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Preface

The.development.of.the.electric.motor.is.one.of.the.greatest.achievements.of.
the.modern.energy.conversion.industry..Countless.electric.motors.are.being.
used.in.our.daily.lives.for.critical.service.applications.such.as.transportation,.
medical.treatment,.military.operation,.and.communication..However,.due.to.
the.fundamental. limitations.of.material. lifetime,.deterioration,.contamina-
tion,.manufacturing.defects,.or.damages.in.operations,.an.electrical.motor.
will.eventually.go.into.failure.mode..An.unexpected.failure.might.lead.to.the.
loss.of.valuable.human.life.or.a.costly.standstill.in.industry,.which.needs.to.
be.prevented.by.precisely.detecting.or.continuously.monitoring.the.working.
condition.of.a.motor.

This.book.was.written.to.provide.a.full.review.of.diagnosis.technologies.
and.as.an.application.guide.for.graduate.and.senior.undergraduate.students.
in.the.power.electronics.discipline.who.want.to.research,.develop,.and.imple-
ment. a. fault. diagnosis. and. condition. monitoring. scheme. for. better. safety.
and.improved.reliability.in.electric.motor.operation..Furthermore,.electrical.
and.mechanical.engineers.in.the.industry.are.also.encouraged.to.use.por-
tions. of. this. book. as. a. reference. to. understand. the. fundamentals. of. fault.
cause.and.effect.and.to.fulfill.successful.implementation.

This.book.approaches.the.fault.diagnosis.of.electrical.motors.through.the.
process.of.theoretical.analysis.and.then.practical.application..First,.the.analy-
sis.of.the.fundamentals.of.machine.failure.is.presented.through.the.wind-
ing. functions. method,. the. magnetic. equivalent. circuit. method,. and. finite.
element.analysis..Second,.the.implementation.of.fault.diagnosis.is.reviewed.
with. techniques. such. as. the. motor. current. signature. analysis. (MCSA).
method,. frequency. domain. method,. model-based. techniques,. and. pattern.
recognition.scheme..In.particular,.the.MCSA.implementation.method.is.pre-
sented.in.detail. in.the.last.chapters.of. the.book,.which.discuss.robust.sig-
nal.processing.techniques.and.reference-frame-theory-based.fault.diagnosis.
implementation.for.hybrid.vehicles.as.an.example..These.theoretical.analysis.
and.practical.implementation.strategies.are.based.on.many.years.of.research.
and. development. at. the. Electrical. Machines. &. Power. Electronics. (EMPE).
Laboratory.at.Texas.A&M.University.

Hamid	Toliyat
Texas A&M University

College Station, Texas
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1
Introduction

Seungdeog Choi, Ph.D.
Toshiba International

The population of electric motors has greatly increased in recent years, not 
only in the United States but also in the world market as shown in Table 1.1 
and Table  1.2. The world market is expected to be around $16.1 billion in 
2011, which is assumed more than 50% growth just within 5 years [1]. Electric 
motors have been applied to almost every place in our daily life, such as 
manufacturing systems, air transportations, ground transportations, build-
ing air-conditioner systems, home energy conversion systems, various cool-
ing systems in electrical devices, and even cell phone vibration systems.

It is also a well-known fact that the electric motors consume more than 50% of 
whole electrical energy demand in the United States. The annual electrical energy 
demand in the United States was 3,873 billion kilowatt-hours in 2008, which is 
expected to be further increased in every year depending on population and eco-
nomic growth [11]. This data indicates that more than 1,900 billion kilowatt-hours 
is consumed by electric motors annually in the United States, which is the biggest 
energy consumption by any single electric device in modern society.

With the rapidly increased population and huge electric energy consump-
tion, sophisticated control and reliability of motor operations from a harsh 
industrial environment has now been a major requirement in many indus-
trial applications. It is especially important where an unexpected shutdown 
might result in the interruption of critical services such as medical, trans-
portation, or military operations. In those applications where continuous 
process is needed and where down time is not tolerable, an unexpected fail-
ure of a motor might result in costly maintenance or loss of life.

As shown in Figure 1.1, the electrical motor consists of many mechanical 
and electrical parts, such as a rotor bar, rotor magnet, stator winding, end-
ring, bearing, and gear box. Due to the commonly harsh industrial environ-
ments, each part of electric motors is potentially exposed to the high risk of 
unexpected mechanical, chemical, and electrical system failures. The reasons 
why electric motors fail in industry have been commonly reported as follows:

 1. Post the standard lifetime
 2. Wrong-rated power, voltage, and current
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 3. Unstable supply voltage or current source
 4. Overload or unbalanced load
 5. Electrical stress from fast switching inverters or unstable ground
 6. Residual stress from manufacturing
 7. Mistakes during repairs
 8. Harsh application environment (dust, water leaks, environmental 

vibration, chemical contamination, high temperature)

Figure 1.2 shows an example of a well known electrical motor fault such as 
bearing ball damage. The bearing ball is taken from the bearing module that 
had been diagnosed as faculty for 6 months. The main types of motor faults 
are commonly categorized as electrical faults, mechanical faults, and outer 
drive system defects, which are as follows [2–5]:

 1. Electrical faults
 a. Open or short circuit in motor windings (mainly due to winding 

insulation failure)
 b. Wrong connection of windings
 c. High resistance contact to conductor
 d. Wrong or unstable ground

TABLE 1.1

Number of Motors by Application

Application Population

Fans and pumps 3,847,161

Air compressor 632,731

Others 7,954,438

TOTAL 12,434,330

Source: US Department of Energy (2002). http://
www1.eere.energy.gov/manufacturing/
tech_deployment/pdfs/mtrmkt.pdf

TABLE 1.2

Motor System Energy Usage by Application 

Application GWh / Yr

Fans and pumps  221,417

Air compressor 91,050

Others 262,961

TOTAL 575,428

Source: US Department of Energy (2002). http://www1.eere.
energy.gov/manufacturing/tech_deployment/pdfs/
mtrmkt.pdf

http://www1.eere.energy.gov
http://www1.eere.energy.gov
http://www1.eere.energy.gov
http://www1.eere.energy.gov
http://www1.eere.energy.gov
http://www1.eere.energy.gov
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 2. Mechanical faults
 a. Broken rotor bars
 b. Broken magnet (or partial demagnetization)
 c. Cracked end-rings
 d. Bent shaft
 e. Bolt loosening
 f. Bearing failure
 g. Gearbox failure
 h. Air-gap irregularity
 3. Outer motor drive system failures
 a. Inverter system failure
 b. Unstable voltage/current source
 c. Shorted or opened supply line

FIGURE 1.2
Bearing ball fault and subsequent fatigue damage. Vibration consultant. http://www.
vibrationconsultants.co.nz/Fault%20Diagnosis.html

FIGURE 1.1
2009 Honda FCX Clarity Fuel Cell Vehicle test drive photo gallery. From Christine and Scott 
Gable, http://alternativefuels.about.com/od/fuelcellvehiclereviews/ig/ 09-Honda- FCX-Clarity-
Fuel-Cell/

http://www.vibrationconsultants.co.nz
http://www.vibrationconsultants.co.nz
http://alternativefuels.about.com
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The bearing fault is known to make up almost 40%, stator related about 38%, 
rotor related about 10%, and others make up 12% of whole electrical motor 
fault [2–6].

The electric motor design is commonly intended to have electrical and 
mechanical symmetry in the stator and the rotor for better coupling and 
higher efficiency. Fault condition in a motor described earlier is supposed to 
damage the symmetrical property where fault-dependent motor operation 
induces an abnormal symptom during motor operation, which is described 
as follows [2–5]:

 1. Mechanical vibration
 2. Temperature increase
 3. Irregular air-gap torque
 4. Instantaneous output power variation
 5. Acoustic noise
 6. Line voltage changes
 7. Line current changes
 8. Speed variations

Most abnormal symptoms have been known to have specific patterns 
pertaining to the motor fault conditions and severity, such as particular fre-
quency, duration, amplitude, variance, degree, and phase. Based on moni-
toring and analyzing the expected symptoms and their specific patterns, 
many motor fault diagnoses have been suggested, and there have been sev-
eral commercial solutions in the industry market as shown in Figure 1.3. In 
particular, the vibration spectrum in Figure 1.3a is from the bearing module 
with defect ball in figure 1.2. Based on the spectrum monitoring technique, 
the bearing module is diagonosed faculty and safely removed before the sys-
tem falls into catastrophic failure mode.

The various diagnosis techniques adopted in industry have been per-
formed mainly through the following strategies [2–5].

 1. Signal-based fault diagnosis
 a. Mechanical vibration analysis
 b. Shock pulse monitoring
 c. Temperature measurement
 d. Acoustic noise analysis
 e. Electromagnetic field monitoring through inserted coil
 f. Instantaneous output power variation analysis
 g. Infrared analysis
 h. Gas analysis
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 i. Oil analysis
 j. Radio-frequency (RF) emission monitoring
 k. Partial discharge measurement
 l. Motor current signature analysis (MCSA)
 m. Statistical analysis of relevant signals

200180
Frequency (Hz)

16014012010080604020

14

12

10

8

6

4

2

0
0

(a)

(b)

FIGURE 1.3
(a) Vibration spectrum monitoring for bearing in Figure 1.2. http://www.vibrationconsultants.
co.nz/Fault%20Diagnosis.html. (b) GE motor current analysis device (from gedigitalenergy.
com). http://www.gedigitalenergy.com/multilin/catalog/m60.htm

http://www.vibrationconsultants.co.nz
http://www.vibrationconsultants.co.nz
http://www.gedigitalenergy.com
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 2. Model-based fault diagnosis
 a. Neural network
 b. Fuzzy logic analysis
 c. Genetic algorithm
 d. Artificial intelligence
 e. Finite-element (FE) magnetic circuit equivalents
 f. Linear-circuit-theory-based mathematical models
 3. Machine-theory-based fault analysis
 a. Winding function approach (WFA)
 b. Modified winding function approach (MWFA)
 c. Magnetic equivalent circuit (MEC)
 4. Simulations-based fault analysis
 a. Finite-element analysis (FEA)
 b. Time-step coupled finite element state space analysis (TSCFE-SS)

The different types of fault diagnosis methods have been simultaneously 
applied to fine-tune the detection in industry. The fault diagnosis of electri-
cal motors is expected to provide warning of imminent failures, diagnosing 
scheduling information for future preventive maintenance.

The implementation of fault diagnosis has been done with the following 
routine:

 1. Fault detection
 a. Time-domain-based detection (mostly for power system fault 

diagnosis)
 b. Frequency domain-based detection (mostly for signal-based 

machine fault diagnosis)
 c. Accumulated data-based detection (mostly for model-based fault 

diagnosis)
 2. Fault decision making
 a. Decide fault existence
 b. Decide fault severity
 3. Feedback to motor controller or human interface
 a. Limit motor operation based on fault severity
 b. Schedule maintenance

Figure 1.4 shows the increased convergence between the energy system 
and modern network system in modern industry. The electrical motors in a 
car, ship, aircraft, building, road, or in a power system can be assumed to be 
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mostly connected to a committed sensor or wired/wireless sensor network. 
Those sensed signals such as vibration, current, voltage, and speed are for-
warded to a close or remote microcontroller or digital processor of which the 
controller performs individual system control, whole system management, 
or health monitoring [9].

The fault diagnosis has begun to be efficiently implemented with relatively 
low cost by utilizing the available sensors and digital signal processor (DSP) 
in the wired/wireless network without extra hardware cost and with simple 
software implementation, which further provides the protection to middle/
low power motor drive system. For example, by using the current sensor 
feedback, the new trend for low-cost protection applications of MCSA fault 
diagnosis seems to be drive-integrated fault diagnosis systems within motor 
drive DSP without using any external hardware [8].

This book is intended to provide fundamentals of various motor fault con-
ditions, advanced fault modeling theory, diverse fault diagnosis techniques, 
and low cost DSP-based fault diagnosis implementation strategies.

The following chapters of this book are organized as follows:

• Induction of motor and synchronous motor faults in Chapter 2
• Electric motor fault modeling based on diverse theories in Chapters 

3 and 4
• Various electric motor fault diagnosis techniques in Chapters 5, 6, 

and 7
• MCSA implementation on a microcontroller in Chapters 8, 9, and 10

Building

Road

Power sys.
Small size
elec. sys.

Motor
Generator
Converter

etc.

Wired/
wireless
sensor

network

Committed
sensors Vibration

Temperature
Instantaneous power
Audible noise
Voltage
Current
Speed
Traffic

Sensor signals

Convergence of energy system and modern network system

Feedback
through wireless network

(new information highway)

Feedback
through conventional

copper wire

Digital processor
(Controller)

- Individual system control
- Whole system management
- Health monitoring

Middle 
size

elec. sys.

Car
Ship

Aircraft
Train
etc.

FIGURE 1.4
Convergence of energy system and modern network system. (From S. Choi, “Robust Condition 
Monitoring and Fault Diagnosis of Variable Speed Drive of Induction Motor,” PhD disserta-
tion, Texas A&M University, 2010. With permission.)
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2.1  Introduction of Induction Motor Fault

This section briefly summarizes motor fault conditions and their cause, espe-
cially for the induction motor. The eccentricity related faults, broken rotor 
bar faults, bearing faults, and stator faults, which account for more than 90% 
of overall induction motor failures, are considered [1–3].

2.1.1  Bearing Faults

Bearing faults account for more than 40% of all electric motor failures [5–7]. 
Most of the bearings in industrial facilities run under nonideal conditions 
and are subject to fatigue, ambient mechanical vibration, overloading, mis-
alignment, contamination, current fluting, corrosion, and wrong lubrica-
tion. These nonideal conditions start as marginal defects that spread and 
propagate on the inner raceway, outer raceways, and rolling elements (see 
Figure  2.1). After a while the defect becomes significant and generates 
mechanical vibration causing acoustic noise. Basically, bearing faults can be 
classified as outer raceway, inner raceway, ball defect, and cage defect, which 
are the main sources of machine vibration. These mechanical vibrations in 
the air gap due to bearing faults can be considered as slight rotor displace-
ments, which result in instant eccentricities. Therefore, the basic fault sig-
nature frequency equation of line current due to bearing defects is adopted 
from eccentricity literature [10].

Mechanical vibration, infrared or thermal, and acoustic analyses are some 
of the commonly used predictive maintenance methods to monitor the 
health of the bearings to prevent motor failures.
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Vibration and thermal monitoring require additional sensors or trans-
ducers to be fitted on the machines. While some large motors may already 
come with vibration and thermal transducers, it is not economically or physi-
cally feasible to provide the same for smaller machines. Therefore, small- to 
medium-size motors are checked periodically by moving portable equip-
ment from machine to machine in all three methods. Some motors used in 
critical applications, such as nuclear reactor cooling pump motors, may not 
be easily accessible during reactor operation. The lack of continuous monitor-
ing and accessibility are the shortcomings of the aforementioned techniques. 
An alternate approach based on line current monitoring has received much 
research attention in search of providing a practical solution to continuous 
monitoring and accessibility problems. Motor current monitoring provides 
a nonintrusive way to continuously monitor motor reliability with minimal 
additional cost.

Bearing faults can be classified as outer raceway, inner raceway, ball defect, 
and cage defect. Each fault has specific mechanical vibration frequency com-
ponents that are characteristic of each defect type, which is a function of 
both bearing geometry and speed. The mechanical oscillations due to bear-
ing faults change the air-gap symmetry and machine inductances like eccen-
tricity faults. The machine inductance variations are reflected to the line 
current in terms of current harmonics, which are the indicators of bearing 
fault associated with mechanical oscillations in the air-gap.

Bearing ball

Inner race

An arbitrary 

point on the cage

Outer race

rin

rout

Pitch Diameter (PD)

Ball Diameter (BD)

FIGURE 2.1
A typical bearing geometry.
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A generic fault diagnosis tool based on discriminative energy functions is 
proposed by Ilonen et al. [12]. These energy functions reveal discriminative 
frequency-domain regions where failures are identified. Schoen [13] imple-
mented an unsupervised, on-line system for induction motor based on motor 
line current. An amplitude modulation (AM) detector is developed to detect 
the bearing fault while it is still in an incipient stage of development in Stack 
et al. [14]. Ocak [15] developed a hidden Markov modeling (HMM) based 
bearing fault detection and fault diagnosis. Yazici and Kliman [16] proposed 
an adaptive statistical time-frequency method for detection of broken rotor 
bars and bearing faults in motors using motor line current.

2.1.2  Stator Faults

Stator faults account for 30% to 40% of all electric motor failures [2,8,9]. The 
stator fault can be broadly classified as the lamination or frame fault (core 
defect, circulation current, or ground, etc.) and the stator winding fault 
(winding insulation damage, displacement of conductors, etc.).

The major function of winding insulation materials normally is to with-
stand electric stress; however, in many cases it must also endure other 
stresses such as mechanical and environmental stresses [19]. In a motor, 
the torque is the result of the force created by current in the conductor and 
surrounding magnetic field. This shows that winding insulation must have 
electrical as well as mechanical properties to withstand mechanical stresses 
[20]. In addition, electromagnetic vibration at twice the power frequency, dif-
ferential expansion forces due to the temperature variations following load 
changes, and impact forces due to electrical/mechanical asymmetries also 
affect the aging process [21].

Nonuniform temperature distribution in a motor will also cause mechanical 
destruction due to dilation. The manufacturing process itself may constitute 
a damaging or aging action. The electrical winding insulation must be strong 
enough to withstand the mechanical abuse while being wound and installed 
in the motor. Thus, the initial mechanical stresses are often very severe com-
pared to the subsequent abuse the winding insulation gets in service [20].

Increased temperatures can cause a number of effects. The material may 
be inherently weaker at elevated temperatures and a failure may occur sim-
ply because of the melting of the material. This can be a very short time fail-
ure, because of the short length of time required for the temperature to rise 
to the melting point. On the other hand, long-term elevated temperature can 
cause internal chemical effects on material [19].

Thermal stress is probably the most recognized cause of winding insula-
tion degradation and ultimate failure. The main sources of thermal stress in 
electric machinery are copper losses, eddy current, and stray load losses in the 
copper conductors, plus additional heating due to core losses, windage, and so 
forth [22]. High temperature causes a chemical reaction that makes winding 
insulation material brittle. Another problem is that due to sudden temperature 
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increase, copper conductor and copper bars expand faster than winding insu-
lation material, which causes stress on ground wall insulation [19].

Another significant effect on winding insulation aging is partial dis-
charges (PD). Partial discharges are small electric sparks that occur within 
air bubbles in the winding insulation material due to nonuniform electric 
field distribution. Once begun, PD causes progressive deterioration of insu-
lating materials, ultimately leading to electrical breakdown. On the other 
hand, motor winding insulation experiences higher voltage stresses when 
used with an inverter than when connected directly to the alternating cur-
rent (AC) utility grid. The higher stresses are dependent on the motor cable 
length and are caused by the interaction of the fast rising voltage pulses of 
the drive and transmission line effects in the cable [23,24].

In addition to the aforementioned various causes, delaminating dis-
charges, enwinding discharges, moisture attacks, abrasive material attacks, 
chemical decomposition, and radiation can also be counted as accelerating 
effects on aging of winding insulation [25].

Motor and generator winding insulation failures during machine opera-
tion can lead to a catastrophic machine failure resulting in a costly outage. 
Prevention of such an outage is a major concern for both the machine manu-
facturer and user, since it can result in significant loss of revenue during the 
outage as well as repair or replacement cost. In the literature [19,25], PD is 
taken as a signature of isolation aging, which begins within voids, cracks, or 
inclusions within a solid dielectric, at conductor–dielectric interfaces within 
solid or liquid dielectrics, or in bubbles within liquid dielectrics. Once begun, 
PD causes progressive deterioration of insulating materials, ultimately lead-
ing to electrical breakdown.

When a partial discharge occurs, the event may be detected as a very small 
change in the current drawn by the sample under test. PD currents are dif-
ficult to measure because of their small magnitude and short duration [25]. 
Therefore, PD in a motor/generator before a breakdown does not have a sig-
nificant effect on the power system.

The most serious result of a major fault may not only destroy the machin-
ery but may spread in the system and cause total failure. The most com-
mon type of fault, which is also the most dangerous one, is the breakdowns 
that may have several consequences. A great reduction of the line voltage 
over a major part of the power system will be observed. If an alternator is 
damaged, this might affect the whole system. For example, when a toler-
able inter-turn or in-phase fault occurs, the power generation will be unbal-
anced and the power quality will drastically decrease. Extra harmonics will 
be injected to the whole system. If the alternator fault is not tolerable or it is 
a phase-to-phase fault, then the surge will damage the machine itself and 
some parts of the system. Unlike a motor connected to the utility following a 
few step-down transformers, the generator faults are more risky in terms of 
permanent damages and costly shutdowns depending on the grid structure. 
A motor with a tolerable inter-turn short behaves like an unbalanced load 
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and disturbs the neighboring utility. However, an alternator failure affects 
the whole system, where a motor failure has limited distress on the power 
system. In both of these cases the power quality of the power system will be 
degraded.

In the literature, there are several methods for condition monitoring and 
protection of motors and generators. The superiority of these methods 
depends on the type of application, power rating of the machinery, location 
of the machinery, cost of machine itself and sensors, and so on [24–25].

Monitoring the temperature of the high power motor and generator stator 
windings, it is possible to determine if the winding is at risk of thermal dete-
rioration. This can be done either by embedded thermocouples or thermal 
cameras. In addition, by monitoring the temperature, an increase in the sta-
tor temperature over time under the same operating conditions (load, ambi-
ent temperature, and voltage) can be indicative of the cooling system failure.

Ozone gas generation occurs as a consequence of PD on the stator coil. 
Surface partial discharges are the cause of deterioration from defective slot 
and end-winding stress relief coatings as well as conductive pollution. By 
monitoring the ozone gas concentration over time, failure mechanisms that 
give rise to the surface partial discharge can be detected [26]. Thus ozone 
monitoring does not find problems in the very early stages of deteriora-
tion. Ozone monitoring can be done periodically with inexpensive chemical 
detectors that are thrown away after each use. Otherwise, continuous ozone 
monitoring is now feasible with electronic detectors.

In addition, phase and ground fault relays are installed in a machine to 
prevent severe machine damage caused by winding insulation failure [20]. 
Another effective solution is on-line monitoring of partial discharge that 
warns the user before catastrophic damage. This can be done either by moni-
toring differential line current or using some special sensors such as antenna, 
high voltage capacitors on the machine terminals, or radio frequency (RF) 
current transformers at the machine neutral or on surge capacitor grounds. 
These sensors are sensitive to the high frequency signals from the PD, yet are 
insensitive to the power frequency voltage and its harmonics [25].

2.1.3  Broken Rotor Bar Fault

The broken rotor bar fault condition is shown in Figure  2.2, which 
accounts for more than 5% of all the electric motor failures in industry. 
Cage rotors are basically of two types: cast and fabricated. Previously, 
cast rotors were only used in small machines. Today, casting technology 
can be used even for rotors of machines in the range of thousands of 
kilowatts. Almost all squirrel-cage motor bars and end-rings are made 
of alloys of either aluminum or copper or pure copper. Copper and cop-
per alloy rotors are usually of fabricated design. Aluminum rotors are 
dominantly die-cast constructions, with the bars and end-rings being cast 
in one machine operation. Cast rotors, although more rugged than the 
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fabricated type, can hardly be repaired once faults like cracked or broken 
rotor bars develop in them.

There are a number of reasons for rotor bar and end-ring breakage. They can 
be caused by thermal, magnetic, dynamic, environmental, mechanical, and 
residual stresses. Normally, the stresses remain within the tolerance band-
width and the motor operates properly for years. An incipient broken rotor 
bar condition aggravates itself almost exponentially in time as excessive cur-
rent flow is expected to be concentrated on adjacent bars instead of the broken 
one, which provides propagated electrical stress to adjacent areas. When any 
of these stresses are above allowable levels, the lifetime of the motor shortens.

A broken rotor bar can be considered as rotor asymmetry [17] that causes 
unbalanced line currents, torque pulsation, and decreased average torque 
[12]. The electric and magnetic asymmetry in induction machine rotors 
boosts up the left sideband of supply frequency [17].

Elkasabgy et al. [29] show that broken rotor bar fault can be detected by 
time and frequency domain analysis of induced voltages in search coils 
placed in the motor. During regular operations, a symmetrical stator wind-
ing excited at frequency fe induces rotor bar currents at sfe frequencies [27]. 
When an asymmetry is introduced in the rotor structure, the backward 
rotating negative sequence –sfe component starts the chain electrical and 
mechanical interactions between the rotor and stator of the motor. Initially, 
stator electromotive force (EMF) at frequency (1 – 2s)fe is induced that causes 
torque and speed ripples. Afterward, torque and speed ripples are reflected 
to the stator as line current oscillations at frequency (1 + 2s)fe. Next, (1 + 2s)
fe component induces rotor currents at ±3sfe and this chain reaction goes on 
until completely being filtered by the rotor inertia. A parameter-estimation-
based broken rotor bar detection is reported in [30]. The harmonics at the 
stator terminal voltages immediately after switching off the motor can be 
used as a diagnostic method [31].

Broken bar

Rotor bar
Rotor

FIGURE 2.2
Broken rotor bar in an induction motor.
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2.1.4  Eccentricity Fault

Air-gap eccentricity is known as a condition that occurs when there is a non-
uniform distance between the rotor and stator in the air-gap. When there is 
an eccentricity in the air-gap, varying inductances cause unbalanced mag-
netic flux within the air-gap that creates fault harmonics in the line current, 
which can be identified in the spectrum. There are two types of eccentricity 
faults: static eccentricity and dynamic eccentricity as shown in Figure 2.3 and 
Figure 2.4. When static eccentricity occurs, the centerline of the shaft is at a 
constant offset from the center of the stator or the rotor is misaligned along 
the stator bore. On the other hand when dynamic eccentricity occurs, the cen-
terline of the shaft is at a variable offset from the center of the stator or mini-
mum air-gap revolves with the rotor. If the distance between the stator bore 
and rotor is not equal throughout the entire machine, varying magnetic flux 
within the air-gap creates imbalances in the current flow, which can be iden-
tified in the current spectrum. Improper mounting, a loose or missing bolt, 
misalignment, or rotor unbalance might be causes of air-gap eccentricity.

Eccentricity is a quite well-known problem and analytical results sup-
ported by experiments have already been reported. In the literature, there 
are several successful works reporting fault diagnosis of eccentricity based 
on line current measurement. Unlike bearing faults, it is easier to diagnose 
eccentricity even for inverter-fed machine cases due to their high amplitude 

Air gapAir gapAir gap Rotor Stator

FIGURE 2.3
Static eccentricity.

Air gap Air gapAir gap

FIGURE 2.4
Dynamic eccentricity.
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of fault signatures with respect to the noise floor in the line current spec-
trum. Because both static and dynamic eccentricities tend to coexist in prac-
tice, only mixed eccentricity is considered to show the effects of inverter 
harmonics. Magnetic field in the air-gap of an eccentric motor is always non-
uniform. Since the flux linkages in the air-gap oscillate with synchronous 
frequency, any additional harmonics oscillating at the speed due to nonuni-
form structure are expected to take place at rotating frequency sidebands of 
the synchronous frequency.

2.2 Introduction of Synchronous Motor Fault Diagnosis

This section summarizes the important electrical and mechanical failures 
in the synchronous machines and the corresponding diagnosis techniques 
proposed in the literature. Some failures, like stator inter-turn faults, bearing 
faults, and eccentricities, are common in all types of synchronous machines. 
However, some faults like rotor winding faults, broken damper bars, or 
end-rings, are specific to wound rotor synchronous machines, and demag-
netization faults are limited to permanent magnet synchronous machines 
(PMSMs).

Like induction machines, synchronous machines are subject to many dif-
ferent types of mechanical and electrical faults, which can broadly be clas-
sified into the following: (1) open or short circuit in one or more turns of 
a stator winding; (2) open or short circuited rotor winding in wound rotor 
synchronous machines; (3) broken damper bars or end-rings; (4) eccentrici-
ties; (5) rotor mechanical faults such as bearing damage, bent shaft, and mis-
alignment; and (6) demagnetization fault in PMSMs.

Each of these fault conditions produces specific symptoms during motor 
operation, which can be described as follows:

 1. Unbalanced line currents and air-gap voltages
 2. Excessive temperature
 3. Audible noise and motor mechanical vibration
 4. Lower average torque
 5. Higher torque pulsations
 6. Increased losses

Some of the fault conditions in synchronous machines have similar causes 
and symptoms of the same faults in the induction machines, which have 
been discussed in Section 2.1.
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2.2.1  Damper Winding Fault

To produce torque in synchronous machines, the rotor must be turning at 
synchronous speed, which is the speed of the stator field. At any other speed, 
the rotating field of stator poles will not be synchronized with rotor poles, 
but first attracts, and then repels them. This condition produces no average 
torque and the machine will not start. Using a direct current (DC) motor or 
a damper winding, the machine can be brought near to the synchronous 
speed. Damper windings, as shown in Figure 2.5, consist of heavy copper 
bars, with the two ends shorted together, installed in rotor slots. The cur-
rents induced in the bars interact by the rotating air-gap field and produces 
torque. In other words, the machine is started as an induction motor [33]. 
The field winding is excited by a direct current when the machine is brought 
up to the synchronous speed. When the load is suddenly changed, an oscil-
latory motion will be superimposed on the normal synchronous rotation of 
the shaft. The damper winding helps damp out these oscillations.

Diagnostics of broken damper bars in synchronous machines has not been 
covered as widely as the other faults like eccentricity and inter-turn faults 
[34–37]. During transience, the electromagnetic behavior of asynchronous 
machines with damper winding is similar to that of an induction machine. 
During transient time, when the machine accelerates from zero speed to syn-
chronous speed, a significant current flows in the damper winding. Excessive 

FIGURE 2.5
A salient pole synchronous machine with damper winding and interrupted end-ring. 
(Courtesy of TECO-Westinghouse.)
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start–stop cycles or frequent load or speed changes can cause the breakage 
of the damper bars.

An on-line fault diagnosis method for detection of broken rotor bars has 
been proposed by Kramer [38] using flux probe and finite element (FE) mod-
eling. For the squirrel-cage induction machines, several methods of detec-
tion of broken rotor bars have been reported in the literature. It has been 
found that in squirrel-cage induction machines when a bar breaks some of 
the current that would have flowed in that bar will flow into the two adjacent 
bars on either side. This could result in breakage of several bars [39]. Similar 
effects have been reported for the converter-fed synchronous machines with 
broken damper bars [40]. Winding function analysis and time-stepping FE 
analysis have been used to study the broken damper bars and end-rings 
[38,41].

For detecting the broken damper bars, flux probes can be attached to the 
stator bore surface for measurement of air-gap flux waveform during accel-
eration from standstill to rated speed [38]. Another method is the separation 
of pole voltages of the field winding according to its polarity. This way, the 
difference of the pole voltages can be determined. The main field of a sym-
metrical built machine disappears in the difference voltage, but the differ-
ence voltage, which is caused by perturbed field of the missing damper bar, 
will remain [42].

2.2.2   Demagnetization Fault in Permanent Magnet 
Synchronous Machines (PMSMs)

In comparison to other types of alternating current (AC) motors, perma-
nent magnet synchronous Machines (PMSMs) are becoming more popular 
in applications with high-speed operation and precise torque control. The 
demagnetization phenomenon is mainly due to armature reaction, espe-
cially in high torque conditions. Some other advantageous features include 
high efficiency, low noise, high torque to current ratio, high power to weight 
ratio, and robustness.

During the normal operation of the PMSM, the inverse magnetic field 
produced by the stator current opposes the permanent magnets’ remanent 
induction. When this phenomenon is repeated, the permanent magnets will 
be demagnetized. This demagnetization can be all over the pole (complete 
demagnetization), or on a part of the pole (partial demagnetization). High 
temperature can also demagnetize the magnet. Stator winding short-circuit 
fault may partially demagnetize a surface mount magnet. Partial demagne-
tization causes magnetic force harmonics, noise, and mechanical vibration, 
causing unbalanced magnetic pull in the machine.

The demagnetization effects on the parameters of the motor, such as cog-
ging torque, torque ripple, back-EMF, and load angle curve, were investi-
gated by Ruiz et al.[43]. For steady-state analysis under demagnetization 
conditions, fast Fourier transform (FFT) of the stator current is used for 
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frequency analysis. Time-frequency analysis methods have been used for 
nonstationary conditions. These techniques, such as short-time Fourier 
transform (STFT), continuous wavelet transform (CWT), and discrete wave-
let transform (DWT), require the proper selection of the parameters such as 
window size and coefficients.

Field reconstruction method (FRM) can also be used to detect the demag-
netization fault in PMSMs. The flux linkages of the stator phases, which are 
calculated by FRM, are used to monitor the faults [44].

2.2.3  Eccentricity Fault

The fundamentals of the eccentricity fault in a synchronous motor are 
the same as that of the induction motor. Air-gap eccentricity arises when 
there is a nonuniform distance between the stator and the rotor. The 
nonuniform air-gap causes the varying inductances giving rise to unbal-
anced magnetic flux within the air-gap. This creates fault harmonics in 
the line current, which can be identified in the frequency spectrum. When 
eccentricity becomes significant, the resulting unbalanced radial forces 
can cause stator to rotor rub, and this can result in damage of the stator 
and rotor.

There are two types of eccentricity in the synchronous motor as in the 
induction motor: static and dynamic. In the case of static eccentricity, the 
centerline of the shaft is at a constant offset from the center of the stator. 
Therefore, the nonuniform air-gap does not vary in time. On the other hand, 
when dynamic eccentricity occurs, the centerline of the shaft is at a variable 
offset from the center of the stator and the air-gap length changes as the rotor 
rotates dynamically. In reality, both static and dynamic eccentricities tend 
to coexist. Improper mounting, the noncircularity of the stator core, a loose 
or missing bolt, a bent rotor shaft or misalignment, bearing wear, and rotor 
unbalance might be causes of air-gap eccentricity.

Various fault diagnosis methods for eccentricity fault detection in syn-
chronous machines have been proposed in literature. The modified winding 
function approach (MWFA) accounting for all space harmonics, and the FE 
method have been used to model the salient pole synchronous machines. 
These models show the effect of dynamic air-gap eccentricity on the perfor-
mance of a salient pole synchronous machine [45].

Ebrahimi et al. present a method of detecting static eccentricity (SE), 
dynamic eccentricity (DE), and mixed eccentricity (ME) in three-phase 
PMSMs [46]. The nominated index is the amplitude of sideband compo-
nents with a particular frequency pattern in the stator current spectrum. 
The occurrence, as well as the type and percentage, of eccentricity can be 
determined using this index. After determination of the correlation between 
the index and the SE and DE, the type of the eccentricity is determined by a 
k-nearest neighbor classifier. Then a three-layer artificial neural network is 
employed to estimate the eccentricity degree and its type.
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Le Roux et al. investigate implementation and detection of rotor faults 
such as static and dynamic eccentricities and broken magnets in perma-
nent magnet synchronous machines [47]. A new flux estimation method is 
developed that does not require the measurement of the rotor position or 
speed. Stator currents and voltages are used for detection of these and other 
rotor faults.

2.2.4  Stator Inter-Turn Fault

One of the most common failures in synchronous motors is the inter-turn 
short circuit in one of the stator coils. Stator failures are essentially due to 
electrical, mechanical, thermal, and environmental stresses acting on the 
stator. The most recognized cause of winding insulation degradation and 
ultimate failure is thermal stress. The dielectric, corona, tracking, and tran-
sient voltage conditions are some of the electrical stresses leading to inter-
turn short circuit failures [48].

In the case of an inter-turn fault in stator winding, the symmetry of the 
machine is destroyed. This produces a reverse rotating field that decreases 
the output torque and increases losses per ampere of fundamental frequency 
of the positive sequence current. The stator faults in synchronous reluctance 
motors (SynRM) under steady-state operating conditions have been studied 
in [49]. The detailed modeling of the faulted machine has been carried out 
using a modified winding function approach (MWFA). Monitoring the stator 
current in the presence of such faults shows that odd triple harmonics are 
increased in the line current of SynRM with inter-turn fault. The line current 
of the faulty phase increases further when the number of shorted turns goes 
up. The increase of the 9th harmonic seems to be a good indication of the 
inter-turn fault.

Stator inter-turn faults in a salient pole synchronous motor can be detected 
by analyzing the field current of the machine. Some of the even harmonics in 
the field current have been reported to increase with stator inter-turn faults. 
Due to internal structural asymmetries of the field winding, some of these 
components clearly increased with stator inter-turn fault. The findings are 
helpful to detect faults involving few turns without ambiguity, in spite of 
supply unbalance and time harmonics [35].

For analyzing internal phase and ground faults in stator winding, a 
mathematical model for a synchronous machine has been presented by 
Reichmeider et al. [50]. This method employs a direct phase representation, 
using a traditional coupled circuit approach.

A specific frequency pattern of the stator current is derived for short-circuit 
fault detection in PMSMs [51]. The amplitude of the side-band components at 
these frequencies is used to determine the number of short-circuited turns. 
Using the mutual information index, the relation between the nominated cri-
terion and the number of short-circuited turns is specified. The occurrence 
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and the number of short-circuited turns are predicted using support vector 
machine (SVM) as a classifier.

The two-reaction theory is well suited for computer modeling synchronous 
machines. However, in the derivation of the dq0 model of a synchronous 
machine, the machine windings are assumed to be sinusoidally distributed. 
This implies that all higher space harmonics produced in the case of an 
internal fault, the stator windings no longer have the characteristics of sinu-
soidally distributed windings. The faulted windings will produce stronger 
space harmonics. Moreover, the symmetry between the machine windings 
will no longer be present. Therefore, the conventional dq0 model is not suited 
to analyze internal faults.

Inter-turn faults of a synchronous machine can be modeled based on the 
actual winding arrangements. This method, which is known as winding 
function approach, calculates the machine inductances directly from the 
machine winding distribution. Using this model, the space harmonics pro-
duced by the machine windings are taken into account [52]. Abdallah et al. 
use a winding function approach to simulate inter-turn faults in stator wind-
ings of the permanent magnet synchronous machines [53].

The time-stepping finite element method (FEM) is another analysis 
method to study a synchronous machine with inter-turn fault. Vaseghi et 
al. employ FEM for internal fault analysis of a surface-mounted permanent-
magnet synchronous machine [54]. It is used for magnetic field study and 
determining the machine parameters under various fault conditions and 
the effect of machine pole number and number of faulted turns on machine 
parameters.

2.2.5  Rotor Inter-Turn Fault

Rotor winding inter-turn fault is a common electrical fault in synchronous 
machines. Its existence may result in serious problems such as high rotor 
current, high winding temperature, low reactive output power, distorted 
voltage waveform, and mechanical vibration. The rotor winding inter-turn 
fault is mainly caused by poor manufacturing or operating conditions such 
as loose rotor end winding, loose spacer block, poor trimming of soldered 
joint, deformation of high-speed rotor winding due to centrifugal force, over-
heating, and poor insulation.

There are many studies about fault diagnosis of rotor winding turn-to-
turn faults. One method is based on indirect measurement of the impedance 
of the rotor field winding during operation [55]. This method is useful when 
the number of shorted turns is significant.

Some methods are based on detection of flux asymmetry created by 
shorted turns by applying alternating current to the field [56]. This method 
is accurate but not easy to implement because it requires removing the rotor 
from the bore.
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Some reliable methods based on direct measurement of the air-gap mag-
netic flux can be applied to the machine in operation [57]. The flux is mea-
sured by a search coil installed in the air gap.

The neural network models of machines can be used to detect the rotor 
turn faults. This method requires training data through simulation or exper-
iment. A mathematical model of the machine is needed for simulated data. 
The experimental training data can be acquired using a machine in which 
the rotor turns can be shorted. Streifel et al. propose a method based on trav-
eling wave [58]. This method along with neural network feature extraction 
and novelty detection algorithm is used for fault diagnosis of short-circuited 
windings in any rotating machinery and other equipment containing sym-
metrical windings.

The terminal parameters are affected by the fault condition of the rotor 
winding, but it is difficult to relate them together by accurate mathemati-
cal expressions. An artificial neural network method is investigated by 
Hongzhong et al. for rotor shorted winding fault diagnosis [59]. Since it is 
difficult to find the faulty samples in practical applications, these samples 
are gained through calculation. Using this method, the severity of the fault 
can be detected, but the location of the fault cannot be determined.

2.2.6  Bearing Fault

Even under normal operating conditions with balanced load and good 
alignment, bearing failures may take place. Flaking of bearings might occur 
when fatigue causes small pieces to separate from the bearing. Sometimes 
bearing faults are considered as rotor asymmetry faults, which are usually 
covered under the eccentricity-related faults. The bearing failures have been 
reported frequently in industry. Different techniques for a joint time fre-
quency analysis and an experimental study of detection and fault diagnosis 
of damaged bearings on a PMSM were investigated by Rosero et al. [60]. 
When the motor is running under nonstationary conditions, conventional 
signal processing methods such as FFT in motor current signature analysis 
(MCSA) do not work well. In such conditions, the stator current can be ana-
lyzed by means of STFT and Gabor spectrogram for detecting the bearing 
damage.

Another fault diagnosis method for detecting bearing fault in PMSM based 
on frequency response analysis is proposed by Pacas et al. [61]. The torque 
and velocity signals of the machine will be periodically disturbed when the 
bearing is damaged. These disturbances cause the frequency response of the 
mechanical system to change at specific frequencies. Utilizing the velocity of 
the motor and the torque-generating component of the stator current (iq), the 
frequency response of the machine in the closed loop speed control can be 
derived. The frequency response analysis proposed in this study yields more 
reliable fault detection results than the FFT analysis.
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3
Modeling of Electric Machines Using Winding 
and Modified Winding Function Approaches

Subhasis Nandi, Ph.D.
University of Victoria

3.1  Introduction

A rotating electric machine typically consists of a hollow cylindrical static 
structure (called stator in alternating current machines and field in direct 
current machines) and a rotating cylinder (called rotor in alternating current 
machines and armature in direct current machines) mounted on bearings 
and placed inside the hollow of the static structure. Both the static and the 
rotating members are made of laminated steel and they carry current carry-
ing copper or aluminum conductors for the production of torque or voltage 
and conversion of electric energy to mechanical energy and vice versa.

Since an electric machine is an electromagnetic device, the best possible 
way to analyze it is to obtain the electromagnetic field distribution of the 
machine. This requires solution of Laplace’s or Poisson’s equation, which 
even for the best computer available today is an onerous task given the com-
plicated structure of even the simplest machine.

Electric fault diagnosis often requires analysis of harmonics in machine 
line current, flux, torque, and speed. Because of reasons described in the 
earlier paragraph, analyzing machines with field solvers to identify fault sig-
natures would be inordinately time consuming.

Describing electric machines as group coupled magnetic circuits provides 
another way of obtaining their operating characteristics. The circuit ele-
ments are usually resistances and inductances. Of the two, the latter are most 
difficult to compute because they vary with position of the rotating member 
as well as magnetic saturation.

The winding and modified winding function approach (WFA/MWFA) 
provides the necessary tool to compute these inductances. It provides a very 
computationally efficient way to estimate inductances from the machine 
winding and the air-gap data. Since the winding structure dictates the mag-
netomotive force inside a machine and the air-gap the bulk of the permeance; 



28 Electric Machines: Modeling, Condition Monitoring, and Fault Diagnosis

flux, flux linkage, and hence flux linkage per ampere turn or inductance 
can be easily computed using this method. Even effects such as saturation, 
slots can be modeled by suitably modifying the air-gap permeance. Three-
dimensional effects such as skewing and inclined rotor eccentricity can also 
be included. The WFA and MWFA are described next [1–3]. The analysis also 
makes the following assumptions:

 1. Flux crosses the air-gap radially (axial flux is negligible).
 2. Saturation is negligible.
 3. Average core saturation is incorporated by using Carter’s coefficient 

to adjust air-gap length.
 4. Eddy current, friction, and windage losses are neglected.
 5. The magnetic material has infinite permeance.
 6. Slot effects are negligible.

3.2  Winding and Modified Winding Function 
Approaches (WFA and MWFA)

An elementary nonsalient motor with cylindrical stator and rotor is shown in 
Figure 3.1. The permeability of the stator and rotor iron cores is assumed to be 
infinite when compared to the permeability of the air-gap. The stator reference 
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FIGURE 3.1
Elementary nonsalient uniform air-gap machine (From S. Nandi, “Fault Analysis for Condition 
Monitoring of Induction Motors,” PhD disseration, Texas A&M University, May 2000.).
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position, the angle φ, of the closed path abcda of Figure 3.1 is taken at an arbi-
trary point along the gap. Points a and d are located on the stator correspond-
ing to angles 0 and φ, respectively, and points b and c are located on the rotor. 
In the case of smooth air-gap machines, the flux lines can be assumed to be 
radial and intersect with the rotor and stator at right angle. Using Gauss’s law 
for magnetic fields, points b and c are uniquely defined since two flux lines can 
never originate from the same point if points a and d are fixed on the stator.

Consider the path abcda of Figure  3.1 for an arbitrary 0 < φ < 2π, by 
Ampere’s law

  
�∫ ∫=H dl J dS. .
abcda S

 (3.1)

where S is the surface enclosed by the path abcda. Since all the windings 
enclosed by the closed path carry the same current i, Equation (3.1) reduces 
to the following:

  
�∫ ( )= φ θH dl n i. , .
abcda

 (3.2)

where H is the magnetic field intensity and dl is defined to be along the flux 
lines originating or terminating at two points of the closed path abcda. The 
function n(φ,θ) is called the turns function and represents the number of turns 
of the winding enclosed by the path abcda. In general, for a stationary coil it 
is only a function of φ. For a rotating coil it is assumed to be a function of 
φ and the rotor position angle θ. Turns carrying currents i into the page are 
considered positive while the turns carrying currents i out of the page are 
considered negative.

In terms of magnetomotive force (MMF) drops in a magnetic circuit, 
Equation (3.2) can be written as

 ( )+ + + = φ θF F F F n i, .ab bc cd da  (3.3)

Since the iron is considered to be infinitely permeable, the MMF drops Fbc 
and Fda are negligible and Equation (3.3) reduces to

 ( ) ( )( )θ + ϕ θ = ϕ θF F n i0, , , .ab cd  (3.4)

Gauss’s law for magnetic field can be used to find an expression for the 
MMF drop at φ = 0, Fab (0,θ), which is given by

 
�∫ =B dS. 0
S

 (3.5)
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where B represents the magnetic flux density and the surface integral is car-
ried out over the boundary surface of an arbitrary volume. Taking the sur-
face S to be a cylindrical volume located just inside the stator inner surface, 
Equation (3.5) can be written as

 
∫ ∫µ φ θ φ =
π

H r dl d( , ) ( )( ) 0
l

0

2

0

0

 (3.6)

where l is the axial stack length of the machine, r is the stator inner radius, μ0 
is the free space permeability, and θ is the angular position of the rotor with 
respect to stator. Since B does not vary with respect to the axial length, and 
MMF (F(φ,θ)) is the product of radial length (g(φ,θ)) and the magnetic field 
intensity (H(φ,θ)), then

 
∫ φ θ

φ θ
φ =

π
F
g

d
( , )
( , )

0
0

2

 (3.7)

Dividing Equation (3.4) by the air-gap function g(φ,θ), and then integrating 
from 0 to 2π yields

 
∫ ∫( ) ( )

( )
θ + φ θ

φ θ
φ =

φ θ
φ θ

φ
π π
F F

g
d

n
g

i d
(0, ) ,

( , )
,
,

ab cd
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2

0

2

 (3.8)

Since the second term of the left-hand side is zero as found from Gauss’s 
law, Equation (3.8) will reduce to the following:

  
∫( ) ( ) ( )( )θ =

π < φ θ >
φ θ φ θ φ−

π
−F

g
n g i d0,

1
2 ,

, ,ab 1

0

2

1  (3.9)

where < g–1(φ,θ) > is the average value of the inverse gap function. Substituting 
Equation (3.9) in Equation (3.4) and solving for Fcd(φ,θ) yields

 
∫( ) ( ) ( ) ( ) ( )φ θ = φ θ −

π < φ θ >
φ θ φ θ φ











−

π
−F n

g
n g d i, ,

1
2 ,

, , .cd 1

0

2

1  (3.10)

From the last equation, the winding and modified winding function, in gen-
eral, can be defined respectively as follows:

 ( ) ( )φ θ = φ θ − < φ θ >N n n, , ( , )  (3.11)

 ( ) ( )φ θ = φ θ − < φ θ >M n M, , ( , )  (3.12)
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where

  
∫( ) ( )< φ θ > =

π
φ θ φ

π

n n d,
1
2

,
0

2

 (3.13)

  
∫( ) ( ) ( ) ( )< φ θ > =

π < φ θ >
φ θ φ θ φ−

π
−M

g
n g d,

1
2 ,

, ,1

0

2

1  (3.14)

When the air-gap is symmetric, Equation (3.11) is applicable. In case of 
machines with eccentric air-gap or saliency, however, Equation (3.12) is appli-
cable in general as the air-gap becomes a function of φ and θ. An example 
of such an eccentric machine is shown in Figure 3.2. Also note that while 
average value of the turns functions as given by Equation (3.13) and Equation 
(3.14) are not explicitly dependent on φ, the reference point chosen has a defi-
nite influence on it.

Example 3.1

	 a.	Compute	 the	winding	 function	 for	 the	 full	pitch	Ns	 turn	 stator	
winding	(Ns	=	100)	shown	in	Figure 3.3.	The	origin	has	been	cho-
sen	so	as	to	make	the	fundamental	component	of	winding	func-
tion	a	cosine	function.	Assume	uniform	air-gap	of	 φ θ =g g( , ) 0.
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FIGURE 3.2
Elementary salient pole machine with eccentric rotor. (From N.A. Al-Nuaim and H.A. 
Toliyat, “A novel method for modeling dynamic air-gap eccentricity in synchronous 
machines based on modified winding function theory,” IEEE Transactions on Energy 
Conversion, vol. 13, no. 2, pp. 156–162, June 1998. With permission).
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	 b.	Compute	 the	 modified	 winding	 function	 for	 the	 same	 winding	
when	the	air-gap	is	eccentric	and	is	given	by	 φ θ = − δ φg g g( , ) cos0 0 	
with	δ	=	0.5.

Solution

	 a.	The	 turns	 function	 for	 the	 winding	 given	 in	 Figure  3.3	 is	
first	 computed	 using	 Equation	 (3.2).	 The	 winding function	
for	 this	 winding	 can	 be	 computed	 using	 Equation	 (3.11)	 as

	 	 φ θ = ∑ − φπ =
∞

−

N h( , ) ( 1) coss
N
h h

h
2

1,3,5...

1
2s .	The turns	function	and	winding

	 	 function	for	different	values	of	φ	are	shown	in	Figure 3.4	(top)	and	
Figure 3.4	(middle)	respectively.	Using	Equation	(3.13)	it	is	easy	to	
show	that < φ θ > = −n( , ) N

2
s .	However	if	the	dots	and	crosses	in	

φRef, θRef

FIGURE 3.3
Elementary Ns turn coil on stator, and Nr turn coil on rotor.
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FIGURE 3.4
(From top) Turns function, winding function, and modified winding function.
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the	conductors	are	swapped	or	the	φref	and	θref	points	are	shifted
		 	 anticlockwise	by	90°, < φ θ > =n( , ) N

2
s .	This	explains	the	implicit	

position	dependence	of	the	 < φ θ >n( , )
	 b.	With	 φ θ =−

−δ φg ( , ) g g
1 1

cos0 0
≈ + φA A cos( )1 2 ,	 where	 =

−δ
A

g
1

1

10
2

;

	 	 ( )=
−δ

− −δ
δA

g
2

2

1

1 1

0
2

2

.	 Using	 Equations	 (3.11)	 to	 (3.14)	 it	 can	 be

	 	 shown	 that	 ( )< θ > = −πM N A
A

N
2

s s2
1

.	 Then	 using	 Equation	 (3.11)	
and	Equation	(3.12)	 φ θ = φ θ − πM N( , ) ( , ) .N A

A
s 2

1
	Figure 3.4	(bottom)	

shows	the	modified	winding	function.

3.3  Inductance Calculations Using WFA and MWFA

In the previous section, the relative permeability of the iron was assumed to 
be infinity; that is, the MMF drop in the iron was neglected. Hence, the MMF 
distribution of machine windings in the air-gap can simply be found by the 
product of WFA or MWFA calculated from Equation (3.11) or Equation (3.12) 
and the current flowing in the winding.

As shown in Figure 3.1, windings A and B are located in the air-gap and 
could be associated with either the rotor or the stator. The mutual inductance 
of winding B due to current iA flowing in winding A is to be calculated. 
Winding B is arranged arbitrarily in the air-gap and for demonstration is 
assumed to have two coil sides, 1–1′ and 2–2′, with different turns distribu-
tion in the air gap. The reference angle φ cannot be selected freely and should 
be the same reference position that has been used previously to calculate the 
modified winding function NA(φ,θ) or MA(φ,θ).

The following derivations have been shown with MWFA. Similar results 
can be obtained with WFA using NA(φ,θ) instead of MA(φ,θ) and noting that 
the air-gap and the inverse air-gap functions can be defined as constants.

The MMF distribution in the air gap due to current iA can be calculated 
as follows:

 ( ) ( )φ θ = φ θF M i, , .A A A  (3.15)

It is known that the flux in a magnetic circuit is the product of the MMF (F) 
and the permeance (P) of the flux path. Thus,

	 Φ=F . P (3.16)

and the permeance is given by

 
=

µ
P

A
l

 (3.17)
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where μ is the permeability, A is the cross-sectional area, and l is the length 
of the magnetic path. The differential flux across the gap through a differen-
tial volume of length g(φ,θ) and cross-sectional area of r l.dφ from the rotor 
to the stator is

 ( )Φ = φ θ µ φ θ φ−d F r l g d, ( , )A o
1  (3.18)

The flux linking the coil sides 1–1′ of winding B can be calculated using the 
following integration

 
∫Φ = µ φ θ φ θ φ θ φ− ′

π
−r l n F g d( , ) ( , ) ( , )B A1 1 0 1

0

2

1  (3.19)

where nB1(φ,θ) is equal to the number of turns of coil sides 1–1′ between the 
reference angles φ1 and φ′1 of Figure 3.1 and zero otherwise. Coil side 1′ is 
the return path for coil side 1. Continuing the process of calculating the flux 
linking the other coil sides of winding B and in general for any set of coil 
sides k–k′ the flux linkage is

 
∫Φ = µ φ θ φ θ φ θ φ− ′

π
−r l n F g d( , ) ( , ) ( , )k k Bk A0

0

2

1  (3.20)

where nBk(φ,θ), FA(φ ,θ), and g–1(φ,θ) must have the same position reference φ. 
The total flux linking winding B due to current in winding A can be defined 
as follows

 
∑ ∫∑λ = Φ = µ φ θ φ θ φ θ φ
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or

 
∫ ∑ ( ) ( ) ( )λ = µ φ θ
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where

 
∑φ θ = φ θ
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is the turns function for the winding B assuming that the qi coil sides are 
connected in series.

The mutual inductance LBA of winding B due to the current iA in winding 
A would be

 
∫= λ = µ φ θ φ θ φ θ φ
π

−L
i

r l n M g d( , ) ( , ) ( , )BA
BA

A
B A0

0

2

1  (3.24)

Using the same process, the magnetizing inductance of winding A can be 
defined as

 
∫ ( ) ( ) ( )= µ φ θ φ θ φ θ φ
π

−L r l n M g d, , ,AA A A0

0

2

1  (3.25)

Integrations such as Equation (3.24) and Equation (3.25) can be performed 
by expressing the turns, modified winding, and inverse air-gap functions as 
Fourier series. This way, the effects of space and air-gap permeance harmon-
ics can be included in the simulation studies. Stator and rotor slot effects can 
also be included by adding sinusoidal functions with frequency components 
as a function of the number of slots. Even saturation effects and rotor skew-
ing can be included. Figure 3.5 shows an inductance profile computed using 
saturation effects. The inverse air-gap in this case is defined as

  
φ θ ≈

′
+ φ − θ−g

g
k Cos p( , )

1
[1 {2( )}]s f gsat f

1  (3.26)
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FIGURE 3.5
Simulated inductance profile between stator phase a and rotor loop 1 of an induction motor. 
It is assumed that saturation causes a 6% increase in air gap at tip of the air-gap flux vector 
(kgsat = 0.06). θ is the rotor position and θf is the air-gap flux vector position. The rotor is skewed 
by about 42% of one rotor slot. (From S. Nandi, “A detailed model of induction machines with 
saturation extendable for fault analysis,” IEEE Transactions on Industry Applications, vol. 40, no. 
5, pp. 1302–1309, September/October 2004. With permission.).
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where θf	 is the position of the air-gap flux measured from phase a axis, pis 
the number of fundamental pole pairs, g’ is the modified average value of the 
air-gap in the presence of saturation and kgsat  is the saturation factor derived 
on the assumption that saturation modulates the air-gap permeance at twice 
the frequency of the air-gap flux density wave.

A question often arises as to whether in the presence of air-gap nonunifor-
mity the reciprocity theorem holds for mutual inductance; that is, if

 =L LAB BA  (3.27)

The following derivation [5] shows that this is indeed true. Substituting 
( )φ θM ,A  in Equation (3.24) by its equivalent of Equation (3.12) leads to

 
∫ ( ) ( )= µ φ θ φ θ − 〈 φ θ 〉 φ θ φ
π

−L r l n n M g d( , )( ( , ) , ) ,BA B A A0

0

2

1  (3.28)

or
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Since < φ θ >M ( , )A  is a constant, it can be taken outside the integral sign. Thus
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or

 

∫= µ
φ θ φ θ φ θ φ

− π 〈 φ θ 〉〈 φ θ 〉〈 φ θ 〉
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Equation (3.31) can be obtained by substituting ∫ φ θ φ θ φπ −n g d( , ) ( , )B0
2 1  with 

π 〈 φ θ 〉 〈 φ θ 〉−M g2 ( , ) ( , )B
1  in Equation (3.30), a relation derivable from inspec-

tion of Equation (3.14).
Similar procedure will show that inductance of coil A due to current in coil 

B, given by,

  
∫= µ φ θ φ θ φ θ φ
π

−L r l n M g d( , ) ( , ) ( , )AB A B0

0

2

1  (3.32)

is also equal to Equation (3.31). This completes the proof of Equation (3.27).
Recently, axial air-gap asymmetry has also been accounted for calculating 

inductances using MWFA approach. The inductance is then computed as
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Also, LAB = LBA as before.
 The modified winding function in this case has been defined as

 φ θ = φ θ − 〈 φ θ 〉M y n y M y( , , ) ( , , ) ( , , )  (3.34)

Here n(φ,θ,y) is the turns function of the winding, and the 〈 φ θ 〉M y( , , )  is the 
average value of the modified winding function, which can be expressed as

 
∫〈 φ θ 〉 =

π〈 φ θ 〉
φ θ φ θ φ−

−
π

M y
g y

n y g y d( , , )
1

2 ( , , )
( , , ) ( , , )1

1

0

2

 (3.35)

Where

 
∫〈 φ θ 〉 =

π
φ θ φ− −

π

g y g y d( , , )
1
2

( , , )1 1

0

2

 (3.36)

is the average part of φ θ−g y( , , )1 .
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Example 3.2

	 a.	Compute	 the	mutual	 inductance	between	 the	 full	 pitch	Ns	 turn	
stator	winding	and	the	full	pitch Nr	 turn	rotor	winding	(Nr	=	50)	
shown	in	Figure 3.3.	Assume	uniform	air-gap	of	 φ θ = =g g( , ) 0.50 	
mm.	Assume	L	=	100	mm	and	r	=	25	mm.

	 b.	Compute	the	same	when	the	air-gap	is	static	eccentric	and	is	given	
by	 φ θ = − δ φg g g( , ) cos0 0 	with	δ=0.5.	L	and	r	are	same	as	before.

Solution

	 a.	With	uniform	air-gap,	Equation	(3.24)	reduces	to	 = =λLBA i
BA
A

	 	
µ ∫ φ θ φ θ φπr l
g

N N d( , ) ( , ) .B A
0

0
0
2 	Since	the	winding	function

		 	 of	winding	A	is	periodic	with	zero	average	value.

With
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one	can	compute	Lsr	as
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The	plot	of	LBA	versus	θ	is	shown	in	Figure 3.6	(top).

	 b.	Using	Equation	(3.24)	and	A1,	A2	as	shown	in	Example 3.1	it	can	be	
shown	that	in	presence	of	static	eccentricity

	 	
∑= µ

π
− θ + θ









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=

∞

L rl
N N A
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2
cos 2
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s r

h

0
2
2

1
1 2

1,3,5..

The	plot	of	Lsre	versus	θ	is	as	shown	in	Figure 3.6	(bottom).
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3.4  Validation of Inductance Calculations 
Using WFA and MWFA

The inductance generated this way is the key toward modeling electric 
machines. However, an obvious question that might arise in the reader’s 
mind is regarding the veracity and the accuracy of WFA and MWFA based 
techniques, particularly in view of the overly simplified assumptions made 
in Section 3.2.

Although it is almost impossible to measure some of these inductances 
in a real machine, realistic and close results can be obtained by solving 
Maxwell equations provided the motor structural details are accurately 
known. This can easily be done using the various finite-element (FE)-based 
Maxwell equation solvers available. “Maxwell,” from Ansoft Corporation 
is one of the more popular FE-based field distribution solvers currently 
available commercially. The FE-based validation examples of the induc-
tance profiles generated using WFA and MWFA have been created using 
this package.

Figure 3.7 shows the comparative plots for a healthy induction machine 
and mixed eccentric induction machine using WFA/MWFA and FE. The 
values used were 15% static eccentricity and 5% dynamic eccentricity. The 
ripples in the FE plots are due to rotor and stator slotting that was not mod-
eled in WFA/MWFA.
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FIGURE 3.6
Stator–rotor mutual inductance with uniform (top) and static eccentric air-gap (bottom).
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FIGURE 3.7
Simulated mutual inductance between rotor loop 1 and stator phases of an induction obtained 
from WFA/MWFA and FE analysis. From top: Healthy machine (a phase); mixed eccentric 
machine (phases a, b, and c,) with 15% SE and 5% DE. (From S. Nandi, R.M. Bharadwaj, and 
H.A. Toliyat, “Mixed eccentricity in three phase induction machines: Analysis, simulation and 
experiments,” Proceedings of the 37th IAS Annual Meeting, vol. 3, pp. 1525–1532, October 2002. 
With permission.)
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Figure  3.8 shows the comparative plots for machines whose slot effects 
have been modeled using MWFA. The induction machine modeled had 36 
stator slots and 28 rotor slots. The slot effects using MWFA have been defined 
by the following inverse air-gap function:

  

φ θ =
− φ − φ − θ

+ − φ + θ + + φ − θ
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 (3.37)

where kc1, kc2 stator and rotor Carter’s coefficients respectively; a1, b1  are 
parameters dependent on slot and other machine geometry (1/m); S and R 
are the number of stator and rotor slots, respectively.

Figure 3.9 shows results where MWFA has been extended to include 3D 
effect such as axial inclination. Figure 3.10 illustrates comparative inductance 
profile for a salient pole synchronous machine with dynamic eccentricity. 
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FIGURE 3.8
Simulated mutual inductance profile between stator phase a and rotor loop 1 of an induction 
motor including slot effects using (MWFA) (top) and FE (bottom). (From S. Nandi, “Modeling 
of induction machines including stator and rotor slot effects,” IEEE Transactions on Industry 
Applications, vol. 40, no. 4, pp. 1058–1065, July/August 2004. With permission.)
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FIGURE 3.9
Simulated mutual inductance profile between stator phase a and rotor loop 1 of an induction 
motor using MWFA (left) and 3D FE (right) with 0% static eccentricity on one end of the shaft 
and 50% static eccentricity at the other end. (From X. Li, Q. Wu, and S. Nandi, “Performance 
analysis of a 3-phase induction machine with inclined static eccentricity,” IEEE Transactions on 
Industry Applications, vol. 43, no. 2, pp. 531–541, March/April 2007. With permission.)
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FIGURE 3.10
Stator a phase magnetizing inductance of a synchronous motor using MWFA (a) and FE method 
(b) with 25% dynamic air-gap eccentricity. (From H.A. Toliyat and N.A. Al-Nuaim, “Simulation 
and detection of dynamic air-gap eccentricity in salient-pole synchronous machines,” IEEE 
Transactions on Industry Applications, vol. 35, no. 1, pp. 86–93, January/February 1999.)
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Figure  3.11 presents the inductance profile of a synchronous reluctance 
machine using MWFA with comparative FE generated inductance profile. 
Figure 3.12 shows a similar comparison of inductance profiles of a standard 
synchronous machine (SM).

These results clearly demonstrate the power of WFA/MWFA where 
inductance profiles could be computed at much higher resolution but at 
a fraction of time required for FE methods and without sacrificing much 
accuracy. It is shown by Ilamparithi and Nandi that a commercial FE simu-
lation package could take around 50 hours to simulate 1.5 seconds of steady-
state run of a 3 hp, 44 rotor bar induction motor compared to 4 minutes of 
running time for a MWFA-based coupled-inductive circuit MATLAB code 
while generating similar spectral characteristics [10]. Table 3.1 provides the 
detailed results.
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FIGURE 3.11
Mutual inductance of stator a phase to one rotor loop of a healthy RSM using MWFA (top) and 
FE (bottom). (From P. Neti, “Stator Fault Analysis of Synchronous Machines,” PhD disserta-
tion, University of Victoria, December 2007. With permission.)
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TABLE 3.1

Normalized (with Respect to Fundamental 60 Hz Which Is At 
0 db) Magnitude of Fault Specific Frequency Components for 
Different Eccentric Conditions

Fault Indicating 
Component MWFA (dB) FE (dB)

50% SE (1388 Hz) –39.66 –40.81
50% DE (1358 Hz) –38.88 –40.87
ME (25% SE + 25% DE)

(29.5Hz)
(89.5 Hz)
(1358 Hz)
(1388 Hz)

–45.5 –48.85
–48.28 –50.89
–45.74 –46.84
–47.02 –47.08
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FIGURE 3.12
Mutual inductance of stator a phase to one rotor loop of a healthy SM using MWFA (top) and FE 
(bottom). (From P. Neti, “Stator Fault Analysis of Synchronous Machines,” PhD dissertation, 
University of Victoria, December 2007. With permission.)
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Modeling of Electric Machines Using 
Magnetic Equivalent Circuit Method

Homayoun Meshgin-Kelk, Ph.D.
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4.1  Introduction

The magnetic equivalent circuit (MEC) method introduces another approach 
for modeling electric machines. In fact, the approach can be considered as a 
reduced order finite element (FE) method. By taking into account approxi-
mately accurate machine geometry, stator and rotor slots effects, skewing, 
type of winding connections, stator and rotor leakages, and linear or nonlin-
ear magnetic characteristics of machine coress it is a more accurate method 
with respect to the winding function approach (WFA). Therefore it can be 
helpful for design engineers and also it may be applied to find and to study 
more reliable algorithms for fault-detection strategies. Neglecting core prop-
erty MEC is very similar to WFA.

Although WFA is based on calculating machine inductances, the magnetic 
equivalent circuit method can be used in two ways, indirect and one direct one. 
In the indirect way where linear magnetic core is considered, it may be applied 
to calculate machine inductances as the first step in analyzing the machine 
performances. Since magnetic properties of core parts can be incorporated in 
calculating machine inductances, it can provide a more accurate way to cal-
culate these inductances. On the other hand, it may be applied directly with-
out calculating machine inductances to analyze machine behavior in most 
conditions. MEC usually provides a deep understanding about effects of the 
machine geometry and design data on its parameters and performance.

Most conventional machines, such as induction and synchronous machines, 
are divided into three main parts: the stator, the rotor, and the air-gap. The 
stator consists of a stator core and stator windings, and the rotor consists of 
a rotor core and rotor windings. Stator or rotor cores are divided into yoke 
and teeth. Stator windings are located in the stator slots and rotor windings 
are located in the rotor slots. Figure 4.1 shows a portion of the main parts of 
a typical electric machine. Several magnetic flux lines are also shown. The 
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flux lines that link both the stator and the rotor windings are the useful flux 
linkages, and the flux lines that link only the stator or the rotor windings are 
called leakage fluxes. In Figure 4.1, three lines of fluxes are shown.

An electric machine is assumed to be a quasi-stationary device; that is, any 
change of current that builds the flux is followed by an immediate change 
of flux. In other words, the time needed for an electromagnetic wave to pass 
through the machine is negligible compared to the period of the wave. Such 
a space may be partitioned into flux tubes. The flux tubes are the basis of the 
magnetic equivalent circuit method. A flux tube is a geometrical space in which 
all lines of flux are perpendicular to their bases and no lines of flux cut their 
sides. Lines of equal magnetic scalar potential, u, are perpendicular to lines of 
flux,φ. Therefore the bases of a flux tube are equipotential planes. Magnetic sca-
lar potential, u, is a very useful quantity in magnetic equivalent circuit theory. 
But it has no physical meaning like the electrical scalar potential, v.

Lines of constant scalar magnetic potential lie perpendicular to the H vec-
tor. Scalar magnetic potential [6,7] is defined by

	
�

= −∇H u  (4.1)

The electrical scalar potential, v, in an electrostatic field is defined by

	
�

= −∇E v  (4.2)

Stator slot

Rotor slot

Rotor yoke

Flux lines

Flux lines

Stator yoke

Air gap

Shaft

Stator tooth

Rotor tooth

FIGURE 4.1
A portion of the main parts of a typical electric machine.
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A similarity exists between the definitions of these potentials. If the reluc-
tance of a flux tube with magnetic scalar potentials u1 and u2 at their bases is 
R, and the flux through it is φ, then

	 = − = φF u u R.2 1  (4.3)

which states that u2 – u1 is the magnetomotive force (MMF) drop on the reluc-
tance R.

To construct the magnetic equivalent circuit of an electric machine, all 
yoke parts, teeth, slots, air-gap tubes between the stator teeth and rotor teeth, 
and windings are modeled. If all teeth and yokes reluctances and all slot 
leakages are neglected and only air-gap permeances are considered, then the 
magnetic equivalent circuit approach is the same as the classic WFA. In this 
case, there exist MMF drops across the air-gap permeances due to currents 
flowing in the windings.

Currents flowing in the windings are the MMF sources in the magnetic 
equivalent circuit of an electric machine. These MMF sources are placed in 
the teeth. A reluctance/permeance and an unknown flux are assigned to 
each yoke part or each tooth. Slots are modeled by their leakage permeances. 
In the air-gap, a flux tube is defined when any of the stator teeth come face to 
face with any rotor teeth. A permeance is assigned to each air-gap flux tube. 
Geometries of these flux tubes vary due to the rotation of rotor teeth with 
respect to stator teeth and also depend on the air-gap length between any 
two facing stator and rotor teeth. Any air-gap asymmetry will have an effect 
on the height of these flux tubes.

To find the magnetic equivalent circuit of an electric machine we need first 
to compute the permeance between any two pairs of face-to-face stator and 
rotor teeth. Figure 4.2 shows three positions of jth rotor tooth with respect to 
the fixed ith stator tooth. The permeance between these two teeth is called 
Gij. At positions a and c, Gij is zero because there is no flux tube (no crossing 
flux) between these two teeth. If the widths of these teeth are equal, the Gij 
reaches its maximum only at position b.

Stator tooth number

i – 1

Air gap

Rotor tooth number
j + 1

j – 1
j

(a) (b) (c)

i
i + 1

i – 1

j + 1j – 1
j

i i + 1

i – 1

j + 1j – 1 j

i i + 1

FIGURE 4.2
Three positions of jth rotor tooth with respect to the fixed ith stator tooth.
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For un-skewed stator and rotor slots, the bases of air-gap flux tubes are 
rectangles. In this case, the flux tubes have a general shape as shown in 
Figure 4.3 and the air-gap permeance Gij can be calculated by

	
= µ θ

G
l w
g

. ( )
ij 0  (4.4)

where l is the length, w(θ) is the width, and g is the height of the flux tube. w(θ) 
varies with the angular position of the stator tooth i and rotor tooth j. The air-
gap length between the stator tooth i and the rotor tooth j, g, is constant for a 
symmetric air-gap. For a nonsymmetric air-gap, g is a function of θ.

If the widths of these teeth are not equal, the maximum of Gij occurs dur-
ing an interval. Figure 4.4 shows the air-gap permeance for two conditions. 
It is necessary to note that due to the fringing flux, the real shape of Gij is 
smoother than what are shown in Figure 4.4.

If either the stator slots or the rotor slots, or both, are skewed, then the 
bases of the air-gap flux tubes will not be rectangles any more. Depending 
on the width of the stator and the rotor teeth and the amount of skewing and 
the angular position of rotor teeth to stator teeth, the bases of flux tubes have 
different shapes. Figure 4.5. shows the different shapes of bases for different 

Flux lines

g
l

w(θ)

FIGURE 4.3
A flux tube with rectangular bases between jth rotor tooth and ith stator tooth for nonskewed 
stator and rotor slots.
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positions of a typical skewed rotor tooth with respect to a typical rectangular 
stator tooth. Shaded areas are the bases of flux tube as the rotor tooth moves.

Skewing is a method to get better performance of an electric machine. By 
skewing either the stator or the rotor, the shape of air-gap permeance func-
tion and its space derivative are smoother. The derivative of air-gap perme-
ance Gij when multiplied by the square of the MMF drop over the element 
Gij gives the value of electromagnetic force between the ith stator and the jth 
rotor teeth. Figure 4.6 shows the air-gap permeance and its space derivative 
between the ith stator and the jth rotor teeth for unskewed and skewed con-
ditions. It is seen that by skewing, the magnitude of the air-gap permeance 
decreases. However, its space derivative is smoother [1].
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FIGURE 4.5
Different shapes of bases for positions of a skewed rotor tooth with respect to a stator tooth. 
Shaded area is the basis of flux tube as the rotor tooth moves.
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4.2  Indirect Application of Magnetic Equivalent Circuit 
for Analysis of Salient Pole Synchronous Machines

The well-known equations of synchronous or induction machines that relates 
the flux linkages, stator and rotor currents, and self and mutual inductances are

	

+ = λ

+ = λ

L i L i

L i L i

ss s sr r s

rs s rr r r  (4.5)

Using the magnetic equivalent circuit of synchronous and induction 
machines [1], the machines inductances Lss, Lsr, Lrs, and Lrr will be deter-
mined. Neglecting iron saturation and using the magnetic equivalent circuit 

2.8 3 3.2 3.4
0

1

2

3

4

Rotor Angle (rad)

Sc
al

ed
 P

er
m

ea
nc

e

2.8 3 3.2 3.4
–2

–1

0

1

2

Rotor Angle (rad)

Sc
al

ed
 D

er
iv

at
iv

e o
f P

er
m

ea
nc

e

2.8 3 3.2 3.4
0

1

2

3

4

Rotor Angle (rad)

Sc
al

ed
 P

er
m

ea
nc

e

2.8 3 3.2 3.4
–2

–1

0

1

2

Rotor Angle (rad)

Sc
al

ed
 D

er
iv

at
iv

e o
f P

er
m

ea
nc

e
(a) (b)

(c) (d)

FIGURE 4.6
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of synchronous machines, the inductance coefficients of the machines are 
obtained. These inductances can be used for analysis and study of the 
machine behavior under healthy and faulty conditions.

4.2.1  Magnetic Equivalent Circuit of a Salient 
Pole Synchronous Machine

A part of magnetic equivalent circuit of a typical salient-pole synchronous 
machine [2] is shown in Figure 4.7.

Gsyi–1 Gsyi Gsyi+1

Fsti+1

Rsti+1

Rsti+1
Fsti

Rsti

Rsli

u2i
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u1i

u2(i+1)

G(i+1)(j+1)Gij
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u3(j+2)
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Rrlk
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u5kGryk–1
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Gryk

Gshk

Rrsj–1

u3(j+1)u3ju3(j–1)

u4(k–1)

u1(i+1)

FIGURE 4.7
A part of the magnetic equivalent circuit of a salient pole synchronous machine, including all 
permeances and reluctances.
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For the analysis the following assumptions are made:

 1. Flux orientation from stator to rotor crosses the air-gap in radial direction.
 2. Linear magnetic characteristic is considered.
 3. For simplification no damper winding effect is considered.
 4. Slot effects are considered.
 5. Eddy current is neglected.

Each rotor pole core is divided into two parts. Damper windings are located 
in the outer part and field windings are wound around the inner part of each 
rotor pole. Here, damper windings are not considered. Therefore, only outer 
part of each rotor pole is considered having two segments represented by their 
reluctances. As shown Rrsj and Rrsj+1 are the reluctances of these sections. Rrt 
is the rotor shank reluctance and Rst is the stator tooth reluctance. Rsl and Rrl 
are tooth leakage reluctances of stator and rotor, respectively. Gsσ is the stator 
openings leakage permeance and Gsy is the stator yoke permeance. Grσ is the 
rotor openings leakage permeance and Gry is the rotor yoke permeance. Gsh indi-
cates the permeance of the rotor shaft, which is in parallel with the rotor yoke 
permeances.

There are five levels of MMF nodes defined as u1, u2, u3, u4, and u5 vectors, 
which are used in writing the nodal equations of the machine. The number 
of rotor poles is p, number of sections on each rotor pole is m, and number of 
stator slots is n.

According to the magnetic equivalent circuit of Figure 4.7, the nodal equa-
tions are written as

	 + = −ΦA u A usl st11 1 2  (4.6)

	 + + = ΦA u A u A usl st1 22 2 23 3  (4.7)

	 + + =A u A u A u 032 2 33 3 34 4  (4.8)

	 + + = ΦA u A u A url rt43 3 44 4 5  (4.9)

	 + = ΦA u A u –rl rt4 55 5  (4.10)

The vectors Φst and Φrt contain the stator and rotor teeth fluxes. A11, A22, 
A33, A44, A55, A23, A32, A34 and A43, are the node permeance matrices, which 
are constructed according to the magnetic equivalent circuit theory con-
cepts. The first two matrices A11 and A22 are n × n, A44 and A55 are p × p 
matrices, and A33 is an m × m matrix. Asl and Arl are n × n and p × p matrices, 
respectively, and contain the leakage permeances of stator teeth and rotor 
shank. A23 is an n × p matrix containing the air-gap permeances, Gij. A32 is 
the transpose of A23. A34 is an m × n matrix containing the rotor-sections 
permeances, and its transpose is A43.
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The two following equations relate the magnetic potentials of yoke parts 
and teeth in the stator and the rotor sides, respectively,

	 = − Φ +u u R Fst st st2 1  (4.11)

	 = − Φ +u u R Frt rt rt4 5  (4.12)

where Fst and Frt are the MMF vectors of the stator and the rotor. Fst is related 
to stator current vector by

	 =F W ist s s  (4.13)

and Frt is related to the rotor current vector by

 =F W irt r r  (4.14)

Ws is n × 3 and Wr is p × p matrices. Ws describes the stator winding con-
figuration of stator windings of the machine. Ws is called the MMF transform 
matrix. It has an important role in the calculation of machine inductance 
coefficients. Each column of Ws corresponds to the winding function (wind-
ing distribution in slots) of one of the stator phases. Wr is a diagonal matrix 
describing the winding turns per rotor poles.

4.2.2  Inductance Relations of a Salient Pole Synchronous Machine

Using Equation (4.6) u2 is calculated as the following:

	 = − − Φ− −u A A u Asl sl st2
1

11 1
1  (4.15)

Combining Equations (4.11), (4.13), and (4.15) leads to

 

− − Φ − + Φ =

− − = − + Φ +

− −

−
×

−

A A u A u R W i

A A I u A R W i( ) ( )

sl sl st st st s s

sl n n sl st st s s

1
11 1

1
1

1
11 1

1

By defining Bn×n and Nn×n as

 

= − −

= − − +

×
−

×

×
− −

B A A I

N B A R

( )

( )

n n sl n n

n n sl st

1
11

1 1
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u1 and u2 are related to the stator currents and stator teeth fluxes as

 

= − − + Φ +

⇒ = Φ +

− − −

−

u B A R B W i

u N B W i

( )sl st st s s

st s s

1
1 1 1

1
1  (4.16)

 = − − + − Φ + +− − −u B A R R B W W i[ ( ) ] ( )sl st st st s s s2
1 1 1  (4.17)

	By defining C and F by

 

= − − + −

= +
×

− −

×
−

C B A R R

F B W W

( )

( )

n n sl st st

n s s

1 1

3
1

Equation (4.17) simplifies to

	 = Φ +u C Fist s2  (4.18)

By the same procedure for rotor Equations (4.9) and (4.10), starting from 
Equation (4.10), and by defining the following matrices:

 

= − −

= − − +

= − − + −

= +

×
−

×

×
− −

×
− −

×
−

D A A I

M D A R

E D A R R

G D W W

( )

( )

( )

( )

m m rl m m

m m rl rt

m m rl rt rt

m m r r

1
55

1 1

1 1

1

u4 and u5 are related to the rotor currents and rotor teeth fluxes as the following:

 u4 = E Φrt + Gir (4.19)

 u5 = M Φrt + D–1 Wrir (4.20)

By inserting u2 from Equation (4.18) and u4 from Equation (4.19) into 
Equation (4.8), u3 is obtained as the following:

 

= − Φ + + Φ +

⇒ = − Φ + −

+ − Φ + −

−

− −

− −

u A A C A Fi A E A Gi

u A A C A A F i

A A E A A G i

(

( ) ( )

( ) ( )

st s rt r

st s

rt r

3 33
1

32 32 34 34

3 33
1

32 33
1

32

33
1

34 33
1

34

where by defining the following matrices
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u3 is related to the stator and rotor currents and stator teeth fluxes as the following:

	 = Φ + + Φ +u H Ji K List s rt r3  (4.21)

Replacing Equations (4.16), (4.18), and (4.21) into Equation (4.7) gives

 

Φ + + Φ +

+ Φ + + Φ + = Φ

−A N A B W i A C A Fi

A H A Ji A K A Li

sl st sl s s st s

st s rt r st

1
22 22

23 23 23 23

Rearranging the terms in the preceding relation leads to

 

− Φ − Φ

= + + +

×

−

I A N A C A H A K

A B W A F A J i A Li

[ – – ]

[ ]

n n sl st rt

sl s s r

22 23 23

1
22 23 23

where by defining the following matrices

 

= − − −

= + +

× ×

×
−

P I A N A C A H

Q A B W A F A J

n n n n sl

n sl s

22 23

3
1

22 23

leads to

 

Φ − Φ = +

⇒ Φ − Φ = +− − −

P A K Qi A Li

P A K P Qi P A Li

st rt s r

st rt s r

23 23

1
23

1 1
23

Now by multiplying both sides of the preceding relation by Ws
T

 Φ − Φ = +− − −W W P A K W P Qi W P A Lis
T

st s
T

rt s
T

s s
T

r
1

23
1 1

23

and defining the left-hand side of the result as stator flux linkage λs results in

	 λ = +− −W P Qi W P A Lis s
T

s s
T

r
1 1

23  (4.22)

Now using the same procedure and replacing Equations (4.19), (4.20), and 
(4.21) into Equation (4.9) gives

 

Φ + + Φ + + Φ

+ + Φ + = Φ

Φ + + + − Φ

= − + − − −

−

×

−

A H A J i A K A Li A E

A Gi A M A D W i
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( ) [ ]

( ) [ ]

st s rt r rt

r ri rt rl r r rt

st rl m m rt
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where by defining the following matrices

 

= + + −

= − − −

× ×

×
−

R A K A E A M I

S A L A G A D W

m m rl m m

m rl r

43 44

3 43 44
1

it simplifies to

 

Φ + Φ = − +
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A H R A J i Si
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Now by multiplying both sides of the previous relation by WT
r

 

Φ + Φ

= − +
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− −

W R A H W
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r
T

st r
T
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r
T
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r

1
43

1
43

1

and defining the left-hand side of the result as rotor flux linkage λr  results in

	 λ = − +− −W R A J i W R Si( )r r
T

s r
T

r
1

43
1  (4.23)

Now by comparing Equation (4.22) and Equation (4.23) with Equation (4.5) 
the following equations are obtained for the calculation of inductance coef-
ficients of a salient pole synchronous machine

	 = −L W P Qss s
T 1  (4.24)

	 = −L W P A Lsr s
T 1

23  (4.25)

	 = −−L W R A J( )rs r
T 1

43  (4.26)

	 = −L W R Srr r
T 1  (4.27)

It should be noted that due to the inclusion of all stator and rotor reluc-
tances it is possible to study the effect of the magnetic properties on all 
inductances by this model. Here only linear magnetic curve is studied.

4.2.3  Calculation of Inductances for a Salient 
Pole Synchronous Machine

Using Equations (4.24) to (4.27) all inductance coefficients are calculated 
for a 9 kVA, three-phase, four-pole salient pole synchronous machine as 
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an example. Effects of conventional air-gap asymmetries such as static, 
dynamic, and mixed eccentricities on machine inductances are studied. 
These inductances are known as static eccentricity (SE), dynamic eccentric-
ity (DE), and mixed eccentricity (ME), respectively. It is assumed that the 
reference points for both SE and DE are the same. This reference point is at 
zero angle. The middle point of the first stator tooth and first rotor pole are 
set at zero angles.

The left panel of Figure 4.8 shows air-gap variations seen from the refer-
ence point on the rotor side for eccentric and non-eccentric conditions. The 
right panel of Figure 4.8 shows these variations seen from the reference point 
on the stator side.

Figure 4.9 depicts the effective air-gap width for the simulated machine. 
Stator slot openings, rotor saliency effects, and the shape of rotor poles are 
considered. All these effects are included in the simulation. Maximum width 
corresponds with the rotor openings. Exact modeling of the air-gap is the 
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most important task for calculating machine inductances. Figure 4.10 shows 
the air-gap variation for mixed air-gap eccentricity. There are 30% static and 
30% dynamic eccentricities. The effect of the rotor pole shape can be seen in 
this figure [2].

In the following we calculate machine inductances for symmetric and non-
symmetric air-gap conditions. When there is any type of individual static or 
dynamic eccentricities, the amount of each eccentricity is considered to be 
30%. Therefore, in mixed air-gap eccentricity there exists 30% static and 30% 
dynamic eccentricities.

Figure 4.11 shows the stator self-inductances for a symmetric air-gap and for a 
mixed air-gap eccentricity. Dashed curve is related to healthy machine and solid 
curve is related to faulty machine. Whereas the maximum magnitude of stator 
self-inductance in this figure mostly depends on the air-gap width under the 
rotor pole arc, the minimum magnitude depends on the rotor depth between 
the rotor poles. It can be seen that under mixed air-gap eccentricity, maximum 
points have more variation with respect to the minimum points. The reason is 
that the percentage variation of air-gap width under rotor pole arc is much more 
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Zoomed effective air-gap width for the simulated machine with mixed air-gap eccentricity.
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than the percentage variation of rotor depth between rotor poles. In the case of 
individual static or dynamic eccentricities no significant variation is observed.

Figure 4.12 shows the rotor self-inductances for a symmetric air-gap, for 
an individual static or dynamic air-gap eccentricity, and for a mixed air-gap 
eccentricity. The effects on individual static eccentricity and dynamic eccen-
tricity are the same. Both just increase the rotor self-inductance. However, 
in mixed air-gap eccentricity the rotor self-inductance varies with the rotor 
position. It is concluded that this may be a suitable measure for the existence 
of mixed air-gap eccentricity in synchronous machine. The effect of the sta-
tor slot openings is apparent in the rotor self-inductance.

Figure 4.13 shows the stator mutual inductances for a symmetric air-gap 
and for a mixed air-gap eccentricity. A dashed curve is related to a healthy 
machine and a solid curve is related to a faulty machine. As expected, mutual 
inductances have negative values. In this figure, the most negative points 
of the stator mutual inductance are mostly dependent on the air-gap width 
under rotor pole arc and the least negative points are dependent on the rotor 
depth between the rotor poles.
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FIGURE 4.12
Self-inductance of one of the rotor windings for healthy (SE: 30%, DE: 30%) and ME (SE: 30% 
and DE: 30%) conditions.
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Stator mutual inductances compared for healthy and ME (SE: 30% and DE: 30%) conditions.
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It can be seen that under mixed air-gap eccentricity the most negative 
points have more variation with respect to the least negative points. The rea-
son is the same as for the stator self-inductance. Again the curves of stator 
mutual inductances for static and dynamic eccentricities are approximately 
the same and are very close to the healthy case.

Figure 4.14 represents the mutual inductance curves of one of the stator 
phases and the rotor winding for a symmetric air-gap and for a mixed air-
gap eccentricity. Dashed curve is related to healthy machine and solid curve 
is related to faulty machine. As expected, the mutual inductance has both 
positive and negative values. To show the effects of air-gap fault on this 
inductance a zoomed part of top plot is also shown. It is seen that the effect 
of the same value of mixed eccentricity on stator to rotor mutual inductance 
is less than the effect on previous inductances.

Skewing of stator or rotor slots is a technical manufacturing method for 
better machine performance. With skewed stator or rotor slots, machine 
inductances vary more smoothly. In other words, slot opening degrades the 
mutual inductances. Skew can recover it again [4]. In the derived equation for 
calculating machine inductances, skew effect can be included.

In Figure 4.15, the plots of stator to rotor mutual inductances for a skewed 
and for an unskewed stator slots are shown. Comparison of the plots in 
Figure  4.15 shows how a skewed slot affects the shape of these mutual 
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machine and faulty machine with mixed air-gap eccentricity (SE: 30% and DE: 30%).
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inductances. Magnitude of mutual inductances in the skewed case is a little 
less with respect to unskewed inductances. However, the ripples due to slot 
openings are suppressed in this plot. To further study the effect of skew, 
the derivative of mutual inductance is calculated and plotted in Figure 4.16. 
Effect of stator slot openings in an unskewed machine is clear. For a skewed 
slot the derivative of the mutual inductance variation is smooth.

4.2.4  Experimental Measurement of Inductances of 
a Salient Pole Synchronous Machine

The experimental investigation was carried out to verify the theoretical and 
simulation findings. The same synchronous machine that is used for sim-
ulation is used in experiments. Design data for this machine are given in 
Appendix A. This machine is coupled to a three-phase induction motor.
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FIGURE 4.15
Comparison of mutual inductances between one of the stator phases and the rotor winding for 
skewed and unskewed slots.
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To measure the mutual inductance between windings p and q, Lpq, a direct 
current voltage is applied to the second winding. The synchronous machine 
is run by an induction motor. The current in the second winding is measured 
and saved by a digital oscilloscope. The induced voltage in the first winding 
is also measured and saved. Faraday’s law implies that

	
= λ =e
d
dt

d L i

dt

( )pq  (4.28)

Integrating both sides of the preceding equation leads to

	 ∫ ∫λ = = =e dt d L i L i. ( )pq pq  (4.29)

Then

	
= ∫

L
e dt
i
.

pq  (4.30)

To measure the self-inductance of windings k, Lkk, a direct voltage is applied 
to this winding. The synchronous machine is run by an induction motor. 
The current in the winding and the applied voltage are measured and saved.

The terminal voltage equation for the supplied winding is given by

	
= + = +v R i e R i

d L i
dt
( )

k k
kk  (4.31)

Manipulating the preceding equation and integrating both sides leads to

	 ∫ − = ∫ = ∫ =v R i dt e dt d L i L i( ). . ( )k kk kk  (4.32)

Then

	
= ∫ −

L
v R i dt

i
( )

kk
k  (4.33)

It should be noted that in the calculation of self-inductance it is necessary to 
measure winding resistance.

According to Equations (4.28) to (4.33), four inductances of synchronous 
machine are measured and plotted in Figures 4.17 to 4.20. It is necessary to note 
that the given experimental plots have been filtered. To see the effect of filtering, 
the unfiltered plot of stator self-inductance is shown in the top of Figure 4.17.

In the first view, comparison of inductance plots extracted from the 
model and the derived equations with inductance plots obtained from the 
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experiment show very good agreements. More investigation into experi-
mental plots shows that in the stator self-inductance, the magnitude of 
consecutive peaks is different. This may be due to some kind of rotor mis-
alignment or nonlinear behavior of the machine core. In the two-dimen-
sional model used in this textbook these conditions are not included. 
However, the method can be developed for the analysis of three-dimen-
sional conditions.

It is seen that there are some ripples in the rotor self inductance in Figure 4.18. 
It may be due to rotor misalignment or nonlinear behavior of the machine core.
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FIGURE 4.18
Rotor self-inductance curve.
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FIGURE 4.17
Stator self inductances resulted from the experiment (a) before filtering and(b) after filtering.
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4.3  Indirect Application of Magnetic Equivalent 
Circuit for Analysis of Induction Machines

By using a simplified magnetic equivalent circuit of an induction machine 
we obtain the inductance coefficients of the machines [3,4]. These induc-
tances can be used for analysis and study of the machine behavior in healthy 
and under faulty conditions.

4.3.1  A Simplified Magnetic Equivalent Circuit of Induction Machines

In Figure 4.21, a part of a magnetic equivalent circuit of an induction machine 
is shown [3,4]. u1, u2, u3, and u4 are the vectors of magnetic node potential in 
stator back iron, stator teeth, rotor teeth, and rotor back iron, respectively.
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FIGURE 4.19
Mutual inductance between two stator phases.
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Mutual inductance between phase a of stator and rotor winding.
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The node potential equations for the network of Figure (4.21) are given as

	 = −ΦA u st11 1  (4.34)

	 + = ΦA u A u st22 2 23 3  (4.35)

	 + = ΦA u A u rt32 2 33 3  (4.36)

	 = −ΦA u rt44 4  (4.37)

	 = − Φ +u u R Fst st st2 1  (4.38)

	 = − Φ +u u R Frt rt rt3 4  (4.39)

where Φst  and Φrt  are the vectors of stator and rotor teeth fluxes. Rst and Rrt 
are stator and rotor teeth reluctance matrices. Fst  and Frt  are the vectors of 
MMF sources in the stator side and rotor side, respectively. A11, A22, A23, A32, 
A33, and A44 are the node permeance matrices and are given in Appendix B. 
The element of A11 and A44 matrices depends only on stator and rotor back 
iron segment permeances, respectively. In Figure  4.21, these permeances 
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FIGURE 4.21
A part of magnetic equivalent circuit of an induction machine.
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are shown by Gsy,i and Gry,j. The elements of A22, A23, A32, and A33 depend on 
stator slot, rotor slot, and air-gap permeances. Gsσ is the stator slot openings 
leakage permeance and is constant. Grσ,j is the rotor slot leakage permeance 
of slot j, and for closed slot, due to saturation effect, it is a nonlinear perme-
ance. Gij is the air-gap permeance between stator tooth i and rotor tooth j. 
Gij is the most important parameter in the magnetic equivalent circuit mod-
eling. Derivative of the air-gap permeance Gij with respect to the rotor angle 
when multiplied by the square of the MMF drop over the same permeance 
gives the value of electromagnetic force between them.

Fst and Frt  vectors are related to the stator phase currents and rotor mesh 
currents through the following equations

	 =F W ist s s  (4.40)

	 =F W irt r r  (4.41)

where Ws is generated using the same approaches as for the synchronous 
machine. Wr  is an identity matrix and its size depends on the number of 
independent rotor mesh currents ir .

4.3.2  Inductance Relations of Induction Machines

Equation (4.34) and Equation (4.37) are written for the back iron portions of 
the stator and rotor, respectively. Figure 4.22 shows a portion of a typical rotor 
lamination of an induction machine. The geometric shape of back iron parts 
in stator and rotor are such that they have a large cross-sectional area and 
nearly short length with respect to the teeth segments of stator and rotor. As 
a result, the MMF drops in these back iron parts are generally several times 
smaller than MMF drops on teeth segments. It should be noted that in the 

Flux path in rotor
back iron

Rotor bar

Flux path in 
rotor teeth

FIGURE 4.22
A portion of a typical rotor lamination of an induction machine.
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MEC model, it is assumed that the directions of fluxes in a tooth and in a back 
iron segment are perpendicular to each other. Although back iron segments 
reluctances have certainly some effects on the values of machine inductances, 
simulation results show actually that neglecting the MMF drops in back iron 
segments has a very small effect on machine inductance coefficients. On the 
other hand, it is possible to change the values of teeth reluctances by some 
percentage to compensate for the removal of back iron reluctances.

Neglecting the back iron reluctances in stator leads to equality of u1 ele-
ments and neglecting the back iron reluctances in rotor leads to equality of 
u4 elements. On the other hand, due to the fact that

	
∑Φ =

=

0st

i

n

1

i

s

 (4.42)

Therefore, u1 = 0 and

	 = − Φ +u R W ist st s s2  (4.43)

and

	
∑Φ =

=

0rt

j

n

1

j

r

 (4.44)

Hence, u4 = 0 and

	 = − Φ +u R irt rt r3  (4.45)

The results of such assumptions lead to removal of Equations (4.34) and 
(4.37) from the system of algebraic equations of MEC model of induction 
machine shown by Equations (4.34) to (4.41).

By substituting Equations (4.38), (4.39), (4.43), and (4.45) in Equations (4.35) 
and (4.36), and then rearranging parameters, we have

	 + = + Φ + Φ×A W i A i I A R A R( )s s r ns ns st st rt rt22 23 22 23  (4.46)

	 + = + Φ + Φ×A W i A i I A R A R( )s s r nr nr rt rt st st32 33 33 32  (4.47)

By introducing matrices C and D as follows:

	 = +×
−C I A R( )ns ns st22
1  (4.48)

	 = +×
−D I A R( )nr nr rt33
1  (4.49)
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and by further simplification the following equations will be obtained

	 ⋅ + ⋅ = Φ + ⋅ ΦC A W i C A i C A Rs s r st rt rt22 23 23  (4.50)

	 ⋅ + ⋅ = Φ + ⋅ ΦD A W i D A i D A Rs s r rt st st32 33 32  (4.51)

Multiplying both sides of Equation (4.50) by Ws
T  and defining the right-

hand side of the result as λs  and also defining the right-hand side of Equation 
(4.51) as λr , yield

	 + = λW CA W i W CA iS
T

s s s
T

r s22 23  (4.52)

	 ⋅ + ⋅ = λD A W i D A is s r r32 33  (4.53)

Comparing these equations with Equation (4.5) results in

	 =L W CA Wss s
T

s22  (4.54)

	 =L W CAsr s
T

23  (4.55)

	 =L DA Wrs s32  (4.56)

	 =L DArr 33  (4.57)

In the preceding equations, the effects of all space harmonics, rotor skew, 
leakage path reluctances, and slot openings are taken into account for the 
calculation of inductance coefficients. Since there is no restriction concerning 
symmetry of stator windings, rotor bars, and air-gap length, this calculation 
may be applied in the study of asymmetrical effects and fault conditions on 
machine inductances. These fault conditions are short turns in stator wind-
ings and air-gap asymmetry such as the static and dynamic eccentricities. 
While short turns are reflected in the calculation of Ws, the air-gap asym-
metries change the air-gap permeances and are included in matrices A22, A23, 
A32, and A33. It should be noted that due to the inclusion of stator and rotor 
teeth reluctances, it is possible to study the effect of the magnetic property of 
different cores on machine inductances by this model. Therefore, this model 
may be applied in the design of induction machines more efficiently.

4.3.3  Calculation of Inductance of an Induction Machine

Based on the equations derived for an induction machine, the inductance 
coefficients of a 3 hp, three-phase induction machine with the parameter 
given in Appendix A are calculated under different conditions. Table 4.1 
and Figure 4.23 show some of the results of these calculations. The plots of 
mutual inductance between phase a of stator and one of the rotor loops, Lar, 
for a healthy machine and for a machine with mixed air-gap eccentricity 



71Modeling of Electric Machines Using Magnetic MEC Method

0 50 100 150 200 250 300 350

–0.1

0

0.1

Rotor Angle (degree)

La
r i

n 
m

H

0 50 100 150 200 250 300 350

–0.1

0

0.1

Rotor Angle (degree)

La
r i

n 
m

H

FIGURE 4.23
Plots of mutual inductance between phase a of stator and one of the rotor loops, Lar, for a 
healthy machine (top) and for a machine with 5% dynamic eccentricity and 20% static eccen-
tricity (bottom).

TABLE 4.1

Calculation of Inductance Coefficient

Row 
Number

Stator Slot 
Opening

Reluctance 
Included/Skew 

Included
Machine 

Condition
Laa 
(H)

Lab

(H) Max. Lar (mH)
Max. Lrr 

(𝛍H)
Mean 

Lrr (𝛍H)

1 0 N/Y H .3949 –.164 .13808 1.7047 1.7047

2 .03 N/Y H .3564 –.148 .1247 1.5385 1.5385

3 .06 N/Y H .3195 –.1327 .11238 1.3793 1.3793

4 .12 N/Y H .2506 –.1041 .092106 1.0817 1.0817

5 .15 N/Y H .2185 –.0908 .08512 .94335 .94335

6 0 N/N H .3949 –.164 .13808 1.7047 1.7047

7 .03 N/N H .3564 –.148 .1341 1.5386 1.5386

8 .06 N/N H .3195 –.1327 .13012 1.3795 1.3795

9 .03 Y/Y H .3509 –.145 (.12278)(.12301)* 1.3625 1.3625

10 .06 Y/Y H .3151 –.1309 (.11082)(.11100)* 1.3625 1.3625

11 .03 N/Y SEC (20%) .3645 –.151 .15567 1.941** 1.5883

12 .03 N/Y DEC (20%) .3645 –.151 .15549 1.9373 1.936

Note: SEC, static eccentricity condition; DEC, dynamic eccentricity condition; H, healthy machine.
* In these conditions, mutual inductance between phase a and rotor loop, Lar, is different from Lra.
** In SEC, Lrr is not constant and is dependent on the rotor position.
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are shown in Figure 4.23. There is 5% dynamic eccentricity and 20% static 
eccentricity in faulty condition. Stator and rotor slot openings are con-
sidered, and the rotor is skewed by one rotor pitch. It is seen that mixed 
air-gap eccentricity causes an asymmetrical mutual inductance between 
stator phase and rotor loop. The effects of slot openings are clear in both 
plots.

The plots of Lar from FE calculation and from the magnetic equivalent cir-
cuit method are shown in Figure 4.24. Comparison of these plots shows that 
calculation of inductance coefficients by the MEC is in agreement with the 
FE method.

Comparison of rows 1 to 3 with rows 6 to 8 in Table 4.1 shows that as the 
stator slot opening increases, the magnitudes of mutual inductances between 
stator phases and rotor loops with skew and without skew effect have more 
differences. So for larger slot openings, increasing the skew causes more 
reduction in the magnitude of these mutual inductances.

Equations (4.54) and (4.57) show that teeth reluctances affect mutual induc-
tances between stator phases and rotor loop. Also notice that Lar is not the 
same as Lra. However, comparing rows 2 and 3 with rows 9 and 10 in Table 4.1 
shows that this effect is small.

Table 4.1 depicts the average of Laa and Lab, including slot width, rotor skew, 
and teeth reluctances effects for both healthy and eccentric rotors under dif-
ferent conditions. Again, it is seen that for both types of eccentricities there 
are considerable changes in stator inductances with respect to healthy con-
dition, and this knowledge may be applied for the detection of these faults. 
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The plots of Lar from FE calculation (top) and from the magnetic equivalent circuit (bottom) 
method.
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According to the inductance values shown in Table  4.1 and the plots of 
Figure 4.23, the following general results can be concluded:

 1. By increasing the values of core reluctances, the values of inductance 
coefficients decrease. So, the effect of magnetic property of different 
cores can be studied in the design of induction motors.

 2. Rotor skew affects mutual inductances between stator phases and 
rotor loops considerably.

 3. By increasing the slot opening, the entire inductance coefficient val-
ues decrease.

 4. Static eccentricity affects all inductance values.
 5. Dynamic eccentricity affects all inductance values considerably.

4.4  Direct Application of Magnetic Equivalent 
Circuit Considering Nonlinear Magnetic 
Characteristic for Machine Analysis

Reluctances of stator and rotor tooth depend on the flux through them. 
Therefore, when nonlinear magnetic characteristics have to be considered in 
the analysis, it is not possible to calculate the inductance coefficients before 
the calculation of machine variables. In this case, the system of algebraic 
equations of the machine is nonlinear. Therefore an iterative procedure has 
to be employed to solve these equations [3,5]. In order to apply the solution 
procedure to the algebraic machine equation, some algebraic manipulations 
are required. These equations are repeated for convenience:

	 + = ΦA u A u st22 2 23 3  (4.58)

	 + = ΦA u A u rt32 2 33 3  (4.59)

	 = − Φ +u R W ist st s s2  (4.60)

	 = − Φ +u R irt rt r3  (4.61)

As the first step, Equations (4.60) and (4.61) are substituted in Equations 
(4.58) and (4.59). The results are arranged as

	 + − + Φ = ΦA W i A i I A R R( )s s r n st st rt rt22 23 22s
 (4.62)

	 + − Φ = + ΦA W i A i A R I A R( )s s r st st n rt rt32 33 32 33r   (4.63)
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Both sides of Equation (4.62) are multiplied by Ws
T  and by defining ΦW .s

T
st  

as the stator flux linkage λs  the following equation will be obtained:

	 + − Φ = λ + ΦW A W i W A i W A R W A Rs
T

s s s
T

r s
T

st st s s
T

rt rt22 23 22 23  (4.64)

The vector M0 is also defined to reflect the type of stator winding con-
nection (delta, star, with or without a neutral connection). For a three-phase 
star connected without neutral connection, the sum of stator currents is zero. 
Hence,

 + + =i i i 0a b c

where by defining M0 as the following

 =M [1 1 1]0

we have

	 =M i 0s0 	
(4.65)

where

	 =i i i i[ ]s a b c
T  

Equations (4.62) through (4.65) can be summarized in matrix notation as
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The preceding system of equations along with Equations (4.60) and (4.61) are 
used for the simulation of machines considering saturation characteristic. In 
each numerical step, after solving the differential equations of the machine, 
the right-hand side of the system of Equation (4.66) is calculated. However, 
the elements of the coefficient matrix in the left-hand side of Equation (4.66) 
depend on the unknown variables, currents, and teeth fluxes in the left-hand 
side of Equation (4.66). Therefore an iterative procedure for the solution of 
the system of Equation (4.66) has to be employed. In the following, one of the 
most popular methods that are based upon Newton’s method is applied. In 
order to apply Newton’s method to the system of Equation (4.66), using rows 
2, 3, and 4 of the system of Equation (4.66), the functions F1, F2, and F3 are 
defined as

	 = − Φ + − Φ − λF W A W i W A R W A i R( )s
T

s s s
T

st st s
T

r rt rt s1 22 22 23  (4.67)

 = − + + Φ − + ΦF A W i I A R A i A R( )s s n st st r rt rt2 22 22 23 23s  (4.68)

 = − Φ + − Φ − ΦF A W i A R A i R( )s s st st r rt rt rt3 32 32 33  (4.69)

The following steps in the solution procedure are required:

 1. Choose a set of values of unknown vectors is, ir, and Φst .
 2. Calculate the MMF drop on each nonlinear element of the magnetic 

equivalent circuit based upon values of the vectors from step 1.
 3. Calculate the permeance of each nonlinear element knowing the 

MMF drop on it and its B-H characteristic.
 4. Insert the computed permeances into matrices A22, A33, Rst, and Rrt.
 5. Calculate the left hand side of the system of Equation (4.66).
 6. Calculate the differences F1, F2, and F3.
 7. Choose a new set of unknowns from step 1 if the absolute values of 

differences calculated in step 6 are too big. If the error of step 6 is less 
than the maximum allowed, stop the process.

At the end of the iterative procedure the absolute values of the vectors of 
differences F1, F2, and F3 have to be less than the specified error of computa-
tion. In other words, the solution of the system of Equation (4.66) is identical 
to the absolute minimum of Equations (4.67) to (4.69).
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The Jacobian of the system of Equation (4.66) has to be defined. Therefore 
partial derivative of F1, F2, and F3 vectors with respect to the unknowns need 
to be evaluated. This Jacobian is obtained as the following:
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As was mentioned before, the inductance coefficients depend on the stator 
and rotor fluxes, especially when there is deep saturation (refer to Equations 
4.54 to 4.57), since they depend on the stator and rotor reluctances through 
matrices C and D). Figure 4.25 depicts this variation obtained from a free 
start of an induction motor in a complete simulation. This figure shows the 
variation of Laa with respect to the rotor position in one rotor revolution that 
has been calculated in each step of simulation. As is shown, the average of 
Laa in steady-state condition (0.39 H) is very close to the similar case (0.3949 
H) calculated with a linear magnetic curve (Table 4.1). However, during the 
transient period the value of Laa decreases considerably due to deep satura-
tion since the stator currents are high. It should be noted for deep saturation 
in steady state, reduction of the average value of Laa is higher with respect to 
our simulation conditions.

Appendix A: Induction Machine Parameters

3 hp, 460/230 V, 4 pole
Rotor length = 2 in
Stator slot opening = .12 in
Inner stator diameter = 4.875 in; air-gap length = 0.013 in
Number of stator slots, ns = 36; number of rotor slots, nr = 44
Stator winding configuration: single layer concentrated winding and 

number of coil per slot N = 54

0 0.05 0.1 0.15 0.2 0.25 0.30.2

0.3
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Time (sec)
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a i
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FIGURE 4.25
Variation of stator self-inductance versus time in free start of the motor.
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Appendix B: Node Permeance Matrices
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5
Analysis of Faulty Induction Motors 
Using Finite Element Method

Bashir Mahdi Ebrahimi, Ph.D.
University of Tehran

5.1  Introduction

The basis of any reliable fault diagnosis method of electrical machines is pre-
cise performance analysis of them at different conditions. Modeling of faulty 
machines is the first step of this procedure and has considerable effects on 
the accuracy of results. The features that are utilized for fault detection are 
extracted from processing of signals that are simulated at this stage. The mod-
eling approaches that ignore effective characteristics of the machines cannot 
be used for modeling faulty machines. The two-dimensional (2-D) and three-
dimensional (3-D) finite element method (FEM) as powerful simulators have 
been utilized to model faulty machines in different cases. In these methods, 
spatial distribution of the stator windings, nonuniformity of the air-gap due 
to stator and rotor slots, nonlinearity characteristics of the stator and rotor 
core materials, skin effects, skewing of the rotor bars, end effects of the stator 
windings and eddy currents are taken into account. Although all the afore-
mentioned characteristics are taken into account in the 3-D FEM, some of 
these characteristics, such as skewing of the rotor bars and end effects of the 
stator windings, are not considered in the 2-D FEM. Moreover, the calculated 
torque using 2-D FEM is torque per length, which should be multiplied by 
the motor stack. In these modeling approaches, the field distribution within 
the machines is determined. Then, other parameters and variables of the 
machines such as inductances, currents, the electromotive force (EMF), devel-
oped torque, and speed of the machines are calculated. It is noticeable that 
symmetrical characteristics of the machines may be used to model a quarter 
or a half of the healthy machines instead of modeling the complete machine. 
However, this simplification cannot be used in the case of faulty machines.

Based on the supply to the machine, FEMs are classified into current-fed 
and voltage-fed approaches. In the current-fed approach, an equivalent cur-
rent density is applied to the coils and then vector potential and flux density 
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are calculated in any area of the machine. It is obvious that this method can-
not be employed to compute the stator currents as the most popular signals 
for processing and feature extraction because on this technique, the stator 
currents have been supposed to be known values by their equivalent current 
densities. The time-stepping finite element coupled state space (TSFEM-SS) 
has been proposed to solve this problem. In this technique, the inductances 
of the machines are calculated using the current-fed FEM. Then, the resul-
tant inductances are used in the state space equations to determine the other 
variables and parameters. In most cases, the voltage-fed time-stepping finite 
element method (TSFEM) has been utilized to calculate machine signals. In 
this technique, the FE area is coupled to the electrical circuits and mechani-
cal loads. Modeling of faulty induction motors (IMs) using TSFEM has four 
essential parts. They are geometrical modeling, winding modeling, mechan-
ical coupling, and fault modeling.

5.2  Geometrical Modeling of Faulty Induction Motors Using 
Time-Stepping Finite Element Method (TSFEM)

In order to model the geometry of an IM, all parts of the motor, which include 
the shaft, stator and rotor slots, stator and rotor laminations, are modeled. 
Then, the physical characteristics of any part of the motor are applied based 
on the practical materials used. For instance, in IMs, stator slots are filled by 
copper, which has evident permeability and conductivity. The rotor slots, 
which are filled by aluminum with known permeability and conductivity, 
are short circuited. The B-H curve of the materials used in the stator and 
rotor cores is taken into account. Figure 5.1 depicts the 2-D stator and rotor 
laminations of the IM. The 3-D configuration of the same motor has been 
demonstrated in Figure 5.2.

According to Figure  5.1 and Figure  5.2, there are some differences 
between 2-D and 3-D TSFEMs. It is seen that end effects of the stator wind-
ings have been taken into account in 3-D modeling. This characteristic 

FIGURE 5.1
Cross-section of (left) stator, (middle) rotor, and (right) whole motor.
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can be modeled in the 2-D FEM using constant inductance in the electri-
cal circuits, which are coupled to the finite element (FE) area. Moreover, 
the skin effects are taken into account in the 3-D modeling. Nonetheless, 
considering skin effects in the 2-D modeling depends on the user experi-
ence in applying mesh. The skewing of the rotor bars is taken into account 
using 3-D modeling, whereas it is ignored in the 2-D modeling. Therefore, 
the simulated torque has more ripples than that in the 2-D modeling. The 
influence of the motor stack is reckoned in the 3-D modeling, whereas a 
cross-section of the motor is simulated in the 2-D modeling (see Figure 5.1).

5.3  Coupling of Electrical Circuits and Finite Element Area

This stage of modeling procedure has considerable impact on the simula-
tion results accuracy. The sinusoidal or nonsinusoidal supply types are 
determined here. In this stage, the motor is fed by the three-phase sinusoidal 
supply, unbalanced sinusoidal supply, or inverters. Figure 5.3 illustrates the 

FIGURE 5.2
The 3-D configuration of the motor illustrated in Figure 5.1.
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FIGURE 5.3
Coupling electrical circuits to the finite element area.
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coupling between electrical circuits and FE area in different supply condi-
tions. According to Figure 5.3, the end effects of the stator windings have 
been modeled using external inductances, which are calculated analytically 
and added to the electrical circuits. The transient equations of the external 
circuit that exhibits the electric supplies and circuit elements are combined 
to the field equations in FEM. Also, the motion equations due to mechanical 
coupling are combined to the mentioned previous electromagnetic equations. 
Solution of these equations yields the magnetic flux density distribution, the 
stator phase current, the EMF, the developed torque, and speed of the motor. 
Two-dimensional magnetic field propagation is given as follows:
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where A is the z-component of the magnetic vector potential, and μ is the 
magnetic permeability. J0 is the current density related to the applied volt-
age, Je is the current density related to the time variations of the magnetic 
flux, and Jv is the current density related to the motional voltage. Therefore, 
Equation (5.1) is rewritten as follows:
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where σ is the electrical conductivity, ℓ is the motor stack along z-axis, Vs is 
the applied voltage, and v is the speed of the conductor against magnetic 
flux density. By applying a reference frame that is assumed fixed in respect 
to the proposed element, v is equal to zero, and the propagation equation is 
simplified as follows:
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The circuit equation of the magnetic coil is given as follows:

 
( ) ( ) ( ) ( )= + +V t R i t L

di t
dt

emf ts s s ee
s  (5.4)

where Rs is the stator resistance, is is the stator phase current, Lee is the exter-
nal inductance added to the electrical circuits due to end effects of the stator 
windings, and emf is the applied voltage to the FE area. By coupling Equation 
(5.3) and Equation (5.4), the TSFEM is used to obtain the magnetic vector 
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potential, stator currents, and the EMF. The nonlinear equation that can 
relate the FE equations expressing the electromagnetic fields of the machine 
with the circuit equations is as follow:
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where [C] and [D] are the coefficients matrices, [P] is the vector related to the 
input voltage, and the solution of Equation (5.5) gives [A] and [is] as essential 
signals for analyzing and processing.

5.4  Modeling Internal Faults Using Finite Element Method

Internal faults in IMs are categorized to broken bars as an electrical fault; 
bearing fault, and static eccentricity (SE), dynamic eccentricity (DE), and 
mixed eccentricity (ME) as mechanical faults.

5.4.1  Modeling Broken Bar Fault

In the study by Elkasbagy et al. [1], the bar current is taken to be equal to 
zero for modeling broken bars. It is noted that zero current in a particular 
bar increases the currents of the adjacent bars considerably. This implies a 
considerable asymmetry in the rotor circuit and consequently asymmetry in 
the field produced by the rotor currents. Even a broken bar can have a non-
zero current, depending on the type of construction and the way aluminum 
is used in manufacturing. In fact, current paths exist between the bars of the 
squirrel-cage rotor. For instance, currents can enter the bar where it is con-
nected to the end-ring and return through the rotor core. Additional current 
paths are created because of injection of the high-pressure molten alumi-
num due to injection of aluminum into the rotor core in the manufactur-
ing procedure. This molten aluminum penetrates between the sheets, which 
can generate a conducting path between two adjacent bars. Therefore, in the 
modeling of broken bars, currents are considered nonzero, but at the same 
time the resistance of the broken bar is taken to be high. For example, Faiz 
and Ebrahimi considered the resistance of the healthy IM as 39.42 μΩ and 
the broken bar as 2500 μΩ [2]. Figure 5.4 reveals the flux distribution within 
the healthy and faulty IM under one broken bar. It is seen that bar breakage 
distorts flux distribution. Furthermore, a local saturation is observed due to 
current flow of the broken bar in adjacent bars. Another important point that 
should be taken into account in the diagnosis of the rotor broken bars is locat-
ing broken bars. As shown in Figure 5.5, eight cases can be imagined when 
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there are four broken bars in the rotor cage, and such case has a considerable 
effect upon the amplitude of the harmonic components due to the fault.

Figure 5.6 depicts the time variation of the stator currents in the healthy 
and faulty IM with four broken bars. It is seen that bars breakage unbalances 
the stator current profile. Furthermore, envelope ripples of the stator current 
profile in the faulty case is more than that healthy case.

Figure 5.7 demonstrates torque profiles of the healthy and faulty IM with 
four broken bars. It is observed that torque ripples of the faulty case are more 
considerable than those of the healthy case. This is due to distortion of the 

(a) (b) (c) (d)

(e) (f) (g) (h)

FIGURE 5.5
Different cases for distribution of broken bars under poles: (a) four broken bars on one pole, (b) 
three broken bars on one pole and one broken bar on adjacent pole, (c) three broken bars on one 
pole and one broken bar on opposite pole, (d) two broken bars on one pole and two broken bars 
on adjacent pole, (e) two broken bars on one pole and two broken bars on two adjacent poles, (f) 
two broken bars on one pole and one broken bar on adjacent and opposite poles, (g) two broken 
bars on one pole and two broken bars on opposite pole, and (h) one broken bar on each pole.

High saturation
Broken bar

FIGURE 5.4
Magnetic flux distribution for induction motor: (left) healthy and (right) one broken bar.
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flux density distribution in the faulty case, which increases amplitude of the 
harmonic components of the flux density profile.

5.4.2  Modeling Eccentricity Fault

Eccentricity fault is due to bearings fatigue, manufacturing and assembling 
processes, and other mechanical reasons. In this fault, conformity of the sta-
tor axis, rotor axis, and rotor rotating axis are disturbed.

5.4.2.1   Static Eccentricity

In the case of static eccentricity, the rotational axis of the rotor is identical to its 
symmetrical axis but has been displayed with respect to the stator symmetri-
cal axis. Although the air-gap distribution around the rotor is not uniform, it 
is time independent. The static eccentricity degree (δse) is defined as follows:

 
δ =

O O
gse
s w

0  
 (5.6)

where OS is the stator symmetry center, Ow is the rotor rotation center, and g0 
is the uniform air-gap length. Figure 5.8 illustrates the position of stator and 
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88 Electric Machines: Modeling, Condition Monitoring, and Fault Diagnosis
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Os (�xed)
Or (�xed)

FIGURE 5.8
Geometric configurations of the modeled motor under static eccentricity.
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rotor cross-sections in the static eccentricity, where αs is the initial angle of 
static eccentricity and vector OsOw is the static transfer vector. This vector is 
fixed for all angular positions of the rotor. The reasons for increasing the eccen-
tricity are bad position of the stator core due to the mounting of the motor. and 
nonorientation of the stator and rotor centers during the primary maintenance.

The time variation of the faulty IM under 10% static eccentricity has been 
exhibited in Figure 5.9. The distortion of stator currents’ profiles due to static 
eccentricity fault is clearly seen. Figure  5.10 reveals the time variation of 
the torque profile in the faulty IM with 10% static eccentricity. Comparison 
between the health and faulty cases shows that torque ripples rise consider-
ably in the IM under static eccentricity.

5.4.2.2   Dynamic Eccentricity

For dynamic eccentricity, the minimum air-gap length depends on the 
rotor angular position, and it rotates around the rotor. This may be due to 
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misalignment or curvature of the rotor axis. Albeit, the static eccentricity 
generates asymmetrical magnetic pull, which results in the dynamic eccen-
tricity. In this eccentricity, the symmetry axis of the stator and rotation axis 
of the rotor is identical, but the rotor symmetry axis has been displaced. In 
such a case, the air gap around the rotor is nonuniform and time varying. 
The dynamic eccentricity degree (δde) is defined as follows:

 
δ =

O O
gde
w r

0
 (5.7)

where Or is the rotor symmetrical axis and vector OwOr is the dynamic trans-
fer vector. This vector is fixed for all angular positions of the rotor, but its 
angle varies. Figure 5.11 shows the dynamic eccentricity where αd is the ini-
tial angle of the dynamic eccentricity.

5.4.2.3   Mixed Eccentricity

In mixed eccentricity, the symmetry axis of the rotor and stator, and the rota-
tion axis of the rotor are displaced. This is the result of application of the 
resultant vector of static and dynamic transfer vectors. If there are both static 
and dynamic eccentricities, the eccentricity is called a mixed eccentricity. 
The mixed eccentricity degree (δme) is defined as follows:
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me
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0 0  
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FIGURE 5.11
Geometric configurations of the modeled motor under dynamic eccentricity.
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where vector OsOr is the mixed transfer vector. Figure 5.12 shows that the 
amplitude and angle of this vector depend on the mechanical angle of the 
rotor, where αm is the transfer angle of the mixed eccentricity.

5.5   Impact of Magnetic Saturation on Accurate 
Fault Detection in Induction Motors

One of the most effective parameters on accurate fault detection in IMs is 
considering nonlinear characteristics of the core materials. This characteris-
tic is ignored in most analytical modeling methods. In this part, influence of 
nonlinear characteristics of the core materials on results accuracy is investi-
gated in detail. Hence, performance of an IM that has been modeled using 
TSFEM is investigated in cases that permeability of the core materials has 
been supposed constant and also the B-H curve of the core materials has been 
considered. Figure 5.13 and Figure 5.14 illustrate time variation of the stator 
current in the healthy and faulty IM with 40% static eccentricity. In these 
simulations, at first permeability of the core materials has been considered 
constant, and in another simulation, the actual B-H curve of the core materi-
als has been taken into account. According to Figure 5.13 and Figure 5.14, the 
variation rate of the stator current in the transient mode where permeability 
is constant is much more than the case in which nonlinear characteristics of 
the core materials have been considered. This variation rate increases when 
the fault occurs. Furthermore, the necessary time to reach the steady state in 
the model with constant permeability is very large in comparison with the 
modeled IM considering magnetization curve.

Or

Ow

Os

αm

FIGURE 5.12
Position of stator and rotor mixed eccentricity in the stator reference frame.
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Figure  5.15 and Figure  5.16 exhibit the time variation rate of the torque 
profile of the healthy and faulty motor in the two aforementioned modeling 
methods. It is seen that torque ripples in the modeled IM with constant per-
meability is much more than the case in which non-linear characteristics of 
the core materials have been taken into account. These ripples rise noticeably 
when fault occurs.

Figure 5.17 reveals the time variation rate of the rotor speed of the healthy 
and faulty motor in a modeled motor with and without magnetization curve. 
It is seen that speed ripples in the transient mode of the modeled IM with 
constant permeability is much more than the case in which nonlinear char-
acteristics of the core materials have been taken into account. These ripples 
rise noticeably when fault occurs. Furthermore, the settling time of the motor 
speed of the modeled IM with constant permeability is much more than the 
other case. In order to justify these results, air-gap flux density of the healthy 
and faulty IM in the transient and steady-state modes is studied.

80

St
at

or
 C

ur
re

nt
 (A

) 60
40
20

0
–20
–40
–60

0 0.05 0.1 0.15
Time (sec)

0.2 0.25 0.3

St
at

or
 C

ur
re

nt
 (A

)

0 0.05 0.1 0.15
Time (sec)

0.2 0.25 0.3

80
60
40
20

0
–20
–40
–60

FIGURE 5.13
Time variations of stator current of a no-load induction motor with constant permeability: (left) 
healthy, (right) 40% static eccentricity.
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Time variations of torque profile of a no-load induction motor with constant permeability: 
(left) healthy, (right) 40% static eccentricity.

60
40
20

0
–20
–40
–60

0 0.05 0.1 0.15
Time (sec)

To
rq

ue
 (N

m
)

0.2 0.25 0.3

60
40
20

0
–20
–40
–60

0 0.05 0.1 0.15
Time (sec)

To
rq

ue
 (N

m
)

0.2 0.25 0.3

FIGURE. 5.16
Time variations of torque profile of a no-load induction motor considering magnetizing curve: 
(left) healthy, (right) 40% static eccentricity.

Time (sec)

30
% 

St
at

ic
ec

ce
nt

ric
ity

10
% 

St
at

ic 
ec

ce
nt

ric
ity

H
ea

lth
y

0.150.10.050
–100

–50

50

0

100

150

200

Sp
ee

d 
(r

ad
/s

ec
)

0.2 0.25 0.3

FIGURE 5.17
Time variations of rotor speed of a no-load induction motor with constant permeability in 
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5.5.1  Analysis of Air-Gap Magnetic Flux Density in 
Healthy and Faulty Induction Motor

The magnetic field waveform contains full information of the stator condi-
tion and mechanical parts of the motor. Therefore, it is possible to predict 
and diagnose all faults by continuous monitoring of the air-gap magnetic 
field. In order to measure the air gap magnetic field practically, a search coil 
is used. This coil is placed inside the stator slots. By integration of the termi-
nal voltage of this coil, the air-gap magnetic field is determined.

5.5.1.1   Linear Magnetization Characteristic

Figure  5.18 and Figure  5.19 present the air-gap magnetic flux density for a 
healthy and faulty motor at the startup and steady-state modes when mag-
netization characteristic is assumed to be linear. Figure 5.18a shows the cor-
responding characteristic at the start-up of the healthy induction motor. 
Figure 5.18b shows the air-gap magnetic flux density under 30% static eccen-
tricity at the startup. Comparison of Figure 5.18a and Figure 5.18b indicates 
that the static eccentricity unrealistically increases the magnetic flux density 
of the air-gap. The reason is analysis of the motor performance is based on 
the fixed permeability. Also, comparison of Figure 5.18a and Figure 5.18b indi-
cates that the static eccentricity leads to asymmetry of the magnetic flux den-
sity distribution, because development of the fault generates new harmonic 
components in the air-gap field. Figure 5.19 exhibits the air-gap magnetic flux 
density of the healthy and faulty induction motor in the steady-state mode. It 
is necessary to mention that analysis of the induction motor using the linear 
magnetization characteristic shows a much larger air-gap magnetic flux den-
sity. This is clearer at the start-up mode. The reason is that during start-up of 
the induction motor, slip varies largely, and the machine currents are very 
large. So, the magnetic flux density rises linearly according to the constant 
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FIGURE 5.18
Flux density distribution in transient mode of induction motor air-gap with linear magnetiza-
tion characteristic: (a) healthy, (b) 30% static eccentricity.
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permeability; since the saturation has been ignored, the rate of the flux density 
variations during startup is very large, and amplitude of the air gap magnetic 
flux density is considerable (Figure 5.18). If SE occurs during the startup period 
or a faulty motor is started, amplitude of the magnetic flux density increases 
for the faulty induction motor, so amplitude of the magnetic flux density of the 
faulty induction motor increases during the startup compared with that of the 
healthy motor (Figure 5.18b). Referring to Figure 5.19, amplitudes of the air-
gap magnetic flux densities of a healthy and faulty motor, under steady-state 
mode, decreases compared with that of the start-up mode. However, a linear 
magnetization characteristic has been used in this analysis, and amplitude of 
the air-gap magnetic flux density is larger than the actual case.

5.5.1.2   Nonlinear Magnetization Characteristic

Figure 5.20 reveals the air-gap magnetic flux density distribution of a healthy 
and faulty induction motor at the startup using the no-linear magnetization 
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FIGURE 5.19
Flux density distribution in steady-state mode of induction motor air-gap with linear magne-
tization characteristic: (a) healthy, (b) 30% static eccentricity.
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96 Electric Machines: Modeling, Condition Monitoring, and Fault Diagnosis

characteristic. Comparison of Figure  5.20a and Figure  5.20b indicates the 
asymmetry of the magnetic flux density distribution of the faulty motor with 
30% SE. An important point in Figure 5.20 is the considerable decrease of the 
air-gap magnetic flux density during start-up while the motor is analyzed 
using the nonlinear magnetization characteristic. In spite of this, the reason 
for large amplitude of the magnetic flux density observed in Figure 5.20 is 
that in the transient analysis of the healthy and faulty induction motor, the 
operating point of the motor places on the linear section of the magnetiza-
tion curve. After approaching the steady-state, current, speed, and slip of 
the motor find their nominal values. Therefore, the magnetic flux density of 
the healthy motor is symmetrical according to Figure 5.21, which shows the 
asymmetrical air-gap magnetic flux density distribution for the induction 
motor under 30% SE.
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Fault Diagnosis of Electric Machines Using 
Techniques Based on Frequency Domain
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6.1  Introduction

Generally speaking, most of the fault detection techniques used in real-
time fault detection in power systems are time-domain based. The over 
current, over voltage, earth fault, impedance relays, and so forth are 
mostly time-domain based. However, as far as detecting faults for electric 
machines are concerned, frequency-domain-based techniques, especially 
ones based on fast Fourier transforms (FFT) are very popular. Except for 
stator-related faults, most other faults can be reliably diagnosed using a 
spectrum analyzer provided the machines are operating under steady-state 
conditions for at least a reasonable period of time. For applications in which 
machines are made to operate under very frequently fluctuating load and 
speed conditions, traditional FFT has to be replaced with short time Fourier 
transforms (STFT), spectrograms, and other time-frequency analysis using 
wavelets and Wigner–Ville transforms. Usually the machine current, flux, 
mechanical vibration, torque, and speed signals are analyzed in frequency 
domain. High-resolution spectral techniques such as multiple signal clas-
sification (MUSIC), ROOTMUSIC, and higher-order spectral methods such 
as bispectrum and trispectrum have also been proposed by a few research-
ers. However, most of the popular frequency-domain-based techniques 
are based on fast Fourier transform of the line current generally known as 
motor current signature analysis (MCSA). Sometimes, when the frequen-
cies at which the detections are to be made are known, swept sine measure-
ments or the digital frequency locked loop technique (DFLL) are also used. 
This avoids lengthy computations while achieving good resolution.

Traditionally, in many countries, power engineers are not exposed even to the 
basic signal processing course, which is only taught to students in electronics and 
communication. Hence it will not be out of place to discuss a few basics of signal 
processing first, before going into actual fault diagnosis using signal processing.
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6.2  Some Definitions and Examples 
Related to Signal Processing

6.2.1   Continuous versus Discrete or Digital or Sampled Signal

A continuous signal, x(t), is one that is defined at any given point of time. 
Examples of such a signal are the line currents and line voltages of a motor 
that we can observe on an analog oscilloscope. The same signal data when 
acquired through a data acquisition system or seen through a digitizing 
oscilloscope becomes a discrete signal, x(n), which is nothing but the sampled 
version of the continuous signal at a regular time interval, Tsp [1]. The fre-
quency at which the sampling device works is fsp. In general,

 
=T
f
1

sp
sp

 (6.1)

 
= =x n x t( ) ( )

t nTsp  
 (6.2)

Often one has to prefilter a signal to avoid aliasing (literally meaning “same 
name for one thing”) arising out of the sampling process. Unless proper care 
is taken in choosing the sampling frequency or the prefilter, one frequency 
component may be wrongly interpreted as another while trying to deter-
mine the frequency components present in a discrete signal. It must be noted, 
though, that sometimes aliasing can be used beneficially, too, such as in a 
stroboscope, a device used to measure speed, or for strengthening weak sig-
nals used for fault detection.

Example 6.1

Suppose we have a voltage signal given by x(t)=100sin(2π60t)+10sin(2π300t). 
Determine how the sampled version of this signal would look like when 
sampled by (a) a 200 Hz signal and (b) a 1000 Hz signal.

 a. We have, using Equation (6.2)

 

= π + π

= π + π + π

= π + π

x n n n

n n n

n n

( ) 100sin(2 0.3 ) 10sin(2 1.5 )

100sin(2 0.3 ) 10sin(2 2 0.5 )

100sin(2 0.3 ) 10sin(2 0.5 )

 Now had the signal been x(t)=100sin(2π60t)+10sin(2π100t), the result 
would have been the same, meaning that with 200 Hz sampling fre-
quency the 300 Hz signal can be misconstrued as a 100 Hz signal.

 b. However in this case x(n)=100sin(2π0.06n)+10sin(2π0.3n) and the 
300 Hz signal can be easily distinguished from a 100 Hz signal.



101Fault Diagnosis Using Frequency Domain Techniques

In order for proper signal reconstruction or interpretation after sampling, 
a continuous time signal x(t) has to be sampled at a rate greater than twice 
the maximum frequency contained in that signal. This result is actually 
one of the fundamental theorems in signal processing and is known as the 
Shannon sampling theorem.

6.2.2   Continuous, Discrete Fourier Transforms, and 
Nonparametric Power Spectrum Estimation

A continuous Fourier transform is given by the following two formulas [1–3]:

 
∫ω = − ω

−∞

∞

X j x t e dt( ) ( ) j t  (6.3)
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π
ω ωω
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x t X j e d( )
1
2

( ) j t  (6.4)

Equation (6.3) is known as the analysis or forward equation because it 
extracts the frequency information from the time-domain signal. Equation 
(6.4) is known as the synthesis or inverse equation because it creates the origi-
nal time-domain signal back from the spectral information.

A discrete Fourier transform (DFT), on the other hand, is given by [1–3]:
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with Equation (6.5) analogous to Equation (6.3) and Equation (6.4) analogous 
to Equation (6.6). It is also interesting to note that while both Equation (6.3) 
and Equation (6.4) are in continuous domain, both Equation (6.5) and Equation 
(6.6) are in discrete domain. It is also possible to write the analysis equation 
in the discrete form but the synthesis equation in the continuous form. In this 
case the equation set is known as discrete-time Fourier transform, meaning the 
discretization is done in time-domain only. The other alternative—that is, the 
equation set with the analysis equation in continuous form and the synthesis 
equation in discrete form—is the very well known form of the Fourier series 
that essentially expresses a periodic but continuous time in terms of discrete 
frequency components. Although it is not difficult to show the relationship 
between the four aforementioned kinds of transforms, the DFT is the most 
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important for the fault diagnosis purpose. At this point in time it also becomes 
necessary to revisit the definition of FFT. A FFT is nothing but the collection of 
algorithms used for efficient computation of the DFT.

Example 6.2:  Compute the Continuous Fourier Transform 
of the Voltage Signal Given in Example 6.1

Let us begin by computing the time-domain signal corresponding to the 
impulse signal in frequency domain given by

 ω = δ ω − ωX j( ) ( )0  (6.7)

Using Equation (6.4)
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The signal in this case, using Euler’s identity can be written as

= π + π = − + −π − π π − πy t t t
j

e e
j

e e( ) 100sin(2 60 ) 10sin(2 300 )
100
2

( )
10
2

( )j t j t j t j t2 60 2 60 2 300 2 300

  (6.9)

Hence using Equation (6.7) and Equation (6.8)

( ) ( )ω = π δ ω − π − δ ω + π + π δ ω − π − δ ω + πY j
j

t t
j

t t( )
100

( 2 60 ) ( 2 60 )
10

( 2 300 ) ( 2 300 )

  (6.10)

Note that in Equation (6.10) for each frequency component there are two 
delta functions. Though their phases are opposite, their magnitudes are 
same. Normally one is interested in the magnitude and therefore it is suf-
ficient to have only one of the delta functions. Conventionally, only those 
lying on the right side of ω = 0 (that is, δ(ω – 2π60t) and δ(ω – 2π300t) in this 
example) are chosen.

Since one has to work with a finite data set in practice, DFT is the trans-
form to be used. If one could acquire a large set of steady-state data with 
minimal temporal variations, DFT signals would approach the true single 
line nature of the spectra as given by Equation (6.9) in a limiting sense. 
Unfortunately, many times, due to constraints such as speed of computa-
tion and memory, one has to use a limited data set. Significant improve-
ment, however, in the quality of the signal can be obtained by judicious 
choice of the window function. The limited data set is analogous to viewing 
something through a small window. Now if the glass pane on the window 
is not clear enough, details of whatever is viewed may not be distinct. The 
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simplest window, as one could intuitively guess, is the so- called rectan-
gular window, embedded due to the very fact that the data set is limited 
in nature. The rectangular window has continuous spectra and as a result 
the power of the original signal data, instead of being concentrated at the 
points of interest, leaks out over the entire frequency range. This is called 
spectral leakage. Specialized window functions such as the Hanning win-
dow and Bartlett window are used to reduce spectral leakage. However, 
windows result in a loss of resolution. The only way to improve resolution 
is to increase N in Equation (6.5) and Equation (6.6). This can be achieved 
only by increasing the window length, meaning increasing the length of the 
data set. Increasing sampling frequency will not improve the resolution of 
the spectrum.

In practice, any data is bound to have some noise associated with it. As 
long as the noise is white (zero mean, unit variance), it can be easily mini-
mized by averaging several power spectral density (PSD) spectra as given by 
Equation (6.10)
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computed over small data segments. This is essentially computing the square 
of the magnitude of the FFT of the segments and then averaging them. In 
general this method is known as nonparametric spectrum estimation [1–3]. 
These segments can be either overlapping or nonoverlapping. For a given 
data set, the noise reduction is attained at the cost of frequency resolution 
and vice versa. Depending upon the type of averaging techniques or win-
dow used, the nonparametric power spectrum estimation may be known as, 
for example, the periodogram, Bartlett, Welch, or Blackman-Tukey.

Example 6.3

 a. Suppose a 1-second data set of the signal given by x(t)=100sin
(2π60t)+2sin(2π63t)+2sin(2π57t)+10sin(2π180t)+white  noise. The 
signal has been obtained with a sampling frequency of 3600 Hz. 
The white noise used is random numbers that vary between 0 and 
1. From the machine diagnostic viewpoint such a signal would 
approximately represent the low frequency spectrum of an induc-
tion motor with broken rotor bars. Plot the FFT using all 3600 
points with (i) a Rectangular and (ii) a Hanning window.

 b. Suppose a 10-second data set is used. Repeat (a).
 c. Plot the PSD spectrum of the 10-second data set, with segment 

size of 12,000 data points and 10,000 overlapping data points 
between two segments. Use Hanning window.

Comparing the first two plots in Figure 6.1, the reduction of resolution 
with Hanning window is quite clear. However the spectral leakage is 
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FIGURE 6.1
From top: FFT using rectangular window and 1 second of data, FFT using Hanning win-
dow and 1 second of data, FFT using rectangular window and 10 seconds of data, FFT using 
Hanning window and 10 seconds of data, PSD. All the plots have been normalized with respect 
to the 60 Hz component.
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significantly reduced with this window. With a larger data set the effect of 
windowing is much less pronounced as can be seen in the next two plots. 
However, the frequency resolution has increased significantly with a larger 
data set. In the last plot the PSD spectrum shows significant reduction in 
noise with little sacrifice in resolution.

Sometimes it may be desirable to look closely at the narrow band of a spec-
trum, say around the 60 Hz frequency spectrum as described in Example 
6.3. There exists a technique called zoom FFT [3,4] by which one can zoom 
on to the area of interest in a spectrum. This way one has to do far fewer 
numbers of FFT computations than would be required for the whole spec-
trum for a given resolution. To do this, the original collected data is shifted 
in frequency domain by multiplication with the sinusoid ωe j t1 , where ω1  is 
the lower limit of the band of interest. In the next step, the modulated signal 
is filtered with a low pass filter and then down sampled with a factor that 
essentially determines the “zoom.” Figure 6.2 shows such a zoomed spectra 
of the signal described in Example 6.3 with a zoom or decimation factor of 
10. The original signal was collected using a frequency of 3600 Hz for 100 
seconds. Without zooming one has to do FFT of 3600 × 100 = 360,000 samples. 
With zooming by a factor of 10 it is reduced to 36,000. The resolution remains 
same as 0.01 Hz.

6.2.3   Parametric Power Spectrum Estimation

The nonparametric form of spectrum estimation techniques discussed in 
the previous section is fairly simple, well understood and easy to compute. 
However, they suffer from the fact that improved resolution of the spectrum 
would entail long data records. Thus estimation of fault signals for motors 
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FIGURE 6.2
Zoomed spectra of signal in Example 6.3 around 60 Hz.
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running perpetually under transient modes, such as hoists and winches will 
be difficult. Also, since finite-length data records are used, spectral leakage 
effects would be present. This would tend to mask weak signals present in 
the data, particularly in the vicinity of a strong signal.

Parametric or model-based power spectrum estimation methods eliminate the 
need for window functions and as a result the associated spectral leakage 
and frequency resolution problems [3,5–7]. Thus they hold promise for appli-
cations where short data records are available due to time-variant or tran-
sient phenomena.

The parametric techniques essentially assume that the data sequence 
whose spectrum has to be analyzed is the output of a linear system charac-
terized by a rational transfer function in the discrete domain as
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 (6.12)

with

 X(z) = H(z)C(z) (6.13)

where X(z) is the z transform of the output data sequence x(n) to be analyzed 
and C(z) the z transform of the corresponding input data sequence c(n). Now if 
c(n) is a zero mean, unity variance white noise sequence, it is easy to show that

 =X jw H jw( ) ( )
2 2

 (6.14)

It is very clear then that determining the sets a b{ }, { }k k  in Equation (6.12) are 
enough to estimate the spectrum of x(n).

Models such as those given by Equation (6.12) are generally known as 
autoregressive-moving average (ARMA) models. With = =q b0, 10  it is known 
as an autoregressive (AR) model. Setting A(z)=1 makes it a moving average (MA) 
model. The AR model is most widely used because of its simple form and 
suitability for representing spectra with narrow peaks. One of the most 
important aspects of AR models is the selection of the order p. If p is too low, 
the spectrum is very smooth. Too high values of p may end up producing 
spurious low level peaks in the spectrum.

Numerous techniques to obtain these models are available in literature. 
Yule–Walker, Burg, and unconstrained least squares are some examples. 
In special cases, when the signal components are sinusoids corrupted by 
additive white noise, eigenvalue-based techniques such as MUSIC and 
ROOTMUSIC have also been found useful.



107Fault Diagnosis Using Frequency Domain Techniques

Figure 6.3 shows the spectral estimation carried out using the Yule–Walker 
and MUSIC method using MATLAB commands pyulear and pmusic. All 
36,000 points were used. The order of the system was considered as four 
since there are four distinct sinusoidal signals. While the Yule–Walker 
method was just able to detect the 60 Hz component, the MUSIC was able to 
detect the 180 Hz signal as well. None were however able to detect the 57 and 
63 Hz signals.

6.2.4   Power Spectrum Estimation Using Higher-Order Spectra (HOS)

Higher-order spectra (HOS) based spectral analysis has received some 
attention with regards to detection of very weak harmonics under low 
signal-to-noise ratio (SNR) conditions [6,8,9]. Recently it has been reported 
to have been used in building a tool called statistical motor analysis in 
real time (SMART), a PC-based software implementing fault diagnosis 
using HOS.

The average of the PSD is a second-order spectral measure since it essen-
tially computes

 ω = ω ωP E X j X j( ) [ ( ) ( )]*  (6.15)
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FIGURE 6.3
Spectrum of the signal described in Example 6.3 using Yule–Walker (top) and MUSIC (bottom) 
methods.
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where X(ω) is same as the FT as described by Equation (6.5). ωX j( )*  is the 
complex conjugate of X(jω) and E[] is the statistical expectation or average. 
The same definition can be extended to obtain higher-order spectra such as

 ω ω = ω ω ω + ωB j j E X j X j X j j( , ) [ ( ) ( ) ( )]1 2 1 2
*

1 2  (6.16)

 ω ω ω = ω ω ω ω + ω + ωT j j j E X j X j X j X j j j( , , ) [ ( ) ( ) ( ) ( )]1 2 3 1 2 3
*

1 2 3  (6.17)

Equation (6.15) and Equation (6.16) are known as bispectrum and trispec-
trum, respectively. A close look at Equation (6.15) and Equation (6.16) suggest 
that if certain frequencies along with their sums are present, their presence can 
be detected very easily even with low SNR. The principle of HOS can be 
shown using the following example.

Example 6.4

Find the bispectrum of (a) = ωx t t( ) cos( )a  and (b) = ω + ω +x t t t( ) cos( ) cos( )a b

ω + ω tcos{( ) }a b . Assume zero noise.

 a. Following Example (6.2)

[ ][ ]ω ω = π δ ω − ω + δ ω + ω δ ω − ω + δ ω + ωB j j( , ) ( ) ( ) ( ) ( )a a b b1 2
3

1 1 1 1

[ ]δ ω + ω − ω + δ ω + ω + ω =( ) ( ) 0.a a1 2 1 2

 This is because none of the impulses occur at the same frequency 
point.

 b.  In this case however,

 

ω ω

= π δ ω − ω + δ ω + ω + δ ω − ω + δ ω + ω + δ ω − ω − ω

+δ ω + ω + ω

B j j( , )

[ ( ) ( ) ( ) ( ) ( )

( )]

a a b b a b

a b

1 2

3
1 1 1 1 1

1

 

δ ω − ω + δ ω + ω + δ ω − ω + δ ω + ω + δ ω − ω − ω

+ δ ω + ω + ω

[ ( ) ( ) ( ) ( ) ( )

( )]

a a b b a b

a b

2 2 2 2 2

2

 

δ ω + ω − ω + δ ω + ω + ω + δ ω + ω − ω + δ ω + ω + ω

+ δ ω + ω − ω − ω + δ ω + ω + ω + ω













( ) ( ) ( ) ( )

( ) ( )

a a b b

a b a b

1 2 1 2 1 2 1 2

1 2 1 2

 Clearly here with ω = ω ω = ω,a b1 2  or ω = ω ω = ω,b a1 2 , 
ω ωB j j( , )1 2  is nonzero.



109Fault Diagnosis Using Frequency Domain Techniques

The FFT (with Hanning window) and bispectrum of a signal with equal 
amplitude of = =f f10Hz and 50Hza b  is given in Figure 6.4. None of them 
used any averaging technique. The signal also has a 60 Hz component 
whose amplitude is 0.01% of either ω ωora b . The SNR is about –20 dB. It is 
very clear that the 60 Hz component can be identified much better from the 
bispectrum plot. It is shown by two largest peaks located at the grid points 

= =f f10Hz, 50Hz1 2  and = =f f10Hz, 50Hz1 2 . There are other minor peaks 
located at other grid points due to noise present in the signal. On the other 
hand, the 60 Hz signal is almost buried in the noise floor of the FFT output. 
It may be argued that the spectral quality of the FFT output can be improved 

0 10 20 30 40 50 60 70–120

–100

–80

–60

–40

–20

0

Frequency (Hz)

FF
T 

(d
B)

0
20

40
60

0
20

40
60
0

5

10
× 106

f1 (Hz)f2 (Hz)

Bi
sp

ec
tr

um

FIGURE 6.4
The FFT plot (top) and the bispectrum (bottom) plot of a signal with a very weak 60 Hz component.
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by averaging. However it would mean increasing the computational over-
head also.

6.2.5   Power Spectrum Estimation Using Swept Sine Measurements 
or Digital Frequency Locked Loop Technique (DFLL)

So far our attention was primarily focused on locating many spectral lines 
over a wide frequency range. However, many times if the frequency itself is 
roughly known or it varies only over a very narrow band under all operating 
conditions, then FFT analysis may not computationally be the best option.

The key to understanding the swept sine measurements or digital fre-
quency locked loop technique (DFLL) [10,11] lies in the evaluation of the 
integrals ∫ π nx mxdxcos cos0

2 , ∫ π nx mxdxcos sin0
2 , and ∫ π nx mxdxsin sin0

2 . It is 
easy to show that they are all equal to π if m=n and 0 if m≠n. Essentially this 
means that if m denotes the frequency of interest in the signal then we can 
vary n over a narrow range to find the magnitude and location of m with 
great accuracy. Even the phase of the signal can be known. It is computed 
in the following way. If f(t) is the signal, then the following are computed at 
regular interval Δω in the range ω ≤ ω ≤ ω1 2  in which the frequency of inter-
est in f(t) is expected to lie in

 
∫= ωa f t t dt( )cos
T

0

 (6.18)

 
∫= ωb f t t dt( )sin
T

0

 (6.19)

 = +M a b2 2  (6.20)

 
= −P

b
a

tan 1  (6.21)

M designates the magnitude of the signal and P the phase. The location at 
which the peak of M occurs gives the frequency of interest. The frequency 
resolution is ∆ω

1 . Normally, T spans over several cycles of the steady-state 
signal for improved detection. Also the products f(t)cosωt, f(t)sinωt have to 
be suitably low pass filtered before the integration. Figure  6.5 shows the 
detection of the 60 Hz component in a signal that has equal amplitude 120 
Hz signal and 0 mean, 0.3 standard deviation white noise. The SNR is 
about 8 dB. The frequency resolution is 0.1 Hz. One second of data was 
used. To get similar resolution using FFT would require data collected over 
10 seconds.
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6.3  Diagnosis of Machine Faults Using 
Frequency-Domain-Based Techniques

In the rest of the chapter, the diagnosis of the four most common faults 
encountered in electric machines, namely, the bearing faults, the stator inter-
turn faults, the broken rotor bar faults, and the eccentricity faults, using fre-
quency-domain-based techniques will be discussed.

6.3.1   Detection of Motor Bearing Faults

As stated earlier, bearing faults happen to be the most common cause of 
electric machine failure in industry. Also, bearings faults have been recently 
classified as single-point defects that produce predictable frequencies and 
generalized roughness that do not. The two most common ways to determine 
single-point defects of bearings are by mechanical vibration and current sig-
nature analysis [12,13]. Of these the mechanical vibration signal analysis are 
most popular and will be discussed first. The current signature analysis of 
bearings is comparatively new and seems to be a function of the mechanical 
vibration signals. They will be discussed later.

6.3.1.1   Mechanical Vibration Frequency Analysis to Detect Bearing Faults

Most of the literature on fault detection of bearings deals with rolling-ele-
ment bearings [14–17]. Most common among them are the ball bearings. 
They consist typically of six to twelve balls inserted in a perforated cage in 
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Detection of frequency signal using DFLL.
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the form of a ring. The cage ensures uniform spacing and prevents mutual 
contact. The cage with the balls is held by an outer ring known as outer 
raceway and an inner ring known as inner raceway. The balls are lubricated 
with grease. Other types of rolling element bearings use cylinders instead 
of balls. Sometimes the ends of the bearings are sealed. Very large electric 
motors use sleeve (fluid-film) bearings. Magnetic bearings are also possible.

The structure of the ball bearing is given in more detail in Figure 6.6. Let 
the cage, and outer and inner raceway velocities be Vc, Vo, and Vi  respectively. 
These velocities essentially determine the different mechanical vibration 
frequencies associated with the cage, the ball, the outer raceway, the inner 
raceway, and the shaft. They are commonly known as the fundamental cage 
frequency (FC), the ball rotational frequency (FB), the ball pass outer raceway 
frequency (FBPO), and the ball pass inner raceway frequency (FBPI). All of them 
are a function of shaft rotational frequency (FS). If Db is the ball diameter and 
Dc is the bearing cage diameter, then following fundamental physics that 
relates angular velocity with linear velocity

 
= = +

F
V
r

V V
D

C
c

c

o i

c
 (6.22)

where = +V V V( )/2c o i  and =r D /2c c . Also due to the contact angle θ, only 
a part of the Db  will contribute toward the frequencies Fo  (correspond-
ing to Vo) and Fi  (corresponding to Vi ). Defining = − θr r D( cos /2),i c b

( )= + θr r D cos /2o c b , and with =V F ro o o , =V Fri i i , one could easily reduce 
Equation (6.22) to
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FIGURE 6.6
The different parts of a ball bearing (From Li B, M.-Y. Chow, Y. Tipusuwan, and James C. 
Hung, Neural-network-based motor rolling bearing fault diagnosis, IEEE Trans. on Industrial 
Electronics, pp. 1060–1069, vol. 47, no.5, Oct. 2000. With permission.)
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Similarly FBPI and FBPO, which indicates the rate at which the balls pass a 
point on the track of the inner and the outer raceway, respectively, can be 
expressed as the product of the number of balls and absolute difference in 
velocity between the cage and the inner or the outer raceway.

Thus, using Equation (6.23)

 
( )= − = − + θ
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Finally, FB , which indicates the rate at which it rotates around its own axis, 
can be calculated as
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Since in a motor the outer raceway is tightly fixed to the static end bells of a 
motor, =F 0o . Similarly the inner raceway sits tightly on the rotor and rotates 
at the angular velocity FS , and therefore =F Fi s .

Thus Equations (6.23) to (6.26) can be written as
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For some types of bearings Equation (6.28) and Equation (6.29) can be 
approximated as

 =F N F0.4BPI B S  (6.31)

 =F N F0.6BPO B S  (6.32)

In case of a single-point bearing defect, only one of the four characteristic 
frequencies given by Equations (6.27) to (6.30) would show up. The collision 
between the bearing defects at the point of contact sets shockwaves that 
excite the natural resonance frequencies of machines. These frequencies 
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act as carriers to the fault signature frequencies given by Equations (6.27) 
to (6.30), which could be treated as baseband signals. If fc  is the carrier 
frequency and fb  is the baseband signal, then components such as fc , fb
, +f fc b , −f fc b  will be present. Since +f fc b , −f fc b  are produced by fc , fb  
their phases are also sum and difference of fc  and fb  respectively. This 
type of interaction is known as quadratic phase coupling (QPC) and is best 
detected by the bispectrum as given by Equation (6.15) or by bicoherence, a 
normalized form of bispectrum. However, since fb  is also present, fc  can be 
erroneously detected as a sum of fb  and −f fc b  if traditional bispectrum or 
bicoherence is used. Additionally, due to large mechanical damping at low 
frequencies, signals such as fb  can be significantly attenuated. Thus a mod-
ified bispectrum and bicoherence technique is proposed, where only the 
carrier, sum, and difference frequencies are included ω = π ω = πf f( 2 ; 2 )b b c c
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It is easy to see from Equation (6.33) that zero phase angle is obtained 
when the carrier sum and difference frequencies are related, maximizing the 
expected value. Otherwise they are random, returning an expected value 
of zero. This technique has been able to clearly detect even incipient outer 
raceway faults, which could not be detected using standard power spectrum 
estimation of the mechanical vibration signal.

Detecting single-point faults in the inner raceway is more difficult because 
the fault moves in and out of the static load zone when the inner raceway is 
constantly moving. As a result, not only are the FBPI  frequencies modulated 
by the machine natural resonance frequencies but also the shaft rotational 
frequencies. Thus the fault frequencies occur in a group near the natural 
resonance frequency, each group containing several peaks separated by 
the shaft rotational frequency. The spacing from any peak in one group to 
another peak in another group can be given as

 = ± + = ± ±F F mF m, 0, 1, 2...SB BPI S  (6.35)

The fault-finding formula is now modified from Equation (6.33) and 
Equation (6.34) to ω = π ω = πf f( 2 ; 2 )SB SB
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The fault is now detected by counting the number of peaks for each value of 
m. It may be possible to extend this scheme for detection of the ball as well 
as cage defect.

However in the case of general roughness defect it is preferable to measure 
the root mean square (RMS) value of the mechanical vibration signal over a 
specified frequency range.

In general, the most appropriate measure to identify a fault varies from bear-
ing to bearing [18]. Mechanical vibration for constant low load levels (below 
50%) can be detected as the fault progressed from incipient to advanced 
stages. For constant larger load levels (above 50%) the transitions could be 
random. Variable load can have significant effect on the fault development 
process. However, increased level of RMS value of the mechanical vibration 
signal seems to be an accurate estimator to diagnose advanced fault level.

6.3.1.2   Line Current Frequency Analysis to Detect Bearing Faults

Characteristic mechanical vibration frequencies described by Equations 
(6.27) to (6.30) can be seen in the line current spectrum of the motor also due 
to secondary effects [19,20]. Mechanical vibration causes radial displacement 
between stator and rotor, which can be treated as a combination of rotating 
eccentricities moving in clockwise and anticlockwise direction. This leads to 
the following frequencies in line current:

 = ± νf f mfbng e  (6.38)

where νf  is one of the characteristic vibration frequencies and fe  the sup-
ply frequency. For example, brinelling is akin to single-point defects on both 
outer and inner raceways. Hence both FBPI - and FBPO -related frequencies 
show increase in the mechanical vibration spectrum. However in the current 
spectrum, the results are much less encouraging, especially for FBPI . This 
sentiment was echoed again by Obaid et al. [12].

Recently efforts were also made to detect generalized roughness faults of 
bearings. Since it was observed that from mechanical vibration signal the 
RMS value of the vibration signal increases at the broadband level, it was 
felt that parametric spectral analysis of line current is a better approach to 
diagnose these faults. The popular, all pole, AR model is chosen for this 
purpose. Each time stator current is sampled the AR spectrum is estimated 
and stored. For each new spectral estimate, the mean spectral deviation 
(MSD) is computed. The MSD is the mean of the difference from each point 
in the spectral magnitude of the base line spectrum to the current spec-
trum. The MSD is computed and recorded every time the stator current is 
sampled, and the change in MSD is used as the fault index. Choosing MSD 
alone as the fault index usually works well for low motor loads. However for 
higher motor loads, the average value of several MSD readings gave better 
results [20].
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6.3.2   Detection of Stator Faults

The most important quality any scheme that detects stator faults must have 
is quickness of detection. Stator faults usually progress from incipient to a 
very advanced stage in a matter of seconds. Unless detected early enough, 
it might lead to fire, explosion, and even loss of personnel. Traditionally, 
stator faults are detected on-line by the negative sequence voltage or 
reduction of negative sequence impedance. However, voltage unbalance 
and machine asymmetries that also change the negative sequence current 
and impedance can cause misdiagnosis when faults involve only a few 
turns. While the machine asymmetries can be accounted for on a tempo-
ral basis, its robustness toward aging effects of a motor is yet to be vin-
dicated. Also, stator fault will, by its very nature, create some unbalance 
that cannot be measured by measuring the terminal conditions. Thus, till  
the present date, very low turn fault detection has remained as a major 
challenge to researchers.

There exists a few turns fault detection scheme utilizing frequency-
domain-based techniques. They are not as popular as the schemes men-
tioned in the previous paragraph. However, most of them are relatively new 
concepts and further research is required for their improvement. They will 
be discussed next.

6.3.2.1   Detection of Stator Faults Using External Flux Sensors

The earliest work on stator fault detection using external flux sensors was 
reported on by Penman et al. [21]. It was later experimentally proven by 
Penman et al. [22]. The basis of the stator fault detection using this approach 
lies in the fact that in an ideal machine, the axial flux of the machine is zero. 
In the presence of small machine inherent asymmetries they are still small. 
However, a stator fault causes large asymmetry and this produces compo-
nents such as

 
= ± −
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in the axial flux, where k is the order of the time harmonic, n the order of the 
shorted coil space harmonic, s the slip, p the number of pole pairs, and f the 
supply frequency. Using k =1 and n =1,2 one could compute these frequen-
cies as 36.24, 48.12, 71.88, and 83.76 Hz. The last three of these were shown 
to increase under stator fault when tested on a 200 hp, 50 Hz, 8 pole slip-
ring induction motor. A large coil with around 300 turns on a Plexiglas for-
mer was mounted concentrically around the shaft to detect the fault. Fault 



117Fault Diagnosis Using Frequency Domain Techniques

location was detected using four smaller symmetrically mounted coils of 
about 100 turns each on a plastic former and also mounted on the shaft.

Recently external flux sensors have been shown to diagnose stator faults 
even in variable speed drives using an 11 kW, 50 Hz, 4 pole squirrel-cage 
induction motor [23]. Some new frequency components as given by
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have been detected in the axial flux, where ν is the order of the time har-
monic, R is the number of rotor bars, γ = 0,1,2,3..., the order of rotor space 
harmonic, s the slip, p the number of pole pairs, and f the supply frequency. 
Similar frequency components are well known to be present in case of eccen-
tricity faults of induction motors. Therefore, confusion may arise as to what 
type of fault is being detected. Additionally, none of these schemes have 
been shown to be immune to voltage unbalance.

6.3.2.2   Detection of Stator Faults Using Line Current Harmonics

One of the earlier publications that discussed the line harmonic current 
increase due to stator faults also discussed components similar to Equation 
(6.39) and Equation (6.40) being found due to rotor faults in the line current 
[24]. According to Stavrou et al. [24], the stator current harmonics that are 
expected to vary due to stator inter-turn fault, and have their origins in stator 
current, are given by
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and those that have their origins in rotor current are given by
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Here j j i i k, , ,rt sa rt st,  are integers. The subscripts sa,rt,st are related to satura-
tion, rotor and stator.

Interestingly, the third harmonic in the line current was one of the com-
ponents that was shown to increase under fault in the study by Henao 
et al. [23] and was expected to show increase in the study by Stavrou et al. 
[24]. However, further investigation into the cause of this harmonic and 
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related experimental results regarding its increase under stator fault have 
been completed [25–27]. Joksimovic and Penman showed that the negative 
sequence current interacts with the fundamental slip frequency current in 
the rotor conductors to produce torque pulsating at twice the line current 
frequency [25]. The consequent speed ripple caused flux density components 
at three times the line current frequency with respect to stator. This induced 
the third harmonic in line current. A more recent paper reports detection of 
third harmonic component in line current as a signature for stator fault [26]. 
It was attributed to the third harmonic present in the supply voltage and 
also to inherent machine asymmetry and voltage unbalance. While there is 
no doubt that the third harmonic voltages would manifest themselves in the 
line current of the machine, the degree to which these harmonics are nor-
mally present in line current are much larger than the voltages themselves 
[27]. It was further pointed out by Nandi that the fundamental frequency 
reverse rotating field (caused by fundamental frequency voltage unbalance 
and constructional asymmetry of the machine) interacts with the funda-
mental of the saturation-induced specific permeance function to produce the 
large third harmonic current, due to the presence of a matching pole pair 
associated with the third harmonic flux density component [27]. This can be 
clearly seen from the simulated plots in Figure 6.7.
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FIGURE 6.7
Simulated line current in the b phase of a 2.2 kW, 4 pole, 460V, 60 Hz induction motor with 
saturation when healthy (top), with 5% voltage unbalance (middle), and with 5 turns’ fault in 
phase a. (From S. Nandi, “A detailed model of induction machines with saturation extend-
able for fault analysis,” IEEE Transactions on Industrial Application, vol. 40, no. 5, pp. 1302–1309, 
September/October 2004. With permission.)
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6.3.2.3   Detection of Stator Faults Using Terminal 
Voltage Harmonics at Switch-Off

The effect of voltage unbalance is naturally absent right from the moment 
it is switched off. However, due to the residual flux in the machine, current 
still flows in the rotor bars and also in the shorted coils in the stator. This 
fact has been utilized to detect the stator fault using rotor slot harmonics and 
later the more generic triplen-related harmonics [28]. According to Nandi 
and Toliyat [28], the voltage components induced by the shorted coil in the 
terminal voltage to detect is given by

 = ±f k R p f[ ( / ) 1]v off  (6.43)

where k=1,2,3... and foff  is the frequency of the decaying stator voltage 
after switch-off and is proportional to the gradually diminishing speed 
of the induction machine. Figure 6.8 shows the simulated and Figure 6.9 
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FIGURE 6.8
Simulated, normalized line voltage spectra of a 3 ph, 3 hp, 60 Hz, skewed, 44 bar, 4 pole induc-
tion motor under healthy (top), voltage unbalance (middle), and 5 turns fault in phase a (bot-
tom) at switch-off.
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the experimental results respectively for a 2.2 kW, 44 bar, 4 pole 60 Hz 
machine. The 23rd harmonic was already present in the spectrum due to 
the stator winding and the flux pole pair matching. Hence the 21st har-
monic was monitored. The faulty coil essentially produces all integral 
pole pairs and hence the 21st harmonic was induced in the voltage only 
under fault.

It was shown later by Nandi [29] that the odd triplen harmonics also 
showed increase with stator faults due to the presence of residual saturation 
given by

 = =f nf n3 , 1, 3, 5...v off  (6.44)

where n = 1,3,5.... In this case also the odd triplen harmonics are induced 
as the matching pole pairs are present only under fault. These harmonics 
are produced in the flux by the interaction of air-gap magnetomotive force 
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FIGURE 6.9
Experimental, normalized line voltage spectra of a 3 ph, 3 hp, 60 Hz, skewed, 44 bar, 4 pole 
induction motor under healthy (top), unbalanced (middle), and faulty with 5 turns’ fault in 
phase a (bottom) at switch-off.
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(MMF) and saturation-related permeance components. Some simulation and 
experimental results are provided in Figure 6.10 and Figure 6.11. Detailed 
experimental results showed that faults with three turns and above under 
no load and two turns and above under full load could be unambiguously 
detected using this scheme.

Similar harmonics show up in case of reluctance synchronous motors 
(RSMs) also [30]. Figure 6.12 shows the results for a 1.5 hp, 460V RSM.

6.3.2.4   Detection of Stator Faults Using Field Current and Rotor 
Search Coil Harmonics in Synchronous Machines

Recently it was observed that due to the inherent asymmetry present in the 
field winding of the synchronous machines, harmonics of the form

 = ± =f k p f k[ (1/ ) 1] , 1, 2, 3...r  (6.45)

get induced in the field current. However, out of these only those harmonics 
not given by

 …= ± =f n f n[ 1] , 1, 5,7,11,13n  (6.46)
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FIGURE 6.10
Simulated line voltage (ab) spectrum at switch-off of a saturated induction machine under 
healthy (top), unbalanced (middle), and with 5 turns fault in phase a (bottom).
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Experimental line voltage (ab) spectrum at switch-off of a RSM under unbalance (top) and with 
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Experimental line voltage (ab) spectrum at switch-off of a saturated induction machine under 
healthy (top), unbalanced (middle), and with 5 turns fault in phase a (bottom).
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can be considered, since harmonics given by Equation (6.46) can appear 
under balanced voltage (obtained with negative sign in Equation 6.46) as 
well as unbalanced voltage (obtained with positive sign in Equation 6.46) 
conditions. Since ideally the field coils can accept harmonics in the flux 
with only a certain number of pole pairs, the increase of the fault sig-
nature harmonics did not show sufficient increase for a low number of 
faulty turns and certain operating conditions. This is mostly due to the 
fact that these harmonics were induced due to inherent asymmetry of the 
field winding. However the rotor search coil, by construction, was capable 
of accepting harmonics of any integral pole pair number from the field 
current. Thus harmonics induced in the search coil can be used to detect 
even one turn fault under any operating condition [31]. Illustrative simula-
tion and experimental results are shown in Figure 6.13 and Figure 6.14. HB 
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FIGURE 6.13
The 150 Hz component in the field current of a 2 kW, 4 pole, 60 Hz, 208V, synchronous motor, 
under no-load (top), half-load (middle), and full-load (bottom), 0.8 lagging power factor condi-
tion (experimental). 150 Hz can be obtained by using = = =k p f3, 2, 60  and the positive sign 
before 1 in Equation (6.45).
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implies healthy balance, HU is healthy unbalance, and T1–T4 implies one 
turn to four turns short.

6.3.2.5   Detection of Stator Faults Using Rotor Current and Search Coil 
Voltages Harmonics in Wound Rotor Induction Machines

During an inter-turn fault the stator has a shorted loop (can thus be treated 
as a single-phase winding) carrying current at supply frequency that gener-
ates two counter-rotating MMF waves [32]. The MMF produced by the asym-
metric stator carrying three-phase balanced voltage can be given as

 = ϕ ± ω + γF A k tcos( )sa sa 1 1  (6.47)
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FIGURE 6.14
The 90Hz component in the rotor search-coil of a 2 kW, 4 pole, 60 Hz, 208V, synchronous motor, 
under no-load (top), half-load (middle) and full-load (bottom), 0.8 lagging power factor condi-
tion (experimental). 90 Hz can be obtained by using = = =k p f3, 2, 60  and the negative sign 
before 1 in Equation (6.45).
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where k = 1, 2, 3… corresponds to space harmonic poles. Considering the spe-
cific permeance function (P0) the flux density produced by this MMF, with 
respect to stator, can be given as

 = ϕ ± ω + γB A P k tcos( )sa sa 0 1 1  (6.48)

With respect to rotor, this flux density can be given as

 = ′ϕ + ω ± ω + γB A P k k t tcos( )ra sa 0 1 1  (6.49)

Now substituting ω = − ωs
p

(1 ) 1  in Equation (6.49), we can have

 
= ′ϕ + − ±









ω + γ








B A P k

k
p

s tcos (1 ) 1ra sa 0 1 1  (6.50)

The term associated with t in Equation (6.50) gives the frequency compo-
nent fr that can used for detection as

 
= − ±









f
k
p

s f(1 ) 1r 1  (6.51)

For example, the frequencies that will be induced in the rotor circuit due 
to a fault in stator winding when a doubly fed induction generator (DFIG) is 
running at s = 0.25, f1 = 60 Hz, p = 2 and different values of k are expressed 
in Table 6.1 using Equation (6.51). As seen from Table 6.1, several frequencies 
can be induced as a result of the fault. Unfortunately, many of the compo-
nents given by Table 6.1 can be present even under healthy conditions and 
hence cannot be treated as reliable indicators of the fault.

Hence a detailed simulation study was conducted and compared with 
experimental results. Some of the very prominent components were 82.5 Hz 
for k = 1 and 127.5 Hz for k = 3, which arises due to asymmetry of the machine 
as can be seen from the simulated plots in Figure 6.15. Also the components 

TABLE 6.1

Stator Fault Frequencies Induced in Rotor, s = 0.25

k 1 2 3 4 5 6 7 8 9

fr (Hz) 82.5 105 127.5 150 172.5 195 217.5 240 262.5
37.5 15 7.5 30 52.5 75 97.5 120 142.5

k 10 11 12 13 14 15 16 17 18
fr (Hz) 285 307.5 330 352.5 375 397.5 420 442.5 465

165 187.5 210 232.5 255 277.5 300 322.5 345
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FIGURE 6.15
PSD of a simulated DFIG connected to balanced load with symmetrical rotor winding (top), 
symmetrical rotor winding subjected to 4-turn fault (middle), and asymmetrical rotor winding 
(1 reduced turn in one phase) subjected to 4-turn fault (bottom).
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related to k = 3 showed better promise as triplen-space-related harmonics 
seem more affected by asymmetry.

The model with one turn rotor asymmetry was further explored for unbal-
anced load and different fault levels. As can be seen from Figure 6.16, unbalanced 
load (10% on stator A phase) does not affect the result to a great extent. Also, the 
fault signature increased in proportion with the number of faulted turns.

The experimental results (Table  6.2) showed more consistent results for 
detection when rotor line current space vector was used rather than individ-
ual line current. The current space vector actually gave comparable results or 
even better results (at higher slip) with the rotor search coil.

The detection scheme was implemented on-line using the scheme shown 
in Figure 6.17. It worked quite reliably even down to two turns fault level, 
which can be detected within approximately 2 seconds (includes tripping 
signal to circuit breaker) (Figure 6.18). The scheme worked even under tran-
sient condition (Figure 6.19) quite reliably.
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FIGURE 6.16
Simulation variation of fault spectra of rotor current frequency 127.5 Hz (k = 3) for slip 0.25 
under no-load, half-load, and full-load, with varying fault severity. HB implies healthy bal-
anced load, UB implies unbalanced load, 1T–4T implies fault levels from 1–4 turns.

TABLE 6.2

Comparison of Signal-to-Noise Ratio (Given by the Difference between the Faulty 
and the Balanced Healthy Signature) for Fault Signature Frequency Component 
Power Level for Different Severity of Fault under Full-Load Condition

Slip 0.25 0.25 0.25 0.25 0.44 0.44 0.44 0.44

Number of Turns Faulty 1T 2T 3T 4T 1T 2T 3T 4T
Search Coil Voltage 1.73 9.05 14.5 18.02 0.03 0.52 6.92 9.29
Rotor Phase Current –4.47 –2.68 3.46 8.07 –4.93 –3.59 1.29 6.58
Rotor Current Vector 3.81 3.70 10.92 14.70 1.18 1.75 5.28 11.52
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6.3.3   Detection of Rotor Faults

Unlike a stator inter-turn fault, the rotor bar fault is an open circuit fault. Also, 
unlike stator inter-turn fault, it often does not lead to a catastrophe within 
a short period of time. Either rotor bars or end-rings may be open circuited. 
However, since the bars are typically not insulated, bar breakage at the initial 
stages may not be detectable due to the presence of interbar currents [33]. 
Also this type of fault can be detected only under loaded condition, since 
under no-load the rotor current is almost zero. Although many techniques 
to detect these faults exist, unlike stator inter-turn faults, detection of signa-
ture frequency components in the line current is the most common way to 
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Various signals of the fault detection scheme, DFIG operating at half-load during a speed 
change, fault severity is 2-turn, fault detection time is 1300 msec.
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detect these faults. Some of the different frequency-domain-based methods 
are discussed next.

6.3.3.1   Detection of Rotor Faults in Stator Line 
Current, Speed, Torque, and Power

When a rotor bar is broken, there is an increase in the current distribution 
in the two bars adjacent to the broken rotor bar [34]. This can be deemed as 
current flowing in a single-phase winding, and therefore the double revolv-
ing field theory used for the analysis of single-phase induction motors can be 
applied. The anomalous MMF produced by these two bars with a rotor bar 
broken between them can be expressed in rotor coordinates as

 = ′ ± ωF F nx s tcos( )s m  (6.52)

where x’ is the space angle with respect to rotor, ω is the supply frequency in 
rad./sec., s is the slip, n = 1, 2, 3….

MMF components as described by Equation (6.52) will induce voltages in 
the stator winding of a regular three-phase motor given by

 

= + −
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±
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
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 ω







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v v nx n

s
p

s tcos
1

s m  (6.53)

only for n=p,5p,7p,11p,13p... as they alone can match the stator pole pairs. x’ is 
the space angle with respect to the stator and = ′ + ω−x x ( )sp1 . Therefore, gen-
eralized components in the current spectrum can be given as

 ( )= − ± =f k s s f k(1 ) , 1, 5,7,11,13...s  (6.54)

with k=1 and the negative sign before s, the oft-quoted (1−2s)f component can 
be found.

The production of the other oft-quoted (1+2s)f is more subtle is nature. The 
sf component of the current anomaly in the rotor interacts with the air-gap 
flux and produces a 2sf component in the torque and hence in the speed. 
This induces a phase modulation of ±2sf in the stator flux that produces both 
(1−2s)f and (1+2s)f components in the stator current. This phenomenon gives 
rise to a sequence of additional current components at frequencies given by

 = ± =f ms f m(1 2 ) , 1, 2, 3....b  (6.55)

Since the speed ripple is a secondary effect, (1−2s)f produced this way will 
affect the spectrum much less than that produced via the method described 
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earlier. However since the (1+2s)f component is produced by the speed ripple 
effect alone, inertia of the motor drive affects this signal much more.

Figure 6.20 [35] shows the simulated spectra of a 44-bar machine that has 
developed cracks in the bar or end-rings. Both current and speed spectra 
show the characteristic fault signatures. It also clearly shows that a broken 
end-ring is a more severe fault. However, in actual machines the signals may 
not be so distinctive because of interbar current and inherent bar-to-bar 
asymmetry that inherently produces the sideband components. Figure 6.21 
[35] shows such an experimental plot for a healthy machine and one to four 
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FIGURE 6.20
Simulated, normalized plots of phase a current spectra for the healthy (top row); with two 
cracked bars (middle row) around fundamental (left) and 5th and 7th harmonic components of 
line current (right); with two cracked end-rings (last row) around fundamental component of 
current (left) and speed. (From S. Nandi, “Fault analysis for condition monitoring of induction 
motors,” PhD dissertation, Texas A&M University, May 2000. With permission.)



132 Electric Machines: Modeling, Condition Monitoring, and Fault Diagnosis

30 40 50 60 70 80 90
–100

–80

–60

–40

–20

0

30 40 50 60 70 80 90
–100

–80

–60

–40

–20

0

30 40 50 60 70 80 90
–100

–80

–60

–40

–20

0

30 40 50 60 70 80 90
–100

–80

–60

–40

–20

0

30 40 50 60 70 80 90
–100

–80

–60

–40

–20

0

PS
D

 (d
B)

PS
D

 (d
B)

PS
D

 (d
B)

PS
D

 (d
B)

PS
D

 (d
B)

FIGURE 6.21
Experimental plots of normalized phase a current spectra of healthy machine (top) and with 
one to four rotor bars broken (next four plots). The ± sf1 2  components are right next to the 
60 Hz fundamental. (From S. Nandi, “Fault analysis for condition monitoring of induction 
motors,” PhD dissertation, Texas A&M University, May 2000. With permission.)
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rotor bars broken. The experimental speed spectra of the healthy and the 
four broken rotor bar machines are shown in Figure 6.22 [35]. The broken 
rotor bar machine is shown in Figure  6.23 [35]. The bars were broken by 
drilling holes. Due to high inertia of the motor-load system, the (1+2s)f com-
ponent shows little change in Figure 6.21 [35] in spite of large speed ripple. 
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FIGURE 6.22
Experimental plots of normalized speed spectra of healthy machine (top) and with four rotor 
bars broken (bottom). (From S. Nandi, “Fault analysis for condition monitoring of induction 
motors,” PhD dissertation, Texas A&M University, May 2000. With permission.)

FIGURE 6.23
Experimental machine. (From S. Nandi, “Fault analysis for condition monitoring of induction 
motors,” PhD dissertation, Texas A&M University, May 2000. With permission.)
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According to Filippetti et al., the sum of the values of the (1−2s) f and (1+2s)f 
components would give a better indication of load severity [36]. It has been 
proven and shown conclusively that the 2sf component in the motor instan-
taneous power also can be used to detect rotor bar faults [37].

6.3.3.2   Detection of Rotor Faults in External and Internal Search Coil

Rotor bar faults can also be detected by the presence of components such as

 = − ±f s p s f((1 )/ )sc  (6.56)

in external search coils. They can be shown to be present from Equation (6.53) 
for n=1. They were predicted for the first time by Kliman et al. [34], and later 
shown conclusively by Elkasabgy et al. [38]. Elkasabgy et al. also used internal 
search coils on the stator tooth tip as well as on the yoke. The yoke coil showed 
stronger results for the same number of broken rotor bars. Detection of these 
faults is also possible by spectral analysis of shaft flux [21] or more generally 
axial leakage flux (mentioned earlier with reference to stator fault detection), 
which is monitored by using an external search coil wound around the shaft 
of a machine. The components to look for are given by Equation (6.55). Interbar 
current induced axial flux in the presence of broken rotor bar faults can also 
be measured using shaft-mounted search coils at frequencies given by ±ksf,k = 
1,3,5...[39]. The coil has to be mounted near the end where the rotor bars have 
broken.

6.3.3.3   Detection of Rotor Faults Using Terminal 
Voltage Harmonics at Switch-Off

Like stator faults, rotor faults also have been reported to be detectable 
using odd harmonics in the motor terminal voltage at motor switch-off 
[40]. However, this technique suffers from the fact that, for good detection, 
the broken rotor bars should be at the vicinity of peak of the current at the 
switch-off instant. Otherwise the fault may not be detected. Both simulation 
and experimental results are shown for a 3 hp, 60 Hz, 4 pole, 460V squirrel-
cage induction motor in Figure 6.24.

6.3.3.4   Detection of Rotor Faults at Start-Up

In many applications it is very difficult to get prolonged periods of steady-
state operations to perform reliable FFT or PSD. Even when they are, 
mechanical vibration caused by nonuniform air-gap may result in a very 
noisy current spectrum. A case in point is an electric or hybrid vehicle run-
ning in a city with frequent starts and stops. Zero-speed conditions were 
employed to overcome the aforementioned problems in detecting rotor faults 
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[41]. If Equation (6.55) is recomputed with m=1,s=1, it can be easily seen that 
detectable frequency with the negative sign

 = −f fb  (6.57)

The negative sequence of this current waveform can be easily located by com-
puting the PSD of the line current space vector. The results can be obtained 
in real-time using a DSP.

6.3.3.5   Detection of Rotor Faults in Presence of Interbar 
Current Using Axial Vibration Signals

Analysis in [42] shows that axial vibration is increased because of increased 
interbar current in the presence of broken rotor bars [42]. The following fre-
quencies are is shown to increase:

 = − + −f q q s q q f{( ) ( )}v b a a b1  (6.58)

 = − − + +f q q s q q f{(2 ) ( )}v a b a b2  (6.59)

The following modulated components given by

 = ± ±f f f f f,m v c v c1 2  (6.60)
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FIGURE 6.24
Top row: Simulated plot of healthy machine (left) and with four broken rotor bars (right). 
Bottom row: Experimental plot of healthy machine (left) and with four broken bars (right). In 
both simulation and experiment the 35th and the 37th harmonic showed substantial increase. 
(From J. Milimonfared et al., “A novel approach for broken rotor bar detection in cage induction 
motors,” IEEE Transactions on Industrial Applications, vol. 35, no. 5, pp. 1000–1006, September/
October 19. With permission.)
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also showed increase. Here q q,a b  are the standard space harmonics (1, 5, 7, 11, 
13, …) of an induction machine, f is the supply frequency, fc  is the rotational 
frequency in hertz. With = = =q q f Hz1, 7, 49a b c , for a 2 pole, 50 Hz machine, 

=f Hz294v1  with s=0.02 and the modulation frequencies are 245 and 353 Hz.

6.3.4   Detection of Eccentricity Faults

Eccentricity faults are related to deformation of air-gaps of an electric 
machine. Hence it essentially affects the flux density of the motor or gen-
erator. Flux density affects currents indirectly and the mechanical vibra-
tion signals directly. Hence mechanical vibration signals still remain a very 
dependable means of detecting eccentricity. However, in a large plant with 
many other types of machinery, it may be difficult to pick up the vibration 
signals. Unfortunately, most of the time both current and vibration spectrum 
detection require the knowledge of the rotor or stator slots (does not appear 
on a motor nameplate) to detect the fault-related spectrum. The problem 
arises when, for some reason, this data is not available. Usually eccentricity 
is a major issue only with large machines, and the manufacturers will usu-
ally have this data readily available for such large machines. Nowadays even 
for small motors, such information is sometimes available on the Web.

6.3.4.1   Detection of Eccentricity Faults Using Line Current Signal Spectra

Flux density in the air-gap of any machine is due to the interaction of machine 
MMF and permeance. While the MMF is the function of time and space har-
monics, the permeance is the function of rotor and stator slots and eccen-
tricity. It can be shown, following that the high stator current components 
arising out of the static, dynamic, or a mixture of both [43–45] can be given as

 
( )= ± −





± ±












f R n
s

p
n n f

(1 )
2ecc d sa ws1

 
 (6.61)

with the associated mode (pole pair) number of

 = ± ± ± ± ± θm R S n n n p n p( 2 )s d sa  (6.62)

where the n is any integer (including 0) and subscripts r,d,sa,ωs,s,θ refer to 
rotor, dynamic, saturation, time harmonic, stator, and space angle (either 
stator or rotor), respectively. At the low frequency level, only the increase 
in mixed eccentricity gives rise to low frequency-related mixed eccentricity 
components [45,46], such as

 
= ± = = −

f f kf k f
s

p
f[ ], 1, 2, 3, ...;

(1 )
ecc r r2  (6.63)

where fr is rotational spped in Hz.
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Sometimes these components can increase when one of the eccentricities 
increase, but to see such an increase the other kind of eccentricity should be 
high enough. Normally dynamic eccentricity is tightly controlled in a new 
motor by total indicated reading (TIR), and total eccentricity level is usually 
kept lower than 10% in order to control the unbalanced magnetic pull (UMP), 
acoustic noise, and mechanical vibration. Also, secondary effects, such as 
speed oscillations due to high dynamic eccentricity, can also give rise to 
these components.

Usually, in literature, a more simplified version of Equation (6.61) (with 
=n 0sa ) is quoted. With both =n n, 0d sa  in Equation (6.61) one arrives at the 

formula of principle slot harmonics (PSH) or rotor slot harmonics (RSH). 
These components, apart from being used to detect only static eccentricity, 
can be employed for sensorless speed measurements of induction motors 
also [44,45]. However, in some of the motors where the number of funda-
mental poles (2p) is an exact divisor of the number of rotor bars according to 
Equation (6.64),

 = ± ± ± = =R p m q r m q r or2 [3( ) ] , 0,1, 2, 3..., 0 1  (6.64)

these components may not show sufficient increase for static or dynamic 
eccentricity. These components will, however, be strong only when a 
considerable amount of both the eccentricities are present. The relation-
ship between the pole pairs and rotor bars to be a good indicator of 
static or dynamic eccentricity, is a modified form of Equation (6.64) and 
is given by

 = ± ± ±R p m q r2 [3( ) ] 1  (6.65)

This distinction was not made very clear by Cameron et al. [43]. While 
increase of static eccentricity increased the PSH in the 28 bar, 4 pole machine 
to an appreciable extent only after it was increased beyond 60%, most of the 
dynamic-eccentricity-related components increased in this machine almost 
linearly up to 40% increase in static eccentricity. This led to the conclusion 
by researchers that dynamic eccentricity could also be a by-product of static 
eccentricity. This was most probably due to increase in rotor bounce caused 
by UMP as was shown later by Thomson et al. [47]. Since 28/4 = 7, the num-
ber of fundamental poles is an exact divisor of the number of rotor bars, and 
hence it does not fall in the category defined by Equation (6.65). Therefore 
the observed increase in the PSH and the dynamic eccentricity components 
by Cameron et al. [43] can be explained as an increase in mixed eccentricity. 
In fact, the high frequency components similar to Equation (6.61) may not be 
very strong in machines that do not fall in the category defined by Equation 
(6.64) and Equation (6.65).
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To illustrate some of the statements made in the previous paragraph, sim-
ulation studies were conducted on machines with eccentricity but without 
slotting permeance effect [44,45,48]. However, since each loop of the rotor was 
individually modeled, the rotor current distribution carried the rotor bar 
information implicitly (through the rotor current MMF’s space harmonics) 
and therefore could produce the PSH and the other eccentricity-related har-
monics quite clearly. Figure 6.25 and Figure 6.26 show these results. Slotting 
effects were later included in another study and did not show much change 
in the PSH results under concentric condition of the machine. From this, it 
was concluded that the rotor MMF effect has considerable effect on the mag-
nitude of these harmonics.
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FIGURE 6.25
Simulated, normalized line current spectrum of a 4 pole, 43 bar, 60 Hz induction motor under 
healthy (top), with 41% static eccentricity (middle) and 20% dynamic eccentricity (bottom). Slip 
= 0.029. This motor conforms to Equation (6.65).
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and 21% dynamic eccentricity (or mixed eccentricity) around fundamental, with mixed eccen-
tricity around PSH (bottom). Slip = 0.022.
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Experimentally similar effects also showed up [44,45,49]. When a 39 slot, 
2 pole machine was tested it showed little PSH (Figure 6.26). So did a 10 pole, 
94 bar machine (Figure  6.28). However, a 4 pole, 44 bar machine showed 
large PSH. Also, its low-frequency as well as high-frequency-related com-
ponents did not show much change, with 39% static eccentricity and inher-
ent dynamic eccentricity (Figure 6.29). But with around 41% static and 21% 
dynamic eccentricity introduced in a 4 pole, 28 bar motor, which falls in 
the same category as the 4 pole, 44 bar machine, most of the predicted low 
as well as high frequency components showed marked changes as illus-
trated in Figure 6.30 and Figure 6.31. Curiously, unlike results described by 
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FIGURE 6.28
Experimental, normalized line current spectrum of a 10 pole, 94 bar, 60Hz induction motor 
under half load with s = 0.00621.
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Experimental, normalized line current spectrum of a 300 hp, 2 pole, 39 bar, 60 Hz induction 
motor under full load with s = 0.0073 (top) (PSH1 = 2262.93 Hz, PSH2 = 2382.92 Hz) and no load 
(bottom) s = 0.0013(PSH1 = 2276.96 Hz, PSH2 = 2396.96 Hz).
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FIGURE 6.30
Experimental, normalized spectra of the line current of machine under load around the fun-
damental. Upper: healthy, lower: with mixed eccentricity (41% SE, 21% DE). R = 28. Slip = 0.022.
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Cameron et al. [43], the PSH did not show any noticeable change. This could 
be because results obtained by Cameron et al. were for a very high value 
(80%) of static eccentricity. Also, the difference in results could be due to dif-
ferent skewing of slots. Skewing reduces these components to a large degree 
[50]. However, when these experiments were repeated on a 45 bar, 4 pole, 60 
Hz machine, which conform to Equation (6.65), the high-frequency-related 
static eccentricity components [49] clearly showed up (Figure 6.32).

6.3.4.2   Detection of Eccentricity Faults Based on Nameplate Parameters

It is clear from the discussion in the previous section that it is very difficult to 
detect eccentricity without the knowledge of rotor slots if high-frequency sig-
nals such as Equation (6.61) are used to detect eccentricity faults. Although it 
is true that with significant eccentricity Equation (6.63) will in general show 
increase, the real cause of such an increase may not be clear. It was shown by 
Thomson et al. that static-eccentricity-caused UMP resulted in rotor bounce 
[47]. The ensuing dynamic eccentricity caused not only an increase in mixed-
eccentricity-related signals given by Equation (6.63) but also increased 
dynamic-eccentricity-related signals given by Equation (6.61). Hence, to iso-
late the kind of eccentricity, both Equation (6.61) and Equation (6.63) need to 
be looked at. Unfortunately, rotor slot number is not a nameplate parameter 
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Experimental, normalized spectra of the line current of machine under full load around the 
PSH. Upper: healthy, lower: with mixed eccentricity (41% SE, 21% DE). R = 28. Slip = 0.022. 
Lower frequency component and upper frequency component (L&U) show the other dynamic 
eccentricuty related components.
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and its value may not be easily obtainable. Also, inherent eccentricity can 
actually mask eccentricity faults by reducing the magnitudes of components 
given by Equation (6.63). This is clearly evident from Figure 6.28 where no 
appreciable change is visible, even with the introduction of substantial static 
eccentricity. Hence a baseline value of the low frequency sideband is always 
required. Also pole pair, rotor slot, and skewing play a significant role in 
obtaining a good spectra given by Equation (6.61).

Recently, a new scheme proposed by Nandi et al. took a fresh look at some 
of the voltage harmonics at the terminal voltage right after motor switch-off 
[49]. Analysis showed that only static eccentricity will cause a change in har-
monic components given by

 
=





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= ω
π
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n
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pf f n,
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, 1, 2, 3...e r r
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whereas only dynamic eccentricity will cause a change in harmonic compo-
nents given by
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FIGURE 6.32
Comparison of line current spectra of a healthy (dotted) and eccentric machine for the confir-
mation of the presence of static eccentricity. The spectral peaks circled (from left to right) are 
1384Hz (nws = 1) and 1504 (nws = 3) Hz, respectively.
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In both Equation (6.66) and Equation (6.67), p is the number of pole pairs, 
ωr is the speed in radians per second, and kd  is the dynamic eccentricity 
induced harmonic number. It was observed that static eccentricity pre-
served the original healthy spectral pattern and caused changes in all the 
odd harmonics described by Equation (6.66), except for an increased noise 
floor near the prominent slot harmonics. Due to the reverse rotating field 
caused by static eccentricity, some odd triplen harmonics also changed more 
that dynamic eccentricity. Dynamic eccentricity destroyed the original spec-
tral pattern (by flattening it out) near the prominent slot harmonics due to 
increase in some of the even harmonics, apart from the increase of noise 
floor around these harmonics. Figure 6.34 and Figure  6.35 clearly show 
these trends in a 4 pole, 44 bar, 7.5 hp motor. The main advantage of this 
technique is (1) the detection of ecccentricity faults in individual form, even 
in machines that do not show these signatures in line current spectrum in 
steady state, (2) to detect the main contributory factor in case of mixed eccen-
tricity, and (3) complete absence of UMP. Since the stator poles are absent 
after switch-off, the magnetic pull that exists between the stator and rotor 
vanishes. This means the static eccentricity induced dynamic eccentricity 
(due to UMP-caused rotor bounce), as reported by Thomson et al. [47], will 
be absent. Thus, the problem will be correctly diagnosed as static eccentric-
ity and not as mixed eccentricity using the proposed technique. Even the 
high frequency spectrum results leading to anomalous identification as 
reported by Thomson et al. can be corrected with this method. No other 
existing method can claim this advantage.
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FIGURE 6.33
Change in low frequency sidebands given by (4) with inherent dynamic eccentricity and dif-
ferent levels of static eccentricity in a 4 pole, 44 bar, 7.5 hp motor. 0% static eccentricity implies 
inherent level of static eccentricity.
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FIGURE 6.34
Static eccentricity related terminal voltage spectrum after switch-off. 20% (top), 40% (middle), 
and 60% (bottom). Dotted is healthy spectrum. The spectral lines inside the encircled area 
from left to right correspond to 17th, 19th, 21st, and 23rd harmonics. The spectra are normal-
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Dynamic eccentricity related terminal voltage spectrum after switch-off. 20% (top), 40% (mid-
dle), and 60% bottom. Dotted is healthy spectrum. The spectral lines inside the encircled area 
from left to right reflect changes to 20th, 22nd, and 24th harmomics. The spectra are normal-
ized with respect to fundamental (pfr) at 60.24 Hz (at 0 dB).
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6.3.4.3   Detection of Eccentricity Faults Using 
Mechanical Vibration Signal Spectra

The mechanical vibration frequency components in a spectrum is given by 
the time-frequency components that appear in the force wave distribution 
given by

 
σ θ = θ

µ
t

B t
( , )

( , )
2

2

0
 (6.68)

Thus, using a generalized form of B(θ,t) [43], the following frequencies can 
increase in the mechanical vibration spectrum due to eccentricity:
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(1 )
2sv rt d sa  (6.69)

with an associated mode number (similar to pole pair number) of

 = ′ ± ′ ± ′ ± ′ ± ′ ± ′θm n R n S n n n p n p2rt st s d sa  (6.70)

where the n’ is any integer (including 0) and the subscripts rt,d,sa,ω,st,θ refer 
to rotor, dynamic, saturation, time harmonic, stator and space angle (either 
stator or rotor), respectively. These frequency components are usually visible 
for a low mode number. For example, the pole number related to the 886 Hz 
component is 2.

When both static and dynamic eccentricity is present, using another form 
of B(θ,t) not involving rotor slots [46], the increase of the following low fre-
quency components also can be predicted:

 = ±f f f2lv r  (6.71)

where f and fr are the supply and rotational frequencies. For a certain dynamic 
eccentricity, the +f f2 r  component increases more sharply with static eccen-
tricity than the −f f2 r  component. The 2f component is also expected to rise 
with the increase of only static eccentricity.

6.3.4.4   Detection of Inclined Eccentricity Faults

So far our discussion was limited to a uniform level of eccentricity. 
However, it is quite possible that the level of eccentricity may not be uni-
form. For example, the load-side bearing in a motor may encounter more 
wear and tear than the drive-end bearing, leading to nonuniform eccentric-
ity. The effect of inclined eccentricity was studied extensively on a 4 pole, 
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45 bar induction motor [51]. This motor conforms to Equation (6.65). It was 
observed that the increase in the spectral components due to inclined eccen-
tricity is similar to that which would be produced by a uniform eccentricity 
equal to the average value of the inclined eccentricity. Also only one of the 
PSH arising out of the pole pair matching showed increase. Most important, 
if the eccentricity at one end is equal and opposite to the eccentricity at the 
other end, then the eccentricity may not be detectable at all, even though 
a stator–rotor rub may be imminent. Subsequently, even the mechanical 
vibration signals remained inconclusive in detecting the equal but opposite 
eccentricity. Table 6.3 and Table 6.4 list the current spectra results under dif-
ferent load conditions.

6.3.5   Detection of Faults in Inverter-Fed Induction Machines

Low-order harmonic components that appear in the line voltage of inverters 
supplying induction motors can provide additional information on the fault 
of induction machines. This was illustrated very clearly by Akin et al. [52] 
for bearing, eccentricity, and broken rotor bar faults. The fault frequencies to 

TABLE 6.3

Experimental, Normalized Amplitude of Eccentricity-Related Harmonics 
Arising out of Pole Pair Matching

Amplitude of Eccentricity-Related Harmonics for Inclined Condition

Load Level 50%, 50% 45.78%, 65.06% Healthy 50%, –50%

0% –49.26 dB –50.74 dB –61.01 dB –62.7 dB
25% –48.97 dB –49.55 dB –64.6 dB –61.08dB
50% –47.22 dB –48.27 dB –63.8 dB –61.24 dB
75% –46.9 dB –47.38 dB –62.42 dB –61.7 dB
100% –46.88 dB –47.28 dB –62.04 dB –61.9 dB

TABLE 6.4

Experimental, Normalized Amplitude of Eccentricity-Related Harmonics 
Arising out of Asymmetry

Amplitude of Asymmetry-Related Harmonics for Inclined Condition

Load Level 50%, 50% 45.78%, 65.06% Healthy 50%, –50%

0% –51.3 dB –52.2 dB –55.94 dB –57.45 dB
25% –53.7 dB –55.4 dB –56.54 dB –56.6 dB
50% –55.2 dB –58.9 dB –59.4 dB –58.55 dB
75% –55.9 dB –57.38 dB –59.6 dB –59.2 dB
100% –55.8 dB –57.28 dB –60.2 dB –59.25 dB
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be detected can be simply derived by replacing the fundamental frequency 
with these harmonics in the equations describing these frequencies. For 
example, if Equation (6.63) is to be used for these low frequency spectra for a 
harmonic of order h, then it is to rewritten as

 = ± = =f hf kf h k[ ], 1, 3, 5,7... 1, 2, 3,...ecc s r2  (6.72)

where fs  is the fundamental supply harmonic. Figure 6.36 illustrates the concept.
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Fault Diagnosis of Electric Machines 
Using Model-Based Techniques

Subhasis Nandi, Ph.D.
University of Victoria

7.1  Introduction

Fault detection implies a two-valued outcome depending upon the normal or 
abnormal operating characteristics of a system [1]. Fault diagnosis is the pro-
cess that actually decides the cause, nature, and location of a fault. Incipient 
fault diagnosis may even be the preemptive process to minimize damage due 
to faults. To make a fault diagnosis scheme incipient, it requires monitoring the 
system at every instant. The most logical way to implement this is to compare 
the system outputs with set reference values. This could be based on three pos-
sible ways: (1) signal, (2) knowledge, and (3) model. In a signal-based approach, 
the outputs are compared with average or limit values. It is very simple to 
apply. However, its use for early detection or trend monitoring is very limited.

Knowledge-based methods usually depend upon qualitative process 
structure, functions, and qualitative models to predict fault. Model-based 
techniques use analytical models of the process to generate “normal out-
puts” that are compared with the actual process outputs to generate “residu-
als” that are ultimately used for fault detection. A very simple model-based 
fault detection scheme is shown in Figure 7.1 [2]. The analytical models can 
be mathematical models, or generic models using neural networks as shown 
in Figure 7.2 [1], fuzzy logic presented in Figure 7.3 [3], or genetic algorithm. 
These generic models are then trained with healthy and faulty data obtained 
from real systems. Once trained, they can generate the residuals reliably to 
detect faults. As an example, the fault diagnosis and detection scheme for 
induction motor faults shown in Figure  7.2 uses three-phase line voltages 
V t( )NS , currents I t( )NS , and speed ω t( )NS  that are essentially nonstationary. 
Using the present values of voltage, speed, and past current predictions, cur-
rent predicted values of current I tˆ ( )NS  are generated using a multistep ahead 
neural network predictor that has been trained to emulate a healthy motor. 
The residuals r t( )NS  are then formed by comparing the actual values with 
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the predicted values. The residuals r t( )NS  are further processed along with 
the currents I t( )NS  to separate the currents and residuals into their funda-
mental (I t r t( ), ( )f

NS
f
NS ) and harmonic (I t r t( ), ( )h

NS
h
NS ) components using a wave-

let decomposition algorithm. These components are then used to generate 
two decoupled indicators: (1) ( )⋅S , the root mean square value of the normal-
ized harmonics of the residual to detect mechanical faults and (2) ( )⋅−r , the 
negative sequence component of the residual to detect electrical faults. This 
also provides a broad classification of fault category.

Model-based fault diagnosis techniques are finding increasing importance for 
condition-based maintenance (CBM) rather than scheduled or preventive main-
tenance. CBM is perceived as the preferred technique when scheduled mainte-
nance or routine machine replacement is not required. Even for systems where 
scheduled maintenance is desirable, early detection using model-based tech-
niques provides the flexibility to stop operation anytime for preventing cata-
strophic failures and subsequent damages, fatalities, economic, and legal fallout.

In this chapter we will describe simple linear circuit theory based math-
ematical models used to predict electrical machine faults. Other types of 
models using finite element (FE) magnetic circuit equivalents and artifi-
cial intelligence (AI) have been already described in other related chapters. 
Although the models may not always be strictly used the way model-based 
fault diagnosis systems are designed, the insight and information available 
from studying these models can be immense. The inferences derived from 
them have been extensively used to fine-tune signal-based, knowledge-
based, and other types of model-based fault diagnosis techniques. The accu-
racy of these models are usually not very good; hence the users should be 
well aware of their limitations and to what extent they are being used.

Before we deal with electric motors with fault, it is essential that we deal 
with healthy motors. We will start with a discussion about the healthy induc-
tion motor model and then describe how the different types of faults can 
be implemented in them. We will also discuss synchronous machine fault 
models later in the chapter.

Process
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Unknown Inputs

Outcome

Output Input 

FIGURE 7.1
A general model-based fault detection scheme. (From F. Fischer et al., “Explicit modeling of 
the stator winding bar water cooling for model-based fault diagnosis of turbogenerators with 
experimental verification,” Proceedings of the 3rd IEEE Conference on Control Applications, pp. 
1403–1408, August 1994. With permission.)
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FIGURE 7.2
Neural-network-model-based electric motor fault detection. (From K. Kim and A. Parlos, 
“Induction motor fault diagnosis based on neuropredictors and wavelet signal processing,” 
IEEE/ASME Transactions on Mechatronics, vol. 7, no. 2, pp. 201–219, June 2002. With permission.)
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7.2  Model of Healthy Three-Phase Squirrel-
Cage Induction Motor

A squirrel-cage induction motor consists of a stator with a symmetrical multi- 
phase winding and a squirrel-cage with many bars placed at equal distance from 
one another and shorted at the two ends by two circular slip rings [4]. For the 
present case we will consider a three-phase, star-connected, single-circuit stator 
winding with n rotor bars. The model also makes the following assumptions:

 1. The motor is unsaturated.
 2. It has negligible eddy current, hysteresis, friction, and windage losses.
 3. It has insulated rotor bars.

Plant
Input Output

Fuzzy
Identi�cation

Fuzzy
Partial Model

Fuzzy Fault 
Diagnosis

Fuzzy Reference
Model 1

Fuzzy Reference
Model 2

Fuzzy Reference
Model 2

Belief 2

Belief 1

FIGURE 7.3
Fuzzy-logic-based fault diagnosis. (From K. Kim and A. Parlos, “Induction motor fault diag-
nosis based on neuropredictors and wavelet signal processing,” IEEE/ASME Transactions on 
Mechatronics, vol. 7, no. 2, pp. 201–219, June 2002. With permission.)
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Following simple circuit theory principles, with the star junction voltage 
as vs, the instantaneous phase voltage and current relationship for the three-
stator phases can then be written as

 
= + λ +v R i

d
dt

va as as
as

s  (7.1)

 
= + λ +v R i

d
dt

vb bs bs
bs

s  (7.2)

 
= + λ +v R i

d
dt

vc cs cs
cs

s  (7.3)

where the flux linkages are given by

 λ = +
− −

L i L ias as s ar r  (7.4)

 λ = +
− −

L i L ibs bs s br r  (7.5)

 λ = +
− −

L i L ics cs s cr r  (7.6)

and inductance matrices are defined by

 =L L L L[ ]as aa ab ac  (7.7)

 =L L L L[ ]bs ba bb bc  (7.8)

 =L L L L[ ]cs ca cb cc  (7.9)

 �= +L L L L[ ]ar ar ar arn1 2 1  (7.10)

 …= +L L L L[ . ]br br br brn1 2 1  (7.11)

 = +L L L L[ .... ]cr cr cr crn1 2 1  (7.12)

and the stator and rotor currents vectors are given by

 = ′
−
i i i i[ ]s as bs cs  (7.13)

 �= ′
−

+i i i i[ ]r r r rn1 2 1
 (7.14)
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The subscript n + 1 in Equations (7.10) to (7.14) refers to the end-ring. Since 
there are n rotor bars, 2n end-ring segments and 2n nodes, n + 2n – 2n + 1 or 
n + 1 independent voltage loop equations can be written. Also, since in a star-
connected machine

 + + =i i i 0as bs cs  (7.15)

we can eliminate ics from Equations (7.1) to (7.3) and write

	

( )

( ) ( ) ( )

= − = − + − − +

+ − − + + ω
∂

∂θ
+ −

−
−

v v v R i R i i L L L L
di
dt

L L L L
di
dt

L L
i L L

d i
dt

)ab a b as as bs bs bs aa ac ba bc
as

ab ac bb bc
bs ar br

r ar br
r   (7.16)

and

 

( )

( ) ( ) ( )

= − = + + + − − +

+ − − + + ω
∂ −

∂θ
+ −

−
−

v v v R i R R i L L L L
di
dt

L L L L
di
dt

L L
i L L

d i
dt

( )bc b c cs as bs cs bs ba bc ca cc
as

bb bc cb cc
bs br cr

r br cr
r   (7.17)

where θ and ω are the angular position and the speed of the rotor, respec-
tively. This way one state variable and vs can be eliminated in the final solu-
tion. Similarly, for the rotor loops (comprising two bars and two portions of 
the end-rings) we can write

 
= + λ− −

v R i
d
dt

r r r
r

 
 (7.18)

where

 λ = +
− −

L i L ir r r rs s  (7.19)

and
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 =L L L L[ ]rs ra rb rc  (7.22)
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Using Equation (7.15), ics can be eliminated from Equation (7.18) and the 
resulting equation can be written as

 

( ) ( ) ( )

( )
= + − + − + ω

∂ −
∂θ

+ ω
∂ −

∂θ
+

− −
v R i L L

di
dt

L L
di
dt

L L
i

L L
i L

di
dt

r r r ra rb
as

rb rc
bs ra rc

as

rb rc
bs r

r  (7.26)

The electromechanical equation can be written as

 
ω = −J
d
dt

T Tm l
 (7.27)
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where

 
= ∂

∂θ
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and

 

=



















L

L

L

L

sr

ar

br

cr

 (7.29)

 

θ = ωd
dt

 (7.30)

Equations (7.16), (7.17), (7.26), and (7.28) then can be combined in the state-
space form as

 = +
•
x Ax Bu   (7.31)

where

 
= ω θ





−
x i i ias bs r

t

 (7.32)
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0 0
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0ab bc
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 (7.33)

Equation (7.33) assumes that 
−
vr is a null vector since all the rotor loops 

are short-circuited.

 = − −A A A1
1

2  (7.34)

 = −B A1
1   (7.35)
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Additionally, the following assumptions simplify the solution of 
Equation (7.31).

 1. Application of reciprocity theorem and symmetry considerations 
reduces the number of mutual inductance calculations, since all the 
magnetic and electric circuits are considered linear. For a healthy 
machine the stator phase to rotor loop inductances are also simi-
lar except for the phase shift. Also for multipolar machines all the 
inductances repeat after every 360° electrical.

 2. The resistances and leakage inductances of the stator phases are con-
sidered identical. The same is true for rotor bars and end-ring seg-
ments. This is not true, however, in any practical motor. For example, 
the rotor bars, due to blow holes caused during the manufacturing 
process, will show variation in resistance.

 3. Depending upon the solvers used, A1 and parts of A2 can be precom-
puted and stored in memory for different rotor positions. This way 
computation time can be saved, especially when each of the induc-
tance computations involve several terms.

 4. Since the rotor loop inductances and resistances are small, computa-
tional errors can be minimized by scaling them.

The mutual and magnetizing inductances used in the solution of Equation 
(7.31) can be computed by using either the winding function approach (WFA) 
or FE method. However, the FE method of computing the inductance is only 
good if stored inductance data is used, since it is very time consuming. The 
WFA can be used to compute inductances at every iteration if the computa-
tions are fast enough.
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A few simulation results of an unskewed 3 hp, 4 pole, 28 rotor bar machine 
are presented by solving Equation (7.31) using MATLAB. The inductances 
have been recomputed at every iteration. Figure 7.4 shows the unloaded start-
ing transient of the motor. The steady state current and speed under full load 
condition is shown in Figure 7.5. One cycle of rotor current is also shown in the 
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FIGURE 7.4
Simulated starting transients of an unloaded 4 pole, 3 hp induction motor. Speed (top), stator 
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same figure. The computed current for the end-ring is zero under steady-state. 
The computation time for the unloaded motor was around 32 seconds (for 0.8 
seconds simulation time), and 432 seconds (for 10.5 seconds of simulation time) 
on a 3.4 GHz, 1 GB, Pentium 4 machine running on Windows XP.

7.3  Model of Three-Phase Squirrel-Cage Induction 
Motor with Stator Inter-Turn Faults

7.3.1  Model without Saturation

The stator inter-turn fault can be modeled by considering another additional 
stator circuit [5,6]. This additional circuit f can be represented by the follow-
ing equation

 
= +

Λ
R i

d
dt

0 fs fs
fs  (7.38)

with

 Λ = +
− −

L i L if fs fs fr r  (7.39)

where

 =L L L L L[ ]fs ff fa fb fc  (7.40)

 = ′
−
i i i i i[ ]s fs as bs cs  (7.41)

 �= +L L L L[ . ]fr fr fr frn1 2 1  (7.42)

All the stator–stator and stator–rotor mutual inductances will have an 
extra term due to this shorted loop. Thus

 =L L L L L[ ]as af aa ab ac  (7.43)

 =L L L L L[ ]bs bf ba bb bc  (7.44)

 =L L L L L[ ]cs cf ca cb cc  (7.45)
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Equations (7.16), (7.17), and (7.26) are now rewritten as

 

= − = − + − + − − + +

− − + + ω ∂ −
∂θ

+ −
−

−

v v v R i R i L L
di
dt

L L L L
di
dt

L L L L
di
dt

L L
i L L

d i
dt

( ) ( )

( )
( )

( )

ab a b as as bs bs af bf
fs

aa ac ba bc
as

ab ac bb bc
bs ar br

r ar br
r  (7.46)

 

= − = + + + − + − − + +

− − + + ω ∂ −
∂θ

+ −
−

−

v v v R i R R i L L
di
dt

L L L L
di
dt

L L L L
di
dt

L L
i L L

d i
dt

( ) ( ) ( )

( )
( )

( )

bc b c cs as cs bs bs bf cf
fs

ba bc ca cc
as

bb bc cb cc
bs br cr

r br cr
r

  (7.47)

 

= + + − + − + ω
∂
∂θ

+

ω ∂ −
∂θ

+ ω ∂ −
∂θ

+

− −
v R i L

di
dt

L L
di
dt

L L
di
dt

L
i

L L
i

L L
i L

di
dt

( ) ( )

( ) ( )

r r r rf
fs

rb rc
as

rb rc
bs rf

fs

ra rc
as

rb rc
bs r

r  (7.48)

Also, here
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It is assumed here that the faulty part of the winding belongs to the a phase 
of the motor. Hence Ras  will not be equal to Rbs  or Rcs . Also, the inductances 
involving the a phase or the faulty winding are computed differently. Using 
the subscript h for the original healthy winding

 = − +L L L L2aa hh hf ff  (7.54)

 = −L L Laf hf ff  (7.55)

 = −L L Lab hb fb  (7.56)

 = −L L Lac hc fc  (7.57)

 = −L L Lar hr fr   (7.58)

Figure 7.6 and Figure 7.7 show the effect of shorting 5 turns out of 252 turns 
of the a phase of the 28 bar motor described in the previous section. The 
machine has been fully loaded. The top part of the plot shows the current 
in the faulty section of the winding. The bottom part of the plot also shows 
the effect of stator fault on the phase currents, which clearly become unbal-
anced. In this case the faulty phase has a maximum current followed by the 
b and the c phase. Figure 7.7 shows the rotor loop 1 current and the speed 
for the same faulty machine. The spikes in the loop current are the result of 
the loop picking up the faulty phase current as it passes by the faulty section 
of the winding. Because of the reverse rotating field (due to the unbalance 
produced by the fault) the speed also shows the presence of second harmon-
ics. The unbalance in phase currents and speed can occur due to voltage or 
inherent constructional unbalance of the machine. Since there is no way to 
measure the current in the faulty section of the winding or the rotor loops, 
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stator faults are not easy to pick up. However due to heavy localized heating, 
the ground wall insulation may break down very soon (in a matter of a few 
seconds) leading to fire, explosion, and injury hazards. Hence stator faults 
have to be sensed very quickly.

Oftentimes, simpler models than the one described before have been used 
to detect stator faults on-line. One of these models used a simple negative 
sequence current-based approach [7]. It was shown that, provided the inter-
turn short is confined to a small number of turns, the negative sequence 
impedance of the induction motor did not vary much. Since negative 
sequence current, I_ of a healthy motor is primarily dictated by its negative 
sequence impedance, Z_, in conjunction with the negative sequence voltage, 
V_, and the inherent machine unbalance and measurement inaccuracies, the 
negative sequence current due to these effects (V_/Z_ and Ir) can be computed 
separately and subtracted from the total negative sequence current, I_ to com-
pute If, the negative sequence current arising only out of the fault. Figure 7.8 
illustrates the basic idea. Even single-turn dead bolt faults out of a total 648 
turns/phases could be clearly identified using this method. However, the 
residual factor arising out of inherent machine unbalance and measurement 
inaccuracies is load dependent. Hence a look-up table has to be made for dif-
ferent load points.

 It was later shown that the negative sequence current is dependent even on 
the positive sequence voltage [8]. This gives rise to nonzero off-diagonal cou-
pling impedance terms between the sequence voltages and currents. Apart 
from measuring changes in the negative sequence impedance, changes in 
an off-diagonal term of the sequence component impedance matrix have 
also been utilized in order to detect stator inter-turn faults in the presence of 
inherent structural asymmetry and voltage unbalance [9]. The scheme also 
used a simple model for stator fault detection. A single-turn dead bolt fault 
out of a total 216 turns/phases can be detected. This scheme also requires 
storing data prior to motor operation or additional hardware.

7.3.2  Model with Saturation

The model derived in the earlier section [4] for induction motor did not 
include saturation. When saturation was included it opened up a new line of 

IrZV_ If

I

FIGURE 7.8
A simple model to diagnose stator faults.
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thought for fast and single-turn sensitive detection of stator fault in induc-
tion motors [10]. It is based on the 3rd harmonic components generated by 
the interaction of saturation-related permeance and magnetomotive force 
(MMF) harmonics. A line current 3rd harmonic (+3f) detecting scheme has 
been attempted for a direct torque control (DTC) induction machine drive 
to detect stator inter-turn faults [11]. It has been reported that a strong 3rd 
harmonic in the motor supply current has been introduced by the action of 
the torque and flux controllers. Unfortunately, the inherent asymmetry of 
the motor would also lead to the appearance of 3rd harmonic components in 
the supply current. Hence, this method is only recommended when a high 
degree of intrinsic asymmetry of the motor is not expected. Wu et al. validate 
a considerable increase of line current +3f components under fault conditions 
both numerically and experimentally [12].

Saturation-related specific air-gap permeance harmonics can be given as

 = θ − ωP P mp m tcos( )m  (7.59)

Interaction of Equation (7.59) with reverse rotating MMF harmonics such 
as those given in Table 7.1 will result in a new series of flux density harmon-
ics. Some specific flux density harmonics together with correlated principle 
time and permeance harmonics are listed in Table 7.2. It can be observed that 
the resulting pole pair numbers of ±3ω -related flux density harmonics have 
matching pole pair numbers with a standard three-phase integral slot wind-
ing, indicating that time harmonics similar to the ones shown in Table 7.2 
are able to introduce both +3f and –3f line current harmonics. However, the 
introduction of these two components is following a different combination 
between MMF and permeance harmonics. Hence fault signatures will vary 
considerably between +3f and –3f. One example, according to Table 7.2, is that 
the fundamental reverse rotating field (given as F1-cos (pθ + ωt)) results in a +3f 
component only. It can be easily inferred that inherent structural asymmetry, 
magnetic anisotropy, and so on and supply unbalance will introduce both 
±3f components although +3f, –3f arise from the interaction of different MMF 

TABLE 7.1

nth MMF Space Harmonic Associated with hth Current Time Harmonic

Order of Time Harmonic h

Order of Space Harmonic N 1 6k – 1 6k + 1

1 +/– −/+ +/–
6s – 1 −/+ +/– −/+
6s + 1 +/– −/+ +/–

Note: The signs before the slash (/) indicate those occurring under ideal condition; 
the signs after the slash (/) represent those occurring due to nonideal condi-
tion (s, k = 1, 2, 3, …).
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and permeance harmonics. Some examples are given in Table 7.2. Also from 
the current spectrum shown later it can be observed that higher-order time 
harmonics (like 7th, 11th, etc.) are also capable of inducing ±3f components.

The preceding facts are clearly evident from the plots of the simulated 
motor as shown in Figure 7.9. The following cases have been simulated: (a) 
healthy saturated machine with balanced three-phase supply, (b) healthy 
saturated machine with unbalanced three-phase supply, and (c) faulty sat-
urated machine with single-turn fault but with balanced three-phase sup-
ply. In all these cases, the supply voltage was harmonics-free. A substantial 
increase of +3f component can be seen both in the presence of voltage unbal-
ance as well as inter-turn fault. The –3f component, though absent in case of 
both (a) and (b), clearly shows up in (c) due to the presence of a fault. This 
implies that different metrics have to be used for the two components.

Following this logic it can be inferred that current harmonics instead of 
voltage can be directly used to detect the faults, avoiding expensive voltage 
sensors. Although Table 7.2 lists many MMF harmonics, only the ones with 
significant amplitude will influence detection. For example, the magnitude 
spectra in Figure 7.10 reveal that f, –f, –5f, +5f, +7f, and –11f have magnitudes 
of –50 dB or above for an experimental machine fed from utility supply. 
Hence they can be selected to determine least-square-based estimates of 
the coefficients associated with each harmonic component. The number of 
coefficients should be optimized such that the best detection is possible 
without increased computational penalty. Hence six complex coefficients 

+ −k k( - )I I0 5  or − −k k( - )I I0 5  have been used. The expressions for computing esti-
mates (denoted by the subscript e) are given as

 = + + + + ++ + + + − + + + − + + + −I k I k I k I k I k I k II e I I I I I I3 ( ) 0 1 1 1 2 5 3 5 4 7 5 11  (7.60)

 = + + + + +− − + − − − + − − − + − −I k I k I k I k I k I k II e I I I I I I3 ( ) 0 1 1 1 2 5 3 5 4 7 5 11  (7.61)

TABLE 7.2

MMF Harmonics, Air-Gap Permeance Harmonics, ±3f-Related Flux 
Densities, and ±3f Line Current Induced

MMF Harmonics
Permeance 
Harmonics

±3ω-Related Flux 
Density Harmonics

Line Current 
Harmonics

F1–cos(pθ +ωt) P2cos(2pθ –2ωt) B3+cos(pθ –3ωt) +3f

F1+cos(5pθ – ωt) P2cos(2pθ – 2ωt) B3+cos(7pθ – 3ωt) +3f
F5–cos(5pθ +5ωt) P8cos(8pθ – 8ωt) B3+cos(13pθ – 3ωt) +3f
F5+cos(7pθ – 5ωt) P2cos(2pθ – 2ωt) B3+cos(5pθ – 3ωt) +3f
F1+cos(5pθ – ωt) P4cos(4pθ – 4ωt) B3_cos(pθ + 3ωt) –3f

F1–cos(7pθ +ωt) P2cos(2pθ – 2ωt) B3-cos(5pθ + 3ωt) –3f

F5+cos(pθ – 5ωt) P2cos(2pθ – 2ωt) B3-cos(pθ + 3ωt) –3f

F5-cos(5pθ +5ωt) P2cos(2pθ – 2ωt) B3-cos(7pθ + 3ωt) –3f
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Nine data sets were used to obtain the six coefficients. Once the coeffi-
cients have been computed, the final fault signatures (residues) are obtained 
by subtracting estimates from measured quantities (denoted by the subscript 
m) given as

 
= − = −+ + + − − −I I I IFSI or FSIm e m e3 3 ( ) 3 ( ) 3 3 ( ) 3 ( )  (7.62)

Surprisingly, when the same machine was fed by an inverter, the spectra 
looked a lot cleaner (Figure 7.11) and only four coefficients were required. 
Also, the level of voltage or structural unbalance was very low as can be seen 
from the low level of –f component in the line current.

Tables 7.3 to 7.6 list some of the residues as computed by Equation (7.61). 
The sensitivity is very good. The residue under faulty cases is always more 
than 10 dB below the corresponding healthy balanced and healthy unbal-
anced residues.
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current space vector of healthy machine at 60 Hz under.
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TABLE 7.3

fsi3+ of Line-Fed, Star-Connected Machine

Normalized +3f Signature (dB) under Different 
Operating Conditions

Rotating Speed (rpm) HB HU T1 T2 T3 T4 T5

1799 –61.6 –44.3 –28.1 –28.1 –25.6 –25.2 –23.2
1790 –52.0 –40.5 –15.1 –15.3 –14.9 –13.0 –12.0
1780 –48.9 –35.3 –16.5 –16.5 –18.3 –16.4 –18.4
1770 –51.7 –33.1 –20.0 –18.4 –17.1 –17.3 –16.2
1760 –54.7 –32.1 –17.3 –19.1 –17.5 –17.6 –19.2

TABLE 7.4

fsi3– of Line-Fed, Star-Connected Machine

Normalized –3f Signature (dB) under Different 
Operating Conditions

Rotating Speed (rpm) HB HU T1 T2 T3 T4 T5

1799 –64.4 –47.1 –33.9 –33.5 –32.4 –32.3 –30.1
1790 –59.9 –48.9 –33.5 –31.8 –29.6 –26.2 –25.4
1780 –62.0 –52.8 –36.6 –36.2 –40.2 –35.7 –40.9
1770 –64.2 –52.8 –35.5 –32.4 –30.5 –30.2 –29.4
1760 –68.1 –46.0 –35.7 –36.5 –35.1 –35.0 –34.4

TABLE 7.5

fsi3+ of Inverter-Fed Machine (60 Hz)

Normalized +3f Signature (dB) under Different 
Operating Conditions

Rotating Speed (rpm) HB T1 T2 T3 T4 T5

1799 –58.7 –35.6 –38.0 –30.1 –30.0 –31.2
1790 –53.7 –38.4 –33.0 –29.2 –25.9 –26.4
1780 –61.5 –38.7 –36.0 –34.8 –30.9 –29.7
1770 –63.7 –46.7 –41.1 –45.9 –35.4 –32.7
1760 –59.9 –37.7 –37.8 –34.7 –31.3 –32.8
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7.4  Model of Squirrel-Cage Induction Motor with 
Incipient Broken Rotor Bar and End-Ring Faults

One way to simulate a broken rotor bar or end-ring fault is by simply remov-
ing that element and rewriting the circuit equation by eliminating and 
redefining loops (see Equation 7.26) [13]. This is, however, not exactly how a 
standard squirrel-cage bar breaks or a broken rotor bar effect is felt in a real 
machine. In most of the small and medium-sized squirrel-cage motors, the 
rotors are fabricated by using die-cast aluminum, molded to form an integral 
block with the rotor laminations. Thus there is no insulation between the 
bar/ end-ring and the core. As a result, considerable inter-bar current exists 
even though a rotor bar may be completely broken. Also the bar breakage 
starts as a crack rather than a complete disconnection between the two sec-
tion of a bar. Even for fabricated rotors, where aluminum or copper bars are 
inserted into the rotor laminations with end-rings brazed, welded or molded 
onto the bars, complete bar, or end-ring removal in the simulation may not 
correctly describe the actual scenario. This is because of the fact that even the 
bars of a fabricated rotor are not always insulated from the core.

The arguments presented in the previous paragraph show that it is best to 
simulate an incipient broken rotor bar fault as an increase in resistance of the 
bar or, to be more precise, the loop resistances used in Equation (7.26). Thus to 
simulate a partially broken rotor bar, the matrix Rr as given in Equation (7.20) is 
changed in such a way that only two of the loop equations are affected. This is 
because a bar is included in two loops, whereas a broken end-ring segment is 
included in one loop only. In general, for m number of partially broken rotor bars 
or end-ring segments m + 1 or m loop equations are affected, respectively. Rotor-
stator or rotor-rotor mutual or self-inductances remain unchanged in either case.

For m fully broken rotor bars or end-ring segments, m loop equations are 
removed. Rotor–stator or rotor–rotor mutual or self-inductances are however 
changed only when the rotor bars are fully broken.

Figure 7.12 shows the effect of broken rotor bars with resistances of four 
consecutive bars increased from 50 μΩ to 1 mΩ in a 44 bar, 4 pole, 3 hp 

TABLE 7.6

fsi3– of Inverter-Fed Machine (60 Hz)

Normalized –3f Signature (dB) under Different 
Operating Conditions

Rotating Speed (rpm) HB T1 T2 T3 T4 T5

1799 –65.9 –43.9 –44.5 –41.3 –37.9 –39.7
1790 –65.9 –49.4 –43.8 –36.9 –35.6 –32.6
1780 –73.7 –54.0 –47.5 –39.1 –37.1 –35.7
1770 –76.0 –50.5 –48.1 –47.7 –41.5 –37.6
1760 –74.5 –50.7 –51.3 –44.4 –42.7 –38.7
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FIGURE 7.12
Simulated line currents and speed of a loaded 4 pole, 3 hp, 44 bar induction motor with and 
without broken rotor bar fault. Healthy (top), with four partially broken rotor bars (middle), 
and two partially broken end-rings (bottom).
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induction motor. Compared to the healthy condition the increased oscilla-
tions in current and speed are quite evident. Similar effects were observed 
when resistances of two end-rings were increased from 2.7 μΩ to 25 mΩ.

7.5  Model of Squirrel-Cage Induction 
Motor with Eccentricity Faults

Eccentricity faults can be modeled by modifying the specific permeance 
function of a machine [14]. This would essentially mean changing the air-
gap function of a machine and then calculating the changes in inductances. 
The best way to do this would be to probably compute all the inductances 
using FE methods, storing them with sufficiently fine resolution, and then 
modeling the motor in a manner similar to the one described in Section 7.2. 
FE techniques though accurate are very time consuming.

As shown earlier in Chapter 3, the modified winding function approach 
can also be used to compute magnetizing and mutual inductances under 
eccentric conditions. This can be done by writing the air-gap as the following:

 φ θ = − φ − φ − θg g a a( , ) cos cos( )e r 0 1 2  (7.63)

where a a,1 2  are the amount of static and dynamic eccentricity respectively, 
g0 the average air-gap, and ϕ a particular position along the stator inner sur-
face. Then, the inverse air-gap function, φ θ−g ( , )e

1 , can be written as

 
φ θ =

− φ − θ
−g

g a
( , )

1
(1 cos( ))e

1

0 3 1
 (7.64)

with
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The inverse air-gap function can be approximately expressed as

 ϕ θ ≈ + ϕ θ−g A A( , ) cos( , )e
1

1 1 2 1  (7.66)

where
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However, unlike the healthy machine described in Section 7.2, for a mixed 
eccentric machine, ∂

∂θ
Lss , ∂

∂ θ
Lrr  are nonzero quantities in the electromagnetic 

torque expression given by

 
=

∂
∂θ

+
∂
∂θ

+
∂
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I I
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t sr
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t rs
s r

t rr
r  (7.68)

Modeling of pure static eccentricity or pure dynamic eccentricity can be 
treated as special cases of mixed eccentricity. For pure static eccentricity a2 
equals zero and for pure dynamic eccentricity a1 equals zero in Equation 
(7.63) and Equation (7.64). With static eccentricity, the torque expression (7.68) 
will not have ∂

∂θ
Lss terms, whereas with dynamic eccentricity ∂

∂θ
Lrr  terms will 

be absent in expression (7.68).
Figure 7.13 shows the plots of line speed, current, and rotor loop current of 

the 28 bar induction motor, whose simulation results under healthy condi-
tions have been shown in Section 7.2, with 41% static eccentricity and 21% 
dynamic eccentricity. Comparison of Figure 7.13 with Figure 7.4 clearly shows 
that the mixed eccentric machine produces very distinct signatures. These 
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FIGURE 7.13
Simulated loaded 4 pole, 3 hp, induction motor with 41% static and 21% dynamic eccentricity. 
Speed (top), stator line current (middle), and rotor loop 1 current (bottom).
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signatures in frequency domain will be clearly able to diagnose eccentricity 
faults. Sometimes, however, depending on the motor pole pairs and number 
of rotor slots, these signatures may not be present in the time domain, mak-
ing fault diagnosis very difficult. The frequency-domain-based signatures 
was discussed in Chapter 6.

Fault models with inclined static eccentricity have also been developed. 
The way the mutual and magnetizing inductances are computed is only dif-
ferent. The modeling equations are the same as those for the uniform static 
eccentric machines.

7.6  Model of a Synchronous Reluctance Motor with Stator Fault

A synchronous reluctance motor is essentially a synchronous motor that 
derives all of its power on rotor saliency since the field winding is absent. 
However, it has damper windings to provide stability of operation under 
various perturbations and transients. The motor is normally used for low 
power applications that require constant speed operation irrespective of the 
load torque. Additionally, the modeling of this machine can be treated as the 
first step for a synchronous machine. It also gives the option to isolate the 
effect of the damper winding from that of the field winding and can provide 
crucial insight in detecting various types of faults [15].

The modeling of this machine is similar to an induction machine, except 
for the fact that (1) the damper bars exist only on the pole faces of the machine 
and (2) the air-gap or inverse air-gap function has saliency. The former can 
be incorporated by removing the loops that exist in the inter-polar gap, in 
a way similar to that of an induction machine with broken rotor bars. The 
latter can be incorporated by modeling the machine like the saturated induc-
tion motor, with the inverse air-gap function.

 
∑φ θ ≈ + φ − θ
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 (7.69)

Figure  7.14 shows the simulated start-up and loading condition of the 
motor. The stator fault for this motor has been simulated in a similar way 
to the induction motor. There is a clear increase in the phase current of 
the motor with a four-turn fault as can be seen in Figure 7.15. In an actual 
machine a similar increase was seen (Figure 7.16), confirming the utility of 
the model developed for the motor.
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7.7  Model of a Salient Pole Synchronous Motor 
with Dynamic Eccentricity Faults

The dynamic eccentricity faults for a synchronous machine can be modeled 
in the same line as an induction motor [16,17]. However, unlike the induction 
machine, a salient pole synchronous motor does not have a smooth air-gap. 

5 5.01 5.02 5.03 5.04 5.05
–5

0

5

Time (sec.)

Cu
rr

en
t (

A
)

4 Turns
shorted

Healthy 

FIGURE 7.15
Simulated currents of stator phase a.
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The harmonic contents of the inverse air-gap shows only selective space har-
monics so that it is symmetric. This is given by Equation (7.69). With dynamic 
eccentricity, all possible harmonics will be present in the inverse air-gap 
function. It can be therefore expressed as

 
∑φ θ ≈

′
+ φ − θ













−

=

∞

g
g

a Cos k( , )
1

1 { ( )}sd
o

gkd

k

1

1,2,3..

 (7.70)

The symmetric and asymmetric air-gaps are as shown in Figure 7.17 and 
Figure  7.18, respectively. Also in this case the damper bars are neglected 
and the field has got a single winding with a four-pole structure with a 
direct current voltage applied to it. The modeled machine showed increase 
in the 17th and 19th time harmonics in the presence of dynamic eccentric-
ity. Experimental results with an unbalanced disc also showed a similar 
increase.

gs 
–1(φ,θ)

θ 2π
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FIGURE 7.17
Inverse gap function in case of symmetric rotor.
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FIGURE 7.18
Inverse gap function in case of asymmetric rotor.
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8
Application of Pattern Recognition 
to Fault Diagnosis

Masoud Hajiaghajani, Ph.D

8.1  Introduction

The problem of fault diagnosis can be viewed as a classification problem if a 
proper selection of features and classifier is chosen. To begin with, we intro-
duce the pattern recognition system structure and then the classifier design 
problem will be addressed for our fault diagnosis system. The presented 
technique will be used for both alternating current (AC) and direct current 
(DC) machines fault detection.

Many data-driven, knowledge-based, and analytical approaches incor-
porate pattern-based techniques to some extent. Pattern-based methods 
generally consist of templates or patterns distinguishing acceptable and 
unacceptable operations that are then compared to the system observations 
to determine whether a fault has occurred. These templates or patterns may 
be determined by performance specifications, by past observations of faulty 
operations, by expert knowledge, or even from analysis or simulation of a 
system model. Once trained, the system is able to rapidly recognize pattern 
similarities and classify new observations accordingly. The primary disad-
vantage, however, is that the success of the fault detection and diagnosis is 
strongly dependent upon the initial training data. The volume of training 
data required may be extensive, and only faults represented in the training 
data can be diagnosed. Observations that are significantly different from the 
training data can be incorrectly diagnosed.

A pattern recognition system contains three parts: a transducer, a feature 
extractor, and a classifier. The transducer senses the input and converts it 
into a form suitable for machine processing. The feature extractor extracts 
presumably relevant information from the input data. The classifier uses 
information to assign the input data to one of a finite number of categories. 
A simple block diagram of a pattern recognition system for the problem of 
fault diagnosis is shown in Figure 8.1. In the next section, the fundamen-
tals of Bayesian decision theory are introduced and shown how it can be 
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viewed as being simply a formalization of common-sense procedures. This 
theory is used for the design of our classifier. Feature extraction and feature 
assignment is covered afterward, which is based on the result of an analyti-
cal study presented in the previous chapters. Implementation on the experi-
mental data is covered at the end of the chapter.

8.2  Bayesian Theory and Classifier Design

Bayesian decision theory is a fundamental statistical approach to the prob-
lem of pattern classification. This approach is based on quantifying the 
trade-offs between various classification decisions using probability and the 
costs that accompany such decisions. It makes the assumption that the deci-
sion problem is posed in probabilistic terms and that all of the relevant prob-
ability values are known.

Let’s start with a simple example of designing a classifier to separate two 
kinds of car: compact and SUV. Suppose that an observer watching cars 
arrive along the road finds it hard to predict what type will come next and 
that the sequence of types of cars appears to be random. We let ω denote the 
class of cars, with ω = ω1 for the class of compact cars and ω = ω2 for SUV. 
Because the condition of the class is so unpredictable, we consider ω to be a 
variable that must be described. If the observation recorded as many com-
pact cars as SUVs, we would say that the next car is equally likely to be a 
compact car or SUV. More generally, we assume that there is a priori probability 
P(ω1) that the next car is a compact car, and some prior probability P(ω2) that 
it is a SUV. If we assume there are no other types of cars relevant here, then 
P(ω1) and P(ω2) sum to one. These prior probabilities reflect our prior knowl-
edge of how likely we are to observe a compact car or a SUV before the car 
actually appears. It might, for instance, depend upon the time of year or the 
neighborhood.

Suppose that we want to make a decision about the type of car that will 
appear next without being allowed to see it. Also assume that any incor-
rect classification entails the same cost or consequence, and that the only 

Feature
extraction Classi�er

Healthy

Fault(s)
Measured inputs

Feature
vector

FIGURE 8.1
Pattern recognition approach for the fault diagnosis problem.
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information we are allowed to use is the value of the prior probabilities. If a 
decision must be made with so little information, it seems logical to use the 
following decision rule:

 Decide ω1 if P(ω1) > P(ω2); otherwise decide ω2 (8.1)

How well it works depends upon the values of the prior probabilities. If 
P(ω1) is much greater than P(ω2), our decision in favor of ω1 will be right most 
of the time. If P(ω1) = P(ω2), we have only a fifty–fifty chance of being right. In 
general, the probability of error is the smaller of P(ω1) and P(ω2).

To present this theory in terms of mathematical language, let Ω = {ω1, ω2, ..., ωs} 
be the finite set of classes and P(ωi) be the probability of each class. Having an 
observed vector x (or feature vector), the Bayesian theory says

 

∑
ω =

ω ω

ω ω
P x

p x P

p x P
( )

( ) ( )

( ) ( )
i

i i

j j

j

 (8.2)

where p(x|ωi) is the class-conditional probability density function for x; that 
is, the probability density function for x given that the class is ωi. P(ωi|x) is 
the probability of selected class (ωi), given the feature vector x. The strength 
of the preceding equation is that it relates our observation and priori prob-
ability, p(x|ωi), to a posteriori probability, P(ωi|x) as is shown in Figure 8.2 and 
Figure 8.3.

If we have an observation x for which P(ω1|x) is greater than P(ω2|x), we 
would naturally be inclined to decide that the true class is ω1. Similarly, if 
P(ω2|x) is greater than P(ω1|x), we would be inclined to choose ω2. To justify 

p(
x|

ω i
) ω1 ω2

x

FIGURE 8.2
The probability density of measuring a particular feature value x given the pattern is in cat-
egory ω. If x represents the length of a car, the two curves might describe the difference in 
length of populations of two types of cars. Density functions are normalized, and thus the area 
under each curve is 1.0.
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this decision procedure, let us calculate the probability of error whenever we 
make a decision. Whenever we observe a particular x,
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ω ω
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1 2
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 (8.3)

Clearly, for a given x we can minimize the probability of error by deciding 
ω1 if P(ω1|x) > P(ω2|x) and ω2 otherwise. Of course, we may never observe 
exactly the same value of x twice. Will this rule minimize the average prob-
ability of error? Yes, because the average probability of error is given by

 
∫ ∫ ( )( ) ( ) ( )= =
−∞

∞

−∞

∞

P error P error x dx P error x p x dx,  (8.4)

and if for every x we ensure that P(error|x) is as small as possible, then the 
integral must be as small as possible. Thus we have justified the following 
Bayes decision rule for minimizing the probability of error:

 Decide ω1 if P(ω1) > P(ω2); otherwise decide ω2 (8.5)

And under this rule, Equation (8.3) becomes [1]

 = ω ωP error x P x P x( ) min[ ( ), ( )]1 2  (8.6)

ω2

ω1

x

p(
x|

ω i
)

FIGURE 8.3
Posterior probabilities for the particular priors P(ω1) = 2/3 and P(ω2) = 1/3 for the class-
conditional probability densities shown in Figure 8.2. Thus in this case, given that a pattern is 
measured to have feature value x = 14, the probability it is in category ω2 is roughly 0.08, and 
that it is in ω1 is 0.92. At every x, the posteriors sum to 1.0.
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8.3  Simplified Form for a Normal Distribution

The problem of classification comes with the optimization problem. We 
want to have a threshold or boundary conditions in the space of feature 
vectors in order to discriminate among different classes. This boundary 
condition is called a decision surface (Figure  8.4). Different decision sur-
faces have different properties. If the decided class is ωi but the true class 
is ωj, then the decision is correct if i = j and in error if not. If errors are to 
be avoided, it is natural to seek a decision rule that minimizes the average 
probability of error, that is, the error rate. In the previous section, we proved 
that if we use gi(x) = P(ωi|x) in Equation (8.2) as the decision surface, then we 
will minimize the probability of error by using the following decision rule:

 
{ }( )ω =if j i Max g xDecide j

i
i  (8.7)

This is called Bayes minimum error classifier. The structure of a Bayes clas-
sifier is determined primarily by the conditional density function p(x|ωi). Of 
the various density functions that have been investigated, none has received 
more attention than the multivariate normal density function. The general 
multivariate normal density is completely specified by two parameters, mean 
μ vector and covariance Σ matrix:
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where
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For simplicity it is often abbreviated as f(x) ~ N(μ,Σ). It is shown that by 
using normal distribution in our analysis, we can have a very simple form 
for the decision surface function of the Bayes minimum error classifier. This 
simple form is given next:
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where x is the feature vector, and Σ and μ are the covariance matrix and the 
mean vector for each class.

8.4  Feature Extraction for Our Fault Diagnosis System

Based on the discussion and analysis of faults in the previous chapters, we 
can decide how to choose a valid feature that carries enough information to 
be classified. For an induction machine, eccentricity fault affects fundamen-
tal and slot harmonics in a nonlinear form and generates some extra har-
monics [2]. Also, broken rotor bar fault has an effect on the fundamental and 
generates side-band harmonic around the fundamental. Therefore, it makes 
sense if we look for features around these harmonics. In our approach, we 
used both the amplitude and phase of the harmonics of interest. Figure 8.5 
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FIGURE 8.5
Extracting features from the PSD of line currents.
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shows how broken rotor bar and eccentricity harmonics are used to generate 
two of the features of our feature vector. The other two are the phase infor-
mation of these harmonics. Figure 8.6 shows the variation of these features 
for a data pool of 97 samples taken from the broken rotor bar fault, eccentric-
ity fault, broken rotor bar and eccentricity, and healthy. Therefore, in our 
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FIGURE 8.6
Variations of normalized features for a data pool of 97 samples for different conditions of an 
induction machine (a) broken rotor bar, (b) eccentric rotor.
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experiments we had four different classes with 97 sets of data collected and 
processed to cover most torque-speed conditions ranging from 10% to 130% 
of rated load in all four cases. The utilized decision surface function has 
the form of Equation (8.10), where x is the feature vector and Σ and μ are 
the covariance matrix and the mean vector for each class (i = broken rotor 
bar, eccentricity, broken rotor bar and eccentricity, healthy). Figure 8.7 shows 
the block diagram of presented technique. Since this approach is based on a 
supervised learning method, we need to train the classifier before using it as 
an on-line fault diagnosis package. Training means finding the values of ∑ι 
and μι for each class and is discussed in the next section.

It should be highlighted that extracting both broken rotor bar and eccen-
tricity harmonics needs the rotor speed information. Either a speed sensor or 
sensorless methods can be used for detection or estimation of the rotor speed.

8.5  Classifier Training

As is shown in Figure 8.7, features are extracted from the measured or esti-
mated inputs. In our fault diagnosis system of induction machines, stator 
current is measured first and then its power spectral density (PSD) is calcu-
lated. Features are extracted from PSD by the way explained in the previ-
ous section. After being extracted, features are normalized and fed to our 

Di�erent conditions/
Classes

Data pool

Feature extraction
&

Feature conditioning

CLASSIFIER
(Compare to decision

surfaces)

O�ine
training

Feature
vector

Measured and/or
estimated inputs

μi, Σi

FIGURE 8.7
Block diagram of the fault diagnosis system.



193Application of Pattern Recognition to Fault Diagnosis

trained classifier. Applying the discriminant function or decision surface of 
Equation (8.10) on the produced feature vector, this classifier decides whether 
data comes from a healthy motor or a faulty one (broken rotor bar, eccentric-
ity, or broken rotor bar and eccentricity).

Normalization of the features is important in order to exclude effects of 
load torque from the features and to make a numerical meaningful feature 
vector, that is, having values from –1 to 1. This normalization is done in the 
following two steps:

 1. First, the integral of PSD in a window around harmonics of interest 
and fundamental harmonics is calculated. Then, division of these 
two gives a normalized power of the feature (Figure 8.5).

 2. In order to give the same weight to different features, all produced 
data from healthy and all faults are put together and normalized 
according to Equation (8.11).
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where � � � �=x x x x x x x x xˆ { , , , , , , , , , , , }h N h b N b ec N ec be N be1 1 1 1h b ec be  and –1 in the 
formula of σ̂ j  is for the unbiased estimation. j is the number of features 
and i refers to each sample. It is assumed that all features have the same 
importance in this analysis, and that is why they are given the same weight 
in the normalization process. Motor manufacturers can do a thorough sta-
tistical investigation to see which feature has more importance. Then, they 
can come up with different weighting factors for the normalization of the 
features. Since we could not provide a very huge data pool, such investiga-
tion would have less credibility at this time. Finally, the normalized feature 
vector x is given by
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where m is the dimension of our feature space and the feature vector is x = 
(x1, …, xm). According to Bayes minimum error classifier, mean vector (μi) 
and covariance matrix (∑i) of each class should be known or estimated. This 
is called off-line training. For simplicity, we assumed that all features have 
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normal distribution, which is a fair assumption. Therefore, the maximum 
likelihood estimate for the mean and covariance of each class are
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There should not be any confusion between µ̂ j  and σ̂ j in Equation (8.11) 
with μi and ∑i in Equation (8.13) and Equation (8.14). The first two are used for 
normalizing the extracted feature vector (x), whereas the last two are used in 
the decision surface function for the classification in Equation (8.10).

8.6  Implementation

This technique was implemented for the fault diagnosis of an induction 
machine shown in Figure 8.10. To have a faulty machine, the bearing hous-
ing of the end shield was machined off center, as is shown in Figure 8.8. This 
generates a static eccentricity. To generate a broken rotor bar fault, the rotor 
bars were simply broken by a drill (Figure 8.9).

FIGURE 8.8
Generating eccentricity fault by off-center machining the bearing house of the end shield.
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As mentioned before, we could collect 97 different sets of data taken from 
10% to 130% of rated load in all four cases (i.e., healthy, broken rotor bar, 
eccentricity, and mixed broken rotor bar and eccentricity). The motor was a 
3 hp, 3-phase induction motor with a rotor having 44 bars. Since there were 
not very many samples for training and testing the classifier, one sample 
was taken off each time and the classifier was trained with the other 96 sam-
ples. Table 8.1 shows the diagnostic results having a Bayes minimum error 
classifier and a feature vector as mentioned before. Note that three samples 
are misclassified between the broken and broken and eccentricity classes. 

FIGURE 8.9
Broken rotor bar generation in the rotor of an induction machine.

FIGURE 8.10
The test bed used for implementing our fault diagnosis system at the Electrical Machines & 
Power Electronics (EMPE) lab at Texas A&M University.
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This is compatible with what Filippetti et al. [3] proved, that broken rotor bar 
harmonics also carry eccentricity information.

The technique of Figure 8.7 can be applied to the fault diagnosis of a DC 
motor. In a DC motor, eccentricity fault affects amplitude and phase of some 
harmonics in the line current signal [4]. In fact, it generates several harmon-
ics as well as affecting those slot harmonics in the back-electromotive force 
(EMF) signal:

 
= ω ×

f
kR

2sh in DC Machine
 (8.15)

Features are extracted from the PSD of the armature current signal simi-
lar to the way explained in Figure 8.5, except that it is only applied to the 
slot harmonic and DC, which in here is the fundamental. The experiment is 
performed on a 3 hp–shunt DC motor with a rotor having 20 slots. The DC 
motor was operated at different speeds under healthy and dynamic eccen-
tricity conditions. In order to generate an eccentricity fault, a heavy weight 
was attached to one side of a disk coupled to the shaft. All features are nor-
malized to exclude the effect of load so there can be comparable data for dif-
ferent conditions (Equation 8.16 and Equation 8.17).
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TABLE 8.1

Classification Results

Classified Samples → Healthy
Broken Rotor 

Bar Fault

Static 
Eccentricity 

Fault

Broken Rotor Bar 
and Static 

Eccentricity Fault

Real Samples↓

Healthy (23) 21 2 0 0
Broken Rotor Bar Fault (26) 0 24 0 2
Static Eccentricity Fault (22) 0 2 20 0
Broken Rotor Bar and Static 
Eccentricity Fault (26)

0 1 0 25

Note: The misclassification error is 7.2%. Note that three samples were misclassified between 
the broken rotor bar, and broken rotor bar and eccentricity classes.
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where � �{ }=x x x x xˆ , , , , ,h N h ec N ec1 1h ec  and –1 in the formula of σ̂ j  is for the 
unbiased estimation. j is the number of features and i refers to each sample. 
Finally, the normalized feature vector x is given by
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where m is the dimension of our feature space and the feature vector is x = 
(x1, …, xm). The classifier is a Bayes minimum error classifier with the assump-
tion that all features have normal distribution with equal likely classes.

Since not very much data for training and test were available, one suitable 
approach was to take one sample out from the data pool as a test sample 
and use the remaining for training the classifier. This procedure was iterated 
16 times and results were compared with the true classes. Table 8.2 shows 
the classification results. Three samples were misclassified, which means we 
have nearly 18.75% error. This is because of the limited number of training 
and test samples. We can expect that the actual error in on-line monitoring 
is much less.

In this chapter, a fault diagnosis system was shaped based on the results 
provided from previous chapters and a well-known pattern recognition 
technique. Bayesian decision theory was introduced first and used as a core 
to detect and classify possible faults. Analytical and experimental results 
yield to a very good combination of features, taken from the power spectral 
density of the line current of both AC and DC machines. The faults being 
investigated and looked at were mainly eccentricity and broken rotor bar 
faults. However, this technique is quite useful for detecting other types of 
fault as long as proper features are gathered and utilized.

The technique requires a rich data pool, which for motor manufacturers is 
not a difficult task. Even with the limited data we could obtain in the Electrical 
Machines & Power Electronics (EMPE) lab at Texas A&M University, this 
approach proved to be feasible due to its satisfactory results.

TABLE 8.2

Results of the Bayes Minimum Error Classifier for 
Detection of the Eccentricity Fault in a DC Motor

Classified Samples → Healthy Eccentricity Fault

Real Samples↓

Healthy 8 1
Eccentricity Fault 2 5

Note: The misclassification error is 18.75%.
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9.1  Introduction

Within the last decade many studies have been conducted to detect electric 
machine faults prior to possible catastrophic failure [1–9]. One of the most 
popular methods for fault diagnosis is motor current signature analysis 
(MCSA) as it is more practical and less costly. Thanks to recent digital signal 
processor (DSP) technology developments, motor fault diagnosis can now 
be done in real-time based on the stator line current [10–17] allowing precise 
and low-cost motor fault detection. Beyond this, once simple and efficient 
fault detection algorithms are employed, it is possible to control the motor 
and detect the fault at very early stages simultaneously using the same DSP 
[12,17]. Typically, implementing a comprehensive fault diagnosis algorithm 
taking all the details into account like the decision-making stage is a long 
and complicated procedure. Therefore, in order to not violate CPU utiliza-
tion and degrade motor control performance, the priorities of the DSP-based 
fault algorithms need to be carefully determined based on practical issues, 
including limited memory occupancy and computation complexity.

Among widely used traditional algorithms, spectrum analysis has been 
applied in fault diagnosis such as the fast Fourier transform (FFT), which is 
one of the most popular signal processing algorithms in motor fault detection 
applications. However, in real-time applications, (N/2) × log (N) complexity 
of FFT-radix 2 brings an overwhelming burden to the DSP where significant 
amounts of data need to be processed to produce sufficiently high resolu-
tion. Many of conventional FFT type or time-frequency analysis techniques 



200 Electric Machines: Modeling, Condition Monitoring, and Fault Diagnosis

have a similar problem in a DSP implementation. Using some of the recently 
proposed signal processing algorithms as alternatives to traditional meth-
ods [16–18] gives good real-time performance and satisfactory results when 
implemented by a committed high-speed DSP. On the other hand, a specific 
fault signature analysis technique instead of wide spectral analysis such as a 
phase locking loop, matched filtering, reference frame theory, and other rele-
vant techniques have lower computational complexity for processing a large 
amount of data. Cruz et al. successfully implemented a simple algorithm 
based on multiple reference frame theory on a DSP used for direct torque 
control (DTC) of an induction machine [17]. The complexity order of a basic 
phase locking loop function is N, which is log(N)/2 times less than that of 
an FFT algorithm while occupying negligible memory. Instead of scanning 
the whole spectrum, a phase locking loop concentrates only on the expected 
fault frequencies that improve resolution and noise immunization [12].

9.1.1   Cross-Correlation Scheme Derived from Optimal Detector 
in Additive White Gaussian Noise (AWGN) Channel

While performing motor fault detection, it is important to have a noise suppres-
sion capability where high-energy noise content dominates the low amplitude 
fault signatures. As an effective tool, the matched filter is often pronounced as 
one of the best candidates [19] in an additive white Gaussian noise (AWGN) 
channel. The matched filter is known as an optimal detector that maximizes the 
signal-to-noise ratio (SNR) in the AWGN channel. A typical filter is expressed by
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y h sn n k k
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where n = 1,2,⋯N, hn represent the impulse response of the filter, and sk is the 
input signal. The output SNR of the filter can be written as

 = = σSNR H S E H W H S H H( ) / [( ) ] ( ) /( )T T T T2 2 2 2  (9.2)

where �= −H h h h[ , ],N N 1, 1 �=S s s s[ , ]N1 2 , �=W w w w[ , , ]N1 2 , wn is the sampled 
Gaussian noise with variance σ2 , and T is the vector transpose. Through 
the Cauchy–Schwarz inequality, the denominator in Equation (9.2) is 
maximized as

 ≤ =H S H H S S when H cS( ) ( )( )T T T2

  (9.3)

where c is constant. It is obvious from Equation (9.3) that the SNR of filtering 
is maximized when = −h sn N n , which is called the matched filter.

Assuming sn  is the reference signal of the inspected fault signature and 
xk is the input current signal, the output of matched filter is rewritten in 



201Motor Current Signature Analysis Fault Diagnosis

the form of cross-correlation as given in Equation (9.4), which is supposed 
to suppress noise optimally for fault signature detection. Hence, cross-cor-
relation can be proposed as one of the best signal detectors for the systems 
distorted by Gaussian noise.
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The analysis of a matched filter in continuous time can be derived in a sim-
ilar manner through integration instead of summation in Equations (9.1) to 
(9.4) [19]. The matched filter output in continuous time can also be expressed 
as the cross-correlation in Equation (9.4) by replacing the summation to inte-
gration. The details of continuous-time matched filters are not covered since 
the implementation is based on discrete time processing.

Implementation of an algorithm on DSP is commonly limited by the mem-
ory and computing capacity of the system. The memory occupancy for cross-
correlation operation is assumed negligible because it is performed in the 
sample sequence order of the input signal xk in Equation (9.4), which does not 
need an additional signal memory buffer. The computing complexity of the 
cross-correlation is shown as N in Equation (9.4), which is low enough as each 
multiplication occurs only one time in each interrupt in normal operation of 
a DSP system. For the FFT-based scheme, which has been popularly used 
in fault diagnosis, all the signals should be inherently stored in a memory 
buffer for computation and the number of multiplication required is (N/2) × 
log(N), which is assumed not acceptable due to the overwhelming burden 
on DSP, especially for low cost on-line fault diagnosis systems. The inher-
ent optimal performance in noise suppression, low memory occupation, and 
low computing complexity makes the cross-correlation based detection an 
attractive tool for on-line fault diagnosis of a motor.

Most of the specific fault signal detection schemes in literature utilize the 
optimal property of the matched filtering such as reference frame theory, 
phase sensitive detection, and any other relevant cross-correlation methods. 
In this chapter, the implementation of reference frame theory and phase-
sensitive detection as an example in an embedded DSP system is presented.

9.2  Reference Frame Theory

The topic of phase transformations and reference frame theory [12] consti-
tutes an essential aspect of machine analysis and control. In this chapter, 
apart from the conventional applications, it is reported that the reference 
frame theory can also be successfully applied to fault diagnosis of electric 
machinery systems as a powerful toolbox to find the magnitude and phase 
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quantities of fault signatures. The basic idea is to convert the associated fault 
signature to direct current (DC) quantity, followed by the computation of the 
signal’s average in the new reference frame to filter out the rest of the signal 
harmonics, that is, its alternating current (AC) components. Because the rotor 
and stator fault signature frequencies are well known, the presented method 
focuses only on the fault signatures in the current spectrum, depending on 
the examined motor fault.

9.2.1   Reference Frame Theory for Condition Monitoring

The introduction of reference frame theory in the analysis of electrical 
machine systems has turned out not only to be useful in their control and 
analysis, but also has provided a powerful tool for condition monitoring. By 
judiciously choosing the reference frame, it is possible to monitor any kind of 
motor fault whose effects are reflected to the line current as shown in the fol-
lowing section. The rotating reference frame module in the software used for 
fault analysis can work separately and independently than the one used for 
motor control, which is synchronized to the fundamental harmonic vector.

9.2.2   (Fault) Harmonic Analysis of Multiphase Systems

The commonly used transformation is the polyphase to orthogonal two-
phase transformation. The complex current harmonic vector describes a cir-
cular trajectory in the space vector plane as shown in Figure 9.1. Therefore, 
a multiphase system in phase variables transforms to a circular locus in the 
equivalent two-axis representation. In Figure  9.1, the radius of the circle 
around the origin is the peak magnitude of the inspected harmonic quanti-
ties, and the vector rotational frequency is equal to the angular frequency 
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imaginary axis 

Stationary real
axis 

Rotating real 
axis 

Rotating
imaginary axis 

Other harmonic 

θh

ihd

ih
ihq

FIGURE 9.1
Harmonic space vector with other harmonic vectors in the stationary and rotating reference 
frames.
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of phase harmonic quantities. Note that the drawings in Figure 9.1 are exag-
gerated to explain the basis of the theory explicitly; indeed the magnitude 
of fundamental harmonic is several times higher than all line and fault har-
monics. If the new rotating reference frame is defined where the axes are 
made to rotate at the same rate as the angular frequency of the inspected 
harmonic, a stationary current space vector results, where its orthogonal 
components are DC quantities.

If a reference frame is synchronized to a particular frequency, in the new 
reference frame all harmonics other than the inspected one remain as AC. 
The average of these AC harmonics converge to zero and have a negligible 
effect on the average after a sufficient time. In other words, the reference 
frame synchronized with fault harmonic shifts the frequency spectrum of 
the phase current by frequency of the fault component. The rotating frame 
converts only the associated fault harmonic vector to a stationary vector at 
zero Hertz whose projection on orthogonal base vectors are DC and the aver-
ages are nonzero in time. Thus, when the resultant fault vector modulation 
is normalized with respect to the fundamental vector that is computed at the 
synchronously rotating reference frame, the ratio gives the relative magni-
tude of the fault harmonic as
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where idk and iqk are the dq components of phase current in the rotating 
frame, θ1  is the angular position of the stator reference frame, and I1  and 
I fault  are the relative magnitudes of the fundamental and fault harmonic 
vectors, respectively. The fundamental operation of detection in Equation 
(9.5) constitutes multiple cross-correlation operation (matched filtering). In 
addition to fault harmonic magnitude calculation, the phase angle informa-
tion of associated harmonic vector can also be found using the direct (d) 
and quadrature (q) components obtained by the proposed technique. The dq 
components of the harmonic vectors decouple depending on the phase angle 
between the rotating frame and the vector as shown in Figure 9.1. Therefore, 
the phase angle is formulated as
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One must note that the notations, indexes, and axes of the frames might 
change depending on how they are defined by the user. In the literature 
there are different representations of reference frame theory, but the basics 
are the same. So reference frame theory can be further simplified for sin-
gle-phase signal-based detection, which can be derived without loss of 
generality.

9.2.3   On-Line Fault Detection Results

Experiments are done on-line using the TMS320F2812 DSP, which is employed 
both for inverter control and fault signature detection. Several experiments 
are realized under various conditions such as different rotor speeds, slip, 
load conditions, switching frequencies, sampling frequency, and the number 
of data processed.

When using DSP core for both control and fault purposes, the fault code 
is embedded into the main control algorithm as a subroutine that pro-
cesses the instantaneously measured current data for both fundamental 
component and fault signature frequency. The same experiments are also 
repeated for line-driven motors where the DSP is responsible only for 
fault analysis rather than control issues. Although undersampling and 
oversampling are possible, generally switching frequency is accepted to 
be the sampling frequency of the current data to synchronize the fault 
subroutine with the main control. The number of data is chosen to be 
the same as the sampling frequency, which can be adjusted between 4K 
and 20K depending on the applications. The stator frequency can either 
be calculated or equated to the reference value depending on the control 
type, and the rotor speed can either be measured using encoder or esti-
mated to update the signature frequencies in real time. Though the DSP 
of the inverter is used in this experiment, the very simple algorithm of 
reference frame theory can be implemented using a simpler microcon-
troller as well.

9.2.3.1   v/f Controlled Inverter-Fed Motor Line Current Analysis

The eccentricity and broken rotor bar tests are repeated using TMS320F2812 
DSP controlled inverter where ωrref = 0.99 per unit. The motor is run at no load 
and at full load for eccentricity tests and broken rotor bar tests, respectively. 
As shown in Figure 9.2, both the eccentricity and broken rotor bar sidebands 
found by DSP microprocessor are very close to ones observed by FFT spec-
trum analyzer at ( fs ± fr) and (1 ± 2s)fs, respectively. The time spent to process 
5K to 20K data and detect these signatures is 1 second, which is sufficiently 
short for fault monitoring where there is no strict time limitation. Depending 
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FIGURE 9.2
Experimentally obtained v/f controlled inverter-fed motor single-phase harmonic analysis result: 
(a) eccentricity signatures detected by DSP using rotating frame theory, (b) FFT spectrum ana-
lyzer output of eccentric motor line current, (c) broken rotor bar signatures detected by DSP using 
rotating frame theory, (d) FFT spectrum analyzer output of broken rotor bar motor line current.
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on the resolution requirements and the system control parameters, execution 
time might be shortened or extended.

9.2.3.2   Field-Oriented Control Inverter-Fed Motor Line Current Analysis

In Figure 9.3, the same experiments are repeated running the motor with 
closed-loop field-oriented control algorithm at various operating points. The 
results obtained by industry purpose processor and 12-bit analogue-to-digital 
converter (ADC) are very close to FFT spectrum analyzer outputs, which 
have two DSP core and 16-bit ADC with a sampling rate of 256 kHz. These 
on-line experimental results confirm that the presented method can be suc-
cessfully adapted to the real-time applications.

9.2.3.3   Instantaneous Fault Monitoring in Time-Frequency 
Domain and Transient Analysis

A stationary motor line current signal repeats into infinity with the same 
periodicity. However, this assumption is not realistic for most of the indus-
trial applications where the duty cycle profile of the motor cannot be guaran-
teed to operate at steady state and at a single operating point. Instead, duty 
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cycle involves various operating points at different load and speed combina-
tions for an unknown time period.

On the other hand, the motor current spectrum analyses done using 
Fourier transform assumes that the current signal is stationary. The Fourier 
transform performs poorly when this is not the case. Furthermore, the 
Fourier transform gives the frequency information of the signal, but it does 
not tell us when in time these frequency components exist. The informa-
tion provided by the integral corresponds to all time instances because the 
integration is done for all time intervals. It means that no matter where in 
time the frequency appears, it will affect the result of the integration equally. 
This is why traditional application of Fourier transform is not suitable for 
nonstationary signals.

As stated earlier, continuous stator frequency and shaft speed information 
are available and are used to update fault signature frequencies at all operat-
ing points. The updated fault signature frequency is utilized to synchronize 
the reference frame and associated fault vector component of the line cur-
rent. Therefore, even though the motor supply frequency or rotor shaft speed 
change due to acceleration, deceleration, loading, and so forth, the normal-
ized fault signature magnitude is instantaneously and continuously moni-
tored without using additional algorithms. In brief, this advantage provides 
real-time tracing of fault signature components in the frequency domain. In 
Figure 9.4a,b, the right eccentricity sideband magnitude and rotor speed are 
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shown, respectively. The dynamic characteristics of the right eccentricity 
sideband at transients and different rotor speeds are traced experimentally 
by the DSP in real-time as shown in Figure 9.4a. A similar test is done under 
load when the motor is driven by the voltage-to-frequency (v/f) open loop 
control at 0.4 pu speed as shown in Figure 9.4c,d. In Figure 9.4c, the eccen-
tricity right sideband track in real time is shown when the motor is loaded 
while running at no-load, and in Figure  9.4d the phase-A current vector 
magnitude is shown to identify the load characteristics.

This chapter has presented the experimental and the analytical valida-
tion of the reference frame theory application to electric motor fault diag-
nosis. The presented method has many advantages over existing fault 
diagnosis methods using external hardware and powerful software tools. 
The experimental test results are compared with FFT spectrum analyzer 
results to confirm the accuracy of this method. It is experimentally shown 
that this simple fault diagnosis algorithm can be embedded in the main 
control subroutine and run by the motor drive processor in real-time 
without affecting control performance of the inverter. Therefore, it can be 
considered as a no-cost application, which is highly promising for fault 
diagnosis products.

9.3  Phase-Sensitive Detection-Based Fault Diagnosis

9.3.1   Introduction

This section presents DSP-based phase-sensitive motor fault signature detec-
tion [21]. The implemented method has a powerful line current noise sup-
pression capability while detecting the fault signatures. Because the line 
current of inverter-fed motors involves low order harmonics, high frequency 
switching disturbances, and the noise generated by harsh industrial envi-
ronment, the real-time fault analyses yield erroneous or fluctuating fault sig-
natures. This situation becomes a significant problem when SNR of the fault 
signature is quite low. It is theoretically and experimentally shown that the 
method can determine the normalized magnitude and phase information of 
the fault signatures even in the presence of noise, where the noise amplitude 
is several times higher than the signal itself.

9.3.2   Phase-Sensitive Detection

Phase-sensitive detection is based on correlation of two signals. In the cor-
relation process, the input signal is compared with a reference signal and 
similarity between these signals is determined. Similarly, a lock-in detector 
takes a periodic reference signal and a noisy input signal, and then extracts 
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only that part of the output signal whose frequency and phase match the 
reference. To see how the phase-sensitive detector works, consider a refer-
ence signal, Iref, which is a pure sine wave with frequency of wref,

 = + φI t I w t( ) cos( )ref ref ref ref  (9.7)

and the noisy fault signal,

 ∑= + ϕ + + ϕI t I w t I w t( ) cos( ) cos( )in fault fault fault noise noise noise  (9.8)

The correlation between these two signals is given by
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The generated reference signal frequency is set to be the same as the fault 
signal frequency; therefore some of the terms in Equation (9.9) are converted 
to DC as given by Equation (9.10):
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 (9.10)

If the correlation output is low pass filtered simply by averaging, only two 
terms survive: the DC term due to the output of the system and the noise 
component with frequency near the reference signal. The rest of the noise 
and low order harmonics disappear as shown in Equation (9.11):

 ∑ϕ ≈ ϕ − ϕ + ϕ − ϕI K K( ) cos( ) cos( )II filtered ref fault ref noise_ 1 2  (9.11)

The phase of the noise signal varies randomly. In order to minimize the effects 
of noise content at the same frequency, the phase angle difference between the 
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reference signal and the fault signals should be minimized. There are some 
alternatives to maximize the low pass filtered portion of the autocorrelation 
function. One alternative is to track the autocorrelation function and detect the 
peak point where the phase angles of the reference signal and the fault signal 
are the same. The second and more efficient method is examining both the 
correlation of cosinusoidal and sinusoidal reference signals to the same phase 
angle instantaneously. The arctangent of the correlation ratio results in the 
phase angle difference between the reference signal and the fault signal. The 
maximum correlation degree and minimum noise effect are observed when 
the phase angles are equated to each other by simply adjusting the reference 
signal’s phase angle. The similar processes are repeated for the fundamental 
component to calculate the correlation ratio between the fundamental and fault 
components to find the normalized magnitude of the fault signature.

The characteristic frequencies of the well-known motor faults are given 
in the literature [22–25]. The most commonly reported faults in electric 
machines are bearing faults, eccentricity, broken rotor bar, and stator faults. 
All of these faults are modeled as functions of both stator frequency and 
rotor speed. These two variables are mostly observed by drive systems to 
control the motor effectively. Therefore, the reference signals are generated 
according to the fault equations using the rotor speed and the supply fre-
quency to precisely capture the associated fault signatures.

9.3.3   On-Line Experimental Results

Tests are repeated on-line using the TMS320F2812 DSP, which is employed 
both for inverter control and fault signature detection. When using DSP 
core for both control and fault purposes, the fault code is embedded into the 
main control algorithm as a subroutine that processes the instantaneously 
measured current data. The number of data is chosen to be the same as the 
sampling frequency, which can be adjusted between 4k and 20k depending 
on the applications. The stator frequency is equated to the reference value 
depending on the control type. The rotor speed can either be measured 
using the encoder or estimated to update the signature frequencies in real 
time. Because the embedded ADC in TMS320F2812 has 12-bit, the quantiza-
tion constraints prevent sensing signals less than –65 dB. The experiments 
are carried out by testing broken rotor bar and eccentric motors.

The results obtained in Figure 9.5 using the DSP with 12-bit ADCs are very 
close to results obtained from the FFT spectrum analyzer that has a two-DSP core 
and a 16-bit ADC with a sampling rate of 256 kHz. The left sideband signature of 
an eccentric motor is measured to be –39.24 dB and –38.98 dB using the FFT ana-
lyzer and the DSP, respectively. It is reported that the fault signature magnitude 
is not strongly affected by the switching frequency of the inverter. Since this 
measurement is taken when the motor is running at the steady state, the ratio of 
the number of data to the switching frequency is mostly taken as unity, which 
provides sufficient resolution. The correlation of the fault component and the 
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Experimentally obtained (a) left eccentricity sideband in real time, (b) correlation degree 
between reference signal and the fault component, (c) correlation degree between reference 
signal and the fundamental component, and (d) FFT spectrum.
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fundamental component with respect to the reference signals generated by the 
DSP are given in Figure 9.5c,d. It is possible to obtain smoother waveforms sim-
ply by processing more data. These on-line experimental results confirm that 
the method can be adapted to the real-time applications.

In order to realize on-line lock-in of the reference signal and fault signature, a 
few ways are possible. For instance, the phase angle difference between the refer-
ence signal and the fault signature can be calculated using the arctangent relation 
of the cross-correlation and the autocorrelation at each fault signature detection 
cycle. Next, the minimum phase angle difference point is chosen as the operating 
point that maximizes the correlation and minimizes the noise effects. Once this 
point is detected, the rest of the fault diagnosis process can be continued at this 
point or it can be updated at each phase difference zero crossings.

As shown in Figure 9.6a, the correlation degree of fault component is set 
to maximum at zero crossing of the phase difference and fixed at this point 
until the next zero crossing. A similar process is repeated for the fundamen-
tal component to normalize the fault component as shown in Figure  9.6b. 
Despite the decrease in precision, the phase angle scanning can be accelerated 
by increasing the reference signal phase angle increments in each drive con-
trol cycle. Since the period of phase angle scanning is in the range of minutes 
this method is appropriate for constant duty cycle steady-state operations.

In order to examine the motors, the duty cycles of which are continuously 
fluctuating, an alternative autotuning algorithm is developed. Apart from the 
previous method, the phase difference between the reference signal and the 
fault signature is continuously updated. Thanks to this method, it is possible 
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to track fault signature not only at the steady state but during transients as 
well. Therefore, one can follow the dynamic characteristics of fault signatures 
during acceleration, deceleration, and loadings. The false error warnings can 
be minimized employing this method and previously determined operating 
point dependent on the adaptive threshold. If there are rare measurements to 
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and normalized left eccentricity sideband correlation degree in real time, (b) phase difference 
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be made of a current magnitude that does not change significantly in time, it 
may be acceptable to process as many data as possible to enhance the preci-
sion of the result. However, if there are multiple measurements to be made 
particularly during transients, the number of processed data should be opti-
mized. Typically, a few drive control cycles data processing time is enough at 
steady state and at most one or a half cycle will be sufficient during transients. 
It is reported that less than half a control cycle significantly degrades preci-
sion. Since the results are normalized, computation time will not affect the 
relative amplitude of the fault signature or the correlation degree.

In Figure 9.7, continuous tracking of the right eccentricity sideband is given. 
The phase lock-in is achieved in each drive control cycle by the autotuning 
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algorithm. Using the phase-sensitive detection, the right eccentricity side-
band is measured as less than |1| dB error when compared to the FFT ana-
lyzer results.

In Figure 9.8, the real-time fault signature tracks are given. In Figure 9.8a, 
the right eccentricity sideband variation is given from no-load to 0.33 pu 
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FIGURE 9.8
Experimentally obtained (a) normalized right eccentricity sideband correlation degree in real 
time under no load and 0.33 pu load, and (b) normalized broken rotor bar fault right sideband 
correlation degree in real time under 0.8 pu and 1.1 pu load.
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load using the autotuned phase-sensitive lock-in detector. In Figure 9.8b, 
the broken rotor bar fault right sideband variation is given from 0.8 pu 
to 1.1 pu load. Because the supply frequency is already continuously 
available in the control algorithm and the rotor speed is measured or 
estimated, these parameters are used to update the fault signature fre-
quencies in real time at various operating points. These results prove that 
the method has a powerful real-time fault signature tracking capability.

In this chapter, a simple noise immune real-time fault signature detection 
tool is presented. Since this method can easily be implemented using gen-
eral-purpose microcontrollers without any additional hardware, PC, filters, 
and large size memory, it can be adapted to single- and multiphase drive 
systems.
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10
Electric Implementation of Fault 
Diagnosis in Hybrid Vehicles Based 
on Reference Frame Theory

Bilal Akin, Ph.D.
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10.1  Introduction

The integrity of the electric motor in work and passenger vehicles can best 
be maintained by monitoring its condition frequently on-board the vehicle. 
This chapter presents a signal-processing-based fault diagnosis scheme for on-
board fault diagnosis of rotor asymmetry at start-up and idle mode [9]. Regular 
rotor asymmetry tests are done when the motor is running at certain speeds 
under certain loads with stationary current signal assumption. It is quite chal-
lenging to obtain these regular test conditions for long enough time during 
daily vehicle operations. In addition, automobile vibrations cause a nonuni-
form air-gap motor operation, which directly affects the inductances of electric 
motors and results in a quite noisy current spectrum. Therefore, in examining 
the condition of an electric motor integrated to a hybrid electric vehicle (HEV), 
regular rotor fault detection methods become impractical. The presented 
method overcomes the aforementioned problems simply by testing the rotor 
asymmetry at zero speed. This test can be achieved and repeated during start-
up and idle modes. The method can be implemented at no cost, basically using 
the readily available electric motor inverter sensors and microprocessor unit.

10.2  On-Board Fault Diagnosis (OBD) for 
Hybrid Electric Vehicles (HEVs)

It is very important for any vehicle to monitor its vital equipment continu-
ously. Therefore, nowadays almost all vehicles are equipped with an on-
board diagnostic (OBD) system [1]. This system has been used for warnings 
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and monitoring critical failures in the vehicle, such as ignition, battery, 
oil and gasoline level, engine, and brakes. If a problem or malfunction is 
detected, the OBD system sets off a malfunction indicator light (MIL), read-
ily visible to the vehicle operator on the dashboard, to inform the driver that 
a problem existed. When illuminated, it displays a universally recognizable 
symbol or a similar phrase for each failure. OBD is a valuable tool that assists 
in the service and repair of vehicles by providing a simple, quick, and effec-
tive way to pinpoint problems by retrieving vital automobile diagnostics 
from the OBD systems [2].

According to the U.S. Code of Federal Regulations (CFR), all light-duty 
vehicles, light-duty trucks, and complete heavy-duty vehicles weighing 14,000 
pounds GVWR (gross vehicle weight rating) or less (including medium duty 
passenger vehicles [MDPVs]) must be equipped with an OBD system capable 
of monitoring all emission-related power train systems or components dur-
ing the applicable useful life of the vehicle. A vehicle shall not be equipped 
with more than one general-purpose malfunction indicator light for emis-
sion-related problems; separate specific purpose warning lights (e.g., brake 
system, fasten seat belt, oil pressure, etc.) are permitted [2]. Although CFR’s 
requirements for OBD are mainly related to environmental protection pur-
poses, safety issues in vehicles should also be considered by using the OBD 
system.

The Code of Federal Regulations does not state any diagnostics require-
ments of electric machines in HEVs. Besides the battery, which is a vital elec-
trical component in HEVs, monitoring the conditions of an electric machine is 
very critical in case of any failures such as bearing, rotor, and stator faults as 
shown in Figure 10.1. By diagnosing the electric machine faults as early as pos-
sible, one can prolong the lifetime of the electric machine in HEVs by perform-
ing maintenance before a catastrophic failure occurs. Therefore, emerging 
HEV systems require onboard fault diagnosis as shown in Figure 10.2, both 
to support critical functions of the control system and to provide cost effective 
maintenance.

A catastrophic failure in an electric machine might result in dangerous sit-
uations during driving, especially on the highway. Unless frequently moni-
tored, an incipient fault in the machine can be propagated until it totally falls 
apart. Therefore, an accident afterward might become inevitable. Once the 
fault diagnostic system makes any kind of severe electric motor fault deci-
sion, the traction of the vehicle can totally be taken over by the combustion 
engine in order to prevent permanent damages and total loss of the electric 
motor. Basically, this solution is applicable if HEVs are designed based on 
parallel or parallel and series architectures. However, in series configura-
tions, the internal combustion engine (ICE) is directly connected to the electric 
motor [3]. Therefore, in series architectures the solution is limited to electric 
faults and has partial use for mechanical faults such as bearing fault.
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Mechanical vibration of the vehicle degrades the fault diagnosis of the elec-
tric motor integrated to the HEV. The vibration causes nonuniform air-gap 
operation, and therefore the machine inductance oscillates. Because of this 
oscillation, the line current becomes noisy and the noise floor of the current 
spectrum becomes higher. This noise in the current spectrum generated by 
mechanical vibration degrades the fault signature analysis results. Therefore, 
one of the best alternatives is condition monitoring at zero speed. Either idle 
modes or start-up might provide long enough time to process the current 
data and report the condition of the electric motor. On the other hand, the 
vibrating nature of the vehicle makes use of other vibration-sensitive sensors, 
such as the accelerometer, impractical due to the excessive noise at sensor 
output. Unlike accelerometers, flux sensors, and so forth that are mounted on 
the electric motor for fault diagnosis, the current sensors are located inside 
the motor drive unit, which is far away from the main source of vibration. 
Moreover, the cost of the current sensor is relatively low when compared to 
the other sensors. Thus, one of the best alternative combinations is employing 
current sensors at zero speed where mechanical vibration effect is minimum.

Broken bar
faultBearing fault

Eccentricity
faultStator fault

Check

FIGURE 10.1
Motor fault can be displayed in the hybrid electric vehicle instrument cluster (Lexus GS 450h).
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10.3  Drive Cycle Analysis for OBD

Drive cycle is typically used by independent emissions testing laborato-
ries to validate hybrid electric vehicle economy and emissions. The U.S. 
Environmental Protection Agency (EPA) city cycle is the first 1300s of 
the Federal Test Procedure, FTP75, regulated cycle shown in Figure 10.3. 
Table 10.1 shows the most common drive cycles and their statistics respec-
tive of their geographical regions [5]. Other than highway mode, traffic 
flow is uneven, with very frequent stop–go events and long idle times as 
shown in Table 10.1. This is why city cycles have low average speed com-
pared to similar performance on the U.S. highway cycle. Because of the 
high percentage of stop time as shown in Table 10.1, the presented OBD 
algorithm can often be run to monitor the motor condition where the 
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Drive-embedded fault diagnosis scheme integrated to HEV. (From IEEE Power Electronics 
Society Newsletter, vol. 19, no. 1, pp. 1, First Quarter 2007. With permission.)
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mechanical vibration is minimal. Since the current spectrum analysis is 
mostly based on transformed signal averaging, the transient state fault sig-
nature analysis has a high degradation potential. As shown in Figure 10.3, 
the drive cycle is dominated by transients where the motor current has 
nonstationary characteristics. Thus, instead of continuous condition moni-
toring, fault detection can be limited to start-up and idle modes in order 
to enhance the reliability of fault decision warning. Idle stop functional-
ity, as shown in urban drive cycle in Figure 10.3, is the primary means by 
which there is fuel consumption reduction, and turns out to be a safe strat-
egy for electric motor fault diagnostics. Every time the vehicle stops at a 
stop sign or traffic lights, or stop-and-go heavy traffic, the fault monitoring 
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FIGURE 10.3
US FTP75 city drive-cycle and fault detection points during idling. (From Sambandan, S., 
Nathan, A., Single-Technology-Based Statistical Calibration for High-Performance Active-
Matrix Organic LED Displays, Journal of Display Technology, Vol. 3, Issue 3, DOI: 10.1109/
JDT.2007.900914, 2007, pp.  284 – 294. With permission.)

TABLE 10.1

Standard Drive Cycles and Statistics

Region Cycle Time Idling (%) Average Speed (kph)

Asia-Pacific 10-15 mode 32.4 22.7
Europe NEDC 27.3 32.2
North America-city EPA-city 19.2 34
North America-highway EPA-highway 0.7 77.6
North America-US06 EPA 7.5 77.2
Industry Real World 20.6 51
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algorithm is run. If the stop (zero speed) time is not enough to finalize a 
fault decision, which is typically a few seconds, then the diagnostic result 
is neglected and resumed.

10.4  Rotor Asymmetry Detection at Zero Speed

Broken rotor bars in an induction motor rotor cause field asymmetry, which 
results in special sidebands at frequencies ±f s(1 2 )s  [6–7]. In real-time appli-
cations, a number of challenges must be considered to detect these side-
bands. For example, because these signatures directly depend on the slip, 
the rotor speed should be measured precisely. Otherwise, without accurate 
enough speed information, it is not possible to distinguish broken rotor bar 
sidebands from the fundamental component. One alternative solution might 
be to eliminate a fundamental component using a notch filter for line-driven 
motors. However, this solution is not applicable to variable speed drive sys-
tems due to dynamically changing stator frequency. Furthermore, the notch 
filter might cause sideband suppression unless sufficient loading is not pro-
vided during the tests. Another alternative is to estimate the rotor speed dur-
ing the operation, which brings extra computational burden. However, at low 
speed range most of the speed estimation algorithms cannot provide precise 
information. Therefore, high-speed operation must be guaranteed in order to 
obtain high precision speed values for sensorless broken rotor bar detection.

Next, the motor should be loaded at certain torque values smoothly in order 
to raise these sidebands and separate them from the fundamental compo-
nent in the current spectrum. Smooth and proper loading might not be avail-
able for various applications to test the rotor asymmetry. The method detects 
broken rotor bars in real time without employing speed sensor and loading 
systems. Some other external hardware employed in previous works [6–7], 
such as the data acquisition systems and analog filters, is also eliminated.

The test is implemented at zero speed; therefore there is no need for speed 
measurement or speed estimation. The rotor is locked mechanically or electri-
cally using direct current braking. Because the injected signal to test the rotor 
asymmetry is below 10% of rated voltage values, the generated torque during 
the test is negligible. Thus, the broken rotor bar test can be implemented with-
out an additional featured loading system. The +f s(1 2 )s  term is caused by 
torque vibrations [8] and cause electromechanical chain interaction between 
the rotor and the stator that result in many asymmetrical signatures in the 
spectrum. Therefore, low frequency range is dominated by consecutive asym-
metry signatures that sophisticate fault analysis as shown in Figure 10.4a.

Since the slip is maximum when the rotor is stationary, the existing consec-
utive signatures are quite far away from each other, as shown in Figure 10.4b. 
Indeed, at zero speed these terms vanish theoretically and the spectrum is 
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quite clean when compared to the current spectrum at rated speed and rated 
torque operation.

The method presented here focuses on fs(1 – 2s) term. At zero speed s = 1, 
thus the fs(1 – 2s) term is at frequency of (–fs). Single-phase reference frame 
analyses do not work for negative frequency; therefore three-phase current 
vectors are transformed to complex current space vector. Single-phase real or 
imaginary current analyses are insensitive to vector rotation direction; thus 
they find superposition of the left sideband and the fundamental component 
at the supply frequency ( fs). In order to compute the left sideband and the 
fundamental components separately, the current space vector fault relevant 
frequencies are experimentally examined.
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FIGURE 10.4
Current spectrum of broken rotor bar motor (a) regular test and (b) zero-speed test. (From 
Sambandan, S., Nathan, A., Single-Technology-Based Statistical Calibration for High-
Performance Active-Matrix Organic LED Displays, Journal of Display Technology, Vol. 3, Issue 
3, DOI: 10.1109/JDT.2007.900914, 2007, pp.  284 – 294. With permission.)
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In Figure 10.5 and Figure 10.6, the real-time fault signature tracking result 
is given when the motor is injected with low voltage at standstill near the 
rated current. Both the fault signature magnitude at (–fs) and the fundamen-
tal component at ( fs) are computed simultaneously and separately in real 
time by the digital signal processor (DSP) in order to obtain the normalized 
fault signature magnitude.

In order to verify the method, a number of experiments are implemented 
under various volts/hertz ratios, line currents, and frequencies. It is reported 
that if high enough current is supplied around or higher than the rated cur-
rent, under all conditions the healthy and faulty motors can be easily dis-
tinguished using this method. In Figure 10.5, fault signature frequencies of 
a healthy motor are examined when volts/hertz is set to 1.0 at 48 Hz. In 
Figure 10.5a, DSP continuously computes and updates the normalized left 
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FIGURE 10.5
Normalized left sideband magnitude of a healthy motor obtained by the DSP in real time at 
standstill (I = 9 A, V/Hz = 1.0, f = 48 Hz): (a) time-frequency domain, (b) frequency domain.
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sideband of the healthy motor current spectrum in each second. Figure 10.5b 
depicts an instant magnitude of left sideband component relative to funda-
mental in frequency domain.

A similar test is repeated for the motor that has less than 10 % broken rotor 
bars on the cage, and the results are shown in Figure 10.6. When Figure 10.5 
and Figure 10.6 are compared to each other, it is clearly seen that under the 
same conditions the left sideband is increased by 13 dB, which is high enough 
to distinguish healthy and faulty motors from each other.

In Figure 10.7, the normalized fault component magnitudes are given at 
various frequencies when the voltage-to-frequency (v/f) ratio is equal to 0.5. 
The comparative results are as promising as the regular (full-load, rated 
speed) broken rotor bar test. It is reported that the differences between the 
left sideband of healthy and faulty motor fault signatures are very close to 
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FIGURE 10.6
Normalized left sideband magnitude of a faulty motor obtained by the DSP in real time at 
standstill (I = 9 A, V/Hz = 1.0, f = 48 Hz): (a) time-frequency domain, (b) frequency domain.
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regular test results. Therefore, the same results can be obtained at standstill 
without the need for any external hardware just before the motor start-up or 
at idle mode in a few seconds.

The same test is implemented when the v/f ratio is set to 1.0 to examine 
the effect of magnetizing current. It is noticed that the results are close to 
the ones obtained at two different v/f ratio tests as shown in Figure 10.8 and 
Figure  10.9. Thus, magnetizing current level has limited effect on the left 
sideband at standstill and can be ignored as a fault analysis parameter.

In conclusion, the condition monitoring and fault detection of electric 
motors in hybrid electric vehicles are quite vital for safety and cost-effec-
tive maintenance. This chapter therefore presents a simple on-line on-board 
fault diagnosis of induction motor for HEVs at start-up and idle (standstill) 
conditions based on reference frame theory. The major advantages of the 
method are very fast convergence time, no need for an additional sensor 
or hardware, robustness and reliablility, speed sensorless implementation, 
and zero-speed application, making it highly robust against the mechanical 
vibrations effects. It is experimentally shown that the method detects the 
rotor asymmetry fault signatures at start-up and idle mode (zero speed) and 
determines the severity of the fault. The solution can easily be extended to 
the other faults for complete motor monitoring.
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FIGURE 10.7 (continued)
Normalized left sideband magnitude obtained by the DSP in real time versus line current (v/f 
= 0.5): (a) 36 Hz, (b) 48 Hz, (c) 60 Hz.
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11
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for the Implementation of Motor 
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Based on Digital Signal Processors
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11.1  Introduction

The motor fault has commonly been categorized as electrical and mechanical 
fault of a motor in literature. In addition to the conventional fault, the failure 
of the fault diagnosis algorithm itself in the harsh industry application can 
be considered as another serious fault condition that fails to perform motor 
protection and increases the possibility of unwanted system failure. [8]

To implement a full fault-detection procedure using digital signal proces-
sors (DSPs) in industry, the applied techniques should not only correctly 
detect the fault signatures but also make reliable decisions. An effective 
algorithm should be able to take variations in fault signature amplitude, line 
current noise level, frequency offset, and phase offset into consideration in 
order to avoid missing or false detection alarms.

In practical applications, a small fault frequency offset between the 
expected and the existing fault signature frequency can be observed due 
to inaccurate speed feedback or estimation, slow response time of sensing 
devices. This offset can create an error in motor current signature analysis 
(MCSA) techniques used in industry. Even with tolerable speed feedback 
error in motor control, if the detection is performed within a short period, a 
small fault frequency offset can aggravate the overall capability of the speed-
sensitive detection system. Therefore, it is unlikely to make a reliable deci-
sion regarding the fault status until the fault frequency offset is compensated 
accurately, which has commonly been neglected in many studies. The phase 
estimation of a fault signal requires another concern in fault diagnosis as it is 
commonly challenging to make a correct phase estimation of a small signal 
in a noisy channel. Also, if frequency errors exist, the phase estimation of a 
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fault signal becomes practically and theoretically impossible. Noise level and 
its variations must also be considered in a diagnostic system design because 
the fault signatures are generally observed at a much smaller level than the 
noise energy level [2–4]. Due to the low signal-to-noise ratio (SNR), a robust 
fault detection method applied for plants in harsh industrial environments 
should accurately consider noise content and its variation.

Ignoring these ambiguities might result in erroneous fault indices in industrial 
applications. Furthermore, to come up with highly reliable fault indices based 
on fault references, the thresholds should be updated depending on the motor 
speed, torque, and control schemes, which will result in further complexity.

This chapter presents a comprehensive fault detection procedure that per-
forms both the fault detection and decision-making stages taking nonideal-
ity into account and maintaining the complexity low enough for DSP-based, 
real-time implementation.

11.1.1   Coherent Detection

In signal processing, one of the well-known and most widely used detection 
methods is classified in two parts: coherent detection and noncoherent detec-
tion [5]. Coherent detection basically uses measured frequency and phase 
distortion of a signal, which is compensated in the subsequent stages of the 
fault detection. On the other hand, noncoherent detection is applied without 
knowing the phase information. Since precise measurement of inspected low 
amplitude fault signatures is a challenging task, noncoherent detection is a 
more practical tool for fault diagnosis applications. Indeed, once the neces-
sary information is accurately provided, the coherent detection usually per-
forms better than noncoherent detection as it utilizes more signal information, 
which increases the complexity [5]. The noncoherent detection yields more 
reliable detection under severely noisy conditions where inaccurate informa-
tion is available as its performance is not dependent on the distortion factor.

A simplified coherent detection is presented by Akin et al. [2]. As shown 
in Figure 11.1, the fault amplitude and phase can be monitored using a phase 
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Coherent detection (phase-sensitive detection).
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detection procedure. Compared to the techniques detailed by Bellini et al. [4] 
and Benbouzid et al. [7], phase-sensitive detection has reduced computa-
tional complexity and made it possible to perform a large amount of data 
processing using a low-cost DSP. However, the performance of coherent 
detection depends on the phase accuracy of the fault signature as depicted 
in Figure 11.2. Therefore, these kinds of techniques are applicable in condi-
tions where phase ambiguities are negligible.

11.1.2   Noncoherent Detection (Phase Ambiguity Compensation)

The noncoherent detection is basically the amplitude detection procedure 
based on phase elimination and hence is inherently immune to the phase 
ambiguities of fault signatures. The elimination of the phase estimation 
stage reduces the computational burden of the noncoherent detection tech-
nique. Even though it shows lower performance than coherent detection 
at a steady state when the phase information is provided, it is well known 
that the detection method allows the user to obtain more reliable detection 
results under noisy or dynamic system conditions [5]. The block diagram 
of noncoherent detection is briefly given in Figure  11.3. So depending on 
the detection environment of fault SNR, the fault diagnosis method is to be 
determined between coherent and noncoherent detection.

11.1.3   Fault Frequency Offset Compensation

Rotor speed is one of the most critical variables that needs to be moni-
tored continuously both for motor control and fault detection. The speed 
feedback is measured either by an encoder or estimated without speed 
sensors in the DSP code. Unlike the motor control, very precise speed 

0 0.2 0.4 0.6 0.8 1–100

–80

–60

–40

–20

0

Frequency Offset (Hz)

dB
 L

os
s

0% phase offset
20% phase offset
40% phase offset
60% phase offset

FIGURE 11.2
Fault signature detection loss versus frequency.



238 Electric Machines: Modeling, Condition Monitoring, and Fault Diagnosis

information is needed to identify the severity of the faults. However, in 
practical applications, a small mismatch between the speed feedback and 
the actual speed is commonly observed due to encoder resolution, inac-
curate speed estimation algorithms, noise interferences, or slow response 
of sensors to unexpected transient condition, and so on. In addition to 
phase ambiguities, even a small amount of fault frequency offset yields 
erroneous fault detection results. Assuming the fault frequency offset 

= − ≠w w w 0offset fault ref  and phase delay ϕ − ϕ = ϕref fault offset , the cross-corre-
lation output signal will be

 

≈ ω − ω + ϕ − ϕ + ϖ

= ω + ϕ + ϖ

I K n n

K n

cos[ ]

cos[ ]

cross ref fault ref fault

offset offset

1

1  (11.1)

where ϖ is the motor current noise.
In Figure  11.2, the normalized decibel loss of coherent detection versus 

fault frequency offset is simulated using MATLAB where the phase offset 
percentage is defined between zero and 2π. It is clearly shown that fault fre-
quency offset, phase offset, or a random combination of these two can truly 
suppress the fault signature, which typically has –40 to –80 dB amplitude.

However, great complexity will also be required if all of the expected off-
sets are monitored. Here, the current signal, I n( )cross , is expected to provide 
high enough resolution for fault detection even if it is averaged in time or 
down sampled with noise elimination through averaging. The information 
of fault signature is expected to remain, as the low fault frequency offset will 
not be interfered with in the low pass filtering such as the averaging opera-
tion if it is appropriately designed based on the Nyqist theorem.

Applying an offset detection technique to an averaged signal with small 
samples will reduce the complexity. Maximum likelihood (ML) detection is 
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used to estimate the sinusoid at offset frequency, which is the maximum of 
the periodogram [1] and is given by
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is the averaged signal, N1 is the number of samples averaged, N2 is assumed 
the physical DSP buffer size used for this purpose where the relation between 
parameters is as follows:

 =N N N1 2  (11.4)

The tracking bound without aliasing is given by

 
≤Track bound
N

Hz_
2
2  (11.5)

The maximum bound comes from the Nyquist sampling theorem. If the 
offset ( = − ≠w w w 0offset fault ref ) is assumed, the aliasing will not be observed, 
practically.

The computational complexity of ML detection in Equation (11.2) depends 
on N and the frequency range = −f f frange max min . Since the ML algorithm applica-
tion in this study has high complexity, it needs modification for real-time DSP 
applications. These parameters will be limited through the averaged (effec-
tively down sampled) signal with reduced N and limited frequency range 
where the maximum fault frequency offset between the reference signal and 
the fault signal frequencies is assumed to be less than 1 Hz = <f Hz( 1 )range  
for simplicity. Since the frequency error is fundamentally caused by motor 
speed feedback error, it can be adaptively adjusted depending on the per-
formance of a speed estimator in industry application. In this way, the ML 
estimator can effectively be utilized in a DSP for on-line fault diagnosis.

The frequency resolution of ML-based offset detection in Equation (11.2) is 
determined as follows:
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where Ntri is the number of applications of ML trials within frange.
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11.2  Decision-Making Scheme

Procedures in diagnostics commonly consist of several steps that are sig-
nature detection, decision making, and final feedback to the controller or 
human interface system. Application of a low-cost diagnostic system in the 
industry is limited by the capability to handle the detection and decision-
making process simultaneously within the same microprocessor. Assuming 
the detection steps shown in previous sections, the applicability of the dis-
cussed system further depends on the complexity and reliability of the deci-
sion-making scheme.

11.2.1   Adaptive Threshold Design (Noise Ambiguity Compensation)

Reliability is one of the major challenges facing fault diagnostic systems 
because the decision should be made for a small fault signature in a highly 
noisy industrial environment. In fact, the detection algorithm applied at fault 
frequencies detects noise signatures even with healthy motors, the ampli-
tudes of which are usually hard to be discriminated from small fault signa-
tures. One of the practical design considerations of the threshold encountered 
is how the detected signature can be reliably decided as the existing fault 
signature. The diagnostic decision making based on the threshold trained to 
the motor line current noise variation can evaluate the reliability of detected 
signature in DSP applications.

Here, the threshold is derived using the statistical decision theory [1] with 
the hypothesis of H0 and H1 for decision tests, which are as follows:

 = ϖ = + ϖ ϖ − σH I H I I with p N: , : ( ) (0, ),stator stator fault0 1
2

  (11.7)

where H0 is the hypothesis of having only noise without any faults; H1 is the 
hypothesis of existing fault signature with amplitude Ifault in white Gaussian 
noise, ϖ, channel; and σN(0, )2  means zero mean noise with variance σ2. 
Ifault is assumed reliably detected under the phase and frequency errors of a 
signal, which are the major errors in diagnostic signal processing. Therefore, 
the hypothesis in Equation (11.7) becomes possible by advantaging the tech-
niques in previous sections independently derived from any control scheme 
of a motor assuming major error conditions.

A decision rule is made based on the optimal statistical test with a likeli-
hood-ratio test (LRT) of the two distributions of this hypothesis, which is as 
follows:
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where γ is the temporary threshold. With Gaussian distribution of noise, 
Equation (11.8) is derived as follows:
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where ′γ is the threshold and N is the number of samples of current signal 
used for detection.

Let = ∑ =T IN n
N

stator
1

1  in Equation (11.10). Then, the statistics of averaged sta-
tor current signal, T, is calculated as follows:
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The performance with threshold ′γ  applied to the averaged signal T with 
statistics shown in Equation (11.11) can be derived using the detection proba-
bility in Equation (11.12) and false alarm event probability in Equation (11.13), 
which are as follows:

 
( )( )= > ′γ = ′γ − σP T H Q I NPr{ ; } / /D fault1

2  (11.12)

 
( )= > ′γ = ′γ σP T H Q NPr{ ; } / /FA 0

2
 (11.13)

where Q is the Q-function, which is detailed in a later section.
With range of allowable error (false alarm), PFA , a threshold is calculated 

from Equation (11.12) and Equation (11.13):

 ′γ = σ −N Q P/ ( )FA
2 1  (11.14)

The threshold provides a reliable decision-making tool for small signature 
detection in a noisy channel. Signature-based fault diagnosis performed with 
reliably detected signatures through the threshold will lead to more accurate 
condition monitoring while discriminating its results from random noise inter-
ference signatures. From Equation (11.14), the threshold is dependent on the 
number of samples and the noise variance estimated. These are independently 
determined from the motor operating point parameters (i.e., the fundamental 
stator current level, torque, rotor speed, motor specifications). This is a desir-
able feature of the fault diagnosis algorithm applicable for general purposes. 
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It becomes possible since the complicated motor environments are gener-
ally reflected in line current noise, which is measured for threshold design. 
It implies that the diagnostic process is simplified without considering vari-
ous reference estimations of different motor conditions, which will result in 
increased system complexity and prior knowledge of these variations.

The only unknown parameter in the threshold Equation (11.14) is the noise 
variance. The instantaneous line current noise is effectively measured for 
the threshold parameter using the method described later in this section.

11.2.2   Q-Function

Figure 11.4 (top) shows the probability distribution curve of noise and sig-
nature amplitude assuming an additive zero mean Gaussian noise channel. 
The area under each probability curve is one. By assuming an arbitrary deci-
sion threshold, γ a , the probability distribution of decision-making errors can 
be identified in the shaded area as type I error. The reliability of small sig-
nal detection mainly depends on how the type II error (false detection) is 
suppressed. The Q-function is used to measure the error probability of false 
detection, which is the right side of the shaded area in Figure 11.4 (top).
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FIGURE 11.4
(Top) Probability distribution of diagnostic decision errors. (Bottom) Weighting factor versus 
false alarm probability.
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The Q-function is defined as follows:

 ∫=
π

= γ − σ−
∞

Q z e dg z I N( )
1
2

, ( )/ /g

z
a fault

/2 22
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The term −Q P( )FA
1  in Equation (11.14) is effectively a weighting factor. 

With a greater weighting factor, the threshold in Equation (11.14) is to be 
increased and the false detection rate is decreased; this relationship is com-
puted through Equation (11.15) and plotted in Figure 11.4 (bottom). Once the 
allowable false error rate PFA  is determined and, hence, the weighting factor, 
diagnostic decision making can be performed with a constant false alarm 
probability independent from the random noise conditions of the line cur-
rent signal. This is because the threshold in Equation (11.14) is adaptively 
determined based on instantaneous noise condition and decouples the effect 
of noise on decision-making performance.

The optimization of threshold level and parameter depends on the diag-
nostic requirement of a specific system. An ideal threshold simultaneously 
minimizes false detection and missing detection probability. In small sig-
nal detections, minimizing the false alarm is commonly of more concern. 
Based on assumed noise conditions and allowed error probability, threshold 
parameters can be adaptively designed and optimized for a target system.

11.2.3   Noise Estimation

Noise variance can be estimated via the mean squared error (MSE) crite-
rion. The MSE estimation is performed assuming infinite estimation time 
and zero mean noises from uniformly distributed signal distortion. Since 
harmonic signals are approximately periodic in the stationary operation of a 
motor and averaged to zero, noise content remains as follows:
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1
1 be an unbiased estimator of ϖµ = µE( ˆ )  whose mean is 

µ =E( ˆ ) 0 . From MSE criterion, noise statistics are derived as follows:
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 ⇒ σ ≈ NVar E( )N
2

  (11.18)

where µ − µ =E( ˆ ) 0 . Noise variance is derived from Equation (11.18).
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11.3  Simulation and Experimental Result

11.3.1   Modeled MATLAB Simulation Result

A typical stator current is modeled with fault conditions of a broken rotor 
bar. The distorted current signal is established assuming –15 dB noise, and 
11% total harmonic distortion (THD) with 5th and 7th harmonics. The bro-
ken rotor bar signature of –40dB amplitude is inserted based on the fault 
equation assuming slip s = 0.016 pu where the excitation frequency is 60 Hz. 
The simulation is performed with the modeled signal in Figure 11.5. (All the 
experiments/simulations are performed assuming steady-state operation of 
a motor.) In the simulation, PFA, frequency tracking range and the available 
buffers of a DSP are assumed the same as shown in Table 11.1. The signal 
with 50K samples is utilized for each simulation result. The fundamental 
signal is assumed filtered in the simulation.

The frequency tracked amplitudes and the threshold measured are 
shown simultaneously in Figure 11.5 with offsets varying from 0 to 1 Hz. In 
the figure, negative (–) frequency values are simply replicas of positive (+) 
offset results for convenience since noncoherent detection cannot discrimi-
nate polarity of frequency. Zero frequency is the point where the tracking 
scheme is not applied. In the figure, it is shown that the fault frequency 
offset inserted is accurately tracked at the frequency of the maximum nor-
malized amplitude in all trials. One can also determine that the maximum 
points are above threshold while signals are below each threshold at the 
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FIGURE 11.5
Frequency tracking with possible offsets (resolution: 0.04 Hz).
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point without frequency tracking. The assumed tracking resolution 0.04 
Hz shows sufficient performance to discriminate maximum points.

11.3.2   Off-Line Experiments

The experiments are run utilizing line current data obtained by a 1.25 MS/s, 
12-bit resolution data acquisition system, which is set to produce a 25 KHz 
sampling frequency. The 3-hp induction motors are loaded by the direct 
current DC generator, which is assumed open-loop controlled in all experi-
ments. The acquired off-line data are processed through MATLAB.

In Figure 11.6, the stator current from the data acquisition card is shown 
with eccentricity (Figure  11.6a) and mixed fault signatures and unknown 

TABLE 11.1

Experiment Environment

Sampling Hz 25 kHz
Data acquisition board NI-DAQmx
Motor 3 hp/4-pole IM
DSP board eZ DSP 320F2812
Frequency tracking range 1 Hz
PFA 0.00097
Buffer size (N2) 500
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FIGURE 11.6
Stator current spectrum: (a) eccentricity signature at 20% torque, (b) mixed signature with 
broken rotor bar fault at 100% torque (supply frequency: 60 Hz).
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signatures simultaneously through fast Fourier transform (FFT) analysis 
(Figure 11.6b). Instantaneous fault frequencies are measured based on the 
fault equation. The motor is designed with mixed fault conditions for per-
forming the experiments in a practical environment.

In Table 11.2 and Table 11.3, DF is the detection flag, DA is the detected 
amplitude, and TH is the threshold. The definition with subscript T is the 
result obtained through the frequency tracking operation. All amplitudes 
are shown in decibels.

From an FFT spectrum analyzer, the eccentricity signature monitored is 
–41.2 dB at 20% torque. It tends to decrease in the high torque range and 
around –55.45 dB at 40%~100% torques. For the broken rotor bar signature, it 
is –45.7 dB at 50% torque. Unlike the eccentricity, the broken rotor bar signa-
tures increase with load and –41.8 dB at 100% torque. These results are taken 
to evaluate the accuracy of detection in the off-line fault diagnosis.

11.3.2.1   Off-Line Results for Eccentricity

Correlations shown in Figure  11.3 are performed between motor current 
signal and reference fault signal which reference signal is generated based 
on motor speed-dependent fault characteristic frequency. Figure 11.7 shows 
the averaged correlation output (Figure  11.7a) and the frequency tracking 
result (Figure 11.7b). The averaged signal in Figure 11.7a is rounded due to 
the applied Hanning window to prevent the effects of spectral leakages in 
diagnostic signal processing. In Figure 11.7b, the maximum occurs at zero 
frequency, implying there is negligible fault frequency offset. The threshold 
is well placed to decide eccentricity fault. It is further confirmed in Table 11.2. 
The detected eccentricity signature is determined correctly in both trials of 

TABLE 11.2

Decision Making 10 Seconds, Supply Frequency: 60 Hz, 20% Torque

DF DA DFT DAT TH

1 –40.16 dB 1 –40.16 dB –49.78 dB

Note: DF, detection flag; DA, detected amplitude; TH, threshold. Subscript 
T is the result obtained through the frequency tracking operation.

TABLE 11.3

Decision Making 10 Seconds, Supply Frequency: 60 Hz, 100% Torque

DF DA DFT DAT TH

0 –49.8 dB 1 –41.32 dB –42.30 dB

Note: DF, detection flag; DA, detected amplitude; TH, threshold. Subscript T 
is the result obtained through the frequency tracking operation.
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frequency tracking and without tracking, with about 1.04 dB error from 
expected –41.2 dB obtained from the spectrum analyzer.

Figure 11.7c shows detection through the PSD scheme in Figure 11.1. The 
PSD is one of the algorithms utilizing optimal property of matched filter-
ing, which has been adopted as a high-performance, low-cost fault diagnosis 
scheme. With the no-fault frequency offset (0 Hz) condition, the performance 
of the PSD is confirmed by the precise detection close to expected –41.2dB as 
shown in Figure 11.7c. With a potential frequency error at +0.5 Hz or –0.5 Hz, 
the analysis shows the loss of amplitude as expected in Figure 11.2. In the 
tracking scheme in Figure 11.7b, those frequency errors can be tracked and 
detections are compensated for reliable fault diagnosis. Because the schemes 
are optimized for precise detection in specific frequencies, serious loss of 
optimality occurs when the frequency/phase information has offsets as 
shown in Figure 11.7c. To be adopted in industry, robust performance under 
error conditions is to be maintained.

11.3.2.2   Off-Line Results for Broken Rotor Bar

In Figure  11.8a, the averaged signal is shown with dominant signal around 
1.5 Hz. It is the fundamental stator current signal monitored at about 1.5 Hz 
away from the broken rotor bar signature (out of tracking range in Table 11.1). 
Although the technique is effective in small fault frequency offset tracking, it 
is inferred if the fundamental signal is within the tracking range. The range 
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Frequency tracking for eccentricity fault: (a) averaged signal, (b) frequency tracking and deci-
sion making (resolution: 0.02 Hz), (c) coherent detection without strategy for fault frequency 
offset compensation.
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need to be smaller than the difference between the supply and the expected 
fault frequencies.

In Figure 11.8b, the fault frequency offset is identified at maximum point 
with 0.46 Hz. In Table 11.3, the fault is determined correctly only after fre-
quency tracking and detected amplitude is boosted from –49.8 to –41.32 dB. 
The accuracy of the ML tracking algorithm can be confirmed from the ampli-
tude monitored through the spectrum analyzer, which is –41.8 dB and yields 
only 0.47 dB error from the tracked result.

Figure 11.8c shows detections through one of the optimal schemes, PSD, to 
compare the performance with the algorithm in Figure 11.8b under error condi-
tions. Unlike the zero offset condition in Figure 11.7, the frequency/phase offsets 
are completely ambiguous in Figure 11.8. Figure 11.8c shows the serious perfor-
mance degradation of amplitude loss due to frequency/phase ambiguity. Every 
detection at 0 Hz, –0.5 Hz, and 0.5 Hz shows unreliable values. Meanwhile, 
through the use of phase error-immunized detection and frequency tracking 
in Figure11.8b, the detection performance becomes close to optimal and robust-
ness of detection is maintained under error conditions.

11.3.3   On-Line Experimental Results

The induction motor is fed by the inverter. The voltage-to-frequency (v/f) motor 
control and on-line fault diagnosis service routine are simultaneously imple-
mented on a 32-bit fixed-point, 12-bit ADC, 150-MHz DSP of TMS320F2812.
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Frequency tracking for broken rotor bar fault: (a) averaged signal, (b) frequency tracking and 
decision making (resolution: 0.02 Hz), and (c) coherent detection without strategy for fault fre-
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In Figure 11.9 and Figure 11.10, the zero frequency is the fault signature 
frequency measured by the DSP from the fault equation. In Figure 11.9, the 
DSP measures the fault signature frequency correctly showing a maximum 
at zero frequency, that is, –40.2 dB. In Figure 11.10, 0.24 Hz fault frequency 
offset between the expected and the existing fault signature frequency is 
monitored for the broken rotor bar signature.

The changes in detected amplitude and thresholds in time are shown in 
Figure 11.11 and Figure 11.12. In both figures, the detected signature hardly 
varies after 2 seconds. The threshold measured is unstable initially and 
becomes stabilized after about 8 seconds. After becoming stabilized, it tends 
to decrease since one of the threshold parameters, effective noise variance, 
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σ N/2 , decreases as the number of samples used increases, which confirms 
careful derivation in Equation (11.14).

The latency time of about 10 seconds in fault diagnosis is assumed to be 
acceptable because condition monitoring is performed in a relatively long 
period of time, especially with a mechanical type of fault such as broken 
rotor bar or eccentricity.

In on-line experiments, the threshold applied is designed to keep false 
detection errors strictly within 0.097% as shown in Table 11.1. That is why the 
signatures are usually detected close to threshold within 5~10 dB. The thresh-
olds can be further decreased to detect small signatures by reducing the 
weighting factor in Equation (11.14). This can be done based on the relation 
shown in Figure 11.4 (bottom) from the trade-off of detection performance. 
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2 4 6 8 10 12 14

–80

–60

–40

–20

Time

dB

�reshold
Amp. (dB)

FIGURE 11.12
Detectability variation with time for broken rotor bar with 100% torque (supply frequency: 
48.3 Hz).
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The resolution of signature amplitude tracking can also be further improved 
by intentionally adding known frequency bias, which lets the detection 
achieved be more precise as the relatively high frequency signal can be iden-
tified in a relatively shorter time period.

The fault detection and decision-making capability of the robust fault diag-
nosis algorithm are demonstrated in this chapter by mathematical verifica-
tions and off-line/on-line experiments. It is observed that ambiguities such 
as the fault signature frequency mismatch, the phase of the fault vector, and 
changes in the noise level of fault signatures can be efficiently handled using 
a simple algorithm capable of frequency tracking, phase eliminating detec-
tion, and adaptive threshold.
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