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Preface

A little over half a century ago, it was said that even an ingenious per-

son could not be an engineer unless he had nearly perfect skills with the

logarithmic slide rule. The advent of the computer changed this situa-

tion crucially; at present, many young engineers have never heard of the

slide rule. The computer has profoundly changed the mathematical side

of the engineering profession. Symbolic manipulation programs can cal-

culate integrals and solve ordinary differential equations better and faster

than professional mathematicians can. Computers also provide solutions

to differential equations in numerical form. The easy availability of mod-

ern graphics packages means that many engineers prefer such approximate

solutions even when exact analytical solutions are available.

Because engineering courses must provide an understanding of the fun-

damentals, they continue to focus on simple equations and formulas that

are easy to explain and understand. Moreover, it is still true that stu-

dents must develop some analytical abilities. But the practicing engineer,

armed with a powerful computer and sophisticated canned programs, em-

ploys models of processes and objects that are mathematically well beyond

the traditional engineering background. The mathematical methods used

by engineers have become quite sophisticated. With insufficient base knowl-

edge to understand these methods, engineers may come to believe that the

computer is capable of solving any problem. Worse yet, they may decide

to accept nearly any formal result provided by a computer as long as it was

generated by a program of a known trademark.

But mathematical methods are restricted. Certain problems may ap-

pear to fall within the nominal solution capabilities of a computer program

and yet lie well beyond those capabilities. Nowadays, the properties of so-

phisticated models and numerical methods are explained using terminology

v
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from functional analysis and the modern theory of differential equations.

Without understanding terms such as “weak solution” and “Sobolev space”,

one cannot grasp a modern convergence proof or follow a rigorous discus-

sion of the restrictions placed on a mathematical model. Unfortunately, the

mathematical portion of the engineering curriculum remains preoccupied

with 19th century topics, even omitting the calculus of variations and other

classical subjects. It is, nevertheless, increasingly more important for the

engineer to understand the theoretical underpinning of his instrumentation

than to have an ability to calculate integrals or generate series solutions of

differential equations.

The present text offers rigorous insight and will enable an engineer to

communicate effectively with the mathematicians who develop models and

methods for machine computation. It should prove useful to those who

wish to employ modern mathematical methods with some depth of under-

standing.

The book constitutes a substantial revision and extension of the earlier

book The Calculus of Variations and Functional Analysis, written by the

first two authors. A new chapter (Chapter 2) provides applications of the

calculus of variations to nonstandard problems in mechanics. Numerous

exercises (most with extensive hints) have been added throughout.

The numbering system is as follows. All definitions, theorems, corol-

laries, lemmas, remarks, conventions, and examples are numbered consecu-

tively by chapter (thus Definition 1.7 is followed by Lemma 1.8). Equations

are numbered independently, again by chapter.

We would like to thank ourWorld Scientific editor, Mr. Yeow-Hwa Quek.
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Chapter 1

Basic Calculus of Variations

1.1 Introduction

Optimization is a universal goal. Students would like to learn more, receive

better grades, and have more free time; professors (at least some of them)

would like to give better lectures, see students learn more, receive higher

pay, and have more free time. These are the optimization problems of real

life. In mathematics, optimization makes sense only when formulated in

terms of a function f(x) or other expression. One then seeks the mini-

mum value of the expression. (It suffices to discuss minimization because

maximizing f is equivalent to minimizing −f .)
This book treats the minimization of functionals. The notion of func-

tional generalizes that of function. Although the process of generalization

does yield results of greater generality, as a rule the results are not sharper

in particular cases. So to understand what can be expected from the calcu-

lus of variations, we should review the minimization of ordinary functions.

All quantities will be assumed sufficiently differentiable for the purpose at

hand. Let us recall some terminology for the one-variable case y = f(x).

Definition 1.1. The function f(x) has a local minimum at a point x0 if

there is a neighborhood (x0 − d, x0 + d) in which f(x) ≥ f(x0). We call x0
the global minimum of f(x) on [a, b] if f(x) ≥ f(x0) holds for all x ∈ [a, b].

The necessary condition for a differentiable function f(x) to have a local

minimum at x0 is

f ′(x0) = 0. (1.1)

A simple and convenient sufficient condition is

f ′′(x0) > 0. (1.2)

1
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Unfortunately, no available criterion for a local minimum is both sufficient

and necessary. So the approach is to solve (1.1) for possible points of local

minimum of f(x) and then test these using an available sufficient condition.

The global minimum on [a, b] can be attained at a point of local mini-

mum. But there are two points, a and b, where (1.1) may not hold (because

the corresponding neighborhoods are one-sided) but where the global min-

imum may still occur. Hence given a differentiable function f(x) on [a, b],

we first find all xk at which f ′(xk) = 0. We then calculate f(a), f(b), and

f(xk) at the xk, and choose the global minimum. Although this method

can be arranged as an algorithm suitable for machine computation, it still

cannot be reduced to the solution of an equation or system of equations.

These tools are extended to multivariable functions and to more com-

plex objects called functionals. A simple example of a functional is an

integral whose integrand depends on an unknown function and its deriva-

tive. Since the extension of ordinary minimization methods to functionals

is not straightforward, we continue to examine some notions from calculus.

A continuously differentiable function f(x) obeys Lagrange’s formula

f(x+ h)− f(x) = f ′(x+ θh)h (0 ≤ θ ≤ 1). (1.3)

Continuity of f ′ means that

f ′(x+ θh)− f ′(x) = r1(x, θ, h) → 0 as h→ 0,

hence

f(x+ h) = f(x) + f ′(x)h + r1(x, θ, h)h

where r1(x, θ, h) → 0 as h → 0. The term r1(x, θ, h)h is Lagrange’s form

of the remainder. There is also Peano’s form

f(x+ h) = f(x) + f ′(x)h + o(h), (1.4)

which means that

lim
h→0

f(x+ h)− f(x)− f ′(x)h
h

= 0.

The principal (linear in h) part of the increment of f is the first differ-

ential of f at x. Writing dx = h we have

df = f ′(x) dx. (1.5)

“Infinitely small” quantities are not implied by this notation; here dx is a

finite increment of x (taken sufficiently small when used for approximation).
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The first differential is invariant under the change of variable x = ϕ(s):

df = f ′(x) dx =
df(ϕ(s))

ds
ds, where dx = ϕ′(s) ds.

Lagrange’s formula extends to functions having m continuous deriva-

tives in some neighborhood of x. The extension for x + h lying in the

neighborhood is Taylor’s formula:

f(x+ h) = f(x) + f ′(x)h+
1

2!
f ′′(x)h2 + · · ·+ 1

(m− 1)!
f (m−1)(x)hm−1

+
1

m!
f (m)(x+ θh)hm (0 ≤ θ ≤ 1). (1.6)

Continuity of f (m) at x yields

f (m)(x+ θh)− f (m)(x) = rm(x, θ, h) → 0 as h→ 0,

hence Taylor’s formula becomes

f(x+ h) = f(x) + f ′(x)h+
1

2!
f ′′(x)h2 + · · ·+ 1

m!
f (m)(x)hm

+
1

m!
rm(x, θ, h)hm

with remainder in Lagrange form. The dependence of the remainder on the

parameters is suppressed in Peano’s form

f(x+h) = f(x)+f ′(x)h+
1

2!
f ′′(x)h2+ · · ·+ 1

m!
f (m)(x)hm+o(hm). (1.7)

The conditions of minimum (1.1)–(1.2) can be derived via Taylor’s for-

mula for a twice continuously differentiable function having

f(x+ h)− f(x) = f ′(x)h+
1

2
f ′′(x)h2 + o(h2). (1.8)

Indeed f(x+ h)− f(x) ≥ 0 if x is a local minimum. The right side has the

form ah+ bh2 + o(h2). If a = f ′(x) �= 0, for example when a < 0, then for

h < h0 with sufficiently small h0 the sign of f(x+ h)− f(x) is determined

by that of ah; hence for 0 < h < h0 we have f(x + h) − f(x) < 0, which

contradicts the assertion that x minimizes f . The case a > 0 is similar,

resulting in the necessary condition (1.1). The increment formula gives

f(x+ h)− f(x) =
1

2
f ′′(x)h2 + o(h2).

The term f ′′(x)h2 defines the value of the right side when h is sufficiently

close to 0, hence when f ′′(x) > 0 we see that for sufficiently small |h| �= 0

f(x+ h)− f(x) > 0.

So (1.2) is sufficient for x to be a minimum point of f .
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A function in n variables

Consider the minimization of a function y = f(x) with x = (x1, . . . , xn).

More cannot be expected from this theory than from the theory of functions

in a single variable.

Definition 1.2. A function f(x) has a global minimum at the point x∗ if

the inequality

f(x∗) ≤ f(x∗ + h) (1.9)

holds for all nonzero h = (h1, . . . , hn) ∈ Rn. The point x∗ is a local

minimum if there exists ρ > 0 such that (1.9) holds whenever ‖h‖ =

(h21 + · · ·+ h2n)
1/2 < ρ.

Let x∗ be a minimum point of a continuously differentiable function

f(x). Then f(x1, x
∗
2, . . . , x

∗
n) is a function in one variable x1 and takes its

minimum at x∗1. It follows that ∂f/∂x1 = 0 at x1 = x∗1. Similarly, the rest

of the partial derivatives of f are zero at x∗:

∂f

∂xi

∣∣∣∣
x=x∗

= 0, i = 1, . . . , n. (1.10)

This is a necessary condition of minimum for a continuously differentiable

function in n variables at the point x∗.
To get sufficient conditions we must extend Taylor’s formula. Let f(x)

possess all continuous derivatives up to order m ≥ 2 in a ball centered at

point x, and suppose x+h lies in this ball. Fixing these, we apply (1.7) to

f(x+ th) and get Taylor’s formula in the variable t:

f(x+ th) = f(x) +
df(x+ th)

dt

∣∣∣∣
t=0

t+
1

2!

d2f(x+ th)

dt2

∣∣∣∣
t=0

t2

+ · · ·+ 1

m!

dmf(x+ th)

dtm

∣∣∣∣
t=0

tm + o(tm).

The remainder term is for the case when t → 0. From this equality for

sufficiently small t, the general Taylor formula can be derived.

The minimization problem for f(x) is studied using only the first two

terms of this formula:

f(x+ th) = f(x)+
df(x+ th)

dt

∣∣∣∣
t=0

t+
1

2!

d2f(x+ th)

dt2

∣∣∣∣
t=0

t2 + o(t2). (1.11)

We calculate df(x+ th)/dt as a derivative of a composite function:

df(x + th)

dt

∣∣∣∣
t=0

=
∂f(x)

∂x1
h1 +

∂f(x)

∂x2
h2 + · · ·+ ∂f(x)

∂xn
hn.
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The first differential is defined as

df =
∂f(x)

∂x1
dx1 +

∂f(x)

∂x2
dx2 + · · ·+ ∂f(x)

∂xn
dxn. (1.12)

The next term,

d2f(x+ th)

dt2

∣∣∣∣
t=0

=

n∑
i,j=1

∂2f(x)

∂xi ∂xj
hihj,

defines the second differential of f :

d2f =

n∑
i,j=1

∂2f(x)

∂xi ∂xj
dxi dxj . (1.13)

Taylor’s formula of the second order becomes

f(x+ h) = f(x) +

n∑
i=1

∂f(x)

∂xi
hi +

1

2!

n∑
i,j=1

∂2f(x)

∂xi∂xj
hihj + o(‖h‖2). (1.14)

The necessary condition for a minimum, df = 0, follows from (1.11) or

(1.10). By (1.11), the condition

d2f(x+ th)

dt2

∣∣∣∣
t=0

> 0 for any sufficiently small ‖h‖

suffices for x to minimize f . The corresponding quadratic form in the

variables hi is

1

2!

n∑
i,j=1

∂2f(x)

∂xi∂xj
hihj =

1

2

(
h1 · · · hn

)


∂2f(x)
∂x21

· · · ∂2f(x)
∂x1xn

...
. . .

...

∂2f(x)
∂xnx1

· · · ∂2f(x)
∂x2n





h1
...

hn


 .

The n × n Hessian matrix is symmetric under our smoothness assump-

tions on f . Positive definiteness of the quadratic form can be verified via

Sylvester’s criterion.

The problem of global minimum for a function in many variables on a

closed domain Ω is more complicated than the corresponding problem for

a function in one variable. Indeed, the set of points satisfying (1.10) can

be infinite for a multivariable function. Trouble also arises concerning the

domain boundary ∂Ω: since it is no longer a finite set (unlike {a, b}) we must

also solve the problem of minimum on ∂Ω, and the structure of such a set

can be complicated. The algorithm for finding a point of global minimum
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of a function f(x) cannot be described in several phrases; it depends on the

structure of both the function and the domain.

Issues connected with the boundary can be avoided by considering the

problem of global minimum of a function on an open domain. We will take

this approach when treating the calculus of variations. Although analogous

problems with closed domains arise in applications, the difficulties are so

great that no general results are applicable to many problems. One must

investigate each such problem separately.

Constraints of the form

gi(x) = 0, i = 1, . . . ,m, (1.15)

permit reduction of constrained minimization to an unconstrained problem

provided we can solve (1.15) and get

xk = ψk(x1, . . . , xn−m), k = n−m+ 1, . . . , n.

Substitution into f(x) would yield an ordinary unconstrained minimization

problem for a function in n−m variables

f(x1, . . . , xn−m, . . . , ψn(x1, . . . , xn−m)).

The resulting system of equations is nonlinear in general. This situation can

be circumvented by the use of Lagrange multipliers. The method proceeds

with formation of the Lagrangian function

L(x1, . . . , xn, λ1, . . . , λm) = f(x) +

m∑
j=1

λjgj(x), (1.16)

by which the constraints gj are adjoined to f . Then the xi and λi are all

treated as independent, unconstrained variables. The resulting necessary

conditions form a system of n+m equations in the n+m unknowns xi, λj :

∂f(x)

∂xi
+

m∑
j=1

λj
∂gj(x)

∂xi
= 0, i = 1, . . . , n,

gj(x) = 0, j = 1, . . . ,m. (1.17)

Functionals

The kind of dependence in which a real number corresponds to another

(or to a finite set) is not enough to describe many natural processes. Ar-

eas such as physics and biology spawn formulations not amenable to such

description. Consider the deformations of an airplane in flight. At some
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point near an engine, the deformation is not merely a function of the force

produced by the engine — it also depends on the other engines, air resis-

tance, and passenger positions and movements (hence the admonition that

everyone remain seated during potentially dangerous parts of the flight).

In general, many real processes in a body are described by the dependence

of the displacement field (e.g., the field of strains, stresses, heat, voltage)

on other fields (e.g., loads, heat radiation) in the same body. Each field is

described by one or more functions, so the dependence is that of a func-

tion uniquely defined by a set of other functions acting as whole objects

(arguments). A dependence of this type, provided we specify the classes to

which all functions belong, is called an operator (or map, or sometimes just

a “function” again). Problems of finding such dependences are often formu-

lated as boundary or initial-boundary value problems for partial differential

equations. These and their analysis form the main content of any course

in a particular science. Since a full description of any process is complex,

we usually work with simplified models that retain only essential features.

However, even these can be quite challenging when we seek solutions.

Humans often try to optimize their actions through an intuitive — not

mathematical — approach to fuzzily-posed problems on minimization or

maximization. This is because our nature reflects the laws of nature in

total. In physics there are quantities, like energy and enthalpy, whose val-

ues in the state of equilibrium or real motion are minimal or maximal in

comparison with other “nearby admissible” states. Younger sciences like

mathematical biology attempt to follow suit: when possible they seek to

describe system behavior through the states of certain fields of parameters,

on which functions of energy type attain maxima or minima. The energy

of a system (e.g., body or set of interacting bodies) is characterized by a

number which depends on the fields of parameters inside the system. Thus

the dependence described by quantities of energy type is such that a numer-

ical value E is uniquely defined by the distribution of fields of parameters

characterizing the system. We call this sort of dependence a functional. Of

course, in mathematics we must also specify the classes to which the above

fields may belong. The notion of functional generalizes that of function so

that the minimization problem remains sensible. Hence we come to the

object of investigation of our main subject: the calculus of variations. In

actuality we shall consider a somewhat restricted class of functionals. (Op-

timization of general functionals belongs to mathematical programming, a

younger science that contains the calculus of variations — a subject some

300 years old — as a special case.) In the calculus of variations we min-
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imize functionals of integral type. A typical problem involves the total

energy functional for an elastic membrane under load F = F (x, y):

E(u) =
1

2
a

∫∫
S

[(
∂u

∂x

)2

+

(
∂u

∂y

)2
]
dx dy −

∫∫
S

Fu dx dy.

Here u = u(x, y) is the deflection of a point (x, y) of the membrane, which

occupies a domain S and has tension described by parameter a (we can

put a = 1 without loss of generality). For a membrane with fixed edge, in

equilibrium E(u) takes its minimal value relative to all other admissible (or

virtual) states. (An “admissible” function takes appointed boundary values

and is sufficiently smooth, in this case having first and second continuous

derivatives in S.) The equilibrium state is described by Poisson’s equation

∆u = −F. (1.18)

Let us also supply the boundary condition

u
∣∣
∂S

= φ. (1.19)

The problem of minimizing E(u) over the set of smooth functions satisfying

(1.19) is equivalent to the boundary value problem (1.18)–(1.19). Analogous

situations arise in many other sciences. Eigenfrequency problems can also

be formulated within the calculus of variations.

Other interesting problems come from geometry. Consider the following

isoperimetric problem:

Of all possible smooth closed curves of unit length in the

plane, find the equation of that curve L which encloses the

greatest area.

With r = r(φ) the polar equation of a curve, we seek to have∫ 2π

0

√
r2 +

(
dr

dφ

)2

dφ = 1,
1

2

∫ 2π

0

r2 dφ→ max.

Notice how we denoted the problem of maximization. Every high school

student knows the answer, but certainly not the method of solution.

We cannot list all problems solvable by the calculus of variations. It is

safe to say only that the relevant functionals possess an integral form, and

that the integrands depend upon unknown functions and their derivatives.

Again, we can suppose that the theory for minimizing a functional

should represent an extension of the theory for minimizing a multivari-

able function. As in the latter theory, we must appoint a domain on which
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the functional is determined. Even for a multivariable function, this is not

always an easy task. For the functional it is much harder, as the arguments

now belong to certain classes of functions, and the answer can depend on

the class as well as the detailed calculations we perform. The study of

function spaces falls under the heading of functional analysis, considered in

Chapter 4. General description of the domains of functionals can be under-

taken via normed spaces of functions. The classical calculus of variations

arose long before functional analysis, and dealt with the classes of continu-

ously differentiable (or n-times continuously differentiable) functions under

certain conditions on the boundary of the integration domain.

We expect the notions of local minimum and global minimum to appear

in the study of functionals. A definition of local minimum will require a

precise notion of a neighborhood of the minimizing function. In this case

functional analytic ideas are quite helpful. As we said, however, the calculus

of variations predated functional analysis. The notion of a neighborhood

of a function was developed in the calculus of variations and later inherited

by functional analysis.

The necessary conditions (1.10) can be suitably extended to the problem

of minimum for a functional. We will see this explicitly when we approx-

imate the functional with a function in n variables. But for the complete

treatment of a functional, the conditions should be given at any point along

the minimizing function. These conditions are known as Euler equations

or Euler–Lagrange equations. They are obtained when the minimizer lies

inside the domain of the functional (i.e., the minimizer should lie some

distance away from the boundary of the domain, and this will be assumed

even if not stated).

Finally, the Euler equation for a functional represents only a necessary

condition for a minimum. Sufficient conditions are more subtle and require

separate investigation. However, in certain physical problems (such as those

associated with linear models in continuum mechanics) where a point of

minimum total potential energy is sought, we obtain a unique extremum

that automatically turns out to be a minimum.

In the next section, we show how the problem of minimum for one

special functional is related to the problem of minimum for a multivariable

function.



September 30, 2011 8:42 World Scientific Book - 9in x 6in aea

10 Advanced Engineering Analysis

Minimization of a simple functional using calculus

Consider a general functional of the form

F (y) =

∫ b

a

f(x, y, y′) dx, (1.20)

where y = y(x) is smooth. (At this stage we do not stop to formulate

strict conditions on the functions involved; we simply assume they have

as many continuous derivatives as needed. Nor do we clearly specify the

neighborhood of a function for which it is a local minimizer of a functional.)

From the time of Newton’s Principia, mathematical physics has formu-

lated and considered each problem so that it has a solution which, at least

under certain conditions, is unique. Although the idea of determinism in

nature was buried by quantum mechanics, it remained an important part

of the older subject of the calculus of variations. We know that for the

equilibrium problem for a membrane to have a unique solution, we must

impose boundary conditions. So let us first understand whether the prob-

lem of minimum for (1.20) is well-posed; i.e., whether (at least for simple

particular cases) a solution exists and is unique.

The particular form ∫ b

a

√
1 + (y′)2 dx

yields the length of the plane curve y = y(x) from (a, y(a)) to (b, y(b)).

The obvious minimizer is a straight line y = kx + d. Without boundary

conditions (i.e., with y(a) or y(b) unspecified), k and d are arbitrary and

the solution is not unique. We can impose no more than two restrictions

on y(x) at the ends a and b, because y = kx + d has only two indefinite

constants. However, the problem without boundary conditions also makes

sense; its solution is the set of horizontal segments y = d starting at the

vertical line x = a and ending at x = b.

Problem setup is a tough yet important issue in mathematics. We shall

eventually face the question of how to pose the main problems of the cal-

culus of variations in a sensible fashion.

Let us consider the problem of minimum of (1.20) without additional

restrictions, and attempt to solve it using calculus. Discretization, in this

case the approximation of the integral by a Riemann sum, will reduce the

functional to a multivariable function. In the calculus of variations other

methods of investigation are customary; however, the current approach

is instructive because it leads to some central results of the calculus of
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variations and shows that certain important ideas are extensions of ordinary

calculus.

We begin by subdividing [a, b] into n partitions each of length

h =
b− a

n
.

Denote xi = a + ih and yi = y(xi), so y0 = y(a) and yn = y(b). Take an

approximate value of y′(xi) as

y′(xi) ≈ yi+1 − yi
h

.

Approximation of (1.20) by the Riemann sum∫ b

a

f(x, y, y′) dx ≈ h
n−1∑
k=0

f(xk, yk, y
′(xk)) (1.21)

gives ∫ b

a

f(x, y, y′) dx ≈ h

n−1∑
k=0

f(xk, yk, (yk+1 − yk)/h)

= Φ(y0, . . . , yn). (1.22)

Since Φ(y0, . . . , yn) is an ordinary function in n+ 1 independent variables,

we set

∂Φ(y0, y1, . . . , yn)

∂yi
= 0, i = 0, . . . , n. (1.23)

Again, any function f encountered is assumed to possess all needed deriva-

tives. Henceforth we denote partial derivatives using

fy =
∂f

∂y
, fy′ =

∂f

∂y′
, fx =

∂f

∂x
, (1.24)

and the total derivative using

df(x, y(x), y′(x))
dx

= fx(x, y(x), y
′(x)) + fy(x, y(x), y

′(x)) y′(x)

+ fy′(x, y(x), y
′(x)) y′′(x). (1.25)

Observe that in the notation fy′ we regard y′ as the name of a simple

variable; we temporarily ignore its relation to y and even its status as a

function in its own right.
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Consider the structure of (1.23). The variable yi appears in the sum

(1.22) only once when i = 0 or i = n, twice otherwise. In the latter case

(1.23) gives, using the chain rule and omitting the factor h,

fy′

(
xi−1, yi−1,

yi − yi−1

h

)
h

−
fy′

(
xi, yi,

yi+1 − yi
h

)
h

+ fy

(
xi, yi,

yi+1 − yi
h

)
= 0. (1.26)

For i = 0 the result is

h


fy

(
x0, y0,

y1 − y0
h

)
−
fy′

(
x0, y0,

y1 − y0
h

)
h


 = 0

or

fy′

(
x0, y0,

y1 − y0
h

)
− h fy

(
x0, y0,

y1 − y0
h

)
= 0. (1.27)

For i = n we obtain

fy′

(
xn−1, yn−1,

yn − yn−1

h

)
= 0. (1.28)

In the limit as h→ 0, (1.27) and (1.28) give, respectively,

fy′(x, y(x), y
′(x))

∣∣
x=a

= 0, fy′(x, y(x), y
′(x))

∣∣
x=b

= 0.

Finally, considering the first two terms in (1.26) for 0 < i < n,

−
fy′

(
xi, yi,

yi+1 − yi
h

)
− fy′

(
xi−1, yi−1,

yi − yi−1

h

)
h

,

we recognize an approximation for the total derivative −dfy′/dx at yi−1.

Hence (1.26), after h→ 0 in such a way that xi−1 remains a fixed value c,

reduces to

fy − d

dx
fy′ = 0 (1.29)

at x = c. A nonuniform partitioning will yield this equation similarly for

any x = c ∈ (a, b). In expanded form (1.29) is

fy − fy′x − fy′yy
′ − fy′y′y

′′ = 0, x ∈ (a, b). (1.30)
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The limit passage has given us this second-order ordinary differential equa-

tion and two boundary conditions

fy′
∣∣
x=a

= 0, fy′
∣∣
x=b

= 0. (1.31)

Equations (1.29) and (1.31) play the same role for the functional (1.20) as

equations (1.10) play for a function in many variables. In the absence of

boundary conditions on y(x), we get necessarily two boundary conditions

for a function on which (1.20) attains a minimum.

Since the resulting equation is of second order, no more than two bound-

ary conditions can be imposed on its solution (see, however, Remark 1.20).

We could, say, fix the ends of the curve y = y(x) by putting

y(a) = c0, y(b) = c1. (1.32)

If we repeat the above process under this restriction we get (1.26) and cor-

respondingly (1.29), whereas (1.31) is replaced by (1.32). We can consider

the problem of minimum of this functional on the set of functions satisfying

(1.32). Then the necessary condition which a minimizer should satisfy is

the boundary value problem consisting of (1.29) and (1.32).

Conditions such as y(a) = 0 and y′(a) = 0 are normally posed for

a Cauchy problem involving a second-order differential equation. In the

present case, however, a repetition of the above steps implies the addi-

tional restriction fy′ |x=b = 0. A problem for (1.29) with three boundary

conditions is, in general, inconsistent.

We have obtained some possible ways to set up the problem of minimum

of the functional (1.20).

Notation for various types of derivatives

It will be necessary to take derivatives of composite functions. When such

functions are integrated by parts, we encounter “total derivatives” that

must be distinguished from the usual partial derivatives. We denote total

derivatives in the same way as ordinary derivatives, using the differential

symbol d: therefore d/dx will denote a total derivative with respect to x.

We often denote partial derivatives by subscripts so that ∂(·)/∂x will be

denoted by (·)x or sometimes (·)1. Let us consider two common cases.

1. Suppose

f = f(x, y(x), y′(x))
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so that f depends on x through (1) an independent variable x, and (2) the

variables p = y(x) and q = y′(x) that are each functions of x as well. We

will denote the partial derivative with respect to x as

fx =
∂

∂x
f(x, p, q)

∣∣∣∣
p=y(x), q=y′(x)

where, during differentiation, we regard p and q as independent variables.

Other partial derivatives are

fy =
∂

∂p
f(x, p, q)

∣∣∣∣
p=y(x), q=y′(x)

, fy′ =
∂

∂q
f(x, p, q)

∣∣∣∣
p=y(x), q=y′(x)

.

The total derivative with respect to x, denoted d/dx, arises when we dif-

ferentiate while considering y(x) and y′(x) to be functions of x. The total

derivative of the partial derivative fy′ is, by the chain rule,

d

dx
fy′ ≡ d

dx
fy′(x, y(x), y

′(x)) = fy′x + fy′yy
′ + fy′y′y

′′,

where, for example,

fy′y =
∂

∂p

∂

∂q
f(x, p, q)

∣∣∣∣
p=y(x), q=y′(x)

.

2. Consider the composite function

f = f(x, y, u(x, y), ux(x, y), uy(x, y))

depending on independent variables x, y and on a function u and its deriva-

tives, which depend on x, y as well. Now we denote

p = u(x, y), q = ux(x, y), r = uy(x, y),

where ux and uy are partial derivatives with respect to x and y, respec-

tively. Introducing variables p, q, r, we get a function f = f(x, y, p, q, r)

in five independent variables. The following notations are used for partial

derivatives:

fx =
∂

∂x
f(x, y, p, q, r)

∣∣∣∣
p=u(x,y), q=ux(x,y), r=uy(x,y)

,

fy =
∂

∂y
f(x, y, p, q, r)

∣∣∣∣
p=u(x,y), q=ux(x,y), r=uy(x,y)

,

fu =
∂

∂p
f(x, y, p, q, r)

∣∣∣∣
p=u(x,y), q=ux(x,y), r=uy(x,y)

,
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fux =
∂

∂q
f(x, y, p, q, r)

∣∣∣∣
p=u(x,y), q=ux(x,y), r=uy(x,y)

,

and

fuy =
∂

∂r
f(x, y, p, q, r)

∣∣∣∣
p=u(x,y), q=ux(x,y), r=uy(x,y)

.

Finally, let us display the notation for the total derivative d/dx of fux ,

where f denotes f = f(x, y, p, q, r):

d

dx
fux =

(
fqx + fqpux + fqquxx + fqruyx

)∣∣∣∣
p=u(x,y), q=ux(x,y), r=uy(x,y)

,

and a similar formula for the total derivative with respect to y:

d

dy
fux =

(
fqy + fqpuy + fqquxy + fqruyy

)∣∣∣∣
p=u(x,y), q=ux(x,y), r=uy(x,y)

.

The formulas for higher derivatives are denoted similarly.

Brief summary of important terms

A functional is a correspondence assigning a real number to each function

in some class of functions. The calculus of variations is concerned with

variational problems : i.e., those in which we seek the extrema (maxima or

minima) of functionals.

An admissible function for a given variational problem is a function that

satisfies all the constraints of that problem.

A function is sufficiently smooth for a particular development if all re-

quired actions (e.g., differentiation, integration by parts) are possible and

yield results having the properties needed for that development.

1.2 Euler’s Equation for the Simplest Problem

We begin with the problem of local minimum of the functional

F (y) =

∫ b

a

f(x, y, y′) dx (1.33)

on the set of functions y = y(x) that satisfy the boundary conditions

y(a) = c0, y(b) = c1. (1.34)
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The existence of a solution can depend on the properties of this set. We

must compare the values of F (y) on all functions y satisfying (1.34). In

view of (1.29) it is reasonable to seek minimizers that have continuous first

and second derivatives on [a, b]. How should we specify a neighborhood of

a function y(x)? Since all admissible functions must satisfy (1.34), we can

consider the set of functions of the form y(x) + ϕ(x) where

ϕ(a) = ϕ(b) = 0. (1.35)

With the intention of using tools close to those of classical calculus,

we first introduce the idea of continuity of a functional with respect to an

argument which, in turn, is a function on [a, b]. A suitably modified version

of the classical definition of function continuity is as follows: given any small

ε > 0, there exists a δ-neighborhood of y(x) such that when y(x) + ϕ(x)

belongs to this neighborhood we have

|F (y + ϕ)− F (y)| < ε.

If the neighborhood of the zero function is specified by the inequality

max
x∈[a,b]

|ϕ(x)|+ max
x∈[a,b]

|ϕ′(x)| < δ, (1.36)

the definition can become workable when f(x, y, y′) is continuous in the

three independent variables x, y, y′. This is not the only possible definition

of a neighborhood; later we shall discuss other possibilities. But one benefit

is that the left side of (1.36) contains the expression usually used to define

the norm on the set of all functions continuously differentiable on [a, b]:

‖ϕ(x)‖C(1)(a,b) = max
x∈[a,b]

|ϕ(x)| + max
x∈[a,b]

|ϕ′(x)|. (1.37)

Definition 1.3. The space C(1)(a, b) is the normed space consisting of

the set of all functions ϕ(x) that are continuously differentiable on [a, b],

supplied with the norm (1.37). Its subspace of functions satisfying (1.35) is

denoted C
(1)
0 (a, b). The set of all functions having k continuous derivatives

on [a, b] is denoted C(k)(a, b).

In many books these spaces are denoted by C(k)([a, b]) to emphasize

that [a, b] is closed. To keep our notation reasonable throughout the book,

we introduce

Convention 1.4. In cases where no ambiguity should arise, we typically

abbreviate the space designation subscript on a norm symbol. �
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For example, the notation ‖·‖C(1)(a,b) (where the dot stands for the

argument of the norm operation) is shortened to ‖·‖ in the present section.

At times, only some aspect of the full label can be suppressed. For example,

we may use the notation ‖·‖C(1) if only the domain [a, b] is understood. With

this convention in mind let us proceed to

Definition 1.5. A δ-neighborhood of y(x) of admissible functions is the set

of all functions of the form y(x) + ϕ(x) where ϕ(x) is such that ϕ(x) ∈
C

(1)
0 (a, b) and ‖ϕ(x)‖ < δ.

When no boundary conditions are imposed on y, then the definition of

δ-neighborhood does not require ϕ to vanish at the endpoints.

Definition 1.6. A function y(x) is a point of local minimum of F (y) on

the set satisfying (1.34) if there is a δ-neighborhood of y(x), i.e., a set of

functions z(x) such that z(x)− y(x) ∈ C
(1)
0 (a, b) and ‖z(x)− y(x)‖ < δ, in

which F (z)−F (y) ≥ 0. If in a δ-neighborhood the relation F (z)−F (y) > 0

holds for all z(x) �= y(x), then y(x) is a point of strict local minimum.

We may speak of more than one type of local minimum. According to

Definition 1.6, a function y is a minimum if there is a δ such that

F (y + ϕ)− F (y) ≥ 0 whenever ‖ϕ‖
C

(1)
0 (a,b)

< δ.

Historically this type of minimum is called “weak” and we shall use only this

type and simply call it a minimum. Those who pioneered the calculus of

variations also considered “strong” local minima, defining these as values of

y for which there is a δ such that F (y+ϕ) ≥ F (y) whenever ϕ(a) = ϕ(b) = 0

and max |ϕ| < δ on [a, b]. Here the modified condition on ϕ permits “strong

variations” into consideration: i.e., functions ϕ for which ϕ′ may be large

even though ϕ itself is small. Note that when we “weaken” the condition

on ϕ by changing the norm from the norm of C
(1)
0 (a, b) to the norm of

C0(a, b) which contains only ϕ and not ϕ′, we simultaneously strengthen the

statement made regarding y when we assert the inequality F (y+ϕ) ≥ F (y).

Let us turn to a rigorous justification of (1.29). We restrict the class

of possible integrands f(x, y, z) of (1.33) to the set of functions that are

continuous in (x, y, z) when x ∈ [a, b] and |y−y(x)|+|z−y′(x)| < δ. Suppose

the existence of a minimizer y(x) for F (y) (see, however, Remark 1.13 on

page 21). Consider F (y + tϕ) for an arbitrary but fixed ϕ(x) ∈ C
(1)
0 (a, b).

It is a function in the single variable t, taking its minimum at t = 0. If it
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is differentiable then

dF (y + tϕ)

dt

∣∣∣∣
t=0

= 0. (1.38)

To justify differentiation under the integral sign, let f(x, y, y′) be contin-

uously differentiable in the variables y and y′. But, since (1.30) shows

that we shall need the existence of other derivatives of f as well, let us

assume f(x, y, y′) is twice continuously differentiable, in any combination

of its arguments, in the domain of interest. By the chain rule, (1.38) yields

0 =
d

dt

∫ b

a

f(x, y + tϕ, y′ + tϕ′) dx
∣∣∣∣
t=0

=

∫ b

a

[fy(x, y, y
′)ϕ+ fy′(x, y, y

′)ϕ′] dx. (1.39)

Definition 1.7. The right member of (1.39) is denoted δF (y, ϕ) and called

the first variation of the functional (1.33).

Integration by parts in the second term on the right in (1.39) gives∫ b

a

fy′(x, y, y
′)ϕ′ dx = −

∫ b

a

ϕ
d

dx
fy′(x, y, y

′) dx

where the boundary terms vanish by (1.35). It follows that∫ b

a

[
fy(x, y, y

′)− d

dx
fy′(x, y, y

′)
]
ϕdx = 0. (1.40)

In the integrand we see the left side of (1.29). To deduce (1.29) from (1.40)

we need the fundamental lemma of the calculus of variations.

Lemma 1.8. Let g(x) be continuous on [a, b], and let∫ b

a

g(x)ϕ(x) dx = 0 (1.41)

hold for every function ϕ(x) that is differentiable on [a, b] and vanishes in

some neighborhoods of a and b. Then g(x) ≡ 0.

Proof. Suppose to the contrary that (1.41) holds while g(x0) �= 0 for

some x0 ∈ (a, b). Without loss of generality we may assume g(x0) > 0. By

continuity we have g(x) > 0 in a neighborhood [x0−ε, x0+ε] ⊂ (a, b). It is
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easy to construct a nonnegative bell-shaped function ϕ0(x) such that ϕ0(x)

is differentiable, ϕ0(x0) > 0, and ϕ0(x) = 0 outside (x0 − ε, x0 + ε):

ϕ(x) =



exp

(
ε2

(x− x0)2 − ε2

)
, |x− x0| < ε,

0, |x− x0| ≥ ε.

See Fig. 1.1. The product g(x)ϕ0(x) is nonnegative everywhere and positive

near x0. Hence
∫ b
a
g(x)ϕ(x) dx > 0, a contradiction. �

xx0 x +0 εx -0 ε

Fig. 1.1 Bell-shaped function for the proof of Lemma 1.8.

It is possible to further restrict the class of functions ϕ(x) in Lemma 1.8.

Lemma 1.9. Let g(x) be continuous on [a, b], and let (1.41) hold for any

function ϕ(x) that is infinitely differentiable on [a, b] and vanishes in some

neighborhoods of a and b. Then g(x) ≡ 0.

The proof is the same as that for Lemma 1.8: it is necessary to con-

struct the same bell-shaped function ϕ(x) that is infinitely differentiable.

This form of the fundamental lemma provides a basis for the theory of gen-

eralized functions or distributions. These are linear functionals on the sets

of infinitely differentiable functions, and arise as elements of the Sobolev

spaces to be discussed later.

Now we can formulate the main result of this section.

Theorem 1.10. Suppose y = y(x) ∈ C(2)(a, b) locally minimizes the func-

tional (1.33) on the subset of C(1)(a, b) consisting of those functions satis-

fying (1.34). Then y(x) is a solution of the equation

fy − d

dx
fy′ = 0. (1.42)
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Proof. Under the assumptions of this section (including that f(x, y, y′)
is twice continuously differentiable in its arguments), the bracketed term in

(1.40) is continuous on [a, b]. Since (1.40) holds for any ϕ(x) ∈ C
(1)
0 (a, b),

Lemma 1.8 applies. �

Definition 1.11. Equation (1.42) is known as the Euler equation, and a

solution y = y(x) is called an extremal of (1.33). A functional is stationary

if its first variation vanishes.

Taken together, (1.42) and (1.34) constitute a boundary value problem

for the unknown y(x).

Example 1.12. Find a function ȳ = ȳ(x) that minimizes the functional

F (y) =

∫ 1

0

[y2 + (y′)2 − 2y] dx

subject to the conditions y(0) = 1 and y(1) = 0.

Solution. Here f(x, y, y′) = y2 + (y′)2 − 2y, so we obtain

fy = 2y − 2, fy′ = 2y′,

and the Euler equation is

y′′ − y + 1 = 0.

Subject to the given boundary conditions, the solution is

ȳ(x) = 1− ex − e−x

e− e−1
.

We stress that this is an extremal: only supplementary investigation can

determine whether it is an actual minimizer of F (y). Consider the difference

F (ȳ + ϕ)− F (ȳ) where ϕ(x) vanishes at x = 0, 1. It is easily shown that

F (ȳ + ϕ)− F (ȳ) =

∫ 1

0

[ϕ2 + (ϕ′)2] dx ≥ 0,

so the global minimum of F (y) really does occur at ȳ(x). Although such

direct verification is not always straightforward, a large class of important

problems in mechanics (e.g., problems of equilibrium for linearly elastic

structures under conservative loads) yield single extremals that minimize

their corresponding total energy functionals. This happens because of the

quadratic structure of the functional, as in the present example. �

Certain forms of f lead to simplification of the Euler equation:
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(1) If f does not depend explicitly on y, then fy′ = constant.

(2) If f does not depend explicitly on x, then f − fy′y
′ = constant.

(3) If f depends explicitly on y′ only and fy′y′ �= 0, then y(x) = c1x+ c2.

Remark 1.13. On page 17 we assumed the existence of a minimizer. This

can lead to incorrect conclusions, and it is normally necessary to prove the

existence of an object having needed properties. Perron’s paradox illus-

trates the trouble we may encounter by supposing the existence of a nonex-

istent object. Suppose there exists a greatest positive integer N . Since N2

is also a positive integer we must have N2 ≤ N , from which it follows that

N = 1. If we knew nothing about the integers we might believe this result

and attempt to base an entire theory on it. �

1.3 Properties of Extremals of the Simplest Functional

While attempting to seek a minimizer on a subset of C(1)(a, b), we imposed

the illogical restriction that it must belong to C(2)(a, b) (note that f does

not depend on y′′). Let us consider how to circumvent this requirement.

Lemma 1.14. Let g(x) be a continuous function on [a, b] for which the

following equality holds for every ϕ(x) ∈ C
(1)
0 (a, b):∫ b

a

g(x)ϕ′(x) dx = 0. (1.43)

Then g(x) is constant.

Proof. For a constant c it is clear that
∫ b
a cϕ

′(x) dx = 0 whenever ϕ(x) ∈
C

(1)
0 (a, b). So g(x) can be an arbitrary constant. We show that there are

no other forms for g. From (1.43) it follows that∫ b

a

[g(x) − c]ϕ′(x) dx = 0. (1.44)

Take c = c0 = (b − a)−1
∫ b
a
g(x) dx. The function ϕ(x) =

∫ x
a
[g(s) − c0] ds

is continuously differentiable and satisfies ϕ(a) = ϕ(b) = 0. Hence we can

put it into (1.44) and obtain∫ b

a

[g(x)− c0]
2 dx = 0,

from which g(x) ≡ c. �
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Lemma 1.14 provides a necessary condition for a relative minimum.

Theorem 1.15. Suppose y = y(x) ∈ C(1)(a, b) locally minimizes (1.33)

on the subset of functions in C(1)(a, b) satisfying (1.34). Then y(x) is a

solution of the following equation, where c is a constant:∫ x

0

fy(s, y(s), y
′(s)) ds− fy′(x, y(x), y

′(x)) = c. (1.45)

Proof. Let us return to the equality (1.39),∫ b

a

[fy(x, y, y
′)ϕ+ fy′(x, y, y

′)ϕ′] dx = 0,

which is valid here as well. Integration by parts gives∫ b

a

fy(x, y(x), y
′(x))ϕ(x) dx = −

∫ b

a

∫ x

a

fy(s, y(s), y
′(s)) dsϕ′(x) dx.

The boundary terms were zero by (1.35). It follows that∫ b

a

[
−
∫ x

a

fy(s, y(s), y
′(s)) ds + fy′(x, y(x), y

′(x))
]
ϕ′(x) dx = 0.

This holds for all ϕ(x) ∈ C
(1)
0 (a, b). So by Lemma 1.14 we have (1.45). �

The integro-differential equation (1.45) has been called the Euler equa-

tion in integrated form.

Corollary 1.16. If

fy′y′(x, y(x), y
′(x)) �= 0

along a minimizer y = y(x) ∈ C(1)(a, b) of (1.33), then y(x) ∈ C(2)(a, b).

Proof. Rewrite (1.45) as

fy′(x, y(x), y
′(x)) =

∫ x

0

fy(s, y(s), y
′(s)) ds− c.

The function on the right is continuously differentiable for any y = y(x) ∈
C(1)(a, b). Thus we can differentiate both sides of the last identity with

respect to x and obtain

fy′x + fy′yy
′ + fy′y′y

′′ = a continuous function.

Considering the term with y′′(x) on the left, we prove the claim. �
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It follows that under the condition of the corollary equations (1.42) and

(1.45) are equivalent; however, this is not the case when fy′y′(x, y(x), y
′(x))

can be equal to zero on a minimizer y = y(x). Since y′′(x) does not appear
in (1.45), it can be considered as defining a generalized solution of (1.42).

At times it becomes clear that we should change variables and consider a

problem in another coordinate frame. For example, if we consider geodesic

lines on a surface of revolution, then cylindrical coordinates may seem more

appropriate than Cartesian coordinates. For the problem of minimum of a

functional we have two objects: the functional itself, and the Euler equation

for this functional. Let y = y(x) satisfy the Euler equation in the original

frame. Let us change variables, for example from (x, y) to (u, v):

x = x(u, v), y = y(u, v). (1.46)

The forms of the functional and its Euler equation both change. Next we

change variables for the extremal y = y(x) and get a curve v = v(u) in the

new variables. Is v = v(u) an extremal for the transformed functional? It

is, provided the transformation does not degenerate in some neighborhood

of the curve y = y(x): that is, if the Jacobian

J =

∣∣∣∣xu xv
yu yv

∣∣∣∣ �= 0

there. This property is called the invariance of the Euler equation. Roughly

speaking, we can change all the variables of the problem at any stage of

the solution and get the same solutions in the original coordinates. This

invariance is frequently used in practice. We shall not stop to consider the

issue of invariance for each type of functional we treat, but the results are

roughly the same.

We have derived a necessary condition for a function to be a point

of minimum or maximum of (1.33). Other functionals will be treated in

the sequel. An Euler equation is the starting point for any variational

investigation of a physical problem, and in practice its solution is often

approached numerically. Let us consider some methods relevant to (1.33).

1.4 Ritz’s Method

We now consider a numerical approach to minimizing the functional (1.33)

with boundary conditions (1.34). Corresponding techniques for other prob-

lems will be presented later; we shall benefit from a consideration of this

simple problem, however, since the main ideas will be the same.
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In § 1.1 we obtained the Euler equation for (1.33). The intermediate

equations (1.26) with boundary conditions (1.27)–(1.28), which for this

case must be replaced by the Dirichlet conditions

y(a) = y0 = d0, y(b) = yn = d1,

present us with a finite difference variational method for solving the problem

(1.42), (1.34), belonging to a class of numerical methods based on repre-

senting the derivatives of y(x) in finite-difference form and the functional

as a finite sum. These methods differ in how the functions and integrals

are discretized. Despite widespread application of the finite element and

boundary element methods, the finite-difference variational methods remain

useful because of certain advantages they possess.

Other methods for minimizing a functional, and hence of solving certain

boundary value problems, fall under the heading of Ritz’s method. Included

are modifications of the finite element method. Ritz’s method was popular

before the advent of the computer, and remains so, because it can yield

accurate results for complex problems that are difficult to solve analytically.

The idea of Ritz’s method is to reduce the problem of minimizing (1.33)

on the space of all continuously differentiable functions satisfying (1.34)

to the problem of minimizing the same functional on a finite dimensional

subspace of functions that can approximate the solution. Formerly, the

necessity of doing manual calculations forced engineers to choose such sub-

spaces quite carefully, since it was important to get accurate results in as

few calculations as possible. The choice of subspace remains an important

issue because a bad choice can lead to computational instability.

In Ritz’s method we seek a solution to the problem of minimization of

the functional (1.33), with boundary conditions (1.34), in the form

yn(x) = ϕ0(x) +

n∑
k=1

ckϕk(x). (1.47)

Here ϕ0(x) satisfies (1.34); a common choice is the linear function ϕ0(x) =

αx+ β with

α =
d1 − d0
b− a

, β =
bd0 − ad1
b− a

. (1.48)

The remaining functions, called basis functions, satisfy the homogeneous

conditions

ϕk(a) = ϕk(b) = 0, k = 1, . . . , n.

The ck are constants.
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Definition 1.17. The function y∗n(x) that minimizes (1.33) on the set of

all functions of the form (1.47) is called the nth Ritz approximation.

The Ritz approximations satisfy the boundary conditions (1.34) auto-

matically. The above mentioned subspace is the space of functions of the

form
∑n

k=0 ckϕk(x). For a numerical solution it is necessary that the ϕk(x)

be linearly independent, which means that

n∑
k=1

ckϕk(x) = 0 only if ck = 0 for k = 1, . . . , n.

For manual calculation this was supplemented by the requirement that a

small value of n— say 1, 2, or 3 at most — would suffice. The requirement

could be met since the corresponding boundary value problems described

real objects, such as bent beams, whose shapes under load were understood.

Now, to provide a theoretical justification of the method, we require that

the system {ϕk(x)}∞k=1 be complete. This means that given any y = g(x) ∈
C

(1)
0 (a, b) and ε > 0 we can find a finite sum

∑n
k=1 ckϕk(x) such that

∥∥∥∥g(x)− n∑
k=1

ckϕk(x)

∥∥∥∥ < ε.

Here the norm is defined by (1.37). It is sometimes required that

{ϕk(x)}∞k=1 be a basis of the corresponding space, but this is not needed

for either the justification of the method or its numerical realization.

We therefore arrive at the problem of minimizing the functional

∫ b

a

f(x, yn, y
′
n) dx

where yn(x) is given by (1.47). The unknowns are the ck, so the functional

becomes a function in n real variables:

Φ(c1, . . . , cn) =

∫ b

a

f(x, yn, y
′
n) dx.

To minimize this we solve the system

∂Φ(c1, . . . , cn)

∂ck
= 0, k = 1, . . . , n. (1.49)
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Denoting c0 = 1, we have

∂Φ(c1, . . . , cn)

∂ck
=

∂

∂ck

∫ b

a

f(x, yn, y
′
n) dx

=
∂

∂ck

∫ b

a

f

(
x,

n∑
i=0

ciϕi(x),

n∑
i=0

ciϕ
′
i(x)

)
dx

=

∫ b

a

fy

(
x,

n∑
i=0

ciϕi(x),

n∑
i=0

ciϕ
′
i(x)

)
ϕk(x) dx

+

∫ b

a

fy′

(
x,

n∑
i=0

ciϕi(x),
n∑
i=0

ciϕ
′
i(x)

)
ϕ′
k(x) dx,

hence (1.49) becomes∫ b

a

fy

(
x,

n∑
i=0

ciϕi(x),

n∑
i=0

ciϕ
′
i(x)

)
ϕk(x) dx

+

∫ b

a

fy′

(
x,

n∑
i=0

ciϕi(x),

n∑
i=0

ciϕ
′
i(x)

)
ϕ′
k(x) dx = 0 (1.50)

for k = 1, . . . , n. This is a system of n simultaneous equations in the n

variables c1, . . . , cn. It is linear only if f is a quadratic form in ck; i.e., only

if the Euler equation is linear in y(x). For methods of solving simultaneous

equations, the reader is referred to books on numerical analysis.

Note that (1.50) can be obtained in other ways. We could put y = yn
and ϕ = ϕk in (1.39), since while deriving (1.50) we used the same steps

we used in deriving (1.39). Alternatively, we could put yn into the left side

of the Euler equation,

fy(x, yn, y
′
n)−

d

dx
fy′(x, yn, y

′
n), (1.51)

and then require it to be “orthogonal” to each ϕk. That is, we could multi-

ply (1.51) by ϕk, integrate the result over [a, b], use integration by parts on

the term with the total derivative d/dx, and equate the result to zero. This

is opposite the way we derived (1.50). This method of approximating the

solution of the boundary value problem (1.42), (1.47) is Galerkin’s method.

In the Russian literature it is called the Bubnov–Galerkin method, because

in 1915 I.G. Bubnov, who was reviewing a paper by S.P. Timoshenko on

applications of Ritz’s method to the solution of a problem for a bending

beam, offered a brief remark on another method of obtaining the equations
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of Ritz’s method. The journal in which Timoshenko’s paper appeared hap-

pened to publish the comments of reviewers together with the papers (a

nice way to hold reviewers responsible for their comments). Hence Bubnov

became an originator of the method. Galerkin was Bubnov’s successor,

and his real achievement was the development of various forms and appli-

cations of the method. In particular, there is a modification wherein (1.51)

is multiplied not by ϕk, the functions from the representation of yn, but

by other functions ψ1, . . . , ψn. This is sometimes a better way to minimize

the residual (1.51).

Popular basis functions ϕk for one-dimensional problems include the

trigonometric polynomials and functions of the form (x − a)(x − b)Pk(x)

where the Pk(x) are polynomials. Here the factors (x − a) and (x − b)

enforce the required homogeneous boundary conditions at x = a and x = b.

When deriving the equations of the Ritz (or Bubnov–Galerkin) method,

we imposed no special conditions on {ϕk} other than linear independence

and some smoothness: ϕk(x) ∈ C
(1)
0 (a, b). In general each of the equa-

tions (1.50) contains all of the ck. By the integral nature of (1.50), if we

select basis functions so that each ϕk(x) is nonzero only on some small

part of [a, b], we get a system in which each equation involves only a sub-

set of {ϕi}. This is the background for the finite element method based

on Galerkin’s method: depending on the problem each equation involves

just a few of the ck (typically three to five). Moreover, the derivation of

Galerkin’s equations suggests that it is not necessary to have basis functions

with continuous derivatives — it suffices to take functions with piecewise

continuous derivatives of higher order (first order for the problem under

consideration) when it is possible to calculate the terms of (1.50).

Ritz’s method can yield good results using low-order approximations. A

disadvantage is that the calculations at a given step are almost independent

from those of the previous step. The ck do not change continuously from

step to step; hence, although the next step gives a better approximation,

the coefficients can change substantially. Accumulation of errors imposes

limits on the number of basis functions in practical calculations.

Example 1.18. Consider the problem

Ψ(y) =

∫ 1

0

{y′2(x) + [1 + 0.1 sin(x)]y2(x)− 2xy(x)} dx→ min

subject to y(0) = 0 and y(1) = 10. Find the Ritz approximations for

n = 1, 3, 5 using ϕ0(x) = 10x and the following basis sets:
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(a) ϕk(x) = (1 − x)xk, k ≥ 1,

(b) ϕk(x) = sin kπx, k ≥ 1.

Solution. Note that ϕ0(x) was chosen to satisfy the given boundary con-

ditions. We find the expansion coefficients ck by solving the system

∂

∂ck
Ψ

(
ϕ0(x) +

n∑
i=1

ciϕi(x)

)
= 0, i = 1, . . . , n.

For brevity let us denote

〈y, z〉 =
∫ 1

0

{y′(x)z′(x) + [1 + 0.1 sin(x)]y(x)z(x)} dx

so that

Ψ(y) = 〈y, y〉 − 2

∫ 1

0

xy(x) dx.

Using the symmetry of the form 〈y, z〉 we write out Ritz’s equations:

c1〈ϕ1, ϕ1〉+ c2〈ϕ2, ϕ1〉+ · · ·+ cn〈ϕn, ϕ1〉 = −〈ϕ0, ϕ1〉+
∫ 1

0

xϕ1(x) dx,

c1〈ϕ1, ϕ2〉+ c2〈ϕ2, ϕ2〉+ · · ·+ cn〈ϕn, ϕ2〉 = −〈ϕ0, ϕ2〉+
∫ 1

0

xϕ2(x) dx,

...

c1〈ϕ1, ϕn〉+ c2〈ϕ2, ϕn〉+ · · ·+ cn〈ϕn, ϕn〉 = −〈ϕ0, ϕn〉+
∫ 1

0

xϕn(x) dx.

(1.52)

For small n this system can be solved by hand, otherwise computer solution

is required. In the present case we find that for the first basis set the Ritz

approximations are

y1(x) = 10x− 2.162x(1− x),

y3(x) = 10x+ (−1.409x− 1.356x2 − 0.246x3)(1− x),

y5(x) = 10x+ (−1.404x− 1.404x2 − 0.140x3 − 0.063x4 − 0.007x5)(1 − x).

For the second basis set we obtain the Ritz approximations

z1(x) = 10x− 0.289 sinπx,

z3(x) = 10x− 0.289 sinπx+ 0.063 sin 2πx− 0.017 sin 3πx,

z5(x) = 10x− 0.289 sinπx+ 0.063 sin 2πx− 0.017 sin 3πx

+ 0.008 sin 4πx− 0.004 sin 5πx,
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as required. �

In this example we employed the bilinear form 〈y, z〉. The symmetry of

this form with respect to its arguments simplified the calculation. In the

static problems of linear elasticity, such a form is naturally induced by the

energy expression for an elastic body. Moreover, the form of the left sides of

(1.52) is the same for all such problems, whether they are three-dimensional

problems of elasticity, or problems describing elastic beams or shells.

In Ritz’s time such approximate solutions were sought for problems de-

scribing elastic beams and plates. The resulting systems of equations were

fairly hard to solve by hand. The method was justified by comparison

with experimental data. A full justification of Ritz’s and similar methods

requires the tools of functional analysis, which forms the subject of Chap-

ter 4. However, we would like to discuss some aspects of the method on an

elementary level using Example 1.18 as a model.

Notes on basis functions

First let us comment on the approximations. The normal working viewpoint

is that one compares each pair of successive approximations and terminates

the calculation process upon reaching a pair whose difference is less than

some predetermined tolerance ε.

For each type of approximation, if we appoint ε = 0.01 then we can stop

at k = 5. Calculation out to k = 10 shows that the k = 5 approximations

are both very good. However, they do differ from each other by a maximum

of about 0.25. So which is “more” correct? We can answer this by substitu-

tion into the functional, which gives Ψ(y5) ≈ 127.046 and Ψ(z5) ≈ 127.449.

This is evidence that polynomial approximation is preferable. It is not hard

to see why: the true solution is not oscillatory, so the oscillatory behavior

of the trigonometric polynomials is not helpful in this case. So the “practi-

cal” approach to terminating the numerical process may not work well for

trigonometric approximation. In this particular example it can be shown

that the trigonometric approximations do converge, but slowly.

We have selected the polynomial-type Ritz approximations. But our ob-

servation regarding trigonometric approximations is cause for concern since

the situation with ordinary polynomials should not differ in principle from

that with trigonometric polynomials. Let us further discuss the problem of

basis functions.

In formulating Ritz’s method we required completeness of the set of
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basis functions. Weierstrass’s theorem of calculus states that any function

f(x) continuous on [0, 1] can be approximated uniformly by a polynomial

to within any accuracy. In other words, given ε > 0 there exists an nth

order polynomial Pn(x) such that

max
x∈[0,1]

|f(x)− Pn(x)| < ε.

It follows that to within any accuracy we may use a polynomial to uniformly

approximate a function f(x) together with its continuous derivative. In-

deed, given ε > 0, we begin with approximation of the derivative f ′(x) by
a polynomial Qn(x):

max
x∈[0,1]

|f ′(x) −Qn(x)| < ε/2.

The polynomial

Pn(x) = f(0) +

∫ x

0

Qn(t) dt

approximates f(x):

|f(x)− Pn(x)| =
∣∣∣∣f(0) +

∫ x

0

f ′(t) dt− f(0)−
∫ x

0

Qn(t) dt

∣∣∣∣
≤
∫ x

0

|f ′(t)−Qn(t)| dt

≤ ε/2 for x ∈ [0, 1].

In the same way it can be shown that a function n-times continuously dif-

ferentiable on [0, 1] can be approximated to within any prescribed accuracy

by a polynomial together with all n of its derivatives on [0, 1]. The set of

monomials {xk} constitutes a complete system of functions in C(n)[0, 1] for

any n.

Note that Weierstrass’ theorem guarantees nothing more than the exis-

tence of an approximating polynomial. When we decrease ε we get a new

polynomial where the coefficient standing at each term xk may differ sig-

nificantly from the corresponding coefficient of the previous approximating

polynomial. This is because the set {xk} does not have the uniqueness

property required of a true basis. Moreover, in mathematical analysis it

is shown that we can arbitrarily remove infinitely many members of the

family {xk} and still have a complete system {xkr}. It is necessary only

to retain such members of the family that the series
∑∞
r=1 1/kr diverges.

So the system {xk} contains more members than we need. Although any

finite set of monomials xk is linearly independent, as we take more and
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more elements the set gets closer to becoming linearly dependent; that is,

given any ε > 0 we can find infinitely many polynomials approximating the

zero function to within ε-accuracy on [0, 1]. This leads to numerical insta-

bility. The difficulty can be avoided by using other families of polynomials

for approximation: namely, orthogonal polynomials for which numerical

instability shows itself only in higher degrees of approximation.

As we know from the theory of Fourier expansion, the second system

of functions {sinkπx} is orthonormal. It is, moreover, a basis (but not

of C
(1)
0 (0, π)) as we shall discuss later. This provides greater stability in

calculations to within higher accuracy. However, in low-order Ritz approx-

imations it can be worse than a polynomial approximation of the same

problem, at least for many problems whose solutions do not oscillate.

One more aspect of the approximation is seen in the above results. For

Ritz’s approximations we compared their values. Comparing the values of

their derivatives, we find that much better agreement is obtained for the

values of the approximating functions than for the derivatives. It is obvious

that the same holds for the difference between an exact solution and the ap-

proximating functions. This property is common to all projection methods.

So, for example, in solving problems of elasticity we get comparatively good

results in low-order approximations for the field of displacements, whereas

the fields of stresses, which are expressed through the derivatives of the

displacement fields, are approximated significantly worse.

1.5 Natural Boundary Conditions

In § 1.1 we found that by using discretization on the problem of minimum of

the functional (1.33) without boundary conditions (“with free boundary”)

we obtain the Euler equation and some boundary conditions. We shall

demonstrate that the same boundary conditions appear by the method of

§ 1.2. They are known as natural boundary conditions.

Consider the minimization of (1.33) when there are no restrictions on

the boundary for y = y(x).

Theorem 1.19. Let y = y(x) ∈ C(2)(a, b) be a minimizer of the functional∫ b
a f(x, y, y

′) dx over the space C(1)(a, b). Then for y = y(x) the Euler

equation

fy − d

dx
fy′ = 0 for all x ∈ (a, b) (1.53)
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holds along with the natural boundary conditions

fy′
∣∣
x=a

= 0, fy′
∣∣
x=b

= 0. (1.54)

Proof. We can repeat the initial steps of § 1.2. Namely, consider the

values of the functional on the bundle of functions y = y(x) + tϕ(x) where

ϕ(x) ∈ C(1)(a, b) is arbitrary but fixed. Here, however, there are no restric-

tions on ϕ(x) at the endpoints of [a, b].

For fixed y(x) and ϕ(x) the functional
∫ b
a f(x, y + tϕ, y′ + tϕ′) dx be-

comes a function of the real variable t, and attains its minimum at t = 0.

Differentiating with respect to t we get∫ b

a

[fy(x, y, y
′)ϕ+ fy′(x, y, y

′)ϕ′] dx = 0.

Integration by parts gives∫ b

a

[
fy(x, y, y

′)− d

dx
fy′(x, y, y

′)
]
ϕdx+ fy′(x, y(x), y

′(x))ϕ(x)
∣∣∣∣x=b
x=a

= 0.

(1.55)

From this we shall derive the Euler equation for y(x) and the natural bound-

ary conditions. The procedure is as follows. We limit the set of all continu-

ously differentiable functions ϕ(x) to those satisfying ϕ(a) = ϕ(b) = 0. For

these functions we have∫ b

a

[
fy(x, y, y

′)− d

dx
fy′(x, y, y

′)
]
ϕdx = 0. (1.56)

This equation holds for all functions ϕ(x) that participate in the formulation

of Lemma 1.8. Hence the continuous multiplier of ϕ(x) in the integrand of

(1.56) is zero, and the Euler equation (1.53) holds in (a, b).

Now let us return to (1.55). The equality (1.56), because of the Euler

equation, holds for all ϕ(x). From (1.55) it follows that

fy′(x, y(x), y
′(x))ϕ(x)

∣∣∣∣x=b
x=a

= 0 (1.57)

for any ϕ(x). Taking ϕ(x) = x − b we find that fy′ |x=a = 0; taking

ϕ(x) = x− a we find that fy′ |x=b = 0. �

Let us call attention to the way this result was obtained. First we re-

stricted the set of admissible functions to those for which we could get a

certain intermediate result (the Euler equation); using this result, we ob-

tained some simplification in the first variation. We finished the argument

by considering the simplified first variation on all the admissible functions.



September 30, 2011 8:42 World Scientific Book - 9in x 6in aea

Basic Calculus of Variations 33

Natural boundary conditions are of great importance in mathematical

physics. For some models of real bodies or processes it may be unclear which

(and how many) boundary conditions are necessary for well-posedness of

the problem. The variational approach usually clarifies the situation and

provides natural boundary conditions dictated by the nature of the problem.

The bending of a plate is a famous example. For her pioneering studies of

this problem Sophie Germain received a prize from the French Academy

of Sciences. She derived the biharmonic equation for the deflections of the

midsurface of the plate, but with three boundary conditions as seemed to

be in accordance with mechanical intuition; variational considerations later

demonstrated that only two were independent.

It is worth noting that in mechanical problems, the natural boundary

conditions are dual to kinematic conditions on the boundary. They do

not arise at a boundary point when we “clamp” as fully as allowed by

the model. Incomplete clamping at a point always results in a natural

boundary condition of force type there. If no kinematic constraint prevails

at a point, then the natural boundary conditions express the equilibrium of

forces. A simple example is afforded by the stretched rod treated later on;

application of a force F at the right end of the rod results in the natural

boundary condition ES(l)u′(l) = F , which means that the cross section

at point l is in mechanical equilibrium under F and the reaction of the

remainder of the rod.

Remark 1.20. In § 1.1 we discussed the question of which boundary con-

ditions can be imposed to get a well-posed boundary value problem for

minimizing the functional (1.33). General considerations are nice; however,

consider the minimization of ∫ 1

0

(y′2 + 2y) dx (1.58)

on the set of continuously differentiable functions. Its Euler equation is

y′′ = 1, thus all the extremals take the form

y =
1

2
x2 + kx+ b.

The natural boundary conditions are y′(0) = 0, y′(1) = 0. These imply

k = 0. So the problem of minimum of (1.58) (with natural boundary

conditions) has a family of solutions y = 1
2x

2 + b with arbitrary constant b.

Thus we may impose an additional condition, say y(0) = 2. But in general,

such a third condition for an ordinary differential equation of second order

can yield a boundary value problem that has no solution.
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Although (1.58) is simple, the situation we just described is not unim-

portant. Indeed, the same situation holds for the whole class of functionals

that govern the equilibrium states of linear elastic systems in terms of dis-

placements. If we impose no geometrical restrictions on the position of an

elastic body (it is normally the case of natural boundary conditions) we

can always change the coordinate frame, and all the displacements can be

changed in such a way that the body appears to be shifted as a whole (i.e.,

to move as a “rigid body”). Depending on the model of the body there are

apparently one to six free constants describing such a motion — hence we

can impose additional boundary conditions at some points and still preserve

the well-posedness of the problem. In a one-dimensional problem (where

the dimension is a spatial coordinate) the situation is exactly as it is for

(1.58): it is possible to impose an additional boundary condition when con-

sidering the problem with “free” ends. Caution is often warranted when

applying the outcomes of very general considerations. �

1.6 Extensions to More General Functionals

Let us consider two extensions of the above results.

The functional
∫ b

a
f(x, y, y′) dx

Let us replace y(x) in (1.33) by a vector function

y(x) = (y1(x), . . . , yn(x)).

We denote the integrand of the functional as

f(x,y(x),y′(x)) or f(x, y1(x), . . . , yn(x), y
′
1(x), . . . , y

′
n(x))

interchangeably. The task is to treat functionals of the form

F (y) =

∫ b

a

f(x,y,y′) dx. (1.59)

First consider the problem of minimizing (1.59) when y(x) takes bound-

ary values

y(a) = c0, y(b) = c1, (1.60)

with vector constants c0 = (c01, c02, . . . , c0n), c1 = (c11, c12, . . . , c1n). We

take y(x) ∈ C(k)(a, b) to mean that each coordinate function yi(x) ∈
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C(k)(a, b); that is, each yi(x) possesses all derivatives up to order k and

these are all continuous on [a, b]. Imposing the norm

‖y(x)‖C(k)(a,b) =

n∑
i=1

‖yi(x)‖C(k)(a,b) (1.61)

on C(k)(a, b), we can define ε-neighborhoods as needed to describe mini-

mizers of (1.59). We seek a minimizer y(x) of (1.59) from among all vector

functions belonging to C(1)(a, b) and satisfying (1.60).

Theorem 1.21. Suppose y(x) ∈ C(2)(a, b) locally minimizes the functional∫ b
a
f(x,y,y′) dx on the subset of vector functions of C(1)(a, b) satisfying

(1.60). Then y(x) satisfies

∇yf − d

dx
∇y′f = 0. (1.62)

Here we use the gradient notation

∇y =

(
∂

∂y1
, . . . ,

∂

∂yn

)
, ∇y′ =

(
∂

∂y′1
, . . . ,

∂

∂y′n

)
.

The vector equation (1.62) can be written as n scalar equations

fyi −
d

dx
fy′i = 0, i = 1, . . . , n, (1.63)

each having the form of the Euler equation.

Proof. Over the same construction of admissible functions, y(x)+ tϕ(x)

where ϕ(a) = ϕ(b) = 0, we consider (1.59):

F (y(x) + tϕ(x)) =

∫ b

a

f(x,y + tϕ,y′ + tϕ′) dx. (1.64)

For fixed y(x) and ϕ(x) this becomes a function of the real variable t and

takes its minimum at t = 0 for any ϕ(x). Take ϕ(x) of the special form

ϕ1(x) = (ϕ(x), 0, . . . , 0) where the only nonzero component stands in the

first position. Then (1.64) becomes

F (y(x) + tϕ1(x)) =

∫ b

a

f(x, y1(x) + tϕ(x), y2(x), . . . , yn(x),

y′1(x) + tϕ′(x), y′2(x), . . . , y
′
n(x)) dx. (1.65)

Now the function of t becomes a particular case of the function of § 1.2,
F (y(x)+tϕ(x)), with the evident notational change y → y1. A consequence

of the minimum of (1.65) at t = 0 is the corresponding Euler equation

fy1 −
d

dx
fy′1 = 0.
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This is the first equation of (1.63). Similarly, the ith equation of (1.63) is

derived by taking ϕ(x) in the form ϕ1(x) = (0, . . . , ϕi(x), . . . , 0), where the

only nonzero component stands in the ith position. �

Let us derive the natural boundary conditions for (1.59). Now we should

not impose any conditions for y at points x = a and x = b in advance,

and thus it is the same for ϕ at these points. For a moment consider all

components of the minimizer y(x) other than yi(x) to be given. Then (1.59)

can be formally considered as a particular case of (1.33) with respect to the

ordinary function y = yi(x). Admissible vector functions differ from y(x)

only in the ith component: ϕ(x) = ϕi(x) = (0, . . . , ϕ(x), . . . , 0). We can

repeat the reasoning of § 1.3. Thus considering the problem of minimum of

(1.59) without boundary restrictions, we get n pairs of boundary conditions:

fy′i

∣∣
x=a

= 0, fy′i

∣∣
x=b

= 0, i = 1, . . . , n.

These are natural boundary conditions for a minimizer.

The functional
∫ b

a f(x, y, y
′, . . . , y(n)) dx

The functional

Fn(y) =

∫ b

a

f(x, y, y′, . . . , y(n)) dx (1.66)

may be considered on the set of functions satisfying certain boundary con-

ditions. Alternatively, we may impose no boundary conditions and seek

natural boundary conditions.

First consider the problem with given boundary equations. The corre-

sponding Euler equation will have order 2n, hence we take n conditions at

each endpoint:

y(a) = c∗0, y(b) = c∗∗0 ,

y′(a) = c∗1, y′(b) = c∗∗1 ,
...

...

y(n−1)(a) = c∗n−1, y(n−1)(b) = c∗∗n−1. (1.67)

A sufficiently smooth integrand f(x, y, y′, . . . , y(n)) belongs to C(n) on the

domain of all of its variables, at least in some neighborhood of a minimizer.

Theorem 1.22. Suppose y(x) ∈ C(2n)(a, b) locally minimizes Fn(y) in

(1.66) on the subset of vector functions of C(n)(a, b) satisfying (1.67). Then
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y(x) satisfies the Euler–Lagrange equation

fy − d

dx
fy′ +

d2

dx2
fy′′ − · · ·+ (−1)n

dn

dxn
fy(n) = 0. (1.68)

Proof. Let us recall what it means for y(x) to be a local minimizer of

Fn(y). Consider the bundle of functions y(x)+ϕ(x) where ϕ(x) is arbitrary

and belongs to C(n)(a, b). Because the bundle must satisfy (1.67) for any

ϕ(x), we see that ϕ(x) must satisfy the homogeneous conditions

ϕ(a) = 0, ϕ(b) = 0,

ϕ′(a) = 0, ϕ′(b) = 0,

...
...

ϕ(n−1)(a) = 0, ϕ(n−1)(b) = 0. (1.69)

Let C
(n)
0 (a, b) denote the subspace of C(n)(a, b) containing functions ϕ(x)

that satisfy (1.69). A function y(x) ∈ C(n)(a, b) satisfying (1.67) is a local

minimizer of Fn(y) if Fn(y+ϕ) ≥ Fn(y) for any ϕ(x) ∈ C
(n)
0 (a, b) such that

‖ϕ‖C(n)(a,b) < ε for some ε > 0.

As usual we introduce the parameter t and consider the values of Fn(y)

on the bundle y(x)+tϕ(x). Considering Fn(y(x)+tϕ(x)) for a momentarily

fixed ϕ(x) as a function of t, we see that it takes its minimal value at t = 0

and thus

dFn(y(x) + tϕ(x))

dt

∣∣∣∣
t=0

= 0.

In detail,

dFn(y(x) + tϕ(x))

dt

∣∣∣∣
t=0

=
d

dt

∫ b

a

f(x, y + tϕ, y′ + tϕ′, y′′ + tϕ′′, . . . , y(n) + tϕ(n)) dx

∣∣∣∣
t=0

=

∫ b

a

(
fyϕ+ fy′ϕ

′ + fy′′ϕ
′′ + · · ·+ fy(n)ϕ(n)

)
dx (1.70)

(in the last line of the formula the arguments are f = f(x, y, y′, . . . , y(n))).
Now we apply (multiple) integration by parts to each term containing

derivatives of ϕ so that on the last step the integrand contains only ϕ.

For the term
∫ b
a fy′ϕ

′ dx we already have (1.55). For the term
∫ b
a fy′′ϕ

′′ dx
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we produce

∫ b

a

fy′′ϕ
′′ dx = −

∫ b

a

ϕ′ d
dx
fy′′ dx+ ϕ′fy′′

∣∣∣∣x=b
x=a

=

∫ b

a

ϕ
d2

dx2
fy′′ dx+

(
ϕ′fy′′ − ϕ

d

dx
fy′′

) ∣∣∣∣x=b
x=a

.

Similarly

∫ b

a

fy′′′ϕ
′′′ dx = −

∫ b

a

ϕ
d3

dx3
fy′′′ dx

+

(
ϕ′′fy′′′ − ϕ′ d

dx
fy′′′ + ϕ

d2

dx2
fy′′′

) ∣∣∣∣x=b
x=a

and, in general,

∫ b

a

fy(n)ϕ(n) dx = (−1)n
∫ b

a

ϕ
dn

dxn
fy(n) dx

+

(
ϕ(n−1)fy(n) − ϕ(n−2) d

dx
fy(n) + · · ·+ (−1)n−1ϕ

dn−1

dxn−1
fy(n)

) ∣∣∣∣x=b
x=a

.

By (1.68) the boundary terms vanish, and collecting results we have

∫ b

a

(
fy − d

dx
fy′ +

d2

dx2
fy′′ − · · ·+ (−1)n

dn

dxn
fy(n)

)
ϕdx = 0. (1.71)

Since this holds for any ϕ(x) ∈ C
(n)
0 (a, b), we can quote the fundamental

lemma to complete the proof. �

Let us investigate the natural boundary conditions for Fn(y). Now

ϕ(x) ∈ C(n)(a, b) with no boundary restrictions. The first steps of the

previous discussion still apply; however, now there are the boundary terms

in the expression for the first variation of Fn(y) (the right side of (1.70)),

so in obtaining the result analogous to (1.71) we should collect all terms

including boundary terms. We rearrange the boundary terms, collecting
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coefficients of each ϕ(i)(x):∫ b

a

(
fy − d

dx
fy′ +

d2

dx2
fy′′ − · · ·+ (−1)n

dn

dxn
fy(n)

)
ϕdx

+ fy(n)ϕ(n−1)

∣∣∣∣x=b
x=a

+

(
fy(n−1) − d

dx
fy(n)

)
ϕ(n−2)

∣∣∣∣x=b
x=a

+

(
fy(n−2) − d

dx
fy(n−1) +

d2

dx2
fy(n)

)
ϕ(n−3)

∣∣∣∣x=b
x=a

...

+

(
fy′ − d

dx
fy′′ + · · ·+ (−1)n−1 d

n−1

dxn−1
fy(n)

)
ϕ

∣∣∣∣x=b
x=a

= 0. (1.72)

We now realize the common plan. First we consider (1.72) only on the

subset C
(n)
0 (a, b) of all ϕ(x) ∈ C(n)(a, b). Then (1.72) reduces to (1.71),

implying that (1.68) holds. Equation (1.72) becomes

fy(n)ϕ(n−1)

∣∣∣∣x=b
x=a

+

(
fy(n−1) − d

dx
fy(n)

)
ϕ(n−2)

∣∣∣∣x=b
x=a

+

(
fy(n−2) − d

dx
fy(n−1) +

d2

dx2
fy(n)

)
ϕ(n−3)

∣∣∣∣x=b
x=a

...

+

(
fy′ − d

dx
fy′′ + · · ·+ (−1)n−1 d

n−1

dxn−1
fy(n)

)
ϕ

∣∣∣∣x=b
x=a

= 0. (1.73)

It is easy to construct a set of polynomials Pik(x), for k = 0, 1 and i =

0, . . . , n− 1, with the following properties:

djPi0
dxj

∣∣∣∣
x=a

= δji ,
djPi0
dxj

∣∣∣∣
x=b

= 0, j = 0, 1, . . . , n− 1,

djPi1
dxj

∣∣∣∣
x=a

= 0,
djPi1
dxj

∣∣∣∣
x=b

= δji , j = 0, 1, . . . , n− 1,

where δji is the Kronecker delta symbol defined by δji = 1 for i = j and

δji = 0 otherwise. Substituting these polynomials into (1.73), we get the
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natural boundary conditions for a minimizer y(x):

fy(n)

∣∣∣∣
x=a

= 0,

fy(n)

∣∣∣∣
x=b

= 0,(
fy(n−1) − d

dx
fy(n)

) ∣∣∣∣
x=a

= 0,(
fy(n−1) − d

dx
fy(n)

) ∣∣∣∣
x=b

= 0,(
fy(n−2) − d

dx
fy(n−1) +

d2

dx2
fy(n)

) ∣∣∣∣
x=a

= 0,(
fy(n−2) − d

dx
fy(n−1) +

d2

dx2
fy(n)

) ∣∣∣∣
x=b

= 0,

...(
fy′ − d

dx
fy′′ + · · ·+ (−1)n−1 d

n−1

dxn−1
fy(n)

) ∣∣∣∣
x=a

= 0,(
fy′ − d

dx
fy′′ + · · ·+ (−1)n−1 d

n−1

dxn−1
fy(n)

) ∣∣∣∣
x=b

= 0.

Note that the last two conditions contain y(2n−1)(x). In general, the natural

boundary conditions contain higher derivatives than the equations (1.67).

What if we appoint some of the boundary conditions (1.67)? For exam-

ple, let y(a) = c∗1 be the only boundary restriction for a minimizer. Then

we need to require that ϕ(a) = 0, and we will get all the natural boundary

conditions for y(x) except the one whose expression is the multiplier of ϕ(a)

in the boundary sum (1.73). We must remove(
fy′ − d

dx
fy′′ + · · ·+ (−1)n−1 d

n−1

dxn−1
fy(n)

) ∣∣∣∣
x=a

= 0

from the list.

The reader should consider what happens to the natural boundary con-

ditions in case the following apply (consider each case separately):

(1) y(a) + ky′(a) = c,

(2) y(a) + ky(b) = c.

Example 1.23. Derive the Euler–Lagrange equation and natural boundary

conditions for the energy functional whose minimizer defines the equilib-
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rium of a bent cantilever beam described by parameters E, I. The beam is

subjected to a distributed load q(x), as well as a shear force Q∗ and torque

M∗ applied to the end x = l:

E(y) =
1

2

∫ l

0

EI(y′′)2 dx−
∫ l

0

qy dx−Q∗y(l)−M∗y′(l),

y(0) = y′(0) = 0.

Note that the natural boundary conditions now have mechanical meaning:

they account for the given torque and shear force at the “free” end x = l.

Solution. In this case the energy functional involves terms outside an in-

tegral, so it makes sense to repeat the derivation of the Euler–Lagrange

equation for the functional
∫ b
a f(x, y, y

′, . . . , y(n)) dx to understand howM∗

and Q∗ enter the natural boundary conditions. Supposing y is a solution,

we consider E(y) on the bundle y + tϕ with arbitrary but fixed ϕ: that is,

we consider E(y+ tϕ) where ϕ(0) = 0 = ϕ′(0). As a function of t this takes

a minimum at t = 0, so its derivative at this point is zero:∫ l

0

EIy′′ϕ′′ dx−
∫ l

0

qϕ dx−Q∗ϕ(l)−M∗ϕ′(l) = 0.

Two integrations by parts in the first integral give∫ l

0

(EIy(4) − q)ϕdx + EIy′′ϕ′∣∣l
0
− EIy′′′ϕ

∣∣l
0
−Q∗ϕ(l)−M∗ϕ′(l) = 0

and, because ϕ(0) = 0 = ϕ′(0), we have∫ l

0

(EIy(4) − q)ϕdx+ (EIy′′(l)−M∗)ϕ′(l)− (EIy′′′(l) +Q∗)ϕ(l) = 0.

Now we repeat the steps connected with the choice of ϕ. First we take

those ϕ for which ϕ(l) = 0 = ϕ′(l), which brings us to the equation∫ l

0

(EIy(4) − q)ϕdx = 0;

then, because of the arbitrariness of ϕ, we invoke the fundamental lemma

to arrive at the Euler–Lagrange equation

EIy(4) − q = 0 on [0, l].

Hence for any ϕ that does not vanish at x = l we have

(EIy′′(l)−M∗)ϕ′(l)− (EIy′′′(l) +Q∗)ϕ(l) = 0.
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It follows that

EIy′′(l) =M∗, EIy′′′(l) = −Q∗,

which are the natural boundary conditions for the cantilever beam.

From the strength of materials we know the relations between the de-

flection y of the beam, the torque M , and the shear force Q:

M = EIy′′, Q = −M ′ = −EIy′′′.
We see that the natural boundary conditions really do represent the condi-

tions on the torque and shear force given at the free end x = l. �

Let us discuss the example further. The solution of this simple bound-

ary value problem constitutes a considerable part of any textbook on the

strength of materials. At one time people relied on graphical approaches,

although it is now easy to solve the problem analytically. In practice we

encounter largely piecewise continuous load functions q displaying linear

and parabolic-type dependences.

The example did force us to consider a case omitted by the general

theory of this section: the integrand can have points of discontinuity. Es-

sentially nothing happened though. The Euler–Lagrange equation holds

everywhere except at a discontinuity of q, and at such a point a jump in

q will give rise to a jump in y(4). The lower-order derivatives of y remain

continuous.

In practice it is common to introduce external point torques and shear

forces on the beam. What can we say in such cases? In the strength of

materials, mechanical reasoning is used to show that at such points the

moments and shear forces have corresponding jumps. Can we show this

using the tools of the calculus of variations?

We consider a particular problem of the bending of a beam with fixed

ends. The beam carries a distributed load q and is a subjected to a point

torqueM∗ and shear force Q∗ at some point c. The total energy functional,

which takes its minimum value on a solution, has the form

1

2

∫ l

0

EI(y′′)2 dx−
∫ l

0

qy dx−Q∗y(c)−M∗y′(c).

The hypothesis for the model of a beam requires continuity of y and y′

at all points including x = c. Let us see what actually happens at this

point. As in the example above, the energy functional is be considered on

the bundle y + tϕ where ϕ, together with its first derivative, goes to zero

at the endpoints of the segment [0, l]. Since we are unsure of what happens
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at x = c it makes sense to split the integral into two parts: one over the

domain [0, c] and the other over the domain [c, l]. We shall use the notation

x = c − 0 to denote a limit taken from the left, and x = c + 0 to denote a

limit taken from the right. The approach taken in the example brings us

to the following equation:∫ c

0

(EIy(4) − q)ϕdx +

∫ l

c

(EIy(4) − q)ϕdx

+ EIy′′(c− 0)ϕ(c− 0)− EIy′′(c+ 0)ϕ(c+ 0)

− EIy′′′(c− 0)ϕ(c− 0) + EIy′′′(c+ 0)ϕ(c+ 0)

−M∗ϕ′(c)−Q∗ϕ(c) = 0.

Supposing ϕ(c) = 0 = ϕ′(c), we obtain the same equation EIy(4) − q = 0

on both segments [0, c) and (c, l]. Returning to the above equation with ϕ

unrestricted at x = c, we see that the second and third derivatives of y do

indeed have jumps at x = c defined by M∗ and Q∗, respectively:

EI(y′′(c− 0)− y′′(c+ 0)) =M∗, EI(y′′′(c− 0)− y′′′(c+ 0)) = −Q∗.

The reader may treat the case in which the beam characteristic EI

changes from EI0 to EI1 at x = c. He or she can derive the conditions for

solving the equilibrium problem for a beam under load at point x = c. The

solution is a point of minimum of the above total energy functional E(y).

1.7 Functionals Depending on Functions in Many Variables

Although obtaining the Euler equation has become somewhat routine for

us, we will not be fully prepared to treat practical problems until we can

seek unknown minimizers in many variables.

The two variable case is the simplest; extension to three or more inde-

pendent variables is straightforward. Consider a functional of the form

F (u) =

∫∫
S

f(x, y, u(x, y), ux(x, y), uy(x, y)) dx dy. (1.74)

Here ux and uy denote the partial derivatives ∂u/∂x and ∂u/∂y, respec-

tively. We confine ourselves to cases where S is simple; practical problems

normally involve such domains and much complexity is thereby avoided.

Let S be a closed domain in R2 with a piecewise smooth boundary ∂S.

(We do not elaborate on the meaning of “smooth.” Our attitude toward
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this issue is common among practitioners: we simply require everything

needed in intermediate calculations.)

We consider two main minimization problems for (1.74): the problem

with the Dirichlet boundary condition

u(x, y)

∣∣∣∣
∂S

= ψ(s), (1.75)

and the problem “without” boundary conditions (i.e., the problem for which

natural boundary conditions appear).

We first obtain the analogue to the Euler equation for (1.74). The gen-

eral approach is to repeat the steps of § 1.2. Specifically we (1) introduce

classes of functions over which we may consider the problem of minimum,

(2) formulate the fundamental lemma for the two variable case, and (3) re-

call how to integrate by parts in the two variable case.

Let C(k)(S) denote the set of functions continuous on a compact domain

S together with all their derivatives up to order k. The norm for defining

a neighborhood of a function is

‖u‖C(k)(S) = max
α+β≤k

max
(x,y)∈S

∣∣∣∣∂α+βu(x, y)∂xα∂yβ

∣∣∣∣ . (1.76)

C
(k)
0 (S) is the subset of C(k)(S) consisting of functions which, together with

all their derivatives up to order k−1, vanish on the boundary ∂S. We shall

use the corresponding notations C(∞)(S) and C
(∞)
0 (S) for sets of functions

infinitely differentiable on S.

Lemma 1.24. Let g(x) be continuous on S, and let∫∫
S

g(x)ϕ(x) dx dy = 0 (1.77)

hold for any function ϕ(x) ∈ C
(∞)
0 (S). Then g(x) ≡ 0.

Proof. We imitate the proof of Lemma 1.8. Suppose to the contrary that

at some interior point x0 of S we have g(x0) �= 0, say g(x0) > 0. Then

g(x) > 0 for all x in some disk Cε having radius ε and center x0. It is

easy to construct a bell-shaped surface of revolution centered at x0. The

corresponding function ϕ0(x) ∈ C
(∞)
0 (S) gives∫∫

S

g(x)ϕ0(x) dx dy =

∫∫
Cε

g(x)ϕ0(x) dx dy > 0,

which contradicts (1.77). �
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To integrate by parts we use∫∫
S

u
∂v

∂xi
dx dy = −

∫∫
S

∂u

∂xi
v dx dy +

∮
∂S

uv ni ds. (1.78)

Here ni is the cosine of the angle between the unit outward normal n and

the unit vector along the xi axis (xi = x, y for i = 1, 2, respectively). The

length variable s parameterizes contour ∂S.

Remark 1.25. When applying integration by parts in this book, we

encounter composite functions such as fuy (x, y, u(x, y), ux(x, y), uy(x, y))

which must be differentiated completely with respect to x via the chain

rule, because u and its derivatives depend on x. Such derivatives are called

total derivatives. The total derivatives with respect to the spatial variables

x and y will be denoted by d/dx and d/dy. On the other hand, “ordinary”

partial derivatives with respect to x and y will be denoted by fx and fy.

Recall the discussion regarding notation, starting on page 13. �

The main result of this section is the following. Let f(x, y, u, p, q) be a

continuous function having continuous first partial derivatives with respect

to all of its arguments.

Theorem 1.26. Let u = u(x, y) ∈ C(2)(S) be a minimizer of the functional∫∫
S f(x, y, u, ux, uy) dx dy on the subset of C(1)(S) consisting of those func-

tions satisfying (1.75). Then the Euler equation

fu −
(
dfux

dx
+
dfuy

dy

)
= 0 (1.79)

holds in S. Here d/dx and d/dy are total partial derivatives, analogous

to the total derivative in the one-dimensional case, when the function

u = u(x, y) as well as its partial derivatives ux and uy are considered as

depending on x and y respectively.

Proof. Consider the functional on the usual bundle u = u(x, y)+tϕ(x, y)

where ϕ(x, y) is a function from C
(1)
0 (S); that is, it has first derivatives

continuous on S and satisfies

ϕ(x, y)
∣∣
∂S

= 0. (1.80)

The functional F (u+ tϕ) for a fixed ϕ(x, y) becomes a function of the real
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variable t and takes its minimum at t = 0. Thus

0 =
dF (u+ tϕ)

dt

∣∣∣∣
t=0

=
d

dt

(∫∫
S

f(x, y, u+ tϕ, ux + tϕx, uy + tϕy) dx dy

) ∣∣∣∣
t=0

=

∫∫
S

(
fuϕ+ fuxϕx + fuyϕy

)
dx dy.

Integration by parts in the last two terms of the integrand gives∫∫
S

[
fu −

(
dfux

dx
+
dfuy

dy

)]
ϕdxdy +

∮
∂S

(
fuxnx + fuyny

)
ϕds = 0.

(1.81)

Remembering that ϕ(x, y) satisfies (1.80), we get∫∫
S

[
fu −

(
dfux

dx
+
dfuy

dy

)]
ϕdxdy = 0. (1.82)

Equation (1.79) follows from Lemma 1.24. �

Theorem 1.27. Let u = u(x, y) ∈ C(2)(S) be a minimizer of the functional∫∫
S f(x, y, u, ux, uy) dx dy on C(1)(S) (without any boundary conditions).

Then the Euler equation (1.79) holds in S, and u(x, y) satisfies the natural

boundary condition (
fuxnx + fuyny

) ∣∣∣∣
∂S

= 0. (1.83)

Proof. Consider F (u+tϕ) on the bundle u+tϕwhere ϕ(x, y) ∈ C(1)(S) is

arbitrary but momentarily fixed. For all such functions we establish (1.81)

using the same reasoning as above. Restriction of ϕ(x, y) to the set C
(1)
0 (S)

then shows that (1.74) holds in S. So (1.82) holds whether ϕ belongs to

C
(1)
0 (S) or C(1)(S). Hence∮

S

(
fuxnx + fuyny

)
ϕds = 0. (1.84)

Now we use the fact that on S, ϕ = ϕ(s) is an arbitrary differentiable

function. We do not prove the corresponding fundamental lemma for

such an integral, but it is clear that a proof could be patterned after

that of Lemma 1.8. (We could use the function ϕ0(x) from the proof of

Lemma 1.24; the point x0 would be a chosen point of the boundary where

the corresponding multiplier g(x) is not equal to zero, by the contrary as-

sumption.) Hence (1.83) follows from (1.84). �
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Example 1.28. Demonstrate that for the functional

Ψ(u) =
1

2

∫∫
S

(u2x + u2y) dx dy −
∫∫

S

Fu dx dy (1.85)

with F = F (x, y) a given continuous function, the Euler equation and the

natural boundary conditions are

∆u = −F in S (1.86)

and

∂u

∂n

∣∣∣∣
∂S

= 0, (1.87)

respectively. Show that on a solution u∗ of the latter boundary value prob-

lem, if it exists, the functional Ψ(u) attains a global minimum.

Solution. The derivation of (1.86) and (1.87) is straightforward. Denoting

f =
1

2
(u2x + u2y)− Fu

we get

fu −
(
dfux

dx
+
dfuy

dy

)
= −F −∆u,

which leads to (1.86). The left-hand expression in (1.83) is

fuxnx + fuyny = uxnx + uyny,

which is ∂u/∂n on the boundary.

Before demonstrating the last statement in the example, we note that

Ψ(u) expresses the total energy of an elastic membrane. From physics

we know that at points of minimum of a total energy functional for a

mechanical system with conservative loads, the system is in equilibrium.

In particle mechanics it is even shown that such an equilibrium state is

stable at a point of strict minimum. Let us see what happens in this case

of a spatially distributed object. We suppose that a solution u∗ of the

boundary value problem (1.86)–(1.87) exists. Consider the values of Ψ over
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the bundle u∗ + ϕ, where ϕ is arbitrary:

Ψ(u∗ + ϕ) =
1

2

∫∫
S

(
(u∗x + ϕx)

2 + (u∗y + ϕy)
2
)
dx dy

−
∫∫

S

F (u∗ + ϕ) dx dy

= Ψ(u∗) +
[∫∫

S

(
u∗xϕx + u∗yϕy

)
dx dy −

∫∫
S

Fϕdxdy

]

+
1

2

∫∫
S

(
ϕ2
x + ϕ2

y

)
dx dy.

Because of (1.86)–(1.87) (which, in the above theory, were derived as a

direct consequence of the following equality and thus are equivalent to it

when u∗ is sufficiently smooth) we see that

∫∫
S

(
u∗xϕx + u∗yϕy

)
dx dy −

∫∫
S

Fϕdxdy = 0.

So

Ψ(u∗ + ϕ)−Ψ(u∗) =
1

2

∫∫
S

(
ϕ2
x + ϕ2

y

)
dx dy ≥ 0,

which means that Ψ(u) takes its global minimum at u = u∗. �

We are in the habit of supposing that a minimizer exists for each prob-

lem we encounter. But the problem of minimizing (1.85), which describes

the equilibrium of a membrane, demonstrates that not every problem which

seems sensible at first glance has a solution. Indeed, if we take u = c, a

constant, then the first integral in (1.85) is zero. If
∫∫
S F dxdy �= 0, then by

changing c we make the value of the functional any large negative number.

So the problem has no solution and (at least) the condition
∫∫
S
F dxdy = 0

becomes necessary for the problem to be sensible. In fact, this has a clear

mechanical sense: it is the condition of self-balance of the forces. A free

membrane subjected to a load F can move as a whole in the direction nor-

mal to the membrane. In this model we neglect its inertia, so the problem

of equilibrium of the membrane without the condition of self-balance of the

load is senseless as we showed formally. Later we consider this question in

more detail.
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1.8 A Functional with Integrand Depending on Partial

Derivatives of Higher Order

Now we derive the Euler equation for a minimizer w = w(x, y) of a func-

tional of the form

F (w) =

∫∫
S

f(x, y, w, wx, wy, wxx, wxy, wyy) dx dy (1.88)

on the functions of class C(2)(S) satisfying the boundary conditions

w
∣∣
∂S

= w0(s),
∂w

∂n

∣∣∣∣
∂S

= w1(s). (1.89)

The steps are now routine. Assume a minimizer w = w(x, y) ∈ C(4)(S).

Let ϕ(x, y) be an arbitrary but fixed function from C
(2)
0 (S), which implies

in particular that

ϕ
∣∣
∂S

= 0,
∂ϕ

∂n

∣∣∣∣
∂S

= 0. (1.90)

F (w + tϕ) takes its minimum at t = 0 and thus dF (w + tϕ)/dt
∣∣
t=0

= 0.

This equation takes the form∫∫
S

(fwϕ+fwxϕx+fwyϕy+fwxxϕxx+fwxyϕxy+fwyyϕyy) dx dy = 0. (1.91)

Supposing f has continuous derivatives of third order, we can integrate by

parts in (1.91) and get∫∫
S

(
fw − d

dx
fwx − d

dy
fwy +

d2

dx2
fwxx

+
d2

dxdy
fwxy +

d2

dy2
fwyy

)
ϕdxdy = 0. (1.92)

The boundary terms vanish by (1.90). By Lemma 1.24 we obtain the Euler

equation for the functional (1.88):

fw − d

dx
fwx − d

dy
fwy +

d2

dx2
fwxx +

d2

dxdy
fwxy +

d2

dy2
fwyy = 0, (1.93)

valid in S. Here d/dx and d/dy are total partial derivatives when w =

w(x, y) is considered as depending on its arguments x, y.

We could derive the form of the natural boundary conditions for (1.88),

but this is cumbersome so we prefer to treat an illustrative case. We shall

consider a problem of minimizing a total energy functional, whose solution

describes the equilibrium of an elastic plate with free edge.
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It is time to discuss how problems of minimization arose. Some came

from geometrical considerations, like the isoperimetric problem mentioned

in § 1.1; some were designed specifically as exercises, written out by anal-

ogy with other, more or less easily solved, problems. But for the most

part the real problems of the calculus of variations came from physics —

in particular, mechanics. There it was found that minimizers or maximiz-

ers of certain functionals describe important states of physical systems. It

is interesting to note how this idea progressed in importance. Early in

the development of classical mechanics, variational principles were derived

using the “fundamental” equations of statics and mechanics; they were

regarded as consequences, although in many circumstances they were ac-

tually equivalent. It was soon found that some problems were easier solved

by variational methods, and the variational approach to mechanics gained

a life of its own. In the theory of elasticity, for example, a great many

variational principles have been derived; moreover, the name “variational

principle” is applied not only to the minimization of functionals, but to

any circumstance in which an important equation can be derived from an

integro-differential equation having the form of the first variation of a func-

tional being equal to zero, even if there is no functional for which it is the

first variation. For example, the Virtual Work Principle arose as a con-

sequence of the principle of minimum of potential energy of a mechanical

system. But the former continues to hold in the case of nonconservative

forces where it is impossible to compose the potential energy functional.

Early in the development of linear elasticity, an energy functional was

derived whose minimizer describes the equilibrium of an elastic body. The

procedure was to write out the equilibrium equations, multiply by appro-

priate components of the vector of displacements, and integrate over the

region. Using integration by parts with regard for homogeneous Dirichlet

boundary conditions, from the terms with second-order partial derivatives

it was possible to get a symmetrical form (in the components of the strain

tensor) for potential energy. The originators of this method were comforted

by the fact that the associated natural boundary conditions coincided with

the boundary conditions assigned to the same problem when considered

as a problem of equilibrium with applied forces given on the boundary.

This led to the idea that the Principle of Minimum Potential Energy (or,

correspondingly, the Virtual Work Principle) could be used to derive bound-

ary conditions for models of elastic plates and shells. Workers investigat-

ing such models had previously run into difficulty in posing appropriate

boundary conditions: upon simplification from the three-dimensional case,
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uncertainties had arisen regarding precisely what force conditions should

be appointed on the boundary of an object. The variational formalism pro-

vided the needed result in a simple fashion. Why are we taking the time to

discuss this now? We are going to consider the problem of equilibrium of an

elastic plate from the viewpoint of the calculus of variations. The first step

is to formulate the energy functional. The left side of the equation describ-

ing a thin elastic plate bent under load contains a biharmonic operator. In

this case there is no uniquely defined procedure to derive the energy func-

tional. Moreover, integration by parts can yield several expressions for the

energy of an elastic plate with homogeneous Dirichlet conditions (1.90).

For each of these forms one can derive the natural boundary conditions,

but only one form gives the conditions corresponding to mechanics. So to

formulate the problem (i.e., the functional) properly, one should have some

knowledge of mechanics — perhaps this is why so many pure mathemati-

cians prefer to study only classical problems where everything is formulated

in advance! To work purely mathematical exercises, one is seldom required

to know the actual physical behavior of the object under consideration. But

correct mathematical procedures often depend in large part on the details

of a particular realm of application.

The energy functional of an isotropic homogeneous plate bending under

load F = F (x, y) is

E(w) =
D

2

∫∫
S

(
w2
xx + w2

yy + 2νwxxwyy + 2(1− ν)w2
xy

)
dx dy

−
∫∫

S

Fw dxdy (1.94)

where D is the rigidity of the plate, ν is Poisson’s ratio, and w = w(x, y)

is the deflection at point (x, y) of S, the compact domain occupied by the

mid-surface of the plate. A minimizer of E(w) describes the equilibrium de-

flection of the mid-surface. Using the standard method, we shall derive the

Euler equation for the minimizer and the corresponding natural boundary

conditions.

Let w ∈ C(4)(S) minimize the functional (1.94) over C(2)(S). Consider

E(w+ tϕ) at a fixed ϕ ∈ C(2)(S) as a function of the parameter t. It takes

its minimum at t = 0, so as a consequence we have

D

∫∫
S

[wxxϕxx + wyyϕyy + ν(wxxϕyy + wyyϕxx)

+ 2(1− ν)wxyϕxy] dx dy −
∫∫

S

Fϕdxdy = 0
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which is a particular case of (1.92). Now it is necessary to integrate by

parts in the first integral on the left. We get

D

∫∫
S

[(wxx + νwyy)ϕxx + (wyy + νwxx)ϕyy + 2(1− ν)wxyϕxy] dx dy

= −D
∫∫

S

[
ϕx

∂

∂x
(wxx + νwyy) + ϕy

∂

∂y
(wyy + νwxx)

+ (1− ν)wxyyϕx + (1− ν)wxxyϕy

]
dx dy

+D

∮
∂S

[(wxx + νwyy)ϕxnx + (wyy + νwxx)ϕyny

+ (1− ν)wxy(ϕxny + ϕynx)] ds (1.95)

where n, the unit normal to the boundary ∂S, has components (nx, ny).

Note that we have preserved the symmetry of the expressions. Integrating

by parts once more in the first integral on the right, denoted by A, we get

A = D

∫∫
S

[(wxx + νwyy)xx + (wyy + νwxx)yy + 2(1− ν)wxxyy]ϕdxdy

−D

∮
S

[(wxx + νwyy)xnx + (wyy + νwxx)yny

+ (1− ν)(wxyynx + wxxyny)]ϕds.

The first integral in A is

D

∫∫
S

(wxxxx + 2wxxyy + wyyyy)ϕdxdy = D

∫∫
S

ϕ∆2w dxdy.

Thus (1.95) takes the form

D

∫∫
S

ϕ∆2w dxdy −
∫∫

S

Fϕdxdy

+D

∮
S

[(wxx + νwyy)ϕxnx + (wyy + νwxx)ϕyny

+ (1− ν)wxy(ϕxny + ϕynx)] ds

−D

∮
S

[(wxx + νwyy)xnx + (wyy + νwxx)yny

+ (1− ν)(wxyynx + wxxyny)]ϕds = 0. (1.96)

First consider the subset of admissible functions ϕ(x, y) satisfying (1.90).

Equation (1.96) reduces to∫∫
S

(D∆2w − F )ϕdxdy = 0. (1.97)
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By the fundamental lemma we obtain the Euler equation

D∆2w − F = 0 in S. (1.98)

Because of (1.98) the equality (1.97) holds for any admissible ϕ(x, y),

thus the two first integrals over S disappear from (1.96). In equation (1.96)

there remains the sum of two contour integrals that equals zero for any

ϕ ∈ C(2)(S).

We might think that since we have three arbitrary functions ϕ, ϕx, ϕy
on S, we could set their multipliers equal to zero and obtain three natural

boundary conditions. But this is incorrect. We see this first on mechanical

grounds: these “boundary conditions” would depend on x and y, hence

would not be invariant under coordinate rotations. Mathematically, it ap-

pears that we cannot choose ϕ, ϕx, and ϕy independently on S. Indeed

let us fix ϕ on S: then its derivative ϕτ in the tangential direction τ is

determined uniquely — only the derivative ϕn of ϕ in the normal direction

is really independent of ϕ on the contour.

Thus we first need to introduce this change of coordinates, getting a

local frame (τ ,n). The transformation formulas for derivatives are

ϕx = ϕnnx − ϕsny, ϕy = ϕnny + ϕsnx. (1.99)

Let us put these into the integrand of the first contour integral:

(wxx + νwyy)ϕxnx + (wyy + νwxx)ϕyny + (1 − ν)wxy(ϕxny + ϕynx)

= (wxx + νwyy)(ϕnnx − ϕsny)nx + (wyy + νwxx)(ϕnny + ϕsnx)ny

+ (1− ν)wxy[(ϕnnx − ϕsny)ny + (ϕnny + ϕsnx)nx]

= (1− ν){(wyy − wxx)nxny + wxy(n
2
x − n2

y)}ϕs
+ {(wxx + νwyy)n

2
x + (wyy + νwxx)n

2
y + 2(1− ν)wxynxny}ϕn

= (1− ν){(wyy − wxx)nxny + wxy(n
2
x − n2

y)}ϕs
+ {ν∆w + (1− ν)(wxxn

2
x + wyyn

2
y + 2wxynxny)}ϕn. (1.100)

Change the integrand of the first contour integral in (1.96) by (1.100) and

remember that ϕs = ∂ϕ/∂s and ϕn = ∂ϕ/∂n:

D

∮
∂S

(1− ν){(wyy − wxx)nxny + wxy(n
2
x − n2

y)}
∂ϕ

∂s
ds

+D

∮
∂S

{ν∆w + (1 − ν)(wxxn
2
x + wyyn

2
y + 2wxynxny)}∂ϕ

∂n
ds

−D

∮
∂S

[(wxx + νwyy)xnx + (wyy + νwxx)yny

+ (1− ν)(wxyynx + wxxyny)]ϕds = 0. (1.101)
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If S is smooth enough we can integrate by parts in the first integral with

respect to s. This gives

D

∮
∂S

(1 − ν){(wyy − wxx)nxny + wxy(n
2
x − n2

y)}
∂ϕ

∂s
ds

= −D(1− ν)

∮
∂S

ϕ
∂

∂s
{(wyy − wxx)nxny + wxy(n

2
x − n2

y)} ds.

It follows that

−D

∮
∂S

[
(wxx + νwyy)xnx + (wyy + νwxx)yny

+ (1− ν)(wxyynx + wxxyny)]

+ (1− ν)
d

ds
[(wyy − wxx)nxny + wxy(n

2
x − n2

y)]
]
ϕds

+D

∮
∂S

{ν∆w + (1− ν)(wxxn
2
x + wyyn

2
y + 2wxynxny)}∂ϕ

∂n
ds = 0.

By independently choosing ϕ and ∂ϕ/∂n, we get the following natural

boundary conditions:

ν∆w + (1− ν)(wxxn
2
x + wyyn

2
y + 2wxynxny)

∣∣∣∣
∂S

= 0, (1.102)

[(wxx + νwyy)ynx + (wyy + νwxx)yny + (1− ν)(wxyynx + wxxyny)]

+ (1− ν)
d

ds
[(wyy − wxx)nxny + wxy(n

2
x − n2

y)] = 0. (1.103)

The first means that the shear force on the lateral surface of the plate is

zero, whereas the second means that the bending moment is zero.

We have assumed that ∂S is sufficiently smooth so we could integrate

by parts in (1.101). At corner points (1.103) is not valid. The reader may

wish to derive an appropriate corner condition.

1.9 The First Variation

This book is written for those who will use the calculus of variations. Al-

though a simple exposition is the goal, continued exploitation of the same

technique would prevent real progress. We need ideas applicable to more

complex problems. As before, these will be extensions of elementary ideas

from calculus. A principal analytical tool is the differential of a function.

The first differential extracts the main part of the increment of the function

when its argument changes by a small amount ∆x. This main part is linear
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with respect to ∆x. In this way, we approximate the change of a smooth

function in some neighborhood of a point by an expression linear in ∆x.

The extension to functionals is called the first variation.

A few technical details

Definition 1.29. We say that f(x) = o(g(x)) when x→ x0 if

lim
x→x0

f(x)

g(x)
= 0. (1.104)

Here x can be a real variable or an element of a more general metric or

normed space; in the latter case, x → x0 refers to convergence in that

space. We often use the abbreviated notation f = o(g) and say that f is of

a higher order of smallness than g.

So if the o relation holds then given any ε > 0 we can find δ > 0 such

that |f(x)/g(x)| < ε whenever ‖x− x0‖ < δ.1 Note the following.

(1) The functions f(x) and g(x) are not required to possess individual

limits as x→ x0; only the ratio must possess a limit.

(2) In practice, g(x) will usually be some power of a simple real variable x.

The statement f(x) = o(1) as x→ x0, for example, means nothing more

than limx→x0 f(x) = 0. If f(x) = o(x − x0) as x→ x0, then f(x) tends to

zero even faster as x→ x0 since the ratio f(x)/(x− x0) tends to zero even

though its denominator tends to zero as x→ x0.

Definition 1.30. We write f(x) = O(g(x)) as x→ x0 if in some neighbor-

hood of x0 an inequality ∣∣∣∣f(x)g(x)

∣∣∣∣ ≤ c (1.105)

holds for some constant c. We often use the abbreviated notation f = O(g)

and say that f is of the same order of smallness as g.

The statement f(x) = O(1) as x→ 0 means that in some neighborhood

of 0 we have |f(x)| < c (i.e., f is bounded in this neighborhood). If f(x) =

O(x) as x → 0, then in some neighborhood of zero we have |f(x)| < c|x|.
1Here we refer to a more general vector norm. A reader unfamiliar with the subject of

norms will find a more complete discussion in § 1.11. For now it is sufficient to think in
terms of real numbers, where the role of norm is played by the absolute value.
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This implies that f(x) → 0 as x → 0, hence that f(x) = o(1). But

f(x) = O(x) tells how fast f(x) tends to zero.

Let f(x) and its first n+1 derivatives be continuous in an interval about

x = x0. Then according to Taylor’s theorem

f(x) = f(x0)+f
′(x0)(x−x0)+· · ·+ f

(n)(x0)

n!
(x−x0)n+ f

(n+1)(ξ)

(n+ 1)!
(x−x0)n+1

for some ξ between x0 and x. The last term on the right is the Lagrange

form of the remainder and is clearly O(|x−x0|n+1). Addition and subtrac-

tion of the term

f (n+1)(x0)

(n+ 1)!
(x− x0)

n+1

gives

f(x) = f(x0) + f ′(x0)(x − x0) + · · ·+ f (n+1)(x0)

(n+ 1)!
(x− x0)

n+1

+
[f (n+1)(ξ)− f (n+1)(x0)]

(n+ 1)!
(x− x0)

n+1.

This is a Taylor expansion with one more term and a new “remainder.”

Because fn+1(x) is continuous, the bracketed term f (n+1)(ξ)− f (n+1)(x0)

tends to zero when x→ x0 (recall that ξ is an intermediate point of (x, x0)).

Hence the ratio of the new remainder to the factor |x−x0|n+1 tends to zero

as x→ x0:

f(x) = f(x0)+f
′(x0)(x−x0)+· · ·+ f

(n+1)(x0)

(n+ 1)!
(x−x0)n+1+o

(|x− x0|n+1
)
.

This is Peano’s form of Taylor’s theorem.

Theorem 1.31. Let f(x) and its first n derivatives be continuous in an

interval about x = x0. Then

f(x) = f(x0) +
f ′(x0)
1!

(x− x0) + · · ·+ f (n)(x0)

n!
(x− x0)

n + o (|x− x0|n) .

With this we can say something about the behavior of the remainder

term in the nth-order Taylor expansion even if we know nothing about

continuity of the (n+ 1)th derivative.



September 30, 2011 8:42 World Scientific Book - 9in x 6in aea

Basic Calculus of Variations 57

Back to the first variation

In calculus, we consider the increment f(x+∆x)− f(x) of a function f(x)

of a real variable x. If it is possible to represent it in the form

f(x+∆x)− f(x) = A∆x+ ω(∆x) (1.106)

where ω(∆x) = o(∆x) as ∆x→ 0, then

• A∆x is called the first differential of f at x, and is denoted by df(x),

• A is the derivative of f at x, denoted by f ′(x), and
• the increment ∆x of the argument x is redenoted by dx and is called

the differential of the argument.

We may therefore write

df(x) = A∆x = f ′(x) dx.

In the mind of a calculus student the differential dx and its corresponding

df(x) are extremely small quantities. Let us now banish this misconception:

both dx and df(x) are finite. When dx is small then so is df(x) and it

approximates the difference f(x+ dx) − f(x): the smaller the value of dx,

the better the relative approximation. However, neither dx nor df(x) is

small in general.

Let us repeat the same steps for a functional. This is especially easy

to do for a quadratic functional. These arise in physics, corresponding to

natural laws that are linear in form (of course, linearity is often a condition

imposed rather artificially on models of real phenomena). Consider, for

example,

F (u) =
1

2

∫∫
S

(u2x + u2y) dx dy −
∫∫

S

Fu dx dy. (1.107)

We denote the “increment” of the argument u = u(x) by ϕ(x). Note that

ϕ(x) must have certain properties; it should be admissible in the sense of

§ 1.5. (Later we shall soften the smoothness conditions for this problem.)

In mechanics ϕ is usually denoted by δu; this maintains a visual similarity

between the two notions of increment dx and δu, and in this notation δu is

called a virtual displacement. Now

F (u + ϕ)− F (u) =

∫∫
S

(uxϕx + uyϕy) dx dy −
∫∫

S

Fϕdxdy

+
1

2

∫∫
S

(ϕ2
x + ϕ2

y) dx dy. (1.108)
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The first two integrals on the right are linear in ϕ and pretend to analogy

with the differential of calculus; together they are called the first variation

of the functional F (u) at u:∫∫
S

(uxϕx + uyϕy) dx dy −
∫∫

S

Fϕdxdy. (1.109)

The third integral in (1.108), quadratic in ϕ, is analogous to ω(∆x) in

(1.106). We should introduce the smallness of the increment ϕ in such a

way (and we did this in § 1.5) that this quadratic term becomes infinitely

small in comparison with the linear terms.

In § 1.5 we found that if u = u(x) is a minimizer of F (u), then the

expression (1.109) is zero for all admissible ϕ:∫∫
S

(uxϕx + uyϕy) dx dy −
∫∫

S

Fϕdxdy = 0. (1.110)

From this we derived the Euler equation (1.86) for the membrane. We

now derive (1.110) in a different way. Let us suppose that u = u(x, y) is

a minimizer of F (u); that is, F (u + ϕ) − F (u) ≥ 0 for any admissible ϕ.

Assume, contrary to (1.110), that∫∫
S

(uxϕ
∗
x + uyϕ

∗
y) dx dy −

∫∫
S

Fϕ∗ dx dy �= 0

for some admissible ϕ∗. Then putting another admissible function tϕ∗ into

the inequality F (u+ ϕ)− F (u) ≥ 0, we get

0 ≤ F (u+ tϕ∗)− F (u)

=

∫∫
S

(uxtϕ
∗
x + uytϕ

∗
y) dx dy −

∫∫
S

Ftϕ∗ dx dy

+
1

2

∫∫
S

t2(ϕ∗
x
2 + ϕ∗

y
2) dx dy

= t

[∫∫
S

(uxϕ
∗
x + uyϕ

∗
y) dx dy −

∫∫
S

Fϕ∗ dx dy
]

+
t2

2

∫∫
S

(ϕ∗
x
2 + ϕ∗

y
2) dx dy. (1.111)

Suppose the bracketed term differs from zero. If we take t such that it

is sufficiently close to zero and the term t[· · · ] is negative, then the term

which is quadratic in t is much smaller than the term which is linear in t.

Therefore F (y + tϕ)− F (y) < 0, which contradicts the leftmost inequality

of (1.111). So (1.110) holds for any admissible ϕ.
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It is clear that we can repeat everything in terms of the plate problem

of § 1.8. The differences are only technical.

We used the fact that at least for some (positive and negative) small

t the function tϕ∗ is admissible. In the membrane problem this is trivial.

However, in some problems the set of admissible functions is restricted (e.g.,

it may be that ϕ ≥ 0); free choice of t is thereby precluded. Such problems

fall outside the scope of the classical theory, and in fact belong to the theory

of variational inequalities.

We consider a general case of the simplest functional with respect to

functions satisfying any of the types of boundary conditions we have dis-

cussed. Let us find its increment over the increment ϕ(x) of the function

y(x). So we consider the increment of the functional

F (y) =

∫ b

a

f(x, y, y′) dx

when the argument gets an admissible increment ϕ = ϕ(x). Whether the

boundary conditions are stipulated or not (free ends), we have

F (y + ϕ)− F (y) =

∫ b

a

[f(x, y + ϕ, y′ + ϕ′)− f(x, y, y′)] dx.

Regarding the arguments of f as simple real variables, we can apply the

Taylor expansion to f . If f has continuous second partial derivatives, then

f(x, y+ϕ, y′+ϕ′)−f(x, y, y′) = fy(x, y, y
′)ϕ+fy′(x, y, y′)ϕ′+O(|ϕ|2+|ϕ′|2).

Thus

F (y + ϕ)− F (y) =

∫ b

a

[fy(x, y, y
′)ϕ+ fy′(x, y, y

′)ϕ′] dx

+ O

(∫ b

a

(|ϕ|2 + |ϕ′|2) dx
)
. (1.112)

The last integral is of the order O(‖ϕ‖2C(1)(a,b)) because∫ b

a

(|ϕ|2 + |ϕ′|2) dx ≤
∫ b

a

(|ϕ| + |ϕ′|)2 dx

≤ (b− a) max
x∈[a,b]

(|ϕ|+ |ϕ′|)2

≤ (b− a)

[
max
x∈[a,b]

(|ϕ|+ |ϕ′|)
]2
.



September 30, 2011 8:42 World Scientific Book - 9in x 6in aea

60 Advanced Engineering Analysis

For admissible functions ϕ that are small in the norm of C(1)(a, b), the last

term on the right side of (1.112) has a higher order of smallness in ϕ than

the integral term which is linear in ϕ. Thus we have a complete analogy

with the first differential of a function.

Definition 1.32. The expression

δF (y, ϕ) ≡
∫ b

a

[fy(x, y, y
′)ϕ+ fy′(x, y, y

′)ϕ′] dx, (1.113)

often denoted simply by δF , is the first variation of F (y).

Let y = y(x) be a minimizer of F (y) for some boundary conditions

considered above. For any admissible function ϕ, the equation∫ b

a

[fy(x, y, y
′)ϕ+ fy′(x, y, y

′)ϕ′] dx = 0 (1.114)

holds. Indeed, for any admissible ϕ we have F (y+ϕ)−F (y) ≥ 0. Assume

that (1.114) fails at some admissible ϕ∗. Suppose that tϕ∗ for small t is

also admissible so that

0 ≤ F (y + tϕ∗)− F (y)

= t

∫ b

a

[fy(x, y, y
′)ϕ∗ + fy′(x, y, y

′)ϕ∗′] dx+O(t2 ‖ϕ∗‖2C(1)(a,b)). (1.115)

Now the smallness of the increment of the argument is governed by t. For

small t the sign of the right side of (1.115) is determined by the first integral

term. Since we can choose t to be negative or positive and its coefficient is

not zero, we can find a small t∗ such that

t∗
∫ b

a

[fy(x, y, y
′)ϕ∗ + fy′(x, y, y

′)ϕ∗′] dx+O(t∗2 ‖ϕ∗‖2C(1)(a,b)) < 0.

This contradicts the leftmost inequality of (1.115).

Let us note that in dF (y + tϕ)/dt
∣∣
t=0

we obtain the same expression

(1.113), i.e., the first variation of the functional. The two methods of ob-

taining the first variation are equivalent if the integrand f is sufficiently

smooth. But in the general theory of functionals our method of differentia-

tion (i.e., the selection of the linear part of the difference F (y+ϕ)−F (y))

corresponds to the use of the Fréchet derivative, whereas the computation

of dF/dt|t=0 corresponds to the use of the Gâteaux derivative.

The reasoning of this section can be repeated for any of the functionals

and their associated minimum problems we considered earlier. We leave

this to the reader as a number of exercises.
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Variational derivative

We have seen that the Euler equation is analogous to the equation y′(x) = 0

from elementary calculus. Let us consider another approach to deriving

the Euler equation. This will provide a representation for the increment

of a functional F (y) under bell-shaped disturbances of y(x). The resulting

formula will be needed later for treatment of the isoperimetric problem.

Let us preview the approach before tackling the details. We first recall

the proof of the fundamental lemma on page 18. The lemma states that

f(x) must vanish if it is continuous and if∫ b

a

f(x)g(x) dx = 0

for an arbitrary continuous function g(x) that vanishes at the endpoints

a, b. However, the proof required only a subset of such functions g(x):

those that were bell-shaped and whose supports were small enough. (The

support of a function g(x) is the closure of the set over which g(x) �= 0.)

Hence we can reframe the problem of minimizing a functional in terms of

disturbance functions taken from this subset only. So let us consider what

happens if take the set of bell functions of the form

ϕε(x) =



exp

(
ε2

x2 − ε2

)
, |x| < ε,

0, |x| ≥ ε,

(1.116)

which have supports of length 2ε and maximum values of unity. Clearly for

the minimizer y0(x) of a functional F we also get

d

dt
F (y0(x) + tϕε(x− x0))

∣∣∣∣
t=0

=

∫ x0+ε

x0−ε

(
fy − d

dx
fy′

)
ϕε(x − x0) dx = 0.

From arbitrariness of x0 and ε, and continuity of the parenthetical expres-

sion, it follows that the Euler equation holds at any x0 ∈ (a, b).

Let us use the smallness of ε. Recall the second mean value theorem for

integrals :

Theorem 1.33. Let f(x) be continuous on [a, b]. If g(x) is integrable and

does not change sign in [a, b], then∫ b

a

f(x)g(x) dx = f(ξ)

∫ b

a

g(x) dx (1.117)

for some ξ ∈ [a, b].
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Because ϕε(x) is nonnegative and fy − dfy′/dx is continuous, we get∫ x0+ε

x0−ε

(
fy − d

dx
fy′

)
ϕε(x− x0) dx =

(
fy − d

dx
fy′

)∣∣∣∣
x=ξ

σε

=

[(
fy − d

dx
fy′

)∣∣∣∣
x=x0

+ α(x, ε)

]
σε

where

σε =

∫ x0+ε

x0−ε
ϕε(x− x0) dx

is the area under the bell and α(x, ε) → 0 uniformly as ε → 0. On the left

we have δF (y0(x), ϕε(x−x0)). If we divide both sides of this by σε and let

ε→ 0 (or equivalently σε → 0), we get

lim
σε→0

δF (y0(x), ϕε(x− x0))

σε
=

(
fy − d

dx
fy′

)∣∣∣∣
x=x0

.

The last equality holds for any smooth function y, not just for the mini-

mizer, and can be rewritten as

δF (y(x), ϕε(x− x0)) =

[(
fy − d

dx
fy′

)∣∣∣∣
x=x0

+ α

]
σε, (1.118)

where α → 0 as σε → 0.

Since δF (y(x), tϕε(x−x0)) is the principal linear part of the increment

∆F (y(x), tϕε(x − x0)) = F (y(x), tϕε(x− x0))− F (y(x))

as t→ 0, we seek a similar relation for ∆F (y(x), tϕε(x− x0)), which is

lim
σt,ε→0

∆F (y0(x), ϕε(x − x0))

σt,ε
=

(
fy − d

dx
fy′

)∣∣∣∣
x=x0

, (1.119)

where

σt,ε =

∫ x0+ε

x0−ε
tϕε(x − x0) dx

is the area under the bell tϕε(x − x0). If (1.119) holds, then the limit on

the left side is called the variational derivative of F at y and is denoted by

δF

δy

∣∣∣∣
x=x0

= lim
σt,ε→0

∆F (y0(x), ϕε(x − x0))

σt,ε
=

(
fy − d

dx
fy′

)∣∣∣∣
x=x0

.

In this case, we obtain the relation for the increment

F (y(x) + tϕε(x− x0))− F (y(x)) =

(
δF

δy

∣∣∣∣
x=x0

+ β

)
σt,ε (1.120)
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where β → 0 when σt,ε → 0, or

∆F (y(x), tϕε(x− x0)) ≡ F (y(x) + tϕε(x− x0))− F (y(x))

=

(
fy − d

dx
fy′ + β

) ∣∣∣∣
x=x0

σt,ε (1.121)

which will be of use in § 1.10.
Now we consider the question of when the variational derivative of F

exists. It turns out that the limit exists only if, together with ε → 0, we

take t → 0 in some specific relationship to the change in ε. In particular,

we can take t = ε3. Indeed, let us start with (1.112), which we rewrite for

ϕ = tφε(x− x0) as follows:

|∆F (y(x), tϕε(x− x0))− δF (y(x), tϕε(x− x0))|

< Ct2
∫ x+ε

x0−ε

(
ϕ2
ε(x − x0) + ϕ′

ε
2
(x− x0)

)
dx

with some constant C. By (1.118),

δF (y(x), tϕε(x − x0)) =

[(
fy − d

dx
fy′

)∣∣∣∣
x=x0

+ α

]
tσε

with α → 0 as ε→ 0. From these it is seen that, to prove (1.121), it suffices

to find a dependence of t on ε such that

1

tσε
t2
∫ x0+ε

x0−ε

(
ϕ2
ε(x− x0) + ϕ′

ε
2
(x− x0)

)
dx→ 0

as ε→ 0. To show that a workable dependence is t = ε3, we must calculate

a few integrals. It is sufficient to put x0 = 0. The change of variables

x = εu gives

tσε = tεK1 where K1 ≡
∫ 1

−1

exp

(
1

u2 − 1

)
du.

Observe that K1 is a positive constant. Also

ϕ′
ε
2
(x) =

4t2ε4x2

(x2 − ε2)4
exp

(
2ε2

x2 − ε2

)
and we obtain ∫ x0+ε

x0−ε
(ϕ2
ε(x) + ϕ′

ε
2
(x)) dx = K2t

2ε+K3
t2

ε

where K2 and K3 are the positive constants

K2 =

∫ 1

−1

exp

(
2

u2 − 1

)
du, K3 =

∫ 1

−1

4u2

(u2 − 1)4
exp

(
2

u2 − 1

)
du.
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Hence when t = ε3 we have

1

tσε

∫ x0+ε

x0−ε
(ϕ2
ε + ϕ′

ε
2
) dx =

K2

K1
t+

K3

K1

t

ε2
< K4ε,

where K4 is a constant which, for small ε, is less than (K2 +K3)/K1. This

completes the proof.

Brief review of important ideas

The increment F (y + ϕ)− F (y) of the functional F (y) can be written as

F (y + ϕ) − F (y) = δF (y, ϕ) +O(‖ϕ‖2C(1)(a,b)) (1.122)

where the first variation

δF (y, ϕ) =

∫ b

a

[fy(x, y, y
′)ϕ+ fy′(x, y, y

′)ϕ′] dx (1.123)

is the principal part (i.e., the portion of the increment that is linear in ϕ).

We have

δF (y, ϕ) = 0 (1.124)

when y = y(x) is a minimizer of F (y) for some given boundary conditions;

this holds for any admissible increment ϕ of the function y. A functional

is said to be stationary at y if its first variation vanishes.

The idea of the variational derivative is analogous to the idea of a partial

derivative of a multivariable function. We define the variational derivative

of a functional F (y), at a point x0, for a curve y = y(x), as follows. We give

y(x) an increment which is nonzero only in a small neighborhood of x0; we

choose a small bell-shaped bump tϕε(x−x0), and denote the area between

it and the x-axis by σε. We then get the main linear (with respect to t) part

δF of the increment ∆F under this special type of localized disturbance.

By continuity of the Euler expression fy− d
dxfy′ we can approximate δF as

the Euler expression times tσε. Then we prove that for t = ε3 and tσε → 0

the expression ∆F/tσεS has the same limit as δF/tσεS. In this way we

define the variational derivative given by

δF

δy

∣∣∣∣
x=x0

=

(
fy − d

dx
f ′
y

) ∣∣∣∣
x=x0

. (1.125)

If y is a minimizer of F , then

δF

δy

∣∣∣∣
x=x0

= 0
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for each x0 ∈ (a, b), which is the Euler equation.

1.10 Isoperimetric Problems

We have found a way (1.125) of obtaining the Euler equation by setting

the variational derivative to zero. Let us apply this to the solution of an

isoperimetric problem.

It is said that the first problem of this type was solved practically by

Dido, legendary queen of ancient Carthage, who was offered as much land as

she could surround with the skin of a bull. Using a fuzzy formulation of this

“mathematical” problem, she cut the skin into thin bands, tied them end

to end, and surrounded the town with this long “rope.” Note that Dido’s

problem was quite hard; several issues had to be addressed, including (1)

how to get the longest rope from the skin, (2) how to find the closed curve

of a given length that would enclose the greatest planar area, and (3) how

to choose the most desirable piece of land. We can only treat the second of

these issues here. Let us begin by formulating the

Simplest Isoperimetric Problem. Find the minimum of the functional

F (y) =

∫ b

a

f(x, y, y′) dx (1.126)

from among the functions y ∈ C(1)(a, b) that satisfy

y(a) = c0, y(b) = c1, (1.127)

and

G(y) =

∫ b

a

g(x, y, y′) dx = l (1.128)

where l is a given number.

Condition (1.128) is analogous to the condition that the length of a

curve is given. We know a similar problem from calculus: given a restriction

g(x) = c, find a minimum of f(x). This is solved using Lagrange multipliers:

there is a constant λ such that a minimizer of the problem is a stationary

point of the function f(x) + λg(x) — that is, a solution of the equation

f ′(x) + λg′(x) = 0. We correctly surmise that something similar should

exist for the isoperimetric problem.

Note that our previous technique cannot be used because the restric-

tion (1.128) has complicated the notion of the neighborhood of a function.
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Indeed, if g(x, y, y′) is not linear in y and y′ then we cannot expect that

a sum of two admissible small increments of a minimizer is also admissi-

ble: condition (1.128) can fail for the sum. The same comment applies to

increments of the form tϕ if ϕ is an admissible increment. However, the

technique of § 1.9 does not depend on such transformations in the set of

admissible increments, so we will try to use it.

Theorem 1.34. Let y = y(x) be a local solution of the Simplest Isoperimet-

ric Problem, and suppose y is not an extremal of the functional G(z). Then

there is a real number λ such that y = y(x) is an extremal of F (z)+λG(z)

on the set of functions from C(1)(a, b) satisfying (1.127).

The problem of finding this extremal is well defined in principle. A solu-

tion of the Euler equation for F (z)+λG(z) should have three independent

constants: λ, and the two independent constants expected in the general

solution of the (second-order) Euler equation. These can be determined

from (1.128) and (1.127).

Proof. We will try the results of § 1.9. We must consider the set of small

increments of the minimizer such that the incremented functions satisfy

both (1.127) and (1.128). So we construct the set of increments by combin-

ing two bell-shaped functions of the class B0 with centers of symmetry at x1
and x2, x1 < x2: that is, Aiϕεi(x− xi), |Ai| = ε3i , i = 1, 2. Denote this in-

crement by η(x) =
∑
iAiϕεi(x−xi). We can assume that εi < (x2−x1)/2,

so the two nonzero domains of such an increment do not intersect (or we

could argue that we produced two bell-shaped increments of y at different

points successively). Since the supports of the two bell-shaped functions

do not intersect we can extend (1.120) to this case:

∆F (y, η) =

[(
fy − d

dx
fy′

) ∣∣∣∣
x=x1

+ α1

]
σε1

+

[(
fy − d

dx
fy′

) ∣∣∣∣
x=x2

+ α2

]
σε2 (1.129)

where for i = 1, 2 we have

σεi = Ai

∫ xi+ε

xi−ε
ϕεi(x− xi) dx, |Ai| = ε3i ,

and αi → 0 when σεi → 0.

We must choose the increment η so that y + η satisfies (1.128). Thus

G(y+ η)−G(y) = 0. This and the analogue of (1.121) for G(y+ η)−G(y)
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imply[(
gy − d

dx
gy′

) ∣∣∣∣
x=x1

+ β1

]
σε1 +

[(
gy − d

dx
gy′

) ∣∣∣∣
x=x2

+ β2

]
σε2 = 0

with the same σεi as in (1.129) and βi → 0 when σεi → 0.

Since y = y(x) is not an extremal of G(z), there is a point x2 ∈ (a, b)

where gy− d
dxgy′ �= 0. For sufficiently small ε2 we get β2 as small as desired,

thus the second square bracket is nonzero in this case and so

σε2 = −

(
gy − d

dx
gy′

) ∣∣∣∣
x=x1

+ β1(
gy − d

dx
gy′

) ∣∣∣∣
x=x2

+ β2

σε1 .

Then

∆F (y, η) =

[(
fy − d

dx
fy′

) ∣∣∣∣
x=x1

+ α1

]
σε1

−
[(

fy − d

dx
fy′

) ∣∣∣∣
x=x2

+ α2

] (
gy − d

dx
gy′

) ∣∣∣∣
x=x1

+ β1(
gy − d

dx
gy′

) ∣∣∣∣
x=x2

+ β2

σε1 .

(1.130)

Denoting

λ = −

(
fy − d

dx
fy′

) ∣∣∣∣
x=x2(

gy − d

dx
gy′

) ∣∣∣∣
x=x2

we get from (1.130)

∆F (y, η) =

[(
fy − d

dx
fy′

) ∣∣∣∣
x=x1

+ λ

(
gy − d

dx
gy′

) ∣∣∣∣
x=x1

]
σε1 + o(|σε1 |).

The first variation of the functional that must vanish on the solution is

δF (y, η) =

[(
fy − d

dx
fy′

) ∣∣∣∣
x=x1

+ λ

(
gy − d

dx
gy′

) ∣∣∣∣
x=x1

]
σε1 = 0.

Since we can choose σε1 arbitrarily, it follows that for any x1 ∈ (a, b) we

have (
fy − d

dx
fy′

) ∣∣∣∣
x=x1

+ λ

(
gy − d

dx
gy′

) ∣∣∣∣
x=x1

= 0.
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This means y = y(x) is an extremal of F + λG. �
For an isoperimetric problem where the functional F depends on a vector

function y = (y1, . . . , yn) and there are m restrictions of integral type

Gi =

∫ b

a

gi(x,y,y
′) dx, i = 1, . . . , k,

there is a corresponding statement. For this problem a minimizer y is

an extremal of the functional F +
∑k

i=1 λkGi. The reader can derive the

corresponding Euler equations. It is clearly impossible to satisfy k integral

restrictions for y considering only the two-belled increments, so here it is

necessary to introduce increments composed of k+1 bell-shaped functions.

This requires additional technical work.

Two problems

Let us consider two special problems. The first was mentioned in § 1.1: find
the plane curve enclosing the maximum possible area for a given perimeter.

One approach is to examine all curves y(x) that, except for their endpoints,

lie in the upper half of the xy-plane, and that have endpoints (±a, 0) and
a given length l. (Note that a is not specified in advance.) In the notation

of Theorem 1.34 we have

F (y) =

∫ a

−a
y dx, G(y) =

∫ a

−a

√
1 + (y′)2 dx;

hence

f(x, y, y′) = y, g(x, y, y′) =
√

1 + (y′)2,

and f + λg does not depend on x explicitly. So we can write

(f + λg)− (f + λg)y′y
′ = y + λ

√
1 + (y′)2 − λ(y′)2√

1 + (y′)2
= c1,

which simplifies to

y − c1 =
−λ√

1 + (y′)2
.

Put

y′ =
dy

dx
= tan t (1.131)

where t is a parameter; then

y − c1 =
−λ√

1 + tan2 t
=

−λ
sec t

= −λ cos t. (1.132)
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Now from (1.131) and (1.132)

dx =
1

tan t
dy =

1

tan t

dy

dt
dt =

1

tan t
λ sin t dt = λ cos t dt

so that upon integration we have x = λ sin t+ c2. From the equations

x− c2 = λ sin t, y − c1 = −λ cos t,
we may eliminate t to produce

(x− c2)
2 + (y − c1)

2 = λ2.

Thus all extremals of F (y)+λG(y) are portions of a circle. The conditions

(−a− c2)
2 + (0 − c1)

2 = λ2, (a− c2)
2 + (0− c1)

2 = λ2,

may be subtracted to show that c2 = 0. The vertical shift c1 of the center

and the radius λ clearly depend on the given l. The reader can verify

directly that a maximum has been obtained.

Another approach is to use polar coordinates. Calling these (r, φ) and

placing the coordinate origin inside the desired closed curve r = r(φ), we

have

f + λg =
1

2
r2 + λ

√
r2 + (r′)2

and the corresponding Euler equation

r +
λr√

r2 + (r′)2
− d

dφ

λr′√
r2 + (r′)2

= 0.

Differentiation and simplification give

1

λ
=
rr′′ − 2(r′)2 − r2

[r2 + (r′)2]3/2
,

which shows that the curvature of r(φ) is a constant 1/λ and yields a circle

again.

It is worth noting that we formulated the problems for a minimum but

solved for a maximum. This is analogous to the standard calculus trick of

maximizing a function f by minimizing −f . Of even more interest is the

idea of obtaining a dual problem by reversing the roles of the functionals F

and G. For example, the maximum area that can be enclosed by a curve

having length l is l2/4π. The dual problem is to find a closed curve of

minimum length that borders a flat domain with area l2/4π. Of course,

the solution is a circle having circumference l.

We now turn to another classical isoperimetric problem. Early in the

development of mathematics people became curious about the precise form
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assumed by a chain hanging from both ends (such chains were used, for

instance, as “fences” along the sides of bridges). This is a hard problem if

one wishes to consider it in full detail (including friction, nonuniformities in

the individual links, and so on); it is possible to show that many peculiarities

arise, and even the full setup of the problem is quite cumbersome. A

successful approach depended on the construction of a tractable model for

the chain. First an ideal chain was introduced, consisting of extremely small

elements that were all identical; this permitted the tools of calculus to be

applied. An even simpler model was a uniform filamentary rope — heavy,

flexible, and absolutely unstretchable. Unlike a chain, such an idealized

rope could lie in a plane.

Let us therefore suppose that a uniform, flexible rope of a given fixed

length hangs in equilibrium with its ends attached to two fixed points:

what is the shape assumed by the rope? Denote by l the length of the

rope, assume it has a unit mass density, and let the endpoints be (a, ha)

and (b, hb). Clearly we need b − a ≤ l. The y coordinate of the center of

gravity is proportional to the integral
∫ b
a y(s) ds where s is arc length along

the rope; since the center of gravity will find the lowest possible position,

we are led to minimize the functional (ds =
√
1 + (y′)2 dx)

F (y) =

∫ b

a

y
√
1 + (y′)2 dx

subject to the side condition

G(y) =

∫ b

a

√
1 + (y′)2 dx = l.

Accordingly we minimize

F (y) + λG(y) =

∫ b

a

(y + λ)
√

1 + (y′)2 dx.

Since the integrand does not depend on x explicitly, we write out the first

integral of the differential equation,

(y + λ)
√

1 + (y′)2 − (y + λ)(y′)2√
1 + (y′)2

= c1,

and then simplify to obtain

y + λ = c1
√
1 + (y′)2.

We find a parametric representation of the solution, introducing a param-

eter t by the substitution y′ = sinh t. Then

y + λ = c1 cosh t
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and the dependence of x on t is

dx =
1

sinh t
dy =

1

sinh t

dy

dt
dt =

1

sinh t
(c1 sinh t) dt = c1dt

so that

x− c2 = c1t.

Elimination of t leads to the equation of a catenary:

y + λ = c1 cosh

(
x− c2
c1

)
.

The given conditions can be used to determine c1, c2, and λ. (Of course

c2 = 0 if b = −a.)
Once again we do not provide formal verification that a minimum has

actually been obtained. Indeed, with many problems that arise from geom-

etry or physics it is intuitively clear whether we have the desired solution.

For the hanging chain problem, we can assert on physical grounds that a

solution exists; since the solution we obtained is unique, we can rest assured

that it is the desired one.

It is possible to state other types of minimum problems with restrictions

which, for their solution, require a technique similar to that of Lagrange

multipliers. For example, it is possible to pose a problem of minimizing

the functional
∫ x1

x0
f(x, y, z, y′, z′) dx under some boundary conditions when

there is a restriction g(x, y, z) = 0 (in more advanced books this is called

minimizing a functional on a manifold). Here a minimizer is an extremal

of a functional
∫ b
a [f − λ(x)g] dx without integral restrictions imposed by

g, and λ(x) is a new unknown function that is treated as given when we

compose the Euler equations. Of course to define it one must use the

equation g(x, y, z) = 0. Some problems in mechanics involve restrictions of

even more general type; e.g., g(x, y, z, y′, z′) = 0.

Quick summary

We have concentrated on an isoperimetric problem of the following general

form: find the minimizer of the simplest integral functional from among

those functions y that satisfy

y(a) = c0, y(b) = c1, G(y) =

∫ b

a

g(x, y, y′) dx = l
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whereG(y) and l are given. A solution method is to introduce a real number

λ (analogous to a Lagrange multiplier) and seek to minimize the functional

F + λG subject to the given endpoint conditions on y.

1.11 General Form of the First Variation

We would like to consider the minimization problem for functionals of the

form (1.33) when the endpoints of integration can change.

We have seen for various functionals that at a point of minimum the first

variation is zero. Let us demonstrate this in general. First let us introduce

some notions. In subsequent chapters we shall use the notion of a normed

space; now we quote only the definition. A normed space is a linear space

of elements x such that for each x a function called the norm ‖x‖ is defined.

The norm must possess the following three properties:

(i) for any x, ‖x‖ ≥ 0; ‖x‖ = 0 if and only if x = 0;

(ii) ‖λx‖ = |λ| ‖x‖ for any real number λ;

(iii) ‖x+ y‖ ≤ ‖x‖ + ‖y‖.

The third property is called the triangle inequality. For example, the norm

(1.37) for functions in C(1)(a, b) satisfies the above properties.

We can define a functional on a general normed space. A functional on

a normed space X is a function that takes values in R; i.e., to any x ∈ X

there corresponds no more than one real number. A functional Φ(x) is

linear if for any x, y belonging to its domain and any real λ, µ,

Φ(λx + µy) = λΦ(x) + µΦ(y). (1.133)

Finally, a linear functional Φ(x) is continuous in X if there is a constant c

such that for any x ∈ X ,

|Φ(x)| ≤ c ‖x‖ . (1.134)

The infimum of all such c is called the norm of Φ and is denoted ‖Φ‖ (it is

actually a norm according to the norm properties listed above).

Let F (x) be a functional on X , and assume that in some ball about a

point x ∈ X (a ball is a set of elements x + δx ∈ X , where δx ∈ X , such

that ‖δx‖ ≤ ε for some ε > 0) there is a representation

F (x + δx)− F (x) = δF (x, δx) + o(‖δx‖) (1.135)
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where δF (x, δx) is a linear functional continuous in δx. We have called

it the first variation of F (x), but it also has another name: the Fréchet

differential of F (x) at x. Hence we have extended the definition of the first

variation to abstract functionals.

Let x be a local minimizer of F : that is, F (x+ δx)− F (x) ≥ 0 for any

‖δx‖ ≤ ε with some ε > 0.

Theorem 1.35. Let x be a minimizer of F on the set of elements {x+δx |
‖δx‖ ≤ ε}, and suppose F has the first variation at x such that (1.135)

holds on this set. Then δF (x, δx) = 0.

Proof. Suppose to the contrary there exists an x∗ ∈ X such that

δF (x, x∗) �= 0. Then for small enough t we have

0 ≤ F (x+ tx∗)− F (x) = δF (x, tx∗) + o(t ‖x∗‖) = t δF (x, x∗) + o(t).

For small |t| the difference on the left is determined by the first term on the

right. Choosing an appropriate t we get t δF (x, x∗) < 0, which contradicts

the leftmost inequality. �

Thus for a problem of minimum of a functional, as a first step, we have

to derive its first variation, equate it to zero, and then find solutions of this

equation for any admissible disturbances (or virtual variations) δx.

We return to the beginning of this section and claim again that we would

like to consider a minimization problem for a more general functional than

(1.33), i.e., the functional

F (y) =

∫ x1

x0

f(x, y, y′) dx (1.136)

where the endpoints x0 and x1 can move. Thus we need the expression for

the first variation in this case. To realize the above idea we must suppose

that all changes are of the same order of smallness. Here we have not only a

change ϕ in y to consider, but also changes δx0 and δx1 of the ends x0 and

x1 respectively. Since δx0 and δx1 are arbitrary and we could have δx0 < 0

or δx1 > 0, we must agree on a way of extending a given function to points

outside the segment [x0, x1]. We do this by linear extrapolation, using the

tangent lines to y = y(x) at x0 and x1 to define the values of the extension.

The ends of the extended curve have coordinates (x0 + δx0, y0 + δy0) and

(x1 + δx1, y1 + δy1).

Our problem is to derive the linear part of the increment for (1.136)

when ϕ, ϕ′, δx0, δy0, δx1, and δy1 have the same order of smallness; that is,
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to extract the part of the increment that is linear in each of these quantities.

Denote

ε = ‖ϕ‖C(1)(x0,x1)
+ |δx0|+ |δy0|+ |δx1|+ |δy1|.

The increment is

∆F (y) =

∫ x1+δx1

x0+δx0

f(x, y + ϕ, y′ + ϕ′) dx−
∫ x1

x0

f(x, y, y′) dx.

The first integral can be decomposed as∫ x1+δx1

x0+δx0

(· · · ) dx =

∫ x1

x0

(· · · ) dx+

∫ x1+δx1

x1

(· · · ) dx−
∫ x0+δx0

x0

(· · · ) dx.

Recall that all the functions y = y(x), ϕ = ϕ(x), are linearly extrapo-

lated outside [x0, x1], preserving continuity of the functions and their first

derivatives. Thus

∆F (y) =

∫ x1

x0

[f(x, y + ϕ, y′ + ϕ′)− f(x, y, y′)] dx

+

∫ x1+δx1

x1

f(x, y + ϕ, y′ + ϕ′) dx

−
∫ x0+δx0

x0

f(x, y + ϕ, y′ + ϕ′) dx. (1.137)

The integral over [x0, x1] can be transformed in the usual manner:∫ x1

x0

[f(x, y + ϕ, y′ + ϕ′)− f(x, y, y′)] dx

=

∫ x1

x0

[
fy(x, y, y

′)− d

dx
fy′(x, y, y

′)
]
ϕdx

+ fy′(x, y(x), y
′(x))ϕ(x)

∣∣∣∣x=x1

x=x0

+ o(ε).

Let us represent ϕ at the endpoints using δy0 and δy1.

Fig. 1.2 shows that

ϕ(x1) = δy1 − y′(x1)δx1 + o(ε). (1.138)

Similarly,

ϕ(x0) = δy0 − y′(x0)δx0 + o(ε). (1.139)
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xx1 x x1+δ

y = y x( )
y x x�( )1 δ

φ( )x
δy

δx

y = y x x( )+ ( )φ
≈φ( )x

1
1 1

1

1

1

Fig. 1.2 Quantities appearing in equations (1.138) and (1.139).

Thus

∫ x1

x0

[f(x, y + ϕ, y′ + ϕ′)− f(x, y, y′)] dx

=

∫ x1

x0

[
fy(x, y, y

′)− d

dx
fy′(x, y, y

′)
]
ϕdx

+ fy′(x1, y(x1), y
′(x1))δy1 − fy′(x0, y(x0), y

′(x0))δy0
− [fy′(x1, y(x1), y

′(x1))y′(x1)δx1
− fy′(x0, y(x0), y

′(x0))y′(x0)δx0] + o(ε).

Now consider the two other terms for ∆F in (1.137). Extracting the terms

of the first order of smallness in ε we have

∫ x1+δx1

x1

f(x, y + ϕ, y′ + ϕ′) dx =

∫ x1+δx1

x1

f(x, y, y′) dx+ o(ε)

= f(x1, y(x1), y
′(x1))δx1 + o(ε)

and similarly

∫ x0+δx0

x0

f(x, y + ϕ, y′ + ϕ′) dx = f(x0, y(x0), y
′(x0))δx0 + o(ε).
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Collecting terms we have

∆F =

∫ x1

x0

[
fy(x, y, y

′)− d

dx
fy′(x, y, y

′)
]
ϕdx

+ fy′(x1, y(x1), y
′(x1))δy1 − fy′(x0, y(x0), y

′(x0))δy0
+ [f(x1, y(x1), y

′(x1))− fy′(x1, y(x1), y
′(x1))y′(x1)]δx1

− [f(x0, y(x0), y
′(x0))− fy′(x0, y(x0), y

′(x0))y′(x0)]δx0 + o(ε).

So the following is the general form of the first variation of the functional

when the ends of the curve can move:

δF =

∫ x1

x0

(
fy − d

dx
fy′

)
ϕdx+ fy′δy

∣∣∣∣x1

x0

+ (f − y′fy′) δx
∣∣∣∣x1

x0

. (1.140)

The reader can demonstrate that for a functional

F (y) =

∫ x1

x0

f(x,y,y′) dx

with movable boundaries, the general form of the first variation is

δF =
n∑
i=1

∫ x1

x0

(
fyi −

d

dx
fy′i

)
ϕi dx+

n∑
i=1

fy′iδyi

∣∣∣∣x1

x0

+

(
f −

n∑
i=1

y′ify′i

)
δx

∣∣∣∣x1

x0

.

1.12 Movable Ends of Extremals

In the previous section we found the general form (1.140) of the first vari-

ation of a functional when the boundaries of integration can move. Note

that when the boundaries are fixed then δxi = 0 and (1.140) reduces to the

left side of (1.55). Thus in this case the equation δF = 0 for a minimizer

gives us the Euler equation and natural boundary conditions. The problem

with natural boundary conditions can be reformulated as follows: given two

vertical lines x = a and x = b, find a minimizer of the functional (1.33)

that starts on the line x = a and ends on the line x = b (or that connects

these lines).

This formulation suggests that by using (1.140) it is possible to find

equations to solve the following problem.

Given two curves y = ψ0(x) and y = ψ1(x), find a minimizer of

(1.33) that starts on ψ0(x) and ends on ψ1(x).

Let us call this the “problem with movable boundaries.”
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We assume any other functions of interest are defined (and twice contin-

uously differentiable) wherever the boundary functions ψi(x) are given. (If

these latter functions are not defined on the same interval, we construct an

interval that encompasses all points of interest and assume that everything

is defined on this larger interval.) Moreover we assume the endpoints of the

minimizer are not endpoints of the graph for the ψi(x).

xxi x xi+δ

δy

δx

y = x( )ψ
ε

yi

i
i

i

i

i

Fig. 1.3 Quantities near movable end of an extremal.

So we start with

δF =

∫ x1

x0

(
fy − d

dx
fy′

)
ϕdx+ fy′δyi

∣∣∣∣x1,i=1

x0,i=0

+ (f − y′fy′) δxi

∣∣∣∣x1,i=1

x0,i=0

.

(1.141)

For admissible increments ϕ of a minimizer y = y(x), the first variation of

the functional is equal to zero. Although the expression δF above contains

all the terms of the increment of the first order of smallness, it is not the

first variation in the present case. Admissible ϕ now are those that are

continuously differentiable and such that both

(x0, y(x0)) and (x0 + δx0, y(x0 + δx0) + ϕ(x0 + δx0))

belong to the curve y = ψ0(x), and both

(x1, y(x1)) and (x1 + δx1, y(x1 + δx1) + ϕ(x1 + δx1))

belong to the curve y = ψ1(x).

Consider Fig. 1.3. Here each δyi (i = 0 or 1) and its corresponding δxi
are no longer independent; it is clear that for small δxi we have

δyi = ψ′
i(xi)δxi + εi, i = 0, 1



September 30, 2011 8:42 World Scientific Book - 9in x 6in aea

78 Advanced Engineering Analysis

where the εi are of a higher order of smallness than δxi and δyi. Substitut-

ing this into the right side of (1.141), we select only the terms of the first

order of smallness and get∫ x1

x0

(
fy − d

dx
fy′

)
ϕdx+ fy′ψ

′
iδxi

∣∣∣∣x1,i=1

x0,i=0

+ (f − y′fy′) δxi

∣∣∣∣x1,i=1

x0,i=0

.

This is the first variation of the functional (note that it is equal to δF in

(1.141) only up to terms of the first order of smallness in the norm of the

increment). Thus∫ x1

x0

(
fy − d

dx
fy′

)
ϕdx+ fy′ψ

′
iδxi

∣∣∣∣x1,i=1

x0,i=0

+ (f − y′fy′) δxi

∣∣∣∣x1,i=1

x0,i=0

= 0

(1.142)

for all admissible ϕ.

Let us derive the consequences of this equation. First, from among

the admissible increments y = ϕ(x) we take only those which satisfy the

conditions ϕ(x0) = ϕ(x1) = 0. For any such ϕ we have∫ x1

x0

(
fy − d

dx
fy′

)
ϕdx = 0

and thus by the fundamental lemma the Euler equation

fy − d

dx
fy′ = 0

is satisfied on (x0, x1). Hence the integral in (1.142) vanishes for any ad-

missible ϕ, and it follows that

(f + (ψ′
i − y′)fy′) δxi

∣∣∣∣x1,i=1

x0,i=0

= 0. (1.143)

Because we can “move” the ends of the curve independently, (1.143) implies

two boundary conditions for the minimizer:

(f + (ψ′
1 − y′)fy′)

∣∣
x1

= 0, (f + (ψ′
0 − y′)fy′)

∣∣
x0

= 0. (1.144)

For the problem under consideration the minimizing curve y = y(x)

satisfies conditions (1.144) which are an extension of the natural boundary

conditions. The way in which the minimizer intersects the boundary curves

y = ψi(x) has a special name:

Definition 1.36. The curve y = y(x) is transversal to the curves y =

ψi(x), i = 0, 1.
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Let us analyze the setting of the boundary value problem in this case.

There is the Euler equation whose solution is determined up to two un-

known constants (it is not always so; in nonlinear equations the situation

with constants is sometimes much more complex, but when we analyze the

problem qualitatively we keep in mind the terms of the linear case). The

two conditions (1.144) could define those constants, but they contain un-

known quantities x0 and x1 so we need to find two more equations. They

are y(x0) = ψ0(x0) and y(x1) = ψ1(x1), and thus the setup of the necessary

conditions for y = y(x) to be a minimizer is completed.

Example 1.37. Show that for functionals of the form∫ x1

x0

q(x, y)
√

1 + (y′)2 dx

where q(x, y) �= 0 at the endpoints x0 and x1, conditions (1.144) imply

orthogonal intersections between y(x) and the curves ψ0(x) and ψ1(x) at

the points x0 and x1, respectively.

Solution. Take, for example, the condition (f + (ψ′
1 − y′)fy′)

∣∣
x1

= 0. Di-

rect substitution and a bit of simplification give(
q(x, y)

1 + ψ′
1y

′√
1 + (y′)2

) ∣∣∣∣
x1

= 0.

If q(x, y)|x1 �= 0, then (1 + ψ′
1y

′)|x1 = 0; i.e.,

y′|x1 = − 1

ψ′
1|x1

.

The slopes are negative reciprocals, so y is orthogonal to ψ1 at x = x1. �

Quick review

The problem with movable boundaries for the simplest integral functional

involves finding a minimizer that connects two given curves y = ψ0(x) and

y = ψ1(x). We first solve the Euler equation, obtaining a solution in terms

of two unknown constants. We then impose the transversality conditions

(f + (ψ′
1 − y′)fy′)

∣∣
x1

= 0, (1.145)

(f + (ψ′
0 − y′)fy′)

∣∣
x0

= 0, (1.146)

where x1 and x0 are also unknowns. After the use of y(x0) = ψ(x0) and

y(x1) = ψ(x1), all constants should be determined.
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Special cases : (1) If one of the ψi is a horizontal line, say ψ1(x) = constant,

then ψ′
1 ≡ 0 and the corresponding transversality condition becomes

(f − y′fy′)
∣∣
x1

= 0.

(2) If ψ1 is a vertical line (x = constant) then fy′
∣∣
x1

= 0.

1.13 Broken Extremals: Weierstrass–Erdmann Conditions

and Related Problems

We have required a minimizer y = y(x) of (1.33) to assume given values

at the endpoints of [a, b]. Is it possible to retain these conditions and also

require that y(x) assume a third given value at an interior point of [a, b]?

That is, can we impose three conditions of the form y(a) = c0, y(b) = c1,

and y(α) = c2 where α ∈ (a, b)? If we require the minimizer to be in

C(1)(a, b), then the answer is, in general, no: a solution of the second-order

Euler equation cannot be made to satisfy three conditions at once. If we

omit the condition of continuity of the minimizer at x = α, the problem can

be solvable in principle. However, in this case we can consider two separate

problems of minimizing two functionals, one of which is given on [a, α] and

the other on [α, b]. So in this case we reduce the three-point problem to

the two-point problem already considered.

With some problems it makes sense to assume that a minimizing curve

has a finite number of points at which continuity of its derivative fails. We

cannot appoint the position of such points on (a, b) in advance. It happens

that at such points the Weierstrass–Erdmann conditions must be satisfied.

Let us derive these, assuming the existence of one point of discontinuity of

the first derivative of the minimizer. They will hold at every such point.

Suppose x = α is a point at which the first derivative of a minimizer is

not continuous.

Theorem 1.38. Let x = α ∈ (a, b) be a point at which the tangent to a

minimizer y = y(x) of the functional
∫ b
a f(x, y, y

′) dx has a break. Then y

satisfies the Euler equation on the intervals (a, α) and (α, b), and at x = α

the Weierstrass–Erdmann conditions

fy′
∣∣
x=α−0

= fy′
∣∣
x=α+0

, (1.147)

(f − y′fy′)
∣∣
x=α−0

= (f − y′fy′)
∣∣
x=α+0

, (1.148)

hold.
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Before giving the proof, let us discuss how to state the corresponding

boundary value problem. On each of the intervals (a, α) and (α, b) the

minimizer satisfies the Euler equation. So in general the minimizer is de-

termined up to four unknown constants. Also unknown is α. There are

five conditions to determine these constants: the two boundary conditions

at a and b, the conditions (1.147)–(1.148), and the continuity condition

y(α − 0) = y(α + 0). Thus in principle the boundary value problem is

formulated properly.

Proof. Consider for definiteness the boundary conditions y(a) = c0 and

y(b) = c1 for a minimizer. The minimizer should be continuous at x = α.

Perturbing the minimizer by an admissible ϕ and supposing that the point

(α, y(α)) gets the increments (δx, δy), we apply the general formula for the

first variation∫ x1

x0

(
fy − d

dx
fy′

)
ϕdx+ fy′δy

∣∣∣∣x1

x0

+ (f − y′fy′) δx
∣∣∣∣x1

x0

(1.149)

twice, on each of intervals (a, α) and (α, b) separately, taking into account

that the increment (δx, δy) at (α, y(α)) is the same on the left and the right

of α. Remembering that δx and δy are zero at x = a and x = b for all

admissible increments, we have

δF = δ

(∫ α

a

f(x, y, y′) dx+

∫ b

α

f(x, y, y′) dx

)

=

∫ α

a

(
fy − d

dx
fy′

)
ϕdx+ fy′δy

∣∣∣∣
x=α−0

+ (f − y′fy′) δx
∣∣∣∣
x=α−0

+

∫ b

α

(
fy − d

dx
fy′

)
ϕdx− fy′δy

∣∣∣∣
x=α+0

− (f − y′fy′) δx
∣∣∣∣
x=α+0

.

Thus for all admissible increments∫ α

a

(
fy − d

dx
fy′

)
ϕdx +

∫ b

α

(
fy − d

dx
fy′

)
ϕdx

+
[
fy′

∣∣
x=α−0

− fy′
∣∣
x=α+0

]
δy

+
[
(f − y′fy′)

∣∣
x=α−0

− (f − y′fy′)
∣∣
x=α+0

]
δx = 0. (1.150)

Now we choose certain classes of admissible increments ϕ to show that

each term summed in (1.150) is equal to zero separately. Let us take first

those admissible ϕ that are zero on [α, b]. Also take δx = δy = 0. All terms
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except the first integral on the left are equal to zero identically now. Thus∫ α

a

(
fy − d

dx
fy′

)
ϕdx = 0

for all differentiable functions ϕ that equal zero at a and α. By the funda-

mental lemma the Euler equation

fy − d

dx
fy′ = 0

holds on (a, α). Because of this the first integral is zero not only for those

ϕ that satisfy ϕ(α) = 0, but for all admissible increments. A similar choice

of those ϕ that are zero on [a, α] together with the assumption δx = δy = 0

brings us to similar conclusions: the minimizer y satisfies the Euler equation

on (α, b) and so for all admissible ϕ we have∫ b

α

(
fy − d

dx
fy′

)
ϕdx = 0.

It follows that[
fy′

∣∣
x=α−0

− fy′
∣∣
x=α+0

]
δy

+
[
(f − y′fy′)

∣∣
x=α−0

− (f − y′fy′)
∣∣
x=α+0

]
δx = 0

for all admissible δx and δy, hence we obtain (1.147) and (1.148). �

For the functional
∫ b
a f(x,y,y

′) dx depending on a vector function, at a

discontinuity of a component yi there are the similar conditions

fy′i

∣∣
x=α−0

= fy′i

∣∣
x=α+0

, (f − y′ify′i)
∣∣
x=α−0

= (f − y′ify′i)
∣∣
x=α+0

.

Indeed, when deriving the corresponding equation for the first variation of

the functional, we can appoint the increments of all the components except

yi to be zero, so formally the corresponding equation does not differ from

(1.150).

The Weierstrass–Erdmann conditions are similar in form to the natural

boundary conditions for a functional. The idea of the proof of Theorem 1.38

can be applied to other types of problems.

Example 1.39. Consider the problem of minimizing the functional∫ β

a

f(x, y, y′) dx+

∫ b

β

g(x, y, y′) dx (1.151)

where β is a fixed point of (a, b), and y is continuous on [a, b], twice con-

tinuously differentiable on (a, β) and (β, b), and satisfies y(a) = c0 and
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y(b) = c1. Assume the integrand is discontinuous at x = β, hence y has no

continuous derivative there.

Solution. Problems of this form are frequent in physics, arising from spa-

tial discontinuities. A specific instance of this is when a ray of light crosses

the interface between two media. We are interested in how to appoint the

conditions at such points, since the equation of propagation is not valid

there. Variational tools can often supply us with such conditions. Let us

demonstrate how this can happen.

For the functional (1.151) we need to derive the expression for the first

variation and set it to zero for admissible increment-functions. For this we

use (1.149) as above, but should take into account that β is fixed so that

δx = 0 at x = β. The changes are evident:∫ β

a

(
fy − d

dx
fy′

)
ϕdx+

∫ b

β

(
gy − d

dx
gy′

)
ϕdx

+
[
fy′

∣∣
x=β−0

− gy′
∣∣
x=β+0

]
δy = 0.

Thus in a similar fashion at x = β, in addition to the continuity condition

y(β − 0) = y(β + 0) we get fy′
∣∣
x=β−0

= gy′
∣∣
x=β+0

. �

Let us now consider a particular problem of the same nature with an-

other type of functional. We seek the deflections under transverse load q(x)

of a system consisting of a cantilever beam with parameters E and I and

whose free end connects with a string as shown in Fig. 1.4.

x

q x( )

1

y

6

Fig. 1.4 A coupled mechanical system consisting of a beam and a string.

The models of a string and of a beam are of different natures; they are

derived under different sets of assumptions, and the corresponding ordinary
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differential equations have different orders. It is clear that at the point of

connection the function y describing the deflections must be continuous.

However, we can imagine that the angles of inclination of the beam and the

string can differ under certain loads; this means that we cannot require y′

to be continuous at the point of coupling. What are the other conditions

at this point? There are two ways to find them. One is to undertake

a careful study of the theory of beams and strings and, understanding

the mechanical meaning of each derivative at the point, to write out the

conditions of equilibrium of the node (coupling unit). Another is to employ

variational tools. Normally the latter is preferable, as it is less likely to

yield incorrect conditions. We begin with the expression for total potential

energy of the system: beam-string-load. We take the lengths of the beam

and the string to be 1 m and 5 m, respectively. The stretching of the string

is characterized by a parameter a:

E(y) =
1

2

∫ 1

0

EI(y′′(x))2 dx+
a

2

∫ 6

1

(y′(x))2 dx−
∫ 6

0

q(x)y(x) dx.

We see from the figure that

y(0) = 0, y′(0) = 0, y(6) = 0.

Using tools developed earlier, we obtain the first variation

δE =

∫ 1

0

EIy′′ϕ′′ dx+ a

∫ 6

1

y′ϕ′ dx−
∫ 6

0

q(x)ϕ(x) dx

of the energy functional. For all admissible functions that necessarily satisfy

ϕ(0) = 0, ϕ′(0) = 0, and ϕ(6) = 0, we have

δE = 0.

Integration by parts gives∫ 1

0

EIy(4)ϕdx+ EIy′′ϕ′
∣∣∣∣
x=1−0

− EIy′′′ϕ
∣∣∣∣
x=1−0

− a

∫ 6

1

y′′ϕdx− ay′ϕ
∣∣∣∣
x=1+0

−
∫ 1

0

qϕ dx −
∫ 6

1

qϕ dx = 0.

We now reason as in the proof of Theorem 1.38. Putting ϕ = 0 on [1, 6]

and the “boundary” values ϕ(1 − 0) and ϕ′(1− 0) equal to zero, we get

EIy(4) − q = 0 on (0, 1)

for the beam equation; similarly, we get

ay′′ + q = 0 on (1, 6)
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for the string equation. Hence we deduce two additional boundary condi-

tions at the point of connection:

EIy′′′
∣∣
x=1−0

= −ay′∣∣
x=1+0

(1.152)

and

EIy′′
∣∣
x=1−0

= 0. (1.153)

Condition (1.152) means that, at the connection point, the shear force in

the beam is balanced by the vertical component of the tension force in the

string. As the string cannot resist a torque, condition (1.153) states that

the moment at this point of the beam is zero.

Such constructions consisting of elements of different natures are com-

mon in practice, and now the reader knows how to set up the corresponding

boundary value problems.

Quick review

In some problems it becomes necessary to extend the class of admissible

functions to include those that are piecewise smooth. Let y(x) be a min-

imizer of the simplest integral functional, and suppose y′(x) is continuous

on the closed intervals [a, α] and [α, b] where α ∈ (a, b) is the sole corner

point. The position of α cannot be determined in advance, but is subject

to the Weierstrass–Erdmann conditions

fy′
∣∣
x=α−0

= fy′
∣∣
x=α+0

, (1.154)

(f − y′fy′)
∣∣
x=α−0

= (f − y′fy′)
∣∣
x=α+0

. (1.155)

In addition to the Euler equation on the intervals (a, α) and (α, b) then,

y must satisfy (1) the Weierstrass–Erdmann conditions, (2) any given

endpoint conditions on y(a) and y(b), and (3) the continuity condition

y(α − 0) = y(α + 0). A piecewise smooth extremal with a corner (or with

multiple corners) is called a broken extremal.

1.14 Sufficient Conditions for Minimum

Thus far we have studied some of the techniques used to identify possi-

ble minimizers. It is also of interest to know how to solve the boundary

value problems that yield corresponding extremals, although the treatment

of this topic falls outside the scope of this book (and within the scope of
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books on ordinary and partial differential equations). But the solutions of

these problems represent only the first step in a full solution of the problem

of minimization; the next step is to learn whether an extremal is a mini-

mizer. As we shall see, for many linear problems of mathematical physics

an extremal satisfying boundary conditions is automatically a minimizer.

Nonlinear problems, as a rule, need additional investigation. For this we

need to derive sufficient conditions for an extremal to be a minimizer. First

we shall derive conditions analogous to those found in the calculus of func-

tions of many variables.

We reconsider the problem of minimum of the simplest functional

F (y) =

∫ b

a

f(x, y, y′) dx

in the class C(1)(a, b) under the boundary conditions y(a) = c0, y(b) = c1.

Let y be a minimizer of the problem under consideration and ∆y(x) an

admissible increment of y. Consider the increment of F :

∆F = F (y +∆y)− F (y)

=

∫ b

a

[f(x, y +∆y, y′ +∆y′)− f(x, y, y′)] dx. (1.156)

Denote p = y(x), q = y′(x), and g(p, q) = f(x, p, q), and let ∆p and ∆q

be the increments of p and q, respectively (in this case they are ϕ(x) and

ϕ′(x) in our old notation). If in some small neighborhood of the point (p, q)

the function g has continuous derivatives up to second order, then in this

neighborhood we can write the Taylor expansion of g:

g(p+∆p, q +∆q) = g(p, q) + [gp(p, q)∆p+ gq(p, q)∆q]

+
1

2!
[gpp(p, q)(∆p)

2 + 2gpq(p, q)∆p∆q

+ gqq(p, q)(∆q)
2] + β(p, q,∆p,∆q)[(∆p)2 + (∆q)2]

where β(p, q,∆p,∆q) → 0 when (∆p)2 + (∆q)2 → 0. We can write this

expansion in terms of f , y, and ∆y at each x ∈ [a, b]:

f(x, y +∆y, y′ +∆y′) = f(x, y, y′) + [fy(x, y, y
′)∆y + fy′(x, y, y

′)∆y′]

+
1

2!
[fyy(x, y, y

′)(∆y)2 + 2fyy′(x, y, y
′)∆y∆y′

+ fy′y′(x, y, y
′)(∆y′)2] + β(x, y, y′,∆y,∆y′)[(∆y)2 + (∆y′)2] (1.157)
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(we keep the same notation β for the remainder function). Let us assume

that for all x ∈ [a, b] we have

|β(x, y, y′,∆y,∆y′)| ≤ α(∆y,∆y′)

where α(∆y,∆y′) → 0 when (∆y)2 + (∆y′)2 → 0. This is an important

assumption in what follows.

Let us return to the notation ϕ = ∆y and rewrite (1.157) as

f(x, y + ϕ, y′ + ϕ′) = f(x, y, y′) + [fy(x, y, y
′)ϕ+ fy′(x, y, y

′)ϕ′]

+
1

2!
[fyy(x, y, y

′)ϕ2 + 2fyy′(x, y, y
′)ϕϕ′

+ fy′y′(x, y, y
′)(ϕ′)2] + o(ϕ2 + (ϕ′)2). (1.158)

Here o(ϕ2 +(ϕ′)2) indicates that the term which is uniform in x is small in

comparison with ϕ2 + (ϕ′)2. Now apply the expansion (1.158) to (1.156):

∆F =

∫ b

a

[fy(x, y, y
′)ϕ + fy′(x, y, y

′)ϕ′] dx

+
1

2!

∫ b

a

[fyy(x, y, y
′)ϕ2 + 2fyy′(x, y, y

′)ϕϕ′ + fy′y′(x, y, y
′)(ϕ′)2] dx

+ o

(∫ b

a

(ϕ2 + (ϕ′)2) dx

)
.

Since y is a minimizer of the problem we necessarily have∫ b

a

[fy(x, y, y
′)ϕ+ fy′(x, y, y

′)ϕ′] dx = 0

(cf., § 1.1) and thus

∆F = F (y + ϕ)− F (y) = δ2F + o

(∫ b

a

(ϕ2 + (ϕ′)2) dx

)

where δ2F is the second variation defined by

δ2F ≡ 1

2!

∫ b

a

[fyy(x, y, y
′)ϕ2 + 2fyy′(x, y, y

′)ϕϕ′ + fy′y′(x, y, y
′)(ϕ′)2] dx.

Integration by parts gives∫ b

a

2fyy′(x, y, y
′)ϕϕ′ dx =

∫ b

a

fyy′(x, y, y
′)
d

dx
ϕ2 dx

= −
∫ b

a

ϕ2 d

dx
fyy′(x, y(x), y

′(x)) dx
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since ϕ(a) = ϕ(b) = 0. Then

δ2F =
1

2!

∫ b

a

{[
fyy(x, y, y

′)− d

dx
fyy′(x, y, y

′)
]
ϕ2+fy′y′(x, y, y

′)(ϕ′)2
}
dx.

The quantity δ2F is quadratic in ϕ and ϕ′. Suppose it is bounded from

below as follows:

δ2F ≥ m

∫ b

a

(ϕ2 + (ϕ′)2) dx, (1.159)

where the constant m > 0 does not depend on the choice of admissible

increment ϕ (note that here we do not need assumptions on the smallness

of ϕ). It then follows that

F (y + ϕ)− F (y) ≥ 0

for all admissible increments ϕ (i.e., ϕ ∈ C
(1)
0 (a, b)) with sufficiently small

norm ‖ϕ‖C(1)(a,b). This means that (1.159) is sufficient for y to be a local

minimizer of the problem under consideration.

Thus we seek conditions for (1.159) to hold. Let us denote

Q(x) = fyy(x, y(x), y
′(x)) − d

dx
fyy′(x, y(x), y

′(x)),

P (x) = fy′y′(x, y(x), y
′(x)).

The functions Q(x) and P (x) can be regarded as momentarily given when

we study whether y = y(x) is a minimizer. So we must study the functional

Φ(ϕ) =

∫ b

a

[P (x)ϕ′2(x) +Q(x)ϕ2(x)] dx

in the space C
(1)
0 (a, b).

It is easy to formulate the following restrictions:

P (x) ≥ c and Q(x) ≥ c > 0 for all x ∈ [a, b].

Under these the inequality (1.159) holds for all ϕ ∈ C
(1)
0 (a, b). Unfor-

tunately these restrictions fail in many cases when y = y(x) is really a

minimizer, so we need more useful conditions.

Note that if y = y(x) is a minimizer then Φ(ϕ) ≥ 0 at least. For if there

were an admissible increment ϕ such that Φ(ϕ) < 0 then we could find a t0
so small that for all 0 < t < t0 we would have F (y+ tϕ)−F (y) < 0, and y

would not be a minimizer. Let us suppose Φ(ϕ) is nonnegative.

Theorem 1.40. Let P (x) and Q(x) be continuous on [a, b] and Φ(ϕ) ≥ 0

for all ϕ ∈ C
(1)
0 (a, b). Then P (x) ≥ 0 on [a, b].
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Proof. Suppose to the contrary that P (x0) < 0 for some x0. Then

P (x) < γ < 0 in some ε-neighborhood [x0 − ε, x0 + ε] of x0. Choose

ϕ(x) ∈ C(1)(a, b) as the particular function

ϕ(x) =


sin2

[
π(x − x0)

ε

]
, x ∈ [x0 − ε, x0 + ε],

0, otherwise.

Then for x ∈ [x0 − ε, x0 + ε] we have

ϕ′(x) = 2 sin

[
π(x − x0)

ε

]
cos

[
π(x − x0)

ε

](π
ε

)
=
π

ε
sin

[
2π(x− x0)

ε

]
and therefore

Φ(ϕ) =
(π
ε

)2
∫ x0+ε

x0−ε
P (x) sin2

[
2π(x− x0)

ε

]
dx

+

∫ x0+ε

x0−ε
Q(x) sin4

[
π(x− x0)

ε

]
dx.

But∫ x0+ε

x0−ε
P (x) sin2

[
2π(x− x0)

ε

]
dx < γ

∫ x0+ε

x0−ε
sin2

[
2π(x− x0)

ε

]
dx = γε

and∫ x0+ε

x0−ε
Q(x) sin4

[
π(x− x0)

ε

]
dx ≤M

∫ x0+ε

x0−ε
sin4

[
π(x− x0)

ε

]
dx =

3Mε

4

where M = maxx∈[a,b] |Q(x)|. Hence

Φ(ϕ) <
(π
ε

)2

γε+
3Mε

4
=
π2γ

ε
+

3Mε

4
.

Recall that γ < 0; for sufficiently small ε we can make Φ(ϕ) < 0, a contra-

diction. �

Thus, besides the Euler equation we have established another necessary

condition for y to be a minimizer of the problem under consideration:

fy′y′(x, y(x), y
′(x)) ≥ 0 for all x ∈ [a, b]. (1.160)

This is Legendre’s condition.

Legendre believed that satisfaction of the strict inequality fy′y′ > 0

for all x ∈ [a, b] should be sufficient for y to be a minimizer, and even

constructed a flawed proof. However, even the mistakes of great persons

are useful — on the basis of this “proof” a useful sufficient condition was
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subsequently established. Jacobi proposed to study the functional Φ(ϕ)

using the tools of the calculus of variations itself. The Euler equation for

this functional is

[P (x)ϕ′(x)]′ −Q(x)ϕ(x) = 0. (1.161)

This clearly has the trivial solution ϕ = 0. Let P (x) be continuously

differentiable. Jacobi studied the zeros of a solution of (1.161) for the

Cauchy problem ϕ(0) = 0, ϕ′(0) = 1. The nearest value x0 > a where

ϕ(x0) = 0 he called the point conjugate to a (with respect to the functional

Φ(ϕ)). This point is denoted a∗ (we agree to call a∗ = ∞ if ϕ(x) has no

zeros to the right of x = a). Jacobi established another necessary condition

for y to be a minimizer: that the interval (a, b) does not contain a∗.
The following set of three conditions is sufficient for y to be a minimizer

of the problem under consideration:

(1) y satisfies the Euler equation

fy − d

dx
fy′ = 0;

(2) fy′y′(x, y(x), y
′(x)) > 0 for all x ∈ [a, b];

(3) [a, b] does not contain points conjugate to a with respect to Φ(ϕ).

We shall not offer a proof of this, but do wish to note the following. The

result is beautiful, but for many years it seemed impractical: the Jacobi

condition (3) was quite difficult to check before the advent of the computer.

Today, however, there are many good algorithms with which Cauchy prob-

lems for ordinary differential equations may be solved. Hence it is easy to

check the Jacobi condition numerically.

Example 1.41. For which range of the constant c is an extremal of the

functional ∫ 1

0

(y′2 − c2y2 − 2y) dx, y(0) = 0, y(1) = 1,

a minimizer?

Solution. The extremal exists, as the reader can verify. We suppose c > 0.

Let us check the sufficiency conditions given above. Legendre’s condition

holds automatically. The Jacobi equation with initial conditions is

y′′ + c2y = 0, y(0) = 0, y′(0) = 1.



September 30, 2011 8:42 World Scientific Book - 9in x 6in aea

Basic Calculus of Variations 91

Its solution is y = c−1 sin cx, hence the conjugate point occurs where cx =

π. Thus, by sufficient conditions, the extremal really is a minimizer of the

functional when a∗ = π/c > 1, and by symmetry in c, the extremal is a

minimizer when |c| < π. When a∗ < 1, then extremal is not a minimizer

and, moreover the functional has no minimizer at all (why?). �

The Jacobi theory of conjugate points and corresponding results can be

established for a functional depending on an unknown vector-function.

Some field theory

We now turn to a brief, introductory discussion of certain concepts needed

to express conditions sufficient for a strong minimum. The main idea is

that of a field of extremals.

Let D be a domain in the xy-plane. Let

y = y(x;α)

be a family of curves lying in D, a separate curve being generated by each

choice of the parameter α. If a unique curve from the family passes through

each point of D, then we call the family a proper field in D. A proper

field can be regarded as a sort of cover for D, associating with each point

(x, y) ∈ D a unique slope p(x, y) (i.e., the slope of the particular curve

passing through that point). As a simple but standard example, let D be

the unit disk

D = {(x, y) : x2 + y2 < 1}

and let y = y(x;α) = kx+ α where k is a fixed constant. This is a field of

parallel straight lines with slopes p(x, y) ≡ k.

If all curves of a family y = y(x;α) pass through a certain point (x0, y0),

then the family is known as a pencil of curves and (x0, y0) is called the center

of the pencil. For example, the family y = αx is a pencil having center at

the origin. Of course, a pencil of curves having center (x0, y0) ∈ D cannot

be a proper field of curves in D. However, if a pencil of curves assigns a

unique slope p(x, y) to all points in D other than (x0, y0), we speak of a

central field of curves in D.

A field of extremals is a family of extremal curves (for some variational

problem) that generates a proper or central field in a domain D. The Euler
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equation for the simplest functional

F (y) =

∫ b

a

f(x, y, y′) dx (1.162)

has solutions that form a two-parameter family of curves y = y(x;α;β).

(Here α and β are the integration constants in the general solution of the

Euler equation.) If one of the constants, say α, is determined by imposing

a given fixed endpoint condition y(a) = c0 on the general solution, then all

the extremals in the resulting one-parameter family will issue from the same

point (a, c0). The resulting family y = y(x;β) may be a field (proper or

central) in some specified domain D. For example, consider the functional∫ b

a

[y2 − (y′)2] dx

with a = 0 and y(0) = 0. The integrand does not depend explicitly on x,

so y2 − (y′)2 − (−2y′)y′ = c1. It follows that the extremals have the form

y = c2 sin(x + c3), which gives us a pencil having center (0, 0). Another

example we mention is for the functional∫ b

a

(y′2 − 1)2 dx.

The extremals are straight lines. When suitably restricted, the two-

parameter family of curves y(x) = c1x + c2 can form a field in a couple

of different ways: (1) when c1 is fixed, we obtain a family y = y(x; c2) that

can form a proper field in the unit disk D; (2) when c2 = 0, the resulting

pencil centered at the origin can form a central field in D.

Let y = y(x;α) generate a field of extremals (central or proper) in some

domain D. Each choice of α then gives an extremal; by setting α = α0,

we select a particular extremal y∗(x) = y(x;α0) from the field. If this

extremal y∗(x) has no common points with the boundary of D, it is said to

be admissible in the field. Note that a given extremal may be admissible

in more than one field covering a domain D. Returning to the example in

which D is the unit circle, the two fields

y(x;α) = c1x+ α, y(x;α) = αx,

mentioned above each admit the straight line extremal y∗(x) = c1x.

Armed with an understanding of the field concept, we proceed to the

next step. Let D be a domain in which there is distributed a proper field

of extremals for the simplest functional F (y) of equation (1.162). Suppose

further that this field admits the particular extremal y = y∗(x) satisfying
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given endpoint conditions y(a) = c0, y(b) = c1. Now let y = y(x) be any

curve that lies in D and connects the desired endpoints (a, c0) and (b, c1).

We also assume that the integral

H(y) =

∫ b

a

[f(x, y, p) + (y′ − p)fp(x, y, p)] dx (1.163)

exists for y = y(x), where p = p(x, y) is the slope function (i.e., its value at

(x, y) is the slope y′ of the extremal through point (x, y)) of the field in D.

This integral is extremely important for the theory.

When y(x) = y∗(x), the integral (1.163) reduces to (1.162) because

y′ ≡ p in that case. It can be shown that (1.163) is path independent in D.

For this reason it is known as Hilbert’s invariant integral.

We use these facts as follows. Defining

∆F = F (y)− F (y∗),

we have ∆F = F (y)−H(y∗) = F (y)−H(y) so that

∆F =

∫ b

a

f(x, y, y′) dx−
∫ b

a

[f(x, y, p) + (y′ − p)fp(x, y, p)] dx

=

∫ b

a

[f(x, y, y′)− f(x, y, p)− (y′ − p)fp(x, y, p)] dx.

Thus

∆F =

∫ b

a

E(x, y, y′, p) dx (1.164)

where the integrand

E(x, y, y′, p) = f(x, y, y′)− f(x, y, p)− (y′ − p)fp(x, y, p) (1.165)

is known as the Weierstrass excess function. The following conditions are

sufficient for y = y∗(x) to be a strong minimum of F (y):

(1) The curve y = y∗(x) is admissible in a field of extremals for F (y), and

(2) E(x, y, y′, p) ≥ 0 for all points (x, y) lying sufficiently close to the curve

y = y∗(x) and for arbitrary values of y′.

These have been called the Weierstrass conditions. The proof is nearly

obvious. Suppose condition (1) holds, and let y = y(x) be any other curve

lying in the domain covered by the field of extremals and connecting the

desired endpoints. Then according to condition (2),

∆F =

∫ b

a

E(x, y, y′, p) dx ≥ 0
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for all curves y = y(x) that connect the endpoints and lie within some

neighborhood of y∗(x); moreover, the slope of y need not be close to that

of y∗ so the minimum is strong.

Although the Weierstrass conditions are attractive because of their sim-

plicity, we can run into trouble when attempting to apply them to certain

functionals. This happens, for example, with the problem of minimizing∫ 3/2

0

y

(y′)2
dx, y(0) = 1, y(3/2) = 1/4.

The difficulty is related to the fact that the family of extremals has a so-

called envelope.

Our treatment of sufficient conditions for the problem of minimum has

been intentionally brief. We have formulated a couple of sets of such condi-

tions; in fact, however, these are seldom used by practitioners. Rather, nec-

essary conditions are usually applied to obtain extremals, and then various

other methods are employed in place of sufficient conditions. For example,

if a functional has a unique minimum residing in a class of functions, and

if a unique extremal is found for the problem, then the desired minimum

must be reached on the extremal found. If several extremals qualify as can-

didates for the minimum, it is often possible to test each one by calculating

the corresponding values taken by the functional. The true minimum may

then be identified and selected. Hence sufficient conditions may be viewed

as largely of theoretical interest.

1.15 Exercises

1.1 Each functional below has the form (1.33). Write out the Euler equation
and the natural boundary conditions,

fy − d

dx
fy′ = 0 in (a, b), fy′

∣∣
x=a

= 0, fy′
∣∣
x=b

= 0,

given in Theorem 1.19.

(a)

∫ 1

0

√
1 + y′2(x) + y2(x) dx.

(b)

∫ 1

−1

[
y′2(x) + (1 + x2) y2(x)

]
dx.

(c)

∫ 3

1

[
1

2
y′2(x)− (1 + 2x2) y2(x)

]
dx.
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(d)

∫ b

a

[
7y′2(x)− (1 + x2) y2(x)

]
dx, a < b.

(e)

∫ b

a

[
y′2(x) + (1 + x6) y2(x)

]
dx+ y(a)2, a < b.

(f)

∫ 3

1

[
xy′2(x) + (x2 − 9) y2(x)

]
dx+ 5y2(1) + y2(3).

(g)

∫ b

a

[
5y′

2
(x) +

√
x− a y2(x)

]
dx+ y(a)2, 0 ≤ a < b.

(h)

∫ 4

1

[
y′2(x) + x2y2(x)

]
dx+ y2(2).

(i)

∫ b

a

[
y′2(x) + xy2(x)

]
dx+ y(c), a < c < b.

(j)

∫ π

0

[
3y′2(x)− 2y4(x)

]
dx+

[
y(π)− y(0)

]2
.

(k)

∫ π

0

[
yy′2(x)− cos(y(x))

]
dx+

[
y(π)]2.

(l)

∫ 1

0

[
(y′2(x)− 1)2 + y2(x)

]
dx.

1.2 For each functional below, write out the Euler–Lagrange equation (1.68) and
the natural boundary conditions given on page 40.

(a)

∫ 1

0

[
y′′2(x) + 2y2(x)

]
dx.

(b)

∫ 1

0

[
y′′2(x) + 2y′2(x)

]
dx.

(c)

∫ 1

0

[
y′′2(x) + y′2(x) + y2(x)

]
dx.

(d)

∫ 1

0

[
y′′′2(x)− y′′2(x) + 2(1− x2)y2(x)

]
dx.

(e)

∫ b

a

[
y′′′′2(x)− y′2(x) + 2y(x)

]
dx, a < b.

1.3 The following functionals have the form (1.74). Write out the Euler equations
and the natural boundary conditions given in Theorems 1.26 and 1.27:

fu −
(
dfux

dx
+
dfuy

dy

)
= 0 in S,

(
fuxnx + fuyny

) ∣∣∣∣
∂S

= 0.
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(a)

∫ b

a

∫ d

c

[
(ux)

2 + 2(uy)
2 + 3u2 − 2u

]
dx dy, a < b, c < d.

(b)

∫ b

a

∫ d

c

[
(ux)

2 + (uy)
2 + u2

]
dx dy +

∫ b

a

u2(x, c) dx, a < b, c < d.

(c)

∫ b

a

∫ d

c

[
(ux)

2 + (uy)
2 − u2

]
dx dy +

∫ d

c

u2(b, y) dy, a < b, c < d.

(d)

∫ b

a

∫ d

c

[
(ux)

2 − (uy)
2 + 2u

]
dx dy, a < b, c < d.

(e)

∫ b

a

∫ d

c

[
(ux)

n + (uy)
n] dx dy, a < b, c < d, n �= 1.

(f)

∫ b

a

∫ d

c

[
sin(ux) + sin(uy)

]
dx dy, a < b, c < d.

(g)

∫ b

a

∫ d

c

[
2− cos(ux)− cos(uy)

]
dx dy, a < b, c < d.

(h)

∫ 1

0

∫ 1

0

√
1 + (ux)2 + (uy)2 dx dy.

(i)

∫ 1

0

∫ 1

0

(p(ux) + q(uy)) dx dy.

(j)

∫ 1

0

∫ 1

0

(
1 + (ux)

2 + (uy)
2)n dx dy, n > 0.

1.4 In the xy-plane, find the smooth curve between (a, y0) and (b, y1) which by
revolution about the x-axis generates the surface of least area.

1.5 The brachistochrone problem is a famous classical problem in which one must
find the equation of the plane curve down which a particle would slide from one
given point to another in the least possible time when acted upon by gravity
alone. Show that the required curve is a portion of an ordinary cycloid.

1.6 Show that if f in the simplest functional depends explicitly on y′ only, then
the extremals are straight lines.

1.7 During the time interval [0, T ] a particle having mass m is required to move
along a straight line from the position x(0) = x0 to the position x(T ) = x1. De-
termine the extremal for the problem of minimizing the particle’s average kinetic
energy. Explain your result physically.

1.8 Apply Ritz’s method with basis functions of the form ϕn(x) = x2(1− x)2xk

to minimize the functional∫ 1

0

{(y′′)2 + [1 + 0.1 sin x](y′)2 + [1 + 0.1 cos(2x)]y2 − 2 sin(2x)y}dx.
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The boundary conditions for the problem are y(0) = y′(0) = y′(1) = 0, y(1) = 1.

1.9 (a) Consider the problem of minimum for the simplest functional (1.20) with
boundary condition y(a) + y(b) = 1. Find a supplementary natural boundary
condition for this case. (b) Repeat for a condition of the more general form
ψ(y(a), y(b)) = 0 where ψ = ψ(α, β) is a given function of two variables.

1.10 Find the equation of the plane curve down which a particle would slide
from one given point (a, y0) to cross the vertical line x = b in the least possible
time when acted upon by gravity alone.

1.11 Find the smooth curve of least length between two points on the surface of
the cylinder of radius a.

1.12 For a functional of the form

F2(y) =

∫ b

a

f(x, y, y′, y′′) dx,

find the Ritz system of equations corresponding to (1.50).

1.13 Find the first variation of the functional of the form

F (y) =

∫ x1

x0

f(x, y, y′, y′′) dx (1.166)

where the endpoints x0 and x1 can move.

1.14 For problems of beam equilibrium posed as minimum energy problems,
we know the extremals are given by continuous functions having continuous first
derivatives; the second derivatives are continuous except at points where the
beam parameters have jumps or point loads are applied. With this in mind,
consider the extremals of the functional (1.166) that are continuous on (a, b), have
continuous first derivatives, and have continuous second derivatives everywhere
except at x = c where y′′ can have a jump. Find the differential equations for the
extremals, the endpoint conditions, and an analogue of the Weierstrass–Erdmann
conditions at point c.

1.15 What happens to the equations defining a “broken” extremal of the func-
tional of Exercise 1.14 if the position c is known and fixed?

1.16 Consider the equilibrium problem for a plate when given forces f act on
the edge. It is described as the minimization problem for the functional

F (w) =
D

2

∫∫
S

[w2
xx + w2

yy + 2νwxxwyy + 2(1− ν)w2
xy] dx dy

−
∫∫

S

Fw dxdy −
∮
∂S

fw ds.

What is the form of the Euler equation? What are the natural boundary condi-
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tions for a minimizer?

1.17 Suppose a plate consists of two parts, with different constant rigidities D1

and D2, that join along a line Γ of the midplane (Fig. 1.5). Write out the con-
ditions on the border line assuming the deflection w and its first derivatives are
continuous over the whole domain. Note that these conditions have the same na-
ture as the natural boundary conditions. They have a clear mechanical meaning.

S

Γ

Γ

Γ
Γ

+
-

( ).
( ).

Fig. 1.5 Left: a compound plate. Right: calculation of one-sided limits.

1.18 Find the Euler equation and the natural boundary conditions for the func-
tional F (u) = E(u)−A(u), where

E(u) =
1

2

∫∫
S

(u2
x +u2

y) dx dy+
1

2

∫
∂S

αu2
s ds, A(u) =

∫∫
S

fu dx dy+

∫
∂S

guds.

Assume f is a given function on S, and g and α are given functions on the
boundary ∂S of S.

1.19 Show that E(u) from Problem 1.18 is unbounded from below if α < 0 on
any portion of ∂S.
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Chapter 2

Applications of the Calculus of
Variations in Mechanics

2.1 Elementary Problems for Elastic Structures

Now we consider some elementary problems in elasticity from the stand-

point of the calculus of variations. In textbooks on the strength of materi-

als, such problems are solved by elementary methods. Nonetheless, points

of confusion often remain — typically in the problem setups. Our goal is

to analyze proper variational setups and to show how these provide addi-

tional natural conditions describing the action of loads on the boundary.

Along the way, we apply powerful variational methods to several interesting

mechanics problems.

The structures considered in this section contain rods, beams, and

springs connected at certain angles. The first question concerns the model

to be employed for each structural element. The answer must come from

engineering experience rather than pure mathematics. Model selection will

provide a set of variables describing each structural element. Normally

these sets are independent but must satisfy interrelationships along bound-

aries between the individual models. The length parameter along a beam is

usually denoted by the same letter (such as x, s, or t) for all the elements.

The displacement variables are denoted by different letters or by indices.

The general plan for posing minimization-type setups for such equilib-

rium problems involves the following steps.

(1) Establish notation for all variables in the structural description.

(2) Construct the strain energy functional W , which is the sum of the

strain energies of all structural elements (rods, beams, cables, springs)

described in local coordinates.

(3) Construct the work functional A for the external load over general

99
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displacements.

(4) Write down the total potential energy functional E =W −A needed to

pose the minimization problem.

To this list we should add

(5) Account for any geometrical boundary restrictions. These should be

evident from a sketch of the structure proposed in the problem.

The leftmost portion of Fig. 2.1 indicates the only type of geometric restric-

tion for a rod; this is rigid clamping, expressed as u|A = 0 (or as u|A = c

for a given constant c). For a beam, the same sketch implies that two con-

A B

B B

1

2 3

Fig. 2.1 Rigid clamping of rods and beams (A); hinged clamping (B1–B3).

ditions should be posed at A: w = 0 and w′ = 0 (or possibly some given

nonzero values). A beam can also be subjected to hinged supports as indi-

cated in the rest of the figure. Note that the points Bk may be endpoints

or intermediate points of the beam. A hinged connection restricts the dis-

placement at a point (e.g., w = 0) but not the angle of rotation there (i.e.,

it does not restrict w′). We must also

(6) Consider compatibility restrictions, arising as mutual constraints on the

displacements or rotation angles at points of coupling between struc-

tural elements.

Typical of these are rigid clamping. In the case of coupled beams (Fig. 2.2,

left), both the displacement vectors of the coupled points and the rotation

angles must be the same (hence, in the simple beam model, the values

of w′ must agree at the point of coupling). In the case of hinged beams

(Fig. 2.2, right) the displacement vectors are equal but the angles of rotation

(i.e., the values of w′) are independent. Consideration of other modes of

coupling are left to the exercises; they are usually clear from inspection of

a diagram. For beams coupled under an angle, the equilibrium equations

contain only lateral displacements as unknown functions; despite this fact,

the conditions at the joint contain the full displacement vectors of the
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A B

Fig. 2.2 Rigid joint of beams (A); hinged joint (B).

elements. Because the coordinate system used in the strength of materials

is opposite that used in an ordinary calculus textbook, we will present the

transformation formulas for the displacement vectors needed to formulate

geometric compatibility conditions.

The coordinate unit vector i lies along the midline of a beam in the di-

rection of increasing length coordinate x, and the unit vector j is orthogonal

to i with the orientation shown in Fig. 2.3. For another beam, we introduce

α

1

i

j

i

j
1

Fig. 2.3 Transformation of coordinate bases.

the respective unit basis vectors i1 and j1. The angle α between i and i1 is

positive if the rotation from i to i1 is counterclockwise. The displacement

vector u takes the form

u = ui+ wj = u1i1 + w1j1.

Dot multiplication yields

u1 = u(i · i1) + w(j · i1), w1 = u(i · j1) + w(j · j1),
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and thus

u1 = u cosα− w sinα,

w1 = u sinα+ w cosα. (2.1)

When using these transformation formulas, one must remember that in the

beam model the longitudinal displacement is uniform along the beam. In

the rod model, the displacement normal to the rod axis takes the “rigid

body motion” form w = a+ bx.

We denote Young’s modulus by E, the moment of inertia of the beam

cross section by I, the cross-sectional area by S, and the length of the beam

(or rod) by a.

Example 2.1. Consider the equilibrium of a cantilever beam of length a,

under load q(x), clamped at the left end and coupled with a spring at the

right end (Fig. 2.4). The beam parameters are E and I(x), and the spring

coefficient is k. (1) Write down the total potential energy of the system,

along with the boundary and compatibility equations. (2) Write down the

functional that should be minimized in order to obtain the equilibrium equa-

tions and natural boundary conditions. (3) Applying the general procedure

of the calculus of variations, derive the differential equation of equilibrium

and the natural boundary conditions.

q x( )

y

Fig. 2.4 System consisting of coupled beam and spring under load q(x).

Solution. (1) Let y(x) be the normal deflection of point x of the beam.
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The system carries total potential energy

E(y) = 1

2

∫ a

0

EI(y′′)2 dx−
∫ a

0

qy dx+
1

2
kz2,

where z is the contraction suffered by the spring. The conditions at the left

end are y(0) = 0 and y′(0) = 0. The compatibility condition between the

beam and spring at x = a is z = y(a).

(2) The required functional is

E(y) = 1

2

∫ a

0

EI(y′′)2 dx−
∫ a

0

qy dx+
1

2
ky2(a).

(3) The equilibrium equation in integral form (δE = 0) is∫ a

0

EIy′′ϕ′′ dx−
∫ a

0

qϕ dx+ ky(a)ϕ(a) = 0.

Two integrations by parts in the first integral yield∫ a

0

(E(Iy′′)′′ − q)ϕdx + EI(a)y′′(a)ϕ′(a)

− E(Iy′′)′
∣∣
x=a

ϕ(a) + ky(a)ϕ(a) = 0,

since y(0) = 0 = y′(0). Selecting the set of admissible ϕ such that ϕ(a) =

0 = ϕ′(a) and using Lemma 1.8, we obtain the differential equation of

equilibrium:

E(Iy′′)′′ − q = 0 on (0, a).

Then, returning to the integral equation of equilibrium, we get

EI(a)y′′(a)ϕ′(a)− E(I(x)y′′(x))′
∣∣
x=a

ϕ(a) + ky(a)ϕ(a) = 0

for all admissible ϕ. This yields

EI(a)y′′(a) = 0, E(I(x)y′′(x))′
∣∣
x=a

= ky(a),

for the natural boundary conditions. �

Example 2.2. Two systems of coupled beams often encountered in the

strength of materials are shown in Fig. 2.5. In the left portion of the figure

the joints are hinged; in the right portion the beams are clamped. For

both systems, construct (1) the models, (2) the energy functional to mini-

mize, and (3) the kinematic restrictions. Finally, (4) derive the equilibrium

differential equations and the natural boundary conditions.
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F x( )

�
A

B

C
F x( )

1

2

P

F x( )

�
A

B

C
F x( )

1

2

P

Fig. 2.5 Two beam systems.

Solution. The structural elements of the first system can be modeled as

rods because they are in pure tension or compression. The elements of

the second system, in contrast, are subject to bending as well. Hence we

should consider them as rods in the axial direction and as the beams in the

transverse direction.

(a) The system of coupled rods (left portion of the figure). The rods are

described by parameters E and S. Suppose rod AC has length a, and

denote its displacement components by (u,w) where u is the longitudinal

component. The displacement components of the inclined rod BC are

(u1, w1). Let the projections of the force P at the hinge onto the unit vectors

i and j (recall Fig. 2.3) be P1 and P2, respectively. The total potential

energy functional is

EL =
1

2

∫ a

0

ESu′2(x) dx −
∫ a

0

F2(x)u(x) dx +
1

2

∫ a

0

ESu′2(x) dx

−
∫ a/ cosα

0

F1(x)u(x) dx − P1u(a)− P2w(a).

Note the presence of the normal displacement w. The geometrical boundary

conditions are u(0) = 0 and u1(0) = 0. Equations (2.1) apply at point C

except that we must replace α by −α since the rotation from i to i1 is

clockwise.

Next we derive the natural boundary conditions. The equilibrium equa-

tion, that the first variation of EL must vanish, is∫ a

0

ESu′(x)ϕ′(x) dx −
∫ a/ cosα

0

F2(x)ϕ(x) dx +

∫ a

0

ESu′(x)ϕ1(x) dx

−
∫ a/ cosα

0

F1(x)ϕ1(x) dx − P1ϕ(a)− P2ψ(a) = 0, (2.2)
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where ϕ and ϕ1 are independent admissible longitudinal displacements

and ψ(a) is the admissible normal (along j) displacement at C. Taking

ϕ1(x) = 0 and an arbitrary ϕ that vanishes at the endpoints, we obtain the

equilibrium equation for rod AC. Then, taking ϕ = 0 and ϕ1 �= 0, we get

another equilibrium equation:

ESu′′(x) + F2(x) = 0 on (0, a),

ESu′′1(x) + F1(x) = 0 on
(
0,

a

cosα

)
. (2.3)

Returning to (2.2), we have

ESu′ϕ
∣∣
C
+ ESu′1ϕ1

∣∣
C
− P1ϕ

∣∣
C
− P2ψ

∣∣
C
= 0. (2.4)

The displacement vector at point C must be the same for both rods. Hence,

by (2.1) (with α → −α) the admissible displacements must satisfy

ϕ1

∣∣
C
= ϕ

∣∣
C
cosα+ ψ

∣∣
C
sinα,

ψ1

∣∣
C
= −ϕ∣∣

C
sinα+ ψ

∣∣
C
cosα (2.5)

(for this rod system we do not need the second transformation equation for

the normal displacement). Substitution into (2.4) gives

ESu′ϕ
∣∣
C
+ ESu′1(ϕ

∣∣
C
cosα+ ψ

∣∣
C
sinα)

∣∣
C
− P1ϕ

∣∣
C
− P2ψ

∣∣
C
= 0.

Using independence of ϕ|C and ψ|C we get two natural conditions

(ESu′ + ESu′1 cosα)
∣∣
C
= P1, ESu′1 sinα

∣∣
C
= P2,

that express equilibrium at C.

(b) The rod–beam system (right portion of the figure). To account for the

possibility of bending, we employ rod and beam models simultaneously.

The total potential energy functional now includes the energy of bending

for two beams:

ER = EL +
1

2

∫ a

0

EIw′′2(x) dx +
1

2

∫ a/ cosα

0

EIw′′
1
2
(x) dx.

The boundary conditions are

u(0) = w(0) = w′(0) = 0, u1(0) = w1(0) = w′
1(0) = 0.

The beam-type joint conditions at C now include (2.1), which in this case

become

u1 = u cosα+ w sinα,

w1 = −u sinα+ w cosα,
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as well as the condition

w′∣∣
C
= w′

1

∣∣
C

expressing the requirement that the rotation angles for the deformations

of both beams must match at C. To derive the natural conditions we will

need both of (2.5) along with

ψ′∣∣
C
= ψ′

1

∣∣
C
. (2.6)

The rest of the derivation parallels that for part (a), modifications be-

ing required to treat the bending energy terms. We begin by writing

δER = 0. Then, selecting from the admissible virtual displacement func-

tions ϕ, ϕ1, ψ, ψ1 that vanish on one of the beams, we derive four equations.

Two of these are (2.3) for the displacements along the beams; the other two

are for beam bending:

EIw(4) = 0 in (0, a),

EIw
(4)
1 = 0 in

(
0,

a

cosα

)
.

Hence δER = 0 yields

ESu′ϕ
∣∣
C
+ ESu′1ϕ1

∣∣
C
− P1ϕ

∣∣
C
− P2ψ

∣∣
C

+ EIw′′ψ′∣∣
C
− EIw′′′ψ

∣∣
C
+ EIw′′

1ψ
′
1

∣∣
C
− EIw′′′

1 ψ1

∣∣
C
= 0.

Using (2.5) and (2.6) and changing the set ϕ1, ψ1, ψ
′
1 to ϕ, ψ, ψ′ at point

C, we get an equation that contains only ϕ, ψ, ψ′ at C. As the values

of these variables at C are arbitrary and independent, their coefficients

must vanish. So we obtain three relations at C for u,w, u1, w1, which are

the natural boundary conditions. These differ from the natural boundary

conditions in part (a) but are still the equations of force balance of the

section at C. Two of the equations contain all the terms seen in part (a);

the third expresses the vanishing of the resultant couple at C. The details

are left to the reader. �

Example 2.3. An elastic system consists of four identical beams rigidly

clamped together (Fig. 2.6). Each beam has length a. Construct the model,

write out the total potential energy functional and kinematic restrictions,

and derive the equilibrium equations and natural boundary conditions.

Solution. Use the model of rigidly clamped elastic beams. Denote the

deflection functions for the beams as follows: w1 for AB, w2 for BC, w3 for

BE, and w4 for CD. For each beam, use an independent length parameter
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q x( )

q x( )

1

2

P

A
B

C

DE

Fig. 2.6 Four beam system under load.

whose zero reference lies at the initial point of the beam. The total potential

energy functional is

E =

4∑
i=1

1

2

∫ a

0

EIw′′
i
2
(x) dx −

∫ a

0

q1(x)w1(x) dx

−
∫ a

0

q1(x− a)w2(x) dx −
∫ a

0

q2(x)w4(x) dx + Pw3(a).

Here we have considered that q1 initially was a given function on the interval

[0, 2a]. The kinematic boundary conditions are

w1(0) = 0 = w′
1(0), w3(a) = 0, w1(a) = 0 = w2(0), w2(a) = 0,

w3(0) = 0, w4(a) = 0.

These take into account that the beams do not alter their lengths in the tan-

gential directions. The joint constraints that define the additional natural

boundary conditions are

w′
1(a) = w′

2(0) = w′
3(0), w′

2(a) = w′
4(0).

These define three additional natural restrictions; moreover, two natural

restrictions also arise at the points E and D. A solution of the three fourth-

order beam equilibrium equations will involve twelve integration constants.

The total number of conditions at the points A,B,C,D is also twelve. �
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2.2 Some Extremal Principles of Mechanics

Many physical — in particular, mechanical — problems drove the develop-

ment of the calculus of variations. So it is not surprising that continuum

mechanics and structural mechanics contain a host of variational principles.

In this section we will consider some variational principles in the theory of

elasticity and in linear plate theory, without penetrating too deeply into

the mechanical details.

Elasticity

Describing small deformations of bodies under load, linear elasticity rep-

resents an extension of the ideas of § 2.1. But linear elasticity is only a

first step toward describing spatial bodies made from various materials,

elastic and non-elastic. Mechanicists employ more complex models related

to heat transfer, viscous and plastic materials, problems of deterioration

under load, etc.

Let us consider the mathematical formulation of boundary value prob-

lems in classical linear elasticity. (Henceforth the word “linear” will be

omitted but understood.) These problems appear in many textbooks, e.g.,
[5; 15]. In Cartesian coordinates, the equations of motion are given by

σij,i + fj = ρuj,tt i, j = 1, 2, 3, (2.7)

where σij are the components of the stress tensor, ui are the components

of the displacement vector u = (u1, u2, u3), fi are the components of the

volume force vector f = (f1, f2, f3), and ρ is the material density. The

stress components σij describe the force interactions between portions of an

elastic body. The following notation will be used for partial differentiation

with respect to the spatial coordinates xi and time t:

(·),i = ∂(·)
∂xi

, (·),t = ∂(·)
∂t

.

In this chapter we modify our notation for partial derivatives in order to use

Einstein’s convention for repeated subscripts i, j, k, l,m, n. This will permit

more concise expressions. Because the variable t is reserved for time and the

subscripts x, y for partial derivatives with respect to the space variables, no

summation over x, y, t is implied even when the symbols are repeated. For
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example, equation (2.7) is written instead of the more cumbersome form

3∑
i=1

∂σij
∂xi

+ fj = ρ
∂2uj
∂t2

, j = 1, 2, 3.

In elasticity it is shown that the matrix [σij ] is symmetric so that σij = σji.

The Cartesian components εsk of the strain tensor are given by

εsk =
1

2
(us,k + uk,s). (2.8)

By definition, the matrix [εsk] is also symmetric. The stress and strain ten-

sors are related by the generalized version of Hooke’s law. For an isotropic

body this takes the form

σij = λεkkδij + 2µεij , (2.9)

where µ and λ are Lamé’s constants. Relation (2.9) is an extension of

Hooke’s law for the rod: σ = Eε. Young’s modulus E may be obtained

from Lamé’s constants as

E =
µ(3λ+ 2µ)

λ+ µ
.

A more general form of Hooke’s law for an anisotropic body is

σij = Cijmnεmn

where the elastic moduli Cijmn (the components of a tensor of elastic mod-

uli) satisfy

Cijmn = Cjimn = Cijnm = Cmnij .

As a result, the set Cijmn consists of no more than 21 independent con-

stants. For an isotropic body, the number of independent elastic constants

is two; they can be chosen as the Lamé constants µ and λ so that

Cijmn = λδijδmn + µ(δimδjn + δinδjm),

where δij is Kronecker’s symbol.

Substitution of (2.9) and (2.8) into (2.7) yields the equations of motion

in terms of the displacements:

(λ+ µ)ui,ki + µuk,ii + ρfk = ρuk,tt i, k = 1, 2, 3. (2.10)

For equilibrium problems, the equations of motion reduce to

σij,i + fj = 0, j = 1, 2, 3 (2.11)
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or, in terms of displacements,

(λ+ µ)ui,ki + µuk,ii + fk = 0, k = 1, 2, 3. (2.12)

Two types of boundary conditions occur in the formulation of boundary

value problems in elasticity. Suppose the boundary S = ∂V of a body

consists of two nonoverlapping portions S1 and S2 so that S = S1 ∪S2 and

S1 ∩S2 = ∅. If the displacement vector is given on S1, we have a boundary

condition of the form

ui
∣∣
S1

= u0i , i = 1, 2, 3, (2.13)

where u0i is a given function. If external forces (p1, p2, p3) act over S2, the

condition is

niσij
∣∣
S2

= pj , j = 1, 2, 3, (2.14)

where the pj are given functions and ni are the components of the outward

unit normal to S. A mixed boundary value problem would involve both

types of conditions. On the other hand, it is possible for a condition of the

form (2.13) to prevail over all of S, or for a condition of the form (2.14) to

prevail over all of S. The dynamic problems of elasticity also require initial

conditions of the form

ui
∣∣
t=0

= ûi, ui,t
∣∣
t=0

= v̂i, i = 1, 2, 3.

In elasticity, the strain energy function W is introduced as a quadratic

function of the εmn:

W (εmn) =
1

2
εijCijmnεmn.

For an isotropic material this reduces to

W (εmn) =
1

2
λε2ii + µεijεij . (2.15)

From thermodynamic considerations it follows that W is positive definite:

W (εmn) > 0 whenever εmn �= 0. (2.16)

This implies the following inequalities for the elastic moduli:

3λ+ 2µ > 0, µ > 0. (2.17)

It can be shown that W is the potential for stresses:

σij =W,εij .
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The existence of W allows us to formulate Lagrange’s variational principle

for elasticity:

Theorem 2.4. A stationary point u = (u1, u2, u3) of the total potential

energy functional

E(u) =
∫∫∫

V

W (εmn) dV −
∫∫∫

V

fiui dV −
∫∫

S2

piui dS

on the set of admissible displacements subject to (2.13) satisfies the equilib-

rium equations (2.11) in the volume V and the boundary condition (2.14).

The converse also holds. This stationary point is the minimum of E.
Proof. Using the formula

δE =
d

dτ
E(u+ τϕ)

∣∣
τ=0

, ϕ = (ϕ1, ϕ2, ϕ3),

let us find the first variation of E :
δE =

∫∫∫
V

1

2
W,εij (ϕi,j + ϕj,i) dV −

∫∫∫
V

fiϕi dV −
∫∫

S2

piϕi dS

=

∫∫∫
V

W,εijϕj,i dV −
∫∫∫

V

fiϕi dV −
∫∫

S2

piϕi dS

=

∫∫∫
V

σijϕj,i dV −
∫∫∫

V

fiϕi dV −
∫∫

S2

piϕi dS.

We show that if δE = 0 for all admissible ϕi, then (2.11) and (2.14) hold.

The Gauss–Ostrogradski formula gives

0 = δE =

∫∫∫
V

σijϕj,i dV −
∫∫∫

V

fiϕi dV −
∫∫

S2

piϕi dS

= −
∫∫∫

V

(σij,i + fj)ϕj dV +

∫∫
S1

nkσkjϕj dS

+

∫∫
S2

(nkσkj − pj)ϕj dS.

Recall that the ϕi satisfy the homogeneous version of (2.13), i.e., ϕi|S1 = 0.

From the arbitrariness of ϕi, a two-step derivation (first for the volume

integrals where we take ϕ = 0 on S2, then for the surface integrals) yields

the required equations

σij,i + fj = 0 in V, nkσkj
∣∣
S2

= pj.

Conversely, on a solution u of the equilibrium problem we have δE = 0

for any admissible ϕi that vanishes on S1. Indeed, multiply the ith equation
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of (2.11) by ϕi, add the results, then integrate over V . Using a similar

formula obtained by multiplying the ith equation of (2.14) by ϕi, summing,

and integrating over S2, we get

0 =

∫∫∫
V

(σki,k + fi)ϕi dV −
∫∫

S2

(nkσki − pi)ϕi dS

= −
∫∫∫

V

σkjϕj,k dV +

∫∫∫
V

fiϕi dV

+

∫∫
S

nkσkiϕi dS −
∫∫

S2

(nkσki − pi)ϕi dS

= −
∫∫∫

V

σkjϕj,k dV +

∫∫∫
V

fiϕi dV +

∫∫
S2

piϕi dS

= −δE .
Hence a stationary point of E is a solution to the equilibrium problem

for the elastic body, and vice versa.

Finally we show that E attains its minimum at the stationary point.

The proof uses the fact that W is a positive definite quadratic form in

the strain components. Let ũ = (ũ1, ũ2, ũ3) be another admissible vector

function satisfying (2.13) and consider the difference

∆E = E(ũ)− E(u).
We get

∆E =

∫∫∫
V

W (ε̃mn) dV −
∫∫∫

V

fiũi dV −
∫∫

S2

piũi dS

−
∫∫∫

V

W (εmn) dV +

∫∫∫
V

fiui dV +

∫∫
S2

piui dS

=

∫∫∫
V

[W (ε̃mn)−W (εmn)] dV

−
∫∫∫

V

fi(ũi − ui) dV −
∫∫

S2

pi(ũi − ui) dS.

Let ϕi = ũi − ui. Because ũi and ui coincide on S1, we have ϕi|S1 = 0.

Next,

2 [W (ε̃mn)−W (εmn)] = λε̃2ii + 2µε̃ij ε̃ij − λε2ii − 2µεijεij

= λ˜̃ε2ii + 2µ˜̃εij ˜̃εij + 2λ˜̃εiiε̃ii + 4µ˜̃εij ε̃ij

= 2W (˜̃εmn) + 2λ˜̃εiiε̃ii + 4µ˜̃εij ε̃ij
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where

ε̃mn =
1

2
(ũm,n + ũn,m), ˜̃εmn =

1

2
(ϕm,n + ϕn,m).

Therefore

∆E =

∫∫∫
V

W (˜̃εmn) dV +

∫∫∫
V

(λεii ˜̃εii + 2µεij ˜̃εij) dV

−
∫∫∫

V

fiϕi dV −
∫∫

S2

piϕi dS

=

∫∫∫
V

W (˜̃εmn) dV +

∫∫∫
V

σijϕj,i dV

−
∫∫∫

V

fiϕi dV −
∫∫

S2

piϕi dS

=

∫∫∫
V

W (˜̃εmn) dV + δE .

Because u = (u1, u2, u3) is a solution, the first variation δE = 0 for any

admissible ϕ and we have

∆E =

∫∫∫
V

W (˜̃εmn) dV. (2.18)

The positive definiteness of W means that ∆E ≥ 0 for any admissible ũi.

Hence the set of ui are a global minimizer of E . �
This proof also establishes the virtual work principle:

Theorem 2.5. Sufficiently smooth functions ui that vanish on S1 are a

solution to the boundary value problem (2.11), (2.13), (2.14), if and only if

the equation∫∫∫
V

σijϕj,i dV −
∫∫∫

V

fiϕi dV −
∫∫

S2

piϕi dS = 0, (2.19)

with σij given by (2.9), holds for any sufficiently smooth functions ϕi that

also vanish on ∂S1.

The virtual work principle underlies the notion of weak solutions in

elasticity (Chapter 5). It is more general than Lagrange’s principle as it

can be extended to nonconservative systems for which total potential energy

functionals do not exist.

Hamilton’s least action principle is the basis for variational formulations

in dynamics. Let the kinetic energy density of a body be given by

K =
1

2
ρ(u21,t + u22,t + u23,t).
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In this case we say that a function is admissible if it (1) vanishes on S1

and (2) takes the values of a solution to the dynamical problem at time

instants t1 and t2. This means that we consider the admissible variations

ϕi(x1, x2, x3, t) of the solution to the problem such that ϕi
∣∣
S1

= 0 and

ϕi
∣∣
t=t1

= 0 = ϕi
∣∣
t=t2

. Hamilton’s principle is formulated as follows.

Theorem 2.6. A solution to a boundary value problem in the dynamics

of elastic solids (i.e., a solution to (2.7), (2.13), and (2.14)) is a stationary

point of the action functional

EA(u) =
∫ t2

t1

(∫∫∫
V

(K −W ) dV +

∫∫∫
V

fiui dV +

∫∫
S2

piui dS

)
dt

in the class of admissible functions that satisfy (2.13) and take prescribed

values coincident with the solution at time instants t1 and t2. Conversely,

a stationary point of EA in the class of admissible functions is a solution

to the dynamical boundary value problem for an elastic body.

Proof. The first variation of EA is

δEA =

∫ t2

t1

(∫∫∫
V

(ρui,tϕi,t − σijϕj,i + fiϕi) dV +

∫∫
S2

piϕi dS

)
dt.

Integrating by parts, we have

δEA =

∫ t2

t1

(∫∫∫
V

(−ρui,ttϕi + σij,iϕj + fiϕi) dV −
∫∫

S

nkσkjϕj dS

+

∫∫
S2

piϕi dS

)
dt+

∫∫∫
V

ρui,tϕi dV

∣∣∣∣t=t2
t=t1

.

But ϕi
∣∣
S1

= 0 and ϕi
∣∣
t=t1

= 0 = ϕi
∣∣
t=t2

, so

δEA =

∫ t2

t1

(∫∫∫
V

(−ρuj,tt + σij,i + fj)ϕj dV

−
∫∫

S

(nkσkj + pj)ϕj dS

)
dt.

Hence if δEA = 0 for all admissible ϕi, the equations of motion (2.7) and

the boundary conditions (2.14) follow.

Conversely, if u is a solution to the dynamic problem, the first variation

of EA is zero. The proof is similar to the proof of the corresponding part of

Lagrange’s principle. The difference lies in the sets of admissible functions

and in the domain of integration, which for Hamilton’s principle is V ×
[t1, t2]. The details are left to the reader. �
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We should note that Hamilton’s principle is not minimal; it yields sta-

tionary points of the action functional.

Other variational principles in elasticity bear names such as Castigliano,

Reissner, Washizu, Tonti, and Hashin-Strikman. Some are minimal or max-

imal like Lagrange’s principle; others are stationary like Hamilton’s prin-

ciple. In addition to their roles in proving existence theorems, they form

the basis for practical engineering approaches such as the finite element

method. Moreover, extensions of variational methods turned out to be use-

ful in the theory of more complex problems in nonlinear elasticity, plasticity,

viscoelasticity, and so on.

Reissner–Mindlin plate theory

In Chapter 1 we examined the plate equations in the framework of Kirch-

hoff’s theory. We used the energy functional (1.94) to derive the Euler–

Lagrange equations, which are the equilibrium equations for the plate, and

the natural boundary conditions (cf., equations (1.94)–(1.103) and Exer-

cise 1.16). These results are revisited later in this section. Now we consider

the more general plate theory of Reissner and Mindlin, also known as shear-

deformable plate theory of first order.

In Reissner–Mindlin plate theory, the bending of an elastic plate is de-

scribed by the equations

M11,1 +M21,2 −Q1 = ρJϑ1,tt, (2.20)

M12,1 +M22,2 −Q2 = ρJϑ2,tt, (2.21)

Q1,1 +Q2,2 + p = ρhw,tt, (2.22)

where the Mαβ are the bending and twisting moments (α, β = 1, 2), the Qα
are the transverse shear forces, the ϑα are the averaged rotations of fibers

normal to the plate midsurface before deformation, w is the deflection, ρ is

the density, J is the moment of inertia, h is the plate thickness, and p is the

transverse load. We recall that the partial derivatives of the components

of vector functions are denoted by (·),α = ∂(·)/∂xα, where x1 = x and

x2 = y are Cartesian coordinates in the midplane. Note that Greek letters

are used for the subscripts. In shell theory, Greek indices usually range

over the values 1 and 2. The Latin indices typically employed in the three-

dimensional theory range over the values 1, 2, and 3.

The constitutive equations — i.e., the relations between the bending

and twisting moments, the transverse shear forces, and the surface strain
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measures — are given by

M11 = D(ϑ1,1 + νϑ2,2), M22 = D(ϑ2,2 + νϑ1,1), (2.23)

M12 =M21 =
D(1− ν)

2
(ϑ1,2 + ϑ2,1), (2.24)

Q1 = Γ(w,1 + ϑ1), Q2 = Γ(w,2 + ϑ2), (2.25)

D =
Eh3

12(1− ν2)
, Γ = kµh, (2.26)

where E is Young’s modulus, µ is the shear modulus, ν is Poisson’s ratio,

D is the bending stiffness, Γ is the transverse shear stiffness, and k is the

shear correction factor. For k, Reissner proposed k = 5/6 whereas Mindlin

took k = π2/12. Other values of k also appear in the literature.

In this theory, on the boundary contour ∂S or a portion ∂S1, kinematic

boundary conditions consist of given deflections and rotations:

w
∣∣
∂S1

= w0, ϑα
∣∣
∂S1

= ϑ0α. (2.27)

Static boundary conditions are

nαMαβ

∣∣
∂S2

=M0
β , Qαnα

∣∣
∂S2

= Q0
n. (2.28)

In (2.27)–(2.28), the quantities w0, θ0α, M
0
β , and Q

0
n are given functions of

the arc-length parameter s. The quantities n1 and n2 are the components

of the outward unit normal to ∂S.

In equilibrium, equations (2.20)–(2.22) reduce to

M11,1 +M21,2 −Q1 = 0, (2.29)

M12,1 +M22,2 −Q2 = 0, (2.30)

Q1,1 +Q2,2 + p = 0. (2.31)

Solving (2.29) and (2.30) for Q1 and Q2, and substituting these into (2.31),

we obtain

M11,11 + 2M12,12 +M22,22 + p = 0. (2.32)

The strain energy density for plate bending is

W (καβ , γα) =
1

2
[Mαβκαβ +Qαγα]

=
D

2

[
κ2
11 + κ2

22 + 2νκ11κ22 +
1− ν

2
(κ2

12 + 2κ12κ21 + κ2
21)

]

+
Γ

2
(γ21 + γ22),
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where καβ are the components of the bending tensor (or tensor of change

of curvature), and γα are the shear strain components defined by

καβ = ϑα,β , γα = w,α + ϑα.

It can be directly verified that

Mαβ =
∂W

∂καβ
, Qα =

∂W

∂γα
. (2.33)

In the Reissner–Mindlin plate theory, the kinetic energy density is

K =
ρh

2
(w,t)

2 +
ρJ

2

[
(ϑ2,t)

2 + (ϑ2,t)
2
]
.

Plate theory features variational principles similar to those in linear

elasticity. Lagrange’s variational principle is exhibited in the following the-

orem.

Theorem 2.7. A solution of boundary value problem (2.29)–(2.31), (2.27),

(2.28) is a stationary point of the energy functional

E(w, ϑ1, ϑ2) =
∫∫

S

W dS −
∫∫

S

pw dS −
∫
∂S2

(Q0
nw +M0

βϑβ) ds. (2.34)

Conversely, sufficiently smooth functions ϑα and w that constitute a sta-

tionary point of E in the class of all admissible functions (i.e., satisfying

the kinematic boundary conditions (2.27)), satisfy the equilibrium equations

(2.29)–(2.31) and boundary conditions (2.28). Moreover, at a stationary

point E takes its global minimum value.

Proof. If δE = 0 for all admissible variations, then (2.29)–(2.31) and

(2.28) hold. Indeed, let ϕ0, ϕ1, and ϕ2 be any three continuously differen-

tiable functions that vanish on ∂S1. Consider E(w+τϕ0, ϑ1+τϕ1, ϑ2+τϕ1)

and calculate its derivative with respect to τ at τ = 0. Using (2.33) and

integration by parts, we get

δE =
d

dτ
E(w + τϕ0, ϑ1 + τϕ1, ϑ2 + τϕ1)

∣∣∣∣
τ=0

=

∫∫
S

(Mαβϕβ,α +Qα(ϕ0,α + ϕα)) dS −
∫∫

S

pϕ0 dS

−
∫
∂S2

(Q0
nϕ0 +M0

βϕβ) ds

= −
∫∫

S

(Mαβ,α −Qβ)ϕβ + (Qα,α + p)ϕ0 dS

+

∫
∂S2

[
(nαQα −Q0

n)ϕ0 + (nαMαβ −M0
β)ϕβ

]
ds.
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Since ϕ0, ϕ1, ϕ2 are arbitrary, from δE = 0 it follows that (2.29)–(2.31) are

the Euler–Lagrange equations and (2.28) are the natural boundary condi-

tions for the energy functional E from the Reissner–Mindlin theory.

Conversely, let w and ϑα constitute a solution to the boundary value

problem (2.29)–(2.31), (2.27), (2.28). We show that the first variation of

E vanishes on this solution. Again let ϕ0, ϕ1, ϕ2 be any smooth functions

that vanish on ∂S1. Multiply (2.29) and (2.30) by ϕ1 and ϕ2, respectively;

multiply (2.31) by ϕ0. Then add the results and integrate over S. We

perform similar operations with the boundary conditions: multiply (2.28)1
by ϕβ and (2.28)2 by ϕ0, add the results, and integrate over ∂S2. We get

0 =

∫∫
S

(Mαβ,α −Qβ)ϕβ + (Qα,α + p)ϕ0 dS

−
∫
∂S2

[
(nαQα −Q0

n)ϕ0 + (nαMαβ −M0
β)ϕβ

]
ds

= −
∫∫

S

(Mαβϕβ,α − pϕ0 +Qα(ϕ0,α + ϕα)) dS

+

∫
∂S2

(Q0
nϕ0 +M0

βϕβ) ds

= −δE ,

which proves the assertion.

To show that a stationary point of E is its global minimum, we use the

positive definiteness of the quadratic form representing the strain energy

W . Let w and ϑα constitute a stationary point of E . Suppose w̃ and ϑ̃α
also satisfy (2.27). Consider the difference between the values of the strain

energy functional for these two sets:

∆E = E(w̃, ϑ̃α)− E(w, ϑα).

It can be shown that

∆E =

∫∫
S

W (∆καβ ,∆γα) dS,

where

∆καβ = ϑ̃α,β − ϑα,β, ∆γα = w̃,α + ϑ̃α − w,α − ϑα.

Hence E takes its global minimum value at w, ϑα. �

This proof also establishes the virtual work principle in plate theory:
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Theorem 2.8. Sufficiently smooth functions w, ϑα that vanish on ∂S1

constitute a solution of the boundary value problem (2.29)–(2.31), (2.27),

(2.28) if and only if the equation∫∫
S

(Mαβϕβ,α +Qαϕ0,α +Qαϕα − pϕ0) dS −
∫
∂S2

(Q0
nϕ0 +M0

βϕβ) ds = 0,

(2.35)

with Mαβ and Qα given by (2.23)–(2.25), holds for any sufficiently smooth

functions ϕ0, ϕ1, ϕ2 that also vanish on ∂S1.

Equation (2.35) forms the basis for various versions of the finite element

method in plate theory.

Hamilton’s variational principle holds for dynamic problems in plate

theory:

Theorem 2.9. A solution to the dynamical boundary value problem

(2.20)–(2.22), (2.27), (2.28) is a stationary point of the action functional

EA =

∫ t2

t1

(∫∫
S

(K −W ) dS +

∫∫
S

pw dS +

∫
∂S2

(Q0
nw +M0

βϑβ) ds

)
dt.

in the class of admissible functions (i.e., satisfying (2.27) and taking pre-

scribed values coincident with the solution at times t1 and t2). Conversely,

a stationary point of EA in the class of admissible functions is a solution of

the dynamical boundary value problem for the plate.

The proof mimics the proof of Hamilton’s principle in elasticity and is

left to the reader. As in elasticity, Hamilton’s principle for plates is not a

minimal principle; it is only a stationary principle.

Kirchhoff plate theory

The classical Kirchhoff theory is easily derived from the Reissner–Mindlin

theory. In the former, the rotations ϑα and the deflection w are related by

ϑ1 = −w,1, ϑ2 = −w,2. (2.36)

So in Kirchhoff theory, bending of the plate is described by one function:

the deflection w(x, y, t). This allows us to return to a simpler notation for

the partial derivatives of w. We shall write w,1 = wx, w,12 = wxy, etc. The

constitutive equations for the moments now take the form

M11 = −D(wxx + νwyy), M22 = −D(wyy + νwxx), (2.37)

M12 =M21 = −D(1− ν)wxy. (2.38)
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Equilibrium equation (2.32) reduces to an equation in w that we saw in

Chapter 1:

D∆w + p = 0. (2.39)

The strain energy functional for a Kirchhoff plate is (1.94):

E(w) =
∫∫

S

W dS −
∫∫

S

pw dS, (2.40)

W =
D

2

[
w2
xx + w2

yy + 2νwxxwyy + 2(1− ν)w2
xy

]
. (2.41)

To avoid awkward formulas we assumed here an absence of boundary loads,

i.e., Q0
n = M0

β = 0. See also the derivation of the natural boundary con-

ditions (1.102) and (1.103) in Chapter 1. In Kirchhoff’s plate theory, the

rotational inertia is usually neglected, so the kinetic energy becomes

K =
ρh

2
(wt)

2.

Hamilton’s variational principle reduces to finding stationary points of the

functional

EA(w) =
∫ t2

t1

(K −W + pw) dS dt

on the class of admissible functions w(x, y, t) that take prescribed values

at times t1 and t2. The main results of the Kirchhoff theory parallel the

corresponding theorems formulated above in the Reissner–Mindlin theory.

Detailed formulations and proofs are left to the reader.

Interaction of a plate with elastic beams

In engineering, plates are sometimes reinforced with elastic beams. Deduc-

tion of compatibility conditions for deformation of a plate-beam system is

not a trivial problem. Mathematically, we must seek compatibility equa-

tions for a system of partial differential equations for the plate and a system

of ordinary differential equations for the beams. Physically, it is important

to analyze the deformation and tension fields in the neighborhood of the

joints between the plate and the beams.

Here we will consider the variational deduction of the equilibrium equa-

tions for a plate connected with an elastic beam over a portion of its bound-

ary contour (Fig. 2.7). The approach is to represent the potential energy

functional as a sum of the energy functionals for the coupled plate and
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A

Fig. 2.7 Left: plate with part of its boundary contour supported by beam AB. Right:
detail of the beam support.

beam. Formulating kinematic compatibility conditions for the displace-

ments and rotations for the plate and the beam, we then derive static

compatibility conditions for the plate and the beam. These are the natural

boundary conditions for the energy functional.

To understand what is happening in this problem, we will treat a simpli-

fied problem that has its own significance. Consider a rectangular plate of

dimensions a and b, supported by two straight beams as shown in Fig. 2.8.

Suppose the edge AD is rigidly clamped and the edge BC is free from kine-

matic restrictions. The beams are clamped along AB and CD. Physically,

bending of the plate implies rotation of the beam cross sections. Therefore

in describing the deformations of the coupled system we must account for

torsion as well as bending. Earlier we considered the bending equations for

a beam. The energy functionals for beam bending for AB and CD are

Eb1(u1) = 1

2

∫ b

0

E1I1(u
′′
1(y))

2
dy −

∫ b

0

q1(y)u1(y) dy,

Eb2(u2) = 1

2

∫ b

0

E2I2(u
′′
2(y))

2
dy −

∫ b

0

q2(y)u2(y) dy,

where the Eα are Young’s moduli, Iα are the moments of inertia of the

beams, and uα(y) are the vertical beam deflections.

Torsion in a beam is a classical problem in the strength of materials [29;

28]. The energy functionals for torsion in the beams AB and CD are

Et1(ψ1) =
1

2

∫ b

0

DT1(ψ
′
1(y))

2
dy, Et2(ψ2) =

1

2

∫ b

0

DT2(ψ
′
2(y))

2
dy.

Here ψα denotes the beam twisting angles per unit length, and DTα is the

torsional rigidity.
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Fig. 2.8 A cantilever plate supported by two straight beams.

Thus the total potential energy functional of the plate with two rein-

forcement beams is

E(w, ϑ1, ϑ2, u1, u2, ψ1, ψ2) =

∫∫
S

W dxdy −
∫∫

S

pw dx dy

+ Eb1(u1) + Eb2(u2) + Et1(ψ1) + Et2(ψ2). (2.42)

Kinematic boundary conditions are the equations that describe rigid clamp-

ing of the plate along AD, clamping of the beams at points A and D, and

the equality of the twisting angle to zero at A and D:

w
∣∣
y=b

= 0 = ϑ1
∣∣
y=b

= ϑ1
∣∣
y=b

,

u1
∣∣
y=b

= u2
∣∣
y=b

= 0 = ψ1

∣∣
y=b

= ψ2

∣∣
y=b

. (2.43)

Kinematic compatibility of deformation for the plate and beams requires

equality between the defections of the plate edges and the beams,

u1(y) = w(0, y)− rψ1(y), u2(y) = w(a, y) + rψ2(y), (2.44)

and equality of the corresponding rotation angles:

ψ1(y) = ϑ1(0, y), ψ2(y) = ϑ1(a, y). (2.45)

The kinematic compatibility conditions (2.44) describe coupling between a

plate and a pair of beams having circular cross sections of radius r as in

Fig. 2.8. Clearly this is not the only way to fix beams to a plate. For beams

of more complicated cross section, the kinematic compatibility conditions

can differ from (2.44); however, the analysis will be similar.
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By (2.44) and (2.45), the energy functional takes the form

E(w, ϑ1, ϑ2) =
∫∫

S

W dxdy −
∫∫

S

pw dx dy

+ Eb1(w(0, y)− rϑ1(0, y)) + Eb2(w(a, y) + rϑ1(a, y))

+ Et1(ϑ1(0, y)) + Et2(ϑ1(a, y)). (2.46)

Natural boundary conditions for the plate follow from the condition δE = 0.

We have

0 = δE = −
∫ a

0

∫ b

0

[
(Mαβ,α −Qβ)ϕβ + (Qα,α + p)ϕ0

]
dx dy

+

∫
∂S2

(nαMαβϕα + nαQαϕ0) ds

+

∫ b

0

[E1I1(wyy − rϑ1yy)(ϕ0yy − rϕ1yy)− q1(ϕ0 − rϕ1)]
∣∣
x=0

dy

+

∫ b

0

[E2I2(wyy + rϑ1yy)(ϕ0yy + rϕ1yy)− q2(ϕ0 + rϕ1)]
∣∣
x=a

dy

+

∫ b

0

DT1ϑ1yϕ1y

∣∣
x=0

dy +

∫ b

0

DT2ϑ1yϕ1y

∣∣
x=a

dy

after use of integration by parts.

In this problem, ∂S2 is the contour ABCD. On side AB we have

n1 = −1 and n2 = 0. On side BC we have n1 = 0 and n2 = −1. On

side CD we have n1 = 1 and n2 = 0. In the equation δE = 0, the integral

over S and the contour integral are zero independently. This is achieved

by appropriate selection of admissible variations. Vanishing of the surface

integral yields the equilibrium equations (2.29)–(2.31). Vanishing of the

contour integral yields∫ b

0

(M1βϕβ +Q1ϕ0)
∣∣
x=0

dy −
∫ a

0

(M2βϕβ +Q2ϕ0)
∣∣
y=0

dx

+

∫ b

0

(M1βϕβ +Q1ϕ0)
∣∣
x=a

dx

+

∫ b

0

[E1I1(wyy − rϑ1yy)(ϕ0yy − rϕ1yy)− q1(ϕ0 − rϕ1)]
∣∣
x=0

dy

+

∫ b

0

[E2I2(wyy + rϑ1yy)(ϕ0yy + rϕ1yy)− q2(ϕ0 + rϕ1)]
∣∣
x=a

dy

+

∫ b

0

DT1ϑ1yϕ1y

∣∣
x=0

dy +

∫ b

0

DT2ϑ1yϕ1y

∣∣
x=a

dy = 0.
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Integration by parts reduces this to the form∫ b

0

(M1βϕβ −DT1ϑ1yyϕ1 +Q1ϕ0

+ E1I1(wyyyy − rϑ1yyyy)(ϕ0 − rϕ1)− q1(ϕ0 − rϕ1))
∣∣
x=0

dy

−
∫ a

0

(M2βϕβ +Q2ϕ0)
∣∣
y=0

dx

+

∫ b

0

(M1βϕβ −DT2ϑ1yyϕ1 +Q1ϕ0

+ E2I2(wyyyy + rϑ1yyyy)(ϕ0 + rϕ1)− q2(ϕ0 + rϕ1))
∣∣
x=a

dx

+
[
E1I1(wyy − rϑ1yy)(ϕ0y − rϕ1y)

∣∣
x=0

−E1I1(wyyy − rϑ1yyy)(ϕ0 − rϕ1)
∣∣
x=0

] ∣∣∣∣y=b
y=0

+
[
E2I2(wyy + rϑ1yy)(ϕ0y + rϕ1y)

∣∣
x=a

−E2I2(wyyy + rϑ1yyy)(ϕ0 + rϕ1)
∣∣
x=a

] ∣∣∣∣y=b
y=0

+
(
DT1ϑ1yϕ1

∣∣
x=0

) ∣∣∣∣y=b
y=0

+
(
DT2ϑ1yϕ1

∣∣
x=a

) ∣∣∣∣y=b
y=0

= 0.

The functions ϕ0 and ϕα are zero on AD, i.e., when y = b. As they are

arbitrary, we get the following set of natural boundary conditions:

AB: M11 −DT1ϑ1yy + rQ1 = 0, M12 = 0,

Q1 + E1I1(wyyyy − rϑ1yyyy)− q1 = 0,

BC: M21 = 0, M22 = 0, Q2 = 0,

CD: M11 −DT2ϑ1yy − rQ1 = 0, M12 = 0,

Q1 + E2I2(wyyyy + rϑ1yyyy)− q2 = 0.

At the corner B = (0, 0) the conditions

wyy − rϑ1yy = wyyy − rϑ1yyy = 0, ϑ1y = 0

hold, at the corner C = (a, 0)

wyy + rϑ1yy = wyyy + rϑ1yyy = 0, ϑ1y = 0

hold, while at A = (0, b) and D = (a, b) we have

wyy − rϑ1yy = 0 and wyy + rϑ1yy = 0.

We note the following.
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(1) On a plate edge supported by a beam, the boundary conditions contain

the functions and their normal derivatives as for an unsupported edge.

But they also contain derivatives of the functions in the direction tan-

gential to the boundary contour. Moreover, the tangential derivatives

are of higher (namely, second and fourth) order.

(2) At the beam endpoints we also see natural boundary conditions. These

correspond to the conditions given at corresponding points of the plate

edge. Mathematically, such conditions can lead to singularities in the

solution.

(3) In this elementary problem we have shown how to obtain the compat-

ibility conditions for a Reissner–Mindlin plate with a classical beam of

symmetric cross section clamped to the plate edge. For other ways of

establishing the compatibility equations for coupled beams, plates, and

shells, see, e.g., [22; 4].

Let us return to the more general problem of Fig. 2.7. The kinematic

conditions for coupling between the plate and a beam along AB take the

form

u = (w − rϑn)
∣∣
AB
, ψ(s) = ϑn ≡ (n1ϑ1 + n2ϑ2)

∣∣
AB
.

Here u(s) is the vertical deflection and ψ(s) is the twisting angle of the

beam. It follows that the energy functional of a plate with edge reinforced

by a beam along a portion of its contour is

E(w, ϑ1, ϑ2) =
∫∫

S

W dS −
∫∫

S

pw dS −
∫
∂S2

(Q0
nw +Mβϑβ) ds

+
1

2

∫ B

A

[EI(w′′ − rϑ′′n)
2 +DT (ϑ

′
n)

2] ds−
∫ B

A

qw ds,

(2.47)

where (·)′ = ∂
∂s (·). Skipping some technical details, we present the final

form of the conditions on the reinforced edge:

Mn −DTϑ
′′
1 + rQn = 0, Mτ = 0, Qn + EI(w′′′′ − rϑ′′′′n )− q = 0,

where

Mn = nαMαβnβ , Mτ = −nαMα1n2 + nαMα2n1, Qn = nαQα.

It is worth noting that in many cases, the variational derivation allows us

to formulate correct natural boundary conditions. However, a purely formal

application of this method can lead to errors. Sometimes an understanding
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of the physical features of a model are more important than mathematical

rigor. This can be seen in the following example.

Example 2.10. Consider a horizontal square plate with a vertical rod of

length a attached at point (x0, y0) and loaded with a force P and a twisting

momentM at the endpoint (Fig. 2.9). Find the natural boundary condition

S

( )x ,y

M

P

0 0

Fig. 2.9 Plate with a vertical rod.

related to contact between the rod and plate.

Solution. Clearly the rod does not bend, hence the rod model is justified

(instead of a beam model). The energy functional is

E(w, ϑ1, ϑ2, y, ψ) =
∫∫

S

W dS +
1

2

∫ a

0

(EA(u′)2 +DT (ψ
′)2) ds

− Pu(a)−Mψ(a), (2.48)

where u(s) is the longitudinal displacement along the rod and ψ(s) is the

twisting angle. Taking into account the kinematic compatibility conditions

u(0) = w(x0, y0), we get a natural boundary condition that corresponds to

the action of a point force at (x0, y0):

Q1,1 +Q2,2 + EAu′(0) δ(x− x0, y − y0) = 0.

There is no problem with this physically. But if we consider the influence

of the drilling moment M , we see that there is no kinematic compatibility
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condition relating ψ, w, and ϑα. Correspondingly, the torsion problem for

the rod yields the natural conditions

DTψ
′(0) = 0, DTψ

′(a) =M.

Hence the torsion in the rod does not appear to be affected by clamping to

the plate: the lower end of the rod appears to be free. Clearly, this strange

conclusion must come from physical assumptions hidden in the model. The

Reissner–Mindlin plate theory is derived under assumptions in which the

drilling moment does not enter as a load. In this situation we could use

a more general plate or shell theory (see [17; 4]). Alternatively, we could

consider the three-dimensional tension-deformation fields near the coupling

points, using three-dimensional elasticity for both the plate and rod. �

2.3 Conservation Laws

The conservation laws (conservation of energy, momentum, etc.) play a

central role in physics. They are all statements of a similar nature, but

exhibit very different external forms. A united mathematical presentation

of the conservations laws related to the calculus of variations is the goal of

this section.

Let ui, i = 1, . . . ,m, be functions depending on the variables xj , j =

1, . . . , n. Functions ui describing a physical object are defined by some

simultaneous differential equations

lp(xj , ui, ui,j) = 0, p = 1, . . . , k, (2.49)

where for brevity we have denoted ui,j = ∂ui/∂xj as in elasticity. Let P =

(P1, . . . , Pn) be a vector function with components Pq = Pq(xj , ui, ui,j),

q = 1, . . . , n. The equation

dP1

dx1
+ · · ·+ dPn

dxn
= 0, (2.50)

which holds for all solutions of the system (2.49), is called a conservation

law for the physical object. Here dPq/dxj denotes the complete derivative

of Pq with respect to xj ; for a function g(xj , ui, ui,j), we have

dg

dxk
=

∂g

∂xk
+
∑
i

∂g

∂ui

∂ui
∂xk

+
∑
i,j

∂g

∂ui,j

∂ui,j
∂xk

. (2.51)

In the following part of the chapter, Einstein’s summation convention will

be in force.
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Using the n-dimensional divergence operator, we can rewrite (2.50) in

the form

divP = 0. (2.52)

Let us relate the definition (2.50) of a conservation law to some known

physical conservation laws.

Let n = 1; that is, consider a system described by ordinary differential

equations with respect to some unknown functions ui(x) of the variable x:

lp(x, ui, u
′
i) = 0, i = 1, . . . ,m. (2.53)

Equation (2.50) reduces to

dP

dx
= 0 (2.54)

and it follows that any solution of (2.53) takes the form P = constant. This

is the typical form of a conservation law in physics: over any solution of

(2.53), the value of P is preserved. In the theory of ordinary differential

equations, an equality of the form P = constant valid for any solution of

a system is called a first integral. First integrals play an important role,

as they provide general information about solutions in the absence of the

solutions themselves. A set of m independent first integrals is equivalent

to the solution of (2.53).

The familiar law of energy conservation for a particle in the gravitational

field can be broadly extended to particle systems, to rigid body dynamics,

and to other objects in the same general form: the sum of the kinetic

energy K and the potential energy W is constant with respect to time t.

This relation K + W = constant can be written in the above form of a

conservation law by time differentiation:

d

dt
(K +W ) = 0.

This equality can also be regarded as the result of minimizing K + W

over the solutions of the system of equations governing some object; it is

a functional dependent on the functions that describe the object. This

is another reason why conservation laws are discussed in the calculus of

variations.

Consider the more complex case of a system of equations with ui de-

pending on two variables (x1, x2). With n = 2, (2.50) takes the form

dP1

dx1
+
dP2

dx2
= 0. (2.55)
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Integration over an arbitrary domain S and application of the divergence

theorem give

0 =

∫∫
S

divP dx1 dx2 =

∫
∂S

(P1n1 + P2n2) ds,

where ∂S is the boundary contour of S (Fig. 2.10) and n1, n2 are the com-

ponents of the outward unit normal n to ∂S. This is the integral form of

(2.55). From a physical standpoint the quantity P ·n = P1n1 +P2n2 is the

flux of P through some portion of ∂S over a unit time interval. Thus, for

solutions of (2.49), the flux P through ∂S is zero.

P

x

x

1

2

n

S

Fig. 2.10 A two-dimensional domain.

In the three-dimensional case, the conservation laws for the mass of a

liquid or for electric charge distributed in space also fall under the above

definition of a conservation law. Let ρ = ρ(x1, x2, x3, t) be the density of

a liquid that depends on the Cartesian space coordinates (x1, x2, x3) and

time t. The mass of liquid contained in an arbitrary volume V at time t is∫∫∫
V

ρ(x1, x2, x3, t) dV.

During the time interval [t1, t2], the change of mass within V is∫∫∫
V

ρ(x1, x2, x3, t2) dV −
∫∫∫

V

ρ(x1, x2, x3, t1) dV.

Assume this change of mass is due purely to flux of liquid through the

boundary ∂V of V over the same time interval. The flux is given by∫ t2

t1

(∫∫
∂V

ρv · n dS
)
dt,
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where v is the velocity of the particle having coordinates (x1, x2, x3) and n

is the outward unit normal from ∂V . The divergence theorem permits us

to rewrite this as ∫ t2

t1

(∫∫∫
V

div(ρv) dV

)
dt.

So in integral form, mass conservation is expressed by the equality∫∫∫
V

ρ(x1, x2, x3, t2) dV −
∫∫∫

V

ρ(x1, x2, x3, t1) dV

=

∫ t2

t1

(∫∫∫
V

div(ρv) dV

)
dt.

Dividing through by t2 − t1, letting t2 → t1, and rearranging slightly, we

find that at t = t1 the integral equation∫∫∫
V

(
∂ρ

∂t
− div(ρv)

)
dV = 0

holds for any volume V . Provided the integrand is a continuous function,

we see that at any interior point of the liquid

∂ρ

∂t
− div(ρv) = 0.

The law of charge conservation may be obtained by simply changing the

interpretation of ρ to electric charge density. Conservation laws for other

quantities, whose values in a volume can change only via flux through the

boundary surface, follow similarly.

We see that mass conservation takes the general form

dP1

dx1
+
dP2

dx2
+
dP3

dx3
+
dP4

dt
= 0 (2.56)

with P4 = ρ and Pk = −ρvk for k = 1, 2, 3. Clearly (2.56) can describe

more than just the conservation of mass or charge. By reversing the steps

taken above, we can obtain the integral form of this conservation law:

d

dt

∫∫∫
V

P4 dV +

∫∫
∂V

(P1n1 + P2n2 + P2n3) dS = 0 (2.57)

where n = (n1, n2, n3). Physically, this states that the change of quantity

P4 in volume V is determined by the flux P1n1 + P2n2 + P2n3 over the

boundary ∂V .

Many physical conservation laws take the form (2.57). Again, conser-

vation laws play a pivotal role in physics. In § 2.4 we show how they are

obtained for a general system of equations representing the Euler–Lagrange

equations for a functional.
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2.4 Conservation Laws and Noether’s Theorem

We would like to derive the conservation laws for systems of differential

equations representing the Euler–Lagrange equations for certain function-

als. One approach was proposed by Amalie Emmy Noether (1882–1935).

It employs a type of invariance of the functional under infinitesimal trans-

formations.

The simplest case

Recall that the simplest functional from the calculus of variations,

F (y) =

∫ b

a

f(x, y(x), y′(x)) dx, (2.58)

depends on an unknown function y(x) of the variable x and has Euler

equation

fy − d

dx
fy′ = 0. (2.59)

We seek the quantity P in the corresponding conservation law

d

dx
P (x, y(x), y′(x)) = 0.

Consider the question of infinitesimal invariance of F under transformations

of the form

x→ x∗ = x+ εξ(x, y), (2.60)

y → y∗ = y + εφ(x, y), (2.61)

where ε is a small parameter and ξ(x, y) and φ(x, y) are given functions.

Denoting the value of F under this change of variables by F ∗, we have

F ∗(y∗) =
∫ b∗

a∗
f

(
x∗, y∗,

dy∗

dx∗

)
dx∗

where a∗ = a+ εξ(a, y(a)) and b∗ = b+ εξ(b, y(b)).

Definition 2.11. The functional F is infinitesimally invariant under the

transformation (2.60)–(2.61), for some fixed functions ξ and φ, if the equal-

ity F ∗ = F holds in the asymptotic sense up to linear terms in ε as ε → 0

for an extremal y = y(x) of F ; this means that

lim
ε→0

F ∗ = F and lim
ε→0

F ∗ − F

ε
= 0. (2.62)
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We may also say that F has variational symmetry with respect to this

infinitesimal transformation.

Later on, we will see how one may relate the variational symmetry of

F with conservative laws for solutions of the corresponding Euler equation

for F .

Very provisionally, the geometrical relation between F and F ∗ may be

envisioned as in Fig. 2.11. In the terminology of asymptotic analysis, F

y

F
( )F( )F*

Fig. 2.11 The values of F and F ∗ coincide on an extremal with respect to which we
apply Definition 2.11, and the influence of the transformation is absent in the terms that
are linear in ε.

(which does not depend on ε) and F ∗ are asymptotically equal up to linear

terms in a neighborhood of ε = 0.

With some smoothness assumed for F , relations (2.62) can be rewritten

as

F ∗|ε=0 = F,
dF ∗

dε

∣∣∣∣
ε=0

= 0.

Let us express the variational invariance property of F in terms of φ, ξ,

and f .

Theorem 2.12. The functional F is infinitesimally invariant under the

transformation (2.60)–(2.61) if[
ξ
∂

∂x
+ φ

∂

∂y
+

(
dφ

dx
− y′

dξ

dx

)
∂

∂y′
+
dξ

dx

]
f = 0 (2.63)
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or, equivalently,

d

dx

[
(φ− y′ξ)fy′ + ξf

]
+ (φ− ξy′)

[
fy − d

dx
fy′

]
= 0. (2.64)

Proof. To investigate some consequences of the variational invariance of

F , let us express F ∗ in terms of x, y, and y′. First we derive dy∗/dx∗. It

is clear that

d

dx∗
=

dx

dx∗
d

dx
=

(
dx∗

dx

)−1
d

dx
=

(
1 + ε

dξ

dx

)−1
d

dx

where we have used (2.51). So

dy∗

dx∗
=

(
1 + ε

dξ

dx

)−1(
y′ + ε

dφ

dx

)
and therefore

F ∗ =

∫ b

a

f

(
x+ εξ(x, y), y + εφ(x, y),

(
1 + ε

dξ

dx

)−1(
y′ + ε

dφ

dx

))

×
(
1 + ε

dξ

dx

)
dx.

Let us expand F ∗ in a series with respect to ε at zero, explicitly showing

the linear part of the expansion. Using(
1 + ε

dξ

dx

)−1

= 1− ε
dξ

dx
+O(ε2)

we get

dy∗

dx∗
= y′ + ε

(
dφ

dx
− y′

dξ

dx

)
+O(ε2).

In a neighborhood of ε = 0 we expand the integrand in a Taylor series with

respect to ε, keeping only terms of the first order of smallness in ε:

F ∗ =

∫ b

a

f(x, y, y′) dx

+ ε

∫ b

a

[
fxξ + fyφ+ fy′

(
dφ

dx
− y′

dξ

dx

)
+ f

dξ

dx

]
dx+O(ε2)

= F + ε

∫ b

a

[
ξ
∂

∂x
+ φ

∂

∂y
+

(
dφ

dx
− y′

dξ

dx

)
∂

∂y′
+
dξ

dx

]
f dx+O(ε2).



September 30, 2011 8:42 World Scientific Book - 9in x 6in aea

134 Advanced Engineering Analysis

Clearly F is invariant in the above sense if the integrand of the integral

coefficient of ε in the expansion vanishes:[
ξ
∂

∂x
+ φ

∂

∂y
+

(
dφ

dx
− y′

dξ

dx

)
∂

∂y′
+
dξ

dx

]
f = 0

for some functions ξ and φ. This proves (2.63). Next, in (2.63) we select

the first terms with the derivative d/dx that we see in (2.64). We have(
dφ

dx
− y′

dξ

dx

)
fy′ +

dξ

dx
f

=
d

dx

[
(φ − y′ξ)fy′ + ξf

]− φ
d

dx
fy′ + y′′ξf ′

y + y′ξ
d

dx
fy′ − ξ

df

dx

=
d

dx

[
(φ − y′ξ)fy′ + ξf

]− φ
d

dx
fy′ + y′′ξf ′

y + y′ξ
d

dx
fy′

− ξ(fx + y′fy + y′′fy′)

=
d

dx

[
(φ − y′ξ)fy′ + ξf

]− (φ − ξy′)
d

dx
fy′ − (ξfx + y′ξfy)

so that

0 =

[
ξ
∂

∂x
+ φ

∂

∂y
+

(
dφ

dx
− y′

dξ

dx

)
∂

∂y′
+
dξ

dx

]
f

=
d

dx

[
(φ− y′ξ)fy′ + ξf

]
+ (φ− ξy′)

[
fy − d

dx
fy′

]
.

This completes the proof. �

A consequence of the variational invariance of F under an infinitesimal

transformation is Noether’s theorem.

Theorem 2.13. Suppose that for an extremal y, the functional F is in-

finitesimally invariant under (2.60)–(2.61). Then a conservation law of the

form

d

dx
P = 0 (2.65)

holds, where

P = φfy′ + ξ(f − y′fy′). (2.66)

In this case, P is termed a flux.

A more general version of Noether’s theorem was published in 1918

(see, e.g., [23]). The above formulation is commonly used in physics and

engineering.
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Proof. In the proof of Theorem 2.12, we saw that variational invariance

yields the equation used to find the transformation functions ξ and φ:

d

dx

[
(φ− y′ξ)fy′ + ξf

]
+ (φ− ξy′)

[
fy − d

dx
fy′

]
= 0.

Since y(x) is an extremal of F , it satisfies the Euler–Lagrange equation

(2.59). Hence the second term is zero and (2.64) takes the form of (2.65):

d

dx

[
(φ− y′ξ)fy′ + ξf

]
= 0.

Because

(φ− y′ξ)fy′ + ξf = φfy′ + ξ(f − y′fy′),

we obtain the needed expression for P in (2.66). �
Thus we have established that the infinitesimal invariance of F involves

the conservation law in one dimension

d

dx
P = 0.

Under this condition, the transformed functional F ∗ takes a simple form:

F ∗ = F + ε

∫ b

a

dP

dx
dx+O(ε2)

= F + ε
(
P
∣∣
x=b

− P
∣∣
x=a

)
+O(ε2). (2.67)

Let us pause for a brief overview. The condition for invariance (or

variational symmetry) of the functional

F =

∫ b

a

f(x, y, y′) dx

under the transformation

x→ x∗ = x+ εξ(x, y), y → y∗ = y + εφ(x, y), (2.68)

is [
ξ
∂

∂x
+ φ

∂

∂y
+

(
dφ

dx
− y′

dξ

dx

)
∂

∂y′
+
dξ

dx

]
f = 0. (2.69)

The functions ξ(x, y) and φ(x, y) should be found from equation (2.69). We

should note that finding variational symmetry is a very nontrivial problem.

It consists of finding two unknown functions ξ(x, y) and φ(x, y) such that

(2.69) holds for all y(x) satisfying the Euler–Lagrange equation

fy − d

dx
fy′ = 0.
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Certain variational symmetries, i.e., the functions ξ(x, y) and φ(x, y), can

be suggested by the form taken by the integrand of the functional — when

it is independent of some of the variables, for example, as will be shown

below. In the general case, some nontrivial and less obvious symmetries

can be identified using (2.69) (and similar equations for other cases), e.g.,

via symbolic machine computation. Nontrivial conservation laws have been

regularly discovered up to the present time. On the other hand, in physics

(and particularly in mechanics), there are known systems of equations pos-

sessing “poor” sets of symmetries; in these cases the conservation laws were

established by other methods.

If ξ(x, y) and φ(x, y) are known and (2.69) holds, then the conservation

law is easily obtained from

d

dx
P = 0, with P = φfy′ + ξ (f − y′fy′) . (2.70)

Let us consider a particular case.

Example 2.14. Find a conservation law for the functional

F =

∫ b

a

f(y, y′) dx.

Solution. Consider the transformation (which we can write out because

we already know the answer to the problem)

x→ x∗ = x+ ε, y → y∗ = y.

In other words, we took ξ = 1 and φ = 0. Equation (2.69) reduces to

fx = 0, which evidently holds. Then from (2.70) we get the expression

P = f − y′fy′

for the flux. �

Functional depending on a vector function

The above considerations can be easily extended to the functional

F (y) =

∫ b

a

f(x,y,y′) dx, (2.71)

where y = (y1(x), . . . , ym(x)). We will consider the invariance of F under

a transformation of the form

x→ x∗ = x+ εξ(x,y), yi → y∗i = yi + εφi(x,y), i = 1, . . . ,m (2.72)
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which can be rewritten in vector notation as

x→ x∗ = x+ εξ(x,y), y → y∗ = y + εφ(x,y).

With suitable changes in the meanings of F ∗ and F , Definition 2.11 con-

tinues to apply. We present only the steps that involve more than trivial

modifications from the case where F was given by (2.58). Expanding the

new F ∗ in the vicinity of zero out to linear terms, we get the following

relation between F ∗ and F :

F ∗ = F + ε

∫ b

a

[
ξ
∂

∂x
+ φ1

∂

∂y1
+ · · ·+ φn

∂

∂yn

+

(
dφ1
dx

− y′1
dξ

dx

)
∂

∂y′1
+ · · ·+

(
dφn
dx

− y′n
dξ

dx

)
∂

∂y′n
+
dξ

dx

]
f dx.

We conclude that a sufficient condition for invariance of F under the trans-

formation is[
ξ
∂

∂x
+ φi

∂

∂yi
+

(
dφi
dx

− y′i
dξ

dx

)
∂

∂y′i
+
dξ

dx

]
f = 0, (2.73)

where summation over i is implied. In vector notation this is[
ξ
∂

∂x
+ φ · ∇y +

(
dφ

dx
− dξ

dx
y′
)
· ∇y′ +

dξ

dx

]
f = 0. (2.74)

As in the case of the simplest functional, (2.73) or (2.74) can be reduced to

d

dx

[
φify′i + ξ

(
f − y′ify′i

) ]
+ (φi − ξy′i)

(
fyi −

d

dx
fy′i

)

=
d

dx

[
φ · ∇y′f + ξ (f − y′ · ∇y′f)

]
+ (φ− ξy′) ·

(
∇yf − d

dx
∇y′f

)
= 0.

Since y satisfies the Euler–Lagrange equations (1.62), we arrive at the con-

servation law

d

dx
P = 0 with P = φ · ∇y′f + ξ (f − y′ · ∇y′f) . (2.75)

A reformulation of Theorem 2.12 for (2.71) is left to the reader. As an

example, we derive the conservation laws for particle motion in a central

force field.

Example 2.15. Obtain conservation laws for the functional

F =

∫ 1

0

[
1

2

(
y′1

2
+ y′2

2
)
−W (r)

]
dx, r = r(x) =

√
y21 + y22 ,
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where W (r) is the potential of central forces acting on the particle with

coordinates y1 and y2, which is a differentiable function of r, and x plays

the role of the time variable.

Solution. In this example, f is the Lagrangian of the unit point mass

in a central force field; it equals the difference between the kinetic energy

K = (y′1
2
+ y′2

2
)/2 and the potential energy W of the particle. The Euler–

Lagrange equations are the equations of motion of the particle:

y′′1 =
dW

dr

y1√
y21 + y22

, y′′2 =
dW

dr

y2√
y21 + y22

.

It is clear that F possesses two symmetries. The first is with respect to

translation along the x-direction by a distance ε, which we express as the

transformation

x→ x∗ = x+ ε, y → y∗ = y.

The second is with respect to rotation of the vector y through an infinites-

imal angle ε, which is described by the transformation

x→ x∗ = x, y1 → y∗1 = y1 + εy2, y2 → y∗2 = −εy1 + y2.

We see that F does not change when y rotates through any finite angle ε,

i.e., with respect to the finite transformation

y1 → y∗1 = y1 cos ε+ y2 sin ε, y2 → y∗2 = −y1 sin ε+ y2 cos ε,

but at present it will suffice for us to consider the conservation of F over in-

finitesimal angles ε. Invariance with respect to the first symmetry transfor-

mation is similar to that treated in Example 2.14; it yields the conservation

flux law P1 = constant where

P1 = f − y′1fy′1 − y′2fy′2 = −1

2

(
y′1

2
+ y′2

2
)
−W (r).

This is the energy conservation law: the sum of the kinetic and potential

energies is constant, K+W = constant. For the rotational transformation,

in general terms we have ξ = 0, φ1 = y2, φ2 = −y1. Then (2.75) reduces to

P2 = constant with

P2 = y2fy′1 − y1fy′2 = y2y
′
1 − y1y

′
2.

In celestial mechanics this law is known as the conservation of kinetic mo-

mentum; it was published by Johannes Kepler in 1609. �
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2.5 Functionals Depending on Higher Derivatives of y

Functional depending on y′′

Let us extend the above considerations, regarding infinitesimal invariance

with respect to transformations, to functionals dependent on higher deriva-

tives. We start with a dependence F on y′′:

F =

∫ b

a

f(x, y, y′, y′′) dx.

Consider the change of F under infinitesimal transformations of the form

x→ x∗ = x+ εξ(x, y), y → y∗ = y + εφ(x, y). (2.76)

Now F ∗ denotes

F ∗(y∗) =
∫ b∗

a∗
f

(
x∗, y∗,

dy∗

dx∗
,
d2y∗

dx∗2

)
dx∗.

To define infinitesimal invariance of this F with respect to the transforma-

tion (2.76), we again use Definition 2.11 with the new F and F ∗.

Theorem 2.16. For an extremal y, let F be infinitesimally invariant under

the transformation (2.76). Then a conservation law of the form

d

dx
P =

d

dx

[
ξf + (φ− ξy′)

(
fy′ − d

dx
fy′′

)
+ fy′′

d

dx
(φ− ξy′)

]
= 0 (2.77)

holds.

Proof. We express F ∗ in the initial variables x and y, first deriving

d2y∗/dx∗2 in these terms. Using the formula

d

dx∗
=

(
1 + ε

dξ

dx

)−1
d

dx
,

we get

dy∗

dx∗
=

(
1 + ε

dξ

dx

)−1(
y′ + ε

dφ

dx

)
,

and so

d2y∗

dx∗2
=

d

dx∗
dy∗

dx∗
=

(
1 + ε

dξ

dx

)−1
d

dx

[(
1 + ε

dξ

dx

)−1(
y′ + ε

dφ

dx

)]

=

(
1 + ε

dξ

dx

)−2(
y′′ + ε

d2φ

dx2

)
−
(
1 + ε

dξ

dx

)−3

ε
d2ξ

dx2

(
y′ + ε

dφ

dx

)
.
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Taylor’s expansion of d2y∗/dx∗2 with respect to ε at zero gives

d2y∗

dx∗2
= y′′ + ε

(
d2φ

dx2
− 2y′′

dξ

dx
− y′

d2ξ

dx2

)
+O(ε2).

Thus we get

F ∗ =

∫ b

a

f(x, y, y′, y′′) dx+ ε

∫ b

a

[
fxξ + fyφ+ fy′

(
dφ

dx
− y′

dξ

dx

)

+ fy′′

(
d2φ

dx2
− 2y′′

dξ

dx
− y′

d2ξ

dx2

)
+ f

dξ

dx

]
dx+O(ε2)

= F + ε

∫ b

a

[
ξ
∂

∂x
+ φ

∂

∂y
+

(
dφ

dx
− y′

dξ

dx

)
∂

∂y′

+

(
d2φ

dx2
− 2y′′

dξ

dx
− y′

d2ξ

dx2

)
∂

∂y′′
+
dξ

dx

]
f dx+O(ε2).

As in the case of the simplest functional, we obtain the sufficient condition

for infinitesimal invariance of F as the equality to zero of the integrand of

the integral coefficient of ε:[
ξ
∂

∂x
+ φ

∂

∂y
+

(
dφ

dx
− y′

dξ

dx

)
∂

∂y′

+

(
d2φ

dx2
− 2y′′

dξ

dx
− y′

d2ξ

dx2

)
∂

∂y′′
+
dξ

dx

]
f = 0. (2.78)

This condition can be presented in another form:

d

dx

[
φfy′ + ξ(f − y′fy′)− d(ξy′)

dx
fy′′ + ξy′

d

dx
fy′′ +

dφ

dx
fy′′ − φ

d

dx
fy′′

]

+ (φ − ξy′)
[
fy − d

dx
fy′ +

d2

dx2
fy′′

]
= 0. (2.79)

The second term vanishes on solutions of the Euler–Lagrange equation,

hence the infinitesimal invariance condition for F reduces to P = constant

with

P = φfy′ + ξ(f − y′fy′)− d(ξy′)
dx

fy′′ + ξy′
d

dx
fy′′ +

dφ

dx
fy′′ − φ

d

dx
fy′′

= ξf + (φ− ξy′)
[
fy′ − d

dx
fy′′

]
+ fy′′

d

dx
(φ− ξy′) (2.80)

as stated in the theorem. �

To illustrate, let us consider a functional dependent on y′′ only.
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Example 2.17. Find a conservation law for the functional

F =

∫ b

a

f(y′′) dx.

With f = EIy′′2/2, this becomes the strain energy functional for a beam;

use this fact to illustrate the results.

Solution. Clearly, F possesses a few types of symmetry.

(1) It is invariant with respect to translation along the x-direction by a

distance ε, i.e., with respect to the transformation

x→ x∗ = x+ ε, y → y∗ = y.

With ξ = 1 and φ = 0, equation (2.80) yields the following expression for

the flux:

P = f + y′
d

dx
fy′′ − y′′fy′′ .

For the beam this law reads

EI(y′y′′′ − y′′2/2) = constant.

(2) It is invariant with respect to translation along the y-direction by a

distance ε:

x→ x∗ = x, y → y∗ = y + ε.

So with the corresponding ξ = 0 and φ = 1, equation (2.80) gives

P = − d

dx
fy′′ .

For the beam this takes the form

−EIy′′′ = constant

and expresses constancy of the shear force along the beam. Indeed there is

no load acting on the beam.

(3) It is invariant with respect to translation along the y-direction by a

distance εx:

x→ x∗ = x, y → y∗ = y + εx.

With ξ = 0 and φ = x, equation (2.80) gives

P = −x d
dx
fy′′ + fy′′ .
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For the beam this is

EI(y′′ − xy′′′) = constant.

Differentiating this, we get EIxy(4) = 0. In terms of the shear force Q =

−EIy′′′ we get Q′ = 0 or Q = constant, which is mechanically evident

because the beam is loaded at its ends. �

Because f = EIy′′2/2 is a quadratic form, beam theory provides addi-

tional symmetries as shown in the next example.

Example 2.18. Find an additional conservation law for the functional

F =
1

2

∫ b

a

EIy′′2 dx.

Solution. The quadratic nature of F implies variational symmetry with

respect to coordinate scaling of the form y → kαy, where k is the scale

parameter and α is a value to be determined. The corresponding transfor-

mation

x→ x∗ = x+ εx, y → y∗ = y + αεy,

is obtained by changing k to 1 + ε and dropping terms with εr for r > 1.

Thus we take ξ = x and φ = αy. Substituting ξ and φ into (2.78), we

find that α = 3/2, with which (2.78) holds. Hence F has a symmetry with

respect to the above transformation if α = 3/2. The respective flux is

P = EI

[
−xy

′′2

2
− 3

2
yy′′′ + xy′y′′′ +

1

2
y′y′′

]
.

The reader can verify that P ′ = 0 when y(4)(x) = 0, the Euler–Lagrange

equation for the functional, holds. �

Conditions for variational symmetry of functionals depending on higher

derivatives of y, along with their respective conservation laws, can be found

in [23]. See also Exercise 2.12.
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2.6 Noether’s Theorem, General Case

Functional depending on a function in n variables and its

first derivatives

Let us consider Noether’s theorem for the functional

F (u) =

∫
V

f(xi, u, u,i) dV =

∫
V

f(x, u,∇u) dV, (2.81)

where x = (x1, . . . , xn) and ∇u = (u,1, . . . , u,n) is the gradient of u. As

before, we consider the infinitesimal transformations of the form

xi → x∗i = xi + εξi(x, u), i = 1, . . . , n,

u→ u∗ = u+ εφ(x, u). (2.82)

So the transformation is defined by a set of n+1 functions ξi, i = 1, . . . , n,

and φ. The vector form of (2.82) is

x → x∗ = x+ εξ(x, u),

u→ u∗ = u+ εφ(x, u).

Variational symmetry of F is again expressed by the formulas

lim
ε→0

F ∗ = F and lim
ε→0

F ∗ − F

ε
= 0,

where

F ∗ =

∫
V ∗
f

(
x∗i , u

∗,
∂u∗

∂x∗i

)
dV ∗ =

∫
V ∗
f(x∗, u∗,∇∗u∗) dV ∗,

and V ∗ is the new integration domain corresponding to the change x → x∗.
The existence and form of the conservation laws under infinitesimal

invariance is given by the following version of Noether’s theorem. In this

case the flux is a vector function P.

Theorem 2.19. For an extremal u, let the functional F be infinitesimally

invariant under transformation (2.82), i.e.,[
ξi

∂

∂xi
+ φ

∂

∂u
+

(
dφ

dxi
− u,p

dξp
dxi

)
∂

∂u,i
+ ξi,i

]
f = 0. (2.83)

Then a conservation law of the form

divP = 0 (2.84)

holds, where

P = (P1, . . . , Pn), Pi = φ
∂f

∂u,i
+ ξk

(
fδik − u,k

∂f

∂u,i

)
. (2.85)
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Proof. We proceed as in the proofs of Theorems 2.12 and 2.13. We find

the linear approximation of F ∗ with respect to ε, neglecting higher-order

terms, and obtain the variational symmetry condition in terms of ξ and

φ. Then, remembering that the extremals of F satisfy the Euler–Lagrange

equation, we cast the variational symmetry condition in divergence form.

To deduce the form of F ∗, we derive expressions for the partial deriva-

tives of u∗. The formulas for a change of variables in partial differentiation

are

∂

∂x∗i
=
∂xk
∂x∗i

∂

∂xk
,

∂

∂xi
=
∂x∗k
∂xi

∂

∂x∗k
,

where we sum over the repeated index k. The transformation matrix takes

the form

∂x∗k
∂xi

= δik + ε
dξk
dxi

.

The portion of the inverse of this matrix that is linear in ε is

∂xk
∂x∗i

= δik − ε
dξk
dxi

+O(ε2).

So we have

∂u∗

∂x∗i
=
∂xk
∂x∗i

∂u∗

∂xk
=
∂xk
∂x∗i

(
u,k + ε

dφ

dxk

)
= u,i + ε

(
dφ

dxi
− u,k

dξk
dxi

)
+O(ε2).

Expanding F ∗ in a Taylor series with respect to ε and dropping higher-order

terms, we get

F ∗ =

∫
V ∗
f(x∗, u∗,∇∗u∗) dV ∗

=

∫
V

f

[
x+ εξ, u+ εφ, u,i + ε

(
dφ

dxi
− u,k

dξk
dxi

)
+O(ε2)

]
dV ∗

dV
dV

= F + ε

∫
V

[
fxiξi + fuφ+ fu,i

(
dφ

dxi
− u,k

dξk
dxi

)
+ f div ξ

]
dV +O(ε2)

after using the formula

d

dε

dV ∗

dV

∣∣∣∣
ε=0

=
dξ

dxi
≡ div ξ

for differentiating the Jacobian (see, e.g., [6]).

Thus, when F has variational symmetry, the following integrand is zero:

fxiξi + fuφ+ fu,i

(
dφ

dxi
− u,k

dξk
dxi

)
+ f div ξ = 0.
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Formulation (2.83) for variational symmetry is proved.

By technically cumbersome transformations it can be shown that (2.83)

takes the form

fxiξi + fuφ+ fu,i

(
dφ

dxi
− u,k

dξk
dxi

)
+ f div ξ

=
d

dxi

[
φ
∂f

∂u,i
+ ξk

(
fδik − u,k

∂f

∂u,i

)]

+ (φ − ξiu,i)

(
fu − d

dxi
fu,i

)
= 0.

The last parenthetical term vanishes on extremals u, i.e., on solutions of

the Euler–Lagrange equation. So (2.83) can be reduced to divergence form,

and a conservation law (2.84) holds with flux given by (2.85). �

Let us consider some special cases.

Example 2.20. Find a conservation law for the functional

F =

∫
V

f(∇u) dV. (2.86)

Solution. Since fu = 0, the functional has the symmetry with respect to

the transformation

x → x∗ = x, u→ u∗ = u+ ε.

Correspondingly we have ξ = 0, φ = 1 and the conservation law

d

dxi
fu,i = 0.

This law is uninteresting, as it coincides with the Euler–Lagrange equation

for F , so we proceed to another possibility. Because ∂f/∂xk = 0 for k =

1, . . . , n, the functional has symmetry with respect to the transformation

x → x∗ = x+ εik, ik = (0, 0, . . . , 1, . . . , 0), u→ u∗ = u,

where ik is the kth Cartesian basis vector. This corresponds to ξ = ik and

φ = 0. As k runs from 1 to n, we obtain the n conservation laws

divPk = 0, Pk = f ik − (ik · ∇u) ∂f
∂∇u,

where we denote

∂f

∂∇u =

(
∂f

∂u,1
, . . . ,

∂f

∂u,n

)
.
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In component form,

Pk =

(
−u,k ∂f

∂u,1
, . . . , f − u,k

∂f

∂u,k
, . . . , −u,k ∂f

∂u,n

)
.

�

Example 2.21. Treat the functional

F =
1

2

∫∫
S

(u2x − u2y) dx dy,

noting that its Euler–Lagrange equation is the wave equation uxx−uyy = 0.

Solution. We use the solution to Example 2.20 with f(∇u) = (u2x−u2y)/2
and x1 = x, x2 = y. Symmetry with respect to the translations in the

u-direction gives

divP = 0, P = (ux,−uy).
Symmetry with respect to translations in the x- and y-directions gives

divP1 = 0, P1 =

(
−1

2
u2x −

1

2
u2y, uxuy

)
,

divP2 = 0, P2 =

(
−uxuy, 1

2
u2x +

1

2
u2y

)
.

See [23] for other conservation laws associated with the wave equation. �

Functional depending on vector function in several variables

In physics, and in mechanics in particular, we encounter functionals more

general than those treated above. Let us consider a functional of the form

F (u) =

∫
V

f(xi, uj, uj,i) dV =

∫
V

f(x,u,∇u) dV, (2.87)

where x = (x1, . . . , xn), u = (u1, . . . , um), and ∇u denotes the matrix of

the first partial derivatives ∂uj/∂xi = uj,i for j = 1, . . . ,m and i = 1, . . . , n.

By analogy with previous cases, we consider infinitesimal transforma-

tions of the form

xi → x∗i = xi + εξi(x,u), i = 1, . . . , n, (2.88)

uj → u∗j = uj + εφj(x,u), j = 1, . . . ,m. (2.89)

So the transformation is defined by m + n functions ξi and φj . In vector

form, (2.88) and (2.89) are

x → x∗ = x+ εξ(x,u), u → u∗ = u+ εφ(x,u). (2.90)
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The conditions for variational symmetry of (2.87) in terms of ξ and φ are

given, along with the formulation of the conservation law, in

Theorem 2.22. For an extremal u, let F be infinitesimally invariant under

the transformation (2.88)–(2.89), i.e.,[
ξi

∂

∂xi
+ φj

∂

∂uj
+

(
dφj
dxi

− uj,p
dξp
dxi

)
∂

∂uj,i
+ ξi,i

]
f = 0. (2.91)

Then the conservation law divP = 0 holds, where P = (P1, P2, . . . , Pn) and

Pi = φj
∂f

∂uj,i
+ ξk

(
fδik − up,k

∂f

∂up,i

)
. (2.92)

Proof. The proof mostly follows the proofs of the simpler versions of

Noether’s theorem. As in those cases, we expand F ∗ in a Taylor series in ε

and retain only first-order terms:

F ∗ = F + ε

∫
V

[
fxiξi + fujφj + fuj,i

(
dφj
dxi

− uj,k
dξk
dxi

)
+ f div ξ

]
dV

+O(ε2).

It can be shown that

fxiξi + fujφj + fuj,i

(
dφj
dxi

− uj,k
dξk
dxi

)
+ f div ξ

=
d

dxi

[
φj

∂f

∂uj,i
+ ξk

(
fδik − up,k

∂f

∂up,i

)]

+(φj − ξiuj,i)

(
fuj −

d

dxi
fuj,i

)
= 0.

The last parenthetical expression is the left side of the Euler–Lagrange

equation. The details are left to the reader, including the derivation of the

Euler–Lagrange equation itself. �

2.7 Generalizations

Divergence invariance

Noether’s theorem is not the only way to establish the conservation laws.

One of its extensions, obtained in 1921, is referred to as the Bessel–Hagen

extension.

Definition 2.23. Consider the infinitesimal transformation

x → x∗ = x+ εξ(x,u), u → u∗ = u+ εφ(x,u).
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The functional F is infinitesimally divergence invariant under this trans-

formation if, in an asymptotic sense, the difference F ∗ −F is an integral of

the divergence of some vector field K. This means that

lim
ε→0

F ∗ = F and lim
ε→0

F ∗ − F

ε
=

∫
V

divK dV (2.93)

where K = (K1, . . . ,Kn) is a vector function dependent on x, u, and

∇u. We also say that F has divergence symmetry with respect to the

infinitesimal transformation.

If K = 0, the definition reduces to that of variational symmetry. The

function K must be found together with the other unknowns ξ and φ. In

terms of K, ξ, and φ, the condition for infinitesimal divergence invariance

and the consequent form of the conservation law are given by

Theorem 2.24. For an extremal u, let F be infinitesimally invariant under

the transformation (2.88)–(2.89), i.e.,[
ξi

∂

∂xi
+ φj

∂

∂uj
+

(
dφj
dxi

− uj,p
dξp
dxi

)
∂

∂uj,i
+ ξi,i

]
f = Ki,i. (2.94)

Then a conservation law of the form

div(P−K) = 0 (2.95)

holds, where P = (P1, . . . , Pn) and

Pi = φj
∂f

∂uj,i
+ ξk

(
fδik − up,k

∂f

∂up,i

)
. (2.96)

In advance of the proof let us note that this extension of Noether’s

theorem is quite natural. Indeed, Noether’s theorem requires asymptotic

equality of F ∗ and F to within quadratic precision with respect to ε. On

the extremals this condition of coincidence reduces to the divergence form,

which yields a conservation law. However, to get a conservation law, it is

sufficient that F ∗ and F coincide asymptotically up to an integral whose

integrand is the divergence of some field. Such an integrand is called a null

Lagrangian.

If we can find a field K, a new conservation law is formulated for the

vector field P−K.

Proof. As in Theorem 2.22, expansion of F ∗ into a Taylor series in ε

yields

lim
ε→0

F ∗ − F

ε
=

∫
V

[
fxiξi + fujφj + fuj,i

(
dφj
dxi

− uj,k
dξk
dxi

)
+ f div ξ

]
dV.
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So the condition for infinitesimal divergence invariance is

fxiξi + fujφj + fuj,i

(
dφj
dxi

− uj,k
dξk
dxi

)
+ f div ξ = divK.

Transforming as in the proof of Theorem 2.22, we get

d

dxi

[
φj

∂f

∂uj,i
+ ξk

(
fδik − up,k

∂f

∂up,i

)
−Ki

]

+(φj − ξiuj,i)

(
fuj −

d

dxi
fuj,i

)
= 0.

On the solutions of the Euler–Lagrange equations where the last parenthet-

ical term vanishes, this reduces to the conservation law for P−K. �

This fruitful extension of Noether’s theorem can provide additional con-

servation laws. We consider an example from classical mechanics.

Example 2.25. Find the conservation laws for a system of particles having

masses Mk and position vectors yk ∈ R3, k = 1, . . . , N . The variable x

plays the role of time. The Lagrangian for a system of N particles is the

difference between the kinetic energy K and the potential energy W :

F =

∫ 1

0

[
1

2

N∑
k=1

Mky
′
k · y′

k −W (y1, . . . ,yN )

]
dx.

The Euler–Lagrange equations for the functional having this Lagrangian

are the equations of motion

Mky
′′
k =Wyk

, k = 1, . . . , N. (2.97)

Solution. Let us return to our earlier notation for Noether’s theorem by

introducing a “long vector” y = (y1, . . . ,yN ) ∈ R3N .

From physical considerations it is clear that the potential energy of

the system does not change if we shift the coordinate origin by a vector

a = (a1, a2, a3) ∈ R3; this just means that the whole set of particles has

undergone the same parallel translation. Hence F is invariant under a

transformation of the form

x→ x∗ = x, yk → y∗
k = yk + εa.

This can also be represented in the “long vector” form y → y∗ = y + εã

where ã = (a, . . . , a) = (a1, a2, a3, . . . , a1, a2, a3). The functions defining

the transformation are

ξ = 1, φk = a or φ = â.
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For this transformation the conservation law (2.75) reduces to

N∑
k=1

Mky
′
k · a = constant.

By arbitrariness of a, the quantity

N∑
k=1

Mky
′
k = constant.

This is the conservation of linear momentum.

The given F also has variational symmetry with respect to time shifts,

i.e., with respect to the transformation

x→ x∗ = x+ ε, yk → y∗
k = yk.

Here φ = 0 and ξ = 1. The corresponding conservation law (2.75) is the

law of energy conservation

K +W = constant, K =
1

2

N∑
k=1

Mky
′
k · y′

k.

Finally, consider the Galilean boost

x→ x∗ = x, yk → y∗
k = yk + εxa. (2.98)

Here ξ = 0, and φk = xa or φ = xã. Unlike the two cases considered above,

the conditions of infinitesimal invariance do not hold for the Galilean boost.

Indeed, substitution of ξ, φ, and f into (2.73) or into (2.74) gives

N∑
k=1

[
φk · ∇yk

f +
dφk
dx

· ∇y′
k
f

]
=

N∑
k=1

[−xa · ∇yk
W +Mka · y′

k] = 0.

This holds only when a = 0. In other words, the Galilean boost does not

correspond to the variational symmetry of F . However, F does have in-

finitesimal divergence invariance. Let us verify that (2.94) holds for (2.98).

For convenience we introduce K =
∑N

k=1Kk. Equation (2.94) reduces to

N∑
k=1

[−xa · ∇yk
W +Mka · y′

k −K ′
k] = 0. (2.99)

Changing ∇yk
W to Mky

′′
k via the equations of motion (2.97), we reduce

(2.99) to the divergence form

N∑
k=1

[−xa ·Mky
′
k + 2Mka · yk −Kk]

′
= 0.
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Let us take

Kk = −Mkxa · y′
k + 2Mka · yk.

The corresponding conservation law P −K = constant takes the form

N∑
k=1

(xMka · y′
k −Mka · yk) = constant,

and since a is constant,

N∑
k=1

(xMky
′
k −Mkyk) = constant.

Dividing through by the total mass of the system M =
∑N
k=1Mk, and

recalling that the momentum Mkyk = constant, we obtain a familiar result

from classical mechanics that the center of mass of the particle system

undergoes uniform, rectilinear motion:

ȳ ≡ 1

M

N∑
k=1

Mkyk = xC1 +C2,

where C1 and C2 are constant vectors. �

These examples show how divergence symmetry can provide additional

conservation laws. As an example, for f = y′2/2, infinitesimal divergence

invariance extends the number of conservation laws from three to five (Ex-

ercise 2.13).

Other generalizations

There are still other ways to obtain conservation laws. For example, it is

possible to study the infinitesimal symmetries of equations (2.49) without

restricting oneself to the case where the equations are the Euler–Lagrange

equations for some functional (see [23]). Let us consider one such method

that uses the notion of null Lagrangian and its properties.

Definition 2.26. A function f(x,u,∇u) is a null Lagrangian if the Euler–

Lagrange equations for the functional with integrand f(x,u,∇u) vanish

identically for all x and u.

An example is the function f = yy′. Indeed, its Euler equation reduces

to the identity

fy − d

dx
fy′ = y′ − d

dx
y = 0.
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Similar cases exist for f depending on a function in many variables: f =

uux + uuy, for instance.

Note that

yy′ =
d

dx

(
y2

2

)
, uux + uuy =

d

dx

(
u2

2

)
+

d

dy

(
u2

2

)
.

We see that an expression that happens to be the divergence of some vector

field can be a null Lagrangian. This idea is valid, and so is the converse

idea:

Theorem 2.27. A function f(x,u,∇u) is a null Lagrangian if and only if

it is equal to the divergence of some field P:

f = divP

where P = P(x,u,∇u).

See [23] for a proof. It follows that two functionals have the same Euler–

Lagrange equations if and only if their integrands differ by the divergence of

some vector field. These facts serve as a basis for constructing conservation

laws for the system (2.49). The idea of the method is as follows.

(1) Multiply each equation from (2.49) by a function qp(xj , ui, ui,j), p =

1, . . . , k and add the resulting equations to get

k∑
p=1

qp(xj , ui, ui,j)lp(xj , ui, ui,j) = 0. (2.100)

(2) By Theorem 2.27, the left side of the last expression is the divergence

of some vector field if and only if the Euler–Lagrange equations for the

functional having integrand

f̃ =

k∑
p=1

qp(xj , ui, ui,j)lp(xj , ui, ui,j)

are satisfied identically. So the functions qp should be selected according

to the condition that the Euler–Lagrange equations for the functional

having integrand f̃ become identities.

This neutral action method leads to overdetermined systems of equations

in the qp. On the other hand, it applies to systems of partial differential

equations that are not the Euler–Lagrange equations of some functional.

Applications to mechanical problems can be found in [12].
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2.8 Exercises

2.1 Let the structure of Example 2.1 be strengthened with another spring of
rigidity k2 as shown in Fig. 2.12. (a) Write down the total potential energy of
the system and the boundary and compatibility equations. (b) Write down the
functional that should be minimized to get the equilibrium equations and natural
boundary conditions. (c) Applying the general procedure of the calculus of vari-
ations, derive the differential equation of equilibrium and the natural boundary
conditions.

q x( )

P

y

Fig. 2.12 Beam with two springs under load q(x) and P .

2.2 A cantilever beam having length 2a and parameters E, I is supported with
a spring of rigidity k at point a and a clock spring of rigidity c at point 2a
(Fig. 2.13). Choose a mathematical model, write down the total potential energy
functional and kinematic restrictions, and derive the equilibrium equations and
natural boundary conditions.

2.3 Consider the system shown in Fig. 2.14. Using Example 2.2 as a guide,
write down the energy functional, kinematic restrictions, and first variation of
the energy functional. Then derive the equilibrium equation and the natural
boundary conditions. Repeat for the system of Fig. 2.15; also consider the case
when both beam and rod models are employed simultaneously.

2.4 Fig. 2.16 shows a system of three rigidly coupled beams having parameters
E, I and respective lengths a1, a2, a3. Construct a mathematical model of the
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q x( )

Fig. 2.13 Cantilever beam supported with springs under load.

q x( )

F x( )

�

�

A

B

C

D

Fig. 2.14 System consisting of three rods.

structure, write out the energy functional and kinematic restrictions, and derive
the equilibrium equations and natural boundary conditions.

2.5 Two beams having parameters E, I, a are related elastically. Using Winkler’s
model of the elastic junction with parameter k (Fig. 2.17), construct a model for
the system, write down the energy functional and kinematic restrictions, and
derive the equilibrium equations and natural boundary conditions.

2.6 A square is composed of equal beams having parameters E, I, a (Fig. 2.18).
Construct the model, write out the energy functional and kinematic restrictions,
and derive the equilibrium equations and natural boundary conditions. Find the
conditions under which the equilibrium problem makes sense (has a solution).

2.7 A system of coupled beams with a supporting clock spring appears in
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q x( )

F x( )

�

�

A

B

C

D

Fig. 2.15 System consisting of three beams.

q x( )

P

A

B C

D

Fig. 2.16 Three beam system under load.

Fig. 2.19. Construct the mathematical model, write out the total potential energy
functional and kinematic restrictions, and derive the equilibrium equations and
natural boundary conditions.

2.8 A system of coupled beams with a supporting spring is shown in Fig. 2.20.
(Also known as von Mises truss, the system is used to study the stability of elastic
systems.) Construct a mathematical model, write out the energy functional and
kinematic restrictions, and derive the equilibrium equations and natural boundary
conditions.
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A

B C

D

q x( )

Fig. 2.17 Two beams related elastically.

q x( )
3

Pq x( )

A

B C

D

1

q x( )
4

2
q x( )

Fig. 2.18 A square constructed of beams under load.

2.9 Find the conservation laws for a functional of the form

F =

∫ b

a

f(y′) dx.
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q x( )

P

A

B
C

D

Fig. 2.19 Three beams with a supporting clock spring under load.

F x( )

� �

P

F x( )

A

B

C

D

Fig. 2.20 Two beam system.

2.10 Find the conservation laws for the functional

F =
1

2

∫ b

a

(y′)2 dx.
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2.11 Show that the functional

F =
1

2

∫ b

a

(y′)2 dx,

has no variational symmetries other than those obtained in Exercises 2.9 and
2.10.

2.12 Find the variational symmetry condition for the functional

F =
1

2

∫ b

a

f(x, y, y(k)) dx,

where the constant k > 2.

2.13 Find divergence symmetries for the functional

F =
1

2

∫ b

a

(y′)2 dx.
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Chapter 3

Elements of Optimal Control Theory

3.1 A Variational Problem as a Problem of Optimal Control

Let us consider a special problem in the calculus of variations:∫ b

a

f(x, y(x), y′(x)) dx → min
y∈C(1)(a,b)
y(a)=y0

(3.1)

Let y(x) be fixed for a moment. We introduce an equation for a new

function z = z(x):

z′(x) = f(x, y(x), y′(x)), z(a) = 0.

It is clear that

z(b) = z(b)− z(a) =

∫ b

a

z′(x) dx =

∫ b

a

f(x, y(x), y′(x)) dx.

Now we introduce another function u(x) = y′(x). Problem (3.1) can be

formulated as follows:1

Problem of Terminal Control. Given ordinary differential equations

y′(x) = u(x), z′(x) = f(x, y(x), u(x)), (3.2)

and initial conditions y(a) = y0 and z(a) = 0 find u = u(x) ∈ C(a, b) at

which z(b) attains the minimal value.

Since z(b) is the value of the integral, this formulation is equivalent to

the formulation of the problem of strong minimum of the functional (3.1).

1Thanks to Dr. K.V. Isaev of Rostov State University, who furnished the authors with
a notebook of his lectures on control theory. The presentation of the terminal control
problem follows, in large part, Dr. Isaev’s lectures.

159
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Note that the last formulation does not involve integration. The solution

of the Cauchy problem for an ordinary differential equation (ODE) is less

computationally intensive than the solution of the corresponding integral

equation. This transformation of a variational problem to another form

is numerically advantageous; moreover, it allows us to pose a new class of

minimization problems along with new solution methods. Note that the

new formulation should still give us the Euler equation for a minimizer and

the natural boundary condition at x = b.

The formulation (3.1) is equivalent to the Problem of Terminal Control if

f is sufficiently smooth. But the Problem of Terminal Control has brought

us to a new class of problems that fall outside the calculus of variations.

These problems also fall outside classical ODE theory, since for the Cauchy

problem in the latter, the number of differential equations always equals the

number of unknown functions. In our formulation we have two equations

and three unknowns y, z, u. But if u is given we have a Cauchy problem

in which y and z are uniquely determined. We solve a special minimum

problem, seeking the minimum value of z at point b, changing u in the

class of continuous functions. Continuity of u was stipulated by the tools

of the calculus of variations. But for many problems having the form of

the Problem of Terminal Control or something similar, this condition is

too restrictive. We shall consider other tools for treating such problems —

tools not equivalent to those of the calculus of variations.

The Problem of Terminal Control belongs to optimal control theory. The

designation “terminal control” refers to the fact that something, namely z,

is to be minimized at a final time instant x = b. A more general formulation

is presented in § 3.2.
We have thus examined a variational problem as a problem of optimal

control. Let us take a moment to compare the setups of these two problems.

Each must provide a functional to be minimized. In the variational setup

this functional is an integral that incorporates some information about the

system structure. In the control problem these elements are separated: the

system is governed by a set of ODEs relating internal parameters y, z to an

external parameter u that can be changed at will (under some restrictions

of course), while the “cost functional” is formulated separately. There are

advantages in choosing to disentangle the elements of the problem setup

in this way; in fact, many practical problems are so posed naturally and

cannot be posed as variational problems. Consider, for example, a child on

a playground swing. The amplitude of the oscillations is governed by the

pendulum equation — an ODE — and the effective length u = u(t) of the
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pendulum is under the child’s control. There is no reason why this control

parameter must be changed in a continuous fashion; every child knows that

the best results can be obtained by sudden shifts in his or her center of

gravity. Hence we should be able to accommodate discontinuities in u.

Of course, it is easy to cite examples on a much larger scale of economic

importance — examples ranging from space travel to the damping of a

ship’s oscillations in the ocean.

In short, we shall consider problems involving a “system” or “controlled

object” having a control parameter u. In general we seek u that mini-

mizes a cost functional G, which in turn depends on u through an initial

or boundary value problem for a set of ODEs. We will not consider all as-

pects of standard mathematical optimal control theory, including existence

theorems, etc. But we will present an introduction to certain practical as-

pects relating to the numerical solution of optimal control problems. The

expression for the increment of the cost functional G which we will derive

is analogous to the first variation in the calculus of variations, or to the dif-

ferential in calculus. Its expression provides a basis for various numerical

approaches to optimal control problems. It also brings us Pontryagin’s max-

imum principle, which allows us to determine whether a governing function

u is optimal.

3.2 General Problem of Optimal Control

First we generalize the Problem of Terminal Control. A controlled system

is described by n +m functions, which depend on a known variable. We

shall call this latter variable t or x and regard it as the time variable. Given

are n ordinary differential equations involving the first n parameters of the

system y1, . . . , yn and their first derivatives. These equations are written in

normal form. The vector y = (y1, . . . , yn) is often called the state vector,

and its component functions y1, . . . , yn the state variables. The remaining

m parameters u1, . . . , um are considered as free parameter-functions. We

call u = (u1, . . . , um) the control vector, and its component functions the

control variables. The differential equations are

y′1(t) = f1(t, y1(t), . . . , yn(t), u1(t), . . . , um(t)),

...

y′n(t) = fn(t, y1(t), . . . , yn(t), u1(t), . . . , um(t)),



September 30, 2011 8:42 World Scientific Book - 9in x 6in aea

162 Advanced Engineering Analysis

or

y′(t) = f(t,y(t),u(t)). (3.3)

Equations (3.3) should be supplemented with conditions at the initial time

t = t0:

y(t0) = y0, (3.4)

where y0 is a given initial state.

We now consider a problem of the form

G(y(T )) → min

over the set of admissible u, where T is a fixed (final) time instant. The

quantity G(y(T )) is a functional dependent on the values taken by u and y

over [t0, T ]. The space in which these vector functions reside is an important

issue to be discussed later. Whereas in variational problems we permit

only smooth functions for comparison and consider non-smooth functions as

exceptions, here we consider non-smooth control functions since these tend

to be more useful in applications (and, often more importantly, allowed by

the method of solution and investigation).

Many optimal control problems arise in classical mechanics. There a

system, described by the equations of classical mechanics, can be acted

upon by forces whose magnitudes and directions are subject to certain

restrictions. We obtain a problem of terminal control if we attempt to

minimize the value of a function, depending on the internal parameters of

the system, at a certain (final) time instant. For example, we may wish to

bring the system to a certain state with the best accuracy.

We can generalize the Problem of Terminal Control by supplanting the

initial values (3.4) with n equations given at some fixed points tk ∈ [t0, T ]:

Bk(y(tk)) = 0, k = 1, . . . , n.

The goal function can incorporate values of y at other points of [t0, T ]:

G(y(τ1), . . . ,y(τr)) → min .

Such a problem is solved practically by any system that has to meet some

time schedule (e.g., by a flight team who must land at several airports at

scheduled times during a flight).

Let us consider another type of optimal control problem:

Time-Optimal Control Problem. A system is described by (3.3). It is

necessary to move the system from state y(t0) = y0 to state y(T ) = yf in

minimal time T .
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Again, we leave the class of admissible u as an issue for the future. Note

that for this problem an existence theorem is essential in many cases, since

there are mechanical and other systems for which an initial-final pair of

states y0,yf is impossible to take on for any time.

We see that in Time-Optimal Control we have 2n given boundary con-

ditions, but there is an additional unknown parameter T that must be

determined as an outcome of the solution. We see a big difference in the

number of boundary values for the state vector y in these problems. This

is provided by the arbitrariness of the control vector u, changes in which

can lead to the requirement for new boundary conditions. The restriction

on the number of boundary conditions r at each “boundary” (initial, final,

or intermediate) point of time is that it cannot exceed n, the number of

components of y and, in total, at any admissible fixed u we have to ob-

tain a boundary value problem for our system of equations that is solvable

(not necessarily uniquely). When the boundary value system has too few

boundary conditions for uniqueness, then, in the same way there arise natu-

ral boundary conditions in the calculus of variations, there arise additional

boundary conditions for y in the optimal control problems. In some ver-

sions of the numerical methods that are used for solving the corresponding

problems, such natural conditions do not participate explicitly — as is also

the case for natural conditions in the calculus of variations — however, an

optimal solution obeys them.

These are not the only possible setups for optimal control problems. We

can consider, for example, problems where the cost functional is given in

an integral form which takes into account the values of y at all instants of

time.

Above we mentioned restrictions on the control vector u, but many

problems require restrictions (frequently in the form of inequalities) on y as

well. For example, the problem of manned spaceflight forces us to minimize

expenses while restricting accelerations experienced during the flight.

Many real problems of optimal control require us to consider (nonlinear)

systems of PDEs rather than ODEs. The interested reader can find this

discussed elsewhere. Often, however, these problems can be reduced to the

problems that appear in this chapter. Each practical problem for the same

object can lead to a different mathematical setup, as well as to different

theoretical and practical results. In this book we will consider only mathe-

matical aspects of the problems of optimal control, leaving applications to

many other sources. First we would like to slightly reduce the setup of the

problems under consideration.
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The system (3.3) is autonomic if f does not depend explicitly on t.

Henceforth we shall consider only autonomic systems with t0 = 0. We may

do this without loss of generality. First, given t0 �= 0 we may shift the time

origin by putting x = t − t0. Let us consider the transformation to auto-

nomic form. In principle there is nothing to limit the number of components

that y may have. So we can always extend it by an additional component

yn+1, supplementing (3.3) with an additional equation y′n+1(x) = 1 and

initial condition yn+1(0) = 0. Then (3.3) takes the form

y′(x) = f(yn+1(x),y(x),u(x)).

Thus, redenoting y = (y1, . . . , yn+1) and the corresponding f , we arrive

again at (3.3) but in the form

y′(t) = f(y(t),u(t)). (3.5)

This is the autonomic form we shall consider.

3.3 Simplest Problem of Optimal Control

So far we have said little about the restrictions to be placed on the behavior

of u(t). We shall take the class of admissible controls to consist of those

vector functions that are piecewise continuous on [0, T ]. This is in contrast

to what we saw in the calculus of variations. It is possible to relax this

restriction on u(t), requiring it to be merely measurable in some sense, but

we leave this and related questions of existence2 for more advanced books.

What constitutes a “small” variation (increment) of a control function?

In the calculus of variations we regarded a variation (increment) of a func-

tion as small if its norm in the space C(1)(0, T ) was small. With such a

small increment taken in its argument, the increment of a functional was

also guaranteed to be small, and we were led to apply the tools of calcu-

lus. To obtain the Euler equation and the natural boundary conditions

we linearized the functional with respect to the increment of the unknown

function. Here we would like apply the same linearization idea and ob-

tain necessary conditions for the objective functional to attain its minimal

value, but at the same time introduce another notion of smallness of the

increment of a control function.
2Such questions are more theoretical than we are able to treat here, but this does not

mean they are unimportant. There are practical problems for which no optimal solution
exists. In such cases, however, it is often possible to obtain a working approximation to
an optimal solution.
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When we linearize an expression we use the fact that a small increment

in the independent variable brings a small increment in the value of the

expression. We understand that if we change the control function in some

small way then the increment of the output function will be small. But in

Newtonian mechanics if a large force acts on a material point for a short

time then the deviation of the point trajectory during a finite time is small

— the shorter the time of action, the smaller the deviation. So “small-

ness” of the increment can be provided by a force of small magnitude or

by a force of short duration. This situation is quite typical for disturbances

to ODEs, and suggests a new class of “small” increments to control func-

tions. From a more mathematical viewpoint, the norm of C(0, T ) is not

the only norm with which we can define small increments while requiring

that the change in a solution exhibit continuous dependence on changes in

the control function. In particular, we may use the norm of L(0, T ).

Let us build a class of functions U in which we seek control functions

u = u(t). U is a set of functions piecewise continuous on [0, T ], and is

restricted by some conditions: normally simultaneous linear inequalities

given pointwise. An example of such a restriction is

0 ≤ u(t) ≤ 1.

The simplest problem of optimal control theory is the following problem of

terminal control:

Simplest Problem of Optimal Control. Let a controlled object be

described by the equation

y′(t) = f(y(t), u(t)) (3.6)

subject to

y(0) = y0. (3.7)

Among all functions belonging to a class U described above, find a control

function u(t) that minimizes g(y(t)) at t = T :

g(y(T )) → min
u(t)∈U

.

Here g(y) is a continuously differentiable function on the domain of all

admissible values of y = y(t).3

3Rather than formulating explicit restrictions on f and g, we simply assume they are
sufficiently smooth. In particular we shall differentiate g(y) and f(y, u) with respect
to y supposing that the corresponding derivatives are continuous, we shall assume a
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First we define the main elementary increment of the control function,

a so-called needle-shaped increment. This is where optimal control theory

begins to depart from the calculus of variations. We choose some u(t) ∈ U
and let t = s be a point at which u(t) is continuous. For definiteness

we consider all the functions u(t) to be continuous from the left on [0, T ].

Consider another function u∗(t) that differs from u(t) only on the half-open

segment (s− ε, s] as shown in Fig. 3.1. Analytically this function is

u∗(t) =

{
u(t), t /∈ (s− ε, s],

v, t ∈ (s− ε, s],
(3.8)

where ε > 0 is sufficiently small. The increment

δu(t) = u∗(t)− u(t),

which is zero everywhere except in the interval (s−ε, s] of length ε, is what
we term needle-shaped. Its smallness is characterized by

‖δu‖L(0,T ) =

∫ T

0

|δu| dt,

which is of order ε.

tss-�

υ u = u t( )

Fig. 3.1 A control function subject to a needle-shaped increment.

In what follows we suppose u∗(t) belongs to U . We also assume that

together with some u∗(t), defined by ε0 > 0 and v0, the class U contains all

the u∗(t) having the same final point s of the jump for which ε < ε0. Since

continuous dependence of f(y, u) on u, and we shall suppose that for any fixed admissible
u(t) ∈ U the Cauchy problem (3.6)–(3.7) has a unique solution that depends continuously
on the initial condition y0. All this could be formulated purely in terms of the given
functions f and g and it is possible that doing so would yield sharper results, but we
choose clarity over rigor at this stage. In fact, the simple problem we have chosen to
consider is not the most realistic one available. However, its investigation will open the
way to general problems without obscuring the essential ideas.
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the restrictions for U are usually given piecewise by simultaneous linear

inequalities, this assumption does not place additional restrictions on such

problems.

Many textbooks consider needle-shaped functions that are constant on

the interval (s− ε, s], but we consider them only for small ε so the norm in

L(0, T ) of the difference between the above introduced and the traditional

needle-shaped functions is of order higher than ε. We took our definition

only for convenience. Note that we can approximate (in the uniform norm)

any u(t) ∈ U with a finite linear combination of needle-shaped functions.

Since g(y(T )) is a number that depends on u(t) through (3.6) and (3.7),

we have a functional defined on U . Experience suggests that we apply the

ideas of calculus. We need to find the increment of the functional under

that of the control function, introducing something like the first differen-

tial. Now δu(t) is an elementary needle-shaped function whose smallness

is determined by ε. From the corresponding increment of g(y(T )) we must

select the part that is proportional to ε and neglect terms of higher order

in ε.

As an intermediate step we will have to obtain the increment in y(T )

corresponding to δu(t). Let us denote the solution of (3.6)–(3.7) corre-

sponding to u∗(t) by y∗(t):

y∗′(t) = f(y∗(t), u∗(t)), y∗(0) = y0.

We denote

∆y(t) = y∗(t)− y(t), J(u) = g(y(T )),

and seek the main (in ε) part of the increment

∆Jε,v(u) = J(u∗)− J(u). (3.9)

Again, this main part must be linear in ε; we neglect terms of higher order

in ε. In this, we consider u(t) as given and hence y(t) is known uniquely as

well.

Theorem 3.1. Let t = s be a point of continuity of a control function u(t).

We have

∆Js,v(u) = ε δs,vJ(u) + o(ε), ε > 0, (3.10)

where

δs,vJ(u) = ψ(s)[f(y(s), u(s))− f(y(s), v)] (3.11)
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and where ψ(s) is a solution of the following Cauchy problem (in the reverse

time):

ψ′(s) = −∂f(y(s), u(s))
∂y

ψ(s), ψ(T ) = −dg(y(T ))
dy

. (3.12)

The quantity δs,vJ(u) in (3.10) is called the variational derivative of

the second kind.

tss-ε

y0

T

�y T( )
y t( )

y* t( )

Fig. 3.2 The deviation of a trajectory y(t) under a needle-shaped change of the control
function on the time interval [s− ε, s].

Proof. Take ε > 0 so small that all the points of [s − ε, s] are points

of continuity of u(t). We require that u∗(t), which differs from u(t) by a

needle-shaped increment, is admissible and has the form (3.8). We divide

the proof into several steps.

Step 1. First let us find the main part in ε of the increment of y(t),

in particular at t = T . In Fig. 3.2 we show the behavior of y(t) and y∗(t).
When t < s− ε we have u∗(t) = u(t) and thus y∗(t) = y(t).

Let t ∈ [s− ε, s]. Subtracting the equations for y∗ and y we get

y∗′(t)− y′(t) = f(y∗(t), v)− f(y(t), u(t))

or, since ∆y(t) = y∗(t)− y(t), the increment of y(t) satisfies

∆y′(t) = f(y(t) + ∆y(t), v)− f(y(t), u(t)). (3.13)

Besides, we have the “initial” condition for this interval

∆y(s− ε) = 0 (3.14)

since y∗(s − ε) = y(s − ε). Integration of (3.13) gives us an equivalent

integral equation on [s− ε, s]:

∆y(t)−∆y(s− ε) =

∫ t

s−ε
[f(y(τ) + ∆y(τ), v) − f(y(τ), u(τ))] dτ.
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By (3.14) we have

∆y(t) =

∫ t

s−ε
[f(y(τ) + ∆y(τ), v) − f(y(τ), u(τ))] dτ on [s− ε, s].

We assume f(y, u) is continuous and bounded on the domain where the pair

(y, u) takes its value, and thus when ε is small the modulus of the integral

on the right is bounded byMε for t ∈ [s−ε, s]. So this integral has the first

order of smallness in ε when t ∈ [s− ε, s], and thus the same value bounds

|∆y(t)| on the same segment. Since ε is small and y(t), u(t) are continuous

on [s − ε, s], the integrand is continuous as well, and we introduce in the

values of this integral an error of order higher than the first in ε if we replace

the integrand by the constant value f(y(s), v)− f(y(s), u(s)). So

∆y(t) =

∫ t

s−ε
[f(y(s), v)− f(y(s), u(s))] dτ + o(ε)

= (t− s+ ε)[f(y(s), v)− f(y(s), u(s))] + o(ε),

and thus

∆y(s) = ε[f(y(s), v)− f(y(s), u(s))] + o(ε). (3.15)

This gives us the “initial” value for the solution y∗(t) on [s, T ]. Note that

on [s − ε, s] the change of ∆y(t) in t is almost linear, which is expected

since ε is small.

On [s, T ], subtracting the equations for y(t) and y∗(t) we get

∆y′(t) = f(y(t) + ∆y(t), u(t))− f(y(t), u(t)). (3.16)

This is supplemented by the initial condition (3.15), which is small when ε

is small. Since y and y∗ obey the same equation on [s, T ] but their initial

values differ by a small value ∆y(s) of order ε, we can expect that there is

continuous dependence of the solution on the initial data and hence that

the difference between y∗ and y, which is ∆y, remains of order ε when T is

finite. So we linearize (3.16) using the first-order Taylor expansion

f(y(t) + ∆y(t), u(t))− f(y(t), u(t)) =
∂f(y(t), u(t))

∂y
∆y(t) + o(|∆y(t)|)

to get

∆y′(t) =
∂f(y(t), u(t))

∂y
∆y(t) + o(ε).

The main part of ∆y(t), denoted by δy(t), satisfies

δy′(t) =
∂f(y(t), u(t))

∂y
δy(t). (3.17)
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This can be integrated explicitly since y(t) and u(t) and the initial condition

for δy(t) are defined by (3.15) as

δy(s) = ε[f(y(s), v)− f(y(s), u(s))].

However, we should allow for an extension to a system of ODEs. So we shall

produce a mathematical trick of “finding” the solution in other terms. At

this point we must interrupt the proof and cover some additional material.

3.4 Fundamental Solution of a Linear Ordinary Differential

Equation

Consider a linear ODE

x′(t) = a(t)x(t). (3.18)

This has a unique solution for any initial condition x(s) = x0, a(t) being a

given continuous function (it can be continuous on an interval if we consider

the equation on this interval or at any t). The fundamental solution is a

function ϕ(t, s) which at any fixed s satisfies

dϕ(t, s)

dt
= a(t)ϕ(t, s) (3.19)

and the condition

ϕ(s, s) = 1. (3.20)

This function in two variables has many useful properties, the first of which

is trivial:

Proposition 3.2. A solution of (3.18) satisfying the initial condition

x(s) = x0 is

x(t) = x0ϕ(t, s). (3.21)

Proposition 3.3. We have

ϕ(t, s) = ϕ(t, τ)ϕ(τ, s) (3.22)

for any t, s, and τ .

Proof. Indeed, for fixed τ, s the function ϕ(t, τ)ϕ(τ, s) of the variable t

is a solution to (3.18) when t is an independent variable, since ϕ(τ, s) does

not depend on t. Thus we have two solutions to (3.18): the functions ϕ(t, s)

and ϕ(t, τ)ϕ(τ, s). But for t = τ they correspondingly reduce to ϕ(τ, s) and
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ϕ(τ, τ)ϕ(τ, s) = 1 · ϕ(τ, s), and thus at t = τ they coincide. By uniqueness

of the solution to the Cauchy problem for (3.18) (the initial value is given

at t = τ) they coincide at any t. �

Since ϕ(s, s) = 1 we have ϕ(s, t)ϕ(t, s) = 1, hence

ϕ(t, s) = 1/ϕ(s, t). (3.23)

In § 3.5 we shall need ∂ϕ(t, s)/∂s. By (3.23) we have

Proposition 3.4. The function ϕ(t, s) considered4 as a function in s sat-

isfies

dϕ(t, s)

ds
= −a(s)ϕ(t, s). (3.24)

Proof. Using (3.23) we have

dϕ(t, s)

ds
=
d(ϕ−1(s, t))

ds
= −ϕ−2(s, t)

d(ϕ(s, t))

ds
= −ϕ−2(s, t) a(s)ϕ(s, t)

= −a(s)ϕ−1(s, t) = −a(s)ϕ(t, s). �

Now we can continue the proof of Theorem 3.1.

3.5 The Simplest Problem, Continued

Setting

a(t) =
∂f(y(t), u(t))

∂y
, (3.25)

we apply the notion of fundamental solution to (3.17). So the solution5 of

(3.17) on [s, T ] satisfying (3.22) is

δy(t) = ε [f(y(s), v)− f(y(s), u(s))]ϕ(t, s).

Hence

δy(T ) = ε [f(y(s), v)− f(y(s), u(s))]ϕ(T, s)

and we can write

∆y(T ) = ε [f(y(s), v)− f(y(s), u(s))]ϕ(T, s) + o(ε). (3.26)

4Here we consider t as a fixed parameter, which is why we use the notation for an
ordinary derivative rather than a partial derivative.
5Of course, this is really just a useful representation rather than an explicit solution.
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Step 2. The main part of the increment of J(u) = g(y(T )) can be found

using the same idea of linearization and Taylor expansion:

∆J(u) = J(u∗)− J(u)

= g(y(T ) + ∆y(T ))− g(y(T ))

=
dg(y)

dy

∣∣∣∣
y=y(T )

∆y(T ) + o(|∆y(T )|).

With regard for (3.26) this brings us to

∆J(u) = ε
dg(y)

dy

∣∣∣∣
y=y(T )

[f(y(s), v)− f(y(s), u(s))]ϕ(T, s) + o(ε).

So we have found the main part of the increment of the objective functional;

however, we must still represent it in the form shown in Theorem 3.1.

Step 3. Let

ψ(s) = −dg(y)
dy

∣∣∣∣
y=y(T )

ϕ(T, s). (3.27)

With this notation ∆J(u) takes the form (3.10). It remains only to demon-

strate that ψ(s) satisfies (3.12). The second relation of (3.12) holds by

definition of the fundamental solution:

ψ(T ) = −dg(y)
dy

∣∣∣∣
y=y(T )

ϕ(T, T ) = −dg(y)
dy

∣∣∣∣
y=y(T )

.

Let us show that ψ(s) satisfies the first equation of (3.12):

dψ(s)

ds
=

d

ds

[
−dg(y)

dy

∣∣∣∣
y=y(T )

ϕ(T, s)

]

= −dg(y)
dy

∣∣∣∣
y=y(T )

d

ds
ϕ(T, s)

= −dg(y)
dy

∣∣∣∣
y=y(T )

[−a(s)ϕ(T, s)]

= a(s)
dg(y)

dy

∣∣∣∣
y=y(T )

ϕ(T, s).

Here we used (3.24) to eliminate the derivative of ϕ(T, s) with respect to

the second argument. Finally, remembering (3.27) we obtain

ψ′(s) = −a(s)ψ(s).
This is the needed equation since a(t) is given by (3.25).
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3.6 Pontryagin’s Maximum Principle for the Simplest

Problem

What have we established in Theorem 3.1? To find the increment in the

goal functional under a needle-shaped increment of the control function

u(t), we should do the following:

(1) Solve the Cauchy problem (3.6)–(3.7). In practice this is often done

numerically (e.g., by the Runge–Kutta method).

(2) Having obtained y(T ), formulate equations (3.12) and solve this Cauchy

problem with respect to ψ(s) in the “reversed” time.

(3) Write out (3.10).

The second condition in (3.12) is analogous to the natural boundary con-

dition in the calculus of variations. The first equation in (3.12) is called

the conjugate equation; there is a weak analogy between this and the Euler

equation. We also observe that in performing steps (1) and (2) we effec-

tively solve a boundary value problem for the pair y(t), ψ(s). A similar pair

of equations arises for other types of optimal control problems, but in the

terminal control problems they split.

Let us reformulate this problem, introducing a new function H(y, ψ, u)

in three variables:

H(y, ψ, u) = ψ f(y, u). (3.28)

Because

∂H(y, ψ, u)

∂ψ
= f(y, u),

∂H(y, ψ, u)

∂y
=
∂f(y, u)

∂y
ψ,

we can rewrite (3.6) and (3.12) as

y′(t) =
∂H(y(t), ψ(t), u(t))

∂ψ
, ψ′(t) = −∂H(y(t), ψ(t), u(t))

∂y
,

or

y′(t) = Hψ(y(t), ψ(t), u(t)), ψ′(t) = −Hy(y(t), ψ(t), u(t)). (3.29)

This is the so-called Hamilton form of a system of ODEs that is frequent

in physics. L.S. Pontryagin called H(y, ψ, u) the Hamilton function, but

it was subsequently called the Pontryagin function. Again, we will obtain

equations of the form (3.29) when we consider any sort of control problem

for the system described by (3.6).
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Let us rewrite the increment ∆J(u) under a needle-shaped increment

with parameters ε, v given at t = s, which is presented by (3.10), in terms

of H(y, ψ, u):

∆J(u) = ε (H(y(s), ψ(s), u(s)) −H(y(s), ψ(s), v)) + o(ε).

Now we can formulate a necessary condition of minimum for J(u), known

as Pontryagin’s maximum principle:

Theorem 3.5. Let u(t) be an optimal control function at which J(u) at-

tains its minimal value on U , the set of all admissible control functions, and

let y(t) and ψ(t) be solutions of the boundary value problem (3.6), (3.7),

(3.12). At any point t = s of continuity of u(t), the function H(y(s), ψ(s), v)

considered as a function in the variable v takes its maximum value at

v = u(s).

Proof. J(u) attains its minimum at u = u(t). For any admissible control

function u∗(t) given by (3.8) we have

J(u∗)− J(u) ≥ 0.

For a point t = s of continuity of u = u(t), in terms of the Pontryagin

function this is

ε (H(y(s), ψ(s), u(s)) −H(y(s), ψ(s), v)) + o(ε) ≥ 0.

Note this is valid for any admissible v and small, nonnegative ε. It follows

immediately that

H(y(s), ψ(s), u(s))−H(y(s), ψ(s), v) ≥ 0,

so for any admissible v we get H(y(s), ψ(s), u(s)) ≥ H(y(s), ψ(s), v). �

Let us consider the application of these results to a simple example.

Example 3.6. Find the form of the control function u(t), |u(t)| ≤ 2, that

gives minimum deviation of y(t) from 10 at t = 1 (described by the function

g(y(1)) = (10− y(1))2) for a system governed by

y′(t) + y(t) = u(t), y(0) = 1.

Solution. We stay with our previous notation. Rewrite the equation as

y′ = −y + u and construct Pontryagin’s function

H(y, ψ, u) = ψ(−y + u).
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We need to learn when this function takes its maximum value with respect

to u along a solution. For this we need to know some properties of ψ. Let

us establish how ψ changes. The conjugate equation for ψ is

ψ′ = −∂H
∂y

= ψ.

Its general solution is ψ = cet. For this example we need not find (y, ψ)

for any control function, so we will not formulate the final value for ψ but

merely note that its sign coincides with that of the constant c. This means

that along any possible solution y = y(t), at any point of continuity of y, the

maximum is taken when ψ(t)u(t) takes its maximum. Since this expression

is linear in u, the maximum is taken when u takes one of its extreme values

u = ±2 and, because of the constancy of sign of ψ, it cannot change from

one extreme to another.6

So now we must consider the governing equation in two versions, with

u = 2 and u = −2. These are

y′ = −y + 2, y′ = −y − 2.

The initial condition leads to the respective solutions

y1(t) = −e−t + 2, y2(t) = 3e−t − 2.

Comparing the values of the cost function g(y) for y1 and y2 at t = 1, we see

that u = u(t) = 2 is the optimal control. Correspondingly y(t) = −e−t+2,

and the minimum value of g is g(y(1)) = (8 + e−1)2. �

This example shows that not every optimal control problem has a solution.

Indeed, if we pose the minimum time problem for the same equation with

y beginning at y = 1 and ending at y = 10, under the restriction |u| ≤ 2,

then there will be no solution; a solution starting from the point y(0) = 1

never takes the value 10.

Let us continue consideration of the same problem. We denote by J(u)

the value g(y(1)) so J is defined as a functional of the control function u.

Example 3.7. For the system of the previous example, find the main part

of the increment of the goal functional under a needle-shaped disturbance

of u if its value is u(t) = 1 for all t.

6A reader familiar with the elements of linear programming will note that the situation
is the same as in that theory. Since many optimal control problems are described by
relations containing a control vector in a linear manner, the reader sees that at this
stage it is necessary to solve a linear programming problem in which we must maximize
a linear function over a set in a finite vector space restricted by linear inequalities.
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Solution. The governing equation of the system for u = 1 is y′ = −y + 1.

The solution that satisfies the initial condition is y = 1. Thus the final

value for ψ is

ψ(1) = −∂g(y(1))
∂y

= −2 · 9(−1) = 18,

and the corresponding solution of the conjugate equation is

ψ(t) = det, d = 18e.

Thus the main part of the increment of the goal functional is

εδs,vJ(u) = ψ(s)[f(y(s), u(s)− f(y(s), v)]

= 18εe1+t(0 + 1− v)

= 18εe1+t(1− v)

for any time s. It is clear that if we wish to decrease locally at any point s

the value of the functional, then we should take the maximum admissible

value of v, which is v = 2. �

This problem is important because it shows how we can improve an initial

approximation to u. For sufficiently small ε, introducing a needle-shaped

change of u at some s we reduce the value of g(y(1)). Choosing ε and s and

decreasing correspondingly the value of J(u) (of course, this happens only

when εδs,vJ(u) has negative values on [0, 1] — if there are no such values

then a corresponding function u is optimal) we get a better approximation

to the optimal control function. But the choice of ε, s is not uniquely

defined even for this simple problem. If ε is small and fixed, it is clear that

the maximal change in J(u) happens (in this problem) when we take the

maximum admissible value of v, that is v = 2. But what is the value of

s? It is clear that we should introduce the needle-change into u at s where

εδs,vJ(u) takes the lowest negative value. In this problem it is easy to see

that it is the point s = 1. Changing u to 2 on [1 − ε, 1] with some small

ε we get a new control function u∗ that is not optimal again. So we need

to repeat the same steps: find εδs,vJ(u
∗), choose ε and s, and introduce

optimally a new needle-shaped perturbation into u to maximally decrease

J(u). This gives a second approximation to the optimal solution, and so

on. In this simple case the approximation will be quite accurate. However,

in practical problems, when we do not know the solution u in advance, it

can be difficult to choose ε and s at each step.

Pontryagin’s maximum principle allows us to test a given control func-

tion for optimality. In addition, we shall see later that for some relatively
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simple problems it can suggest an approach to finding solutions. Next we

would like to note that formula (3.10) is the background for a class of nu-

merical methods for finding an optimal solution. We shall discuss this for

the general problem of terminal control, which should be further considered.

In § 3.7 we present some essential mathematical tools.

3.7 Some Mathematical Preliminaries

When we considered the simplest problem of control theory we used the

notions of fundamental solution and linearization. To extend these to vector

functions one can use the tools of matrix theory, but the resulting formulas

are much more compact and clear when presented in tensor notation. We

therefore pause to present a small portion of tensor analysis. In doing

so we shall confine ourselves to the simplest case involving only Cartesian

frames having orthonormal basis vectors e1, . . . , en. In the general case

the controlled functions y(t) take values in the n-dimensional vector space

spanned by this basis, so we can represent y(t) as

y(t) =

n∑
i=1

yi(t) ei. (3.30)

From now on we omit the summation symbol and write simply

y(t) = yi(t) ei. (3.31)

This is the usual convention, due to Einstein, for dealing with Cartesian

tensors: whenever we meet a repeated index (in this case i) we understand

that summation is to be performed over this index from 1 to n. Now we shall

demonstrate how this expansion can be used along with the dot product to

produce representations of vectors, and to reproduce common operations

involving vectors and matrices.

Matrices as the component representations of tensors and

vectors

To perform operations with a vector x we must have a straightforward

method of calculating its components x1, . . . , xn with respect to a basis

e1, . . . , en. This can be done through simple dot multiplication. For addi-

tional clarity let us momentarily suspend use of the summation convention.
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Dotting x with e1 we have

x · e1 = (x1e1 + · · ·+ xnen) · e1
= x1(e1 · e1) + · · ·+ xn(en · e1).

Because e1 · e1 = 1 and the remaining dot products vanish, we obtain

x1 = x · e1.
Here the key observation is that

ei · ej =
{
1, j = i,

0, j �= i,
(3.32)

and this same observation can be used in similar fashion to develop the

formulas

x2 = x · e2, x3 = x · e3, . . . , xn = x · en.
In terms of the Kronecker delta symbol (page 39) we could have written

x · e1 = (x1e1 + · · ·+ xnen) · e1
= x1δ11 + · · ·+ xnδn1

= x1

to calculate x1. We can now return to the summation convention and repeat

these calculations in tensor notation. If x is given by

x = xkek (3.33)

then for i = 1, 2, . . . , n we have

xi = x · ei (3.34)

since x · ei = xkek · ei = xkδki = xi for each i. Thus in a given basis

ei the components xi of the vector x are determined uniquely, and x is

determined by these values xi. It is convenient to display the components

of x in a column matrix: 

x1
...

xn


 .

Hence a matrix can act as the component representation of a vector. It

is important to understand that a vector itself is an objective entity: it

is independent of coordinate frame. Consequently if we expand the same
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vector x relative to a different Cartesian basis ẽ1, ẽ2, . . . , ẽn and repeat the

above steps, we will in general arrive at a matrix representation

x̃1
...

x̃n




whose entries x̃k differ from the xk. We shall return to this issue later after

examining tensors.

If x and y are two vectors, their dot product is a scalar:

c = x · y. (3.35)

When we represent each of x and y with respect to a basis ei as

x = xiei, y = yjej ,

we can easily calculate c as

x · y = xiei · yjej = xiyj(ei · ej) = xiyjδij = xiyi.

Of course, this same result arises from the matrix multiplication

c =
(
x1 · · · xn

)
y1
...

yn


 . (3.36)

This familiar correspondence between dot multiplication of vectors and mul-

tiplication of the component matrices will be extended in what follows.

A vector is an example of a tensor of the first rank. The development

of our subject will also require some simple work with tensors of the sec-

ond rank. Just as a vector can be constructed as a linear combination of

basis vectors ei, a tensor of the second rank can be constructed as a linear

combination of basis dyads. These are in turn formed from pairs of vectors

through the use of a tensor product. This operation, denoted ⊗, obeys laws

analogous to those for ordinary multiplication: if a, b, and c are vectors

then

(λa) ⊗ b = a⊗ (λb) = λ(a ⊗ b),

(a+ b)⊗ c = a⊗ c+ b⊗ c,

a⊗ (b+ c) = a⊗ b+ a⊗ c, (3.37)

for any real number λ. We shall shorten the notation for the tensor product

somewhat by omitting the ⊗ symbol: thus we write ab instead of a ⊗ b.
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The quantity ab is an example of a dyad of vectors. If we expand each of

the vectors a and b in terms of a basis ei, the dyad ab becomes

ab = aieibjej = aibj eiej .

In this way the n2 different basis dyads eiej make their appearance. The

dyads eiej form the basis for a linear space called the space of tensors of

the second rank. An element A of this space has a representation of the

form

A = aijeiej (3.38)

where the aij are called the components of A relative to the basis eiej .

Here we again use Einstein’s summation rule. Note that we can write out

the components of A as a square array

a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...

an1 an2 · · · ann


 ,

and thus we get a correspondence between the tensor A and this matrix of

its components.

One goal of the discussion is to demonstrate the usefulness of the dot

product. The dot product of a dyad ab and a vector c is defined by the

equation

(ab) · c = a(b · c). (3.39)

The result is a vector directed along a. Analogously we can define the dot

product from the left:

c · (ab) = (c · a)b. (3.40)

These operations have matrix counterparts: (3.39) corresponds to multipli-

cation of a matrix by a column vector and (3.40) corresponds to multipli-

cation of a row vector by a matrix. For example let us write

v = (ab) · c, (3.41)

expand c as c = ckek, expand ab according to (3.37), and use (3.39) to

write

v = aibjeiej · ckek = aibjδjkckei = aibjcjei.
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Hence

vi = aibjcj (3.42)

for i = 1, 2, . . . , n. Pausing to unpack the succinct tensor index notation,

we see that (3.42) actually means the system of equalities

v1 = a1b1c1 + a1b2c2 + · · ·+ a1bncn,

v2 = a2b1c1 + a2b2c2 + · · ·+ a2bncn,

...

vn = anb1c1 + anb2c2 + · · ·+ anbncn,

or, in matrix form,

v1
v2
...

vn


 =



a1b1 a1b2 · · · a1bn
a2b1 a2b2 · · · a2bn
...

...
. . .

...

anb1 anb2 · · · anbn





c1
c2
...

cn


 . (3.43)

We now recall the analogy between (3.35) and (3.36), and examine (3.41)

and (3.43) with similar thoughts in mind. Dot multiplication once again

stands in correspondence with matrix multiplication; moreover, it is clear

that the dyad ab is represented by the square matrix

a1b1 a1b2 · · · a1bn
a2b1 a2b2 · · · a2bn
...

...
. . .

...

anb1 anb2 · · · anbn


 .

We have seen that a dyad ab can map a vector c into another vector v

through the dot product operation given in (3.41). This idea carries through

to general tensors of the second rank, of which dyads are examples. If A is

a tensor of second rank and x is a vector, then A can map x into an image

vector y according to

y = A · x. (3.44)

It is easy to check that the individual components of A = aijeiej are given

by

aij = ei ·A · ej , (3.45)
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and that (3.44) corresponds to

y1
y2
...

yn


 =



a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...

an1 an2 · · · ann





x1
x2
...

xn


 .

A dot product operation known as pre-multiplication of a tensor by a vector

is also considered: the quantity y ·A is defined by the requirement that

(y ·A) · x = y · (A · x)
for all vectors x. This can be also obtained as a consequence of the formal

definition of left-dot-multiplication of a vector by a dyad:

a · bc = (a · b)c. (3.46)

We see both dot product operations (pre-multiplication and post-

multiplication) applied to the definition of the important unit tensor E,

which satisfies

E · x = x ·E = x (3.47)

for any vector x. It is easy to find the components of E from this definition.

We start by writing E = eijeiej and then apply (3.47) with x = ek to get

eijeiej · ek = ek.

Pre-multiplying by em we obtain

eijδmiδjk = δmk

since em · ei = δmi, ej · ek = δjk, and em · ek = δmk. Hence emk = δmk and

we have

E = δijeiej = eiei.

Of course, the corresponding matrix representation is the n × n identity

matrix

I =




1 0 0 · · · 0

0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1


 .

Thus E is equivalent to the unit matrix.
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The strong parallel that exists between tensors and matrices leads us to

apply the notion of transposition to tensors of the second rank. Accordingly,

if A = aijeiej then we define

AT = ajieiej = aijejei. (3.48)

It is easy to see that

A · x = x ·AT (3.49)

for any vector x and any tensor A of the second rank. It is even more

obvious that (AT )T = A. If A is the matrix representation of A, then AT

represents AT .

A dot product between two tensors is regarded as the composition of the

two tensors viewed as operators. That is, A ·B is defined by the equation

(A ·B) · x ≡ A · (B · x). (3.50)

A tensor B of the second rank is said to be the inverse of A if

A ·B = B ·A = E. (3.51)

In this case we write B = A−1.

A central aspect of the study of tensors concerns how their components

transform when the frame is changed. Although such frame transformations

will not play a significant role in the discussion, the reader should under-

stand that to express a tensor in another frame we would simply substitute

the representation of the old basis vectors in terms of the new ones. As a

simple example we may consider the case of a tensor of rank one: a vector.

Let the components of x relative to the frame ei be xi so that x = xiei.

If a new frame ẽi is introduced according to the set of linear relations

ei = Aij ẽj , then x = xiAij ẽj and we see that x = x̃j ẽj where x̃j = Aijxi.

The point is that we are not free to assign values to the x̃j in any way we

wish: once the frame transformation is specified through the Aij , the new

components x̃i are completely determined by the old components xi. The

situation with tensors of higher order is the same.

Note that the correspondence between tensors and matrices is one-to-

one only for a fixed basis. As soon as we change the basis, the matrix

representation of a tensor changes by strictly defined rules. For example,

if we take a non-Cartesian basis in space, the matrix representation of the

tensor E is not the unit matrix, and thus E is not something we could call

the unit tensor. Rather, it is known as the metric tensor.
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Elements of calculus for vector and tensor fields

Now we consider how differentiation is performed on tensor and vector

functions using tensor notation. Let us begin with a function y(t) = yi(t) ei.

Since ei does not depend on t, differentiation of y(t) with respect to t

reduces to differentiation of the component scalar functions yi(t):

y′(t) = y′i(t) ei. (3.52)

Similarly, the differential of a vector function y(t) is

dy(t) = dyi(t) ei. (3.53)

Now suppose we wish to differentiate a composite function f(y)(t) with

respect to t. Writing this as f(yi(t) ei) or f(y1(t), . . . , yn(t)), we have by

the chain rule

d

dt
f(y(t)) =

d

dt
f(y1(t), . . . , yn(t))

=

n∑
i=1

∂f(y1(t), . . . , yn(t))

∂yi
y′i(t)

=
∂f(y(t))

∂yi
y′i(t). (3.54)

Let us write out the right side of (3.54) in vector form. For this we introduce

∇, a formal vector of differentiation (known as the gradient operator):

∇y =
n∑
i=1

ei
∂

∂yi
= ei

∂

∂yi
. (3.55)

(We show the subscript y on ∇ to indicate the vector whose components

participate in the differentiation. The subscript can be omitted if this is

clear from the context.) When we apply ∇y to a function f(y) we get a

vector

∇yf(y) =

n∑
i=1

ei
∂f(y)

∂yi
=
∂f(y)

∂yi
ei. (3.56)

Let us dot multiply ∇yf(y(t)) by y′(t) = y′j(t) ej . Remembering that

ei · ej = δij , we get

∇yf(y(t))·y′(t) =
∂f(y(t))

∂yi
ei ·y′j(t)ej =

∂f(y(t))

∂yi
y′j(t)δij =

∂f(y(t))

∂yi
y′i(t).

Since the right side of this coincides with that of (3.54), we have

d

dt
f(y(t)) = ∇yf(y(t)) · y′(t).
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The differential of f(y(t)) is given by

df(y(t)) = ∇yf(y(t)) · dy(t). (3.57)

Using this formula or, equivalently, the first-order Taylor approximation,

we get

f(y(t) + ∆y(t)) − f(y(t)) = ∇yf(y(t)) ·∆y(t) + o(‖∆y(t)‖)
where ∆y(t) is a small increment of y(t).

Now we would like to present the first-order Taylor approximation of

the increment of a vector function f that depends on a vector function y(t).

We assume that f takes values in the same space as y(t) and thus can be

represented as f = fi ei where fi = fi(y(t)). For this we find the differential

of f(y(t)) at y(t):

df(y(t)) = d (fj(y(t)) ej) = dfj(y(t)) ej

= ∇yfj(y(t)) · dy(t) ej
=
∂fj(y(t))

∂yi
ei · dyk(t) ek ej

The right side can be represented as(
∂fj(y(t))

∂yi
ejei

)
· dyk(t) ek or dyk(t) ek ·

(
∂fj(y(t))

∂yi
eiej

)
. (3.58)

We see that in both brackets there is a sum of dyads so both of them are

functions whose values are tensors of the second rank. A formal application

of ∇y to f(y(t)) gives

∇yf(y(t)) = ei
∂

∂yi
fj(y(t)) ej =

∂fj(y(t))

∂yi
eiej .

Thus ∇yf(y(t)) is the expression in brackets of the second equation (3.58)

and the differential can be represented as

df(y(t)) = dy(t) · ∇yf(y(t)). (3.59)

The term in the bracket of the first equation of (3.58) differs from the

corresponding term of the second equation by a transposition of the vectors

ei and ej so it can be written as (∇yf(y(t)))
T and thus the differential can

be presented in the other form

df(y(t)) = (∇yf(y(t)))
T · dy(t). (3.60)

The expression ∇yf(y(t)) is called the gradient of f . Let us see how it

appears in more common matrix notation. We have said that a second rank
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tensor can be represented by a matrix of coefficients; in this representation

the index i in the first position denotes the ith row of the matrix whereas

the second index j denotes the jth column. Thus the matrix representation

of the gradient of the vector function
∂fj(y(t))
∂yi

eiej is




∂f1
∂y1

∂f2
∂y1

· · · ∂fn
∂y1

∂f1
∂y2

∂f2
∂y2

· · · ∂fn
∂y2

...
...

. . .
...

∂f1
∂yn

∂f2
∂yn

· · · ∂fn
∂yn



.

Its determinant is the Jacobian of the transformation z = f(y).

Now, using the formula for the differential (3.59) (or (3.60)) we are able

to present an increment of a composite vector function f(y(t)) under the

increment ∆y(t) of the argument:

f(y(t) + ∆y(t)) − f(y(t)) = ∆y(t) · ∇yf(y(t)) + o(‖∆y(t)‖).

Let the components of a tensor A(t) = aij(t)eiej be continuously dif-

ferentiable functions of t. Then by the rule for differentiating a matrix we

have

dA(t)

dt
=
daij(t)

dt
eiej . (3.61)

The derivative of the dot product of two second-rank tensors obeys a for-

mula similar to the ordinary product rule:

d

dt
(A(t) ·B(t)) =

(
d

dt
A(t)

)
·B(t) +A(t) ·

(
d

dt
B(t)

)
. (3.62)

A similar formula holds for the dot product of a tensor by a vector:

(A(t) · y(t))′ = A′(t) · y(t) +A(t) · y′(t). (3.63)

If one factor does not depend on t then it can be removed from the symbol

of differentiation:

(A ·B(t))′ = A ·B′(t). (3.64)
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Fundamental solution of a linear system of ordinary differ-

ential equations

Consider a linear system of ODEs

y′1(t) = a11(t)y1(t) + a12(t)y2(t) + · · ·+ a1n(t)yn(t),

y′2(t) = a21(t)y1(t) + a22(t)y2(t) + · · ·+ a2n(t)yn(t),

...

y′n(t) = an1(t)y1(t) + an2(t)y2(t) + · · ·+ ann(t)yn(t).

In terms of the tensor function A(t) = aij(t)eiej and the vector y(t) =

yi(t)ei this system can be rewritten as

y′(t) = A(t) · y(t). (3.65)

Definition 3.8. A tensor function Φ(t, s) in two variables t, s is called the

fundamental solution7 of (3.65) if it satisfies two conditions:

(i) Φ(t, s) is a solution of (3.65) in the first variable t:

d

dt
Φ(t, s) = A(t) ·Φ(t, s) (3.66)

(here we use the symbol for the ordinary derivative, thinking of s as a

fixed parameter).

(ii) For any s,

Φ(s, s) = E. (3.67)

This fundamental solution exists for any finite t, s if the tensor A(t) is

continuous. The problem of finding it consists of n Cauchy problems for the

same system of equations with n initial conditions given at t = s. Hence

the fundamental solution is determined uniquely.

Now we would like to extend the results for the fundamental solution

of a single linear ODE to the general case. We present them in a similar

manner.

Proposition 3.9. A solution of (3.65) satisfying the initial condition

y(s) = y0 is

y(t) = Φ(t, s) · y0. (3.68)

7The function Φ(t, s) is also known as the fundamental tensor or fundamental matrix.
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Indeed, dot-multiplying vector-equation (3.66) by y0 from the right we see

that Φ(t, s) · y0 satisfies (3.65). By (3.67) this solution satisfies the initial

condition y(s) = y0.

Proposition 3.10. For any t, s and τ we have

Φ(t, s) = Φ(t, τ) ·Φ(τ, s). (3.69)

A consequence of this property and relation (3.67) is the equation for the

inverse

Φ−1(t, s) = Φ(s, t) (3.70)

which follows when we write out a particular case of (3.69),

E = Φ(t, t) = Φ(t, s) ·Φ(s, t).

Proof. Let us prove (3.69). Dot multiply (3.66) byΦ(s, τ) from the right.

On the left we have(
d

dt
Φ(t, s)

)
·Φ(s, τ) =

d

dt
(Φ(t, s) ·Φ(s, τ))

since Φ(s, τ) does not depend on t; on the right we have

A(t) ·Φ(t, s) ·Φ(s, τ) = A(t) · (Φ(t, s) ·Φ(s, τ)) .

So Φ(t, s) ·Φ(s, τ) satisfies dΨ/dt = A(t) ·Ψ with parameters s, τ . Putting

t = s in this solution we get

Φ(t, s) ·Φ(s, τ)|t=s = Φ(s, s) ·Φ(s, τ) = Φ(s, τ).

So Φ(t, s) ·Φ(s, τ) coincides with Φ(t, τ) at t = s; by uniqueness of solution

to the Cauchy problem, they coincide for all t. To complete the proof it

remains to interchange s and τ . �

Proposition 3.11. The equation

∂

∂s
Φ(t, s) = −Φ(t, s) ·A(s)

holds.

Proof. It is easily verified that the derivative of the inverse to a differ-

entiable tensor function Ψ(t) is given by(
Ψ−1(t)

)′
= −Ψ−1(t) ·Ψ′(t) ·Ψ−1(t). (3.71)
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Hence by (3.70) we have

∂Φ(t, s)

∂s
=
∂(Φ−1(s, t))

∂s

= −Φ−1(s, t) · ∂Φ(s, t)

∂s
·Φ−1(s, t)

= −Φ(t, s) · ∂Φ(s, t)

∂s
·Φ(t, s).

Finally, since s is the first argument in the derivative on the right we can

change this derivative using (3.66):

∂Φ(t, s)

∂s
= −Φ(t, s) ·A(s) ·Φ(s, t) ·Φ(t, s) = −Φ(t, s) ·A(s).

�

Proposition 3.12. The solution of the Cauchy problem

y′(t) = A(t) · y(t) + g(t), y(0) = 0,

with a given vector function g(t) is

y(t) =

∫ t

0

Φ(t, s) · g(s) ds. (3.72)

Proof. Let us find the derivative of y(t) given by (3.72):

d

dt
y(t) =

d

dt

∫ t

0

Φ(t, s) · g(s) ds

= Φ(t, t) · g(t) +
∫ t

0

d

dt
Φ(t, s) · g(s) ds

= E · g(t) +
∫ t

0

A(t) ·Φ(t, s) · g(s) ds

= A(t) ·
∫ t

0

Φ(t, s) · g(s) ds+ g(t)

= A(t) · y(t) + g(t).
�

3.8 General Terminal Control Problem

We have stated the general problem of terminal control. Our understanding

of the scope of the optimal control problem has changed, however, so it is

appropriate to reexamine the setup of the terminal control problem.
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The object of terminal optimal control is described by a vector function

of time y(t) with values in Euclidean vector space En whose behavior is

determined by a system of ODEs (or a vector ODE)

y′(t) = f(y(t),u(t)) (3.73)

The vector function f(y(t),u(t)) must be such that when the control func-

tion u(t) is given and admissible (i.e., belongs to the class U), then the

Cauchy problem for (3.73) supplemented with initial conditions has a

unique continuous solution on a finite time interval [0, T ]. Thus the history

of the object determines uniquely its present state. Systems of this type

are called dynamical systems.

The set U of admissible controls consists of vector functions u(t) tak-

ing values in the Euclidean space Em that are piecewise continuous in t.

In particular, U can consist of functions that take values in a finite set of

vectorial values. The former is important when the control function de-

scribes several fixed positions that are taken by some governing device; it

describes, say, the effect of some additional device that can exist only in

“on–off” states.

Everything said so far in this section applies to all optimal control prob-

lems. The distinguishing feature of terminal control is the specification of

the initial condition

y(0) = y0 (3.74)

and the form of the objective functional

J(u) = G(y(T )). (3.75)

Thus we can consider terminal control as the problem of finding the minimal

output value (3.75) when the input is determined by the initial vector y0

and the control function u(t) and the output is G(y(T )). See Fig. 3.3. Our

objective can be formulated as

G(y(T )) → min
u(t)∈U

. (3.76)

This is known as the main setup of the problem (3.73)–(3.76). We can

reduce various other other optimal control problems to this form.

Problem. For a system described by (3.73) whose initial state is given by

(3.74), among all the admissible control vectors u ∈ U find such for which

an objective functional ∫ T

0

g(y(t),u(t)) dt
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Fig. 3.3 A controlled object described by y′ = f(y,u): the input is y(0) = y0, the
control vector is u, and the output is G(y(T )).

takes its minimum value.

The reduction of this problem to the main form of the terminal con-

trol problem is done by introducing the additional component yn+1 for y.

Namely, we write down an additional scalar equation

y′n+1(t) = g(y(t),u(t)), y′n+1(0) = 0.

Now it is clear that

yn+1(T ) =

∫ T

0

g(y(t),u(t)) dt (3.77)

and thus the objective functional from (3.75) takes the form

J(u) = yn+1(T ).

We can consider another version of the terminal control problem when

it is necessary to minimize the objective functional∫ T

0

g(y(t),u(t)) dt +G(y(T ))

for the same system described by (3.73)–(3.74). Then the same additional

component for y given by (3.77) reduces the problem to the necessary form.

The objective functional now is

J(u) = yn+1(T ) +G(y(T )).

Let us consider the main form of the terminal control problem (3.73)–

(3.76) using an extension of the procedure for the simplest problem of op-

timal control. Much of the reasoning for the latter is simply reformulated

to go from the scalar to the vector version. For the simplest problem, the

main step involved finding the main part of the increment of J(u) under a
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needle-shaped increment of a fixed control function. We shall do this here

also. The next step involved establishing the condition under which a con-

trol function would be optimal for the problem. This led to Pontryagin’s

maximum principle. We shall extend this to the general problem. Finally

we shall discuss how to use the formula for the increment of the functional,

as well as the maximum principle, to find an optimal solution.

Let t = s be a point of continuity of a control function u(t). Giving u(t)

a needle-shaped increment (i.e., a vector whose components are all needle-

shaped functions with perturbations in (s − ε, s]) we get a new control

defined by

u∗(t) =

{
u(t), t /∈ (s− ε, s],

v, t ∈ (s− ε, s].
(3.78)

We can continue to refer to Fig. 3.1. We can also refer to Fig. 3.3 for a

representation of the function y∗(t) that satisfies the equation

(y∗(t))′ = f(y∗(t),u∗(t)) (3.79)

and the same initial condition y(0) = y0. We suppose that at least for all

positive ε less than some small fixed number ε0, the incremented control

function u∗(t) is admissible.

The main part of the increment J(u∗) − J(u), linear in small ε, is

determined by

Theorem 3.13. Let t = s be a point of continuity of a control function

u(t). The increment of J(u) is

J(u∗)− J(u) = ε δs,vJ(u) + o(ε) (3.80)

where

δs,vJ(u) = Ψ(s) · [f(y(s),u(s)) − f(y(s),v)] (3.81)

and Ψ(s) is a solution of the following Cauchy problem (in the reverse

time):

Ψ′(s) = −∇yf(y(s),u(s)) ·Ψ(s), Ψ(T ) = −∇yG(y(T )). (3.82)

δs,vJ(u) is called the variational derivative of the second kind of the func-

tional J(u).

Proof. Take ε > 0 so small that all points of [s− ε, s] are points of con-

tinuity of u(t) and the corresponding incremented control functions u∗(t)
are admissible. We divide the proof into several steps.
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Step 1, the main part of the increment of y(t). On [0, s− ε] the control

functions coincide. The initial conditions for y(t) and y∗(t) coincide as

well, so on this segment we have y∗(t) = y(t).

Let us find the increment of y(t) for t ∈ [s− ε, s]. Subtracting term by

term (3.73) from (3.79) we have

(y∗(t))′ − y′(t) = f(y∗(t),v) − f(y(t),u(t)).

Denoting ∆y(t) = y∗(t)− y(t) we get

∆y′(t) = f(y(t) + ∆y(t),v) − f(y(t),u(t)). (3.83)

This equation, which holds on (s − ε, s], is supplemented by the “initial”

condition

∆y(s− ε) = 0 (3.84)

which follows from the above coincidence of y(t) and y∗(t). Let us reduce

the Cauchy problem (3.83)–(3.84) for ∆y(t), integrating (3.83) with respect

to the time parameter:

∆y(t)−∆y(s − ε) =

∫ t

s−ε
[f(y(τ) + ∆y(τ),v) − f(y(τ),u(τ))] dτ.

By (3.84) this reduces to

∆y(t) =

∫ t

s−ε
[f(y(τ) + ∆y(τ),v) − f(y(τ),u(τ))] dτ. (3.85)

Since we assume f(y,u) to be continuous and thus bounded, the integral

on the right of (3.85) is of order ε and so is ∆y(t). Thus replacing in the

integrand the quantities y(τ) and u(τ) by y(s) and u(s) respectively, and

placing ∆y(τ) = 0, we introduce in the value of the integral an error of

order o(ε) for t ∈ [s− ε, s]. Hence (3.85) reduces to

∆y(t) =

∫ t

s−ε
[f(y(s),v) − f(y(s),u(s))] dτ + o(ε),

which can be rewritten as

∆y(t) = (t− s+ ε)[f(y(s),v) − f(y(s),u(s))] + o(ε),

and thus on this small segment [s−ε, s] the difference ∆y(t) changes almost

linearly from zero, taking at t = s the value

∆y(s) = ε [f(y(s),v) − f(y(s),u(s))] + o(ε). (3.86)
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This is the initial value for the solution ∆y(t) on [s, T ] of the equation

∆y′(t) = f(y(t) + ∆y(t),u(t)) − f(y(t),u(t)) (3.87)

(we recall that on this interval u∗(t) = u(t) and it is considered to be known

at this moment). Linearizing the right side of (3.87) with respect to ∆y(t)

(taking into account (3.60)) we have

∆y′(t) = (∇yf(y(t),u(t)))
T ·∆y(t) + o(‖∆y(t)‖). (3.88)

Because of smallness of the initial condition of ∆y(t) at t = s and the form

of (3.88) we expect the solution of the corresponding Cauchy problem on

the finite interval (s, T ] to be of order ε and, up to terms of order higher

than ε, equal to the solution of the following Cauchy problem:

δy′(t) = (∇yf(y(t),u(t)))
T · δy(t), (3.89)

δy(s) = ε [f(y(s),v) − f(y(s),u(s))], (3.90)

which is the linearization of the complete initial problem (3.87), (3.86). By

the linearity of this problem its solution is proportional to ε.

To find the main part of the increment ∆y(T ) it remains to solve the

Cauchy problem (3.89)–(3.90). This can be integrated (often numerically)

but we will use the notion of the fundamental solution from the previous

section.

Let us denote A(t) = (∇yf(y(t),u(t)))
T and leave the notation of § 3.7

for this fundamental solution, which satisfies

d

dt
Φ(t, s) = A(t) ·Φ(t, s)

and the “initial” condition Φ(s, s) = E for all s. By Property 3.9 of § 3.7
the solution to (3.89)–(3.90) is

δy(t) = εΦ(t, s) · [f(y(s),v) − f(y(s),u(s))]

and thus, assuming “good” behavior of ∆y(t) we have

∆y(T ) = εΦ(T, s) · [f(y(s),v) − f(y(s),u(s))] + o(ε). (3.91)

Step 2, the main part of the increment of J(u) = G(y(T )). We again

use the formula of the differential (3.57) for linearization of the increment

of J(u) with respect to ∆y(t):

∆J(u) = J(u∗)− J(u)

= G(y(T ) + ∆y(T ))−G(y(T ))

= ∇yG(y)
∣∣
y=y(T )

·∆y(T ) + o(|∆y(T )|).
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Using (3.91) we get

∆J(u) = ε∇yG(y)
∣∣
y=y(T )

·Φ(T, s) · [f(y(s),v) − f(y(s),u(s))] + o(ε).

This is the required formula. It remains to represent it in the form asserted

by the theorem.

Step 3, the final step. Let us define a vector function Ψ(s) as

Ψ(s) = −∇yG(y)
∣∣
y=y(T )

·Φ(T, s).

With this notation for ∆J(u) we do have the representation (3.80)–(3.81),

so it remains to demonstrate that Ψ(s) satisfies (3.82). The second relation

of (3.82) is a consequence of the equality Φ(T, T ) = E; indeed,

Ψ(T ) = −∇yG(y)
∣∣
y=y(T )

·Φ(T, T ) = −∇yG(y)
∣∣
y=y(T )

.

Let us show that it satisfies the first equation of (3.82) as well. The deriva-

tive of Ψ(s) is

dΨ(s)

ds
=

d

ds

[
−∇yG(y)

∣∣
y=y(T )

·Φ(T, s)
]
= −∇yG(y)

∣∣
y=y(T )

· d
ds

Φ(T, s).

Let us now use the equation for the derivative with respect to the second

argument of the fundamental solution, which is given by Property 3.11:

dΨ(s)

ds
= −∇yG(y)

∣∣
y=y(T )

· (−Φ(T, s) ·A(s))

= −
(
−∇yG(y)

∣∣
y=y(T )

·Φ(T, s)
)
·A(s)

= −Ψ(s) ·A(s) = −(A(s))T ·Ψ(s).

Remembering the above notation for A(s) we complete the proof. �

3.9 Pontryagin’s Maximum Principle for the Terminal Op-

timal Problem

First we would like to discuss the statement of Theorem 3.13. When we

seek a response of an object described by the problem

y′(t) = f(y(t),u(t)), y(0) = y0, (3.92)

to a needle-shaped disturbance of the control function u(t) we obtain a dual

problem

Ψ′(s) = −∇yf(y(s),u(s)) ·Ψ(s), (3.93)

Ψ(T ) = −∇yG(y(T )). (3.94)
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The dual equation (3.93) plays a role like that of the Euler equation of the

calculus of variations, and the condition (3.94) is the condition of transver-

sality. Together (3.92)–(3.94) compose a boundary value problem having a

unique solution when u(t) is given. This splits into two “initial value prob-

lems” for y(t) and Ψ(s). For problems other than the problem of terminal

control, other types of boundary conditions are given but the equations

yielding a response to a needle-shaped disturbance are the same. Let us

introduce an equivalent form of the equations for this boundary value prob-

lem. We define a scalar function in three variables y, Ψ, and u(t), called

Pontryagin’s function:

H(y,Ψ,u) = f(y,u) ·Ψ. (3.95)

Simple calculation demonstrates that

∇yH(y,Ψ,u) = ∇yf(y,u) ·Ψ,
∇ΨH(y,Ψ,u) = f(y,u),

where the second relation is a consequence of the equality

∇xx = ei
∂

∂xi
(xjej) = eiei = E.

It follows that (3.92) and (3.94) can be written as

y′(t) = ∇ΨH(y(t),Ψ(t),u(t)),

Ψ′(t) = −∇yH(y(t),Ψ(t),u(t)).

This is the Hamiltonian form.

In terms of Pontryagin’s function the second kind derivative of J(u)

(3.81) can be written as

δs,vJ(u) = H(y(s),Ψ(s),u(s))−H(y(s),Ψ(s),v). (3.96)

Now we can formulate Pontryagin’s maximum principle.

Theorem 3.14. Let u(t) be an optimal control function at which J(u)

attains its minimal value on U , the set of all admissible control functions,

and let y(t) and Ψ(t) be a solution of the boundary value problem (3.92)–

(3.94). At any point t = s of continuity of u(t), the Pontryagin function

H(y(t),Ψ(t),v), considered as a function of the third argument v, takes its

maximum value at v = u(s).
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Proof. Since J(u) attains its minimum at u(t) then for any admissible

control function u∗(t) we have

J(u∗)− J(u) ≥ 0.

In particular it is valid for an admissible u∗(t) that is a disturbance of u(t)

by a needle-shaped vector function

u∗(t) =

{
u(t), t /∈ (s− ε, s],

v, t ∈ (s− ε, s],

and thus, for sufficiently small ε because of (3.80) and (3.96) we have

J(u∗)− J(u) = ε (H(y(s),Ψ(s),u(s)) −H(y(s),Ψ(s),v)) + o(ε) ≥ 0.

From this it follows that H(y(s),Ψ(s),u(s)) −H(y(s),Ψ(s),v) ≥ 0. �

Pontryagin’s principle of maximum gives us an effective tool to check

whether u(t) is a needed control function at which J(u) attains its mini-

mum, but it does not show, except for quite simple problems, how to find

this. However, (3.80) is the background of various numerical methods used

to find this minimum. We shall discuss them in brief.

The formula (3.80) for the increment of J(u), which can be rewritten

as

J(u) ≈ J(u∗)− ε δs,vJ(u), (3.97)

generates an iterative procedure that begins with selection of a finite num-

ber of the time instants (τ1, . . . , τr) at which one may introduce needle-

shaped disturbances for finding a more effective control function. Next one

must find an instant τi and a corresponding admissible value of v, which

we denote by vi, at which the maximum of the numerical set

{δτ1,vJ(u), . . . , δτr,vJ(u)}
is attained. Denoting the control parameters of the previous step as u(i)(t)

and u(i)∗(t) where u(i)∗(t) is just determined, one must choose the value

of ε, denoted by εi, at which (3.97) provides a sufficiently precise approxi-

mation. Then the next approximation of the value of J(u) is given by the

formula

J(u(i+1)) = J(u(i)∗)− εi δτi,viJ(u
(i)).

Versions of this procedure differ in their methods of determining each step,

in particular the points τi. They are called the methods of coordinate-by-

coordinate descent.
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A modification is called the group descent procedure. We have found

the main linear part of the increment of J(u) under a needle-shaped dis-

turbance of u(t) at t = s, which is characterized by the pair of parameters

ε,v. This means that if u(t) is disturbed by a finite set of N such needle-

shaped variations, the ith of which is lumped at a point si of continuity

of u(t) and is characterized by the pair εi,vi, then denoting by u∗∗(t) the
corresponding control function we get the main part of the increment as

the sum of increments of J(u) due to each of the needle-shaped increments

of u(t):

J(u∗∗)− J(u) =

N∑
i=1

εi[H(y(s),Ψ(s),u(s)) −H(y(s),Ψ(s),vi)]

+ o (max(ε1, . . . , εN )) . (3.98)

Then we can decrease the value of J(u) on the next step of approximation

using a group of needle-shaped increments and the formula (3.98).

3.10 Generalization of the Terminal Control Problem

Let us consider a generalized terminal control problem whose setup coin-

cides with that of the usual problem except for the form of the objective

function (functional). This set up is

Definition 3.15. From among the piecewise continuous control functions

u(t) ∈ U on [0, T ], find one that minimizes the functional I(u),
I(u) → min

u∈U
,

when I(u) is defined as

I(u) = G(y(s1),y(s2), . . . ,y(sN )),

G(y(s1),y(s2), . . . ,y(sN )) being a function continuously differentiable in

all its variables, 0 < s1 < s2 < · · · < sN = T some fixed points of time,

and y(t) satisfying the equations

y′(t) = f(y(t),u(t)), y(0) = y0.

Such a form of the objective function can appear, for example, if the

objective functional contains an integral depending on y(t) which is dis-

cretized according to some simple method such as Simpson’s rule or the

rectangular rule. To proceed further we need some additional material. We
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shall obtain a nonstandard Cauchy problem and then find a way to present

it in a form that resembles the usual form for such a problem. For this we

digress briefly to discuss the Dirac δ-function.

The δ-function concept was originated by physicists and used for many

years before being given a rigorous footing (called the theory of distri-

butions) by mathematicians. Although rigor has certain advantages, the

heuristic viewpoint of the early physicists will suffice for our purposes. This

viewpoint rests on the notion that δ(t) is a function of the argument t, tak-

ing the value zero for t �= 0 and an infinite “value” at t = 0 such that∫ +∞

−∞
δ(t) dt = 1. (3.99)

Now from a mathematical viewpoint we are in trouble already because it

can be shown that there is no such function. But we nonetheless proceed

formally with the understanding that every step we take can be justified rig-

orously (with tremendous effort and with full chapters of extra explanation

which, unfortunately, would not lend clarity to the topic).

The δ-function is a generalized derivative of the step function h(t) given

by

h(t) =

{
1, t ≥ 0,

0, t < 0,
(3.100)

and we shall exploit this property. The introduction of the generalized

derivative uses the main lemma of the calculus of variations and the formula

for integration by parts. Let ϕ(t) be a function infinitely differentiable on

(−∞,+∞) and with compact support (the support of φ(t) is the closure of

the set of all t for which ϕ(t) �= 0). Let us denote this class by D. For any

differentiable function f(t) the formula for integration by parts holds:∫ +∞

−∞
f(t)ϕ′(t) dt = −

∫ +∞

−∞
f ′(t)ϕ(t) dt. (3.101)

The main lemma of the calculus of variations states that if the equality∫ +∞

−∞
f(t)ϕ′(t) dt = −

∫ +∞

−∞
g(t)ϕ(t) dt (3.102)

holds for any ϕ(t) ∈ D then g(t) = f ′(t). This is valid for a differentiable

function f(t), but the same equation defines the generalized derivative of

an integrable function f(t): a function g(t) is called the generalized deriva-

tive of f(t) if (3.102) holds for any ϕ(t) ∈ D. The generalized derivative

is denoted by the usual differentiation symbols. The main lemma of the
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calculus of variations (more precisely, its variant) provides uniqueness of

definition of the generalized derivative. Let us check that h′(t) = δ(t) in

the generalized sense. Indeed,∫ +∞

−∞
h(t)ϕ′(t) dt =

∫ ∞

0

h(t)ϕ′(t) dt =
∫ ∞

0

ϕ′(t) dt = −ϕ(0)

and by the definition of δ-function∫ +∞

−∞
δ(t)ϕ(t) dt = ϕ(0).

Thus for the pair h(t), δ(t) the definition of generalized derivative is valid

and so h′(t) = δ(t). Using this property we can write out the Cauchy

problem

y′(t) = g(t, y(t)), y(0) = y0, (3.103)

in an equivalent form

y′(t) = f(t, y(t)) + y0δ(t), y(t)
∣∣
t→−0

= 0. (3.104)

Indeed, integration of (3.104) with respect to t (the starting point is t = −0)

implies the equation

y(t) =

∫ t

0

f(s, y(s)) ds+ y0h(t),

which is equivalent to (3.103).

Now let us formulate the main theorem of this section, in which we keep

the notation of § 3.8 for u∗(t) and y∗(t).

Theorem 3.16. Let t = s be a point of continuity of a control function

u(t) that is different from s1, s2, . . . , sN = T . The increment of I(u) is

I(u∗)− I(u) = ε δs,vI(u) + o(ε) (3.105)

where

δs,vI(u) = Ψ(s) · [f(y(s),u(s)) − f(y(s),v)] (3.106)

and Ψ(s) is a solution of the following Cauchy problem (in the reverse time)

Ψ′(s) = −∇yf(y(s),u(s)) ·Ψ(s)

+

N∑
i=1

δ(si − s)∇y(si)G(y(s1),y(s2), . . . ,y(sN )),

y(T + 0) = 0. (3.107)
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Comparison with Theorem 3.13 shows that the current theorem differs

only in the form of the problem for Ψ(s).

Proof. It is clear that y∗(t) for this problem coincides with that of § 3.8,
so we can use the corresponding formulas of that section. In particular, for

t > s the main part of the increment ∆y(t) of the corresponding solution

y(t) on (s, T ], under the needle-shaped increment of the control vector u,

is

δy(t) = εΦ(t, s) · [f(y(s),v) − f(y(s),u(s))]. (3.108)

So we immediately go to the increment of the goal function. First we use the

formula for the complete differential to get the main part of the increment

of I(u) = G(y(s1),y(s2), . . . ,y(sN )), which is

∆I(u) = I(u∗)− I(u)
= G(y(s1) + ∆y(s1),y(s2) + ∆y(s2), . . . ,y(sN ) + ∆y(sN ))

−G(y(s1),y(s2), . . . ,y(sN ))

=

N∑
i=1

∇y(si)G(y(s1),y(s2), . . . ,y(sN )) ·∆y(si)

+ o

(
max
j

‖∆y(sj)‖
)

(3.109)

To implement (3.108) we rewrite it in the form

δy(t) = εΦ(t, s) · [f(y(s),v) − f(y(s),u(s))]h(t − s)

so it becomes valid for use in (3.109) for all t ∈ [0, T ] when the interval

[s − ε, s] does not contain any si (assumed). Then the increment of I(u)
can be rewritten as

∆I(u) = I(u∗)− I(u)

= ε

{
N∑
i=1

∇y(si)G(y(s1),y(s2), . . . ,y(sN )) ·Φ(si, s)h(si − s)

}
·

· [f(y(s),v) − f(y(s),u(s))] + o(ε).

Denoting

Ψ(s) = −
N∑
i=1

∇y(si)G(y(s1),y(s2), . . . ,y(sN )) ·Φ(si, s)h(si − s) (3.110)

we get, as in § 3.8,
δs,vI(u) = Ψ(s) · [f(y(s),u(s)) − f(y(s),v)]
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and for the increment of objective functional

I(u∗)− I(u) = ε δs,vI(u) + o(ε).

Note that the presence of h(si−s) in the sum of the definition (3.110) means

that at s = si the value of Ψ(s) has some step change for an additional

term in the sum.

It remains only to check the validity of (3.107). When s > sN = T we

get Ψ(s) = 0 so the second of (3.107) holds. To show that the first is valid

let us find the derivative of Ψ(s). Taking into account Property 3.11 which

in our terms is

d

ds
Φ(si, s) = −Φ(si, s) · (∇yf(y(s),u(s)))

T

we get

dΨ(s)

ds
=

N∑
i=1

∇y(si)G(y(s1),y(s2), . . . ,y(sN ))·

· h(si − s)Φ(si, s) · (∇yf(y(s),u(s)))
T

+

N∑
i=1

∇y(si)G(y(s1),y(s2), . . . ,y(sN )) ·Φ(si, s)δ(si − s)

= −Ψ(s) · (∇yf(y(s),u(s)))
T

+

N∑
i=1

∇y(si)G(y(s1),y(s2), . . . ,y(sN ))δ(si − s).

In the last transformation we used Φ(si, s)δ(si − s) = Eδ(si − s). �

The form of Pontryagin’s maximum principle for the generalized termi-

nal control problem is the same as in the previous section. We leave its

formulation to the reader.

This kind of generalized terminal control problem is used in practice and,

as a rule, requires numerical solution of the problems when the formula for

the increment (3.106) of the goal functional is used.

3.11 Small Variations of Control Function for Terminal

Control Problem

The form of the increment of the objective functional for the generalized

terminal control problem provides a hint that the conjugate equations and

similar material should enter not only for needle-shaped variations of the
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control function, but for any small variations. We will see that this is really

so, and for this case we will find the expression for the increment of the

objective functional under the increment of control vector of other type.

We reconsider the terminal control problem described by the dynamical

system

y′(t) = f(y(t),u(t)), y(0) = y0.

We wish to find the increment of the objective functional J(u) = G(y(T ))

under a small increment ∆u(t) of the control function u(t).

We demonstrated that one of the problems of the calculus of variations

was covered by the setup of a problem of optimal control, but did not use

the type of variations used in the calculus of variations until now. Here we

will demonstrate how it can be done.

Let us define v(t) = u(t) + ∆u(t) and require that v(t) is admissible.

Smallness of ∆u(t) means that sup[0,T ] ‖∆u(t)‖ is sufficiently small. We

suppose that the changed value y∗(t) satisfying the Cauchy problem

(y∗(t))′ = f(y∗(t),v(t)), y∗(0) = y0,

is such that ∆y(t) = y∗(t) − y(t) is also small enough, that is

max[0,T ] ‖∆y(t)‖ is small.

Now we would like to find the increment of J(u) under such a small

admissible increment of u(t). The answer is given by

Theorem 3.17. Suppose sup[0,T ] ‖∆u(t)‖ = ε. Then the increment of

J(u) is

J(u∗)− J(u) = δJ(u) + o(ε)

where

δJ(u) =

∫ T

0

Ψ(t) · [f(y(t),u(t)) − f(y(t),v(t))] dt

and Ψ(s) is a solution of the following Cauchy problem (in the reverse

time):

Ψ′(s) = −∇yf(y(s),u(s)) ·Ψ(s), Ψ(T ) = −∇yG(y(T )). (3.111)

Proof. Let us note first that the conjugate equation (3.111) for Ψ(s) co-

incides with the conjugate equation we established for the terminal control

problem in § 3.8. Much of that reasoning will apply here. Suppose for sim-

plicity of notation that ∆y(t) for all t ∈ [0, T ] is of order ε. The problem

defining the increment ∆y(t) is

∆y′(t) = f(y(t) + ∆y(t),v(t)) − f(y(t),u(t)), (3.112)



September 30, 2011 8:42 World Scientific Book - 9in x 6in aea

204 Advanced Engineering Analysis

∆y(0) = 0.

We need to find the main part of ∆y(t) at t = T . Let us transform the

right side of (3.112):

f(y +∆y,v) − f(y,u) = f(y +∆y,v) − f(y,v) + [f(y,v) − f(y,u)]

= ∇yf(y,v) ·∆y + [f(y,v) − f(y,u)] + o(‖∆y‖)
= ∇yf(y,u) ·∆y + [f(y,v) − f(y,u)] + o(‖∆y‖).

Thus (3.112) becomes

(∆y(t))′ = ∇yf(y(t),u(t)) ·∆y(t) + [f(y(t),v(t)) − f(y(t),u(t))]

+ o(‖∆y(t)‖).
The main linear part of ∆y(t) is described by the following problem:

(δy(t))′ = ∇yf(y(t),u(t)) · δy(t) + [f(y(t),v(t)) − f(y(t),u(t))],

δy(0) = 0.

Now we can use Property 3.12 and write out the form of the solution:

δy(t) =

∫ t

0

Φ(t, s) · [f(y(s),v(s)) − f(y(s),u(s))] ds.

So the main linear part of ∆y(T ) is

δy(T ) =

∫ T

0

Φ(T, s) · [f(y(s),v(s)) − f(y(s),u(s))] ds.

Now we can find the main linear part of the increment of the objective

functional J(u):

∆J(u) = ∇yG(y(T )) ·∆y(T ) + o(‖∆y(T )‖)

=

∫ T

0

∇yG(y(T )) ·Φ(T, s) · [f(y(s),v(s)) − f(y(s),u(s))] ds + o(ε).

Denote Ψ(s) = −∇yG(y(T )) · Φ(T, s). Then the last relation takes the

form

∆J(u) =

∫ T

0

Ψ(s) · [f(y(s),u(s)) − f(y(s),v(s))] ds + o(ε)

as stated by the theorem. Since Ψ(s) is defined exactly as in § 3.8, we have
completed the proof. �
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3.12 A Discrete Version of Small Variations of Control

Function for Generalized Terminal Control Problem

The formulas presented above for finding the change of the goal functional of

a problem are used in practical calculations, but the problem itself should

be discretized for this. Following the lecture of Dr. K.V. Isaev (Rostov

State University) but in vector notation, let us consider one of the versions

of possible discretization of the generalized terminal control problem. Let

us recall the original problem. Given the governing equation

y′(t) = f(y(t),u(t)) (3.113)

for y = y(t) with the initial value y(0) = y0, find an admissible control

function u = u(t) such that

I(u) → min
u∈U

where

I(u) = G(y(s1),y(s2), . . . ,y(sN )). (3.114)

We suppose that u(t) changes by a small variation δu(t) and would like to

find the main part of the increment ∆I(u) = I(u+δu)−I(u) that is linear
in δu. We will not find the solution for this problem but will discretize the

problem in whole and formulate the result for the latter.

Let us partition the interval [0, sN ] by points t0 = 0 < t1 < . . . < tR,

tR = sN , in such a way that the distance between two nearby points is small

and the set {ti} contains all the points sj from (3.114). On the segment

(ti−1, ti] we will approximate the control function u(t) by a constant value

denoted u[i]. Similarly, let us denote y[i] = y(ti). Considering y[i − 1] as

the initial value for equation (3.113) on [ti−1, ti] with u(t) = u[i], we can

find the value y[i] that can be considered as a functional relation

y[i] = ϕi(y[i − 1],u[i]). (3.115)

If all the u[i] are given, then starting with y[0] = y0 we get, by (3.115), all

the uniquely defined values y[i]. In this way a discrete dynamical system

is introduced. Note that it is not necessary to obtain (3.115) from (3.113);

it can be formulated independently, and so the reasoning below is valid in

a more general case that is not a consequence of the continuous dynamical

system (3.113). The restriction for control function u ∈ U for discrete

control functions is rewritten as u ∈ U∗. Correspondingly the discrete

generalized control problem can be reformulated as:
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Problem. Given

y[i] = ϕi(y[i − 1],u[i]), y[0] = y0,

I(u) = G(y[i1],y[i2], . . . ,y[iN ]), (3.116)

find u ∈ U∗ such that

I(u) → min
u∈U∗

.

The main part of the increment of I(u) that is linear in δu is given by

the following

Theorem 3.18. The main part of the increment of I(u) that is linear in

δu = δu[i] is

δI(u) =
R∑
i=1

∇u[i]I(u) · δu[i] (3.117)

where

∇u[i]I(u) =
(∇u[i]ϕi(y[i − 1],u[i])

) · ψ[i] (3.118)

and ψ[i] satisfy the equations

ψ[i] =
(∇y[i]ϕi+1(y[i],u[i+ 1])

) ·ψ[i + 1]

+∇y[i]Q(y[i1],y[i2], . . . ,y[iN ]), i = R− 1, R− 2, . . . , 1,

ψ[R] = ∇y[R]Q(y[i1],y[i2], . . . ,y[iN ]). (3.119)

Proof. Before giving the proof we would like to point out the similar-

ity between this and the result for the corresponding continuous control

problem; in particular, there arises a system of equations for the comple-

mentary function ψ of the parameter i, whose solutions should be found

in the reverse order, from ψ[R] to ψ[1]. It is clear that it does not mat-

ter on which step and how we discretize the problem, the main features

of solution should be the same. First let us mention that now I(u) is an

ordinary function in many variables u[i] so all we need to find is the first

differential of I(u) under constraints from (3.116). Thus the formula for

the first differential gives us

δI(u) =
R∑
i=1

∇u[i]I(u) · δu[i]
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which is (3.117). Next

∇u[i]I(u) = ∇u[i]Q(y[i1],y[i2], . . . ,y[iN ])

=

R∑
j=1

∇u[i]y[j] · ∇y[j]Q(y[i1],y[i2], . . . ,y[iN ]). (3.120)

Here we used the chain rule for differentiation, formulated for the gradient.

Let us find ∇u[i]y[j]. For this we introduce a new vector function Fji
induced by (3.115) that is defined for j ≥ i:

y[j] = Fji(y[i]).

Let us formulate the properties of Fji. It is obvious that

Fii(y[i]) = y[i],

Fi+1 i(y[i]) = y[i + 1] = ϕi+1(y[i],u[i + 1]).

Finally, it follows by the definition that

Fji(y[i]) = Fj i+1(y[i + 1]) = Fj i+1 (ϕi+1(y[i],u[i + 1])) . (3.121)

It is evident that the components of Fji depend only on the components

u[i+1],u[i+2], . . . ,u[j] and do not depend on the rest of the components

of u. Let us return to finding ∇u[i]y[j] using the chain rule again:

∇u[i]y[j] = ∇u[i]Fji(y[i]) = ∇u[i]y[i] · ∇y[i]Fji(y[i])

= ∇u[i]ϕi (y[i − 1],u[i]) · ∇y[i]Fji(y[i]).

Returning to (3.120) we get

∇u[i]I(u) =
R∑
j=i

∇u[i]ϕi (y[i − 1],u[i]) · ∇y[i]Fji(y[i])·

· ∇y[j]Q(y[i1],y[i2], . . . ,y[iN ]).

Denoting

ψ[i] =
R∑
j=i

∇y[i]Fji(y[i]) · ∇y[j]Q(y[i1],y[i2], . . . ,y[iN ]) (3.122)

we get

∇u[i]I(u) =
(∇u[i]ϕi(y[i − 1],u[i])

) · ψ[i]
which is (3.118).
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It remains to derive equations for ψ[i]. We begin with formula (3.121):

Fji(y[i]) = Fj i+1(y[i + 1]).

Applying the gradient by y[i] to both sides we get

∇y[i]Fji(y[i]) = ∇y[i]ϕi+1(y[i],u[i + 1]) · ∇y[i+1]Fj i+1 (y[i+ 1]) .

Substituting this into (3.122) we get

ψ[i] =
R∑
j=i

∇y[i]Fji(y[i]) · ∇y[j]Q(y[i1],y[i2], . . . ,y[iN ])

=

R∑
j=i+1

∇y[i]ϕi+1(y[i],u[i + 1]) · ∇y[i+1]Fj i+1 (y[i + 1]) ·

· ∇y[j]Q(y[i1],y[i2], . . . ,y[iN ])

+∇y[i]Fii(y[i]) · ∇y[i]Q(y[i1],y[i2], . . . ,y[iN ])

= ∇y[i]ϕi+1(y[i],u[i+ 1]) · ψ[i+ 1] +∇y[i]Q(y[i1],y[i2], . . . ,y[iN ])

where we have used the fact that ∇y[i]Fii(y[i]) = E. So we have obtained

the first of (3.119). From the intermediate result of this equality chain the

second of (3.119) follows. �

We now turn to another class of problems.

3.13 Optimal Time Control Problems

We recall that the problems of this type are as follows. The object is

described by a dynamical system

y′(t) = f(y(t),u(t)) (3.123)

for which we must find an admissible control function u(t) in such a way

that the parameters of the system must be changed from the initial state

y(0) = y0 (3.124)

to the final state

y(T ) = y1 (3.125)

in minimal time T . Unlike the terminal control problem, here the final

state of the system is fixed but not the time interval.
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Let us note that in this problem the set U of admissible control functions

is limited not only by the external inequality restrictions, but also by the

boundary conditions (3.124)–(3.125) because it may happen so that there

are no admissible control vectors such that the system, starting with the

initial state y0, can reach the final state y1 in finite time T .

Next we recall that for the terminal control problem we obtained a

conjugate problem with an initial (i.e., “final”) condition at T which was

called the condition of transversality. The optimal time problem has both

the boundary conditions for y of the same form as the condition at t = 0 of

the terminal control problem. Thus we should expect that if Pontryagin’s

principle of maximum is valid in this or that form for the optimal control

problem then any boundary conditions for Ψ(s) are absent. This means

that the uniqueness for finding Ψ(s) needed for this problem is not pro-

vided by some explicit equations. The explicit formula for the increment

of the objective functional for the optimal control problem is not obtained.

So we formulate without proof the statement of Pontryagin’s principle of

maximum for the optimal control problem.

Theorem 3.19. Let u(t) be a control function at which T , the length of

the time interval, attains its minimal value among all the admissible con-

trol functions, for which (3.123)–(3.125) has a solution y(t). There is a

nontrivial vector function Ψ(s) that is a solution of the conjugate equation

d

ds
Ψ(s) = −Ψ(s) · ∇yf(y(s),u(s))

such that the Pontryagin function H(y,Ψ,u) = f(y,u) ·Ψ, with respect to

the third argument, takes its maximal value for all points of continuity of

u(t):

H(y(t),Ψ(t),u(t)) ≥ H(y(t),Ψ(t),v).

Let us note that in simple cases when u(t) comes into the equations

linearly this theorem reduces the set of possible control functions to those

which take values at boundaries of U at each time t. Indeed, then u(t)

comes linearly into the presentation of H(y,Ψ,u) = Ψ · f(y,u) and thus

its maximal value can be taken only at some extreme points of u(t).

Example 3.20. Consider the simplest optimal time problem. Let a ma-

terial point of unit mass move along a straight line under the action of a

force whose magnitude F cannot exceed unity. How should we vary F so

that the point moves from one position to another in the shortest time?
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Solution. If the velocity of the point at its initial and final states is zero

then the solution is clear mechanically: first we need to accelerate the point

with maximal force until it comes to the middle point between the initial

and final state, and then to switch the force to the opposite direction leav-

ing the maximal magnitude so the point is maximally decelerated. When

the appointed initial and final velocities are not zero one must have good

mechanical intuition to tell what the law for the force should be. Let us

solve this problem using Theorem 3.18. The governing equation is

x′′(t) = F (t), x(0) = a0, x′(0) = a1, x(T ) = b0, x′(T ) = b1, (3.126)

and the restriction for F (t) is

|F (t)| ≤ 1. (3.127)

Let us rewrite this using the notation we used above:

y1(t) = x(t), y2(t) = x′1(t), u(t) = F (t).

Thus we introduce the phase coordinates of the point. Then equations

(3.126)–(3.127) take the form

y′1(t) = y2(t),

y′2(t) = u(t),

the boundary conditions

y1(0) = a0,

y2(0) = a1,
and

y1(T ) = b0,

y2(T ) = b1,

and the restriction that defines the set U of piecewise continuous functions

−1 ≤ u(t) ≤ 1.

Let us first introduce the Pontryagin function H = y2ψ1 + uψ2. Let y(t)

and Ψ(t) be the needed solutions of the main and conjugate systems of

equations. The conjugate equations are

ψ′
1 = −∂H/∂y1 = 0,

ψ′
2 = −∂H/∂y2 = −ψ1.

The solution of this system results in ψ2 = d1t+ d2 and thus may have no

more than one point t0 ∈ [0, T ] at which it changes sign. By Pontryagin’s

principle, it is the only point at which the control function u must switch

sign asH can take its maximumwhen ψ2(t)u(t) takes its maximum. Thus t0
splits [0, T ] into two parts having u = ±1. Thus the solution to our simplest



September 30, 2011 8:42 World Scientific Book - 9in x 6in aea

Elements of Optimal Control Theory 211

optimal time control problem should be synthesized from trajectories of the

two systems

y′1(t) = y2(t),

y′2(t) = 1,
and

y′1(t) = y2(t),

y′2(t) = −1.

The particle trajectories on the phase plane (y1, y2) are parabolas. For the

first system y1 = t2/2 + c1t+ c2 and for the second y1 = −t2/2 + c3t+ c4.

Geometrically it is evident that there are no more than two parabolas,

one from each family, through the end points which intersect. That is

the solution trajectory of the problem. Analytically we must compose five

equations for unknown ci and t0. The first is that at t0 the curves intersect,

that is

t20/2 + c1t0 + c2 = −t20/2 + c3t0 + c4.

The other four equations (boundary conditions) depend on which of

switched values of u goes first. If u = 1 on [0, t0] and thus u = −1 on

the rest,

c2 = a0, c1 = a1, −T 2/2 + c3T + c4 = b0, −T + c3 = b1.

If u = −1 on [0, t0] then

c4 = a0, c3 = a1, T 2/2 + c1T + c2 = b0, T + c1 = b1.

Only one of these systems has a solution where real t0 lies in [0, T ] and it

is what we have sought. �

We would like to note that when the controlled object’s equations are

simple, the maximum principle of Pontryagin gives a good tool to find an

optimal solution. For many industrial problems it is necessary to use other

methods. In the same manner as Example 3.20, any optimal time problem

for a system described by the equation x′′ + ax′ + bx = u can be solved

analytically. Textbooks are full of such problems from various areas of

science, their analytical solutions as well as geometrical interpretation of

some of their solutions.

Our next remark is the following. The terminal control problems and

the optimal time problems are in a certain sense, the extremes of all con-

trol problems with respect to boundary conditions. For “intermediate”

problems, with other types of boundary conditions at starting and ending

moments, the conjugate system is supplemented with some conditions of

transversality. The situation is similar to that for natural conditions in the

calculus of variations.
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3.14 Final Remarks on Control Problems

In this chapter we considered in large part the methods for finding opti-

mal solutions. Of course it was an introductory chapter, and we limited

ourselves to a small portion of the theory — that portion which is used

in many industrial control processes and other applications. We did not

touch on the problem of existence of solutions of control problems, which

is extremely important since there are many practical problems that are

formulated quite nicely from a common sense standpoint but that lack so-

lutions.

We mention only another important part of control theory that is called

dynamical programming. It was developed by R. Bellman and used quite

successfully in many problems of optimal control. To give the reader some

idea of what this theory is about and to lend vividness to the presentation

we consider a very simple problem (in a form that might hold the attention

of many undergraduate students):

Example 3.21. A racketeer has been drunk for three weeks and has failed

to perform his job properly. One morning he receives a phone call from

his boss, reminding him of a $32,000 debt he owes the boss in one hour.

Along with this reminder comes a suitable threat about one lost tooth for

each $1000 he fails to bring in. The racketeer lives quite far from his boss,

and wishes to collect as much additional money as possible on the way. He

has a street map showing how much money he can collect on each possible

route. He is constrained to move ahead only, and cannot turn back.

Solution. We draw the map as a graph (Fig. 3.4) that should begin at

point O and end at B. To get a more convenient presentation at the final

point B we split all routes to B and draw them along the final line B0-B1

as shown on the picture. On the lines connecting the nodes we put the

amounts of money that the racketeer expects to be able to collect from the

peaceful citizenry. �

Let us discuss this problem. Of course, for this small map the racketeer

could test all the possibilities and find the optimal way quite quickly. There

are six levels at each of the way can branch so there are few possibilities.

Let us imagine that this map has 1000 such levels; then the number of

possible ways grows to 21000 and simple experimentation would not bring

a quick result. So it becomes necessary to propose a procedure for which

the number of operations could be sufficiently small, say several million.
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Fig. 3.4 A racketeer’s possible routes; optimal trajectory shown as the thick line.

Any cross-section of the map would not bring the needed optimal result

since the optimal trajectory can be quite strange. The crucial step to the

solution is to choose the first step as follows. Suppose that we are at the

999th level of nodes. From each node of this level we exactly know where to

move since it is a choice between two possibilities. Near each node of this

level we write down where we should move (Down or Up) and the amount.

On the 998th level we again should fulfill few operations at each node:

moving along the upper street we then add the figure of this street with the

price of corresponding 999th node after which we should decide between the

two possibilities and to write near the node Up or Down (showing where

to go next) and the optimal cost. On the 997th level everything will be

repeated: the finding of two sums of two numbers, the choosing of the

bigger one, and the placement of the necessary information near the node.
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This is must be done at each level. In this way we come to the initial point,

getting the optimal sum of money as the resulting figure at it, and the

optimal trajectory moving along signs Up and Down.

At first glance this seems to be a nice problem for a high school math

competition, since it is solved using only “common sense”. However, its

solution is based on a hard mathematical idea: when we come to some

point of the optimal trajectory, the remainder of the optimal trajectory is

optimal for the “reduced” problem whose initial point is this one at which

we just stopped.

We shall not discuss the many fruitful applications of this principle of

Bellman. As the central principle of dynamical programming it has brought

many results, both theoretical and practical, in discrete and continuous

problems.

We leave it to the reader to explore other books, and thereby to discover

other ways to view problems in optimal control and the calculus of varia-

tions. These are indeed part of the more general branch of mathematics

known as Mathematical Programming.

3.15 Exercises

3.1 Show that the coefficients of the squared gradient

∇2
y = ∇y (∇y)

applied to a scalar valued function f(y(t)) constitute the Hessian matrix of f .

3.2 Establish the formula (3.71).

3.3 Formulate the form of the main linear part of the increment of J(u) under
the sum of the increments of the control function by the needle-shaped vector
function and a small increment as discussed in § 3.3.
3.4 (A harder problem.) Let the objective functional for the terminal control
problem be changed to

J∗(u) =
∫ T

0

G(y(t)) dt.

What is the form of the main part of its increment in this case?

3.5 A mechanical oscillator (a mass on a spring) oscillates under force |F (t)|
such that |F (t)| ≤ 1. The governing equation is mx′′ + kx = F , m = 1, k = 1.
Find the law of the change of the force when the mass goes from state x(0) = a,
x′(0) = b to the state of equilibrium, x(T ) = 0, x′(T ) = 0 in the shortest time T .
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Over the long history of engineering, numerous analytical and theoretical

tools were developed for the approximate solution of complex mathematical

problems. These techniques are still meaningful and tend to dominate en-

gineering textbooks. However, modern engineering incorporates models so

complex that their theoretical solution is practically impossible. A reliance

on computers has pushed aside analytic methods even when the latter can

be applied. Approaches such as the finite element method enable solutions

of extremely complex problems that are impossible to solve analytically

and, moreover, produce numerical results that may be presented in an at-

tractive graphical manner. An engineer may have the impression that these

programs can solve nearly any problem — at least in his or her range of

interests. But this is not the case. Computers are finite automata; they act

with finite sets of numbers. Computers reduce differential equations and

other continuous models to equations in finite dimensional spaces.

Engineers working with computer programs may become accustomed to

the idea that finite dimensional results are good approximations to experi-

mental results. In mathematical terms, they begin to view the ideology of

linear algebra in Rn as infallible. This viewpoint is not entirely invalid. We

may take, for example, the equations of the finite element method, obtained

from boundary value problems for differential equations. If deduced while

taking proper account of the principal physical laws, these equations are in-

deed finite dimensional models of certain objects or processes. Hence they

can sometimes approximate real objects no worse than differential (infinite

dimensional) models that are also merely approximate. But the phrase

“deduced while taking proper account of the principal physical laws” is

essential, and finite dimensional models may lack certain important prop-

erties. Furthermore, restrictions on calculation time will necessitate trun-

215
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cation errors, the effects of which can be gauged only through comparison

with experiment (which is often impractical) or with results from infinite

dimensional models.

We can expect manual solution methods to continue their slow decline

in engineering practice. Within a few generations, students may be unable

to integrate simple functions or solve ordinary differential equations (con-

sider what happened with the logarithmic slide rule). But a grasp of the

basic properties of finite dimensional and infinite dimensional operators and

their relations will be needed for understanding what computers do with

numerical models and what can be expected from them.

As finite dimensional and infinite dimensional problems appear to be

related, it is attractive to use the methods and ideology elaborated in finite

dimensions for the infinite dimensional case. Many aspects of standard ma-

trix analysis remain valid under the transition to infinite dimensional prob-

lems. But this is not uniformly the case. For example, closed and bounded

sets are guaranteed to be compact only in finite dimensional spaces. An-

other example concerns infinite dimensional vectors, often written in the

harmless looking form (x1, x2, . . .), which do not conform to all the rules

that apply to ordinary vectors. Many such examples could be given.

Although these sorts of issues are studied in the portion of mathematics

that still lies outside the typical engineering curriculum, the situation is

bound to change. Engineers must understand the background of the tools

they employ.

A principal tool in the modern analysis of partial differential equations,

functional analysis allows us to shift our perspective on functions from

the viewpoint of ordinary calculus to a viewpoint in which we deal with

a function (such as a differential or integral operator) as a whole entity.

We accomplish this conceptual shift by extending the notion of an ordinary

three-dimensional vector so that a function can be viewed as an element of

a linear vector space. Because this extension involves some subtle points

regarding the dimension of a vector space, the present chapter is devoted

to a suitable introduction.

As a branch of mathematics, functional analysis is in large part de-

lineated by the tools it offers to the practitioner. Important applications

arise in a variety of areas: differential and integral equations, the theory

of integration, probability theory, etc. It has been said that functional

analysis is not a special branch of mathematics at all, but rather a united

point of view on mathematical objects of differing natures. A full presen-

tation of functional analysis would require many volumes. The goal of the
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present chapter is to offer the reader a relatively brief but still self-contained

treatment, and therefore to provide all the tools necessary for the study of

boundary value problems.

It is worth noting that the pioneers of functional analysis were not all

pure mathematicians. Stefan Banach received a polytechnical diploma and

for many years taught courses in theoretical mechanics. He also published

an interesting textbook on mechanics. John von Neumann, who pioneered

the application of computers to engineering practice, wrote a fundamental

textbook on functional analysis that had important influences on quantum

mechanics and other areas of physics. Functional analysis spawned many

important applications of mathematics to physics and engineering. While

some of its subtopics did arise in pure mathematics, they are often pow-

erfully applicable. The approaches taken in books on functional analysis

depend strongly on the interests of the authors. Many are deeply theoreti-

cal. In this short chapter, we consider a portion of functional analysis used

to study mathematical problems in mechanics.

Before we begin, recall two standard theorems from ordinary calculus.

Theorem 4.1. Suppose a sequence {fn(x)} of functions continuous on a

compact set Ω ⊂ Rk converges uniformly; that is, for any ε > 0 there is an

integer N = N(ε) such that |fn(x) − fm(x)| < ε whenever n,m > N and

x ∈ Ω. Then the limit function

f(x) = lim
n→∞ fn(x)

is continuous on Ω.

This is called Weierstrass’ theorem. The next one shows the properties

of a continuous function on a compact set.

Theorem 4.2. Suppose f(x) is continuous on a compact set Ω ⊂ Rk. Then

f(x) is uniformly continuous on Ω; that is, for any ε > 0 there is a δ > 0

(dependent only on ε) such that |f(x) − f(y)| < ε whenever ‖x− y‖ < δ

and x,y ∈ Ω.

4.1 A Normed Space as a Metric Space

Regarding a function as a single object (a viewpoint which functional anal-

ysis inherited from the calculus of variations), we must provide a way to

quantify the difference between two functions. The simplest and most con-

venient way to do this is to use the tools of normed spaces. First of all a
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normed space, consisting of elements of any nature (of functions in partic-

ular), must be a linear space. This means we can add or subtract any two

elements of the space, or multiply an element of the space by a number, and

the result will always be an element of the same space. If complex num-

bers are used as multipliers then the linear space is called a complex linear

space; if purely real numbers are used then the space is a real linear space.

The definition of a linear space can be stated rigorously in terms of axioms

and the reader has undoubtedly seen these in a linear algebra course. The

main distinction between a general linear space and a normed space is the

existence of a norm on the latter. A norm is a real-valued function ‖x‖
that is determined (which means it carries a unit and takes a finite value)

at each element x of the space and satisfies the following axioms:

(1) ‖x‖ ≥ 0 for all x; ‖x‖ = 0 if and only if x = 0;

(2) ‖λx‖ = |λ| ‖x‖ for any x and any real number λ;

(3) ‖x+ y‖ ≤ ‖x‖ + ‖y‖ for all x, y.

The first of these is called the axiom of positiveness, the second is the axiom

of homogeneity, and the third is the triangle inequality.

Definition 4.3. A normed linear space is a linear spaceX on which a norm

‖·‖ is defined.

More specifically, ‖·‖ is “defined” on X if the number ‖x‖ exists and is

finite for every element x ∈ X .

In classical functional analysis one deals with dimensionless quantities.

In applications this restriction is not necessary: one can use numbers with

dimensional units and get norms having dimensional units. Although this

causes no theoretical complications and is sometimes useful, we follow the

classical procedure and consider all elements to be dimensionless.

Example 4.4. Show that if ‖x‖ is any norm on X and x, y ∈ X , then

| ‖x‖ − ‖y‖ | ≤ ‖x− y‖ . (4.1)

We shall find this inequality useful later. In particular, by the definition of

continuity it means that the norm is continuous with respect to the norm

itself.

Solution. Let us begin by replacing x with x− y in norm axiom 3:

‖x‖ − ‖y‖ ≤ ‖x− y‖ .
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Interchanging the roles of x and y in this inequality, we get

‖y‖ − ‖x‖ ≤ ‖y − x‖ .
But the right sides of these two inequalities are the same; indeed, ‖y − x‖ =

‖(−1)(x− y)‖ = ‖x− y‖ by norm axiom 2. So the quantity ‖x− y‖ is

greater than or equal to both ‖x‖ − ‖y‖ and ‖y‖ − ‖x‖. This means it is

greater than or equal to | ‖x‖ − ‖y‖ |. �

We have introduced the normed space C(k)(Ω) of functions that are k

times continuously differentiable on a compact set Ω with the norm

‖f(x)‖C(k)(Ω) = max
x∈Ω

|f(x)|+
∑
|α|≤k

max
x∈Ω

|Dαf(x)|, (4.2)

where

Dαf =
∂|α|f

∂xα1
1 · · · ∂xαn

n
, |α| = α1 + · · ·+ αn. (4.3)

As with any other proposed norm, the reader should verify satisfaction of

the axioms.1 A particular case is the space of all functions continuous on

Ω with the norm

‖f(x)‖C(Ω) = max
x∈Ω

|f(x)|. (4.4)

In the space of functions continuous on a compact Ω we can impose another

norm:

‖f(x)‖ =

(∫
Ω

|f(x)|p dΩ
)1/p

(p ≥ 1). (4.5)

The norm axioms can be verified here also (the triangle inequality being

known as Minkowski’s inequality).2 Hence on the same set (linear space)

of elements we can impose one of several norms. On the same compact Ω

we can consider the set of all bounded functions and introduce the norm

‖f(x)‖ = sup
x∈Ω

|f(x)| . (4.6)

The resulting space will be called M(Ω). The space C(Ω) is a subspace of

M(Ω) (note that for a continuous function the norm (4.6) reduces to (4.4)).

Note that a normed space is defined by the set of elements and the form of
1For example one could take the set of functions continuous on [0, 1] and try to impose

a “norm” using the formula ‖f(x)‖ = |f(0.5)|. Which norm axiom would fail?
2We assume Ω is Jordan measurable. This is a safe assumption for our purposes,

because we consider only domains occupied by physical bodies having comparatively
simple shape.
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the norm imposed on it. So to refer properly to a space, we must display

a pair (X, ‖·‖) consisting of the set of elements X and the norm. For the

most frequently used spaces it is common to use shorthand notation such

as C(Ω) where the norm is understood. This is especially appropriate when

there is a unique norm imposed on a set, and we shall adopt the practice.

When it is necessary to distinguish different norms, we indicate the space

by a subscript on the norm symbol as in (4.2) and (4.4).

The functional

d(x, y) = ‖x− y‖ , (4.7)

defined for each pair of elements of a normed space, satisfies the axioms of

a metric:

(1) d(x, y) ≥ 0 for all x, y, and d(x, y) = 0 if and only if x = y;

(2) d(x, y) = d(y, x) for all x, y;

(3) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z.

If such a functional (metric) d is defined for any pair of elements of a set

X , then we have a metric space.

Definition 4.5. A metric space is a set X on which a metric d(x, y) is

defined.

Hence every normed space is a metric space (the metric (4.7) is called

the natural metric and is said to be induced by the norm). The notion of

metric space is more general than that of normed space. Not all metric

spaces can be normed: first of all a metric space need not be a linear space

(a fact which is sometimes important, as in applications of the contraction

mapping principle). Note that the use of elements with dimensional units

would give a metric having dimensions as well; although the metric is a

generalization of the notion of distance, this distance can be expressed in

units of force, power, etc.

The axioms of a metric replicate the essential properties of distance from

ordinary geometry: (1) distance is nonnegative, the distance from a point

to itself is zero, and the distance between two distinct points is nonzero;

(2) the distance between two points does not depend on the order in which

the points are considered; and (3) the triangle inequality holds, meaning

that for a triangle the length of any side does not exceed the sum of the

lengths of the other two sides. In this way, the more general notion of

metric preserves many terms and concepts from ordinary geometry.



September 30, 2011 8:42 World Scientific Book - 9in x 6in aea

Functional Analysis 221

Definition 4.6. An open ball with center x0 and radius R is the set of

points x ∈ X such that d(x0, x) < R. The corresponding closed ball is the

set of all x ∈ X such that d(x0, x) ≤ R, and the corresponding sphere of

radius R is the set of all x ∈ X such that d(x0, x) = R.

Note that the term “ball” can denote various objects depending on the

metric chosen: if we impose the metric

d(x, y) = max
1≤i≤3

|xi − yi|

in ordinary three-dimensional space where x = (x1, x2, x3) and y =

(y1, y2, y3), then a ball is really shaped like a cube. The other abstract

space structures also provide notions that correspond to those of ordinary

geometry. In a linear space of vectors we can determine a straight line

through the points x1 and x2 by

tx1 + (1− t)x2, t ∈ (−∞,∞),

and can obtain the segment having x1 and x2 as endpoints by restricting t

to the interval [0, 1]. It is especially important that we can use the notion

of metric to introduce the tools of calculus in such a way that functions can

be dealt with as whole objects. (Metric spaces are not linear in general,

so they include spaces that cannot be normed. However, even some linear

metric spaces cannot be normed.)

Armed with a notion of distance in a normed space, we can introduce

any of the notions from calculus that are connected with the notion of

distance. The first is convergence.

Definition 4.7. A sequence {xn} is convergent to an element x if to

each positive number ε there corresponds a number N = N(ε) such that

d(xk, x) < ε whenever k > N .

The reader can easily phrase this definition in terms of the norm, using

(4.7). As in calculus, we call x the limit of {xk} and write

lim
k→∞

xk = x

or xk → x as k → ∞.

Example 4.8. (a) Show that every convergent sequence in a metric space

has a unique limit. (b) Show that if xn → x and yn → y, then d(xn, yn) →
d(x, y) as n→ ∞.
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Solution. (a)We suppose that xn → x and xn → x′, then show that x′ = x

follows. Let ε be an arbitrarily small positive number. By assumption we

can choose N so large that the inequalities d(xN , x) < ε/2 and d(xN , x
′) <

ε/2 both hold. Hence, by the triangle inequality,

d(x, x′) ≤ d(x, xN ) + d(xN , x
′) < ε.

Since the distance d(x, x′) is both nonnegative and smaller than any preas-

signed positive number, it must equal zero. According to metric axiom 1,

we conclude that x = x′. (b) The generalized triangle inequality

d(x1, xn) ≤ d(x1, x2) + d(x2, x3) + · · ·+ d(xn−1, xn)

is easily established through the use of mathematical induction. We can

use this fact as follows. We write

d(x, y) ≤ d(xn, x) + d(xn, yn) + d(yn, y)

and

d(xn, yn) ≤ d(xn, x) + d(x, y) + d(yn, y),

and then combine these two inequalities into the form

|d(xn, yn)− d(x, y)| ≤ d(xn, x) + d(yn, y).

Now for any ε > 0 there exists N so large that n > N implies both

d(xn, x) < ε/2 and d(yn, y) < ε/2. This means that |d(xn, yn)−d(x, y)| < ε,

as desired. �

Clearly, a sequence of functions continuous on [0, 1] and convergent in

the norm (4.4) is also convergent in the norm

‖f(x)‖ = 2 max
x∈[0,1]

|f(x)| .

However there are other norms, of Lp(0, 1) say, under which the meaning of

convergence is different. If two norms ‖·‖1 and ‖·‖2 satisfy the inequalities

m ‖x‖1 ≤ ‖x‖2 ≤M ‖x‖1 (4.8)

for some positive constants m and M that do not depend on x, then the

two resulting notions of convergence on the set of elements are the same.

Definition 4.9. Two norms ‖·‖1 and ‖·‖2 that satisfy (4.8) for all x ∈ X

are equivalent on X .

We shall not distinguish between normed spaces consisting of the same

elements and having equivalent norms.
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4.2 Dimension of a Linear Space and Separability

The dimension of a linear space is the maximal number of linearly inde-

pendent elements of the space. Recall that the elements xk, k = 1, 2, . . . , n,

are linearly independent if the equation

c1x1 + c2x2 + · · ·+ cnxn = 0

with respect to the unknowns ck implies that ck = 0 for all k = 1, 2, . . . , n.

We shall deal for the most part with infinite dimensional spaces. An im-

portant example is the space C(0, 1) of functions f(x) continuous on [0, 1].

Indeed, any set of monomials fk(x) = xk is linearly independent in this

space, since for any integer n the equation

c1x+ c2x
2 + · · ·+ cnx

n = 0

cannot hold for any x unless ck = 0 for all k = 1, 2, . . . , n. Therefore the

dimension of C(0, 1) cannot be finite.

Let us discuss the problem of the number of elements in an abstract

set. We say that two sets have equal power if we can place their elements

in one-to-one correspondence. The simplest known infinite sets are those

whose elements can be placed in one-to-one correspondence with the set

of natural numbers. Such sets are said to be countable. An example is

the set of all integers. It is clear that a finite union of countable sets is

countable, since we can successively count first the elements standing at

the first position of each of the sets, then the elements at standing at the

second position, etc. There is a sharper result:

Theorem 4.10. A countable union of countable sets is countable.

Proof. Let Xn be the nth countable set and denote its kth element by

xnk, k = 1, 2, . . .. The union of the Xn is the set of all elements xnk. We

need only to show how to recount them; this can be done as follows. The

first element is x11. The second and third elements are x12 and x21, i.e., the

elements whose indices sum to 3. The next three elements are the elements

whose indices sum to 4: x13, x22 x31. We proceed to the elements whose

indices sum to 5, 6, etc. In this way we can associate any element of the

union with an integer. �
It follows that the set Q of all rational numbers is countable. Recall

that a rational number can be represented as i/j where i and j are integers;

denoting xij = i/j, we obtain the proof. Thus a countable set can have a

great many elements. However, it can be shown that
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Theorem 4.11. The points of the interval [0, 1] are not countable.

The reader is referred to books on real analysis for a proof. We say

that the points of [0, 1] form a continuum. One might wonder whether

there exist any sets intermediate in power between the countable sets and

continuum sets. It turns out that the existence or non-existence of such

a set is an independent axiom of arithmetic, a fact which points to the

interesting (and sometimes mysterious) nature of the real numbers.

Example 4.12. Show that the set Pr of all polynomials with rational co-

efficients is countable.

Solution. For each fixed nonnegative integer n, denote by Pnr the set of

all polynomials of degree n having rational coefficients. The set Pnr can be

put into one-to-one correspondence with the countable set

Q ×Q× · · · ×Q︸ ︷︷ ︸
n+1 times

where Q is the set of all rational numbers. Finally, the set Pr is given by

Pr =
∞⋃
n=0

Pnr ,

and this is a countable union of countable sets. �

Another example of a countable set is the collection of all finite trigono-

metric polynomials of the form

a0 +
n∑
k=1

(ak cos kx+ bk sin kx)

with rational coefficients a0, ak, bk.

Let us discuss the real numbers further, keeping in mind that many of

our remarks also apply to the complex numbers. Any real number can be

obtained as a limit point of some sequence of rational numbers. This fun-

damental fact is, of course, the reason why a computer can approximate a

real number by a rational number. The ability to approximate the elements

of a given set by elements from a certain subset is important in general.

Definition 4.13. Let S be a set in a metric space X . A set Y ⊂ S is dense

in S if for each point s ∈ S and ε > 0, there is a point y ∈ Y such that

d(s, y) < ε.
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Alternatively, Y is dense in S if for any s ∈ S there is a sequence

{yn} ⊂ Y that converges to s. The set of rational numbers is dense in the

set of real numbers.

Example 4.14. Let A,B,C be sets in a metric space. Show that if A is

dense in B, and B is dense in C, then A is dense in C.

Solution. Suppose A is dense in B and B is dense in C. Let c be a given

point of the set C, and let ε > 0 be given. There is a point b ∈ B such

that d(c, b) < ε/2. Similarly, there is a point a ∈ A such that d(b, a) < ε/2.

Since

d(c, a) ≤ d(c, b) + d(b, a) < ε/2 + ε/2 = ε,

there is a point a ∈ A that lies within distance ε of c ∈ C. �

Definition 4.15. If a metric space X contains a countable subset that is

dense in X , then X is separable.

Example 4.16. Demonstrate that the set of all complex numbers with the

natural metric (induced by the absolute value of a number) is a separable

metric space.

Solution. Consider the subset of complex numbers having rational real

and imaginary parts. This set is clearly countable (it can be placed into

one-to-one correspondence with the countable set Q × Q). We must still

show that it is dense in C. Let z = u+ iv be a given point of C, i =
√−1,

and let ε > 0 be given. Since u and v are real numbers, and the rationals

are dense in the reals, there are rational numbers ū and v̄ such that

|u− ū| < ε/
√
2, |v − v̄| < ε/

√
2.

The number z̄ = ū+ iv̄ is a complex number with rational real and imagi-

nary parts. Noting that

d(z, z̄) =
√
(u− ū)2 + (v − v̄)2 <

√
(ε/

√
2)2 + (ε/

√
2)2 = ε,

we are finished. �

Theorem 4.17. Every finite dimensional normed space is separable.

Proof. Every finite dimensional linear space has a finite basis, and the

set of all finite linear combinations of the basis elements with rational co-

efficients is countable and dense in the space. �
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The following result is important in practice.

Theorem 4.18. Every subspace of a separable space is separable.

Proof. Let E be a subspace of a separable spaceX . Consider a countable

set consisting of (x1, x2, . . .) which is dense in X . Let Bki be a ball of radius

1/k about xi. By Theorem 4.10, the set of all Bki is countable.

For any fixed k the union ∪iBki covers X and thus E. For every Bki,

take an element of E which lies in Bki (if it exists). Denote this element by

eki. For any e ∈ Bki ∩ E, the distance d(e, eki) is less than 2/k. It follows

that the set of all eki is, on the one hand, countable, and, on the other

hand, dense in E. �

Recall that a subspace of a linear space X is a subset of X whose ele-

ments satisfy the linear space axioms. Normally the separability of function

spaces is proved via the approximation of functions by polynomials with ra-

tional coefficients. These polynomials constitute a countable set. When we

establish separability of spaces used for the setup of boundary value prob-

lems, certain conditions on the boundary are involved in defining the useful

subspaces. The polynomials usually do not satisfy these conditions and

therefore are not included in the needed subspace. However, we can prove

separability of the principal space without boundary restrictions. Separa-

bility of the subspace with the restrictions follows from Theorem 4.18.

An important result from analysis is the Weierstrass approximation the-

orem: if f is continuous on a compact domain in Rn, then there is a se-

quence of polynomials that can “uniformly approximate” f on that domain.

Upon this result rests

Theorem 4.19. If Ω is a compact domain in Rn, then the space C(Ω) is

separable.

Proof. The set of all polynomials with rational coefficients is dense in

the set of all polynomials. Then the Weierstrass theorem implies that the

set Pr of all polynomials with rational coefficients is dense in C(Ω). Since

Pr is countable, C(Ω) is separable. �

We also have

Theorem 4.20. The space C(k)(Ω) is separable for any integer k.
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4.3 Cauchy Sequences and Banach Spaces

If xn → x, then the triangle inequality

d(xn+m, xn) ≤ d(xn+m, x) + d(x, xn)

shows that for any ε > 0 there is a number N = N(ε) such that for any

n > N and any positive integer m,

d(xn+m, xn) ≤ ε.

In calculus such a sequence is given a special name:

Definition 4.21. A sequence {xn} is a Cauchy sequence if to each ε > 0

there corresponds N = N(ε) such that for every pair of numbers m,n the

inequalities m > N and n > N together imply that d(xm, xn) < ε.

Every convergent sequence is a Cauchy sequence. According to a famous

theorem of calculus, any Cauchy sequence of real numbers is necessarily

convergent to some real number, so in R the notions of Cauchy sequence

and convergent sequence are equivalent. In a general metric space this is

not so, as is demonstrated next.

Example 4.22. Show that the sequence of functions

fn(x) =



0, 0 ≤ x ≤ 1

2 ,

nx− n
2 ,

1
2 ≤ x ≤ 1

2 + 1
n ,

1 1
2 + 1

n ≤ x ≤ 1,

(n = 2, 3, 4, . . .)

continuous on [0, 1] is a Cauchy sequence in L(0, 1) but has no continuous

limit. Note: the norm in the space L(0, 1) is given by ‖f(x)‖ =
∫ 1

0
|f(x)| dx.

Is this a Cauchy sequence in the norm of C(0, 1)?

Solution. Each fn(x) is continuous on [0, 1]. To see that {fn} is a Cauchy

sequence, assume m > n and calculate

d(fn(x), fm(x)) =

∫ 1
2+

1
m

1
2

∣∣∣(mx− m

2

)
−
(
nx− n

2

)∣∣∣ dx
+

∫ 1
2+

1
n

1
2+

1
m

∣∣∣1− (
nx− n

2

)∣∣∣ dx
=

1

2

(
1

n
− 1

m

)
→ 0 as m,n→ ∞.
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However, fn → f where

f(x) =

{
0, 0 ≤ x ≤ 1

2 ,

1, 1
2 < x ≤ 1,

because

d(fn(x), f(x)) =

∫ 1
2+

1
n

1
2

∣∣∣1− (
nx− n

2

)∣∣∣ dx =
1

2n
→ 0 as n→ ∞.

The function f(x) is clearly not continuous. �

Example 4.23. Show that if a sequence converges, then any of its subse-

quences also converges and has the same limit.

Solution. Let {xnk
} be a subsequence of {xn} where xn → x. Given

ε > 0, we can find N such that n ≥ N implies d(xn, x) < ε. Since nk ≥ k

for all k, we have d(xnk
, x) < ε whenever k ≥ N . �

Example 4.24. Show that if some subsequence of a Cauchy sequence has

a limit, then the entire sequence must converge to the same limit.

Solution. Suppose {xnk
} is a convergent subsequence of a Cauchy se-

quence {xn}. We show that if xnk
→ x, then xn → x. Let ε > 0 be given

and choose N such that d(xn, xm) < ε/2 for n,m > N . Since xnk
→ x,

there exists nk > N such that d(xnk
, x) < ε/2. So for n > N we have

d(xn, x) ≤ d(xn, xnk
) + d(xnk

, x) < ε/2 + ε/2 = ε. �

Example 4.25. A set S in a normed space X is bounded if there exists

R > 0 such that ‖x‖ ≤ R whenever x ∈ S. Show that every Cauchy

sequence is bounded.

Solution. Let {xn} be a Cauchy sequence. There exists N such that

‖xn − xN+1‖ < 1

whenever n > N . For all n > N we have

‖xn‖ ≤ ‖xn − xN+1‖+ ‖xN+1‖ < ‖xN+1‖+ 1.

Hence an upper bound for ‖xn‖ for any n is given by

B = max{‖x1‖ , . . . , ‖xN‖ , ‖xN+1‖+ 1}.
Therefore {xn} is a bounded sequence. �
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The property that any Cauchy sequence of a metric space has a limit

element belonging to the space is so important that a metric space having

this property is called complete. If a normed space is complete, it is called

a Banach space in honor of the Polish mathematician Stefan Banach who

discovered many important properties of normed spaces.

Definition 4.26. A metric space X is complete if every Cauchy sequence

in X converges to a point in X . A Banach space is a complete normed

space.

Example 4.27. Show that Rn is complete.

Solution. Let {x(k)} be a Cauchy sequence in Rn. The kth term of this

sequence is an n-tuple

x(k) = (x
(k)
1 , . . . , x(k)n ).

Since {x(k)} is a Cauchy sequence, for each ε > 0 there exists N such that

m > N and p > 0 imply

d(x(m+p),x(m)) =

[
n∑
i=1

∣∣∣x(m+p)
i − x

(m)
i

∣∣∣2
]1/2

≤ ε.

Since all terms in the sum are nonnegative, we have∣∣∣x(m+p)
i − x

(m)
i

∣∣∣ < ε for each i = 1, . . . , n (4.9)

whenever m > N and p > 0. Hence x
(j)
i is a Cauchy sequence of reals for

any i = 1, . . . , n. By the completeness of R we know that x
(j)
i converges

(as j → ∞) to a limit, say x∗i , in R. Now let

x∗ = (x∗1, . . . , x
∗
n).

We will show that

x(k) → x∗ (4.10)

where convergence is understood in the sense of the Euclidean metric on

Rn. Fix m > N ; by (4.9) we get

lim
p→∞

∣∣∣x(m+p)
i − x

(m)
i

∣∣∣ ≤ ε,

hence

|x∗i − x
(m)
i | ≤ ε for each i = 1, . . . , n.
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So (
n∑
i=1

∣∣∣x∗i − x
(m)
i

∣∣∣2
)1/2

= d(x∗,x(m)) ≤ √
nε

for m > N , and (4.10) is proved. Since every Cauchy sequence in Rn

converges to a point of Rn, the space Rn is complete. �

In applications we encounter solutions to many problems expressed in

the form of functional series. To deal with them as with series of elements in

the usual calculus, let us introduce series in a Banach space. By definition,

a series of the form
∞∑
k=1

xk (xk ∈ X)

converges to an element s ∈ X if the sequence {sn} of partial sums

sn =

n∑
k=1

xk

converges to s ∈ X in the norm of X . The notion of absolute convergence

may also be adapted to series in Banach spaces.

Definition 4.28. The series
∑∞
k=1 xk converges absolutely if the numerical

series
∑∞
k=1 ‖xk‖ converges.

In a Banach space, as in ordinary calculus, absolute convergence implies

convergence:

Theorem 4.29. Let {xk} be a sequence of elements in a Banach space X.

If the series
∑∞
k=1 xk converges absolutely, then it converges.

Proof. By the triangle inequality we have, for any n and p ≥ 1,∥∥∥∥
n+p∑
k=1

xk −
n∑
k=1

xk

∥∥∥∥ ≤
∣∣∣∣
n+p∑
k=1

‖xk‖ −
n∑
k=1

‖xk‖
∣∣∣∣.

By hypothesis the sequence
∑n

k=1 ‖xk‖ converges and is therefore a Cauchy

sequence. By the inequality above,
∑n
k=1 xk is a Cauchy sequence and will

converge to an element of X by completeness. �

Example 4.30. Show that under the conditions of the previous theorem,∥∥∥∥ ∞∑
k=1

xk

∥∥∥∥ ≤
∞∑
k=1

‖xk‖ .
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Solution. We have∥∥∥∥ ∞∑
k=1

xk

∥∥∥∥ =

∥∥∥∥ lim
n→∞

n∑
k=1

xk

∥∥∥∥ = lim
n→∞

∥∥∥∥ n∑
k=1

xk

∥∥∥∥ ≤ lim
n→∞

n∑
k=1

‖xk‖ =
∞∑
k=1

‖xk‖ .

We used the continuity of the norm, and then the triangle inequality for

finite sums. �

Many of the other results from ordinary calculus also carry over to series

in Banach spaces. We can add convergent series termwise:

∞∑
k=1

xk +
∞∑
k=1

yk =
∞∑
k=1

(xk + yk). (4.11)

We can also multiply a series by a scalar constant λ in the usual way:

λ

∞∑
k=1

xk =

∞∑
k=1

λxk. (4.12)

Definition 4.31. An element x of a metric space X is a limit point of a

set S if any ball centered at x contains a point of S different from x. The

set S is closed in X if it contains all its limit points.

Limit points are sometimes called points of accumulation. The following

result provides a useful alternative characterization for a closed subset of a

complete metric space.

Theorem 4.32. A subset S of a complete metric space X supplied with the

metric of X is a complete metric space if and only if S is closed in X.

Proof. Assume S is complete. If x is a limit point of S, then there is a

sequence {xn} ⊂ S such that xn → x. But every convergent sequence is a

Cauchy sequence, hence by completeness {xn} converges to a point of S.

From this and uniqueness of the limit we conclude that x ∈ S. Hence S

contains all its limit points and is therefore a closed set.

Now assume S is closed. If {xn} is any Cauchy sequence in S, then

{xn} is also a Cauchy sequence in X and converges to a point x ∈ X . This

point x is also a limit point of S however, hence x ∈ S. So every Cauchy

sequence in S converges to a point of S, and S is complete. �

We turn to some examples of Banach and normed spaces. The simplest

kind of Banach space is formed by imposing a norm on the linear space
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Rn of n-dimensional vectors x = (x1, . . . , xn). A standard norm defined on

this space is the Euclidean norm

‖x‖e =
(

n∑
i=1

x2i

)1/2

. (4.13)

The resulting Banach space (Rn, ‖·‖e) is finite dimensional. The following

result allows us to ignore the distinction between different normed spaces

that are formed from the same underlying finite dimensional vector space

by imposing different norms:

Theorem 4.33. On a finite dimensional space all norms are equivalent.

Proof. It is enough to prove that any norm is equivalent to the Euclidean

norm ‖·‖e. Take any basis ik that is orthonormal in the Euclidean inner

product. We can express any x as x =
∑n

k=1 ckik. Then

‖x‖e =
(

n∑
k=1

c2k

)1/2

.

For an arbitrary norm ‖·‖,

‖x‖ =

∥∥∥∥ n∑
k=1

ckik

∥∥∥∥ ≤
n∑
k=1

|ck| ‖ik‖ ≤
n∑
k=1


 n∑
j=1

|cj |2

1/2

‖ik‖ = m ‖x‖e

where m =
∑n

k=1 ‖ik‖ is finite. So one side is proved. For the other side,

consider ‖x‖ as a function of the n variables ck. Because of the above

inequality it is a continuous function in the usual sense. Indeed

| ‖x1‖ − ‖x2‖ | ≤ ‖x1 − x2‖ ≤ m ‖x1 − x2‖e ,
which for x1 =

∑n
k=1 ckik and x =

∑n
k=1(ck +∆k)ik can be rewritten as∣∣∣∣∣

∥∥∥∥ n∑
k=1

ckik

∥∥∥∥−
∥∥∥∥ n∑
k=1

(ck +∆k)ik

∥∥∥∥
∣∣∣∣∣ ≤ m

∥∥∥∥ n∑
k=1

∆kik

∥∥∥∥ = m

n∑
k=1

∆k
2

and from which we get ordinary ε-δ definition of continuity of the function

at any point (c1, . . . , cn). Now it is enough to show that on the sphere

‖x‖e = 1 we have inf ‖x‖ = a > 0 (because of homogeneity of norms).

Being a continuous function, ‖x‖ achieves its minimum on the compact set

‖x‖e = 1 at a point x0. So ‖x0‖ = a. If a = 0 then x0 = 0 and thus x0
does not belong to the unit sphere (in the Euclidean norm). Thus a > 0

and for any x we have ‖x‖ / ‖x‖e ≥ a. �
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The notion of an infinite dimensional vector x = (x1, x2, . . .) with a

countable number of components is, of course, a straightforward general-

ization of the notion of a finite dimensional vector x = (x1, . . . , xn). Such

a vector can be encountered by considering a numerical sequence {xi} as

a whole entity; the individual terms xi of the sequence become the com-

ponents of a vector x. We shall use the terms infinite dimensional vector

and sequence interchangeably. Another way to introduce vectors with in-

finitely many components is to consider expansions of functions, such as

Fourier or Taylor expansions. The expansion coefficients can be collected

into something like a vector with infinitely many components.

Simple infinite dimensional Banach spaces can be formed by imposing

suitable norms on spaces of infinite dimensional vectors. The results are

sequence spaces. For example, we may take the set c of all convergent

numerical sequences and impose the norm

‖x‖ = sup
i

|xi|.

Note that an infinite dimensional vector x does not belong to c if a subse-

quence {xik} of its components satisfies xik → ∞ as ik → ∞. So c contains

only a subset of all infinite dimensional vectors.

An interesting family of sequence spaces can be defined, one for each

integer p ≥ 1. The space �p is the set of all vectors x such that
∑∞
i=1 |xi|p <

∞, and its norm is taken to be

‖x‖ =

( ∞∑
i=1

|xi|p
)1/p

. (4.14)

The fact that (4.14) is a norm is a consequence of the Minkowski inequality( ∞∑
i=1

|xi + yi|p
)1/p

≤
( ∞∑
i=1

|xi|p
)1/p

+

( ∞∑
i=1

|yi|p
)1/p

(4.15)

since satisfaction of the other norm axioms for (4.14) is evident. An im-

portant special case is the space �2 of square summable sequences x with∑∞
i=1 |xi|2 <∞ and norm

‖x‖ =

( ∞∑
i=1

|xi|2
)1/2

. (4.16)

Looking ahead, we mention that any element in a separable Hilbert space

H (it is a complete space with an inner product that is similar to the dot

product in a Euclidean space) can be represented as a Fourier expansion
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with respect to an orthonormal basis of H , and there is a one-to-one corre-

spondence between the elements of H and �2. So all the general properties

we could establish for the elements of �2 can be reformulated for a separable

Hilbert space H and vice versa. We can add that �2 was the first space

introduced by David Hilbert and initiated functional analysis as a branch

of mathematics.

We emphasize that the normed spaces c and �p are not defined on the

same underlying set of vectors. For example, the vector x = (1, 1, 1, . . .)

obviously belongs to c but not to �p for any p ≥ 1. Moreover, there is no

analog to Theorem 4.33 for infinite dimensional spaces.

There is a subspace of c denoted by c0 that consists of vectors (se-

quences) having zero limit. Note that a set of sequences converging to

some fixed nonzero limit could not be a linear space. If we wish to consider

the set of all convergent sequences with some nonzero limit, we call it a

cone. We can restrict a cone to some of its subsets by placing additional

conditions on the components of vectors.

It is also possible to study weighted spaces of sequences with norms of

the form

‖x‖ =

( ∞∑
i=1

ki|xi|2
)1/2

(4.17)

where the ki ≥ 0 are constants used to weight the terms of the sequence.

We can show that all of the spaces mentioned above are Banach spaces.

Example 4.34. Show that c is a Banach space.

Solution. We use the fact that the normed space consisting of the set R

of real numbers under the usual norm |x| is a Banach space. Let {x(k)}
be a Cauchy sequence in c. The kth term of this sequence is a numerical

sequence:

x(k) = (x
(k)
1 , x

(k)
2 , x

(k)
3 , . . .).

To each ε > 0 there corresponds N = N(ε) such that

‖x(n+m) − x(n)‖c = sup
i

|x(n+m)
i − x

(n)
i | ≤ ε

whenever n > N and m > 0. This implies that

|x(n+m)
i − x

(n)
i | ≤ ε for each i (4.18)

whenever n > N and m > 0. Hence {x(j)i } is a Cauchy sequence of real

numbers for any fixed i. By the completeness of the normed space (R, ‖·‖)
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we know that {x(j)i } converges (as j → ∞) to a limit, say x∗i , in R. Now

let

x∗ = (x∗1, x
∗
2, x

∗
3, . . .).

We will show that

x(k) → x∗. (4.19)

Fix n > N ; by (4.18) and continuity

lim
m→∞ |x(n+m)

i − x
(n)
i | ≤ ε

which gives

|x∗i − x
(n)
i | ≤ ε for each i.

Hence

sup
i

|x∗i − x
(n)
i | = ‖x∗ − x(n)‖c ≤ ε

for n > N , so (4.19) is established. Finally we must show that x∗ ∈
c by showing that {x∗i } converges. Since every Cauchy sequence of real

numbers converges, it suffices to show that {x∗i } is a Cauchy sequence. Let

us consider the difference

|x∗n − x∗m| ≤ |x∗n − x(k)n |+ |x(k)n − x(k)m |+ |x(k)m − x∗m|
and use an ε/3 argument. Let ε > 0 be given. We can make the first

and third terms on the right side less than ε/3 for any n,m by fixing k

sufficiently large. For this k, {x(k)j } is a Cauchy sequence; therefore we can

make the second term on the right side less than ε/3 by taking n and m

sufficiently large. �

Note the general pattern of these completeness proofs. We take an

arbitrary Cauchy sequence {xn} in (X, d), construct an element x that

appears to be the limit of {xn}, prove that x ∈ X , and prove that xn → x

with respect to d.

Example 4.35. Show that c0 is a Banach space.

Solution. Let {x(k)} be a Cauchy sequence in c0. The kth term of this

sequence is a numerical sequence

x(k) = (x
(k)
1 , x

(k)
2 , x

(k)
3 , . . .)
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that converges to 0. As with a Cauchy sequence in the space c, we can

show that

x(k) → x∗ = (x∗1, x
∗
2, x

∗
3, . . .) where x∗i = lim

j→∞
x
(j)
i .

(As before, in the process we find that by fixing n sufficiently large we can

get the inequality |x∗i − x
(n)
i | ≤ ε to hold for all i.) To complete the proof

we must show that x∗ ∈ c0, i.e., that x
∗
i → 0 as i→ ∞. Let ε > 0 be given.

We have

|x∗i | ≤ |x∗i − x
(k)
i |+ |x(k)i |.

We can fix k large enough that the first term on the right is less than ε/2

for all i. For this k, we can choose i large enough that the second term on

the right is less than ε/2. �

Now let us turn to function spaces. We have introduced the space

C(Ω). If Ω is a compact set in Rn, then C(Ω) is a Banach space. Indeed,

the Weierstrass theorem states that a uniformly convergent sequence of

functions defined on a compact set has as a limit a continuous function.

A sequence of functions {fk(x)} is a Cauchy sequence in C(Ω) if to each

ε > 0 there corresponds N = N(ε) such that

max
x∈Ω

|fn+m(x)− fn(x)| ≤ ε

for any n > N and any positive integer m. This definition means that

{fn(x)} converges uniformly on Ω and thus its limit point exists and belongs

to C(Ω). (Note that the uniform convergence of a sequence of functions

in calculus and convergence with respect to the norm of C(Ω), Ω being

compact, are the same.) That is, by definition, C(Ω) is a Banach space.

Similarly, C(k)(Ω) is a Banach space.

We mentioned earlier that on the set of functions continuous on a com-

pact set Ω we can impose

‖f(x)‖Lp(Ω) =

(∫
Ω

|f(x)|p dΩ
)1/p

(4.20)

for p ≥ 1. Writing out the corresponding Riemann sums for the integral and

then using the limit passage, we may show that the triangle inequality holds

(this is Minkowski’s inequality for integrals). Fulfillment of the remaining

norm axioms is evident. Example 4.22 shows that the set of continuous

functions under this norm, for the case p = 1, is not a Banach space. The

situation is the same for any p > 1 and for any dimension of Ω.
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On the set of differentiable functions we can impose an important class

of norms called Sobolev’s norms. A simple but useful example is the norm

of W 1,2(0, 1):

‖f(x)‖W 1,2(0,1) =

(∫ 1

0

(|f(x)|2 + |f ′(x)|2) dx)1/2

This was first studied by Banach. The general form of a Sobolev norm is

‖f(x)‖W l,p(Ω) =


∫

Ω

∑
|α|≤l

|Dαf(x)|p dΩ

1/p

, p ≥ 1. (4.21)

The set of l-times continuously differentiable functions on Ω is not complete

in the norm (4.21). Under this norm, as with the Lp norm, the difference

between “close” functions can be very large on subdomains of small area.

Later we shall study Banach spaces having these norms.

Example 4.36. The Cartesian product X × Y of two linear spaces X and

Y can form a linear space under suitable definitions of vector addition and

scalar multiplication. If X and Y are also normed spaces with norms ‖·‖X ,

‖·‖Y , respectively, then X × Y is a normed space under the norm

‖(x, y)‖ = ‖x‖X + ‖y‖Y . (4.22)

Show that if X and Y are Banach spaces, then so is X × Y .

Solution. Choose any Cauchy sequence {(xk, yk)} ⊂ X × Y . Then

‖(xm, ym)− (xn, yn)‖X×Y = ‖(xm − xn, ym − yn)‖X×Y
= ‖xm − xn‖X + ‖ym − yn‖Y → 0

as m,n→ ∞, hence

‖xm − xn‖X → 0 and ‖ym − yn‖Y → 0 as m,n→ ∞.

So {xk} and {yk} are each Cauchy sequences in their respective spaces

X,Y ; since these are Banach spaces there exist x ∈ X and y ∈ Y such that

xk → x and yk → y. Finally, (xk, yk) → (x, y) in the norm of X × Y :

‖(xk, yk)− (x, y)‖X×Y = ‖(xk − x, yk − y)‖X×Y
= ‖xk − x‖X + ‖yk − y‖Y → 0 as k → ∞.

We see that X × Y is complete. �
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4.4 The Completion Theorem

Incomplete spaces can be inconvenient. For example, using only rational

numbers we leave out such numbers as
√
2 and π, and so cannot obtain

exact solutions for many quadratic equations or geometry problems. Var-

ious approaches can be used to introduce irrational numbers. To define

an irrational number π, we can define a sequence of approximations such

as 3, 3.1, 3.14, 3.141, and so on. The limit of this sequence is what we

call π. But the approximating sequence 4, 3.2, 3.142, . . . also consists of ra-

tional numbers and can be used to define the same number π. There are

infinitely many sequences having this same limit, and we can collect this

set of Cauchy sequences together as an entity that defines π. We call such

sequences equivalent. The same can be done with any irrational number. If

we then regard a real number as something defined by a set of all equivalent

sequences, a rational number can be represented as a set of all equivalent

sequences one of which is a stationary sequence having all terms equal to

the rational number. We shall use this idea to “extend” an incomplete space

to one that is complete. In advance we shall introduce several notions.

Definition 4.37. Two sequences {xn}, {yn} in a metric space (M,d) are

equivalent if d(xn, yn) → 0 as n→ ∞. If {xn} is a Cauchy sequence in M ,

we can collect into an equivalence class X all Cauchy sequences in M that

are equivalent to {xn}. Any Cauchy sequence from X is a representative

of X . To any x ∈ M there corresponds a stationary equivalence class

containing the Cauchy sequence x, x, x, . . ..

Definition 4.38. A mapping F : M1 → M2 is an isometry between

(M1, d1) and (M2, d2) if d1(x, y) = d2(F (x), F (y)) for all x, y ∈ M1. Dis-

tances are obviously preserved under such a mapping. If F is also a one-to-

one correspondence between M1 and M2, then it is a one-to-one isometry

and the two metric spaces are said to be isometric. Isometric spaces are

essentially the same, the isometry amounting to a mere relabeling of the

points in each space.

Now we can state the completion theorem:

Theorem 4.39. For a metric space M , there is a one-to-one isometry

between M and a set M̃ which is dense in a complete metric space M∗.
We call M∗ the completion of M .
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Proof. As we said, we shall use the same idea as above for introducing

the needed space. The proof consists of four steps: (1) introduction of

the elements of the space M∗; (2) introduction of a metric on this space

and verification of the axioms; (3) demonstration that the new space is

complete; (4) verification of the remaining statements of the theorem.

1. As indicated in Definition 4.37, we collect into an equivalence class X

all Cauchy sequences in M that are equivalent to a given Cauchy sequence

{xn}. We denote the set of all the equivalence classes by M∗, and the set

of all stationary equivalence classes by M̃ .

2. We impose a metric on M∗. Given X,Y ∈M∗, we choose any represen-

tatives {xn} ∈ X and {yn} ∈ Y and define

d(X,Y ) = lim
n→∞ d(xn, yn). (4.23)

This same metric is applied to the subspace M̃ of M∗. To see that d(X,Y )

is actually a metric, we must first check that the limit in (4.23) exists and

is independent of the choice of representatives. Metric axiom D4 implies

d(xn, yn) ≤ d(xn, xm) + d(xm, ym) + d(ym, yn)

so that

d(xn, yn)− d(xm, ym) ≤ d(xn, xm) + d(ym, yn).

Interchanging m and n we obtain a similar inequality; combining the two,

we obtain

|d(xn, yn)− d(xm, ym)| ≤ d(xn, xm) + d(yn, ym).

But d(xn, xm) → 0 and d(yn, ym) → 0 as m,n→ ∞ because {xn} and {yn}
are Cauchy sequences. Thus

|d(xn, yn)− d(xm, ym)| → 0 as m,n→ ∞
and {d(xn, yn)} is a Cauchy sequence in R. By completeness of R, the

limit in (4.23) exists. To show that it does not depend on the choice of

representatives, we take any {x′n} ∈ X and {y′n} ∈ Y and show that

lim
n→∞ d(x′n, y

′
n) = lim

n→∞ d(xn, yn). (4.24)

Because limn→∞ d(xn, x
′
n) = 0 = limn→∞ d(yn, y

′
n), the inequality

|d(xn, yn)− d(x′n, y
′
n)| ≤ d(xn, x

′
n) + d(yn, y

′
n)
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gives

lim
n→∞ |d(xn, yn)− d(x′n, y

′
n)| = 0

which implies (4.24). We check that the metric axioms are satisfied by

d(X,Y ):

D1: Since d(xn, yn) ≥ 0 for all n, it follows that

d(X,Y ) = lim
n→∞ d(xn, yn) ≥ 0.

D2: If X = Y then d(X,Y ) = 0 (we can choose the same Cauchy sequence

{xn} from both X and Y , and since the limit is unique we get the

needed conclusion). Conversely, if d(X,Y ) = 0 then any two Cauchy

sequences {xn} ∈ X and {yn} ∈ Y satisfy limn→∞ d(xn, yn) = 0. By

definition they are equivalent, hence X = Y .

D3: We have

d(X,Y ) = lim
n→∞ d(xn, yn) = lim

n→∞ d(yn, xn) = d(Y,X).

D4: For xn, yn, zn ∈M the triangle inequality gives

d(xn, yn) ≤ d(xn, zn) + d(zn, yn);

as n→ ∞ we have

d(X,Y ) ≤ d(X,Z) + d(Z, Y )

for the equivalence classes X,Y, Z containing {xn}, {yn}, {zn}, respec-
tively.

3. To see thatM∗ is complete, we must show that for any Cauchy sequence

{X i} ⊂M∗, there exists

X = lim
i→∞

X i ∈M∗. (4.25)

Indeed, from each X i we choose a Cauchy sequence {x(i)j } and from

this an element denoted xi such that d(xi, x
(i)
j ) < 1/i whenever j > i. To

see that {xi} is a Cauchy sequence, denote by Xi the equivalence class

containing the stationary sequence (xi, xi, . . .) and write

d(xi, xj) = d(Xi, Xj)

≤ d(Xi, X
i) + d(X i, Xj) + d(Xj, Xj)

≤ 1

i
+ d(X i, Xj) +

1

j
.
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As i, j → ∞, d(xi, xj) → 0 as required. Finally, denote by X the equiva-

lence class containing {xi}. Because {xi} is a Cauchy sequence,

d(X i, X) ≤ d(X i, Xi) + d(Xi, X)

≤ 1

i
+ d(Xi, X)

=
1

i
+ lim
j→∞

d(xi, xj) → 0 as i→ ∞.

This proves (4.25).

4. M̃ is dense in M∗. To see this, choose X ∈ M∗. Selecting a repre-

sentative {xn} from X , we denote by Xn the stationary equivalence class

containing the stationary sequence (xn, xn, . . .). Then

d(Xn, X) = lim
m→∞ d(xn, xm) → 0 as n→ ∞

since {xn} is a Cauchy sequence.

The equality

d(X,Y ) = d(x, y)

if X and Y are stationary classes corresponding to x and y, respectively,

demonstrates the one-to-one isometry between M and M̃ . �

Corollary 4.40. If M is a linear space, the isometry preserves algebraic

operations.

Since a normed space is a linear metric space we immediately have

Theorem 4.41. Any normed space X can be completed in its natural met-

ric d(x, y) = ‖x− y‖, resulting in a Banach space X∗.

We will also make use of the following result:

Theorem 4.42. The completion of a separable metric space is separable.

Proof. Suppose X is a separable metric space, containing a countable,

dense subset S. The completion theorem places X into one-to-one corre-

spondence with a set X̃ that is dense in the completion X∗. Let S̃ be the

image of S under this correspondence. Since the correspondence is also an

isometry, S̃ is dense in X̃. So we have S̃ ⊆ X̃ ⊆ X∗, where each set is dense

in the next; therefore S̃ is dense in X∗. Since S̃ is evidently countable, the

proof is complete. �
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We have lingered over the completion theorem because it is the back-

ground for many important notions, including the Lebesgue integral and

the Sobolev and energy spaces.

4.5 Lp Spaces and the Lebesgue Integral

To introduce the Lebesgue integral and the Lp(Ω) spaces, we will apply

the completion theorem to the set of functions continuous on a closed and

bounded (i.e., compact) subset Ω of Rn. Fix p ≥ 1. The set S of functions

f(x) continuous on Ω becomes a normed space under the norm

‖f(x)‖p = ‖f(x)‖Lp(Ω) =

(∫
Ω

|f(x)|p dΩ
)1/p

(4.26)

(recall Convention 1.4 on page 16). It is therefore also a metric space under

the natural metric

dp(f(x), g(x)) = ‖f(x)− g(x)‖p . (4.27)

In these equations the integral is an ordinary Riemann integral. We saw

in Example 4.22 that a sequence of continuous functions on [0, 1] can be a

Cauchy sequence with respect to the metric

‖f(x)− g(x)‖ =

∫ 1

0

|f(x)− g(x)| dx

and yet lack a continuous limit. More generally, the metric space formed

using S and the metric dp(f, g) for p ≥ 1 is incomplete. The completion of

this space is called Lp(Ω). The elements of Lp(Ω) can be integrated in a

certain sense; although we have used Riemann integration in the definition,

on the resulting space we shall end up introducing a more general type of

integration. Our approach to the Lebesgue integral will be different from,

but equivalent to, the classical one due to Lebesgue. The Lebesgue integral

extends the notion of the Riemann integral in the sense that for an element

corresponding to a usual continuous function the Lebesgue integral equals

the Riemann integral.

In this section we shall denote an element of Lp(Ω) using uppercase no-

tation such as F (x). An element F (x) ∈ Lp(Ω) is, of course, an equivalence

class of Cauchy sequences of continuous functions. In this case “Cauchy”

means Cauchy in the norm ‖·‖p, and two sequences {fn(x)} and {gn(x)}
are equivalent if

‖fn(x) − gn(x)‖p → 0 as n→ ∞.
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Linear space operations may be carried out in the space Lp(Ω). If F (x) ∈
Lp(Ω) and λ is a scalar, we take λF (x) ∈ Lp(Ω) to be the element for

which {λfn(x)} is a representative whenever {fn(x)} is a representative

of F (x). A sum such as F (x) + G(x) is interpreted similarly, in terms of

representative Cauchy sequences.

The main goal of this section is to define the Lebesgue integral∫
Ω

F (x) dΩ for F (x) ∈ Lp(Ω).

We will do this in such a way that if F (x) belongs to the dense set in

Lp(Ω) that corresponds to the initial set of continuous functions, then the

value of this new integral is equal to the Riemann integral of the continuous

preimage. In the process we shall make use of Hölder’s inequality∫
Ω

|f(x)g(x)| dΩ ≤
(∫

Ω

|f(x)|p dΩ
)1/p (∫

Ω

|g(x)|q dΩ
)1/q

(4.28)

which holds under the conditions

1

p
+

1

q
= 1, p > 1.

This is an integral analogue of Hölder’s inequality for series

∞∑
n=1

|fngn| ≤
( ∞∑
n=1

|fn|p
)1/p( ∞∑

n=1

|gn|q
)1/q

. (4.29)

See [10] for further details. Let us mention that for nontrivial f(x) and

g(x) the sign of equality in (4.28) holds if and only if there is a positive

constant λ such that |f(x)| = λ |g(x)| almost everywhere. A consequence

of (4.28) is Minkowski’s inequality

‖f(x) + g(x)‖p ≤ ‖f(x)‖p + ‖g(x)‖p , (4.30)

from which the useful result∣∣∣‖f(x)‖p − ‖g(x)‖p
∣∣∣ ≤ ‖f(x)− g(x)‖p (4.31)

is easily obtained.

We begin by defining the integral∫
Ω

|F (x)|p dΩ, F (x) ∈ Lp(Ω).

We take a representative Cauchy sequence {fn(x)} from F (x) and consider

the sequence {Kn} given by

Kn = ‖fn(x)‖p .
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This is a Cauchy sequence of numbers; indeed

|Km −Kn| =
∣∣∣‖fm(x)‖p − ‖fn(x)‖p

∣∣∣
≤ ‖fm(x)− fn(x)‖p → 0 as m,n→ ∞.

Because {Kn} is a Cauchy sequence in R or C, by completeness there exists

a number

K = lim
n→∞Kn = lim

n→∞

(∫
Ω

|fn(x)|p dΩ
)1/p

.

It can also be shown that K is independent of the choice of representative

sequence. If {f̃n(x)} is another representative of F (x), i.e., if

‖fn(x) − f̃n(x)‖p → 0,

then we can set

K̃ = lim
n→∞ K̃n = lim

n→∞ ‖f̃n(x)‖p

but subsequently find that

|K − K̃| =
∣∣∣ lim
n→∞ ‖fn(x)‖p − lim

n→∞ ‖f̃n(x)‖p
∣∣∣

= lim
n→∞

∣∣∣‖fn(x)‖p − ‖f̃n(x)‖p
∣∣∣

≤ lim
n→∞ ‖fn(x) − f̃n(x)‖p = 0.

The uniquely determined number Kp,

Kp =

[
lim
n→∞

(∫
Ω

|fn(x)|p dΩ
)1/p

]p
= lim

n→∞

∫
Ω

|fn(x)|p dΩ,

is defined as the Lebesgue integral of |F (x)|p. That is, we have∫
Ω

|F (x)|p dΩ = lim
n→∞

∫
Ω

|fn(x)|p dΩ

where {fn(x)} is any representative of F (x).

We show that when Ω is compact the Lp spaces are nested in the sense

that

Lp(Ω) ⊆ Lr(Ω) whenever 1 ≤ r ≤ p. (4.32)
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Let q be such that 1/q + r/p = 1 and apply Hölder’s inequality:∣∣∣∣
∫
Ω

1 · |f(x)|r dΩ
∣∣∣∣ ≤

(∫
Ω

1q dΩ

)1/q (∫
Ω

|f(x)|p dΩ
)r/p

= (mesΩ)1−
r
p

(∫
Ω

|f(x)|p dΩ
)r/p

,

or

‖f(x)‖r ≤ (mesΩ)
1
r− 1

p ‖f(x)‖p (4.33)

where mesΩ =
∫
Ω
1 dΩ is the measure3 of Ω. Putting f(x) = fn(x)−fm(x)

in (4.33), we see that {fn(x)} is a Cauchy sequence in the norm ‖·‖r if it is
a Cauchy sequence in the norm ‖·‖p. Putting f(x) = fn(x)− gn(x), we see

that any two Cauchy sequences equivalent in the norm ‖·‖p are equivalent

in the norm ‖·‖r. Hence

F (x) ∈ Lp(Ω) =⇒ F (x) ∈ Lr(Ω)

for 1 ≤ r ≤ p, and we have established (4.32). We thus observe that if

F (x) ∈ Lp(Ω) then
∫
Ω
|F (x)|r dΩ is defined for any r such that 1 ≤ r ≤ p.

Moreover, putting f(x) = fn(x) in (4.33) we see that passage to the limit

as n→ ∞ gives

‖F (x)‖r ≤ (mesΩ)
1
r− 1

p ‖F (x)‖p , 1 ≤ r ≤ p. (4.34)

Subsequently will interpret this by saying that Lp(Ω) imbeds continuously

into Lr(Ω). That is, the elements of Lp(Ω) belong to Lr(Ω) as well, and

the inequality means continuity of the correspondence (imbedding opera-

tor) between the elements of Lp(Ω) and the same elements considered as

elements of Lr(Ω). In a similar way we can show that many inequalities

satisfied by the Riemann integral are also satisfied by the Lebesgue integral.

It is now time to introduce the Lebesgue integral∫
Ω

F (x) dΩ, F (x) ∈ Lp(Ω).

3Because we use the Riemann integral to construct the Lebesgue integral, we must
exclude some “exotic” domains Ω that are actually permitted in Lebesgue integration.
Physical problems involve relatively simple domains for which Riemann integration gen-
erally suffices. In particular we assume the Riemann integral

∫
Ω 1 dΩ exists for all of our

purposes, giving the quantity we call the “measure” of Ω. The full notion of Lebesgue
measure is far too involved to consider here; fortunately, our domains are all simple
enough that we can use the notation “mesΩ” without a full chapter of explanation.
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Taking a representative {fn(x)} from F (x), we use the modulus inequality∣∣∣∣
∫
Ω

f(x) dΩ

∣∣∣∣ ≤
∫
Ω

|f(x)| dΩ, (4.35)

to show that the numerical sequence {∫
Ω
fn(x) dΩ} is a Cauchy sequence:∣∣∣∣

∫
Ω

fn(x) dΩ −
∫
Ω

fm(x) dΩ

∣∣∣∣ =
∣∣∣∣
∫
Ω

[fn(x)− fm(x)] dΩ

∣∣∣∣
≤
∫
Ω

|fn(x)− fm(x)| dΩ

≤ (mesΩ)1−
1
p ‖fn(x)− fm(x)‖p

→ 0 as m,n→ ∞.

The quantity ∫
Ω

F (x) dΩ = lim
n→∞

∫
Ω

fn(x) dΩ (4.36)

is uniquely determined by F (x) and is called the Lebesgue integral of F (x)

over Ω. If the element F (x) happens to correspond to a continuous function,

then the Lebesgue integral equals the corresponding Riemann integral. Of

course, it is important to understand that F (x) is not a function in the

ordinary sense: it is an equivalence class of Cauchy sequence of continuous

functions. Nevertheless, for manipulative purposes it often does no harm to

treat an element like F (x) as if it were an ordinary function; we may justify

this by our ability to choose and work with a representative function that is

defined uniquely by some limit passage. With proper understanding we can

also relax our notational requirements and employ lowercase notation such

as f(x) for an element of Lp(Ω). We shall do this whenever convenient.

The Lebesgue integral satisfies the inequality∣∣∣∣
∫
Ω

F (x) dΩ

∣∣∣∣ ≤ (mesΩ)1/q ‖F (x)‖p ,
1

p
+

1

q
= 1. (4.37)

This results directly from passage to the limit n→ ∞ in∣∣∣∣
∫
Ω

fn(x) dΩ

∣∣∣∣ ≤ (mesΩ)1−
1
p ‖fn(x)‖p .

It can also be shown that a sufficient condition for existence of the integral∫
Ω

F (x)G(x) dΩ
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is that F (x) ∈ Lp(Ω) and G(x) ∈ Lq(Ω) for some p and q such that 1/p+

1/q = 1. In this case Hölder’s inequality∣∣∣∣
∫
Ω

F (x)G(x) dΩ

∣∣∣∣ ≤
(∫

Ω

|F (x)|p dΩ
)1/p (∫

Ω

|G(x)|q dΩ
)1/q

(4.38)

holds, with equality if and only if F (x) = λG(x) for some λ.

If p ≥ 1, then Lp(Ω) is a Banach space under the norm

‖F (x)‖p =
(∫

Ω

|F (x)|p dΩ
)1/p

. (4.39)

Verification of the norm axioms for ‖F (x)‖p is mostly straightforward, de-

pending on familiar limiting operations. To verify the triangle inequality

‖F (x) +G(x)‖p ≤ ‖F (x)‖p + ‖G(x)‖p ,
for instance, we write

‖fn(x) + gn(x)‖p ≤ ‖fn(x)‖p + ‖gn(x)‖p
for representatives {fn(x)} and {gn(x)} of F (x) and G(x), and then let

n → ∞. In fact the validity of this is a consequence of the completion

theorem, but we wished to prove it independently. The only norm axiom

that warrants further mention is

‖F (x)‖p = 0 ⇐⇒ F (x) = 0.

The statement “F (x) = 0” on the right means that the stationary sequence

(0, 0, 0, . . .), where 0 is the zero function on Ω, belongs to the equivalence

class F (x). So Lp(Ω) is indeed a normed linear space. That it is a Banach

space follows from its construction via the metric space completion theorem.

According to Theorem 4.39, Lp(Ω) is complete in the metric

d(F (x), G(x)) = lim
n→∞

(∫
Ω

|fn(x)− gn(x)|p dΩ
)1/p

=

(∫
Ω

|F (x)−G(x)|p dΩ
)1/p

,

which of course coincides with the metric induced by the norm (4.39).

We began our development with the base set S of continuous functions

on Ω, and introduced Lp(Ω) as the completion of S in the norm (4.26).

We defined the Lebesgue integral so that for any element of Lp(Ω) it is the

unique number that coincides with Riemann integral of f if F corresponds

to a continuous function f in the base set. In addition to the fact that the
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Lebesgue integral is defined for a wider set of functions than the Riemann

integral, the Lebesgue integral is more convenient for performing limit pas-

sages. These operations include taking the limit of an integral with respect

to a parameter in the integrand (Lebesgue’s theorem) and interchanging

the order of integration in a repeated integral (Fubini’s theorem). The the-

ory of Riemann integration is based on the notion of Jordan measurability

of a set in Rn. The classical theory of Lebesgue integration starts with a

wider notion of measurability of a set in Rn. Under this definition the set

of all rational points on the segment [0, 1] is measurable and its Lebesgue

measure is zero. These considerations fall outside our scope, and the inter-

ested reader should consult standard textbooks on real analysis for details.

Lebesgue integration is not only useful in itself; it finds applications to

Sobolev spaces and to the generalized setup of boundary value problems.

Example 4.43. Show that Lp(Ω) is separable for compact Ω.

Solution. First we show that the space of continuous functions with the

Lp metric is separable. We know that the set Pr(Ω) of polynomials defined

on Ω and having rational coefficients is dense in C(Ω), where C(Ω) is the

space of continuous functions under the metric

‖f(x)− g(x)‖C(Ω) = max
x∈Ω

|f(x)− g(x)|. (4.40)

This follows from the classical Weierstrass theorem. Hence for any f(x)

continuous on Ω we can find pε(x) ∈ Pr(Ω) such that

max
x∈Ω

|f(x)− pε(x)| ≤ ε

(mesΩ)1/p
.

(This is why the domain Ω was required to be compact.) Therefore we have

‖f(x)− pε(x)‖ =

(∫
Ω

|f(x)− pε(x)|p dΩ
)1/p

≤
(

εp

mesΩ

∫
Ω

dΩ

)1/p

= ε.

So imposing the Lp metric on the space of functions continuous on Ω, we

get a separable metric space. Furthermore, Lp(Ω) is the completion of this

space. Since the completion of a separable metric space is separable, the

conclusion follows. �

4.6 Sobolev Spaces

We proceed to some normed spaces that play an important role in the

modern treatment of partial differential equations. On the set of l times
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continuously differentiable functions f(x) given on a compact set Ω, we

have defined the family of norms

‖f(x)‖l,p = ‖f(x)‖W l,p(Ω) =


∫

Ω

∑
|α|≤l

|Dαf(x)|p dΩ

1/p

, p ≥ 1

(4.41)

(again, recall Convention 1.4 on page 16). The resulting normed spaces are

incomplete in their natural metrics. Applying the completion theorem to

this case (in the same way we produced the Lebesgue spaces Lp(Ω)), we

obtain a family of Banach spaces known as the Sobolev spaces W l,p(Ω). The

form of the norm (4.41) suggests that the elements of a Sobolev space pos-

sess something like derivatives. We shall discuss these generalized deriva-

tives momentarily, but at this point (4.41) seems to indicate that they be-

long to the space Lp(Ω). Because W l,p(Ω) is a completion of the separable

space C(l)(Ω), Theorem 4.42 gives us

Theorem 4.44. W l,p(Ω), p ≥ 1, is a separable normed space.

We can use the following definition for a generalized derivative. For

u ∈ Lp(Ω), K.O. Friedrichs called v ∈ Lp(Ω) a strong derivative Dα(u) if

there exists a sequence {ϕn}, ϕn ∈ C(∞)(Ω), such that∫
Ω

|u(x)− ϕn(x)|p dΩ → 0 and∫
Ω

|v(x) −Dαϕn(x)|p dΩ → 0 as n→ ∞.

Since C(∞)(Ω) is dense in any C(k)(Ω), an element of Wm,p(Ω) has all

strong derivatives up to the order m lying in Lp(Ω). Note that in this

definition we need not define intermediate derivatives as is done for standard

derivatives. But this definition does not seem too classical or familiar. In
[27], the notion of generalized derivative was introduced using variational

ideas. Sobolev introduced this for elements of Lp(Ω) (not for just any

element of course, but for those elements for which it can be done). He

called v ∈ Lp(Ω) a weak derivative Dαu of u ∈ Lp(Ω) if for every function

ϕ(x) ∈ D the relation∫
Ω

u(x)Dαϕ(x) dΩ = (−1)|α|
∫
Ω

v(x)ϕ(x) dΩ (4.42)

holds. Here D is the set of functions that are infinitely differentiable on

Ω and that vanish in some neighborhood of the boundary of Ω (the neigh-

borhood can vary from function to function). This definition of derivative
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inherits some ideas from the calculus of variations: in particular, the fun-

damental lemma insures that we are defining the derivative in a unique

way. For elements of W l,p(Ω) it can be demonstrated that the two notions

of generalized derivative are equivalent. Of course, the name “generalized

derivative” is warranted because classical derivatives (say, of functions con-

tinuous on Ω) are also generalized derivatives, but not vice versa.

Later we will discuss the Sobolev imbedding theorem.

4.7 Compactness

Definition 4.45. Let S be a subset of a metric space. We say that S is

precompact if every sequence taken from S contains a Cauchy subsequence.

In many textbooks, the term “relatively compact” is used instead of

“precompact.”

Any bounded set in Rn is precompact. We know this from calculus,

where the classical Bolzano–Weierstrass theorem asserts that any bounded

sequence from Rn contains a Cauchy subsequence. This is not necessarily

the case in other spaces, however (see Theorem 4.52). In § 4.3 we introduced
c, the space of convergent numerical sequences with norm

‖x‖ = sup
i

|xi|. (4.43)

The sequence of elements

x1 = (1, 0, 0, 0, . . .),

x2 = (0, 1, 0, 0, . . .),

x3 = (0, 0, 1, 0, . . .),

...

taken from c has no Cauchy subsequence, since for any pair of distinct ele-

ments xi,xj we have ‖xi − xj‖ = 1. Nonetheless, this sequence is bounded:

we have ‖xi‖ = 1 for each i. So the Bolzano–Weierstrass theorem for Rn

does not automatically extend to all other normed spaces.

What is the principal difference between a bounded set in c and a

bounded set in Rn? In Rn, using, say, three decimal places, we can approx-

imate all the coordinates of any point of the unit ball up to an accuracy

of 0.001. There are a finite number of points lying within the unit ball

whose coordinates are the approximated coordinates of the actual points
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(the reader could calculate the actual number of such points for a space of

n dimensions). Increasing accuracy through the use of m decimal places,

m > 3, we again have a finite number of points with which we can better

approximate any point of the unit ball. In c, as is shown by the above

example, such an approximation of all the points of the unit ball by a finite

number of elements within a prescribed precision is impossible.

Let us consider the abstract variant of an approximating finite set for

some given set of points:

Definition 4.46. Let S and E be subsets of a metric space. We call E a

finite ε-net for S if E is finite and for every x ∈ S there exists e ∈ E such

that d(x, e) < ε. We say that S is totally bounded if there is a finite ε-net

for S for every ε > 0.

Note that a set is totally bounded if when we draw a ball of radius ε

about each point of an ε-net of the set, then the set is covered by the union

of these balls (i.e., any point of the set is a point of one of the balls).

In particular, if a set is totally bounded, it is bounded. Indeed taking a

1-net we get a finite collection of balls that covers the set. It is clear that

there exists some ball of finite radius that contains all these balls inside

itself, and so all the points of the initial set, and this implies that the initial

set is bounded.

Total boundedness of a set is exactly the same property we described

for a ball of Rn, on the existence of finite sets of points with which we can

approximate the coordinates of any point of the ball within any prescribed

accuracy. We said this was a crucial property in determining whether a set

is compact. This is confirmed by the following Hausdorff criterion.

Theorem 4.47. A subset of a metric space is precompact if and only if it

is totally bounded.

Proof. Let S be a precompact subset of a metric space X . To show that

S is totally bounded, we prove the contrapositive statement. Suppose S

has no finite ε0-net for some particular ε0 > 0. This means that no finite

union of balls of radius ε0 can contain S. Taking x1 ∈ S and a ball B1 of

radius ε0 about x1, we know that there exists x2 ∈ S such that x2 /∈ B1

(otherwise x1 by itself would generate a finite ε0-net for S). Constructing

the ball B2 of radius ε0 about x2, we know that there exists x3 ∈ S such

that x3 /∈ B1 ∪ B2. Continuing in this way, we construct a sequence {xn}
such that d(xn, xm) ≥ ε0 whenever n �= m. Because {xn} cannot contain a

Cauchy subsequence, S is not precompact.
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Conversely, suppose S is totally bounded and take any sequence {xn}
from S. We begin to select a Cauchy subsequence from {xn} by taking

ε1 = 1/2 and constructing a finite ε1-net for S. One of the balls, say

B1, must contain infinitely many elements of {xn}. Choose one of these

elements and call it xi1 . Then construct a finite ε2-net for S with ε2 = 1/22.

One of the balls, say B2, must contain infinitely many of those elements

of {xn} which belong to B1. Choose one of these elements and call it xi2 .

Note that d(xi1 , xi2) ≤ (2)(1/2) = 1 since both xi2 and xi1 belong to B1.

Continuing in this way we obtain a subsequence {xik} ⊂ {xn} where, by

construction, xik and xik+1
reside in a ball Bk of radius εk = 1/2k so that

d(xik , xik+1
) ≤ 2

(
1

2k

)
=

1

2k−1
.

Thus

d(xik , xik+m
) ≤ d(xik , xik+1

) + d(xik+1
, xik+2

) + · · ·+ d(xik+m−1
, xik+m

)

≤ 1

2k−1
+

1

2k
+ · · ·+ 1

2k+m−2
<

1

2k−2

for any m ≥ 1, and {xik} is a Cauchy sequence. �

Definition 4.48. Let S be a subset of a metric space. We say that S is

compact if every sequence taken from S contains a Cauchy subsequence

that converges to a point of S.

Note that a compact subset of a metric space is closed. But a closed

set is not, in general, compact. (In Rn a closed and bounded set is com-

pact according to the present definition.) Let us reformulate the Hausdorff

criterion for compactness:

Theorem 4.49. A subset of a complete metric space is compact if and only

if it is closed and totally bounded.

The proof is left as an exercise.

Example 4.50. Show that the Hilbert cube

S = {x = (ξ1, ξ2, . . .) ∈ �2 : |ξn| ≤ 1
n for n = 1, 2, . . .}

is a compact subset of �2.

Solution. We show that S is closed and totally bounded in the complete

space �2. Let y = (η1, η2, . . .) be a limit point of S. There is a sequence
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{x(j)} ⊂ S such that

‖y− x(j)‖ 2
�2 =

∞∑
k=1

|ηk − ξ
(j)
k |2 → 0 as j → ∞.

Hence for each k we have |ηk − ξ
(j)
k | → 0 as j → ∞. By the triangle

inequality

|ηk| ≤ |ηk − ξ
(j)
k |+ |ξ(j)k | ≤ |ηk − ξ

(j)
k |+ 1

k
,

and passage to the limit as j → ∞ gives |ηk| ≤ 1
k for each k. This shows

that y ∈ S, hence S is closed. Next we show that S is totally bounded. Let

ε > 0 be given. We begin to construct a finite ε-net by noting that the nth

component of any element z = (ζ1, ζ2, . . .) ∈ S differs from zero by no more

than 1/n. Since the series
∑

1/n2 is convergent we can choose N such that

∞∑
n=N+1

|ζn|2 < ε2/2.

Now take the first N components and consider the corresponding bounded

closed hypercube in RN . For this there certainly exists a finite ε2/2-net of

N -tuples, and we can select (ξ1, . . . , ξN ) such that

N∑
n=1

|ζn − ξn|2 < ε2/2.

We construct a corresponding element xε ∈ �2 by appending zeros:

xε = (ξ1, . . . , ξN , 0, 0, . . .).

For this element

‖z− xε‖ 2
�2 =

N∑
n=1

|ζn − ξn|2 +
∞∑

n=N+1

|ζn|2 < ε2/2 + ε2/2 = ε2

as desired. �

Theorem 4.51. Every precompact metric space is separable.

Proof. Let X be a precompact metric space. For each k = 1, 2, 3, . . ., let

εk = 1/k and construct a finite εk-net (xk1, xk2, . . . , xkN ) for X . (Here N

depends on k.) The union of these nets is countable and dense in X . �

Theorem 4.52. Every closed and bounded subset of a Banach space is

compact if and only if the Banach space has finite dimension.
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The proof of Theorem 4.52 requires Riesz’s lemma:

Lemma 4.53. Let M be a proper closed subspace of a normed space X. If

0 < ε < 1, then there is an element xε /∈M having unit norm such that

inf
y∈M

‖y − xε‖ > 1− ε.

(Here we use the term “proper” to exclude the case M = X .)

Proof. Take an element x0 ∈ X that does not belong to M and let

d = inf
y∈M

‖x0 − y‖ .

We have d > 0; indeed, the assumption d = 0 leads to a contradic-

tion because it implies the existence of a sequence {yk} ⊂ M such that

‖x0 − yk‖ → 0, hence yk → x0, hence x0 ∈ M because M is closed. By

definition of infimum, for any ε > 0 there exists yε ∈M such that

d ≤ ‖x0 − yε‖ < d

1− ε/2
.

The normalized element

xε =
x0 − yε

‖x0 − yε‖
has the properties specified in the lemma. It clearly has unit norm and

does not belong to M . Moreover, for any y ∈M we have

‖xε − y‖ =

∥∥∥∥ x0 − yε
‖x0 − yε‖ − y

∥∥∥∥ =
‖x0 − (yε + ‖x0 − yε‖ y)‖

‖x0 − yε‖
> d

/ d

1− ε/2
= 1− ε

2

where the intermediate inequality holds because yε + ‖x0 − yε‖ y belongs

to M . �

As an application of Riesz’s lemma, let us show that the unit ball

B = {x ∈ X : ‖x‖ ≤ 1} (4.44)

is not compact if X is infinite dimensional. (This is the “only if” part

of Theorem 4.52.) Take y1 ∈ B. This element generates a proper closed

subspace E1 ofX given by E1 = {αy1 : α ∈ C}. By Riesz’s lemma (with ε =

1/2) there exists y2 such that y2 ∈ B, y2 /∈ E1, and ‖y1 − y2‖ > 1/2. The

elements y1, y2 generate a proper closed subspace E2 of X , and by Riesz’s

lemma there exists y3 such that y3 ∈ B, y3 /∈ E2, and ‖yi − y3‖ > 1/2
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for i = 1, 2. Since X is infinite dimensional we can continue this process

indefinitely, producing a sequence {yn} ⊂ B any two distinct points of

which are separated by a distance exceeding 1/2. Since no subsequence of

{yn} is a Cauchy sequence, B is not compact.

Definition 4.54. LetM be a set of functions continuous on a compact set

Ω ⊂ Rn. We say that M is

(1) uniformly bounded if there is a constant c such that for every f(x) ∈M ,

|f(x)| ≤ c for all x ∈ Ω.

(2) equicontinuous if for any ε > 0 there exists δ > 0, dependent on ε, such

that whenever |x − y| < δ, x,y ∈ Ω, then |f(x) − f(y)| < ε holds for

every f(x) ∈M .

Uniform boundedness simply means that the set of functions lies in a

ball of radius c in C(Ω) (in Arzelà’s time the normed space terminology

was not yet in full use). Since the space C(Ω) is infinite dimensional, this

cannot be the sole condition for compactness. We also note that any finite

set of continuous functions is equicontinuous by Weierstrass’s theorem from

calculus. Given ε > 0, we can find the required δ > 0 for each individual

function. We then take the minimum of these values, which is not zero,

and use it as δ for the whole set. An infinite set of continuous functions

need not be equicontinuous.

The space of continuous functions is one of the main objects of calcu-

lus, differential equations, and many other branches of mathematics. It is

important to have a set of practical criteria under which a subset of this

space must be precompact. This is provided by Arzelà’s theorem.

Theorem 4.55. Let Ω be a compact set in Rn, and let M be a set of

functions continuous on Ω. Then M is precompact in C(Ω) if and only if

it is uniformly bounded and equicontinuous.

Proof. Suppose M is precompact in C(Ω). By Theorem 4.47 there is a

finite ε-net forM with ε = 1; i.e., there is a finite set of continuous functions

{gi(x)}ki=1 such that to any f(x) there corresponds gi(x) for which

‖f(x)− gi(x)‖ = max
x∈Ω

|f(x)− gi(x)| ≤ 1.

Since the gj(x) are continuous there is a constant c1 such that ‖gj(x)‖ < c1
for each j. Using the inequality ‖f(x)‖ ≤ ‖gi(x)‖+‖f(x)− gi(x)‖, we have

max
x∈Ω

|f(x)| ≤ c1 + 1.
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It follows that M is uniformly bounded with c = c1 + 1. We proceed to

verify equicontinuity. Let ε > 0 be given, and choose a finite ε/3-net for

M , say {gi(x)}mi=1. Since the number of gi(x) is finite and, by a calculus

theorem, each of them is equicontinuous on Ω, there exists δ > 0 such that

|x− y| < δ implies

|gi(x) − gi(y)| < ε/3, i = 1, . . . ,m.

For each f(x) ∈M , there exists gr(x) such that

|f(x)− gr(x)| < ε/3 for all x ∈ Ω.

Whenever x,y ∈ Ω are such that |x− y| < δ then, we have

|f(x)− f(y)| ≤ |f(x)− gr(x)|+ |gr(x)− gr(y)| + |gr(y)− f(y)|
< ε/3 + ε/3 + ε/3 = ε

as desired.

Conversely suppose M is uniformly bounded and equicontinuous. We

must show that from any sequence of functions {fk(x)} ⊂M we can choose

a Cauchy subsequence. Let {xk} be the set of all rational points of Ω (enu-

merated somehow); this set is countable and dense in Ω. Consider the

sequence {fk(x1)}. Because this numerical sequence is bounded, we can

choose a Cauchy subsequence {fk1(x1)}. We have thus chosen a subse-

quence {fk1(x)} ⊂ {fk(x)} that is a Cauchy sequence at x = x1. From

the bounded numerical sequence {fk1(x2)} we can choose a Cauchy subse-

quence {fk2(x2)}. The subsequence {fk2(x)} is thus a Cauchy sequence at

both x = x1 and x = x2. We continue in this way, taking subsequences

of previously constructed subsequences, so that on the nth step the sub-

sequence {fkn(xn)} is a Cauchy sequence and, since it is a subsequence of

any previous subsequence, the sequences obtained by evaluating {fkn(x)}
at x1, . . . ,xn−1 are Cauchy sequences as well.

The diagonal sequence {fnn(x)} is a Cauchy sequence at x = xi for all

i. We show that it is a Cauchy sequence in the norm of C(Ω). Let ε > 0 be

given. According to equicontinuity we can find δ > 0 such that |x− y| < δ

gives for every n

|fnn(x)− fnn(y)| < ε/3.

Take δ′ < δ and construct a finite δ′-net for Ω with nodes {zi}ri=1 ⊂ {xi}.
Since r is finite we can find N such that whenever n,m > N we have

|fnn(zi)− fmm(zi)| < ε/3, i = 1, . . . , r.
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Choose any x ∈ Ω and let zk be the point of the δ′-net nearest x so that

|x− zk| < δ′. Then n,m > N implies

|fnn(x) − fmm(x)| ≤ |fnn(x)− fnn(zk)|+ |fnn(zk)− fmm(zk)|
+ |fmm(zk)− fmm(x)| < ε/3 + ε/3 + ε/3 = ε,

hence

max
x∈Ω

|fnn(x) − fmm(x)| = ‖fnn(x) − fmm(x)‖ < ε

for all n,m > N . �

Remark 4.56. In the proof we made use of the diagonal sequence idea.

Since this is a standard technique in analysis and will be used again in this

chapter, we take a moment to clarify the ideas involved.

Suppose we start with a sequence {xn} and want to extract a sub-

sequence that satisfies some set of convergence-related criteria pk (k =

1, 2, 3, . . .). Let us agree to write {xnk} for the subsequence we select at

the kth step of the process (k = 1, 2, 3, . . .), and xnk for the nth element of

that subsequence (n = 1, 2, 3, . . .).

The process begins with the selection of successive subsequences:

1. From {xn} we select {xn1} that satisfies p1. It is clear that the whole

sequence {xn1} as well as each of its subsequences satisfies p1.

2. Then from {xn1} we take {xn2} that satisfies p2. The whole sequence

as well as each of its subsequences satisfies p2. Being a subsequence of

{xn1}, it and all of its subsequences satisfy p1 as well.

3. The same is done with {xn2}: choose {xn3} that satisfies p3, so all of

its subsequences satisfy p3 and, simultaneously, p1 and p2.
...

k. Choose {xnk} that satisfies pk and p1, . . . , pk−1.

...

We now form the sequence

{xnn}∞n=1 = x11, x22, x33, . . . . (4.45)

This is the desired diagonal sequence.

The sequence (4.45) is automatically contained in {xn1}. Except pos-

sibly for the first term, it is also contained in {xn2}; the first term is a

non-issue because the behavior of a finite number of terms has no impact
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on the satisfaction of p2. Except possibly for the first two terms, (4.45)

is also contained in {xn3}, and so on. So the diagonal sequence, except

for finite numbers of terms, is contained in {xnk} for each k. It therefore

satisfies pk for k = 1, 2, 3, . . .. �

Example 4.57. Let Ω be a compact subset of Rn, and suppose S is a

collection of functions {fk(x)} continuous on Ω. Further, suppose S is

bounded in C(Ω) and that K(x,y) is a function continuous on Ω × Ω.

Show that the set

A =

{∫
Ω

K(x,y)fk(y) dΩy

}
is precompact in C(Ω).

Solution. The members of A clearly belong to C(Ω). Uniform bounded-

ness of A is shown by the inequality

max
x∈Ω

∣∣∣∣
∫
Ω

K(x,y)fk(y) dΩy

∣∣∣∣ ≤ max
x∈Ω

|fk(x)| · max
(x,y)∈Ω×Ω

|K(x,y)| ·mesΩ,

since the set {fk(x)} is itself uniformly bounded so that maxx∈Ω |fk(x)| ≤ c

where c is some constant that does not depend on k. Equicontinuity of A

follows from the inequality∣∣∣∣
∫
Ω

K(x,y)fk(y) dΩy −
∫
Ω

K(x′,y)fk(y) dΩy

∣∣∣∣
≤ c ·

∫
Ω

|K(x,y) −K(x′,y)| dΩy.

Indeed, for any ε > 0 there exists δ = δ(ε) such that

|K(x,y) −K(x′,y)| ≤ ε

cmesΩ

whenever |x − x′| < δ (independent of y ∈ Ω). Because A is a uniformly

bounded and equicontinuous subset of C(Ω), it is precompact in C(Ω) by

Arzelà’s theorem. �

People working in application areas often prefer to have crude but conve-

nient sufficient conditions for the fulfillment of some properties. In the case

of C(a, b), the space of functions continuous on [a, b], a sufficient condition

is given by

Theorem 4.58. A set of continuously differentiable functions bounded in

the space C(1)(a, b) is precompact in the space C(a, b).



September 30, 2011 8:42 World Scientific Book - 9in x 6in aea

Functional Analysis 259

Proof. The proof follows from the classical Lagrange theorem which for

any continuously differentiable function f(x) and arbitrary x, y guarantees

the existence of z ∈ [x, y] such that f(x) − f(y) = f ′(z)(x − y). Equicon-

tinuity of a bounded subset of C(1)(a, b) is a consequence of this. Uniform

boundedness of the set is evident. �

The reader can formulate and prove the similar statement for the more

general space C(1)(Ω). Indeed there is an analogue of the mean value the-

orem for multivariable functions belonging to C(1)(Ω) where Ω is compact

and convex. A region Ω is said to be convex if for any two points x,y ∈ Ω

the connecting segment A = {ty + (1 − t)x}, t ∈ [0, 1], lies in Ω. Consider

a function f(x) ∈ C(1)(Ω). For fixed x,y, the function

F (t) = f(ty + (1 − t)x)

of the real argument t belongs to C(1)(0, 1), hence the one-dimensional form

of Lagrange’s formula yields

F (1)− F (0) = Ft(t)|t=ξ(1 − 0) for some ξ ∈ [0, 1].

Rewriting this in terms of f we get

f(y)− f(x) = ∇f(z)∣∣
z=ξy+(1−ξ)x · (y − x),

which is also called Lagrange’s formula. The estimate

|f(y)− f(x)| ≤ max
z∈A

|∇f(z)||y − x)|

follows immediately. In the same way, beginning with the Newton–Leibniz

formula

F (1)− F (0) =

∫ 1

0

Ft(t) dt

it is easy to prove the integral formula

f(y) − f(x) =

∫ 1

0

∇f(z)∣∣
z=ty+(1−t)x · (y − x) dt.

From this we can derive the above estimate as well.

Note that now we consider the same continuously differentiable func-

tions as elements of different spaces, C(1)(Ω) and C(Ω). When we consider

the correspondence between an element in C(1)(Ω) and the same element

in C(Ω), it is not an identity mapping since the spaces are different and

the properties of the operator are defined not only by the elements but also

by the properties of the spaces. This a typical example of an operator of
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imbedding (we imbed a set of C(1)(Ω) into C(Ω)). Using this term and

the notion of compact operator given in § 4.16, we can reformulate the last

theorem as follows:

Theorem 4.59. Let Ω be a compact set in Rn. The imbedding operator

from C(1)(Ω) into C(Ω) is compact.

The concept of an imbedding operator between normed spaces will be

covered formally in § 4.18.

4.8 Inner Product Spaces, Hilbert Spaces

The existence of the dot product in Euclidean space offers many advantages

with respect to the operations that may be performed in the space. The

dot product also generates the norm in Euclidean space. In order that there

might exist a functional defined on each pair of elements of a normed space

and possessing the properties of the dot product, a linear space X should

have quite special properties. Let us define what we call an inner product.

This is a functional (x, y) defined (i.e., always giving a uniquely defined

finite result) for any pair of elements x, y of the space X , and having the

following properties:

(1) (x, x) ≥ 0 for all x ∈ X , with (x, x) = 0 if and only if x = 0.

(2) (y, x) = (x, y) for all x, y ∈ X .

(3) (λx + µy, z) = λ(x, z) + µ(y, z) for all x, y, z ∈ X and any complex

scalars λ, µ.

We have defined this for a complex space. If X is a real space instead, then

property 2 must be changed to

2. (y, x) = (x, y) for all x, y ∈ X

and in property 3 we must use only real scalars λ, µ. Note that the inner

product is linear in the first argument and conjugate linear in the second

argument:

(α1x1 + α2x2, y) = α1(x1, y) + α2(x2, y), (4.46)

(x, α1y1 + α2y2) = α1(x, y1) + α2(x, y2). (4.47)

Example 4.60. Let X be an inner product space under the inner product

(·, ·). Show that (x, z) = (y, z) holds for arbitrary z ∈ X if and only if
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x = y.

Solution. The “if” part of the proposition is trivial. To prove the “only

if” part, assume (x, z) = (y, z) for all z ∈ X . Rearranging this as

(x, z)− (y, z) = 0,

we can use property 3 to get (x− y, z) = 0. Since this holds for all z ∈ X ,

it holds in particular for z = x− y:

(x− y, x− y) = 0.

By property 1 we conclude that x− y = 0 or x = y. �

Since this functional, the inner product, is defined by copying the main

properties of the dot product, we preserve the terminology connected with

the dot product in Euclidean space. In particular there is the notion of

orthogonality. We say that two elements x, y are mutually orthogonal if

(x, y) = 0. We say that x is orthogonal to Y , a subspace of X , if x is

orthogonal to each element of Y .

Definition 4.61. A linear space with an inner product possessing the prop-

erties listed above is an inner product space or a pre-Hilbert space.

First we demonstrate

Theorem 4.62. A pre-Hilbert space is a normed space.

Proof. By similarity to Euclidean space let us introduce a functional

denoted as a norm

‖x‖ = (x, x)1/2. (4.48)

This functional is defined for any element of X . Let us demonstrate that

it satisfies all the axioms of the norm. Norm axiom 1 is fulfilled by virtue

of inner product axiom 1. We verify norm axiom 2 by noting that

‖λx‖ = [(λx, λx)]1/2 = [λ(x, λx)]1/2 = [λ(λx, x)]1/2

= [(λλ)(x, x)]1/2 = [|λ|2(x, x)]1/2
= |λ|(x, x)1/2.

Verification of norm axiom 3 requires us to use the Schwarz inequality

|(x, y)| ≤ ‖x‖ ‖y‖ , (4.49)
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in which for nonzero x and y the equality holds if and only if there is a

number λ such that x = λy. Using it we have

‖x+ y‖2 = (x+ y, x+ y)

= (x, x) + (x, y) + (y, x) + (y, y)

≤ ‖x‖2 + ‖x‖ ‖y‖+ ‖x‖ ‖y‖+ ‖y‖2
= (‖x‖+ ‖y‖)2

as required. �
It remains to establish (4.49). We start by noting that if x = 0 or

y = 0 then (4.49) is evidently valid. So let y �= 0. If λ is any scalar, then

(x+ λy, x+ λy) ≥ 0 and expansion gives

(x+ λy, x+ λy) = (x, x) + λ(y, x) + λ(x, y) + λλ(y, y).

The particular choice λ = −(x, y)/(y, y) reduces this to

‖x‖2 − 2
|(x, y)|2
‖y‖2 +

|(x, y)|2 ‖y‖2
‖y‖4 ≥ 0,

and (4.49) follows directly.

Example 4.63. Show that

‖x+ y‖2 + ‖x− y‖2 = 2 ‖x‖2 + 2 ‖y‖2 . (4.50)

This is known as the parallelogram equality.

Solution. We write

‖x+ y‖2 + ‖x− y‖2 = (x + y, x+ y) + (x− y, x− y)

= (x, x + y) + (y, x+ y) + (x, x− y)− (y, x− y)

= (x + y, x) + (x + y, y) + (x− y, x)− (x− y, y)

= (x, x) + (y, x) + (x, y) + (y, y)+

+ (x, x) − (y, x)− (x, y) + (y, y)

= 2(x, x) + 2(y, y)

= 2 ‖x‖2 + 2 ‖y‖2

and have the desired result. �

Example 4.64. Show that if x and y are orthogonal vectors in an inner

product space, then

‖x+ y‖2 = ‖x‖2 + ‖y‖2 . (4.51)
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This is known as the Pythagorean theorem.

Solution. We write

‖x+ y‖2 = (x + y, x+ y)

= (x, x + y) + (y, x+ y)

= (x, x) + (x, y) + (y, x) + (y, y)

and simply note that (x, y) = (y, x) = 0 for orthogonal vectors. �

Example 4.65. Assume the norm is induced by the inner product, and

suppose that xn → x and yn → y. Show that (xn, yn) → (x, y). That is,

any inner product is a continuous functional in each of its arguments.

Solution. Let us write

|(xn, yn)− (x, y)| = |(xn, yn)− (xn, y) + (xn, y)− (x, y)|
= |(xn, yn − y) + (xn − x, y)|
≤ |(xn, yn − y)|+ |(xn − x, y)|
≤ ‖xn‖ ‖yn − y‖+ ‖xn − x‖ ‖y‖ .

Since {xn} is convergent it is bounded. The other n-dependent quantities

can be made as small as desired by choosing n sufficiently large. �

Example 4.66. Let M be a dense subset of an inner product space X ,

and let v ∈ X . Show that if (v,m) = 0 for all m ∈M , then v = 0.

Solution. Use continuity of the inner product. Let v ∈ X be fixed. Since

M is dense in X there is a sequence of elements mk ∈M such that mk → v

as k → ∞. Since 0 = (v,mk) for all k, we can take the limit as k → ∞ on

both sides and use continuity of the inner product to obtain

0 = lim
k→∞

(v,mk) =

(
v, lim
k→∞

mk

)
= (v, v).

Hence v = 0. �

Definition 4.67. A complete pre-Hilbert space is a Hilbert space.

Let us consider some Hilbert spaces. The space �2 is the space of infinite

sequences having inner product

(x,y) =

∞∑
i=1

xiyi (4.52)
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in the complex case and

(x,y) =

∞∑
i=1

xiyi (4.53)

in the real case. The corresponding generated (induced) norm is

‖x‖ = (x, x)1/2 =

( ∞∑
i=1

|xi|2
)1/2

. (4.54)

As we noted earlier, the theory of the space �2 was the predecessor of

functional analysis. It plays an extremely important role in the functional

analysis of Hilbert spaces because, as we shall see later, with any separa-

ble Hilbert space we have a one-to-one isometric correspondence with �2

that preserves algebraic operations in the spaces. This is done by Fourier

expansion of elements of the Hilbert space.

In the space L2(Ω) an inner product can be introduced as

(f(x), g(x)) =

∫
Ω

f(x)g(x) dΩ (4.55)

in the complex case and

(f(x), g(x)) =

∫
Ω

f(x)g(x) dΩ (4.56)

in the real case. We have defined the inner product in such a way that

the induced norm coincides with the norm imposed earlier on L2(Ω). This

raises the question of how to introduce an inner product in any Sobolev

space W l,2(Ω). We use

(f(x), g(x)) =

∫
Ω

∑
|α|≤l

Dαf(x)Dαg(x) dΩ.

The induced norm is the norm we introduced earlier in W l,2(Ω).

4.9 Operators and Functionals

Definition 4.68. A correspondence between two sets (metric spaces) X

and Y , under which to any element of X there corresponds no more than

one element of Y , is an operator. Frequent synonyms for “operator” are

map, mapping, function, correspondence, and transformation.
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Let A be an operator. The set of elements x ∈ X for which there is a

corresponding element y ∈ Y is the domain of A and is denoted D(A). We

write y = A(x) and call y the image of x under A. It is not necessarily

true that each element y ∈ Y is the image of some element x ∈ X under

A; the set of all elements of Y that are images of elements of X is known

as the range of A and is denoted R(A). We say that A acts from X to Y .

If Y = X , we say that A acts in the set X .

Definition 4.69. If Y is C (or R), then an operator acting from X to Y

is a complex (or real) functional defined on X .

An important role in functional analysis is played by linear operators.

To explore this notion we need X and Y to be linear spaces.

Definition 4.70. An operator A from a linear space X to a linear space

Y is a linear operator if for any elements x1 and x2 of X and any scalars λ

and µ we have

A(λx1 + µx2) = λA(x1) + µA(x2). (4.57)

For a linear operator A, we often write Ax instead of A(x). Linear

operators are not as elementary as they may seem. Many physical problems

are linear. We now extend the definition of function continuity to operators:

Definition 4.71. Let A be an operator from a normed spaceX to a normed

space Y . We say that A is continuous at x0 ∈ X if to each ε > 0 there corre-

sponds δ = δ(ε) > 0 such that ‖Ax−Ax0‖Y < ε whenever ‖x− x0‖X < δ.

Example 4.72. Show that any norm is a continuous mapping from X to

R. Note, however, that it is not a linear functional.

Solution. Using the inequality of Example 4.4 we can write

| ‖x‖ − ‖x0‖ | ≤ ‖x− x0‖ .
Given ε > 0 then, we can choose δ = ε in the definition of continuity. �

For linear operators there is a convenient theorem:

Theorem 4.73. A linear operator defined on a normed space X is contin-

uous if and only if it is continuous at x = 0.

Proof. Immediate from the relation Ax −Ax0 = A(x − x0). �
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There is a central theorem that shows how to check whether a linear

operator is continuous:

Theorem 4.74. A linear operator A from a normed space X to a normed

space Y is continuous if and only if there is a constant c such that for all

x ∈ D(A),

‖Ax‖ ≤ c ‖x‖ (4.58)

Proof. Assume (4.58) holds. Then with δ = ε/c in the definition of

continuity we see that A is continuous at x = 0. Conversely, suppose A

is continuous at x = 0. Take ε = 1; by definition there exists δ > 0 such

that ‖Ax‖ ≤ 1 whenever ‖x‖ < δ. For every nonzero x ∈ X , the norm of

x∗ = δx/(2 ‖x‖) is
‖x∗‖ = ‖δx/(2 ‖x‖)‖ = δ/2 < δ,

so ‖Ax∗‖ ≤ 1. By linearity of A this gives us

‖Ax‖ ≤ 2

δ
‖x‖ ,

which is (4.58) with c = 2/δ. �
So continuous linear operators are often called bounded linear operators.

Definition 4.75. The least constant c satisfying (4.58) is the norm of A,

denoted ‖A‖.
Note that ‖A‖ satisfies all the norm axioms:

(1) ‖A‖ is clearly nonnegative. If ‖A‖ = 0 then ‖Ax‖ = 0 for all x ∈ X ,

i.e., A = 0. Conversely, if A = 0 then ‖A‖ = 0.

(2) It is obvious that ‖λA‖ = |λ| ‖A‖.
(3) From

‖(A+B)x‖ = ‖Ax+Bx‖ ≤ ‖Ax‖ + ‖Bx‖ ≤ ‖A‖ ‖x‖+ ‖B‖ ‖x‖
we get ‖A+B‖ ≤ ‖A‖ + ‖B‖.

Let L(X,Y ) denote the normed linear space consisting of the set of all

continuous linear operators from X to Y under this operator norm.

There is also a notion of sequential continuity; as in ordinary calculus,

it is equivalent to the notion of continuity according to Definition 4.71:

Theorem 4.76. An operator A from X to Y is continuous at x0 ∈ X if

and only if A(xn) → A(x0) whenever xn → x0.



September 30, 2011 8:42 World Scientific Book - 9in x 6in aea

Functional Analysis 267

The proof is easily adapted from the corresponding proof that appears

in any calculus book. This result justifies manipulations of the form

A
(
lim
n→∞xn

)
= lim

n→∞Axn (4.59)

for continuous operators A.

Suppose A is a continuous operator acting in a Banach space X . The

convergent series s =
∑∞

k=1 xk may be defined by the limiting operation

s = lim
n→∞

n∑
k=1

xk.

But (4.59) allows us to write

A

( ∞∑
k=1

xk

)
= lim
n→∞A

(
n∑
k=1

xk

)
.

If A is also linear, then

A

( ∞∑
k=1

xk

)
= lim

n→∞

n∑
k=1

Axk =

∞∑
k=1

Axk.

Hence interchanges of the form

A
∞∑
k=1

xk =
∞∑
k=1

Axk

are permissible with convergent series and continuous linear operators.

The most frequent operation in mathematical physics is that of finding

a solution x to the equation

Ax = y (4.60)

when y is given. Let us introduce the notion of the inverse to A. If for

any y ∈ Y there is no more than one solution x ∈ X of (4.60), then the

correspondence from Y to X defined by (4.60) is an operator; this operator

is the inverse to A and is denoted A−1.

Lemma 4.77. If A and B are each invertible, then the composition BA is

invertible with (BA)−1 = A−1B−1.

The proof is left to the reader.

Theorem 4.78. Let X,Y be normed spaces. A linear operator A on

D(A) ⊆ X admits a continuous inverse on R(A) ⊆ Y if and only if there

is a positive constant c such that

‖Ax‖ ≥ c ‖x‖ for all x ∈ D(A). (4.61)
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Proof. Assuming (4.61) holds, Ax = 0 implies x = 0 so the inverse A−1

exists. Then the same inequality means that the inverse is bounded (hence

continuous) on R(A). The converse is immediate. �

An operator A that satisfies (4.61) is said to be bounded below.

Example 4.79. Show that a bounded linear operator maps Cauchy se-

quences into Cauchy sequences.

Solution. Let {xn} be a Cauchy sequence in X . Let ε > 0 be given and

choose N so that n,m > N implies ‖xn − xm‖ < ε/ ‖A‖. For n,m > N we

have

‖Axn −Axm‖ = ‖A(xn − xm)‖ ≤ ‖A‖ ‖xn − xm‖ < ε,

so {Axn} is a Cauchy sequence in Y . �

Example 4.80. Show that every bounded linear operator has a closed null

space.

Solution. Let A be a bounded linear operator. The null space of A, often

denoted by N(A), is the set of elements x such that Ax = 0. Let {xn} be a

sequence of points in N(A) with xn → x0 as n→ ∞. It is easy to see that

x0 belongs to N(A):

Ax0 = A
(
lim
n→∞xn

)
= lim
n→∞Axn = lim

n→∞ 0 = 0.

Hence N(A) is a closed set. �

Example 4.81. Show that if k(x, ξ) is a continuous, real-valued function

of the real variables x, ξ on [a, b]× [a, b], then the operator A given by

Af =

∫ b

a

k(x, ξ)f(ξ) dξ

is a bounded linear operator from C(a, b) to itself.

Solution. The linearity of A is obvious. To see that A is bounded, observe
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that

‖Af‖ = max
x∈[a,b]

∣∣∣∣∣
∫ b

a

k(x, ξ)f(ξ) dξ

∣∣∣∣∣
≤ max

x∈[a,b]

[∫ b

a

|k(x, ξ)| |f(ξ)| dξ
]

≤ max
x∈[a,b]

[
max
x∈[a,b]

|f(x)|
∫ b

a

|k(x, ξ)| dξ
]

= ‖f(x)‖ max
x∈[a,b]

∫ b

a

|k(x, ξ)| dξ.

So ‖Af‖ ≤ α ‖f‖, where

α = max
x∈[a,b]

∫ b

a

|k(x, ξ)| dξ.

�

Example 4.82. Show that if a linear operator is invertible, then its inverse

is a linear operator.

Solution. Suppose A is linear and A−1 exists. Let y1, y2 ∈ R(A) where

yi = Axi (i = 1, 2) and let a1, a2 be scalars. We have

a1y1 + a2y2 = a1Ax1 + a2Ax2 = A(a1x1 + a2x2)

so that

A−1(a1y1 + a2y2) = a1x1 + a2x2 = a1A
−1y1 + a2A

−1y2

as required. �

4.10 Contraction Mapping Principle

We know that the iterative Newton method of tangents for finding zeros of

a differentiable function g(x) demonstrates fast convergence and is widely

used in practice. In this method we reduce a given problem to a problem

of the form

x = f(x) (4.62)

and the procedure for finding zeros of g(x) is

xn+1 = f(xn). (4.63)
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A solution x∗ of (4.62) is such that the value of f(x) at x∗ is x∗, so a

solution is a fixed point of the mapping f . There are different ways in

which an equation g(x) = 0 may be reduced to the form (4.62), the simplest

but not the best of which is to represent the equation as x = x − g(x).

Such a transformation is good only when the iterative procedure of solution

converges fast enough. It turns out that we can reduce various equations

of different natures, from systems of equations to boundary value problems

and integral equations, to forms of the type (4.62) so that the iterative

procedure gives us a good approximation to a solution with few iterations

required. The methods of reduction of a general equation G(x) = 0 extend

those known for the simple equation g(x) = 0. In this section we discuss a

class of problems of the general form

x = F (x) (4.64)

where F (x) is a mapping on a metric space M , i.e.,

F : M →M,

and x ∈M is the desired unknown. If x is to satisfy (4.64) then the image

of x under F must be x itself, so we continue to use the term “fixed point”

in this more general case.

We would like to use an iterative process to solve equation (4.64). The

iteration begins with an initial value x0 ∈ M (sometimes called the seed

element) and proceeds via use of the recursion

xk+1 = F (xk) k = 0, 1, 2, . . . . (4.65)

Under suitable conditions the resulting values x0, x1, x2, . . . will form a se-

quence of successive approximations to the desired solution. That is, if the

approach works we will have

lim
k→∞

xk = x∗ (4.66)

where x∗ is a fixed point of F . With this background, let us formulate

conditions providing the applicability of the method.

Definition 4.83. Let F (x) be a mapping on M . We say that F (x) is a

contraction mapping if there exists a number α ∈ [0, 1) such that

d(F (x), F (y)) ≤ αd(x, y) (4.67)

for every pair of elements x, y ∈M .
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Repeated application of (4.67) yields

d(xk+1, xk) ≤ αkd(x1, x0), k = 0, 1, 2, . . . ,

and with 0 ≤ α < 1 the successive iterates will land closer and closer

together in M . We might expect these iterates to converge to a solution;

rigorous confirmation that they do is provided by the following celebrated

result due to Banach. It is known as the contraction mapping theorem.

Theorem 4.84. A contraction mapping F with constant α, 0 ≤ α < 1,

on a complete metric space M has a unique fixed point. Convergence of

successive approximations to the fixed point is independent of the choice of

seed element.

Proof. We choose an arbitrary seed element x0 ∈ M for the recursion

(4.65). Using the triangle inequality for several elements, for m > n we

have

d(xm, xn) ≤ d(xm, xm−1) + d(xm−1, xm−2) + · · ·
+ d(xn+2, xn+1) + d(xn+1, xn)

hence

d(xm, xn) ≤ (αm−1 + αm−2 + · · ·+ αn+1 + αn) d(x1, x0)

= αn(1 + α+ · · ·+ αm−n−2 + αm−n−1) d(x1, x0)

≤ αn(1− α)−1d(x1, x0)

→ 0 as n→ ∞.

In this, we summed up the geometrical progression. So {xk} is a Cauchy

sequence, and by completeness of M there is a point x∗ ∈ M such that

xk → x∗ as k → ∞. From the contraction condition for F it follows that

F (x) is continuous on M , hence

x∗ = lim
k→∞

F (xk) = F

(
lim
k→∞

xk

)
= F (x∗).

We have therefore established the existence of a fixed point of F (x). Unique-

ness is proved by assuming the existence of another such point y∗. Then

d(x∗, y∗) = d(F (x∗), F (y∗)) ≤ αd(x∗, y∗)

so that

(1− α)d(x∗, y∗) = 0.

But α < 1, so we must have d(x∗, y∗) = 0 and hence x∗ = y∗. �
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The proof of Theorem 4.84 provides information concerning the rate of

convergence of the iterates xk to x∗. Specifically, we have

Corollary 4.85. Let F (x) be a contraction mapping on a complete metric

space M . Then the estimates

d(xn, x
∗) ≤ αn

1− α
d(x1, x0) (4.68)

and

d(xn, x
∗) ≤ α

1− α
d(xn, xn−1) (4.69)

both hold for n = 0, 1, 2, . . ., where α is the contraction constant for F (x)

and x∗ is the fixed point of F .

Proof. In the inequality

d(xm, xn) ≤ αn

1− α
d(x1, x0)

we can let m→ ∞ and obtain (4.68). If on the right side of (4.68) we take

x0 to be xn−1, then x1 becomes xn and we obtain (4.69). �

Inequality (4.68) is called an a priori error estimate, since it provides

an upper bound on d(xn, x
∗) in terms of quantities known at the start

of the iteration procedure. Inequality (4.69) is called an a posteriori error

estimate, and can be used to monitor convergence as the iteration proceeds.

The contraction mapping principle can be applied to a variety of prob-

lems.

Example 4.86. Consider a (possibly finite dimensional) system of linear

equations

xi =

∞∑
j=1

aijxj + ci (i = 1, 2, 3, . . .).

Solution. To solve this problem by iteration we can write

x(k+1) = F (x(k)) = A(x(k)) + c

where c = (c1, c2, c3, . . .) is a given vector, {x(k)} is a sequence of vector
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iterates

x(0) = (x
(0)
1 , x

(0)
2 , x

(0)
3 , . . .),

x(1) = (x
(1)
1 , x

(1)
2 , x

(1)
3 , . . .),

x(2) = (x
(2)
1 , x

(2)
2 , x

(2)
3 , . . .),

...

and A is the mapping given by

A(x(k)) =


 ∞∑
j=1

a1jx
(k)
j ,

∞∑
j=1

a2jx
(k)
j ,

∞∑
j=1

a3jx
(k)
j , . . .


 .

We should note that the possibility to employ iteration (and even simply to

solve the system) depends on the space in which we seek a solution. Here

we will study the iteration procedure in �∞, and therefore suppose that

c ∈ �∞. We recall that �∞ is the space of all bounded sequences under the

norm

‖x‖∞ = sup
i≥1

|xi|.

For the operator A to act in �∞ it is sufficient that the quantity

K = sup
i≥1

∞∑
j=1

|aij |

is finite. This follows from the fact that c ∈ �∞ and the next chain of

inequalities, with which we will determine when F is a contraction on �∞.

We have

‖F (x)− F (x′)‖∞ = sup
i≥1

∣∣∣∣∣∣

 ∞∑
j=1

aijxj + ci


−


 ∞∑
j=1

aijx
′
j + ci



∣∣∣∣∣∣

= sup
i≥1

∣∣∣∣∣∣
∞∑
j=1

aij(xj − x′j)

∣∣∣∣∣∣ ≤ sup
i≥1

∞∑
j=1

|aij ||xj − x′j |

≤ sup
i≥1


(sup

j≥1
|xj − x′j |

)
 ∞∑
j=1

|aij |





=


sup
i≥1

∞∑
j=1

|aij |

(

sup
j≥1

|xj − x′j |
)
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hence

‖F (x) − F (x′)‖∞ ≤ K ‖x− x′‖∞ .

With K = supi≥1

∑∞
j=1 |aij | < 1 we have a contraction and Banach’s the-

orem applies. �

In other sequence spaces the appropriate conditions for aij are different.

The reader can treat the problem for iterations and a solution in �2.

Let us state another corollary to the contraction mapping theorem. By

F k we denote the k-fold composition of the mapping F : that is, we have

Fn+1(x) = F (Fn(x)), n = 1, 2, 3, . . . ,

where it is understood that F 1 = F .

Corollary 4.87. If F k is a contraction mapping on a complete metric space

for some integer k ≥ 1, then F has a unique fixed point. Convergence of

successive approximations is independent of the choice of seed element.

Proof. F k has a unique fixed point x∗ by Theorem 4.84; moreover,

lim
n→∞(F k)n(x) = x∗

for any x ∈M . Putting x = F (x∗) we obtain

x∗ = lim
n→∞(F k)nF (x∗) = lim

n→∞F (F k)n(x∗) = lim
n→∞F (x∗) = F (x∗),

hence x∗ is also a fixed point of F . (Here we have used the assumption

that x∗ is a fixed point of F k, hence it is a fixed point of (F k)n, hence

(F k)n(x∗) = x∗.) If y∗ is another fixed point of F , then y∗ is also fixed

point of F k, hence y∗ = x∗. �
Let us proceed to a second example.

Example 4.88. An integral equation of the form

ψ(x) = g(x) + λ

∫ x

a

K(x, t)ψ(t) dt, x ∈ [a, b], (4.70)

where ψ(x) is unknown, is said to be a Volterra integral equation. Suppose

g(x) is continuous on [a, b], and that the kernel K(x, t) is continuous on the

closed, triangular region a ≤ t ≤ x, a ≤ x ≤ b. Show that the mapping F

given by

F [ψ(x)] = g(x) + λ

∫ x

a

K(x, t)ψ(t) dt

will generate convergent iterates in C(a, b).
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Solution. The approach will be to prove that Fn is a contraction mapping

for some integer n ≥ 1. First, let u(x) and v(x) be any two elements of

C(a, b) and observe that

|F [v(x)] − F [u(x)]| ≤ |λ|
∫ x

a

|K(x, t)||v(t)− u(t)| dt.

Now K(x, t), being continuous on a compact set, is bounded by some num-

ber M . So

|F [v(x)] − F [u(x)]| ≤ |λ|M
∫ x

a

|v(t)− u(t)| dt

≤ |λ|M max
t∈[a,b]

|v(t)− u(t)|
∫ x

a

dt

= |λ|M(x− a) d(v, u). (4.71)

We show by induction that

|Fn[v(x)] − Fn[u(x)]| ≤ |λ|nMn (x− a)n

n!
d(v, u), n = 1, 2, 3, . . . . (4.72)

The case n = 1 was established in (4.71). Assuming (4.72) holds for n = k,

we have∣∣F k+1[v(x)]− F k+1[u(x)]
∣∣ ≤ |λ|

∫ x

a

|K(x, t)| ∣∣F k[v(t)]− F k[u(t)]
∣∣ dt

≤ |λ|M
∫ x

a

|λ|kMk (t− a)k

k!
d(v, u) dt

= |λ|k+1Mk+1 (x− a)k+1

(k + 1)!
d(v, u),

which is the corresponding statement for n = k + 1. Taking the maximum

of (4.72) over x ∈ [a, b] we get

d(Fn[v], Fn[u]) ≤ |λ|nMn (b− a)n

n!
d(v, u).

For any λ we can choose n so large that

|λ|nMn (b− a)n

n!
< 1,

so Fn is a contraction mapping for sufficiently large n. By Corollary 4.87

then, (4.70) has a unique solution that can be found by successive approxi-

mations starting with any seed element. The usual choice for seed element

is ψ(x) = g(x). �
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Example 4.89. An integral equation of the form

ψ(x) = g(x) + λ

∫ b

a

K(x, t)ψ(t) dt (a ≤ x ≤ b),

is called a Fredholm equation of the second kind. Suppose that g(x) is

continuous on [a, b], and that K(x, t) is continuous on the square [a, b] ×
[a, b]. Find a condition on λ for the equation to be uniquely solvable by

iteration in the space C(a, b).

Solution. We need the integral operator

F (ψ(x)) = g(x) + λ

∫ b

a

K(x, t)ψ(t) dt

to be a contraction mapping on C(a, b). Now K(x, t), being continuous on

a compact set, is bounded: |K(x, t)| ≤ B on [a, b]× [a, b] where B is some

constant. Hence if u(x) and v(x) be arbitrary elements of C(a, b), we have

d(F (u), F (v)) = max
x∈[a,b]

∣∣∣∣∣λ
∫ b

a

K(x, t)[u(t)− v(t)] dt

∣∣∣∣∣
≤ max

x∈[a,b]
|λ|

∫ b

a

|K(x, t)||u(t)− v(t)| dt

≤ B|λ| max
x∈[a,b]

∫ b

a

|u(t)− v(t)| dt

≤ B|λ|(b− a) max
x∈[a,b]

|u(x)− v(x)|

= B|λ|(b− a) d(u(x), v(x)).

So F will be a contraction on C(a, b) if |λ| < 1/B(b− a). �

Note that for application of the Banach principle we do not need the

space to be linear. This fact is used in the solution of nonlinear problems

which can have several solutions. The principle applies when it is possible

to find a domain M1 in the original space M such that M1 is a complete

metric space, the operator A acts in M1, and is a contraction on it.

4.11 Some Approximation Theory

Let X be a normed space. Given x ∈ X and a set of elements g1, . . . , gn ∈
X , it is reasonable to seek scalars λ1, . . . , λn that will minimize the distance

between x and the linear combinations
∑n
i=1 λigi. So we would like to
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find the best approximation of x from among all the linear combinations∑n
i=1 λigi. This general problem of approximation can be rephrased as

φ(λ1, . . . , λn) → min
λ1,...,λn

(4.73)

where φ is the functional given by

φ(λ1, . . . , λn) =

∥∥∥∥x−
n∑
i=1

λigi

∥∥∥∥. (4.74)

We take the gi to be linearly independent. If they are not linearly inde-

pendent, the solution of the approximation problem will not be unique.

Note that φ(λ1, . . . , λn) is a usual function in the n variables λi, so we can

employ the usual tools of calculus.

Theorem 4.90. For any x ∈ X there exists x∗ =
∑n

i=1 λ
∗
i gi such that

‖x− x∗‖ = inf
λ1,...,λn

φ(λ1, . . . , λn). (4.75)

Proof. An application of the inequality

‖x− y‖ ≥ | ‖x‖ − ‖y‖ | (4.76)

permits us to show that φ(λ1, . . . , λn) is continuous in the n scalar variables

λ1, . . . , λn:

|φ(λ1 + h1, . . . , λn + hn)− φ(λ1, . . . , λn)|

=

∣∣∣∣∣
∥∥∥∥x−

n∑
i=1

(λi + hi)gi

∥∥∥∥−
∥∥∥∥x−

n∑
i=1

λigi

∥∥∥∥
∣∣∣∣∣

≤
∥∥∥∥∥
[
x−

n∑
i=1

(λi + hi)gi

]
−
[
x−

n∑
i=1

λigi

]∥∥∥∥∥
=

∥∥∥∥ n∑
i=1

higi

∥∥∥∥ ≤
n∑
i=1

|hi| ‖gi‖ .

Continuity of the function

ψ(λ1, . . . , λn) =

∥∥∥∥ n∑
i=1

λigi

∥∥∥∥
is also apparent since it is a particular case of φ(λ1, . . . , λn) at x = 0, and

ψ(λ1, . . . , λn) must therefore reach a minimum on the sphere
∑n

i=1 |λi|2 = 1

at some point (λ10, . . . , λn0). By linear independence of the gi we have

ψ(λ10, . . . , λn0) = d > 0. Also note that ψ is a homogeneous function,

ψ(kλ1, · · · , kλn) = |k|ψ(λ1, · · · , λn),
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which means that

ψ(λ1, · · · , λn) ≥ Rd when

(
n∑
i=1

|λi|2
)1/2

= R,

and that ψ(λ1, . . . , λn) > Rd for (λ1, . . . , λn) outside a sphere of radius R.

We wish to show that φ(λ1, . . . , λn) actually attains its minimum value at

some finite point.

Since

φ(λ1, . . . , λn) ≥ ψ(λ1, . . . , λn)− ‖x‖
by (4.76), we see that for (λ1, . . . , λn) outside a ball of radius R we have

φ(λ1, . . . , λn) > Rd− ‖x‖ .
Outside of the sphere of radius R = R0 = 3 ‖x‖ /d we have

φ(λ1, . . . , λn) > 2 ‖x‖
whereas inside this sphere φ(0, . . . , 0) = ‖x‖. Hence when x �= 0 (to the

reader: what happens when x = 0?) the minimum of φ is inside the sphere

of radius R0 with center at the origin. Thus the corresponding closed ball

of radius R0 contains the minimum point. �

The preceding proof holds in a complex space X as well.

Uniqueness can be addressed with the help of the following concepts.

Definition 4.91. A normed space X is strictly normed if from the equality

‖x+ y‖ = ‖x‖ + ‖y‖ , x �= 0, (4.77)

it follows that y = λx for some nonnegative λ.

Not all normed spaces are strictly normed. For example, the space C(Ω)

is not strictly normed. But some important classes of spaces are strictly

normed, including Lp(Ω) andW l,p(Ω). Later we shall show that every inner

product space is strictly normed.

Definition 4.92. A subset S of a linear space is convex if for any pair

x, y ∈ S it contains the whole segment

λx+ (1 − λ)y, 0 ≤ λ ≤ 1.

Theorem 4.93. Let X be a strictly normed space, and let M be a closed

convex subset of X. For any x ∈ X, there is at most one y ∈ M that

minimizes the distance ‖x− y‖.
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Proof. Suppose that y1 and y2 are each minimizers:

‖x− y1‖ = ‖x− y2‖ = inf
y∈M

‖x− y‖ ≡ d. (4.78)

If x ∈ M , we obtain that y1 = y2 = x. Suppose x /∈ M . Then d > 0. By

convexity (y1 + y2)/2 ∈M , hence∥∥∥∥x− y1 + y2
2

∥∥∥∥ ≥ d.

But∥∥∥∥x− y1 + y2
2

∥∥∥∥ =

∥∥∥∥x− y1
2

+
x− y2

2

∥∥∥∥ ≤ 1

2
‖x− y1‖+ 1

2
‖x− y2‖ = d,

so ∥∥∥∥x− y1
2

+
x− y2

2

∥∥∥∥ =

∥∥∥∥x− y1
2

∥∥∥∥+

∥∥∥∥x− y2
2

∥∥∥∥ .
Because X is strictly normed we have x − y1 = λ(x − y2) for some λ ≥ 0,

hence ‖x− y1‖ = λ ‖x− y2‖. From (4.78) we deduce that λ = 1, thus

y1 = y2. �

By this theorem we see that, for a strictly normed space, a solution to

the general problem of approximation is unique. A set of spaces important

in applications are included here, as shown next.

Lemma 4.94. Every inner product space is strictly normed.

Proof. Let X be an inner product space and suppose x, y ∈ X satisfy

(4.77). We have ‖x+ y‖2 = (‖x‖+ ‖y‖)2; rewriting this as

‖x‖2 + 2Re(x, y) + ‖y‖2 = ‖x‖2 + 2 ‖x‖ ‖y‖+ ‖y‖2 ,
we obtain

Re(x, y) = ‖x‖ ‖y‖ .
This and the Schwarz inequality show that Im(x, y) = 0 so that

(x, y) = ‖x‖ ‖y‖ .
But this last equation represents the case of equality holding in the Schwarz

inequality, which can happen only if y = λx for some λ. Making this

replacement for y we obtain (x, λx) = ‖x‖ ‖λx‖, hence λ ‖x‖2 = |λ| ‖x‖2.
Since x �= 0 we have λ = |λ|, and therefore λ ≥ 0. �
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The subspace Hn of an inner product space H that is spanned by gi, i =

1, . . . , n, is finite dimensional. We know that for any x ∈ H there is a unique

element that minimizes the distance ‖x− y‖ over y ∈ Hn. In a Euclidean

space this element is a projection of the element onto the subspace Hn. Let

us show that this result on the unique existence of the projection extends

to a Hilbert space. This extension is the basis for an important part of

the theory of Hilbert spaces connected with Fourier expansions and many

other questions.

Theorem 4.95. Let H be a Hilbert space and let M be closed convex subset

of H. For every x ∈ H, there is a unique y ∈M that minimizes ‖x− y‖.
Proof. Fix x ∈ H . By definition of infimum there is a sequence {yk} ⊂M

such that

lim
k→∞

‖x− yk‖ = inf
y∈M

‖x− y‖ .

By the parallelogram law

‖2x− yi − yj‖2 + ‖yi − yj‖2 = 2
(
‖x− yi‖2 + ‖x− yj‖2

)
,

hence

‖yi − yj‖2 = 2
(
‖x− yi‖2 + ‖x− yj‖2

)
− 4

∥∥∥∥x− yi + yj
2

∥∥∥∥2 .
Since ‖x− yj‖2 = d2 + εj where εj → 0 as j → ∞, it follows that

‖yi − yj‖2 ≤ 2(d2 + εi + d2 + εj)− 4d2 = 2(εi + εj) → 0 as i, j → ∞.

Therefore {yk} is a Cauchy sequence, and converges to an element y ∈ M

since M is closed. This minimizer y is unique by Theorem 4.93. �

4.12 Orthogonal Decomposition of a Hilbert Space and the

Riesz Representation Theorem

Definition 4.96. Let M be a subspace of a Hilbert space H . An element

n ∈ H is orthogonal to M if n is orthogonal to every element of M .

In R3 we may imagine a straight line segment inclined with respect

to a plane and with one end touching the plane. We may then define the

projections of the segment onto the plane and onto the normal, respectively.

The length of the normal projection is the shortest distance from the other
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end of the segment to the surface. The next result extends this fact to inner

product spaces.

Lemma 4.97. Let H be a Hilbert space and M a closed linear subspace of

H. Given x ∈ H, the unique minimizer m ∈M guaranteed by Theorem 4.95

is such that (x−m) is orthogonal to M .

Proof. Let v ∈M . The function

f(α) = ‖x−m− αv‖2

of the real variable α takes its minimum value at α = 0, hence

df

dα

∣∣∣
α=0

= 0.

This gives

d

dα
(x−m− αv, x −m− αv)

∣∣∣
α=0

= −2Re(x−m, v) = 0.

Replacing v by iv we get Im(x −m, v) = 0, hence (x−m, v) = 0. �

Definition 4.98. Two subspaces M and N of H are mutually orthogonal

if every n ∈ N is orthogonal to M and every m ∈ M is orthogonal to N .

In this case we write M ⊥ N . If, furthermore, any x ∈ H can be uniquely

represented in the form

x = m+ n, m ∈M, n ∈ N, (4.79)

then we write H = M+̇N and speak of an orthogonal decomposition of H

into M and N .

Note that mutually orthogonal subspaces have zero as their only point

of intersection.

Theorem 4.99. Let M be a closed subspace of a Hilbert space H. There is

a closed subspace N of H such that M+̇N is an orthogonal decomposition

of H.

Proof. Let N be the set of all elements of H that are orthogonal to M .

We assume M �= H , hence N has nonzero elements. If n1, n2 ∈ N so that

(n1,m) = (n2,m) = 0 for every m ∈ M , then (λ1n1 + λ2n2,m) = 0 for

any scalars λ1, λ2. Hence N is a subspace of H . To see that N is closed,

let {nk} be a Cauchy sequence in N . The limit element n∗ = limk→∞ nk
exists; it belongs to N because

(n∗,m) = lim
k→∞

(nk,m) = 0 for all m ∈M
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by continuity of the inner product.

For any element x ∈ H the representation (4.79) exists because we can

project x ontoM to obtain the elementm, then obtain n from n = x−m. To

show uniqueness, assume that for some x there are two such representations:

x = m1 + n1, x = m2 + n2.

Equating these, we obtain

m1 −m2 = n1 − n2.

Taking the inner product of both sides of this equality with m1 −m2 and

then with n1 − n2, we get ‖m1 −m2‖2 = 0 and ‖n1 − n2‖2 = 0. �

Let us turn to a principal fact we shall need from the theory of Hilbert

spaces. We consider a simple case first. Let {e1, . . . , en} be an orthonormal

basis of Rn so that any vector x ∈ Rn can be expressed as

x =

n∑
i=1

xiei.

Now suppose F (x) is a linear functional defined on Rn. It is easy to see

that F (x) has a representation of the form

F (x) =

n∑
i=1

xici (4.80)

where the ci are scalars independent of x; indeed, with ci ≡ F (ei) we have

F (x) = F

(
n∑
i=1

xiei

)
=

n∑
i=1

xiF (ei) =

n∑
i=1

xici

by linearity of F . We can write (4.80) as

F (x) = (x, c)

where c is a vector in Rn, independent of x, whose value is uniquely de-

termined by F ; in this sense we can say that F has been “represented by

an inner product.” More generally, we have the following important result

known as the Riesz representation theorem:

Theorem 4.100. Let F (x) be a continuous linear functional given on a

Hilbert space H. There is a unique element f ∈ H such that

F (x) = (x, f) for every x ∈ H. (4.81)

Moreover, ‖F‖ = ‖f‖.
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Hence any bounded linear functional defined on a Hilbert space can be

represented by an inner product. The element f is sometimes called the

representer of F (x).

Proof. Let M be the set of all x for which

F (x) = 0. (4.82)

By linearity of F (x) any finite linear combination of elements of M also

belongs to M , hence M is a subspace of H . M is also closed; indeed, a

Cauchy sequence {mk} ⊂M is convergent in H to some m∗ = limk→∞mk,

and by continuity of F (x) we see thatm∗ satisfies (4.82). By Theorem 4.99,

there is a closed subspace N of H such that N ⊥ M and such that any

x ∈ H can be uniquely represented as x = m+ n for some m ∈M and n ∈
N . We can deduce the dimension of N . If n1 and n2 are any two elements

of N , then so is n3 = F (n1)n2 − F (n2)n1. Since F (n3) = F (n1)F (n2) −
F (n2)F (n1) = 0 we have n3 ∈ M . But the only element that belongs to

both N and M is the zero vector. This means that n2 is a scalar multiple

of n1, hence N is one-dimensional.

Now choose n ∈ N and define n0 = n/ ‖n‖. Any x ∈ H can be repre-

sented as

x = m+ αn0, m ∈M,

where α = (x, n0), and therefore

F (x) = F (m) + αF (n0) = αF (n0) = F (n0)(x, n0) = (x, F (n0)n0).

Denoting F (n0)n0 by f we obtain the representation (4.81). To establish

its uniqueness, let f1 and f2 be two representers:

F (x) = (x, f1) = (x, f2).

So (x, f1 − f2) = 0 for all x. Setting x = f1 − f2 we have ‖f1 − f2‖2 = 0,

hence f1 = f2.

Finally, we must establish ‖F‖ = ‖f‖. Since this certainly holds for

F = 0 we assume F �= 0. Then f �= 0, and

‖f‖2 = (f, f) = F (f) ≤ ‖F‖ ‖f‖
gives ‖f‖ ≤ ‖F‖. On the other hand

‖F‖ = sup
‖x‖	=0

|F (x)|
‖x‖ = sup

‖x‖	=0

|(x, f)|
‖x‖ ≤ sup

‖x‖	=0

‖x‖ ‖f‖
‖x‖ = ‖f‖

by the Schwarz inequality. �
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The Riesz representation theorem states that a continuous linear func-

tional on a Hilbert space H is identified with an element of H ; this corre-

spondence is one-to-one, isometric, and preserves algebraic operations with

respect to the elements and functionals. The set of all continuous linear

functionals on a normed spaceX is called the dual space toX and is denoted

by X ′. In these terms, the Riesz theorem states that X ′ is isometrically

isomorphic to X .

Example 4.101. (a) Let a functional in L2(0, 2) be given by

F (f) =

∫ 1

0

f(x)g(x) dx

where g(x) ∈ L2(0, 1) is given. What is the representer of this functional

given by Theorem 4.100 in L2(0, 2)? (b) Define on L2(0, 1) a linear func-

tional by the formula

G(f) = f(0.5).

What is the Riesz representer of this functional?

Solution. (a) We can use

G(x) =

{
g(x), x ∈ [0, 1],

0, x ∈ (1, 2],

as a representer. (b) The functional G is linear but not continuous in

L2(0, 1), so Theorem 4.100 does not apply. The functional by its form

relates to the δ-function, which lies outside L2(0, 1). �

The Riesz representation theorem will play a key role when we consider

the generalized setup of some problems in mechanics.

4.13 Basis, Gram–Schmidt Procedure, and Fourier Series

in Hilbert Space

If Y is an n-dimensional linear space, then there are n linearly independent

elements g1, . . . , gn ∈ Y such that every y ∈ Y can be uniquely represented

in the form

y =

n∑
k=1

αkgk (4.83)
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for scalars α1, . . . , αn. The scalars are called the components of x. We refer

to the finite set {gi}ni=1 as a basis of Y . A basis is not unique. The concept

of basis can be extended to infinite dimensional normed spaces.

Definition 4.102. Let X be a normed linear space. A system of elements

{ei} is a basis (or Schauder basis) of X if any x ∈ X can be represented

uniquely as

x =
∞∑
k=1

αkek (4.84)

for scalars {αk}.
The elements ei of a basis play the role of coordinate vectors of the space.

Every such basis is linearly independent. Indeed, with x = 0 equation (4.84)

holds with αk ≡ 0, and the αk are unique by assumption.

A normed space X having a basis is separable. To see this, we note that

the set of all linear combinations
∑∞

k=1 qkek with rational coefficients qk is

countable and dense in X . Countability is evident. To show denseness let

x ∈ X and ε > 0 be given. Write x =
∑∞

k=1 αkek. Let e =
∑∞
k=1 rkek

where rk is a rational number such that

|αk − rk| < ε

2k ‖ek‖ .

Then

‖x− e‖ =

∥∥∥∥ ∞∑
k=1

(αk − rk)ek

∥∥∥∥ ≤
∞∑
k=1

|αk − rk| ‖ek‖ < ε

∞∑
k=1

1

2k
= ε

as required.

In practice we often use finite approximations of quantities. Finite linear

combinations of basis elements are appropriate.

Definition 4.103. Let X be a normed space. A countable system {gi} ⊂
X is complete in X if for every x ∈ X and ε > 0 there is a finite linear

combination
∑n(ε)
i=1 αi(ε)gi such that

∥∥∥x−∑n(ε)
i=1 αi(ε)gi

∥∥∥ < ε.

Note that the coefficients αi need not be continuous in ε.

The space X is separable if it has a countable complete system: the set

of finite linear combinations with rational coefficients is dense in the set of

all linear combinations, and thus in the space.

Among all the bases of Rn an orthonormal basis has some advantages

for calculation. The same can be said of an infinite dimensional Hilbert
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space. A system of elements {gk} ⊂ H is said to be orthonormal if

(gm, gn) =

{
1, m = n,

0, m �= n.
(4.85)

If we have an arbitrary basis {fi}∞i=1 of a Hilbert space, we sometimes

need to construct an orthonormal basis of the space. An orthonormal basis

of a Hilbert space is not unique. One way to produce such a basis is

the Gram–Schmidt procedure. The process is straightforward. A linearly

independent set of elements cannot contain the zero vector, so we may

obtain g1 by normalizing f1:

g1 = f1/ ‖f1‖ .
To obtain g2, we first generate a vector e2 by subtracting from f2 the

“component” of f2 that is the projection of f2 on the direction of g1:

e2 = f2 − (f2, g1)g1

(recall that g1 is a unit vector). We then normalize e2 to obtain g2:

g2 = e2/ ‖e2‖ .
(Note that e2 �= 0, otherwise f1 and f2 are linearly dependent. The same

applies to the rest of the ei).

We obtain g3 from f3 by subtracting the components of f3 that are the

projections of f3 on both g1 and g2:

e3 = f3 − (f3, g1)g1 − (f3, g2)g2, g3 = e3/ ‖e3‖ .
In general we set

gi =
ei

‖ei‖ where ei = fi −
i−1∑
k=1

(fi, gk)gk, i = 2, 3, 4, . . . .

The reader should verify directly that the Gram–Schmidt procedure yields

an orthogonal set of elements.

In linear algebra it is shown that a system {fi}ni=1 is linearly independent

in Rn if and only if∣∣∣∣∣∣∣∣∣
(f1, f1) (f1, f2) · · · (f1, fn)

(f2, f1) (f2, f2) · · · (f2, fn)
...

(fn, f1) (fn, f2) · · · (fn, fn)

∣∣∣∣∣∣∣∣∣
�= 0.
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The determinant on the left is the Gram determinant . A finite dimensional

inner product space stands in a one-to-one correspondence with Rn, a cor-

respondence in which inner products are preserved. Thus the same Gram

criterion is valid for an inner product space as well. It is easy to see that

every finite orthonormal system is linearly independent, since the Gram

determinant would reduce to +1 in that case.

In the space Rn we find the components of a vector x with respect to the

orthonormal frame vectors ik by direct projection of x onto ik: xk = x · ik.
Similarly, the components of an element in a Hilbert space are given by

Definition 4.104. Let {gi} be an orthonormal system in a complex Hilbert

space H . Given f ∈ H , the numbers αk defined by

αk = (f, gk), k = 1, 2, 3, . . . , (4.86)

are the Fourier coefficients of f with respect to the system {gi}.

We use the same terms as in the classical Fourier theory of expansion of

functions, because all the results and even their proofs parallel the results

for Fourier expansions established in the space L2(a, b).

Theorem 4.105. Let H be a Hilbert space. A complete orthonormal system

{gi} ⊂ H is a basis of H; with respect to {gi}, any f ∈ H has the unique

representation

f =

∞∑
k=1

αkgk (4.87)

where αk = (f, gk) is the kth Fourier coefficient of f . The series (4.87) is

called the Fourier series of f with respect to {gi}.

Proof. Let f ∈ H be given, and consider approximating f by a finite

linear combination
∑n
k=1 ckgk of the elements {gi}ni=1. The approximation

error is given by∥∥∥∥f −
n∑
k=1

ckgk

∥∥∥∥2 =

(
f −

n∑
k=1

ckgk, f −
n∑
k=1

ckgk

)
,

and manipulation of the right side allows us to put this in the form∥∥∥∥f −
n∑
k=1

ckgk

∥∥∥∥2 = ‖f‖2 −
n∑
k=1

|αk|2 +
n∑
k=1

|ck − αk|2.
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Clearly the error is minimized when ck = αk for each k, so the best ap-

proximation is the element given by

fn =

n∑
k=1

(f, gk)gk.

We call fn the nth partial sum of the Fourier series for f . Since the error

is nonnegative we also have
n∑
k=1

|(f, gk)|2 ≤ ‖f‖2 ,

known as Bessel’s inequality. This shows that

‖fn+m − fn‖2 =

∥∥∥∥ n+m∑
k=n+1

(f, gk)gk

∥∥∥∥2 =

n+m∑
k=n+1

|(f, gk)|2 → 0 as n→ ∞,

hence {fn} is a Cauchy sequence in H . Since H is a Hilbert space the

sequence has a limit. We need to show that it coincides with f . Indeed, by

completeness of {gi}, for any ε > 0 there exists N = N(ε) and coefficients

ck(ε) such that ∥∥∥∥f −
N∑
k=1

ck(ε)gk

∥∥∥∥2 < ε.

But fN is at least as good an approximation to f , so

‖f − fN‖2 =

∥∥∥∥f −
N∑
k=1

αkgk

∥∥∥∥2 ≤
∥∥∥∥f −

N∑
k=1

ck(ε)gk

∥∥∥∥2 < ε

and we conclude that fN → f . From this we obtain

f = lim
n→∞ fn,

and the proof is complete. �

Corollary 4.106. Parseval’s equality
∞∑
k=1

|(f, gk)|2 = ‖f‖2 (4.88)

holds for any f ∈ H and any complete orthonormal system {gi}.
Proof. We established above that∥∥∥∥f −

n∑
k=1

(f, gk)gk

∥∥∥∥2 = ‖f‖2 −
n∑
k=1

|(f, gk)|2. (4.89)

Passage to the limit as n→ ∞ yields (4.88). �



September 30, 2011 8:42 World Scientific Book - 9in x 6in aea

Functional Analysis 289

The proof shows that the sequence of partial Fourier sums is a Cauchy

sequence regardless of whether {gk} is a complete system. We formulate

Corollary 4.107. Let {gk} be an arbitrary orthonormal system in H (not

necessarily complete). The sequence of partial Fourier sums fn of f ∈ H

converges to an element f∗ such that ‖f∗‖ ≤ ‖f‖. If the system is complete,

then f∗ = f .

Definition 4.108. We say that {gi} ⊂ H is closed in H if the system of

equations

(f, gk) = 0 for all k = 1, 2, 3, . . . (4.90)

implies that f = 0.

Theorem 4.109. An orthonormal system {gi} in a Hilbert space H is

complete in H if and only if it is closed in H.

Proof. If {gi} is a complete orthonormal system in H , then any f ∈ H

can be written as

f =

∞∑
k=1

(f, gk)gk

by Theorem 4.105. Enforcement of the condition (4.90) obviously does

yield f = 0, hence {gi} is closed. Conversely, assume {gi} is a closed

orthonormal system in H . We established previously (Corollary 4.107)

that for any f ∈ H the sequence of partial Fourier sums fn =
∑n
k=1 αkgk is

a Cauchy sequence converging to some f∗ ∈ H since H is a Hilbert space.

We have

(f − f∗, gm) = lim
n→∞

(
f −

n∑
k=1

αkgk, gm

)
= αm − αm = 0

hence

(f − f∗, gm) = 0 for all m = 1, 2, 3, . . . .

It follows that f∗ = f since {gi} is closed. Because fn =
∑n

k=1 αkgk
converges to f , the system {gi} is complete by Definition 4.103. �

The existence of the Gram–Schmidt process implies

Theorem 4.110. A system of elements {gi} (not necessarily orthonormal)

in a Hilbert space H is complete in H if and only if it is closed in H.
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Theorem 4.111. A Hilbert space H has a countable orthonormal basis if

and only if H is separable.

Proof. We saw earlier that the existence of a countable basis in a Hilbert

space provides for separability. Conversely, assume H is separable and

select a countable set that is dense in H . To this set the Gram–Schmidt

procedure can be applied (removing any linearly dependent elements) to

produce an orthonormal system. Since the initial set was dense it was

complete, hence the Gram–Schmidt procedure yields an orthonormal basis

of H . �
One advantage afforded by the tools of functional analysis is that we can

discuss many common procedures of numerical analysis in terms to which

we are accustomed in finite dimensional spaces. A knowledge of this theory

gives us an understanding, without long deliberation, of when we can do

so and when we cannot — some nice finite dimensional pictures become

invalid or doubtful in spaces of infinite dimension.

The following result will be used in § 4.21.
Theorem 4.112. Any bounded subset of a Hilbert space H is precompact

if and only if H is finite dimensional.

Proof. If H is finite dimensional then we can place it in one-to-one cor-

respondence with Rn for some n. Then precompactness of any bounded set

follows from calculus.

Next let us suppose that any bounded set of H is precompact but, to

the contrary, that H is infinite dimensional. We can construct an infinite

Fourier basis {ek}. Since ‖ek − en‖2 = 2 for k �= n, the sequence {ek}
cannot contain a Cauchy subsequence, hence the unit ball of H cannot be

precompact. �

Example 4.113. Show that every separable, infinite dimensional, complex

Hilbert space is isometrically isomorphic to �2.

Solution. Let X be a Hilbert space as described. By separability X has a

countable, complete orthonormal set E = {ek}∞k=1. For any x ∈ X , denote

the nth Fourier coefficient with respect to E by αn. Since E is complete

we have ‖x‖2 =
∑∞
n=1 |αn|2 < ∞, hence α = (α1, α2, . . .) ∈ �2. Define a

transformation A from X to �2 by Ax = α. Because A is clearly linear we

can show that it is injective by showing that N(A) = {0}. But Ax = 0

implies α = 0, hence each αk = 0, hence (x, ek) = 0 for each k, hence

x = 0 since the orthonormal set E is closed. Next we show that A is
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surjective. Choose any y = (η1, η2, . . .) ∈ �2; since
∑∞

n=1 |ηn|2 < ∞, the

series
∑∞

n=1 ηnen = x for some x ∈ X . Moreover we have ηn = (x, en) for

all n, and hence ‖Ax‖2 = ‖y‖2 =
∑∞

n=1 |ηn|2 =
∑∞

n=1 |(x, en)|2 = ‖x‖2 .
That is, A is also an isometry. �

4.14 Weak Convergence

It is easy to show that {xk} is a Cauchy sequence in Rn if and only if each

of its component sequences {(xk, ij)}, j = 1, . . . , n, is a numerical Cauchy

sequence. So in Rn, norm convergence is equivalent to component-wise

convergence. Remember that, besides, all the norms in Rn are equivalent.

Unlike Rn, in an infinite dimensional Hilbert space, where the role of com-

ponents is played by the Fourier coefficients of an element, the component-

wise convergence of a sequence does not guarantee strong convergence of

the same sequence. Indeed, consider the sequence composed of the elements

of an orthonormal basis {gk}. The sequence of the jth Fourier component

(gk, gj) → 0 as k → ∞ because of the mutual orthogonality of the elements

of the basis; hence, by similarity to the case of Rn, we could conclude that

the zero element is a limit. But {gk} does not have a strong limit, because

‖gk − gm‖ =
√
2 whenever k �= m. However, component-wise convergence

in a Hilbert space is still important, and we need to introduce a suitable

notion. A component in Hilbert space is given by the Fourier coefficient,

which is found through the use of an inner product. This coefficient is a

continuous linear functional on H . So a natural extension of the definition

of component-wise convergence is

Definition 4.114. Let {xk} ⊂ H where H is a Hilbert space. We say

that {xk} is a weak Cauchy sequence if {F (xk)} is a (numerical) Cauchy

sequence for every continuous linear functional F (x) defined on H .

In contrast, we know that {xk} is a Cauchy sequence in H if

‖xn − xm‖ → 0 as m,n→ ∞.

In this latter case we shall refer to {xk} as a strong Cauchy sequence

whenever there is danger of ambiguity. It is apparent that every strong

Cauchy sequence is a weak Cauchy sequence. We also observe that, by

Theorem 4.100, {xk} is a weak Cauchy sequence if the numerical sequence

{(xn, f)} is a Cauchy sequence for every element f ∈ H . But above we

showed the existence of a sequence that is a weak Cauchy sequence but not
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a strong Cauchy sequence. Thus we have defined a new kind of convergence

in a Hilbert space. We shall rephrase all the notions of strong continuity

for the weak version.

Definition 4.115. Let x0 ∈ H . If F (xn) → F (x0) for every continuous

linear functional F (x) defined on H , we write

xn ⇀ x0

and say that {xn} is weakly convergent to x0. Alternatively, by the Riesz

representation theorem we have xn ⇀ x0 if and only if (xn, f) → (x0, f)

for every element f ∈ H .

Recalling that the strong limit of a sequence is unique, we might wonder

whether weak limits also share this property. The answer is affirmative:

Theorem 4.116. If a sequence in a Hilbert space has a weak limit, the

limit is unique.

Proof. Suppose there are two weak limits x∗ and x∗∗ of a sequence {xk}.
An arbitrary continuous linear functional, by Theorem 4.100, is F (x) =

(x, f). When k tends to infinity the numerical sequence (xk, f) can have

only one limit (by calculus), so (x∗∗, f) = (x∗, f). This holds for any f ∈ H ,

and thus for f = x∗∗ − x∗. But then it follows that ‖x∗∗ − x∗‖2 = 0. �

There is a simple and convenient sufficient condition for a weakly con-

vergent sequence to be strongly convergent:

Theorem 4.117. Suppose xk ⇀ x0 in a Hilbert space H. Then ‖xk‖ →
‖x0‖ implies that xk → x0 as k → ∞.

Proof. For each k we have

‖xk − x0‖2 = (xk − x0, xk − x0) = ‖xk‖2 − (x0, xk)− (xk, x0) + ‖x0‖2 .
But as k → ∞ both (x0, xk) and (xk, x0) approach ‖x0‖2 by definition

of weak convergence, and we have ‖xk‖ → ‖x0‖ by assumption. So

‖xk − x0‖ → 0 as k → ∞. �

A strong Cauchy sequence is bounded, but it is not immediately appar-

ent that a weak Cauchy sequence has this property.

Theorem 4.118. In a Hilbert space, every weak Cauchy sequence is

bounded.
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Proof. Suppose {xn} is a weak Cauchy sequence in H with ‖xn‖ → ∞
as n→ ∞. Before seeking a contradiction we establish an auxiliary fact: if

B(y0, ε) is a closed ball of radius ε > 0 and arbitrary center y0 ∈ H , then

there is a sequence {yn} ⊂ B(y0, ε) such that the numerical sequence

(xn, yn) → ∞ as n→ ∞. (4.91)

The sequence {yn} given by

yn = y0 + ε
xn

2 ‖xn‖
is suitable. Indeed

‖yn − y0‖ =

∥∥∥∥ εxn
2 ‖xn‖

∥∥∥∥ =
ε

2
< ε

shows that yn ∈ B(y0, ε) for each n. Furthermore,

(xn, yn) = (xn, y0) +
ε

2 ‖xn‖ (xn, xn) = (xn, y0) +
ε

2
‖xn‖

establishes (4.91) since the numerical sequence {(xn, y0)} is a Cauchy se-

quence by definition of weak convergence of {xn}, and every Cauchy se-

quence is bounded.

We are now ready to obtain a contradiction. Starting with ε1 = 1 and

y0 = 0, we can find xn1 and y1 ∈ B(y0, ε1) such that

(xn1 , y1) > 1. (4.92)

By continuity of the inner product in the second argument, there is a ball

B(y1, ε2) ⊂ B(y0, ε1) such that (4.92) holds not only for y1 but for all

y ∈ B(y1, ε2):

(xn1 , y) > 1 for all y ∈ B(y1, ε2).

Similarly, we can find xn2 (with n2 > n1) and y2 ∈ B(y1, ε2) such that

(xn2 , y2) > 2,

and, by continuity, a ball B(y2, ε3) ⊂ B(y1, ε2) such that

(xn2 , y) > 2 for all y ∈ B(y2, ε3).

Continuing this process we generate a nested sequence of balls B(yk, εk+1)

and a corresponding subsequence {xnk
} of {xn} such that

(xnk
, y) > k for all y ∈ B(yk, εk+1).

Since H is a Hilbert space the intersection
⋂
k B(yk, εk+1) is nonempty,

hence there exists y∗ such that (xnk
, y∗) > k for each k. For the continuous
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linear functional F ∗(x) = (x, y∗) then, the numerical sequence {F ∗(xnk
)}

is not a Cauchy sequence. Because {xnk
} is not a weak Cauchy sequence,

neither is {xn}. This is the contradiction sought. �
As a byproduct of this proof we have

Lemma 4.119. If {xk} is an unbounded sequence in H, i.e., ‖xk‖ → ∞
as k → ∞, then there exists y∗ ∈ H and a subsequence {xnk

} such that

(xnk
, y∗) → ∞ as k → ∞.

We now present another important theorem with which we can show

boundedness of some sets in a Hilbert space. Set boundedness plays an

important role in the applications of functional analysis to mathematical

physics. The present result is the principle of uniform boundedness :

Theorem 4.120. Let {Fk(x)}∞k=1 be a family of continuous linear func-

tionals defined on a Hilbert space H. If supk |Fk(x)| < ∞ for each x ∈ H,

then supk ‖Fk‖ <∞.

Proof. Each Fk(x) has Riesz representation Fk(x) = (x, fk) for a unique

fk ∈ H such that ‖fk‖ = ‖Fk‖. So it suffices to show that if supk |(x, fk)| <
∞ for each x ∈ H , then supk ‖fk‖ < ∞. We prove the contrapositive of

this. If supk ‖fk‖ = ∞, then Lemma 4.119 guarantees the existence of

x0 ∈ H and a subsequence {fkn} such that |(x0, fkn)| → ∞ as k → ∞.

This completes the proof. �

Corollary 4.121. Let {Fk(x)} be a sequence of continuous linear function-

als given on H. If for every x ∈ H the numerical sequence {Fk(x)} is a

Cauchy sequence, then there is a continuous linear functional F (x) on H

such that

F (x) = lim
k→∞

Fk(x) for all x ∈ H (4.93)

and

‖F‖ ≤ lim inf
k→∞

‖Fk‖ <∞. (4.94)

Proof. The limit in (4.93) exists by hypothesis and clearly defines a linear

functional F (x). By Theorem 4.120 we have supk ‖Fk‖ <∞; from

|F (x)| = lim
k→∞

|Fk(x)| ≤ sup
k

‖Fk‖ ‖x‖

it follows that F (x) is continuous. Writing

|F (x)| = lim
k→∞

|Fk(x)| ≤ lim inf
k→∞

‖Fk‖ ‖x‖ ,
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we establish (4.94). �

Because of the Riesz representation theorem we can rephrase this as

Theorem 4.122. A weak Cauchy sequence in a Hilbert space has a weak

limit belonging to the space. Hence any Hilbert space is weakly complete.

It is therefore unnecessary for us to define weak completeness for a

Hilbert space separately.

Theorem 4.123. A sequence {xn} ⊂ H is a weak Cauchy sequence if and

only if the following two conditions hold:

(i) {xn} is bounded in H;

(ii) for any element from a complete system {fα} in H, the sequence of

numbers {(xn, fα)} is a Cauchy sequence.

Proof. Since necessity of the two conditions follows from Theorem 4.118

and Definition 4.115, we proceed to prove sufficiency. Suppose conditions (i)

and (ii) hold, and let ε > 0 be given. Condition (i) means that ‖xn‖ ≤ M

for all n. Take an arbitrary continuous linear functional defined by its

Riesz representer f ∈ H as (x, f). By (ii) there is a linear combination

fε =
∑N
k=1 ckfk such that

‖f − fε‖ < ε/3M.

We have

|(xn − xm, f)| = |(xn − xm, fε + f − fε)|
≤ |(xn − xm, fε)|+ |(xn − xm, f − fε)|

≤
N∑
k=1

|ck||(xn − xm, fk)|+ (‖xn‖+ ‖xm‖) ‖f − fε‖ .

By (ii), {(xn, fk)} is a Cauchy sequence for each k. Therefore for sufficiently

large m,n we have

N∑
k=1

|ck||(xn − xm, fk)| < ε/3.

So

|(xn − xm, f)| ≤ ε/3 + 2Mε/(3M) = ε

for sufficiently large m,n, as required. �
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Definition 4.124. A set S in an inner product space X is weakly closed if

xn ⇀ x0 ∈ X implies that x0 ∈ S.

Lemma 4.125. In a Hilbert space, any closed ball with center at the origin

is weakly closed.

Proof. From the ball ‖x‖ ≤ M , choose a sequence {xn} that converges

weakly to x0 ∈ H . We shall show that ‖x0‖ ≤M . The formula

F (y) = lim
n→∞(y, xn)

defines a linear functional on H . It is bounded (continuous) because

|F (y)| = lim
n→∞ |(y, xn)| ≤M ‖y‖ ,

and we have ‖F‖ ≤ M . Applying Theorem 4.100 we obtain F (y) = (y, f)

for a unique f ∈ H such that ‖f‖ ≤M . So

lim
n→∞(y, xn) = (y, f)

for any y ∈ H , and conclude that xn ⇀ f . �

A result known as Mazur’s theorem (see, for example, [32]) states that

every closed convex set in a Hilbert space is weakly closed. This would

apply to the previous case, as well as to any closed subspace of a Hilbert

space.

Definition 4.126. Let S be a subset of an inner product space. We say

that S is weakly precompact if every sequence taken from S contains a weak

Cauchy subsequence. We say that S is weakly compact if every sequence

taken from S contains a weak Cauchy subsequence that converges weakly

to a point of S.

Next, we see that a bounded set in a separable Hilbert space is weakly

precompact.

Theorem 4.127. Every bounded sequence in a separable Hilbert space con-

tains a weak Cauchy subsequence.

Proof. Let {xn} be a bounded sequence in a separable Hilbert space H ,

and let {gn} be an orthonormal basis of H . By Theorem 4.123 it suffices to

show that there is a subsequence {xnk
} such that, for any fixed gm, the nu-

merical sequence {(xnk
, gm)} is a Cauchy sequence. Let us demonstrate its

existence. From the bounded numerical sequence {(xn, g1)} we can choose
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a Cauchy subsequence {(xn1 , g1)}. Then, from the bounded numerical se-

quence {(xn1 , g2)} we can choose a Cauchy subsequence {(xn2 , g2)}. We

can continue this process, on the kth step obtaining a Cauchy subsequence

{(xnk
, gk)}. The diagonal sequence {xnn} has the property that for any

fixed gm the numerical sequence {(xnn , gm)} is a Cauchy sequence. Hence

{xnn} is a weak Cauchy sequence. �

A simple but important corollary of this and Lemma 4.125 is

Theorem 4.128. In a Hilbert space, any closed ball with center at the

origin is weakly compact.

That is, a bounded sequence {xn} with ‖xn‖ ≤ M has a subsequence

that converges weakly to some x∗ with ‖x∗‖ ≤ M . We shall use this fact

in the next chapter.

Example 4.129. Prove the following assertions. (a) If {xn} is a (strong)

Cauchy sequence, then it is a weak Cauchy sequence. (b) Let {xn} be a

weak Cauchy sequence, and suppose that one of its subsequences converges

(strongly) to x0. Then {xn} converges weakly to x0. (c) If {xn} converges

weakly to x0, so do each of its subsequences. (d) Suppose xk ⇀ x and

yk ⇀ y. Then xk + yk ⇀ x + y, and αxk ⇀ αx for any scalar α. (e) Let

xn ⇀ x0 and yn → y0. Then (xn, yn) → (x0, y0) as n→ ∞.

Solution. Let F be an arbitrary continuous linear functional. (a) Let ε > 0

be given, and choose N so large that n,m > N imply ‖xn − xm‖ < ε/ ‖F‖ .
Then for n,m > N we have

|F (xn)− F (xm)| = |F (xn − xm)| ≤ ‖F‖ ‖xn − xm‖ < ε.

(b) Since {xn} is weakly Cauchy, the sequence {F (xn)} is Cauchy. Also,

xnk
→ x0 implies that F (xnk

) → F (x0). Because the Cauchy sequence

{F (xn)} has a subsequence {F (xnk
)} that converges to F (x0), the whole

sequence converges to F (x0). This shows that xn converges to x0 weakly.

(c) If xn ⇀ x0, then F (xn) → F (x0). But then F (xnk
) → F (x0) for

every subsequence {F (xnk
)} of {F (xn)}. (d) We have F (xk) → F (x) and

F (yk) → F (y). Hence

F (xk + yk) = F (xk) + F (yk) → F (x) + F (y) = F (x+ y)

and

F (αxk) = αF (xk) → αF (x) = F (αx).
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(e) We have

|(xn, yn)− (x0, y0)| ≤ |(xn, yn)− (xn, y0)|+ |(xn, y0)− (x0, y0)|
= |(xn, yn − y0)|+ |(xn, y0)− (x0, y0)|
≤ ‖xn‖ ‖yn − y0‖+ |(xn, y0)− (x0, y0)|.

The first term tends to zero as n → ∞ because the weakly convergent

sequence {xn} is bounded and ‖yn − y0‖ → 0. The second term tends to

zero by weak convergence of {xn} to x0. �

4.15 Adjoint and Self-Adjoint Operators

In the theory of matrices, for a matrix A the equality

(Ax,y) = (x, ATy)

which is valid for any x,y, defines a dual (conjugate) matrix AT . The

formula for integration by parts (when g(0) = 0 = g(1)),∫ 1

0

f ′(x)g(x) dx = −
∫ 1

0

f(x)g′(x) dx,

introduces a correspondence between the operator of differentiation (of the

first argument f) and a dual operator, −d/dx, for the second argument. For

a linear differential operator with constant coefficients, integration by parts

can be used to find a corresponding dual operator that plays an important

role in the theory of differential equations. An extension of these ideas to

the general case brings us to the notion of adjoint operator.

Let H be a Hilbert space and A a continuous linear operator from H

to H . For any fixed y ∈ H , we can view the inner product (Ax, y) as a

functional with respect to the variable x ∈ H . This functional is linear:

(A(λx1 + µx2), y) = (λAx1 + µAx2, y) = λ (Ax1, y) + µ (Ax2, y) .

It is also bounded (i.e., continuous) since

|(Ax, y)| ≤ ‖Ax‖ ‖y‖ ≤ ‖A‖ ‖y‖ ‖x‖
by the Schwarz inequality and the fact that A is bounded. By Theo-

rem 4.100 we can write

(Ax, y) = (x, z)

where z ∈ H is uniquely determined by y and A. The correspondence

y → z defines an operator that we shall denote by A∗.
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Definition 4.130. Let A be a continuous linear operator acting in H . The

operator A∗ from H to H given by

(Ax, y) = (x,A∗y) for all x ∈ H

is the adjoint of A.

Let us verify that A∗ is a linear operator. For any y1, y2 ∈ H we have

(Ax, y1) = (x,A∗y1), (Ax, y2) = (x,A∗y2),

and, if λ and µ are any scalars, (Ax, λy1+µy2) = (x,A∗(λy1+µy2)). Hence

(x,A∗(λy1 + µy2)) = λ(Ax, y1) + µ(Ax, y2)

= λ(x,A∗y1) + µ(x,A∗y2)

= (x, λA∗y1) + (x, µA∗y2).

Therefore, since x ∈ H is arbitrary,

A∗(λy1 + µy2) = λA∗y1 + µA∗y2

Let us proceed to some other properties of A∗.

Lemma 4.131. We have

(A+B)∗ = A∗ +B∗, (AB)∗ = B∗A∗,

for any continuous linear operators A,B acting in H.

Proof. The first property is evident. We write

(x, (AB)∗y) = ((AB)x, y) = (A(Bx), y) = (Bx,A∗y) = (x,B∗(A∗y))

= (x, (B∗A∗)y)

to establish the second property. �

Lemma 4.132. If A is a continuous linear operator, then so is A∗; more-

over, we have ‖A∗‖ = ‖A‖.
Proof. Define4

M = sup
x,y∈H

|(Ax, y)|
‖x‖ ‖y‖ .

By the Schwarz inequality

M ≤ sup
x,y∈H

‖A‖ ‖x‖ ‖y‖
‖x‖ ‖y‖ = ‖A‖ .

4Here it is evident that the sup should be taken only over x, y �= 0, so we suppress this
condition to simplify the notation.
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But we also have

M = sup
x,y∈H

|(x,A∗y)|
‖x‖ ‖y‖

and can put x = A∗y to obtain a new value

M1 = sup
y∈H

|(A∗y,A∗y)|
‖A∗y‖ ‖y‖ = sup

y∈H
‖A∗y‖
‖y‖ .

Since M1 ≤M we see that A∗ is bounded and

M1 = ‖A∗‖ ≤M ≤ ‖A‖ .
So A∗ is continuous with ‖A∗‖ ≤ ‖A‖. The reverse inequality, obtained as

‖A‖ = ‖(A∗)∗‖ ≤ ‖A∗‖ ,
rests on the next lemma. �

Lemma 4.133. (A∗)∗ = A.

Proof. Since A∗ is continuous we have

(x, (A∗)∗y) = (A∗x, y) = (y,A∗x) = (Ay, x) = (x,Ay)

for any x, y ∈ H . �

We are now ready to consider some specific examples. In preparation

for this it will be helpful to have

Definition 4.134. An operator A is self-adjoint if A∗ = A.

Let us note that for boundary value problems the equality A∗ = A

means not only coincidence of the form of the operators, but coincidence

of their domains as well. This remark becomes important when in math-

ematical physics one introduces the notion of the adjoint to an operator

having a domain that is only dense in the space. Then one may introduce

symmetrical operators (these are such that the form of the adjoint operator

remains the same) and self-adjoint operators for which there is complete

coincidence with the original operator.

On the space �2 having elements x = (x1, x2, . . .), we can define a matrix

operator A by

(Ax)i =

∞∑
j=1

aijxj .
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It follows from

‖Ax‖�2 =


 ∞∑
i=1


 ∞∑
j=1

aijxj


2



1/2

≤

 ∞∑
i=1

∞∑
j=1

|aij |2
∞∑
k=1

|xk|2

1/2

that

‖A‖ ≤

 ∞∑
i=1

∞∑
j=1

|aij |2

1/2

.

Suppose 
 ∞∑
i=1

∞∑
j=1

|aij |2

1/2

≤M

so A becomes continuous. From

(Ax,y) =

∞∑
i=1

∞∑
j=1

aijxjyi =

∞∑
j=1

xj

( ∞∑
i=1

aijyi

)
= (x, A∗y)

we see that A∗ is defined by

(A∗y)j =
∞∑
i=1

aijyi.

It is evident that A is self-adjoint if aij = aji for all indices i, j. A continuous

analogue is the integral operator B acting in L2(0, 1) defined by

(Bf)(x) =

∫ 1

0

k(x, s)f(s) ds

where k(x, s) is known as the kernel of the operator. The inequality

‖Bf‖L2(0,1) =

(∫ 1

0

∣∣∣∣
∫ 1

0

k(x, s)f(s) ds

∣∣∣∣
2

dx

)1/2

≤
(∫ 1

0

(∫ 1

0

|k(x, s)|2 ds
∫ 1

0

|f(s)|2 ds
)
dx

)1/2

=

(∫ 1

0

∫ 1

0

|k(x, s)|2 ds dx
)1/2

‖f‖L2(0,1)

shows that B is bounded if k(x, s) ∈ L2([0, 1]× [0, 1]) and that

‖B‖ ≤
(∫ 1

0

∫ 1

0

|k(x, s)|2 ds dx
)1/2

.
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Manipulations analogous to those done for the matrix example above show

that B∗ is given by

(B∗g)(s) =
∫ 1

0

k(x, s)g(x) dx.

Clearly B is self-adjoint if k(x, s) = k(s, x) and k(x, s) ∈ L2([0, 1]× [0, 1]).

Definition 4.135. An operator acting in a Hilbert space is weakly contin-

uous if it maps every weakly convergent sequence into a weakly convergent

sequence.

Lemma 4.136. A continuous linear operator acting in a Hilbert space is

also weakly continuous.

Proof. Let A be continuous on H and choose {xn} such that xn ⇀ x0 in

H . An arbitrary continuous linear functional F (x) takes the form F (x) =

(x, f) for some f ∈ H , hence we must show that (Axn − Ax0, f) → 0 as

n→ ∞. But

(Axn −Ax0, f) = (xn − x0, A
∗f) → 0 as n→ ∞

since A∗f ∈ H and {xn} converges weakly to x0. �

The proof shows that

xn ⇀ x0 =⇒ Axn ⇀ Ax0,

analogous to the case with ordinary (strong) continuity.

The following lemma plays an important role in justifying many numer-

ical methods for the solution of boundary value problems.

Lemma 4.137. Assume that A is a continuous linear operator acting in a

Hilbert space H. If xn ⇀ x0 and yn → y0 in H, then (Axn, yn) → (Ax0, y0).

Proof. We will show that (Axn, yn)− (Ax0, y0) → 0. We have

(Axn, yn)− (Ax0, y0) = (xn, A
∗yn)− (x0, A

∗y0)

= (xn, A
∗yn)− (xn, A

∗y0) + (xn, A
∗y0)− (x0, A

∗y0)

= (xn, A
∗(yn − y0)) + (xn − x0, A

∗y0).

The first term on the right tends to zero because

|(xn, A∗(yn − y0))| ≤ ‖xn‖ ‖A∗‖ ‖yn − y0‖
and yn → y0 (here ‖xn‖ is bounded since {xn} is weakly convergent); the

second term tends to zero because xn ⇀ x0. �
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Sometimes it is important to obtain an exact value or accurate bound

for the norm of an operator. For a self-adjoint operator this can be done

via the following theorem.

Theorem 4.138. If A is a self-adjoint continuous linear operator given on

a Hilbert space H, then

‖A‖ = sup
‖x‖≤1

|(Ax, x)|. (4.95)

Proof. We denote the right side of (4.95) by γ. By the Schwarz inequality

γ ≤ sup
‖x‖≤1

{‖Ax‖ ‖x‖} ≤ sup
‖x‖≤1

{‖A‖ ‖x‖2} = ‖A‖ .

The reverse inequality, which completes the proof, takes a bit more effort to

establish. First, by definition of γ we have |(Ax, x)| ≤ γ whenever ‖x‖ ≤ 1.

Hence, replacing x by x/ ‖x‖, we can write

|(Ax, x)| ≤ γ ‖x‖2

for any x ∈ H . Setting x1 = y + λz and x2 = y − λz where λ ∈ R and

y, z ∈ H , we have

C ≡ |(Ax1, x1)− (Ax2, x2)|
= |2λ| |(Ay, z) + (Az, y)|
= |2λ| |(Ay, z) + (z, Ay)|.

On the other hand

C ≤ |(Ax1, x1)|+ |(Ax2, x2)|
≤ γ(‖x1‖2 + ‖x2‖2)
= 2γ(‖y‖2 + λ2 ‖z‖2)

by the parallelogram equality, so

|2λ| |(Ay, z) + (z, Ay)| ≤ 2γ(‖y‖2 + λ2 ‖z‖2).
Since this holds for all y, z ∈ H we may set z = Ay to obtain

|4λ| ‖Ay‖2 ≤ 2γ(‖y‖2 + λ2 ‖Ay‖2).
With λ = ‖y‖ / ‖Ay‖ this reduces to ‖Ay‖ ≤ γ ‖y‖ and so ‖A‖ ≤ γ. �

The theorem implies that a self-adjoint continuous operator A in a

Hilbert space is zero if and only if (Ax, x) = 0 for all x ∈ H .
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4.16 Compact Operators

Using computers we can successfully solve finite systems of linear algebraic

equations. A computer performs a finite number of operations, so if we

need to solve a problem with some accuracy it should have a structure

close to that of finite algebraic equations. An important class of operators

with which problems of this kind arise is the class of compact operators. In

this section we take X to be a normed space and Y a Banach space.

Definition 4.139. A linear operator A from X to Y is compact if it maps

bounded subsets of X into precompact subsets of Y .

It suffices to show that A maps the unit ball of X into a precompact

subset of Y . (By “the unit ball” of a space, if nothing is said about its

center, we mean a ball of unit radius centered at the origin of the space.)

This follows from the linearity of A. It is also evident that A is compact

if and only if every bounded sequence {xn} in X has a subsequence whose

image under A is a Cauchy sequence in Y .

In the space Rn with a fixed basis, a matrix A defines a continuous linear

operator that is denoted byA as well. Such an operatorAmaps a closed and

bounded subset of Rn into a closed and bounded subset of Rn; so the image

is compact, and A is a compact operator. In an infinite dimensional space

a continuous linear operator is not in general compact. For example, the

identity operator I on C(0, 1) performs the simple mapping f(x) → f(x).

Therefore I maps the unit ball of C(0, 1) into itself, but the unit ball of

C(0, 1) is not precompact.

Theorem 4.140. Every compact linear operator is bounded (continuous).

Proof. Suppose A is not bounded. Then we can find a bounded sequence

{xn} in X such that ‖Axn‖ → ∞. As {Axn} contains no convergent

subsequence, A is not compact. �

It is clear that the zero operator is compact. Let us present a nontrivial

example of a compact linear operator. Consider the operator A from C(0, 1)

to C(0, 1) given by

(Af)(t) =

∫ 1

0

h(t, τ)f(τ) dτ,

where the kernel function h(t, τ) is continuous on the square [0, 1]× [0, 1].

Let B1 be the unit ball of C(0, 1), and let S = A(B1). Because h is
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continuous there exists α > 0 such that |h(t, τ)| ≤ α, and thus

max
t∈[0,1]

|(Af)(t)| ≤ α max
t∈[0,1]

|f(t)| ≤ α

whenever f(t) ∈ B1 (i.e., whenever |f(t)| ≤ 1 on [0, 1]). We conclude that

S is uniformly bounded. S is also equicontinuous: we have

|(Af)(t2)− (Af)(t1)| ≤
∫ 1

0

|h(t2, τ)− h(t1, τ)| |f(τ)| dτ

≤ max
τ∈[0,1]

|h(t2, τ)− h(t1, τ)|

for f(t) ∈ B1, and, given ε > 0, the uniform continuity of h(t, τ) guarantees

that we can find δ such that |h(t1, τ)− h(t1, τ)| < ε whenever |t2 − t1| < δ

and τ ∈ [0, 1]. So by Arzelà’s theorem S is precompact, and we conclude

that A is a compact operator.

Let us consider a practically important class of compact linear operators.

An operator is called one dimensional if its image is a one dimensional

subspace. The general form of a continuous one dimensional linear operator

T is evidently

Tx = (F (x))y0

where F is a continuous linear functional and y0 is some fixed element of

the image. A one dimensional linear operator is compact. Indeed, the

functional F maps the unit ball B with center at the origin into a bounded

numerical set F (B), so it is precompact. Thus the set F (B)y0 is precompact

in the space Y as well. A linear operator Tn is called finite dimensional if

Tnx =
n∑
k=1

(Fk(x))yk

where the Fk are linear functionals in X and the yk are some elements of

Y . If the Fk are continuous then so is Tn. Because each component of Tn
is a compact linear operator, so is Tn; this is a consequence of the following

general theorem.

Theorem 4.141. If A1 and A2 are compact linear operators from X to Y ,

then so is each operator of the form λA1 + µA2 where λ, µ are scalars.

Proof. If {xn} is a bounded sequence in X , it has a subsequence {xn1}
for which {A1xn1} is a Cauchy sequence in Y . Because this subsequence is

itself bounded, it has a subsequence {xn2} for which {A2xn2} is a Cauchy

sequence. The image subsequences {A1xn2} and {A2xn2} are both Cauchy
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sequences then. Weighting by the scalars λ and µ does not affect whether

a sequence is a Cauchy sequence, and the sum of two Cauchy sequences is

a Cauchy sequence. Hence the operator λA1 + µA2 is compact. �
This theorem means that the set of compact linear operators from X to

Y is a linear subspace of L(X,Y ).

Lemma 4.142. Let A and B be linear operators in X. If A is compact and

B is continuous, then the composition operators AB and BA are compact.

Proof. First consider the operator AB. IfM is any bounded subset ofX ,

then B(M) is bounded. But the compact operator A maps bounded sets to

precompact sets, so AB(M) is precompact as required. Now consider the

operator BA. Let {xn} be a bounded sequence in X . Then {Axn} has a

Cauchy subsequence {Axnk
}. But a bounded linear operator maps Cauchy

sequences into Cauchy sequences. So {BAxnk
} is a Cauchy sequence, as

required. �

Theorem 4.143. If A ∈ L(X,Y ) is compact, then A maps weak Cauchy

sequences from X into strong Cauchy sequences in Y .

Proof. Let {xn} be a weak Cauchy sequence inX . Then {xn} is bounded
and, since A is a compact operator, the sequence {Axn} contains a strong

Cauchy subsequence {Axn1}. This subsequence converges to some y ∈ Y

since Y is a Banach space. It is easy to show that {Axn} is a weak Cauchy

sequence in Y ; furthermore, because one of its subsequences converges

strongly to y, the whole sequence {Axn} converges weakly to y ∈ Y .

We now show that {Axn} converges strongly to y. Suppose to the

contrary that it does not. Then there is a subsequence {Axn2} and ε > 0

such that

‖Axn2 − y‖ > ε (4.96)

for each n2. But from {Axn2} we can select a subsequence {Axn3} that

is a strongly Cauchy sequence in Y and thus has a limit y1 ∈ Y . This

subsequence converges weakly to the same element y1. By the paragraph

above it also converges weakly to y. But we must have y1 = y by uniqueness

of the weak limit; hence Axn3 → y, and this contradicts (4.96). �
In a separable Hilbert space this result can be strengthened:

Theorem 4.144. A linear operator A acting in a separable Hilbert space

H is compact if and only if it takes every weak Cauchy sequence {xn} into

the strong Cauchy sequence {Axn} in H.
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Proof. Suppose A maps each weak Cauchy sequence {xn} ⊂ H into a

strong Cauchy sequence {Axn} ⊂ H . To show that A is compact, we

take a bounded set M ⊂ H and show that A(M) is precompact. Take

a sequence {yn} ⊂ A(M) and consider its preimage {xn} ⊂ M (i.e., the

sequence for which Axn = yn). Since {xn} is bounded it has a weak Cauchy

subsequence {xnk
}. By hypothesis {Axnk

} is a strong Cauchy sequence in

H , hence A(M) is precompact.

The converse was proved in Theorem 4.143. �

Example 4.145. Show that if xn ⇀ x0, and A from X to Y is compact,

then Axn → Ax0 as n→ ∞.

Solution. If {xn} is weakly convergent then it is weakly Cauchy and by

Theorem 4.143 we have Axn → y for some y ∈ Y . Since strong convergence

implies weak convergence we have Axn ⇀ y for some y ∈ Y . On the other

hand A is compact, hence continuous, hence weakly continuous, so xn ⇀ x0
implies Axn ⇀ Ax0. Finally, y = Ax0 by uniqueness of the weak limit. �

Recall that L(X,Y ) is a normed linear space under the operator norm

‖·‖. If {An} is a sequence of linear operators such that

lim
n→∞ ‖An −A‖ = 0,

then {An} is said to be uniformly convergent and the operator A is known

as the uniform operator limit of the sequence {An}.

Theorem 4.146. A uniform operator limit of a sequence of compact linear

operators is a compact linear operator.

Proof. Let {An} ⊂ L(X,Y ) be a sequence of compact linear operators

and suppose ‖An − A‖ → 0 as n → ∞. The approach is to take any

bounded sequence {xn} ⊂ X and show that we can select a subsequence

whose image under A is a Cauchy sequence in Y . By compactness of A1 we

can select from {xn} a subsequence {xn1} such that {A1xn1} is a Cauchy

sequence. Similarly, by compactness of A2 we can select from {xn1} a

subsequence {xn2} such that {A2xn2} is a Cauchy sequence. Continuing in

this way, after the kth step we have a subsequence {xnk
} for which {Akxnk

}
is a Cauchy sequence. The diagonal sequence ξn ≡ xnn has the property

that {Akξn} is a Cauchy sequence for each fixed k. Then for any m ≥ 1 we
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have

‖Aξn+m −Aξn‖
= ‖(Aξn+m −Akξn+m) + (Akξn+m −Akξn) + (Akξn −Aξn)‖
≤ ‖A−Ak‖ ‖ξn+m‖+ ‖Akξn+m −Akξn‖+ ‖Ak −A‖ ‖ξn‖
≤ 2b ‖A−Ak‖+ ‖Akξn+m −Akξn‖

where ‖ξn‖ ≤ b for all n. Given ε > 0 we can choose and fix p so that

‖A−Ap‖ < ε/4b; then

‖Aξn+m −Aξn‖ ≤ ε/2 + ‖Apξn+m −Apξn‖ ,
and we can finish the proof by choosing N so large that the second term

on the right is less than ε/2 for n > N and any m ≥ 1. �

Thus the set of all compact linear operators from X to Y is a closed

linear subspace of L(X,Y ).

Above we introduced the set of finite dimensional linear operators; these,

being continuous, are compact. The importance of this class is given by

the following theorem, which states that this class is dense in the set of

compact linear operators in a Hilbert space.

Theorem 4.147. If A is a compact operator acting in a separable Hilbert

space, then there is a sequence of finite dimensional continuous linear op-

erators {An} having uniform operator limit A.

Proof. A Hilbert space H has an orthonormal basis {gn}, in terms of

which any f ∈ H can be represented as

f =
∞∑
k=1

(f, gk)gk.

Since A is a continuous operator we have

Af =

∞∑
k=1

(f, gk)Agk.

We define An by

Anf =

n∑
k=1

(f, gk)Agk

and show that

lim
n→∞ ‖A−An‖ = 0. (4.97)
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By definition

‖A−An‖ = sup
‖f‖≤1

‖(A−An)f‖ .

First we show that there exists f∗
n such that

‖f∗
n‖ ≤ 1 and ‖A−An‖ = ‖(A−An)f

∗
n‖ . (4.98)

By definition of the supremum there is a sequence {fk} such that

‖fk‖ ≤ 1 and lim
k→∞

‖(A−An)fk‖ = ‖A−An‖ .

This bounded sequence in a separable Hilbert space has a weak Cauchy

subsequence {fk1}, and this subsequence converges weakly to an element f∗
n;

moreover, by the proof of Lemma 4.125 we have ‖f∗
n‖ ≤ 1. Because A−An

is compact the sequence {(A−An)fk1} converges strongly to (A−An)f
∗
n,

i.e., a subsequence of the convergent sequence {‖(A−An)fk‖} converges

to the number ‖(A−An)f
∗
n‖ as k → ∞. So the second relation in (4.98)

also holds. But

(A−An)f∗
n = A

( ∞∑
k=1

(f∗
n, gk)gk

)
−

n∑
k=1

(f∗
n , gk)Agk = A

( ∞∑
k=n+1

(f∗
n, gk)gk

)

so taking the norm of both sides we have, by (4.98),

‖A−An‖ = ‖Aϕn‖ where ϕn =

∞∑
k=n+1

(f∗
n, gk)gk. (4.99)

The sequence {ϕn} ⊂ H converges weakly to zero. Indeed for any f ∈ H

we can write

(ϕn, f) =

( ∞∑
k=n+1

(f∗
n, gk)gk,

∞∑
m=1

(f, gm)gm

)

=

( ∞∑
k=n+1

(f∗
n, gk)gk,

∞∑
m=n+1

(f, gm)gm

)

=

∞∑
k=n+1

(f∗
n, gk)(f, gk),
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hence

|(ϕn, f)| ≤
( ∞∑
k=n+1

|(f∗
n, gk)|2

)1/2( ∞∑
k=n+1

|(f, gk)|2
)1/2

≤
( ∞∑
k=n+1

|(f, gk)|2
)1/2

‖f∗
n‖ → 0 as n→ ∞

since ‖f∗
n‖ ≤ 1 and

∑∞
k=1 |(f, gk)|2 = ‖f‖2 <∞ by Parseval’s equality (i.e.,

the parenthetical quantity represents the tail of a convergent series). Since

ϕn ⇀ 0 and A is compact we have

lim
n→∞ ‖Aϕn‖ = 0.

By (4.99) this proves (4.97). �

We will need the following simple theorem.

Theorem 4.148. If A is a compact linear operator acting in a Hilbert

space, then A∗ is compact.

Proof. We take a sequence {fn} such that fn ⇀ f0 and show that

A∗fn → A∗f0. We have

‖A∗fn −A∗f0‖2 = (A∗fn − A∗f0, A∗fn −A∗f0)

= (fn − f0, AA
∗(fn − f0))

≤ ‖fn − f0‖ ‖AA∗(fn − f0)‖
≤ (‖fn‖+ ‖f0‖) ‖AA∗(fn − f0)‖ .

But ‖fn‖ ≤M for some constantM , and the product AA∗ is compact since

A∗ is continuous. Hence AA∗(fn − f0) → 0 as n→ ∞, and so

‖A∗fn −A∗f0‖2 → 0 as n→ ∞.

This completes the proof. �

Sobolev’s imbedding theorem states that some imbedding operators

from a Sobolev space are compact. A simple illustration can serve to clarify

this idea. Let us consider the mapping under which a continuously differ-

entiable function f(x) (we show this as f(x) ∈ C(1)(0, 1)) is regarded as

an element of the space C(0, 1), the space of functions continuous on [0, 1].

Although this mapping is an operator, we cannot call it an identity opera-

tor since its domain and range are different spaces. Instead, we refer to it

as the imbedding operator from C(1)(0, 1) to C(0, 1).
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Theorem 4.149. The imbedding operator from C(1)(0, 1) to C(0, 1) is com-

pact.

Proof. We need to check that the image S of the unit ball of the domain is

a precompact set in C(0, 1). By Arzelà’s theorem we need to show that the

set of functions S is uniformly bounded and equicontinuous. It is uniformly

bounded since a function of the unit ball of C(1)(0, 1) satisfies |f(x)| ≤
1 and thus is inside the unit ball of C(0, 1). The Lagrange mean value

theorem then states that for any x1 < x2 from [0, 1] where the function is

continuously differentiable there exists ξ ∈ [x1, x2] such that

f(x2)− f(x1) = f ′(ξ)(x2 − x1).

Since |f ′(ξ)| ≤ 1 for any f ∈ S, we have

|f(x2)− f(x1)| ≤ |x2 − x1| .
This implies the equicontinuity of S. �

4.17 Closed Operators

We have considered the case of a continuous linear operator whose domain

is the whole space. However, the differentiation operator d/dx acting on

the space of functions continuous on [0, 1] does not have the entire space

C(0, 1) as its domain, since there are continuous functions that are nowhere

differentiable on [0, 1]. But this operator, as we shall see below, has some

properties that are “better” than the properties of a general operator with

an arbitrary domain. We shall show that it resides in a class of operators

that is wider than the class of continuous operators, but such that there

remains the possibility for us to perform some limit passages with it. The

class is given by the following definition.

Definition 4.150. Let A be a linear operator mapping elements of a Ba-

nach space X into elements of a Banach space Y . We say that A is closed if

for any sequence {xn} ⊂ D(A) such that xn → x and Axn → y as n→ ∞,

it follows that x ∈ D(A) and y = Ax.

It is evident that A is closed if A is continuous and D(A) = X . There

are, however, closed operators that are not continuous. An example is the

derivative operator A = d/dt acting from C(0, 1) to C(0, 1). The domain

of A is the subset of C(0, 1) consisting of those functions having continuous
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first derivatives on [0, 1]. To see that A is closed, we first assume that

xn(t) → x(t) as n→ ∞
in the norm of C(0, 1), where each x′n(t) is continuous, and that

Axn(t) = x′n(t) → y(t) as n→ ∞,

also in the norm of C(0, 1). Realizing that convergence in the max norm is

uniform convergence, we recall a theorem from ordinary calculus:

Theorem 4.151. If fn(t) is continuous for each n and fn(t) → f(t) uni-

formly on [0, 1], then

(1) f(t) is continuous on [0, 1], and

(2) uniform convergence of the sequence {f ′
n(t)} of derivatives that are con-

tinuous on [0, 1] implies that f ′(t) exists, is continuous on [0, 1], and

that f ′
n(t) → f ′(t).

By this theorem A = d/dx on C(0, 1) meets the definition of a closed

operator. To see that A is not continuous, consider its action on the set of

functions {tn}. This set is bounded with

‖tn‖ = 1 for each n,

but its image under A is unbounded with∥∥∥∥ ddtxn(t)
∥∥∥∥ =

∥∥ntn−1
∥∥ = n.

So A does not map every bounded set into a bounded set.

If Ω ⊂ Rn is compact, then the more general differential operator A

given by

Af(x) =
∑
|α|≤n

cα(x)D
αf(x), (4.100)

with continuous coefficients cα(x) and acting from C(n)(Ω) to C(Ω), is a

closed operator.

Definition 4.152. Let A be an operator from X to Y . Suppose that an

operator B, also from X to Y , satisfies the following two conditions:

(1) D(A) ⊆ D(B), and

(2) B(x) = A(x) for all x ∈ D(A).

Then B is an extension of A.
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Lemma 4.153. A linear operator A acting from a Banach space X to a

Banach space Y has a closed extension if and only if from the condition

(*) {xn} ⊂ D(A) is an arbitrary sequence such that xn → 0 and Axn → y

it follows that y = 0.

Proof. Necessity follows from Definition 4.150. To prove sufficiency let

us explicitly construct a closed extension B of A.

We define B, then verify its properties. Let D(B) consist of those

elements x for which there exists {xn} ⊂ D(A) such that xn → x and

Axn → y as n→ ∞; for each such x, define Bx = y. Condition (*) ensures

that y is uniquely defined by x. Indeed, suppose two sequences {xn} and

{zn} in D(A) both converge to x, and Axn → y while Azn → y′. Then

xn − zn → 0, A(xn − zn) = Axn −Azn → y − y′,

and from (*) it follows that y − y′ = 0.

To see that B is linear, we take two elements x, x̃ in D(B) and any two

scalars λ, µ. By definition of D(B) there are sequences {xn} and {x̃n} in

D(A) such that

xn → x, Axn → y, x̃n → x̃, Ax̃n → ỹ,

and we define Bx = y, Bx̃ = ỹ. But λx+ µx̃ ∈ D(B) because

λxn + µx̃n → λx+ µx̃, A(λxn + µx̃n) = λAxn + µAx̃n → λy + µỹ,

and we therefore define B(λx + µx̃) = λy + µỹ = λBx+ µBx̃.

Finally, let {un} ⊂ D(B) be such that un → u and Bun → v. According

to Definition 4.150 we must prove that u ∈ D(B) and Bu = v. Let us

construct a sequence {xn} ⊂ D(A) that is equivalent to {un}, and then

verify the desired properties for {xn}. Fix un. By definition of B there

exists {wnk} ⊂ D(A) such that wnk → un and Awnk → Bun as k → ∞.

Hence there exists N such that for all k > N we have both ‖wnk − un‖ <
1/n and ‖Awnk − Bun‖ < 1/n. Choose one of the points wnk0 where

k0 > N , and denote this point xn. Now consider the sequence of points

{xn} ⊂ D(A). The inequalities ‖xn − un‖ < 1/n and ‖Axn −Bun‖ < 1/n

show that xn → u and Axn → v as n → ∞. By definition of B we have

u ∈ D(B) and Bu = v. �

It sometimes happens that we can establish boundedness of an operator

directly on a subspace that is everywhere dense in the space. To establish

that it is continuous on the whole space, we may employ
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Theorem 4.154. Let A be a closed linear operator whose domain is a

Banach space X and whose range lies in a Banach space Y . Assume there

is a set M which is dense in X and a positive constant c such that

‖Ax‖ ≤ c ‖x‖ for all x ∈M.

Then A is continuous on the whole space X.

Proof. For any x0 ∈ X , we can find {xn} ⊂ M such that ‖xn − x0‖ <
1/n for each n. The inequality

‖Axk+m −Axk‖ ≤ c ‖xk+m − xk‖ ≤ c(‖xk+m − x0‖+ ‖xk − x0‖) ≤ 2c/k

shows that {Axk} is a Cauchy sequence in Y . We have Axk → y for some

y ∈ Y since Y is a Banach space; since A is closed, Ax0 = y. Now we can

write

‖Ax0‖ = lim
k→∞

‖Axk‖ ≤ lim
k→∞

c ‖xk‖ = c ‖x0‖ .

Since x0 is an arbitrary element of X and c does not depend on x0, the

proof is complete. �

Closed operators can be considered from another viewpoint. If X and

Y are Banach spaces over the same scalar field, then the Cartesian product

space X × Y with algebraic operations defined by

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2), α(x, y) = (αx, αy),

and norm defined by

‖(x, y)‖ = (‖x‖2X + ‖y‖2Y )1/2,
is also a Banach space.

Definition 4.155. Let A be an operator acting from D(A) ⊂ X to Y .

Then the set

G(A) = {(x,Ax) ∈ X × Y : x ∈ D(A)} (4.101)

is the graph of A.

Theorem 4.156. A linear operator A acting from D(A) ⊂ X to Y is closed

if and only if G(A) is a closed linear subspace of X × Y .

Proof. Suppose A is a closed operator. Let (x, y) be a limit point of

G(A). Then there is a sequence {(xn, Axn)} ⊂ G(A) that converges to

(x, y) in the norm of X × Y . Evidently this implies that as n → ∞ we
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have xn → x in X and Axn → y in Y . Because A is closed, x ∈ D(A) and

y = Ax. Hence (x,Ax) ∈ G(A) by definition of G(A).

Conversely, suppose G(A) is closed in X × Y . Let {xn} ⊂ D(A) be

such that, as n → ∞, xn → x in X and Axn → y in Y . The sequence

{(xn, Axn)} ⊂ G(A) converges in the norm of X × Y to (x, y). Since G(A)

is closed, (x, y) ∈ G(A). By definition of G(A) this means that x ∈ D(A)

and y = Ax. �

Theorem 4.157. If A is an invertible closed linear operator, then A−1 is

also closed.

Proof. We can obtain G(A−1) from the graph of G(A) by the simple

rearrangement (x,Ax) → (Ax, x). Hence G(A−1) is closed in Y ×X . �

We can now formulate Banach’s closed graph theorem.

Theorem 4.158. Let X and Y be Banach spaces. If A is a closed linear

operator having D(A) = X, then A is continuous on X.

See [32] for a proof. In applications the following simple consequence of

the theorem can establish continuity of an operator.

Corollary 4.159. Let X and Y be Banach spaces. If a closed linear op-

erator A from X to Y is one-to-one and onto, then A−1 is continuous on

Y .

Proof. The operator A−1 is closed by Theorem 4.157 and continuous by

Theorem 4.158. �

4.18 On the Sobolev Imbedding Theorem

The most important result obtained by S.L. Sobolev is the imbedding the-

orem. It gives some properties of the elements of Sobolev spaces and, in

particular, relates them to continuously differentiable functions. An exam-

ple of an imbedding can be seen from the estimate

‖f(x)‖W l,q(Ω) ≤ mqp ‖f(x)‖W l,p(Ω) , q < p, (4.102)

which can be shown for any f ∈W l,p(Ω) to hold with a constant mqp that

depends on q, p, and Ω only. Note that for q < p we have

f(x) ∈W l,p(Ω) =⇒ f(x) ∈W l,q(Ω);
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hence the Sobolev space W l,p(Ω) is a subset of the Sobolev space W l,q(Ω):

W l,p(Ω) ⊆W l,q(Ω), q < p.

But the estimate (4.102) gives us more than just this subset inclusion. We

met inclusions of this type when considering the Lp(Ω) spaces. We called

them imbeddings. Now we provide a general definition of this term.

Definition 4.160. The operator of imbedding from X to Y is the one-to-

one correspondence between a space X and a subspace Y of a space Z

under which we identify elements x ∈ X with elements y ∈ Y in such a

way that the correspondence is linear. If, besides, the correspondence is

continuous so that

‖y‖Y ≤ m ‖x‖X
for some constant m that does not depend on x, then we call it the contin-

uous operator of imbedding. We sometimes employ the notation

X ↪→ Y,

to indicate the existence of an imbedding from X to Y .

Some words of explanation are in order here. The reader should note

that the formal definition of a continuous imbedding operator does not differ

from that of a continuous linear operator. However, the term “imbedding”

is reserved for situations in which we identify an element inX with its image

in Y , and thereby effectively consider the “same element” as a member of

two different spaces. (In this way an imbedding operator acts somewhat like

the identity operator that serves to map elements of a space into themselves;

the difference is that in the case of an identity operator the domain and

range must be the same space.) The degree to which one may take literally

the “identification” process between elements of X and their images in Y

depends on the specific type of imbedding under consideration. In some

instances the elements of X and Y are of the same basic nature (e.g., both

are ordinary functions); in other instances this is not the case (e.g., the

elements of Y may be functions while the elements of X are equivalence

classes of Cauchy sequences of functions). Note, however, that even when

the elements of Y and X are of the same nature, the norms associated

with the spaces Y and X may be very different. Finally, we remark that

there are imbedding operators that are compact and not merely continuous.

We shall state this when it applies, but shall relegate coverage of compact

operators to a later section of this chapter.
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Example 4.161. Show that �q is continuously imbedded into �p if p > q.

Solution. The first step is to show that the norms ‖·‖p and ‖·‖q of the

spaces �p and �q satisfy ‖x‖p ≤ ‖x‖q whenever p ≥ q (Exercise 4.11). This

gives the subset inclusion �q ⊆ �p whenever p ≥ q, and also shows that

�q ↪→ �p with a constant m = 1 in the imbedding inequality. �

Remark 4.162. There is only a limited analogy between the sequence

space �p and the Lebesgue space Lp(Ω) for a bounded domain Ω. In the

latter space an application of Hölder’s inequality gives∫
Ω

|f(x)| dΩ ≤
(∫

Ω

1q dΩ

)1/q (∫
Ω

|f(x)|p dΩ
)1/p

= (mesΩ)1/q ‖f‖p
but a similar application in �p would give

∞∑
k=1

|xk| ≤
( ∞∑
k=1

1q

)1/q( ∞∑
k=1

|xk|p
)1/p

= ∞ · ‖x‖p .

Put simply, when we consider Lp(Ω) with bounded Ω, the “bad points” are

those where some function f becomes infinite. Larger values of p make such

behavior worse because |f(x)|p > |f(x)|q for p > q. On the other hand, a

sequence x ∈ �p has terms xk that satisfy |xk| < 1 for sufficiently large k.

In this case |xk|p < |xk|q for p > q, so larger values of p aid in convergence.

This is why for p > q we have Lp(Ω) ↪→ Lq(Ω) (again, for bounded Ω) but

�q ↪→ �p. �

Returning to Sobolev spaces, we see that the space W l,p(Ω) is continu-

ously imbedded into the space W l,q(Ω) when q < p, and we write

W l,p(Ω) ↪→ W l,q(Ω), q < p.

We are also interested in continuous imbeddings from Sobolev spaces into

the spaces of continuously differentiable functions. To obtain a relevant

example of an imbedding theorem let us consider the simple Sobolev space

W 1,1(0, 1), the norm of which is

‖f(x)‖1,1 =

∫ 1

0

(|f(x)|+ |f ′(x)|) dx. (4.103)

So W 1,1(0, 1) is the completion with respect to the norm (4.103) of the set

of all functions that are continuously differentiable on [0, 1]. Let f(x) be

continuously differentiable on [0, 1]. Then for any x, y ∈ [0, 1] we have

f(x)− f(y) =

∫ x

y

f ′(t) dt
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and so

|f(x)| ≤ |f(y)|+
∣∣∣∣
∫ x

y

f ′(t) dt
∣∣∣∣ ≤ |f(y)|+

∫ 1

0

|f ′(t)| dt.

Integrating this in y over [0, 1] we get∫ 1

0

|f(x)| dy ≤
∫ 1

0

|f(y)| dy +
∫ 1

0

∫ 1

0

|f ′(t)| dt dy
or

max
x∈[0,1]

|f(x)| ≤
∫ 1

0

|f(y)| dy +
∫ 1

0

|f ′(t)| dt = ‖f(x)‖1,1 . (4.104)

Now let F (x) be an equivalence class from W 1,1(0, 1). A representative of

F (x) is a Cauchy sequence {fn(x)} of continuously differentiable functions,

and we have

max
x∈[0,1]

|fn+m(x) − fn(x)| ≤ ‖fn+m(x)− fn(x)‖1,1 ;

it follows that {fn(x)} is a Cauchy sequence in C(0, 1) as well, and thus has

a limit that is continuous on [0, 1]. From (4.104) it also follows that this

limiting function does not depend on the choice of representative sequence

of the element ofW 1,1(0, 1). Hence we have a correspondence that is clearly

linear, under which to an element F (x) ∈ W 1,1(0, 1) there corresponds a

unique element f(x) ∈ C(0, 1) such that

‖f(x)‖C(0,1) ≤ ‖F (x)‖1,1 .
We identify this limit element with F , and call F by the name of this

limit element. (We can really regard F as this element f if f is continu-

ously differentiable on [0, 1] so there is a stationary representative sequence

(f, f, f, . . .) from F .) In short, we have

W 1,1(0, 1) ↪→ C(0, 1). (4.105)

Similar results for W l,p(Ω), where Ω is a compact subset of Rn, are called

Sobolev imbedding theorems. We shall state one such theorem next. We

assume that Ω satisfies the cone condition: there is a finite circular cone in

Rn that can touch any point of ∂Ω with its vertex while lying fully inside

Ω (i.e., translations and rotations of the cone are allowed, but not changes

in cone angle or height).

Theorem 4.163. Let Ωr be an r-dimensional piecewise smooth hypersur-

face in Ω. The imbedding

Wm,p(Ω) ↪→ Lq(Ωr)
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is continuous if one of the following conditions holds:

(i) n > mp, r > n−mp, q ≤ pr/(n−mp);

(ii) n = mp, q is finite with q ≥ 1.

It is compact if

(i) n > mp, r > n−mp, q < pr/(n−mp) or

(ii) n = mp and q is finite with q ≥ 1.

If n < mp then

Wm,p(Ω) ↪→ C(k)(Ω)

for integers k such that k ≤ (mp− n)/p, and the imbedding is continuous.

It is compact if k < (mp− n)/p.

Although this theorem is appealing because of its generality, we shall

employ only special cases involving W 1,2(Ω) and W 2,2(Ω). The following

applies to equilibrium problems for membranes and two-dimensional elastic

bodies:

Theorem 4.164. Let γ be a piecewise differentiable curve in a compact

set Ω ⊂ R2. For any finite q ≥ 1, there are compact (hence continuous)

imbeddings

W 1,2(Ω) ↪→ Lq(Ω), W 1,2(Ω) ↪→ Lq(γ).

For use with problems of equilibrium of plates and shells, we have

Theorem 4.165. Let Ω be a compact subset of R2. Then there is a con-

tinuous imbedding

W 2,2(Ω) ↪→ C(Ω).

For the first derivatives, the imbedding operators to Lq(Ω) and Lq(γ) are

compact for any finite q ≥ 1.

The next result is used for problems of equilibrium of three-dimensional

elastic bodies and dynamic problems for membranes and two-dimensional

elastic bodies.

Theorem 4.166. Let γ be a piecewise smooth surface in a compact set

Ω ⊂ R3. The imbeddings

W 1,2(Ω) ↪→ Lq(Ω), 1 ≤ q ≤ 6,

W 1,2(Ω) ↪→ Lp(γ), 1 ≤ p ≤ 4,
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are continuous. They are compact if 1 ≤ q < 6 or 1 ≤ p < 4, respectively.

4.19 Some Energy Spaces in Mechanics

One may use various norms to distinguish between different states of me-

chanical objects. To characterize force magnitudes, for example, norms

of the type (4.6) are appropriate. If the field is continuous, (4.4) is ap-

propriate. The same can be said for fields of displacements, strains, and

stresses. However, there is one important characteristic of a body: its en-

ergy due to deformation. It is sensible to try to use this quantity when

we characterize the state of a body. We would like to consider this possi-

bility in more detail. The most convenient fact is that the energy spaces

we shall introduce are subspaces of Sobolev spaces, and thus we can use

Sobolev’s imbedding theorem to characterize the parameters of correspond-

ing boundary value problems. Of course, it is possible to use Sobolev spaces

directly for this, but energy spaces have many advantages. First, they can

be closely customized to the nature of the problem, permitting a better use

of mechanical intuition. Second, the energy norms and corresponding inner

products permit a proper and direct use of such fundamental properties as

mutual orthogonality of eigensolutions; these properties form the basis for

solution by Fourier’s technique.

Rod under tension

We begin with a simple problem that could be solved by direct integra-

tion. It describes the equilibrium of a rod stretched by a distributed load

(Fig. 4.1). The double strain energy of a rod of length l is

x

f x( )
F

l0

Fig. 4.1 Rod under distributed longitudinal load f(x) and a point force F .
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2E(u) =
∫ l

0

ES(x)u′2(x) dx

where the constant E is Young’s modulus, S(x) is the area of the cross-

section with 0 < S0 ≤ S(x) ≤ S1, and u(x) is the displacement of the

cross-section of the rod at point x in the longitudinal direction. Suppose

the end at x = 0 is fixed:

u(0) = 0. (4.106)

The strain energy generates a functional in two variables that can be con-

sidered as an energy inner product :

(u, v)R =

∫ l

0

ES(x)u′(x)v′(x) dx. (4.107)

The inner product has a clear mechanical meaning: it is the work of in-

ternal forces corresponding to the state of the rod u(x) on the admissible

displacement field v(x). (Recall that the terms “admissible” and “virtual”

are synonymous.) Considering (4.107) on the set CRc of all continuously

differentiable functions on [0, l] satisfying (4.106), the reader can verify that

it really is an inner product. (Here the subscript pattern “Rc” reminds us

we are dealing with a clamped rod : a rod fixed in space. Later, “Rf” will

denote a free rod.) Let us demonstrate that on CRc the energy norm

‖u‖R = (u, u)
1/2
R =

(∫ l

0

ES(x)u′2(x) dx

)1/2

induced by (4.107) is equivalent to the norm of the Sobolev spaceW 1,2(0, l),

which is

‖u‖1,2 =

(∫ l

0

[
u2(x) + u′2(x)

]
dx

)1/2

.

We must show that there are positive constants m,M such that for any

u(x) ∈ CRc we have

m ‖u‖R ≤ ‖u‖1,2 ≤M ‖u‖R .
The left-hand inequality is a consequence of

‖u(x)‖2R =

∫ l

0

ES(x)u′2(x) dx

≤ ES1

∫ l

0

(
u2(x) + u′2(x)

)
dx

= ES1 ‖u(x)‖21,2 .
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To prove the right-hand inequality we begin with the identity

u(x) =

∫ x

0

u′(t) dt.

Squaring and then integrating over [0, l] we get∫ l

0

u2(x) dx =

∫ l

0

(∫ x

0

u′(t) dt
)2

dx.

Applying the Hölder inequality we have∫ l

0

u2(x) dx =

∫ l

0

(∫ x

0

1 · u′(t) dt
)2

dx

≤
∫ l

0

(∫ x

0

12 dt

∫ x

0

u′2(t) dt
)
dx

≤ l2
∫ l

0

u′2(x) dx, (4.108)

from which the needed fact follows immediately.

Applying the completion procedure in the set CRc with respect to the

norms ‖·‖R and ‖·‖1,2, we get spaces that contain the same elements and

have equivalent norms, so they are considered as the same space. Let us

denote this energy space by ERc and use the Sobolev imbedding theorem.

Now

(1) ERc is a subspace W 1,2(0, l),

(2) W 1,2(0, l) is continuously imbedded into W 1,1(0, l), and

(3) each element of W 1,1(0, l) corresponds to a continuous function.

That is,

W 1,2(0, l) ↪→W 1,1(0, l) ↪→ C(0, l).

Hence to each element of ERc there corresponds a continuous function.

Clearly all these continuous functions satisfy (4.106). We shall identify

them with the corresponding elements of ERc, and in this sense say that

the elements of ERc are continuous functions.

Free rod

In the same manner we can consider the energy space for a rod having

both ends free of geometrical restriction. Since longitudinal motions are

unrestricted by boundary conditions, when we try to use the energy inner
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product (4.107), we find that there are nontrivial displacements for which

the induced energy norm is zero. One such state of the rod is u(x) = c. To

show that there are no other states with zero strain energy, we derive an

inequality to use in place of (4.108). We take the identity

u(x) = u(y) +

∫ x

y

u′(t) dt,

integrate with respect to y over [0, l] to get

lu(x) =

∫ l

0

u(y) dy +

∫ l

0

∫ x

y

u′(t) dt dy,

then take the absolute value of both sides and estimate the right side as in

§ 4.5:

l|u(x)| =
∣∣∣∣∣
∫ l

0

u(y) dy +

∫ l

0

∫ x

y

u′(t) dt dy

∣∣∣∣∣ ≤
∣∣∣∣∣
∫ l

0

u(y) dy

∣∣∣∣∣+ l

∫ l

0

|u′(t)| dt.
(4.109)

Let CRf be the set of functions u(x) that are continuously differentiable on

[0, l] and satisfy ∫ l

0

u(y) dy = 0. (4.110)

Note that by subtracting the right constant c from a given function u(x),

corresponding to a free motion of the rod through the distance c, we can

make the new displacement field satisfy (4.110). From (4.109) we have

three consequences:∫ l

0

|u(x)| dx ≤
∣∣∣∣∣
∫ l

0

u(x) dx

∣∣∣∣∣ + l

∫ l

0

|u′(x)| dx, (4.111)

l max
x∈[0,l]

|u(x)| ≤
∣∣∣∣∣
∫ l

0

u(x) dx

∣∣∣∣∣+ l

∫ l

0

|u′(x)| dx, (4.112)

and

l

∫ l

0

|u(x)|2 dx ≤ 2



∣∣∣∣∣
∫ l

0

u(t) dt

∣∣∣∣∣
2

+ l3
∫ l

0

|u′2(y)| dy

 . (4.113)

(cf., Exercise 4.62). From (4.111) it follows that the right side can serve

as an equivalent norm in the space W 1,1(0, l). Result (4.112) states that

on the subspace of W 1,1(0, l) that is the completion of CRf with respect
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to the norm of W 1,1(0, l), we get the continuous imbedding of its elements

into C(0, l) and, moreover, the corresponding continuous functions satisfy

(4.110). Finally, (4.113) implies that the completion of CRf with respect to

the energy norm ‖·‖R is a subspace of W 1,2(0, l), whose norm is equivalent

to ‖·‖R. This is one way of using the energy norm to circumvent the

difficulty with free motions.

Another way is to introduce a factor space of continuously differentiable

functions with respect to all constant functions. This means we declare

that the union of all the constant functions is the zero element of the new

space. Between this factor set and CRf there is a one-to-one correspondence

preserving the energy distances between corresponding elements. So com-

pletion in both cases gives the same result from the standpoint of isometry,

and hence the two approaches are equivalent.

Cantilever beam

The equilibrium of a flexible elastic beam (Fig. 4.2) is governed by

(EI y′′(x))′′ = f(x), x ∈ [0, l], (4.114)

where E, I are given characteristics of the beam, y = y(x) is the transverse

displacement, and f = f(x) is the transverse load. If E and I are piecewise

x

f x( )

z

F

w x( )

Fig. 4.2 Beam under load f(x) and a point force F acting at the end.

continuous functions of x, then it is natural to assume that

0 < c0 ≤ EI ≤ c1, (4.115)

where c0 and c1 are constants. We consider a cantilever beam for which

y(0) = 0 = y′(0). (4.116)
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So its left end is clamped and its right end is free from geometrical restric-

tions. In dimensionless variables, the strain energy is

EB =
1

2

∫ l

0

EI y′′2(x) dx. (4.117)

On the subset CB of those C(2)(0, l) functions satisfying (4.116), the energy

expression suggests the metric

d(y, z) =

(∫ l

0

EI [y′′(x) − z′′(x)]2 dx

)1/2

(4.118)

(the reader should verify that all three metric axioms hold). This metric is

induced by the energy norm

‖y‖B =

(∫ l

0

EI y′′2(x) dx

)1/2

, (4.119)

which is in turn induced by the energy inner product

(y, z)B =

∫ l

0

EI y′′(x)z′′(x) dx. (4.120)

Completing CB with respect to the norm ‖·‖B , we obtain a Hilbert space

denoted EBc. By (4.115), the norm on EBc is equivalent to the auxiliary

norm

‖y‖2 =

(∫ l

0

y′′2(x) dx

)1/2

(4.121)

which we will use to study the properties of y ∈ EBc. First let us mention

that if y ∈ CB then y′ ∈ CRc and y
′ must satisfy (4.108):∫ l

0

y′2(x) dx ≤ l2
∫ l

0

y′′2(x) dx.

In addition we have ∫ l

0

y2(x) dx ≤ l2
∫ l

0

y′2(x) dx,

and thus for any smooth representer of the space EBc we have∫ l

0

y2(x) dx +

∫ l

0

y′2(x) dx ≤ c

∫ l

0

y′′2(x) dx ≤ c2

∫ l

0

EI y′′2(x) dx.
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Therefore on EBc the energy norm is equivalent to the norm

‖y‖22,2 =

∫ l

0

[
y′′2(x) + y′2(x) + y2(x)

]
dx

of the Sobolev space W 2,2(0, l). This means that on EBc we can use

Sobolev’s imbedding theorem forW 2,2(0, l). Each element of EBc is thereby
identified with a continuously differentiable function; in other words, EBc
imbeds continuously into C(1)(0, l).

Free beam

In the absence of geometric constraints on the ends of the beam, the same

functional ‖y‖B satisfies all the norm axioms except one: the equation

‖y‖B = 0 has a nonzero solution of the form y = a+ bx where a and b are

constants. Mechanically, this function is a rigid-body displacement of the

beam. Recalling what we did with (4.108), we can use (4.113) to show that

any function from C(2)(0, l) satisfies

l

∫ l

0

y′2(x) dx ≤ 2

(∫ l

0

y′(x) dx

)2

+ 2l3
∫ l

0

y′′2(x) dx

and

l

∫ l

0

y2(x) dx ≤ 2

(∫ l

0

y(x) dx

)2

+ 2l3
∫ l

0

y′2(x) dx.

Hence ∫ l

0

(
y2(x) + y′2(x)

)
dx ≤ c3

[(∫ l

0

y(x) dx

)2

+

+

(∫ l

0

y′(x) dx

)2

+

∫ l

0

y′′2(x) dx

]
, (4.122)

which means that the expression

‖y‖2 =


(∫ l

0

y(x) dx

)2

+

(∫ l

0

y′(x) dx

)2

+

∫ l

0

EI y′′2(x) dx


1/2

(4.123)

is a norm equivalent to the norm of W 2,2(0, l). To construct the energy

space EBf for a free beam, we can use this fact in two ways, as was done
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for a stretched rod. First we can take a base set CBf consisting of smooth

functions y for which

∫ l

0

y(x) dx = 0 =

∫ l

0

y′(x) dx. (4.124)

Indeed, to any smooth function y = y(x) there corresponds a unique func-

tion satisfying (4.124), obtained by proper choice of the constants a and b

in the expression y(x)− a− bx. This does not alter the stress distribution

in the beam; it merely fixes the beam in space. Then (4.123) implies that

on the set of functions from C(2)(0, l) satisfying (4.124) the norm ‖y‖B is

equivalent to the norm of W 2,2(0, l), and thus after completion we can use

the Sobolev imbedding theorem forW 2,2(0, l). Any representative sequence

of EBf has a continuous function as its limit; moreover, the sequence of first

derivatives also converges to a continuous function. For the limit functions,

(4.124) holds as well.

Alternatively we can employ a factor space, declaring that the zero

element of the energy space is the set of all linear polynomials that are

infinitesimal rigid motions of the beam, a+ bx. In this case among all the

representers of an element there is only one that satisfies (4.124), and thus

we get an isometric one-to-one correspondence between the elements of the

two versions of the energy space and can carry interpretations of results for

one version over to the other.

Remark 4.167. In order to construct the energy space for an elastic beam

subjected to normal and longitudinal loads, we can consider pairs of dis-

placements (u,w) and combine the energy functionals, norms, and inner

products for a rod and a beam. �

Membrane with clamped edge

The equilibrium of a clamped membrane (Fig. 4.3) occupying a domain

Ω ⊂ R2 is described by the equations

a∆u = −f, u
∣∣∣
∂Ω

= 0,

which together make up the Dirichlet problem for Laplace’s equation. Here

u = u(x, y) is the transverse displacement of the membrane and f = f(x, y)

is the external load. The parameter a relates to the tension in the mem-
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brane. The potential energy of the membrane is

EM (u) =
a

2

∫∫
Ω

[(
∂u

∂x

)2

+

(
∂u

∂y

)2
]
dx dy.

By a proper choice of dimensionless variables in what follows, we will put

a = 1. A metric corresponding to this energy on the set of functions u(x, y)

from C(1)(Ω) that satisfy the boundary condition

u(x, y)
∣∣∣
∂Ω

= 0 (4.125)

is

d(u, v) =

{∫∫
Ω

[(
∂u

∂x
− ∂v

∂x

)2

+

(
∂u

∂y
− ∂v

∂y

)2
]
dx dy

}1/2

. (4.126)

The resulting metric space is appropriate as a starting point for investigat-

ing the corresponding boundary value problem.

f x,y( )

z
y

x

Fig. 4.3 Membrane clamped along the edge.

The subset CMc of C
(1)(Ω) consisting of all functions satisfying (4.125)

with the metric (4.126) is an incomplete metric space. If we define an inner

product

(u, v)M =

∫∫
Ω

(
∂u

∂x

∂v

∂x
+
∂u

∂y

∂v

∂y

)
dx dy

consistent with (4.126) we get an inner product space. Its completion in

the metric (4.126) is the energy space for the clamped membrane, denoted

EMc. This is a real Hilbert space.

What can we say about the elements of EMc? It is obvious that the

sequences of first derivatives {∂un/∂x}, {∂un/∂y}, of a representative se-
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quence {un} are Cauchy sequences in the norm on L2(Ω): i.e., if

d(um, un) =

{∫∫
Ω

[(
∂um
∂x

− ∂un
∂x

)2

+

(
∂um
∂y

− ∂un
∂y

)2
]
dx dy

}1/2

→ 0 as m,n→ ∞,

then {∫∫
Ω

(
∂um
∂x

− ∂un
∂x

)2

dx dy

}1/2

=

∥∥∥∥∂um∂x − ∂un
∂x

∥∥∥∥
L2(Ω)

→ 0 as m,n→ ∞,

and similarly for {∂un/∂y}. It takes more work to say something about

{un} itself; we need the Friedrichs inequality.

The Friedrichs inequality states that if a continuously differentiable

function u = u(x, y) has compact support in Ω, then there is a constant

C > 0, depending on Ω only, such that∫∫
Ω

|u|2 dΩ ≤ C

∫∫
Ω

|∇u|2 dΩ. (4.127)

To prove this it is convenient to first suppose Ω is the square |x| < a,

|y| < a. Since

u(x, y) = u(−a, y) +
∫ x

−a

∂u(ξ, y)

∂ξ
dξ

and u(−a, y) = 0, we have∫∫
Ω

|u(x, y)|2 dΩ =

∫ a

−a

∫ a

−a

∣∣∣∣
∫ x

−a

∂u(ξ, y)

∂ξ
dξ

∣∣∣∣2 dx dy.
Then ∫∫

Ω

|u(x, y)|2 dΩ =

∫ a

−a

∫ a

−a

∣∣∣∣
∫ x

−a
1 · ∂u(ξ, y)

∂ξ
dξ

∣∣∣∣2 dx dy
≤
∫ a

−a

∫ a

−a

∫ x

−a
12 dξ

∫ x

−a

∣∣∣∣∂u(ξ, y)∂ξ

∣∣∣∣2 dξ dx dy
≤
∫ a

−a

∫ a

−a

∫ a

−a
12 dξ

∫ a

−a

∣∣∣∣∂u(ξ, y)∂ξ

∣∣∣∣2 dξ dx dy
=

∫ a

−a
12 dξ

∫ a

−a
dx

∫ a

−a

∫ a

−a

∣∣∣∣∂u(ξ, y)∂ξ

∣∣∣∣2 dξ dy
= 4a2

∫ a

−a

∫ a

−a

∣∣∣∣∂u(ξ, y)∂ξ

∣∣∣∣2 dξ dy,
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hence∫∫
Ω

|u|2 dΩ ≤ 4a2
∫ a

−a

∫ a

−a

∣∣∣∣∂u(x, y)∂x

∣∣∣∣2 dx dy = 4a2
∫∫

Ω

∣∣∣∣∂u∂x
∣∣∣∣2 dΩ.

By the same reasoning, an analogous inequality holds with ∂u/∂y on the

right side. Adding these two inequalities we obtain∫∫
Ω

|u|2 dΩ ≤ C

∫∫
Ω

(∣∣∣∣∂u∂x
∣∣∣∣2 +

∣∣∣∣∂u∂y
∣∣∣∣2
)
dΩ

where C = 2a2. If Ω is not square, we can enclose it in a square Ω̃ and

extend the function u onto the set Ω̃ by setting u ≡ 0 on Ω̃− Ω to obtain

a new function ũ; in this case∫∫
Ω̃

|ũ|2 dΩ̃ ≤ C

∫∫
Ω̃

(∣∣∣∣∂ũ∂x
∣∣∣∣2 +

∣∣∣∣∂ũ∂y
∣∣∣∣2
)
dΩ̃

follows. (Note that the extension ũ may have a discontinuous derivative on

∂Ω; however, the presence of such a discontinuity does not invalidate any of

the steps above when ∂Ω is sufficiently smooth.) The constant C depends

only on a, hence only on Ω (which dictates the choice of a).

Above we observed that if {un} is a representative of an element of EMc,

then {∂un/∂x} and {∂un/∂y} are Cauchy sequences in the norm of L2(Ω).

The Friedrichs inequality applied to u = un(x, y) shows that {un} is also

a Cauchy sequence in the norm of L2(Ω). Hence to each U(x, y) ∈ EMc

having a representative sequence {un}, there correspond elements in L2(Ω)

having {un}, {∂un/∂x} and {∂un/∂y} as representatives. We denote these

elements of L2(Ω) by U(x, y), ∂U(x, y)/∂x, and ∂U(x, y)/∂y, respectively.

The elements ∂U/∂x and ∂U/∂y are assigned interpretations as generalized

derivatives of the element U later on. However, we need a result for the

elements of the completed energy space. Passage to the limit in (4.127)

gives ∫∫
Ω

U2 dx dy ≤ C

∫∫
Ω

[(
∂U

∂x

)2

+

(
∂U

∂y

)2
]
dx dy (4.128)

for any U ∈ EMc and a constant C independent of U .

Inequality (4.128) also means that in EMc the energy norm is equiva-

lent to the norm of W 1,2(Ω), and thus for the space EMc there holds an

imbedding result in the form of Theorem 4.164.
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Free membrane

In the absence of geometrical constraints, a membrane is subject to uniform

“rigid-body” displacements. These differ from the motions of an actual rigid

body because the membrane model reflects only certain features of the real

object that we regard as a membrane. To characterize the state of a free

membrane, we choose the energy functional and hence the metric (4.126)

or, equivalently, the norm

‖u‖M =

{∫∫
Ω

[(
∂u

∂x

)2

+

(
∂u

∂y

)2
]
dΩ

}1/2

. (4.129)

This is not a norm on the function space C(1)(Ω), where Ω is compact, as

the equation ‖u‖M = 0 has a nonzero solution u = c = constant. Physi-

cally, we cannot distinguish between two membrane states differing only in

position by the constant c. This constant displacement is the only type of

rigid motion permitted by the membrane model under consideration. Our

method of circumventing the existence of rigid motions is similar to that

used above for free rods and beams. It is based on Poincaré’s inequality.

This extends inequality (4.113) to a two-dimensional domain (in fact, to

any compact n-dimensional domain with piecewise smooth boundary):∫∫
Ω

u2 dΩ ≤ C

{(∫∫
Ω

u dΩ

)2

+

∫∫
Ω

[(
∂u

∂x

)2

+

(
∂u

∂y

)2
]
dΩ

}
, (4.130)

with a constant C that does not depend on u. Although the proof for

a rectangular domain is similar to that for (4.113), it is lengthy — even

more so for a general compact domain with piecewise smooth boundary.

The interested reader can refer to [6]. Inequality (4.130) implies that on

functions from C(1)(Ω) satisfying∫∫
Ω

u(x, y) dΩ = 0 (4.131)

the energy norm ‖u‖M is equivalent to the norm ofW 1,2(Ω). Thus, defining

the energy space EMf as the completion of functions from C(1)(Ω) satisfying

(4.131) with respect to the norm (4.129), we get a subspace ofW 1,2(Ω) and

can use the Sobolev imbedding theorem for the elements of this energy

space. Alternatively, we can collect all the constants into a single element

and declare this as the zero element of the energy space. In this case the

energy space is a factor space of W 1,2(Ω) with respect to the set of all the

constant functions on Ω. Since there is one-to-one isometry between these

two versions of the energy space, we can use either of them in what follows.
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Elastic body

The internal energy of an elastic body occupying a three-dimensional

bounded connected volume V is given by

1

2

∫
V

3∑
ijkl=1

cijklekleij dV

where cijkl are the components of the tensor of elastic moduli and eij are the

components of the tensor of small strains. From now on we shall omit the

summation symbol when we meet a repeated index in an expression; this

is called Einstein’s rule for repeated indices. The components of the strain

tensor relate to the components of the displacement vector u = (u1, u2, u3)

given in Cartesian coordinates according to

eij = eij(u) =
1

2
(ui,j + uj,i) ,

where the indices after a comma mean differentiation with respect to the

corresponding coordinates:

ui,j =
∂ui
∂xj

.

We suppose that the elastic moduli have the usual properties of symmetry

established in the theory of elasticity, and in addition possess the property

providing positiveness of the functional of inner energy:

cijklekleij ≥ c0emnemn

for any symmetric tensor with components emn. Here c0 is a positive con-

stant.

By symmetry of the cijkl, we can introduce the following symmetric

bilinear functional as a candidate for an inner product:

(u,v)E =

∫∫∫
V

cijklekl(u)eij(v) dV.

Linearity in u and v is evident, as is the symmetry property

(u,v)E = (v,u)E .

It remains to check the first inner product axiom. By the properties of the

elastic moduli we get

(u,u)E =

∫∫∫
V

cijklekl(u)eij(u) dV ≥ 0.
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If (u,u)E = 0 and the components of u are continuously differentiable, then

eij(u) = 0 for all i, j. The theory of elasticity states that this u describes

an infinitesimal rigid-body motion:

u = a+ b× r,

where a and b are constant vectors. If some part of the boundary of the

body is fixed, then this provides that u = 0. The needed demonstration is

complete.

We consider the case in which the entire boundary is clamped:

u
∣∣
∂Ω

= 0. (4.132)

As a base space we take the set CEc of all vector functions satisfying (4.132)

whose components belong to C(2)(V ). Denote by EEc the energy space of

an elastic body with clamped boundary: i.e., the completion of CEc with

respect to the induced norm ‖u‖E = (u,u)
1/2
E . We will study the properties

of this Hilbert space.

Theorem 4.168. The space EEc is a subspace of the space of three-

dimensional vector functions, each Cartesian component of which belongs

to W 1,2(Ω) (the latter space we shall denote by (W 1,2(Ω))3).

The proof is based on the Korn inequality, which in this case can be

written as∫∫∫
V

(|u(x)|2 + |∇u(x)|2) dV ≤ m

∫∫∫
V

eij(u(x))eij(u(x)) dV. (4.133)

We will prove (4.133) for the two-dimensional case in which the functions

possess all second continuous derivatives on a compact domain S and vanish

on the boundary ∂S. The space variables are x, y. The proof is shorter than

that for the three-dimensional case, but contains all the necessary ideas. We

rewrite (4.133) for the two-dimensional case in a modified form:∫∫
S

(
u2 + v2 + u2x + u2y + v2x + v2y

)
dx dy

≤ m

∫∫
S

(
u2x +

1

2
(uy + vx)

2 + v2y

)
dx dy. (4.134)

Here u, v are the components of vector function u that vanish on ∂S:

u|∂S = 0, v|∂S = 0, (4.135)

and subscripts x, y mean partial derivatives with respect to the correspond-

ing variables. Note the difference between the terms with derivatives of the



September 30, 2011 8:42 World Scientific Book - 9in x 6in aea

334 Advanced Engineering Analysis

norm of
(
W 1,2(S)

)2
and the right side of (4.134): the latter does not con-

tain the squared derivatives uy and vx but their sum.

Let us prove (4.134). By Friedrichs’ inequality it suffices to show that

there is a constant m1 > 0 such that∫∫
S

(
u2x +

1

2
(uy + vx)

2 + v2y

)
dx dy ≥ m1

∫∫
S

(
u2x + u2y + v2x + v2y

)
dx dy.

(4.136)

Let us transform the intermediate term in the left side of (4.136):∫∫
S

(uy + vx)
2 dx dy =

∫∫
S

(
u2y + 2uyvx + v2x

)
dx dy

=

∫∫
S

(
u2y + 2uxvy + v2x

)
dx dy,

where we integrated by parts with regard for (4.132), so we have

∫∫
S

(
u2x +

1

2
(uy + vx)

2 + v2y

)
dx dy

=

∫∫
S

(
u2x +

1

2
u2y +

1

2
v2x + v2y + uxvy

)
dx dy

≥
∫∫

S

(
u2x +

1

2
u2y +

1

2
v2x + v2y −

1

2

(
u2x + v2y

))
dx dy

≥ 1

2

∫∫
S

(
u2x + u2y + v2x + v2y

)
dx dy.

This completes the proof of the Korn inequality.

We recommend that the reader tackle the proof for a three-dimensional

body. We will not prove Korn’s inequality for a body with free boundary

(i.e., when there are no boundary conditions for vector functions); the proof

is technically much more complex and reader is referred to specialized books
[20; 7]. We note that the form of this inequality is the same if we impose

the two conditions∫∫∫
V

u(x) dV = 0,

∫∫∫
V

r× u(x) dV = 0,

on each element of the space. These are four scalar conditions in the two-

dimensional case and six conditions in the three-dimensional case, which

coincides with the number of degrees of freedom of a rigid body.
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F x,y( )

z

x

y

A

B

Fig. 4.4 A portion of a plate under a distributed load F (x, y). The plate is clamped
along AB.

Plate

The equilibrium of a linear plate (Fig. 4.4) is described by

D∆2w = F

where w = w(x, y) is the transverse displacement of the midsurface of

the plate, D is the plate rigidity, µ is Poisson’s ratio, 0 < µ < 1/2, and

F = F (x, y) is a transverse load. The elastic energy of the plate referred

to a compact domain Ω in R2 is

D

2

∫∫
Ω

(
wxx (wxx + µwyy) + 2(1− µ)w2

xy + wyy (wyy + µwxx)
)
dΩ

where subscripts x and y denote partial derivatives ∂/∂x and ∂/∂y, respec-

tively. Using dimensionless variables, for the role of a norm we will try the

functional ‖·‖P where

‖w‖2P =

∫∫
Ω

(
wxx (wxx + µwyy) + 2(1− µ)w2

xy + wyy (wyy + µwxx)
)
dΩ.

(4.137)

The associated inner product is

(u, v)P =

∫∫
Ω

(uxx (vxx + µvyy) + 2(1− µ)uxyvxy + uyy (vyy + µvxx)) dΩ.

Elementary calculations show that in C(2)(Ω) the equation ‖w‖P = 0 has

solutions only of the form w = a+ bx+ cy with constants a, b, c. If the edge

of the plate is hard-clamped, i.e.,

w

∣∣∣∣
∂Ω

= 0 =
∂w

∂n

∣∣∣∣
∂Ω

, (4.138)

then ‖w‖P is a norm on the set CP of functions in C(2)(Ω) that satisfy

(4.138). We will show that the completion EPc of CP with respect to ‖·‖P
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is a subspace of W 2,2(Ω) (in fact, this is still the case if the plate is fixed

only at three non-collinear points).

On CP , the energy norm is equivalent to the norm

‖w‖2,2 =

(∫∫
Ω

(
w2
xx + 2w2

xy + w2
yy

)
dΩ

)1/2

and so in the discussion we can use this norm. Next, if w ∈ CP then wx
and wy are continuously differentiable on Ω, and (4.138) implies that on the

boundary wx = 0 = wy. Thus we can apply Friedrichs’ inequality, getting∫∫
Ω

w2
x dΩ ≤ c

∫∫
Ω

(
w2
xx + w2

xy

)
dΩ

and ∫∫
Ω

w2
y dΩ ≤ c

∫∫
Ω

(
w2
yx + w2

yy

)
dΩ.

Combining this with Friedrichs’ inequality for w we obtain∫∫
Ω

(
w2 + w2

x + w2
y

)
dΩ ≤ c1

∫∫
Ω

(
w2
xx + 2w2

xy + w2
yy

)
dΩ

≤ c2

∫∫
Ω

(
wxx (wxx + µwyy) + 2(1− µ)w2

xy + wyy (wyy + µwxx)
)
dΩ.

Together with a trivial inequality∫∫
Ω

(
wxx (wxx + µwyy) + 2(1− µ)w2

xy + wyy (wyy + µwxx)
)
dΩ

≤ c3

∫∫
Ω

(
w2 + w2

x + w2
y + w2

xx + 2w2
xy + w2

yy

)
dΩ

this proves that on CP the energy norm is equivalent to the norm of

W 2,2(Ω). Hence EPc, which is the completion of CP with respect to the

energy norm (4.137), is a subspace of W 2,2(Ω). When dealing with EPc, we
can use Sobolev’s imbedding theorem for the elements of W 2,2(Ω).

In the absence of geometrical constraints, rigid motions of the form

w = a + bx + cy are possible. To handle this we appeal to Poincaré’s

inequality for wx and wy,∫∫
Ω

w2
x dΩ ≤ c4

{(∫∫
Ω

wx dΩ

)2

+

∫∫
Ω

(
w2
xx + w2

xy

)
dΩ

}

and ∫∫
Ω

w2
y dΩ ≤ c4

{(∫∫
Ω

wy dΩ

)2

+

∫∫
Ω

(
w2
yx + w2

yy

)
dΩ

}
.
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Together with Poincaré’s inequality for w these give∫∫
Ω

(
w2 + w2

x + w2
y

)
dΩ

≤ c5

{(∫∫
Ω

w dΩ

)2

+

(∫∫
Ω

wx dΩ

)2

+

(∫∫
Ω

wy dΩ

)2

+

∫∫
Ω

(
w2
xx + 2w2

xy + w2
yy

)
dΩ

}

≤ c6

{(∫∫
Ω

w dΩ

)2

+

(∫∫
Ω

wx dΩ

)2

+

(∫∫
Ω

wy dΩ

)2

+

∫∫
Ω

(
wxx (wxx + µwyy) + 2(1− µ)w2

xy + wyy (wyy + µwxx)
)
dΩ

}
.

Any given function from C(2)(Ω) can be adjusted by subtracting a term

a+ bx+ cy to make∫∫
Ω

w dΩ = 0,

∫∫
Ω

wx dΩ = 0,

∫∫
Ω

wy dΩ = 0, (4.139)

and for such functions we get the inequality∫∫
Ω

(
w2 + w2

x + w2
y

)
dΩ

≤ c6

∫∫
Ω

(
wxx (wxx + µwyy) + 2(1− µ)w2

xy + wyy (wyy + µwxx)
)
dΩ.

Hence the completion EPf of the set of functions from C(2)(Ω) satisfying

(4.139), with respect to the energy norm ‖·‖P , is a closed subspace of

W 2,2(Ω) whose norm is equivalent to ‖·‖P . Note that EPf is a Hilbert space.

Alternatively, EPf could be constructed as the factor space ofW 2,2(Ω) with

respect to the set of all linear polynomials a+ bx+ cy. These two versions

of EPf are in one-to-one isometric correspondence, permitting the use of

Sobolev’s imbedding theorem for W 2,2(Ω) in either case.

4.20 Introduction to Spectral Concepts

The equation

Ax = λx (4.140)

plays an important role in the theory of an n×n matrix A. Any number λ

that satisfies (4.140) for some nonzero vector x is an eigenvalue of A, and
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x is a corresponding eigenvector. Another form for (4.140) is, of course,

(A− λI)x = 0

where I is the n×n identity matrix. This equation is related to an inhomo-

geneous equation that corresponds to most mechanical problems involving

periodic forced oscillations of finitely many oscillators:

(A− λI)x = b. (4.141)

If λ is not an eigenvalue of A, this equation is solvable for any b. The

eigenvalues of A correspond to the frequencies of external forces that put

the system into the resonance state when the amplitude of vibrations grows

without bound.

But relations such as (4.141) also occur outside matrix theory. Equa-

tions of the form

(A− λI)x = b, (4.142)

where A is a more general operator, arise naturally in continuum physics.

Usually we get an equation of this form when studying the oscillations of

a medium. Then A is a differential or integral operator acting on the set

of admissible functions that represent distributions of displacement, strain,

stress, heat, etc. This operator is linear. By properly defining the set of

admissible functions x and loading terms b (note that bmay represent actual

mechanical loads in some problems, but may represent sources, say of heat,

in other problems) we get an operator equation. If b = 0 we then have the

problem of finding nontrivial solutions to the homogeneous equation. These

are called eigensolutions. The terminology of matrix theory is retained

in this case. These eigensolutions, as for a finite system of oscillators,

represent eigen-oscillations of elastic bodies or fields. Even when they do

not represent oscillations of the system, they still participate in the Fourier

method of separation of variables to solve the problem and, in any case,

provide an understanding of how the system functions. Note that unlike

the situation for a matrix equation, where we seek solutions in the space

Rn for which all norms are equivalent, the choice of admissible sets for

continuum problems creates a new situation: with a proper choice of the

solution space, we can gain or lose eigensolutions. A physical understanding

of the corresponding processes may indicate which spaces are “correct.”

The simple relation between the existence of solution for an inhomoge-

neous matrix equation and λ being or not being an eigenvalue may fail for

continuum problems. There are situations in which λ is not an eigenvalue
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of the corresponding operator equation, so there are no eigenvectors of the

operator A, but there is no solution to (4.142) that depends continuously on

changes in b. The collection of “trouble spots” for λ in the complex plane

(including the eigenvalues) is known as the spectrum of the operator A. We

give a formal definition of this concept next, as well as a classification of

the points of the spectrum.

Definition 4.169. Let A be a linear operator having domain and range in

a complex normed space X . For a complex parameter λ, denote by Aλ the

operator

Aλ = A− λI (4.143)

where I is the identity operator on X . The resolvent set of A is the set

ρ(A) of all λ ∈ C for which the range of Aλ is dense in X and for which

Aλ has a bounded inverse. For any λ ∈ ρ(A), we call A−1
λ the resolvent of

A at λ and write

R(λ;A) = (A− λI)−1. (4.144)

The complement of ρ(A) in C is the spectrum of A, denoted σ(A).

Any value λ ∈ ρ(A) is known as a regular value of A. Any λ ∈ σ(A) is a

spectral value of A. The spectrum of any operator A is naturally partitioned

into three disjoint subsets:

(1) Pσ(A), the point spectrum of A, is the set of all spectral values for which

the resolvent R(λ;A) does not exist. Its elements are the eigenvalues

of A.

(2) Cσ(A), the continuous spectrum of A, is the set of all spectral values

for which R(λ;A) exists on a dense subset of X but is not a bounded

operator.

(3) Rσ(A), the residual spectrum of A, is the set of all spectral values for

which R(λ;A) exists but with a domain that is not dense in X .

So

σ(A) = Pσ(A) ∪ Cσ(A) ∪Rσ(A) (4.145)

(we shall see that some of the sets on the right may be empty). The use

of the term “eigenvalue” for an element λ ∈ Pσ(A) may be justified as

follows. We have λ ∈ Pσ(A) if and only if the linear operator A− λI is not

one-to-one, which is true if and only if its null space does not consist only
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of the zero vector. In other words, we can have λ ∈ Pσ(A) if and only if

the equation

(A− λI)x = 0 (4.146)

has a nontrivial solution x. Such an element x would be, of course, an

eigenvector of A corresponding to the eigenvalue λ.

Example 4.170. Let X = �1, and let A from X to X be given by

Ax =

(
ξ1
1
,
ξ2
2
,
ξ3
3
, . . .

)
for x = (ξ1, ξ2, ξ3, . . .) ∈ �1. Find Pσ(A).

Solution. We have

(A− λI)x =

((
1

1
− λ

)
ξ1,

(
1

2
− λ

)
ξ2,

(
1

3
− λ

)
ξ3, . . .

)
.

A − λI is not one-to-one if and only if λ is such that 1
k − λ = 0 for some

k = 1, 2, 3, . . .. Hence Pσ(A) =
{
1, 12 ,

1
3 , . . .

}
. �

Example 4.171. Show that if A is a bounded linear operator and λ is an

eigenvalue of A, then |λ| ≤ ‖A‖.
Solution. For some nonzero vector v we have Av = λv, hence |λ| ‖v‖ =

‖Av‖ ≤ ‖A‖ ‖v‖. �

For a bounded operator we can display an important part of the resol-

vent set immediately.

Theorem 4.172. Let A be a bounded linear operator on a Banach space X.

All the λ ∈ C such that ‖A‖ < |λ| are points of the resolvent set of operator

A, that is (A − λI)−1 is a bounded linear operator on X. Moreover, there

holds

(A− λI)−1 = − 1

λ

∞∑
k=0

1

λk
Ak. (4.147)

The series on the right is called the Neumann series for A.

Proof. Thus A is a bounded linear operator on a Banach space X . Let

us take a value λ ∈ C and consider solving

Ax− λx = y (4.148)
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for x ∈ X when y ∈ X is given. We rewrite this as

x = − 1

λ
y +

1

λ
Ax,

define the right member as the mapping F (x) = −λ−1y+λ−1Ax, and check

whether F can be a contraction. We have

‖F (x1)− F (x2)‖ = |λ|−1 ‖Ax1 −Ax2‖ ≤ |λ|−1 ‖A‖ ‖x1 − x2‖ ,

hence F is a contraction whenever |λ| > ‖A‖. If this condition holds we

can use the iteration scheme

xj+1 = − 1

λ
y +

1

λ
Axj , j = 0, 1, 2, . . .

to solve (4.148). Starting with x0 = −y/λ, we may generate a sequence of

iterates:

x0 = − 1

λ
y

x1 = − 1

λ
y +

1

λ
Ax0 = − 1

λ
y − 1

λ2
Ay

x2 = − 1

λ
y +

1

λ
Ax1 = − 1

λ
y − 1

λ2
Ay − 1

λ3
A2y

...

xn = − 1

λ

n∑
k=0

1

λk
Aky.

These iterates converge to the unique solution

x = − 1

λ

∞∑
k=0

1

λk
Aky.

So the operator given by the absolutely convergent series

− 1

λ

∞∑
k=0

1

λk
Ak,

is the inverse of the operator A − λI. We can also check this statement
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explicitly. To see that it is a right inverse, we write

(A− λI)

(
− 1

λ

∞∑
k=0

1

λk
Ak

)
=

(
I − 1

λ
A

)(
I +

∞∑
k=1

1

λk
Ak

)

= I −
(
1

λ
A+

1

λ
A

∞∑
k=1

1

λk
Ak

)
+

∞∑
k=1

1

λk
Ak

= I −
∞∑
k=1

1

λk
Ak +

∞∑
k=1

1

λk
Ak

= I.

Verification that it is a left inverse is similar. �

By this theorem the set

{λ ∈ C : |λ| > ‖A‖}
does not contain any points of the spectrum of A, which is another solution

of Example 4.171.

Certain kinds of operators have simple and convenient spectral proper-

ties. We will need the following results.

Lemma 4.173. Let A be a self-adjoint continuous linear operator A acting

in a Hilbert space H. Then

(i) the functional (Ax, x) is real valued;

(ii) the eigenvalues of A are real;

(iii) if x1, x2 are two eigenvectors corresponding to distinct eigenvalues

λ1, λ2, then (x1, x2) = 0 and (Ax1, x2) = 0.

Proof. To prove item (i) we merely write

(Ax, x) = (x,Ax) = (Ax, x).

If Ax = λx then (Ax, x) = λ(x, x), hence λ is real. This proves (ii). Now

suppose Ax1 = λ1x1 and Ax2 = λ2x2 where λ2 �= λ1. Forming inner

products with x2 and x1 respectively, we obtain

λ1(x1, x2) = (Ax1, x2), λ2(x1, x2) = (x1, Ax2) = (Ax1, x2);

subtracting these we find (λ2 − λ1)(x1, x2) = 0, hence (x1, x2) = 0. Re-

turning to λ1(x1, x2) = (Ax1, x2), we have (Ax1, x2) = 0. This proves

(iii). �
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4.21 The Fredholm Theory in Hilbert Spaces

It is common to seek solutions x of the following algebraic problem in Rn:

Ax− λx = b, (4.149)

where A is an n × n matrix. When b = 0, this is an eigenvalue problem

for the matrix A. It is well known that if λ is not an eigenvalue of A,

then (4.149) is solvable for any b. There are no more than n eigenvalues

of A. If λ is an eigenvalue of A, then (4.149) is solvable only for some set

of values b that are orthogonal to all the eigenvectors of the conjugate-

transpose matrix A∗ that correspond to λ̄, an eigenvalue of A∗. So to an

eigenvalue λ0 of A there corresponds an eigenvalue λ̄0 of A∗; moreover, the

dimensions of the subspaces of the corresponding eigenvectors of A and A∗

are the same. Furthermore, the situation for the solvability of the dual

equation

A∗x− λx = b∗

is symmetric to the problem involving the operator A.

This was extended by Ivar Fredholm to the theory of certain integral

equations, now known as Fredholm equations of the second kind :

λu(x)−
∫
Ω

K(x,y)u(y) dΩy = f(x).

If the operator is compact, this equation inherits nearly all the qualitative

features of (4.149) except the number of possible eigenvalues: it may be

countable, but the only possible accumulation point is zero. Fredholm’s

theory was later extended to Banach spaces [25; 26].

We present a particular case of this theory in a Hilbert space H , which

will suffice to treat the eigenfrequency problems for bounded elastic objects

like membranes, plates, shells, or elastic bodies. We recall that the Fred-

holm integral operator is compact in L2. Thus we consider the following

equation in H :

Ax− λx = b,

with given b ∈ H . We suppose A is a compact linear operator in H . Let

us exhibit the required notation. A∗ is the adjoint to A, satisfying

(Ax, y) = (x,A∗y).

Correspondingly we introduce the equation

A∗x− λx = b∗.
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We denote by N(λ) the subspace of H spanned by the eigenvectors of A

corresponding to a given eigenvalue λ. With the exception of the zero

element, each member of this subspace is an eigenvector of A. Indeed any

finite linear combination of x1, . . . , xm ∈ N(λ) also belongs to N(λ):

A

(
m∑
i=1

αixi

)
=

m∑
i=1

αiAxi =
m∑
i=1

αiλxi = λ

(
m∑
i=1

αixi

)
.

Note that N(λ) contains all the eigenvectors corresponding to λ, along with

the zero element of H .5 We denote by M(λ) the orthogonal complement

of N(λ) in H . The corresponding sets for A∗ are denoted by N∗(λ) and

M∗(λ). Let us state the facts of the Fredholm–Riesz–Schauder theory as

Theorem 4.174. Let A be a compact linear operator in a Hilbert space H.

Then

(1) the spectrum of A consists only of eigenvalues, and thus the remaining

points of the complex plane are all regular points of A;

(2) to any nonzero eigenvalue λ of A there corresponds a finite number of

linearly independent eigenvectors (i.e., N(λ) is finite dimensional);

(3) the only possible point of accumulation of the eigenvalues of A in the

complex plane is zero;

(4) if λ is an eigenvalue of A then λ̄ is an eigenvalue of A∗ and vice versa,

and the equation

Ax− λx = b

is solvable if and only if b is orthogonal to the set N∗(λ̄);
(5) the dimensions of N(λ) and N∗(λ̄) are equal;

(6) A∗ is a compact linear operator, and thus

(6a) its spectrum consists only of eigenvalues with zero as the only pos-

sible point of accumulation of the eigenvalues;

(6b) to each eigenvalue there corresponds a space of eigenvectors N∗(λ)
that is finite dimensional;

(6c) the equation

A∗x− λx = b∗

is solvable if and only if b∗ is orthogonal to the subspace N(λ̄).

5An alternative definition of N(λ) is as the null space of the operator A − λI, i.e., as
the set of all x ∈ H that satisfy (A− λI)x = 0.
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The proof will be formulated as a collection of lemmas. We begin with

statement (2).

Lemma 4.175. If λ is any nonzero eigenvalue of A, then N(λ) is a closed,

finite dimensional subspace of H.

Proof. To see that N(λ) is closed we use the continuity of A. Let x∗
be a limit point of N(λ). There is a sequence {xn} ⊂ N(λ) such that

xn → x∗ in H . For each n we have Axn = λxn, and passage to the limit

as n → ∞ gives Ax∗ = λx∗. Hence x∗ ∈ N(λ). We next show that N(λ)

is finite dimensional. We recall Theorem 4.52 which states that any closed

and bounded set is compact only in a finite dimensional Hilbert space. So

let S be an arbitrary closed and bounded subset of N(λ), and choose any

sequence {xk} ⊂ S. By compactness of A and the equality xk = λ−1Axk,

we see that {xk} has a Cauchy subsequence. Hence S is precompact. But

S is also a closed subset of a complete space H , hence it contains the limits

of its Cauchy sequences. We conclude that S is compact, as desired. �

Remark 4.176. Here we do not consider the eigenvalue λ = 0, as it corre-

sponds to the infinite eigenfrequency of a body. Its properties differ from

those of the other eigenvalues. Take, for example, a one dimensional oper-

ator A of the form Ax = F (x)x0 where x0 is fixed and F (x) is a continuous

linear functional. Then by the equation Ax = λx, the eigenvalues cor-

responding to λ = 0 are those elements x that satisfy F (x)x0 = 0. By

Theorem 4.100 we can express F (x) = (x, f) for some fixed f ∈ H , hence

any vector x that is orthogonal to f belongs to N(0). A stronger example

is afforded when A is the zero operator, which is of course compact. In this

case the equation Ax = λx becomes λx = 0, and with λ = 0 this holds for

any x ∈ H . In this case N(0) = H . So λ = 0 was by necessity excluded

from statement (2). In statement (3) we see that λ = 0 is the only possible

accumulation point for the set of all eigenvalues. �

Statement (3) will be proved as Lemma 4.178. In preparation for this

we establish some notation along with an auxiliary result. Let λ1, . . . , λk
be eigenvalues of A. We denote by

N(λ1)+̇ · · · +̇N(λk)

the space spanned by the union of the eigenvectors that generate the in-

dividual eigenspaces N(λ1), . . . , N(λk). Use of the notation for direct sum

is justified by the next result which shows, in particular, that eigenspaces

corresponding to distinct eigenvalues can intersect only in the zero vector.
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Lemma 4.177. Assume Si = {x(i)1 , x
(i)
2 , . . . , x

(i)
ni } is a linearly independent

system of elements in N(λi) for each i = 1, . . . , k. Then the union ∪ki=1Si
is linearly independent. If Si is a basis of N(λi) for each i, then ∪ki=1Si is

a basis of N(λ1)+̇ · · · +̇N(λk).

Proof. The proof is by induction. We want to show that under the hy-

pothesis of the lemma ∪ki=1Si is linearly independent in N(λ1)+̇ · · · +̇N(λk)

for each positive integer k. For k = 1 the statement holds trivially. Suppose

it holds for k = n. Let us take the eigenvalue-eigenvector pairings

(λi, x
(i)
p ), p = 1, . . . , ni, i = 1, . . . , n,

and renumber everything so that these same pairings are denoted as

(λj , xj), j = 1, . . . , r. By assumption then,

r∑
j=1

αjxj = 0 =⇒ αj = 0 for j = 1, . . . , r. (4.150)

We must show that the statement holds for k = n+1. Appending Sn+1 to

∪ni=1Si, we assume that

r+s∑
j=1

cjxj = 0 (4.151)

and attempt to draw a conclusion regarding the cj (here s is new notation

for the number of elements in Sn+1). An application of A to both sides

allows us to write

1

λn+1

r+s∑
j=1

cjλjxj = 0

and upon subtraction from the previous equation we obtain

r+s∑
j=1

cj

(
1− λj

λn+1

)
xj =

r∑
j=1

cj

(
1− λj

λn+1

)
xj = 0.

We have cj = 0 for j = 1, . . . , r by (4.150). Substitution into (4.151) gives

r+s∑
j=r+1

cjxj = 0;

but the eigenvectors participating in this sum are all associated with λn+1

and are linearly independent by assumption. Hence cj = 0 for j = r +

1, . . . , r + s.
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The second statement of the lemma follows from the fact that the di-

mension of the direct sum N(λ1)+̇ · · · +̇N(λk) is less than or equal to the

sum of the dimensions of the constituent eigenspaces N(λi). Since we do

have n1 + · · ·+ nk linearly independent vectors in the direct sum, we have

found a basis. �

Lemma 4.178. The only possible point of accumulation of the eigenvalues

of A in the complex plane is λ = 0.

Proof. Suppose λ0 is a limit point of the set of eigenvalues of A, and

|λ0| > 0. There is a sequence {λn} of distinct eigenvalues of A such that

λn → λ0. For each λn take an eigenvector xn, and denote by Hn the

subspace spanned by {x1, . . . , xn}. Thus Hn ⊆ Hn+1 for each n. Let y1 =

x1/ ‖x1‖. Successively, we can construct another sequence {yn}, n > 1, as

follows. By Lemma 4.177 we have Hn �= Hn+1, so for each n there exists

yn+1 ∈ Hn+1 such that ‖yn+1‖ = 1 and yn+1 is orthogonal to Hn. Indeed,

we use the orthogonal decomposition theorem to decompose Hn+1 into Hn

and another nonempty subspace orthogonal to Hn, from which we choose

a normalized element. Now consider the sequence {yn/λn}; because it is

bounded in H , its image {A(yn/λn)} contains a Cauchy subsequence. We

begin to seek a contradiction to this last statement by writing

A

(
yn+m
λn+m

)
−A

(
yn
λn

)
= yn+m −

(
yn+m − 1

λn+m
Ayn+m +

1

λn
Ayn

)
(4.152)

for m ≥ 1. On the right the first term yn+m belongs to Hn+m; the second

(parenthetical) term belongs to Hn+m−1 because we can write yn+m =∑n+m
k=1 ckxk and have

yn+m − 1

λn+m
Ayn+m =

n+m∑
k=1

ckxk − 1

λn+m
A

(
n+m∑
k=1

ckxk

)

=

n+m−1∑
k=1

ck

(
1− λk

λn+m

)
xk ∈ Hn+m−1

along with the fact that λ−1
n Ayn ∈ Hn ⊆ Hn+m−1. As the two terms on

the right side of (4.152) are orthogonal, the Pythagorean theorem yields∥∥∥∥A
(
yn+m
λn+m

)
−A

(
yn
λn

)∥∥∥∥2

= ‖yn+m‖2 +
∥∥∥∥yn+m − 1

λn+m
Ayn+m +

1

λn
Ayn

∥∥∥∥2 ≥ 1,
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for any n and m ≥ 1. Therefore {A(yn/λn)} cannot contain a Cauchy

subsequence. �

Let us proceed to

Lemma 4.179. Let λ be fixed. There are positive constants m1 and m2

such that

m1 ‖x‖ ≤ ‖Ax − λx‖ ≤ m2 ‖x‖ (4.153)

for all x ∈M(λ).

Proof. We have

‖Ax− λx‖ ≤ ‖Ax‖ + ‖λx‖ ≤ (‖A‖+ |λ|) ‖x‖ ,
thus establishing the inequality on the right. Suppose the inequality on the

left is false. Then there is a sequence {xn} ⊂M(λ) such that ‖xn‖ = 1 and

‖Axn − λxn‖ → 0 as n→ ∞. Because A is compact, {Axn} has a Cauchy

subsequence. By the equality

λxn = Axn − (Axn − λxn)

{xn} also has a Cauchy subsequence which we again denote as {xn}. By

completeness of M(λ) we have xn → x0 for some x0 ∈ M(λ). Continuity

of A gives Axn → Ax0, and from

0 = lim
n→∞ ‖Axn − λxn‖ = ‖Ax0 − λx0‖

we get Ax0 = λx0. This means that x0 ∈ N(λ). Thus we have ‖x0‖ = 1,

x0 ∈ N(λ), and x0 ∈ M(λ); this is impossible since the spaces N(λ) and

M(λ) intersect only in the zero element. �

Lemma 4.179 shows that on M(λ) we can impose a norm

‖x‖1 = ‖Ax− λx‖
which is equivalent to the norm of H . The associated inner product is given

by

(x, y)1 = (Ax− λx,Ay − λy).

Similarly, on M∗(λ̄) the norm
∥∥A∗x− λ̄x

∥∥ is equivalent to the norm of H .

Lemma 4.180. The equation

Ax− λx = b (4.154)
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is solvable if and only if b is orthogonal to each vector in N∗(λ̄); equiva-

lently,

R(A− λI) =M∗(λ̄). (4.155)

Similarly, the equation

A∗x− λ̄x = b∗ (4.156)

is solvable if and only if b∗ is orthogonal to each vector in N(λ); equiva-

lently,

R(A∗ − λ̄I) =M(λ). (4.157)

Proof. Suppose (4.154) is solvable with solution x0. If y ∈ N∗(λ̄) is

arbitrary, then

(b, y) = (Ax0 − λx0, y) = (x0, A
∗y − λ̄y) = (x0, 0) = 0.

Conversely, suppose b ∈ M∗(λ̄). The functional (x, b) is linear and contin-

uous on H (and so onM∗(λ̄)), hence by Theorem 4.100 can be represented

on M∗(λ̄) using (·, ·)1 as

(x, b) = (x, b̃)1 = (A∗x− λ̄x, A∗b̃− λ̄b̃)

for some b̃ ∈M∗(λ̄). This equality, being valid for x ∈M∗(λ̄), holds for all
x ∈ H too; indeed bearing x = x1 + x2, x1 ∈ N∗(λ̄), x2 ∈M∗(λ̄), we have

A∗x− λ̄x = A∗x1 − λ̄x1 +A∗x2 − λ̄x2 = A∗x2 − λ̄x2

and so, for all x ∈ H ,

(A∗x− λ̄x, A∗b̃− λ̄b̃) = (A∗x2 − λ̄x2, A
∗b̃− λ̄b̃) = (x2, b̃)1 = (x2, b) = (x, b)

since (x1, b) = 0. Denoting A∗b̃− λ̄b̃ by g we have

(A∗x− λ̄x, g) = (x,Ag − λg) = (x, b) for all x ∈ H,

hence Ag − λg = b and g satisfies (4.154). The rest of the lemma is proved

analogously. �

By this lemma we have partially addressed part (4) of Theorem 4.174.

Lemma 4.181. If Nn is the null space of (A− λI)n, then

(i) Nn is a finite dimensional subspace of H;

(ii) Nn ⊆ Nn+1 for all n = 1, 2, . . .;

(iii) there exists k such that Nn = Nk for all n > k.
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Proof.

(i) Writing (A− λI)nx = 0 as

(λnI − nλn−1A+ · · · )x = 0,

the sum of the terms beginning with the second is a compact operator

(−B) so denoting λn = γ we get an eigenvalue problem (B − γI)x = 0

with compact B and so Nn is finite dimensional.

(ii) If (A− λI)nx = 0, then (A− λI)n+1x = 0.

(iii) First we show that if Nk+1 = Nk for some k then Nk+m = Nk for

m = 1, 2, 3, . . .. Consider the case m = 2. By part (ii) we know that

Nk ⊆ Nk+2. Conversely

x0 ∈ Nk+2 =⇒ 0 = (A− λI)k+2x0 = (A− λI)k+1((A− λI)x0)

=⇒ (A− λI)x0 ∈ Nk+1 = Nk

=⇒ (A− λI)k+1x0 = 0

=⇒ x0 ∈ Nk+1 = Nk,

so Nk+2 ⊆ Nk. Hence Nk+2 = Nk. Now we have Nk+1 = Nk+2, and

so by the previous argument we get Nk+1 = Nk+3, hence Nk+3 = Nk,

and so on.

Now suppose there is no k such that Nk = Nk+1. Then there is a

sequence {xn} such that xn ∈ Nn, ‖xn‖ = 1, and xn is orthogonal

to Nn−1. Since A is compact the sequence {Axn} must contain a

convergent subsequence. But

Axn+m −Axn = λxn+m + (Axn+m − λxn+m −Axn)

where on the right the first term belongs to Nn+m and the second

(parenthetical) term belongs to Nn+m−1. (To see the latter note that

Axn ∈ Nn since

(A− λI)nAxn = A(A− λI)nxn = 0,

and (A − λI)n+m−1(Axn+m − λxn+m) = (A − λI)n+mxn+m = 0.) By

orthogonality of these two terms we have

‖Axn+m −Axn‖2 = ‖λxn+m‖2 + ‖Axn+m − λxn+m −Axn‖2 ≥ |λ|2.
Since λ �= 0 we have a contradiction. �

Lemma 4.182. We have R(A− λI) = H if and only if N(λ) = {0}.
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Proof. Let R(A − λI) = H and suppose N(λ) �= {0}. Take a nonzero

x0 ∈ N(λ). Since R(A − λI) = H we can solve successively the equations

in the following infinite system:

(A− λI)x1 = x0; (A− λI)x2 = x1; · · · (A− λI)xn+1 = xn; · · ·
The sequence of solutions {xn} has the property that

(A− λI)nxn = x0 �= 0 but (A− λI)n+1xn = (A− λI)x0 = 0.

In the terminology of Lemma 4.181, these imply that xn /∈ Nn but xn ∈
Nn+1. So there is no finite k such that Nk+1 = Nk, and this contradicts

part (iii) of Lemma 4.181.

Conversely let N(λ) = {0}. Then M(λ) = H hence by (4.157) we have

R(A∗ − λ̄I) = H . By the proof of the converse given above, N∗(λ̄) = {0}
and thus M∗(λ̄) = H . The proof is completed by reference to (4.155). �

We can now establish part (1) of Theorem 4.174:

Lemma 4.183. The spectrum of a compact linear operator A consists only

of eigenvalues.

Proof. Suppose λ is not an eigenvalue of A. Then N(λ) contains only

the zero vector, hence M(λ) = H and (4.153) applies for all x ∈ H . This

means, in conjunction with Theorem 4.78, that the operator (A− λI)−1 is

bounded on the range of A− λI, which is H by Lemma 4.182. Hence λ is

a regular point of the spectrum of A. �

We continue to part (4) of Theorem 4.174:

Lemma 4.184. If λ is an eigenvalue of A, then λ̄ is an eigenvalue of A∗.

Proof. Suppose λ is an eigenvalue of A but λ̄ is not an eigenvalue of A∗.
Then N∗(λ̄) = {0} and thus M∗(λ̄) = H . By equation (4.155) we have

R(A − λI) = H hence N(λ) = {0} by Lemma 4.182. This is impossible

since an eigenvalue must correspond to at least one eigenvector. �

Finally, part (5) of Theorem 4.174 is established as

Lemma 4.185. The spaces N(λ) and N∗(λ̄) have the same dimension.

Proof. Let the dimensions of N(λ) and N∗(λ̄) be n and m, respectively,

and suppose that n < m. Choose orthonormal bases {x1, . . . , xn} and
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{y1, . . . , ym} of N(λ) and N∗(λ̄), respectively. Let us define an auxiliary

operator Q by

Qx = (A− λI)x+
n∑
k=1

(x, xk)yk ≡ (C − λI)x,

where C is a compact linear operator as the sum of the compact operator

A and a finite dimensional operator.

First we show that the null space of Q cannot contain nonzero elements.

Indeed if Qx0 = 0 then

(A− λI)x0 +
n∑
k=1

(x0, xk)yk = 0.

Because R(A−λI) =M∗(λ̄) and M∗(λ̄) is orthogonal to N∗(λ̄), the terms

(A − λI)x0 ∈ M∗(λ̄) and
∑n

k=1(x0, xk)yk ∈ N∗(λ̄) must separately equal

zero; furthermore, since {yk} is a basis we have (x0, xk) = 0 for k = 1, . . . , n.

From (A − λI)x0 = 0 it follows that x0 ∈ N(λ); because x0 is orthogonal

to all basis elements of N(λ), we have x0 = 0.

By Lemma 4.182 we have R(Q) = H and thus the equation Qx = yn+1

has a solution x0. But

1 = (yn+1, yn+1)

= (yn+1, Qx0)

= (yn+1, (A− λI)x0) +

(
yn+1,

n∑
k=1

(x0, xk)yk

)

= ((A∗ − λ̄I)yn+1, x0)

= 0,

a contradiction. Hence n ≥ m. But A is adjoint to A∗ and by the proof

above we have m ≥ n, so m = n. �

The proof of Theorem 4.174 is now complete.

4.22 Exercises

4.1 Show that a set in a metric space is closed if and only if it contains the limits
of all its convergent sequences. That is, S is closed in X if and only if for any
sequence {xn} ⊂ S such that xn → x in X, we have x ∈ S.

4.2 Show that the following sets are closed in any metric space X: (a) any closed
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ball, (b) the empty set ∅, (c) X itself, (d) the intersection of any number of closed
sets, (e) the union of any finite number of closed sets.

4.3 Suppose a complete metric space X contains a sequence of closed balls
{B(xn, rn)}∞n=1 such that B(xn+1, rn+1) ⊆ B(xn, rn) for each n, and such that
the radii rn → 0. Show that there is a unique point x ∈ X such that x ∈⋂∞

n=1B(xn, rn).

4.4 Verify that if U is a closed linear subspace of a normed space X, then X/U
is a normed linear space under the norm ‖·‖X/U given by

‖x+ U‖X/U = inf
u∈U

‖x+ u‖X .

Prove that if U is a closed subspace of a Banach space X, then X/U is also a
Banach space.

4.5 LetM be a closed subspace of a separable normed space X. Show that X/M
is separable.

4.6 Show that on X × Y the norm

‖(x, y)‖2 = ‖x‖X + ‖y‖Y
is equivalent to the norm (4.22). When X and Y are Hilbert spaces, the norm in
question defines an inner product on X × Y .

4.7 Let A be a continuous linear operator from X to Y , where X and Y are
Banach spaces. Let M be a closed subspace of X that lies within the kernel of A
(i.e., if x ∈ M then Ax = 0). Show that A induces an operator from X/M to Y
that is also continuous.

4.8 Prove that a bounded set in a normed space is precompact if and only if it
is finite dimensional,

4.9 Let A be a compact linear operator acting in a Banach space X, and let M
be a closed subspace of X that lies within the kernel of A. Demonstrate that A
induces a compact linear operator from X/M to X.

4.10 Prove that in the space �p the norm of the space c is not equivalent to the
norm of �p for 1 ≤ p <∞.

4.11 (a) Show that �2 is not finite dimensional. (b) The space �∞ of uniformly
bounded sequences is the set of all x having ‖x‖∞ <∞ where

‖x‖∞ = sup
k≥1

|xk|.

Show that we may regard ‖·‖∞ as a limiting case of ‖·‖p as p→ ∞. (c) Show that
if p ≤ q, then ‖x‖q ≤ ‖x‖p for x ∈ �p. Note that this constitutes an imbedding

theorem. (d) Show that �1 ⊆ �p ⊆ �q ⊆ �∞ whenever q ≥ p ≥ 1. (e) Extend this
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string of inclusions to �1 ⊆ �p ⊆ �q ⊆ c0 ⊆ c ⊆ �∞ for 1 ≤ p ≤ q. (f) Prove that
for any p ∈ [1,∞], the normed space �p is a Banach space. (g) Show that the
spaces �p, 1 ≤ p <∞, are separable. (h) Show that �∞ is not separable. (i) Show
that c0 is separable.

4.12 The distance function d(x, y) = |x3 − y3| is imposed on the set of all real
numbers R to form a metric space. Verify the metric axioms for d(x, y). Show
that the resulting space is complete.

4.13 Show that if A is a bounded linear operator then ‖A‖ is given by the
following alternative expressions:

‖A‖ = sup
‖x‖=1

‖Ax‖ = sup
‖x‖�=0

‖Ax‖
‖x‖ .

Note that we also have

‖A‖ = sup
‖x‖≤1

‖Ax‖ = sup
‖x‖<1

‖Ax‖ .

4.14 For each energy space studied in this chapter, write out (a) the parallelo-
gram equality, and (b) the expression for the orthogonality of two elements.

4.15 Prove that a system of vectors in a Hilbert space is linearly independent if
and only if its Gram determinant does not vanish.

4.16 Show that convergence ‖An −A‖ → 0 in operator norm, that is in L(X,Y )
where X is normed and Y is a Banach space, implies uniform convergence Anx→
Ax on any bounded subset S ⊂ D(A).

4.17 As in Rn, an operator acting in a space of infinite dimensional vectors can
be represented by a matrix A, but one having infinitely many elements (Aij)

∞
i,j=1.

Find the conditions for continuity of the operator acting in (a) the space c, and
(b) the space �p.

4.18 Let {gn} be an orthonormal sequence in a Hilbert space H , and let {cn} ∈
�2. Show that the series

∑∞
n=0 cngn converges in H .

4.19 Derive the differentiation formula

d

dt
(u(t), v(t)) =

(
du(t)

dt
, v(t)

)
+

(
u(t) ,

dv(t)

dt

)
.

4.20 Show that if {xn} converges weakly to x in a Hilbert space H , then

‖x‖ ≤ lim inf
n→∞

‖xn‖ .

4.21 An operator A from a normed space V to a normed space W is densely
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defined if D(A) is dense in V . Assume W is a Banach space, and show that if
A is bounded, linear, and densely defined, then A has a unique bounded linear
extension to V . Also show that ‖Ae‖ = ‖A‖ where Ae is the extension of A.

4.22 Show that in a finite dimensional space weak convergence implies strong
convergence.

4.23 Suppose A and its inverse are both bounded linear operators defined on a
normed spaceX. The condition number of A is defined by cond(A) = ‖A‖ ‖A−1‖.
(a) Show that cond(A) ≥ 1. (b) Consider the operator equation Ax = y. Given
y, let x̂ be an approximate solution; denote the “error” by ε = x − x̂ and the
“discrepancy” by r = y −Ax̂. Show that

1

cond(A)

‖r‖
‖y‖ ≤ ‖ε‖

‖x‖ ≤ cond(A)
‖r‖
‖y‖ .

4.24 Let T from X to X be a compact operator on an infinite dimensional
normed space X. Show that if T has an inverse defined on all of X, then this
inverse cannot be bounded.

4.25 (a) Show that every metric space isometry is continuous and one-to-one.
(b) Prove that a linear operator A : X → Y between normed spaces is an isometry
if and only if ‖Ax‖ = ‖x‖ for all x ∈ X. (Notes: (1) We have ‖A‖ = 1 if X �= {0}.
(2) If A is also an isomorphism between the linear spaces X and Y , then A is
called an isometric isomorphism.)

4.26 Let {gk} be an orthonormal system in a Hilbert space H . Show that if
Parseval’s equality

∞∑
k=1

|(f, gk)|2 = ‖f‖2

holds for all f ∈ H , then {gk} is a basis of H .

4.27 Show that the operator d/dx is bounded from C(1)(−∞,∞) to C(−∞,∞).

4.28 Show that the set of all functions f(x) bounded on [0, 1] and equipped with
the norm

‖f(x)‖ = sup
x∈[0,1]

|f(x)|

is not separable.

4.29 Show that if X is a normed space and Y is a Banach space then L(X,Y )
is a Banach space.

4.30 Assume that X and Y are Banach spaces, A ∈ L(X, Y ) is continuously
invertible, and B ∈ L(X,Y ) is such that ‖B‖ < ‖A−1‖−1. Then A + B has an
inverse (A+B)−1 ∈ L(Y,X) and∥∥(A+B)−1

∥∥ ≤ (‖A−1‖−1 − ‖B‖)−1.
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4.31 Verify the condition stated for equality to hold in (4.49).

4.32 Show that the functional ‖x‖2 − Fx in a real normed space X is bounded
from below if F is a linear continuous functional in X.

4.33 A subset S of a normed space X is said to be open if its complement X \S
is a closed set. (a) Show that S is open if and only if every point of S is the center
of an open ball contained entirely within S. Hence this statement is an equivalent
definition of an open set. (b) Show that any open ball is an open set. (c) Show
that an operator f : X → Y is continuous if and only if the inverse image of every
open set in Y is open in X.

4.34 Give an example of a function that is discontinuous everywhere on its
domain of definition.

4.35 Show that under the condition

(∫ 1

0

∫ 1

0

|k(s, t)|2 ds dt
)1/2

<∞

the Fredholm integral operator A defined by

Au =

∫ 1

0

k(s, t)u(t) dt

is a continuous operator on L2(0, 1).

4.36 Calculate the norm of the forward shift operator S on �2, defined by

Sx = S(x1, x2, x3, . . .) = (0, x1, x2, . . .).

4.37 Consider the operator

(Ax)(t) =

∫ t

0

x2(s) ds

acting in C(0, 1). Find a closed ball, centered at the origin, on which A is a
contraction.

4.38 Consider the subspace S of �∞ that consists of all sequences x = (ξi)
having at most finite numbers of nonzero components. Show that S is not a
Banach space.

4.39 Let A be a bounded linear operator on a Banach space X. Show that if
‖A‖ < 1 then

‖(A− I)−1‖ ≤ 1

1− ‖A‖ .



September 30, 2011 8:42 World Scientific Book - 9in x 6in aea

Functional Analysis 357

4.40 Show that if X and Y are Banach spaces, then so is the product space
X × Y under the norm ‖(x, y)‖ = max{‖x‖X , ‖y‖Y }.
4.41 Show that if xn → x then yn ≡ 1

n

∑n
i=1 xi → x.

4.42 We have observed that equivalent norms have the same convergence prop-
erties. Prove the converse of this statement.

4.43 Show that if {xn} is a Cauchy sequence in a normed space, then the se-
quence of norms {‖xn‖} converges. (Note that this implies that every Cauchy
sequence is bounded.)

4.44 Show that if a metric space X has a dense subspace that is separable, then
X is also separable.

4.45 Show that a normed space is complete if and only if every absolutely con-
vergent series converges to an element of the space.

4.46 The operator A given by Ax = (2−1x1, 2
−2x2, 2

−3x3, · · · ) acts in �2. Show
that A is compact.

4.47 Show that the number λ = 0 belongs to the residual spectrum of the
forward-shift operator Ax = A(x1, x2, . . .) = (0, x1, x2, . . .) defined on �2.

4.48 A sequence of infinite dimensional vectors {xk} is defined as follows:

xk = (1, . . . , 1︸ ︷︷ ︸
first k

positions

, 0, 0, . . .), k = 1, 2, 3, . . . .

Show that {xk} is not weakly convergent in �2.

4.49 Prove that the sequence {sin kx} is weakly convergent to zero in L2(0, π).
Then show that it contains no weakly convergent subsequence (and therefore is
not weakly compact) in W 1,2(0, π).

4.50 Use the Hölder inequality to place a bound on the norm of the imbedding
operator from Lp(Ω) into Lq(Ω), p ≥ q. Assume Ω is a compact domain in Rn.

4.51 Show that if A is a compact linear operator acting in a Hilbert space H ,
and {xn} is an orthonormal sequence in H , then Axn → 0 as n→ ∞.

4.52 Let Ω be a compact set in Rn. Show that the imbedding C(n)(Ω) ↪→ C(Ω)
is continuous and compact for n ≥ 1.

4.53 Suppose a and b are finite. Let Pn be the space consisting of all polynomials
on [a, b] having order up to n, supplied with the norm of C(a, b). Describe the
space that results when we apply the completion theorem to Pn.

4.54 Show that weak convergence is equivalent to strong convergence in a finite



September 30, 2011 8:42 World Scientific Book - 9in x 6in aea

358 Advanced Engineering Analysis

dimensional Hilbert space.

4.55 Use the orthogonal decomposition theorem to show that a closed subspace
of a Hilbert space is weakly closed.

4.56 Let a sequence {xn} in a Hilbert space have the following property: any
subsequence of {xn} contains a sub-subsequence that converges to x0 (the same
x0 for any subsequence). Prove that whole sequence {xn} converges to x0.

4.57 Let a sequence {xn} in a Hilbert space have the following property: any
subsequence of {xn} contains a sub-subsequence that converges weakly to x0 (the
same x0 for any subsequence). Prove that the whole sequence {xn} converges
weakly to x0.

4.58 Let S and T be subsets of a metric space. Show that (a) if S is closed and
T is open, then S \ T is closed, and (b) if S is open and T is closed, then S \ T
is open.

4.59 Show that if a system is complete in a set S that is dense in a Hilbert space
H , then it is complete in H .

4.60 A function f satisfies a Lipschitz condition with constant L if it satisfies
the inequality |f(x)− f(y)| ≤ L|x−y|. Let S be a uniformly bounded collection
of functions given on a compact set Ω ⊂ Rn and satisfying a Lipschitz condition
on Ω with the same constant L. Show that S is precompact in C(Ω).

4.61 Let A be a closed linear operator from a normed space X to a normed
space Y . Show that A maps compact sets into closed sets.

4.62 Derive inequality (4.113).

4.63 A beam is hinged at the point x = 0. Mechanically this means that the
beam can rotate about its end at x = 0. Using the expression for the norm related
to the free beam (4.123), write out the corresponding energy norm related to the
equilibrium problem for this restricted beam.
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Chapter 5

Applications of Functional Analysis in
Mechanics

In Chapter 1 we studied the calculus of variations. As a rule each variational

problem was assumed to have a solution. But Perron’s paradox (page 17)

suggests a great deal of caution when assuming the existence of an object

while investigating its properties. The study of variational problems from

the viewpoint of solvability is difficult, even for those problems that seem

well posed. In the nonlinear elasticity of bodies under dead external load,

for example, the existence of a minimizer of total potential energy is in

general not shown. Fortunately, a class of variational problems corresponds

to linear boundary value problems for which the problem of existence is

solved completely. We shall use mechanical terminology for these problems;

in fact, however, some are quite general and can describe objects from fields

such as electrodynamics and biology.

5.1 Some Mechanics Problems from the Standpoint of the

Calculus of Variations; the Virtual Work Principle

We have considered the equilibrium problem for a membrane. Historically,

the membrane was investigated via Poisson’s equation

−∆u(x, y) = f(x, y) (5.1)

on a two-dimensional bounded domain Ω. If the edge ∂Ω is fixed (Fig. 4.3)

in a form described by a given function a(s), then the boundary condition

u
∣∣
∂Ω

= a(s) (5.2)

and (5.1) constitute a boundary value problem. Using this, we can derive

the total potential energy functional whose minimum points are given by

(5.1)–(5.2). Let D be a set of test functions that are infinitely differentiable

359
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on Ω and zero in some neighborhood of ∂Ω. In what follows we consider

only simple domains (as typically encountered in applications), so let Ω be

bounded with ∂Ω piecewise smooth. Multiply (5.1) by ϕ(x, y) ∈ D and

integrate over Ω:

−
∫∫

Ω

∆u(x, y)ϕ(x, y) dx dy =

∫∫
Ω

f(x, y)ϕ(x, y) dx dy. (5.3)

Integration by parts on the left gives∫∫
Ω

(
∂u

∂x

∂ϕ

∂x
+
∂u

∂y

∂ϕ

∂y

)
dx dy =

∫∫
Ω

f(x, y)ϕ(x, y) dx dy (5.4)

since ϕ(x, y) ≡ 0 for (x, y) ∈ ∂Ω. If we wish to regard ϕ(x, y) in (5.4) as a

variation of the solution u(x, y), then the left side is the first variation of

the integral

1

2

∫∫
Ω

[(
∂u

∂x

)2

+

(
∂u

∂y

)2
]
dx dy.

This is the strain energy of the membrane, aside from a constant factor

that characterizes the membrane and which may be regarded as absorbed

into the given load f as a type of normalization factor. The integral on the

right in (5.4) is linear in ϕ and can be considered as the first variation of

the functional ∫∫
Ω

f(x, y)u(x, y) dx dy,

which is the work of external forces on the displacement field u(x, y). Hence

(5.4) states that the first variation of the functional

1

2

∫∫
Ω

[(
∂u

∂x

)2

+

(
∂u

∂y

)2
]
dx dy −

∫∫
Ω

f(x, y)u(x, y) dx dy

is zero. This functional, encountered in Chapter 1, expresses the total en-

ergy of the membrane: i.e., the sum of the internal energy and the potential

energy due to the work of external forces. An extremal describes the equi-

librium state of the membrane. Lagrange’s theorem in classical mechanics

states that the total potential energy of a particle system is minimized in a

stable equilibrium state of the system. Of course, the membrane does not

obey classical mechanics: it is an object of a different nature. However,

Lagrange’s theorem extends to this case.
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We may replace (5.2) by other boundary conditions known in membrane

theory, for example Neumann’s condition

∂u

∂n

∣∣∣∣
∂Ω

= g(s). (5.5)

This time, in repeating the steps that lead to (5.4), we need not take ϕ ∈
D. Equation (5.3) still holds if ϕ is only sufficiently smooth, but Green’s

formula yields an additional term:∫∫
Ω

(
∂u

∂x

∂ϕ

∂x
+
∂u

∂y

∂ϕ

∂y

)
dx dy −

∫
∂Ω

∂u

∂n
ϕ(s) ds =

∫∫
Ω

f(x, y)ϕ(x, y) dx dy,

(5.6)

where ϕ(s) denotes the values of ϕ(x, y) on ∂Ω. By (5.5) we have∫∫
Ω

(
∂u

∂x

∂ϕ

∂x
+
∂u

∂y

∂ϕ

∂y

)
dx dy =

∫∫
Ω

f(x, y)ϕ(x, y) dx dy

+

∫
∂Ω

g(s)ϕ(s) ds. (5.7)

The last integral in (5.7) looks like the work of the force g(s) acting through

a displacement ϕ on the membrane edge, so Neumann’s condition actually

specifies a force distribution g(s) over the edge.

In this problem statement we neglect inertia; we regard the membrane

as a body having zero mass. If external forces that are not self-balanced

act on a body free from geometrical restrictions, mechanical considerations

show that the equilibrium problem is not solvable: the body should move

as a whole and, having zero mass, should undergo infinite acceleration. So

the self-balance condition is necessary for such problems. In the present

instance the only kind of free motion as a whole is u(x, y) = c, as the inner

energy is constant only for such displacements. By linearity we can put

u(x, y) = 1. Therefore on this displacement the work of external forces

must be zero: ∫∫
Ω

f(x, y) dx dy +

∫
∂Ω

g(s) ds = 0. (5.8)

If the external forces act only on the edge so that f(x, y) = 0, then∫
∂Ω

g(s) ds = 0. (5.9)

This is the well-known solvability condition for the Neumann problem. Me-

chanically, the external forces must be self-balanced, which is expressed by

equation (5.8).
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In classical mechanics the self-balance condition consists of six equa-

tions: the three projections each of the resultant force and moment onto

the frame axes are all zero. The membrane model fails to satisfy all the

conditions, which is typical of the approximate particular models of con-

tinuum mechanics. In linear elasticity the self-balance condition appears

exactly as in classical mechanics.

Equation (5.7) can be taken as a formulation of the virtual work prin-

ciple. The left and right sides can be called the work of internal forces and

the work of external forces, respectively. Then (5.7) states a fundamental

physical law called the virtual work principle, which is

On any admissible displacements, the total work of internal and

external forces of the system in equilibrium is zero.

In this case, the equation can be obtained as the first variation of the

total potential energy functional. Hence we can start with the principle

of minimum potential energy. Although this principle cannot be used for

body-force systems where the potential of external forces does not exist,

the virtual work principle remains valid. Continuum mechanics treats the

virtual work principle as independent and relates it to the variational princi-

ples of mechanics. Thus the variational part of mechanics contains not only

problems of minimizing certain functionals, but also the theory encompass-

ing equations which, like (5.7), contain admissible fields of displacements,

strains, or stresses. The portion of continuum mechanics known as “the

variational problems of mechanics” is not completely a subset of the classi-

cal calculus of variations. A mechanicist may regard as variational anything

that involves integro-differential equations containing some virtual variables

and from which, using the main lemma of the calculus of variations, it is

possible to derive relations such as equilibrium or constitutive equations.

Finally, note that in deriving (5.7) we used a set of smooth admissible

variations ϕ of a solution; we do so even if we seek a solution with singu-

larities. If we begin with the principle of minimum potential energy, it is

reasonable to consider all the functions for which the terms of the principle

make sense; moreover, there is no reason why admissible variations should

be smoother than the solution. This remark will lead us to the generalized

setup of some boundary value problems in mechanics.

Many problems involving elastic objects (strings, beams, shells, two- and

three-dimensional elastic bodies, etc.) can be described by a total poten-

tial energy functional whose first variation yields the equilibrium equations

for the object. It has the structure E − V where E is the strain energy
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and V is the work of external forces.1 Minimization of the energy func-

tional entails setting its first variation to zero on all admissible variations

of the corresponding solutions. The resulting integral equations, express-

ing the equality of the sum of the work of internal and external forces on

admissible variations to zero, also express the virtual work principle for the

corresponding problems. It is more generally applicable than the minimum

potential energy principle.

We now list the total potential energy E − V and the equation of the

virtual work principle for some objects of interest.

1. Rod (Fig. 4.1):

E − V =
1

2

∫ l

0

ES(x)u′2(x) dx −
∫ l

0

f(x)u(x) dx − Fu(l) (5.10)

and the equation of the virtual work principle is∫ l

0

ES(x)u′(x)v′(x) dx =

∫ l

0

f(x)v(x) dx + Fv(l), (5.11)

where f(x) is a force tangential to the axis, F is a stretching force at the

free end, and u is the tangential displacement of points on the neutral axis.

2. Beam (Fig. 4.2):

E − V =
1

2

∫ l

0

EI(x)w′′2(x) dx−
∫ l

0

f(x)w(x) dx − Fw(l) (5.12)

and the equation of the virtual work principle is∫ l

0

EI(x)w′′(x)v′′(x) dx =

∫ l

0

f(x)v(x) dx + Fv(l), (5.13)

where w is the transverse displacement of the neutral axis, f(x) is the

transverse distributed force, and F is the transverse force on the end.

3. Plate (Fig. 4.4):

E − V =
D

2

∫∫
Ω

(
w2
xx + w2

yy + 2νwxxwyy + 2(1− ν)w2
xy

)
dΩ−

∫∫
Ω

Fw dΩ

(5.14)

1In the case of potential forces V is the potential of the forces and, by analogy with
elementary physics terminology for gravitational forces, the expression −V can be called
the potential energy of the force field.
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and the equation of the virtual work principle is

D

∫∫
Ω

(wxxvxx + wyyvyy + ν (wxxvyy + wyyvxx) + 2(1− ν)wxyvxy) dΩ

=

∫∫
Ω

Fv dΩ, (5.15)

where D is the plate rigidity, ν is Poisson’s ratio, and w = w(x, y) is the

deflection at point (x, y) of the domain S occupied by the mid-surface.

4. Three-dimensional linearly elastic body:

E−V =
1

2

∫∫∫
V

cijklekl(u)eij(u) dV −
∫∫∫

V

F·u dV−
∫∫

∂V1

f ·u dS, (5.16)

and the equation of the virtual work principle is∫∫∫
V

cijklekl(u)eij(v) dV =

∫∫∫
V

F · v dV +

∫∫
∂V1

f · v dS, (5.17)

where F represents volume external forces and f forces acting over some

portion of the boundary ∂V1.

Relations (5.10)–(5.17) will permit us to study generalized solutions of

these mechanics problems.

5.2 Generalized Solution of the Equilibrium Problem for a

Clamped Rod with Springs

To discuss generalized setups while avoiding too much repetition, we con-

sider an equilibrium problem for a rod with a longitudinal distributed load

f = f(x) (not shown in Fig. 5.1) and n point forces Fk acting at the points

ak. In addition, two identical springs having rigidity k are attached at the

point c at angles ϕ.

This problem is normally solved by splitting the rod into sections at the

points ak and c. We take the variational approach. The total potential

energy of the system is

E − V =
1

2

∫ l

0

ES(x)u′2(x) dx + 2 · 1
2
kz2 −

∫ l

0

f(x)u(x) dx −
n∑
k=1

Fku(ak),

where 1
2kz

2 is the elastic energy of a spring suffering extension z. The
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Fig. 5.1 Coupled system of rod and springs under load.

compatibility condition for small deformation is z cosϕ = u(c), hence

E −V =
1

2

∫ l

0

ES(x)u′2(x) dx+
k

cosϕ
u2(c)−

∫ l

0

f(x)u(x) dx−
n∑
k=1

Fku(ak).

(5.18)

The left end of the rod is clamped:

u(0) = 0. (5.19)

The force conditions will follow from the variational setup as natural con-

ditions. Setting the first variation of E − V to zero, we get∫ l

0

ES(x)u′(x)v′(x) dx+2
k

cosϕ
u(c)v(c)−

∫ l

0

f(x)v(x) dx−
n∑
k=1

Fkv(ak) = 0,

(5.20)

where v is an admissible displacement satisfying v(0) = 0. To construct the

energy space for the system, we start with the energy inner product

(u, v)S =

∫ l

0

ES(x)u′(x)v′(x) dx + 2
k

cosϕ
u(c)v(c) (5.21)

defined on the subset of C2(0, l) consisting of functions that vanish at x = 0.

Equilibrium equation (5.20) becomes

(u, v)S =W (v), (5.22)

where

W (v) =

∫ l

0

f(x)v(x) dx +

n∑
k=1

Fkv(ak) (5.23)
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is the work of the load on an admissible displacement v. The completion

of this set with respect to the norm induced by the inner product (·, ·)S
is the energy space ES . By (4.105) we have W 1,1(0, l) ↪→ C(0, l). Since

W 1,2(0, l) ↪→ C(0, l), the norms ‖·‖S and ‖·‖W 1,2(0,l) are equivalent on ES .
We define a generalized solution of the equilibrium problem as a function

u ∈ ES satisfying (5.22) for all v ∈ ES . This is meaningful provided each

term in (5.22) has meaning in ES . Suppose f ∈ L(0, l). Clearly W is a

linear functional in ES . It is also bounded, because

|W (v)| =
∣∣∣∣
∫ l

0

f(x)v(x) dx +
n∑
k=1

Fkv(ak)

∣∣∣∣
≤
(∫ l

0

|f(x)| dx +

n∑
k=1

|Fk|
)

max
x∈[0,l]

|v(x)|

≤ c ‖v‖S
with a constant c independent of v ∈ ES . Applying Theorem 4.100 in ES
to W (v), we ascertain the existence of a unique u0 ∈ ES such that (5.22)

becomes

(u, v)S = (u0, v)S (5.24)

for all v ∈ ES . The unique solution is u = u0 ∈ ES. We have proved exis-

tence and uniqueness of a generalized solution for the rod–spring system.

The reader may ask why such complicated analysis is warranted for a

problem that could be solved by splitting into subdomains. First, it is

advantageous to demonstrate the variational approach on an easy example.

Second, the form (5.22) of the equilibrium equation is precisely the form

used to introduce the finite element method for this system. Convergence

is established using (5.22) in the energy space ES .
Finally, let us discuss one peculiar detail. If we try to solve the rod–

spring equilibrium problem as a boundary value problem for the equation

on the whole interval (0, l), we obtain the relatively simple equation

(ES(x)u′(x))′ = f(x) +

n∑
k=1

Fkδ(x− ak), (5.25)

where δ(x) is the Dirac delta. Clearly this equation cannot have a classical

solution with two continuous derivatives. Nonetheless, engineers have long

dealt with δ-functions as point forces and have found practical ways to

overcome the difficulties inherent in their use.
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5.3 Equilibrium Problem for a Clamped Membrane and its

Generalized Solution

We saw that the equilibrium of a membrane with fixed edge can be formu-

lated as the problem of minimizing the functional

EM (u) =
1

2

∫∫
Ω

[(
∂u

∂x

)2

+

(
∂u

∂y

)2
]
dx dy −

∫∫
Ω

f(x, y)u(x, y) dx dy.

(5.26)

Suppose

u
∣∣
∂Ω

= 0. (5.27)

In § 4.19 we constructed the Hilbert space EMc with inner product

(u, v)M =

∫∫
Ω

(
∂u

∂x

∂v

∂x
+
∂u

∂y

∂v

∂y

)
dx dy. (5.28)

The first term in (5.26) can be written as

1

2
(u, u)M =

1

2
‖u‖2M . (5.29)

The second term,

W (u) =

∫
Ω

f(x, y)u(x, y) dx dy, (5.30)

is a linear functional in u. If f ∈ Lp(Ω) for some p > 1, then Hölder’s

inequality gives

|W (u)| =
∣∣∣∣
∫∫

Ω

f(x, y)u(x, y) dx dy

∣∣∣∣
≤
(∫∫

Ω

|f(x, y)|p dx dy
)1/p(∫∫

Ω

|u(x, y)|q dx dy
)1/q

with q = p/(p− 1). On the energy space, by equivalence of the norms ‖·‖M
and ‖·‖W 1,2(Ω) and Theorem 4.164, we have

(∫∫
Ω

|u(x, y)|q dx dy
)1/q

≤ m ‖u‖M
so

|W (u)| ≤ m

(∫∫
Ω

|f(x, y)|p dx dy
)1/p

‖u‖M = m1 ‖u‖M .
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Hence W (u) is also continuous. By Theorem 4.100 there is a unique u0 ∈
EMc such that

W (u) = (u, u0)M . (5.31)

So the energy functional for a membrane with clamped edge can be repre-

sented in the energy space as

EM (u) =
1

2
‖u‖2M − (u, u0)M . (5.32)

Let us consider the problem of minimizing EM (u) in EMc.

Theorem 5.1. In the energy space EMc the functional EM (u) attains its

minimum at u = u0, and the minimizer is unique.

Proof. We have

2EM (u) = ‖u‖2M − 2(u, u0)M

= (u, u)M − 2(u, u0)M + (u0, u0)M − (u0, u0)M

= (u− u0, u− u0)M − (u0, u0)M

= ‖u− u0‖2M − ‖u0‖2M

so that

minEM (u) = −1

2
‖u0‖2M .

Uniqueness of the minimizer u0 is evident. �

Let us return to (5.26). The equation for the minimizer coincides with

setting the first variation of EM (u) to zero:∫∫
Ω

(
∂u0
∂x

∂v

∂x
+
∂u0
∂y

∂v

∂y

)
dx dy =

∫∫
Ω

f(x, y)v(x, y) dx dy. (5.33)

It is usually said that (5.33) defines a generalized solution u0 ∈ EMc to

Poisson’s equation ∆u = −f with boundary condition (5.27) if u0 satisfies

(5.33) for any v ∈ EMc. This is often called the energy (or weak) solution.

Note that (5.33) expresses the virtual work principle for a membrane with

clamped edge.
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5.4 Equilibrium of a Free Membrane

For the Neumann problem, the equilibrium equation (virtual work princi-

ple) is (see (5.7))∫∫
Ω

(
∂u

∂x

∂ϕ

∂x
+
∂u

∂y

∂ϕ

∂y

)
dx dy =

∫∫
Ω

f(x, y)ϕ(x, y) dx dy+

∫
∂Ω

g(s)ϕ(s) ds.

(5.34)

The corresponding total potential energy functional is evidently

EM1(u) =
1

2

∫∫
Ω

[(
∂u

∂x

)2

+

(
∂u

∂y

)2
]
dx dy

−
∫∫

Ω

f(x, y)u(x, y) dx dy −
∫
∂Ω

g(s)u(s) ds. (5.35)

Equation (5.34) is then the equality of the first variation of EM1(u) to zero,

as follows from general considerations in the calculus of variations. Again,

we put the equilibrium problem for a membrane with given edge forces g(s)

as a minimization problem for the energy functional EM1(u) on an energy

space. We have the option to use a factor space EMf (see § 4.19), or its

isometric variant where we take the balanced elements satisfying∫∫
Ω

u(x, y) dx dy = 0. (5.36)

On the latter the problem of minimizing the energy is well defined if

f(x, y) ∈ Lp1(Ω), g(s) ∈ Lp2(∂Ω), (5.37)

for some p1, p2 > 1. But on the factor space the energy functional is not

well defined if the forces are not self-balanced with∫∫
Ω

f(x, y) dx dy +

∫
∂Ω

g(s) ds = 0. (5.38)

If (5.38) is not fulfilled, then for different representatives of zero, u(x, y) = c,

the energy functional EM1(u) takes different values, which is impossible

when we seek the minimum of the energy functional. This is a conse-

quence of the fact that in this model we neglect the inertia properties of the

membrane. Thus, considering the equilibrium problem on the factor space

EM1(u), we get an additional necessary condition (5.38) of self-balance for

the external forces. This condition does not arise when we adopt the second

variant of the energy space, because (5.36) is an artificial geometric con-

straint that was absent from the initial problem statement and has been

imposed as an auxiliary restriction. Although we do not need (5.38) when
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considering the problem in this way, we should nonetheless retain it since

it is required by the initial setup.

Under the restriction (5.38) we can consider the equilibrium problem

for a free membrane as the minimization problem for (5.35) on the space

EMf of “usual” functions satisfying (5.36). Condition (5.37) is sufficient

for EM1(u) to be well defined on EMf . We need only show that the func-

tional representing the work of external forces is well defined in this space.

Hölder’s inequality gives

|W (u)| =
∣∣∣∣
∫∫

Ω

f(x, y)u(x, y) dx dy +

∫
∂Ω

g(s)u(s) ds

∣∣∣∣
≤
(∫∫

Ω

|f(x, y)|p1 dΩ
)1/p1 (∫∫

Ω

|u(x, y)|q1 dΩ
)1/q1

+

(∫
∂Ω

|g(s)|p2 ds
)1/p2 (∫

∂Ω

|u(s)|q2 ds
)1/q2

≤ m
(
‖f‖Lp1(Ω) + ‖g‖Lp2(∂Ω)

)
‖u‖M (5.39)

where q1 = p1/(p1 − 1), q2 = p2/(p2 − 1), and ‖·‖M is defined by (5.28). In

the last transformation we used imbedding Theorem 4.164. Thus W (u) is

well defined on EMf . Linearity of W (u) is evident, and (5.39) guarantees

continuity. Hence by Theorem 4.100

W (u) = (u, u0)M

where u0 ∈ EMf is uniquely defined by the external forces f, g. Hence the

minimization problem for EM1(u) can be reformulated as the minimization

problem for

EM1(u) =
1

2
‖u‖2M − (u, u0)M . (5.40)

There is formally no difference between the functionals (5.40) and (5.32),

so we merely reformulate the results of § 5.3 for this problem as

Theorem 5.2. Let (5.37) and (5.38) hold. In the energy space EMf the

functional EM1(u) attains its minimum at u = u0, and the minimizer is

unique.

The minimizer is a generalized solution of the equilibrium problem for a

membrane with free edge. All the linear equilibrium problems we consider

will reduce to minimization problems for quadratic functionals of the form

E(u) =
1

2
‖u‖2 −W (u) (5.41)
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where W (u) is a linear continuous functional. The proof of Theorem 5.1

does not depend on the nature of the space in which it is done, so we can

immediately formulate

Theorem 5.3. Let W (u) be a linear continuous functional acting in a

Hilbert space H. Then the minimization problem for (5.41) has a unique

solution u0 ∈ H defined by the Riesz representation theorem: W (u) =

(u, u0).

Applications of this theorem appear in the next section.

5.5 Some Other Equilibrium Problems of Linear Mechanics

The mechanics problems for which we presented the energy functional and

the virtual work principle in § 5.1 ((5.10)–(5.17)) all share the form (5.41)

where the linear functional W (u) is the potential of external forces (or,

what amounts to the same thing, the work of external forces) on the dis-

placement field u. Theorem 5.3 asserts the generalized solvability of a cor-

responding boundary value problem and the uniqueness of its generalized

solution if W (u) is continuous. To study continuity of W (u), we shall use

Sobolev’s imbedding theorem and the fact that the corresponding energy

space is a subspace of a Sobolev space W l,2(Ω). The results are analogous

to Theorem 5.2 and are left to the reader. We show only the restrictions

on external forces to provide continuity of the potential of external forces

as a functional in the energy space.

Rod

See (5.10) and (5.11). Here u(0) = 0 and

W (u) =

∫ l

0

f(x)u(x) dx + Fu(l). (5.42)

In this case u(x) is continuous on [0, l] (i.e., each representative Cauchy

sequence for an element of an energy space converges to a continuous func-

tion) and so if

f(x) ∈ L(0, l) (5.43)
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then

|W (u)| =
∣∣∣∣∣
∫ l

0

f(x)u(x) dx + Fu(l)

∣∣∣∣∣
≤
(∫ l

0

|f(x)| dx + |F |
)

max
x∈[0,l]

|u(x)|

≤ m

(∫ l

0

|f(x)| dx + |F |
)
‖u‖R

where

‖u‖R =

(∫ l

0

ES(x)u′2(x) dx

)1/2

.

Beam

See (5.12) and (5.13). Now we can consider various boundary conditions.

For clamped edges we formulate

w(0) = 0 = w′(0), w(l) = 0 = w′(l), (5.44)

and the energy space for a bent beam with the norm

‖w‖B =

(∫ l

0

EI(x)w′′2(x) dx

)1/2

(5.45)

is a subspace of W 2,2(0, l) in which functions and their derivatives are

continuous on [0, l] and the corresponding operator of imbedding into the

space of continuously differentiable functions is continuous. A sufficient

condition for the potential of external forces

W (w) =

∫ l

0

f(x)w(x) dx + Fw(l)

is of the same type as for a stretched rod,

f(x) ∈ L(0, l), (5.46)

and the proof is the same. However, in this case it is possible to include

in the potential expression, and hence in the setup, the point external

torques and transverse forces that are common in the strength of materials

(represented by δ-functions). The proof is practically the same.

As to other variants of boundary conditions for a bent beam, the differ-

ence comes when the beam can move as a rigid whole. Then the situation
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is similar to that for a free membrane. A rigid motion of a free beam (i.e., a

function w for which ‖w‖B = 0) has the form w = a+ bx. Different bound-

ary conditions can restrict the constants a and b (above they are zero). If

the beam can move as a rigid body, the self-balance condition on external

forces appears:

∫ l

0

f(x)(a + bx) dx+ F (a+ bl) = 0 (5.47)

for all admissible a, b. If the only geometrical boundary constraint is w(0) =

0, then

∫ l

0

xf(x) dx + lF = 0. (5.48)

Plate

It is possible to consider various boundary conditions. When the edge of

the plate is clamped,

w
∣∣
∂Ω

= 0 =
∂w

∂n

∣∣∣∣
∂Ω

. (5.49)

The norm of the corresponding energy space EPc, which is

‖w‖P =

(∫∫
Ω

(
w2
xx + w2

yy + 2νwxxwyy + 2(1− ν)w2
xy

)
dΩ

)1/2

(5.50)

as shown in Chapter 4, is equivalent to the norm of W 2,2(Ω) when Ω is

compact in R2. In this case EPc imbeds continuously into C(Ω). When

both distributed and lumped forces are present, the potential of external

forces

W (w) =

∫∫
Ω

F (x, y)w(x, y) dΩ +

N∑
k=1

Fkw(xk, yk)

is a linear continuous functional in EPc provided that

F (x, y) ∈ L(Ω). (5.51)



September 30, 2011 8:42 World Scientific Book - 9in x 6in aea

374 Advanced Engineering Analysis

Indeed,

|W (w)| =
∣∣∣∣∣
∫∫

Ω

F (x, y)w(x, y) dΩ +
N∑
k=1

Fkw(xk, yk)

∣∣∣∣∣
≤
(∫∫

Ω

|F (x, y)| dx dy +
N∑
k=1

|Fk|
)

max
x,y∈Ω

w(x, y)

≤ m

(∫∫
Ω

|F (x, y)| dx dy +
N∑
k=1

|Fk|
)
‖w‖P

= m1 ‖w‖P .

In this case there is a unique generalized solution to the equilibrium problem

for the plate with clamped edge.

If the plate edge is free from geometrical constraints, there appear mo-

tions of the plate as a rigid whole that satisfy

‖w‖P = 0. (5.52)

The corresponding rigid motions are

w = ax+ by + c (5.53)

where a, b, c are constants. As in the theory of the free membrane, the

condition of self-balance of the external forces appears:

W (ax+ by+ c) =

∫∫
Ω

F (x, y)(ax+ by+ c) dΩ+

N∑
k=1

Fk(axk + byk + c) = 0.

(5.54)

This holds for all a, b, c, so it represents three equations for the external

forces that express equality to zero of the resultant force and resultant

moments with respect to the coordinate axes (the reader should write them

out and verify this). Condition (5.54) must be added to (5.51) as a necessary

condition for solvability of the problem.

If there are other geometrical constraints on a plate, then the appearance

of the self-balance condition depends on whether the constraints leave some

freedom of movement. Fixation at three noncollinear points will prevent

rigid motions. Rigid motions do arise if only a straight segment in the

mid-surface is fixed, since the plate can rotate about this axis. In this case

a self-balance condition appears.
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Elastic body

When the boundary of the body is clamped, the energy norm

‖u‖E =

(∫∫∫
V

cijklekl(u)eij(u) dV

)1/2

(5.55)

is equivalent to the norm of the Sobolev space
(
W 1,2(V )

)k
provided V

is compact in Rk, k = 2, 3. In the two-dimensional case the imbedding

result is exactly as for the membrane, and thus a sufficient condition for

generalized solvability is that the Cartesian components of the vector of

external forces belong to some Lp(S) with p > 1. Mathematical physicists

prefer “if and only if” conditions for solvability and have introduced the so-

called negative Sobolev spaces. In terms of these the forces are completely

characterized; but in a practical sense this condition gives us no more than

if we simply say “the corresponding functional must be continuous in the

space,” so sufficient conditions are preferable in practice.

For a three-dimensional elastic body, the imbedding of W 1,2(V ), when

V is compact, is a continuous operator to Lp(V ), 1 ≤ p ≤ 6, and to

Lq(S), 1 ≤ q ≤ 4, where S is a piecewise smooth surface in Ω. Conditions

sufficient for generalized solvability of the equilibrium problem for a body

with clamped boundary are

F ∈ (Lp(V ))
3
, p ≥ 6/5,

f ∈ (Lq(∂V ))
3
, q ≥ 4/3.

Indeed

|W (u)| =
∣∣∣∣
∫∫∫

V

F · u dV +

∫∫
∂V

f · u dS
∣∣∣∣

≤
(∫∫∫

V

|F|6/5 dV
)5/6(∫∫∫

V

|u|6 dV
)1/6

+

(∫∫
∂V

|f |4/3 dS
)3/4 (∫∫

∂V

|u|4 dS
)1/4

≤ m

[(∫∫∫
V

|F|6/5 dV
)5/6

+

(∫∫
∂V

|f |4/3 dS
)3/4

]
‖u‖E

where we have used Hölder’s inequality and the equivalence of the energy

and Sobolev norms.

When we consider the equilibrium of a body free from geometrical con-

straints, rigid-body motions arise:

u = a+ b× r (5.56)
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(recall that these satisfy ‖u‖E = 0), which imply that for a body free of

geometrical constraints the forces must be self-balanced with∫∫∫
V

F · (a+ b× r) dV +

∫∫
∂V1

f · (a+ b× r) dS = 0. (5.57)

This equation must hold for all a and b, giving six equations which are

precisely the conditions of self-balance in classical mechanics: the resultant

force and the resultant moments vanish.

In the case of mixed boundary conditions, if the body can move as a

rigid whole, we must retain a subset of the self-balance conditions for the

load. If the body can rotate about a fixed point, for example, the resultant

moment with respect to the fixed point must vanish.

The one-dimensional problems and the plate problem allow us to for-

mulate boundary conditions at a point, and the corresponding boundary

value problems in their generalized setups are well posed. Note that this is

not the case for the membrane or elastic body.

When the problem involves elastic support such as a Winkler founda-

tion, or some interaction of elements with different models as would be the

case with a three-dimensional elastic body coupled to a plate, the varia-

tional statement includes the sum of internal energies of all system ele-

ments. It is necessary to add some geometrical conditions of compatibility

between the displacement fields of the bodies involved. The energy norm

must contain all the internal energy functionals for the bodies (nonneg-

ative quadratic terms) and sometimes the energy space is quite strange

from the standpoint of classical Sobolev space theory. For such “coupled”

models, we impose explicit geometrical constraints on interaction of the

coupled elements, but not conditions for the stress terms: stress conditions

on the interface are derived somewhat like natural boundary conditions.

This prevents crude errors that commonly appear in the setup of similar

problems, i.e., when someone tries to write down force balance equations for

the interface elements in cases where the models approximate real stresses

differently.

Nonhomogeneous geometrical boundary conditions

Homogeneous boundary conditions of the form u|∂Ω = 0 provide linearity

of the corresponding energy space. There are two ways to approach

u
∣∣
∂Ω

= a(s) (5.58)
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where a(s) is given. One is to minimize over a closed cone of all elements

satisfying (5.58), as is done in variational inequalities. The other is tradi-

tional in mathematical physics: assume the existence of an element with

some differential properties that satisfies (5.58), and seek a solution as a

sum of this element and another element subject to homogeneous boundary

conditions. The treatment of the membrane is typical. First we suppose

there is an element u∗(x, y) ∈W 1,2(Ω) (as usual we speak of functions with

the understanding that such elements actually belong to the completion

of the set of continuously differentiable functions) and seek the minimum

point u of the energy functional

EM (u) =
1

2

∫∫
Ω

[(
∂u

∂x

)2

+

(
∂u

∂y

)2
]
dx dy −

∫∫
Ω

f(x, y)u(x, y) dx dy

in the form

u(x, y) = u∗(x, y) + v(x, y) (5.59)

where v(x, y) ∈ EMc. So v satisfies the homogeneous condition v|∂Ω = 0.

Redenoting v by u, we get the following variational problem in EMc:

1

2

∫∫
Ω

[(
∂(u+ u∗)

∂x

)2

+

(
∂(u+ u∗)

∂y

)2
]
dx dy

−
∫∫

Ω

f(x, y)[u(x, y) + u∗(x, y)] dx dy → min .

Setting the first variation to zero, we get

∫∫
Ω

(
∂u

∂x

∂ϕ

∂x
+
∂u

∂y

∂ϕ

∂y

)
dx dy =

∫∫
Ω

f(x, y)ϕ(x, y) dx dy

−
∫∫

Ω

(
∂u∗

∂x

∂ϕ

∂x
+
∂u∗

∂y

∂ϕ

∂y

)
dx dy.

(5.60)

A generalized solution of the equilibrium problem for a membrane with

given edge displacement is an element u(x, y) ∈ EMc that satisfies (5.60)

for any ϕ(x, y) ∈ EMc. The first term on the right appeared in the problem

with the homogeneous boundary condition. The second term is a bounded
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linear functional in ϕ because∣∣∣∣
∫∫

Ω

(
∂u∗

∂x

∂ϕ

∂x
+
∂u∗

∂y

∂ϕ

∂y

)
dx dy

∣∣∣∣ ≤
∥∥∥∥∂u∗∂x

∥∥∥∥
L2(Ω)

∥∥∥∥∂ϕ∂x
∥∥∥∥
L2(Ω)

+

∥∥∥∥∂u∗∂y

∥∥∥∥
L2(Ω)

∥∥∥∥∂ϕ∂y
∥∥∥∥
L2(Ω)

≤ m ‖u∗‖W 1,2(Ω) ‖ϕ‖M .

By Theorem 5.3, there is a unique generalized solution. The following

question remains. Redenote the homogeneous part of the solution by u1.

Suppose we choose another fixed function u∗∗ that takes the same boundary

values, and find the homogeneous part of the solution denoted u2. Do we

have uniqueness in the sense that u1+u
∗ = u2+u

∗∗? Denote u21 = u2−u1
and subtract the equation for u1 from the equation for u2 with the same

admissible variation ϕ. We have∫∫
Ω

(
∂u21
∂x

∂ϕ

∂x
+
∂u21
∂y

∂ϕ

∂y

)
dx dy

=

∫∫
Ω

(
∂(u∗∗ − u∗)

∂x

∂ϕ

∂x
+
∂(u∗∗ − u∗)

∂y

∂ϕ

∂y

)
dx dy.

But the difference u∗∗ − u∗ belongs to EMc (why?), and since ϕ is an arbi-

trary element of EMc we have u21 = u∗∗ − u∗. This completes the proof.

The general theory of Sobolev spaces is concerned with trace theorems.

These deal with the question of which conditions must be stipulated on the

boundary values in order to insure the existence of an element of a Sobolev

space taking them as boundary conditions. The theorems require some

smoothness of the domain boundary and are not convenient for practical

verification; however, they provide “if and only if” conditions for existence

of a continuation of the boundary functions as a function inside the domain,

in such a way that the corresponding operator of continuation is continuous.

Hence there arise Sobolev spaces W l,p(Ω) with fractional parameters l.

Finally, we note that the study of generalized solutions is usually the

first step in the study of the smoothness properties of solutions (see [27]).

The birth of functional analysis was signaled when in this way Hilbert jus-

tified the Dirichlet principle (i.e., the same principle of minimum potential

energy) for the solution of Laplace’s equation with given boundary data,

and showed that there exists an analytical solution of the latter under some

restrictions on the given boundary function and the boundary itself. How-

ever, there is an important case for which practitioners find precisely the

generalized solution. This is discussed in § 5.6.
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5.6 The Ritz and Bubnov–Galerkin Methods

All problems in the linear mechanics of solids that we wish to consider have

the form

E(u) =
1

2
‖u‖2 −W (u) → min

H
(5.61)

where H is a Hilbert (energy) space and W (u) is a linear continuous func-

tional on H . By Theorem 4.100 this reduces to the problem

E(u) =
1

2
‖u‖2 − (u, u0) → min

H
(5.62)

with a given u0 ∈ H . At first glance (5.62) seems trivial: the solution is

u0. However, u0 is determined only theoretically; the term (u, u0) stands

in place of a functional W , and the role of (5.62) is simply to clarify some

intermediate steps.

Ritz was the first to think, in practical terms, of the possibility of finding

a minimizer, not on the whole space H but on some of its subspaces. In

Ritz’s time all calculations were done manually, so it was essential to find

methods requiring as few steps as possible. Thus it was necessary (and

still is, despite the capabilities of computers) to find a subspace having

minimal dimension but capable of yielding a good approximation.2 The

finite dimensional subspace was constructed by the choice of basis elements

e1, e2, . . . , en. They should be linearly independent which, according to

linear algebra, means that the Gram determinant∣∣∣∣∣∣∣∣∣
(e1, e1) (e1, e2) · · · (e1, en)

(e2, e1) (e2, e2) · · · (e2, en)
...

...
. . .

...

(en, e1) (en, e2) · · · (en, en)

∣∣∣∣∣∣∣∣∣
�= 0. (5.63)

We also assume the set e1, e2, . . . , en, . . . is complete in H ; i.e., any element

of H can be approximated to within given accuracy by a finite linear com-

bination of elements from the set. Denote by Hn the space spanned by

2The approximate models of mechanics, like the theories of shells and plates, aims to
reduce the full dimensionality of the problem. They reduce the dimensionality of the
space coordinates for thin-walled structures from three to two dimensions by introducing
some hypotheses on the form of deformation or the order of some strain components.
The Ritz method also does this, but more directly: it reduces the possible forms of
deformation of a body to forms expected to approximate the real ones more or less
accurately.
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e1, e2, . . . , en. We call

E(u) =
1

2
‖u‖2 − (u, u0) → min

Hn

(5.64)

the Ritz method for the solution of (5.62).

Let us denote the minimizer of the problem by

un =

n∑
k=1

ckek (5.65)

where the ck are constants. The equality to zero of the first variation of

this functional for all admissible variations v ∈ Hn is

(un, v)− (u0, v) = 0. (5.66)

Since e1, e2, . . . , en is a basis of Hn, the last equation is equivalent to the n

simultaneous equations(
n∑
k=1

ckek, em

)
= (u0, em), m = 1, . . . , n. (5.67)

called the Ritz system of the nth approximation step. The system can be

rewritten as

(e1, e1)c1 + (e2, e1)c2 + · · ·+ (en, e1)cn =W (e1),

(e1, e2)c1 + (e2, e2)c2 + · · ·+ (en, e2)cn =W (e2),

...

(e1, en)c1 + (e2, en)c2 + · · ·+ (en, en)cn =W (en). (5.68)

On the right side of (5.67) we have some given numbers. It is necessary to

find the unknown ck.

Theorem 5.4. The system of simultaneous equations of the nth approxima-

tion has a unique solution un =
∑n

k=1 ckek. The sequence {un} converges

strongly to the solution of the problem (5.62).

Proof. The principal determinant of this system is the transposed Gram

determinant. Hence by (5.63) the system (5.68) has a unique solution. Let

us return to (5.66), which we rewrite as

(un − u0, v) = 0 for all v ∈ Hn.

This means un−u0 is orthogonal to Hn, i.e., un is the orthogonal projection

of u0 onto Hn. Besides, it is easily seen from (5.67) that if e1, . . . , en is
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an orthonormal basis of Hn, then (5.67) defines the Fourier coefficients

ck = (u0, ek) of the solution u0. Hence by Bessel’s inequality

‖un‖ ≤ ‖u0‖ .

Even if e1, . . . , en is not an orthonormal basis of Hn, we can still construct

an equivalent orthonormal basis of Hn which consequently defines an or-

thonormal basis of H . Thus the Fourier expansion of u0 lies in the space

spanned by this basis, and the Ritz approximation un coincides with the

first n terms of that expansion. By the general Fourier theory, {un} con-

verges strongly to u0 in H . �

We have noted that mechanics problems with free boundaries may be

treated theoretically in factor spaces and in spaces of balanced functions.

For numerical calculation by Ritz’s method, only the balanced function

spaces are appropriate. Were we to work in the corresponding factor

spaces, the solution would contain the same undetermined constants of

rigid motions, hence the corresponding determinant would be zero. Be-

cause of rounding errors and other numerical uncertainties, the system of

Ritz’s method (and any other numerical method) can lose the compatibility

present in the initial setup. These issues do not occur with the energy space

of balanced functions.

Ritz’s method is the basis for various versions of the finite element

methods. We should also note that the equations of Ritz method could

be obtained from (5.66), which are not so elementary for certain problems

where we cannot practically represent the work functional as an inner prod-

uct. In this case the n elements v that define the linear algebraic system

need not be ek; they could be any other n linearly independent elements of

the space which, for all n, constitute a complete system. This constitutes

Galerkin’s method (or the Bubnov–Galerkin method; cf., § 1.4).

5.7 The Hamilton–Ostrogradski Principle and Generalized

Setup of Dynamical Problems in Classical Mechanics

One of the main variational principles of classical dynamics, the Hamilton–

Ostrogradski principle, is not minimal. It asserts that the real motion of a

system of material points, described by generalized coordinates

q(t) = (q1(t), . . . , qn(t))
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and under the influence of potential forces, occurs in such manner that

among all the motions from the initial position q0 taken at time t0 to the

final position q1 taken at time t1, the real motion yields an extremal for

the action functional ∫ t1

t0

L(q, q̇, t) dt. (5.69)

Here an overdot denotes differentiation with respect to time t. The kinetic

potential L is given by

L = K − E (5.70)

where K and E are the kinetic and potential energies, respectively, of the

system. The first variation of (5.69) is

δ

∫ t1

t0

L(q, q̇, t) dt =

∫ t1

t0

n∑
i=1

(
∂L(q, q̇, t)

∂qi
δqi +

∂L(q, q̇, t)

∂q̇i
δq̇i

)
dt (5.71)

where all variations δqi of the generalized coordinates are considered as

independent functions (cf., Chapter 1), and δqi(t0) = 0 = δqi(t1) for

i = 1, 2, . . . , n. Setting the first variation to zero, we obtain Lagrange’s

equations of motion

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0 (5.72)

which form the basis of Lagrangian mechanics. In general the action does

not attain a minimum or maximum. Normally for Lagrange’s equations

(if not in Hamiltonian form) a Cauchy problem is formulated in which

equations (5.72) are supplemented with initial data

q(t0) = q0, q̇(t0) = q01. (5.73)

If we regard (5.71) as a generalized setup for some problem for (5.72),

we see that (5.71) with the boundary conditions q(t0) = q0, q(t1) = q1,

δq(t0) = 0 = δq(t1) is formulated for a boundary value problem. How

do we reformulate (5.71) and requirements on qi(t) to get a generalized

setup for the Cauchy problem (5.72)–(5.73)? We would like to do this

because the same operation will be performed when we transition from

equilibrium problems to dynamical problems in solid mechanics. Let us take

a special class D1 of variations δq(t) that are continuously differentiable

with δq(t1) = 0. Take δq(t) ∈ D1, multiply (5.72) by δqi(t), sum over i,

and integrate over [t0, t1]:∫ t1

t0

n∑
i=1

(
d

dt

∂L

∂q̇i
− ∂L

∂qi

)
δqi dt = 0. (5.74)
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Integration by parts (the operation inverse to the standard one done in the

calculus of variations) gives

∫ t1

t0

n∑
i=1

(
∂L

∂q̇i
δq̇i +

∂L

∂qi
δqi

)
dt−

n∑
i=1

(
∂L

∂q̇i
δqi

) ∣∣∣∣
t=t0

= 0. (5.75)

In the second sum, the terms given at t0, there stand values (5.73) so they

do not contain qi; the integrand involves only qi(t) and q̇i(t) whereas (5.72)

contains second derivatives of qi(t). Thus the requirements for qi(t) in

(5.75) are less than in (5.72), and it is sensible to formulate a generalized

setup of the Cauchy problem using (5.75) because in (5.75) we need not

appoint values for q and q̇ at the instant t1 in advance. It is clear that

from (5.75), using the standard procedure of the calculus of variations, we

can obtain (5.72) if we require (5.75) to hold for any δq(t) ∈ D1.

Next we must define a space in which to seek a solution. Usually the

norm of this space would involve time integration, and this means we cannot

stipulate on a generalized solution the point condition q̇(t0) = q1, it comes

into the definition through the second sum term of (5.75). The first initial

condition q(t0) = q0 could be stipulated separately. We do not formulate

exact statements here because, first of all, the form of the norm depends on

the form of L and the statements would depend on this. More importantly,

the generalized setup is avoided in classical mechanics. We have engaged

in these considerations only to prepare ourselves for the more complex

problems of continuum mechanics, for which all the pertinent details will

be repeated.

5.8 Generalized Setup of Dynamic Problem for Membrane

In continuum mechanics the Hamilton–Ostrogradski principle can also be

put in the form (5.69)–(5.70):

δ

∫ t1

t0

Ldt = 0, L = K − E, (5.76)

where for each of the objects we have considered in equilibrium — beam,

membrane, plate, elastic body — E is the energy functional we used (the

difference between the elastic energy of an object and the potential of ex-

ternal forces acting on the object); here the state of the body at t0 and t1
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must coincide with the real states of the body. The kinetic energy is

K =
1

2

∫
S

ρu̇2 dS (5.77)

where S is the domain taken by the object in a coordinate frame and

ρ is the specific density of the material. For example, in the case of a

three-dimensional elastic body the equation of the Hamilton–Ostrogradski

principle looks like

δ

∫ t1

t0

{
1

2

∫∫∫
V

ρu̇2 dV −
[
1

2

∫∫∫
V

cijklekl(u)eij(u) dV

−
(∫∫∫

V

F · u dV +

∫∫
∂V

f · u dS
)]}

dt = 0

for any admissible variation of displacement vector δu. Here u must satisfy

the geometrical boundary conditions of the problem, δu = δu(x, t) the

homogeneous geometrical boundary conditions and, besides,

δu(x, t0) = 0 = δu(x, t1).

So this formulation corresponds to a boundary value problem as if the values

of u(x, t) are given at t = t0 and t = t1.

Now we would like to derive a generalized setup of the Cauchy problem

for the dynamic problems under consideration. It is clear that the cor-

responding energy spaces should include the terms with integrals for the

kinetic energy and, besides, if we would like to use Hilbert space tools, tem-

poral integration should appear in the norm. The form of the integrand

of the E term in the action remains the same, so we need only consider

the kinetic energy term. We begin with the universal equation that is the

virtual work principle in statics. To simplify the calculations we consider

a membrane; the remaining problems are treated similarly. We combine

the virtual work principle with d’Alembert’s principle, which asserts that

the system of external forces can be balanced by the inertia forces. For a

membrane the work of external forces complemented by the inertia forces

on a virtual displacement v(x, t) is∫∫
Ω

[f(x, t)− ρü(x, t)] v(x, t) dΩ, dΩ = dx dy.

Thus, for a membrane with clamped edge, the virtual work principle gives∫∫
Ω

(
∂u

∂x

∂v

∂x
+
∂u

∂y

∂v

∂y

)
dΩ =

∫∫
Ω

[f(x, t)− ρü(x, t)] v(x, t) dΩ. (5.78)
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Of course we could begin with the differential equations of motion and

obtain the same result step by step, but we take a shorter route. We suppose

all functions are smooth enough to permit the required transformations and

that the virtual displacement v satisfies

v(x, T ) = 0. (5.79)

Let us integrate (5.78) over time and integrate by parts in the last term:∫ T

0

∫∫
Ω

(
∂u

∂x

∂v

∂x
+
∂u

∂y

∂v

∂y

)
dΩ dt =

∫ T

0

∫∫
Ω

f(x, t)v(x, t) dΩ dt

+

∫ T

0

∫∫
Ω

ρu̇(x, t)v̇(x, t) dΩ dt +

∫∫
Ω

ρu∗1(x)v(x, 0) dΩ. (5.80)

Here u∗1(x) is an initial condition for u(x, t):

u(x, t)
∣∣
t=t0

= u∗0(x), u̇(x, t)
∣∣
t=t0

= u∗1(x). (5.81)

We shall use (5.80) for the generalized setup of the dynamic problem for a

membrane. The first step is to define proper function spaces.

An energy space for a clamped membrane (dynamic case)

Without loss of generality we can set t0 = 0 and denote t1 = T . It is clear

that the expression for an inner product in this space should include some

terms from (5.80). Let it be given by

(u, v)[a,b] =

∫ b

a

∫∫
Ω

ρu̇(x, t)v̇(x, t) dΩ dt+

∫ b

a

∫∫
Ω

(
∂u

∂x

∂v

∂x
+
∂u

∂y

∂v

∂y

)
dΩ dt.

(5.82)

The energy space EMc(a, b) is the completion of the set of twice continuously

differentiable functions that satisfy the boundary condition

u|∂Ω = 0, (5.83)

with respect to the norm ‖u‖ = (u, u)
1/2
[a,b]. Denote Qa,b = Ω× [a, b].

Lemma 5.5. EMc(a, b) is a closed subspace of W 1,2(Qa,b). The norm of

EMc(a, b) is equivalent to the norm of W 1,2(Qa,b).

Proof. It suffices to prove the last statement of the lemma for twice

differentiable functions satisfying (5.83). The inequality

(u, u)[a,b] ≤M ‖u‖2W 1,2(Qa,b)
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is evident. Let us show that the reverse inequality with a positive constant

m holds as well. From the Friedrichs inequality it follows that∫ b

a

‖u‖2W 1,2(Ω) dt ≤ m

∫ b

a

∫∫
Ω

[(
∂u

∂x

)2

+

(
∂u

∂y

)2
]
dΩ dt.

Adding to both sides the term∫ b

a

∫∫
Ω

ρu̇2(x, t) dΩ dt

after easy transformations, we get the needed inequality. �

By Sobolev’s imbedding theorem, from Lemma 5.5 it follows that

EMc(a, b) imbeds continuously into L6(Q(a, b)) and at any fixed t ∈ [a, b]

into L4(Ω), so we can pose an initial condition for u to satisfy in the sense

of L4(Ω). However we now demonstrate a general result that shows the

meaning in which we can state the initial condition.

Let H be a separable Hilbert space. Consider the set of functions of the

parameter t ∈ [a, b] that take values in H . In what follows H = L2(Ω). The

theory of such functions is quite similar to the usual theory of functions

in one variable. In particular, we can define the space C(H ; a, b) of all

functions continuous on [a, b] and taking values in H . Its properties are the

same as those of C(a, b): for separable H , it is a separable Banach space

with the norm of an element x(t) given by

‖x‖C(H;a,b) = max
t∈[a,b]

‖x(t)‖H .

For functions with values in H we can introduce the notion of derivative as

x′(t) = lim
∆t→0

x(t+∆t)− x(t)

∆t
,

as well as derivatives of higher order. The definite Riemann integral∫ d

c

x(t) dt

is the limit of Riemann sums that must not depend on the manner in

which [c, d] is partitioned. Analogous to the spaces C(k)(a, b), for functions

with values in H we can introduce spaces C(k)(H ; a, b) (we leave this to

the reader). Finally we can employ an analogue of L2(a, b), denoted by

L2(H ; a, b). This is a Hilbert space with an inner product

(x, y)L2(H;a,b) =

∫ b

a

(x(t), y(t))H dt, (5.84)
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and is the completion of C(H ; a, b) in the norm induced by (5.84). Note

that L2(L2(Ω); a, b) is L2(Qa,b). Quite similarly, we can introduce a Sobolev

space W 1,2(H ; a, b) as the completion of C(1)(H ; a, b) with respect to the

norm induced by

(x, y)W 1,2(H;a,b) =

∫ b

a

{(x(t), y(t))H + (x′(t), y′(t))H} dt. (5.85)

Lemma 5.6. W 1,2(H ; a, b) is continuously imbedded into C(H ; a, b).

The proof mimics that of the similar result for W 1,2(a, b), so we leave it

to the reader. Lemma 5.6 states that we can formulate the initial condition

for u(x, t) at a fixed t in the sense of L2(Ω) since the element of EMc(a, b),

by the form of the norm, belongs to W 1,2(L2(Ω); a, b) as well. However, to

pose the initial boundary value problem we need a stronger result. This

is a particular imbedding theorem in a Sobolev space that is useful for

hyperbolic boundary value problems.

Lemma 5.7. If {un} converges weakly to u0 in EMc(a, b), then it also con-

verges to u0 uniformly with respect to t in the norm of C(L2(Ω); a, b).

Proof. By equivalence on EMc(a, b) of the norm of EMc(a, b) to the norm

of W 1,2(Qa,b), and Sobolev’s imbedding theorem, we state that

‖un‖[a,b] ≤ m (5.86)

and that

‖un − u0‖L2(Qa,b)
→ 0 as n→ ∞. (5.87)

So un converges to u0 strongly in L
2(Qa,b). Now we need a special bound for

an element ofW 1,2(L2(Ω); a, b), into whichW 1,2(Qa,b) imbeds continuously.

We derive the estimate for elements that are smooth in time t, and then

extend to all the elements. Let c ∈ [a, b) and ∆ > 0 be such that c +∆ ∈
[a, b). Let t, s ∈ [c, c+∆]. The simple identity

v(x, t) = v(x, s) +

∫ t

s

∂v(x, θ)

∂θ
dθ

gives∫∫
Ω

v2(x, t) dΩ =

∫∫
Ω

(
v(x, s) +

∫ t

s

∂v(x, θ)

∂θ
dθ

)2

dΩ

≤ 2

∫∫
Ω

v2(x, s) dΩ + 2

∫∫
Ω

(∫ t

s

∂v(x, θ)

∂θ
dθ

)2

dΩ.
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Let us integrate this with respect to s over [c, c+∆]. Dividing through by

∆ we get∫∫
Ω

v2(x, t) dΩ ≤ 2

∆

∫ c+∆

c

∫∫
Ω

v2(x, s) dΩ ds

+
2

∆

∫ c+∆

c

∫∫
Ω

(∫ t

s

1 · ∂v(x, θ)
∂θ

dθ

)2

dΩ ds.

Applying Hölder’s inequality to the last term on the right we have∫∫
Ω

v2(x, t) dΩ ≤ 2

∆

∫
Qc,c+∆

v2(x, s) dΩ ds

+
2

∆

∫ c+∆

c

∫∫
Ω

(∫ t

s

12 dθ

∫ t

s

(
∂v(x, θ)

∂θ

)2

dθ

)
dΩ ds.

Finally, direct integration in the last integral and simple estimates yield∫∫
Ω

v2(x, t) dΩ ≤ 2

∆

∫
Qc,c+∆

v2(x, θ) dΩ dθ +∆

∫
Qc,c+∆

(
∂v(x, θ)

∂θ

)2

dΩ dθ,

(5.88)

which is the basis for the proof of Lemma 5.7. By the completion procedure

(5.88) extends to any element of Ea,b. We write it out for un − u0:∫∫
Ω

(un(x, t)− u0(x, t))
2
dΩ ≤ 2

∆

∫
Qc,c+∆

(un(x, θ)− u0(x, θ))
2
dΩ dθ

+∆

∫
Qc,c+∆

(
∂ (un(x, θ)− u0(x, θ))

∂θ

)2

dΩ dθ. (5.89)

Let ε > 0 be an arbitrarily small positive number. To prove the lemma it

is enough to find a number N such that the right side of (5.89) is less than

ε for any t ∈ [c, c+∆]. Let us put ∆ = ε/2m where m is the constant from

(5.86). Then the last integral is less than ε/2. By (5.87) we can find N

such that

2

∆

∫
Qc,c+∆

(un(x, t)− u0(x, t))
2
dΩ dt ≤ ε

2

independent of t ∈ [c, c + ∆]. Since this is independent of c ∈ [a, b] we

establish the result for all t ∈ [a, b]. �

Generalized setup

Without loss of generality we consider the initial problem on [0, T ] for fixed

but arbitrary T . In this case we use the energy space EMc(0, T ). In addition,
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we must define a closed subspace DT
0 which is the completion of the subset

of twice continuously differentiable functions satisfying (5.83) that vanish

at t = T .

Definition 5.8. u(x, t) ∈ EMc(0, T ) is a generalized solution of the dynam-

ical problem for a clamped membrane if it satisfies the equation∫ T

0

∫∫
Ω

(
∂u

∂x

∂v

∂x
+
∂u

∂y

∂v

∂y

)
dΩ dt =

∫ T

0

∫∫
Ω

f(x, t)v(x, t) dΩ dt

+

∫ T

0

∫∫
Ω

ρu̇(x, t)v̇(x, t) dΩ dt +

∫∫
Ω

ρu∗1(x)v(x, 0) dΩ (5.90)

with any v(x, t) ∈ DT
0 and the first initial condition

u(x, t)
∣∣
t=0

= u∗0(x) (5.91)

in the sense of L2(Ω), that is,∫∫
Ω

(u(x, 0)− u∗0(x))
2 dΩ = 0. (5.92)

Let us suppose that

(i) u∗0(x) ∈ W 1,2(Ω) and satisfies (5.83),

(ii) u∗1(x) ∈ L2(Ω), and

(iii) f(x, t) ∈ L2(Q0,T ).

It is easy to show that under these restrictions all terms of (5.90) make

sense. The goal is to prove the following.

Theorem 5.9. Under restrictions (i)–(iii) there exists (in the sense of

Definition 5.8) a unique generalized solution to the dynamical problem for

a clamped membrane.

The proof splits into several lemmas. First we construct an approximate

method of solution for the problem under consideration, a variant of the

Bubnov–Galerkin method called the Faedo–Galerkin method. Then we

justify its convergence. Finally, we give an independent proof of uniqueness.

The Faedo–Galerkin method

Suppose there is a complete system of elements of EMc, any finite set of

which is a linearly independent system. In applications these are smooth

functions except in the finite element method where they are piecewise
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smooth. Take the first n elements of the system. We can always “orthonor-

malize” the latter system with respect to the L2(Ω) inner product:

ρ

∫∫
Ω

ϕi(x)ϕj(x) dΩ = δij =

{
1, i = j,

0, i �= j.
(5.93)

This is done only to simplify calculations (and to get the final equations in

normal form); it is not necessary in principle. We seek the nth approxima-

tion to the solution in the form

un(x, t) =

n∑
k=1

ck(t)ϕk(x) (5.94)

where the ck(t) are time functions satisfying the following system of Faedo–

Galerkin equations, which are implied by (5.78) in which we put un instead

of u and consequently ϕi instead of v:∫∫
Ω

(
∂un
∂x

∂ϕi
∂x

+
∂un
∂y

∂ϕi
∂y

)
dΩ =

∫∫
Ω

[f(x, t)− ρün(x, t)]ϕi(x) dΩ

(5.95)

for i = 1, . . . , n. These can be written as

ρ

∫∫
Ω

ün(x, t)ϕi(x) dΩ = −(un, ϕi)M +

∫∫
Ω

f(x, t)ϕi(x) dΩ, i = 1, . . . , n.

Finally, using (5.94) and (5.93), let us rewrite this as

c̈i(t) = −
n∑
k=1

ck(t)(ϕk, ϕi)M +

∫∫
Ω

f(x, t)ϕi(x) dΩ, i = 1, . . . , n. (5.96)

This is a system of simultaneous ordinary differential equations for which

we must formulate initial conditions. The condition u̇(x, t)|t=0 = u1(x) and

(5.93) imply

ċi(0) = ρ−1/2

∫∫
Ω

u∗1(x)ϕi(x) dΩ, i = 1, . . . , n. (5.97)

From (5.91) we derive the following conditions for ci(0). Let us solve the

problem ∥∥∥∥u∗0 − n∑
k=1

akϕk

∥∥∥∥2
M

→ min
a1,...,an

. (5.98)

We know this is solvable; moreover, its solution d1, . . . , dn gives us∑n
k=1 dkϕk, the orthogonal projection in EMc of u0 onto the subspace

spanned by ϕ1, . . . , ϕn. Thus the second set of initial conditions is

ci(0) = di, i = 1, . . . , n. (5.99)
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So the setup of the nth approximation of the Faedo–Galerkin method con-

sists of (5.96) supplemented with (5.97) and (5.99). We begin by establish-

ing the properties of this Cauchy problem.

Unique solvability of the Cauchy problem for the nth approximation

of the Faedo–Galerkin method

We would like to understand what we can say about the solution of the

Cauchy problem (5.96), (5.97), (5.99). The simultaneous equations (5.96)

are linear in the unknown ci(t). The load terms
∫∫

Ω f(x, t)ϕi(x) dΩ belong

to L2(0, T ); indeed, by Schwarz’s inequality∫ T

0

(∫∫
Ω

f(x, t)ϕi(x) dΩ

)2

dt

≤
∫ T

0

(∫∫
Ω

f2(x, t) dΩ

)(∫∫
Ω

ϕ2
i (x) dΩ

)
dt

= ‖ϕi‖2L2(Ω) ‖f‖2L2(Q0,T ) .

From general ODE theory the Cauchy problem (5.96), (5.97), (5.99) has a

unique solution on [0, T ] with arbitrary T such that

c′′i (t) ∈ L2(0, T ) (5.100)

and ci(t) and c
′
i(t) are continuous on [0, T ]. This can be shown by the tra-

ditional way of proving such results, in which a Cauchy problem is trans-

formed into a system of integral equations (by double integration of the

equations in time taking into account the initial conditions). For the inte-

gral equations the existence of a unique continuous solution can be shown

via Banach’s contraction principle, and then time differentiation yields the

remaining properties. Now we obtain the estimate of the solution that

we need to prove the above theorem. The estimate for the solution ci(t),

i = 1, . . . , n, is

max
t∈[0,T ]

(
n∑
k=1

(c′k(t))
2
+

∥∥∥∥ n∑
k=1

ck(t)ϕk

∥∥∥∥2
M

)
≤ m.

Indeed, let us multiply the ith equation in (5.96) by c′i(t) and sum over i:
n∑
i=1

c̈i(t)ċi(t) = −
n∑
i=1

n∑
k=1

(ck(t)ϕk, ċi(t)ϕi)M

+

n∑
i=1

∫∫
Ω

f(x, t)ċi(t)ϕi(x) dΩ. (5.101)
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The term on the left is
n∑
i=1

c̈i(t)ċi(t) =
1

2

d

dt

n∑
i=1

ċi(t)ċi(t)

=
1

2
ρ
d

dt

n∑
i,j=1

ċi(t)ċj(t)

∫∫
Ω

ϕi(x)ϕj(x) dΩ

=
d

dt

(
1

2
ρ

∫∫
Ω

u̇n(x, t)u̇n(x, t) dΩ

)
.

Similarly

n∑
i=1

n∑
k=1

(ck(t)ϕk, ċi(t)ϕi)M =
1

2

d

dt
(un(x, t), un(x, t))M

and
n∑
i=1

∫∫
Ω

f(x, t)ċi(t)ϕi(x) dΩ =

∫∫
Ω

f(x, t)u̇n(x, t) dΩ.

So (5.101) can be presented as

d

dt

(
1

2
ρ

∫∫
Ω

u̇(x, t)u̇n(x, t) dΩ

)
+

1

2

d

dt
(un(x, t), un(x, t))M

=

∫∫
Ω

f(x, t)u̇n(x, t) dΩ,

or rewritten as

1

2

d

dt

(
ρ ‖u̇n(x, t)‖2L2(Ω) + ‖un(x, t)‖2M

)
=

∫∫
Ω

f(x, t)u̇n(x, t) dΩ.

Integrating over time t (renaming t by s) we have

1

2

∫ t

0

d

ds

(
ρ ‖u̇n(x, s)‖2L2(Ω) + ‖un(x, s)‖2M

)
ds

=

∫ t

0

∫∫
Ω

f(x, s)u̇n(x, s) dΩ ds

or

1

2

(
ρ ‖u̇n(x, t)‖2L2(Ω) + ‖un(x, t)‖2M

)
=

1

2

(
ρ ‖u̇n(x, 0)‖2L2(Ω) + ‖un(x, 0)‖2M

)
+

∫ t

0

∫∫
Ω

f(x, s)u̇n(x, s) dΩ ds.
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Taking into account the way in which we derived the initial conditions for

un, we have

‖u̇n(x, 0)‖L2(Ω) ≤ ‖u∗1(x)‖L2(Ω) , ‖un(x, 0)‖M ≤ ‖u∗0(x)‖M .

We can then state that

1

2

(
ρ ‖u̇n(x, t)‖2L2(Ω) + ‖un(x, t)‖2M

)
≤ 1

2

(
ρ ‖u∗1(x)‖2L2(Ω) + ‖u∗0(x)‖2M

)
+

∫ t

0

∫∫
Ω

f(x, s)u̇n(x, s) dΩ ds.

The elementary inequality

|ab| ≤ a2

2ε
+
εb2

2

yields

∣∣∣∣
∫ t

0

∫∫
Ω

f(x, s)u̇n(x, s) dΩ ds

∣∣∣∣ ≤ 1

2ε

∫ t

0

∫∫
Ω

f2(x, s) dΩ ds

+
ε

2

∫ t

0

∫∫
Ω

u̇2n(x, s) dΩ ds

≤ 1

2ε

∫ T

0

∫∫
Ω

f2(x, s) dΩ ds

+
εT

2
max
s∈[0,T ]

∫∫
Ω

u̇2n(x, s) dΩ

so

1

2

(
ρ ‖u̇n(x, t)‖2L2(Ω) + ‖un(x, t)‖2M

)
≤ 1

2

(
ρ ‖u∗1(x)‖2L2(Ω) + ‖u∗0(x)‖2M

)
+

1

2ε

∫ T

0

∫∫
Ω

f2(x, s) dΩ ds

+
εT

2
max
s∈[0,T ]

∫∫
Ω

u̇2n(x, s) dΩ.
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Putting ε = ρ/(2T ) and taking the maximum of the left side of the last

inequality we get

max
t∈[0,T ]

1

2

(
ρ ‖u̇n(x, t)‖2L2(Ω) + ‖un(x, t)‖2M

)
≤ 1

2

(
ρ ‖u∗1(x)‖2L2(Ω) + ‖u∗0(x)‖2M

)
+
T

ρ

∫ T

0

∫∫
Ω

f2(x, s) dΩ ds

+
ρ

4
max
t∈[0,T ]

∫∫
Ω

u̇2n(x, t) dΩ

so

max
t∈[0,T ]

1

4

(
ρ ‖u̇n(x, t)‖2L2(Ω) + ‖un(x, t)‖2M

)
≤ 1

2

(
ρ ‖u∗1(x)‖2L2(Ω) + ‖u∗0(x)‖2M

)
+
T

ρ

∫ T

0

∫∫
Ω

f2(x, s) dΩ ds.

This is the needed estimate, which can be written as

max
t∈[0,T ]

(
ρ ‖u̇n(x, t)‖2L2(Ω) + ‖un(x, t)‖2M

)
≤ m

where the constant m does not depend on the number n. In particular,

from this follows the rougher estimate∫ T

0

(
ρ ‖un(x, t)‖2L2(Ω) + ‖un(x, t)‖2M

)
dt ≤ m1

which can be written in terms of (5.82) as

(un, un)[0,T ] ≤ m1. (5.102)

Convergence of the Faedo–Galerkin method

Now we show that there is a subsequence of {un(x, t)} that converges to a

generalized solution of the problem under consideration. By (5.102), {un}
has a subsequence that converges weakly to an element u0(x, t). We shall

show that u0(x, t) is a generalized solution. By Lemma 5.6 we can consider

it as a function continuous in t on [0, T ] with values in L2(Ω). Let us

renumber this subsequence, denoting it by {un} (in fact, by the uniqueness

theorem proved later, the whole sequence converges weakly so renumbering

is not required; however, at this point we are not assured of uniqueness).
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So, now we know that un(x, t) tends to u0(x, t) weakly in EMc(0, T ). First

we show that u0 satisfies (5.91). Indeed, by the method of constructing

the Faedo–Galerkin approximations un, we see that {un(x, 0)} converges

to the initial value u∗0(x) strongly in W 1,2(Ω) and thus in L2(Ω). On the

other hand, by Lemma 5.7, {un(x, t)} converges to u0(x, t) in the norm of

C(L2(Ω); 0, T ). Thus (5.91) holds for u0(x, t). Let us verify that (5.90)

with u = u0(x, t) holds for any v(x, t) ∈ DT
0 . First we reduce the set of

admissible v to a subset of DT
0 defined as follows. Let

vk(t,x) =

n∑
k=1

dk(t)ϕk(x), k ≤ n (5.103)

where the dk(t) are continuously differentiable and dk(T ) = 0. Denote the

set of all such finite sums by DT
0f . This set is dense in DT

0 and thus, to

complete the proof of Theorem 5.9, it is enough to demonstrate the validity

of (5.90) for u = u0(x, t) when v ∈ DT
0f . Let us return to (5.95) for un:

∫∫
Ω

(
∂un
∂x

∂ϕi
∂x

+
∂un
∂y

∂ϕi
∂y

)
dΩ =

∫∫
Ω

(f(x, t)− ρün(x, t))ϕi(x) dΩ,

i = 1, . . . , n.

Multiplying the ith equation by di(t) and summing from i = 1 to k we get

∫∫
Ω

(
∂un
∂x

∂vk
∂x

+
∂un
∂y

∂vk
∂y

)
dΩ =

∫∫
Ω

(f(x, t)− ρün(x, t)) vk(x, t) dΩ

for k ≤ n. Let us integrate this with respect to t:

∫ T

0

∫∫
Ω

(
∂un
∂x

∂vk
∂x

+
∂un
∂y

∂vk
∂y

)
dΩ dt

=

∫ T

0

∫∫
Ω

(f(x, t)− ρün(x, t)) vk(x, t) dΩ dt.

Integrating by parts in the last term we get

∫ T

0

∫∫
Ω

(
∂un
∂x

∂vk
∂x

+
∂un
∂y

∂vk
∂y

)
dΩ dt =

∫ T

0

∫∫
Ω

f(x, t)vk(x, t) dΩ dt

+

∫ T

0

∫∫
Ω

ρu̇n(x, t)v̇k(x, t) dΩ dt+

∫∫
Ω

ρu̇n(x, 0)vk(x, 0) dΩ.
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Let us now fix vk(x, t) and let n→ ∞. By the properties of un we have∫ T

0

∫∫
Ω

(
∂u0
∂x

∂vk
∂x

+
∂u0
∂y

∂vk
∂y

)
dΩ dt =

∫ T

0

∫∫
Ω

f(x, t)vk(x, t) dΩ dt

+

∫ T

0

∫∫
Ω

ρu̇0(x, t)v̇k(x, t) dΩ dt +

∫∫
Ω

ρu∗1(x)v̇k(x, 0) dΩ,

as required by Definition 5.8.

Uniqueness of the generalized solution

Theorem 5.10. A generalized solution of the dynamic problem for a mem-

brane with clamped edge is unique.

Proof. Suppose there are two generalized solutions u′ and u′′. Subtract-
ing term by term the equations (5.90) for these solutions and introducing

u = u′′ − u′, we get∫ T

0

∫∫
Ω

ρu̇(x, t)v̇(x, t) dΩ dt−
∫ T

0

∫∫
Ω

(
∂u

∂x

∂v

∂x
+
∂u

∂y

∂v

∂y

)
dΩ dt = 0

(5.104)

for any v ∈ DT
0 . Also,

u(x, t)
∣∣
t=0

= 0

holds in the sense of L2(Ω). Let us define an auxiliary function

w(x, t) =



∫ t

τ

u(x, ϑ) dϑ, t ∈ [0, τ ],

0, t > τ.

First we note that on [0, τ ]

∂w(x, t)

∂t
= u(x, t).

This and other similar relations between w and u are established by sim-

ple differentiation of the representative functions of corresponding Cauchy

sequences; then a limit passage justifies that they hold for the elements

themselves. It is seen that w(x, t) belongs to DT
0 . Moreover, it has gen-

eralized derivatives ∂2w/∂t∂x = ∂u/∂x, ∂2w/∂t∂y = ∂u/∂y in L2(Q0,τ ).

Next, ∂2w/∂t2 = ∂u/∂t ∈ L2(Q0,τ ). Finally, as follows from Lemma 5.6, w
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and its first derivatives belong to C(L2(Ω); 0, τ) (the reader should verify

this). Let us put v = w in (5.104). This equality can be written as∫ τ

0

∫∫
Ω

ρ
∂u(x, t)

∂t
u(x, t) dΩ dt−

∫ τ

0

∫∫
Ω

(
∂2w

∂x∂t

∂w

∂x
+
∂2w

∂y∂t

∂w

∂y

)
dΩ dt = 0,

and rewritten as

1

2

∫ τ

0

∫∫
Ω

∂

∂t

{
ρu2(x, t) −

(
∂w

∂x

)2

−
(
∂w

∂y

)2
}
dΩ dt = 0.

Integrating over t we get∫∫
Ω

{
ρu2(x, t) −

(
∂w

∂x

)2

−
(
∂w

∂y

)2
}
dΩ

∣∣∣∣t=τ
t=0

= 0.

Using the initial condition for u and the definition of w we have∫∫
Ω

ρu2(x, τ) dΩ +

∫∫
Ω

{(
∂w(x, t)

∂x

)2

+

(
∂w(x, t)

∂y

)2
}
dΩ

∣∣∣∣
t=0

= 0.

Here all integrands are positive so∫∫
Ω

ρu2(x, τ) dΩ = 0.

Since τ is an arbitrary point of [0, T ] we have u = 0. �

Let us recall that because of uniqueness it can be shown (by way of

contradiction) that the whole Faedo–Galerkin sequence of approximations

{un} converges weakly to the generalized solution of the problem under

consideration in the energy space.

5.9 Other Dynamic Problems of Linear Mechanics

Let us briefly consider the changes needed to treat various other dynamical

problems of mechanics.

We begin with a mixed problem for the membrane. If a portion of the

edge is free from clamping and loading, how must the approach change?

Only in the definition of the energy space. The removal of restrictions on

the free part of the boundary simply requires a wider energy space; then

everything carries through as before, and the same theorems are formally

established.
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When on some part Γ1 of the edge a load f(s, t) is given, the equation

for generalized solution appears as follows:

∫ T

0

∫∫
Ω

(
∂u

∂x

∂v

∂x
+
∂u

∂y

∂v

∂y

)
dΩ dt =

∫ T

0

∫∫
Ω

f(x, t)v(x, t) dΩ dt

+

∫ T

0

∫
Γ1

ϕ(s, t)v(s, t) ds dt+

∫ T

0

∫∫
Ω

ρu̇(x, t)v̇(x, t) dΩ dt

+

∫∫
Ω

ρu∗1(x)v(x, 0) dΩ. (5.105)

For solvability we also need

ϕ(s, t) ∈ W 1,2(L2(Γ1); 0, T ). (5.106)

Under this restriction it is possible to obtain an a priori estimate of the gen-

eralized solution, and thus to prove existence of a generalized solution. The

formulation and uniqueness proof remain practically unchanged (except for

the definition and notation for the energy space).

We shall not consider in detail all the other problems of dynamics for

the objects we studied in statics. The introduction of the main equation

of motion always repeats all the steps we performed for the membrane.

The corresponding energy space formulation, in which the inner product is

denoted by (·, ·)E , yields

∫ T

0

(u(t),v(t))E dt =

∫ T

0

∫
Ω

f(x, t) · v(x, t) dΩ dt

+

∫ T

0

∫
Γ1

ϕ(s, t) · v(s, t) ds dt +
∫ T

0

∫
Ω

ρu̇(x, t) · v̇(x, t) dΩ dt

+

∫
Ω

ρu∗
1(x) · v(x, 0) dΩ

which parallels (5.105) for the membrane. The reasoning leading to the

main theorems remains the same, the differences residing only in the defini-

tions of the appropriate energy spaces. The reader can formulate and prove

the existence and uniqueness of generalized solutions for initial-boundary

value problems in the theory of plates and for two- and three-dimensional

elastic bodies.
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5.10 The Fourier Method

A principal method of solving dynamics problems was developed by Fourier.

The method facilitates the description of transient processes. Normally the

class of loads considered analytically is not wide, and it is possible to find

a partial solution that “removes” the effect of the load; it then remains to

find how the behavior of a non-loaded object changes from some arbitrary

initial state. For solution of the latter problem, Fourier proposed a method

of separation of variables. As an example let us consider the dynamic

problem for a string, described by

∂2u

∂t2
=
∂2u

∂x2
, x ∈ [0, π] (5.107)

with initial and boundary conditions

u(0, t) = 0 = u(π, t), u(x, 0) = u0(x),
∂u(x, 0)

∂t
= u1(x). (5.108)

We seek a solution to (5.107) in the form u(x, t) = T (t)v(x). From (5.107)

we have

T ′′(t)
T (t)

=
X ′′(x)
X(x)

= −λ2.

The value λ can only be constant since each fraction of the equality depends

on only one of the independent variables x or t. We seek nontrivial solutions

of this form. The equation

X ′′(x) + λ2X(x) = 0 (5.109)

with the necessary boundary conditions

X(0) = 0 = X(π) (5.110)

has nontrivial solutions only when λ = k with k a positive or negative

integer; that is, Xk(x) = c sinkx. There are no other nontrivial solutions

to (5.109)–(5.110), which is typical of eigenvalue problems for distributed

systems. Using this, we find an adjoint solution for the equation

T ′′(t) + k2T (t) = 0,

whose general solution is

Tk(t) = ck0 cos kt+ ck1 sin kt.

Hence Fourier obtained a general solution to (5.107) as
∞∑
k=1

(ck0 cos kt+ ck1 sin kt) sin kx. (5.111)
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Finally, we can look for coefficients that satisfy (5.108). So a central role in

Fourier theory is played by the eigenvalue problem, the problem of finding

nontrivial solutions to a boundary value problem with a parameter, (5.109)–

(5.110). A similar problem arises in all linear mechanical problems, and in a

similar fashion. In fact, we could begin at once to seek a class of particular

solutions of the form eiµtv(x) where v(0) = 0 = v(π). Now we have the

same eigenvalue problem for v(x):

v′′(x) + µ2v(x) = 0.

Moreover, when we seek a general solution as a sum of particular real

solutions, we come to the same expression (5.111). This can be said for

any of the linear mechanical problems considered earlier. Thus in every

case we come to a particular eigenvalue boundary value problem, then to

the problem of finding the coefficients of the corresponding Fourier series

of the type (5.111), and finally to the problem of convergence. This will be

considered in detail in the next few sections.

5.11 An Eigenfrequency Boundary Value Problem Arising

in Linear Mechanics

For each problem considered earlier, the dynamic equations with use of the

D’Alembert principle have the form

(u, η)E = −
∫
Ω

ρ
∂2u

∂t2
η dΩ (5.112)

where (·, ·)E is a scalar product in the energy space and η is an admissible

virtual displacement. To formulate an eigenfrequency problem, we put

u = eiµtv(x) in (5.112) and obtain

(v, η)E = ρµ2

∫
Ω

vη dΩ. (5.113)

For convenience let us take ρ = 1 (by choice of dimensional units). Since

we now consider complex-valued u, we let η be complex as well. In this

case (5.113) takes the form

(v, η)E = µ2

∫
Ω

vη dΩ. (5.114)

Equation (5.114) defines the general form of the eigenfrequency problems

for the elastic objects considered in this chapter.



September 30, 2011 8:42 World Scientific Book - 9in x 6in aea

Applications of Functional Analysis in Mechanics 401

Definition 5.11. If (5.114) has a nonzero solution v for some µ, then v is

an eigensolution (eigenvector) and µ is the corresponding eigenfrequency.

The value λ = 1/µ is the eigenvalue of the object.

Remark 5.12. We could arrive at the same eigenvalue problem by consid-

ering heat transfer described by

∂T

∂t
= ∆T

with zero temperature T on the boundary of the domain. If we seek a

solution in the form T (x, t) = e−µtv(x) in a generalized statement, we get

the equation that coincides with (5.114) governing eigen-oscillations of a

membrane taking the same domain in the plane; the only discrepancy is

the form of the parameter in the equation: it is µ for heat transfer and µ2

for the membrane. Next, introducing λ = 1/µ in the heat problem we get

a parameter that is usually called the eigenvalue. However we will retain

our terminology since it makes more mechanical sense. Next there is a dis-

crepancy between our terminology and that which is common in textbooks

on mathematical physics: we call eigenfrequencies the quantities that are

called eigenvalues in mathematical physics; the reason is that in mathe-

matical physics they normally consider the equation in L2(Ω) so A = ∆ is

considered as an unbounded operator in L2(Ω) and the terminology is bor-

rowed from standard spectral theory. But in our approach this differential

operator corresponds to the identity operator in an energy space. �

We formulated (5.114) in a complex energy space. The next lemma

permits a return to real spaces.

Lemma 5.13. All eigenfrequencies of the problem (5.114) are real.

Proof. The result follows from the fact that (v, v)E and
∫
Ω vv dΩ are

positive numbers for any v, hence so is µ2 = (v, v)E/
∫
Ω
vv dΩ. �

Since (5.114) is linear in v, we can consider its real and imaginary parts

separately, and hence consider it only in a real energy space. Thus the

equation we shall study is formulated in a real energy space and the eigen-

frequency problem is as follows.

Eigenvalue Problem. Find a nonzero u belonging to a real energy space

E that satisfies the equation

(u, v)E = µ2

∫
Ω

uv dΩ (5.115)
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for any v ∈ E .
We require that E is a Hilbert space and that there is a constant m > 0

such that

‖u‖E ≥ m ‖u‖W 1,2(Ω) (5.116)

for any u ∈ E . All the energy spaces we introduced had this property; in

the case of a three-dimensional elastic body, u is a vector function, and

in the integral on the right of (5.115) uv must mean a dot product of the

displacement vectors u and v.

Let us transform (5.115) into an operator form using Theorem 4.100. At

any fixed u ∈ E , the integral
∫
Ω
uv dΩ is a functional linear in v. Schwarz’s

inequality, Sobolev’s imbedding theorem, and (5.116) give us∣∣∣∣
∫
Ω

uv dΩ

∣∣∣∣ ≤ ‖u‖L2(Ω) ‖v‖L2(Ω)

≤ m1 ‖u‖W 1,2(Ω) ‖v‖W 1,2(Ω)

≤ m2 ‖u‖E ‖v‖E , (5.117)

which means this functional is continuous for v ∈ E . Thus it can be repre-

sented as an inner product in E :∫
Ω

uv dΩ = (w, v)E , (5.118)

where w ∈ E is uniquely defined by u. (The second position of v in the

inner product is unimportant by symmetry in the arguments.) Since to any

u ∈ E there corresponds w ∈ E , we have defined an operator A acting in E :
w = Au. (5.119)

With this notation (5.115) takes the form

(u, v)E = µ2(Au, v)E . (5.120)

Since v ∈ E is arbitrary we get

u = µ2Au. (5.121)

Although A has been introduced theoretically, we should be able to estab-

lish some of its properties through the defining equality

(Au, v)E =

∫
Ω

uv dΩ. (5.122)

Let us begin.

Lemma 5.14. The operator A is linear and continuous on E.
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Proof. For linearity it suffices to establish that

A(α1u1 + α2u2) = α1Au1 + α2Au2 (5.123)

for any real numbers αi and elements ui ∈ E . By (5.122) we have

(A(α1u1 + α2u2), v)E =

∫
Ω

(α1u1 + α2u2)v dΩ

= α1

∫
Ω

u1v dΩ + α2

∫
Ω

u2v dΩ.

On the other hand

(Aui, v)E =

∫
Ω

uiv dΩ, i = 1, 2,

and thus

(A(α1u1 + α2u2), v)E = α1 (Au1, v)E + α2 (Au2, v)E .

From this (5.123) follows by the arbitrariness of v. To prove continuity of

A let us use (5.117), from which

|(Au, v)E | =
∣∣∣∣
∫
Ω

uv dΩ

∣∣∣∣ ≤ m2 ‖u‖E ‖v‖E .

Setting v = Au, we get for an arbitrary u

|(Au,Au)E | ≤ m2 ‖u‖E ‖Au‖E .

It follows that

‖Au‖E ≤ m2 ‖u‖E ,

and this completes the proof. �

Definition 5.15. An operator B is strictly positive in a Hilbert space H

if (Bx, x) ≥ 0 for any x ∈ H , and from the equality (Bx, x) = 0 it follows

that x = 0.

Lemma 5.16. The operator A is strictly positive in E.
Proof. Clearly

(Au, u)E =

∫
Ω

u2 dΩ ≥ 0.

If (Au, u)E = 0, then u = 0 in L2(Ω) and thus in E . �

Lemma 5.17. The operator A is self-adjoint.



September 30, 2011 8:42 World Scientific Book - 9in x 6in aea

404 Advanced Engineering Analysis

Proof. We use the symmetry in the arguments u, v in the definition

(5.122) and continuity of A. Since

(Au, v)E =

∫
Ω

uv dΩ =

∫
Ω

vu dΩ = (Av, u)E = (u,Av)E

the proof is immediate. �

The last property we wish to establish is

Lemma 5.18. The operator A is compact.

Proof. It is enough to show that for any weakly Cauchy sequence {un}
the corresponding {Aun} is a strongly Cauchy sequence. Let {un} be a

weakly Cauchy sequence in E . By (5.116) it is a weakly Cauchy sequence

in W 1,2(Ω) and thus, by Sobolev’s imbedding theorem, it is a strongly

Cauchy sequence in L2(Ω). Let us use an inequality following from (5.117),∣∣∣∣
∫
Ω

uv dΩ

∣∣∣∣ ≤ m3 ‖u‖L2(Ω) ‖v‖E ,

to write

|(A(un − um), v)E | =
∣∣∣∣
∫
Ω

(un − um)v dΩ

∣∣∣∣ ≤ m3 ‖un − um‖L2(Ω) ‖v‖E .

Putting v = A(un − um) we get

|(A(un − um), A(un − um))E | ≤ m3 ‖un − um‖L2(Ω) ‖A(un − um)‖E

so that

‖A(un − um)‖E ≤ m3 ‖un − um‖L2(Ω) → 0 as n,m→ ∞.

This completes the proof. �

5.12 The Spectral Theorem

The results of this section are general despite their formulation in energy

spaces. They apply in any separable Hilbert space E , whether or not the

space pertains to a mechanical problem. We suppose A is a self-adjoint,

strictly positive, compact operator acting in a real Hilbert space E . The

inner product in E is denoted (u, v)E . Because A is self-adjoint and strictly

positive, the bilinear functional (Au, v)E has all the properties of an inner

product. Let us denote this inner product by

(u, v)A = (Au, v)E (5.124)
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and its corresponding norm by ‖u‖A = (u, u)
1/2
A .

Since E is incomplete with respect to the new norm we can apply the

completion theorem. The completion of E with respect to the norm ‖u‖A
is denoted by EA and is called the energy space of the operator A. But,

unlike the earlier energy spaces, this energy space for the problems under

consideration does not relate to the system energy. Looking at the form of

the inner product in EA for A from the previous section, we see that it is

an inner product in L2(Ω). Moreover, from the general theory of the Lp

spaces it is known that infinitely differentiable functions whose support is

compact in Ω (so they are zero on the boundary of Ω) are dense in L2(Ω).

Hence the resulting space EA for the problems of the previous section is

L2(Ω) (more precisely, the elements stand in one-to-one distance preserving

correspondence). In what follows we need

Definition 5.19. A functional F is weakly continuous at a point u if for any

sequence {un} weakly convergent to u we have F (un) → F (u) as n → ∞.

A functional is weakly continuous on a domainM if it is weakly continuous

at each point u ∈M .

By definition a linear weakly continuous functional is continuous, and

vice versa.

Lemma 5.20. A functional F (u), weakly continuous on the unit ball

‖u‖E ≤ 1 of a Hilbert space E, takes its minimal and maximal values on

this ball.

Proof. This is similar to a classical calculus theorem on the extremes of

a continuous function given on a compact set. We prove the statement for

maxima of F . The result for minima follows by consideration of −F . Let

{un} be a sequence in the unit ball, denoted by B, such that

F (un) → sup
‖u‖E≤1

F (u) as n→ ∞.

Since {un} lies in B it contains a weakly convergent subsequence {unk
}.

Since B is weakly closed in E this subsequence has a weak limit u∗ belonging
to B. The value F (u∗) is finite and since F is weakly continuous we have

F (unk
) → F (u∗) = sup

‖u‖E≤1

F (u),

so u∗ is the needed point. �
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Lemma 5.21. Let A be a compact linear operator in a Hilbert space E.
Then F (u) = (Au, u)E is a weakly continuous functional in E.
Proof. Let {un} be weakly convergent to u. Consider

|(Aun, un)E − (Au, u)E | = |(Aun, un)E − (Au, un)E + (Au, un)E − (Au, u)E |
≤ |(Aun, un)E − (Au, un)E |+ |(Au, un)E − (Au, u)E |
≤ ‖A(un − u)‖E ‖un‖E + |(Au, un − u)E |
→ 0 as n→ ∞.

For the first term this happened since ‖un‖E is bounded and A(un−u) → 0

strongly in E . The second term tends to zero since it is a linear continuous

functional in un − u. �

For a strictly positive operator all the eigenvalues are nonnegative

(why?) so we will denote them as λ2:

Ax = λ2x.

This is done to preserve the terminology of mechanics, where the corre-

sponding value µ = 1/λ is called an eigenfrequency of the object. Let us

formulate the main result of this section.

Theorem 5.22. Let A be a self-adjoint, strictly positive, compact operator

acting in a real separable Hilbert space. Then

(i) A has a countable set of eigenfrequencies with no finite limit point;

(ii) to each eigenfrequency of A there corresponds a finite dimensional set

of eigenvectors {ϕk}; we can choose eigenvectors constituting an or-

thonormal basis;

(iii) the union of all orthonormal bases {ϕk} corresponding to the eigenfre-

quencies of A is orthonormal in E;
(iv) the same union {ϕk} is an orthogonal basis in EA;
(v) for any u ∈ E there holds

Au =

∞∑
k=1

λ2k(u, ϕk)Eϕk, Aϕk = λ2kϕk. (5.125)

We subdivide the proof into Lemmas 5.20 through 5.27. Statements

(i) and (ii) follow from the Fredholm–Riesz–Schauder theory for compact

operators. Statement (iii) follows from the self-adjointness of A. So we

know some properties of the eigenvalues of A, but it remains unknown
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whether the set of eigenvectors is nonempty. First we demonstrate the

existence of such an eigenvector.

Lemma 5.23. For a self-adjoint strictly positive compact linear operator

A acting in E,
λ21 = sup

‖u‖E≤1

(Au, u)E

is an eigenvalue of A. It is also the largest eigenvalue of A, and the lowest

eigenfrequency of A is µ1 = 1/λ1.

Proof. If λ2 is an eigenvalue then Au = λ2u and it follows that

(Au, u)E = λ2 ‖u‖2E . So for ‖u‖E ≤ 1 we have (Au, u)E ≤ λ21, and thus

all the eigenvalues are nonnegative and less than or equal to λ21 > 0. Let us

demonstrate that λ21 is an eigenvalue of A. By Lemmas 5.20 and 5.21 we

know that sup(Au, u)E is attained on some point ϕ1 of the ball ‖u‖E ≤ 1.

Since the form (Au, u)E is homogeneous in u, we know that ϕ1 belongs to

the unit sphere ‖u‖E = 1:

λ21 = (Aϕ1, ϕ1)E , ‖ϕ1‖E = 1.

We show that ϕ1 is an eigenvector of A. It is clear that λ21 can be defined

as the maximum of the form (Au, u)E on the unit sphere ‖u‖E = 1. By

homogeneity the same can be said about the functional

G(u) =
(Au, u)E

‖u‖2E
= (Av, v)E , v =

u

‖u‖E
, ‖v‖E = 1.

Thus G(u) takes the same set of values as (Au, u)E on the unit sphere

‖u‖E = 1 and, moreover, it attains its maximal value equal to λ21 at the

same point ϕ1. Consider G(ϕ1 + αw) for a fixed w ∈ E . This is a func-

tion continuously differentiable in α in some neighborhood of α = 0, and

attaining its maximum at α = 0. Thus

dG(ϕ1 + αw)

dα

∣∣∣∣
α=0

= 0.

Calculating this we get

(Aϕ1, w)E − (Aϕ1, ϕ1)E
‖ϕ1‖E

(ϕ1, w)E = 0;

that is, (
Aϕ1 − λ21ϕ1, w

)
E = 0

for any w ∈ E . So ϕ1 is an eigenvector and λ21 is an eigenvalue of A. �
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Next we describe a procedure for finding other eigenvectors and eigen-

values of A, using the established property that the set of all eigenvectors of

A has an orthonormal basis. We know how to find the first eigenvector. For

the rest we shall use a procedure having ith step as follows. Let ϕ1, . . . , ϕn
be mutually orthogonal eigenvectors determined by the procedure. Denote

by En⊥ the orthogonal complement in E of the subspace of E spanned by

ϕ1, . . . , ϕn. Consider the operator A given on En⊥. We can repeat the

reasoning of Lemma 5.23 and find an eigenvalue denoted by λ2n+1 and an

eigenvector ϕn+1 of the restriction of A to En⊥. So(
Aϕn+1 − λ2n+1ϕn+1, w

)
E = 0 (5.126)

holds for any w ∈ En⊥. We show that this holds for any w ∈ E . By

the orthogonal decomposition theorem, it is enough to prove that (5.126)

holds when w is any of the previous eigenvectors ϕ1, . . . , ϕn. Since for any

i < n+ 1

(ϕn+1, ϕi)E = 0 and (Aϕn+1, ϕi)E = (ϕn+1, Aϕi)E = λ2i (ϕn+1, ϕi)E = 0,

it follows that (5.126) holds for any w ∈ E . Hence we really did obtain the

next eigenpair.

Lemma 5.24. For an infinite dimensional space E, the eigenvalues of A

are countable. The corresponding eigenfrequencies µi = 1/λi, λi > 0, are

such that µi ≤ µi+1 → +∞ as i→ ∞.

Proof. The above procedure can terminate only when we get some sub-

space En⊥ on the unit ball of which sup(Au, u)E = 0. But then En⊥ contains

only the zero element since A is strictly positive. So E is finite dimensional,

a contradiction. The rest of the lemma follows from the method of con-

structing the eigenvalues. �

Lemma 5.25. The set of all the constructed eigenvectors ϕ1, . . . , ϕn, . . . is

an orthonormal basis of E.
Proof. Take any u ∈ E and consider the remainder of the Fourier series

un = u−
n∑
k=1

(u, ϕk)Eϕk.

We see that (un, ϕk)E = 0 for k ≤ n, and thus un ∈ En⊥. From Fourier

expansion theory we know that {∑n
k=1(u, ϕk)Eϕk} is convergent, hence so

is {un}. Suppose, contrary to the lemma statement, that the strong limit
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of {un} is u0 �= 0. By the procedure for finding eigenvalues and the fact

that un is in En⊥, we have

(Aun, un)E
‖un‖2E

≤ λ2n+1.

Passage to the limit in n implies

(Au0, u0)E
‖u0‖2E

≤ 0.

Hence u0 = 0, which completes the proof. �

Lemma 5.26. For any u ∈ E, relation (5.125) holds:

Au =

∞∑
k=1

λ2k(u, ϕk)Eϕk, Aϕk = λ2kϕk.

Proof. The Fourier series

u =

∞∑
k=1

(u, ϕk)Eϕk

is strongly convergent. Applying a compact (and hence continuous) opera-

tor A we get

Au =

∞∑
k=1

(u, ϕk)EAϕk =

∞∑
k=1

λ2k(u, ϕk)Eϕk,

as required. �

The last non-proven statement of the theorem follows from

Lemma 5.27. The set ψk = ϕk/λk, λk > 0, k = 1, 2, 3, . . ., is an orthonor-

mal basis of EA.

Proof. Mutual orthogonality of the ψk in EA follows from

(ψi, ψj)A = (Aψi, ψj)E =

(
1

λi
Aϕi,

ϕj
λj

)
E
=

λ2i
λiλj

(ϕi, ϕj)E .
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Hence the set is orthonormal as well. For the proof it is enough to demon-

strate that Parseval’s equality holds in EA for any u ∈ E :

(u, u)A = (Au, u)E =

( ∞∑
k=1

(u, ϕk)EAϕk, u

)
E

=

∞∑
k=1

(u, ϕk)E(Aϕk, u)E

=
∞∑
k=1

(
u,
Aϕk
λ2k

)
E
(Aϕk, u)E =

∞∑
k=1

(u,Aψk)E(Aψk, u)E

=

∞∑
k=1

(u, ψk)
2
A.

�

5.13 The Fourier Method, Continued

We have obtained general results on the structure of the spectrum and the

properties of the eigenvalue problem for a strictly positive, self-adjoint, com-

pact linear operator A. This eigenvalue problem includes all the eigenvalue

problems of linear mechanics that we have considered.

In § 5.10 we began to study the Fourier method for dynamical linear

problems. We sought a general solution of a general linear initial-boundary

value problem for a body free from external load. However, the fact that

the eigenvectors of A, satisfying

λ2k(ϕk, v)E =

∫
Ω

ϕk(x)v(x) dΩ,

constitute an orthogonal basis in E and EA simultaneously, allows us to

consider the problem for a loaded body as well. Here the Fourier method

appears to relate to the Faedo–Galerkin method for a special basis, namely

for the eigenvectors of the operator A which is now well defined by (5.118).

Let us recall that for the basis

(ϕi, ϕj)E = δij =

{
1, i = j,

0, i �= j,

∫
Ω

ϕi(x)ϕj(x) dΩ = λ2i δij . (5.127)

Let us review the general notation of this section. In E(0, T ) an inner

product is defined as

(u, v)[0,T ] =

∫ T

0

(u, v)E dt+

∫ T

0

∫
Ω

u̇(x, t)v̇(x, t) dΩ dt (5.128)

(changing the dimensions we put ρ = 1) and DT
0 denotes the subspace

that is the completion of that subset of the base functions of E(0, T ) which
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vanish at t = T . A generalized solution u ∈ E(0, T ) is defined by∫ T

0

(u, v)E dt =

∫ T

0

∫
Ω

f(x, t)v(x, t) dΩ dt +

∫ T

0

∫
Ω

u̇(x, t)v̇(x, t) dΩ dt

+

∫
Ω

u∗1(x)v(x, 0) dΩ (5.129)

for any v ∈ DT
0 . Note that the initial condition for the first time derivative,

that is u∗1, is taken into account in (5.129); we do not require it to hold

separately. Another initial condition

u(x, t)
∣∣
t=0

= u∗0(x) (5.130)

must be satisfied in the sense of L2(Ω); see Definition 5.8. The boundary

conditions are hidden in the definition of E . We recall that we require

u∗0(x) ∈ E , u∗1(x) ∈ EA, and f(x, t) ∈ L2(Ω× [0, T ]). Now we return to the

Faedo–Galerkin method with the basis elements ϕk, k = 1, 2, . . ., that are

eigenvectors of A with the properties studied earlier. Let us seek the nth

Faedo–Galerkin approximation

un =

n∑
k=1

ck(t)ϕk

to the generalized solution given by the equations

c̈i(t)

∫
Ω

ϕ2
i (x) dΩ = −(ϕi, ϕi)Eci(t) +

∫
Ω

f(x, t)ϕi(x) dΩ, i = 1, . . . , n

(5.131)

or, because of (5.127),

c̈i(t) + µ2
i ci(t) = fi(t), µi = 1/λi, i = 1, . . . , n (5.132)

where

fi(t) = µ2
i

∫
Ω

f(x, t)ϕi(x) dΩ

and eigenfrequencies µi = 1/λi → ∞. We see that equations (5.132) are

mutually independent. Let us derive the initial conditions for these equa-

tions. Denoting ci(0) = d0i, ċi(0) = d1i, and remembering that d0i are

defined by ∥∥∥∥u∗0 − n∑
k=1

d0kϕk

∥∥∥∥2
E
→ min

we get

d0i(ϕi, ϕi)E = (u∗0, ϕi)E
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so

ci(0) = d0i = (u∗0, ϕi)E = (u∗0, µiAϕi)E = µi

∫
Ω

u∗0(x)ϕi(x) dΩ. (5.133)

Similarly, minimizing ∥∥∥∥u∗1 − n∑
k=1

d1kϕk

∥∥∥∥2
A

→ min

we obtain

d1i(ϕi, ϕi)A = (ϕi, u
∗
1)A

or

ċi(0) = d1i = µ2
i (ϕi, u

∗
1)A = µ2

i

∫
Ω

u∗1(x)ϕi(x) dΩ (5.134)

so we see that the initial conditions are split as well. Because of the mutual

orthogonality and basis properties of {ϕi} in E and EA we can rewrite the

corresponding Parseval equalities

∞∑
i=1

d20i = ‖u∗0‖2E (5.135)

and

∞∑
i=1

d21i(ϕi, ϕi)A =

∞∑
i=1

d21iλ
2
i = ‖u∗1‖2A . (5.136)

The solution of the problem (5.132), (5.133), (5.134) is

ci(t) = d0i cos(µit) + d1i sin(µit) +
1

µi

∫ t

0

fi(τ) sinµi(t− τ) dτ.

It is easily seen that ci(t) is continuously differentiable on [0, T ]. Note that,

unlike the case of a general complete system of basis elements, the coeffi-

cients of the Faedo–Galerkin method do not depend on the step number.

Let us examine the behavior of the corresponding partial sums of the formal

series

u(x, t) =
∞∑
i=1

(
d0i cos(µit) + d1i sin(µit)

+
1

µi

∫ t

0

fi(τ) sinµi(t− τ) dτ

)
ϕi(x). (5.137)



September 30, 2011 8:42 World Scientific Book - 9in x 6in aea

Applications of Functional Analysis in Mechanics 413

Let us note that the portion

u(x, t) =

∞∑
i=1

(d0i cos(µit) + d1i sin(µit))ϕi(x)

is a formal solution for the dynamical problem for a load-free elastic body by

the Fourier method. From the above we know these partial sums converge

weakly to a generalized solution of the dynamical problem. So in a certain

way u(x, t) given formally by (5.137) is this solution. We will establish the

properties of the series (5.137) and hence those of the generalized solution.

Let us consider the convergence of series (5.137). Multiply the identity

(5.131) termwise by ċi(t) and sum over i:

n∑
i=1

c̈i(t)ċi(t)

∫
Ω

ϕ2
i (x) dΩ +

n∑
i=1

ci(t)ċi(t)(ϕi, ϕi)E

=

n∑
i=1

∫
Ω

f(x, t)ċi(t)ϕi(x) dΩ

or

1

2

d

dt

(
n∑
i=1

ċ2i (t)

∫
Ω

ϕ2
i (x) dΩ +

n∑
i=1

c2i (t)(ϕi, ϕi)E

)

=

∫
Ω

f(x, t)

(
n∑
i=1

ċi(t)ϕi(x)

)
dΩ.

We used this procedure in obtaining the estimate of the Faedo–Galerkin

approximation. So redenoting t by τ and integrating the last equality in τ

over [0, t] we get

1

2

(
n∑
i=1

ċ2i (t)

∫
Ω

ϕ2
i (x) dΩ +

n∑
i=1

c2i (t)(ϕi, ϕi)E

)

=
1

2

(
n∑
i=1

ċ2i (0)

∫
Ω

ϕ2
i (x) dΩ +

n∑
i=1

c2i (0)(ϕi, ϕi)E

)

+

∫ t

0

∫
Ω

f(x, τ)

(
n∑
i=1

ċi(τ)ϕi(x)

)
dΩ dτ
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and therefore

1

2

(
n∑
i=1

ċ2i (t)

∫
Ω

ϕ2
i (x) dΩ +

n∑
i=1

c2i (t)(ϕi, ϕi)E

)

≤ 1

2

n∑
i=1

(
d21iλ

2
i + d20i

)
+ T

∫ t

0

∫
Ω

f2(x, τ) dΩ dτ

+
1

4T

∫ t

0

∫
Ω

(
n∑
i=1

ċi(τ)ϕi(x)

)2

dΩ dτ

=
1

2

n∑
i=1

(
d21iλ

2
i + d20i

)
+ T

∫ t

0

∫
Ω

f2(x, τ) dΩ dτ

+
1

4T

∫ t

0

n∑
i=1

ċ2i (τ)

(∫
Ω

ϕ2
i (x) dΩ

)2

dτ.

Here we used the elementary inequality

|ab| ≤ a2

4T
+ Tb2

and mutual orthogonality of the ϕi in EA = L2(Ω). Taking maximum values

on [0, T ] in the last inequalities we get

1

2
max
t∈[0,T ]

(
n∑
i=1

ċ2i (t)

∫
Ω

ϕ2
i (x) dΩ +

n∑
i=1

c2i (t)(ϕi, ϕi)E

)

≤ 1

2

n∑
i=1

(
d21iλ

2
i + d20i

)
+ T

∫ T

0

∫
Ω

f2(x, τ) dΩ dτ

+
1

4T
T max
τ∈[0,T ]

n∑
i=1

ċ2i (τ)

(∫
Ω

ϕ2
i (x) dΩ

)2

so

1

2
max
t∈[0,T ]

(
1

2

n∑
i=1

ċ2i (t)

∫
Ω

ϕ2
i (x) dΩ +

n∑
i=1

c2i (t)(ϕi, ϕi)E

)

≤ 1

2

n∑
i=1

(
d21iλ

2
i + d20i

)
+ T

∫ T

0

∫
Ω

f2(x, τ) dΩ dτ. (5.138)

The right side of (5.138), by (5.135) and (5.136), is bounded by some con-

stant M independent of n. By orthogonality of the basis elements and the

form of the norm of a partial sum for series (5.137), which is

un(x, t) =

n∑
i=1

ci(t)ϕi(x),
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we know that {un} converges in C(E ; 0, T ) and {dun/dt} converges in

C(EA; 0, T ) = C(L2(Ω); 0, T ). Thus the series (5.137), which is also a gen-

eralized solution to the problem under consideration, belongs to C(E ; 0, T ),
whereas its time derivative ∂u/∂t belongs to C(EA; 0, T ). Simultaneously

we justified convergence of the Fourier method for a free-load dynamical

problem for an elastic body. Assuming existence of time derivatives of the

force term f , in the same way we can show that the solution has additional

time derivatives. Moreover, for the free-load case we can show that the

time derivative of any order of the solution is in C(EA; 0, T ).

5.14 Equilibrium of a von Kármán Plate

So far we have considered only linear mechanical problems. Of course, these

represent only simple approximations to natural processes: although some

weakly nonlinear processes can be analyzed with sufficient accuracy via lin-

ear models, many important physical effects are inherently nonlinear. It is

fortunate that the speed of machine computation has increased to the point

where more realistic simulation has become possible. But the availability

of numerical methods has also underscored the importance of analytical

considerations. To work effectively we must know whether a solution ex-

ists and to which function space it belongs. We should also understand

the differences between various solution methods and be prepared to place

rigorous bounds on the error.

An important nonlinear problem, and one that can be regarded as a

touchstone for many numerical methods, is the equilibrium problem for a

thin elastic plate under transverse load q. The plate is described by two

nonlinear equations,

D∆2w = [f, w] + q, (5.139)

∆2f = −[w,w], (5.140)

given over a two-dimensional region Ω representing the mid-surface of the

plate. Here w = w(x, y) is the transverse displacement of a point (x, y) of

the mid-surface, f = f(x, y) is the Airy stress function, D is the rigidity

coefficient of the plate, and the notation [u, v] is defined by

[u, v] = uxxvxx + uyyvyy − 2uxyvxy (5.141)

where the subscripts x and y denote the partial derivatives ∂/∂x and ∂/∂y,

respectively. With suitably chosen dimensionless variables we can get D =
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1. We shall consider the problem with the boundary conditions

w
∣∣
∂Ω

= 0 =
∂w

∂n

∣∣∣∣
∂Ω

(5.142)

and

f
∣∣
∂Ω

= 0 =
∂f

∂n

∣∣∣∣
∂Ω

. (5.143)

Conditions (5.142) mean that the edge of the plate is fixed against trans-

verse displacement and rotation, and (5.143) means that the lateral bound-

ary is not subjected to tangential load. In mechanics, (5.143) is derived for

a simply connected domain. As usual we take Ω to be compact with a piece-

wise smooth boundary so that Sobolev’s imbedding theorem for W 2,2(Ω)

applies. If we neglect the term [f, w] in (5.139), we get the linear equation of

equilibrium of a plate under transverse load as considered in Chapter 4. We

would like to apply the tools of generalized setup of mechanical problems.

Let us begin with the pair of integro-differential equations

a(w, ζ) = B(f, w, ζ) +

∫∫
Ω

qζ dΩ, (5.144)

a(f, η) = −B(w,w, η), (5.145)

where

a(u, v) =

∫∫
Ω

(uxx (vxx + µvyy) + 2(1− µ)uxyvxy + uyy (vyy + µvxx)) dΩ,

µ is Poisson’s ratio for the material (0 < µ < 1/2), and

B(u, v, ϕ) =

∫∫
Ω

((uxyvy − uyyvx)ϕx + (uxyvx − uxxvy)ϕy) dΩ.

From a variational perspective, (5.144)–(5.145) would appear to constitute

the first variation of some functional; we could regard ζ and η as arbi-

trary admissible smooth variations of w and f . Because such a viewpoint

would return us to (5.139)–(5.140), we could try (5.144)–(5.145) as equa-

tions appropriate for the generalized setup. Other forms of the bilinear

functional a(u, v) may also yield (5.139)–(5.140) as a consequence of the

variational technique; however, for types of boundary conditions that differ

from (5.142) this would lead to incorrect natural boundary conditions. If

we wish to consider boundary conditions for f including tangential load,

we must take a different form of the left side in (5.145) (see, for example,
[31]). But for conditions (5.143) we can forget about the physical meaning

of the Airy function and use the same form of a(u, v) in the generalized
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equation. Hence we shall use (5.144)–(5.145) for the generalized setup of

the equilibrium problem for von Kármán’s plate. Experience with the linear

equilibrium problem for a plate suggests that we exploit the form a(u, v)

as an inner product in “energy” spaces for w and f . This means, by the

results for a linear plate, that the solution will be sought in the subspace

of W 2,2(Ω) consisting of the functions satisfying the boundary conditions

(5.142). We need to see whether the terms of (5.144)–(5.145) make sense

when the functions included therein reside in the energy spaces (note that

we now consider dimensionless versions of the equations). Of course, we

suppose that q satisfies at least the same conditions as for the general-

ized setup of the corresponding linear plate problem. For definiteness, let

q ∈ L(Ω). We will check that the other terms in the equations make sense.

It is necessary to consider only the trilinear form B(u, v, w). Apply Hölder’s

inequality for three functions to a typical term:∣∣∣∣
∫∫

Ω

uxxvywx dΩ

∣∣∣∣ ≤
(∫∫

Ω

u2xx dΩ

)1/2 (∫∫
Ω

v4y dΩ

)1/4(∫∫
Ω

w4
x dΩ

)1/4

≤ m ‖u‖P ‖v‖P ‖w‖P , (5.146)

where we have used the fact that in EPc the norm

‖w‖P = (a(w,w))1/2

is equivalent to the norm of W 2,2(Ω) and elements of W 2,2(Ω) have the

first derivatives belonging to Lp(Ω) with any finite p > 1, in particular for

p = 4, which is necessary in Hölder’s inequality. So all terms make sense in

the energy space.

Definition 5.28. A generalized solution to the equilibrium problem is a

pair w, f belonging to EPc × EPc and satisfying (5.144)–(5.145) for any

ζ, η ∈ EPc.

Equation (5.145) is linear in f . Using this we will eliminate f from the

explicit statement of the problem. The right side of (5.145) is linear in η;

estimates of the type (5.146) give us

|B(w,w, η)| ≤ m ‖w‖2P ‖η‖P . (5.147)

This means B(w,w, η) is continuous in η so we can apply Theorem 4.100

and state that for any fixed w ∈ EPc
−B(w,w, η) = (C, η)P = a(C, η). (5.148)
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This C ∈ EPc, uniquely defined by w, is considered as the value of an

operator in EPc at w: C = C(w). Then (5.145) is rewritten as

a(f, η) = a(C(w), η) (5.149)

and thus f = C(w). We will make further use of this.

Let us call a nonlinear operator in a Hilbert space completely continuous

if it takes any weakly Cauchy sequence into a strongly Cauchy sequence.

Lemma 5.29. The operator C(w) is completely continuous in EPc.
The proof is based on the following symmetry property of the trilinear

form B(u, v, w).

Lemma 5.30. For any u, v, w ∈ EPc,
B(u, v, w) = B(w, u, v) = B(v, w, u) = B(v, u, w)

= B(w, v, u) = B(u,w, v). (5.150)

Proof. We introduced the energy spaces as completions of the sets of

functions satisfying appropriate boundary conditions and having all the

continuous derivatives (in this case up to second order) that are included

in the energy expression for the body. However, the set of infinitely dif-

ferentiable functions is dense in subspaces of C(k)(Ω), and this means we

can use it as a base to get a corresponding energy space (in other words,

among representative Cauchy sequences of an element of an energy space

there are those which consist of infinitely differentiable functions only).

The validity of (5.150) is shown by direct integration by parts for functions

u, v, w having all the third continuous derivatives (they cancel mutually

after transformations). Taking then representative Cauchy sequences for

elements u, v, w ∈ EPc that have infinitely differentiable members we get

the needed property by the limit passage in the equalities (5.150) written

for the members. Equation (5.147) justifies the limit passage. �

Proof. [Proof of Lemma 5.29] By (5.150) and (5.148), for any η ∈ EPc
we have

(C(w), η)P = −B(w,w, η) = −B(η, w,w). (5.151)

Let {wn} be a weakly Cauchy sequence in EPc and thus ‖wn‖P < c0 with

c0 independent of n. We must show that {C(wn)} is a strongly Cauchy

sequence. From (5.151) it follows that

|(C(wn+m)− C(wn), η)P | = |B(η, wn+m, wn+m)−B(η, wn, wn)| . (5.152)
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Consider a typical pair of corresponding terms of the right side:∣∣∣∣
∫∫

Ω

ηxx(wn+mywn+mx − wnywnx) dΩ

∣∣∣∣
=

∣∣∣∣
∫∫

Ω

ηxx(wn+mywn+mx − wn+mywnx + wn+mywnx − wnywnx) dΩ

∣∣∣∣
≤
∣∣∣∣
∫∫

Ω

ηxxwn+my(wn+mx − wnx) dΩ

∣∣∣∣+
∣∣∣∣
∫∫

Ω

ηxxwnx(wn+my − wny) dΩ

∣∣∣∣ .
Applying Hölder’s inequality to each term on the right as in (5.146), we

have∣∣∣∣
∫∫

Ω

ηxx(wn+mywn+mx − wnywnx) dΩ

∣∣∣∣
≤
(∫∫

Ω

η2xx dΩ

)1/2 (∫∫
Ω

wn+m
4
y dΩ

)1/4(∫∫
Ω

(wn+mx − wnx)
4 dΩ

)1/4

+

(∫∫
Ω

η2xx dΩ

)1/2(∫∫
Ω

wn
4
x dΩ

)1/4(∫∫
Ω

(wn+my − wny)
4 dΩ

)1/4

≤M ‖η‖P c0
(∥∥wn+mx − wnx

∥∥
L4(Ω)

+
∥∥wn+my − wny

∥∥
L4(Ω)

)
with a constant M defined by the imbedding theorem for EPc. Doing this

for each corresponding pair on the right side of (5.152) we get

|(C(wn+m)− C(wn), η)P |
≤M1 ‖η‖P

(∥∥wn+mx − wnx
∥∥
L4(Ω)

+
∥∥wn+my − wny

∥∥
L4(Ω)

)
Putting η = C(wn+m)− C(wn) we get

|(C(wn+m)− C(wn), C(wn+m)− C(wn))P |
≤M1 ‖C(wn+m)− C(wn)‖P ·

·
(∥∥wn+mx − wnx

∥∥
L4(Ω)

+
∥∥wn+my − wny

∥∥
L4(Ω)

)
or

‖C(wn+m)− C(wn)‖P
≤M1

(∥∥wn+mx − wnx
∥∥
L4(Ω)

+
∥∥wn+my − wny

∥∥
L4(Ω)

)
. (5.153)

But by Sobolev’s imbedding theorem for W 2,2(Ω), which also applies to its

subspace EPc, we know that for a sequence {wn} weakly convergent in EPc,∥∥wn+mx − wnx
∥∥
L4(Ω)

+
∥∥wn+my − wny

∥∥
L4(Ω)

→ 0 as n→ ∞.
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This implies the needed statement of the lemma:

‖C(wn+m)− C(wn)‖P → 0 as n→ ∞. �

Now we return to the generalized setup and eliminate f = C(w) from

the statement. Then (5.144)–(5.145) reduce to the single equation

(w, ζ)P = B(C(w), w, ζ) +

∫∫
Ω

qζ dΩ. (5.154)

Let us present (5.154) in operator form. Consider the right side of (5.154)

as a functional in ζ at a fixed w. It is linear in ζ. Next we get∣∣∣∣B(C(w), w, ζ) +

∫∫
Ω

qζ dΩ

∣∣∣∣ ≤ m1 ‖C(w)‖P ‖w‖P ‖ζ‖P

+max
Ω

|ζ|
∫∫

Ω

|q| dΩ

≤ m2 ‖ζ‖P
where we have used a consequence of inequality (5.146), the inequality

‖C(w)‖P ≤M1 ‖w‖2P (5.155)

that can be obtained in the same fashion as (5.153) with use of Sobolev’s

imbedding theorem in W 2,2(Ω). This means the right side of (5.154) is a

continuous linear functional in ζ ∈ EPc. Applying Theorem 4.100 we get

B(C(w), w, ζ) +

∫∫
Ω

qζ dΩ = (G, ζ)P

where G ∈ EPc is uniquely defined by w ∈ EPc. Thus G can be considered

as the result of an operator G = G(w) acting in EPc. Then (5.154) becomes

(w, ζ)P = (G(w), ζ)P

and so, by the arbitrariness of ζ ∈ EPc, we get an operator equation

w = G(w) (5.156)

where G is a nonlinear operator in EPc.

Lemma 5.31. The operator G is completely continuous in EPc; that is, it
takes any weakly Cauchy sequence into a strongly Cauchy sequence.

The proof practically repeats all the steps of the proof of Lemma 5.29

(and in fact is easier since C is a completely continuous operator).
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To use the calculus of variations we should present (5.156) as the equal-

ity of the first variation of some functional to zero. The appropriate func-

tional is

F (w) =
1

2
a(w,w) +

1

4
a(C(w), C(w)) −

∫∫
Ω

qw dΩ. (5.157)

Let us introduce

Definition 5.32. Suppose a functional Φ at point x in a real Hilbert space

H can be represented as

Φ(x+ y)− Φ(x) = (K(x), y)H + o(‖y‖H) (5.158)

for any y, ‖y‖H ≤ ε with some small ε > 0. The correspondence from x to

K(x) is called the gradient of W and is denoted as gradΦ(x) = K(x).

This is a way of representing the first variation of a functional in a real

Hilbert space, which was the central point of Chapter 1. The main term in

the representation can often be found by formal differentiation with respect

to a parameter t:

(K(x), y)H =
d

dt
Φ(x+ ty)

∣∣∣∣
t=0

. (5.159)

For example, the gradient of the functional 1
2 ‖x‖2H is the identity operator:

d

dt

(
1

2
(x + ty, x+ ty)

)
H

∣∣∣∣
t=0

= (x, y)H .

The reader can check this by direct calculation according to Definition 5.32.

As in Chapter 1, we have

Lemma 5.33. Suppose a functional Φ(x) has at any point x of a real

Hilbert space H a continuous gradient K(x). If Φ(x) attains a minimum

at x0, then K(x0) = 0.

Proof. For any fixed y and small t, by (5.158) we have

0 ≤ Φ(x0 + ty)− Φ(x0) = t(K(x0), y)H + o(|t|).
From this inequality we conclude, as is standard reasoning in Chapter 1,

that (K(x0), y)H = 0. Hence K(x0) = 0 by the arbitrariness of y. �

Note that we derived a version of the Euler equation for an abstract

functional. The points x at which K(x) = 0 are called critical points of Φ.

Thus points of minimum of a smooth functional Φ are its critical points.

Let us apply this to our equation.
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Theorem 5.34. Let q ∈ L(Ω). There exists a generalized solution w0, f0 ∈
EPc to the equilibrium problem for von Kármán’s plate with boundary con-

ditions (5.142)–(5.143). The element w0 is a point of minimum of the

functional F (w) defined by (5.157).

We present the proof as several lemmas.

Lemma 5.35. At any w ∈ EPc we have gradF (w) = w −G(w).

Proof. Let us consider F (w + tζ) at any fixed w, ζ ∈ EPc. In t this is a

simple polynomial so we can define gradF by (5.159). Consider

d

dt
F (w + tζ)

∣∣∣∣
t=0

=
d

dt

(
1

2
a(w + tζ, w + tζ)

+
1

4
a(C(w + tζ), C(w + tζ)) −

∫∫
Ω

q(w + tζ) dΩ

) ∣∣∣∣
t=0

= a(w,w) +
1

2
a

(
dC(w + tζ)

dt
, C(w)

) ∣∣∣∣
t=0

−
∫∫

Ω

qζ dΩ.

(5.160)

From (5.151), using the symmetry of its right side in w, we have

a

(
dC(w + tζ)

dt
, η

) ∣∣∣∣
t=0

= − d

dt
B(η, w + tζ, w + tζ)

∣∣∣∣
t=0

= −2B(η, w, ζ).

So

a

(
dC(w + tζ)

dt
, C(w)

) ∣∣∣∣
t=0

= −2B(C(w), w, ζ).

Combining this with (5.160) we get

d

dt
F (w+ tζ)

∣∣∣∣
t=0

= a(w, ζ)−B(C(w), w, ζ)−
∫∫

Ω

qζ dΩ = (w −G(w), ζ)P ,

which completes the proof. �

From this and the above we get

Lemma 5.36. Any critical point w ∈ EPc of the functional F given by

(5.157) implies the pair w, f = C(w) is a generalized solution of the problem

under consideration.

Now we show that there is a point at which F (w) attains its minimum.

First we note that this minimum point is in a ball centered at the origin
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and having radius defined only by the load q. This follows from

2F (w) ≥ a(w,w) − 2

∣∣∣∣
∫∫

Ω

qw dΩ

∣∣∣∣
≥ ‖w‖2P − 2max

Ω
|w|

∫∫
Ω

|q| dΩ

≥ ‖w‖2P −M0 ‖w‖P , (5.161)

where the constant M0 is defined by the norm of q in L(Ω) and the norm

of the imbedding operator from EPc to C(Ω). Since F (0) = 0 and outside

the sphere ‖w‖P =M0 + 1, we have F (w) ≥M0 + 1 and thus

Lemma 5.37. If there is a minimum point of the functional F , then it

belongs to the ball ‖w‖P < M0 + 1. Moreover, the functional F is growing

in EPc; i.e., F (w) → ∞ as ‖w‖P → ∞.

The fact that F is a growing functional follows immediately from

(5.161). Now we must prove that F attains its limit point.

Lemma 5.38. The functional

Φ(w) =
1

4
a(C(w), C(w)) −

∫∫
Ω

qw dΩ

is weakly continuous in EPc, thus the functional F (w) is represented as

F (w) =
1

2
‖w‖2P +Φ(w)

with a weakly continuous functional Φ.

Proof. Evident since
∫
Ω
qw dΩ is a continuous linear functional and C is

a completely continuous operator. �

The proof of Theorem 5.34 is completed by the following result due to

Tsitlanadze:

Theorem 5.39. Let f(x) be a growing functional in a Hilbert space H that

has the form

f(x) = ‖x‖2H + ϕ(x)

where ϕ(x) is a weakly continuous functional in H. Then

(i) there is a point x0 at which f(x) attains its absolute minimum, i.e.,

f(x0) ≤ f(x) for any x ∈ H;
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(ii) any sequence {xn} minimizing f , so that

lim
n→∞ f(xn) = f(x0),

contains a subsequence strongly convergent to x0.

Proof. On any ball ϕ(x) is bounded and thus f(x) is bounded as well.

Because f(x) is growing we state that a possible minimum point is inside a

closed ball B of a radius R. Let a be the infimum of values of f(x). Then

inf
x∈H

f(x) = inf
‖x‖H≤R

f(x) = a.

Take a minimizing sequence {xn} of f . We can consider it is inside B and

thus contains a weakly convergent subsequence that we redenote by {xn}
again. Without loss of generality, we can consider the sequence of norms

of xn to converge to b, such that b ≤ R. Since a closed ball centered at the

origin is weakly closed we know that {xn} converges weakly to an element

x0 ∈ B. Now it is enough to show that {xn} converges strongly to x0.

We know that if for a weak Cauchy sequence the sequence of norms of the

elements converges to the norm of the weak limit element, then it converges

strongly. Thus we must show only that ‖x0‖H = b. It is clear that

‖x0‖H ≤ b.

Indeed, because of weak convergence of {xn} to x0 we have

‖x0‖2H = lim
n→∞(xn, x0)H ≤ ‖x0‖H lim

n→∞ ‖xn‖H = b ‖x0‖H .
Next, because of weak continuity of ϕ we have

lim
n→∞ϕ(xn) = ϕ(x0)

and thus

a = lim
n→∞ f(xn) = lim

n→∞

(
‖xn‖2H + ϕ(xn)

)
= b2 + ϕ(x0).

But

f(x0) = ‖x0‖2H + ϕ(x0) ≥ a

so ‖x0‖2H ≥ b2 which means that ‖x0‖H = b. All statements of the theorem

are proved. �

By this theorem the proof of Theorem 5.34 is also completed. Note that

Theorem 5.39 prepared everything to formulate the theorem on convergence

of the Ritz approximations to a generalized solution of the problem under

consideration. We leave this to the reader.
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5.15 A Unilateral Problem

Let us consider deformation of a membrane constrained by a surface be-

neath it. The membrane cannot penetrate the surface. Such a unilateral

problem can be formulated as a problem involving a so-called variational

inequality. By this approach we obtain problems with free boundaries; i.e.,

the boundary of the domain over which some equations are applicable is

determined during solution, not in advance. Our previous use of the term

“free” indicated a lack of geometrical constraints on the displacements.

Now there is an obstacle, and the border of contact between this obstacle

and the membrane is undetermined (free).

Consider a membrane under load f occupying a compact domain Ω with

clamped edge. Beneath the membrane there is an obstacle described by a

function ϕ = ϕ(x, y). The obstacle is impenetrable so that

u(x, y) ≥ ϕ(x, y) (5.162)

for all (x, y) ∈ Ω. Let the clamped edge of the membrane be described by

u
∣∣
∂Ω

= a(s) (5.163)

where for the sake of compatibility between the boundary condition and

the obstacle

ϕ
∣∣
∂Ω

≤ a(s). (5.164)

If the membrane lays against the obstacle ϕ, it must take the form of the

obstacle over a domain called a coincidence set. Mechanically it is clear

that the membrane equation should not be applied over such a set (in fact

it does hold but contains an unknown force reaction of the obstacle). We

do not know beforehand how to determine a coincidence set, its border, or

the conditions for a solution on the border.

Classical setup of the problem

Let us attempt to apply the calculus of variations. As we would like to ob-

tain a classical statement of the problem, we suppose all the functions em-

ployed are sufficiently smooth. Since the mechanics of the problem ensures

applicability of the minimum total energy principle, a solution minimizes

the energy functional

F (u) =
1

2

∫∫
Ω

[(
∂u

∂x

)2

+

(
∂u

∂y

)2
]
dΩ−

∫∫
Ω

fu dΩ
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over the set of functions satisfying (5.162)–(5.163). Supposing there is a

solution belonging to C(2)(Ω), we will find equations for a minimizer over

the subset of C(2)(Ω) consisting of functions satisfying (5.162)–(5.163). We

denote this subset by Cϕ. Note that we must assume ϕ ∈ C(2)(Ω) as well.

Later we will “forget” this requirement. Hence we seek equations governing

a minimizer u ∈ Cϕ of F (u) over Cϕ. It is clear that the set Cϕ is convex in

C(2)(Ω), which means that if u1 and u2 belong to Cϕ then for any t ∈ [0, 1]

we have (1−t)u1+tu2 ∈ Cϕ. Let us take an arbitrary v ∈ Cϕ. By convexity

we see that u+ t(v − u) = (1− t)u+ tv belongs to Cϕ for any t ∈ [0, 1] as

well. So by the principle of minimum total energy we have

F (u+ t(v − u)) ≥ F (u)

for any v ∈ Cϕ and t ∈ [0, 1]. Remembering the notation

(u, v)M =

∫∫
Ω

(
∂u

∂x

∂v

∂x
+
∂u

∂y

∂v

∂y

)
dΩ (5.165)

we have

1

2
(u+ t(v − u), u+ t(v − u))M − 1

2
(u, u)M − t

∫∫
Ω

f(v − u) dΩ ≥ 0

or

t

[
(u, v − u)M −

∫∫
Ω

f(v − u) dΩ

]
+

1

2
t2(v − u, v − u)M ≥ 0 (5.166)

for any t ∈ [0, 1]. For a fixed v, the coefficient of t is nonnegative:

(u, v − u)M −
∫∫

Ω

f(v − u) dΩ ≥ 0. (5.167)

Otherwise, choosing sufficiently small t, we find that (5.166) is violated since

t2 tends to zero faster than t as t → 0. Hence a minimizer u must satisfy

(5.167) for any v ∈ Cϕ. This is an example of a variational inequality.

Denote η = v − u. It is clear that on the boundary

η
∣∣
∂Ω

= 0. (5.168)

Then (5.167) takes the form

(u, η)M −
∫∫

Ω

fη dΩ ≥ 0. (5.169)

The left side of (5.169) is the first variation of functional F with virtual

displacement η. In the calculus of variations, from (5.169) we stated that

the first variation is equal to zero for any η. This was done because η was

sufficiently arbitrary; this time, however, we have η ≥ 0 on the coincidence
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set for u, so we cannot use the trick involving a sign change on η to obtain

an equality in (5.169). Let us derive the differential equations from (5.169).

Traditional integration by parts with regard for (5.168) yields∫∫
Ω

(−∆u− f) η dΩ ≥ 0. (5.170)

If we restrict the support of η to the coincidence set of u denoted by Ωϕ,

all we obtain is

−∆u− f ≥ 0

inside Ωϕ. This means that on Ωϕ there is a reaction of the supporting

obstacle applied to the membrane. Recall that on the coincidence set we

have u = ϕ. We consider u to be of the class of C(2)(Ω), and hence on the

boundary Γϕ of Ωϕ all the first derivatives of u and ϕ are equal:

∇(u − ϕ)
∣∣
Γϕ

= 0.

From this we can determine the position of Γϕ. Let us consider what

happens outside the coincidence set Ωϕ. Here the only restriction for η is

some smallness of its negative values. For sufficiently small η with compact

support lying in Ω\Ωϕ we have equality to zero in (5.170). Thus the usual

tools of the calculus of variations imply that in Ω\Ωϕ there holds the Poisson

equation

∆u = −f (5.171)

as expected from mechanical considerations. Let us summarize the setup:

∆u = −f on Ω\Ωϕ,
∆u + f ≤ 0, u = ϕ on Ωϕ,

∇(u − ϕ) = 0 on Γϕ,

u = a on ∂Ω.

The equation of equilibrium on Ω becomes

(∆u+ f)(u − ϕ) = 0 in Ω.

Generalized setup

It is difficult to prove the existence of a classical solution to the above

problem. When the coincidence set is complicated or the load is non-

smooth, the energy approach to the solution is quite appropriate. For the

problem setup we shall use an energy space whose elements are sets of
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equivalent Cauchy sequences, so we must explain the meaning of (5.162).

We begin with the inequality u(x, y) ≥ 0. We say that u(x, y) ≥ 0, u ∈
W 1,2(Ω), if there is a representative Cauchy sequence of u(x, y) such that

each of its terms un(x, y) ≥ 0. We say that u(x, y) ≥ ϕ(x, y) if u(x, y) −
ϕ(x, y) ≥ 0. If ϕ(x, y) ∈ W 1,2(Ω), then the set of functions u(x, y) ≥ ϕ(x, y)

is closed inW 1,2(Ω) and in any closed subspace of this space. Let us assume

that the obstacle function ϕ(x, y) ∈W 1,2(Ω) and satisfies (5.164). Now we

seek a minimizer u = u(x, y) ∈ W 1,2(Ω) of

F (u) =
1

2

∫∫
Ω

[(
∂u

∂x

)2

+

(
∂u

∂y

)2
]
dΩ−

∫∫
Ω

fu dΩ

over a subset Wϕ of elements of W 1,2(Ω) satisfying

u
∣∣
∂Ω

= a(s), u(x, y) ≥ ϕ(x, y).

This minimizer is called a generalized solution of the unilateral problem for

the clamped membrane. We suppose ϕ ∈W 1,2(Ω) and f ∈ Lp(Ω) for some

p > 1. In this case the problem of minimization of F (u) over Wϕ is well

defined. As before we find that a minimizer u ∈Wϕ satisfies the variational

inequality (5.167) for all v ∈ Wϕ. We would like to reduce the problem to

the case we have studied. Assume there is an element g = g(x, y) ∈W 1,2(Ω)

that satisfies the same boundary condition as a solution,

g(x, y)
∣∣
∂Ω

= a(s), (5.172)

and define another unknown function w by the equality

u = w + g.

From the properties of u it follows that

w(x, y)
∣∣
∂Ω

= 0.

We see that w ∈ W 1,2(Ω) and thus w ∈ EMc. To pose the setup in terms

of w, it is clear that w should satisfy

w(x, y) ≥ ϕ(x, y) − g(x, y). (5.173)

LetWϕ−g denote the subset of EMc consisting of elements satisfying (5.173).

The functional F (u) reduces to the functional

F1(w) =
1

2

∫∫
Ω

[(
∂(w + g)

∂x

)2

+

(
∂(w + g)

∂y

)2
]
dΩ−

∫∫
Ω

f(w + g) dΩ.
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Since f and g are fixed, the problem of minimizing F (u) becomes the prob-

lem of minimizing the functional

Φ(w) =
1

2

∫∫
Ω

[(
∂(w + g)

∂x

)2

+

(
∂(w + g)

∂y

)2
]
dΩ−

∫∫
Ω

fw dΩ

over the set Wϕ−g. Let us formulate the problem explicitly:

Given ϕ, g ∈ W 1,2(Ω) such that (5.172) and (5.164) hold, find a

minimizer of Φ(w) over Wϕ−g.

Using (5.165) we can write

Φ(w) =
1

2
(w + g, w + g)M −

∫∫
Ω

fw dΩ.

Let w∗ be a minimizer of Φ(w) over Wϕ−g. We repeat the reasoning that

led to (5.167). Fixing an arbitrary w ∈Wϕ−g, we have

Φ(w∗ + t(w − w∗)) ≥ Φ(w∗)

for any t ∈ [0, 1]. For such t it follows that

1

2
(w∗ + t(w − w∗) + g, w∗ + t(w − w∗) + g)M

− 1

2
(w∗ + g, w∗ + g)M − t

∫∫
Ω

f(w − w∗) dΩ ≥ 0

or

t

{
(w∗, w − w∗)M + (g, w − w∗)M −

∫∫
Ω

f(w − w∗) dΩ
}

+
1

2
t2(w − w∗, w − w∗)M ≥ 0.

Since this holds for any t ∈ [0, 1] we conclude that the coefficient of t must

be nonnegative:

(w∗, w − w∗)M ≥
∫∫

Ω

f(w − w∗) dΩ− (g, w − w∗)M

for all w ∈ Wϕ−g. This is a necessary condition for w∗ to be a minimizer

of Φ(w) over Wϕ−g.

Theorem 5.40. There exists a generalized solution to the unilateral prob-

lem for the membrane with clamped edge; it is the unique minimizer w∗ of

Φ(w) over Wϕ−g.
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Proof. Let us show uniqueness of the minimizer w∗. Suppose to the

contrary that there are two minimizers w∗
1 and w∗

2 . Then

(w∗
i , w − w∗

i )M ≥
∫∫

Ω

f(w − w∗
i ) dΩ− (g, w − w∗

i )M .

We put w = w∗
2 in the inequality for w∗

1 and w = w∗
1 in the inequality for

w∗
2 . Adding the results we get

(w∗
1 − w∗

2 , w
∗
2 − w∗

1)M ≥ 0,

which is possible only when w∗
1 = w∗

2 since w∗
i ∈ EMc.

Now let us show existence of a minimizer of Φ(w). It is clear that Φ(w)

is bounded from below on Wϕ−g (why?). Let d = inf Φ(w) over Wϕ−g, and
let {wn} be a minimizing sequence for Φ(w) in Wϕ−g:

Φ(wn) → d as n→ ∞.

Now we show that {wn} is a Cauchy sequence. Indeed, consider

(wn − wm, wn − wm)M = 2(wn, wn)M + 2(wm, wm)M

− 4

(
1

2
(wn + wm),

1

2
(wn + wm)

)
M

. (5.174)

An elementary transformation shows that

2(wn, wn)M + 2(wm, wm)M − 4

(
1

2
(wn + wm),

1

2
(wn + wm)

)
M

= 4Φ(wn) + 4Φ(wm)− 8Φ

(
1

2
(wn + wm)

)
. (5.175)

Next Φ(wn) = d + εn where εn → 0 as n → ∞. Because Wϕ−g is convex

the element 1
2 (wn + wm) belongs to Wϕ−g, so Φ

(
1
2 (wn + wm)

) ≥ d, hence

(5.174)–(5.175) imply

(wn − wm, wn − wm)M ≤ 2(d+ εn) + 2(d+ εm)− 4d

= 2(εn + εm) → 0 as n,m→ ∞.

This completes the proof. �

We have proved solvability of a unilateral problem for a clamped mem-

brane. Since all the problems we considered for plates, rods, and elastic

bodies have the same structure, and since in the reasoning for the membrane

we used only the structure of the energy functional, we can immediately re-

formulate unilateral problems for all the objects just mentioned (of course,

for a three-dimensional body we can stipulate the unilateral condition only
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on the boundary). This work is left to the reader. The theory of unilateral

problems and variational inequalities contains harder questions than the

existence of an energy solution: it studies the problem of regularity of this

solution, which is how the smoothness of solutions depends on the smooth-

ness of the load. The interested reader may consult more advanced sources

(e.g., [8; 11]).

5.16 Exercises

5.1 For all the bodies discussed in § 5.1 (except a stretched bar), write out the
functional of total potential energy and the virtual work principle in the case
when some part of the object (of its boundary for a three-dimensional body) is
supported by a foundation of Winkler’s type (i.e., when there is a contact force of
supports whose amplitude is proportional to the corresponding displacements).

5.2 By analogy with in § 5.4, consider the generalized setup of the equilibrium
problem for a membrane with mixed boundary conditions. Assume that on some
part of the boundary u = 0, while on the rest there is a given force g(s). Formulate
the corresponding theorem on existence and uniqueness of solution in this setup.

5.3 Consider a beam under bending and stretching. Formulate the generalized
setup for this problem, combining the setups for a stretched rod and bent beam.
Formulate the corresponding existence-uniqueness theorem.

5.4 (a) Which terms are necessary to add to the equilibrium equation (5.13) to
include a finite number external point couples and forces acting on the beam into
the generalized setup? (b) Is it possible to the consider generalized setup when
there is a countable set of point couples and forces?

5.5 For the structures from Exercises 2.1–2.8, use the virtual work principle
and the results of solution of the Exercises to introduce the appropriate energy
spaces and investigate their properties. Then formulate the generalized setup of
the corresponding problems, and formulate and prove corresponding existence–
uniqueness theorems for the generalized solutions.

5.6 For a free plate, consider a case when forces are given on the plate edge.
Formulate the form of the potential and the conditions for solvability of the
corresponding problem.

5.7 Using § 5.8 as an example, reproduce the form of the Hamilton–Ostrogradski
principle for each type of object we considered.

5.8 Derive equations for solving the minimum problem (5.98).

5.9 Show that if E is not finite dimensional, then the norm ‖u‖A of § 5.12 cannot
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be equivalent to the initial norm of the space E because A is compact.

5.10 Show that the set
{√

2
π

sin kx
}
, k = 1, 2, . . ., is an orthonormal basis of

L2[0, π].

5.11 Reformulate the statements of § 5.12 for each of the mechanics problems.

5.12 Suppose that in the conditions of Theorem 5.39 the minimum point is
unique. Prove that any minimizing sequence strongly converges to the minimum
point.

5.13 Referring to § 5.15, demonstrate uniqueness of solution to the problem
under consideration in W 1,2(Ω), that w∗ + g does not depend on the choice of
g ∈W 1,2(Ω).
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Hints for Selected Exercises

1.1.

(a)

y(x)√
1 + y′2(x) + y2(x)

−
(

y′(x)√
1 + y′2(x) + y2(x)

)′

= 0 in (0, 1),

y′(x)√
1 + y′2(x) + y2(x)

∣∣∣∣
x=0

= 0,
y′(x)√

1 + y′2(x) + y2(x)

∣∣∣∣
x=1

= 0.

(b)

(1 + x2) y − y′′ = 0 in (−1, 1),

y′
∣∣
x=−1

= 0, y′
∣∣
x=1

= 0.

(c)

2(1 + 2x2) y + y′′ = 0 in (1, 3),

y′
∣∣
x=1

= 0, y′
∣∣
x=3

= 0.

(d)

(1 + x2) y + 7y′′ = 0 in (a, b),

y′
∣∣
x=a

= 0, y′
∣∣
x=b

= 0.

(e) Denote the functional by F (y). Suppose y is a minimizer and take an ad-
missible variation ϕ. The function F (y + tϕ) of the real variable t takes its
minimum value at t = 0, so dF (y + tϕ)/dt|t=0 = 0. This equation is

2

∫ b

a

[
y′(x)ϕ′(x) + (1 + x6) y(x)ϕ(x)

]
dx+ 2y(a)ϕ(a) = 0.

Canceling the factor of 2 and integrating by parts, we get

∫ b

a

[− y′′(x) + (1 + x6) y(x)
]
ϕ(x) dx+ y′(x)ϕ(x)

∣∣∣∣x=b

x=a

+ y(a)ϕ(a) = 0.

433
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Taking the set of ϕ that vanish at the endpoints, we get the Euler equation

(1 + x6) y − y′′ = 0 in (a, b)

and the integral vanishes for any admissible ϕ. Taking ϕ equal to zero at
only one of the endpoints, and then the other, we get the natural conditions

(−y′ + y)
∣∣
x=a

= 0, y′
∣∣
x=b

= 0.

(f)

(x2 − 9) y − (xy′)′ = 0 in (1, 3),

(−y′ + 5y)
∣∣
x=1

= 0, (3y′ + y)
∣∣
x=3

= 0.

(g) √
x− a y − 5y′′ = 0 in (a, b),

(−5y′ + y)
∣∣
x=a

= 0, y′
∣∣
x=b

= 0.

(h)

x2 y − y′′ = 0 in (1, 2) ∪ (2, 4),

y′
∣∣
x=1

= 0, y′
∣∣
x=2−0

− y′
∣∣
x=2+0

+ y
∣∣
x=2

= 0, y′
∣∣
x=4

= 0.

(i)

x y − y′′ = 0 in (a, c) ∪ (c, b),

y′
∣∣
x=a

= 0, y′
∣∣
x=c−0

− y′
∣∣
x=c+0

+ 1/2 = 0, y′
∣∣
x=b

= 0.

(j)
4 y3 − 3y′′ = 0 in (0, π),

3y′
∣∣
x=0

+
[
y(π)− y(0)

]
= 0, 3y′

∣∣
x=π

+
[
y(π)− y(0)

]
= 0.

(k)

y′2 + sin y − 2(y y′)′ = 0 in (0, π),

(yy′)
∣∣
x=0

= 0, (yy′ + y)
∣∣
x=π

= 0.

(l)

y − 2
[(
y′2 − 1

)
y′
]′

= 0 in (0, 1),

(
y′2 − 1

)
y′
∣∣∣∣
x=0

= 0,
(
y′2 − 1

)
y′
∣∣∣∣
x=1

= 0.

1.2.

(a)
y′′′′ + 2y = 0 in (0, 1),

y′′
∣∣
x=0,1

= 0, y′′′
∣∣
x=0,1

= 0.
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(b)
y′′′′ − 2y′′ = 0 in (0, 1),

y′′
∣∣
x=0,1

= 0, (y′ − y′′′)
∣∣
x=0,1

= 0.

(c)
y′′′′ − y′′ + y = 0 in (0, 1),

y′′
∣∣
x=0,1

= 0, (y′ − y′′′)
∣∣
x=0,1

= 0.

(d)

−y(6) − y(4) + 2(1− x2)y = 0 in (0, 1),

y′′′
∣∣
x=0,1

= 0, (y′′ + y(4))
∣∣
x=0,1

= 0, (y(3) + y(5))
∣∣
x=0,1

= 0.

(e)

y(8) + y′′ + 1 = 0 in (a, b),

y(4)
∣∣
x=a,b

= 0, y(5)
∣∣
x=a,b

= 0, y(6)
∣∣
x=a,b

= 0, (y(7) + y′)
∣∣
x=a,b

= 0.

1.3.

(a)

−uxx − 2uyy + 3u− 1 = 0 in S,

ux

∣∣
x=a,b

= 0, uy

∣∣
y=c,d

= 0.

(b)
−uxx − uyy + u = 0 in S,

ux

∣∣
x=a,b

= 0, uy

∣∣
y=d

= 0, (−uy + u)
∣∣
y=c

= 0.

(c)

uxx + uyy + u = 0 in S,

(ux + u)
∣∣
x=b

= 0, ux

∣∣
x=a

= 0, uy

∣∣
y=c,d

= 0.

(d)
−uxx + uyy + 1 = 0 in S,

ux

∣∣
x=a,b

= 0, uy

∣∣
y=c,d

= 0.

(e)
∂

∂x
(ux)

n−1 +
∂

∂y
(uy)

n−1 = 0 in S,

ux

∣∣
x=a,b

= 0, uy

∣∣
y=c,d

= 0.

(f)
uxx sin ux + uyy sin uy = 0 in S,

cos ux

∣∣
x=a,b

= 0, cosuy

∣∣
y=c,d

= 0.
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(g)

uxx cos ux + uyy cos uy = 0 in S,

sin ux

∣∣
x=a,b

= 0, sin uy

∣∣
y=c,d

= 0.

(h) (
ux√

1 + (ux)2 + (uy)2

)
x

+

(
uy√

1 + (ux)2 + (uy)2

)
y

= 0 in S,

ux√
1 + (ux)2 + (uy)2

∣∣∣∣
x=0,1

= 0,
uy√

1 + (ux)2 + (uy)2

∣∣∣∣
y=0,1

= 0.

(i)

p′′(ux)uxx + q′′(uy)uyy = 0 in S,

p′(ux)
∣∣
x=0,1

= 0, q′(uy)
∣∣
y=0,1

= 0.

(j) ((
1 + (ux)

2 + (uy)
2
)n−1

ux

)
x

+

((
1 + (ux)

2 + (uy)
2
)n−1

uy

)
y

= 0 in S,

(
1+ (ux)

2 +(uy)
2

)n−1

ux

∣∣∣∣
x=0,1

= 0,

(
1+ (ux)

2 +(uy)
2

)n−1

uy

∣∣∣∣
y=0,1

= 0.

1.4. We first show that the Euler equation for the simplest functional can be
rewritten in the equivalent form

1

y′

[
d

dx

(
f − fy′y′

)− fx

]
= 0.

Observe that if f(x, y, y′) does not depend explicitly on x, then one integration
can be performed to give

f − fy′y′ = constant.

Indeed, multiplying and dividing the left member of the Euler equation by y′,
we have

1

y′

[
fyy

′ − y′
d

dx
fy′

]
= 0.

Adding and subtracting a couple of terms inside the brackets, we obtain

1

y′

[
fx + fyy

′ + fy′y′′ − fy′y′′ − y′
d

dx
fy′ − fx

]
= 0.

But the first three terms inside the brackets add to produce df/dx (total deriva-
tive), and the next two terms add to produce −d(fy′y′)/dx (product rule).
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For the surface of revolution problem, the area functional is

∫ b

a

2πy
√

1 + (y′)2 dx.

Note that x does not appear explicitly; using the integrated version of Euler’s
equation, we get

2πy
√

1 + (y′)2 − 2πy
y′√

1 + (y′)2
y′ = constant = α.

Divide through by 2π, then multiply through by
√

1 + (y′)2 and simplify to get

y = β
√

1 + (y′)2 where β = α/2π. Now solve for y′ to obtain the separable ODE

y′ =

√
y2

β2
− 1.

The solution, obtained by direct integration, is

β cosh−1

(
y

β

)
= x+ γ,

hence

y(x) = β cosh

(
x+ γ

β

)
is the general form of the curve sought. The constants β, γ must be determined
from the two endpoint conditions. We see that the minimal surface of revolution
is a catenoid.

1.5. We need to find a smooth curve connecting the points (a, y0) and (b, y1),
a < b. It is clear that for solvability of the problem it is necessary that y0 > y1.

First show that if f takes the general form

f(x, y, y′) = p(y)
√

1 + (y′)2,

where p(y) depends explicitly on y only, then

∫
dy√

p2(y)

α2 − 1
= x+ β

where α and β are constants. The functional giving the time taken for the mo-
tion along a curve y(x) is obtained by putting p(y) = 1/

√
2gy where g is the

acceleration due to gravity.
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Using the specific form of p given and introducing a new constant γ = 1/2α2g,
we have ∫

dy√
γ
y
− 1

= x+ β.

The substitution y = γ sin2
(
θ
2

)
reduces this to

γ

2

∫
(1− cos θ) dθ = x+ β

after the use of a couple of trig identities. Hence

x+ β =
γ

2
(θ − sin θ).

The other equation of the cycloid is

y = γ sin2

(
θ

2

)
=
γ

2
(1− cos θ).

Of course, the constants β and γ would be determined by given endpoint condi-
tions.

1.6. The Euler equation fy − fy′x − fy′yy
′ − fy′y′y′′ = 0 reduces to fy′y′y′′ = 0.

This holds if y′′ = 0 or fy′y′ = 0. The equation y′′ = 0 is satisfied by any line
of the form y = c1x + c2. If the equation fy′y′ = 0 has a real root y′ = γ, then
y = γx+ c3; this, however, merely gives a family of particular straight lines (all
having the same slope γ). In any case, the extremals are all straight lines.

1.7. The average kinetic energy is given by

1

T

∫ T

0

1

2
mx′2(t) dt.

Since the integrand depends explicitly on x′ only, the extremal is of the general
form x(t) = c1t+ c2. Imposing the end conditions to find the constants c1 and c2
we obtain

x(t) =
x1 − x0

T
t+ x0.

The solution means the motion should be at constant speed. Any acceleration
would increase the energy of the motion.

1.9. (a) Vanishing of the first variation requires that equation (1.57) hold. Let us
review for a moment. We know that if we appoint a condition such as y(a) = c0
then, since we need φ(a) = 0 to keep the variations y(x) + ϕ(x) admissible, we
need ϕ(a) = 0 and equation (1.57) yields

fy′(b, y(b), y′(b)) = 0.
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This natural condition makes reference purely to b. Now consider the mixed
condition given in the problem. To keep the variations y(x)+ϕ(x) admissible we
need ϕ(a) + ϕ(b) = 0 or ϕ(a) = −ϕ(b). Equation (1.57) yields

fy′(b, y(b), y′(b)) + fy′(a, y(a), y′(a)) = 0.

This is the supplemental “natural” boundary condition. (b) To keep the variation
admissible this time we need

ψ(y(a) + ϕ(a), y(b) + ϕ(b)) = 0.

As before, we’re looking for a relation between φ(a) and φ(b) that we can sub-
stitute into (1.57). Restricting ourselves to infinitesimal variations φ(x), we use
Taylor’s formula in two variables to write, approximately,

ψ(y(a) + ϕ(a), y(b) + ϕ(b)) = ψ(y(a), y(b))

+

(
ϕ(a)

∂

∂α
+ ϕ(b)

∂

∂β

)
ψ(α, β)

∣∣∣∣α=y(a)
β=y(b)

.

The first term on the right side is zero by the condition given in the problem.
Therefore we need

ϕ(a)
∂ψ(α,β)

∂α

∣∣∣∣α=y(a)
β=y(b)

+ ϕ(b)
∂ψ(α, β)

∂β

∣∣∣∣α=y(a)
β=y(b)

= 0

or

ϕ(a) = Kϕ(b), K = −

∂ψ(α, β)

∂β

∣∣∣∣α=y(a)
β=y(b)

∂ψ(α, β)

∂α

∣∣∣∣α=y(a)
β=y(b)

.

Equation (1.57) yields

fy′(b, y(b), y′(b))−Kfy′(a, y(a), y′(a)) = 0

as the corresponding natural condition. In part (a) we had ψ(α, β) = α+ β − 1,
which gave us K = −1.

1.10. This is a mixed problem. However, the general solution of the Euler
equation is the same as for the brachistochrone problem:

x+ β =
γ

2
(θ − sin θ), y =

γ

2
(1− cos θ).
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The condition at x = a determines β. The condition at x = b is the free-end
condition fy′

∣∣
x=b

= 0. Here

f(x, y, y′) =
1√
2gy

√
1 + (y′)2

(again, the same as for the brachistochrone problem) so that

fy′ =
y′√

2gy
√

1 + (y′)2
.

Thus the condition at x = b is y′(b) = 0; i.e., the required curve must “flatten
out” at this endpoint.

1.11. Arc length on the cylinder is given by (ds)2 = (a dφ)2 + (dz)2. Parameter-
izing the desired curve as φ = φ(t), z = z(t), we seek to minimize the functional

∫ b

a

[a2(φ′)2 + (z′)2] dt.

Each equation of the system (1.63) involves only the derivative of the dependent
variable; hence the extremals are straight lines:

φ(t) = c1t+ c2, z(t) = c3t+ c4.

Eliminating t we find z(φ) = αφ+ β, a family of helices on the cylinder.

1.12. Repetition of the steps leading to (1.50) gives the system

∫ b

a

fy

(
x,

n∑
i=0

ciϕi(x),

n∑
i=0

ciϕ
′
i(x),

n∑
i=0

ciϕ
′′
i (x)

)
ϕk(x) dx

+

∫ b

a

fy′

(
x,

n∑
i=0

ciϕi(x),
n∑

i=0

ciϕ
′
i(x),

n∑
i=0

ciϕ
′′
i (x)

)
ϕ′

k(x) dx

+

∫ b

a

fy′′

(
x,

n∑
i=0

ciϕi(x),
n∑

i=0

ciϕ
′
i(x),

n∑
i=0

ciϕ
′′
i (x)

)
ϕ′′

k(x) dx = 0

for k = 1, . . . , n.

1.13. Recall how the functional
∫ x1

x0
f(x, y, y′) dx was treated in § 1.11. Assume

the endpoints x0, x1 change so we get arbitrary variations δx0 and δx1. In § 1.11
we used linear extrapolation for the function outside [x0, x1]. The approach here
is similar, but we must take into account that the functional involves y′′; hence we
suppose that y′ also has variations at the endpoints δy′0 and δy′0. The technique
of linear extrapolation outside [a, b] must also be applied to the derivative.
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As a result, the extended curve y = y(x) is determined by the endpoint
coordinates (x0 + δx0, y0 + δy0) and (x1 + δx1, y1 + δy1) and the values of the
first derivatives, which are y′0 + δy′0 and y′1 + δy′1 respectively.

Our problem is to derive the linear part of the increment for (1.166) when ϕ,
ϕ′, ϕ′′ δx0, δy0, δy

′
0, δx1, δy1, and δy′1 have the same order of smallness; that

is, to extract the part of the increment that is linear in each of these quantities.
Denote

ε = ‖ϕ‖C(2)(x0,x1)
+ |δx0|+ |δy0|+ |δy′0|+ |δx1|+ |δy1|+ |δy′1|.

The increment is

∆F (y) =

∫ x1+δx1

x0+δx0

f(x, y + ϕ, y′ + ϕ′, y′′ + ϕ′′) dx−
∫ x1

x0

f(x, y, y′, y′′) dx.

The first integral can be decomposed as

∫ x1+δx1

x0+δx0

(· · · ) dx =

∫ x1

x0

(· · · ) dx+

∫ x1+δx1

x1

(· · · ) dx−
∫ x0+δx0

x0

(· · · ) dx.

Recall that the functions y = y(x), y′ = y′(x), ϕ′ = ϕ′(x), and ϕ = ϕ(x) are all
linearly extrapolated outside [x0, x1], preserving continuity of the functions and
their first derivatives. Thus

∆F (y) =

∫ x1

x0

[f(x, y + ϕ, y′ + ϕ′, y′′ + ϕ′′)− f(x, y, y′, y′′)] dx

+

∫ x1+δx1

x1

f(x, y + ϕ, y′ + ϕ′, y′′ + ϕ′′) dx

−
∫ x0+δx0

x0

f(x, y + ϕ, y′ + ϕ′, y′′ + ϕ′′) dx.

The integral over [x0, x1] can be transformed in the usual manner:

∫ x1

x0

[f(x, y + ϕ, y′ + ϕ′, y′′ + ϕ′′)− f(x, y, y′, y′′)] dx

=

∫ x1

x0

[
fy(x, y, y

′, y′′)− d

dx
fy′(x, y, y′, y′′) +

d2

dx2
fy′′(x, y, y′, y′′)

]
ϕdx

+ fy′′(x, y(x), y′(x), y′′(x))ϕ′(x)

∣∣∣∣x=x1

x=x0

+
[
fy′(x, y(x), y′(x), y′′(x))

− d

dx
fy′′(x, y(x), y′(x), y′′(x))

]
ϕ(x)

∣∣∣∣x=x1

x=x0

+ o(ε).
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As earlier, ϕ at the endpoints using δy0 and δy1 is

ϕ(x1) = δy1 − y′(x1)δx1 + o(ε), ϕ(x0) = δy0 − y′(x0)δx0 + o(ε). (A.1)

For ϕ′ at the endpoints we should use δy′0 and δy′1, obtaining

ϕ′(x1) = δy′1 − y′′(x1)δx1 + o(ε), ϕ′(x0) = δy′0 − y′′(x0)δx0 + o(ε). (A.2)

Thus∫ x1

x0

[f(x, y + ϕ, y′ + ϕ′, y′′ + ϕ′′)− f(x, y, y′, y′′)] dx

=

∫ x1

x0

[
fy(x, y, y

′, y′′)− d

dx
fy′(x, y, y′, y′′) +

d2

dx2
fy′′(x, y, y′, y′′)

]
ϕdx

+ fy′′(x, y(x), y′(x), y′′(x))δy′
∣∣∣∣x=x1

x=x0

+

[
fy′(x, y(x), y′(x), y′′(x))− d

dx
fy′′(x, y(x), y′(x), y′′(x))

]
δy

∣∣∣∣x=x1

x=x0

−
[
y′′fy′′ + y′

(
fy′ − d

dx
fy′′

)]
δx

∣∣∣∣x=x1

x=x0

+ o(ε).

The two other terms for ∆F mimic the ones for the simplest functional:

∫ x1+δx1

x1

f(x, y + ϕ, y′ + ϕ′, y′′ + ϕ′′) dx

= f(x1, y(x1), y
′(x1), y

′′(x1))δx1 + o(ε)

and ∫ x0+δx0

x0

f(x, y + ϕ, y′ + ϕ′, y′′ + ϕ′′) dx

= f(x0, y(x0), y
′(x0), y

′′(x0))δx0 + o(ε).

Collecting terms and selecting the first-order terms, we get the general form of
the first variation of the functional when the ends of the curve can move:

δF =

∫ x1

x0

(
fy − d

dx
fy′ +

d2

dx2
fy′′

)
ϕdx

+ fy′′δy′
∣∣∣∣x=x1

x=x0

+

[
fy′ − d

dx
fy′′

]
δy

∣∣∣∣x=x1

x=x0

+

[
f − y′′fy′′ + y′

(
fy′ − d

dx
fy′′

)]
δx

∣∣∣∣x=x1

x=x0

. (A.3)
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1.14. Split the functional into two parts,

F (y) =

∫ b

a

f dx =

∫ c

a

f dx+

∫ b

c

f dx = F1(y) + F2(y),

find the first derivative δF = δF1+ δF2, apply (A.3) to each Fk, and consider the
equation δF = 0 using the continuity conditions, the arbitrariness of ϕ, and the
endpoint variations. We have

δF1 =

∫ c

a

(
fy − d

dx
fy′ +

d2

dx2
fy′′

)
ϕdx

+ fy′′δy′
∣∣∣∣c
a

+

[
fy′ − d

dx
fy′′

]
δy

∣∣∣∣x=c−0

x=a

+

[
f − y′′fy′′ + y′

(
fy′ − d

dx
fy′′
)]
δx

∣∣∣∣
x=c−0

,

where for brevity we denote ϕ(a) = δy|x=a and ϕ′(a) = δy′|x=a. Introducing
similar notation at b, i.e., ϕ(b) = δy|x=b and ϕ′(b) = δy′|x=b, we get

δF2 =

∫ b

c

(
fy − d

dx
fy′ +

d2

dx2
fy′′

)
ϕdx

+ fy′′δy′
∣∣∣∣b
c

+

[
fy′ − d

dx
fy′′

]
δy

∣∣∣∣x=b

x=c+0

−
[
f − y′′fy′′ + y′

(
fy′ − d

dx
fy′′

)]
δx

∣∣∣∣
x=c+0

.

Adding δFk and setting δF = 0, we should step-by-step choose subsets for ϕ and
the endpoint variations as was done to derive the Weierstrass conditions. In this
way we find that

fy − d

dx
fy′ +

d2

dx2
fy′′ = 0

holds on (a, c) and (c, b). At the endpoints a and b we get the natural conditions

fy′′ = 0, fy′ − d

dx
fy′′ = 0 for x = a and x = b.

Remembering that the variations at c from the left and right must match, we
obtain

δx
∣∣
x=c−0

= δx
∣∣
x=c+0

= δxc, δy
∣∣
x=c−0

= δy
∣∣
x=c+0

= δyc,

and

δy′
∣∣
x=c−0

= δy′
∣∣
x=c+0

= δy′c.
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Hence we have

0 =

[
fy′′

∣∣
x=c−0

− fy′′
∣∣
x=c+0

]
δy′c

+

[(
fy′ − d

dx
fy′′

)∣∣∣∣
x=c−0

−
(
fy′ − d

dx
fy′′

)∣∣
x=c+0

]
δyc

+

[(
f − y′′fy′′ + y′

(
fy′ − d

dx
fy′′

))∣∣∣∣
x=c−0

−
(
f − y′′fy′′ + y′

(
fy′ − d

dx
fy′′
))∣∣∣∣

x=c+0

]
δxc.

Taking into account arbitrariness and independence of the variations at c, we get
conditions analogous to the Weierstrass–Erdmann conditions:

fy′′
∣∣
x=c−0

= fy′′
∣∣
x=c+0

, (A.4)

(
(fy′ − d

dx
fy′′

)∣∣∣∣
x=c−0

=

(
fy′ − d

dx
fy′′

)∣∣
x=c+0

, (A.5)

(
f − y′′fy′′ + y′

(
fy′ − d

dx
fy′′

))∣∣∣∣
x=c−0

=

(
f − y′′fy′′ + y′

(
fy′ − d

dx
fy′′

))∣∣∣∣
x=c+0

.

(A.6)
In beam theory, f = EI(y′′)2/2, M = EIy′′, and Q = −EIy′′′. In terms of

moment M and shear force Q, equations (A.4)–(A.6) are

M
∣∣
x=c−0

=M
∣∣
x=c+0

, Q
∣∣
x=c−0

= Q
∣∣
x=c+0

, (A.7)

(
f − y′′M + y′Q

)∣∣∣∣
x=c−0

=

(
f − y′′M + y′Q

)∣∣∣∣
x=c+0

. (A.8)

Equation (A.7) expresses equality of the moments and shear forces, while (A.8)
can be related with the energy-release when the defect at x = c moves; see [12].

Let us analyze the setup for finding an extremal. We have equations on
two intervals. Each equation is of fourth order in general, which means we get
eight independent constants in the solution if the equations are linear. The ninth
unknown constant is c. Now let us count the boundary conditions. At a and b we
have four equations for unknown constants; taken together with the three above
equations at c, the total number is seven. Two more conditions require continuity
of y and y′ at c:

y(c− 0) = y(c+ 0), y′(c− 0) = y′(c+ 0).

1.15. All the equations are the same except (A.6).
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1.16. The Euler equation is D∆2w = F , and the natural boundary conditions
are

ν∆w + (1− ν)(wxxn
2
x + wyyn

2
y + 2wxynxny)

∣∣∣∣
∂S

= 0,

D[(wxx + νwyy)ynx + (wyy + νwxx)yny + (1− ν)(wxyynx + wxxyny)]

+D(1− ν)
d

ds
[(wyy −wxx)nxny + wxy(n

2
x − n2

y)]

∣∣∣∣
∂S

= f.

1.17. The natural boundary conditions are

D1

[
ν∆w + (1− ν)(wxxn

2
x + wyyn

2
y + 2wxynxny)

] ∣∣∣∣
Γ−

= D2

[
ν∆w + (1− ν)(wxxn

2
x + wyyn

2
y + 2wxynxny)

] ∣∣∣∣
Γ+

,

D1

{
[(wxx + νwyy)ynx + (wyy + νwxx)yny + (1− ν)(wxyynx + wxxyny)]

+(1− ν)
d

ds
[(wyy − wxx)nxny + wxy(n

2
x − n2

y)]

} ∣∣∣∣
Γ−

= D2

{
[(wxx + νwyy)ynx + (wyy + νwxx)yny + (1− ν)(wxyynx + wxxyny)]

+(1− ν)
d

ds
[(wyy − wxx)nxny + wxy(n

2
x − n2

y)]

} ∣∣∣∣
Γ+

.

Here (·)∣∣
Γ±

denote one-sided limits calculated as the argument tends to Γ from

different sides (cf., Fig. 1.5).

1.18. Use the solution of Example 1.28 (page 47) and the identity

∫
∂S

∂u

∂s

∂δu

∂s
ds = −

∫
∂S

∂2u

∂s2
δu ds.

The answer is

∆u+ f = 0,

(
∂u

∂n
− α

∂2u

∂s2

)∣∣∣∣
∂S

= g.

1.19. Without loss of generality we may take S as the unit square S = {(x, y) ∈
[0, 1]× [0, 1]}. On three sides Ω1 = ([0, 1]× {0}) ∪ ({0} × [0, 1]) ∪ ({1} × [0, 1]) of
S take α = 0 and on the fourth side let α < 0. Now

2E(u) =

∫ 1

0

∫ 1

0

(
u2
x + u2

y

)
dx dy + α

∫ 1

0

u2
x

∣∣
y=1

dx.
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We show that E(u) is unbounded from below. Indeed, let ukn = yn sin πkx, where
n, k are integers. We get

E(ukn) =
(πk)2

4

(
α+

1

2n+ 1

)
+

1

4

n2

2n− 1
.

For α < 0 we find such an n∗ that

α+
1

2n∗ + 1
< 0.

Then E(ukn∗) → −∞ as k → ∞.

2.1. With the spring at c loaded with a point force −P , the energy functional
becomes

E(y) = 1

2

∫ a

0

EI(y′′)2 dx−
∫ a

0

qy dx+ Py(a) +
1

2
ky2(a) +

1

2
k2y

2(c).

Point c splits the beam into two parts that must be joined by the continuity
conditions y(c−0) = y(c+0) and y′(c−0) = y′(c+0). Admissible ϕ should satisfy
the same condition: ϕ(c−0) = ϕ(c+0), ϕ′(c−0) = ϕ′(c+0). In the corresponding
equilibrium equation, we first select a subset of admissible functions ϕ that are
zero on [c, a]; in this way we find that E(Iy′′)′′ − q = 0 on (0, c). Then, selecting
ϕ equal to zero on [0, c], we establish the same equilibrium equation on (c, a).
Finally, using the equations ϕ(c− 0) = ϕ(c+0) and ϕ′(c− 0) = ϕ′(c+0), we get
two additional conditions at point c. These form part of the natural conditions
supplementing the conditions at point a in Example 2.1. So we have two linear
equations, the general solution of each containing four indefinite constants. Taken
together, the continuity conditions and boundary conditions at points 0, c, and a
provide eight conditions sufficient to determine the eight constants of the solution
uniquely.

2.2. The strain energy functional is

W =
1

2

∫ 2a

0

EIw′′2(x) dx+
1

2
kw2(a) +

1

2
cw′2(2a).

The work of external forces is

A =

∫ 2a

0

q(x)w(x)dx.

The kinematic boundary conditions are w(0) = 0 = w′(0). The coupling condi-
tions of the springs with beams are taken into account in the energy equation. As
usual, E =W −A. When deriving the equations, we first take admissible virtual
displacements to be zero on the right portion of the beam [a, 2a], and then on the
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left portion. We get the equilibrium equation

EIw
(4)
2 (x) = q(x) in (0, a) ∪ (a, 2a).

Next we derive the natural boundary conditions, taking into account the conti-
nuity of w and w′ at x = a, i.e., w(a− 0) = w(a+ 0) and w′(a− 0) = w′(a+ 0).

2.3. Denote the rod/beam displacements as follows: (u1, w1) for BD, (u2, w2) for
CD, and (u3, w3) for AD. Let BD have length a. The boundary conditions for
the rod system are u1(0) = u2(0) = u3(0) = 0 and w1(0) = w2(0) = w3(0) = 0.
For the beam problem these should be supplemented with w′

1(0) = w′
2(0) =

w′
3(0) = 0.
The total potential energy functional for the rod system is ER = eR−A where

the strain energy eR is

eR =
1

2

∫
BD

ESu′
1
2
dx+

1

2

∫
CD

ESu′
2
2
dx+

1

2

∫
AD

ESu′
3
2
dx.

For the beam system it is EB = eB − A, where eB includes eR and three terms
for bending energy as in the previous exercise. The work A of the external load
has the same form for both systems:

A =

∫
AD

(q(x)u3(x) cosα+ q(x)w3(x) sinα) dx+

∫
AC

F (x)u2(x) dx.

However, for the rod system we should note that rod CD is not flexible; in the
w-direction it rotates as a rigid body, and so we should express w3(x) in terms of
the value of w3|D at the extreme point. For the rod system this is

w3(x) =
x sinα

a
w3|D.

To place kinematic restrictions at junction D for both systems, we should use
(2.1) where for the pair BD–CD we should change (u,w) to (u1, w1) and (u1, w1)
in (2.1) to (u2, w2). The angle in (2.1) is changed to −(π/2− α). For the other
coupled rod at D, the angle is π/2 − α. For the beam system, these equations
for the displacements must be supplemented with the condition of equality of the
rotation angle of the beams at D: w′

1|D = w′
2|D = w′

3|D. The restrictions for
the real displacements also apply to the admissible virtual displacements. The
remainder of the solution is similar to that of the previous exercise.

2.4. Here we can neglect the beam elongations and use only the beam model for
each of the elements. This and the following beam problems present interesting
boundary conditions that may appear artificial to someone inexperienced in the
strength of materials.

We number the beams from beam AB as number 1 to CD as number 3. We
number the normal displacements wk similarly, describing the beams in clockwise
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fashion starting at point A. The total potential energy of the system is

E =
3∑

i=1

1

2

∫ ai

0

EIw′′
i
2
(x) dx−

∫ a2

0

q(x)w2(x) dx− Pw3(a3).

The kinematic (geometric) boundary conditions are w1(0) = 0 and w′
1(0) = 0.

Since we neglect the beam elongations, we should regard the beams as unchange-
able along their length directions. This yields the following restrictions at the
junction points:

w2(0) = 0, w′
1(a1) = w′

2(0),

and

w2(a2) = 0, w3(0) = −w1(a1), w′
2(a2) = w′

3(0).

The equilibrium equations for the beams are

EIw
(4)
1 (x) = 0, EIw

(4)
2 (x) = q(x), EIw

(4)
3 (x) = 0.

The natural boundary conditions are the supplementary conditions of equilibrium
for the points B, C, and D.

2.5. Let A and D be the initial points for the length parameters of the beams.
Winkler’s foundation is a simple model of a junction when the elastic deformation
at each point does not depend on the deformation at other points: when the
foundation thickness changes by u(x), then its elastic reaction is ku(x). Denoting
the deflections of AB and DC by w1 and w2, respectively, we get u(x) = w2(x)−
w1(x). The total potential energy is

E =
2∑

k+1

1

2

∫ a

0

EIw′′
k
2
(x) dx+

k

2

∫ a

0

(w2(x)− w1(x))
2 dx+

∫ a

0

q(x)w2(x) dx.

The kinematic boundary conditions are

w1(0) = 0 = w′
1(0), w2(0) = 0 = w′

2(0).

Answer : The equilibrium equations are

EIw
(4)
1 (x)− k(w2(x)− w1(x)) = 0,

EIw
(4)
2 (x) + k(w2(x)− w1(x)) = −q(x).

The natural boundary conditions at B and C mean that the shear stresses and
the moments are zero: w′′

k (a) = 0 = w′′′(a).

2.6. This is a free system of four beams, none of which is clamped. For such
problems there are always additional conditions for the load under which the
problem has a solution. We number the beams starting with AB. The positive



September 30, 2011 8:42 World Scientific Book - 9in x 6in aea

Hints for Selected Exercises 449

direction for the deflection w is “inward” for each beam. The total potential
energy functional is

E =
1

2

4∑
k=1

∫ a

0

(
EIw′′

k
2
(x)− 2qk(x)wk(x)

)
dx+ Pw3

(a
2

)
.

The restrictions at the junction nodes are that the rotation angles of the beams
at a node are equal:

w′
1(0) = w′

4(a), w′
1(a) = w′

2(0), w′
2(a) = w′

3(0), w′
3(a) = w′

4(0).

We should also relate the displacements at the nodes, considering the beams to
be rigid along their axial directions:

w4(a) = −w2(0), w1(a) = −w3(0),

w2(a) = −w4(0), w3(a) = −w1(0).

Finally, we should state that at the point where force P is applied, w and w′ are
continuous. This implies two more natural boundary equations.

The beam equilibrium equations are

EIw
(4)
k (x) = qk(x),

which for k = 1, 2, 4 hold on (0, a) and for k = 3 holds on (0, a/2) and on (a/2, a).
To obtain solvability conditions for the minimization problem for the load,

note that the rigid displacements (i.e., when the structure moves as a rigid
body) occur through parallel displacements: w1(x) = −w3(x) = c1 and w2(x) =
−w4(x) = c2 with independent constants ck. If we denote the tangential dis-
placements of the beams by uk (they are constant for each beam), then for rigid
rotation we get the following displacements:

w1 = cx, u1 = 0; w2 = cx, u2 = ca;

w3 = −ca+ cx, u3 = ca; w4 = −ca+ cx, u4 = 0.

These three displacements are admissible, since they satisfy the kinematics of
the structure and the conditions shown above. When we substitute these into the
energy, we see that the quadratic part of the energy is zero for each of them. Hence
the work functional must vanish on these; otherwise, by selecting appropriate
values for ck we can get any negative value for the energy functional and so the
minimum problem becomes senseless. Besides, the equilibrium equations (the
first variation set to zero) for these three displacements give us the following
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equations: ∫ a

0

q1(x) dx+ P −
∫ a

0

q3 dx = 0,∫ a

0

q2 dx−
∫ a

0

q4(x) dx = 0,∫ a

0

xq1(x) dx+

∫ a

0

xq2(x) dx+

∫ a

0

(−a+ x)q3(x) dx

− P
a

2
+

∫ a

0

(−a+ x)q4(x) dx = 0.

It can be shown that there are no other linearly independent displacements of
the structure for which the elastic energy is zero. Hence the above equations are
necessary (and sufficient) for solvability of the equilibrium problem; they are the
self-balance conditions for the load.

The natural boundary conditions can be found using the usual procedure of
selecting special displacement fields.

2.7. See the solution to Example 2.2.

2.8. See the solution to Example 2.2.

2.9. (1) The first conservation law is the same as the answer to Example 2.14.
Indeed, our functional is a particular case of the functional from that example.
Considering the symmetry transformation

x→ x∗ = x+ ε, y → y∗ = y,

which corresponds to ξ = 1, φ = 0, we get the conservation law

P ′ = 0, P = f − y′fy′ .

(2) Considering the symmetry transformation

x→ x∗ = x, y → y∗ = y + ε,

which corresponds to ξ = 0, φ = 1, we get the conservation law

P ′ = 0, P = fy′ .

Answer :
f − y′fy′ = constant, fy′ = constant.

2.10. The first two conservation laws were established in Exercise 2.10. One
more law can be obtained by considering the scaling transformation

x→ x∗ = x+ εx, y → y∗ = y +
1

2
εy,
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to which there correspond functions ξ = x, φ = y/2. For this, the conservation
law is

1

2
y′y′′ − x

2
y′2 = constant

Answer :

−y′2/2 = constant, y′ = constant, y′y′′/2− xy′2/2 = constant.

2.11. Let us write out the infinitesimal invariance condition (2.63) for the func-
tional under consideration and find all the functions ξ(x, y) and φ(x, y) that satisfy
the condition. We have[

ξ
∂

∂x
+ φ

∂

∂y
+

(
dφ

dx
− y′

dξ

dx

)
∂

∂y′
+
dξ

dx

]
f

=

(
dφ

dx
− y′

dξ

dx

)
y′ +

1

2

dξ

dx
y′2

=
dφ

dx
y′ − 1

2

dξ

dx
y′2 =

(
∂φ

∂x
+
∂φ

∂y
y′
)
y′ − 1

2

(
∂ξ

∂x
+
∂ξ

∂y
y′
)
y′2

=
∂φ

∂x
y′ +

(
∂φ

∂y
− 1

2

∂ξ

∂x

)
y′2 − 1

2

∂ξ

∂y
y′3 = 0.

The factors before the potentials of y′ do not depend on y′. It follows that to
get the expressions to be zero for any y′, it is necessary that they be zero inde-
pendently of y′. Thus, to define ξ(x, y) and φ(x, y), we have three simultaneous
equations:

∂φ

∂x
= 0,

∂φ

∂y
− 1

2

∂ξ

∂x
= 0, −1

2

∂ξ

∂y
= 0.

The first and third equations imply φ = φ(y) and ξ = ξ(x). The second one
implies

ξ = 2C2x+C1, φ = C2y +C3,

where C1, C2, and C3 are integration constants. These functions ξ(x, y) and
φ(x, y) define the most general case when variational symmetry is possible for the
functional. To the three constants there correspond three transformations and
the conservation laws found in Exercises 2.9 and 2.10.

2.12. Now F ∗ has the form

F ∗(y∗) =
∫ b∗

a∗
f

(
x∗, y∗,

dky∗

dx∗k

)
dx∗.

A principal difficulty is the derivation of the formula for dky∗/dx∗k. We skip the
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details and present the formulas, omitting the second and higher orders of ε:

dy∗

dx∗ = y′ + ε

(
dφ

dx
− y′

dξ

dx

)
+O(ε2),

d2y∗

dx∗2 = y′′ + ε

(
−y′′ dξ

dx
+

d

dx

(
dφ

dx
− y′

dξ

dx

))
+O(ε2)

= y′′ + ε

(
d2φ

dx2
− 2y′′

dξ

dx
− y′

d2ξ

dx2

)
+O(ε2),

d3y∗

dx∗3 = y′′′ + ε

(
−y′′′ dξ

dx
+

d

dx

(
−y′′ dξ

dx
+

d

dx

(
dφ

dx
− y′

dξ

dx

)))
+O(ε2),

. . .

dky∗

dx∗k = y(k) + ε

(
dkφ

dxk
− dξ

dx

dky

dxk
− d

dx

(
dξ

dx

dk−1y

dxk−1

)
− . . .

− dk−1

dxk−1

(
dξ

dx

dy

dx

))
+O(ε2)

= y(k) + ε

(
dkφ

dxk
−

k−1∑
p=0

dp

dxp

(
dξ

dx

dk−py

dxk−p

))
+O(ε2).

So for F ∗ we get

F ∗ = F + ε

∫ b

a

[fxξ + fyφ

+fy(k)

[
dkφ

dxk
−

k−1∑
p=0

dp

dxp

(
dξ

dx

dk−py

dxk−p

)]
+ f

dξ

dx

]
dx+O(ε2),

which implies the variational symmetry condition

[
ξ
∂

∂x
+ φ

∂

∂y
+

[
dkφ

dxk
−

k−1∑
p=0

dp

dxp

(
dξ

dx

dk−py

dxk−p

)]
∂

∂y(k)
+
dξ

dx

]
f = 0.

2.13. We use the solution of Exercise 2.11. Let us write out the infinitesimal
divergence invariance condition (2.94) for the functional under consideration and
find all the functions ξ(x, y), φ(x, y), and K(x, y, y′) that satisfy the condition.
In this case, (2.94) takes the form

[
ξ
∂

∂x
+ φ

∂

∂y
+

(
dφ

dx
− y′

dξ

dx

)
∂

∂y′
+
dξ

dx

]
f − d

dx
K

=
∂φ

∂x
y′ +

(
∂φ

∂y
− 1

2

∂ξ

∂x

)
y′2 − 1

2

∂ξ

∂y
y′3 − ∂K

∂x
− ∂K

∂y
y′ − ∂K

∂y′
y′′ = 0.
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As y satisfies the Euler–Lagrange equation, the multiplier of y′′ is zero. So the
new conservation law does not change whether K depends on y′ or not. This
means we can take K independent of y′: K = K(x, y). As in Exercise 2.11, the
coefficients of the potentials of y′ do not depend on y′. It follows that they must
vanish. Thus, ξ(x, y), φ(x, y), andK(x, y, y′) are defined by the four simultaneous
equations

∂K

∂x
= 0, (A.9)

∂φ

∂x
− ∂K

∂y
= 0, (A.10)

∂φ

∂y
− 1

2

∂ξ

∂x
= 0, (A.11)

−1

2

∂ξ

∂y
= 0. (A.12)

From (A.9) and (A.12) it follows that K = K(u) and ξ = ξ(x), respectively.
Differentiate (A.10) with respect to y and (A.11) with respect to x, then

subtract the results to get

∂2K

∂y2
− 1

2

∂2ξ

∂x2
= 0.

As K depends only on y and ξ depends only on x, this equation can hold only if
both terms are constant:

∂2K

∂y2
= C1 =

1

2

∂2ξ

∂x2
.

This gives us

K =
1

2
C1y

2 + C2y + C0, ξ = C1x
2 +C3 + C4,

where the Ck are constants. We can put C0 = 0, as K is defined up to a constant.
Indeed, adding a constant to K does not change the conservation law. Next, from
(A.10) we find that

φ = (C1y + C2)x+ φ0(y).

The function φ0(y) is defined by (A.11), which reduces to

φ′
0(y) =

1

2
C3

and yields φ0(y) = C4y/2 + C5. Therefore

φ = C1xy +C + 2x+
1

2
C3y + C5.
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Finally, the conservation law is given by

P −K = φy′ − 1

2
ξy′2 −K = constant.

Because we have five independent integration constants, we have obtained five
independent conservation laws. They are obtained, respectively, when we set one
of the constants to 1 and the rest to zero. Three of these conservation laws were
found in Exercise 2.11.

Exercise 2.11 showed that the functional has three variational symmetries
only, to which there correspond the three conservation laws. This exercise shows
that existence of divergence symmetry extends the number of conservation laws
to five. So we obtained five conservation laws.

3.2. The result follows from differentiation of the equality

Ψ(t) ·Ψ−1(t) = E.

We have (
Ψ(t) ·Ψ−1(t)

)′
= Ψ′(t) ·Ψ−1(t) +Ψ(t) · (Ψ−1(t)

)′
= E′ = 0,

hence

Ψ(t) · (Ψ−1(t)
)′

= −Ψ′(t) ·Ψ−1(t)

and can premultiply both sides by Ψ−1(t).

3.3. Use the linearity of the main part of the increment with respect to the
increment of the control function.

3.4. Introduce an additional component yn+1 of the vector y by the equations
y′n+1(t) = G(y(t)), yn+1(0) = 0.

3.5. By Pontryagin’s maximum principle we get that F take the values +1 or
−1 for optimal solution. Solve the problems with this F and collect the whole
solution using these solutions.

4.1. Assume S is closed in X. Let {xn} ⊂ S be convergent (in X) so that xn → x
for some x ∈ X. We want to show that x ∈ S. Let us suppose x /∈ S and seek a
contradiction. Given any ε > 0 there exists xk ( �= x) such that d(xk, x) < ε (by
the assumed convergence), so x is a limit point of S. Therefore S fails to contain
all its limit points, and by definition is not closed.

Conversely, assume S contains the limits of all its convergent sequences. Let
y be a limit point of S. By virtue of this, construct a convergent sequence yn ⊂ S
as follows: for each n, take a point yn ∈ S such that d(yn, y) < 1/n. Then
yn → y (in X). By hypothesis then, y ∈ S. This shows that S contains all its
limit points, hence S is closed by definition.

4.2. (a) Let B(p, r) denote the closed ball centered at point p and having radius
r, and let q be a limit point of B(p, r). There is a sequence of points pk in B(p, r)
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such that d(pk, q) → 0 as k → ∞. For each k we have

d(q, p) ≤ d(q, pk) + d(pk, p) ≤ d(q, pk) + r,

hence as k → ∞ we get d(p, q) ≤ r. This proves that q ∈ B(p, r). (b) True
vacuously. (c) Obvious. (d) Let S = ∩i∈ISi be an intersection of closed sets Si.
If S = ∅ then it is closed by part (b). Otherwise let q be any limit point of S
and choose a sequence {pk} ⊂ S such that pk → q. We have {pk} ⊂ Si for each
i, and each Si is closed so that we must have q ∈ Si for each i. This means that
q ∈ ∩i∈ISi. (e) We communicate the general idea by outlining the proof for a
union of two sets. Let S = A ∪ B where A,B are closed. Choose a convergent
sequence {xn} ⊂ S and call its limit x. There is a subsequence {xnk} that consists
of points belonging to one of the given sets. Without loss of generality suppose
{xnk} ⊂ A. But xnk → x, hence x ∈ A since A is closed. Therefore x ∈ S.

4.3. It is clear that the sequence of centers {xn} is a Cauchy sequence. By
completeness, xn → x for some x ∈ X. For each n, the sequence {xn+p}∞p=1 lies
in B(xn, rn) and converges to x; since the ball is closed we have x ∈ B(xn, rn).
This proves existence of a point in the intersection of all the balls. If y is any
other such point, then d(y, x) ≤ d(y, xn) + d(xn, x) ≤ 2εn → 0 as n→ ∞. Hence
y = x and we have proved uniqueness.

4.4. Let us verify the norm properties for ‖·‖X/U . Certainly we have
‖x+ U‖X/U ≥ 0. Recalling that the zero element of X/U is U , we have

∥∥0X/U

∥∥
X/U

= ‖0X + U‖X/U = inf
u∈U

‖0X + u‖X = 0

since 0X ∈ U . Conversely, if ‖x+ U‖X/U = 0 then

inf
u∈U

‖x+ u‖X = 0,

hence for every ε > 0 there exists u ∈ U such that ‖x+ u‖X < ε. From this we
can infer the existence of a sequence {uk} ⊂ U such that

lim
k→∞

‖x+ uk‖X = 0.

But this implies x + uk → 0, or uk → −x. Since U is closed we have −x ∈ U ,
hence x+ U = U . Next,

‖α(x+ U)‖X/U = ‖αx+ U‖X/U = inf
u∈U

‖αx+ u‖X = |α| inf
u∈U

∥∥∥∥x+
1

α
u

∥∥∥∥
X

= |α| inf
u∈U

‖x+ u‖X = |α| ‖x+ U‖X/U .
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Finally

‖(x+ U) + (y + U)‖X/U = ‖(x+ y) + U‖X/U = inf
u∈U

‖(x+ y) + u‖X
= inf

u,u′∈U

∥∥(x+ y) + u+ u′∥∥
X

= inf
u,u′∈U

∥∥(x+ u) + (y + u′)
∥∥
X

so that

‖(x+ U) + (y + U)‖X/U ≤ inf
u,u′∈U

(‖(x+ u)‖X +
∥∥(y + u′)

∥∥
X
)

= inf
u,u′∈U

‖(x+ u)‖X + inf
u,u′∈U

∥∥(y + u′)
∥∥
X

= inf
u∈U

‖(x+ u)‖X + inf
u′∈U

∥∥(y + u′)
∥∥
X

= ‖(x+ U)‖X/U + ‖(y + U)‖X/U ,

and the triangle inequality holds.
Now suppose X is complete. Choose a Cauchy sequence {yk +U} ⊂ X/U . A

“diagonal sequence” argument may be used to extract a subsequence {xk + U}
of {yk + U} such that

‖(x2 + U)− (x1 + U)‖X/U < 1/2,

‖(x3 + U)− (x2 + U)‖X/U < 1/22,

...

i.e., such that

‖(xk+1 + U)− (xk + U)‖X/U = ‖(xk+1 − xk) + U‖X/U < 1/2k

for each k. Then by definition of ‖·‖X/U we can assert the existence of an element

uk ∈ (xk+1 − xk) + U having ‖uk‖X < 1/2k. Choose a sequence {zk} ⊂ X such
that for each k

zk ∈ xk + U, zk+1 − zk = uk.

(We indicate how this is done; see [3] for a more formal argument. Choose
z1 ∈ x1 + U . We now wish to choose z2 so that z2 ∈ x2 + U and z2 − z1 = u1.
Write

u1 = x2 − x1 + v for some v ∈ U

and also

z1 = x1 +w for some w ∈ U.
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Then u1 + x1 = x2 + v; add w to both sides and let v + w = w′ ∈ U to get

z1 + u1 = x2 + w′.

Hence define z2 = x2 + w′. Repeat this procedure to generate z3, z4, . . ..) Then

‖zk+1 − zk‖X < 1/2k .

If m > n then

‖zm − zn‖X ≤ ‖zm − zm−1‖X + · · ·+ ‖zn+1 − zn‖X
<

1

2m−1
+ · · ·+ 1

2n
<

1

2n−1

so {zk} is Cauchy in X. Since X is complete, zk → z for some z ∈ X. By the
way the zk were defined we have xk + U = zk + U . Then

‖(xk + U) − (z + U)‖X/U = ‖(zk + U)− (z + U)‖X/U

= ‖(zk − z) + U‖X/U

= inf
u∈U

‖(zk − z) + u‖X
≤ ‖zk − z‖X → 0

so that xk +U → z +U . We have therefore shown that some subsequence of the
Cauchy sequence {yk + U} has a limit.

4.5. Since X is separable it has a countable dense subset A. The set

S = {[x] : x ∈ A} ⊆ X/M

is evidently countable; let us show that it is also dense in X/M . Because the
norm on X/M is given by

‖ [x] ‖ = inf
m∈M

‖x+m‖ ,

the distance between any two of its elements [x] and [y] can be expressed as

‖ [x]− [y] ‖ = ‖ [x− y] ‖ = inf
m∈M

‖(x− y) +m‖ .

So let [z] ∈ X/M and ε > 0 be given. We can find w ∈ A such that ‖z − w‖ < ε.
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Then the distance between [z] and [w] is given by

inf
m∈M

‖(z − w) +m‖ ≤ inf
m∈M

(‖z − w‖+ ‖m‖)
= ‖z − w‖+ inf

m∈M
‖m‖

= ‖z − w‖
< ε.

The element [w] belongs to S and lies within distance ε of [z] in the space X/M .

4.7. Let us propose a linear mapping T : to each [x] ∈ X/M there corresponds
the image element T ([x]) = Ax0, where x0 is that representative of [x] which has
minimum norm. (The existence of x0 is guaranteed because M is closed.) We
have

‖x0‖X = ‖ [x] ‖X/M ,

so

‖T ([x])‖Y = ‖Ax0‖Y ≤ c ‖x0‖X = c ‖ [x] ‖X/M .

Therefore T is bounded.

4.9. Let T be defined by T ([x]) = Ax̄, where x̄ is the minimum-norm representa-
tive of [x]. Take a bounded sequence { [x]n } from X/M so that ‖ [x]n ‖X/M < R
for some finite R. For each n, choose from [x]n the minimum-norm representative
x̄n. We have T ([x]n) = Ax̄n for each n, and the sequence {x̄n} is bounded (in
X) because ‖x̄n‖X = ‖ [x]n ‖X/M . By compactness of A, there is a subsequence
{x̄nk} such that {Ax̄nk} is a Cauchy sequence in X. Therefore { [x]n } contains
a subsequence { [x]nk } whose image under T is a Cauchy sequence in X.

4.11. (a) Let en denote the sequence with nth term 1 and remaining terms 0.
Each en ∈ �2, and any finite set {e1, . . . , eN} is linearly independent. (b) For any
positive integer n we have

lim
p→∞

(
n∑

k=1

|xk|p
)1/p

= max
1≤k≤n

|xk| ≤ sup
k≥1

|xk|

so that

lim
n→∞

lim
p→∞

(
n∑

k=1

|xk|p
)1/p

= lim
p→∞

( ∞∑
k=1

|xk|p
)1/p

≤ sup
k≥1

|xk|.

But for each k ≥ 1

|xk| ≤ lim
p→∞

( ∞∑
k=1

|xk|p
)1/p
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so that

sup
k≥1

|xk| ≤ lim
p→∞

( ∞∑
k=1

|xk|p
)1/p

.

Hence

lim
p→∞

( ∞∑
k=1

|xk|p
)1/p

= sup
k≥1

|xk|.

(c) For x = 0 the inequality is obvious, hence we take ‖x‖p �= 0. Assume q ≥ p.
Note that 0 ≤ a ≤ 1 implies aq ≤ ap. If 0 ≤ ak ≤ 1 for each k then, we have

n∑
k=1

(ak)
q ≤

n∑
k=1

(ak)
p.

Because

|xk| = (|xk|p)1/p ≤
(

n∑
j=1

|xj |p
)1/p

≤ ‖x‖p , (A.13)

we have |xk|/ ‖x‖p ≤ 1 for each k, and shall momentarily let |xk|/ ‖x‖p play the
role of ak above. Now

(‖x‖q)q
(‖x‖p)q

=
n∑

k=1

(
|xk|
‖x‖p

)q

≤
n∑

k=1

(
|xk|
‖x‖p

)p

= 1.

Hence (‖x‖q)q ≤ (‖x‖p)q, and the desired inequality follows. (d) To see that

�1 ⊆ �p, observe that

∞∑
k=1

|xk|p ≤
( ∞∑

k=1

|xk|
)p

=
(‖x‖1)p

so ‖x‖p ≤ ‖x‖1. If x ∈ �1 then ‖x‖1 < ∞, hence ‖x‖p < ∞ so x ∈ �p. The
inclusion �p ⊆ �q follows from the inequality of part (c). Finally, we may take
the supremum of (A.13) to obtain ‖x‖∞ ≤ ‖x‖p. The inclusion �p ⊆ �∞ follows.
(e) Every summable sequence converges to zero, every sequence that converges
to zero converges, and every convergent sequence is bounded. (f) Let p <∞ and
let {xn} be a Cauchy sequence in �p. Each xn = (xn

1 , x
n
2 , . . . , x

n
k , . . .). Let ε > 0

be given and choose N such that whenever m,n > N ,

(‖xm − xn‖p)p =
∞∑

k=1

|xm
k − xn

k |p < εp. (A.14)

Suppose m ≥ n and fix n > N . By (A.13) we have for each k

|xm
k − xn

k | ≤ ‖xm − xn‖p < ε;
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hence, for each k the sequence {xm
k } is a Cauchy sequence in R. By completeness

of R we have xm
k → xk, say. Now let x = (x1, x2, . . . , xk, . . .). We will show that

xn → x. By (A.14) for any finite j we have

j∑
k=1

|xm
k − xn

k |p < εp.

Hence

lim
m→∞

j∑
k=1

|xm
k − xn

k |p ≤ εp

which gives us
j∑

k=1

|xk − xn
k |p ≤ εp.

As j → ∞ we therefore have

∞∑
k=1

|xk − xn
k |p ≤ εp.

On one hand, this means that x ∈ �p. Indeed,

‖x‖p ≤ ‖x− xN+1‖p + ‖xN+1‖p ≤ ε+ ‖xN+1‖p <∞.

On the other hand, this can be reworded: ‖x− xn‖p ≤ ε whenever n > N , hence
xn → x and so �p for 1 ≤ p <∞ is complete.

Now consider the case p = ∞. Let {xn} be a Cauchy sequence in �∞. Each
xn = (xn

k )
∞
k=1. Fix ε > 0 and choose N such that whenever m,n > N ,

sup
k

|xm
k − xn

k | < ε.

Suppose m ≥ n and fix n > N . For each k

|xm
k − xn

k | < ε, (A.15)

hence for each k the sequence {xm
k } is a Cauchy sequence of real numbers. By

completeness of R we have xm
k → xk, say. Now let x = (xk)

∞
k=1 and show that

xn → x. As m→ ∞ (A.15) gives

|xk − xn
k | ≤ ε

for each k. Hence

sup
k

|xk − xn
k | ≤ ε
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for n > N , proving that xn → x. Since ‖x− xn‖∞ ≤ ε for n > N we have

‖x‖∞ ≤ ‖x− xN+1‖∞ + ‖xN+1‖∞ ≤ ε+ ‖xN+1‖∞,

hence x ∈ �∞. (g) Let x = (ξ1, ξ2, . . .) ∈ �p. Since
∑∞

k=1 |ξk|p converges we can
choose n large enough to make

∑∞
k=n+1 |ξk|p as small as desired. Hence we can

approximate x arbitrarily closely by an element xn having the form

xn = (ξ1, ξ2, . . . , ξn, 0, 0, 0, . . .).

Furthermore each ξi may be approximated by a rational number ri. The set S
consisting of all elements of the form

yn = (r1, r2, . . . , rn, 0, 0, 0, . . .)

is countable and dense in �p. More formally, let ε > 0 be given. Choose n so that∑∞
k=n+1 |ξk|p < εp/2, then choose the ri so that |ξi − ri| < ε/(2n)1/p for each

i = 1, . . . , n. We have

‖x− yn‖p =
n∑

k=1

|ξk − rk|p +
∞∑

k=n+1

|ξk|p < n
εp

2n
+
εp

2
= εp

as desired. (h) Fix any countable subset {x(n)}∞n=1 of �∞. Denote the components
of x(n) by

x(n) = (ξ
(n)
1 , ξ

(n)
2 , ξ

(n)
3 , . . .).

We now construct z ∈ �∞ such that ‖z− x(n)‖∞ ≥ 1 for all n. Denoting

z = (ζ1, ζ2, ζ3, . . .)

we let

ζk =

{
ξ
(k)
k + 1, |ξ(k)k | ≤ 1,

0, |ξ(k)k | > 1

for each k = 1, 2, 3, . . .. Then

‖z− x(n)‖∞ = sup
m≥1

|ζm − ξ(n)
m | ≥ |ζn − ξ(n)

n | ≥ 1

as desired. (i) Let S be the set of all vectors whose components form rational
sequences that converge to 0. This set is evidently countable. We show that it is
dense in c0. Given x = (ξ1, ξ2, . . .) ∈ c0 and ε > 0, choose y = (r1, r2, . . .) ∈ S
such that |ξi − ri| < ε for all i = 1, 2, . . .. Then ‖x− y‖∞ = supi |ξi − ri| < ε.
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4.12. Let {xn} be a Cauchy sequence in (R, d). We first show that {xn} is a
Cauchy sequence in (R, | · |). We have

|x3
n − x3

m| = |xn − xm|︸ ︷︷ ︸
factor 1

|x2
n + xnxm + x2

m|︸ ︷︷ ︸
factor 2

→ 0 as m,n→ ∞.

This implies that either factor 1 or factor 2 approaches zero, or both. However,
if factor 2 approaches zero then xn → 0 as n→ ∞, and this in turn implies that
factor 1 approaches zero. So factor 1 must approach zero in any case.

Next, by the known completeness of (R, | · |), we can name a limit element
x ∈ R for {xn}.

Finally, we show that xn → x in (R, d). This follows from the equality

|x3
n − x3| = |xn − x| |x2

n + xnx+ x2|,

because the first factor on the right approaches zero and the second factor is
bounded (since {xn} is bounded).

Note that here we have no inequality |x3 − y3| < m|x − y| for all x, y in R,
but the notions of sequence convergence with both metrics are equivalent. This
distinguishes the notion of equivalence of metrics from that of equivalence of
norms.

4.13. Call

α = sup
‖x‖�=0

‖Ax‖
‖x‖ .

By linearity of A, α is also equal to the other expression given in the exercise.
By definition of supremum we have two things:

(1) For every ε > 0 there exists some x0 �= 0 such that

‖Ax0‖
‖x0‖ > α− ε.

Equivalently, ‖Ax0‖ > (α − ε) ‖x0‖. This implies, by the definition of ‖A‖,
that

α− ε < ‖A‖ .
So α < ‖A‖+ ε, and since ε > 0 is arbitrary we have α ≤ ‖A‖.

(2) For every x �= 0 we have

‖Ax‖
‖x‖ ≤ α.

So ‖Ax‖ ≤ α ‖x‖ for x �= 0; in fact, this obviously holds when x = 0 as well
so it holds for all x. By definition of ‖A‖ we have ‖A‖ ≤ α.

Combining the inequalities from parts 1 and 2 we obtain ‖A‖ = α.
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4.15. We can show that the fi are linearly dependent if and only if the Gram
determinant is zero. The proof can rest on the fact that a linear homogeneous
system Ax = 0 has a nontrivial solution if and only if detA = 0.

Assume linear dependence. Then
∑n

i=1 αifi = 0 for some αi not all zero.
Taking inner products of this equation with the fi in succession, we get

α1(f1, f1) + · · ·+ αn(f1, fn) = 0,

... (A.16)

α1(fn, f1) + · · ·+ αn(fn, fn) = 0,

or 

(f1, f1) · · · (f1, fn)

...
. . .

...
(fn, f1) · · · (fn, fn)





α1

...
αn


 =



0
...
0


 .

A nontrivial solution for the vector (α) implies that the Gram determinant van-
ishes. Conversely, assume the determinant vanishes so that (A.16) holds for some
nontrivial (α). Rewrite (A.16) as

(
fi ,

n∑
j=1

αjfj

)
= 0, i = 1, . . . , n,

multiply by αi to get(
αifi ,

n∑
j=1

αjfj

)
= 0, i = 1, . . . , n,

and then sum over i to obtain(
n∑

i=1

αifi ,
n∑

j=1

αjfj

)
=

∥∥∥∥ n∑
i=1

αifi

∥∥∥∥2 = 0.

Hence
∑n

i=1 αifi = 0 for some scalars αi that are not all zero.

4.16. The statement ‖An −A‖ → 0 means that

‖(An −A)x‖ ≤ cn ‖x‖ where cn → 0

and each cn is independent of x. Since ‖x‖ ≤M for all x ∈ S, we have

‖Anx−Ax‖ ≤ cnM.

But cnM → 0 together with cn → 0 when n→ ∞, thus Anx→ Ax.
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4.18. We have

∥∥∥∥ ∞∑
n=0

cngn

∥∥∥∥2 =

( ∞∑
n=0

cngn ,
∞∑

k=0

ckgk

)
=

∞∑
n=0

|cn|2 <∞.

4.19. Assume u(t) and v(t) are each differentiable at t. Form the difference
quotient

(u(t+ h), v(t+ h))− (u(t), v(t))

h
=

1

h
(u(t+ h), v(t+ h))− 1

h
(u(t), v(t))

and on the right side subtract and add the term

1

h
(u(t), v(t+ h))

to write the difference quotient as

(
u(t+ h)− u(t)

h
, v(t+ h)

)
+

(
u(t) ,

v(t+ h) − v(t)

h

)
.

Then let h→ 0.

4.20. We can use the Cauchy–Schwarz inequality to write

‖xn‖ ‖x‖ ≥ |(xn, x)|

for each n, hence

lim inf
n→∞

‖xn‖ ‖x‖ ≥ lim inf
n→∞

|(xn, x)| = lim
n→∞

|(xn, x)| = |(x, x)| = ‖x‖2 .

So

‖x‖ lim inf
n→∞

‖xn‖ ≥ ‖x‖2 .

For x �= 0 we can divide through by ‖x‖ to get the desired inequality. It holds
trivially when x = 0.

4.21. Because A is densely defined, for each x ∈ V there is a sequence {xn} ⊂
D(A) such that xn → x. Since this sequence converges it is a Cauchy sequence.
Because A is bounded, {Axn} is a Cauchy sequence in W , hence converges to
some w ∈ W . Furthermore, w does not depend on the Cauchy sequence used.
(That is, if xn → x and x′

n → x, and Axn → w, then Ax′
n → w. Indeed for each

n we have,

0 ≤ ∥∥Axn − Ax′
n

∥∥ =
∥∥Axn −Ax+Ax−Ax′

n

∥∥ ≤ ‖A‖ (‖xn − x‖+ ∥∥x− x′
n

∥∥);
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as n → ∞ we have limn→∞ ‖Axn −Ax′
n‖ = 0 and by continuity of the norm we

have the conclusion.) Thus we can define an extension Ae by

Aex = lim
n→∞

Axn = w for any x ∈ V.

Linearity is evident. Since

‖Aex‖ =
∥∥∥ lim
n→∞

Axn

∥∥∥ = lim
n→∞

‖Axn‖ ≤ lim
n→∞

‖A‖ ‖xn‖ = ‖A‖ ‖x‖ ,

Ae is bounded with ‖Ae‖ ≤ ‖A‖. The reverse inequality follows by noting that
Ax = Aex whenever x ∈ D(A). Finally, we prove uniqueness: if A′

e is another
bounded (hence continuous) linear extension of A, then for any sequence {xn} ⊂
D(A) with xn → x we have

A′
ex = lim

n→∞
A′

exn = lim
n→∞

Axn = Aex,

which gives A′
e = Ae.

4.22. Suppose vk ⇀ v in V where the dimension of V is n. Choose a basis {ek}
of V and write

vk =
n∑

j=1

α
(k)
j ej , v =

n∑
j=1

αjej .

For an arbitrary bounded linear functional f on V we have f(vk) → f(v) as
k → ∞. For i = 1, . . . , n, put f equal to fi defined for any x =

∑n
k=1 ξkek by

fi(x) = ξi. Then fi(vk) = α
(k)
i → fi(v) = αi as k → ∞, and we have

lim
k→∞

‖v − vk‖ = lim
k→∞

∥∥∥∥ n∑
j=1

(α
(k)
j − αj)ej

∥∥∥∥ ≤ lim
k→∞

n∑
j=1

|α(k)
j − αj | ‖ej‖ = 0.

4.23. (a) From x = AA−1x we obtain ‖x‖ ≤ ‖A‖ ‖A−1‖ ‖x‖ and the result
follows. (b) Using x = A−1y we have Aε = r, hence ε = A−1r. The four
inequalities

‖x‖ ≤ ‖A−1‖ ‖y‖ , ‖r‖ ≤ ‖A‖ ‖ε‖ ,
‖y‖ ≤ ‖A‖ ‖x‖ , ‖ε‖ ≤ ‖A−1‖ ‖r‖ ,

follow immediately and yield the desired result.

4.24. Let B be the unit ball in X. The image of the bounded set B under T
is precompact; T−1 returns this image into B. But a continuous operator maps
precompact sets into precompact sets, hence if T−1 were bounded then B would
be precompact. Since X is infinite dimensional, this is impossible.
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4.25. (a) Let F : X → Y be an isometry between metric spaces (X, dX) and
(Y, dY ). Then, by the definition,

dY (F (x2), F (x1)) = dX(x2, x1) for all x1, x2 ∈ X.

Continuity is evident. To see that F is one-to-one, suppose F (x2) = F (x1).
Then dY (F (x2), F (x1)) = 0 = dX(x2, x1), so x2 = x1 by the metric axioms.
(b) First suppose ‖Ax‖ = ‖x‖ for all x ∈ X. Replacing x by x2 − x1 we have
‖Ax2 − Ax1‖ = ‖x2 − x1‖ as required. Conversely suppose that ‖Ax2 −Ax1‖ =
‖x2 − x1‖ for any pair x1, x2 ∈ X. Putting x1 = 0 and x2 = x we have the
desired conclusion.

4.26. Suppose Parseval’s equality holds for all f in H . We fix f and use the
equality, equation (4.89), and continuity to write

0 = lim
n→∞

(
‖f‖2 −

n∑
k=1

|(f, gk)|2
)

= lim
n→∞

∥∥∥∥f −
n∑

k=1

(f, gk)gk

∥∥∥∥2

=

∥∥∥∥f −
∞∑

k=1

(f, gk)gk

∥∥∥∥2.
This shows that

f =
∞∑

k=1

αkgk where αk = (f, gk).

4.27. The inequality

∥∥∥∥ dfdx
∥∥∥∥
C(−∞,∞)

≤ α ‖f‖C(1)(−∞,∞) ,

i.e.

sup

∣∣∣∣df(x)dx

∣∣∣∣ ≤ α

(
sup |f(x)|+ sup

∣∣∣∣df(x)dx

∣∣∣∣
)

obviously holds with α = 1.

4.28. We construct a subset M of the space whose elements cannot be approx-
imated by functions from a countable set. Let α be an arbitrary point of [0, 1].
Form M from functions defined as follows:

fα(x) =

{
1, x ≥ α,

0, x < α.



September 30, 2011 8:42 World Scientific Book - 9in x 6in aea

Hints for Selected Exercises 467

The distance from fα(x) to fβ(x) is

‖fα(x)− fβ(x)‖ = sup
x∈[0,1]

|fα(x)− fβ(x)| = 1 if α �= β.

Take a ball Bα of radius 1/3 about fα(x). If α �= β then Bα ∩Bβ is empty.
If a countable subset is dense in the space then each of the Bα must contain

at least one element of this subset, but this contradicts Theorem 4.11 since the
set of balls Bα is of equal power with the continuum.

4.29. Let {An} be a Cauchy sequence in L(X,Y ), i.e.,

‖An+m −An‖ → 0 as n→ ∞, m > 0.

We must show that there is a continuous linear operator A such that An → A.
For any x ∈ X, {Anx} is also a Cauchy sequence because

‖An+mx−Anx‖ ≤ ‖An+m −An‖ ‖x‖ ;

hence there is a y ∈ Y such that Anx → y since Y is a Banach space. For every
x ∈ X this defines a unique y ∈ Y , i.e., defines an operator A such that y = Ax.
This operator is clearly linear. Since {An} is a Cauchy sequence, the sequence of
norms {‖An‖} is bounded:

‖Ax‖ = lim
n→∞

‖Anx‖ ≤ lim sup
n→∞

‖An‖ ‖x‖ .

That is, A is continuous.

4.30. We can see that the equation (A +B)x = y has a solution for any y ∈ Y
by applying the contraction mapping theorem. Indeed, pre-multiplication by
A−1 allows us to rewrite this equation as x = Cx + x0 where C = −A−1B and
x0 = A−1y. Defining F (x) = Cx+x0, we see that F (x) is a contraction mapping:

‖F (x)− F (y)‖ = ‖Cx− Cy‖ ≤ ‖C‖ ‖x− y‖ , ‖C‖ ≤ ‖A−1‖ ‖B‖ < 1.

Since the equation x = F (x) has a unique solution x∗ ∈ X, so does the original
equation.

From x = A−1Ax it follows that ‖x‖ ≤ ‖A−1‖ ‖Ax‖, hence

‖Ax‖ ≥ ‖A−1‖−1 ‖x‖ .

So for any y ∈ Y we can write

‖y‖ = ‖(A+B)x‖ ≥ ‖Ax‖ − ‖Bx‖ ≥ ‖A−1‖−1 ‖x‖ − ‖B‖ ‖x‖

and therefore
‖x‖ ≤ (‖A−1‖−1 − ‖B‖)−1 ‖y‖ .

The desired inequality follows.



September 30, 2011 8:42 World Scientific Book - 9in x 6in aea

468 Advanced Engineering Analysis

4.31. First assume that y = λx for some scalar λ. Then

|(x, y)| = |(x, λx)| = |λ̄||(x, x)| = |λ| ‖x‖2 = ‖x‖ ‖λx‖ = ‖x‖ ‖y‖ ,

hence equality holds. Conversely, assume equality holds in (4.49). Squaring both
sides, we obtain the relation

(x, y)(x, y) = ‖x‖2 ‖y‖2 .

Using this it is easily verified that

|(y, y)x− (x, y)y|2 = ((y, y)x− (x, y)y , (y, y)x− (x, y)y) = 0,

hence (y, y)x− (x, y)y = 0.

4.32. As F is continuous, |Fx| ≤ ‖F‖ ‖x‖. Next,

‖x‖2 − Fx ≥ ‖x‖2 − ‖F‖ ‖x‖ = ‖x‖ (‖x‖ − ‖F‖).

It seen that if ‖x‖ ≥ ‖F‖ then ‖x‖2 − Fx ≥ 0 and if ‖x‖ ≤ ‖F‖ then

‖x‖2 − Fx ≥ −Fx ≥ −‖F‖ ‖x‖ ≥ −‖F‖2 .

4.33. (a) Let us denote X \ S by Sc. First suppose that S is open. Let y be
an arbitrary point of S. Assume to the contrary that every open ball centered
at y contains a point of Sc. In particular, each such ball having radius 1/n,
n = 1, 2, 3, . . ., contains some point xn ∈ Sc. So there is a sequence {xn} ⊂ Sc

such that xn → y. But Sc is closed so we must have y ∈ Sc, a contradiction.
Conversely, suppose that every point of S is the center of some open ball contained
entirely within S. Suppose to the contrary that S is not open. Then Sc is not
closed, and there is a convergent sequence {zn} ⊂ Sc having a limit y ∈ S. This
means there are points of {zn} that are arbitrarily close to y, so it is impossible
to find a ball centered at y that is contained entirely within S. This contradiction
completes the proof. (b) Take an open ball of radius r centered at x, and denote
by U the complement of this ball. Now take any sequence {xn} ⊂ U such that
xn → x. Since ‖xn − x‖ ≥ r for each n, we have ‖x0 − x‖ ≥ r by continuity of
the norm. This shows that x0 ∈ U , hence U is closed. So the original ball is open
by definition. (c) Let f be continuous and let S be open in Y . The set f−1(S)
is open if it is empty, so we suppose it to be nonempty. Choose any x ∈ f−1(S).
Then f(x) ∈ S, and since S is open there is an open ball B(f(x), ε) contained
entirely in S. By continuity there exists a ball B(x, δ) whose image f(B(x, δ))
is contained in B(f(x), ε) and therefore in S. So B(x, δ) is contained in f−1(S).
This shows that f−1(S) is open. Next let f−1(S) be open whenever S is open,
and pick an arbitrary x ∈ X. The ball B(f(x), ε) is open so its inverse image
is open and contains x. Hence there is a ball B(x, δ) contained in this inverse
image. We have f(B(x, δ)) contained in B(f(x), ε), so f is continuous at x.
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4.34. The function

f(x) =

{
1, x rational,

0, x irrational,

can be defined on R. Now for any real number x0, whether rational or irrational,
there are sequences tending to x0 that consist of purely rational or purely irra-
tional elements (i.e., both the rationals and the irrationals are dense in the reals).
For one type of sequence the limit is 1 and for the other type the limit is zero.
Thus at point x0 there is no limit value and the function is not continuous by
definition.

4.35. We can write

‖Au‖2L2(0,1) =

∫ 1

0

(∫ 1

0

k(s, t)u(t) dt

)2

ds

≤
∫ 1

0

(∫ 1

0

|k(s, t)|2 dt
)(∫ 1

0

u2(t) dt

)
ds

=

(∫ 1

0

∫ 1

0

|k(s, t)|2 dt ds
)∫ 1

0

u2(t) dt

=M2 ‖u‖2L2(0,1)

where

M =

(∫ 1

0

∫ 1

0

|k(s, t)|2 ds dt
)1/2

.

Therefore
‖Au‖L2(0,1) ≤M ‖u‖L2(0,1)

and we have ‖A‖ ≤M .

4.36. Since ‖Sx‖ = ‖x‖, we have ‖S‖ = 1.

4.37. We have

‖Ax− Ay‖ = max
t∈[0,1]

∣∣∣∣
∫ t

0

x2(s) ds−
∫ t

0

y2(s) ds

∣∣∣∣
≤ max

t∈[0,1]

∫ t

0

|x(s) + y(s)| · |x(s)− y(s)|ds

≤
(

max
t∈[0,1]

|x(t)|+ max
t∈[0,1]

|y(t)|
)
· max
t∈[0,1]

|x(t)− y(t)| · max
t∈[0,1]

∫ t

0

ds

= (‖x‖+ ‖y‖) · ‖x− y‖ .

On any ball of the form ‖x‖ ≤ 1
2
−ε where ε > 0, we have ‖Ax−Ay‖ ≤ q ‖x− y‖

where q < 1.

4.38. All elements of the form

xn =

(
1,

1

2
,
1

3
, . . . ,

1

n
, 0, 0, 0, . . .

)
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belong to S. The sequence {xn} is a Cauchy sequence because for m ≥ 1 we have

‖xn+m − xn‖ = sup
n+1≤k≤n+m

1

k
=

1

n+ 1
→ 0 as n→ ∞.

However, the element limn→∞ xn does not belong to S.

4.39. The Neumann series for (A− I)−1 is

(A− I)−1 = −
∞∑

k=0

Ak.

So

‖(A− I)−1‖ ≤
∞∑

k=0

‖Ak‖ ≤
∞∑

k=0

‖A‖k =
1

1− ‖A‖ .

4.40. The reader should verify that the norm axioms are satisfied for the norm
in question. Then take a Cauchy sequence {(xk, yk)} ⊂ X × Y so that

‖(xm, ym)− (xn, yn)‖X×Y = ‖(xm − xn, ym − yn)‖X×Y

= max{‖xm − xn‖X , ‖ym − yn‖Y }
→ 0 as m,n→ ∞.

This implies that

‖xm − xn‖X → 0 and ‖ym − yn‖Y → 0 as m,n→ ∞.

So {xk} and {yk} are each Cauchy sequences in their respective spaces X,Y ; by
completeness of these spaces we have xk → x and yk → y for some x ∈ X and
y ∈ Y . Finally, we have (xk, yk) → (x, y) in the norm of X × Y :

‖(xk, yk)− (x, y)‖ = ‖(xk − x, yk − y)‖
= max{‖xk − x‖X , ‖yk − y‖Y }
→ 0 as k → ∞.

4.41. We have

‖yn − x‖ =

∥∥∥∥
∑n

i=1(xi − x)

n

∥∥∥∥ ≤ 1

n

n∑
i=1

κi where κi ≡ ‖xi − x‖ .
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Then for any m between 1 and n we can write

‖yn − x‖ ≤ 1

n

m∑
i=1

κi +
1

n

n∑
i=m+1

κi

≤ 1

n

(
m · max

1≤i≤m
κi

)
+
(n−m

n

)
· max
m+1≤i≤n

κi

≤ 1

n

(
m · max

1≤i≤m
κi

)
+ max

i≥m+1
κi.

Let ε > 0 be given. Choose and fix m sufficiently large that the second term is
less than ε/2. In the first term the quantity in parentheses is then fixed, and we
can therefore choose N > m so that the first term is less than ε/2 for n > N .

4.42. Assume ‖·‖1 and ‖·‖2 have the property that ‖xn − x‖1 → 0 if and only if
‖xn − x‖2 → 0. Now suppose to the contrary that there is no positive constant
C such that ‖x‖2 ≤ C ‖x‖1 for all x ∈ X. Then for each positive integer n there
exists xn ∈ X such that

‖xn‖2 > n ‖xn‖1 .
Define

yn =
1√
n

xn

‖xn‖1
.

Then

‖yn‖1 =
1√
n

→ 0 as n→ ∞

while

‖yn‖2 =
1√
n

‖xn‖2
‖xn‖1

>
1√
n
· n =

√
n→ ∞ as n→ ∞.

This contradiction shows that the required constant C does exist. Interchange
the norms to get the reverse inequality.

4.43. We have | ‖xm‖ − ‖xn‖ | ≤ ‖xm − xn‖ → 0 as m,n → ∞, hence the
sequence of norms is a Cauchy sequence in R.

4.44. Let U be a separable, dense subspace of X. We take a countable dense
subset A of U and show that A is also dense in X. Let x ∈ X and ε > 0 be
given. Since U is dense in X there exists x′ ∈ U such that d(x, x′) < ε/2. Since
A is dense in U there exists x′′ ∈ A such that d(x′, x′′) < ε/2. So d(x, x′′) < ε as
required.

4.45. Let X be a Banach space so that any Cauchy sequence in it has a limit.
Now let

∑∞
k=1 xk be an absolutely convergent series of elements xk ∈ X. Denote

by si the ith partial sum of this series. Now {si} is a Cauchy sequence in X
because for m > n we have

‖sm − sn‖ =

∥∥∥∥ m∑
k=n+1

xk

∥∥∥∥ ≤
∞∑

k=n+1

‖xk‖ → 0 as m,n→ ∞.
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Therefore si → s for some s ∈ X by completeness.
Conversely suppose every absolutely convergent series of elements taken from

X is convergent. Let {xk} be any Cauchy sequence in X. For every positive
integer k we can find N = N(k) such that ‖xm − xn‖ < 1/2k wheneverm,n > N ;
furthermore, we can choose each such N so that N(k) is a strictly increasing
function of k. The series

∑∞
k=1[xN(k+1) − xN(k)] converges absolutely:

∞∑
k=1

∥∥xN(k+1) − xN(k)

∥∥ < ∞∑
k=1

1

2k
= 1.

Hence it converges and by definition its sequence of partial sums

sj =

j∑
k=1

[xN(k+1) − xN(k)] = xN(j+1) − xN(1)

converges. Let s be its limit. From the last equality we see that {xN(j)} also
converges and its limit is x = s + xN(1). But if a subsequence of a Cauchy
sequence has a limit the entire sequence converges to it.

4.46. It suffices to show that the image of the unit ball, i.e., the set of all vectors
x ∈ �2 having

‖x‖2 =

∞∑
k=1

|xk|2 ≤ 1,

is precompact. We call this image S and show that it is totally bounded (cf.,
Definition 4.46). Let ε > 0 be given. Note that if z = Ax is any element of S, we
have

∞∑
n=N+1

|zn|2 =
∞∑

n=N+1

|2−nxn|2 ≤ 2−2(N+1)
∞∑

n=1

|xn|2 ≤ 2−2(N+1),

hence it is possible to choose N = N(ε) such that

∞∑
n=N+1

|zn|2 < ε2/2

for all z ∈ S. Now consider the set M of all “reduced” elements of the form
(z1, . . . , zN , 0, 0, 0, . . .) derivable from the elements of S. It is clear that M ⊆ S,
which is bounded. Besides, the N-tuples of z belong to a bounded set in the finite
dimensional space RN in which any bounded set is precompact. Hence there is
a finite ε2/2-net of N-tuples from which for an arbitrary z we select (ζ1, . . . , ζN)
so that

N∑
n=1

|zn − ζn|2 < ε2/2.
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Thus an element zε = (ζ1, . . . , ζN , 0, 0, . . .) ∈ �2 is an element of a finite ε-net of
S, since

‖z− zε‖ 2
	2 =

N∑
n=1

|zn − ζn|2 +
∞∑

n=N+1

|zn|2 < ε2/2 + ε2/2 = ε2.

4.47. For λ = 0 the operator A− λI is the same as A, hence the corresponding
resolvent operator is simply A−1. This operator exists; it is the backward-shift
operator and its domain is R(A). But R(A) is not dense in �2 so the conclusion
follows.

4.48. The �2-norms of the sequence elements are given by

‖xk‖	2 =

(
k∑

i=1

12
)1/2

= k1/2.

We see that ‖xk‖	2 → ∞ as k → ∞. But �2 is a Hilbert space, and in a Hilbert
space every weakly convergent sequence is bounded.

4.49. It is clear that the sequence {sin kx} converges weakly if and only if the

normalized sequence {
√

2
π
sin kx} converges weakly. The latter sequence is or-

thonormal in L2(0, π), and any orthonormal sequence converges weakly to zero.
Indeed Bessel’s inequality shows that for any orthonormal sequence {ek} and any
element x ∈ H we have

∞∑
k=1

|(x, ek)|2 <∞, hence lim
k→∞

(x, ek) = 0.

In the Sobolev space, on the other hand, we have

∥∥∥∥
√

2

π
sin kx

∥∥∥∥
W1,2(0,π)

=

(∫ π

0

[
2

π
sin2 kx+

2k2

π
cos2 kx

]
dx

)1/2

=
√

1 + k2 → ∞ as k → ∞.

For any subsequence the norms tend to infinity as well. Since any weakly con-
vergent sequence in a Hilbert space is bounded, no subsequence can be weakly
convergent.

4.50. In the process of introducing Lebesgue integration we obtained the inequal-
ity

‖F (x)‖q ≤ (mesΩ)
1
q
− 1

p ‖F (x)‖p , 1 ≤ q ≤ p.

So a bound on the norm is (mesΩ)
1
q
− 1

p . Taking F = 1 we see that it is not a
simple bound but the norm of the operator.
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4.51. Since {xn} is an orthonormal sequence, it converges weakly to zero. The
image sequence {Axn} converges strongly to zero by compactness of A.

4.52. The subset inclusion C(n)(Ω) ⊂ C(Ω) certainly holds, so the imbedding
operator I exists. It is continuous because ‖f‖C(Ω) ≤ ‖f‖C(k)(Ω), as is seen from
the form of the norms on these spaces. We must still show that I is compact.

Take a bounded set S ⊂ C(n)(Ω), n ≥ 1. The image I(S) is uniformly
bounded (since it is bounded in the max norm of C(Ω)). Furthermore, S is a
bounded subset of C(1)(Ω). This latter fact, along with the mean value theorem

f(y) − f(x) = ∇f(z) · (y − x)

implies equicontinuity of I(S). (Here z is an intermediate point on a segment from
x to y.) So I(S) is compact by Arzelà’s theorem. Therefore I maps bounded sets
into precompact sets as required.

4.53. The space of polynomials Pn is linear but not complete. Weierstrass’
theorem states that any function from C(a, b) can be arbitrarily approximated
by polynomials with respect to the norm of C(a, b). So for f ∈ C(a, b) there is
a sequence of polynomials that converges to f , and this is necessarily a Cauchy
sequence in C(a, b). Clearly the norm of this sequence as a representer of an
element of the completion space is equal to the norm of f in C(a, b). This means
that the result of completing Pn in the norm of C(a, b) is a space that stands in
one-to-one correspondence with C(a, b) and can be identified with C(a, b).

4.54. We already know that strong convergence implies weak convergence, and
this does not depend on the dimension of the space. Let H be an n-dimensional
Hilbert space having an orthonormal basis {e1, . . . , en}, and suppose {xk} is a
sequence of elements in H such that xk ⇀ x. Then

‖xk‖2 =
n∑

i=1

|〈xk, ei〉|2 →
n∑

i=1

|〈x, ei〉|2 = ‖x‖2 as k → ∞,

and we have xk → x according to Theorem 4.117.

4.55. Let M be a closed subspace of a Hilbert space H . Suppose {xn} ⊂ M
converges weakly to x ∈ H . This means that (xn, f) → (x, f) for every f ∈ H .
Decompose H as M ⊕M⊥. For every g ∈M⊥ we have

(x, g) = lim
n→∞

(xn, g) = 0,

so x ⊥M⊥. This means that x ∈M .

4.56. Suppose to the contrary that {xn} does not converge to x0. So for some
ε0 > 0 we cannot find an integer N such that ‖xn − x0‖ < ε0 whenever n > N .
Thus there is a subsequence {xnk} such that ‖xnk − x0‖ ≥ ε0. But this means
{xnk} does not contain a sub-subsequence that converges to x0, which contradicts
the condition of the exercise.
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4.57. Suppose to the contrary that {xn} does not converge weakly to x0. Then
there is a linear continuous functional F such that Fx0 is not the limit of {Fxn}.
So there is an ε0 > 0 and a subsequence {xnk} such that |Fxnk − Fx0| ≥ ε0.
Hence {xnk} does not contain a sub-subsequence that converges weakly to x0.

4.58. (a) Assume S is closed and T is open. Take a sequence {xn} ⊂ S \ T such
that xn → x. Since {xn} ⊂ S, we have x ∈ S. We claim that x /∈ T . For if not,
then x belongs to the open set T and is therefore the center of some small open
ball that lies entirely in T — a contradiction. (b) Assume S is open and T is
closed. Let x ∈ S \ T . Since x ∈ S we know that x is the center of an open ball
that lies entirely in S; we claim that the radius of this ball can be chosen so small
that no points of T can belong to it. For if not, then for each n the ball B(x, 1/n)
contains a point xn ∈ T , and the sequence {xn} ⊂ T is convergent to x. Since
T is closed we must have x ∈ T . However, this contradicts the assumption that
x ∈ S \ T .
4.59. For any element f and any ε > 0 we can find an element f∗ ∈ S such
that ‖f − f∗‖ < ε/2. Next, we can approximate f∗ with a finite linear sum of
system elements up to accuracy ε/2:

∥∥f∗ −∑k ckek
∥∥ < ε/2. So the same sum

approximates f to within accuracy ε.

4.60. We can take δ = ε/L in the definition of equicontinuity. Since uniform
boundedness is given in the problem statement, S satisfies the conditions of
Arzelà’s theorem.

4.61. Suppose S be a compact subset of X. Let {yn} be a convergent sequence in
A(S), with yn → y. We need to show that y ∈ A(S). The inverse image of {yn}
under A is a sequence in S, and contains a convergent subsequence whose limit
belongs to S: xk → x ∈ S, say. Noting that {A(xk)} is a subsequence of {yn},
we have A(xk) → y. By definition of closed operator it follows that x ∈ D(A)
and y = Ax. Since x ∈ S we have y ∈ A(S), as desired.

4.62. We begin with

l|u(x)| ≤
∣∣∣∣
∫ l

0

u(t) dt

∣∣∣∣+ l

∫ l

0

|u′(y)|dy,

square both sides and use the elementary inequality 2|ab| ≤ a2 + b2 to get

l2|u(x)|2 ≤ 2

∣∣∣∣
∫ l

0

u(t) dt

∣∣∣∣2 + 2l2
(∫ l

0

|u′(y)| dy
)2

,

then integrate this over x:

l2
∫ l

0

|u(x)|2 dx ≤ 2l

{∣∣∣∣
∫ l

0

u(t) dt

∣∣∣∣2 + l2
(∫ l

0

|u′(y)|dy
)2
}
,
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so

l

∫ l

0

|u(x)|2 dx ≤ 2

{∣∣∣∣
∫ l

0

u(t) dt

∣∣∣∣2 + l2
(∫ l

0

|u′(y)| dy
)2
}
.

Finally, because of

(∫ l

0

|u′(y)| dy
)2

=

(∫ l

0

1 · |u′(y)| dy
)2

≤
∫ l

0

12 dy

∫ l

0

|u′2(y)| dy

= l

∫ l

0

|u′2(y)|dy

we get

l

∫ l

0

|u(x)|2 dx ≤ 2

{∣∣∣∣
∫ l

0

u(t) dt

∣∣∣∣2 + l3
∫ l

0

|u′2(y)|dy
}
.

4.63.

‖y‖ =

((∫ l

0

y′(x) dx
)2

+

∫ l

0

EI y′′2(x) dx

)1/2

.

When treating the problem of solvability of the equilibrium problems for a struc-
ture that can move as a rigid body, we should exclude rigid motions. For the
beam under consideration, this is done with two conditions. One is the boundary
condition y|0 = 0. The other is somewhat artificial; it fixes the free rotations:∫ l

0
y(x) dx = 0. On the set of smooth functions satisfying these conditions, the

energy norm takes the form

‖y‖ =

(∫ l

0

EI y′′2(x) dx
)1/2

.

Note. In the following hints, k (with subscripts) denotes Winkler’s coefficient,
Ω1, V1 are subdomains, and γ is a sufficiently smooth curve (may be a part of the
boundary).

5.1.

(1) Membrane. Total potential energy:

1

2

∫∫
Ω

[(
∂u

∂x

)2

+

(
∂u

∂y

)2
]
dx dy +

1

2

∫∫
Ω1

k (u(x, y))2 dx dy

+
1

2

∫
γ

k1 (u(x, y))
2 ds−

∫∫
Ω

f(x, y)u(x, y) dx dy.
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Virtual work principle:∫∫
Ω

(
∂u

∂x

∂ϕ

∂x
+
∂u

∂y

∂ϕ

∂y

)
dx dy +

∫∫
Ω1

ku(x, y)ϕ(x, y) dx dy

+

∫
γ

k1u(x, y)ϕ(x, y) ds =

∫∫
Ω

f(x, y)ϕ(x, y) dx dy +

∫
∂Ω

g(s)ϕ(s)ds.

(2) Stretched rod. Here the notion of Winkler foundation makes no sense, because
only longitudinal displacements are taken into account. However, we can
suppose that at a point x0 there is attached a linear spring with coefficient
k, acting along the rod (which is analogous to Winkler’s foundation). In that
case we have the following. Total potential energy:

1

2

∫ l

0

ES(x)u′2(x) dx+
1

2
(ku(x0))

2 −
∫ l

0

f(x)u(x) dx− Fu(l).

Virtual work principle:∫ l

0

ES(x)u′(x)v′(x) dx+ ku(x0)v(x0) =

∫ l

0

f(x)v(x)dx+ Fv(l).

(Consider the case of several springs along the rod as well.)

(3) Bent beam. Total potential energy:

1

2

∫ l

0

EI(x)w′′2(x) dx+
1

2

∫ b

a

kw2(x) dx+
1

2
k1w

2(x0) dx

−
∫ l

0

f(x)w(x) dx− Fw(l).

Virtual work principle:∫ l

0

EI(x)w′′(x)v′′(x) dx+

∫ b

a

kw(x)v(x) dx+ k1w(x0)v(x0)

=

∫ l

0

f(x)v(x) dx+ Fv(l).

Here the region of the foundation is [a, b], 0 ≤ a < b ≤ l. We added a spring
with coefficient k1 at point x0.

(4) Plate. Total potential energy:

D

2

∫∫
Ω

(
w2

xx + w2
yy + 2νwxxwyy + 2(1− ν)w2

xy

)
dΩ

+
1

2

∫∫
Ω1

kw2 dΩ+
1

2

∫
γ

k1w
2 ds−

∫∫
Ω

Fw dΩ.
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Virtual work principle:

D

∫∫
Ω

(wxxvxx + wyyvyy + ν (wxxvyy + wyyvxx) + 2(1− ν)wxyvxy) dΩ

+

∫∫
Ω1

kwv dΩ +

∫
γ

k1wv ds =

∫∫
Ω

Fv dΩ.

(5) 3D linearly elastic body. Total potential energy:

1

2

∫∫∫
V

cijklekl(u)eij(u) dV +
1

2

∫∫
∂V2

k(u · n)2 dS

−
∫∫∫

V

F · u dV −
∫∫

∂V1

f · u dS,

where n is the unit outward normal to the boundary. Virtual work principle:∫∫∫
V

cijklekl(u)eij(v) dV +

∫∫
∂V2

k(u · n)(v · n) dS

=

∫∫∫
V

F · v dV +

∫∫
∂V1

f · v dS.

5.2. For this case the equation of the virtual work principle takes the form∫∫
Ω

(
∂u

∂x

∂ϕ

∂x
+
∂u

∂y

∂ϕ

∂y

)
dx dy =

∫∫
Ω

f(x, y)ϕ(x, y) dx dy +

∫
∂Ω2

g(s)ϕ(s)ds.

It is valid for all functions ϕ(x, y) ∈ C1(Ω) such that ϕ(x, y)|∂Ω1 = 0, when
u = u0(x, y) is a sufficiently smooth solution of the problem under consideration
so it satisfies u(x, y)|∂Ω1 = 0. If ∂Ω1 ∪ ∂Ω2 does not cover ∂Ω, this means that
on Ω \ (∂Ω1 ∪ ∂Ω2) there is given zero load and so here ∂u/∂n = 0.

Now the energy inner product takes the same form as for the above considered
problems for a membrane (u, v)M , but the energy space EMm is the completion
of the set of functions u ∈ C1(Ω) satisfying u(x, y)|∂Ω1 = 0. On EMm the norm
induced by the inner product is equivalent to the norm of W 1,2(Ω).

The generalized setup of the problem under consideration is defined by the
above equation of the VWP, so u ∈ EMm is a generalized solution if this equation
is valid for all ϕ(x, y) ∈ EMm.

The minimum problem now takes on the form

EMm(u) =
1

2
‖u‖2M − Φ(u),

where

Φ(u) =

∫∫
Ω

f(x, y)u(x, y) dx dy +

∫
∂Ω2

g(s)u(s)ds.
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If

f(x, y) ∈ Lp1(Ω), g(s) ∈ Lp2(∂Ω2), (A.17)

then Φ(u) is a linear continuous functional in EMm. The existence/uniqueness
theorem is as follows:

Let (A.17) be valid. In the energy space EMm the functional EMm(u)
attains its minimum at u = u0 and the minimizer satisfying the equation
of the VWP is unique.

5.3. The total potential energy is now

EBR(u) =
1

2

∫ l

0

ES(x)u′2(x) dx+
1

2

∫ l

0

EI(x)w′′2(x) dx

−
∫ l

0

f(x)u(x)dx− Fu(l)−
∫ l

0

q(x)w(x)dx−Qw(l), (A.18)

where q(x) is the distributed normal load and Q is the transverse force on the
end.

The equation of the VWP is

∫ l

0

ES(x)u′(x)v′(x) dx+

∫ l

0

EI(x)w′′(x)ϕ′′(x) dx

=

∫ l

0

f(x)v(x) dx+ Fv(l) +

∫ l

0

q(x)ϕ(x)dx+Qϕ(l). (A.19)

Now the energy inner product for pairs ui = (ui, wi) takes the form

(u1,u2)BR =

∫ l

0

ES(x)u′
1(x)u

′
2(x) dx+

∫ l

0

EI(x)w′′
1 (x)w

′′
2 (x) dx.

With the boundary conditions u(0) = 0 and w(0) = 0, w′(0) = 0, construct
the energy space EBR. On EBR its induced norm is equivalent to the norm of
W 1,2(0, l)×W 2,2(0, l). The total energy functional now takes the form

EBR(u) =
1

2
‖u‖2BR − ΦBR(u)

with

ΦBR(u) =

∫ l

0

f(x)u(x) dx+ Fu(l) +

∫ l

0

q(x)w(x) dx+Qw(l).

If f(x) ∈ L(0, l) and q(x) ∈ L(0, l) the functional ΦBR(u) is linear and continuous
in EBR and this is enough to state that the total energy functional EBR(u) attains
its minimum u0 in EBR that is unique. This minimum is a generalized solution
to the combined problem under consideration.



September 30, 2011 8:42 World Scientific Book - 9in x 6in aea

480 Advanced Engineering Analysis

5.4. (a) The VWP takes the form

∫ l

0

EI(x)w′′(x)v′′(x) dx =

∫ l

0

f(x)v(x) dx+
∑
k

Fkv(xk)

+
∑
j

Mjv
′(xj) + Fv(l),

where point force Fk acts at point xk and point couple Mj acts at point xj .
Remark: This is meaningful because the energy space imbeds continuously to
the space C(1)(0, l). For membranes and three-dimensional elastic bodies in the
energy setup, point forces are impossible. For a plate we can consider a gen-
eralized setup with external point forces acting on the plate. (b) The gener-
alized setup for countable sets of external point forces and couples is possible
when the series

∑
k Fk and

∑
j Mj are absolutely convergent and the the beam

ends are clamped, since the corresponding part of the work of external forces∑
k Fkv(xk) +

∑
j Mjv

′(xj) is a linear continuous functional in the energy space:

∣∣∣∣∣∑
k

Fkv(xk) +
∑
j

Mjv
′(xj)

∣∣∣∣∣ ≤ max
[0,l]

|v(x)|
∑
k

|Fk|+max
[0,l]

|v′(x)|
∑
j

|Fj |

≤ m ‖u‖B .

5.5. The energy spaces for the problems are some subspaces of corresponding
combinations of Sobolev spaces.

5.6. The functional Φ(w) (the potential) takes the form

Φ(w) =

∫∫
Ω

F (x, y)w(x, y) dΩ+

∫
∂Ω

f(s)w(x, y) ds+

N∑
k=1

Fkw(xk, yk).

The (self-balance) condition for solvability of the problem is

Φ(ax+ by + c) =

∫∫
Ω

F (x, y)(ax+ by + c) dΩ+

∫
∂Ω

f(s)(ax+ by + c) ds

+

N∑
k=1

Fk(axk + byk + c) = 0 for all constants a, b, c.

5.7. Use the following forms of the kinetic energy functionals.

Rod:

K =

∫ l

0

ρ

(
∂u

∂t

)2

dx.
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Beam:

K =

∫ l

0

ρ

(
∂w

∂t

)2

dx.

Plate:

K =

∫∫
Ω

ρ

(
∂w

∂t

)2

dx dy.

5.8. It is necessary to solve the following simultaneous algebraic equations with
respect to a1, . . . , an:

n∑
k=1

ak(ϕk, ϕj)M = (u∗
0, ϕj)M , j = 1, . . . , n.

5.9. For an infinite dimensional space E the inequality ‖u‖A ≥ m ‖u‖E with
constant m > 0 independent of u is impossible. Indeed, take an orthonormal
sequence {en} in E , so ‖en‖E = 1. This sequence converges to zero weakly and
thus, because A is compact, we get ‖Aen‖E → 0. Then ‖en‖2A = (Aen, en)E → 0
as well.

5.10. This set is the set of eigenfunctions of the eigenvalue problem

u′′ + λ2u = 0, u(0) = 0 = u(π).

What is the energy space for this problem where the set is an orthogonal basis?

5.11. We recall only that for each of our problems the operator A is defined by
the following equalities (and the Riesz representation theorem).

Beam:

(Aw, v)B =

∫ l

0

ρw(x)v(x)dx.

Plate:

(Aw, v)P =

∫∫
Ω

ρw(x, y)v(x, y) dΩ.

Three-dimensional elastic body:

(Au,v)E =

∫∫∫
V

ρu · v dV.

These operators have all the properties needed in Theorem 5.22, and so the
theorem can be formulated for each of the problems without change.

5.12. Suppose there is a minimizing sequence {xn} that does not strongly con-
verge to x0. This means that there is ε > 0 and a subsequence {xnk} such that
‖x0 − xnk‖H > ε. But {xnk} is a minimizing sequence as well, and so it con-
tains a subsequence that strongly converges to a minimizer (by the theorem). By
uniqueness this minimizer is x0, which contradicts the above inequality.
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5.13. Suppose that for g1 and g2 we get solutions w∗
1 + g1 and w∗

2 + g2. Then
(g2 − g1)|∂Ω = 0. Consider the “difference” of the corresponding equations. We
come to the same problem for w3 = w2 − w1 with f = 0 and the function
(g1 − g2) taken as g. This problem, by the theorem, has a unique solution w∗

3 .
By the structure of the equation of the problem it is evident that w∗

3 = g1 − g2,
and so w∗

1 + g1 = w∗
2 + g2.
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Fréchet derivative, 60
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