! and x2 

satisfies Eqs. 7-52, 7-53, 7-54, 7-55, 7-60, 

7-61, and 7-62 with u replaced by U. The 

statement of Theorem 7-1 is now complete. 

If there is only a scalar control variable 
u(t), then the condition of Eq. 6-105 will be 

violated at points t* which are intersections 
of intervals in which Eq. 7-52, 7-53, or 7-54 is 

an equality. With an additional hypothesis, 

however, the conclusions of Theorem 7-1 are 

still valid. 

At a point t* =£ coa, it is assumed that 1^1 = 

i>2 = 0, where 4/t > 0 and i//2 > 0 are any 

two of the constraints of Eqs. 7-52, 7-53, and 

7-54. If ^ is defined as 4/ = min (\pi ,02), then 

i > 0 replaces the conditions 4*i > 0 and 4>2 

> 0. It is assumed that d^t/du and 9i//2/3« 
are not zero at t*. The new constraint now 
satisfies the conditions of Eq. 6-105. 

If Theorem 6-8 is applied to the new 
formulation of the problem, the result is 
identical to Theorem 7-1 with the exception 
of Eqs. 7-73, 7-74, and 7-76. However, the 

new  conditions on u are identical to those 
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implied by Eqs. 7-73, 7-74, and 7-76. The 
roles played by Mi and ß2 

in Theorem 7-1 
would simply be combined in a new variable 
M. This result may be stated as Corollary 7-1. 

Corollary 7-1: Let there be a scalar design 
variable u(t) and assume that any two of the 
inequality constraints, Eqs. 7-52, 7-53, and 
7-54 are equalities at t*. If the first partial 
derivatives of these two constraint functions 
with respect to u are not zero at (*, then 
Theorem 7-1 holds. 

finite number of unknown constants, or 

2. The beam is supported in such a way 
that an infinite number of constants are 
required to specify the reactions (e.g., abeam 
on an elastic foundation). 

In the first case, the unknown constants 
appear in the expressions for M and V. By 
defining new state variables, x( with i > 3, to 
be these parameters, the following differential 
equations must be satisfied: 

One further result may be easily obtained. 
If b\j/1/du and d\p2/du are nonzero at t* and 
are of the same sign, then u is continuous at 

To prove this, it is supposed first that 
d\pjdu > 0 and u(t* + 0) = u(t* -0)-E,E 

>  0. Taylor's theorem (Ref. 16, p. 56) implies 

\p1[t*,u(t*+0)] =\p! [t*,u(t*-0)] 

d$1[t*,u(t*-0)-0e] 
du 

where 0 < 8 < 1. But, d^ißu > 0 and e > 0, 
so 

0 = $i [t*,u+Q)] < ^, [t*,u(t* -0)] =0 

which contradicts the assumption E > 0. An 
identical argument holds in the remaining 
cases, so"[t*,u(t* -0)] =0. 

7-4.3 STATICALLY INDETERMINATE 
PROBLEMS 

A statically indeterminate beam may be 
classified as one of two types: 

1. The beam is supported in such a way 
that all reactions are determined to within a 

dxi 

0,i> 3. 

In this way, statically indeterminate prob- 
lems of the first type are reduced to varia- 
tional problems to which Theorem 6-8 ap- 
plies. 

For statically indeterminate problems of 
the second type, however, more basic changes 
in formulation must be made. The fourth- 
order differential equation, Eq. 7-50 must be 
treated since q(t) may be q[t,xl{t),x2(t)}. 
The fourth-order equation is equivalent to the 
first-order system 

= x2 

dx2 = x3 

dt EI(Uj) 

dx3 

dt *4 

and 

dx* 
dt 

-q{t,xx,x2) 

where xx = x, x3 = M, and x4 = V. Theorem 
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6-8 now applies to statically indeterminate 
problems of the second type. 

7-4.4 SOLUTION OF THE EQUATIONS OF 
THEOREM 7-1 

The Lagrange multipliers, X0, Xu X2, are 
not uniquely determined by Theorem 7-1. 
However, if the solution, x(t) and u{t), is 
normal (Ref. 17, p. 214) for the problem, it is 
permissible to put X0 = 1. Theorem 7-1 then 
determines the remaining \i uniquely. Abnor- 
mal solutions are peculiar in that there may 
be no other functions, x(t) and u(t), near 
them which satisfy the conditions, Eqs. 7-50 
through 7-55. The procedure adopted in this 
subparagraph is to assume there is a normal 
solution and then attempt to solve for it. If 
this fails, there is either no solution or the 
solution is abnormal, in which case a special 
analysis is required. In the following, X0 will 
be taken as 1. 

In order to determine u{t), consider any 
interval in which z 0 Q Z < 4, of the 
inequalities, Eqs. 7-52 through 7-55, are 
equalities and the remaining 4 — z are strict 
inequalities. Eqs. 7-74 and 7-75 show that the 
4 — z multipliers corresponding to the 4 — z 
strict inequalities are zero. Then, Eq. 7-73 is a 
system of m equations in the m functions 
uAt) and the z nonzero multipliers. Further, 
the z equalities of Eqs. 7-52 through 7-55 
yield z equations in the uÄt). Thus, there are 
m + z equations which are to determine the m 
+ z unknowns. The nonzero ßXt) are first 
eliminated and the u,{t) are then found as 
functions of t and the parameters £t and £2. 

T1 .+ 3 r can be eliminated and the tr deter- 
mined as functions of the parameters £t and 
£2. Note that £1 and £2 to the left of t~ need 
not equal £1 and £2 to the right. In exactly 
the same way, the t~ are determined by Eqs. 
7-79, 7-80, and 7-82. Continuity of H at t* 
and t* determines the ft and t* as functions 
of £1 and£2- 

The equations previously enumerated 
determine u-, t* tr, f^, and t* as functions of 
t, £1; and £2. The problem would be solved 
by direct integration of Eqs. 7-71 and 7-72 
and application of g{ = g2 = 0 if |t and £2 

were known. 

The conditions which determine ^ and £2 

are Eqs. 7-83, 7-84, 7-85, and 7-86. Eqs. 7-85 
and 7-86 after elimination of7i and y2> yield 
two equations in £j and £2. If there are w of 
the points tr and t~ , they subdivide (0,T) into 
w + 1 subintervals. Since these are the only 
possible points of discontinuity of Xj and X2 , 
there are just w + 1 pairs, £1 and £2, which 
represent 2w + 2 unknown. Thus, there are 
2w + 2 equations from which the 2w + 2 
values of £] and £2 may be determined. If this 
is not the case, the problem has no solution or 
the solution is abnormal. 

It is assumed now that u{f) and points t'r 

and t~ are known functions of £t and £2. A 
numerical method is developed which can be 
used to solve the equations given above for £1 
and £2. A numerical solution is required since, 
even for very simple problems, the function 
fi(t&\ ,£2) is far too complicated to integrate 
in closed form. 

At points tr one part of Eq. 7-55 is an 
equality, say the jth part (j ~ 1 or 2). In this 
case, only T

0i/ + 3|,. and Tij; + 3,r can possibly 
be nonzero. Eqs. 7-77, 7-78, and 7-81 are 
three   equations   from   which   i"0/ + 3r and 

Expressions, Eqs. 7-85 and 7-86 generally 
yield two easy relations between £j and £2. 
Eqs. 7-83 and 7-84, however, require succes- 
sive integration of /20,£i ,£2). To complicate 
matters,   some  limits of integration are the 

7-24 



AMCP 706-192 

points t~ and t~, which are themselves func- 

tions of £1 and £2. Therefore, Eqs. 7-83 and 
7-84 form a system of nonlinear, finite 

(nondifferential) equations in£i and £2- 

A Generalized Newton Method (Ref. 18, p. 
220) is used to solve this set of equations. A 
generalization of Leibniz' Rule is used to 

compute the required derivatives of integrals 
with variable limits of integration. This rule is 

(Ref. 16, p. 80). 

d_    (sAr. 

dT    )gl(T. 

■I 

h(t,r)dt 

g^T)   bf2(t,T) 
dr 

+ f2  [g2(T).T] 

~h  [gl(T),T] 

dt 

dg2 (T) 

dr 

dgt (r) 

dr 

(7-87) 

where 9/2(f,T)/dr is piecewise continuous, and 

g, and g2 are differentiable. It is assumed, 

also, that f2 and 9/2 /dr are continuous at t = 
gi(r) and g2(r). 

7-4.5  BEAMSWITH RECTANGULAR 
CROSS SECTION OF VARIABLE 
DEPTH 

Three examples are considered in this 
subparagraph. In each example, the beam 

cross section is rectangular with fixed width 

and variable depth. Also, the constraint, Eq. 

7-55, is taken as 

First, the equations of Theorem 7-1 are 

written out in detail and simplified for the 
case of beam with rectangular cross section of 
variable depth. In pars. 7-4.5.1, 7-4.5.2, and 

7-4.5.3, three specific examples are con- 

sidered. These examples range from an easy 
problem in par. 7-4.5.1 to a rather complex 
one in par. 7-4.5.3. 

The cross section considered here is shown 

in Fig. 7-9. For this particular cross section, if 

Figure 7-9. Rectangular Cross Section 

rmax * 1/2amax> ^ 7"52 and 7-53 are 
satisfied if and only if Eqs. 7-56 and 7-57 are 

satisfied. This result may be proved by ex- 

pressing o and T as functions of d and 

applying methods of ordinary calculus. The 

restriction rmax > 1/(2 omilx) is necessary, 

since at the extreme fiber of the beam, the 

principal shear stress is half the principal 

normal stress. This relation between rmax and 
amax 's no restriction for design of metallic 
beams. Yield stresses for steel and other 

common metals satisfy this condition. 

In   this   case,  there   is  only   one   design 
variable h(t); Eqs. 7-44 through 7-48 are 

- A < x(t) < A 

where A > 0 is a constant. 

(7-88) 
Ht)=—h3(t) 

A{t)=bh(t) 

(7-89) 

(7-90) 
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bit) 

Qit)=~h2(t) 
O 

(7-91) 

(7-92) 

and 

C(t)=-h(t). (7-93) 

M(t) and V{t) are assumed to be known, 
piecewise twice continuously differentiable 
functions of t whose discontinuities occur at 
points t = wa . 

In   any   interval   where   Eq.   7-54 is  an 
equality, 

bh3 (t) 
12 -Io 

so 

hit)- 
12/p 

b 

1/3 

(7-95) 

In any interval, its, f J), where Eq. 7-88 is 
an equality, direct differentiation and use of 
Eqs. 7-71 and 7-72 yield 

Eqs. 7-89 through 7-93 and Eq. 7-70 along 
withXo = 1, yield 

H= -bh + \xx2 - A2 
12M(Q 
Eb 

A"3. 

(7-94) 

The procedure outlined is now used to 
determine A(f)- In any interval where Eq. 7-56 
is an equality, 

0 = —LiM^i; 
Eh2 (t)' 

(7-96) 

In order for Eq. 7-96 to be satisfied, it is 
necessary that Mit) = 0 (hence also V{t) = 0 = 
gO)) must be identically satisfied in (t~, /*). 
ff this is the case, hit) is given by Eq. 7-95. 

61AfC0l 

bh2it) 

so 

hit)- 
6\M(t)\ 

bo„ 

1/2 

In any interval where Eqs. 7-56, 7-57, 7-54, 
and 7-88 are all strict inequalities, Eqs. 7-84 
and 7-75 show that M,(f) = 0, i = 1,..., 5. Eq. 
7-73 then is 

■6+ X2 (0 
36M(r) 

£6 
h-*it) = 0     (7-97) 

In   any   interval   where   Eq.   7-57 is  an 
equality, 

3Wit)\ 

Ibhit) 

so 

*(') = 
3|K(/)| 
26T„„„ 

so 

A(0 = 
36X20)M(f) 

£Z>2 

1/4 

It is worthwhile to note that in order for 
Eq. 7-97 to hold the product \2it)M(t) must 
be positive. That is, X2(0 andA/(/) must have 
the same algebraic sign throughout any inter- 
val in which Eq. 7-97 holds. 
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In a more compact notation, 

3|K(f)l 

h(t)=4 

2b T 

1/2 
6|M(Q| 

12/p 

36X2 (f)Jtf(?) 

if|T|=T„ 

if I a I = a„ 

1/3 
(7-98) 

Eb2 

1/4 

if/ = /, 

if IT I < T„ 

V 
|a| < a max' 

and I > I0. 

The Weierstrass condition shows that the 

largest of the expressions in Eq. 7-98 is the 
proper value of h{t). 

Eq. 7-98 in Eq. 7-64 yields 

/(f) = 

-CtMiowior3, iflrl=Tmax 

-C2|M(r)r]/2 

xsgn [M(t)], 
'     iflal = amax 

1      1 if/= 4, 
(7-99) 

-c3ix2wr3/4   ' iflTl<  rmax 

x \M(t)\lh 
'    lal< ömax> 

k   x sgn [M{t)}, and I > I0, 

where 

Ci =- 
32b2T3 

m ax 

c2 = ( 
2b a3     x1" max  \ 

J 
\ 3£2     / 

-=( 
'4ft*V'4 

\ >9E) 

and the function sgn ( 
relation 

q sgn(<?) = q 

for real g 

) is defined by the 

Equations which determine the special 

points t;, t*, t~, and t* may now be found. In 

the problem at hand, Xx (t)a.n& X2 (t)are 

constant, so their derivatives are zero. Eq. 

7-81 is then 

H(t;-0)=H(t; + 0) (7-100) 

Experience has shown that on both sides of 

t-, Eqs. 7-56, 7-57, and 7-54 are strict 

inequalities. Assuming this is this is the case, 
Eqs. 7-94 and 7-98 together with Eq. 7-83 or 
7-84 may be used to simplify Eq. 7-100. The 

result is 

[x2ö;-owa;-o)]1/4 

= [x2(/; + 0W(/; + 0)]"4 . (7-101) 

Eq. 7-98 and / > 0 imply M(t;) # 0, so if 
M(t) is continuous at t;, then Eq. 7-101 

reduces to 

X2(f;_0)=X2(f;+0) (7-102) 

9E 

Points   of   discontinuity   of M{t)   must  be 

checked in Eq. 7-101 as possible t-. 

Eq. 7-96 shows that points t* and t~ can 
occur only in intervals where M(t) (hence also 
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V{t) and q(t)) is identically zero. Since this 

situation is not common in practical prob- 

lems, such intervals will not be discussed here. 

According to Theorem 7-1, the points t* 

are determined by the condition 

mrv -o) = H«I + o) (7-103) 

By direct computation it is seen that the 

partial derivatives with respect to h of the left 

sides of 

1 max 

\a | -a        < 0 1      ■ max 

and 

/„ -  KO 

are all negative at points where M(t) ¥= 0 ¥= 

V(t). The result stated just below Corollary 

7-1 then shows that points of intersection of 

intervals in which one or more of the above 

inequalities is an equality may be determined 
by the condition 

-b 
2br 

V{Q) 

C,X2(ß)M(ß)| V(Q) 

1/4 

■•(£) [X2(ß)M(ß)] 

1/4 

1/4 

-C3[X2(ÖMÖ)1 

Using the definition of C3 in this equation 

and manipulating the result yields 

3|K(g)r      ^64ft»T„,.x 

X2(ß)M(ß) 9E 

1/4 

V{Q) I4 

Mö)M(ß) 

By putting 

3/4 
64b2 T* 

9E 
0. 

(7-105) 

K(ß) 
l'/4 

LMß)Mß)J 

and 

C = (64b2 

±-9E- max/ 

1/4 

W„ -o; = w; + o) (7-10-/; 

If Eq. 7-104 is used to determine t*, then 

points wa must be checked in Eq. 7-103 as 

possible t*. 

Let Q = f * ¥= wa be defined to be a point 

of intersection of two intervals such that |r| = 
Tmax on one s^e of t = Q and Eqs. 7-56, 
7-57, 7-54, and 7-88 are strict inequalitieson 
the other. Point Q is to be determined by Eq. 
7-103. Due to continuity at t = Q, Eq. 7-103 

may be written as 

Eq. 7-105 becomes 

3P4 -4CP3+(A = 0. 

The roots of this equation in P are C, C, C( 1 + 

v/2/), and C(l - >/20, where /2 = - 1. The 

fourth powers of the last two roots are not 
real, so the only real solution of Eq. 7-103 is 

I V(Q) 
( 64b2r«     \ _ /  max \ 

A    9E I X2(ß)JM(ß). 

(7-106) 
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Similarly, S = /* ¥= co is defined to be a 
point of intersection of two intervals such 
that lcr| = amax on one side of S and Eqs. 
7-56, 7-57, 7-54, and 7-88 are strict inequal- 
ities on the other. Just as above, Eq. 7-103 
reduces to 

3P-4CP +C4 =0 

where 

p = 
~M{S)~ 

U2(S)J 
-1 1/4 

and 
1/4 

Therefore,  the  only real solution of Eq. 
7-103 at t = Sis 

JH(S)=l-=^-IX2(S). (7-107) 

In deriving Eqs. 7-106 and 7-107, it was 
assumed that Q and S were not equal to any 
<jöa. The coa are, therefore, possible choices 
for Q and S and must be checked in Eq. 
7-103. 

In particular problems, the following two 
identities are used: 

n: 

f(v)du = {C-B)   \    f{v)dv 

+   I      1   f{y\)dr\dv 

+   I      I   f(n)dt\dv, (7-108) 

where A < B < C, and 

fcn,a)d'f)dv da U*.<«)  J*,0») 

drjdv 

dg i(a) 
x /tei(a), a] Ja 

+ rp.oo 
/(Tj,a)dT) 

d*2 (a) 
da 

(7-109) 

Leibniz' Rule, Eq. 7-87, is used repeatedly to 
obtain Eq. 7-109. 

7-4.5.1 A    PROBLEM   WHICH    CAN    BE 
SOLVED ANALYTICAL LY 

As a first example, the cantilever beam of 
Fig. 7-10 is considered. This problem is simple 
enough that a solution can be obtained 
analytically. 

Boundary conditions for this beam are 

*i(0)=*2(0) = 0. (7-110) 

) 

Figure 7- 70. Simple Cantilever Beam 
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The bending moment and shear are 

M(t) = M > 0 (M constant) 

and 

V(t) = 0. 

For simplicity, let /0 >  0 be small enough 
so that 

and 

(l2/0\
1/3    <   (jM    ) 

1/2 

If this is the case then I(t) > I0 for all t. 
Further, since r(t) = 0, Eq. 7-98 may be 
simplified to 

([" 
h(t) =< 

6M     ' 

bo max _ 

36X2(.t)l M 

Eb2 

1/4 

if|a| = <7„ 

if la I < a_ 

(7-111) 

Also, Eq. 7-99 becomes 

/2(0=< 

2ftc»    \1/2 

 ^H ,   if | a | = a 
3E2M   ) '     '        max 

4i2M\1/4 - 3/4 
|Xj(OI 

9E 

(7-112) 

Integration of the differential equations 

dXf 

IF 

7-30 

= x-. 

dx2 

and application of Eq. 7-1 lOyields 

l: *2(0=|   Mn)dv 
o 

(7-113) 

and 

*i(0 = l:|: f2(r))dr)dv (7-114) 

The inequality /2(f) < 0 and Eq. 7-113 
imply x2 < 0 in (0,7), so there can be no 
points t~. The only possible point at which 
Eq. 7-88 is an equality is t = T. Since f2{t) < 
0, Eq. 7-114 implies x1(t) < 0. Therefore, if 
Eq. 7-88 is an equality, it must be Xi(T) = 
— A. Further, since there are no t", t\, t~, or 
wa, \i and \2 are continuous and there is 
only one pair of constants, £1 and %2, to be 
determined. 

It is assumed first that xx(T) > —A. In this 
case, Eq. 7-86 implies 

Xi(D = f1=0 

and 

*i(T) = t2 -7-^=0 

which in turn implies (^ = £2 = 0. Since A2 = 
0 throughout (0,7), the second part of Eq. 
7-111 cannot occur. Therefore, the beam of 
minimum weight is uniform. Eqs. 7-112 and 
7-114 then yield 

Ci(r)=-(-5^rJ   T 
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Therefore, Eq. 7-111 with |o| = crmax is the 
solution of the problem provided the deflec- 
tion requirement A is such that 

bo3      TA 
max 

6E2M 
(7-115) 

If the deflection requirement A does not 
satisfy Eq. 7-115, then it is necessary that 
xt(T) = — A. Otherwise, this argument would 
hold, and the deflection at T would violate 
Eq. 7-88. Therefore, the additional boundary 
condition, 

g3=xl(D + A = 0, 

must be satisfied. The two constants £i and 
£2 must now be found. 

The only useful relation given by Eq. 7-86 
is 

This implies £2 = £1 T, so that 

X2(D = £,(r-0, 

and only £1 remains to be found. 

On physical grounds, it is expected that the 
beam should be stiffest near / = 0 in order to 
reduce the deflection at T efficiently. Also, 
since X2 is largest at t = 0, the second part of 
Eq. 7-111 would tend to stiffen the beam 
there. It is assumed, therefore, that there is 
just one point t* having I a I < amax on its 
left and I a on its right. Eq. 7-107 for 
r* is 

M 
(a2     \ I     max |t (T-t*). (7-116) 

Eq. 7-114 with t =  T may be integrated 
using Eqs. 7-108and 7-112 and becomes 

>*A/V/4 

xdT) = (T-t*)A\—^-j 

Xf1-^[(7'-r*)1/4 -r1/4] 

A (4b2M\ 
9E   j 

1/4 

x?r3/4[-|(r-f*)5/4 +T1/4-t* 

2bo3    \1/2 
max \ (j _ t*\2 

3E2M 

The right-hand side of this equation may be 
simplified by eliminating either £1 or t* 
through use of Eq. 7-116. Since ^ does not 
have as much physical significance as t*, it is 
eliminated. The conditions x^(T) = — A 
becomes 

A = l'2fcgmax 
3E2M 

1/2 

10 
(T-t*)2 --f-TW (T-t*) 

3/4 

(7-117) 

The derivative of the right side of Eq. 
7-117 with respect to t* is zero at t* = T and 
positive everywhere else. This means that Eq. 
7-117 has at most one solution. Eq. 7-116 
then determines £1 and the problem is solved. 

As a numerical example, the beam of Fig. 
7-10, having the following properties, is con- 
sidered : 

T= lOin. 

b= 1 in. 

ffmax = 30,000 lb/in.2 
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E = 107 lb/in.2 

and 

M = 450 in.-lb 

If A >   1 in., then the beam of minimum 
weight is uniform with h = 0.30 in. 

For a more meaningful problem, A = 0.5 
in. is considered. Eqs. 7-117 and 7-116 yield 
t* = 7.7 in. and |i = 2.17. The precise shape 
of the optimal beam is given by Eq. 7-111. By 
putting Eqs. 7-111 and 7-90 in Eq. 7-49 and 
performing the indicated integration, the vol- 
ume of the optimal beam is found to be 3.59 
in? A plot of the profile of the optimal 
beam may be made by direct substitution into 
Eq. 7-111. This profile is shown in Fig. 7-11. 

0.431 in. 

Li 
|.30 in. 

7.7 in. 

Figure 7-11.  Cantilever Beam of Minimum Weight 

By elementary computation, it is seen that 
the uniform beam which has *i (10) = — 0.5 
in. and satisfies Eqs. 7-56 and 7-57 is 0.378 
in. deep; so its volume is 3.78 in? The 
designed beam, therefore, has 5.3% less vol- 
ume than a uniform beam which will satisfy 
the same stress and deflection requirements. 

7-4.5.2 SIMPLY     SUPPORTED    BEAM 
WITH     POSITIVE    DISTRIBUTED 

LOAD 

The beam considered here is simply sup- 
ported (see Fig. 7-12) with piecewise con- 
tinuously differentiable distributed load q(t), 

q(t) > 0 for all t in (0,7). The load q(t) of this 
form implies V(t) is non-negative at zero and 
decreases monotonically in (0,T). M(t) is zero 
at both t = 0 and t = T. Further, on either side 
of the point where M(t) has its (non-negative) 
maximum it is monotone. 

fTTTTTTr^ 
rFT 

Figure 7-12. Simply Supported Beam With 
Positive Distributed Load 

 Jo 
q(t)dt # 0, thenA/(0 and V(t) cannot 

be zero°at the same point. There is, therefore, 
no danger that the optimal beam will have 
h(t) = 0 at any point. For this reason, the 
constraint, Eq. 7-54, is not imposed here. 

Since M(0) = M{T) = 0 and V(0) # 0 * 
V(t), \T\ = rmax is expected near the ends of 
the beam. Toward the center of the beam, 
M(t) becomes large, so |CT| = omax is expected 
there. If the beam requires stiffening, the 
additional material can best be used near the 
point of maximum deflection. This argument 
indicates that (0,T) should be broken up into 
subintervals as shown in Fig. 7-13. 

In terms of previous notation, tu t2, t$, 
and f5 correspond to the notation t*\ and f3 

to /;. For certain ranges of A some of the 
subintervals shown in Fig. 7-13 will not 
appear. 

Provided tt and t$ separate intervals in 
which \T\ = Tmax and \o\ = amax, they are 
determined by Eq. 7-104. The points t2 and 
/4, when they exist, are determined by Eq. 
7-107. Finally, f3 is determined by Eq. 7-102. 

7-32 



AMCP 706-192 
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              1   re     

1 1 

Figure 7-13. Subdivision of the Beam With Distributed Load 

The boundary conditions for this problem 
arc 

xt(0) = 0 

and 

xl(T)=0. 

Eqs. 7-75 and 7-76, therefore, yield 

X2(0) = \2OT = 0. 

The constants £i and £2 in A2 may have 
different values on opposite sides of t3. To 
the left of t3, 

X2(0)=£2 -ZlxO = 0 

so 

To the right of t3, 

Xa(D = £»  -£iT=0 

(7-1 18) 

so 

M» = b(l-y)=?2(l-^).      (7-11 9) 

The constants ?i and f2, which are intro- 
duced in Eqs. 7-118 and 7-119, are now to be 
determined. 

Eq. 7-102 for f3 yields 

n2 t3 = 
TU + fj 

Assuming t2 and f4 exist, the equations that 
determine them are 

m ax   , 
M{ti)=\—z—)Slt% (7-120) 

and 

M(t4)- Ml f) (7-121) 

In this case, /t and fs are determined by Eq. 
7-105. If t2 orf4 does not exist, then tx orf5 

is determined by 

V{t,) ~W 
64b2T* 

(7-122) 

or 

„     , 64ft2r4 

F(fs)|4 = — 
9£ 

xfi(l-y)J»f(r5). (7-123) 

It is noted that Eqs. 7-120 through 7-123 
can be solved easily for f1 and f2, but, in 
general,   not   so   easily   for the   t(.   In  the 
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development which follows, it will be con- 

venient to use Eqs. 7-120 through 7-123 to 

solve for ?! andf2 as functions of the tr 

The conditions that are to determine the 
unknown t{ are Xi(t3) = A and x2(t3) = 0. 

However, for computational reasons, a more 

convenient set of equivalent conditions is 

*i(0) = 0 

and 

*,(D = 0 

(7-124) 

(7-125) 

where Xi (/3) = A and x2(ti) = 0 are used as 

initial conditions for integration. 

Conditions, Eqs. 7-124 and 7-125 may be 
written explicitly as 

P P fi I     f2(v)dr) + t2 | 

Jo , /. 
i?,= A + r, |     f2(v)dr) + t2 |     f2(v)dr) 

o j t, 

+ t3\     f2{r\,U)dn { 

j t2 J t, 

f2(rj)dr)dv 

f2(y\)dt\dv 

f2(r,,$i)dndS = Q (7-126) 

and 

7-34 

R2=A + (T-t4)\     Mv,$2)dri i; 
■I + (7"-/s)|     /i(ij)di? 

If 
rr it, it, 

■rr 

fi(V,$*)dvdv 

f2{r\)dt}dv 

f2{n,)dr)dv = 0 ,     (7-127) 

where .Ri   and i?2  are introduced for nota- 

tional purposes. 

It is assumed now that q{t), b, E, T, <7max, 

and Tmix are given. The equations that 

determine the t( are different in four distinct 

ranges of the deflection requirement.' These 
ranges of A are described in the following: 

1. A0 denotes the largest deflection that 

occurs when the subinterval (t2, f4) does not 

appear, i.e., when the beam is specified by 

only the first two parts of Eq. 7-98. 

ff A > A0) then the beam specified by the 

first two parts of Eq. 7-98 is the one of 
minimum weight. 

2. For A slightly less than A0) there exist 

points t2 and t^ that are determined by Eqs. 
7-126 and 7-127. 

As A decreases, points t2 and f4 move 
toward zero and T, respectively. There is a 
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value of A, say A = A,, for which either t2 or 
ti, first coincides with t\ or ts, respectively. 
For definiteness, assume t2 = t, when A = 
A,. 

3. For A slightly less than Aj, points /s 

and  ?4   are  determined by Eqs.  7-126 and 
7-127. 

method of solution will be described for the 
Case 2. 

An iterative method called Generalized 
Newton Method (Ref. 18) is used to solve for 
t2 and t4. The procedure begins by estimating 
values i2 and ?4; and then making a correc- 
tion according to the formula 

As A decreases, points tx and t4 move 
toward 0 and T, respectively. There is a value 
of A, say A = A2, for which tA first coincides 
with ts, 

4. For A < A2, points t1 and ts are 
determined by Eqs 7-126 and "M?.7. 

H h 
l)Ri   dRf 

a?7 QrT 

-1 

Ri 

U 
L      - 

u bR2 bR2 

ßh   3r4_ Ri 

(7-128) 

This explanation of the behavior of the ^ is 
not the result of a mathematical analysis. It is 
expected on physical grounds and has been 
vahd in each case treated. 

The values of A { and A2 could be obtained 
analytically. However, their determination 
would be of the same order of difficulty as 
the optimization problem considered in this 
paragraph. 

A, and A2 can be determined by a trial 
and error scheme. For example, to determine 
A,, t2 is put equal to tx and Eq. 7-107 
determines fi. Then, t3 is guessed and Eq. 
7-102 solved for f2. Numerical integration of 
Eqs. 7-60 and 7-61 indicates the correction 
that is to be made in t3. When t3 is located 
accurately, the resulting deflecting at 13 is A{. 
A similar procedure is used to determine A2 

(t4 is put equal to /5). 

The solution of Eqs. 7-126 and 7-127 for 
the t( differs only in certain details depending 
on whether the given value of A is in the 
range described by  Cases 2,  3, or 4. The 

where [  ]"'  denotes matrix inverse, and t2 

and f4 are improvements on the estimate. 

Eqs. 7-102 and 7-107 determine t3 = 
f3(f i ,?2), £i = f i U2), and f2 = f2(r4). By use 
of this information, the derivatives in Eq. 
7-128 are computed by the chain rule of 
differentiation. For example, 

dR i 

9r, = *i.r, 

+ (bRt tbRt bt3\ adf, 
3£,     dr3   3f, ) dt2 

(7-129) 

where 

Rl ,   =t2[f2{t2 -0)-/2(/2+0)] 

is the partial derivative of R t with respect to 
t2 with all variables in R , taken as indepen- 
dent, 

3fi 
dt) 
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and 

= t3f2(t3-0). 

G?7?dV 

Similar expressions for the remaining deriva- 
tives in Eq. 7-128 are derived with the aid of 
Eq. 7-109. 

The iterative procedure for determining t2 

and f4 is: 

Step 1. Make an estimate, t2 and f4 , 

Step 2.  Solve Eqs. 7-120 and 7-121 for?, 
and 52, 

Step 3. Compute, numerically, all the 
integrals in Eqs. 7-127, 7-128, and 
the remaining derivatives corre- 
sponding to Eq. 7-129, 

Step 4. Compute the right side of Eq. 
7-128, and 

Step 5. With this improved estimate return 
to Step 1. 

This procedure has been programmed for a 
digital computer. The program was arranged 
in such a way that only A0) At , A,, M{t), 
V(t), and the physical properties of the beam 
need to be specified. Many different loading 
situations may thus be considered without 
altering the program appreciably. 

As a numerical example, a beam with the 
following properties is considered: 

b 

E 

and 

40 in. 

0.25 in. 

107 lb/in.2 

15,000 lb/in.2 

7-36 

t lb/in. 

amax    = 30,000 lb/in.2 

For this problem, it was found that 

A0        = 0.774 in. 

At        = 0.728 in. (t2 =?,) 

and 

A2        = 0.470 in. (74 = ts). 

As has been noted, the magnitude of the 
deflection requirement A plays a major role in 
the outcome of a particular problem. In order 
to emphasize the effect of A on the properties 
of the optimal beam, the numerical example 
given was solved for eight different values of 
A. The results are presented in Table 7-4. 

In Table 7-4, the first column contains the 
values of A considered. The following seven 
columns give information which, when sub- 
stituted into Eq. 7-98, completely specifies 
the optimal beam. The next column gives the 
volume of this optimal beam. The final two 
columns give the volume of the lightest beam 
of constant depth which satisfies the condi- 
tions of the problem and the percent saving 
realized when the optimal beam is used 
instead of this uniform beam. Dashes have 
been inserted in the table when the quantity 
to be tabulated does not exist. 



TABLE 74 
RESULTS FOR SIMPLY SUPPORTED BEAM WITH q (t) = t 

o 
9 

Vol. of 
Unif. 

A, fi. h. t3. t». ts. 5i U Vol., Beam', Saving, % 
in. in. in. in. in. in. in.3 in.3 

>0.775 0.053 
0.053 

39.89 
39.89 

14.00 
14.12 

18.15 
18.15 

29.6 
28.6 0.75 10.21 19.42 22.54 2.77 104.7 

0.65 0.048 0.048 19.99 28.41 39.89 3.60 144.0 14.75 18.15 23.0 
0.50 0.040 0.040 20.32 37.79 39.89 5.27 217.7 16.08 18.58 15.5 
0.40 0.034 0.034 20.32 39.90 39.90 7.12 294.1 17.33 20.01 15.4 
0.30 0.028 0.028 20.32 39.92 39.92 10.45 431.7 19.07 22.03 15.5 
0.20 0.022 0.022 20.32 39.94 39.94 17.91 740.0 31.82 25.21 15.5 
0.10 0.014 0.014 20.32 39.96 39.96 45.17 1866.0 27.50 31.78 15.6 

1 Volume of lightest beam of constant depth which satisfies all the requirements of the problem. 
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For each value of A, the iterative procedure 
used to solve the problem required approxi- 
mately 40 sec per iteration on an IBM 1410 
Computer. Further, three to six iterations 
were sufficient to obtain convergence of the 
residue to seven decimal places, so computing 
time was not excessive. 

It is shown (Ref. 18, p. 222) that if the 
sequence of approximations constructed by 
the Generalized Newton Algorithm converges, 
then it must converge quadratic ally, i.e., the 
error at the n + 1st step is proportional to the 
square of the error at the nth step. This rapid 
convergence was observed in the numerical 
calculations and explains why only three to 
six iterations were required. 

and 

V(t)=0. 

In this problem A > T/2 is assumed. 

Since Mit) is never zero, the requirement 
|or| < %ax implies h ^ 0 for all t. I = 0 is 
impossible, so the requirement I > /„ is not 
enforced. 

Eqs. 7-98 and 7-99 in this case are 

1/2 

h(t) = 

//    6M    \ 
({j^—>     ' ifl°l = a- I  \       max  / 

([■ 
36X2(_t)M(t) 

Eb2 

1/4 

(7-130) 

.   if Iff I < ff„ 

7-4.5.3 A PROBLEM OF A MORE 
GENERAL TYPE 

The beam  considered here is loaded as 
shown in Fig. 7-14. 

and 

fa(0=< 

C,M 
■1/2 

xsgn[Af(f)], if|ff|=cr 

— 3/4        1/4 
C3|X,(OI       M 

x sgn [M(t)], if \a\ < a 

M(f 

Figure 7-14. Beam With an Inflection Point 

Boundary conditions are, as in the simply 
supported case, 

*i (0) = x1(T) = 0. 

For the given loading, 

{     M,   if 0< / < A 
M(t) = 

-M,   liA < t <, T 

For a given deflection requirement A there 
are three possibilities concerning attainment 
of the maxium deflection. Either 

1. \x(t)\< A for all t, 

2. \x(t)\ = A forjust one t, or 

3. \x(t)\ = A for two distinct t. 

The third possibility occurs here because M{t) 
changes sign. In Case 1, |ff| = 0max through- 
out the beam determines h(t). The Case 2 
may be treated in exactly the same way as the 
problem in the preceding paragraph. Case 3 is 
considered in detail here. 

Assume there  are  two   points   at  which 
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\x(t)\ = A; the beam will not probably be 
subdivided as shown in Fig. 7-15. 

EM _1_ 

r2 
(7-134) 

I    -       I       f 
f,      f„      t, 

f    If I- 

t7 

and 

(7-135) 

Figure 7-15.  Subdivision of the Beam T    1 
EM 
r.2 

_1 
(7-136) 

Points f2 and tn, where Case 3 occurs, are 
tr, so they are determined by Eq. 7-102. 
Further, xl(t2) = A and *i(?7) = — A. Points 
fi> ts, t6, and t% are <* and are determined by 
Eq. 7-107. 

In this problem, t2 and t-, may be points of 
discontinuity of X4 and \2. The conditions, 
Eqs. 7-85 and 7-86 on K2 are X2(0) = X2(D = 
0. Therefore, X2 may be written as 

X2(0 = < 

, if 0 < f < ?2 

, if f 2   <   ^ <   17 

, if f 7 < f « f. 

Solving Eqs. 7-102 and 7-107 for the t. 
yields the following: 

_/ EM   \ _1_ 
(7-131) 

In obtaining the expressions for t3 and f6> 
use was made of the fact that t3 < A < t6. 
The result, \2{t)M{t) > 0, from Eqs. 7-97 
and 7-98 shows that this is true. To prove 
this, assume for definiteness t3 > A. Since 
M(t) changes sign at A and X2 (t) is con- 
tinuous there, X2W) = 0. But, since X2(f) is 
continuous near A, it is arbitrarily near zero 
in a neighborhood of A. Eq. 7-130 then shows 
that hit) is arbitrarily near zero in a neighbor- 
hood of A and this violates the condition \o\ 
< cm,v. Likewise, A < t6. max ' ° 

Conditions that determine the f;. are 

x1(.t2) = A,x1(t2) = 0 

and 

x1(r7)=-A,A;2a7) = 0. 

For computational reasons, it is more con- 
venient to use the following equivalent set of 
conditions: 

ti =- 
Si +! 

ti =-. 
1 EM  \  J_ 

(7-132) 

(7-133) 

Xi(0)= 0 

x2(f7) = 0 

xt(t7) + A = 0 
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and 

x,(D = 0 

where Xi(?2) = A and x2(t2) = 0 are used as 
initial conditions for integration. 

More explicity, these equations are 

Rt =xl(0) = A + t1 \    f2(n)dn 
o J n 

r + t2\    fMi)dti 

+ 1     1   hW)dndv n •'o   J o 

r f i i      * i 

fMi)dqdv = 0 

(7-137) 

s: Ä2=X2(r7)=\       /2(7?,?2,f3)^ 

+ \    /2<u)«ftj 

/2(r?,f2,f3)dT? = 0 (7-138) 

A3 = x,(f7) + A = 2A 

C + (t1-ti)\     /2(T),?2)f3)dij 

i; + (?7-^6)\        /2(»7)rfT? 

•n: h(ri£2,U)dr)dv 

■n; + i    l    f2(n)dndp 

+ 1     I     h (»?,f 2 ,f 3)dvdv = 0 

(7-139) 

and 

Ä4 = *(7} = -A 

+ (7"-f8)   f /2(7?,?4)df? 

•n: 
♦rr 

f2(V,U)dvdv 

f2(xi)dr\dv = 0       (7-140) 

where the i?; are introduced for notational 
purposes. 

Generalized Newton Method is used to 
solve Eqs. 7-137 through 7-140 for the fr An 
initial estimate £(, / = 1, 2,5, 4, is made; and a 
correction is computed according to the 
formula 
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Ti~ }f R'I 

?2 fa [a/?,] -1 R2 

F3 fa L *> J R3 

Ä. /«- RA 

(7-141) 

where terms on the right side of Eq. 7-141 are 
computed in terms of the §r The corrected 
guess ff then takes the place of £t and the 
process is repeated. 

The derivatives of the Rt with respect to 
the f • are computed by the chain rule of 
differentiation, Eq. 7-109, and Eqs. 7-137 

irough 7-140. Just as inEq. 7-129 several of 
these derivatives must be determined by 
successive numerical integration. 

The matrix of derivatives which appears in 
Eq. 7-141 has sixteen elements. Twelve suc- 
cessive definite integrals appear in one or 
more elements of this matrix. Therefore, 
considerable computation is involved in each 
iteration. All this computation was incor- 
porated in a single computer program. 

As a numerical example, the beam of Fig. 
7-14 having the following properties is con- 
sidered : 

M = 1,100 n.-lb 

T = 40 in. 

b =   0.5 in 

E = 107 lb/in? 

A = 25 in. 

W= 10,000 lb/in2 

and 

°m,x = 20,000 lb/in? 

It was noted that thre distinct situations 
may occur depending on the value of A. In 
this example, the problem breaks down as 
follows: 

1. If A > 0.509, then*! (t) < A for all?, 

2. If 0.156 < A< 0.509, then there isjust 
one point / for which \xx (t) = A, and 

3. If A < 0.156, then there are two values 
of t for which |xx (?) I = A. 

The numerical example given was solved 
for eleven different values of A. The results of 
these calculations are presented in Table 7-5. 
The first column of this table consists of the 
values of A considered. The following ten 
columns give information that, when 
substituted into Eq. 7-130, completely speci- 
fies the optimal beam. The next column gives 
the volume of this optimal beam. The final 
two columns give the volume of the lightest 
beam constant depth that satisfies the condi- 
tions of the problem and the percent saving 
realized when the optimal beam is used 
instead of this uniform beam. Dashes have 
been inserted in the table when the quantity 
to be tabulated does not exist. 

For each value of A, the iterative procedure 
used to solve the problem required approxi- 
mately two minutes per iteration on an IBM 
1410 Computer. However, three to five itera- 
tions were sufficient to obtain convergence of 
the residue to seven decimal places, so com- 
puting time was not excessive. This rapid 
convergence is, again, characteristic of the 
Generalized Newton Method. 

An interesting sidelight of this particular 
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TABLE 7-5 
RESULTS FOR BEAM WITH S-SHAPED DEFLECTION CURVE 

A, 
in. in. in. 

fa- 
in. in. 

£7, 

in. in. 
Si f2 t3 U Vol., 

in.3 

Vol. of 
Unif. 
Beam', 
in.3 Savinqs, % 

XD.509 
0 40 

16.3 
16.7 
17.4 
17.9 
18.8 
19.0 
19.3 
21.3 
23.3 
26.5 
35.9 

16.3 
17.6 
19.4 
21.1 
23.9 
24.3 
25.0 
28.0 
30.7 
35.2 
47.7 

0 
5 

12 
18 
28 
29 
30 
31 
32 
33 
33 

8.27 
5.56 
4.18 
2.84 
2.32 
2.11 
1.31 
0.88 
0.51 
0.15 

13.59 
12.75 
11.94 
10.96 
11.56 
11.54 
11.53 
11.49 
11.45 
11.40 

23.93 
25.00 
25.00 
25.00 
24.51 
24.56 
24.58 
24.74 
24.89 
25.00 

3.35 
4.94 
6.57 
9.69 

11.84 
13.10 
21.02 
31.10 
53.56 

182.14 

69.00 
92.91 

111.96 
146.37 
180.41 
225.17 
440.45 
695.92 

1256.79 
4457.51 

0 30 
0 23 
0 16 
0.15 
0.14 
0.10 
0.075 
0.05 
0.02 

31.02 
29.66 
27.93 
26.95 
26.15 
25.37 

32.02 
31.93 
31.77 
31.67 
31.58 
31.49 

33.90 
35.09 
37.50 
38.42 
39.12 
39.75 

8.45 
9.75 

16.45 
24.89 
43.62 

150.63 

234.5 1 
263.99 
431.98 
643.33 

1113.10 
3794.73 

'Volume of lightest beam of constant depth which satisfies all the requirements of the problem. 
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example concludes the present subparagraph. 
A plot of volume (of optimal beam) versus 
deflection requirement for the problem con- 
sidered here is given in Fig. 7-16. From this 

40n 

30- 

§  20- 

10- 

0 01 02 03 0.4 0.5 

A, in. 

Figure 7-16.  Volume vs Deflection 
Requirement 

graph, it appears that the volume of the 
optimal beam is a continuous function of 
deflection requirement. This is a rather re- 
markable  result  in view  of the  fact that 

optimal beams with deflection requirements 
greater and less than 0.156 have considerably 
different form. The beam profiles of Figs. 
7-17 and 7-18 illustrate this difference graph- 
ically. As A decreases toward 0.156, the jump 
in h(t) at / = 25 (see Fig. 7-17) becomes more 
pronounced. However, for A very slightly less 
than 0.156, the profile is continuous, much as 
in Fig. 7-18. 

7-4.5.4 CONCLUSIONS 

The examples considered in pars. 7-4.5.2 
and 7-4.5.3 are of the order of complexity 
that might be found in actual practice. In 
these examples, a saving of material up to 
33% is realized when nonuniform, optimal 
beams are used instead of uniform beams. For 
more complex loading situations, the saving 
may be even greater. From an engineering 
viewpoint, such savings are significant. 

In structural applications, this saving may 
be offset by additional cost of fabrication. 

n 
1.14 

All dimensions in inches 

I I I 
0        3.2 25 

Figure 7-17. Profile of Optimal Beam for A = 0.16 

T 
0.81 

_L 

40 

1.21 

0      2.6 

All dimensions in inches 

24.5 31.0  33.7 

IT 
0.81 

40 

Figure 7-18. Profile of Optimal Beam for A = 0.15 
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However, for applications in which weight is a 
premium, such as in aerospace work, fabrica- 
tion of minimum weight structural members 
may be quite feasible. Further, if the cost of 

forming nonuniform beams is not prohibitive, 
such as in the manufacture of reinforced 
concrete beams, then nonuniform optimal 
beams may be used to advantage. 
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CHAPTER 8 

METHODS OF STEEPEST DESCENT FOR OPTIMAL DESIGN PROBLEMS 

8-1   INTRODUCTION 

As seen by the examples of Chapter 7, 
solution of the necessary conditions for the 
general problem of optimal design is difficult. 
Even in idealized design problems numerical 
methods must normally be employed to 
construct a solution. 

The numerical techniques for the indirect 
method presented in par. 6-5 and in Chapter 7 
are iterative in nature. Each of the techniques 
requires that an estimate of the solution be 
made before the iterative process may be 
initiated. In many cases, particularly in new 
problem areas, the designer may have only a 
gross notion of what to expect of the solution 
so his initial estimate may be poor. 

Convergence of the techniques ot Chapters 
6 and 7 are reported to be very poor unless 
good estimates of the solution are available. 
In fact, these iterative techniques often di- 
verge for poor estimates of the solution. On 
the other hand, if a good initial estimate is 
available, these methods converge very rapid- 

This discussion illustrates the need for a 
workhorse technique that may be used even 
when only poor estimates of the solution of 
the optimal design problem are available. The 
method should be capable of making steady 
improvement in an estimated solution and, in 
fact, converge to the solution. Rate of con- 
vergence could be sacrificed for dependability 
if required. 

A second desirable property of a general 
method of optimal design is that it apply 
routinely to a large class of real-world optimal 
design problems. To be useful to the working 
design engineer, the method should apply 
whenever the designer has developed the 
capability to analyze the system to be de- 
signed. Further, the method should be ex- 
plicit enough so that a senior engineer can set 
the problem up for computation and a less 
experienced junior engineer can program the 
algorithm for use on a digital computer. 

The methods to be developed in this 
chapter and applied in the next have manv of 
these nice-to-have properties. The basic idea 
of these direct methods is to simplifv the 
basic design problem so that it will readily 
yi'iid information which allows the designer 
to make a small improvement in an estimated 
optimum design. After the improvement is 
made, a new and better estimate of the 
solution of the optimal design problem is 
obtained. The process is repeated successively 
to obtain small improvements in the best 
available estimate of the solution until the 
design obtained is sufficiently near the opti- 
mum. 

The basic method of simplification of the 
design problem is to expand functions in- 
volved in the problems through use of Tay- 
lor's Formula. In this way, a simplified 
problem is obtained which serves as a good 
approximation of the original problem pro- 
vided only small changes are allowed in 
certain variables. 

-1 
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8-2 A STEEPEST DESCENT METHOD FOR 
THE BASIC OPTIMAL DESIGN PROB- 
LEM 

8-2.1  THE PROBLEM CONSIDERED 

In order to present the basic ideas of the 

Method of Steepest Descent, consideration 

here will be limited to optimal design prob- 

lems with fixed endpoints, no discontinuities 

in the basic problems, and no intermediate 

conditions on the state variable. As seen in 

par. 6-4, this eliminates state variable in- 

equality constraints from direct treatment. 

All these features of more general optimal 

design problems will be treated in par. 8-3. 

Specifically, the problem treated here is to 

find u(t), t° < t < tl, and b which minimize 

subject to the conditions 

^-=f(t,x,u,b), 
at 

Ax°,x1) = 0 

tu < t< t1 

s = 1,..., n 

dt 

(8-1) 

(8-2) 

K =ga(b,x°,x1) 

+ 1      LAt,x(t)Mt),b]dt = 0, i 
a= \,...,r' 

Ü   = g(b,x°,xl) 
>(8-3) 

f + 1      L [t, x(t),u(t),b] dt< 0, 

a = r' + 1, ..., r 

and 

4>ß(t,u) = 0,ß = 1, .... q',   t° <  t < t',\ 

(pß(t,u)<z 0, ß = q'+ l,...,q,  t° < t< t1. 

(8-4) 

Just as in Chapter 6, the variables x(t), «(/), 

and b are vectors, x(t) = [xjW, ..., xn(t)]T, 

u{t) *= [Ml(0, ..-, um«)]T, and b = 
lbu...,bk]T. 

Any inequality constraints of the form 

G)(t,x,u,b) < 0 (8-5) 

can be  transformed into a constraint of the 

form 

J = g0(b,x°,x1)+  I     f0[t,x(t),u(t),b] dt \       j \co[t,x(t),u(.t),b] 

+ \o>[t,x(t),u(t),b] |     * = 0 (8-6) 

which is then a constraint of the kind of Eq. 

8-3. 

The class of problems considered is, there- 

fore, fairly general. The essential features that 

are not included are variable limits of inte- 

gration, discontinuities in functions of the 

problem (u(t) may still be discontinuous), 

intermediate conditions on x(t), and state 

variable inequality constraints. 

8-2.2 EFFECTS OF SMALL CHANGES IN 
DESIGN VARIABLES AND PARAM- 
ETERS 

The basic idea of the direct method of 
solving optimal design problems  is to first 
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construct an estimate w(0)(0, £(0) of the 
solution and then find small changes S«(f), 6b 

such that u<-°\t) + 8u(t), M°> + 8b is an 
improved estimate in some sense. Before the 

improvements can be determined, analysis of 

their effect on the problem must be per- 

formed. 

In this analysis, Su{t) and 8b are required 
to be small so that a first order Taylor 
expansion of the functions of the problem is a 

good approximation. Since x(t) is the solution 
of a boundary-value problem involving u(t) 

and b, it is clear that 8u(t), 8b will cause a 

change Sx(f) in x(t). It is assumed here that 
the boundary-value problem for x(t) is well 

posed, see Ref. 1, page 227, »that 8u{t), 6b 

small implies 8x(t) small. Using this fact, 

db dx° dx1 

)tAjx-8x+^r6u 

db      / 
dt 

(8-7) 

ot= 1,..., r, and 

30« 
50,  =~Su,ß=l,...,q. (8-10) 

In all the formulas, Eqs. 8-7 through 8-10, 
the functions are evaluated at [f,x(0)(r),M(0> 
(t), fc(0)] where x(0\t) is the solution of the 
boundary-value problem Eq. 8-2 for x(t) with 

wa)=M(0>(Oandb = ö(°>. 

To simplify the work which follows, it will 
be convenient to eliminate explicit depen- 
dence of Eqs. 8-7, 8-9, and 8-10 on 8x(t). 

This elimination is performed through use of 

the differential equation adjoint to the linear 

equation for 5x(f) in Eq. 8-8 (Ref. 2). This 
equation is 

dX 

dt 

df 
dx 

X + h(t) (8-11) 

where the function hit) will be chosen to 

obtain results needed later in the develop- 

ment. 

Note that for any solution \(t) of Eq. 8-11 

and any solution 8x(t) of Eq. 8-8, 

dhx      df 
~T~ = T~ öx dt        dx 

ae 
dx 

+ —— 8u +  8b I 
du            db I 

i&x° + —s-bx1 =0, s= I, ...,n I 0            dx1 / 

(8-8) 

»ft. d8a dga 8*«=-^6b + T7o «*•+-— «*' az> dx dx1 

\     \ dx 
J t" 

ox +  8u 
du 

-d-(Ar 5x) = 6x + AT = - 47— 6x 
dt dt dt dx 

+ hTSx + XTKSx + XT^8u 
dx du 

+ XT~-8b = hT8x + XT^-8u 
db du 

+ X^6b. 
db 

+ — 6b) dt (8-9) 
Integrating this equation from t° to t1 and 

using the fundamental theorem of calculus, 
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■KT (t^öxit1) -\T (t0)8x(t°) = 

J: 
(8-12) 

9/ fcröx + X7"-^-5w + X7'-^-5Z>    dt. a/ 
9u 9ö 

By choosing the function ft(/> and the 
boundary conditions on \(t) apprqpriately, 
the identity Eq. 8-12 will yield the desired 
relationships. First, put hit) = — df0

T/dx 
U«(0\b(0)] and define \J(t) as the solution 
of Eq. 8-11 with boundary conditions on 
\J(t°) and XJ(t1) determined by 

\jT(t*)5x1 -\jT(t°)bx° 

^ 5x° Ä Sx' 
9x° dxl (8-13) 

for all 5x° and Sx1 satisfying the second 
equation of Eq. 8-8. To see that the second 
equation, Eq. 8-8, and Eq. 8-13 determine 
conditions on \J(t°) and X/(r1), consider the 
following procedure. Determine n of the 2« 
variables Sx°f., Sx1., i = 1,..., n in terms of the 

remaining n of these variables. Now substitute 
the variables Sx0., Sx1

j just found into Eq. 

8-13. Eq. 8-13 may now be written as a linear 
combination of n independent Sx0,-, Sx1 r 

Since Eq. 8-13 must hold for all n indepen- 
dent variables Sx0,., Sx1. previously identi- 
fied, the coefficients of all these variables 
must be zero. This is then a system of n 
equations involving only \JU°), Xy(f') and 
known quantities. This procedure will be 
carried out in detail in particular problems. 

Substituting from Eq.  8-12 into Eq.  8-7 
yields 

67 = ' 
3go 

db 
8b + r [£ au, 

\bb db}     . 
dt. 

(8-14) 

Likewise, put h(t) 
and define 

- bL°r[t,uw,b(0)] 
dx 

\Va(t) as  the   solution of  Eq.   8-11  with 
boundary conditions onX a(t°) and X "(t1) 
determined by 

——  Sx° + —-   Sx1 

9x° 9x' 
(8-15) 

for all 5x° and Sx1 satisfying the second 
equation of Eq. 8-8. The identity Eq. 8-15 
determined boundary conditions just as Eq. 
8-13 did. Substituting tfrom Eq. 8-12 into Eq. 
8-9 yields 

Jt° 

db 
-+\v« 3/ So dt . 

(8-16) 

In terms of the adjoint variables \J(t) and 
X a(t), the quantities 5/ and 5^a are now 
given explicitly as functions of 8u(t) and 6b. 
The problem is now reduced to determining 
8u(t) and 8b, which yield the greatest re- 
duction in / subject to the linearized con- 
straints of the problem. 

It should be noted that the boundary-value 
problems for XJ(t) and X a(t), a = 1, ..., r, 
have solutions if the boundary-value problem 
of Eq. 8-8 is well posed. This is a basic 
property of adjoint boundary-value problems 
which is proved in Ref. 2. 
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8-2.3 A STEEPEST DESCENT APPROACH 

The problem of determining 8u(t) and 8b 

to minimize (maximum negative of) 6J must 

deal with the inequality constraints, Eqs. 8-3 

and 84. The argument to be used here is: 

simply ignore a constraint function that is 
negative before an iteration begins. If, on the 

other hand, a constraint function is positive, 

it is required to be reduced. For example, if 

4>a > 0 or <p„ (f) > 0 for some t, then it is 

required that 8i>a = —a\jja , a = 1,..., r' and 

S'Pa < ~axlJ
<X' 

a = r' + 1>—- rand 4>a > Oand 
50^(0 = - c^W, 0=1,.... q and S<^(0 < 
- c4>ß(t), ß = 4' + 1,..., 4 and <j>g(t) > 0 where 

0 < a « 1 and 0 < c < 1. The magnitude of a 

and c are chosen so that the required changes 

5\jja and 84» At) are not excessively large. If 

$a and 4>e(t) are not so large that the linear 
approximation is violated with a = l,orc = 1, 
then a or c are chosen as one. 

For convenience, define two sets of indices 

A= {a|*a[x<0>,u<0>,ö<°>] >o} 

and 

Bit) = { ß\<p0[t,u(o\t)] > 0} . 

It should be noted that the collectionß(0 of 
indices may change with the variable /. 

Define the column vector of elements 0 r a 
with 0   s> 0 

r a 

aGA 

(8-17) 

and a similar column vector of functions 0(f) 

with <t>M) > 0 

Note that the column vector 0(f) may have 

different components at different points in t° 

< t < t'. In order to assure that constraints 

are satisfied, it will be required that 

84/a =-a4/a, a= 1,..., r' 

8ipa < -a\j/a, a = r'+ l,...,r 

and a&A 

(8-19) 

and 

6fy(/) = - c0„(f),    ß=h-,q'     ' 

60,(0 < -c4>ß(t),    ß = q'+l,...,q 

and ßGB(t). 

Finally, define 

►(8-20) 

(8-21) 

a*      1   L a* 
dt 

A* (0 = — +-J— x a 

au du 

foralla^4 

(8-22) 

(8-23) 

and 

e* = 
db ♦•£**■'* 

for all a£^ . (8-24) 

«(0 
-ß^B(t) 

Note that A* (%)is a matrix of functions with 
(8-18) m rows and the same number of columns as 

there are indices in A. The matrix $*   of 

.8-5 
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constants has k rows and the same number of 

columns'as A* (t). 

Using the  matrix  notation  of Eqs.  8-21 

through 8-24 in Eqs. 8-14,8-16, and 8-17. 

8J = S.jT8b+ \     Aji (t)8u dt (8-25) 

G =   \X0A
J T+yTy>T)8b 

+ y08bTWb5b + yTcijJ 

such that 

oH jT       T   , ■ 
—-=0 = _\0A'    -T

rA* 

(8-29) 

8^ = ^ A*   (t)8u dt .     (8-26) 

Before 8u(t) and <56 are determined, some 

mechanism must be set up for requiring that 

these variations are actually small. For con- 

venience, put 

dP2 = 8bTWb8b +   I» 8uTWu(t)8u dt I 
(8-27) 

where Wb and Wu{t) are chosen as positive 

definite weighting matrices and dP is to be 
chosen small enough that 8u{t) and 6b are 
sufficiently small. 

The problem is now reduced to finding 
Su(f) and 8b which minimize 6/ subject to 

Eqs. 8-19, 8-20, and 8-27. This problem is 

now a special case of the Bolza problem of 
par.   6-4. According to Theorem 6-7, there 

exist multipliers X0 s> 

t\~l      L       J 

7    >  0 1 n 

for a > r\ p(t) =       V    , »At) > 0iorß> 

q , and 7o with 

H=[-\0A'T-yTA*T(t)-nT(t)d* 
a«j 

ö« 

-y08uTWu8u + firc<j> 

.fjiT(trfi>--2y08uTW, (8-30) 
du 

3G        (' M 

b8b 
dt = 0 

= X0^
r + yT^ T + 2y08bTWb 

(8-31) 

In the following development, it will be 

assumed that the problem is normal so that it 
is permissible to put X0 = 1. Solving Eqs. 8-30 
and 8-31 for5«(f) and 8b, respectively, yields 

Suit) = - — •*, (t)-1 

27o 

90T        ' 
AJ{t) + AHt)y+ -T- M(0 

ou 

and 

8b = - — Wb ' (F + fi*17) 
27o 

(8-32) 

(8-33) 

(8-28) 

In order to complete the determination of 

8u(t) and 8b, p(t) and y must be eliminated 
from Eqs. 8-32 and 8-33. A direct analytical 

elimination of MC) and y is not feasible at this 
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point since Theorem 6-7 requires 

HT(t)[b4>(t) + ci>{t)) =0 

and some components of 5^ +a$ and 50(0 + 

c$0) will be zero. A certain amount of logic is 

required to find 7 and p(t). Since only small 
Su(t) and 8b are admitted, if \p and 00) are 

zero for «(0)O). *(0) then very likely they 
wülalsobe zero for«(0)0) + 8u(t), *(0) +5*. 

Following this line of reasoning, it will be 

assumed first that 

8\p +a\p = 0 

or 

2y0   du     " 

AJ(t) + A* 0)7 + -v-  MO) 
9u 

+ c0 = O 

It is assumed that at points where B(t) is not 

empty, 90/9« has full row rank, i.e., all 
constraint functions which are zero or posi- 

tive are independent. Since Wu(t) is non- 

singular, the matrix 

90 90r 

au     u du 
(8-34) 

and 

500) + c0O) = 0 . 

Then 7 and n(t) are determined by substi- 

tuting S«0) and 8b from Eqs. 8-32 and 8-33 

into these equations. The multipliers 7 and 

p(t) are then determined and checked for the 
proper sign. If ya > Ofora> r' andpJt) > 0 

for ß > q', then this assumption is admissible. 

If, on the other hand, ya < 0 for some a > r', 

then 8\pa +a\pa = 0 is incorrect and it must 
be that S0Q 

+a\pa < 0 should occur. This is 
equivalent to simply removing \\>a from \p and 

recalculating. Likewise, if ßJt) < 0 for some 
ß > q\ then 50^0) + a$ß(t) < 0 should occur 

and 0ßO) should be removed from 0(f) and 

the multipliers recalculated. So much for the 

semi-mathematics, now to the calculations 

based on this argument. 

is nonsingular. Therefore, 

MO) = -A
0
O)

_1 

30 Wu
l  (AJ + A^ 

du 

y) - 27oc0   , 

(8-35) 

At points where B(t) is empty, put 90/9u = 
00) = 0 and A*0) = 1. In this way, MO) is 

consistently defined by Eq. 8-35 for all t. 

Substituting Eq. 8-35 into Eq. 8-32 

8u(t) = -  W~l   (A'+A*?) 
27o 

+ —   W~l   J&I   A*"1 

27o      "        9" 

If B{t) is empty for all t, then 0 is not 

defined and ßit) need not be determined. In 

case B(t) is not empty, is to be required that 

90 
50 + c0 = 0 = — 8u + c<t> 

du 

90" 1 

■cw-1 4rA0_1* ou 
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or 

bu{t)=_—w-, 

x(/-a— A*     Mw«~\ 

and 

M 4><t> i , T        ,      dd>J _i 

(8-40) 

Eq. 8-37 becomes 

x(Ay +A*y) 

TT (^/+Af^7) + cM|t    =ai.  (8-41) 
-cW-t-T- A*     *■ («-36) Z7° «       3« 

where/ is the identity matrix. 

Substituting 6u(t) and bb from Eqs. 8-36 
and 8-33 into Eq. 8-26 and then enforcing d\p 

= — a\j/, 

1 T f'' 
-^T«*   W-i (£y + £*7)-cl     A*r 

x"'--1   ^A#_1**-2^-^ 

f1 

3« 
A*' 

/       30r    „-I    30 .  \ xr1    /—— A*     —- w1 ) 
"        \ Zu du "       / 

x(AJ + X'Jy)d; = -ai 

Defining 

T 

(8-37* 

A*TW~l 

J fo 

/        30r       -i     30 , \    , 

(8-38) 

M
i,i, =n*Tw-1 if +[    A* Vr1 i 

(8-39) 

8-8 

Since W (r) is positive definite so is W"1, 

and there is a nonsingular matrix 5(f) such 

that W~x(t) = sT(t)s(t). By direct multiplica- 
tion, it may be verified that 

yTM^y=yTl+TW-1  Z*y 

i + \     yTA*   Wj1 

«"--£ *-'£»«-)»,* 
■-yTZ*   W'1  9*y 

$>-£*•- 
x-farsT jsA^y 

3« du 

x   sA*y dt> 0. 

(8-42) 
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Therefore, M, , is at least positive semi- 

definite. In the development that follows, it 

will be assumed that M, is positive definite 
and, hence, nonsingular. 

Defining 

6ul(t)=W- 
30 7 

3w A* 
-l _30 

du 
w; 

Eq. 84 1 is now solved for y to obtain 

(8-43) 

It should be noted that if the set of indices A 

is empty, $ does not exist soM, . is not even 

defined. If, in this case, M, , is defined as 
one and 0 zero, then y = 0 in Eqs. 8-41 and 

8-36 reduces, appropriately. In this way, a 

single mathematical analysis holds in all cases. 

Substituting Eq.  8-43 into Eqs. 8-33 and 
8-36 yields 

x(Ar-A*M-]lM^J) (8-44) 

6uH» = -Wj>[l-&A*-l£wu- 

.A*M;l<fi4,-cM„) 

"    a«   A*   0      (8_45) 

fi»1=W*-l<*   -**^J**/> (8-46) 

and 

8u(t) =-W~1fl - 30r-A@-i  90        , 
9« du     " 

-—A-' + A^JWr' (aii-cM, J 

1 

2>o 
A^Af **M*J 

and 

8b = W.-1^ 
27o     b 

-W^^M-\{a^-cM^) 

2-y * ip <l)       \I/J 

t>b* = -W-i&*M;l(a4,-cM^)   (8-47) 

the expressions for 5«(f) and 6b are simply 

8w(?): 1 

27o 
SMHO + S"2^) (8-48) 

and 

8b = - ri—Sd1 +562 

wo 
(8-49) 

The variations Su(t) and 6b from Eqs. 8-48 
and 8-49 could now be substituted into Eq. 

8-27 to determine y0 ■ However, since dP has 

no real physical significance, one mightjust as 
well choose 70- It is interesting to note that 

the terms 8u2{t) and 8b2 are not multiplied 
by an undetermined parameter. Further, note 
that each term in the definitions, Eqs. 8-45 
and 847, of these quantities involves0 and 0. 

8-9 
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In fact, if 0 and if are zero or empty, 8u2 {t) = 

8b2 = 0. It appears that 8u2(t) and 8b2 may 

be interpreted as making corrections in con- 
straint errors, or keeping constraint functions 

from being violated. Actually, this and more 

is true. 

Theorem 8-1: The following identities 

among 6u'(0, 8u2{t), 8b1, and 5b2 of Eqs. 
8-44 through 8-47 hold: 

1. 8b1   Wb8b2 + C T 
\      öu1   Wu8u2dt = 0 

I 2. 2*   8b2 +    " A*   8u2dt = -a\jj 

>' +1      A* 3, V*18b1 + \      A* T8u1dt = Q 

30 
4. — du1 =0 

3« 

30 
5. —8u2 =-c4 

au 

6. -HJ   8b1 AJ   8u dt «s 0 . 

By considering the case when 4> and ^ are 

empty, it is clear that in order for 8u, 6b to 

be in the negative gradient direction of J (i.e., 
5u = — A7 and 66 = — Q.J), 70 > 0 is required. 

The six relationships of Theorem 8-1 give 
the designer an intuitive feel for the Method 

of Steepest Descent. First, Relation 1 states 

that the changes Su'Cr), 8bl and 8u2(t), 8b2 

are orthogonal. Relations 2 and 5 show that 
8u2(t),8b2 provides the requested reduction 

in the constraint functions. Relations 3 and 4 

show, as might be expected due to the 

orthogonality of Relation 1, that 5«1 (f), 8bl 

has no effect on the constraint functions in 0 
and \p. Finally, Relation 6, along with 

Eqs. 8-48 and 8-49, simply states that if 4> = 0 

and 00) = 0 then 8u(t), 6b provides a 

reduction inJ. 

Before stating a computational algorithm, 
it is important to develop a test for con- 

vergence to the solution of the original 

problem. The procedure here will be to show, 
through use of the necessary conditions of 

Chapter 6, that as the solution of the original 
problem is approached, Su1 (/) and 8bl must 

approach zero. 

By Theorem 6-7, at the solution of the 

problem, Eqs. 8-1 through 8-4, there are 

multipliers w((0. i = 1, •••- n, va, 
a - h ••■> r, 

and L(0, (3=1, ■■■, q suchthat for 

and 

it is required that 

du> 

dt 

dH 

du 

"3JT 

= 0 

3£      f''   3/7 

db   ~ \     3b 
dt = 0 

(8-50) 

(8-51) 

(8-52) 

(8-53) 

(8-54) 
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p
a^a =0.     <*=r'+ l,...,r (8-55) 

$„(0*fl(f) = 0, ß = q'+\,...,q. (8-56) 

Corresponding to the definition of 41 and 4> 

in Eqs. 8-17 and 8-18, define 3, L, i, and fas 
containing only components of v, L, g, and £, 

corresponding to elements of ty and 0. In this 

notation - and due to Eqs. 8-55 and 8-56 — 
Eqs. 8-52, 8-53, and 8-54 become 

d-^—-Zir!L+zh.+yT ^-   (8.57) 
dt dx       dx ax 

T of       d/o      -7-  9i      ;r  °4>     „ 
"'■■ "" ou du       du 

  + v'   
db db 

du 

(8-58) 

)   V    8*    to       db)dt ° 

(8-59) 

Substituting from Eq. 8-11 into Eq. 8-57 

yields 

cfw      d\J      dX* 
  +    + P 
dt        dt        dt 

ox ox ax 
(8-60) 

or 

— (w + X7 + X* v) = 

df 
ax 

(w+X-7 +X*ü). (8-6 1) 

Further conditions from Theorem 6-7 are, 

fromEq. 6-124, 

dG1 

dx 

and 

-  _w(/°) = 0 

9Gr 

— +^) = 0 

(8-62) 

(8-63) 

Multiplying Eqs.  8-62 and 8-63 by fix0 and 
fix1 yields 

|£l SXO+PTJ8    8xo_uT(to)5xo=0 

dx" dx° 

(8-64) 

and 

—T    Sx1   + i>' —_   8xl 

dx1 dx1 

+ uT01)oxl =0. (8-65) 

These equations hold for all fix0 and Sx1. 
Adding Eqs. 8-64 and 8-65, 

^L8x°+^t>x> 
dx° dx1 

+ i>T(j*8xO+j%8x\ 
\dx° dx1        I 

- wr(f°)5x0 + u>T(.tl )Sx1 = 0 .        (8-66) 

Again, Eq. 8-66 holds for all fix0 and fix1. 

Substituting terms from Eqs. 8-13 and 8-15 
into Eq. 8-66, 

\jT(t1)Sx1 -AJT(t°)8x° 

+ PT\\* T(t1 )5x' - X* r(r°)5x°I 

- uTU°)ox° + cjr(?' )fixJ = 0      (8-67) 

8-11 
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for all 6x° and dx1 satisfying the second 

equation of Eq. 8-8. By collecting terms, Eq. 

8-67 becomes 

o/tf') + A/7V ) + £7V T{tl )JSx' 

- Lr(/°) + XjT(t°) + v X1* r(f°)löx0 =0 

(8-68) 

for all 5x°  and Sx1   satisfying the second 

equation of Eq. 8-8. 

Eqs. 8-61 and 8-68 constitute the bound- 

ary-value problem adjoint to Eq. 8-8, where 

the dependent variable is (o> + ~KJ + X* 3). Due 

to the assumed well posed nature of Eq. 8-2, 

the boundary-value problem of Eq. 8-8 has a 

unique solution for all 6w(f) and 5ft. It is 

shown in Ref. 2, Chapter 4, that in this case 

the adjoint boundary-value problem, Eqs. 
8-61 and 8-68, has a unique null solution, i.e., 

w(f) + XJ(t) + X* (f) = 0,     t°  < t < tl . 

(8-69) 

Substituting for co(t) from Eq. 8-69 into 

Eqs. 8-58 and 8-59 yields 

\ du        du 

and 

3ft 

T   30 

T 3 

du 

(8-70) 

(8-71) 

Premultiplying the transpose of Eq. 8-70 by 
(30/9") W"1 yields 

30        ,   30r   - 

3«     "      3«    c 

30 

du     u     \ du 

bfT x^'Jl 
du 

30        .   (df     ,      bLT\ 
—- W-1     -i— X^ + )i>. 
du     "      \ du du 

(8-72) 

The coefficient of £ in Eq. 8-72 is just A*(0 
of Eq. 8-34 which is nonsingular. Therefore, 

£ = -A* 
30 
^-(A^*). 

(8-73) 

Substituting Eq. 8-73 into Eq. 8-71 

9gor 

3ft 3& J o L 9*   V + X*     1 

m + ¥      dLT 

3ft 3ft 
dt = 0 

or, in the notation of Eqs. 8-22 and 8-24, 

HJ + 9* v = 0 . (8-74) 

Substituting for %   in Eq.   8-73 into Eq. 

8-70, 

AJ-A*v + -^  A*   '— W~lAJ 

du du     " 

30r     A-i   30        , 
+ -— A*       — W"1 A* 3 = 0 

du du     " 

(8-75) 

8-12 
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Premultiplying Eq.   8-75 by  A*   W~l   and 
integrating yields 

or, 

J f o 

x—   A*   l — W~l AJ J dt 
bu bu     " 

c< A*   W^A* 

V      ,-i 
A*    W~l  Ü.0_   A*~ 

bu 

00 
x y- «/-»A* I d/    i? = 0 (8-76) 

Premultiplying Eq. 8-74 by ^   W~' yields, 

j*   w/'ß-'+ß*   W-1fl*3=0.        (8-77) 

Adding Eqs. 8-76 and 8-77 finally yields 

M.. 

so 

-M, §v=0 

Mr] M. , (8-78) 

Substituting!/from Eq. 8-78 into Eq. 8-75, 

A7 -h*M~\ M, , 

bu bu     u 

+ ML A*-
1
 te-W7iA+M7iM 

du bu 
l**m*j=0 

V        bu bu     " I 

x\AJ -A^T/^J-0. (8-79) 

Eq. 8-79 is the desired result, 5ul (t) = 0. 

Substituting 3 from Eq. 8-78 into Eq. 8-74 
yields 

Z'-9*M;IM„ =o 

and this implies, by Eq. 8-46, that Sb1 = 0. 

It is now possible to state a computational 
algorithm employing the results of the pre- 
ceding analysis and discussion. 

A Co mpu ta do nal A Igor ith m: 

Step 1. Make an engineering estimate 
w(0)(O, &(0), of the optimum de- 
sign function and parameter. 

Step 2. Solve Eq. 8-2 for *(0) correspond- 
ing to w(0)(0, b(0K 

Step 3. Check constraints and form \jj and 
0(/) of Eqs. 8-17 and 8-18. 

Step 4. Solve the differential equation 
8-11 with h and the boundary 
conditions of Eqs. 8-13 and 8-15 
to obtain XJ(t) and X a(t), re- 
spectively. 

Step 5. Compute A/(/)) ß7, A* (t),and ß* 
in Eqs. 8-21 through 8-24 and 
A*(OinEq. 8-34. 

Step 6. Choose the correction factors a and 
ein Eqs. 8-19 and 8-20. 

8-13 
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Step 7. Compute M^j, M, ,. and M^ ^ in 
Eqs. 8-38, 8-39, and 8-40. 

Step 8. Choose y0 > 0 and compute y 
and MO) of Eqs. 8-43 and 8-35. If 
any components of 7 with a > r', 
or /J(0 with 0 > q', are negative, 
redefine $ and <ji(f) by deleting 
corresponding terms and return to 
Step 5. 

Step 9. Compute bul(t), bu2 (t),8bl, and 
bb2 of Eqs. 8-44 through 8-47. 

Step 10. Compute 

u(i>(0=u<°>(f)- = bul{t) 
■'To 

+ Su2(0 

ft(D = ft(0)__L Sb'+Sb2 . 
27o 

Step 11. If the constraints are satisfied and 
6«1 (0 and Si1 are sufficiently 
small, terminate. Otherwise, return 
to Step 2 with M

(0)
, bw being 

replaced by w(1\ £>(1). 

An algorithm of this kind invariably in- 
volves a certain amount of computational art. 
The critical element of this algorithm is the 
choice of the parameter 70 in Step 8. Once 
the constraints are satisfied to acceptable 
accuracy, bu2(t) and bb2 will be approxi- 
mately zero and l/(270)can be viewed as a 
step size in the direction 5M

1
 (0> bb1. In 

this   case   the   change   in  u(t)   and  b   is 

bu(t) = -  bul(t) 
2TO 

Substituting these expressions into Eq. 8-25 
and using Eqs. 8-44 and 8-46, 

5/=- Wo [£/rpv(ß/-ß*^;*v) 

J ,0 

M/-^A*-^r' 
3w du     " 

x [A> -A*M^M^)dt 

-£- (M^-M^JM-IM^ 

where 

bb 
27o 

5ft1 

MJJ=2,1W^Z'+   ['    AjT W^ 

ou du    " 

With Eq. 8-80 it is possible to request a 
reasonable magnitude for 6/and compute the 
7o which should give this reduction inJ. In 
this way, it is possible to choose a reasonable 
7o. Experience with this method on structural 
design problems, of the kind discussed in the 
following chapter, has indicated that a request 
of 2% to 10%reduction in the cost function 
on the first iteration gives a value of 70 that 
yields convergence. Often, this value of To 
must be adjusted during the iterative process 
to prevent divergence or to speed con- 
vergence. 

This matter of choosing step size in Step 8 
requires a great deal more attention. With a 
little experience one can develop a "feel" for 
how to adjust 70 to get good convergence, 
even in complex problems. A feasible auto- 
matic method of choosing 70 is desirable for 

8-14 
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use  on high-speed  computers.   No  reliable 
method is known to the writer at this time. 

8-3 A STEEPEST DESCENTMETHOD FOR 
A GENERAL OPTIMAL DESIGN PROB- 
LEM 

8-3.1 THE PROBLEM CONSIDERED 

The basic optimal design problem with 
fixed endpoints, no discontinuities, and no 
intermediate constraints was treated in the 
preceding paragraph. The problem considered 
here will be a generalization of that problem 
to include features such as variable endpoints, 
discontinuities, and intermediate constraints. 
The basic idea of the method of solution will 
be the same as in the preceding paragraph. 
Accounting for the additional features of this 
problem, however, introduces some com- 
plexity into the derivation of equations. 

The problem to be treated here is to 
determine u(t), t° < t o tv, b, and t°, tl,..., 
tn which minimize 

J=g0(b,t>,x>) 

,[t,x(t),uV),b]dt        (8-81) 

subject to the conditions 

"['•L- [t,x(t),u(t),b]dt = 0, 

a= !,...,/■' 

*«=*„(*.''.*'> 

1     La[t,x(t)MO,b]dt<0, 

a = r' + 1,..., r 

>     (8-84) 

and 

(8-85) 

*,(*.«) = 0,   t°   Qt<   f\ 

<t>ß(t,u)< 0,t°<t< /", 

ß = q'+\,...,q. 

Note that this is just a special case of the 
problem of Def. 6-3. Equality constraints will 
be included in Eqs. 8-84 and 8-85 in a natural 
way during the development. It is assumed 
that for given u(t),b,t', andx; the boundary- 
value problem, Eq. 8-82, has a continuous 
solution x(t). If constraints of the form 
u(t,x,u,b) < 0 occur, they may be replaced 
by a constraint of the form 

dx 
dt 

f(t,x,u,b), t° < t< t*,t±t>\ 

d (t°.x°.t7'.xr>) = 0.s= 1  n      1 

ni(ti,xi) = 0,i=\,...,v 

H8-82 

(8-83) 

{oj[t,x(t)MO,b] 

+ \w[t.x{t)Mt),b]\) dt = 0. 
(8-86) 

Constraints of the form of Eq. 8-85 are easily 
treated in a direct manner so they need not be 
reduced to the form of Eq. 8-86. 

8-15 
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Just as in the method of par. 8-2, the 

idea here will be to estimate u(0)(Y),&(0)» 

and t°, .... tn, and then to allow small 
changes 8u(t) and bb. The object is to 

determine 8u(t) and 6b which yield the 

greatest reduction in J and which satisfy 
the constraints. 

8-3.2 THE EFFECT OF SMALL CHANGES 
IN DESIGN VARIABLES AND 
PARAMETERS 

Before the optimum changes in u(t) and b 

may be determined, the effect of these 

changes on J and tya must be assessed. Since J 

and *pa have the same form, the expressions 

for change of a general functional 

Q=g(b,t> ,x>) +1 F[t,x(t)MO,b]dt 

(8-87) 

will be determined and the result will be 

applied to J and 4*a ■ 

Expanding Q to  first-order terms in the 
variables u(t),b,f, and x7, yields 

de de de 8Q=Tb8b+-ir^0+-+^ («»> 

+ ...+|[^4!_6ro+...+|r5f/ 
dx* bt° dt' 

+ ...+-^-9f -F(t° +0)5r° + ... 

+ [F(t> -0)- F(t> + 0)] Of'' + 

+ F(tr> -0)5f 

f'" / dF „      dF bF     \ 

)lAl78x+^6u+lF5b) dt, 

where Ax1 is the total change in x' at the 

point t', Since x{t) is to be continuous before 

and after the variation, the total change in 

x(t) must be continuous at each point t. This 

requires that 

8xi(ti -0)+f(f -0)8f = AxJ 

= 5x''(f' + 0)+f(f + 0)8f (8-89) 

i = 0,1,. . ., q, where 5x(f) and dt' are 

indpendent changes in x(t) and f. 

The independent variation in x(t), Sx(f), is 

related to 8u(t) and 6ft through the varia- 

tional equation 

d bf bf 3/ 
— (ox) =— 5x +— 8u+—8b, 
dt ox du db 

t° < t < tn,t¥= t'. (8-90) 

The boundary conditions, Eq. 8-82, require 
that 

bds bds b6s 

—~n Ax° +—~8t° +—- Ax" 
3x° 3/° 3*" 

3e, 
+ 5/" = 0 

3r" 
(8-91) 

•s = 1,..., n. Finally, the relations of Eq. 8-83 

require that 

3S2'      .    da'    . 
 Ax' + of = 0, 
3x!' bf 

:0, 1 77. (8-92) 

It is clear that the variations 5x(f), 8u(t), 8b, 

Bf, and Ax' are not all indpendent. 

In order to express Sß in terms of only 
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Su(t) and 8b which are to be determined, 

introduce the adjoint variable X(t) just as in 
Eq. 8-91, 

dh    _ lf_        dFT 

dt        dx ax 
(8-93) 

Integrating the identity below Eq. 8-91 from 

t' to t'+1, 0 < /,/ + 1 < qr,one obtains,just as 

in Eq. 8-92, 

Xr(^+1 -0)8x(t'+1 -0) 

-XT(t' + 0)8x(t> +0) 

>'        '   dF      ^.Tdf 
— 8x + XJ — 8u 
dx du 

+ XT-^8b)  dt. 
db 

(8-94) 

Note that the boundary conditions on \{t) 

and the properties of X(t) at the points t', j = 

I, ..., TJ — 1, have not yet been specified. 
These boundary and intermediate conditions 
on X(t) will be the major output of this 

subparagraph. 

Summing all the formulas, Eq. 8-94, overj 

= 0,1,..., 7] — 1, one obtains 

\ ,o dx 
8xdt=- XT(t° +0)SxU° + 0) 

+ ... + \T(t> -0)6x(t' -0) 

-\T(tj + 0)8x(t> +0)+... 

+ XT(tn -0)8x(t" -0) 

(8-95) 

)»•    \      du 
8u + XT~8b)  dt 

db 

Or, using the definition of Ax', this is 

('* i£ 
1        dx   8xdt = -XT(t° + 0)Ax° 
J t° 

+ Xr(f° +0)f(t° +0)5/° 

+ ... + [\T(t> - 0) 

-XT(t'+0)]Ax' 

- [XV - o)/o> - o) 

-XT(t'+0)f(t'+0)]8t' 

+ ... + Xr(r" -OJAx" 

- XT(tn - 0)/(f» - 0)6f 

+ 1     (V-^5« 
J t° 

+ XT -di 8b \dt 

Substituting from Eq. 8-95 into Eq. 8-88, 

yields 

9£ 
8Q = -r- 5b + 

db 
\+XT(fi) 
dx° 

Ax° + ... 

[j*, -XT(t'-0) + Xr(t' + 0) 
\_dx' 

-*[■ 

Ax* 

1 9x" 

+... + 

+ 0) 

-XT(t° +0)/(f° +0) 6f° 

dt> 
+ F(t' - 0) - F(f' + 0) 

8-17 
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+ \T(t> -0)f(t> -0) 

-x'V+oW+o) «/> 

+ ...+ -2- + F (tv _ 0) 

+xra* -o)/(/" -o)jsf 

♦("[(ifrfÄk 

\9ft        9ft/   J 

(8-96) 

The quantities Ax' and S/; appearing in Eq. 
8-96 are required to satisfy the conditions of 
Eqs. 8-91 and 8-92. The objective now is to 
choose the boundary and intermediate condi- 
tions on X(t) so that Eq. 8-96 is independent 
of Ax' and St'; i.e., so that 

9x° ■+xr(f°) W° + 

+ ...+ 

+ Xr(fT> -0)/(f -0) of =0 

(8-97) 

for all Ax' and St' satisfying   Eqs. 8-90 and 
8-92. 

In order to determine conditions on X(f;) 
based on Eq. 8-97, a Lemma is required. 

Lemma 8-1: For A, Bj: i = 1, ..., m < n in 
R" ifATx = OforallxinR" suchthat 

BTx=0, i= l,...,w 

then there exist constants u>, suchthat 

A' x + X    cj.Bj x = 0 
1=1      i  ' 

for allx in/?" . 

(8-98) 

For proof of this Lemma see Ref. 3, page 
12. 

9? 
J*   -\T(ti-0)+\T(ti+0)\Ax> 
-dx> 1 

+ ... + ^--Xr(f) 
9x" 

Ax" 

|L_F(r°+0) 

- Xr(f° + 0)/(r° + 0) St° 

+   + 9g 

- F(?/ + 0) + \T(t> - 0)f(t' - 0) 

■ \T(t> +0)f(t'+0) St' 

Consider  the  expression of Eq.   8-97 as 
ATx, where the components of .4 depend on 
the values of \(t') and x = (Ax07",..., Ax'r, 
of0, ..., St")7. The equalities Bfx = Oarejust 
Eqs. 8-91 and 8-92. Denoting the multipliers 

T.,S = 1,..., n, and 7,,;' = 0, 1,..., 77, Eq. 
ceomes / 

Ä^o-^l,^ 

+ 7o 
912° 

Ix5" Ax° 

+... + -|£- _ xr(r' - 0) + xr(r> + 0) 
9x' 
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an' 
+ 7-  ~ 7>   bx>. 

+ ... + Zg 
3x" 

Ax' 

Xr(f - 0) 

n    be 9^" 
+   2 r —s~ +y     

i=i s 3*"       "   dx" 
Ax" 

^ _F(r° +0) -\T(t° +0)fu° +0) 

"     ae 
ST, —* 3J2°" 
= 1' 3?° +y° 9ro 

5f° 

+     + j£-+/7(f/_o;-Fa/-0) 
3f' 

+ x7V-o)/u>-o) 

r    ,■ ,■ 0^ 
- Xr(f' + 0)/(/'+0)+7,-^7" bt' 

^—_\T{tn _0)+ 2T   " 
3x" 3x" 

an" 
+ 7     =C 

'"    3x" 
(8-102) 

-^ - F(t° + 0) - Xr(f° + 0)/(f° + 0) 

36 
+ s?/S-# + ^o   1^T=0     (8-103) 

3ft° 
"3? 

■%- + F(t> -0)-Fit1 - 0) 
at' 

+ \T(t> -0)f(t> -0) 

- \T(t> + 0)f(t> + 0) 

bQ,f 

+ y. -= n 
"'   bt' 

(8-104) 

+     + 

+ Xr(f -0)/(/" -0) +  2 r   **j- 
1 = 1 s bt* 

3ft"" 
r n   9fu 5r" =0 

(8-99) 

for all Ax/, or', / = 0,1,..., ■)?■ Therefore, 

3# "       30 

3xu s=i      3x 

+ 7o 3x° 
(8-100) 

3fi 
+ F(f> - 0) + Xr(f - 0)/(f - 0) 

"     39 an" 
+  2r0—^+7    -™- = 0.    (8-105) 

The object is now to eliminate the 7. and TS 

in order to obtain explicit conditions onX(f). 
Postmultiplying Eq. 8-100 by f(t° + 0) and 
adding Eq. 8-103 yields 

n 

g(t° + 0) - F(t° + 0) +  2 Tß(t° + 0) 

+ 7o"°(f° +0)=0 (8-106) 

where 

.   ■ 3g 

be rr.    . b£l> 08   _XT(^-0) + XT(r'+0)+ 7,^ = 0 
3x' 9x' 

(8-101) 

+ -*-/[?' ± 0, x(f'' ± 0),  u(f'' + 0), */ 
9x! 

(8-107) 
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9(t'±0)-- 

aee 

dt< 

+ -ÜLL. flf ± o,x(t' ± 0), u(t' ± 0),b] 
dx' 

(8-108) 

and 

n'(r' ± 0) = —■ 
at' 

dw + 21L f[t> ± 0,x(t' ± 0),w(f' ± 0),b] . 
dx' 

(8-109) 

Since n0(t°,x0) = 0 is to determine t°, the 

total derivative with respect to t°, fl°(t0 + 0), 

should not be zero. Therefore, 70 may be 
determined as 

7o  = - 
1 

n°(f°+0) 

g(t° +0)- F(t° + 0) 

+ 2 Td(t° +0) (8-1 10) 

Substituting Eq. 8-1 lOinto Eq. 8-100 yields 

9«^      "       de°T 

n°(t0 +o) U 

■ F(t° +0) 

g(t° + 0) 

+ 2 re. (t° + 0) 
3S2 or 

dx° 
(8-111) 

This is then a boundary condition on \(t) at 
t°. 

In exactly the same way, postmultiplying 

8-20 

Eq.  8-102 by f(P   - 0) and adding to Eq. 

8-105 yields 

g(P - 0) + F(P - 0) + 2 TA('" - °) 
s = l 

+ 7 &(P -0) = 0. 

Solving for 7   and substituting into Eq. 8-102 

yields 

X(P  -0)=£-   +   2   7,    2£i_ 
y   9*i    s=i     a**1 

1 

n"(fi -CM 
UP -o) + F(r' 

+   2 rs6(P - C) 
aW 

dx" 

(8-112) 

where g {P — 0)andoj(f - 0) are defined in 

Eqs. 8-107 and 8-108. Eq. 8-112 then serves 

as a boundary condition on \(t) at P. 

In order to use Eqs. 8-111 and 8-112 as 

explicit conditions on \(t) at t° and P, the 

parameters rs must be eliminated. This may 

be accomplished by alegbraic manipulation in 

particular cases. To illustrate this idea on a 

problem which has been treated extensively in 

the literature (Refs. 5,7,8,9), consider the 

case in which a full set of initial conditions 

is given, i.e., 

ei(t°.x°)=0,      5=1,...,«. (8-113) 

In this case, Eq. 8-112 yields 

UP - 0) = 
1 dgT __^  

a**     fti^-o) 

g{P ~0) + F(P -0) an" 
3x" (8-114) 
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Eq. 8-111, on the other hand, is just a vector 
equation with n components which deter- 
mines Tj ,—,Tn. It gives no explicit informa- 
tion on X(t° +0). 

Now the boundary conditions on\(t) have 
been determined. It remains.however, to de- 
termine jump conditions on X(?) at the 
intermediate points t'. Postmultiplying Eq. 
8-101 by fit1 ± 0) and adding to Eq. 8-104 
yields 

git' ± 0) + F{t' - 0) - Fit' + 0) 

-XTit' -0)\fitjiO)-fit' -0)} 

+ \Tit' + 0) [fit' ±0)- fit' + 0)] 

yfW(t' ±0) = 0 (8-115) 

where the notation of Eqs. 8-107 through 
8-109 has been used. The choice of limit from 
the right or left (the plus or minus sign, 
respectively) in Eq. 8-115 is left open for 
now. One or the other alternative will be 
chosen for computational convenience. 

It is assumed that the condition fi/it',x') = 
0 determines t' as a function of x', so it is 
required that the total derivative of SV with 
respect to t', 0,'it' ± 0), not be zero. 
Therefore, from Eq. 8-115, 

\(t'+0)-\(tf -0)=-ad 
a d 

(8-116) 

git' ± 0) + Fit' -0) 

+ \Tit'+ 0)[fit' ± OJ-fit' + 0)] 
dx' 

This equation, the boundary conditions at 
Eqs. 8-111 and 8-114, and the differential 
equation, Eq. 8-93, are to determine the 
adjoint variable, X(f), t° Q t < t7*. The 
boundary and intermediate conditions on X(f) 
were constructed so that Eq. 8-97 holds and 
in turn, Eq. 8-96 becomes 

. BF     T df , 

\bb db ' 
dt 

or 

Idb      J,„   \db bb 
dt bb 

\git'±0) + Fit'-0) 
n'it'±0) 

-Fit' +0) 

- \T(t' - 0) \fit> ± 0)-fit' - 0)] 

+ \Tit' + 0) [fit' ±0)- fit' + 0)] [   . 

Substituting this expression into Eq. 8-101, 

£ (£^T^Y«>■>•- <8-"7» 

This equation meets the objective of this 
subparagraph, namely, determination of the 
dependence of SQ on 8b and Suit) explicitly. 
Since Q was any functional, this result can be 
applied to the particular functionals of the 
present problem, / and <i . To obtain 6J and 
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Si//a, define \J(t) and ^"{t) as the solution 
of Eqs. 8-93, 8-111, 8-114, and 8-116with 

g = g0andF=/0forX/(0 (8-118) 

and 

g=ÄaandF = I„for X*a(/). (8-119) 

In this notation, Eq. 8-117 yields 

5/ = 
db '   3 f0 La* 

+.X7   (t)—\dt \ 6b 

In        9« 

,7 3/ 
du 

6u{t)dt 

and 

6*M a»+ ),IV 

+ J    L"3lT 

dr \ 8b 

3/ 
8u{t)dt 

For a more compact notation define 

db      } 0  L 3*        36 J 

au       du 

(8-120) 

(8-121) 

fa  =_3£, 
db 

J?   (8-122) 

and 

A*«(0= ^4-^  X*«(f). (8-123) 
du du 

In this notation 

5/ 

and 

= %jT6b+\      AjT (t)8u(t)dt    (8-124) 
J  ,0 

8\jj   = %'"<*   8b + (t)8u(t)dt  . 

(8-125) 

The problem of this paragraph is now in 

approximately the same state as the problem 

of par. 8-2 was in Eqs. 8-14 and 8-16. Before 
proceeding to derive a steepest descent al- 

gorithm, however, several comments are in 
order. 

First, the choice of limit from the right or 

left was not made in Eq. 8-116. This choice is 

generally made depending on the distribution 

of boundary conditions on the state variable. 
If most of the boundary conditions on x(t) 

are given at t°, for example, then most of the 
boundary conditions on \(t) will be given at 

f. Since the adjoint equations are linear, 

superposition techniques may be used to solve 

the boundary-value problem. These tech- 
niques involve several integrations of Eq. 8-93 
from tv to t° with different starting con- 

ditions at tn. These integrations must account 
for  the jump   condition,   Eq.   8-116.  The 
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integration then proceeds from the right and 
Eq. 8-116 should then be used to determine 
\(t> - 0) in terms of \(t> + 0) so that the 
integration may continue. For this reason, the 
minus sign is chosen in Eq. 8-116 so that 

\(t> -0) = \(t> + 0) + -£— 

git' - 0) 
n'it' - o) 

+ F(ti -0)-F(t' +0) 

+ \(t> +0)[f(t> -0) 

-fit'' +0)] (8-126) 

Since the state equations have previously been 
integrated, g(t' - 0) and &'U> _ 0) can be 
computed inEqs. 8-107 and 8-109. 

The second matter that requires discussion 
is the determination of t1 and its variation,; = 
0,1, ..., Tj. If the state equations form an 
initial-value problem (all initial conditions 
given) then one can make an estimate for u(t) 
and b and integrate Eq. 8-93 from t° toward 
?" (or tn toward t° if all boundary conditions 
are given at ?"). As the integration progresses, 
Sl'it.x) can be monitored and the value of t 
for which it is zero is called t'. The situation is 
not so easy in case the state equations form a 
boundary-value problem. 

One method of determining t' requires that 
a reasonable estimate of t' be available, 
perhaps from engineering intuition or prelim- 
inary analysis. The state equations are then 
integrated using the engineering estimates for 
u{t) and b. It is likely that for the solution 

Sl'lt'.xit')] #0. 

One might argue that the function x{t) is 
close to the actual state and examine the 
effect on£lJ'[t',x(t')] of altering?', i.e., 

8tof[tf,x(t0] 
dJV_ 

bt> 
■6t> 

912' dx ..   . 
+ —   —5t> =n'(t' ±0)5t> 

ox    dt 

(8-127) 

where the plus or minus sign is chosen 
depending on whether St> should be positive 
or negative to make £2/'(f/ + t'),x(t' +?') = 0. 
The change 5?y is then chosen and if it is not 
too large, the state equations need not be 
re-integrated. This argument corresponds to a 
Newton-type algorithm for the determination 
of t!. This procedure should be used after 
every variation in u(t) and b and subsequent 
integration of the state equations, since x(t) 
will be altered with an accompanying altera- 
tion in t'. 

8-3.3 A   STEEPEST DESCENT COMPUTA- 
TIONAL ALGORITHM 

The problem of determining 8u(t) and 6b 
which reduce J and satisfy other constraints 
will now be solved just as in par. 8-2. As in 
the preceding paragraph, if some <j>„ [?,«(?)] or 
<pa is less than zero, it will be ignored. If, on 
the other hand, t/>a > 0 or 4>„[t,u(t)] > 0, 
then it will be required that 

Wa
=~a^a 

and 

50p = - c<pß 

where 0 < a <   1 and 0 < c < 1. 
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Just  as in par.  8-2, define two  sets of 

indices 

,4 = {a|*a[x(0),«(0),*(0)]>o} 

and 

and 

B(t)={ß[<t>ß[tM°Ht)\ > 0} 

where w(0)(/) and ft(0) are the beginning 

estimate of the design variable and design 

parameter, respectively, and x(0)(0 is the 

associated solution of the state equations. 

Further, define the column vectors of con- 

straint functions 

<^ = 

and 

4>(0 = 

OLEA 

00[t,u(oHt)f 

L     j3G5      . 

(8-128) 

(8-129) 

By   the   argument  of  par.   8-2,   it  will be 

required that 

5ij/ = -a\J/ (8-130) 

and 

50(O = -c0(O- (8-131) 

Using  the   notation  of  Eqs.   8-122   and 

8-123, define the matrices 

A*(t)' 

'A*«(0 

' aEA    J 

(8-133) 

That is, the columns of «* and A* (%)are S.*" 
and A a (t)for those CY with \pa > 0. Now, 

AjT\t)bu{t)dt     (8-134) ■i; 
and 

T C'v       T 
■■0*      ZU  + \ K* 5i// =r   5ft + V     A*   (t)8u(t)dt . 

J? 

(8-135) 

The problem of this paragraph is now to 

find bu{t) and 5ft to minimize 8/, subject to 

Eqs. 8-130 and 8-131. Although the symbols 

have a slightly different origin, this problem is 

precisely the same as that given by Eqs. 8-19, 

8-20, and 8-25 of par. 8-2. All the analysis 

required to determine 8u(t) and 5ft follows 

and Theorem 8-1 holds. The only difference is 

that tl in Theorem 8-1 must be interpreted as 

tn in the present problem. 

The algorithm of par. 8-2 may now be 

given with references to equations of this 
paragraph. 

A Igor iihm: 

Step 1. Make an engineering estimate 

u<-0)(t), ft(0) of the optimum de- 

sign function and parameter. 

Step2. Estimate t°, t', .... ?", and solve 

Eq. 8-82 forx°(t). 

£* = 

r^a   -1 

oc&A J (8-132) 

Step 3. Adjust t' as required by the discus- 
sion below Eq. 8-127 and recom- 
pute x° (t)'ti required. 
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Step 4. Check constraints and form ^ 
and 0(f) of Eqs. 8-128 and 8-129. 

Step 5. Solve the differential equation, Eq. 
8-93, with boundary and inter- 
mediate conditions of Eqs. 8-111, 
8-114, and 8-116. The solutions 
corresponding to the functions, 
Eqs. 8-118 and 8-119, yield \J(t) 
and X a (t) .respectively. 

Step 6. Compute ZJ, AJ(t), ß* , A* (?), and 
A*(f), in Eqs. 8-120, 8-121, 8-132, 
8-133, and 8-34, respectively. 

Step 7. Choose the correction factors a 
and ein Eqs. 8-130 and 8-131. 

Step 8. Compute M^j, M, ,, and M. in 
Eqs. 8-38, 8-39, and 8-40. 

Step 9. Choose 7o > 0 and compute y and 
ß(t) of Eqs. 8-43 and 8-35. If any 
components of y, with a > r', or 
ß(t), with ß > q' are negative, 
redefine \p and <j>(t) by deleting 
corresponding terms and return to 
Step 6. 

Step. 10. Compute 5u'(0, 8u2(t), 8bl, 
and 8b2 of Eqs. 8-44 through 
8-47. 

Step. 11. Compute 

u^Kt)=u^°Ht)--^— bul(t) 
27o 

+ a«2o) 

M» >=*>«» -— 8b1 + 8b2 . 
27o 

Step 12. If the constraints are satisfied and 
S«1^)  and  8b1   are sufficiently 

small, terminate. Otherwise, pro- 
ceed to Step 13. 

Step 13. Adjust f°, t1 ,..., tn as required by 
the discussion below Eq. 8-127. 
Return to Step 2 with uw, M°> 
being replaced by «(1) and £(1). 

For an alternate development of the al- 
gorithm in the special case of a full set of 
initial conditions, see Refs. 5 and 7. Several 
example problems are solved in Ref. 5. 

8-4 STEEPEST DESCENT PROGRAMMING 
FOR A CLASS OF SYSTEMS DE- 
SCRIBED BY PARTIAL DIFFEREN- 
TIAL EQUATIONS 

8-4.1  THE   CLASS   OF   PROBLEMS CON- 
SIDERED 

Thus far, all problems considered have had 
their state variable specified by algebraic 
equations or boundary-value problems in 
ordinary differential equations. It is possible, 
however, that the state of the system being 
considered is governed by a boundary-value 
problem with partial differential equations. In 
such cases, the state and design variables are 
functions of more than one independent 
variable. One may then think of the design 
variable as being distributed over an area, 
volume, or higher dimensional space. For this 
reason, such problems have been described as 
distributed parameter systems. 

A great deal of work has been done on 
distributed parameter systems which have a 
time-like variable (Refs. 12,13); i.e., a variable 
which makes the governing differential equa- 
tion hyperbolic or parabolic. In this para- 
graph, consideration will be limited to static 
problems such as equilibrium of plates, shells, 
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etc. These problems are described by linear, 
elliptic, partial differential equations (Ref. 1). 

The boundary-value problem treated will 
be denoted 

L(u,b)[z] =Q(x,u,b),xen (8-136) 

B{v,b)[z] = q(x,v,b),x^T (8-137) 

where x = (x1,x2,-,xk)
T is the independent 

variable which ranges over the domain SI in 
Rk with boundary P. The vector u(x) = 
[«](%), ..., um(x)]T is the design variable 
over £2, v(x) = [vj(x),.... VT(X)]

T
 is the design 

variable over T (boundary design), and b = 
(bi,..., b,) T is the design parameter. The state 
variable z(x) = [zx(x), ..., zn(x)]T is to be 
determined by the boundary-value problem, 
Eqs. 8-136 and 8-137, which is linear once u, 
v, and b are specified. It is important to note, 
however, that the problem depends in a 
nonlinear way on u, v, and b. 

An example of the form of the differential 
operatorsL(u,b)[z] andB(v,b)[z] is 

L(u,b)[z] =    2     a<x,u,b) 
I«i < T) 

aialz 

bx*1 ...foejj* 
, *en 

(8-138) 

and 

B(v,b)[z] =    2     bAx.v.b) 
IPKti     p 

3|/3|z x , *er 

where 

a = («!,..., at)
r,ß = 03i,...,jJt)

r 

8-26 

(8-139) 

|a|=a, +...+ak,\ß\=ßi + ...+ßk. 

The object of the problem is to determine 
u{x), x&Sl, v{x), xEF, and b such that 

J-    S   g0(x,z,v,b)dr 
T 

+     SS Mx,z,u,b)dn (8-140) 

is a minimum subject to the constraints of 
Eqs. 8-136 and 8-137, 

4>a=    S ga(x,z,v,b)dr 
r 

+    SS La(x,z,u,b)dSl = 0, 

«=!,...,/ 

^a=   S ga(x,z,v,b)dT 
r 

+    1/ I (x,z,w,ö)rf£2< 0, 

« = /•'+ 1, ...,r 

(j>j(x,u) = 0, xGfi, i= 1,..., J' 

^.(x,u)< 0, xen,  i= £ + i;..., £ 

and 

W/(JT,V)=0, xer, / = 1,...,?' 

u.(x,v)< o, *er, 7=f' + i,-.,f. 

(8-141) 

(8-142) 

(8-143) 

The method of solving this problem will be 
similar to the methods of pars. 8-2 and 8-3. 
An estimate w(0)(*), v(0)(x), and 6(0) will be 
made and changes sought which reduce J, 
subject to the constraints of the problem. 
Before desirable changes in u<-°\ v(0>, and 
6(0)   may  be  determined, of course, their 
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effect on function in the problem must be 

examined. 

8-4.2  EFFECT OF SMALL CHANGES IN 
DESIGN VARIABLES AND 
PARAMETERS 

It will be assumed in the following that the 

boundary-value problem, Eqs. 8-136 and 
8-137, is well-behaved in the sense that small 

changes bu in «(0), 5v in v(0), and 6b in b*0' 

yield a new solution z(0) + Sz (where z(0) is 
the solution corresponding to the estimated 

design functions and parameters), where Sz is 

small. 

To first order, 8z must satisfy the lin- 

earized boundary-value problem. 

L[«<°>,a<°>] (Sz) + AuZ,[U(°),ö<0>] [z<°>] bu 

+ AhL[u(°\bW][z<°)]Sb 

92, 
Bu 

[x,u(0),b<0)]Su 

3b (8-144) 

forjc€fi and 

B[v'-0\b^](bz)+At,B[v(-0\bm][zw]bv 

+ A&5[v<0>,b<0)][z(0)]Sb 

a? 
dv 

U,v<°>,b(0>]5v 

+— /"x/°),b«»]5b 
db 

forx6I\ where 

A,L(x,u,b)[z] =—L(x,u,b)[z] 
" ÖU 

a 
AbL(x,u,b)[z] = —L(x,u,b [z] 

AB(x,v,b)[z] = — B{x,v,b) z] 
av 

(8-146) 

A B(x,v,b)[z] =—B(x,v,b)[z] 
° ob 

For convenience in the following develop- 

ment, the arguments of L and B will always 

be taken as w(0), v«», and b(0). 

The functional J and \p   are of the same 

general form, so, for their analysis define 

P=   J g(x,z,v,b)dV + tt F(x,z,u,b)dn. 
r n 

(8-147) 

Once the dependence of P on changes in u, v 

and b is determined, the result may be applied 

directly to J and \j/a. 

To first order terms, 

'/(■ r  V 

— öz + — 5v + —  6b I dr 
oz dv db 

XT bF 
bz + ^ bu + *P 6b)dJ2. 

02 3« 3b       7 

(8-148) 

(8-145) 

In order to make use of Eq. 8-148 in the 

determination of bu, Si>, and 6b, it is desirable 
to eliminate explicit dependence on bz. This 
is done through use of the adjoint operator 

L * defined by 
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CC{XTL(u,b)[8z} - 8zTL*(u,b)[\}} d£l 

si 

=      \A[\]T C[8z]dT (8-149) 

where A [A] and C[8z] are differential opera- 

tors. The form of the operators^, C, and L* 

is determined by integrating\T L(u,b)[8z] by 

parts. 

Putting 

bFT 

L*(u,b)[\] 
dz 

Eq. 8-148 becomes 

8P ß 
(8-150) 

bg 
8z~A[\T}C[8z] +—-8v 

bv 

+ -&■ 8b\ dV 

& 

bF 
+    |U \' L(u,b)[5z] + dtt-Su 

n 

+ — 8b \ d£, 
bb 

Substituting from Eq. 8-144 for L{u,b)[8z] , 

this is 

8P- 

n 

bF 

bu 
■ \T&L(u,b)[z\ 

+ \T -$-\ 8u 

bF 
+ {— -\TAbL(u,b)[z] 

+ A' 
ty 

dtt 

A dg 
+    \l -r- 5z~A[\)TC[8z] + -&5v 

+ — 8b}dr. 
bb 

(8-151) 

The objective now is to eliminate explicit 

dependence of 8P on 8z. This may be done by 
requiring that 

£- 8z - A\\]TC[8z] (8-152; 

be explicitly independent of 8z for all 8z 

satisfying Eq. 8-145. This may be interpreted 

as requiring that on T certain components of 

Sz be determined from Eq. 8-145 in terms of 

8v, 8b, and the remaining Sz. The coefficients 
of all components of 8z remaining in Eq. 

8-151 must then be set equal to zero. These 
equations will then yield boundary conditions 
for X(x). 

Assuming all this calculation has been 

completed and AQc) determined, Eq. 8-151 

may be written as 

SP=    f$AT(x)8udtt + f IlT(x)8v dV 

+ ZTSb 

where 

bFT bQT 

A(x) = —-  -AuL(.u.b)[z]\ + -2-\ 
bu " by 

Tl(x) = coefficient of 8v in Eq. 8-15 1 after 

substitution 

■öl" 
bFT 

bb 
-AfcL(u,ft)[z]X 

bb 

+   / [coefficient of Si1 in Eq. 8-151 

after substitution] dV 

(8-153) 
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By putting 

g=go> F = fo (8-154) 

Y a 

LaGA 
(8-158) 

and 

g=ga, F = La (8-155) 

where 

A = (a | i,a > 0) (8-159) 

one obtains 

8J =    SSA
JT

(X)8U d£l +  SnjT{x)5vdSl 
n r 

It will be required that 

5\jj= -Ci4/ (8-160) 

+ «/   6b      (8-156) 

and 

6^a =    JjA^a   (x)Sw d£l 
a. 

T T 
+ SnK ix)Svdr+2K db 

(8-157) 

respectively 

The expressions, Eqs. 8-156 and 8-157, give 
the desired explicit dependence of 6J and 
8^a on 5u,Sv, and 8b. The problem is now 
reduced to determination of 8u, 8v, and 6b 
which give the greatest reduction in J subject 
to the constraints of the problem. 

where Cj is a constant between zero and one. 
The idea here is to drive ty toward zero if a 
constraint is violated or will be violated by a 
change in the design variables or parameters. 

For   convenience   in   later   development, 
define 

A* (x)= ( A*« ; CCGA) 

n*(x)=( n*«;ae^) > (8-161) 

ß* = ( je*« ;   aEA ) . 

In this notation, 

8\p=   ff A* (x)T8u d£l 

8-4.3 A   STEEPEST DESCENT COMPUTA- 
TIONAL ALGORITHM 

The procedure will now be to choose 8u, 
8v, and 8b so as to minimize 5/ subject to the 
constraints Eqs. 8-141 through 8-143, just as 
in pars. 8-1 through 8-3. In order to insure 
Eq. 8-141, define 

+  JTT*'   (x)SvdT +£*   8b. (8-162) 
r 

Likewise, define 

*(*) = 
iED(x)_ 

(8-163) 
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and dP2 =   f!$8uTWu8udn. 

<Z>(x) = 
J£E(x)_ 

where 

D(x)=[i\ <j>j{x)> 0] 

and 

E(x) = [; | co;.(x) > 0] . 

It will be required that 

84>(x)< - C24>(x),    jcen 

and 

(8-164) 

(8-165) 

(8-166) 

(8-167) 

8ü(x) <   - C3ü(x),   JcGr (8-168) 

where 

0 < C2 < 1 and 0 < C, < 1 

30 
6$(x) = (x)öu(x) 

du 

and 

9öj 
Sw (x) = -— (x)8v(x) 

ov 

(8-169) 

(8-170) 

Before determining 8u, 8v, and 8b, a device 

should be introduced to insure that these 

quantities are small as is required in order that 
the preceding first order analysis is a good 
approximation to reality. The engineer should 

choose positive definite weighting matrices 
Wu(x), Wv(x), and Wb so as to associate a 

relative importance to all the variables. It is 

then required that 

+ 5 8vTWv8vdT + 8bTWb8b 
r 

(8-171) 
where dP is "small". The choice of dP will be 

discussed later. 

The design variables and parameter, 8u, 6v 
and 8b, are now to be chosen to minimize 57 

of Eq. 8-156 subject to Eqs. 8-160, 8-167, 

8-168, and 8-171. 

A multiplier rule of Liusternik and 

Sobolev, Ref. 14, page 209, will now be 

applied to the present problem. It guarantees 

the existence of multipliers, n(x), xE.£l, ß^x) 

> o, i > £', v(x), xsr, VjM >oj> f, 7, ya 

> 0, a > r', X0 > 0, and 7o suchthat 

5(5/) = 0 

for all bu, 8v and 8b, where 

(8-172) 

57 = Jj r-X0A/r(jf)-7rA*7'(x) 

■7o 8uT W.. 

\8udn 

f[-\°njT{x)-yTn*T(x) 

yQ8vTWv 

-vT{x) 
del; 

8vdT 

[-Xo #' YT^    - To 8b W, 8b. b 

(8-173) 
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Using 5/ of Eq. 8-173 inEq. 8-172 

5(8/) = 0=   Cf\~\0A
jT(x) 

si  L 

-yTA*7(x) 

-2yQ8uTWu 

T,-^   d<t> 
- »' (x) 

du 
82udSl 

J    - \0lljT(x) 

-yTn*T(x)-27o5vTWv 

3d) 
.v'ixy 

dv 
82vdV 

A«,«7' 

2y08bWh 

"$>4> 

82b , 

(8-174) 

for all 82uQc), xefi, 82v(x), xsr, and 82b. 

This implies 

- \0
J(x) - A* (x) -. 27o Wu 8u{x) 

30 T 

du 
ß(x) = 0 (8-175) 

forxEQ, 

- \0U
J(x) - IT* (JC)T - 2y0Wv8v(x) 

3wr 

dv 
v(x) = 0 (8-176) 

forx^V, and 

-X0e
7 -8*7-2T0W6ä = 0. (8-177) 

At this point it is assumed that the problem 

is normal so that X0 = 1 may be chosen. Eqs. 

8-175 through 8-177 yield 

8u{x)= 2^-W-Hx) 

-AJ(x)-A+(x)y- ^~ 
du /*(*) 

8v(x) ■■ 

xen 

2To 

x ["ny(x)-n^7 

(8-178) 

-,T 3d) 
v{x) ,xer (8-179) 

and 

6b=^yTWb1 <-fi/-«*7)-        (8-180) 

Assume for the present that Eqs. 8-167 and 

8-168 are equalities. Substituting Eqs. 8-178 

and 8-179 into Eqs. 8-167 and 8-168 yields 

— C2</>,   A'Efi 

and 

1      3cö ,   , r 
——   W~l      - llJ - IT* 7 

27o     ?>V 

3ö>r 

3v 
c   =-c,w, xer. 
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Since Wu 
1 and Wy 

i are positive definite, the 
matrices (90/3«) W'1 O0r/a«) and (3w/9v) 
W~* (düT/dv) are positive semi-definite. It 
will be assumed that they are positive definite 
and hence nonsingular. In case 0 or tö is 
empty, then the terms multiplying ß and Y do 
not exist. In this case simply define /i = v - 0 
and 00/d") W"1 O0r/a«) = (9ü/9v) W~l 

(9wr/3v) = 1. In any case, 

27oC20+iiw;1 M(x)   =A* 

x(-A7 -A1* 7)|, x€S2 rS-181 

where 

A* = —- W~' —5- 
9«     "      9« 

and 

9v 

-£"-7) , *er   (8-182) 

where 

9cZ)         ,    9wr 

A" =   3v    ^       3v      ■ 

Substituting from Eqs. 8-181 and 8-182 into 
Eqs. 8-178and 8-179yields 

^-Wo^1 LI7"   3u   A' 

30        A 
—W-1 } 
du    "   / 

x (-AJ -A*?) 

30 r 

9u 
A@-'27 oC20j', xES~ 

öv(x) = 
27o 

■w: 
bcbT 

I- A^ 
9v 

9ä) 
w-i 

9v 

x (-ny - n* 7) 

——A"      27oC3w 
ov 

,xer 

(8-184) 

In order to determine y, these expressions are 
substituted into Eq. 8-160. Using Eq. 8-182, 
the resulting equation is 

1 i 
~TZ~ M, j - -*— M, , y - C2M, - 

C3JW, .  =-Ci^ (8-185) 

where 

^=ffA 3« 

30      -r 

>Vv-ir A* 

6«        .. 
x37«TI)n'dr 

(8-183) + fi*    W^'fi7 (8-186) 
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*».-/>,V(/-f A«" 
30     _,, 

X-^K )A*da 

düT 

■^ p    \ 3v 

•!".-'!«' 

+ 8*    H/;1«^ (8-187) 

*.«-   ß^K'^^'iä* 
(8-188) 

and 

M, . =    I TVi>Tw-, düT 

3v 
A

W
 *üdr. 

(8-189) 

It was shown in par. 8-2 that the matrices 
in the integrands forM, , are positive semi- 

definite. Therefore, M, , is at least positive 

semi-definite. It will be assumed in what 
follows that M, j is positive definite and, 

therefore, nonsingular. Solving Eq. 8-185 for 

y then yields 

„ L~,uv~, r - C2M^- - CjM^^) 

(8-190) 

Substituting y from Eq.   8-190 into Eq. 

8-180, Eqs. 8-183, and 8-184 yield 

8u(x) = - —- 8ul (x) + 8u2(x) (8-191) 
^7o 

8v(x) = -TH-6V' (X) + 8v2 (x) (8-192) 
^7o 

and 

8b = 5ft1 +8b2 

27o 

where 

(8-193) 

"    \       du du     " / 

x (AJ - A*M~l Alexen    (8-194) 

"V       du du    " ) 

+ C,M ̂
 U> >] (8-195) 

/-i if Q^-^-A*    0,^en 

v     \       3v dv     "   ) 

x (n'-n^-^^er (8-196) 

dv 3„     " 

+ C3^)] (8-197) 

3ö)r       _, 
Cs^-'-r—Aw    to, xer 

3v 
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Sbl = Wri 

and 

(iJ-ft*M~\Mn) (8-198) 

&b>=W-b
1S.*M-\(-C1+ + C2Mii$ 

+ C3^> (8-199) 

4. —-du2 =~C2<t>, in« 
du 

90      , 
5. m-Su1 = 0, in $2 

,   9w „ , 
6. —-6v2 =-C3w, onT 

3v 

It should be noted that if there were no 
constraints then 5«, 8v, and 8b would reduce 

to  -   A7,  -   IT/ , and -  Sy, 
2To 2>O 27O 

respectively. In order that the change in 

design variables and parameters should be in 

the negative gradient direction, it is clear that 

7o > 0 is required. The magnitude of 70 

could be determined by substituting Eqs. 

8-191 through 8-199 into Eq. 8-171. How- 

ever, dP must be chosen so it may be just as 

well to simply choose 7o in Eqs. 8-191,8-192 
and 8-193. 

7. 8vl =0,onr 
dv 

8. -ijTSbl - SnjT8vldv 

=    SS AJ 8u1dSl< 0 

A computational algorithm may now be 

stated based on this development and the 

arguments presented in par. 8-2. 

Algorithm 

Just as in the problems of pars. 8-2 and 8-3, 
the variations Su'(x), 8u2(x), 8vl(x), 8v2(x), 

5bl , and 5b2 satisfy Theorem, 8-2. 

Theorem 8-2: The above variations satisfy 
the identities 

1. 8blTW.5b2 +  S 5vlW8v2dT 
D p V 

+    SS 8u,Wl8u2dSl = 0 
n 

2. 2*T8b2 +  S IT^Sv^r 

+    SS A*   8u2dSl = -Clip 
a 

3. Q"/T5b1 + S n*T8v1dr 
r 

+    SS A*   8u1dÜ. = 0 
n 

Step 1. Make an engineering estimate 

u<°>(x), v<°>(x), M°> of the opti- 

mum design functions and param- 

eter. 

Step 2. Solve Eqs. 8-136 and 8-137 for 

z<0)(x) corresponding to u(0)(*), 

v<°>(x)(andM0). 

Step 3. Check constraints and form \p, <j>, 

and w of Eqs. 8-158, 8-163, and 
8-164. 

Step 4. Solve the differential equation, Eq. 

8-150, subject to the boundary 

conditions generated by Eq. 8-152 

with g and F given by Eqs. 8-154 
and 8-155, to obtain \J and A*01, 

respectively. 

Step 5. Compute A/(x), nJ(x), ZJ, A* (x), 
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11* (x), and £*  in Eqs. 8-153 and 
8-161. 

Step 6. Choose the correction factors Ct, 
C2, and C3 in Eqs. 8-160, 8-167, 
and 8-168. 

As in par. 8-2, if after several iterations the 
constraints are all satisfied, 8u2(x), 8v2(x), 
and 8b2 will all be zero. In this case, 

5/= \Mlr-MT
l   M-\M,   )   (8-200) 

Step 7. Compute Mij/j, ,.^ ^ „.^ 

M, 

^**.  M*4>>  and 

in Eqs. 8-186 through 8-189. 
where 

Step 8. Choose y0 > 0 and compute y, 
//(*), and «>(*) in Eqs. 8-190, 
8-181, and 8-182. If any compo- 
nents of y with a > r', //(x) with i 
> I', or v(x) with./ j> ?' are 
negative, re-define I/*, $(*), and 
cö(x) by deleting corresponding 
terms and return to Step 5. 

Step 9. Compute 8u1(x), 5u2(x), 8vl(x), 
8v2(x), 8bl ,and So2 in Eqs. 8-194 
through 8-199. 

Step 10. Compute 

M<»)(x) = K<
0)

(X) —SH'OO 
27o 

M//=£yr^&ß'/+ / n/7 W" 

x 1/ A"   —w.Jn'dr 
av av 

.11 A'VT
1 

au ou 

Just as in par. 8-2, one can now specify a 
reasonable, desired reduction 6J in J. The 
formulation, Eq. 8-200, provides a means of 
finding 70 that, based on the preceding linear 
approximations, will yield the desired reduc- 
tion in the cost function. 

+ 5M2(JC) 

v<l>(x) =v<°>(x) 8v*(x) 
2To 

+ 8v2(x) 

fe(D = bW 
2To 

8bl +8b2. 

Step 11. If the constraints are satisfied and 
öu'fx), 8v1(x), and 8b1 are suf- 
ficiently small, terminate. Other- 
wise, return to Step 2 with 
u<°>00, V<°>(JC), and Z>(0) re- 
placed by u(1)(*), v(')(~)%nd 
6(1) .respectively. 

8-5 OPTIMAL    DESIGN   OF   AN   ARTIL- 
LERY RECOIL MECHANISM" 

An artillery weapon mounted on tires or 
tracks has some undesirable features. Unlike 
the hard mount (weapon rests on a base 
plate), the flexible mount will have a pitch 
motion. During the recoil stroke, when the 
weapon is fired at 75-deg elevation, the tires 
load up or compress; and when counterrecoil 
begins, the tires act like a spring and unload 
sending the tires off the ground. It is quite 
obvious that, when the weapon comes to rest, 
the likelihood of it being zeroed in for the 

*The results of this paragraph represent the work of Mr. 
T. D. Streeter, Ref. 15. 
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Figure 8-1. Howitzer, Towed, 105mm, XM 164 

next round has been reduced considerably, 
especially for high rate of fire weapons. This 
phenomenon is known as a secondary recoil 
effect, because an additional acceleration 
term enters into the recoil equations. Because 
of this secondary recoil effect, the recoil 
mechanism design becomes much more dif- 
ficult. For short recoil, the orifice areas in the 
recoil mechanism are designed at maximum 
elevation (75 deg). Therefore, when elevation 
is mentioned throughout the remainder of 
this report, it refers to maximum elevation. 
The weapon positioned for high-angle fire is 
shown in Fig. 8-1. 

modeling for the high-speed digital computer. 
To do this, the steepest descent, numerical 
technique is used to minimize the hop or 
pitch motion of the weapon and, at the same 
time, to determine the necessary control 
rod     design that will minimize hop. 

The recoil equation for a rigid mount is of 
the form 

x+f(x)x2 + g(x)=h(t) (8-201) 

where x is the displacement of the recoiling 
parts, g(x) is a restoring force, and h(t) is the 

The purpose of this paragraph will be to 
develop a systematic recoil mechanism design 
procedure    characterized   by   mathematical 

*The control rod in a hydraulic recoil mechanism is a rod of 
variable cross section which moves through a larger orifice 
during recoil and varies the area of the orifice to control 
recoil force level. 
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breech force due to firing. In the second term 
of this equation, the expression for the effect 
of the control rod orifice areas can also be 
obtained from a predetermined recoil force*, 
R(t). For the flexible mount, Eq. 8-201 is 
coupled with the equation describing the 
pitch motion of the weapon and thus yielding 
two second-order nonlinear ordinary differen- 
tial equations with prescribed initial condi- 
tions. R(t) will be taken as the control 
variable which is to be determined to mini- 
mize hop (the pitch motion of the weapon) 
subject to other design constraints. The 
orifice area is then determined to provide this 
recoil force. 

This study was performed on a develop- 
mental weapon, namely, the XM164. The 
XM164 is a lightweight, split-trailed towed 
105 mm howitzer with the XM44 hydropneu- 
matic recoil mechanism. Unlike a rigid mount, 
the XM164 is flexible and is fired while 
resting on rubber tires. 

For a rigid mount weapon, the resisting 
force R(t) on the recoiling parts is designed 
with a trapezoidal shape as shown in Fig. 8-2. 
With the proper design of the control rod 
orifice area, the flow of oil in the recoil 
mechanism is controlled and such a force, as 
shown in Fig. 8-2, can be obtained. However, 
when a force (shaped as in Fig. 8-2) is 
designed for the flexible mount, the question 
is asked, "Can this force be applied with some 
other 'best' shape, such that it will reduce the 
pitch of the weapon?" This is the basic 
question with which this design problem is 
concerned. 

R(t) 

Time 

Figure 8-2. Recoil Force for a 
Rigid Mount 

8-5.1  FORMULATION OF THE PROBLEM 

During the recoil, counterrecoil cycle, there 
are four different times which are of concern. 
These are shown in Fig. 8-3. 

Time 

Figure 8-3.  Time Intervals 

In Fig. 8-3, the special times noted are: 

firing of round 

*The recoil force is the retarding force on the rearward 
traveling barrel during recoil, due to throttling of cil 
through the variable area orifice. 

t1  = end of the recoil stroke 

t2  = time at which maximum hop occurs 

t3   = end of counterrecoil 

At these four times certain conditions must 
be satisfied from the design requirements. At 
time t° the initial conditions for the state of 
the system are given. At time t1 the displace- 
ment of the recoiling parts is required to be 
equal to some specified value and the velocity 
of the recoiling parts must be equal to zero. 
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At time t2 the velocity of the pitch motion 
must be zero (necessary condition for maxi- 
mum pitch), and the displacement of the 
pitch motion is to be a minimum. Note that it 
will be possible for t2 to vary between tl and 
t3. Therefore, the hop or pitch motion will be 
minimized for the entire counterrecoil stroke. 
At the final time t3, which is the end of 
counterrecoil, the recoiling parts must return 
to their original position, and the velocity of 
the recoiling parts will be some specified value 
V3. This is to insure that the recoiling parts 
return to the latch position. It will also be 
demanded that the total cycle time be equal 
to cT seconds. 

Formulating this problem into the mathe- 
matical notation of par. 8-3 yields 

Minimize/ = x^(t2) =g0 

subject to the equality constraints: 

^2 = x2(t
3) -no - g,=0 

$3 = x1(t3)- V3 =g3 =0 

nl =xi(ti) = o 

n2=x3(t
2)=0 

n3 = t3 -cr = o 

with the full set of initial conditions 

Jfi(0)=jf3(0) = x4(0) = 0, 

X2(0)=770 

(8-202) 

(8-203) 

(8-204) 

where $.. i = 1,2,3 are intermediate and 
terminal constraint functions to be satisfied; 
ft1, £22, and J23 define the times at which the 

intermediate and terminal constraint func- 
tions occur; xs and x3 are the velocities of 
the recoiling parts and pitch motion, respec- 
tively; x2 and xA are the displacements of the 
recoiling parts and pitch motion, respectively; 
i^i = 0 is the constraint on the displacement 
of the recoiling parts such that at the end of 
the recoil stroke the displacement will be 
exactly equal to ??max inches. \fr2 = 0 is the 
constraint demanding that the recoiling parts 
return to the latch position at the end of 
counterrecoil. ^ 3 = 0 is the constraint which 
requires that the velocity of the recoiling 
parts come into the latch position at a 
velocity V3 inchespersecond.fi1 =0 defines 
the time at which the end of the recoil occurs; 
Q,2 = 0 defines the times at which the pitch 
velocity is zero and the one with the largest 
displacement is selected, thus defining the 
time at which maximum hop occurs; and fi3 

= 0 defines the total cycle time to be exactly 
equal to cT seconds. 

It was previously mentioned that the rod 
force was taken as the design (control) vari- 
able, instead of the orifice areas. Using the 
rod force as the design variable simplifies the 
problem, and it also gives the engineer more 
insight into the design process since he has an 
intuitive feel for the force levels the weapon 
system he is designing can tolerate. Thus, 
immediately the engineer can specify an 
admissible upper limit for the recoil force, say 

•fimax, for his design, and this value may be 
varied by the engineer for any redesign. The 
following inequality constraint, therefore, 
must hold for all time /. 

4>=R(t)-Rmn< 0   Q<t<t3 (8-205) 

The optimization problem has now been 
formulated. All that must be done now is to 
put the problem into the steepest descent 
formulation. Par. 8-5.2 simplifies the equa- 
tions of motion for the XM164 Howitzer. 
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8-5.2 EQUATIONS OF MOTION FOR THE 
XM164 HOWITZER 

A schematic diagram showing the moving 
parts and variables defining the dynamic 
model of the XM164 Howitzer is shown in 
Fig. 8-4. In explanation of this physical 
idealization, the following variables are de- 
fined : 

yj = weight of recoiling parts 
a 

Wb       = weight   of  elevating   parts  less 
recoiling parts 

yj = weight of nonelevating parts 
d 

M = mass of recoiling parts 

V = recoil displacement 

f = distance from center line of trun- 
nion to center line of recoiling 
parts (vertical) 

yt = distance   from   center   line   of 
spade to center line of trunnion 
(horizontal) 

7 = angle of elevation of gun tube 

zt = distance   from   center   line   of 
spade to center line of trunnion 
(vertical) 

</> = pitch angle of weapon 

Figure 8-4. Schematic of XM 164 105mm Towed Howitzer - Dynamic Model 
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R(t) = rod force 

B(t) = breech force 

8 = acceleration due to gravity 

M = coefficient of friction 

Si = friction force (guide) 

S2 = friction force (guide) 

M
b 

= mass of elevating parts less recoil- 
ing parts 

i)b = distance from center line of trun- 
nion to mass center of Wb (hori- 
zontal) 

f6 = distance from center line of trun- 
nion to mass center of Wb (verti- 
cal) 

Md       = mass of nonelevating parts 

yd - distance from center line of 
spade to mass center of Wd 

(horizontal) 

zd = distance from center line of 
spade to mass center of W, 
(vertical) 

/„ = traverse moment of inertia of W„ a a 
about its own CG 

application 

0 = static value of <j> 

c = damping coefficient 

* = spring constant of tire 

qi = distance from center line of trun- 
nion to rear of cradle (horizon- 
tal) 

q2 = distance from center line of trun- 
nion to front of cradle (horizon- 
tal) 

f2 
= distance from center line of trun- 

nion to R(t) application (verti- 
cal) 

ct = distance from center line of trun- 
nion to bottom of rail (vertical) 

ß = distance from center line of trun- 
nion to top of rail (vertical) 

L = distance from tires to trail spades 

Y,Z = axes fixed in trunnion, parallel to 
x-, y-axes 

y,z      = axes fixed in carriage 

H,Z     = axes fixed in cradle 

= traverse moment of inertia of Wb 

about   its   own  CG 

= traverse moment of inertia of Wd 

about its own CG 

= distance from center line of trun- 
nion   to    center   line   of  Bit) 

The differential equations to be solved are, 
Ref. 16: 

M
a ^ -(? —ytsin,y +Zt cos7)^ 

— (.W +y, cosy +zt sin7)02 ] 

= R(t)-B(t)-Mesm(y+<j>) 
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_/i(|S, \+\S2 |) sgn(77) (8-206) 

JAfa(77 +yt COS7 + zf siny)2 + Affi [(rjft COS7 

+ yt-$b sm7)2 + 0?6 snry + z, 

+ Id ! 0 + 2A/STJ0(T? + j»r COS7 + zf sin7) 

- Ma 02 (T? + yt COS7 + z  sin7) 

x($-yt sin7 + z, COS7) = B{t) ■ «-, - ?) 

+ [/?(*) - M(I ^ I + I S2 |) sgn(rj)] 

x (f — yt siny + z, cosy) 

-g\Ma(T)+y, cosy +zr siny) 

xcos(7 + 0) +Md(yd cos0 — zrf sin@) 

+ Mb [yt cos0 — zf sin0 + r\b cos(7 +0) 

_ ib sin(7 + 0)]  ) _fc(0 + 0jf) _ c0 

(8-207) 

Ma[2r/4> +(ri +yt cosy +z, sin7)0 

- (f + zt cosy - y, sin7)02 ] 

= S, +S2 -Mag cosiy+t) (8-208) 

/>' = Si(<7i -i7)+52(<?2 -t?) 

_Ä(r) ■(? -^)+R(t) •(? _?2) 

-/*[|S, Itf-a) 

+ I 52 | (f _ /3)] sgn(TJ) . (8-209J 

Eqs. 8-206 and 8-207 are the translational 
and rotational equations of motion, respec- 

tively, for the XM164 Howitzer. Eqs. 8-208 
and 8-209 determine the guide friction. 

For small 0 the following approximations 

are made: 

sin0 = 0 

02 

COS0 =   1 s- 

The cos (y + 0) and the sin (y + 0) then 

become 

,   N .   cosy 
cos (y + 0) = cosy — 0    —— — 0 siny 

sin (y + 0) = sin7 - 02 siri7/2 + 0 cosy . 

From these approximations and the follow- 

ing definitions, Eqs. 8-206 and 8-207 can be 

simplified. For simplification, define: 

CON1 = Ma 

CON2= -Ma{t; -yt siny +zf cosy) 

CON3 = -n(\Si \ + \S3 I) sgn (rj) 

CON4 = — yt cosy + z   siny 

CON5 =Mb[(nb cosy+.y, - f b siny)' 

+ (Vb siny +z; +fs cosy)'] 
+ Md{yd+zd)+Ia +/,+/, 

CON6 = $ —yt sir>7 + z, cosy 

CON7 = f! -? 

CON8 = siny 

CON9 = cosy 

CON 10= -Afa -g- CON8 

COM 1 = Ma • g • CON8/2 
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CON12 = 

CON13 = 

CON14= 

CON15 = 

CON16 = 

COM 7 = 

CON18 = 

CON19 = 

CON20 = 

CON21 = 

CON22 ; 

CON23 : 

CON24 ■■ 

CON25 = 

CON26 = 

CON27 = 

CON28 = 

CON29 = 

CON30 = 

CON31 = 

CON32 = 

CON33 = 

CON34 = 

8-42 

M„ - CON4 a 

■■-2M. 

2M -CON4 a 

-k'd> , 

Mfl-CON6 

M -CON6-CON4 

■ -g-Ma-com 

■■g-Ma'CON9/2 

-g-M -CON4-CON9 

g-Mfl-CON4-CON9/2 

'-g-Md-yd 

■g-Md-ydl2 

■g-Md-zd 

■-g-Mb-yt 

■■g'Mb-y,n 

■g'Mb-zt 

■■-g'Mb-rib-COW 

g-Mb •rlb -CON9/2 

g'Mb-$b-CON8 

-g'Mb -f4-CON8/2 

^\Mfl-CON8 

g-M -CON4-CON8 

M,-g-nb-com 

CON35=H -g-f6-CON9 

CON36 = CON20 + CON22 + CON25 

+ CON28 + CON30 

CON37 =  CON21 + CON23 + CON26 

+ CON29 + CON3 1 

CON38 =  CON24 + CON27 + CON33 
+ CON34 + CON35-/c 

CON39   = CON15 +CON36 

CON40  = -Ma-g-CON9 

With   these   definitions,   Eqs.   8-206   and 
-207 may now be written as 

CONl-Tj + CON2-0 = R(t) -B{t) 

+ CON3+CON10 

+ CON11-02 

+ Ma'r\'4>2 

+ CON12-02 

(8-210) 

+ 0-CON4O 

[yWa(T?+CON4)2 +CONS]0 = 

CON13"fj-0'Tj + CON14'7J0 

+ CON38-^+CON32-r?0 

+ CON39-C0 +CON16-0
2

T? 

+ CON17-02 +S(f)-CON7 

+ [R{t) +CON3] -CON6 +CON18-7? 

+ CON19-7T02 +CON37-02 

(8-211) 
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Eqs.  8-210 and 8-211 can be put into the 

following form 

"nJ? +v12<j) = v13 

V22'<j>=V23 ) 

where 

v,! =C0N1 

v, 2 = CON2 

vl3 =R(.t) -B{t) +CON3+CON10 

+ CON11-02 +Man4>2 

+ CON12-02 +CON4O-0 

v2l =0 

"2 i = Ma(r\ + CON4)2 + CON5 

v23 =CON13-TJ0Tj + CON14-TJ0 

+ CON38-0+CON32-5?0 

+ CON39 -c<p + CON16-02i? 

+ CON17-02 +£(f)-CON7 

+ [Ä(0+CON3]'CON6 

+ CON18-r?+CON19-T?-02 

+ CON37-02 

Eq. 8-212 can now be written as 

V = (v13-v22^v12v23)/(v11-v22)) 

<t>=v23/v22 . 

(8-212) 

(8-213) 

(8-214) 

x, =17 

XJ =V 

x3=<p 

x4 = 0 

When this is accomplished, the following 

first-order equations yield the proper formula- 

tion that will be used in the steepest-descent 
scheme: 

*i =(v13'v22 -v12-v23) 

x2=xt=f2 (8-215) 

x3 =v23/v22 =f3 

*4 ~ x3 =fl ■ 

8-5.3 STEEPEST DESCENT FORMULA- 
TION 

The optimal design problem can be stated 

as follows: Determine the design variable 

R(t) in the interval 0 < t < t3 so as to 

By making the following definitions, Eqs. 
8-213 can be put into first order form: 

minimize J = x^(t2) 

subject to the constraints 

1>i=x2(t
1)-rio+vntx=0    ^ 

4/2 = x2(t
3)-Vo =0 

iP3=xl{ti)-V} =0 

ft1 =xl(t
1) = 0 

n2 =x3o
2)=o 

a3 =?3 -C-r =o 

(8-216) 

■     (8-217) 
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4>=R(t)-R        < 0 r *■  ' max 

and satisfying 

x=f 

(8-2 18) 

(8-219) 

where the components of the vector f are 

given in Eq. 2-215 and initial conditions are 

*i(0) = X3(0) = x4(0)=0, x2(0) = r)o ■ 

The minimization problem stated here 

starts with an estimated design for R(t), 

analyzes it, and then improves on the design. 

The steepest descent technique of par. 8-3 is 

used here to solve the design problem stated. 

The first step in implementing the computa- 

tional algorithm of par. 8-3.3 is computation 

of auxiliary variables required for the al- 
gorithm. 

8-5.3.1   DETERMINATION   OF   THE   AD- 

JOINT EQUATIONS 

The adjoint equations are, from Eq. 8-93 

"a/" 
x = - 

dx 
X, 0 < t * t3 

where the vectors / and x are defined in Eqs. 
8-2l5andX = (X! ,X2,X3,X4)

r. 

ML 
9*! =    ("11V22) 

/3v22\ 

hUrv 
v"(Sr)-vi; 

dvu 

- (vi3y22 - v12v23) 

3v, 

dx. 
'22 \ / 3v. 1 

"iil^-^l +"22'      M 

3*. 

ML 
dx 1 

ML 
dx2 

ML 
bx3 

dlL 
ax4 

9/2 
dxx 

8/3 
dx: 

l(viivl2)    i= 1,2,3,4 

-v12x3(CON13-x2 +CON14) 

/("nv22) 

VuV22[2Mav13(x2 +CON4) 

+ Mav22xl - "12 (COm3>Xlx3 

+ CON32-x4+CON16-xi 

+ CON18 + CON19MC4)] 

-(V13V22 ~vl2v23) 

^[2Mavll{x2+COm)]\l{v\lv\2) 

= iv22{2Max2x3 + 2-CON12jc3) 

-v12 (CON13-XJX2 +CON14-X! 

-C+2'CON16-x3x2 

+ 2-CON17-*3)]/(v11vaa) 

[v22(2-CONll-x4 +CON40) 

- v12 (CON38 + CON32«;t2 

+ 2-CON19-x2x4 

+ 2-CON37-*4)]/(yll(»„) 

ax2 dx3 3x4 

3v2; 

bx—)~V23\bx '?)>'» 
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i= 1,2,3,4 

-^ = x3 (CON13-x2 + CON14)/»>22 
3/s 
dxt 

9x2 

a/a 
dx3 

v22 (CON13-X!X3 4 CON32-x4 

tCONl6-xl +CON 8 

+ CON19-xi) 

-2Mav23(x2 +CON4)]/vl2 

(CON13-JC!X2 +CON14-*! -C 

+ 2-CON16-x3x2 + 2CON17'*3)/v22 

3JC4 

3A 
ax, 

= (CON38 +CON32-A:2 + 2-CON19 

•x2x4 +2'CON31-x4)/v22 

3/4 3/4 3/4 
"0, ^—0, 7T--U ^~0. 

OJt2 0JC3 0X4 

The adjoint equations now become 

3^_ 
3*! 

3x2 

3/i 
3x3 

3x4 

3/a 
3xx 

3*2 

3/3 

3x3 

3/3 
3jcd 

X       (8-220) 

where the partial derivatives are as computed 
in this paragraph. 

8-5.3.2 DETERMINATION OF THE 
BOUNDARY CONDITIONS FOR 
THE ADJOINT EQUATIONS 

Because of the intermediate constraint 

functions, we must evaluate X at?2-andf1_to 

allow for any discontinuities which may occur 

across?2 and?1. Since the initial conditions 

for the adjoint equations are given at tz, these 

equations are integrated backwards on the 

time interval shown in Fig. 8-5. Integration is 

carried out by integrating from t3 to t2 + . 

Application of Eq. 8-116 provides new initial 

It 
i" 1 1 

„1 

1 11 

,2 
H  
,3      Time 

Figure 8-5. Recoil Time Interval 

conditions at t2'. Integration is then per- 

formed from /*-to t". Likewise, using new 
initial conditions at tl~, integration is then 
performed to t°. 

It is the object of this paragraph to 

determine the initial conditions at t3, t2~ ,and 

tl~ for the four different integrations per- 
formed on the adjoint equations, i.e., for i>x, 

i//2, ^3, and/. 

Since fi3 of Eq. 8-203 does not depend 

explicitly on x, d£l3/dx = 0 and Eq. 8-114 

reduces to 

,3£_r 

3x3 

Thus, 

^3-°)=^3-- 

\J(t3)    = (0,0,0,0)r 

x^a3) = (o,o,o,o)r 

a3) = (o,i,o,o)r 

x*ja3) = (i,o,o,o)r 

(8-221) 
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Integration of Eq. 8-220 backward from t3 

to (t2 + 0) can now be effected, using the 
initial conditions of Eq. 8-221. Since Eq. 
8-220 is homogeneous in X and the initial 
conditions on \J and X* > are zero, it is clear 

that \J(t2 + 0) = xNf2 + 0) = 0. While 
X*2 (t2 + 0) and X*3 {t2 + 0) will not be zero, 
they may be treated as known. There is now 
adequate information to use Eq. 8-116 to 
determine Mt2 - 0) for all four adjoint 
variables. 

In order to find X(r2 - 0) in Eq. 8-116, 
choose the minus sign alternative throughout 
and obtain 

Thus, Eq. 8-222 yields 

X(?2 _0)=X02 +0) + 9l! 
bx2 

- \n2(t2 - 0)1 \g{t2 -o) 

+ XT(t2 + 0)[/(f2 -0) 

,7" 

f(t2+0)] 
)(■ 

dft2 

Bx2 

(8-222) 

Using Eqs.   8-107 and  8-109 to  determine 
g(t2-0) and J2O2-0), one obtains at t2 - 0 

gJ(t2 -0)=h(t2 -0) 

gl(t2 -0)=0 

g2(t2 -0) = 0 

g3(f2 -0)=0 

and 

ä2(t
2 -0) = f3(t

2 -0). 
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0 

iUt2 - 0) = 
0 
0 

\h(t2 -0)1 

J_ 0 

o" 

xN'2 -0) = 0 
0 

_0_ 

^•(/2     0) = J\*Mr2+0) 

| V*   (r2 +0)|/(/2 -0)-/«2 +0)1 
11 

0 
1 1                     i\U2 - 0) 

_0 

and 

\*'U2 -   0) = A*'('2 +0) 

X*-  (t2 +0)[fU2 -0)    IV2 +0)]\ 
hit2 - 0) 

(8-223) 

It may be noted that X*' (T + 0) = 0 will 
result from integration of the homogeneous 
Eq. 8-220. 

Finally, at /' , Eqs. 8-107 and 8-109 yield 

gJ(tl -0) = 0 

g*'«1 -0)=/2(r1 -0) 

g*»(r> _0)=0 

g*«(fi -0) = 0 

and 

fa«1 -0) =/,(*» -0) 

Replacing?2 with?1 ,andx2 withx1 in Eq. 
8-222 provides the proper jump conditions at 
t1 .They are 



AMCP 706-192 

x-V -o) = xJ(t, + 0) 
l" 

( \jTU> +0)[/(/' -0)-/(r' + 0)1 0 

0 

p_ 
[                     A(f'-O) 

r°i ~r 
X*'(f'      0) = 

I 
0 

r 2 i 0 

0 LAC -o)j 
0 _0 

X*"((' -0) = X*'(f' +0) 
rn 

( X*'V +0)[/(f' -0)-/U' 1-0) 

■I 
0 
0 

_0_ 
AC -0) 

>(8-224) 

\"'(_t' -0) = XV,(/' +0) 

x*'7"«' +Q)[/g' -0)-/(f' +0)] 

AC -0) 

Eq. 8-220 may now be integrated from t3 

to t°, withjumps at t2 and t1 defined by Eqs. 
8-223 and 8-224. This completes computation 
required by Step 5 of the algorithm of par. 
8-3.3. 

8-5.3.3 COMPUTATION   OF   DESIGN   IM- 
PROVEMENTS 

The remaining steps of the computational 
algorithm of par. 8-3.3 require only routine 
calculation. Some of the key formulas are 
highlighted here to illustrate use of the 
algorithm. In Step 6, the following calcula- 
tions are effected: 

A'W-^A'W 

A'(%)==r'(%>      i= 1,2,3, 

A*(0 = 

W-'it),       if 0 > 0 

if0< 0. 

where WR(t) is a weighting factor, set equal 
to one in this example. 

With these factors defined, one must 
choose the magnitude of constraint error 
correction to be used, in Step 7. In the 
current problem, reasonable design estimates 
led to small errors, so a = c = 1 was chosen. 

For Step 8, only the following routine 
numerical integrations are required: 

M 
<fj 

where 

f A*Td(t)AJ dt 

d(t) 
1,   if 0 < 0 

0,    ifd>> 0 

M,,   = [      A*r 

Jt" 
d(t) A* dt 

M 
V0 f 

J *o 

A*    i dt. 

Eq. 8-80 was used to find 70 so that a ten 
percent reduction in cost function is sought. 
From Eq. 8-43 (since a = c = 1) 

and from Eq. 8-35 

M(0 = -A*(0_1 Id -d(0)(A'+A*y) 

_27o0]. 

At any points where p(t) < 0, delete this 
point from the domain of 0(0 and return to 

Step 6. 
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Finally, the improved design is provided by 
Step 11 of the algorithm, where entries are 
computed directly from Eqs. 8-44 and 8-45. 
While these formulas are a bit messy, they are 
routinely programmed matrix computations 
which are no real challenge to the computer. 

8-5.4  RESULTS AND CONCLUSIONS 

Fig. 8-6 represents the optimal recoil force 
to minimize hop at 75-deg quadrant elevation 

important factor in reducing the hop; i.e., the 
faster the recoiling parts accelerate during this 
period, the greater the reduction in hop. As 
one would expect, an increase in allowable 
recoil length also reduces hop significantly. 
An increase in the maximum rod force will 
also reduce hop, for example, if the recoil 
force is allowed to obtain the value 24160 lb 
in constraint set of Eq. 8-225, the hop can be 
reduced an additional 0.32 in. Fig. 8-7 shows 

25 

20 
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10 

J V / V 
/ 

V 
\ 

f 
^ ̂  

s. U- ' 
\ 

0 10 20 30 40 50 60 70 8090 100110120130140 

Time, msec 

Figure 8-6. Optimal Rod Force 

with the following constraints: 

R(t)< 22000 1b 

recoil length = 28 in. 
(8-225) 

The resulting hop for this case is 1.53 in., i.e., 
the tires leave the ground 1.53 in. for a 115% 
maximum rated pressure breech force. If the 
constraints were relaxed, such that 

(8-226) 
R(OQ 235001b j 

recoil length = 29 in. / 

the resulting minimal hop is 0.88 in. 

The   acceleration   of the  recoiling parts 
during the first portion of counterrecoil is an 

XM164 Control Rod Design Comparison Between 
Resent Grooves and Optimum Grooves for Minimum 
HOP at 75-deg Quadrant Elevation and 115%Maximum 
Pressure Breech Force 

V Present Groove Design 

\ / 
=S 4 %; t V ^ 

( 3ro ove s foi Minimum 
R(f) < 22,000 It 

V 
N 

^ 
\ 

iop foi ) 'V s \ 
j ^ 
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•~  0.10 
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o   0.06 o 

«  0.04 

0.02 

0 
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Figure 8-7. Optimal Control Rod Design 

a possible variable orifice area design for short 
recoil. The orifice areas were obtained from 
the recoil force in Fig. 8-6. The resulting force 
levels from the new groove design are indicated 
by the dotted lines from 0.110 sec to 0.13 
sec, Fig. 8-6. The recoil force is the same as 
the optimal shaped force curve from 0 to 
0.110 sec. The increase in hop is approxi- 
mately 0.1 in. The recoil length changed a 
very small amount. 

An interesting side point is that of the 
speed of convergence. The nominal design 
variable R(t) used for the first iteration was 
such that at the end of counterrecoil the 
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recoiling parts were 250 in. away from the 
latch position and the required final velocity 
of 6 in./sec, was 96 in./sec. In approximately 
14 iterations, convergence was obtained 
which seems to be very fast if one considers 
the complexity of the equations involved. 

Results from firing tests show a significant 
reduction (50% or more) in hop can be 
achieved simply by increasing the tire pres- 
sure. Because tire performance information is 
not presently available, it was assumed 
throughout this analysis that the spring rate 
of the tires was constant (linear spring). 
Therefore, it is not known what results would 
be obtained under a nonlinear spring model. 
Tire manufacturers are investigating methods 

to optimize tire characteristics for the final 
configuration in the tire itself. In order to 
obtain optimum weapon performance for 
flexible mount systems, such information as 
tire performance could be incorporated into 
the mathematical model and perhaps tire 
characteristics could also be optimized in the 
environment for which they are being used. 

The technique used here has the capability 
to optimize many design parameters simulta- 
neously. If there exist other sensitive param- 
eters, consideration should be given to opti- 
mize them along with the design variable R(t). 
This study clearly indicates that weapon 
performance can be improved by using 
methods of optimal design. 
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CHAPTER 9 

APPLICATION OF STEEPEST DESCENT METHODS TO 
OPTIMAL STRUCTURAL DESIGN 

9-1   INTRODUCTION 

The same general class of optimal structural 
design problems considered in Chapter 5 is 
treated in this chapter by using the theoretical 
results and computational algorithms de- 
veloped in Chapter 8. For a discussion of the 
essential elements of the design problem tobe 
considered, the reader is referred to par. 5-2. 

The basic difference between problems 
treated in this chapter and those treated in 
Chapter 5 is in the nature of the design 
variables and the associated state variables 
that describe the response of the structure. In 
this chapter, distribution of the material along 
members of the structure will be continuous 
as opposed to discrete, as treated in Chapter 
5. Consequently, continuous variation of 
stress, displacement, and eigenfunctions along 
members of the structure will need to be 
determined. In this sense, the present problem 
is infinite dimensional whereas the problem 
treated in Chapter 5 was finite dimensional. 
The optimal structural design problem, there- 
fore, will involve boundary value problems as 
opposed to algebra problems. 

The continuous design problem treated in 
this chapter will have more features to ac- 
count for than did the discrete problem. For 
example, there will be differential equations, 
boundary conditions, pointwise inequality 
constraints, and functional constraints. 
Further, nonclassical analysis problems may 
arise which require special techniques for each 

particular problem. For this reason, it is more 
difficult to give a general formulation of the 
problem into which every structural design 
problem will fit. 

Examples of difficulties that may occur in 
particular problems include the dependence 
of boundary conditions on design parameters 
and design variables, inequality constraints for 
stress which involve state and design variables 
that must be transformed to functional con- 
straints, and interrelationships between eigen- 
values and state variables at particular points 
in the structure. Each of these peculiar 
features will be treated as it arises in a 
particular problem. This requires that the 
designer who is using continuous optimization 
methods for structural design must under- 
stand the origin of the methods well enough 
so that he can alter the computational al- 
gorithms as required to fit his particular 
problems. 

While the previous discussion might indi- 
cate that one encounters only difficulties 
when using continuous methods as opposed 
to discrete methods, there appears to be a 
potential for more efficient computational 
methods in the infinite dimensional problem 
than in the finite dimensional formulation. 
Further, it is clear that the infinite dimen- 
sional formulation can yield a true optimum 
while the discrete formulation of the problem 
will generally yield only an approximate 
optimum. In the following paragraph, a rela- 
tively   general   formulation  of  the   infinite 
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dimensional optimal structural design prob- 
lem is given, and the computational algorithm 
based on theory of Chapter 8 is developed. In 
following paragraphs, this theory and com- 
putational algorithm are applied to example 
problems. Alterations in the general theory 
are made as they are required in the solution 
of individual problems. 

T is the boundary of that region. L and B are 
differential operators on Q, and T, respective- 
ly. The functions Q and q are generally 
related to loads. 

To better fix the idea of operators, con- 
sider the simply supported beam of Fig. 9-1. 

9-2 STEEPEST DESCENT   METHOD   FOR 
OPTIMAL STRUCTURAL DESIGN 

In the structural design problems treated 
here, the design is to be specified by a vector 
design function u{x) = [w,(x), -, um{x)]T 

and a vector design parameter b = [&i, ..., 
b ]T, where the independent variable x may 
be a real variable, a two dimensional variable 
x = [x,,x2 ]T, or a three dimensional variable 
x = [xi, x2, x3]T, depending on whether 
material is to be distributed over a line, a 
surface, or a volume. In addition to the design 
variables u(x) and b, there will be state 
variables z(x) = lzi(x),..., zn(x)f represent- 
ing stress and displacement under load and 
y(x) = [y\ (x),-> yq(x)]T representing mode 
shapes for vibration or buckling. 

For the purposes of convenience in nota- 
tion and generality, the system equations will 
be written in operator notation similar to that 
used in par. 8-4. Only linear behavior will be 
considered so that stress and deflection are 
determined by the linear boundary-value 
problem 

L(u,b)z = Q(u,b),      xEtt 

and 

Bz=q, xer 

(9-1) 

(9-2) 

In this notation, fi is the region over which 
the material of the structure is distributed and 

p(x>< 

—\— 

2 

Figure 9-1. Simply Supported Beam 

The boundary value problem in this case is 
simply 

d2z 
L (u)z = EI(U)-TY= -M(x) = Q 

dx 
(9-3) 

and 

Bz 
~z(.oy 

z(l) 
(9-4) 

Here, u(x) is a variable which uniquely speci- 
fied the beam cross section and determines 
the design, E is Young's modulus, z(x) is 
deflection, and M(x) is the bending moment 
that is computed from the distributed load 
P(x). 

In this example, £2 is just the interval <0,1> 
and T consists of the two endpoints x = 0 
and x = 1. The advantage in the notation of 
Eqs. 9-1 and 9-2 is that it is convenient and at 
the same time applied to a large class of 
problems. For an example of a problem in 
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which £2 is a subset of two dimensional space, 

see par. 9-7. 

In addition to response due to static load, 

it is necessary to treat the response of a 
structure to dynamic loads. One important 

characteristic of a structure, which is classi- 

fied as dynamic response, is natural fre- 
quency. Another response, which must be 
treated, is buckling. Both buckling loads and 

natural frequencies are determined, in the 

present class of problems, by linear eigenvalue 
problems. Again using operator notation, 

these problems may be written in the form 

K(u,b)y = $M(u,b)y,    xSSl (9-5) 

and 

Cy = 0,        xer (9-6) 

where f is the eigenvalue and y(x) the 

associated eigenfunction or mode shape. The 

operators K andM generally relate to stiffness 
and mass, respectively. In conservative prob- 

lems they will be symmetric (Ref. ^(formal- 

ly self-adjoint) but in nonconservative sys- 

tems, they will not be symmetric. The more 

general unsynimetric case is treated here. 

The optimal design problem is that of 
minimizing 

J = fo(b.n+ Sff1(x,z,u,b)dto (9-7) 
n 

subject to the pointwise constraints 

0,.(x,w) < 0,  xGft,   i= 1, ...,/• (9-8) 

and the functional constraints 

fy = «/(*.f) + / / gj(.x,z,u,b)dQ. < 0, 
n 

Constraints of the form i}(x,z,u,b)< 0 forx£S2 

will have to be reduced to functional con- 

straints as in Eq. 8-6. 

Beginning with an engineering estimate of 

the design variables u(x) and b, Eqs. 9-3 
through 9-6 may be solved for z(x),y{x), and 

f. Aperturbation, {bu, 5b), in the design leads 

to perturbations in the cost and constraint 
functions 

5/ = 
db aj- f& bz 

9/i 9/i 
+ —5u + — 6b) dQ, 

du db 
(9-10) 

90. 
60; = —1#-  5u, xGfi,    i= !,...,/■    (9-11) 

de.. de, de,. r nog, 
5.//, =_L  hb+—L 5f + U± 8z v>      db 3f J J\fa 

+ ^Et 6U +^L 5b) d£l, 
bu db       J 

/= l,...,s (9-12) 

The object, as in preceding work, is to 

eliminate explicit dependencies on 5z and 5f. 

First, the perturbation equation for 8z is 

L(u,b)5z + [L(u,b)z]bu 
du 

a dQ 
+ [L(u,b)z]6b= -2- 

db du 

+ ab,    xE S ~ 
db 

(9-13) 

/=!,. (9-9) 

Bbz = 0,    x on T . 

In  certain problems,  the boundary   con- 

ditions may depend on the design parameter 
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b. In that case, the perturbed boundary 
condition is 

B8z + — [B(b)z] 8b = 0 
ob 

instead of Eq. 9-13. In this case, methods of 
par. 8-4 must be applied to particular prob- 
lems. 

and 

de,. 
»r^-'t+ff \+j 

a<2     a 

To eliminate 8z, integration of 
/ / \TL5z dSl by parts yields operators L* in 
ft"and£*onr suchthat 

/ / [\TL8z -8zTL*\]d£l = 0 (9-14) 
n 

for all 8z and X satisfying B8z = 0 and B*\ = 
OonT. 

Solving 

L*\ j_V>'' 
dz 

, xen 
(9-15) 

B*X
J
 = o,   xer 

and 

bz 
(9-16) 

du _ 
8udQ. 

( 3c, 
\ db 

n 
db 

+ \*l 
db 

dn\6b     (9-18) - -g- [L(u,b)z] 

It remains only to eliminate explicit depen- 
dence on 5f. Under very restrictive hypoth- 
eses, Kato (Ref. 2) has obtained a relationship 
among 5f, 8b, and 5«. This relationship is 
derived here formally. It is assumed that 5f 
and 8y depend continuously on 8b and 5M 

and further that the following perturbation 
formula holds: 

and   substituting into Eqs.   9-10 and  9-12, 

using Eq. 9-13, one obtains 

6/= % Bi+ ff\ 
of               n \ o« 

- —- [L(u,b)z]      +-ii- 
o«                      /       du _ 

8ud£l 

fr// 

[9/, 

+ X" 
r/3ß 

3ft 

ab 
[L(u,b)z] d£l    8b (9-1 V 

a 
K{u,b)8y + — [K(u,b)y] 5" 

ou 

+ —lK(u,b)y]8b 
do 

= 8$M(u,b)y + $  [M(u,b)y]8u 
du 

+ f-rr [M(u,b)y]8b + £M(u.b)8y 
ab 

(9-19) 

Just as in Eq. 9-14, integration by parts 
may be used to obtain the operators K* — 
fW* and C* adjoint to K - $M and C. These 
operators are defined by the relation 
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// wT(Ky - $My)da = / / yT(k*w 
n n 

- $Mw)dSl 

for all w and y satisfying C*w = 0 and Cy 

= 0 onf. Let j satisfy 

K*y = fM*7,     x Eft 

C*jF = 0,     JCGT 

■(9-20) 

TlT Premultiplying Eq.  9-19 by y   , integrating, 

and rearranging terms yields 

ffyTMy<m\b$ = 
a ' 

ff[yTK8y - $yTM8y] dQ, 

II +    I > >yT^  [K(u,b)y] 
ou 

-$yT — [M(u,b)y] \ bu da 

W yT-^ [K(u,b)y] 

tV1 — [M(u,b)y]) da\ 8b 

(9-21) 

db 

The first term on the right is 

// [yTK8y - $yTM8v] da 

= ff [8yT(K*y - $M*y)] da = Q 
n 

by definition of the adjoint operator. It must 

be emphasized that Eq. 9-21 is obtained by 

strictly formal calculations. There are deep 
mathematical questions concerning the gen- 

eral validity of this result. For a treatment of 

the subject of perturbation theory in linear 

operators, the reader is referred to Ref. 2. 

An expression for 6f in terms of 6« and 8b 

may not be substituted into Eqs. 9-17 and 

9-18. Defining 

db m ae7 

db 

— [L{ujb)z\ \J 

I/// y1 My da 

* i'-^ [K(u,b)y\\   y 

?(— [M{u,b)y])   y \\da 

(9-22) 

A' / = Ml  + 
du 

dQ1 

du 

du 
lL(u.b)z) \J 

x [i {Kiu> 

yTMyda 

b)y]      y 

■ S [— [M(u,b)y] )    y 

(9-23) 
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M   J{\ to 
'do? 
_ to 

-(£[««.»*])    _ 

and 

yTMydSl 

b)y]      y 

-r(— [M(u,b)y])    y 

3w 
ae7- 

9» 

— [/.(a.*)r] 

f d£l 

(9-24) 

x*/ 

Define vector constraint functions <j>(x) 
containing those constraint functions 0.(x) > 
0 and \jj containing constraint functional 41/ 
> 0. Define 

5|iZ. | for all 2 with 0.(x) > oj 

(9-28) 

A0(x) 

and 

S*' | for all] with \pj > 0 (9-29) 

A*W! *,• A ' | for all/'with i//;. > 0 

(9-30) 

Defining A<j>(x) and Ai// to be desired 
reduction in constraint error, the linearized 
problem is to choose 6u(x) and Sb to mini- 
mize 

SJ = ZjTdb+ Jf AjT8u   dSl (9-31) 

ij f JyTMydSl 

—[[K(u,b)y])    y 

LL [M(u,b)y]J    y 

(9-25) 

subject to 

Z.T 
A*   6« - A(j>< 0, forx€J2 (9-32) 

fi*r5fc+ //A*"r6u   c/n-A^<0 

(9-33) 

and 

Eqs. 9-17 and 9-18 become 

5/ = ijT5b + f f AjTöu dn (9-26) 

8bTWbSb + // 8uTWu(x)5u   dSl 
n 

-? «s 0 (9-34) 

and 

5 = Z4>iT8b + // A*'5u dft 
n 

(9-27) 

The weighting matrices Wb and Wu(x) are 
chosen positive definite and £ is small. This 
optimization problem for 6w and 6b coincides 
with the problems  of pars. 8-2 and 8-3 for 

9-6 
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ordinary differential equations and with the 
problem of par. 8-4 for partial differential 
equations. 

Determination of a solution proceeds 
exactly as in Chapter 8 so only the resulting 
computational algorithm is given here. 

Steepest Descent Algorithm for Optimal 
Structural Design 

M^^ = 9* TW-1Z* + // A* TW- 

du       t"»   du    " 

and 

M i><t> -I! A;r       dV M_, 
"     du       ""> 

MT} *4>dto 

Step 1. Make an engineering estimate of 
the solutionu(0)(x) and b(0). 

Step 2. For; = 0,1, ..., solve Eqs. 9-1, 9-2, 
9-5, and 9-6 forz(", y(i), and ?(/). 

Step 3. Check the constraints of Eqs. 9-8 
and 9-9 and form <$> and \p contain- 
ing the constraints not strictly 
satisfied. 

Step 7. Choose stepsize 70 > 0 and evalu- 
ate 

T = -JlC*[27o(A*+^) </"/- 

+ M 0/J 

and 

Step 4. Solve the boundary value prob- 
lems, Eqs. 9-15 and 9-16, for \J 

and X1*/ corresponding to ty, > 0. 
Solve the eigenvalue problem, Eq. 
9-20, for y. 

Step 5. Choose the corrections in con- 
straint errors A0 and A^. 

Step 6. Evaluate HJ, AJ, $*>, and A*> in 
Eqs. 9-22 through 9-25 and com- 
pute 

H(x) = -M7*[2y0A 44 

+ -^W~1(AJ + A*y)] . 
ou     " 

If any components of y or ß(x) are 
negative, delete the corresponding 
components of \p and <$>, respective- 
ly, and return to Step 5. Other- 
wise, continue. 

Step 8. Compute 

30        . 30r 

M.„r = ^TW-x& + jJA'"TW-1 
>jij 

\     du     «">> du   u ) 

Sul(x)=Wl7
l [I 

-W„ 

^~ M-} 
du        <*"» 

du    " 

9-7 



706-192 

5u2ix"i -m fr- 

**- 
du     "  , 

303 

M: 
du *4> 

*lA*At;l(A4,+M^)] 

Sb^W-'^-^Mr'M.j) 

and 

öb^W^WM^M+M,,) 

and form 

wü+1)(x) = «w(;c) 
27o 

5M '(*) 

+ 5w2(x) 

and 

2To 

Step 9. If all constraints are satisfied and 
5M

1
 (X) and 8b1 are sufficiently 

small, terminate. Otherwise, return 
to Step 2. 

the method of steepest descent, to illustrate 
the direct application of this technique to 
optimal structural design. The mathematical 
formulation of the problem is given in par. 
7-2 and will be used here with a change in 
notation to be consistent with par. 9-2. 

Fixing cross-sectional geometry and allow- 
ing cross-sectional area atü§ to vary, as in par. 
7-2, yields 

= au2 (x) (9-35) 

The optimization problem is to choose up^; 0 
<a x < I to minimize 

J=f «WflS J o 

subject to the constraints 

^=P0 -P< 0 

<p=P/u(x) -^_ «a 0 

and 

(9-36) 

(9-37) 

(9-38) 

d2y 1 
K(u)y = —4 = - P ——^ y s PM(u)y 

dx2 Eau2 

The results of Theorem 8-2 hold for the 
optimal perturbations, and it may be shown 
that a necessary condition for convergence to 
a local optimum is &ul(x) and Sb' approach 
zero. Discussions of Chapter 8 on use of the 
algorithm apply. They will not be repeated 
here. 

9-3 A MINIMUM WEIGHT COLUMN 

A minimum weight column problem has 
been solved in pars. 5-4 and 7-2 to illustrate 
the use of two optimization techniques. The 
same problem is solved in this paragraph, by 

Cz = 
>(0)    ■ 

dy 
dx 

(9-39) 

(9-40) 

where the coordinate system is as shown in 
Fig. 7-1 withy replacing x and x replacing /. 

In its present form, the boundary-value 
problem is just as in Eqs. 9-5 and 9-6 and is 
self-adjoint, so y = y in par. 9-2. For use in 
the steepest-descent algorithm, Eq. 9-23 is 

9-8 
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AJ = 1 

and Eq. 9-25 is 

3yHx) 
A* =- 

EOLU
3
(X) /f y2(s) 

£aw2(x) 

(9-4D 

dx 

(9-42) 

The computational algorithm of par. 9-2 
now applies directly to the present problem. 
The solution of the eigenvalue problem, Eqs. 
9-39 and 9-40, was obtained using the finite 
element analysis technique outlined in par. 
5-4. The solution of this continuous problem 
required approximately the same time per 
iteration as the discrete technique but fewer 
iterations were generally required for con- 
vergence. Exactly the same results as given in 
par. 7-2 were obtained. The reader is referred 
to that paragraph for a tabulation of results. 

9-4 A    MINIMUM   WEIGHT   VIBRATING 
BEAM 

As was pointed out in par. 7-2, the paper 
by Keller (Ref 11, Chapter 7) in 1960 
presented a mathematically elegant method of 
designing the minimum weight column. The 
same method was applied by Niordson (Ref. 
12, Chapter 7) in 1965 to find the simply 
supported beam of maximum natural fre- 
quency for a given volume of material in the 
beam. This method of solution resulted in a 
horribly nonlinear differential equation with 
serious singularities. While a solution was 
obtained for the vibrating beam problem, it is 
doubtful that the method could be extended 
for the solution of multimember structural 
design problems. The methods of Chapter 8, 
on the other hand, are quite general and will 
be used in this paragraph to routinely solve a 
minimum weight beam design problem with 
constraints on natural frequency. 

Specifically, the problem considered here is 
the determination of the distribution of ma- 
terial along the centerline of a simply sup- 
ported beam (see Fig. 9-2) so that the beam 
will be as light as possible and still have its 
fundamental frequency at least as large as a 
predetermined frequency o>0. Further, so that 
the beam can support a minimum level of 
bending moment, it is required that the 
second moment of its cross-sectional area 
shall always be at least as large as a positive 
constant I0. 

/77T7 

T w 

~&%h 

Figure 9-2. Simply Supported Vibrating Beam 

As in the column problem of the preceding 
paragraph and par. 7-2, the geometry of the 
cross section is fixed and all dimensions are 
allowed to vary proportionally. If the area is 
denoted u(t), then 

I(t)=o.u2(t) (9-43) 

where a is the minimum second moment of a 
cross section with the given geometry and 
unit area. 

Since the material is to be specified with 
constant density, minimum weight is equiva- 
lent to minimum volume. The quantity to be 
minimized is, therefore, 

=jL u(t)dt (9-44) 

The constraint on I(t) discussed previously 
can now be written as 

0 = /o -<xu2(t) «: 0 

where I0 > 0 is given. 

(9-45) 

9-9 
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The remaining feature of the problem to be 
accounted for is the constraint on natural 
frequency. If the beam withau2(t) = I0 has a 
fundamental natural frequency of co0 or 
higher, then this is clearly the optimum beam. 
On the other hand, if this beam has a natural 
frequency below o>0, then there must be 
points along the beam for which au2(t) > I0 

and a meaningful design problem exists. The 
inequality on natural frequency is 

w < 0 (9-46) 

There are several ways in which the natural 
frequency of vibration of a beam may be 
related to the design of the beam u{t). The 
relationship chosen here is the boundary-value 
problem describing lateral displacement 
during oscillation. It is given in Ref. 3 as 

Eau2 d2w 

dx2 \ dx2 

w(0) = w(L) = 0 

w"(0)=w"(I)=0 

: poj uw 

(9-47) 

where   prime   denotes   differentiation  with 
respect to x. 

In order to put the boundary-value prob- 
lem, Eq. 9-47, into the form Eqs. 9-1 and 9-2, 
define jvj = w, y2 = Eau2(d2yl/dx2), and 
pu)2 = f. The problem, Eq. 9-47, is then 

Ly = 

~d2
Y2 

dx2 

d2yr 

dx2 Eau2 uy. 

= {My 

(9-48) 

with boundary conditions 

yt(0) = y,(L) = 0 

y2(0)=y2a) = o 
(9-49) 

The boundary-value problem, Eqs. 9-48 
and 9-49, is self-adjoint so y = y in par. 9-2. 
The optimal design problem is well-defined 
and the notation of par. 9-2 applies directly. 
From Eq. 9-23, 

AJ = 1 

and from Eq. 9-25, 

A* =- 
iy\ 

Eau3 & uy\dx 

The computational steepest-descent algorithm 
may now be implemented in a direct manner. 

As a numerical example, the given problem 
was solved with the data E = 3 x 107 psi, L = 
10 in., a = 1.0, and p = 0.00208 slug/in.3 The 
eigenvalue problem was solved through use of 
a finite element structural analysis program. 
Even though there was no attempt at making 
the computational routines efficient, only 7 
sec per iteration on an IBM 360-65 Computer 

were required. For most natural frequencies, 
10 to 15 iterations were sufficient for con- 

vergence to within numerical accuracy of the 
computations. Results for a range of natural 
frequencies are given in Table 9-1. The general 
shapes of profiles of several of the optimum 
beams are shown in Fig. 9-3 to illustrate the 
optimum distribution of material. 

9-5 A    MINIMUM 
FRAME 

WEIGHT   VIBRATING 

The distribution of material along members 
of the  frame shown in Fig.  9-4  is to be 

9-10 
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TABLE 9-1 

COMPARISON OF OPTIMAL BEAMS 

Volume of Weight 
Uniform Reduction 
Beam of Optimal or 

Frequency, Length Volume, Material 
rad/sec 10in? in3 Savings, 

% 

3600 0.9353 0.8967 4.13 
4000 1.1546 1.0583 8.34 
4400 1.3971 1.2536 10.27 
4800 1.6627 1.4740 11.35 
5200 1.9514 1.7189 11.92 
5600 2.2631 1.9847 12.30 
6000 2.5980 2.2705 12.61 

10000 7.2165 6.3172 12.46 

*Uniform beam of lowest volume having required natural 

frequency 

determined so that the frame is as lightweight 
as possible and has a fundamental natural 

3,600 rad/sec 

L, 
2 

1 3 

X 

t ///// 

r 

Figure 9-4. Portal Frame 

frequency greater than or equal to a given w0. 
Further, as a form of strength requirement 
I(x) > J0 > 0 is required. 

For convenience, all members have the 
same length and all cross sections have the 
same geometry but may be scaled by a factor 
that varies with x. In this case, the area of 
cross sections u.(x), i = 1,2,3, uniquely 
determine the design of the beams when the 
beam material is chosen. Further, the second 
moment of the cross-sectional areas are 

Figure 9-3. Profile of Optimal Beam 

Ifo) =a. u2
t(.x) 

where  a-   is  a constant  depending on the 
cross-sectional geometry chosen. 

Defining 

y2=EIiw'l 

j>4 =EI2w'2' 

ys =w3 

y6 = EI3W3 

9-11 
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the differential equations for vibration of the 

frame are 

Ky = 

y'i "1^1 

/.'- lky2 0 

y'i u2y3 

y'i- TT2
n 

= pw2 

0 

y'l 
l 

"3^5 

y's- EI3
H] L oj 

^My 

(9-50) 

where f = pco2. Boundary conditions are 

>i(0) = 0 7i(i) = -3'5(0) 

/,(0) = 0 y[(L) = y'3(Q) 

y3(0) = 0 y'3(L)=y'5(0) 

y3(L) = 0 y2(L)=y4(0) 

ys(L) = 0 y*(L)=y6(L) 

y'2(L)+y'6(0)> 

M -    ?|   u2(x)dx ViiL) 

>(9-51) 

The boundary-value problem, Eqs. 9-50 
and 9-51, is written in self-adjoint form. The 

last boundary condition in Eq. 9-51 is just 

Newton's second law applied to horizontal 
motion of Member 2. This boundary con- 
dition does not fit Eq. 9-6 exactly due to 
dependence on the design variable u2(x). It 

will have to be treated as a special case 
according to the comment following Eq. 9-13. 

The   perturbation    boundary    conditions 

from Eq. 9-51 are 

5^,(0) = 0 «*,(£) = -6j>s(0) 

8y\(0) = 0 8y'1(L)=8y'3(0) 

8y3(.Q) = 0 5/3(I) = S/(0) 

8y3(L) = 0 8y2(L) = 8y4(0) 

5y5(.L) = 0 8y,(L) = 8y6(.L) 

> (9-52) 

8/ (2) = 0 

8y'2(L) + 8y'6(0) 

H    8u2(x)dx 

'0 I yi(L) 

(x)dx 8yi(L) 

Two integrations by parts and elimination of 
boundary terms through use of Eqs. 9-51 and 

9-52 yield 

I    8yTKy dx = I 
Jo Jo 

yTK8y dx 

H. 8u2{x)dx yx(L) 

(9-53) 

Since the boundary value problem, Eqs. 
9-50 and 9-51, is self-adjoint, y = y in the 

general formulation. The derivation of Eq. 

9-21 holds and Eq. 9-53 may be substituted 
along with 

fL L 

I     yTM8y dx = I     8yTMy dx 
Jo Jo 

9-12 
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to obtain 

I    yTMy dx     5f = 

Jo 
[Ky-SMy]dx 

5u2(.x)dx ViiL) 

i 2y2
2 

Eoi1uj 
5«! 

ß:;J 
6wo 

5«, I t/jc 

Solving for Sf, 

sr: 
fc !  

-'O 

3^5 )rf*. 

2yl 

L^aj«! 

2^1 
£a*ui 

+ ryi(i-) 

Su3 \ dx 

8u7 

(9-54) 

By making the obvious choice for Af, Eq. 
9-54 can be written 

5? = l'1 AfT6W dx J: (9-55) 

This is precisely the form of Eq. 9-27, and the 

remainder of the general derivation of the 
steepest descent algorithm is valid. It should 

be noted that this derivation is formal, and 

rigorous verification of Eq. 9-54 is expected 

to be extremely difficult. 

The algorithm of par. 9-2 was used to solve 

this problem in a direct manner. The eigen- 

value problem was solved approximately by a 

finite element method. Data for this problem 

are a = 0.07958, p = 2.616xl04 lb-sec2/in.4, 

E = 10.3xl06 psi,/0 = 0.009825 in.4, andi = 

10.0 in. Weights of optimum frames are given 
in Table 9-2 for several frequency require- 

ments, and the profile of an optimum frame is 
shown in Fig. 9-5. 

TABLE 9-2 

WEIGHT OF OPTIMUM FRAMES 

C00, rad/sec      2000      3000      4000      5000 

Optimum 

Weight, lb 1.73       2.56      3.59      4.69 

> >v ;;v 

Figure 9-5. Profile of Optimum Frame 
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9-6 A   MINIMUM  WEIGHT   FRAME WITH 
MULTIPLE FAILURE CRITERIA 

In most structural design problems, con- 
straints of several kinds must be treated 
simultaneously. In the present problem, con- 
straints on member size, deflection, and 
buckling are enforced in the minimum weight 
design of the frame shown in Fig. 9-6. Area is 

TV -+T+\ 

Figure 9-7. Free Bodies        V- 

Figure 9-6. Laterally Loaded Frame 

the third member moves — w (L) units to the 
right.. Thus, by elementary beam theory (Ref. 
3) 

T=- 
3niL)ET3 

(9-56) 

The differential equation of deformation of 
the first member is 

[Ea,u2
1(x)w"]" = -q{x) 

and the boundary conditions are 

allowed to vary along the length of the first 
and second members but the geometrical 
shape of the cross section is fixed. Thus, 

Ii(x) = a.uf(x) 

where a; depends on the cross-sectional geom- 
etry and Ufo) is the cross-sectional area of the 
ith member at the point x. The size of the 
third member is fixed and all members are 
taken the same length. 

Free body diagrams of the members are 
shown in Fig. 9-7. 

The third member is uniform with constant 
modulus EI3. Further, axial deformation of 
the second member is neglected so the top of 

' (9-58) 

w(0) = 0 

w'(0) = 0 

w"(L)=0 

3EI3w(L) 
- (Ea,uiw")' (L)= ;  

i>3 

To get the boundary-value problem, Eqs. 
9-57 and 9-58, into the form of Eq. 9-1, 
define 

z, =w 

Z2  = £<*! Hi w" = EOLy U\ z'[ 

(9-59) 

The boundary-value problem, Eqs. 9-57 and 
9-58, is then 
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Lz- 

z2 ~ 

j" - [l/Ealu
2

1]z2_ 

'(*) 
=e 

0 

and 

(9-60) 

and 

Bz 

MO) 

zi(0) 

22 (L) 

z'2{L) 

(9-61) 

The equations which determine buckling 
load P of the second member are 

= 

"0~ 

0 

0 

3£/3z,(Z,) 

£3       J 
J3_ 

Ay =/' = /> 
Eqc2u2 

\y=PMy (9-62) 

and 

Q- 
>(0)" 

(9-63) 

The objective in the design problem is to 

choose «i(*) and W2C*) to minimize the 
weight of the first two members, 

i J = y\     [ul{x) + u2(x)]dx 

'0 

The constraints to be enforced are 

(9-64) 

*i =- (Mb. 
\   L3 z1(L)-P< 0 (9-65) 

<p2=-Zi(L)-S< 0 (9-66) 

aiUf(x)+I0 < 0   /= 1,2 (9-67) 

The constraint, Eq. 9-65, requires that the 

axial load 7' in the second member be less 

than or equal the buckling load. A limit S is 

placed on horizontal deflection of the top of 

the frame in Eq. 9-66. The constraints, Eq. 

9-67, are included to insure that member 

cross section does not go to zero anywhere. A 

more realistic constraint would be on bending 

stress but this would require a constraint of 
the form of Eq. 8-6. This constraint will be 

included in subsequent work but will not be 

treated here. 

The constraints, Eqs. 9-65 and 9-66, do not 

fit directly into the basic formulation of this 

text and require special treatment. The lin- 

earized forms of these constraints are 

3 Eh 
Szl(L)-SP< A$ 

and 

- 621 (I) S. A\p2 

(9-68) 

(9-69) 

It remains to obtain expressions for5zi (L) 

and 6P explicitly in terms of du.(x). From Eq. 

9-21, SP may be expressed in terms of 5w2 (
x)- 

In order to obtain an expression for 

Szi(L), a Green's identity similar to Eq. 9-14 

is needed.   Integration twice  by   parts   of 

/   X7L8z dx yields 

fL -L 

\TL8z dx= (     SzTLX dx j    \TL8z dx= j 
-'0 Jn 

=    (X] 8z'2 - Xi5z2 

+ \28z[ -X252,) 
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Choosing X such that IX = 0, substituting for 
LSz from Eq. 9-13, and using the linearized 
boundary conditions of Eq. 9-61, this be- 
comes 

r 2Zn 

ECLyU\ 
buidx = 

-X.CD^ö*. (I) 

-X,(0)5z2(0) 

+ X',(0)Sz2(0) 

+ X2(Z)5z,(Z) 

-\2(L)SzdL) 

(9-70) 

The adjoint variable is chosen to satisfy L\ 
= 0 but no boundary conditions have yet been 
specified. Choosing 

2El \l(L)-\2(L) = 1 
(9-71) 

\1(0)=-K\(0)=\2(L)=0 

the identity, Eq. 9-70, becomes 

f      f— 2z2(jc)X2(x) 
5«i(x)rfx 

(9-72) 

Thus an explicit relationship between 5u and 
Sz1 (Z) has been found and may be substi- 
tuted directly into the linear constraints, Eqs. 
9-68 and 9-69. With proper choice of nota- 
tion, these inequalities fit into the form of 
Eq. 9-33. 

In this problem the differential equations, 

9-16 

Eqs. 9-1 and 9-5, are formally self-adjoint so 
L* = L, K* = K, and M* - M in the general 
theory. Since the boundary-value problem, 
Eqs. 9-62 and 9-63, is self-adjoint, y = y and 
the computation required in Step 2 of the 
steepest descent algorithm is considerably 
reduced. 

This problem is now easily put in the form 
of the problem of par. 9-2. It was solved by 
direct application of the algorithm of that 
paragraph with the data S= 4 in., L = 100 in., 
E = 3.0xlO7 psi, a = 0,07958,10 = 0.0147 
in?, and area of member 3 is 4.0 in? The 
volume of the optimum frame for several 
values of q is given in Table 9-3. The profile 
of an optimum frame is shown in Fig. 9-8. 

TABLE 9-3 

VOLUME OF OPTIMUM FRAME 

q, lb/in. 10 15 20 25 

Optimum 
Volume,        502.1     531.1     556.0     653.S 

in3 

9-7 A    MINIMUM   WEIGHT   VIBRATING 
PLATE 

In order to illustrate the use of the 
steepest descent method in higher dimen- 
sional problems, a minimum weight vibrating 
plate problem will be solved. A rectangular 
plate, Fig. 9-9, is specified by its thickness 
function h(xx, x2) over the plate. The object 
here is to choose h{xx, x2) such that the 
weight of the plate is as small as possible 
subject to the constraint that the natural 
frequency of lateral vibration is greater than 
or equal to a given frequency to. Further, due 
to applied loads, a constraint of the form is 
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3T57 

>>>>>/ / // / f 

Figure 9-8. Profile of Minimum Weight Frame 

w   ,, 

-*-*2 

h0(xu x2) -h{xu x2) < 0 (9-73) 

enforced. In the present problem, h0(xlt x2) 
is taken as a constant h,. 

Denoting bending moments (Ref. 4) by yx 
= MX, y2 ~ M and y3 = Af and the lateral 
displacement by y4 = w, the equations 
governing lateral vibration may be written 
(Ref. 4) in self-adjoint form as 

Figure 9-9. Simply Supported Plate 

yi(a, x2) = 0,^,(0, x2) = 0 

y*(a, *2) = 0,y4(0, x2) = 0 

y2(x1,0) = 0,y2(x1,b) = 0 

y4(x1,0) = 0,y4(x1,b) = 0 

(9-75) 

K(h)y -; 

3^4      12 

dx\      Eh 
-Oi - w ) 

<>2yt    12 
 -0,2 -^i) 
ax:      Eh3 

»V. "6(1 + M) 

Sx1dX1 Eh3 y 

32y,    d2y2     d2y, 

dX*       ix\ bxl bx 2 

= f = JAW0.V 

hy. 

(9-74) 

where ? = puy2 and w is the natural frequency 
of vibration of the plate. The boundary-value 
problem for the simply supported plate with 
differential equations, Eqs. 9-74, is self- 
adjoint with the boundary conditions 

The coordinate system and simply supported 
boundary of the plate are shown in Fig. 9-9. 

To complete the formulation of this $rob- 
lem in terms of the preceding theory, a cost 
function is defined by 

J= I   I  jh(x1? x^dx^dxi 
ro So 

(9-76) 

where y is weight density of the plate 
material. The strength constraint in this prob- 
lem is taken as Eq. 9-73 and the eigenvalue 
constraint is 

pwl - f < 0 (9-77) 
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This problem is now in the form of the 

general problem of par. 9-2. The domain £1 in 

this case is simply the rectangular region of 

the plate that is of dimension two. Further, 

since the boundary-value problem, Eqs. 9-74 

and 9-75, is self-adjoint,^ = y in the theory of 

par. 9-2. 

Using the definition of K and M, <p — h0 

h{xux2) in Eq. 9-73, and e;.(f) = poo2, -f i 
Eq. 9-77, from Eq. 9-23, 

A/=7 

in 

(9-78) 

and from Eq. 9-25 

A ' 
p6(yj 2w1y2+y2

1)+im+IJ)yl 

-H/n 
Eh" 

a 
hy\dxxdx2 

(9-79) 

This problem is now in the form of the 
general problem of par. 9-2. It was solved by 

direct application of the algorithm of that 
paragraph. The eigenvalue and eigenfunction 

for the variable thickness plate were deter- 
mined approximately by the Ritz technique 

(Ref. 5). Data for this problem are a = b = 5.0 

in., E = 3.0xl07 psi, p =7.43xl(T4 lb-sec2/ 

in.4, v = 0.30, and co0 = 1375 rad/sec. A 

uniform plate withf = pco2 = 1400 was taken 

as the initial estimate. The volume of the 
optimum plate is 10.71 in? Double sym- 

metry of the optimum plate was observed 

about the axes through (a/2,6/2). One quarter 

of the optimum plate with contour lines is 

shown in Fig. 9-10. 

Figure 9-10. Contours o f Optimum Plate 
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APPENDIX A 

CONVEXITY 

Convex functions and sets as defined in 
Chapter 2 play an important role in optimiza- 
tion theory. It is generally possible to obtain 
much more comprehensive results in non- 
linear programming problems that are convex 
than in the nonconvex case. Some of the 
more important results due to convexity are 
given in Chapter 4, par. 4-2. 

In order that this appendix is self- 
contained, definitions of general convex sets 
and functions will be repeated here. For a 
complete treatment of convexity, the reader 
is referred to Ref. 1. 

Definition A-I: LetD be a subset ofR". D 
is called a convex set if for any points x andy 
in D, x + d(y — x) is also inZ) for all 0 such 
that0< 0 <  1. 

The collection of points x + 6{y — x), 0 < 
0 < 1, is just a straight line fromx toy. Def 
A-l just says, then, that a set inRn is convex 
if the straight line joining any pair of points in 
the set lies entirely in the set. For example, in 
R2 (the plane) the set of points inside the 
unit circle is convex (see Fig. A-l (A)) whereas 
the star-shaped region in Fig. A-1(B) is not 
convex. 

Convex functions have as their prototype 
f(x) = x1 in R' . The graph of this function is 
shown in Fig. A-2. Note in this figure that if a 
straight line is constructed between any two 
points [z, f(z)] and fy.fiy)], then this line is 
above the graph of f(x) at all points between z 

(B) 

Figure A-1. Examples; Convex Case and 
Nonconvex Case 

and y. This is precisely the property which 
characterizes convex functions. Analytically, 
this property is expressed by the inequality 

f[z + 6(y-z)} <m + 6[f(y)-f(z)] 

for all 0 with0< 0 <; 1. 

The same idea holds in R" where convex 
functions are characterized by 

Definition A-2: Let the real valued func- 
tion f(x) be defined on the convex subset D 

f(x)=x' 

Figure A-2.  Graph o fßx) =x2 in Rl 
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of R" . Then/"(x) is called a convex function if 
for any points z andj inZ), 

f[z+0(y-z)] </(z) + fl[/(y)-/(z)] 

(A-l) 

for all 8 with 0 < 8*1. 

Convex functions and convex sets are 
related as is shown in 

Theorem A-l: The set of points D inRn 

which satisfy gf(x) < 0, i= 1, ..., m, is convex 
if each of the functions g((x) is convex inZ?" . 

One further property of convex functions 
is extremely important for applications. It is 
established by 

Theorem A-2:  If f(x) is differentiable and 
convex on the convex subset D of R", then 

f(x)>f(y)+Vf(y)'U-y) 

for allz andy in£>. 

(A-2) 

All these desirable properties of convex 
functions will go to waste unless one is able to 
test a given function for convexity. The 
following three theorems provide useful tests: 

1. Theorem A-3: If f(x) is twice contin- 
uously differentiable in a convex subset D of 
R", it is convex in D if an only if the 
quadratic form 

ST 32/ 
dXjdx-j 

S (or Sr-V2f-S) (A-3) 

is positive-semidefinite at each point inZ). 

2. TheoremA-4: If the functions qfx), i = 
1,..., r, are convex in the convex subset D of 

R" and a- > 0, z = 1,..., r, then 

2   a,o.(*) 

is convex in D. 

3. Theorem A-5: If g(x) is twice contin- 
uously differentiable, g{x) < 0, and g{_x) is 
convex; then, — \j[g{x)} is convex. 
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APPENDIX B 

ANALYSIS OF BEAM-TYPE STRUCTURES 

Finite and discrete element methods of 
structural analysis (Refs. 1,3), require a 
knowledge of the behavior of each element in 
the structure. Once each element is described, 
then the governing equations of the entire 
structure may be derived. Energy methods are 
generally used to obtain the governing equa- 
tions. 

B-1   ELEMENT ANALYSIS 

In order to apply energy theorems for the 
analysis of a structure, the potential energy 
due to strain, kinetic energy, and change in 
external dimensions due to bending must be 
described. The basic idea is to assign general- 
ized displacement functions, which are of the 
form expected in structural deformation and 
that are uniquely specified when the displace- 

. merit of both ends of the beam is known. A 
typical beam with its deformation sign con- 
vention is shown in Fig. B-1. The displace- 
ment «i, u2, u3, and «4 are components of 
endpoint displacement and us and u6 are 
endpoint rotations. 

The longitudinal displacement of a point x, 
0 < x < ß, on the beam due to longitudinal 
strain is approximated by 

s(x)- + u-> (B-1) 

Lateral displacement of the beam at a point 
x is approximated by 

-4 $- ■*«. 

Figure B-1.  Basic Beam Element 

w(x)=-|(2x3 -39x2 +ß3) Ulx3 

S. 

.3Zx2)+-±(x3 -29x2 

+ 9.2x)+-^-(x3 -9x2). 
fi2 

(B-2) 

It should be stressed that the longitudinal 
displacement s(x) is due only to longitudinal 
strain in the beam and not due to the change 
in length caused by the lateral displacement 
w(x). 

The potential energy PE due to deforma- 
tion of the beam is (Ref. 2): 

PE = 

*±\" "{&)'<■ 
(B-3) 

Jo \d*/ 

1 
V 

■'o 

j    El   -^(12x_6£)-|i(12x-6B) 

+ -*1 (6x - 4J2) +-P- (6x - 29.) 

1   r* 
2 

,   dx H— 
« / 2 

B-\ 
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which is or 

*-i-rf. 

AH3 -Alt'      0         0          0 0 

AH* AS.2      0         0          0 0 

0 0         12/ -12/ -6/8 -6/R 

0 0-12/      12/      6/S 6/6 

0 0     -6/C      6/S      4/S2 2/I2 

0 0-6/6     6/e     2/s2 4/e2 

(B-4) 

140 70 0 0 0 0 
70 140 0 0 0 0 

_ 1 -TpAi 
~l"   420 

0 

0 

0 

0 

156 

54 

54 

156 

-22n 

-13Q 

13E 

222 

0 0 - 22Q - -13Q 4S2 -3S2 

0 0 13Q 222 -322 4£2 

(B-6) 

The shortening of the beam ALL due to the 

lateral displacement is 

where u = [u^, u2, u3, w4, us, u6]T. 

Similarly, the kinetic  energy KE of the 

beam is 

Jo 

dx 

f Jo 

1 (dw\ 

KE=— 
*2     dw2\ 
— +— |e?x 

x - ß \    .   x 
-"l     I ~  )+«2 

ft- (6x2 _6£x) 

—«i- (6x2 - 6fcc) 
£3 

+ «5-(3x2 -411X+K.2) 

(B-7) 

^|(2x3 -3£x2 + J23) 
+^T(3x2 

e2 2£x) rfx 

(2x3 -3fcc2) 

+ £(x3-2k'  +fcc) 

+ ^f(x3-ßx2) rfx 

(B-5) 
or 

o   o 

o   o 

oo     -h   --h     ^r    ^ 

o   o 

0      0-^-     -^r 

0    0 

3 
58 

3 
5S 

1 
20 

1 
20 

3 
5S 

3 1 
20 "20 

1 
20 

1 
20 

e 
15 

12 
"60 

1 
20 

1 
20 

e 
~60 75 

u.   (B-8) 
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B-2 VARIATIONAL PRINCIPLES V(u) = U(u) + J2(«) (B-9) 

In most structural analysis work it is more 
convenient to use variational principles to 
describe the state of the structure than it is to 
use Newton's laws directly. For use in analysis 
of the structures considered here, the basic 
variational principles are stated. These prin- 
ciples apply to systems that are unconstrained 
in the particular coordinate system chosen; 
i.e., once the coordinates, up i = 1,..., n,that 
describe the state of the system are chosen, 
there are no algebraic relationships between 
these variables. Further, it is required that all 
force-state relationships for external or in- 
ternal forces are continuous, i.e., small 
changes in state yield only small changes in 
forces. 

Let W denote the work done by all forces 
on a structure due to an admissible displace- 
ment. Then, the system is called conservative 
if the work W done in any displacement that 
returns to the original state is zero; i.e., the 
system is conservative if no energy is required 
to change the state of the structure and bring 
it back to the original state along any path. A 
structure would be nonconservative, for 
example, if sliding friction or viscous damping 
were present. 

Starting from some reference state of the 
structure u0, define the stored energy in the 
structure at state u to be U(u). Note that 
since the system is conservative, U(u) depends 
only on u and not on the path the state 
variable followed in getting from u0 to u. 
Likewise, the negative of work done by the 
external forces acting on the structure due to 
the change in state variables will be denoted 
Sl(u). Again, £2(u) depends only on the final 
state and not on the path from u0 to u. With 
this notation, the total potential energy V(u) 
is defined as 

Equilibrium states of a structure can now 
be characterized in terms of the total poten- 
tial energy. For unconstrained conservative 
systems, a necessary and sufficient condition 
that u be an equilibrium state is that 

n   W{u) 
bV(u) =  2  — bu. = 0 

1 = 1    out ' 

for all bu.. This is equivalent to 

dV(u) 

(B-10) 

du. 
= 0, i= l,...,n. (B-ll) 

This result is proved in Ref. 2, page 23. 

A second result is that a conservative, 
unconstrained system is in stable equilibrium 
at a state u if and only if the total potential 
energy is a relative minimum at u. This result 
is proved in Ref. 2, page 30. For the kind of 
structural systems considered here, it is 
further shown, Ref. 2, page 211, that at a 
buckling load P , the second variation must 
be positive semi-definite, i.e., 

b2V{u) = buT-&-f(u)bu> 0 (B-12) 

and further that there is a bu such that 

_~ 92V 
bzV{u)=buT—T(u)bu =0. 

bur 
(B-13) 

The inequality, Eq. B-12, shows that zero is 
a relative minimum and Eq. B-13 shows that 
relative minimum is attained for bu = bu. For 
52 V(u) treated as a function of bu, then, it is 
necessary that 

B-3 
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l62V(u)] =0, i= l,...,n 
35« 

i 

at 5« = Sr7. Thus 

32 V 
3« 2

 (u)Su = 0 (B-14) 

The condition, Eq. B-14, determines buckling 
loads for the structural system. All this 
analysis requires, of course, that V(u) is at 
least twice continuously differentiable. 

These laws are for static behavior of the 
structural system. Dynamically, the structure 
is governed by Lagrange's equations of 
motion. First, define the kinetic energy T as 
the quadratic form 

T = — iiTMü, 
2 

(B-15) 

where 

M = [my] 

and the m.. are generalized masses. The 
generalized mass matrix M is defined by the 
transformation 

z =f(Z) 

where 

Z = [Z1,...,Zp] 

and Zt are components of physical displace- 
ment of the masses of the structure. There- 
fore, 

1    P 1   P 
T=— Z   Zf m. = —2 

2 > = i 2 ;=i 

3/ 
az 

x m. 
3/ 
3Z 

1 p 

2 / = i dZ 
■'        / 3/ 

m ' 
3Z 

where m. are element masses. In the notation 
of Eq. B-15, 

p 
M= S 

i = l 

Putting 

'd^V1    /3/V1 

71-  F (B-16) 

Lagrange's equations  of motion are simply 
(Ref. 2, page 239) 

d   (bL\    bL 

Älas-J-is;-0'^1'■•••"■   (B-17) 

B-3  EQUATIONS OF STRUCTURAL 
ANALYSIS 

The given variational principles may be 
applied to obtain the governing equations of 
structural analysis. The element properties 
described by Eqs. B-4, B-6, and B-8 may be 
used to generate the potential and kinetic 
energy of the entire structure. From the 
definitions, Eqs. B-9 and B-l 5, 

K= 2 PE> -2 (uk +uk) Fk 

i Jt 

and 

2 KE> 
i 

(B-18) 

(B-19) 

where superscript /' denotes thejth element of 
the structure, k denotes the components of 
displacement at joints, Fk is the component 
of external force corresponding to uk, andw* 
is the displacement in the same direction as 
uk but due to the A2 components of bar 
deformation.  The displacements ~ük will be 
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determined from structure geometry and the 
A£; of individual members given in Eq. B-8. 
For determining the equilibrium equations 
B-ll, the displacements Tik are generally 
neglected since they are at least quadratic in u 
so they will be small if no bucklingoccurs. It 
is just these quadratic terms, however, that 
predict buckling behavior of structures. 

ff a composite displacement vector u is 
formed from the components of all the 
member displacements, then matrices K and 
M may be defined by 

-uTKu 
2 

1 .7"     .    . 
-E«'   K'u> 
2 i 

and 

1 1 T 
— iiTMü =- S y  M'ii' 
2 2 / 

where summation is taken over all elements of 
the structure and K' and M' are defined in 
Eqs. B-4 and B-5. The equations for displace- 
ment, buckling, and dynamic motion may 
now be determined directly from Eqs. B-l 1, 
B-14, and B-17. 
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