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Preface

Like its earlier incarnation in S-P1lus written over 10 years ago, this book is a
polished version of the lecture notes written for a one-semester junior statistics
course offered to the undergraduate students majoring in the Department of Opera-
tions Research and Financial Engineering and a core course of the Master’s program
of the Bendheim Center for Finance at Princeton University.

The common goal of both courses is to introduce students to modern data anal-
ysis used in the financial industry. The prerequisites are minimal, though students
are expected to have already taken a basic introductory statistics course. Elementary
notions of random variables, expectation, and correlation are taken for granted, and
earlier exposure to statistical inference (estimation, tests, and confidence intervals) is
assumed. It is also expected that the students are familiar with a minimum of linear
algebra as well as vector and matrix calculus. However, all the background concepts
and results necessary for the comprehension of the material presented in the book (as
well as the solutions of the homework problems) are recalled before they are used or
needed.

By choice, the courses are both computational and mathematical in nature. Most
problems considered are formulated in a rigorous manner. Mathematical facts are
motivated by applications, stated precisely, justified at an intuitive level, but essen-
tially never proven rigorously. The emphasis is more on the relevance of concepts
and on the practical use of tools, rather than on their theoretical underpinnings.

I chose to illustrate concepts, manipulate data, build models, and implement esti-
mation and prediction procedures in the R computer environment. For this reason the
text is sprinkled with the R commands needed to perform the analyses and produce
the plots. The first incarnation of this text was written for S-P1lus on Windows
platforms. The growing presence of Mac computers in the classrooms and the ease
with which Linux, Windows, and MacOS versions of R can be downloaded and
installed at no cost were influential in my decision to switch from S-P1lus to R. To
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my surprise, the port was not as seamless as I originally expected. It took me several
years to complete the transition, and in the process, an entire chapter, several sec-
tions, and a large number of examples and problems have been added to the original
contents.

The text is divided into three parts. Part I, Data Exploration, Estimation, and
Simulation, introduces heavy tail distributions and dependence concepts for multi-
variate data, with an emphasis on the practical applications of copulas. Part II, Re-
gression, introduces the students to modern regression with an emphasis on robust-
ness and nonparametric techniques. Part III, Time Series and State Space Models, is
concerned with the theories of time series and state space models, including filtering
applications.

CONTENTS

Part I comprises three chapters. Chapter 1 begins with a review of the classical prob-
ability distributions encountered throughout the book and presents the exploratory
data analysis techniques (histograms, kernel density estimators, Q-Q plots, etc.) used
to handle empirical samples. As a preparation for many analyses and problems based
on random simulations, the chapter concludes with a discussion of Monte Carlo
computations.

Chapter 2 is devoted to the detection, estimation, and simulation of heavy fail
distributions already showcased in the first chapter. It contains more statements and
discussions of theoretical results than most other chapters, the reason being the desire
to provide insight in the estimation and simulation algorithms implemented in the
R library Rsafd used in the practical applications. Illustrative examples are used
to demonstrate the impact of the presence of heavy tails on the computations of
measures of risk such as value at risk (also known as VaR).

The third chapter is concerned with multivariate distributions and the various
concepts of dependence. We review the classical measures of correlation, demon-
strate the shortcomings of the Pearson correlation coefficient, and study the notion
of copula, and the important role it plays when the marginal distributions have heavy
tails, both in the bivariate case and in the high dimensional case. We learn how to
detect unusual dependencies, estimate and simulate them, and bring this expertise
to bear on the analysis of large portfolios of financial instruments including stocks
and credit derivatives. The chapter concludes with a complete discussion of principal
component analysis and two applications to the fixed income markets.

Part II is concerned with regression, and it is naturally divided into two chap-
ters: the first devoted to parametric methods and the second to nonparametric ones.
Chapter 4 deals with linear models and their applications. The notion of robustness is
introduced, and examples are used to illustrate the differences between least squares
and least absolute deviations regressions. Applications of linear models include
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polynomial and more general nonlinear regressions. We use financial examples
throughout, and we analyze the term structure of interest rates in detail. Chap-
ter 5 is concerned with nonparametric regression. We compare the properties of data
smoothers for univariate data, and we analyze in detail the multivariate kernel regres-
sion. For larger dimensions, we use projection pursuit. Examples of energy forward
curves and intraday S&P 500 futures tick data are given. The last part of this chapter
is devoted to the use of semi-parametric and nonparametric methods in option pric-
ing. We demonstrate the implementation of modern regression techniques as pricing
alternatives to the classical Black-Scholes pricing formula.

The first chapter of Part I1I is devoted to the classical linear models for time series
and to the idiosyncrasies of the R objects and methods included in the library Rsafd
for the sole purpose of their analyses. We discuss autoregressive and moving-average
models, and we give examples of their use in practice. The main application is the
analysis of temperature data. Even if it may not appear to be much of a financial
application at first, we recast this analysis in the framework of financial risk man-
agement via a thorough discussion of the market of weather derivatives. We give
practical examples to illustrate the use of the statistical techniques introduced in this
chapter to the control of these financial instruments.

In the following two chapters, we turn to the analysis of partially observed state
space systems. Chapter 7 deals with linear models and the classical Kalman filter.
For illustration purposes, we study two financial applications, one related to an ex-
tension of the CAPM model and a second dealing with the analysis of quarterly
company earnings. Chapter 8 is devoted to the analysis of nonlinear time series. We
first consider the natural generalizations of the linear time series models, and we
provide an extensive review of the theory and the practice of the famous ARCH and
GARCH models. We also consider models from continuous time finance through
their discretized forms. A special section is devoted to the use of scenarios for eco-
nomic modeling. We concentrate on scenarios for a stock index and the short and
long interest rates. These scenarios are of crucial importance in risk management
where they are used as input to large stochastic optimization programs. Finally, we
revisit the theory presented in the case of partially observed linear systems, and we
extend the filtering paradigm to nonlinear systems with the help of recent advances
in Monte Carlo techniques and the so-called particle filters. We give several applica-
tions of this material, including the estimation of stochastic volatility and commodity
convenience yield.

Each chapter contains a problem section. Most practical problems are rooted in
financial applications. Each problem is preceded by one or several symbols @, @,
and/or (T) intended as hints suggesting if it is of an empirical, simulation, and/or
theoretical nature. Chapters end with Notes and Complements sections that include
complements and bibliographic references for the readers interested in acquiring a
deeper understanding of the topics of that chapter. The book ends with an appendix
and a suite of indexes. The appendix contains the text of an introductory session to
R intended to help the reader unfamiliar with R get started and to a crash course on
Black-Scholes option pricing theory used in several chapters.
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The code and the data sets used in the text and the problems are contained in the
library Rsafd developed as a companion to the book. It can be downloaded from
the URL.:

http://www.princeton.edu/ rcarmona

This web page will be updated regularly, with corrections, complements, new data
sets, code updates, etc.
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Part I

DATA EXPLORATION, ESTIMATION
AND SIMULATION



1

UNIVARIATE DATA DISTRIBUTIONS

The first part of the chapter gives a quick review of the classical parametric
families of probability distributions and the statistical estimation of their pa-
rameters. We also review nonparametric density estimation, but our interest
in financial data and heavy tail distributions prompts us to focus on quantile
comparison. We introduce Q-Q plots as the main graphical tool to detect the
presence of heavy tails. Because random simulation will be used throughout
the book, the last part of the chapter presents the basics of Monte Carlo com-
putations. The first two fundamental theorem of the calculus of probability
(the law of large numbers and the central limit theorem) are introduced as
a justification for the numerical approximations provided by Monte Carlo
computations.

1.1 PROBABILITY DISTRIBUTIONS AND THEIR PARAMETERS

This first section is of probabilistic nature. Its purpose is to introduce some of the
most commonly used parametric families of probability distributions. This part is
included for the sake of completeness. The reader familiar with this material can
skip it in a first reading, and use it whenever the needs to check the terminology and
the notation arise.

1.1.1 Standard Probability Distribution Families

We review the most frequently used probability distributions. Because of the very
nature of financial data, we are primarily interested in distributions with heavy tails,
and as a consequence, we shall concentrate our efforts on understanding continuous
distributions extending to plus or minus infinity.

R. Carmona, Statistical Analysis of Financial Data in R, Springer Texts in Statistics, 3
DOI 10.1007/978-1-4614-8788-3_1, © Springer Science+Business Media New York 2014



1 UNIVARIATE DATA DISTRIBUTIONS

1.1.1.1 The Uniform Distribution

Despite the fact that its support is bounded, and hence does not have any tail to
speak of, the uniform distribution is of crucial importance for random simulations
and Monte Carlo computations.

The uniform distribution over an interval is the distribution of random numbers
in this interval when they are equally likely to fall into different intervals as long
as the lengths of those intervals are equal. It is also (hopefully) the distribution of
the samples produced by the random number generators provided by the computing
environment you are using. The density of the uniform distribution over the interval
[a, b] is given by the formula:

0 ifx <aoraz>b
fa’b(w>_{1/(b—a) ifa<z<hb. (1.1
The corresponding cumulative distribution function is given by:
0 ifx<a
Fop(z) =< (x—a)/(b—a)ifa <z <}, (1.2)
1 ifx >0

This probability distribution is denoted by U (a, b). The uniform distribution over the
unit interval [0, 1] is most frequently used. It corresponds to the end points a = 0
and b = 1. Figure 1.1 gives a plot of the density and of the cumulative distribution
function (cdf for short) of this uniform distribution. Values of f, ;(z) and F, ;(z)

Unifarm density Uniform c.d.f.

unifx)
05

punit)
0s

-10 0% 00 05 10 15 0 10 05 00 0% 10 15 w

Fig. 1.1. Graphs of the density (/eft) and corresponding cdf (right) of the uniform distribution
U(0,1) over the unit interval [0, 1]

can be computed with the R functions dunif and punif.

Remark. Formulae (1.1) and (1.2) are simple enough so that we should not need
special commands for the computations of the values of the density and the cdf of
the uniform distribution. Nevertheless, we mention the existence of these commands
to emphasize the fact that their format is the same for all the common distribution
families.
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1.1.1.2 R Convention

R follows a very simple convention when it comes to computing densities, cumula-
tive distribution functions, quantiles (which we consider in detail in Sect. 1.1.3 be-
low), and random samples (which we study systematically in Sect. 1.3). To describe
this convention, let us assume that name is the name or short name for a family
of probability distributions. For example, name was unif in the case of the fam-
ily of uniform distributions discussed above, and it will be norm in the case of the
normal or Gaussian distribution discussed below. Then, provided with appropriate
arguments, the R command

dname gives values of the density function;

pname gives values of the cumulative distribution function;
gname gives values of the quantiles;

rname produces random samples.

It is important to keep this convention in mind as it will be used throughout the book.

1.1.1.3 The Gaussian (Normal) Distribution

The univariate normal distribution, also called the Gaussian distribution, is most of-
ten defined by means of its density function. It depends upon two parameters p and
o2, and is given by the formula:

1

2mo?

e~ (@=m?/20% z €R. (1.3)

Pu,o2 (CC) =

The two parameters ; and o are the mean and the variance of the distribution re-
spectively. Indeed, if X is a random variable with such a distribution (in which case
we use the notation X ~ N (u,0?)) we have:

E{X} = u, and  var{X} = o%.

The corresponding cdf

D02 (x) = / Juo2 (') da’ (1.4)

cannot be given by a formula in closed form involving standard functions. As a
consequence, it will have to be evaluated numerically via approximation procedures.
The R function norm is used throughout to compute values of this cdf. We drop the
subscripts ¢ and o2 when . = 0 and 02 = 1. In this case, we call the distribution
standard normal distribution, or standard Gaussian distribution, we denote it by
N (0, 1), and the Greek letters ¢ and @ are used for the density and the cdf. Figure 1.2
gives plots of three Gaussian densities. The density with the smallest variance has
the highest central peak and it gets close to zero faster than the other two densities.
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Fig. 1.2. Densities of the mean zero normal distributions N (0, 0.5), N (0, 1) and N (0, 2) with
variances 0.5, 1 and 2 respectively

The density with the largest variance has a flatter central bump, and it goes to zero
later than the other ones. By shifting a general normal distribution we can center it
around the origin, and in doing so, its mean becomes 0. By rescaling a mean zero
normal random variable by its standard deviation, we turn it into a unit variance
one. This qualitative statement can be turned into a rigorous mathematical fact in the
following logical equivalence:

—
g

X ~N(p,0°%) ~ N(0,1). (1.5)
Because of this fact, most computations are done with the N (0, 1) distribution only.
More on this in the subsection Effects of Affine Transformations later in the chapter.

As mentioned earlier we shall compute values of the cumulative distribution
function of a normal distribution using the command pnorm with arguments giv-
ing, respectively, the list of the values at which the computations are desired, the
mean and the standard deviation. For example, the following command computes
the probabilities that a standard normal variate is within one, two and three standard
deviations of its mean.

> pnorm(c(1l,2,3),mean=0,sd=1) -pnorm(c(-1,-2,-3),mean=0, sd=1)
[1] 0.6826895 0.9544997 0.9973002

The reader unfamiliar with the syntax of R can benefit from the following remarks.
The seemingly simpler command
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> pnorm(c(1,2,3))-pnorm(c(-1,-2,-3))

would produce the same output since the default values of the parameters mean
and sd are 0 and 1 respectively. When parameters of R functions are not provided
in a call, default values are used whenever these default values are available. The
second remark concern the first argument which, in the two calls to the function
pnormwerec(1,2,3) andc (-1, -2, -3) respectively. Both arguments are nu-
meric vectors of lengths 3. Indeed the role of the R function c is to concatenate
the objects passed as parameters into a single object. Hence ¢ (1, 2, 3) can be un-
derstood as the vector [1,2,3] andc (-1, -2, -3) asthe vector [-1,-2,-3].
The third remark is that, whenever a numeric vector is passed as a parameter to
a numeric function originally intended for numeric parameters, the function re-
turns a vector of the same length as the vector passed as parameter, and the en-
tries of the output vector are the values of the function when evaluated at the
entries of the input vector. In the present situation, pnorm(c (1,2,3)) is the
vector of length 3 with entries pnorm (1), pnorm(2), and pnorm(3). Simi-
larly, pnorm(c (-1, -2, -3) ) is the vector of length 3 with entries pnorm (-1),
pnorm(-2), and pnorm(-3), and since the difference of two numeric vec-
tors of the same lengths is the vector of the differences of the respective entries,
pnorm(c(1,2,3)) -pnorm(c(-1,-2,-3)) is the vector of length 3 with
entries the numbers pnorm (1) -pnorm(-1), pnorm(2) -pnorm(-2), and fi-
nally pnorm (3) -pnorm (-3) . This is what we intended to compute.

Warning. The notation N (u, o) most frequently used in statistical textbooks uses
the mean p and the variance o2 as parameters. However, the R functions, rnorm,
dnorm, pnorm and gnorm use the mean and the standard deviation o (i.e. the
square root of the variance) as parameters. So the probability that a normal random
variable with mean 1 and variance 9 is not greater than 2 is given by the command

> pnorm(2,mean=1,sd=3)s

Also, recall that if X ~ N (u,0?), then the scaling property (1.5) implies that Z =
(X — p)/o ~ N(0,1) and the results of the computations done above with the R
function pnorm can be restated as:

P{o<X-p<ol=P{-1<Z<1}=d(1)—(—1) = 0.683
P{-20< X —pu<20)=P{-2< 7 <2} =B(2) — B(—2
P{-30c <X -—pu<30}=P{-3<Z2<3} =¢3) —P(-3

These facts can be restated in words as:

e The probability that a normal r.v. is one standard deviation, or less, away from its
mean is 0.683;

e The probability that a normal r.v. is two standard deviations, or less, away from
its mean is 0.955;

e The probability that a normal r.v. is three standard deviations, or less, away from
its mean is 0.997.
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In other words, Gaussian variates are most frequently found within two standard
deviations of their means, essentially always within three standard deviations.

We close this discussion of the Gaussian distribution with the derivation of a
useful formula.

X ~N(p,0%) = Ef{eX}=erto/? (1.6)

To start with, notice that if Z ~ N (0, 1), direct calculations (by a trick going under
the name of completing the square) give:

+o0 o?/2 oo
E{e”?} = L / e72e= % /2y = & / / e~ =2y = o7/2,
V2 — 00 27 —00
Now in general, if X ~ N(u,c?), then as we saw, X = p+ 0 Z with Z ~ N (0, 1),
so that: ,
E{eX} = E{ett7Z} = etE{e7?} = ete” /2

which proves the desired formula (1.6) in full generality.
We now introduce three distribution families derived from the normal family.

1.1.1.4 The Log-Normal Distribution

The log-normal distribution is the major building block of the mathematical theory
of continuous time finance, and it plays a central role in the Samuelson’s model for
stock prices dynamics and the Black-Scholes pricing theory. A random variable is
said to be log-normal if it is the exponential of a Gaussian random variable, or in
other words, if it is positive and if its logarithm is a Gaussian random variable. This
definition has a clear consequence at the level of random samples, i.e. realizations of
independent random variables with the same distribution. Indeed, the definition of
the log-normal distribution can be restated as saying that

where y1, Y2, - - , Yy is a sample from a normal distribution.

Things are not as straightforward at the level of the densities and cdf’s. Indeed,
if X = eY with Y ~ N(u,c?), then if we denote by fx and F the density and the
cdf of X, we have:

1 _
Fx(z) = @, y2(logz) = & <w) (1.7)
g
since P{X < z} = P{Y = log X < logx}, and using the fact that the density
fx () can be computed as the derivative F% (x) of the cdf whenever this derivative

exists, we get
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T — T — )2

oxr o xoV 2T 209

(1.8)

In accordance with the R-convention explained earlier, values of the density and the
cdf of a log-normal distribution can be computed in R by means of the commands
dlnorm and plnorm. In other words, we use 1lnorm for name. We used them
to produce the plots of Fig. 1.3 which give the densities of the log-normal distribu-
tions with mean zero and variances 0.2, 1 and 3 respectively. As in the case of the
exponential distribution which is considered later on, we plot the graphs only over
the positive part of the z-axis because these densities vanish on the negative part of
the z-axis.

1.0

LN densities

04

02
1

00

Fig. 1.3. Graphs of the densities of the log-normal distributions with mean zero and variances
0.2,1and 3

Warning. One often talks about a log-normal distribution with mean x and variance
o2 to mean that the corresponding normal distribution has mean x and variance o2
This abuse of the terminology is very frequent despite the fact that it is misleading.
We shall do our best to make clear what we mean when we mention the parameters
of a log-normal distribution. In other words, saying that X is has a log-normal dis-
tribution with mean y and variance o2 actually means that log X is Gaussian, i is
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the mean of log X and o2 is the variance of log X. This is emphasized by the way
R names the parameters of the functions rlnorm, dlnorm, ... by calling them
meanlog and sdlog.

So for example, the command d1lnorm (X, meanlog = 0, sdlog = 1)
will compute the density of the log-normal distribution with mean zero and variance
one at X, or the entries of the array X if X is an array.

We conclude our discussion of the lognormal distribution with the computation
of the mean and the variance. Let us assume that X is lognormal with mean p and
variance o and let us compute ux = E{X} and 0% = var{X}. By definition,
X = e¥ with Y ~ N(u,0?). In turn, this means that Y = u + oZ for some
random variable Z ~ N (0, 1). Consequently, using repeatedly formula (1.6) proved
earlier:

E{X}=E{e"} = E{e" "7} = eME{eZ} = e to7/2,
Similarly:
E{X2} _ E{62Y} _ E{e2u+2aZ} _ e2uE{e2aZ} — €2H+202 )
And finally:
var{X} — E{X2} _ E{X}2 — elt+02/2 _ e2u+202 _ e2u+02 [60'2 B 1].
In summary, if X ~ LN (u,0?), then

px =E{X}=e""/2 and o% =var{X} =2 (7 —1).  (1.9)

1.1.1.5 The Chi-Square Distribution

The x2-distribution, in words chi square distribution, is of crucial importance in sta-
tistical inference and hypothesis testing. Its role in this book will be quite marginal,
its contribution being limited to the theoretical definition of the Student ¢ distribu-
tion which we introduce and analyze in the following subsection. For the record we
mention that whenever k is an integer, the y2-distribution with k degrees of freedom
is the distribution of the sum of the squares of k£ independent standard Gaussian ran-
dom variables. This distribution will be denoted X2 (k). In other words, if X3, -- -,
X, are independent NV (0, 1) random variables, then

XP4+ XE~ ().
The R commands producing values of the quantiles, the density, and the cdf of the

x2-distribution are gchisq, dchisg, and pchisq while random samples are gen-
erated with the command rchisg. See the help files for details.
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1.1.1.6 The Student t Distribution

For each integer £ > 1, the Student distribution — also called the ¢ distribution —
with k degrees of freedom will be denoted by ¢(k). Intuitively, it should be thought
of as the distribution of a Gaussian random variable with a random variance which
is independent and y2-distributed. More precisely, the ¢ distribution with k degrees
of freedom is the distribution of a random variable X of the form

¢
VXx/k

where ¢ ~ N(0,1) and xy ~ x?(k) are independent. One can use the definition

formula (1.10) to derive the density function f,gt) (z) of the t(k) distribution. It is
given by the formula:

1) = 1:/(12—]{;:—(;)//22))(1 + 22 /)~ D72 z €R, (1.11)

where " denotes the classical gamma function defined by

(1.10)

() :/ e %d, A > 0. (1.12)
0

04

03

dt
02
|

0.1

00

-0.1
1

Fig. 1.4. Graphs of the densities of the ¢ distributions with degrees of freedom 1, 5, 10 and 50
respectively
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One of the nice properties of the gamma function is that it offers a generalization of
the factorial function to real numbers. Indeed, if A = n + 1 for some integer n > 0,
then repeated integrations by parts show that I'(\) = I'(n + 1) = nl. The cdf of the
t-distribution with k degrees of freedom will be denoted by F,Et) (x).

Like the Gaussian distribution, the t-distribution is unimodal in the sense that
the graph of the density has a unique maximum. This maximum is located at the
origin, though it is not difficult to imagine that ¢-distributions centered around other
values can be obtained by mere shifts. Figure 1.4 gives plots of four ¢ densities.
Values of the density and cdf of the Student ¢ distribution can be computed in R
with the functions dt and pt both of which take the number of degrees of freedom
df as parameter. There is a non-central form of the ¢ distribution. It needs an extra
parameter, the so-called non centrality parameter ncp, but we shall not need it in
this book. The distribution with one degree of freedom df =1, has the lowest central
peak, and it tails off slower that the three other densities. We shall see later in this
chapter the similarities between this distribution and the Cauchy distribution which
we introduce next. The graphs of the three other densities are very similar, the higher
the number of degrees of freedom, the higher the central bump and the faster the
decay of the density at plus and minus infinity, i.e. the thinner the tails. This similarity
with the role played by the standard deviation in the case of the normal family may be
deceiving and it is important to emphasize that the role of the number of degrees of
freedom is very different from a mere scale parameter. A Gaussian random variable
has moments of all order. However, this is not the case for random variables with
the ¢-distribution. Indeed, the number of degrees of freedom df determines how
many moments are finite. To be more specific, if X is a random variable with a
t-distribution with df degrees of freedom,

E{|X*} <00 & k<af

as we can see from the expression of the density of X given above. So the ¢-
distribution is a distribution with heavy tails in a sense we will make precise later,
and this should be of practical relevance, especially if the number of degrees of
freedom is small. At the other end of the spectrum, namely when the number of de-
grees of freedom becomes large without bound, the number of finite moments also
increases without bound, and the tail of the distribution become thinner. In fact, the
t-distribution converges (in a mathematical sense which we shall not attempt to make
precise here) toward the normal distribution. This theoretical result is what is known
as the normal approximation to the ¢-distribution. It is used quite frequently in the
computation of p-values and significance levels of statistical tests when the number
of degrees of freedom is in the range of 50, and often quite smaller. This fact is illus-
trated in Fig. 1.5 which gives the plot of the standard normal density N (0, 1) together
with the ¢-densities with 5, 10 and 50 degrees of freedom.

1.1.1.7 The Fisher F Distribution

The Fisher or F-distribution is another distribution derived from the Gaussian with
important applications in statistical testing of hypotheses. We do not discuss it here
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because we shall not use it in this textbook. For the record we mention the R com-
mands for dealing with the F'-distribution. Not surprisingly they are rf, df, pf, and
gf for the quantile function which we define later in this chapter.

05
1

03

dt
02
|

01

00

-0.1

Fig. 1.5. Graphical comparison of the densities of the Gaussian distribution N (0, 1), and the
t distributions with degrees of freedom 5, 10 and 50

1.1.1.8 The Cauchy Distribution

Among the probability distributions introduced in this section, the Cauchy distribu-
tion is the least known, presumably because of its lack of applications to statistical
testing. It is usually introduced as a particular element of the class of stable distri-
butions which are not discussed in this book, and of the class of Generalized Pareto
Distributions (GDP for short) which we study in detail in the second chapter of
the book. These distributions play an important role because of the thickness of their
tails. The Cauchy distribution is of great pedagogical (and possibly practical) interest
because it is one of the rare distribution from this class with explicit closed formulae
for the density, cdf, quantile function, etc. Like the Gaussian distribution, it depends
upon two parameters: a location parameter, say m, and a scale parameter, say . It
can be defined from its density function f,, x(z) by the formula:

1 A
£ () =

- R. 1.1
T A2+ (x —m)?’ ve (1.13)
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This distribution is denoted by C'(m, A). The computation of its cdf F;C;\(x) leads
to a simple formula. Indeed:

T ) 1+ 22
1 —
= “ftan ' 2 tan—Y(—0)]
o
1 1
T L (1.14)

N o

where we used the substitution z = (y — m)/\ to compute the indefinite integral.
Like the Gaussian and the Student distributions, the Cauchy distribution is unimodal.

=3 I — 02
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Fig. 1.6. Graphs of the densities of the Cauchy distributions C'(0, 0.5), C(0, 1) and C(0, 2)
located around 0 and with scales 0.5, 1 and 2 respectively

The maximum of the central bump of the distribution is located at m. Figure 1.6
gives plots of three Cauchy densities with the same location parameter m = 0. The
distribution with the smallest scale parameter A\ has the highest central peak, and it
tails off faster that the two other densities. The distribution with the largest scale
parameter has a wider central bump, and as a consequence, it goes to zero later than
the other ones. This figure seems to be very similar to Fig. 1.2 which shows graphs of
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normal densities, or even to Fig. 1.4 which shows graphs of ¢ densities. Indeed, both
Gaussian, ¢, and Cauchy distributions are unimodal in the sense that the graph of the
density has a unique maximum. This maximum is located at the mean in the case of
the normal distribution, and at the value of the location parameter m in the case of the
Cauchy distribution. Moreover, if we associate the standard deviation of the normal
distribution to the scale parameter of the Cauchy distribution, then the discussion
of the qualitative features of the graphs in Fig. 1.2 also applies to those in Fig. 1.6.
Nevertheless, major differences exist between these two families of distributions.
Indeed, as we can see from Fig. 1.7, where the graphs of densities from both families
are superimposed on the same plot, the tails of the normal distribution are much
thinner than those of the Cauchy distribution. What we mean here is not so much
that the density of the normal distribution approaches zero earlier than the density of
the Cauchy distribution, but that it does so at a much faster rate. This is because the
decay toward zero away from the center of the density is exponential in the negative
of the square distance to the center, instead of being merely an inverse polynomial in
this distance. These rates of convergence to zero are very different, and one should
not be mislead by the apparent similarities between the two unimodal density graphs.
As explained earlier, because of its lack of moments, the ¢ distribution with a small

04
\,
PV

2 . — (C(0,1)
'l 5 === N(01)
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0.1

00

Fig. 1.7. Graphical comparison of the Cauchy distribution C'(0, 1) and the Gaussian distribu-
tion N(0,1)

number of degrees of freedom bears to the Cauchy distribution, more similarity than
to the Gaussian distribution. We illustrate this fact in Fig. 1.8 by plotting together
the graphs of the C'(0, 1) Cauchy distribution and of the ¢ distributions with 1 and
5 degrees of freedom. On this plot, it is impossible to distinguish the graph of the
(0, 1) density from the graph of the ¢(1) density. The standard Cauchy distribution
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C(0,1) and the ¢ distribution with one degree of freedom look very similar. Values
of the density and cumulative distribution functions of the Cauchy distribution can
be computed in R with the functions dcauchy and pcauchy both of which take
the location and the scale of the distribution as parameters.

It is quite clear that density plots as those given in this section do not make
it easy to distinguish distribution families according to the thickness of their tails.
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Fig. 1.8. Graphical comparison of the Cauchy distribution C'(0, 1) and the ¢ distributions with
df=1 and df=5 degrees of freedom

Figure 1.24 below shows clearly the effects of these differences in tail thickness on
random samples. We will use Q-Q plots to emphasize and capture these differences
in tail behavior.

A review of the classical probability-distribution families would not be complete
without a discussion of the exponential distribution.

1.1.1.9 The Exponential Distribution

The exponential distribution is one of the rare distributions for which many compu-
tations can be carried out explicitly because of the simplicity of its definition. It is ex-
tremely useful in modeling the length of time-intervals separating successive arrivals
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of events captured in a stochastic process model. The problems analyzed with these
models include internet traffic, insurance, catastrophe and rainfall modeling, fail-
ure and reliability problems, queues, . ... In financial applications, the exponential
distribution is a building block for models of the time separating economic regime
changes, jumps in prices, credit migrations, defaults, postings and cancellations of
market and limit orders on an electronic exchange, . . ..

The exponential distribution shares with the log-normal distribution the fact that
its support is the half line Ry = [0,00). Random samples from the exponential
distribution are positive numbers: the density is non-zero on the positive axis only. In
particular, the tail or extreme values are only on the positive side, and the distribution
has only one tail at +co. This distribution depends upon a parameter r > 0, called
the rate of the distribution, and it is denoted by F(r). It can be defined from its
density function f,.(x) which is given by the formula:

0 ifx <0
Fr(@) = {rem if x > 0. (1.15)

The positive number A = 1/r is called the scale of the distribution. The reason why
A is called the scale of the distribution is because of the following easily checked
fact: if X is an exponential random variable with rate » = 1 (in which case the
parameter A is also equal to 1), then the random variable A X is also an exponential
random variable, its rate r is equal to 1/\ and consequently, its scale parameter is
equal to A\. The mean of this distribution is the inverse of the rate, in other words, the
scale of the distribution. Indeed, if X ~ E(r) then

E{X}:/xfr(x)dx = T/(Jooxe_mdx—%—)\.

In this respect, this property of the exponential distribution is quite unusual. Indeed,
the mean is typically used as a measure of the /ocation of the distribution while the
scale is used as a measure of the spread of the distribution about its central location,
and these two characteristics are different in general. The cdf of the exponential
distribution is given by the following formula:

F.(z) =

{O ifz <0 (1.16)

1—e™ifx>0.

Also, note that the second moment E{ X2} can be computed by a simple integration
by parts. We get;

E{X2} = /$2fr(x) dr = TA 2267 dyp = % —92)\2

r

and this implies that

var{X} = E{X?} — E{X}? = Tig — a2
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So in the case of the exponential distribution, the standard deviation is equal to the
mean. This definitely blurs the interpretation of the parameter A which could be a
scale as well as a location parameter. Figure 1.9 gives plots of three exponential
densities. The distribution with the highest rate has the highest starting point on the
y-axis, and it tails off faster that the other two densities. The distribution with the
lowest rate starts lower on the y-axis, and does not decay as fast. Values of the density
and the cdf of the exponential distribution can be computed in R with the functions
dexp and pexp, both of which take the rate of the distribution as parameter.

1.1.2 Estimation from Empirical Data

We now consider the challenging problem of the statistical estimation of the pa-
rameters which characterize the probability distributions from the families discussed

dexp
15 20

1.0

05

00

Fig. 1.9. Graphs of the densities of the exponential distributions £(0.5), E(1) and E(2) with
rates 0.5, 1 and 2. We plot the graphs only over the positive part of the x-axis because these
densities vanish on the negative part of the z-axis

above. This kind of statistical inference is based on the analysis of sample observa-
tions, say:

which we assume to be realizations of independent identically distributed (i.i.d. for
short) random variables X, Xo, ..., X,, with common cdf F' and/or density func-
tion f, and the challenge is to estimate I’ from the data. The premise of parametric
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statistics is to assume that the unknown distribution belongs to a given family, and the
whole estimation issue reduces to the estimation of the parameter(s) characterizing
the specific elements of the family in question.

A time honored method of parameter estimation is based on the maximiza-
tion of the likelihood of the observations. We describe this method briefly, and
for the sake of completeness, we also say a few words of the classical method of
moments.

1.1.2.1 Maximum Likelihood Estimation (MLE)

The likelihood of a set x1, x2, - -+ ,x, of observations from random variables X1,
X, -+, Xy, is the value of the joint density f(x, x,,...,x,) €valuated at the obser-
vations x1, Zs2, - - -, Ly. In other words, the likelihood for this set of observations is
the number f(x, ..., Xn)(xl, -+, xyp). In the case of discrete random variables, the
likelihood is in fact the probability that X; = x, at the same time as Xy = w9,
..., at the same time as X,, = z,, which is clearly what one should expect from
the likelihood of (1,22, - , 2, ). We are interested in the case when this joint dis-
tribution depends upon a parameter 6. This parameter can be multidimensional, e.g.
0 = (i, 0?) in the case of the simultaneous estimation of the mean and the variance
of a Gaussian distribution from a sample of observations. In any case, for each given
set x1,xo, -+ ,x, of observations, we can look at the likelihood as a function of the
parameter 6, and the so-called maximum likelihood estimate (MLE for short) of the
parameter 6 is the value of 6, say 0 M LE, Which maximizes this function of 6. We
usually use the notation
0 — L(O|x1,xa, - ,2p)

for the likelihood function, and with this notation the above definition can be
stated as:

éMLE =arg sup L(0|z1,z2, - ,Tp).
0

We should keep in mind the fact that this estimate is a function of the observations,
ie. éMLE = éMLE(xl, Xa,- - ,&y,), and if we replace the values of the observa-
tions by the actual random variables, the MLE Ovre = éMLE(Xl, Xo, -, X,)
becomes a random variable. We will use these facts freely even though we shall
most often drop the dependence on the observations and the random variables from
our notation.

Most of the analyses conducted in this book deal with observations x1, xa, - - - , Tn,
from independent random variables X;, Xo,--- , X, in which case
foxa xo x) (@1, @2, xn) =[x, (1) fx, (02) - fx, (Tn)-
Moreover, when the random variables X, Xo,--- , X,, are identically distributed,

all the densities fx, (z) are the same, say fx,(z) = f(z), and

Jxo Xa x) (@1, @2, xn) = fn) f(w2) - f2n).
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As explained above, in the parametric case, this common density f depends upon a
parameter, say f(x) = fg(z), and the likelihood function appears as the product

LO|x1,...,20) = fo(x1)fo(x2) - folxn).

Now, since the logarithm function is monotone increasing, the maximum (if any) of
the likelihood function is attained for the same values of 6 as the maximum of the
logarithm of the likelihood. So because of its product structure, the maximization
of the likelihood function L is often replaced by the maximization of its logarithm
which we denote by £

LO|x1,...,x,) =log L(0|x1,...,2,) = log fo(x1) + - - - + log fo(zy)
and the MLE is computed as

Orie = arg sup L(0|z1, ..., 2n).
0

We summarize the main properties of MLE’s (requiring minimal assumptions on the
nature of the common density fy(z) and the form of its dependence upon 6 which
will not be discussed here) in the following bullet points;

e 0pLp is consistent for large samples, in the sense that it converges in proba-
bility when the sample size grows without bound toward the true value of the
parameter ¢;

e Oy is asymptotically normal, fact from which one can derive approximate
confidence intervals;

e Maximum likelihood estimation is covariant in the sense that the maximum like-
lihood estimate of a function of a parameter is that very function of the maximum
likelihood estimate of this parameter. For example, in the case of an exponential
family with rate » and mean A = 1/r, this result implies that the maximum like-
lihood of the mean of the distribution is the inverse of the maximum likelihood
of the rate, i.e. S\MLE = 1/’/‘AMLE

The most commonly studied parameters of a distribution are the mean and me-
dian which are measures of location of the distribution, together with other param-
eters such as the standard deviation or the scale, which quantify the spread of the
distribution around its location. All the distribution families reviewed earlier depend
upon parameters which can be estimated by maximum likelihood methods. Not to
distract from the objective of this book, we refrain from presenting examples here.
They can be found in essentially any introductory statistics textbook. We shall im-
plement the maximum likelihood estimation procedure in the case of GEV (General
Extreme Values) distributions and GPDs (General Pareto Distributions) of crucial
importance to us later in Chap. 2.

1.1.2.2 Classical Method of Moments

Let us assume that the parameter 6 is a scalar (think for example of the rate of an
exponential distribution), and that the mean of the distribution,



1.1 Probability Distributions and Their Parameters 21

u(6) = B{X} = / £ fo(x) de

has a simple expression as a function of 6. In this case, given a sample x1, x2, - - -,
x,, of numeric observations from independent random variables X, Xo, ---, X,
with the same density fy(z) we can try to solve the equation

u) ==

for 6, and call the solution, say 0 Ao, the method of moments estimator of 6. Here
and throughout the book, we use the notation T for the sample mean (z1 + - --
+x,,)/n. For example, if 1,22, ...... , Tp, 1s a sample of independent observations
from E(r), and if the goal is to estimate the rate of the distribution, i.e. § = r, then
since uu(0) = E{X} = r~1, solving the equation p(r) = 7 for r gives the Method
Of Moments (MOM for short) estimate

TrMoM = é

x
When 6 is not a scalar, we can use as many equations and as many empirical
moments, e.g. sample mean, sample variance, ..., as we have parameters to esti-
mate, and solve a system of equations to find the method of moment estimators.
For example, if z1,z2,...... ,Tn 1s a sample of independent observations from

N(u,0?), and if the goal is to estimate the mean and the variance of the distribu-
tion, i.e. = (p,0?), and since E{X} = pu, which is the first component of the
vector parameter , and the second moment E{X?} = o2 + 12 has also a simple
expression in terms of the components of the parameter 6, replacing the theoretical
moments E{ X } and E{X?} by the empirical moments Z and 22 defined by

and solving for 1 and o2 we find the moment estimates

fvom =T and o2 pom = 22 — T2
Notice that in the case of the Gaussian distribution, if one uses the first two empirical
moments T and 2 computed from sample data, the MOM estimators of the mean
and the variance are uniquely defined. It is also interesting to notice that in this case,
they coincide with the MLE estimates of the mean and the variance.

Clearly, estimating parameters with the method of moments is even more intu-
itive than with the maximum likelihood estimation procedure. However, its realm of
applicability is much more limited and the MOM estimators do not share the desir-
able theoretical properties of the ME estimators listed above. Worse, in many simple
cases, it is not well defined and can lead to inconsistent results. Indeed, for a given
parameter, one can get different estimates depending on which moment equation we
use! Examples of some of these facts are given in problems at the end of the chapter.

We discussed MOM estimators here because of the implementation in the library
Rsafd of the so-called method of L-moments used to estimate the parameters of
generalized Pareto distributions in Chap. 2.
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1.1.3 Quantiles and Q-Q Plots

So far, the graphical tools used to compare two distributions were basically limited
to the comparison of the graphs of the densities. As we saw, this can give a clear
picture of the differences in the center of the distributions in some cases. However,
these graphical comparisons are not informative for the comparison of the distribu-
tion tails. This subsection is devoted to the introduction of a more efficient way to
quantify the thickness of a tail, and as a by-product, we will get tools allowing us to
compare the relative sizes of the tails to two distributions.

1.1.3.1 Quantiles of a Distribution

Given a (theoretical) distribution function F', and a number p € [0, 1], the p-quantile,
or the 100pth percentile of the distribution, is the number 7, = m,(F') satisfying
F(m,) = p. If we think of F' as the distribution function of a random variable X,
then the quantile definition can be restated as:

F(my,) =P{X <m,} =p. (1.17)

In words, the 100pth percentile, is the number 7, such that the probability that X is
not greater than m, is exactly equal to p.

Remark. Even though statement (1.17) is very intuitive, it cannot be a
non-ambiguous definition. Indeed, there may not be any real number x satisfying
F(x) =P{X <z} = p. Indeed, this can be the case for some values of p when the
distribution function F has jumps, i.e. when the random variable X can take discrete
values with positive probabilities. When such jumps occur, there may be plenty of
possible choices. In fact, all the real numbers x satisfying:

P{X <z} <p<P{X <z} =F(x)

can be regarded as reasonable candidates for the p-quantile of the distribution. A
more precise definition would state that the set of p-quantiles is the closed interval
[z, %, ] where:

x, = inf{z; F(z) > p} and x) = inf{z; F(z) > p}.

In any case, we get a uniquely defined quantile 7, (F') (i.e. we have T, = x;) except
for at most countably many p’s in [0, 1]. For the sake of definiteness, for any of these
countably many values of p, we shall use the left endpoint x,,; of the interval as our
definition of the percentile.

Most of the cdf’s F' used in this book are invertible. When it exists, the inverse
function F~! is called the quantile function because (1.17) can be rewritten as:

T =F'(p). (1.18)
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1.1.3.2 Examples

As an illustration, let us consider the problem of the computation of the quantiles
of the classical distributions introduced earlier in the chapter. The results of these
computations will come handy when we discuss random number generators later on.

The quantiles of the uniform distribution are very easy to compute. However,
they are rarely needed. The quantiles of the Gaussian distribution cannot be given
in closed form: we cannot compute the Gaussian cdf in closed form, neither can we
compute its inverse in closed form, and we need to rely on numerical approximation
schemes to compute the quantiles of the Gaussian distributions. We give examples of
these computations in the next subsection below. For the exponential distribution, the
percentiles are easily computed from formula (1.16) which gives a simple expression
for the cdf F).(x). One finds:

1 1
Ty = ;logl_p.

(1.19)

Finally, in the case of the Cauchy distribution, the explicit form of the cdf can also
be inverted, and from trigonometry we find that the quantile function is given by:

Tp = Fn_%l)\(p) =m+ Atan (pw - g) (1.20)

Quantiles and percentiles are numbers dividing the real line into intervals in
which a prescribed proportion of the probability distribution lives. For example, if
we compute the quantiles 7, for a sequence of regularly spaced probability levels p,
patterns in the distribution of this set of percentiles can be interpreted as properties
of the probability distribution. This remark is particularly useful when it comes to
comparing several distributions. We develop this idea later on in this section with the
introduction of the concept of Q-Q plot which we discuss in great detail as it is the
cornerstone of the graphical analysis of heavy tail distributions.

1.1.3.3 Value at Risk (VaR)

For better or worse, Value at Risk (VaR for short) is nowadays a crucial component
of most risk management systems in the financial and insurance industries. Whether
its computation is imposed by regulators, or done on a voluntary basis by portfolio
managers, is irrelevant here. For the purpose of this subsection, we merely attempt
to understand the rationale behind this measure of risk.

We introduce the concept of risk measure at an intuitive level, relying on the
notion of required capital needed to make a financial position acceptable. We start
with the discussion with a simple example.

Let us imagine that we need to track the performance of a portfolio. Typical
portfolios comprise a large number of instruments, and a common assumption is to
assume that the (log) returns on these portfolios are normally distributed. Note that
in this book, we shall do our best not to make this assumption whenever we can
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help it. We denote by P, the value of the portfolio at time ¢, we choose a specific
level of confidence, say p = 2 %, and a time horizon At, say 1 year. Notice that the
period [t,t + At] is fixed. For that reason risk measures such as VaR are considered
to be static risk measures. See the Notes & Complements at the end of the chapter
for references.

Under these conditions, the associated required capital RCY is defined as the
capital needed to guarantee that the book will be in the red at time ¢ + At with
probability no greater than p. In other words, RCY, is defined by the identity:

P{Pt+4t + RCy < 0} =p.

The Value at Risk at time ¢ is then defined as the sum of the current endowment and
the required capital
VaR = P, + RC;.

Notice that P{P;1 o+ — P + VaR; < 0} = p, which says that —VaR; is the p-
quantile of the distribution of the change P+ A; — P; in the value of the portfolio
over the given horizon. It is often more convenient to express VaR; in units of F;,

ie.toset VaR; = @E % P;. The definition
P{Pt+4t—Pt+VaRt <O} =Dp

of VaR can then be rewritten as:

P, - P,
]P’{ t+At t

VaR, <0} =
2 +at<}p

which shows that, expressed in units of F;, the negative of the value at risk is nothing
more than the p-quantile of the distribution of the raw return over the period in ques-
tion. As we will stress during our comparison of raw returns and log returns later in
this section, they are very close to each other for small relative changes and we have:

Pt+At_Pt NlO Pt+At
P, S 2)

which justifies the fact that we will often call value at risk at the level p for the
horizon At, the negative of the p-quantile of the distribution of the log-return over a
typical period of length At.

We now recast the above rather informal discussion in the framework we use
throughout the book, and articulate a precise definition of Value at Risk. First, we
slightly change the convention: in order to get rid of the annoying negative sign
which we had to deal with above, it is convenient to think of a distribution function
F' as modeling the loss, i.e. the down side of the profit and loss (P&L for short) dis-
tribution in the standard financial jargon, associated to a specific financial position.
A random variable X with cdf F' could be for example the cumulative catastrophic
insurance losses in a reporting period, or the credit losses of a bank or a credit card
company, or the daily negative returns on a financial portfolio. Note that the length
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At of the time horizon can, and will change from one application to another. We will
consider many examples in which the frequency of the data will be different from
1 day. We will consider examples of minute by minute quotes used by day traders,
and weekly and monthly quotes used by fund managers.

For a given level p, the value at risk Va2, is defined as the 100p-th percentile of
the loss distribution. For the sake of definiteness, we shall choose the left hand point
of the interval of possible percentiles when the loss distribution is not continuous.
Value at Risk is widely used in the financial industry as a risk measure. Indeed,
according to the first Basel agreement, financial institutions have to control the VaR
of their exposures. Despite all that, VaR is not a satisfactory measure of risk for
several reasons. The first one is quite obvious: it does not involve the actual size of the
losses. The second one is less straightforward: it does not encourage diversification.
This property is more subtle and more difficult to prove mathematically, and we refer
the interested reader to the references given in the Notes & Complements at the end
of the chapter. For these reasons we shall introduce another way to quantify the risk
of a financial position modeled by a random variable X.

1.1.3.4 Effect of Affine Transformations

As we already witnessed, shifting the location and changing the scale of a distribu-
tion are common practices in statistical data analysis, and controlling the effect of
these transformations on the quantiles of a distribution is important. The results of
the following discussion will be used in the interpretation of the Q-Q plots introduced
and discussed below.

Let X be a random variable with cdf F'x, and let us denote by w,(,X) its quantiles.
Let us now consider the random variable Z = (X — m)/\ obtained by shifting
the distribution of X by a real number m and scaling it by a positive number .
In most applications we will use a location parameter for m (for example the mean
of the distribution of X when it exists) and a scale parameter for A (for example
the standard deviation of the distribution when the variance exists). In particular, Z
would be N (0, 1) if we were to start with X Gaussian. We now show that the affine

relationship
X - .
Z = 3 or equivalently X=X+m
carries over to the quantiles WZ()X) and wl(,Z) of X and Z respectively. Indeed, for any
p € [0, 1] the quantile w,(,X) is characterized as the number 7 satisfying Fx (7) = p
and since

Fx(m)=P{X <n}=P{\Z+m <7}

m — T™T—m

3 b= Fz( 3 ),

(recall that A > 0 which justifies our manipulations of the above inequalities) the

mT—m

number 7 satisfying Fix () = p should satisfy Fiz(*5™) = p and hence we have

=P{Z <
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A
which give the desired equivalence
(X) _
% = wl()Z ) or equivalently 7TZ()X ) = )wrl()Z ) +m (1.21)

between the quantiles of X and Z.

1.1.3.5 Comparing Quantiles

We motivate the introduction of the theoretical Q-Q plots with a simple experiment
intended to illustrate the sizes of the quantiles of a distribution as they relate to the
size (e.g. thickness) of its tail.

X ~ N(0,1) X ~ C(0,1)

mo.s = F3'(0.8) 0.842 1.376
To.85 = Fx1(0.85) 1.036 1.963
0.0 = F'(0.9) 1.282 3.078
To.95 = Fi ' (0.95) 1.645 6.314
To.975 = F1(0.975) 1.960 12.706
To.99 = Fz'(0.99) 2.326 31.821

Table 1.1. Comparison of the quantiles of the standard Gaussian and Cauchy distributions

We already emphasized how thin the tails of the Gaussian distribution are by
quantifying the concentration of the probability mass around the mean of the dis-
tribution. We now compute quantiles of the normal distribution with the command
gnorm, and arguments giving respectively the list of quantiles we want, the mean,
and the standard deviation of the distribution. Because of the symmetry of the distri-
bution, we restrict ourselves to the upper tail.

> gnorm(c(.8,.85,.9,.95,.975,.99) ,mean=0, sd=1)
[1] 0.8416 1.0364 1.2816 1.6449 1.9599 2.3263

In words, these numbers tell us that 80 % of the probability mass is to the left of = =
0.8416, 85 % is to the left of x = 1.0364, . . .. The computation of the corresponding
quantiles for the Cauchy distribution gives:

> gcauchy(c(.8,.85,.9,.95,.975,.99),location=0,scale=1)
[1] 1.376 1.963 3.078 6.314 12.706 31.821

We display these results in tabular form in Table 1.1.

We see that in the case of the Cauchy distribution, in order to have 80 % of the prob-
ability mass to its left, a quantile candidate has to be as large as x = 1.376, which is
greater than x = 0.842 found for the normal distribution. Obviously, the same is true
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for the other quantiles in the above lists. This pattern may be visualized by plotting
the quantiles of the Cauchy distribution against the corresponding quantiles of the
normal distribution. We would have to plot the points

(0.8416212,1.376382), (1.0364334,1.962611), (1.2815516, 3.077684),
(1.6448536,6.313752), (1.9599640, 12.706205), (2.3263479, 31.820516).

Note that all these points are above the diagonal y = «, and in fact they drift further
and further away above this diagonal. This fact is at the core of the interpretation of
a Q-Q plots which we introduce formally below: points above the diagonal in the
rightmost part of the plot indicate that the upper tail of the first distribution (whose
quantiles are on the horizontal axis) is thinner than the tail of the distribution whose
quantiles are on the vertical axis. This phenomenon appears as well in the case of
the empirical Q-Q plots introduced later and illustrated for example in Figs. 1.23
and 1.25.

1.1.3.6 Theoretical Q-Q Plots

The above discussion seems to indicate that comparing the quantiles of two distri-
butions carries powerful information on the relative properties of the tails of these
distributions.

A quanrile-quantile plot (Q-Q plot for short) of a distribution F'(?) against a

distribution £V, is the plot of the curve formed by the couples (wz(jl), wz(f)) when

the real number p varies over [0, 1]. Obviously, we use the notation 7r1(71) for the
quantiles of the distribution F(*), and 7T1()2) for the quantiles of the distribution F'().

The interpretation of these plots is based on the following simple remarks.

e The Q-Q plot should be on the diagonal if the two distributions are equal;
e If both distributions extend to +oo, and if the tail of F(!) is heavier than the tail
of F(?), then when p increases toward 1, the quantile 7r1(71) of F) should grow

faster that the quantile w,(,Q) of F(), and consequently, the Q-Q plot should be
below the diagonal and curve downward below the diagonal,

e Similarly, if both distributions have right tails extending to +o0, and if the tail
of F() ig thinner than the tail of F(Q), then as p increases toward 1, the quantile

w,(,l) of F'() should grow slower that the quantile W,(,z) of F®), and consequently,
the Q-Q plot should curve upward above the diagonal;

e If both distributions extend to —oo, and if the tail of F(1) is heavier than the tail
of F'(® then when p decreases toward 0, the quantile wz(jl) of £ should go to
—oo faster that the quantile w,(,Q) of F(®), and consequently, the Q-Q plot should
curve upward above the diagonal;

e Finally, if both distributions have a left tails extending to —oo, and if the tail of

F'D is thinner than the tail of F(?), then as pdecreases toward 0, the quantile 7r1(71)

of F(1) should go to —oo slower that the quantile 7T1(72) of F(?), and consequently,

the Q-Q plot should curve downward below the diagonal.

We illustrate these general qualitative statements with specific examples of Q-Q plots
of distributions from some of the families introduced in the first part of the chapter.
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1.1.3.7 Examples of Theoretical Q-Q Plots

We close this section with a discussion of specific examples of theoretical Q-Q plots.

One Tailed Distributions. We first consider two distributions on the half line R =
[0,00), and we compare their tails at +co. We choose the exponential distribution
with rate one, and the log-normal distribution with mean zero and variance one. We
implement the definition of the theoretical Q-Q plot of these distributions with the R
commands

> P <- seq(from=0,to=1,length=1025)

> plot (gexp(P,1),glnorm(P,meanlog=0,sdlog=1) ,type="1",
xlab="E (1) quantiles",ylab="LogNormal quantiles")

> abline(0,1)

which also superimpose the diagonal (which helps the interpretation of the result,
especially when the scales on the vertical and horizontal axes differ). The result is
given in Fig. 1.10. The first R command creates a vector P of length 1025 with
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Fig. 1.10. Theoretical Q-Q plot of the log-normal distribution with mean zero and variance
one, against the exponential distribution with unit rate

entries forming a regular grid of real numbers from 0 to 1. The first two argu-
ments of the function plot give the x and y coordinates of the points to plot on
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the graph, the parameter type="1" implying that straight lines will be used to
connect the points. Applying a function to a vector creates a vector of the same
length with entries equal to the values of the function computed for the entries of the
original vector. So gexp (P, 1) is a vector of length 1025 , the entries of which
are the quantiles of the exponential distribution with rate one (the second parame-
ter of the function gexp) computed at the values found in the vector P. Similarly,
glnorm (P, meanlog=0, sdlog=1) is a vector of length 1025 whose entries
are the quantiles of the log-normal distribution with mean zero and variance one
computed at the values found in the vector P. The roles of the parameters x1ab and
ylab in setting the labels of the axes are self explanatory. Finally, the command
abline (0, 1) adds a line with intercept 0 and slope 1 (i.e. the first diagonal when
the units on the two axes are the same) to the plot.

The interpretation of the plot is plain: the upward bend in the right hand side
of Fig. 1.10, together with its convexity show that the log-normal distribution has a
heavier tail than the exponential distribution.

Two Tailed Distributions. Next, we consider theoretical Q-Q plots of two distri-
butions having tails extending to plus and minus infinity. The plots appearing in
Fig. 1.11 epitomize the most important features which can be identified, and we dis-
cuss them one by one in the next bullet points.
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!

C(0,1) quantiles
200 00 0
1 1 1
C(0,1) quantiles
200 00 0
1 1 1
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t(1) quantiles t(2) quantiles

Fig. 1.11. Theoretical Q-Q plots of the Cauchy distribution C'(0, 1) against the ¢ distribution
with 1 (left) and 2 (right) degrees of freedom

o The left pane of Fig. 1.11 shows the theoretical Q-Q plot of the Cauchy distribu-
tion with location zero and scale one against the ¢ distribution with one degree of
freedom. The plot seems to align perfectly with the diagonal which shows that
there is no significant numerical difference between the sizes of the tails as cap-
tured by this type of plot. A quick look at the plots given earlier of the densities
of the two distributions is enough to explain why this had to be expected.

e The right pane of Fig. 1.11 shows the theoretical Q-Q plot of the same Cauchy
distribution against the ¢ distribution with two degrees of freedom. The plot is
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N(0,1) quantiles

obviously very different. First, we should notice that the scales on the two axes
are very different (see the tick labels on these axes), as evidenced among other
things, by the diagonal which is almost horizontal. Next the curvatures found on
both ends show that both tails of the ¢ distribution are thinner than the tail of the
Cauchy distribution. Indeed, the fact that the Q-Q plot is above the diagonal on
the right of the plot is due to the fact that the upper quantiles of the ¢(2) distri-
bution grow to +oo slower than those of the C'(0, 1) distribution, implying that
the right tail of the ¢(2) distribution is lighter (we also say thinner) than the right
tail of the Cauchy distribution C'(0, 1). Similarly, fact that the Q-Q plot is below
the diagonal on the left of the plot is an indication that the lower quantiles of the
t(2) distribution decrease to —oo slower than those of the N (0, 1) distribution,
implying as before that the left tail of the #(2) distribution is thinner than the
left tail of the C(0, 1) distribution. The argument given for the upper tails was
repeated mutatis mutandis for the lower tails for pedagogical reasons. We could
have used the fact that both distributions are symmetric and as a consequence,
have same size at 400 and —oo.

N(0,1) quantiles
0
|

t(5) quantiles 1(50) quantiles

Fig. 1.12. Theoretical Q-Q plots of the standard Gaussian distribution N (0, 1) against the ¢
distribution with 5 (left) and 50 (right) degrees of freedom. We used a dashed line for the Q-Q
plot in order to differentiate is clearly from the diagonal which is plotted as a solid line

The left pane of Fig. 1.12 shows the theoretical Q-Q plot of the standard Gaussian
distribution against the ¢ distribution with 5 degrees of freedom. The fact that the
Q-Q plot is below the diagonal on the right part of the plot is due to the fact that
the upper quantiles of the ¢(5) distribution grow to +oo faster than those of the
N (0, 1) distribution, implying that the right tail of the ¢(5) distribution is heavier
(we also say thicker) than the right tail of the standard Gaussian distribution.
Similarly, the fact that the Q-Q plot is above the diagonal on the left of the plot
is an indication that the lower quantiles of the ¢(5) distribution decrease to —oo
faster than those of the NV (0, 1) distribution, implying that the left tail of the ¢(5)
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distribution is heavier than the left tail of the N(0,1) distribution. As before,
a symmetry argument can be used to reduce the comparison of the tails to the
right tails.

e However, as evidenced by the plot on the right pane of Fig. 1.12, the ¢ distribution
with 50 degrees of freedom has tails of pretty much the same sizes as those of
the normal distribution. The tails are still heavier than the tails of the N(0,1)
distribution since the Q-Q plot is on the same side of the diagonal as before,
but the difference is much smaller than earlier. This fact is a consequence of the
normal approximation result which we mentioned earlier in the text.

1.2 OBSERVATIONS AND NONPARAMETRIC DENSITY ESTIMATION

This section reviews some of the most basic nonparametric techniques of density
estimation. Our stand point is more practical than theoretical, and we emphasize
implementation in R.

1.2.1 Sample Data

The data used in this chapter come in the form of a sample:

where the x; are real numbers. They are analyzed with statistical tools based on
concepts of statistical data analysis which we review in this chapter. Our presenta-
tion is sprinkled with numerical illustrations anchored on a small number of specific
examples. We proceed to the introduction of the first of these examples.

1.2.1.1 The PCS Data

The PCS Index is the year-to-date aggregate amount of total damage reported in the
United States to the insurance industry. PCS stands for Property Claim Services. It
is a division of ISO Inc (Insurance Services Office). Regional indexes also exist, and
different regions have unique indexes, e.g. California, Florida, Texas, ..., but we
only consider the national index in this example. Each index value represents $100
million worth of damage. For example, a value of 72.4 for the national index in 1966,
means that $(72.4 x 100) million (i.e. $7.24 billion) in damage were recorded on that
year.

The Chicago Board of Trade began trading options on the PCS Index in 1996.
Options and futures contracts on the PCS Index offer a possibility to securitize insur-
ance catastrophe risk in a standardized fashion. These financial products were seen in
the mid 1990s by the insurance industry as a way to tap into the inverstors enormous
appetite for risk.
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For the purpose of our analysis, we do not use the index values. Instead, we use
some of the individual claim reports used to compute the final values of the index.
The data we use come in the form of a matrix with 2 columns and 380 rows:

> head (PCS)
Coll Col2
1 13 4.00
2 16 0.07
3 46 0.35
4 60 0.25
5 87 0.36
6 95 1.00
where the first column contains time stamps 13, 16, - - - (i.e. codes for the dates of

the catastrophic events), and the second column contains the aggregate amounts
4.00,0.07,- - - (again in $100 million) of all the claims reported after each event.
These data are contained in an R matrix called PCS. The command head (PCS)
was used to print the first six rows of the data set. Notice that, since the object PCS
does not have column names and row names, R uses default names Col1 and Col2
for columns and the integers 1,2, ... for row names. The plot of the data is
given in Fig. 1.13. In a first analysis, we do not use the information of the timing of
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Fig. 1.13. Approximately 10 years worth of individual catastrophe costs used to compute the
PCS index. For each catastrophic event included in the data set, the time stamp is reported on
the horizontal axis, and the aggregate dollar amount of the claims attributed to this catastrophic
event is reported on the vertical axis

the catastrophes. In other words, we first work with the second column of the data
set, i.e. with the dollar amounts only. So, at least in this chapter, the data of interest
to us will be:
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Tl = 4.00, Ty = 0,07, I3 = 0.35, Ty = 0.25, ......

and we encapsulate this data set in the R object PCS. index (a numeric vector in
this case) with the command:

> PCS.index <- PCSI[, 2]

which extracts the second column of the matrix PCS, and renames it PCS . index.
From now on, we work with these values, ignoring the timing of the actual catas-
trophes. The analysis of the time dependence is the subject of time series analysis
which we will tackle in the third part of the book.

Again, we refer to the R Tutorial contained in the first Appendix at the end of the
book for details on the basic commands used in this chapter.

1.2.1.2 The S&P 500 Index and Financial Returns

For this second example, the data give the weekly closing values of the S&P 500
index. They come in the form:

1950-01-03 16.98
1950-01-09 16.67
1950-01-16 16.90
1950-01-23 16.82
1950-01-30 17.29
1950-02-06 17.24

These data are contained in the R object WSP . t s of class t imeSeries and plotted
in Fig. 1.14. t imeSeries objects will be studied in Chap. 6. In the present chapter,
we do not make use of the time stamps appearing in the first entry of each row. We
concentrate on the data appearing in the second column. For the sake of convenience,
we organized these data in an R numeric vector which we called WSP. We are not
really interested in the raw values of the index. For reasons which will become clear
later, we would rather analyze the returns, so we transform the data for the purposes
of our analysis. However, before doing so we define the two notions of refurn used in
finance. For the sake of simplicity, we ignore the possibility of dividend payments.
Given the value of an index at time ¢, say S, and its value after a period of length
At, say Syt a¢, the raw-return over that period is defined as:

Siear =St Sitac
RR; = = -1 1.22
t S, S, (1.22)

while the log-return over the same period is defined by the formula:

LR, = log % (1.23)

t



34

1 UNIVARIATE DATA DISTRIBUTIONS

Time Series Plot of WSP.ts
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Fig. 1.14. Weekly values of the S&P index

Log-returns are natural in the context of continuous time discounting, while raw-
returns are more natural when discounting is done at discrete time intervals. Notice
that since = ~ log(1 + ) when x is small, we have:

St-i—At B St) -~ St+At B St

— RR
S, S, t

LR; =log (1 +

whenever the ratio Sy; a¢/S; is close to 1. So we expect that the two methods of
computing returns will give essentially the same results when At is small, or when
the value of the index does not change much over a period of length A¢. Notice that
both notions depend upon the time period over which the returns are computed. At
is 1 week in the present situation. It will be 1 month in some examples, or even one
quarter in others. However, it will be 1 day in most of the examples considered in the
book.

The practical computation of the log-returns proceeds as follows. Except for the
first value, we divide each closing value by its value the previous week (computing
in this way the weekly return), and we then compute the logarithm of this ratio, ob-
taining in this way the weekly log-return. Since the log of a ratio is the difference of
the logarithms of the numerator and denominator, we use the following R command

> WSPLRet <- diff (log(WSP))

to compute the vector of log-returns. When applied to a vector, the R function 1og
produces a vector of the same length, whose entries are given by the logarithms of the
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entries of the original vector. The function diff gives a vector that is one element
shorter than the original vector, and whose entries are given by the differences of two
successive terms of that sequence. The first entries of the sample of log-returns are:

1 = —0.018425484, x2 = 0.013702925, x3 = —0.004744967, =4 = 0.027559645,

After this transformation of the original data, the resulting sample appears as if the
entries formed a set of observations of independent random variables with the same
distribution. In this chapter, we concentrate on the analysis of log-return values in-
stead of the original values of the index, and we try to infer statistical properties of
the common distribution of these log-return observations. We stress that in what fol-
lows, the results of the analysis do not depend upon the order of the observations. In
other words, were we to shuffle these numbers and change the order in which they
appear, the results of our analysis would remain unchanged.

1.2.2 Nonparametric Estimation
1.2.2.1 Statistical Estimation

When working with sample observations from an unknown cdf F, if the quantities
we want to estimate are numerical characteristics which can be computed from the
cdf F', our preferred strategy is to use the sample observations to produce an estimate,
say F, of the cdf F, and then to use the corresponding characteristics computed from
the estimate F as estimates of the desired characteristics of F. _For example, the mean
of F" will be used to estimate the mean of F, the variance of E for the variance of F,
etc. Often, we assume that the unknown distribution has a density f = F’, and we
try to compute the characteristics as integrals involving f.

A good part of classical parametric estimation theory can be recast in the frame-
work of density estimation: for instance, estimating the mean and the variance of
a normal population is nothing but estimating the density of a normal population.
Indeed, a Gaussian distribution is entirely determined by its first two moments,
and knowing its mean and variance is enough to determine the entire distribution.
Similarly, estimating the mean of an exponential population is the same as estimat-
ing the density of the population since the exponential distribution is determined
by its rate parameter, which in turn is determined by the mean of the distribution.
More generally, if the random mechanism governing the generation of the data is
known to be producing samples from a given parametric family, estimating the dis-
tribution reduces to estimating the parameters of the distribution, and we can use
classical estimation methods, such as maximum likelihood, method of moments,

. reviewed in the previous section. We can then plug the estimated values into
the formulae defining the parametric family and compute the desired characteris-
tics accordingly. However, if the unknown characteristics of the random mechanism
cannot be captured by a small set of parameters, we need to use a nonparametric
approach.
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1.2.2.2 The Empirical Cumulative Distribution Function (cdf)

When fitting a distribution to a data sample, different methods have to be brought to
bear when no rationale exists for the choice of a specific parametric family of distri-
butions. In the absence of specific information about the type of statistical distribu-
tion involved, the only recourse left is very often the so-called empirical distribution
function Fn which we now define. Given a sample x1, z2, - - - , z,, from an unknown
cdf F, the empirical distribution function FE}, of this sample is the piecewise constant
function defined by:

F.(z) = %#{i; 1<i<n,z; <z} (1.24)

Fn(x) represents the proportion of observations not greater than x. The function
F,(z) is piecewise constant, since it is equal to j/n for z in between the j-th and
the (j + 1)-th observations. Its graph is obtained by ordering the observations z;’s,
and then plotting the flat plateaus in between the ordered observations.

The rationale behind this estimation procedure is the fact that the empirical cdf
F,(x) converges uniformly in z € R toward the unknown cdf F'(z). This is known
as the Glivenko-Cantelli theorem (or the fundamental theorem of statistics). Its proof
is based on the Law of Large Numbers (LLN for short) which we state in Sect. 1.3 in
the context of Monte Carlo computations. It can be found in most introductory texts
in statistics.

According to the estimation strategy articulated earlier, once the empirical dis-
tribution function has been chosen as the estimate of the (theoretical) unknown cdf,
characteristics of the unknown cdf can be estimated by the corresponding charac-
teristics of the empirical distribution function F,.In particular, the percentiles can
be estimated by the percentiles computed from F,. So, according to this estimation
strategy, the 100p-th percentile m, = m, (") is estimated by the empirical percentile
Tp (Fn) This procedure has obvious applications to the computation of risk measures
based on quantiles, such as the value at risk VaRz,.

1.2.2.3 Order Statistics

The actual construction of the empirical cdf given above emphasized the special role
played by the ordered observations:

min{zy,..., T} = 21)n < T2)n <0 < Tep)p = MAX{TL, .., Ty}

Warning. The ordered observations xy,) ,, are not defined uniquely because of pos-
sible ties, i.e. cases when z; = x; for different indices ¢ and j. Ties cannot occur (to
be more specific, we should say that the probability that they do occur is zero) when
the distribution function F' is continuous. The empirical cdf’s are never continuous,
but most of the cdf’s occurring in practice are continuous, so since such an assump-
tion does not restrict the scope of our analysis, we shall subsequently assume that
there are no ties in the sample observations.
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The ordered observations x (), , can be viewed as realizations of random vari-
ables X (1) 5, X(2),ns - - - X(n),n- Note that the latter are neither independent nor
identically distributed any more. The random variable X ) ,, is called the k-th or-
der statistic. Our definition of the percentiles of a distribution with jumps, and of the
left inverse of a cdf imply that for each probability level p € (0, 1):

. k—1 k
n

T(k),n :ﬁp :Wp(Fn) for <p<

n

The following will have far-reaching consequences in the analysis of distribution
tails.

Let us assume that z1,29,...... , Ty, form a sample from an unknown cdf F’,
and let us assume that we are interested in the estimation of a quantile 7, = 7, (F).
As we already emphasized, one important financial application is the computation of
VaR (value at risk). The probability that exactly k of the sample observations x; fall
in between 7, and 1 is the same as the probability that

X(nfk),n < T < X(n7k+1),n- (1.25)

Since the cdf I’ is monotone increasing, the inequalities (1.25) can be equivalently
rewritten as:

F(X(n—k),n) <p< F(X(n—k-‘rl),n) (1.26)

and the probability that this happens is equal to the probability that exactly & of the
numbers F'(X ) fall in the interval [p, 1]. Since the F'(X;) are i.i.d. random variables,
this probability is equal to the binomial probability:

() a—-pr

where 7 denotes the probability that a number F'(X;) belongs to the interval [p, 1].
But according to the results presented in Sect. 1.3, and especially Fact 1, this proba-
bility is equal to (1 —p). Consequently, the probability that (1.26) occurs is given by:

(i) ra-pk (1.27)

This important result is used in practice to derive confidence intervals for the empir-
ical quantiles of a distribution.

1.2.2.4 R Implementation

For the purpose of illustration we work with the Calpine stock price data downloaded
from the internet and imported in R as explained in the appendix. We first compute
the daily log-returns. On any given day, the log return is the logarithm of the ratio of
the price on that day divided by the price the day before. Given the properties of the
logarithm function, this is also the difference between the logarithm of the price on
that day and the logarithm of the price the day before. We create a vector CPNLRet
containing the daily log returns with the command:
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> CPNLRet <- diff (log(CPN))

As explained in our discussion of the weekly log returns of the S&P 500, the com-
mand 1log (CPN) creates a vector with the same length as CPN, each entry being the
logarithm of the corresponding entry in CPN. The function diff creates a vector
with one less element, each entry being equal to the difference between the corre-
sponding entry in the argument vector, and its preceding entry (hence the shorter
length). Now we assume that the entries of CPNLRet form a sample from an un-
known distribution (the distribution of the daily log returns on Calpine stock) and
we proceed to the computation of the empirical quantiles. Remember that, according
to the above discussion, the latter can be viewed as estimates of the quantiles of the
unknown distribution.

> quantile (CPNLRet,c(.01,.05,.25,.5,.75,.95,.99))
1% 5% 25% 50% 75% 95% 99%
-0.1263 -0.0658 -0.0201 0.0000 0.0204 0.06353 0.1315

We use the R function quantile. Its first argument needs to be the numeric vector
of the sample values, CPNLRet in our case, while its second argument should be the
vector of probability levels at which we want to compute the quantiles. In the present
case, we chose to compute the empirical p-quantiles for the values 0.01, 0.05, 0.25,
0.5, 0.75, 0.95, 0.99 of p which we encapsulated in a vector with the concatenation
function c. The function quantile returns a vector of the same length as the vector
of probability levels. Its entries are the desired quantiles.

Even though we should not try to re-invent the wheel, for pedagogical reasons,
we think that it is important to use the tools offered by R to compute from scratch
(i.e. without using the function quantile) the ordered statistics of a sample. The
R function order gives the ranks of the entries of a numeric vector. Using the ranks
as new indexes, we can construct the vector of ordered entries. The following com-
mands illustrate these facts.

RKS <- order (CPNLRet)
OCPNLRet <- CPNLRet [RKS]
par (mfrow=c(2,1))

plot (CPNLRet, type="1")
plot (OCPNLRet, type="1")
par (mfrow=c(1,1))

V V. V V V Vv

The results are reproduced in Fig. 1.15. The left plot is typical of stock log returns.
The only reason we give the left plot is to check that the observations have been or-
dered correctly. We can now recover the empirical quantiles computed above with the
pedestrian approach based on the definition of these quantiles (e.g. the 1 — empirical
— percentile is the value of the entry which has 1 % of the entries below)

> L <- length (OCPNLRet)
> P <- 0.01

> OCPNLRet [ceiling (P*L) ]
[1] -0.1267517

> P <- 0.75

> OCPNLRet [ceiling (P*L) ]
[1] 0.02040887
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Fig. 1.15. Sequential plot of the daily log returns on Calpine stock before (left) and after (right)
ordering the observations

1.2.3 Histograms

Together with pie charts, histograms are presumably the most frequently used graph-
ical representations of data. In this book, we are interested in the analysis of data
from continuous probability distributions, and we view histograms as estimators of
the densities of the corresponding distributions. Since the construction of a histogram
does not assume that the distribution is an element of a specific family of distribu-
tions, it can be viewed as a nonparametric estimation procedure. However, it is not
a panacea, and like most nonparametric functional estimation procedures, the his-
togram relies on the specification of a few constants, two in most cases. For example,
in order to produce a histogram, one chooses the width of the bins, and the origin
from which the bins are lined up.

Recall that once the range of the observation sample vector is covered by a set
of bins, plotting the histogram is plotting a rectangle above each bin, the height of
the rectangle being the absolute (or relative) frequency of the data entries falling
in the bin.

1.2.3.1 Implementation in R

Histograms are produced in R with the command hist. The left pane of Fig. 1.16
is the result of the command hist (CPNLRet). If the only argument passed to the
function hist is a numeric vector, R chooses automatically default values for all
the other arguments. We specified a few of these arguments to produce the histogram
appearing in the right pane of Fig. 1.16. We chose to force the histogram to have
25 bins by including breaks=25. In fact the parameter breaks can be used to
specify not only the number of bins, but the end points of these bins. Indeed, when
breaks is a numeric vector, its entries are interpreted as the end points of the bins.
We chose to plot the bars over the bins in blue by setting the parameter col ap-
propriately, namely by passing col="blue" to the function hist. Finally, we set
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Fig. 1.16. Histograms of the daily log returns on the Calpine stock

the parameter freq to FALSE in order for relative frequencies to be used as labels
on the vertical axis. This does not change the look of the histogram, but the nu-
merical values correspond now to the values of a probability density, instead of raw
frequency counts. We give the R commands used to produce Fig. 1.16 for the sake of
definiteness.

par (mfrow=c(1,2))

hist (CPNLRet)

hist (CPNLRet,breaks=25,col="blue", freqg=F)
par (mfrow=c(1,1))

VvV V. V V

Both histograms give a good rendering of the central bump in the density. How-
ever, it is difficult to gauge the relative importance of the bins in the right and left
most parts of the graph. It seems that most of the bins are empty, except possibly for
some extreme bins which justify the choice of the range of x-values over which the
histogram is constructed.

1.2.3.2 More Shortcomings and Extensions

The dependence of the histogram upon the choice of the origin is an undesirable
artifact of the method. In order to circumvent this shortcoming, the notion of av-
eraged histogram was introduced: one histogram is computed for each of a certain
number of choices of the origin, and all these histograms are averaged out to pro-
duce a smoother curve expected to be robust to shifts in the origin. This estimate is
called the ASH estimate of the density of the population, the three initials A, S and
H standing for “average shifted histogram”.

Even though ASH estimates are free of the artificial dependence upon the choice
of the origin, they are still dependent on the particular choice of the bin width, the lat-
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ter being responsible for the look of the final product: ragged curves due to a choice
of small bin widths, and smoother looking blocks if the bins have larger widths.
The decisive influence of this parameter should be kept in mind as we inch our way
toward the introduction of our favorite density estimation procedure.

For the time being, we limit ourselves to the following remark: building a his-
togram is done by piling up rectangles. Given the choice of the subdivision of the
range of the data into intervals of equal lengths (the so-called bins), the contribution
of any given observation is a rectangle of height 1/(nb) (where n is the population
size and b is the bin width), the rectangle being set on top of the bin in which the
observation falls. In particular, if many observations fall near the boundary of a bin,
the piling up of these rectangles will create an undesirable effect which we illustrate
with one possible instance of this shortcoming. Let us assume that the bins have
been chosen to be the unit intervals [0, 1), [1,2), [2,3), ..., [5,6), and let us assume
that the data is comprised of 6 X 8 = 48 points grouped in 8’s around each of the
integers 1,2, 3,4, 5 and 6, in such a way that for each of these integers, four of the
data points are smaller than (and very close to), the other four (still very close) being
greater than the integer in question. Obviously, the distribution of the points shows
a periodic regularity, and one would want the density estimator to account for it: the
high concentration of points near the integers should be reflected in the presence of
high values for the density, while this same density should vanish in the middle of the
inter-integer intervals which are empty of data points. Unfortunately, our histogram
will completely miss this pattern. Indeed, the bins having been chosen as they were,
the histogram is flat throughout the interval [0, 6) leading us (misleading us should I
say!) to believe that the distribution is uniform over that interval.

One possible way out of this problem is to center the bins around the observation
values. Doing so is just computing the kernel density estimator proposed below with
the particular choice of the box kernel function !!!

1.2.4 Kernel Density Estimation

Given a sample z1,...,x, from a distribution with (unknown) density f(x), the
formal definition of a kernel density estimator of f is the function f; defined by:
. 1 & €T —x;
= — K 1.2
folz) = — ; ( ; ) (1.28)

where the function K is a given non-negative function which integrates to one (i.e.
a probability density function) which we call the kernel, and b > 0 is a positive
number which we call the bandwidth. The interpretation of formula (1.28) is simple.
Over each point x; of the sample, we center a scaled copy of the kernel function /&,
and the final density estimate is the superposition of all these “bumps”. The division
by nb guarantees that the total mass is one (i.e. the integral of fb(x) is one.)
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1.2.4.1 Univariate Kernel Density Estimation in R

The function provided by R for univariate kernel density estimation is density. As
in the case of the function hist, most of the parameters are given default values by
the program. However, mostly for the sake of completeness, we mention the meaning
and the role of some of the most important parameters. The bandwidth parameter b
of formula (1.28) is given by the product of the parameters bw and adjust. The
latter is equal to 1 by default while the default value of the former is specified as
the value of an asymptotically optimal formula. However, the user can choose what-
ever values he or she pleases for these two parameters. The kernel estimate f,(x)
given by (1.28) is computed at n equally spaced values of z. The program chooses
n=512 by default, but the parameter n can be user specified. Also, the values of z
at which the density is computed can be chosen by specifying the parameters £rom
and to which determine (together with n) the entire grid of x-values where the den-
sity is computed. The function density returns a list whose components include
the vector x of points where the density function has been computed, the vector y of
the values on the estimate of the density function. See the help file for details of the
components returned by this function. For the purpose of illustration and compari-
son with the earlier histogram computations, we produce density estimates for the
Calpine daily log returns. We use the Gaussian kernel and two different bandwidths.

par (mfrow=c (1,2))

DENS <- density (CPNLRet,bw=.1)

plot (DENSS$x,DENSSy, type="1",main="KDE with bw=.1")
DENS <- density (CPNLRet,bw=5)

plot (DENSS$x,DENSSy, type="1",main="KDE with bw=5")
par (mfrow=c(1,1))

V V. V V V V

each call to the function density returns a list which we call DENS, and in each
case we extract the x and y components with the dollar sign and we plot them with
the command plot. The results are given in Fig. 1.17. They are strikingly different.
Indeed the scales on the horizontal axes as well as on the vertical axes are very differ-
ent, and any attempt to super-impose these two graphs on the same plot would flatten
one of them. Notice that, a small value of the bandwidth gives a sharp peak around
the bulk of the data, while a larger bandwidth gives a smoother curve and a larger
spread for the mass distribution. For the sake of comparison, we plot a histogram and
a kernel density estimate of the same daily log return data CPNLRet on the same
graph. We do this with the following commands.

> DENS <- density (CPNLRet)

> hist (CPNLRet, breaks=25,col="blue", freg=F,ylim=c(0,15),
main="Histogram and Kernel Density Estimator of CLPLRet")

> lines (DENSS$x, DENSSY)

The results are given in Fig. 1.18. It is important to choose the option freg=F to
ensure that the histogram is normalized as a probability density. This guarantees that
the two estimates are on the same vertical scale. We also forced the limits of the
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Fig. 1.17. Kernel density estimates of the daily log returns on the Calpine stock with Gaussian
kernel and bandwidths equal to 0.1 (left) and 5 (right)
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Fig. 1.18. Histogram and kernel density estimate of the daily log returns on the Calpine stock

vertical axis by setting the parameter y1im to guarantee that the graph of the kernel
density estimate will not leak out of the plot.

Figure 1.18 illustrates perfectly the advantages and the limitations of the kernel
density estimator. First and most importantly, it produces a smooth curve which has
a more pleasing look than the histogram. However, it has the same problem with the
extreme observations: they are poorly accounted for, especially if the bandwidth is
too large. Indeed, too large a bandwidth can smooth features out of the picture!

The kernel functions K () used in the kernel density estimation function density
is specified by a string of characters assigned to the parameter kernel. There are
seven possible choices. We give the plots of four of these possible kernel functions
in Fig. 1.19. The interested reader is invited to look at the help file of the function
density to find out about the other three options.
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1.2.4.2 Comparison with the Histogram

Both histogram and kernel estimates start from a data sample z1, x2, ..., Z,. In
order to construct a histogram, we choose an origin and n bins, and we define the
histogram as the graph of the function:

x — Hist(x) = %Z O(x,x;) (1.29)
i=1

where 6(z, 2;) = 1/bif 2 and x; belong to the same bin, and 0 otherwise (remember
that we use the notation b for the width of the bins.) Notice that definition (1.28) of
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Fig. 1.19. Graphs of four of the kernel functions used by the R function density. Top left:
rectangular kernel. Top right: triangular kernel. Bottom left: cosine kernel. Bot-
tom right: gaussian kernel

the kernel density estimator has exactly the same form as the re-formulation (1.29)
of the definition of the histogram, provided we re-define the function 6(x, x;) by:

O(x,x;) = %K <x b%‘) .

The similarity is striking. Nevertheless there are fundamental differences between
these two nonparametric density estimation methods.
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e First, at the level of the “bumps”: they are rectangular for the histogram, while
their shape is given by the graph of the kernel function K (z) rescaled by b in the
case of the kernel estimate;

o At the level of the locations of the bumps: these locations are fixed more or less
independently of the data for the histogram, while they are centered around the
data points in the case of the kernel estimate;

o At the level of the smoothness of the resulting density estimate: It is determined
by the number (and size) of the bins in the case of the histogram while it is
determined by the value of the bandwidth b > 0 in the case of the kernel estimate.

1.2.4.3 Still Another Example

The goal of this subsection is to review the two methods of nonparametric density
estimation discussed in this chapter by testing them on another data set. We choose
the S&P 500 index for purpose of illustration. The data comprise the series of daily
closing values of the S&P 500 index over the period ranging from January 3, 1950 to
August 20, 2010. Figure 1.20 gives a sequential plot of these values, together with the

Time Series Plot of DSP.ts Time Series Plot of DSPLRet.ts
o o
o _| —
0 o
T}
=]
o
o
Q <
o | o
S
To)
<
Q@
e
S
o 1
S 4
o T}
5 .
o
N
Q@
o —
I I I I I I I I I I
1960 1980 2000 1960 1980 2000

Fig. 1.20. Daily S&P 500 closing prices as imported from the Web (/eff) and daily log-returns
over the same period (right)

series of the daily log-returns. Notice that in computing the returns, we ignored the
fact that the returns are actually computed over periods of different lengths. Indeed
we ignore the presence of weekends, typically when Monday’s close follows the
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preceding Friday’s close, and we use the quotes as if they were from consecutive
days. We also ignored holidays and days the market was closed, like the week of
September 11, 2001 of the terrorist attack on New York.

The other important point which needs to be made at this stage is that we are
not interested in the time evolution of the values of the series, but instead, in the
distribution of these values on a given day. In other words, instead of worrying about
how the value on a given day depends upon the values on previous days, we care
about statistics which would not change should we modify the order of the entries
of the data vector. This seems to be quite a reasonable requirement in the case of the
log-returns of the right pane of Fig. 1.20. We use the commands:

> hist (DSPLRet,col="blue", freq=F,ylim=c(0,30))
> DENS <- density(DSPLRet, adjust=12)
> lines (DENS)

to produce Fig. 1.21. As before, we use the option freg=F to force the area of
the histogram to be one, so it will be on the same vertical scale as the kernel den-
sity estimate computed next. Also, we set the parameter y1im to force the limits
on the vertical axis to be 0 and 30 so as to make sure that the kernel density es-
timate will be plotted inside the plot area. The parameter adjust, whose default
value is 1, is a multiplicative factor which is used to modify the bandwidth. The
bandwidth used by the function density is actually adjust times the default
bandwidth. We set it to 12 because the result of the density estimation with the de-
fault bandwidth was producing a curve too peaked around 0. Notice also that we
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Fig. 1.21. Histogram and kernel density estimates of the daily log-returns of the S&P 500
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used the command 1ines (DENS) instead of 1ines (DENSSx, DENSSy) which
we used before.They are equivalent because DENS has two components, DENS$x and
DENSSy.

The histogram reproduced in Fig. 1.21 is not satisfactory for two related rea-
sons. First it gives very little information about the center of the distribution, the two
central bars capturing too much of the information. Second, the extreme values to
the left and to the right of the distribution do not appear because they are in such
small numbers that the heights of the bars they create are too small compared to the
heights of the central bars, for the former to be visible. Because of this shortcoming,
we decided to use the kernel method as an alternative to the histogram, but despite
a smoother look, the same problem plagues the estimate: the contributions of both
ends of the distribution (which we call tails) to the graph are overwhelmed by the
central part of the distribution.

1.2.4.4 Importance of the Choice of the Bandwidth

The choice of bandwidth can have drastic consequences on the final look of the den-
sity estimate. Figure 1.22 shows two kernel density estimates for the same sample
of daily log-returns of the S&P 500. The left pane was obtained with a bandwidth
equal to 1 while the right pane was produced with a bandwidth equal to 0.1. The
results look very different. Notice that in order to allow for a meaningful compar-
ison, we forced identical scales on the vertical axes of the two panes. This ensures
that the observed differences are not due to an artifact from the choice of axis scales.
Indeed, the plots of these two density estimates would look almost identical if we
were to let the program adjust the limits of the axes to the actual values of the func-
tions. The strong influence of the value of the bandwidth will also be emphasized in
Problem 1.2.

In any case, both histograms and kernel density estimators are unable to give
a good account of the attributes of the tails. We appeal to other graphical tools to
exhibit the tail properties in a more suggestive way.

Result of the command density(DSPLR, width=1) Result of the command density{DSPLR, width=.1)

Fig. 1.22. Kernel density estimates of the daily log-returns of the S&P 500 produced by the
R function density with bandwidths computed by setting the parameter window to 1 (left)
and 0.1 (right)
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1.2.5 Empirical Q-Q Plots

The purpose of this subsection is to show how the properties of the theoretical
Q-Q plots introduced earlier can be used to infer tail properties of the distribu-
tions from which we have sample observations. This is done by producing a Q-
Q plot of the empirical distribution of the data sample against a given theoreti-
cal distribution. Figure 1.23 shows two such Q-Q plots. It was produced with the
commands:

Empirical quantiles

-0.05

0.05

0.0

o

Empirical quantiles

20

15

10

-0.10

T T T T T T T T T T T T

-3 -2 -1 ] 1 2 3 0 1 2 3 4
Quantiles of the Standart Normal Distribution Quantiles of the Exponential Distribution with unit rate

Fig. 1.23. Examples of Q-Q plots: normal Q-Q plot of the weekly log-returns of the S&P 500
(left) and exponential Q-Q plot of the PCS index (right)

par (mfrow=c (1,2))
ggnorm (WSPLRet)
ggexp (PCS.index)
par (mfrow=c(1,1))

VvV V. V Vv

The plot on the right shows the empirical percentiles of the PCS index data
against the theoretical percentiles of the exponential distribution with unit rate. This
plot was produced by the function ggexp which we wrote to this effect. On top of
the points whose coordinates are the respective percentiles, it shows a line on which
all these points would be found should the distribution of the data sample be expo-
nential. The slope of this line should be the mean of the distribution (i.e. the inverse
of the rate). Indeed, one sees from formula (1.19) that
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) = o)

if we denote by m(f) the g-percentile of the exponential distribution E(r) with rate
r. So if the quantiles on the vertical axis are the quantiles of the distribution E(r)
and the quantiles on the horizontal axis are the quantiles of the distribution F(1)
with unit rate, the corresponding points in the plane should be on the straight line
with slope 1/r which is equal to the mean of the distribution E(r). So, the fact that
the points in the rightmost part of the figure are above the line indicates that the
right tail of the distribution is thicker than the tail of the exponential distribution.
The plot on the left is for the weekly log-returns on the S&P 500 index. It uses the
function ggnorm which we modified to add to the standard R function ggnorm, the
plot of the line whose slope and intercept determine the parameters of the Gaussian
distribution, should all the points sit on this line. This plot shows that both tails are
heavier than the tails of the normal distribution.

Q-Q plots are very useful to detect heavy tails. We shall make an extensive use
of Q-Q plots in our study of heavy tail distributions.

1.3 MONTE CARLO COMPUTATIONS

This final section gives an introduction to the general principles of random number
generation, and the basics of Monte Carlo computations of probabilities and expec-
tations. This crash course is necessary because of the special emphasis of the book
on the many modern data analysis computational techniques which rely on random

simulations.

1.3.1 Generating Random Samples in R
Recall that by a random sample of size n we mean a set of n realizations x1, - - - , xp,
of independent random variables X7, - - - , X, with the same distribution. Notice also

the fact that we use upper cases for random variables and lower cases for actual
realizations. Finally, we often talk about a sample from a distribution, to specify the
common distribution of the random variables, and we call it a white noise when this
common distribution has mean 0.

Examples of R commands producing samples from some of the classical probability
distribution families introduced earlier are given in the second column of Table 1.2.
We refer the reader to the examples used in the text and to the help files of these
R functions for details on the names and the meanings of the parameters of these
functions. For the sake of convenience, we also add columns for the R commands to
evaluate their densities, their cdf’s and their quantiles. As we already emphasized,
the rationale behind this terminology is easy to remember: a short name for the dis-
tribution family follows a r for random samples, a d for density, a p for probability
(giving the values of the cdf) and a q for quantile. a
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Distribution Random samples Density cdf Quantiles
Uniform distribution runif dunif punif qunif
Univariate normal distribution rnorm dnorm pnorm gnorm
Exponential distribution rexp dexp pexp gexp
Log-normal distribution rlnorm dlnorm plnorm glnorm
Student ¢ distribution rt dt pt gt
Cauchy distribution rcauchy  dcauchy pcauchy gcauchy

Table 1.2. R commands for the manipulation of the classical probability distributions

We already used some of these functions when we discussed white noise vectors
in the introduction to R given in the appendix, and showed how to produce plots of
density functions or compare distributions from their theoretical Q-Q plots. As an-
other illustration, we now generate and plot samples from the Gaussian and Cauchy
distributions. We use the commands:

GWN <- rnorm(1024)

CWN <- rcauchy(1024)

par (mfrow=c(2,1))

plot (GWN, type="1")

title("Sequential Plot of a Standard Gaussian Sample")
plot (CWN, type="1")

title("Sequential Plot of a Standard Cauchy Sample")
par (mfrow=c(1,1))

V V.V V V V V V

The command rnorm (1024) creates a vector of length 1,024 whose entries
form a sample of size n = 1,024 from the standard normal distribution. Indeed, since
we did not specify the parameters mean and sd, the function rnorm used the default
values which are 0 and 1 respectively. Similarly, the command rcauchy (1024)
creates a vector of length 1,024 whose entries form a sample of size n = 1,024 from
the standard Cauchy distribution. Indeed, since we did not specify the parameters
location and scale, the function rcauchy used the default values of 0 and
1. The corresponding plot is given in Fig. 1.24. These two samples look very dif-
ferent. Indeed the Cauchy distribution produces positive and negative numbers with
very large absolute values while the values in the Gaussian sample seem to remain
between —3 and +3 in line with our earlier discussion. To better understand the
huge differences between these two plots, we first need to notice the differences in
scales on the vertical axes. The relative size of the extreme values in the Cauchy
sample forces the bulk of the other points to be crammed together, giving the false
impression that they are trying to line up along the horizontal axis!!

Since we claim that the most significant differences are in the tails of the dis-
tributions, we use a Q-Q plot of the empirical distributions of the two samples in
order to make our point. It is given in Fig. 1.25. The discrepancy between the ranges
of the two samples is reflected by the fact that the line representing the diagonal is
essentially horizontal. Moreover, the points on the right and left most parts of the
plot depart from this line, showing that the tails of the distribution implied by the
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Cauchy sample are much thicker than the tails of the distribution implied by the
Gaussian sample, confirming the thrust of our discussion of the Q-Q plots of these
distributions.
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Fig. 1.24. Sequential plot of 1,024 i.i.d. samples from the Gaussian distribution N (0, 1) (top)
and the Cauchy distribution C'(0, 1) (bottom)

Remarks. Sequences of mean zero independent and identically distributed (i.i.d. for
short) random variables are used extensively in the context of time series where they
are called white noise sequences. This terminology explains our use of the names
GWN and CWN for Gaussian white noise and Cauchy white noise respectively.

1.3.2 Limit Theorems and Monte Carlo Computations

In this section, we explain the relevance of the two most fundamental limit theorems
of the calculus of probability to Monte Carlo computations.

1.3.2.1 The Law of Large Numbers (LLN)

The law of large numbers states that, if Y, Y7, Yy, -+ - - - is a sequence of independent
random variables of order one with the same probability distribution, then for almost
all realizations, the following limit holds true
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Fig. 1.25. Empirical Q-Q plot of the sample of size 1,024 from the Cauchy distribution C'(0, 1)
against the sample of size 1,024 from the Gaussian distribution /N (0, 1) which were plotted
sequentially in Fig. 1.24

lim S[¥i 4+ Y] = E{Y). (1.30)

n—00 N,

Recall that a random variable Y is said to be of order 1 if E{|Y|} < oo, in which
case the expectation E{Y'} exists. Remember also that even though this is the case
for essentially all the distributions we encounter in this book, it is not the case of the
Cauchy distribution. Consequently, if

Y1,Y2, 5 Yn

is a sample from a probability distribution with cdf F'(y), and if this distribution has
a first moment in the sense that

/ Iyl dF(y) < oo

then the sample average

y: =

Pyt 1w

can be used as an approximation of the mean g of the distribution

u=/de(y),
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and the larger the sample size n, the better the approximation. We can think of

Y1,Y2, -, Yn as realizations of the first n random variables of an infinite sequence
Y1,Ys, .-, Y,, -, of independent random variables with a common cdf F', u be-
ing its expectation. Then the theorem explained in words can be stated mathemati-
cally as:
. Y1+ Yo+ Y,
lim = U,
n—00 n

the only thing missing being a formal definition for the convergence of the random
variables in the left hand side toward the number appearing in the right hand side.

1.3.2.2 Computations of Probabilities and Expectations

One of the most pervasive use of the law of large numbers is the following. Let us
imagine that we need to produce a numerical value for an expectation E{¢(X)}, or
a probability of the form P{t)(X) > «} for a given number o, where X is a random
variable (possibly multivariate) and 1) is a real valued function defined on the range
of X. In financial applications, numerical values of expectations are often needed in
pricing problems, and as we saw earlier in the chapter, probabilities enter measures
of risk computations. Notice that, if one uses the fact that the probability of an event
is equal to the expectation of the random variable which is equal to 1 when the event
occurs and 0 otherwise, replacing the function 1) by another, one easily reduces the
computation of such a probability to the computation of an expectation. Indeed, if
we define the function 1/3 by

oo )1 ifY(e) >«
w(x)_{o if (z) < a

then clearly, P{y)(X) < a} = E{¢)(X)}. So at the theoretical level, we only dis-
cuss Monte Carlo approximations of expected values, even though we apply the the-
oretical results to the computations of probabilities as well as expectations. Given
a sample x1, 9, - - , x, from the distribution of X, one obtains a sample from the
distribution of the random variable Y = ¢)(X) by evaluating the function ¢) on the
X -sample values:

Y1 = lﬁ(xl),yz = 1/1@2)7 oy Yn = 1/)(1’71)

and the Law of Large Numbers tells us that the number

Y1) +(w2) + -+ v(En) _ 1§

; —a
7j=1

is an approximation of the desired expectation E{1)(X)}, the larger the sample size

n, the better the approximation. Applying this result to the function 1) introduced

above, we see that
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P(z1) + Y(@2) + - + (@)

n

provides an approximation of the probability P{¢)(X) < a}, but since 1(z;) is ei-
ther O or 1, the sum in the above numerator is merely equal to the number of ones
in the sum, and by definition of zZ, this is the number of observations z;’s for which
¥ (z;) > a. So the Monte Carlo approximation of the probability P{¢(X) < a}
is given by the proportion of the sample x1, 2, - ,x, for which the condition
¥(zj) > «is satisfied. In other words, the Monte Carlo approximation of the prob-
ability of an event is given by the relative frequency with which the event occurs in
the sample.

1.3.2.3 Pricing a Call Option

Let us assume that X represents the value at a future date 7' of an asset, and let
us assume that we need to value a European call option with maturity 7" and strike
K written on this underlying asset. Then, ignoring discounting issues for the sake
of simplicity (say that the interest rates are O for the purpose of this illustration),
according to Black-Scholes theory, the price of the option is given by the expectation
E{¢(X)} for the particular function ¢ defined by ¢(z) = max{z — K, 0} (namely
the payoff function of the option) provided we use a risk neutral, or risk adjusted
expectation. Hence the price C'r k of the call option is given by the integral

Cr i :/max{x—K,O} f)((m)(x) dx (1.31)
where we use the notation f )((T n) (x) for the risk neutral density of the value of the as-
set at maturity 7. The classical Black-Scholes formula derived in the appendix at the
end of the book is nothing but an expression for the value of this integral when f )({T ")
is the density of a log-normal distribution. The lognormal case is one of a handful
of models for which one can derive an explicit formula for option prices, hence its
popularity. Unfortunately, this is not the case for most of the financial models we
would like to use. However, most financial models are amenable to Monte Carlo
computations when generating samples from the risk neutral density is feasible. For
this reason, the option price is often inferred from the Monte Carlo approximation

1
Crx = E[max{xl — K,0} + - + max{x, — K,0}] (1.32)

computed from a random sample x1, z2, - - - , z, from the risk neutral distribution of
the asset price underlying the option. We shall use this Monte Carlo approximation
many times in the sequel.

1.3.2.4 A Numerical Example in R

We now implement the computation of the Monte Carlo approximation described
above in R. On Thursday January 27, 2005 the value of Calpine stock was S = 3.36
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USD and the short interest rate was » = 2.4 %. What was the price on that day of a
2 weeks at-the-money European call option priced at o = 60 % volatility? An option
is at the money when its strike is equal to the current value of the underlying stock, in
other words when S = K. We have all the information needed to use Black-Scholes
pricing formula. For the sake of comparison, we use the home-grown R function
bscall whose code is explained in the appendix at the end of the book, to compute
the price given by the Black-Scholes formula.

> C <- bscall (TAU=0.04, K=3.36, S=3.36, R=0.024, SIG=.6)
> C
[1] 0.1622971

We now use the algorithm described above to compute a Monte Carlo approxima-
tion to this exact Black-Scholes price. If we denote by X the value of the underlying
stock at maturity (S in the notation used in the appendix at the end of the book),
according to the theory reviewed in the appendix, the risk neutral distribution of X is
the log-normal distribution with mean log S+ (r — 0? /2)7 and variance 702, and the
price of the option is given by the risk neutral expectation of the discounted expected
pay-off e™"" max{S — K,0}.

> TAU <- 0.04; K <- 3.36; S <- 3.36; R <- 0.024; SIG <- 0.6
> N <- 10000

> ML <- log(S) + TAUx(R-SIG"2/2)

> SL <- SIGssgrt (TAU)

> XX <- rlnorm(N, meanlog=ML, sdlog=SL)

> PSIX <- pmax(XX-K,O0)

> MCCall <- exp(-R*TAU) xmean (PSIX)

> MCCall

[1] 0.1623504

which is a reasonable approximation since the relative error is only of the order of
0.009.

1.3.2.5 Probability That an Option Will Eventually Be Exercised

Let us consider once more the case of a European call with strike K, but instead of
worrying about its Black-Scholes price, let us compute the probability that the option
will be exercised at maturity. Assuming that the owner of the option acts rationally,
the option is exercised when and only when the value at maturity of the underlying
asset, say X, is greater than the strike K. Hence, we need to evaluate the probability
P{X > K} as we described earlier.

NB: A very important remark is in order at this stage: because we are not trying
to price a derivative, we do not need to use risk neutral or risk adjusted probabil-
ities. Instead, we need to work with real world probabilities also called objective
probabilities. So when we generate the sample z, - - - , z,,, we need to reproduce the
historical statistics of the value of X. In other words, we need to generate a sample
from the historical distribution of X.



56

1 UNIVARIATE DATA DISTRIBUTIONS

1.3.2.6 A Numerical Example in R

We implement in R the second of the two applications of the Monte Carlo principle
described above, namely the computation of the probability that an European call
option will be exercised at maturity.

We work in the framework of Samuelson’s model in which stocks dynamics are
given by geometric Brownian motions. Black-Scholes option pricing theory was de-
veloped in this context. According to this model, at any time, the value of the stock is
log-normally distributed, i.e. its logarithm has a normal distribution. More precisely,
the distribution of its logarithm is

1
N <logS +7(p— 502),027>

where 1 denotes the rate of growth of the stock, and o the historical return volatil-
ity, i.e. the standard deviation of the log-returns. For the sake of comparison, we
work with the same example as before. We compute the probability on Thursday
January 27, 2005, when Calpine’s stock was valued at S = 3.36 USD, that the
option will be exercised when it matures, and we consider the same at-the-money
European call option (i.e. with striket K = S) with time to maturity 7 = 0.04. In
the present situation, we do not need to know the value the short interest rate, but we
need to know the historical rate of return p and the historical volatility o. Accord-
ing to Samuelson’s model, Calpine’s stock value at maturity is a random variable
say X, with a log-normal distribution with mean log S + (x — 0 /2)7 and variance
o%r, and if Z is any standard normal random variable, the desired probability is
given by:
P{X > K} =P{log X > log K}
=P{logS + (u— 0*/2)1 +0\/TZ > logK}
:Qs <1og<S/K> + (o 02/2>T) | 13
o\T
Whatever numerical method we choose for the computation of this probability
(direct evaluation using the cdf @ or Monte Carlo approximation), we need estimates

of the rate of growth p and the historical volatility ¢ in order to get a numerical result
from the above formula.

Estimation of the Parameters. In theory, the observation of a single trajectory (re-
alization) of the price should be enough to completely determine the value of the
volatility o. This would be true if the price process S; could be observed continu-
ously! Unfortunately, this cannot be the case in practice and we have to settle for an
approximation. Given observations Sy, of past values of the risky asset (usually the
times t; are of the form t; = t — jét), we use the fact that in Samuelson’s model
the random variables log(S;; /Sy, , ) are independent and normally distributed with
mean (;2 — 02 /2)8t and variance o26t. Consequently, the volatility can be estimated
by the formula:
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1 = S,
&= mZ[logStf —LS)2, (1.34)
j=0 J+1

where LS is the sample mean daily log-return

The volatility estimate provided by formula (1.34) is called the historical volatility.
Even though the corresponding estimate of the variance is unbiased, 6 has a bias due
to the nonlinearity of the square root function. LS provides an estimate of the rate of
growth p. It reads:

1 6?

=5 LS+ 5
The Equity Premium Puzzle. The above discussion can be very misleading as it
seems to imply that the parameters 4 and o can be easily estimated in a very natural
manner. However, estimates of the volatility o are usually much better than estimates
of the rate of return u. This fact has been amply documented in the econometrics
literature, and is known under the name of the Equity Premium Puzzle (EPP for
short).

We shall momentarily ignore this important issue as the main concern of this

chapter is Monte Carlo computations. For the sake of illustration, we use the data of
the Calpine daily log returns already massaged earlier. We get:

(1.35)

> LN <- mean (CPNLRet)
> DELTAT <- 1/252
> SIGHAT <- sqgrt (var (CPNLRet) /DELTAT)
> MUHAT <- LN/DELTAT + SIGHAT"2/2
> MUHAT
[1] 0.1408325
> SIGHAT

[1] 0.853481

In order to compute the probability that the option is going to be exercised, we
first consider the direct method of computation based on an implementation of the
computation of the Gaussian cdf @. Plugging these estimates of 1 and o into formula
(1.33) we get:

> TAU <- 0.04

> S <- 3.36

> K <- S

> MN <- log(S/K)

> PROBA <- pnorm((MN + TAUxLN/DELTAT)/ (SIGHATxsqrt (TAU)))
> PROBA

1

[1] 0.4791264
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So the probability that the owner of the option ends up exercising her option at matu-
rity is essentially 48 %. This should not be too surprising for an option at the money
and relatively short time to maturity. We should expect a small (resp. large) proba-
bility when the option is out of (resp. in) the money. A call option is said to be out of
the money (resp. in the money) if its strike is higher (resp. smaller) than the current
value of the underlying stock, in other words when S < K (resp. S > K).

Monte Carlo Computation of the same Probability. The parametric model used
in the Samuelson approach leads to formula (1.33) for the expression of the desired
probability. In this case, a Monte Carlo computation is not really needed. We never-
theless explain how to compute a Monte Carlo approximation of this probability in
order to illustrate the procedure as it can be used in many instances where one does
not have the luxury of a closed form formula. We first produce a sample from the
distribution of the stock at maturity.

> N <- 10000

> ML <- log(S) + TAU+LN/DELTAT

> SL <- SIGHATx*sgrt (TAU)

> X <- rlnorm(N, meanlog=ML, sdlog=SL)
> Y <- X>K

> MCPROBA <- mean (Y)

> MCPROBA

[1] 0.4821

The first command chooses the number N of Monte Carlo samples we plan to use
in order to compute the Monte Carlo approximation. The next two commands set
the mean ML and the standard deviation SL of the log-normal distribution. The next
command produces a numerical vector X of length N containing the sample realiza-
tions of the log-normal random variable modeling the stock price at maturity. The
value of X>K is a boolean vector with the same length as X. Its entries are equal to
TRUE (which is automatically coerced one to the number 1 when needed) when the
condition X>K is satisfied, and to FALSE (automatically coerced to 0) otherwise.
Finally we compute the desired probability as the mean of this boolean vector, i.e.
the proportion of entries of X satisfying the boolean condition. The relative error of
the Monte Carlo approximation obtained with this run is 0.6 %.

The following computations illustrate in the present situation, the convergence
of the Monte Carlo approximations as predicted by the law of large numbers.

NMAX <- 100000

X <- rlnorm(NMAX, meanlog=ML, sdlog=SL)

Y <- X>K

CS <- cumsum(Y)

MCAPPROXS <- CS/ (1:NMAX)

plot (MCAPPROXS, type="1")

abline (h=PROBA)

title ("Convergence of Monte Carlo Approximations")

V V.V V V V V V

We construct a large random sample of log-normal random variables as before. We
chose to have 100,000 sample realizations for this experiment. We also construct
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the boolean vector Y as before. The difference is that we now try to compute the
Monte Carlo approximation produced by the first n Monte Carlo samples, for each
n < 100,000, In order to do so, we create a vector CS which has the same length
as Y, and whose n-th entry is the sum of the first n entries of the vector Y. This is
exactly what the R function cumsum does (cumsum is short for cumulative sum).
The remaining task is to divide the n-th entry of this vector CS by n in order to
get the average of the first n entries of Y, providing in this way, the Monte Carlo
approximation based on the first n samples. This is done by dividing the vector CS
by the vector 1:NMAX of the first NMAX integers, entry by entry. Finally, note that
the command abline is used to add a horizontal line to emphasize the true value
of the probability: convergence of the approximations means that this horizontal line
should be an asymptote.

The results are given in Fig. 1.26. The plot confirms the convergence at the same
time that it shows that a residual error can persist for quite a long time.

NB. A Monte Carlo approximation is only an approximation of the true value we
are trying to compute. So it is important to have an idea of the error in question. But
contrary to most of the approximations offered by standard numerical algorithms,
Monte Carlo approximations are random. As such, they are different each time we
compute them: they depend upon the seed of the random number generator used to
produce the random samples. Hence, quantifying the error will have to be done in a
statistical sense. We tackle this problem next.

Convergence of Monte Carlo Approximations

0.8 0.9 1.0

MCAPPROXS
0.7

0.5

0.4

T T T T T T
0e+00 2e+04 4e+04 6e+04 8e+04 1e+05
Index

Fig. 1.26. Sequential plot of the Monte Carlo approximations of the probability that an option
is exercised as a function of the number of Monte Carlo samples used. The horizontal line
gives the true value of the probability
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1.3.2.7 The Central Limit Theorem (CLT)

The law of large numbers tells us that the sample mean converges toward the true
mean. The central limit theorem can be viewed as a successful attempt to quantify
the rate of convergence. Indeed, the central limit theorem identifies (at least asymp-
totically) the statistical distribution of the fluctuations around the true mean. In order
to describe this result precisely, we use the set up and the notation of Sect. 1.3.2.1
above, and we assume further that the random variables Y; have a moment of or-
der 2, namely that ]E{Yf} < oo and hence that their variances exist. We denote by
pu=E{Y}and 0? = E{(Y — p)?} the common mean and variance of the variables
Y1, Y. -+, Y, in the sample. The central limit theorem states that the distribution

of the random variable
Vit o+ Yo —np

a\/n
converges toward the standard Gaussian distribution. In order to understand this re-
sult as information on the rate of convergence, we rewrite its conclusion in the more
intuitive form:

(1.36)

Yi+--+Y, o
—_ "y~ —Z
n Vn

where Z is a standard Gaussian random variable, i.e. Z ~ N(0,1). Stated in this
form, the relevance of the central limit theorem to Monte Carlo computations is
clear. As predicted by the strong law of large numbers, the error of the Monte Carlo
approximation goes to zero when the sample size n increases without bound. How-
ever, we can derive much more information from the above computation. Indeed, we
learn that the rate of convergence is of the order n~1/2. So the size of the error can
be controlled by the choice of a large sample size. Furthermore, even though the size
of Z cannot be predicted, after all it is a random variable, we know that it will be
typically in the range [—3, 43|, and the only remaining way to control the error is
to lower the variance of Y. Because of the increasing importance of Monte Carlo
computations in modern scientific computing, entire research programs are devoted
to variance reduction algorithms. We list the names of some of the most commonly
used techniques.

Stratified sampling
Antithetic variables
Control variates
Importance sampling

Discussing any of these topics would take us far beyond the scope of this book. The
interested reader should consult the Notes & Complements at the end of the chapter
for bibliographical references on these variance reduction techniques.

1.3.3 Home Grown Random Samples

All scientific computing environments (R is no exception) come equipped with a
random number generator for the uniform distribution U(0, 1). We shall use this
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generator as a building block. In fact, R comes with commands for the generation of
samples from the most common parametric families of distributions. We reviewed
some of them earlier. However, realistic applications require Monte Carlo simula-
tions of quantities with more general (and less generic) statistical properties. We
now review the elementary facts of the theory of probability which underpin the
construction of random number generators, setting the stage for the development of
more sophisticated tools needed for Monte Carlo computations. The following sim-
ple mathematical facts are fundamental to the discussion of the section.

Fact 1 Given a random variable X with cdf F'x, the random variable
U = Fx(X) is uniformly distributed in the interval [0, 1]

This is consistent with the fact that the cdf Fx can only take values between 0 and
1. The fact that the values of F'x (X) are uniformly distributed is due precisely to the
definition of the cdf. Indeed, if 0 < u < 1, we have:

P{U <u} = P{Fx(X) <u} =P{X < Fy'(u)} = Fx(Fx'(u)) = u. (1.37)

This argument is perfectly rigorous when the cdf F'y is strictly increasing (and hence
invertible). A little song and dance is needed to make the argument mathematically
sound in the general case, but we shall not worry about such details here. So we

proved that:

Fx cdfof X = U = Fx(X) ~U(0,1). (1.38)
This result has a very important consequence in terms of random samples. Indeed, it
implies that, if z1, - - - , x,, is a sample from the cdf F|, then, the sample uy,--- , u,
defined by

up = F(x1), -,z = F(x)

is a sample from the uniform distribution U (0, 1)! We will use this fact repeatedly in
the sequel.

The above simple mathematical result stated as Fact 1 has a far-reaching converse.
Indeed, reading (1.37) from right to left we get:

Fact2 If U ~ U(0,1) and F is a cdf, then if we define the random variable X
by X = F~1(U) we necessarily have Fx = F.

Indeed:
P{X <z} =P{F YU) <2} =P{U < F(z)} = F(x). (1.39)

Consequently, if we want to generate a sample of size n from a distribution for
which we do not have a random number generator, but for which we can compute
the inverse ' ~! of the cdf F', we only need to generate a sample from the uniform
distribution, say

and then compute the inverse of the target cdf for each of these outcomes. Because
of Fact 2, the sample
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X1 :F_l(ul>,l'2 :F_l(UQ), ...... , T :F_l(un),

is a typical sample from the distribution determined by the cdf F.

This very elementary fact is extremely useful, and we shall use it many times
in this book, especially to simulate extreme events. Its only limitation lies in the
actual numerical computation of the inverse cumulative distribution function F~!
also known as the quantile function. This method is not used to generate samples
from the Gaussian distribution because the inversion of the cdf ¢ is numerically too
costly as compared to other existing methods which we will not discuss here. On
the other hand, it is routinely used for the generation of exponential samples. See
Problem 1.9 for details. We illustrate the details of this random generation procedure
on the example of the Cauchy distribution.

Example. Recall that a random variable X is said to have a Cauchy distribution (with
location parameter m and scale parameter \) if X has density:

1 A

- R
T A2+ (x —m)?’ ve

fm,A(fE) =

which was defined in (1.13). Its cdf

1 z—m 1
E,, = — [tan"!
=252
was already computed in formula (1.14). From this expression of the cdf, we com-
pute the quantile function:

m,A

F-L(p) =m+ Atan (pw - g)

already defined in (1.20), and consequently, the R command:
> CAUCHY <- M +LAMBDAxtan (PIx (runif (N)-.5))

will produce a vector CAUCHY of length N of Cauchy variates with location M and
scale parameter LAMBDA. We shall not use this command in the sequel because as we
explained earlier, R has a special command rcauchy for the generation of Cauchy
random samples. The above exercise was motivated by our desire to open the box on
how many random number generators are designed.

PROBLEMS

(D Problem 1.1 Let us assume that Fy(x) and Fo(x) are two cdf satisfying

Fi(x) < Fa(z)  forall values of x.

1. Which of these two distributions has the heavier lower tail? Explain.
2. Which of these two distributions has the heavier upper tail? Explain.
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3. If these two distributions are proposed as models for the returns of a given portfolio over
the next month, and if you are asked to compute VaRo.01 for this portfolio over that
period, which of these two distributions will give the larger value at risk?

@ Problem 1.2 1. InR, generate a sample of size N = 1,024 from the exponential distribution
with rate parameter v = 0.2. Call X the vector containing the sample values.

2. Plot on the same graph, the exact (theoretical) density of the distribution of X, and a
histogram of X. It is recommended to try several values for the numbers of bins, and to
report only the result found most satisfactory.

3. Plot on the same graph, the same theoretical density as before, together with a kernel
density estimate of the distribution of X. Again, it is recommended to try several values of
the bandwidth, and to report only the result found most satisfactory.

4. Compare the two plots and explain the reasons for the differences. Say which estimate of
the density you prefer, and explain why.

@ Problem 1.3 Give an interpretation to each of the following four Q-Q plots of Fig. 1.27.

2] .

d

0

10
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4 2 [ 2 4 -4 2 0 2 4
Quantios of Standard Normal Quantikes of Standard Normal
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“ 2 L] 2
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Fig. 1.27. The two plots of the fop row were produced with the R command ggnorm while
the last ones (botfom row) were produced with the command ggplot

@ Problem 1.4 /. As explained in the caption, the plots of Fig. 1.28 were produced with the R
command ganorm. Articulate properties of the distributions of XX and YY which you
can infer from these plots.
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Normal Q-Q Plot Normal Q-Q Plot
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Fig. 1.28. Plots produced by the commands ggnoxrm (XX) (left) and ggnorm (YY) (right)

2. We now assume that
T, T, - S T, and Y1, Y2, - s Yn

are two univariate samples from possibly different distributions. In each of the following

situations, sketch the Q-Q plot of Y against X as given by the R command qgplot (X,Y)

when:

2.1. x1,x2, - Tm is a sample from the log-normal distribution LN (0,1), and y1,
Y2, - Yn is a sample from the Cauchy distribution C(0, 1).

2.2. x1,%2, - Tm is a sample from the log-normal distribution LN (0,1), and y1,
Y2, Yn is a sample from the Gaussian distribution N (0, 1)

Explain your answers, label the horizontal and vertical axes of your plots, and mark them
with numerical values to specify the range of your plots.

@ Problem 1.5 /. As explained in the caption, the plots of Fig. 1.29 were produced with the
R commands qgnorm and qgexp which give Q-Q plots of the empirical quantiles of
the data against the theoretical quantiles of the normal and exponential distributions
respectively. Articulate properties of the distributions of XX and YY which you can infer
from these plots.

2. We now assume that
T, T, - S T, and Y1, Y2, - s Yn

are two univariate samples from two possibly different distributions. In each of the fol-

lowing situations, sketch the Q-Q plot of Y against X (as produced for example by the R

command qgplot (X, Y) ) when:

2.1. x1,x2, - Xy is a sample from the ordinary Pareto distribution with shape parame-
ter& = 0.1, and y1,y2, - - - Yn is a sample from the Cauchy distribution with location
parameter m = 0 and scale parameter \ = 1.

2.2. m1,x2,- - Ty is a sample from the ordinary Pareto distribution with shape param-
eter £ = 0.1, and y1,y2, - - - yn is a sample from the exponential distribution with
rate r = 1.
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Normal Q-Q Plot Exponential Q-Q Plot

10 20 30 40
1

0
|

Sample Quantiles
Sample Quantiles

-10

-20

T T T T T T T T T T T T
-3 -2 -1 0 1 2 3 0 1 2 3 4

Theoretical Quantiles Theoretical Quantiles

Fig. 1.29. Plots produced by the commands ggnorm (XX) (left) and ggexp (YY) (right)

The ordinary Pareto distribution is defined by its density given by formula (2.1) in Chap. 2.
Explain your answers, label the horizontal and vertical axes of your plots, and mark them
with numerical values to specify the range of your plots.

@ Problem 1.6 . The plots of Fig. 1.30 were produced with the R command ggnoxrm. In each
case, infer properties of the distribution of the data from the interpretations of these plots.

% o

4 4 2 o

Cuanties of Standard Normal Cunnsias of Standard Mormal

Fig. 1.30. Plots produced by the commands ggnorm (YY) (left) and ggnorm (ZZ) (right)

2. In each of the following two scenarios, sketch the Q-Q plot of a bivariate sample of the
form
(m17y1)7(‘r27y2)7 """ 7(xn7yn)

when:

2.1. x1,x2, - xn is a typical sample from the Gaussian distribution N(0,1) and y1,
Y2, - Yn is a typical sample from the Cauchy distribution C(0, 1)

2.2. x1,T2, - Ty is a typical sample from the Gaussian distribution N(0,1) and y,
Y2, - - Yn is a typical sample from the Gaussian distribution N(1,4)
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Explain your answers, label the horizontal and vertical axes of your plots, and mark them
with numerical values to specify the range of your plots.

@ Problem 1.7 [. As explained in the caption, the plots of Fig. 1.31 were produced with the R
command qgnorm. Articulate properties of the distributions of XX and YY which you
can infer from these plots.

2. We now assume that

L1, T2, S Tom, and Y1, Y2, e S UYn

are two univariate samples from possibly different distributions. In each of the following
situations, sketch the Q-Q plot of Y against X as given by the R command qgplot (X,Y)
when:
2.1. x1,x2, - Tm is a typical sample from the exponential distribution FE (1) with rate
1, and y1,y2, - - - yn is a typical sample from the Cauchy distribution C(0, 1)
2.2. x1,x2,- - Tpn is a typical sample from the Cauchy distribution C(0,1) and
Y1, Y2, - - Yn is a typical sample from the Cauchy distribution C'(1,4).
Explain your answers, label the horizontal and vertical axes of your plots, and mark them
with numerical values to specify the range of your plots.

Normal Q-Q Plot Normal Q-Q Plot
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Fig. 1.31. Plots produced by the commands ggnorm (XX) (left) and ggnorm (YY) (right)

@ @ Problem 1.8 /. Create a sample of size N = 128 from the standard normal distribution
and use Q-Q plots to assess the normality of the data, in other words, explain which fea-
tures oft the Q-Q plot you produce suggest that the data are from a Gaussian distribution
and which don’t.

2. Create a sample of size N = 128 from the exponential distribution with parameter 1, and
use Q-Q plots to assess as in question 1, the normality of the data. Describe and explain
the differences with the results of question 1.

@ Problem 1.9 The goal of this problem is to design and use a home-grown random number
generator for the exponential distribution. For the first question of this problem, you are not
allowed to use any of the functions dexp, pexp, gexp or obviously rexp.
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1. Recall the formulas derived in the text for the cdf Fx(z) = P{X < z} of a random
variable X with an exponential distribution with scale parameter A > 0. and its inverse
N ! and write an R function myrexp which takes the parameters N, and LAMBDA, and
which returns a numeric vector of length N containing N samples of random variates from
the exponential distribution with scale parameter LAMBDA.

2. Use your function myrexp to generate a sample of size N = 1,024 from the exponential
distribution with mean 1.5, use the R function rexp to generate a sample of the size 2N
from the same distribution, and produce a Q-Q plot of the two samples. Are you satisfied
with the performance of your simulation function myrexp? Explain why.

@ Problem 1.10 Let us assume that the c.d.f. Fx(x) of a random variable X is a continuous
Sfunction of x.

1. What is the distribution of the random variable Fx (X)? Give its c.d.f.

2. What can you say about the distribution of the random variable Fx (—X ) without having
to make any extra assumptions on the distribution of X ?

3. What can you say about the distribution of the random variable Fx (—X) if X is posi-
tive?

@ Problem 1.11 Let X be a random variable with probability density function given by

aﬁf‘lm‘%le*(z/ma ife >0
fx(x) _{

0 otherwise ’

where o and (3 are strictly positive constants. Such a random variable is said to have a Weibull
distribution with shape parameter o > 0 and scale parameter 3 > 0, and we denote this fact
by X ~ W (a, B).

1. Compute the cdf. Fx of X.

2. The logarithm of a Weibull random variable has a distribution known as the Gumbel
distribution (with the same parameters). Describe (in words) an algorithm to generate a
random variable having such a Gumbel distribution.

NOTES & COMPLEMENTS

The emphasis of this book is on graphical, computational and simulation methods for data
analysis, with a view toward financial applications. Most introductory statistical textbooks
spend a fair amount of time discussing the exploratory data analysis tools introduced in this
chapter. An excellent reference in this spirit is the book of Bill Cleveland [23]. For books with
applications using R, we refer the interested reader to the book of Venables and Ripley [94],
for a thorough discussion of the properties of histograms and their implementations in R. A
detailed discussion of the ASH variation can be found there. The introductory book [25] by
Dalgaard gives a low key initiation to R.

Following its introduction in the mid 1990s, several mathematical models for the dynam-
ics of the PCS index have been proposed in the literature. Most of these models try to capture
the catastrophic events’ arrivals, the initial “shocks”, and the possible revisions to the damage
estimates that arise in the ensuing weeks after a catastrophe occurs. Standard probabilistic
arguments suggest to use a model of the form:
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N(t)

S(t) = Xi(t),
i=0

where S(t) is the PCS (total) index, X (t) is the total damage caused by the i-th catastrophe,
and N (t) is a Poisson process modeling catastrophe arrival. The catastrophe damage is further
modeled as:

Xi(t) = C+0(t — (Th — T0)),

where ( is the time of the initial shock (it is usually assumed to be exponentially distributed),
6(t) is the revision function which is zero for ¢ < 0 and equal to « for ¢t > 0, T is the arrival
time of the i-th catastrophe, T} is the length of time until the catastrophe damage amount is
revised (it is usually assumed to be a random variable with a Poisson distribution), and finally
k is a random variable used for the amount of revision of the index. In order to fit such a
model, four parameters need to be estimated:

e The catastrophe arrival time: it is usually modeled as a Poisson process;

e The initial damage of the catastrophe: it is often modeled as an exponentially distributed
random variable, but it may also be modeled with a heavy tail distribution;

e The delay time for the revision: it is usually modeled as an exponential distribution;

e The revision amount.

We shall not discuss any further this ambitious, though realistic, model.

The reader interested in applications of Monte Carlo techniques to financial engineering
problems is referred to Glasserman’s book [40] which is still the state of the art in the field.
The most encyclopedic compilation of algorithms for the generation of random number with
given distributions is the classic book by De Vroye [96]. Large scale computations on modern
computers are often based on low discrepancy sequences and such computations are often
called quasi Monte Carlo.
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HEAVY TAIL DISTRIBUTIONS

Motivated by the instances of extreme events and heavy tail distributions
encountered in the first chapter, we present the most important theoretical
results underpinning the estimation of the probabilities of these extreme and
rare events. The basics of extreme value theory are presented as they per-
tain to estimation and risk management of extremes observed in financial
applications. Our goal is to explain the connection between the general-
ized extreme value distributions and the generalized Pareto distributions,
and illustrate the implementation of the theory into a set of practical tools
for the detection and estimation of heavy tail distributions. In preparation for
some of the applications considered later in the book, the chapter concludes
with a discussion of measures of risk, both from a theoretical and a practical
point of view.

2.1 A PRIMER ON EXTREME VALUE THEORY

We present the parametric families of Pareto and extreme value distributions, very
much in the spirit of the parametric families discussed in Chap. 1, and we show how
the properties of the latter can be used to detect and identify the characteristics of the
former.

2.1.1 Empirical Evidence of Extreme Events

We already argued that histograms and kernel density estimators could not give a
good account of the tail properties of distributions, and we insisted that Q-Q plots
offered the best graphical way to get a reasonable feeling for these properties. We
emphasize one more time the non-normality of the distribution of daily financial

R. Carmona, Statistical Analysis of Financial Data in R, Springer Texts in Statistics, 69
DOI 10.1007/978-1-4614-8788-3_2, © Springer Science+Business Media New York 2014
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returns by considering their extreme values. Since we do not plan to give a precise
mathematical definition of an extreme value, we shall simply say that a value is
extreme if its distance to the mean location of the data (as given by the mean for
example) is large when measured in standard deviation units, say greater that three
or four standard deviations. For the purpose of illustration, we consider the daily log-
returns on the S&P 500 index. Their values are encapsulated in the numeric vector
DSPLRet included in the library Rsafd. Using the functions mean and sd, we
compute the mean and the standard deviation of the daily log-returns.

> mean (DSPLRet)
[1] -0.0002729406
> sd (DSPLRet)

[1] 0.009727974

Looking at the sequential plot of the daily log-return (as reproduced in the right pane
of Fig. 1.20) we notice a few very large negative values. Looking more closely at the
largest of these down-moves we see that:

> min (DSPLRet)
[1] -0.2289972
> (min (DSPLRet) -mean (DSPLRet) ) /sd (DSPLRet)
[1] -23.56813

which shows that this down move was over
23 standard deviations away from the mean

daily move! So much for the normal distribution as a model for the daily moves
of this index. The log-return on this single day of October 1987, as well as many
others since then (though less dramatic in sizes) cannot be accounted for if the Gaus-
sian distribution is used as a model for the daily log-returns. The tails of the normal
distribution are too thin to produce such extreme values. However, other families
of distributions could be used instead, and stable or Pareto distributions have been
proposed with reasonable success. Pareto distributions are studied in detail in this
chapter. For the time being, it suffices to say that, like Pareto distributions, stable
distributions have polynomial tails, and moreover, they have useful scaling prop-
erties. However, their usefulness as statistical models for heavy tail distribution is
limited by the fact that the rates of polynomial decay of their densities are restricted
to an interval. Moreover, their scaling properties are of very little use since at least
in the first part of the book, we are mostly interested in marginal distributions of fi-
nancial returns, and hence we rarely use dynamical models involving time evolution
of prices. Finally, the main shortcoming of the stable distributions is the lack of a
closed form formula for the density and/or the cdf. The Cauchy distribution, is the
only exception. Recall formula (1.13) for the definition of the Cauchy distribution
which is sometime used as an alternative to the Gaussian distribution in the presence
of extreme values. Indeed, like the Gaussian density, it is bell-shaped, but unlike the
Gaussian density, its tails are so thick that the moments of the distribution such as
the mathematical expectation (or mean) and the variance do not even exist.
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The theory of probability distributions giving rise to unusually large numbers
of extremes in each sample is called the theory of extreme-value distributions, or
extreme-value theory. It is a well developed mathematical theory. The remainder of
this chapter is devoted to an informal presentation of the most fundamental facts of
this theory. For the purpose of illustration we demonstrate the practical implementa-
tions in the library Rsafd, providing versatile tools to fit heavy tail distributions to
data, and generate random Monte Carlo samples from the fitted distributions.

2.1.2 Pareto Distributions

We first introduce a class of distributions which will play a fundamental role in our
modeling of heavy tails. The present subsection could have been included in the
previous chapter and provide one more example of a family of distributions. How-
ever, because of its pivotal role in the theory presented in this chapter, we chose to
introduce it here.

2.1.2.1 Ordinary Pareto Distributions

The classical Pareto distribution is a distribution on the positive axis [0, c0) (i.e. the
distribution of a positive random variable) with density given by the formula

14 2)y-0+e) = L ___ jfg> 0,
falw) = J TS EDOLEEERES @.1)
0 otherwise.

for some positive real number o > 0. Like the exponential and lognormal distribu-
tions, this distribution has only one tail extending to +oc. For this reason, it is often
called a one-sided Pareto distribution. The above definition of the one-sided Pareto
distribution can be found in many probability textbooks. For geosciences applica-
tions, especially in hydrology where heavy tail distributions were introduced first in
order to estimate the frequencies of floods, the Pareto distributions are parameterized
by a.. However for some strange reason, in financial applications, these distributions
are parameterized by £ = 1/a which is called the shape parameter of the distribution.
Both parametrizations are implemented in the library Rsafd, but as we concentrate
on the analysis of financial data, we shall use the £ — parameterization in this book.
This choice is passed to the routines of the library Rsafd by setting the parameter
SHAPE . XTI to TRUE. For the sake of convenience, we restate the definition of the
classical Pareto distribution using the shape parameter €.

fe(x) = (2.2)

(14 £2)~(F1/8) = W ifz >0,

0 otherwise.
We shall discuss later the role of the shape parameter £, and when we do, we shall
emphasize that even though ¢ will have to be a non-negative number in most of
the applications we are interested in, from a mathematical point of view, we can
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extend the definition of the Pareto distribution to include negative values of the shape
parameter £. See below for details.

In any case, it is easy to compute the cdf of an ordinary Pareto distribution in
closed form. Indeed straightforward integration gives:

@ 1—(1+&) Ve =1— —Lr ifz >0,
Fe(x) :/ fe(@')da' = (1+¢&2) (ren7e BT
—oo 0 otherwise.

Changing location and scale, (remember our discussion of affine transformations),
we can define and study ordinary (one-sided) Pareto distributions with location
parameter m € R and scale parameter A > 0. Such a distribution is supported by
the half line [m, co) (i.e. it is the distribution of a random variable which is always
greater than or equal to m). Its density will be denoted by f, 1 ¢. It is given by the

formula:
(1 n 5( ))—(1-1-1/5) £ >

(x—m if x > m,

fmoae(z) = A -

S >

otherwise.
As before, we can compute the corresponding cdf. It is given by:

T—m\— _ 1
O A =

0 otherwise.

if x > m,

Fre(r) = {

2.1.2.2 More General Shape Parameters

We now consider a first generalization of the parametric family of one-sided Pareto
distributions which we shall call Generalized One-Sided Pareto distributions, GOSPD
for short. It still relies on three parameters: a location parameter m, a scale parame-
ter A and a shape parameter £. The cumulative distribution function of a GOSPD is
given by

z—m\—1/&
Frael(z) = { L= (1+¢e5m) for & 70, (2.3)

1 —exp{—i52 for & = 0.

the above formulae defining the GOSPD on the domains:

m<x<m-—A/§ for <0,
m <z <00 for & > 0.

In other words, we extended the family of one-sided Pareto distributions to include
distributions with a negative shape parameter £. This is done for the sake of general-
ity. It will not be used in the financial applications we consider in this book.

Notice that if £ > 0, the generalized Pareto distribution with cdf F},, » ¢ is noth-
ing but the distribution of a random variable m + AX where X has the ordinary
Pareto distribution with parameter « provided we set £ = 1/« as shape parameter.
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Notice also that the case ¢ = 0, m = 0 corresponds to the exponential distribution
with scale parameter ). In general, the case £ = 0 corresponds to an exponential
distribution with scale A shifted by the amount m, i.e. to the distribution of a random
variable X +m where X ~ E(1/\).

2.1.2.3 Existence of Moments (or Lack Thereof)

Another important fact concerning the size of the tail of a one sided Pareto distri-
bution (generalized or not) is given by the existence (or lack thereof) of moments.
Indeed, the above definition implies that, if X ~ F,, \ ¢ with { > 0, then

1
E{|XP} <o ep< 3 (2.4
Here are a few consequences for a non-negative random variable X with a one-sided

GOSPD.

e If¢ =0, X has moments of all orders, i.e. E{X?} < oo forall p > 0;
e The mean of X exists (i.e. E{X} < oco)if and only if £ < 1;
e The variance of X exists if and only if £ < 0.5.

Figure 2.1 shows the graphs of the densities of three one-sided Pareto distribu-
tions with default values m = 0 and A = 1 for the location and scale parameters,
and values £ = 0.2, { = 1.6 and £ = 2.5 for the shape parameter. The plots were
produced with the following commands.

> X <- seq(from=-.2,to=15,length=5000)

> plot (X,dpareto(X,xi=.2),type="1",ylab="GPD densities",
ylim=c(-.05,1.1))

> points(X,dpareto (X,xi=1.6),type="1",1lty=3)

> points (X,dpareto (X,xi=2.5),type="1",1lty=5)

> abline (h=0); abline(v=0)

Remark. The number of finite moments of a distribution is a good indication of
the thickness of its tail. This number has been estimated for the marginal distribu-
tion of financial returns over different periods ranging from minutes, to days, weeks,
months, ... and there is a heated debate concerning the values of these estimates in
the so-called eocnophysics community. Indeed, it is claimed by some that this num-
ber of finite moments is universal across financial indices and asset classes. Others
use self-similarity arguments to claim that this exponent should not change with time
horizon, and that it should remain the same when computed with returns over 1 day,
1 week, 1 month, . .. The rationale behind the universality of this exponent is beyond
the scope of this book. However, we shall give examples (both in the text and in the
problem sets) indicating that this universality conjecture does not stand some of the
empirical analyzes made possible by the tools presented in this book.
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Fig. 2.1. One-sided Pareto densities with m = 0 and A = 1 for the location and scale param-
eters, and values £ = 0.2, £ = 1.6 and £ = 2.5 for the shape parameter

2.1.2.4 Implementation

As in the case of the classical distributions considered earlier, recall Table 1.2, on
can compute values of the density, quantile, and cumulative distribution functions,
as well as generating random samples with a set of functions adhering to the naming
convention used in R. They are listed in Table 2.1

Distribution Random samples Density cdf  Quantiles

One-sided Pareto rpareto dpareto ppareto gpareto

Table 2.1. Rsafd commands for the manipulation of one-sided Pareto distributions

2.1.2.5 (Two-Sided) Generalized Pareto Distributions (GPD)

We now define the class of (heavy tail) distributions which we fit to sample data
exhibiting thick tails as detected by empirical Q-Q plots. At an intuitive level, our
fitting procedures will search for heavy tails (typically densities with inverse poly-
nomial decays) at +o00, and —oo in the case of a left tail. Roughly speaking, these
distributions should behave like

e The distribution of a one-sided Pareto random variable to the right of a specific
threshold;



2.1 A Primer on Extreme Value Theory 75

e The distribution of the negative of a one-sided Pareto random variable to the left
of a specific threshold;
e Nothing special in between.

To be more specific, these distributions will be characterized by

e A location parameter m, a scale parameter A4 and a shape parameter & speci-
fying the one-sided Pareto distribution which applies to the right of the threshold
m4;

e A location parameter m_, a scale parameter A_ and a shape parameter £_ spec-
ifying the one-sided Pareto distribution which applies to the left of the threshold
m_ whenever the distribution has a left tail;

e Any distribution in the interval [m_,m].

Clearly, estimating such a distribution amounts to the estimation of the three param-
eters (possibly six when the distribution has tails extending to both 400 and —o0) of
the one sided Pareto distribution(s), and to the estimation of the density in between
the thresholds. The latter will be done by a plain histogram.

The class of (possibly two-sided) Generalized Pareto Distribution (GPD for
short) defined above is used in all the applications of extreme value theory con-
sidered in this book. The mathematical results we state and use for GPDs hold for a
slightly more general class of distributions, namely those distributions with densities
at +o00 and/or —oo which, up to a slowly varying function (concept which we define
later), behave like inverse powers.

2.1.3 Tidbits of Extreme Value Theory

There are several ways to investigate the statistical properties of extremes. The clas-
sical approach is based on the analysis of the statistics of the maxima over large
blocks of data. It is most elegant mathematically, and we briefly review it below.
However, because it requires large data samples, and involves much too often inef-
ficient computations, the block maxima approach fell out of grace with practitioners
who prefer relying on threshold exceedance models which lead to a more efficient
use of limited data. We present the former first.

2.1.3.1 The Fisher-Tippett Theorem

As usual we start from a sample of values

which we envision as realizations of independent identically distributed random vari-
ables X1, Xo, -+ , Xn, - -+ with a common distribution which we try to estimate.

Remark 1. Most of the results reviewed in this chapter remain valid without this inde-
pendence assumption. Indeed, under various forms of dependence between the X;’s,
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similar conclusions can be reached. These extensions have great practical relevance,
as real life data, and especially financial returns, are not strictly independent from
one period to the next. However, we refrain from considering these generalizations
by fear that their technical nature may obscure the ideas underpinning the theory.

As earlier, we use numerical statistics computed from the data in order to infer
properties of the common distribution of these random variables. The limit theorems
discussed in the first chapter are involved with the limiting behavior of the partial
sums S, = X7 + --- + X,, for large values of n. In particular, the Central Limit
Theorem (CLT) states that

Sn - n
lim P{—m gx} =d(z), z€R 2.5)
n— 00 An
provided we define the normalizing (centering and scaling) constants m,, and
An > 0as

My = N and An =01

where 4 and o denote the mean and the standard deviation of the common distribu-
tion of the X;’s. Extreme Value Theory (EVT for short) is concerned with the search
of centering and scaling constants m,, and \,, > 0 for which limiting results of the
form (2.5) hold for some limiting distribution functions ¥(2:) when one replaces the
partial sums S,, by partial maxima

M, = max{Xy, -, X,}. (2.6)

Obviously, switching from partial sums to maxima shifts the emphasis from aggre-
gation to extremes.

Remark 2. The theory presented below is geared toward the analysis of upper tails
of statistical distributions as it is formulated in terms of maxima of random samples.
Obviously, similar results hold true for minima, and the same theory can be used for
the analysis of lower tails of statistical distributions. For the sake of simplicity, we
focus our discussion on results on maxima of sequences of random variables, even
though we shall eventually turn the results of this theory into computing tools for the
analysis of both upper and lower tails of statistical distributions.

The cornerstone of the block maxima approach is the following theoretical result
known as the Gnedenko or Fisher-Tippett theorem.

Mn— n
x%P{)\—me}

converges as n — oo toward a (non-degenerate) cdf for some normalizing sequences
{mun}n and {\,}n of centering and positive scaling constants, then the limiting
distribution necessarily belongs to the family of Generalized Extreme Values (GEV
for short) distributions defined below in formula (2.7).

Theorem 1. If the cdf
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Before we give such a definition, we present a couple of enlightening examples, for
which the result of this theorem can be checked with elementary calculus.

The Case of the Exponential Distribution. If the X; are independent random vari-
ables with the exponential distribution with rate » > 0, then Fx (z) = 1 — e~ "* for
x > 0, and the cdf of normalized M, is equal to

Fat, —mn)/an (x) = Fx(mp + Apz)" = (1 — exp[—(my + Anz)])"

for & > —my, /A, so that with the choices m,, = (logn)/r and \,, = 1/r for the
normalizing constants we get

: : 1 n __ —x
Jim Fiag, —m,)/a, () = lim (1 — - exp[—z])" =1 —exp(—e™")
for all z € R since —logn = —m,, /A,. This limiting distribution is known as the
Gumbel distribution.

The Case of the Ordinary Pareto Distribution. Using the ordinary Pareto distri-
bution with shape parameter £ > 0 instead of the exponential distribution, we can
still illustrate the result of the Fisher-Tippett-Gnedenko theorem with explicit com-
putations. Indeed, if we choose the centering and the scaling constants m,, and A\,
as m,, =n¢ — Land \, = &né, then:

1 T _q "
Firy—mnyjan () = Fx (M + Apz)" = (1 -1+ ) )

n

fora = 1/¢and 2 > a(—1 +n~'/*), and consequently

1 n
lim Far, —m,)/x, () = lim <1 ——(1+ E)O‘) = exp [—(1 + g)fﬂ

n—00 n—00 n «

for x > —a. This distribution is known as the Fréchet distribution.

2.1.3.2 Generalized Extreme Value Distributions (EVD)

The families of extreme value distributions (EVD for short) which have been studied
in the classical statistical literature comprise the Gumbel distribution (also known
as EVI distribution), the Fréchet distribution (also known as EVII distribution), and
the Weibull distribution (also known as EVIII distribution). These three distribution
families can be combined into a single parametric family which is usually called the
Generalized Extreme Value (GEV) distribution family. Its cumulative distribution
function is given by the following formula:

—1/¢
exp —(1—1—@) } for £ £ 0,

Gmgla) = exp |- (e-w)} for & = 0.

2.7)
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A GEV distribution is characterized by three parameters: a location parameter m, a
scale parameter A > 0, and a shape parameter £. In the above formula it is assumed
that:

—oco<x<m-—A/E for§ <0,
-0 < <0 for £ =0,
m—AE¢{<z<oo foré>0.

The Gumbel distribution corresponds to the case £ = 0, the Fréchet distribution
corresponds to the case £ > 0, while the Weibull distribution corresponds to the case
£ <.

Figure 2.2 shows the graphs of the densities of three GEV distributions with
default values m = 0 and A = 1 for the location and scale parameters, and values
£ =0.2,¢ = 0.6 and £ = 1.5 for the shape parameter. Note that the left hand point
of the distribution changes with the parameters. The plots were produced with the
following commands.

> X <- seq(from=-2.2,to=8,length=5000)

> plot (X,dgev(X,xi=.2),type="1",ylab="GEV densities",
ylim=c(-.05,.9))

> points (X,dgev(X,xi=.6),type="1",1ty=3)

> points(X,dgev (X,xi=1.5),type="1",1lty=5)

> abline (h=0); abline(v=0)

We use the fact that, like in the case of GPDs, the library Rsafd provides functions
to generate random samples and compute densities, cdfs and quantiles of the GEV
distributions. Table 2.2 gives these commands, and as we can see, they follow the

[ee]
s
— GEV(xi=.2)
------ GEV(xi=.6)
(o] .
w S ——- GEV(xi=1.5)
2
."(T')'
g <
o -
> o
w
(O]
[aV)
s
o
S
T T T T T
-2 0 2 4 6 8

Fig. 2.2. Densities of GEV distributions with m = 0 and A = 1 for the location and scale
parameters, and values £ = 0.2, £ = 0.6 and £ = 1.5 for the shape parameter
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Distribution Random samples Density cdf Quantiles

GEV distribution rgev dgev pgev qggev

Table 2.2. Commands for the manipulation of the generalized extreme value distributions

standard R naming convention. We do not give plots of densities corresponding to
negative values of ¢ for they are typically not used in the analysis of financial data.

Formula (2.7) is explicit and simple enough to be inverted explicitly. Doing so,
we obtain the following formula for the quantile function of a GEV distribution.

m— % [1—(—logp)~¢] for{ #0,

m — Alog(—logp) for & = 0. @38

Qmaelp) = {

This closed form formula makes the generation of random samples from GEV dis-
tributions quite easy and efficient. It also shows that estimates of the quantiles of a
GEV distribution can be obtained from estimates of the parameters m, A and £ of the
distribution by substitution of these estimates in (2.8). We address the estimation of
the parameters of a GEV distribution later in this chapter.

Remark 3. Roughly speaking, when the Gnedenko, Fisher-Tippett theorem holds, it
says that if n is large enough

P{M, <z} = Gmae(2)

for some set {m, A, {} of parameters. But since the X;’s are assumed to be indepen-
dent, we have
P{M, <z} = Fx(z)"

and consequently
P{M, < mp} = Fx(m)" =p"
(if we recall the notation m, for the p-quantile of the common distribution of the
X;’s) which in turn implies that
1\ ¢
(n log —) — 1.
D

This approximation for the quantiles of the distribution of the X;’s should be com-
pared to the formula

Wp%m—k—

£

T = p+a® ' (p)

which holds in the Gaussian case. This remark should shed some light on the con-
sequences of the Gnedenko, Fisher-Tippett theorem on tail sizes and properties of
the quantiles of the common distribution of the individual random variables X ;. We
shall revisit the significance of this remark when we discuss the estimation of Value
at Risk in the presence of heavy tails.
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The Gnedenko, Fisher-Tippett theorem is a very nice theoretical result, but in
order to be useful in practical situations, we need to know for which distribution
functions F'x it does hold, and even better, we need a hash table pointing out which
distributions F'x lead to which GEV distributions. In mathematical terms, this last
request is screaming for the identification of the so-called domain of attraction of a
given GEV distribution. In other words, given a GEV distribution G, » ¢, can we
characterize the distribution functions F'x for which the distributions of maxima M,
converge (after proper normalization), toward the GEV distribution in question as
stated in Theorem 1. This wishful thinking is at the origin of several results of great
practical usefulness. They go under the names of Gnedenko, Pickands, Balkema and
de Haan. We state them in an informal way to avoid being distracted by the tech-
nical nature of some of the mathematical assumptions under which these results
hold. The interested reader is directed toward the Notes and Complements at the
end of the chapter for references of textbooks where these theories are presented in
detail.

2.1.3.3 Illustration

The following commands illustrate the convergence of the distribution of block max-
ima of ordinary Pareto variates toward the Fréchet distribution, fact which we proved
rigorously earlier.

XX <- rpareto(1000000,xi=.4)

dim(XX) <- ¢(1000,1000)

MAX <- apply (XX, 2,max)

ggplot (MAX, rgev (1000,xi=.4))

title("Q-Q Plot Evidence of Block Maxima Convergence,
Xi=.4")

V V. V V V

The first command creates a sample of size 10° of independent random samples
from the ordinary Pareto distribution with location 0, scale 1 and shape parameter
& = 0.4. The second command splits this sample into 1,000 blocks of lengths 1,000
each by organizing them in a 1,000 x 1,000 data matrix. The next command com-
putes the maximum of each of these blocks, creating in this way a sample of size
1,000 of maxima M,, with n = 1,000. The ggplot command produces a Q-Q plot
of this sample of maxima against a random sample from the GEV distribution with
the same shape parameter ¢ = 0.4. This plot is reproduced in the left pane of Fig. 2.3.
The fact that the points line up on a straight line is an indication that we are in the
limiting regime of the theorem of Gnedenko, Pickands, Balkema and de Haan. This
fact is a particular case of a more general result which we state as a theorem for later
reference.

Theorem 2. The distribution of the maxima M,, converge after appropriate center-

ing and scaling, toward a GEV distribution with shape parameter & > 0 if and only

if the common cdf Fx (x) of the X;’s converges toward 1 as x — oo at the rate
—1/¢

x .
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Fig. 2.3. Q-Q plots of a sample of 1,000 maxima over 1,000 disjoint blocks in a sample from
a GPD, against a sample from the GEV distribution with the same shape parameter. Left: case
of the Fréchet distribution with £ = 0.4. Right: case of the Gumbel distribution (i.e. £ = 0)
from an exponential sample with rate r = 2.0

The precise mathematical statement is that the function L(z) = 2'/¢(1 — Fx(z)) is
slowly varying at +oo in the sense that

fim A7)

AT , forall A > 0.

The case of the Gumbel distribution is unfortunately not as clearly delineated by a
theoretical result such as Theorem 2 above. We proved in Sect. 2.1.3.1 that the Gum-
bel distribution was the limit of the distributions of block maxima of increasing sizes
of independent exponential variates. As before, we can illustrate this theoretical fact
with the help of random simulations.

XX <- rexp(1000000,r=2)

dim(XX) <- ¢(1000,1000)

MAX <- apply (XX, 2,max)

ggplot (MAX, rgev (1000,x1=0.0))

title("Q-Q Plot Evidence of Block Maxima Convergence,
xi=0")

V V. V V V

The resulting plot is reproduced in the right pane of Fig. 2.3, and as before, the fact
that the points line up on a straight line is an indication that we are in the limiting
regime of the theorem of Gnedenko, Pickands, Balkema and de Haan. The expo-
nential distribution is not the only distribution F'x for which the distributions of the
block maxima converge toward the Gumbel distribution. These distributions F'y are
not easily characterized. However, it can be proved that they all have finite moments
of all orders in the sense that E{ X7} < oo for all p > 0. So if the X;’s have a
common density fx (x), then this density goes to zero faster than any inverse poly-
nomial. Exponentials do, but Gaussian and log-normal densities do as well. So in
the case £ = 0, the information content of the fact that the limit distribution of the
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normalized block maxima is the Gumbel distribution is not as precise: we know that
the tail decays faster than any inverse polynomial, but we cannot pin-point the exact
rate of decay!

Remark. Notice that, because we are interested in extremes, and especially in rare
and unexpected large values of financial returns or losses, we shall not consider the
Weibull case £ < 0 which forces the distribution to be limited, and prevents the tail
from extending to infinity.

2.1.3.4 Block Maxima Approach to Extreme Values Estimation

We now formulate in an algorithmic fashion, the tail size estimation procedure based
on the Gnedenko, Pickands, Balkema and de Haan theory which we reviewed earlier
and illustrated by examples. This will provide us with a natural transition to the
topics presented later on.

e In order to infer properties of the upper tail of the common distribution of the

entries of a data sample x1,xg, - -- , Tm, We partition the sample into blocks
B, Bs, - -+, By, and we compute the maxima M,, = max,ep, z; in each of
these blocks.

e Assuming that each block size is large enough, we treat the set { M, },, of maxima
as a sample from a GEV distribution, and assuming that the number of blocks is
large enough, we estimate the parameters of this hypothetical GEV distribution
from the sample { M, },,

e We infer the size of the tail of the common distribution of the x;’s (in particular
the shape parameter ) from the values of the estimated parameters and the results
of the Gnedenko, Pickands, Balkema and de Haan theory.

It is obvious from the second bullet point above that the inference procedure
is justified if the block size is large since we rely on an asymptotic result holding
in the limit of the block size going to co. Moreover, the estimation of the param-
eters of the limiting distribution also requires the blocks to be in large numbers.
Having both large blocks, and a large number of maxima, requires a very large
data set to start with. This sample size requirement is the major shortcoming of
this block maxima method. Band-aids have been suggested, the most natural one
being to use overlapping blocks. However, the gain in sample size is compensated
by a loss in accuracy since the block maxima are not independent any longer, and
as a consequence, the parameter estimation procedure looses efficiency. Quantify-
ing the effects of dependencies due to block overlap as well as in the original data
has been a concern of many researchers in the field, and the interested reader is
referred to the books mentioned in the Notes and Complements at the end of the
chapter.

For the time being, we note that the important second bullet point above stresses
the need for procedures capable of estimating the parameters of a GEV distribution.
This is the task we tackle next. Then, and only then, will we be able to implement
the block maxima method and conclude on specific tail size alternatives.
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2.2 GEV & GPD PARAMETER ESTIMATION

The previous section has singled out two distribution families playing an important
role in the analysis of extremes and heavy tails: the generalized extreme value and
Pareto distributions. It also showed the need for estimating the parameters of these
distributions. Maximum likelihood and method of moments are classical statistical
procedures frequently used in estimating parameters. This section explains how these
methods can be extended to fit these two important parametric distribution families.

2.2.1 The Method of L-Moments

Because many heavy tail distributions do not have enough finite moments (after all,
the Cauchy distribution does not even have a first moment!) the classical method of
moments cannot be used to estimate the parameters of GPD and GEV distributions.
Keeping with the spirit of this time honored estimation procedure, researchers have
devised work-arounds by renormalizing the traditional statistical moments in order
to get analogs which could be used for data with extreme values. With this simplistic
strategy in mind, we introduce the notion of theoretical L-moment.

2.2.1.1 Theoretical Definitions

L-moments are defined in terms of the so-called probability weighted moments.
These generalized moments are defined for non-negative random variables X with
finite expectations and continuous cdf F'(x) in the following way. For each integer
r > 0, the r-th probability weighted moment «, is defined as the number

ozr:E{XF(X)T}:/OoxF(:E)TdF(x), r=20,1,2---. (2.9)
0

In other words, in computing the r-th probability weighted moment, we sum the
possible values x of the random variable X, but instead of weighting them by their
probability of occurrence, we weight them by this probability times the cdf F(x)
raised to the power r. Recall that assuming that X is has finite expectation means
that

E{X}—/OooxdF(:E) < 00,

which guarantees that all the probability weighted moments o, make sense as finite
numbers since 0 < F'(x)" < 1.

As usual we denote the corresponding quantile function by £~ (), and a simple
substitution in the integral appearing in (2.9) gives:

1
ar:/ F~(y)y"dy.
0
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The L-moments are defined as specific linear combinations of the probability
weighted moments with the intent to capture the descriptive features of the distri-
bution in question, namely location, dispersion and other shape parameters. The first
few L-moments are defined by the following equations

1
n=a= [ F)dp
0
1
A2 :2a1—a0=/ F~'(p)(2p—1)dp
0

1
Az = 6ag — 6oy +ap = / F~Y(p)(6p* — 6p + 1) dp
0
A = 203 — 30 + 1201 —

The coefficients of these linear combinations are nothing but the coefficients of the
“shifted Legendre polynomials”

Py (y) _ZT:(—l)’”kC;) <T4];k>yk, r=1,2, -

k=0

For the sake of definiteness we give the values of the first four Legendre polynomials
P (y):
J

P (y) = 20y — 30y% + 12y — 1

An alternative definition of L-moments can be given in terms of order statistics. Such
form of the definition will be useful for empirical estimation from data samples. For

any given integer » > 1 and sample X1, - - - , X, of i.i.d. random variables with the
same distribution /', we use momentarily the notation
X(l:r) < X(2:r) S < X(r:r)

for the order statistics which we usually denote by X(l) < X(g) < ... < X(T). We
use this notation to emphasize the dependence of these order statistics on the sample
size. Given these preliminaries, the r-th L-moment can be alternatively defined as

r—1

1 r—1
.= —1)k E{X (i =1,2,--- 2.1
A TkZ:O( )( k ) { ((r k).r)}v r ) (2.10)

and using this definition we get the formulae

A =E{X}
Ao = % (E{X (1.2} — E{X(2:9)})

1
Az = 3 (E{X(1:3)} — 2E{X(2:3)} + E{X(3.3)}) ,
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Descriptive statistics such as skewness and kurtosis play an important role in the
analysis of statistical distributions. Since they are defined in terms of moments and
their ratios, they have natural analogs in the present framework. An L-moment ra-
tio is a dimensionless quantity defined as the ratio of an L-moment to the second
L-moment. L-skewness, 73, is the third L-moment ratio,

A3
o’

T3 =

and L-kurtosis, 74, is the fourth L-moment ratio,

_ M
-

T4
Examples.
e For the uniform distribution U (0, 1) we have
M =1/2, X=1/6, 173=0, 74,=0.
e In the case of the standard normal distribution N (0, 1) we have
M =0, X=1/ym 7m=0, 74~0.123.
e In the case of the exponential distribution with unit rate we have

/\1:1, /\2:1/2, 7'3:1/3, 7'4:1/6.

2.2.1.2 First L-Moments Empirical Estimation
Given the ordered statistics
Ta) ST@) S S Tw)
of a sample x1, xa, ..., x, of size n, the estimate [, defined by
1 = r—1
vy Y e (e
T/ 0<i1<i2<...<i-<n k=0

is an unbiased estimator of the theoretical r-th L-moment \,.. Moreover, it has been
shown that [, can be computed, from the order statistics as

= r\ [r+k
zrz(—1)TZ(—1)T—k<k)< N )ak, r=0,1,2,... (2.11)

k=0

where the numbers aj, are the so-called probability weighted moments defined by
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1 < G-1G—=2)-(G—k)
2 o Dmoy) ok k2T

i=1 j=k+1
(2.12)

Notice that, consistent with our earlier discussion, the coefficients appearing in ex-
pression (2.11) are the coefficients of the shifted Legendre polynomials introduced
above.

The function sample . LMOM gives and implementation of formula (2.12). For
the sake of illustration, we compute the L-moments of a Monte Carlo sample of size
1,000 from a GPD.

> X <- rpareto(1000)

> sample.LMOM (X)

Mean (1 1) L-mom 2 (1 _2) L-skewness L-kurtosis
1.0144528 0.5045187 0.3278689 0.1626310

For the sake of comparison we check with the theoretical L-moments of such a GPD.
Indeed, since the GPD with location parameter m = 0, scale parameter A = 1, and
shape parameter ¢ = 0 is nothing but the standard exponential distribution with rate
one, we already gave its L-moments L-skewness and L-kurtosis. They are

1 1 1
A =1, )\2257 ™= 3 =g
which shows that, at least in this case, the estimation procedure gets reasonable val-
ues for the parameters. Quite expectedly, the estimates ¢35 of L-skewness and ¢4 of
L-kurtosis computed by the function sample . LMOM are obtained as the ratios I3/l
and 4 /I, respectively.

Important Remark. Even though a sample mean can be computed from any sample
irrespective of the distribution which governs the generation of the values appearing
in the sample, it is used as an estimator, only when the theoretical distribution is at
least of order one, namely when the mean actually exists. We recalled these facts in
our discussion of the law of large numbers in Chap. 1. In particular, the empirical
mean can always be computed for a sample from the Cauchy distribution, however,
it cannot have the interpretation of an estimate of the mean in that case. A similar
state of affairs holds in the case of L-moments. The empirical estimates introduced
in this section can always be computed. However, as we said in their introduction,
L-moments make sense only for distributions with a first moment. In particular, when
we talk about L-moments of GPDs and GEV distributions, we shall always implicitly
assume that £ < 1 so the theoretical moment of order one does exist.

2.2.1.3 Small Sample Alternative

Because of the very definition of L-moments, estimation involves the approxima-
tion of an integral whose integrand depends upon the entire cdf. It is intuitively
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clear that the error produced by approximating the integral using a numerical
quadrature method is much smaller than the error due to the approximation of the
cdf from sample data when the sample size is small. For that reason, practition-
ers have searched for alternative estimates which could perform better with small
samples.

The following procedure was proven to give good estimates for the L-moments
of GPD in the case of small samples when the parameters - and ¢ are chosen appro-
priately. It is based on the notion of plotting position. For each integer n (which will
be chosen as the size of the sample under study) the plotting positions are defined as
the numbers
ity
44

Di

and the corresponding estimates of the r-th L-moments are given by

n r—1
12 i ufr=1\[(r—14+k
— _1T‘1k k,‘ .

i=1 k=0

It has been shown that the plotting position estimators with v = 0.35 and § = 0 pro-
duce good approximations of the L-moments for small GPD samples. This method is
implemented in the library Rsaf£d by the function plotting.positions whose
use is illustrated by the following display.

> X <- rpareto(50,xi = 0.4)

> PPLM <- plotting.positions (X)

> PPLM

ell 1 ell 2 tau_ 3 tau 4
2.0628630 1.7630784 0.7029661 0.5526929
> SLM <- sample.LMOM (X)

> SLM

ell 1 ell 2 tau 3 tau 4
2.3626477 1.7845944 0.7196471 0.5867451

2.2.1.4 Distribution Estimation by the Method of L-Moments

We now explain how estimates of the L-moments can be used to estimate the param-
eters of generalized extreme value and Pareto distributions.

2.2.1.5 Estimating the Parameters of a GEV Distribution

‘We now concentrate on the case of GEV distributions. Recall that, since the existence
of L-moments requires that the common distribution of the observations has at least
a first moment, we need to restrict ourselves to the case & < 1. Under this condition,
the L-moments of a GEV distribution can be computed in closed form, leading to the
following expressions:
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A :m_W’ (2.13)
_9¢ _

Ay = _AML=2 ér(l 5), (2.14)

A3 = §(1 —3-2842.351I(1 - ¢), (2.15)

where I'(«) is the Gamma function whose definition was recalled in (1.12). Taking
the ratio of (2.15) to (2.14) we get:

2(1 - 3%)
T
Assummg that the first three L-moments \q, )\2 and A3 were estimated as /\1, )\2
and A3 from an empirical sample, we set 73 = A3 / A2 and we plug the latter in the
above equation in lieu of 73. Since the equation so obtained involves only the un-
known parameter £, we can use it to extract a value, say é , for the shape parameter .
Obviously, this equation cannot be solved in a closed form, so we use a numerical
method to do so. Once this is done, the computation of the remaining estimates is
straightforward. The estimate of \is easily derived from Eq. (2.14),

A= —L (2.16)
(1=29r(1-¢)

and after that, 7 is obtained from Eq. (2.13) by
m:&l+§(1—r(1—é)). 2.17)
3

Remark. Since we aim at computing the values of three parameters, we should
only need three equations. Not surprisingly, the above methods requires only the
knowledge of the first two L-moments [; and l» and the L-skewness 73.

The above method of L-moment estimation of a GEV distribution is implemented
in the function gev . Imom. Starting with a set of L-moments (as produced for exam-
ple by the functions sample . LMOM or even the functionplotting.positions
discussed above) this function computes estimates of the three parameters of the
GEV distribution suspected to have produced these L-moments. We demonstrate its
use with the following simulation example where we first estimate the L-moments
from a random sample from a GEV distribution which we choose.

> X <- rgev (500, lambda = 3.5, xi = 0.4)

> LMOMX <- sample.LMOM (X)

> LMOMX

ell 1 ell 2 tau_ 3 tau 4
4.2065658 3.9795450 0.4372888 0.3242249
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> gev.lmom (LMOMX)

Sparam.est

m lambda xi
0.1417766 3.4847654 0.3781168

2.2.1.6 Estimating the Parameters of a GPD

In the case of GPDs, different methods are used depending upon whether or not the
location parameter m is known. The reason for considering these two alternatives
will become clear in the next section. When using the POT method to estimate the
size of a tail, the estimation procedure consists in fitting a GPD to the exceedances
over an appropriately chosen threshold. By construction, the location parameter of
a sample of exceedances is automatically zero. If m is known, the GPD L-moment

estimators are:
= and \ = l—l —1)1
I’ b b

Notice that, since we assume that m is known, we need to compute values for two
parameters only, and hence, two equations are sufficient. In this case, we need only
the knowledge of the first two L-moments [ and [5 to estimate the entire GPD.

If m is unknown, we need to compute three parameters. We expect to need three
equations. However, instead of using the L-skewness as in the case of GEV distribu-
tions, the GPD L-moment estimation procedure which we implemented in Rsafd
uses the first two L-moments [; and /> and the first order statistics T(1)- The resulting
estimates are given by the formulae:

2(n —1)ly —n(l1 — 2q1) A= (1-6)(2— &)y, andin = x(1) — Lﬂ

52_(n—nb—m_xm)’ n_¢

where x (1) is the smallest value of the sample.

The above method of L-moment estimation of a GPD is implemented in the
function gpd . 1mom. Starting with a set of L-moments and a value for the loca-
tion parameter m or a sample data set (from which the first order statistic will be
computed) this function computes estimates of the three parameters of the GPD
suspected to have produced these L-moments. As before, we demonstrate its use
with a simulation example where we first estimate the L-moments from a random
sample from a GPD which we choose. We give two examples, showing the re-
sults both when the location argument is provided and when the sample is provided
instead.

> X<- rpareto(500,xi = 0.4)
> SLM <- sample.LMOM (X)

> gpd.lmom(SLM, location=0)
Sparam.est
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m lambda xi
0.0000000 0.9178838 0.4531872
> gpd.lmom (SLM, sample=X)
Sparam.est

m lambda xi
0.002611717 0.912422137 0.455593845

2.2.2 Maximum Likelihood Estimation

We now present the most widely used method of parameter estimation. In the situ-
ations of interest, the parameter 6 is multivariate since it comprises the location pa-
rameter m, the scale parameter \ and the shape parameter &, so 6 = (m, A, §). Since
explicit formulae for the density functions of GEV distributions and GPDs can be
derived in a straightforward manner from the definition expressions we gave in (2.7)
and (2.3), the strategy of the classical maximum likelihood estimation seems appro-
priate. The only slight difference with the classical cases handled by this method is
the fact that the domain of definition of the density function fy changes with the
parameter. This is a minor hinderance which can be overcome in practice.

2.2.2.1 Likelihood and Log-Likelihood Functions

We first consider the case of the GEV distributions. For the sake of notation, we give
separate formulae for the cases £ = 0 and £ # 0. When £ = 0, taking derivatives of
both sides of (2.7) gives:

1

mro(r) = Xe_(m—m)/k exp[—e~(#=™)/] (2.18)
which implies that the likelihood of a sample z1, - - - , x,, is given by
L(m, My, - ,2y) = Lexp[—l . (1 —m)]exp[— ief(m"fm)/)‘] (2.19)
y 1, s b A" 2\ 1 .

=1 i=1

and the corresponding log-likelihood by:
1 n n B
L(m,Nz1, - ,2,) = —nlog A+ nm — X ;xl - ; e~ @i=m)/A (2.20)

The case & # 0 leads to similar computations. The density of the GEV distribution
is given by:

w4 () e 1w ]

2.21)
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ifr <m-—A/¢foré <Oorax >m— A/ for& > 0, and 0 otherwise. This in turn
implies that the likelihood of a sample x1, - - - , x,, is given by

1 n 5 —(1+1/¢)
i=1

n 5 —-1/¢
exp [— Z; (1 + X(xi — m)> ] (2.22)

if max{x1,- -, 2} < m—A/§for& < 0ormin{xq, - ,2,} > m — A/ for
& > 0, and 0 otherwise. Finally, the corresponding log-likelihood is given by:

L{m, A, {|wy, -, 2n) = —nlog A — <1 + %) Zlog (1 + %(xi — m))
=1
n ¢ —1/¢
- (1 + (@i - m)) (2.23)
i=1

with the same domain restrictions as before. Consequently, maximum likelihood es-
timates of the parameters of a GEV distribution are obtained by solving the opti-
mization problem

(m, 5\75) = arg sup L(im,\, €|z, ,xp) (2.24)
A>0. A+€(z;—m)>0, i=1,--- ,n

The above constraints guarantee that the density is non-negative at the observations
Z1, -+ ,Zpn. Such an optimization problem could have presented difficulties years
ago, but with the advent of modern computers and the development of efficient
solvers, it can be solved in a very reliable manner on most every platforms. S and R
come with solvers for nonlinear optimization based on quasi-Newton methods. The
library Rsafd uses these solvers to produce maximum likelihood estimates of the
parameters.

Next, we consider the case of the GPDs. As before, we give separate formu-
laec for the cases & = 0 and £ # 0. The case & = 0 is well known since it re-
duces to the classical analysis of exponential samples. Indeed, the density function is

given by:
fmao(a) = %e‘“"’”/ A (2.25)
if x > m and 0 otherwise. This implies that the likelihood of a sample x1, - - - , x, is
given by
L(im, Ny, -+ ,x,) = —eXp —%Z x, — (2.26)
if min{xy,--- ,2,} > m and 0 otherwise. Hence, the corresponding log-likelihood

is given by:



92

2 HEAVY TAIL DISTRIBUTIONS

L(m,Nx1, - 2p ):—nlogx\—i-———Z;zcZ (2.27)

which leads to the classical maximum likelihood estimates of the location and scale
of an exponential sample.

Computations are simpler in the case & # 0. Indeed, taking derivatives on both
sides of (2.3) gives a density of the form:

§

frme(x) = % (1 + (@ - m)

—(1+1/¢)
) (2.28)

ife <m—MNEforé <0orx >m — A/ for& > 0, and 0 otherwise. This in turn

implies that the likelihood of a sample x4, - - - , x,, is given by
1" ¢ —(141/¢)
L(m,\ €|z, @) = * };[1 (1 + X(% — m)) (2.29)
if max{xl, -+ ,z,} < m—A¢for§ < 0ormin{zy, - ,z,} > m — A\/& for

& > 0, and 0 otherwise. Finally, the corresponding log-likelihood is given by:

Lm,\E|xr, -+ ,2,) = —nlog\ — (1 + %) Zlog (1 + %(:10Z — m)) (2.30)
i=1

with the same domain restrictions.

2.2.2.2 MLE of the Parameters of a GPD and GEV Distributions

Maximum Likelihood Estimates (MLE for short) of the parameters of a GEV dis-
tribution and a GPD are provided by the functions gev.ml and gpd.ml. Since
by definition of a maximum likelihood estimate, the result is obtained by solving an
optimization problem, one needs to initialize the procedure with a first guess for the
set of arguments (i.e. the three parameters of the distribution family). In the gev . m1
and gpd . m1 implementations, if no initial guess is provided, a vector of parameter
estimates obtained by a different method is used by the function as starting point for
the optimization routine attempting to maximize the likelihood. Indeed, if no such
argument is specified, L-moment estimates are computed by the functions gev.ml
and gpd.ml and used for initialization purposes. As in the case of L-moment
estimation, if the location parameter m of a GPD is known, it may be specified,
in which case, only the remaining two parameters will be estimated by maximum
likelihood.

As before, we demonstrate the use of the functions of the package Rsafd with a
simulation example where we choose the GEV distribution.

> X <- rgev (500, lambda = 3.5, xi = 0.4)
> gev.ml (X)
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Sparam.est
m lambda xi
-0.1714924 3.4420736 0.4243908

Sconverged
[1] TRUE

Similarly, in the case of a GPD:

> X <- rpareto (500, lambda = 3.5, xi = 0.4)
> gpd.ml (X) Sparam.est
Sparam.est

m lambda xi
0.001238288 3.171523526 0.467466969

2.2.3 An Example Chosen for Pedagogical Reasons

It is possible to propose mathematical models for the time evolution of the PCS in-
dex. We described one of them in the Notes & Complements at the end of Chap. 1.
These models are most often quite sophisticated, and they are difficult to fit and use
in practice. Instead of aiming at a theory of the dynamics of the index, a less ambi-
tious program is to consider the value of the index on any given day, and to perform
a static analysis of its marginal distribution. This gives us a chance to illustrate how
one uses the tools introduced above to fit a Pareto distribution to the data. The pur-
pose of this exercise is to emphasize the limitations of a blind application of the
general theory, and to motivate the modifications introduced and implemented in the
following section on semi-parametric estimation.

The Q-Q plots produced in Chap. 1 clearly showed that the upper tail of the
PCS index data was heavier than the tail of the exponential distribution. We use the
function gpd . 1mom to fit a GPD to the PCS. index, and we print the estimated
location, scale and shape parameters with the following commands:

> PCS.1lmom <- gpd.lmom(PCS.index) Sparam.est
> PCS.1lmom

m lambda xi
0.06824616 0.66521009 0.71314021

To visualize the properties of the fit we choose to plot the histogram of the original
data set PCS . index together with the density of the estimated GPD.

> hist (PCS.index, breaks=25,density=20, freqg=F)

> X <- seqg(from=-1,to=160,length=1000)

> points (X,dpareto (X, m=PCS.1lmom[1l], lambda=PCS.lmom[2],
xi=PCS.lmom[3]), type="1")

The plot is given in Fig.2.4. The fit does not look very good, especially in the left
part of the plot where the histogram shows significant positive values.
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Fig. 2.4. Histogram of the PCS index, together with the density of the Pareto distribution
estimated by the method of L-moments

As we explained in the first chapter, histograms and density plots do not give a
clear picture of what is happening in the tail. So in order to check the goodness of
the fit in the tail, we generate a large random sample from the distribution fitted to
the data, and we produce a Q-Q plot of the Monte Carlo sample against the original
data set PCS. index.

> PCS.rlmom <- rpareto(n=10000,m=PCS.lmom[1],
lambda=PCS.1lmom[2] ,x1=PCS.1lmom[3])

> ggplot (PCS.index, PCS.rlmom)

The result is reproduced in the left pane of Fig. 2.5.

As with Fig. 2.4, the result is disappointing. However, the plot in Fig. 2.5 points
to a possible reason for the poor fit. Up until the large values, the quantiles of the
simulated sample seem to align reasonably well with the quantiles of PCS. index.
However the last quantile — quantile point being out of line seems to indicate that the
thickness of the tail was not captured properly by the estimated distribution. It hap-
pens often that moment estimates are not as good as maximum likelihood estimates,
so knowing that, we compute the GPD estimate produced by the function gpd . m1.

> PCS.ml <- gpd.ml (PCS.index)
> PCS.ml <- PCS.mlS$param.est
> PCS.ml

m lambda xi
0.0700000 0.7095752 0.6359470
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Fig. 2.5. Q-Q-plot of the sample of the one-sided Pareto distribution generated from the pa-
rameters estimated with the method of L-moments (/eft) and by maximum likelihood (right)
against the original PCS index data

As before, we can try the same random generation experiment as before, using the
maximum likelihood estimates of the location, scale and shape parameter instead.

> PCS.rml <- rpareto(n=10000,m=PCS.ml[1],lambda=PCS.ml[2],
xi=PCS.ml[3])
> ggplot (PCS.index, PCS.rml)

The result shown in the right pane of Fig. 2.5 are much better, strikingly good in fact.
But a warning is in order as these results are very much dependent upon the actual
random sample generated, and as such, they vary from one Monte Carlo experiment
to another.

The following final remark uses the example of the PCS index given above to ex-
plain some of the reasons why one should not be surprised by the poor performance
of these statistical estimation procedures.

Final Remark. Fitting a parametric distribution family as specific as the Pareto fam-
ily cannot accommodate at the same time the features of the bulk of the data (i.e.
the small values of the index in the example treated above), and of the tail (i.e. the
extremely large values of the index). It is quite conceivable that the tail of the dis-
tribution has a polynomial decay while the left part of the distribution behaves in a
non-polynomial way. The estimation procedure tries to find one single set of parame-
ters to fit all the different parts of the distribution, and the resulting compromise often
penalizes the tail because by definition, the latter is represented by a small number of
data values. This conundrum is at the root of the semi-parametric approach presented
in the next section.

2.2.4 Implementation of the Block-Maxima Method

We closed the previous section with a discussion of the block-maxima method, and
we explained why its implementation required the estimation of the parameters of a
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GEV distribution. The maximum likelihood method and the method of L-moments
can now be brought to bear to solve a problem which we could not resolve then. We
use the function block . max of the package Rsafd to illustrate the performance of
the method on simulated data sets. Knowing the true shape parameter, and being able
to afford as large a data set as needed make it possible to illustrate the shortcomings
of the block-maxima method.

We first generate a sample of size n = 5,000 from the Pareto distribution with
shape parameter £ = 0.3. In the context of daily financial data, such a sample size
would correspond approximately to 20 years worth of daily data.

Besides the data vector, the function main parameters of block.max are the
variable overlap which is 0 by default and which should be an integer between 0
and 50, and the common length of all the block passed to the function as parameter
block.size which needs to be an integer greater than or equal to 100. We study
the influence of these parameters separately.

10

04 06 08
020 025 030
1 1
°
°
°
°

X

02 00 02

-04

T
100

T
200

300

400

500

600

Xl

0.15

0.10

0.05

0.00

T
200

T
400

T
600

T
800

T
1000

T
1200

1400

BLOCKSIZE BLOCKSIZE

Fig. 2.6. Block-maxima shape parameter estimate as a function of the block size, for a sample
of size 5,000 (left) and 50,000 (right). In both cases the true parameter was & = 0.3

The left pane of Fig.2.6 shows the estimates é given by the block-maxima
method when non-overlapping blocks are used. We vary the common length of the
blocks from 100 to 600 by increments of 20, and for each fixed block size, we com-
pute and plot the estimate of the shape parameter. The resulting points are scat-
tered, indicating that the method fails in most cases: either the block size is not large
enough, or when it is large enough, we do not have enough blocks to get a good
estimate of the GEV shape parameter. The right pane gives the plot of the shape
parameter estimates for the same block sizes when the data sample is 50,000. The
results are obviously much better (notice the differences of the ticks on the vertical
axes). However, if the data were arising from daily measurements, one would have
to collect 200 years worth of data to have such a sample size. Needless to say, this
does not happen often in financial applications.
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Fig. 2.7. Block-maxima shape parameter estimate as a function of the block overlap, for a
sample of size 5,000 (left) and 50,000 (right). In both cases we plotted a horizontal line at the
true value £ = 0.3 of the parameter

The left pane of Fig.2.7 shows the estimates é given by the block-maxima
method when overlapping blocks are used. We vary the overlap of the blocks from 0
to 50 by increments of 2, and for each overlap, we compute and plot the estimate of
the shape parameter £. The results are not very good, for essentially the same reasons
as before. They improve dramatically when we increase the sample size to 50,000 as
shown in the right pane.

2.3 SEMI PARAMETRIC ESTIMATION

This section is the culmination of the density estimation procedures introduced in
this chapter. It combines the benefits of the non-parametric estimation when data are
plentiful, and of the parametric methods to estimate generalized Pareto distributions
in the tails when the latter are heavier than normal.

2.3.1 Threshold Exceedances

As before, we consider a sample x1, - - - , x,, from the distribution of a random vari-
able X with cdf F' which we try to estimate. In most insurance and financial appli-
cations, [ is the loss distribution of a portfolio of contracts.

For any given level ¢, we define the excess distribution over the threshold ¢ as the
conditional distribution of X — ¢ given X > {. The corresponding cdf is given by

Fy(z) =P{X — (| <aX > (} = %F&)F(@

The mean of F} is called the mean excess over the level ¢, and viewed as a function
of the level /4, it is called the mean excess function.

x> 0.
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0 e(l) = E{X — (|X > (}.

In the next section, we study risk measures computed from loss distributions.
When X represents a loss, the mean excess function gives the expected loss above a
given level /.

Examples. When I is an exponential distribution, the memoryless property implies
that the excess distribution F; does not depend upon the level ¢ since Fy(x) = F(z).
The excess distribution can also be computed explicitly in the case of GPD’s. Indeed,
for any ¢ we have:

Fone(@+0) = Fouxe(0)
1_ka,£(€>
T+ &+ 0—m)/N) Y= 1+ —m)/N)"¢
(1+&x+0—m)/N) "¢
C[1tEte—m)ATE
1+ —m)/\
= Fnr v ¢ (2)

Fg(x) =

withm/ =0, = A+ £(¢ —m) and & = . So for a GPD, the excess distribution
is another GPD located at 0 and with the same shape parameter £. This stability
property is a remarkable property of the GPD’s. Notice also that the mean excess
function can only be defined when & < 1. It can be shown that in this case, it is

linear in ¢ since
e(l) = 1€T§€ + cst (2.31)

as can be seen by a direct integration from the explicit form of F;(x) given above.

Empirical Estimation. Given a sample z1,--- ,z, and a level ¢, we denote by ny

the number of z;’s which are greater than /, i.e. the number of exceedances above

the level ¢, and we denote by xge’é), e ,x,(fz’g) the actual overshoots over the level

£ obtained by subtracting £ from the n, values x;’s which are greater than £. In this
way, we can think of Ige,e) RN ng,/) as a sample from the excess distribution above

¢ and the excess function e(¢) can be estimated by the empirical mean

— 1~ (e
)= —S 2l 232
al) = -3 = (232)
7j=1
Formula (2.31) shows that, when the sample :cge’e), . ,xslel’z) comes from a GPD,

then the empirical estimate of the mean excess function given by formula (2.32)
should be approximately linear in the level /.

We now state in a rather informal way, the main theoretical result of this section.
It is known as the Balkema-de Hann-Pickands theorem. It is in the same vein as the
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main result of the block maxima approach presented in the previous section. How-
ever, the practical estimation procedure which it leads to makes a more parsimonious
use of the data, hence the reason of its success with practitioners.

Theorem 3. The distribution of the block maxima M,, converge toward a GEV with
shape parameter £ if and only if the excess distribution Fy(x) over a level £ converges
uniformly in x as ¢ increases, toward a GPD with shape parameter £ and a scale
parameter possibly varying with .

The above result is at the root of the Peaks Over Threshold (POT for short) method
described below. In particular, it has the following consequence. If the excess dis-
tribution Fy(z) is essentially a GPD with shape parameter £, then the mean excess
function over the levels higher than ¢ should be approximately linear. This justifies
the use of the mean excess plot as a diagnostic for the POT approach. This plot is
obtained by graphing the couples

(), en(5))j=1, n (2.33)

of the empirical estimate of the mean excess function computed at the sample values.
Except for the expected fact that the right most points may be randomly varying
because of the smaller number of exceedances used to compute the mean excess
estimate, this plot should show a linear trend in case the Balkema-de Hann-Pickands
theorem holds. We shall use this graphic diagnostic extensively in what follows.

2.3.1.1 Peaks Over Threshold Modelling

We now explain how the theoretical facts reviewed above can be used to estimate the
tail of a distribution function which behaves like a GPD beyond a certain threshold.
So, if we remember the disappointing results obtained in Sect. 2.2.3 when we tried to
fit a GPD to the whole PCS data, the main difference is that instead of forcing a GPD
on the entire range of the random samples, we only fit a GPD to the large values in
the sample. This seemingly innocent difference will turn out to have drastic effects
on the usefulness of the estimates.

As usual we describe the statistical procedure starting from a sample z;,--- , z,
of realizations of random variables X7, --- , X,, which we assume to be indepen-
dent and with the same cdf F'. Our main assumption will be that the Balkema-de
Haan-Pickands result stated above as Theorem 3 applies to this distribution. In other
words, this common distribution gives rise to a distribution of block maxima con-
verging toward a GEV with shape parameter £. The theory presented in the previ-
ous section says that this shape parameter ¢ determines the size of the upper tail
of the distribution, and controls the size and the frequency of the extreme values
occurrences.

e The first step is a graphical check that the method is appropriate for the data at
hand. Based on the rationale identified in the previous subsection, we check that
we are dealing with a generalized Pareto distribution by checking that the mean
excess plot is mostly linear (except may be for the few right most points).
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e Now, according to Balkema-de Haan-Pickands theorem, for each threshold ¢ high
enough, the sample Ige,e) R ng,/) of exceedances over the level £ form a sam-
ple from a distribution which is uniformly close to a GPD with shape parameter
¢ and a scale parameter A = A({) which may depend upon £.

e Using this sample of exceedances, we estimate the shape and scale parameters &
and A by the method of L-moments, or by maximum likelihood. Let us denote by
é the estimate of the shape parameter and by X the estimate of the scale parameter.
Note that the location estimate is irrelevant since we consider only exceedances,
so the location parameter is necessarily 0.

e The final estimate of the unknown cdf above the level ¢ is then given by the
formula

. g x— 0\ ¢
F(x)—l——<1+£ - ) . x> (2.34)
n A
The rationale for this estimate is the following. If x > ¢ we have

1 - F(z) = P{X > z|X > (}P{X > ¢}
—P{X — >z — (X > (}(1 - F(0))
=1 - F(z-10))1-F() (2.35)

from which the choice of formula (2.34) is now clear. The factor 1 — F'(¢) ap-
pearing in the right hand side of (2.35) is estimated empirically by the ratio n,/n
giving the empirical frequency of the exceedances. This is usually a reasonable
estimate since by definition of the tail of a distribution, most of the data values
in the sample are below the level ¢. The estimate of the first factor of (2.35) is
taken from the fact that the sample of exceedances above ¢ is a sample from a
GPD whose shape and scale parameters have been estimated.

This estimation strategy is extended in the next subsection to handle the estima-
tion of entire distributions.

2.3.2 Semi Parametric Estimation

After reviewing the classical parametric and non-parametric methods of density
estimation, we introduce our method of choice to estimate heavy tail distributions.

By definition of the tails of a distribution, most of the sample values do bundle up
in the center or bulk of the distribution. On this part of the domain, the density and
the cumulative distribution functions can efficiently be estimated by non-parametric
methods. Appealing again to the definition of the tails of a distribution, one knows
that observations in the tails, even if they end up being extreme, may not be plentiful,
and as a consequence, parametric estimation methods will make a better use of the
scarce data. This is exactly the philosophy promoted by the POT approach: identify
a threshold to the left of which the distribution can be estimated non-parametrically,
and beyond which it is estimated parametrically.
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Remark: Going beyond the Data. Another advantage of the parametric estimation
of the tails is the possibility to go beyond the data. Indeed, non-parametric meth-
ods are limited by the scope of the data. Except for minor leakage produced by the
smoothing of kernel-like methods, (especially when the bandwidth is too large) a
non-parametric estimate of a distribution will not assign probability to values which
are not part of the sample (i.e. have not been observed in the past). So in terms of ex-
treme events, nothing more extreme than what has already been observed will carry
any probability: so non-parametric methods cannot foresee events more extreme than
those that have already been observed. Parametric methods can. Indeed, having used
the data at hand to estimate the shape parameter &, the density estimate will extend
beyond the most extreme observed data values, and extreme events will be given a
positive probability (depending on the estimate of &) even if they never occurred in
the past.

Identifying the Tails. Before getting into the gory details of the estimation proce-
dures, the first question to address is:

where does the center of the distribution end, and where do the tails start?

As in most cases, common sense will be required to make sure that poor choices
do not bias the estimates of the shape parameters in a significant way. The POT im-
plementation of £it . gpd can be used without having to make this delicate choice.
If values of the thresholds are not provided, the program uses values which guar-
antee that the tail contains 15 % of the points when the data set is small, and 150
observations when the original data set is large. But we should be clear on the fact
that there is no panacea, and that any automatic threshold choice will fail from time
to time. The solution we recommend is to use the plots provided by the function
shape.plot to choose the thresholds.

As we shall see throughout the remainder of this chapter, the results of many
analyzes depend upon the choices of these thresholds. So we encourage the reader
to get a sense of the sensitivities of his or her results with respect to the choices
of the thresholds. To this effect we propose an enlightening simulation example in
Problem 2.8 below. It was designed for pedagogical reasons to illustrate the pos-
sible biases in the estimates of the tail shape parameters with poor choices of the
thresholds. We show that the POT method can fail in two ways: either by not in-
cluding enough observations in the tail (this is typically the case when the absolute
value of the threshold is too large), or by including too many observations from the
center of the distribution in the tails when the absolute value of the threshold is not
large enough. This simulation example also shows that the graphical diagnostics of-
fered by the function shape . plot are our best weapon against the dangers of poor
threshold choices.

2.3.2.1 The POT Strategy

We first recall the main steps in this strategy to estimate the tail(s) of a distribution.
We concentrate on the upper tail for the sake of definiteness. Let X be a random
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variable with distribution F'x, let x1, x2, . . . , ,,, be arandom sample of observations
of X, and let Ty S x2) < .. Sy be its order statistics. We assume that we
already gathered evidence (usually from descriptive statistics and plots such as Q-
Q plots) that the tail of the distribution is of a generalized Pareto type. Not only
does that implies that Fx is in the domain of attraction of a GEV distribution in the
sense that the distributions of properly normalized block maxima converge toward a
GEV distribution, but the POT theory does also apply. In other words, we can use
the fact that, provided the level ¢ is appropriately chosen, the conditional distribution
of excesses over £ can be closely approximated by a GPD:

Fx({+x)— Fx(¢)

Fz(x) = ]P){X <z +£|X > Z} = 11— FX(E) ~ szo)\(g),g(it).

As explained in formula (2.34), given a threshold level ¢, Fx (z) is estimated by a
non-parametric empirical cdf for x < ¢, and by a GPD for « > ¢. To be specific, we
choose the estimate

if T(4) <z < T(i+1) and z < /|
F(x) = ¢ 1/k
(@) 12 (1 D) if >,

where 7, is the number of points greater than ¢ in the sample. This estimate is im-
plemented in the function £it . gpd of the package Rsafd. Strictly speaking, the
above non-parametric part is implemented in the way described above when the op-
tional parameter 1inear is set to FALSE. If 1inear = TRUE, then F(x) is lin-
early interpolated for x < ¢.

Moreover, as we can see from a quick look at the explanations in the help file, this
function can handle distributions with two tails. In that case, instead of one single
level ¢, we need to identify two thresholds which we call upper and lower. The
non-parametric estimation of the cdf is now restricted to the interval limited by the
thresholds 1lower and upper. Furthermore, the exceedances above the threshold
upper are used as described above to estimate the shape parameter of the upper
tail, while similarly, the excursions below the threshold 1ower are treated in the
same way to estimate the shape parameter of the lower tail. Obviously the two shape
parameter estimates can be different, this is a result of the flexibility of the method
of estimation.

2.3.3 The Example of the PCS Index Revisited

We now revisit the estimation of the distribution of PCS . index already considered
in Sect.2.2.3 where we attempted to fit a one-sided ordinary Pareto distribution.
Here, we try to fit a GPD with the tools of the library Rsafd. As noticed at the start
of Sect.2.3.2, the first order of business is to choose a cut-off value to separate the
tail from the bulk of the distribution. This choice should be driven by the following
two seemingly contradictory requirements. The cut-off point should be large enough
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so that the behavior of the tail is homogeneous beyond this threshold. But at the same
time, it should not be too large, as we need enough data points beyond the threshold
to guarantee a reasonable estimation of ¢ by the POT method. For the sake of the
discussion, we make a specific choice without justification, leaving the discussion of
areasonable procedure to choose the threshold to our explanations about the function
shape.plot later in this subsection.

> PCS.est <- fit.gpd(PCS.index, tail="upper", upper=4)

This command creates an object PCS . est of class gpd which contains all we need
to know about the estimation results. As a side effect, it also generates a plot. We
reproduce the latter in Fig.2.8. We shall also give examples of ways to extract in-
formation from the objects thus created. We used the parameter tail="upper"
because the distribution does not have a lower/left tail (remember that all the values
of the index are positive). According to our earlier discussion of the mean excess
plots, the fact that the points appearing in the left part of the plot in Fig. 2.8 are es-
sentially in a straight line is an indication that a generalized Pareto distribution may
be appropriate.

Upper Tail
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| |
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Excess over threshold
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|
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GPD Quantiles, for xi = 0.80277830597858

Fig. 2.8. Mean excess plot from the use of the function £it . gpd on the PCS index data

Plotting an object of class gpd with the command plot (PCS.est) would
produce four plots: a plot of the excesses, a plot of the tail of the underlying distri-
bution, and also a scatterplot and a Q-Q plot of the residuals. Since we are mostly
interested in the second of these plots, we use instead the command tailplot to
visualize the quality of the fit. For the sake of illustration we run the commands:

> tailplot (PCS.est)

and reproduce the result in the bottom pane in Fig.2.9. Notice that the vertical
axis is for the survival function 1 — F(z), instead of the cdf F'(z). The use of the
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option optlog forces R to use the natural scale instead of the logarithmic scale
which is used by default. This is done for the first plot reproduced on the top of
Fig.2.9. Unfortunately, the curve sticks very early to the horizontal axis and it is ex-
tremely difficult to properly quantify the quality of the fit. In other words, this plot
is not very instructive. It was given for illustration purposes only. Plotting both the
values of the index, and the values of the survival function on a logarithmic scale
makes it easier to see how well (or possibly how poorly) the fitted distribution gives
an account of the data. The second command (using the default value of the param-
eter optlog) gives the plot of the survival function in logarithmic scales. Both
plots show that the fit is very good. Our next inquiry concerns the value of the shape
parameter £. Remember that this number is what controls the power decay of the
density in the tail of the distribution at co. The choice of a threshold indicating the
beginning of the tail, forces an estimate of £. The value of this estimate is printed
on the plot produced by the function £it . gpd and it can be read off Fig. 2.8. Since
the location parameter is passed to the function as the (upper) threshold determin-
ing the beginning of the tail, only two parameters are fitted. The estimated values
for the parameters are included in the object PCS. est and can be extracted in the
following way:

> PCS.est@upper.par.ests
lambda xi
4.5014927 0.8027783,

the command Supper .par.ests [2] giving the single shape parameter x1i.

1-F(x)
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Fig. 2.9. Plot of the tail of the GPD fitted to the PCS data together with the empirical tail given
by the actual data points, in the natural scale (fop) and in logarithmic scale (bottom)
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Changing the value of the threshold upper in the call of the function £it . gpd
changes the value of the estimate of &, so we should be concerned with the stability
of the result: we would not want to rely on a procedure that is too sensitive to small
changes in the choice of the threshold. Indeed, since there is no obvious way to
choose this threshold, the result of the estimation of the shape parameter should
remain robust to reasonable errors/variations in the choice of this threshold. The best
way to check that this is indeed the case is graphical. It relies on the use of the
function shape . plot which gives a plot of the estimates of the shape parameter £
as they change with the values of the threshold used to produce these estimates. The
command:

> shape.plot (PCS.index)

produces a plot of all the different estimates of £ which can be obtained by varying
the threshold parameter upper. This plot is reproduced in Fig.2.10. The leftmost
part of the plot should be ignored because, if the threshold is too small, too much
of the bulk of the data (which should be included in the center of the distribution)
contributes to the estimate of the tail, biasing the result. The rightmost part of the plot
should be ignored as well because, if the threshold is too large, not enough points
contribute to the estimate. A horizontal axis was added to the upper part of the plot to
give the percentage of points included in the estimate. This information is extremely
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Fig. 2.10. PCS data shape parameter £ (vertical axis) as function of the upper threshold (lower
horizontal axis) and the corresponding percentage of point in the subsequently defined tail
(upper horizontal axis)



106

2 HEAVY TAIL DISTRIBUTIONS

useful when it comes to deciding whether one should take seriously some of the
estimates of & which appear on the left and right ends of the plot. The central part of
the graph should be essentially horizontal (though not always a straight line) when
the empirical distribution of the data can be reasonably well explained by a GPD.
This is indeed the case in the present situation, and a value of £ = 0.8 seems to be
a reasonable estimate for the intercept of a horizontal line fitting the central part of
the graph. Also from this plot we see that the particular choice upper=4 we made
for the location threshold gives a tail containing approximately 10 % of the sample
points, which gives a sample of size 38 (since the size of the vector PCS. index is
381) for the estimation of the scale and shape parameters A and £ which is reasonable.

Our last test of the efficiency of our extreme value toolbox is crucial for risk
analysis and stress testing of stochastic systems suspected to carry extreme rare
events. It addresses the following important question: can we generate random sam-
ples from a generalized Pareto distribution fitted to a data set? The function ggpd
was included in the library Rsafd for the sole purpose of answering this ques-
tion. If X is a vector of numerical values, and gpd.object is a gpd.object, then
ggpd (gpd.object, X) gives the vector of the values computed at the entries
of X, of the quantile function (i.e. the inverse of the cdf) of the GPD whose
characteristics are given by gpd.object. If we recall our discussion in Chap. 1
of the way Monte Carlo samples from a given distribution can be generated if one
can evaluate the quantile function, we see that, replacing the numerical vector X by a
sample from the uniform distribution will give a sample from the desired distribution.
We now show how this is done in the case of the PCS index. The command

> PCSsim <- ggpd(PCS.est,runif (length (PCS.index)))

produces a random sample of the same size as the original PCS data from the GPD
fitted to the data. The plots produced by the following commands are reproduced in
Fig.2.11.

par (mfrow=c(1,2))

plot (PCS[,1],PCS.index)
plot (PCS[,1],PCSsim)
par (mfrow=c(1,1))

vV V. V V

When the R function plot is called with a couple of numerical vectors with the
same numbers of rows say n, as arguments, it produces a plot of n points whose
coordinates are the entries found in the rows of the two vectors. Putting next to each
other the sequential plots of the original data, and of this simulation, shows that our
simulated sample seems to have the same statistical features as the original data. This
claim is not the result of a rigorous test, but at this stage, we shall consider ourselves
as satisfied! See nevertheless Problem 2.4 for an attempt at quantifying the goodness
of fit.

2.3.4 The Example of the Weekly S&P Returns

The following analysis is very similar to the previous one, the main difference being
the presence of two tails instead of one. We include it in the text to show the details
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Fig. 2.11. PCS original data (left) and simulated sample (right)

of all the steps necessary to perform a complete analysis in this case, i.e. when the
distribution is unbounded both from above and below. We choose the thresholds
designating the end points of the tails from the output of the function shape .plot.
From the results of the command:

> shape.plot (WSPLRet, tail="two")

reproduced in Fig.2.12 we see that 0.02 and —0.02 are reasonable choices for the
upper and lower thresholds to be fed to the function £it . gpd. So the fundamental
object of the fitting procedure is obtained using the command:

> WSPLRet.est <- fit.gpd(WSPLRet, lower=-0.02,upper=0.02)

Notice also that the shape plots in Fig. 2.12 confirm the differences in the sizes of the
left and right tails: the frequency and the size of the negative weekly log-returns are
not the same as the positive ones. The threshold parameters 1lower and upper do
not have to be given “opposite” values, i.e. they do not need to have the same absolute
values. This is likely to be the case for symmetric distributions, but it does not have
to be the case in general. Finally, notice that we did not have to set the parameter
one.tail by including one . tail=FALSE in the command because this is done
by default. The above command produced the two plots given in Fig. 2.13.

Both sets of points appear to be essentially in a straight line, so a generalized
Pareto distribution is a reasonable guess. Notice that the two estimates of the shape
parameter £ are not the same. The estimates obtained from the particular choices of
the threshold parameters 1ower and upper are ¢ = 0.24 and &4,y = —0.01.
If the distribution is not symmetric, there is no special reason for the two values of
¢ to be the same, in other words, there is no particular reason why in general the
polynomial decays of the right and left tails should be identical! As before, we can
check visually the quality of the fit by superimposing the empirical distribution of
the points in the tails onto the theoretical graphs of the tails of the fitted distributions.
This is done with the command:
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Fig. 2.12. Values of the shape parameter £ for the right tail (fop) and left tail (bottom) of the

distribution

of the weekly log-returns of the S&P 500 index, as functions of the values of the

thresholds marking the ends of the tails
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Fig. 2.13. Mean excess plots for the right/upper tail (fop) and left/lower tail (bottom) resulting
from the fit of a GPD distribution to the weekly S&P log-return data
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Fig. 2.14. Plot of the tails of the GPD fitted to the WSPLRet data together with the empirical
tails given by the actual data points, for the upper tail (fop) and the lower tail (bottom)

> tailplot (WSPLRet.est,tail="two")

which produces the plots given in Fig. 2.14, showing the results (in logarithmic scale)
for both tails. Using the quantile function ggpd (WSPLRet .est, . ) as before,
we can generate a sample of size N from the fitted distribution with the command:

> WSPLRetsim <- ggpd (WSPLRet.est,runif (N))

APPENDIX: RISK MEASURES: WHY AND WHAT FOR?

The goal of this appendix is to give a more mathematical account of the notion of
measure of risk as it emerged in the development of mathematical models for appli-
cations in the financial and insurance industries.

Historically, and especially in the financial and insurance industries, risk has been
equated to the size of the fluctuations of random outcomes as quantified by the stan-
dard deviations of these outcomes. Markowitz’ mean-variance portfolio theory is the
epitome of such a risk-reward modelling. In line with our introduction of the value
at risk, the modern approach to risk measure is based on efforts to quantify capital
requirements of financial institutions, and risk measures are now used as yardsticks
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for insurance underwriting, to allocate capital, to identify prudent investment strate-
gies and acceptable future net worths. It is now a commonly accepted view that one
should think of a risk measure as a way to estimate the

minimum extra capital which makes the future position acceptable.

Axiomatic Set-Up

The basic objects of the theory are random quantities intended to describe all the
states of nature at a future date (for example the future values of a portfolio). The
possible outcomes of these random variables represent the scenarios which could oc-
cur depending upon market changes and other random events. The set of acceptable
positions and portfolios is decided by the regulator (states of the world requiring
government resources — guarantor of last resort), an exchange or clearing firm, the
investment manager in charge of the portfolio, the board of Directors, etc. For the
purpose of illustration of the importance of heavy tail distributions in the quantifica-
tion of risk, we use a very simple model in order to capture some of the most im-
portant stylized facts needed to make our point. We only consider one period static
models and we denote by {2 the set of all possible outcomes/scenarios. A risk X is a
function on (2 giving the possible values X (w) of a position at the end of the period.
The set A of acceptable risks is a subset of the set of risks satisfying a set of axioms
which will be articulated later, and a risk measure p is a function associating a real
number p(X') to each risk X. The interpretation of p(X) is captured in the following
bullet points:

o Ifp(X) > 0, p(X) is the minimum extra cash one has to add to the position (and
invest prudently in the instrument) in order to make the position acceptable;

e If p(X) < 0, as much as —p(X) can be withdrawn from the position without
making it unacceptable.

With this interpretation in mind, the following theoretical properties become natural:

e Shift Invariance for all real number m and X
p(X +m) = p(X) —m

Intuitively, this axiom means that adding cash to a position reduces the risk by
the same amount;
e Monotonicity for all X; and X»

if Xl S X2 then p(XQ) S p(Xl)

Intuitively, this condition means that the higher the value of the asset or portfolio,
the smaller the risk;
e Convexity for all X; and X5 and real numbers A\; > 0 and A2 > 0 such that
A+ =1,
P(AM X1+ A X2) < Aip(X1) + Aop(X2)
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This last axiom has a clear geometric interpretation. Financially speaking, this
axiom has a very important consequence: it implies that a measure of risk sat-
isfying this axiom should encourage diversification as the risk of an aggregate
portfolio (in the left hand side of the above inequality) is lower than the aggrega-
tion of the risks of the individual components (the above right hand side).

In modern textbooks on quantitative risk management, a risk measure satisfying
these four axioms is called a convex risk measure.

First Example

After choosing a benchmark instrument whose returns over the given horizon we
denote R and a set P of probabilities (agent beliefs) on the set {2 of outcomes, for
each (random variable) risk X we set:

pp(X) = sup Ep{—X/R}

The interpretation of pp(X) is the following: for a given risk X, pp (X)) represents
the worst expected discounted loss computed from an a priori set of beliefs. So-
defined, pp(X) is a coherent measure of risk.

Second Example: Value at Risk (VaR)

We jump in directly to the formal definition of a mathematical notion of value at risk,
referring to the discussion of Sect. 1.1.3 in Chap. 1 for a discussion of the practical
applications leading to the abstract definition in terms of quantile of a distribution.
Given a probability level p € (0,1), the value at risk VaR, (at level p and for the
given horizon) of the final net worth X is the negative of the 100p percentile of X

VaR,(X) = —inf{x; P{X <z} > p}

Clearly this measure of risk is given by the amount of capital needed to make the
position X acceptable with probability 1 — p if acceptability is understood as being
positive. Value at Risk is widely used as internal risk control (in accordance with
Basel I), however in practice, it is not clear which probability to use in order to
compute the percentile quantifying the risk: should one use a quantile estimated from
historical data, or should one use a probability model calibrated to be risk neutral?
This is only one of the very many practical problems associated with the use of VaR
as a measure of financial risk.

In order to emphasize the dramatic effect that the choice of a particular distri-
bution can have, we recall the comparison of the percentiles of two distributions
presented given in Chap. 1. Choosing the probability level p = 2.5 % for the sake
of definiteness, if a portfolio manager assumes that the P&L distribution is Gaus-
sian, then she will report that the value at risk is 1.96 (never mind the units, just
bear with me), but if she assumes that the P&L distribution is Cauchy, the reported
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value at risk will jump to 12.71. Quite a difference!!! This shocking example il-
lustrates the crucial importance of the choice of a model for the P&L distribu-
tion. As we just proved, this choice is not innocent, and as a consequence, open to
abuse.

VaR Computation from Empirical Data

For the sake of illustration, we give a simple example based on data already analyzed
in this chapter. We shall discuss less stylized and less contrived examples in Chap. 3
next. Even in this simple situation, several avenues are possible:

One can use empirical VaR given by the empirical estimate of the percentile;
One can also assume that the portfolio returns are reasonably explained by a Gaussian
model in which case we
— Estimate the mean and the variance of the sample returns;
— Compute the quantile of the corresponding Gaussian cdf;
e Finally, one can also use the tools developed earlier in the chapter to fit heavy tail distri-
butions, in which case we
— Fita GPD to the returns;
— Compute the quantile of the estimated distribution.

To illustrate the differences between these three procedures on a specific exam-
ple, we choose the weekly S&P 500 log return data already studied in this chap-
ter. The numerical results reported in Table 2.3 were obtained by running the
commands:

> -quantile (WSPLRet, 0.01)
> -gnorm(0.01, mean=mean (WSPLRet) , sd=sd (WSPLRet) )
> -ggpdt (WSPLRet.est,0.01)

Empirical quantile Gaussian model GPD model

VaRo.01 0.05582396 0.0471736 0.0582578

Table 2.3. One week 1 % Values at Risk from the S&P 500 index data

Clearly VaR computed under the Gaussian hypothesis is the smallest of the three,
offering the most optimistic vision of the risk over a period of one week. The most
conservative vision is offered by the fit of a GPD to the weekly returns, while the
empirical VaR is reasonable because of the large size of the data set and the presence
of a few crashes. The reader is encouraged to rerun this analysis with data prior to
October 1987 to understand the role of the semi-parametric fitting procedure in the
estimation of the tail of the distribution.

The above example is still rather academic as most practical situations involve
multiple underlying instruments (baskets including stocks, bonds, and derivatives)
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or even aggregations at the fund or company level of the risk profiles of many desks
or business units. The estimation is more difficult in this case. Indeed, as we shall
see in the next chapter, estimating separately the risks of the individual desks or
units does not help much in deciding how to aggregate these risks while integrating
their interdependencies. This is a very touchy business and except for the Gaussian
case for which one can perform analytic computations, not many tools are available
and we will rely on the theory of copulas developed in Chap. 3 and on Monte Carlo
computations. In any case, we want to issue the following warning: Using a Gaus-
sian computation when heavy tails are present GROSSLY UNDERESTIMATES the
value at risk!

Troubling Example

We illustrate the main shortcomings of VaR with an example which, despite its rather
artificial nature, captures well the features of VaR which we want to emphasize. Let
us assume that the short interest rate is zero, that the spread on ALL corporate bonds
is 2 %, and that corporate bonds default with probability 1 %, independently of each
other. First scenario We assume that 1,000,000 is borrowed at the base rate and
invested in the bond of a single company. In this case:

VCLR().05 = —20,000

in other words, there is no risk. Second scenario Now let us assume that searching
for risk diversification, the same type of investment is set up so that 1,000,000 are
borrowed at the base rate and invested in equal parts in the bonds of 100 different
companies. Then

P{at least two companies default} > 0.18

So P{X < 0} > 0.05 and consequently VaRg o5(X) > 0 and the portfolio now
appears to be risky. In conclusion we see that

e VaR did not detect over-concentration of risk
e VaR did not encourage (in fact, it sometimes discourages) diversification

Summarizing the shortcomings of VaR we see that

e At the intuitive level VaR only captures the minimal size of a “one in a hun-
dred” event, and highlights merely the best of the rare extreme events to be
feared;

e At the mathematical level, VaR is not sub-additive, so VaR is not a convex mea-
sure of risk as it does not encourage diversification.

Conditional Value at Risk (CVaR) and Expected Shortfall (ES)

Despite its popularity, VaR’s not encouraging diversification pushed academics and
some practitioners to design and adopt risk measures free of this shortcoming. The
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natural candidate for taking over VaR is the Expected Short Fall which, while keep-
ing the spirit of VaR in considering only rare losses, takes into account the actual
sizes of these losses, something that VaR does not do. This measure of risk is also
called TailVaR or Tail Conditional Expectation

For a given probability level p, the shortfall distribution is the cdf @), defined by:

O,4(z) = P{X < z|X > VaR,}. (2.36)

This distribution is just the conditional loss distribution given that the loss exceeds
the Value at Risk at that level. The mean or expected value of this distribution is
called the expected shortfall, and is denoted by £S,,. Mathematically, /S, is given
by:

1
ES, =E{X|X >VaR,} = /xd@p(x) = —/ xdF(x). (2.37)
4 Jz>VaR,

It gives the expected loss size given that the loss is more extreme than VaR at the
same level. Defined this way, it fixes most of the problems of VaR

e At the intuitive level, the sizes of the losses are taken into account,
o At the theoretical level it can be proven that it is essentially a coherent measure
of risk.

A good part of risk analysis concentrates on the estimation of the value at risk Va Rz,
and the expected shortfall .S, of various portfolio exposures. The main difficulty
comes from the fact that the theoretical cdf F' is unknown, and its estimation is ex-
tremely delicate since it involves the control of rare events. Indeed, by the definition
of a tail event, very few observations are available for that purpose. More worrisome
is the fact that the computation of the expected shortfall involves integrals which, in
most cases, need to be evaluated numerically.

PROBLEMS

@ Problem 2.1 Explain (in two short sentences) the conflicting conditions which you try to satisfy
when choosing the threshold in fitting a GPD to the tail of a distribution using the POT (Peak
over Threshold) method.

@ Problem 2.2

1. For this first question we assume that X is a random variable with standard Pareto dis-
tribution with shape parameter & (location parameter m = 0, scale parameter A = 1).
1.1. Give a formula for the c.d.f. of X. Explain.

1.2. Derive a formula for the quantile function of X.
1.3. How would you generate Monte Carlo samples from the distribution of X if you only
had a random generator for the uniform distribution on [0, 1] at your disposal?
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Give a formula for the density fy (y) of a random variable Y which is equal to an ex-
ponential random variable with mean 2 with probability 1/3 and to the negative of a
classical Pareto random variable with shape parameter £ = 1/2 (location m = 0 and
scale \ = 1) with probability 2/3. Explain.

How would you generate Monte Carlo samples from the distribution of Y ?

@ Problem 2.3 In this problem, we study the loss distribution of a portfolio over a fixed period
whose length does not play any role in the analysis. Loss is understood as the negative part of
the return defined as L = max(—R,0). We assume that a fixed level o € (0, 1) is given, and
we denote by VaR the Value at Risk (VaR) at the level o of the portfolio over the period in
question. In the present context, this VaR is the 100(1 — «)-percentile of the loss distribution.
This is consistent with the definition used in the text. The purpose of the problem is to derive
a formula for the expected loss given that the loss is assumed to be larger than the value
at risk.

1.

For this question, we assume that the loss distribution is exponential with rate r.

1.1. Give a formula for the c.d.f. of L. Explain.

1.2. Derive a formula for VaR.

1.3. Give a formula for the expected loss given that the loss is larger than V a R. Recall
that, if a random variable X has density f, its expected value given the fact that X
is greater than or equal to a level xg is given by the formula

1 > , S af(x)dz
m/zo :rf(:r)dx, or equivalently W

. For this question, we assume that the loss distribution is the standard Pareto distribution

with shape parameter &, location parameter m = 0 and scale parameter A = 1.
2.1. Give a formula for the c.d.f. of L. Explain.

2.2. Derive a formula for VaR,,.

2.3. Give a formula for the expected loss given that the loss is larger than V aR,,.

. The expected short fall (also known as the conditional VaR) at the level « is the expected

loss conditioned by the fact that the loss is greater than or equal to VaRq. The goal of

this question is to quantify the differences obtained when using it as a measure of risk in

the two loss models considered in questions 1 and 2.

3.1. For each o € (0,1), derive an equation that the rate parameter r and the shape
parameter & must satisfy in order for the values of VaRn computed in questions 1.2
and 2.2 to be the same.

3.2. Assuming that the parameters v and & satisfy the relationship derived in question 3.1
above, compare the corresponding values of the expected short fall in the models of
questions 1 and 2 and comment on the differences.

@ Problem 2.4 This problem attempts to quantify the goodness of fit resulting from our GPD
analysis of samples with heavy tails.

1.

Use the method described in the text to fit a GPD to the PCS index, and generate a Monte
Carlo random sample from the fitted distribution five times the size of the original data
sample.

Produce a Q-Q plot to compare graphically the two samples and comment.
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4.

Use a two-sample Kolmogorov-Smirnov goodness-of-fit test to quantify the qualitative
results of the previous question. NB: Such a test is performed in R with the command
ks .test. Check the help files for details on its use and the returned values.

Same questions as above for the weekly log-returns on the S&P data.

@ Problem 2.5 This problem uses the data set PSPOT included in the library Rsafd. The entries

of this vector represent the daily Palo Verde (firm on peak) spot prices of electricity between
January 4, 1999 and August 19, 2002. Use exploratory data analysis tools to argue that the
tails of the distribution are heavy, fit a GPD to the data, and provide estimates of the shape
parameters.
NB: We usually refrain from talking about the distribution of a financial time series, reserving
fitting a distribution to the returns instead of the entries of the original series. You are asked
to do just that in this problem. Even though an analysis of the returns in the spirit of what is
done in the text would make perfectly good sense, a look at a time series plot of PSPOT shows
a form of stationarity of the data (to be explained later in the book) justifying the analysis
asked of you in this problem.

@ Problem 2.6 This problem requires the data set DSP. The entries of this numeric vector rep-
resent the daily closing values of the S&P 500 index between the beginning of January 1960
and September 18, 2001.

1.
2.

Compute the vector of log-returns and call it DSPLRet.

We now use the data set MSP. The entries of this numeric vector represent minute by
minute quotes of the S&P 500 on September 10, 1998. Compute the corresponding log-
return vector and call it MSPLRet.

Produce a Q-Q plot of the empirical distributions of the two log-return vectors, and com-
ment. In particular, say if what you see is consistent with the claim that the properties of
the daily series are shared by the minute by minute series. Such an invariance property is
called self-similarity. It is often encountered when dealing with fractal objects.

Compute the empirical means and variances of the DSPLRet and MSPLRet data. As-
suming that these data sets are Gaussian, would you say that the two distributions are the
same in view of these two statistics?

Fit GPDs to the DSPLRet and MSPLRet data, and compare the distributions one more
time by comparing the shape parameters.

@ Problem 2.7 This problem deals with the analysis of the daily S&P 500 index closing values.

1.

Create a vector DSPRET containing the daily raw returns. Recall that the raw return on
a given day is the difference between the value on that day and the day before divided
by the value on the previous day. Compute the mean and the variance of this daily raw
return vector.

. Fit a GPD to the daily raw returns, give detailed plots of the fit in the two tails, and

discuss your results.

. Generate a sample of size 10,000 from the GPD fitted above. Call this sample SDSPRET,

produce a Q-Q plot of DSPRET against SDSPRET, and comment.

. Compute the VaR (expressed in units of the current price) for a horizon of 1 day, at the

level o = 0.005 in each of the following cases:

4.1 Assuming that the daily raw return is normally distributed;

4.2 Using the object of class gpd which you created in question 2 to fit a GPD distribu-
tion to the data;
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4.3 Using the Monte Carlo sample SDSPRET you generated.
Explain the differences and the similarities between the three estimates of the VaR so
obtained.

5. Redo the questions above after replacing the vector DSP with the vector SDSP containing
only the first 6,000 entries of DSP. Compare the results, and especially the VaR’s. Explain
the differences.

@ @ Problem 2.8 The goal of this problem is to highlight some of the properties of the estimates
obtained with the command £1it . gpd when fitting a GPD to a data sample x1,- - - , x,. We
assume that the distribution of the data has two tails (one extending to —oo and the other
one to +o0), and we are interested in understanding the effect of the choice of the thresholds
lower and upper.

Remember that a distribution with an upper tail is a GPD if its density f(x) is well approxi-
mated in the tail by a function of the form

_ (14
1 T m) (1+§+)

f5+»m+,k+($)=m + W (2.38)

at least when x > m for some large enough threshold m., where A is interpreted as a
scale parameter, and where £ > 0 is called the shape parameter governing the size of the
upper tail. If the distribution has a lower tail, one requires a similar behavior for x < m_ for
possibly different parameters m—_, A\_ and &_.

For the purpose of the problem, we assume that the true density of the sample x1,--- , xp
is given in Fig.2.15. It is exactly equal to the function fe, m, x, (x) for x > 2 with
mq = 2 and some value £+ > 0 (to be estimated), and equal to the corresponding func-
tion fe_ m_x_(x)forx < =2 withm_ = —2 and some {— > 0 (to be estimated as well).

04

03

01

0.0

T T T T
-5 0 5 10

Fig. 2.15. Density of the GPD from which the sample x1, - - - , z,, is generated

1. What should you expect from the estimate éJr given by the function £it .gpd if you use
a threshold upper
1.1. Exactly equal to 2.
1.2. Greater than 5.
1.3. Between 0 and 1.
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2. What should you expect from the estimate é _ given by the function £it .gpd if you use
a threshold 1ower
2.1. Exactly equal to —2.
2.2. Smaller than —8.
2.3. Between 0 and —1
and in each case, say how the estimate 7o.01 of the 1 percentile compares to the true
value 70.01.

NOTES & COMPLEMENTS

What distinguishes our presentation of exploratory data analysis from the treatments of similar
material found in most introductory statistics books, is our special emphasis on heavy tail
distributions. Mandelbrot was presumably the first academic to stress the importance of the
lack of normality of the financial returns. See [64, 65], and also his book [66]. He proposed
the Pareto distribution as an alternative to the normal distribution. The theory of extreme
value distributions is an integral part of classical probability calculus, and there are many
books on the subject. We refer the interested reader to [29] because of its special emphasis
on insurance applications. In particular, the discussion given in the Notes & Complements
section of Chap. 1 of a possible mathematical model for the PCS index dynamics fits well in
the spirit of [29].

The Fisher-Tippett theory reviewed in this chapter was enhanced and brought to the level
of a complete mathematical theory in the fundamental works of Gnedenko. Many textbooks
give a complete account of this theory. We refer the reader to the books of Leadbetter, Lind-
gren and Rootzen [63], Resnick [79] and Embrechts, Kliippelberg and Mikosch [29]. This
last reference emphasizes the notion of maximum domain of attraction to delineate which
distributions give rise to block maxima convergence, after proper normalization, toward a spe-
cific GEV distribution. This more modern point of view is also chosen in the more recent
account of McNeil, Frey and Embrechts [72]. There are other reasons why a reader interested
in the applications of the block maxima method should consult this text. Indeed, he or she will
find there a detailed discussion of the effects of dependencies upon the estimates of the shape
of the tail. These dependencies occur in two different and non-exclusive ways: as temporal
correlation already contained in the data, or as artifacts of the overlap of blocks. Both these
issues are addressed and further references to the relevant literature are given.

The block maxima approach to the estimation of extremes has its origin in hydrology
where extreme value theory was used to study and predict flood occurrences. There the shape
parameter ¢ is replaced by its negative k = —&. The package Rsafd gives the user the option
to choose which parametrization of the GEV distributions and GPD’s he would rather work
with by setting a global variable SHAPE.XI to TRUE or FALSE. We did not mention the
k-parametrization in the text because of our overwhelming interest in financial applications.
Early examples of the use of the block maxima approach in the analysis of financial data were
introduced by Longin in [61]. See the book by Embrechts, Frey and McNeil [28] for more
examples of in the same spirit.

Details on the maximum likelihood fitting of GEV distributions can be found in Hosking
[46] and Hosking, Wallis and Wood [48]. Asymptotic normality was proved by Smith in [89]
in the case £ > —0.5.
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The method of L-moments seems to have its origin in hydrology. It was introduced by
Hosking, Wallis and Wood in [48], and further developed in [47] and [46]. The probability
weighted moments, introduced by Greenwood and collaborators in [33] were the precursors
of the L-moments. This method of estimation of the parameters of GPD’s and GEV distribu-
tions does not seem to have permeated the insurance and finance literature, and we purposely
chose to include it in our analysis in order to add diversity to our estimation toolbox. More-
over, even if we decide to rely exclusively on maximum likelihood estimators, initializing the
maximization search algorithm with the values of the empirical L-moments has proven to be
an efficient method of increasing the chances of convergence, speeding up this convergence,
and even converging toward a more reasonable local maximum. The derivation of formulae
(2.13)—(2.15) giving the L-moments of a GEV distribution in terms of its natural parameters
can be found in Hosking [46].

Except possibly for the maximum likelihood estimation of GPD’s and GEV distributions,
the material presented in this chapter is not systematically covered in the literature devoted
to insurance and financial applications. This is especially true with the use of L-moments.
See nevertheless the recent work of Seco et al. [70] which may indicate a renewal of interest
for these methods for financial applications. We were made aware of the importance of L-
moments via numerous enlightening discussions with Julia Morrison.

The fundamental result of this chapter is due to Pickands [75] and Balkema and de Haan.
The estimation procedures presented in this chapter rely on the assumption that the data points
x1,--- , T, are realizations of independent and identically distributed random variables. The
independence assumption is rarely satisfied in real life applications, and especially with series
of financial returns which are of interest to us. However, in many instances, this assumption
is not as restrictive as it may seem. Indeed, for many stationary time series, the exceedances
over increasing levels can be shown to have a limiting Poisson distribution. So it seems that
the independence assumption is restored in the limit of exceedances over high levels. How-
ever, most financial return data exhibit clustering properties captured by ARCH and GARCH
models, and incompatible with the independence assumption. The reader concerned by these
issues is referred to the book of Mc Neil, Frey and Embrechts [72], where further references
to the literature can be found.

A time honored method to estimate the size of power tails is to compute the Hill’s estima-
tor of the exponent « (essentially the inverse of the shape parameter £). We purposely chose to
ignore this method of estimation, because of horror stories about the misleading conclusions
one can reach with this estimation method. The interested reader is referred to the textbook
[29] for a discussion of the Hill estimator, and for a series of examples showing clearly its
limitations.

Financial institutions started worrying about risk exposures long before regulators got
into the act. The most significant initiative was RiskMetrics span off by J.P. Morgan in 1994.
Even though the original methodology was mostly concerned with market risk, and limited to
Gaussian models, the importance of Value at Risk (VaR) calculations was clearly presented in
a set of technical documents made available on the web at the URL www.riskmetrics.
com. A more academic discussion of the properties of VaR can be found in the book by C.
Gourieroux and J. Jasiak [42], and the less technical book by Jorion [53]. VaR is one among
many possible ways to quantify a risky exposure to possible adverse moves. The seminal pa-
per of Artzner, Delbaen, Eber and Heath [4] was the first instance of an attempt to formalize
mathematically the notion of financial risk measure. Their original set of axioms included
positive homogeneity stating that for all A\ > 0 and X, one should have p(AX) = Ap(X),
and a sub-additivity condition slightly weaker than convexity. Risk measures satisfying their
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four axioms were called coherent risk measures. Because positive homogeneity is not obvi-
ously a natural requirement for a measure of risk, it was gradually abandoned in favor of the
smaller set of axioms given in the text, and which was systematically advocated by Follmer
and Schied. For a set of axioms to capture properly the desirable properties of a rigorous
risk quantification, some form of convexity or sub-additivity should be included in order for
the risk of a diversified portfolio to be less than the sum of the individual risks. Unfortunately,
VaR does not encourage diversification in this sense. However, Conditional VaR and Expected
Shortfall (at least when the distribution is continuous) do.

A clear exposé of risk measures and their mathematical theory can be found in Foellmer
and Schied’s book [36]. The risk measures discussed in the text are static in the sense that
they are based on models of the sources of risk over a fixed period limited by a fixed horizon,
and that no provision is made to update the quantification of the risk as time goes by. In
this sense they can be viewed as a first generation of risk measures. Very active research is
now dealing with a new generation of risk measures which can capture the time evolution of
risk. Such multi-period models have to deal with very technical consistency issues, and easy
implementations of the first theoretical results which appeared in this area are still a long way.

The R methods used in this chapter to estimate heavy tail distributions, simulate random
samples from these distributions, and compute risk measures are taken from the R package
Rsafd based in part on the library EVANESCE originally developed in S by J. Morrison and
the author.
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DEPENDENCE & MULTIVARIATE DATA
EXPLORATION

This chapter extends some of the exploratory data analysis techniques introduced in
the case of univariate samples to several variables. In particular, we discuss multi-
variate versions of kernel density estimators. Then we review the properties of the
most important multivariate distribution of all, the normal or Gaussian distribution.
For jointly Gaussian random variables, dependence can be completely captured by
the classical Pearson correlation coefficient. In general however, the situation can be
quite different. We review the classical measures of dependence, and emphasize how
inappropriate some of them can become in cases of significant departure from the
Gaussian hypothesis. In such situations, quantifying dependence requires new ideas,
and we introduce the concept of copula as a solution to this problem. For graphical
and tractability reasons, most of the discussion is focused on the bivariate case. We
show how copulas can be estimated, and how one can use them for Monte Carlo
computations and random scenarios generation. Later in the chapter, we consider
higher dimensional cases and discuss application to large portfolio risk management
and the valuation of baskets of credit derivatives. Finally, the last section deals with
principal component analysis, a classical technique from multivariate data analysis,
which is best known for its use in dimension reduction. We demonstrate its useful-
ness on data from the fixed income markets.

3.1 MULTIVARIATE DATA AND FIRST MEASURE OF DEPENDENCE

We begin the chapter with an excursion into the world of multivariate data, where
dependencies between variables are important, and where analyzing variables sep-
arately would cause significant features of the data to be missed. We illustrate this
point with several numerical examples, but we shall focus most of our attention to
the specific example of the daily closing prices of futures contracts on Brazilian and
Colombian coffee which we describe in full detail in Sect. 3.2.5 below. We reproduce
the first seven rows of the data set to show how the data look like after computing
the daily log-returns.

R. Carmona, Statistical Analysis of Financial Data in R, Springer Texts in Statistics, 121
DOI 10.1007/978-1-4614-8788-3_3, © Springer Science+Business Media New York 2014
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[,1] [,2]
[1,] -0.0232 -0.0146
[2,] -0.0118 -0.0074
[3,] -0.0079 -0.0074
[4,] 0.0275 0.0258
[5,] -0.0355 -0.0370
[6,] 0.0000 0.0000
[7,]7 0.0000 -0.0038

Each row corresponds to a given day, the daily log return on the Brazilian contract
being given in the first column of that row, the log return of the Colombian contract
being given in the second one. As we shall see in Sect. 3.2.5, the original data came
with time stamps, but as we already explained, the latter are irrelevant for the type
of analysis conducted in the first part of this book. Indeed, for the time being, the
dependence of the log-returns upon time does not play any role, and we could shuffle
the rows of the data set without affecting the results of the analysis.

The data set described above is an example of bivariate data. We consider ex-
amples of multivariate data sets in higher dimensions later in the chapter, but in the
present situation, the data can be abstracted in the form of a bivariate sample:

(xlvyl)v (x27y2)5 """ ’ (Invyn)v

of random variables with the same joint probability distribution. The goal of this
chapter is the analysis of the statistical properties of this joint distribution, and in
particular of the dependencies between the components X and Y of these couples.
If X and Y are real valued random variables, then their joint distribution is charac-
terized by their joint cdf which is defined by:

(z,y) = Fixyy(z,y) =P{X <2, Y <y} (3.1

This joint distribution has a density f(x y)(x,y) if the joint cdf can be written as an
indefinite (double) integral:

Ty
Fixy(z,y) = / / foxn (@ y') da'dy’,
in which case the density is given by the (second partial) derivative:

O*Fixyy(z,y)
foxy)(z,y) = T owdy

Setting y = +00 in (3.1) leads to a simple expression for the marginal density fx ()
of X. It reads:
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—+o00
fx(x) :/ foxn(xy')dy' (3.2)
and similarly
—+o00
o) = [ oo s (33)

More generally, in the multivariate case (in dimension k to be specific), the cdf of
the joint distribution of k random variables X, - - - , X}, is defined as:

Foxy oo xp (@, o) = P{X; <oy, Xy <,
and whenever it exists, the density is given by the k-th order partial derivative:

3kF(X1 Xk)(xl, e ,Ik)
f(Xl,»»»,Xk)(xla"' 7xk)— axl ._axk

)

in which case

T T
F(Xl,---,Xk)(xlv"' , k) :/ / f(Xl,»»»,Xk)(fE/lv"' ,x%)dx/r“dx%.

3.1.1 Density Estimation

The notions of histogram and empirical cdf used earlier can be generalized to the
multivariate setting. Let us discuss the bivariate case for the sake of definiteness.
Indeed, one can divide the domain of the couples (x;, y;) into plaquettes or rectan-
gular bins, and create a surface plot by forming cylinders above these plaquettes, the
height of each cylinder being proportional to the number of couples (x;, y;) falling
into the base. If the lack of smoothness of the one-dimensional histograms was a
shortcoming, this lack of smoothness is even worse in higher dimensions. The case
of the empirical cdf is even worse: the higher the dimension, the more difficult it
becomes to compute it, and use it in a reliable manner. The main drawback of both
the histogram and the empirical cdf is the difficulty in adjusting to the larger and
larger proportions of the space without data points. However, they can still be used
effectively in regions with high concentrations of points. As we shall see later in this
chapter, this is indeed the case in several of the R objects used to code multivariate
distributions.

3.1.1.1 The Kernel Estimator

The clumsiness of the multivariate forms of the histogram is one of the main reasons
for the extreme popularity of kernel density estimates in high dimension. Given a
sample (21,y1),. .., (Zn,ys) from a distribution with (unknown) density f(z,y),
the formal kernel density estimator of f is the function fb defined by:
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n

; _ 1 ToT Y Y
o) = i YK () 3.4

i=1

where the function K is a given non-negative function of the couple (z,y) which
integrates to one (i.e. a probability density function) which we call the kernel, and
the numbers b; and by are positive numbers which we call the bandwidths. The in-
terpretation of formula (3.4) is exactly the same as in the univariate case. If (z,y)
is in a region with many data points (x;,y;), then the sum in the right hand side of
(3.4) will contain many terms significantly different from O and the resulting den-
sity estimate f,(x,) will be large. On the other hand, if (z,y) is in a region with
few or no data points (x;, y;), then the sum in the right hand side of (3.4) will con-
tain only very small numbers and the resulting density estimate fb(:z, y) will be very
small. This intuitive explanation of the behavior of the kernel estimator is exactly
what is expected from any density estimator. Notice that the size of the bandwidths
b = (b1,be) regulates the extent to which this statement is true by changing how
much the points (z;, y;) will contribute to the sum.

It is reasonable to take by = by when the two variables x and y are on the same
scale. However, we will need different bandwidths if the variables are on different
scales and if we do not want to standardize them. More on that later in this chapter.

3.1.1.2 Implementation

There is no function for multivariate histogram or kernel density estimation in the
standard distribution of R, so we added to our library the function kdest which
takes a bivariate sample as argument, and produces an R object (a data frame to
be specific) containing a column for the values of the density estimator, and two
columns for the values of the coordinates of the points of the grid at which the esti-
mate is computed. To be specific, if X and Y are numeric vectors with equal lengths,
the command:

> DENS <- kdest (X,Y)

outputs the values of the two bandwidths used in the smoothing of the couples (z;, y;)
into a surface, produces the plot of the surface proposed as an estimate of the density
of the joint distribution of X and Y, and creates a list DENS with the components:
deltax (resp. deltay) for the mesh of the subdivision of the x-axis (resp. y-axis)
at which the density is actually computed and plotted, gridx (resp. gridy) for
the vector of points of the subdivision on the x-axis (resp. y-axis) and z for the
matrix of computed values. The value z [1, j] is the value of the density estimate at
the point (gridx[i],gridy[j]). By default, the number of points in gridx
and gridy is n=256 but this number can be passed to the function kdest as a
parameter. We illustrate the results of the (bivariate) kernel density estimation with a
couple of examples.

e The first example concerns part of a data set which we will study thoroughly in
the next chapter. The surface plot of Fig. 3.1 is the result of running the command
kdest on two data vectors X and Y derived from the values of indexes computed
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from the share values and the capitalizations of ENRON and DUKE over the
period ranging from January 4, 1993 to December 31, 1993. The well-separated
bumps show clearly that the observations (z;,y;) can be divided into several
subsets which can be discriminated from each other on the basis of the values of
the two variables. This situation is very much sought after in pattern recognition
applications where the goal is to subdivide the population into well-defined, and
hopefully well separated, clusters which can be identified by their local means,
for example.

e Our second example concerns, once more, the daily closing values of the S&P
500 index. The goal is to estimate the joint probability density of the log-return
computed on a period of 5 days on a given day, and the log-return computed on
a period of 15 days ending the same day. The scatterplot of these two variables is
given in the left pane of Fig. 3.2. From a central blob of points two sparse clouds
extend in the direction of the negative z-axis and the positive y-axis. The most
interesting feature of this scatterplot, however, is the following: the large posi-
tive values of the 5 days log-returns follow large negative values of the 15 days
log-returns. Anticipating the discussion of the correlation coefficient introduced
in the next subsection, we suspect there being a negative correlation between the
two returns: indeed computing the correlation between these two variables gives
a value approximately equal to —0.57. The density estimate reproduced in the
right pane shows the central blob of points appearing in the scatterplot fails to
reproduce the trail of isolated points in the scatterplot. As we explained earlier,
we believe that these points are responsible for the significant negative correla-
tion, and it is worrisome to see them ignored by the kernel density estimator.
The problem is very delicate. A smaller bandwidth restores the presence of these
points, but the surface becomes so rough that the density estimate ends up being
less instructive than the scatterplot itself. On the other hand a larger bandwidth
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Fig. 3.1. Kernel density estimate for the utility data
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gives a smoother surface, wiping out the signs of possible separate trails of points
away from the center of the distribution. We chose the bandwidth to reach a com-
promise between these extremes, but as we already explained, we lost the trail
of days responsible for the negative correlation. Unfortunately, the serious dif-
ficulties experienced in the analysis of this example are typical of many of the
real-life applications in which one would like to use density estimation.

3.1.2 The Correlation Coefficient

Motivated by the previous discussion of the evidence of a possible linear dependence
between variables, we introduce the correlation coefficient between two random vari-
ables. This theoretical concept and its empirical counterpart are designed to capture
this type of linear dependence. It is the most widely-used measure of dependence
between two random variables. It is called the Pearson correlation coefficient. For
random variables X and Y it is defined as:

cov{X,Y}

X, Y} =
PP{ ; } oxOy

(3.5)

where the covariance cov{ X, Y'} is defined by:
cov{X, Y} =E{(X —E{X})(Y —E{Y})} = E{XY} - E{X}E{Y} (3.6)

and where o x and oy denote as usual the standard deviations of X and Y i.e.
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Fig. 3.2. Scatterplot (left) and kernel density estimate (right) for the 5 and 15 days S&P log-
returns

ox = VE{(X —E{X})?} = VE{X?} —E{X}? G.7)

and similarly for oy. If X and Y have a joint density f(x,y) then the definition of
the covariance can be rewritten in terms of a double integral as:
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o X.V} = [ [ ayfo,y)dody - ( / :cfx<w>dw) ( / yfy(y)dy),

where fx and fy are the marginal densities of X and Y as given by (3.2) and (3.3).
Because of its frequent use, the subscript P is often dropped from the notation, and
the Pearson correlation coefficient is commonly denoted by p. The empirical analog
of this measure of dependence is defined for samples x1, ..., x, and y1, ..., y,. By
analogy with formula (3.5) it is defined as:

cov{X,Y}

X, Y} =

(3.8)

and it is called the empirical correlation between the samples. Here, the empirical
covariance cov{ X, Y'} is defined by:

n

— 1 1 —
cov{X,Y} = — > (@i -7y —7) = szy -T7 (3.9)
=1

i=1
where we used the notations = and y for the sample means of x and y defined by:
7= i and 7= 1 z”: (3.10)
r = — X = - iy .
= YT i=1 !

and where the sample standard deviations 6 x and oy are defined by:

n n

bx ==Y wi—m= [ 2o (3.11)

n 4 n -
i=1 i=1
and similarly for &y . Some of the properties of these correlation coefficients are well
known. Others are less so. We review them in order to emphasize the usefulness of
the correlation coefficient, and at the same time to stress its limitations.

3.1.2.1 Properties of the Correlation Coefficient

The most immediate properties of the correlation coefficient are:

e The real numbers p and p are always between —1 and +1
e p = 0 when the random variables X and Y are independent
e p=1whenY is alinear function of X.

These simple properties have lead to the following usage of the sample correlation
coefficient p. The samples are regarded as independent when p is small, while the
samples are regarded as strongly dependent when p is close to 1 or —1. We shall see
below that this practice is okay when the samples come from a multivariate Gaussian
distribution, but it can be very misleading for other distributions.
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The properties listed in the three bullets above are well known. Their intuitive
content is the main reason for the enormous popularity of the correlation coefficient
as a measure of dependence.

What is often overlooked is the fact that the Pearson correlation coefficient is
only a measure of linear dependence between two random variables. In fact, p mea-
sures the relative reduction of the response variation by a linear regression. Indeed,
anticipating our upcoming discussion on least squares linear regression, we can use
the following general formula

o{Y'} — ming, 5, BE{|Y — fo — 1 X|?}
o*{Y}

p{X, Y} =

to justify this claim. The numerator of the right hand side is the difference between
the variation in the variable Y, and the smallest possible remaining variation after
removing a linear function 3y + (1 X, of X. This formula is to be compared to the
formula giving the slope of the least squares regression line of Y against X in terms
of ppP.

Shocking Remark. We close this section with a very surprising property of the Pear-
son correlation coefficient. Strangely enough, this property is little known despite its
important practical implications, especially in the world of finance. If the marginal
distributions of X and Y are given, but no information is given on the nature of their
dependence or lack thereof, the possible values of the correlation coefficient p are
limited to an interval [pyin, Prmaz]- However, contrary to popular belief, this interval
is not always the whole interval [—1, +1]. There are cases for which this interval is
much smaller, even for frequently-used distributions. See for example Problems 3.10
and 3.18 at the end of this chapter, where the case of lognormal random variables is
analyzed in detail.

3.2 THE MULTIVARIATE NORMAL DISTRIBUTION

We start our analysis of multivariate statistical distributions with the case of the well-
known Gaussian family. All the reasons we gave for the popularity of the univariate
Gaussian distribution still hold in the multivariate case. Moreover, the possible com-
petition from other distribution families disappears. Indeed, the Gaussian family is
essentially the only one for which explicit analytic computations are possible. We
first give an abstract definition and concentrate on the interpretation of the conse-
quences of such a definition. Even though most of the explicit computations done
in the book will be limited to the bivariate case, we start with the general definition
of the multivariate Gaussian distribution because of its widespread use in portfolio
theory where realistic situations involve very large numbers of instruments. Because
of this general setup, the discussion which follows is of rather abstract nature, and
a quick look at the contents of Appendix 1 at the end of the chapter may help with
some of the mathematics.
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One says that k real valued random variables 71, ..., Z; are jointly Gaussian,
or that their joint distribution is a multivariate Gaussian distribution, if any linear
combination of 71, . .., Zj is a univariate Gaussian (i.e. normal) random variable, in
other words, if for every choices /1, . . ., /; of real numbers, the random variable

E=0Z1+ -+ U2y, (3.12)

is Gaussian. Notice that this definition implies that each individual Z; is itself Gaus-
sian (just set £; = 1 and all the other ;s to 0 in which case the linear combination
reduces to Z;). However, it says much more, and it is important to understand how
much more does this definition imply.

According to the standard practice of probability calculus with random vectors
and matrices, which we recall in Appendix 1 at the end of the chapter, we denote by
w the k x 1 vector of means p; = E{Z;}, and by X is the k x k variance/covariance
matrix whose entries are X; ; = cov{Z;, Z,}. Using the convention introduced in
the appendix, this reads:

E{Z}=pn and Yz=X.
If we use the notation Z for the k-dimensional vector whose components are the
Z;’s, the above definition is usually encapsulated in the notation:

Z ~ Ni(p, X)

to signify that the random vector Z has the k-variate Gaussian distribution with
mean vector p and variance/covariance matrix 3. Notice that if we denote by L the
k x 1 vector whose entries are the ¢;s, then the linear combination (3.12) defining
the random variable ¢ is in fact equal to L!Z, and the computations of Appendix 1
give
&~ N(pe,07) with pe=L'p, and of =L'YL.

According to its definition, the entries of the covariance matrix Yz are the covari-
ances cov{Z;, Z;}, and consequently, the knowledge of all the marginal (bivariate)
distributions of the couples (Z;, Z;) is enough to determine the entire joint distri-
bution. This particular property is specific to the multivariate Gaussian distribution.
It does not hold for general distributions. Moreover, using again the matrix calculus
developed for random vectors in Appendix 1, we see that:

Z ~ Np(u,X) when Z=p+3XY2X and X ~ Ni(0,I;) (3.13)

where I}, denotes the k x k identity matrix, and 3/ 1/2 denotes the square root of the
symmetric nonnegative-definite matrix 3. See Problem 3.27 at the end of the chapter
for details on the definition and the first properties of this square root matrix. In other
words, starting from a random vector X with independent N (0, 1) components (see
the following remark) we can get to a vector Z with the most general multivariate
Gaussian distribution just by linear operations: multiplying by a matrix and adding a
vector. This simple fact is basic for the contents of the following subsection.
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When the variance covariance matrix 3. is invertible, multivariate calculus shows

that the random variables Z1, . .., Z, have a joint density f(z, .. z,) given by:
fzi,...z:)( ) —1 ep(—_l[ - ]t 1[ - ])
Zlyeeoy 2k) = X z—pl'X z—pl).
(Z1mn 21005 ¥ (2m)kdet(X) 2

(3.14)

3.2.1 Important Remark about Independence

If the random variables Z; are independent, then obviously all the covariances
cov{Z;,Z;} are zero when i # j, and the variance/covariance matrix Xz is di-
agonal. The converse is not true in general, even when the random variable Z;’s
are Gaussian! See for example Problems 1.6 and 3.16 for counter-examples. But
the converse is true when the Z;’s are jointly Gaussian! This striking fact highlights
what a difference it makes to assume that the marginal distributions are Gaussian,
versus assuming that the joint distribution is Gaussian. The proof of this fact goes as
follow: if X'z is diagonal, then:

1 g (21 —)? | (22— p2)® (26 — p)?
— — 2 — = — L ... - - 7
5Lz = pu]' X [z — p] 207 07 T o

if we denote by 0%, 03,...,0% the elements which appear on the diagonal of X'z.

So using the definition (3.14) of the multivariate Gaussian distribution and the fact
that the exponential of a sum is the product of the exponentials, this implies that:

[(21.20,20) (21, 22, oy 28) = fz2,(21) f2,(22) -+ [z, (2k),

which in turn implies that the joint cdf is the product of the marginal cdfs, proving
the desired independence property. So the conclusion is that:

For jointly Gaussian random variables, independence
is equivalent to the variance/covariance matrix being
diagonal!

3.2.2 Simulation of Random Samples

We now show how one can use formula (3.13) to generate random samples from a
multivariate Gaussian distribution. To that end, we assume that we are givena k x 1
vector i of means, and a k£ X k variance/covariance matrix X, and that we want to
generate a sample of size N from the distribution Ny (p, 37). We proceed as follows:

1. We create a k x N-matrix whose columns are all identical, any column being a
copy of the mean vector p;

2. We generate a sample of size Nk from the standard univariate Gaussian distribu-
tion and reshape this (N x k) x 1 vector into a k x N-matrix;
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3. We compute a square root for the variance/covariance matrix, then we multiply
each column of the random matrix