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Preface

This sixth edition of ‘Higher Engineering Mathe-
matics’ covers essential mathematical material suitable
for students studying Degrees, Foundation Degrees,
Higher National Certificate and Diploma courses in
Engineering disciplines.

In this edition the material has been ordered into the
following twelve convenient categories: number and
algebra, geometry and trigonometry, graphs, complex
numbers, matrices and determinants, vector geometry,
differential calculus, integral calculus, differential equa-
tions, statistics and probability, Laplace transforms and
Fourier series. New material has been added on log-
arithms and exponential functions, binary, octal and
hexadecimal, vectors and methods of adding alternat-
ing waveforms. Another feature is that a free Internet
download is available of a sample (over 1100) of the
further problems contained in the book.

The primary aim of the material in this text is to
provide the fundamental analytical and underpinning
knowledge and techniques needed to successfully com-
plete scientific and engineering principles modules of
Degree, Foundation Degree and Higher National Engi-
neering programmes. The material has been designed
to enable students to use techniques learned for the
analysis, modelling and solution of realistic engineering
problems at Degree and Higher National level. It also
aims to provide some of the more advanced knowledge
required for those wishing to pursue careers in mechan-
ical engineering, aeronautical engineering, electronics,
communications engineering, systems engineering and
all variants of control engineering.

In Higher Engineering Mathematics 6th Edition, the-
ory is introduced in each chapter by a full outline of
essential definitions, formulae, laws, procedures etc.
The theory is kept to a minimum, for problem solving is
extensively used to establish and exemplify the theory.
It is intended that readers will gain real understand-
ing through seeing problems solved and then through
solving similar problems themselves.

Access to software packages such as Maple, Mathemat-
ica and Derive, or a graphics calculator, will enhance
understanding of some of the topics in this text.

Each topic considered in the text is presented in a way
that assumes in the reader only knowledge attained in
BTEC National Certificate/Diploma, or similar, in an
Engineering discipline.

‘Higher Engineering Mathematics 6th Edition’ pro-
vides a follow-up to ‘Engineering Mathematics 6th
Edition’.

This textbook contains some 900 worked prob-
lems, followed by over 1760 further problems (with
answers), arranged within 238 Exercises. Some 432
line diagrams further enhance understanding.

A sample of worked solutions to over 1100 of the fur-
ther problems has been prepared and can be accessed
free via the Internet (see next page).

At the end of the text, a list of Essential Formulae is
included for convenience of reference.

At intervals throughout the text are some 19 Revision
Tests (plus two more in the website chapters) to check
understanding. For example, Revision Test 1 covers
the material in Chapters 1 to 4, Revision Test 2 cov-
ers the material in Chapters 5 to 7, Revision Test 3
covers the material in Chapters 8 to 10, and so on. An
Instructor’s Manual, containing full solutions to the
Revision Tests, is available free to lecturers adopting
this text (see next page).

Due to restriction of extent, five chapters that appeared
in the fifth edition have been removed from the text
and placed on the website. For chapters on Inequali-
ties, Boolean algebra and logic circuits, Sampling and
estimation theories, Significance testing and Chi-square
and distribution-free tests (see next page).

‘Learning by example’ is at the heart of ‘Higher
Engineering Mathematics 6th Edition’.

JOHN BIRD

Royal Naval School of Marine Engineering,
HMS Sultan,

formerly University of Portsmouth

and Highbury College, Portsmouth
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Free web downloads

Extra material available on the Internet at:
www.booksite.elsevier.com/newnes/bird.

It is recognised that the level of understanding
of algebra on entry to higher courses is often
inadequate. Since algebra provides the basis of so
much of higher engineering studies, it is a situation
that often needs urgent attention. Lack of space
has prevented the inclusion of more basic algebra
topics in this textbook; it is for this reason that
some algebra topics — solution of simple, simul-
taneous and quadratic equations and transposition
of formulae — have been made available to all via
the Internet. Also included is a Remedial Algebra
Revision Test to test understanding. To access the
Algebra material visit the website.

Five extra chapters

Chapters on Inequalities, Boolean Algebra and
logic circuits, Sampling and Estimation theo-
ries, Significance testing, and Chi-square and
distribution-free tests are available to download at
the website.

Sample of worked Solutions to Exercises

Within the text (plus the website chapters) are
some 1900 further problems arranged within
260 Exercises. A sample of over 1100 worked
solutions has been prepared and can be accessed
free via the Internet. To access these worked
solutions visit the website.

Instructor’s manual

This provides fully worked solutions and mark
scheme for all the Revision Tests in this book
(plus 2 from the website chapters), together with
solutions to the Remedial Algebra Revision Test
mentioned above. The material is available to lec-
turers only. To obtain a password please visit the
website with the following details: course title,
number of students, your job title and work postal
address.

To download the Instructor’s Manual visit the
website and enter the book title in the search box.
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This textbook is written for undergraduate engineering degree and foundation degree courses

however, it is also most appropriate for HNC/D studies and three syllabuses are covered.
The appropriate chapters for these three syllabuses are shown in the table below.
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for Methods for
Engineers Engineers

1. Algebra X
2. Partial fractions X
3. Logarithms X
4. Exponential functions X
5. Hyperbolic functions X
6. Arithmetic and geometric progressions X
7. The binomial series X
8. Maclaurin’s series X
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11. Introduction to trigonometry X

12. Cartesian and polar co-ordinates X

13. The circle and its properties X

14. Trigonometric waveforms X

15. Trigonometric identities and equations X

16. The relationship between trigonometric and hyperbolic X

functions

17. Compound angles X

18. Functions and their curves X

19. Irregular areas, volumes and mean values of waveforms X

20. Complex numbers X

21. De Moivre’s theorem X

22, The theory of matrices and determinants X

23. The solution of simultaneous equations by matrices and X

determinants

24, Vectors X

25. Methods of adding alternating waveforms X

(Continued)



XVi

Syllabus Guidance

Chapter Analytical Further Engineering
Methods Analytical Mathematics
for Methods for
Engineers Engineers

26. Scalar and vector products X

27. Methods of differentiation X

28. Some applications of differentiation X

29. Differentiation of parametric equations

30. Differentiation of implicit functions X

31. Logarithmic differentiation X

32. Difterentiation of hyperbolic functions X

33. Diftferentiation of inverse trigonometric and hyperbolic X

functions

34. Partial differentiation X

35. Total differential, rates of change and small changes X

36. Maxima, minima and saddle points for functions of two X

variables

37. Standard integration X

38. Some applications of integration X

39. Integration using algebraic substitutions X

40. Integration using trigonometric and hyperbolic X

substitutions

41. Integration using partial fractions X

42, The t = tan0/2 substitution

43. Integration by parts X

44. Reduction formulae X

45. Numerical integration X

46. Solution of first order differential equations by separation of X

variables

47. Homogeneous first order differential equations

48. Linear first order differential equations X

49. Numerical methods for first order differential equations X X

50. Second order differential equations of the form X

a% +b j—z +cy=0
51. Seczond order differential equations of the form X
BL 4 oo i

52. Power series methods of solving ordinary differential equations X

53. An introduction to partial differential equations X

54. Presentation of statistical data X
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55. Measures of central tendency and dispersion X

56. Probability X

57. The binomial and Poisson distributions X

58. The normal distribution X

59. Linear correlation X

60. Linear regression X

61. Introduction to Laplace transforms X

62. Properties of Laplace transforms X

63. Inverse Laplace transforms X

64. Solution of differential equations using Laplace transforms X

65. The solution of simultaneous differential equations using X

Laplace transforms

66. Fourier series for periodic functions of period 2 X

67. Fourier series for non-periodic functions over range 2 X

68. Even and odd functions and half-range Fourier series X

69. Fourier series over any range X

70. A numerical method of harmonic analysis X
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Website Chapters
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1.1 Introduction

In this chapter, polynomial division and the factor
and remainder theorems are explained (in Sections 1.4
to 1.6). However, before this, some essential algebra
revision on basic laws and equations is included.

For further Algebra revision, go to website:
http://books.elsevier.com/companions/0750681527

1.2 Revision of basic laws

(a) Basic operations and laws of indices

The laws of indices are:
am
(i) a"xad"=a""" (i) —=a"""
a

(i) @™ =a™"  (iv) an = Jam

L o
V) a"=— (vi) a"=1
aﬂ

Problem 1. Evaluate 4a2bc—2ac when a=2,
= % and ¢ = 1%

253 o a2 (LY(3 3_ 3
4a“bc’ —2ac =4(2) (2)(2) 2(2)(2)

_4x2x2x3x3x3 12
T 2x2x2x2 2

=27-6=21

Problem 2. Multiply 3x +2y by x — y.

Chapter 1

Algebra

3x+2y
X—=y

Multiplyby x —  3x2+2xy

Multiply by —y — —3xy —2y?
Adding gives: 3x2— xy—2y?
Alternatively,

BGx+2y)(x —y) = 3x2 — 3xy+2xy— 2y2

=3x* —xy—2y?

312 4
and evaluate when

Problem 3. Simplify >
aoc

a=3,b=%andc=2.

a’b?ct
abc™?

Whena=3,b=%andc=2,

— B2 1A (D) 26

b =37 (§)@° = ) (}) 64 =72

x2y3 -l—xy2
Xy

Problem 4. Simplify

x2y3 +xy2 B x2y3 N x_yZ

Xy Xy Xy

_ x2_1y3_1 +xl—1y2—l

=xy*+y or y(xy+1)
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2 3/2
X X
Problem 5. Simplify( «/7)(\/_1 )
(x3y3)2
NI ayidyi
(x5y3)% xgy%
_x2+7l_%y71+%_%
:_xoy_%
1 1 1
=Yy or — or ——
RN

Now try the following exercise

Exercise 1 Revision of basic operations
and laws of indices

1. Evaluate 2ab + 3bc — abc whena = 2,
b=—-2and c=4. [—16]

2. Find the value of 5pg?r® when p = %,
qg=-—-2andr=—1. [—8]

3. From 4x — 3y 4 2z subtract x +2y — 3z.
[B3x =5y +57]

4. Multiply 2a — 5b + ¢ by 3a + b.
[6a% — 13ab + 3ac — 5b% + bc)

5. Simplify (x? y3z)(x3 yzz) and evaluate when
x=% y=2andz=3. [x3y*23, 135]

6. Evaluate (a 3 be3)(a 5p—3 c¢) when a =3,

b=dandc=2. [+41]
2 3
. ... ab+a’bd 1+a
7. Slmphny [ 3 i|
1 1 1
. (@’bicT7)(ab)3
8. Simplify ——
(vg3«/zc)
6/=113
ddpded o YA Vb
V3

(b) Brackets, factorization and precedence

Problem 6. Simplify a®>— (2a —ab) —a(3b +a).

a’— (2a —ab) —a(3b +a)
=a*>—2a+ab—3ab—a*
=—2a — 2ab or —=2a(1 + b)

Problem 7. Remove the brackets and simplify the
expression:

2a —[3{2(4a — b) — 5(a +2b)} + 4al.

Removing the innermost brackets gives:

2a — [3{8a — 2b — 5a — 10b} + 4a]
Collecting together similar terms gives:

2a — [3{3a — 12b} + 4a]
Removing the ‘curly’ brackets gives:

2a —[9a —36b +4a]
Collecting together similar terms gives:

2a —[13a — 36b]
Removing the square brackets gives:

2a —13a +36b = —11a+36b or
360 —11a

Problem 8. Factorize (a) xy —3xz
(b) 4a% + 16ab? (c) 3a%b — 6ab® + 15ab.

(@a xy—3xz=x(y—32)
(b) 4a? +16ab’ = 4a(a + 4b°)
(¢) 3a’b—6ab*+ 15ab =3ab(a — 2b + 5)

Problem 9. Simplify 3¢+ 2¢ x 4c+ ¢ +5¢ — 8c.

The order of precedence is division, multiplica-
tion, addition and subtraction (sometimes remembered
by BODMAS). Hence
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3c+2¢cx4c+c+5c—8¢

—30+20x4c+(i) —8c
n 5¢

2 1
=3c+ 8¢ +§—8c

1 1
=8(:2—5(J+g or c(Sc—5)+g

Problem 10. Simplify
(2a —3)=4a+5x 6—3a.

(2a—3)+4a+5x6—3a

=2a4;3+5x6—3a
=273 13034
4a
=2—a—i+30—3a
da 4a
1 3 1 3
=E—E+3O—3a=305—a—3¢1

Now try the following exercise

Exercise2 Further problems on brackets,
factorization and precedence

1. Simplify2(p+3q —r)—4( —q +2p)+ p.

[—5p + 10g — 6r]

2. Expand and simplify (x + y)(x —2y).
[x? —xy —2y7]

3. Remove the brackets and simplify:

24p —[2{35p —q) —2(p +2q)} +3q].
[11g —2p]

4. Factorize 21a%b* —28ab.  [Tab(3ab —4)]

5. Factorize 2xy* + 6x2y + 8x3y.
[2xy(y 4 3x +4x7)]
6. Simplify 2y +4+6y+3 x4 —5y.

2
[— —3y+ 12:|
3y

7. Simplify3+y+2-+y—1.

B

8. Simplify a® —3ab x 2a < 6b + ab. [ab]

1.3 Revision of equations

(a) Simple equations
Problem 11. Solve4—3x =2x —11.
Since 4 —3x =2x — 11 then4 +11 =2x +3x

i.e. 15 = 5x from which, x = 5 =3

Problem 12. Solve
4Q2a —3)—2(a—4) =3(a—3)— 1.

Removing the brackets gives:
8a—12—-2a+8=3a—-9—-1

Rearranging gives:
8a—2a—-3a=-9—-1+12-8

ie. 3a=—6
and a= _—6 =-=2
3
3 4
Problem 13. Solve —— = .
x—2 3x+4

By ‘cross-multiplying’:  3(3x +4)=4(x —2)

Removing brackets gives:  9x +12=4x —8

Rearranging gives: Ix —4x=-8—-12

i.e. S5x=-20
—2
and X = —0
5
=—4
Problem 14. Solve (ﬁ+ 3) =2,
Jt
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ﬁ(ﬁ+3)=2ﬁ Rearranging gives: d’p+ D’p=D?>f —d>f
actorizing gives: p(d“+ D“)= f(D- —
N/; F HP H (d2 2) ( 2 d2)
ie. t4+3=2t
s wd _ 1w
and 3=2F— i P="@+p?
i.e. 3=/t
and 9=t

Now try the following exercise

(b) Transposition of formulae Exercise 3 Further problems on simple

equations and transposition of formulae

ft

Problem 15. Transpose the formula v =u + —
m

to make f the subject. In problems 1 to 4 solve the equations

1. 3x—2-5x=2x—4. (3]
ft LSt
u+— =v from which, —=v—u 2. 8+4(x—1)—5 —3)=2(5—2x).
m m
[-3]
t
and m(f—)zm(v—u) 3 1 + 1 -0 [_l]
" " 3a—2 " S5a+3 ;
i.e. ft=m@ —u) 3./t
4. ot =—6. [4]
d ) v
an =—W-—u
3(F —
! 5. Transpose y = % for f.
Problem 16. The impedance of an a.c. circuit is _3F—yL _F yL ]
given by Z = +/R? 4+ X?2. Make the reactance X the f= B == =N
subject. .

1
6. Make [ the subject of = Zﬂ\/j.
v R? + X? = Z and squaring both sides gives §

R>+ X% = Z2, from which, m_
wL
X2 = 7% — R? and reactance X = Vv Z% — R? 7. Transpose m = ————— for L.
L+rCR
_ mrCR
Cp—m

D
Problem 17. Given that — = /(ﬂ),
d JF=m g

express p in terms of D, d and f.

x_l—l—r2 . X—Yy 1
y_l—rz' "= xX+y

Squaring both sides gives: = (¢) Simultaneous equations

‘Cross-multiplying’ gives:

&(f+p)=D*(f—p)
Removing brackets gives:

Rearranging gives:

—_~

\
+ I+
ESHIES
NG~

I
S alo

e
|

\
|
<

o

o

Problem 18. Solve the simultaneous equations:
Tx —2y =26 (D
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5 x equation (1) gives:
35x — 10y =130

2 x equation (2) gives:

12x + 10y =58
equation (3) +equation (4) gives:
47x +0 =188
188
from which, x=— =4
47

Substituting x = 4 in equation (1) gives:
28 —2y =26
from which, 28 —26 =2y and y=1

Problem 19. Solve

X i EN
g 2 7
Y
11+ = = 3x.
+ 3 X

8 x equation (1) gives:  x +20 =28y
3 x equation (2) gives: 33+ y=9x
ie. x—8y=-20
and 9x —y=33

8 x equation (6) gives: 72x — 8y = 264

Equation (7) — equation (5) gives:

T1x =284
. 284
from which, x=—=4
71
Substituting x = 4 in equation (5) gives:
4—-8y=-20

from which, 4420=8yand y =3

3

“

ey

@

3
“

&)
(6)
(N

(d) Quadratic equations

Problem 20. Solve the following equations by
factorization:
(@ 3x2—11x—4=0

(b) 4x2+8x+3=0.

(a) Thefactors of 3x2 are 3x and x and these are placed

in brackets thus:

Gx H&x )

The factors of —4 are +1 and —4 or —1 and
+4, or —2 and +2. Remembering that the prod-
uct of the two inner terms added to the product
of the two outer terms must equal —11x, the only

combination to give thisis +1 and —4, i.e.,

3x2—1lx —4=Bx+ D(x —4)

Thus (3x 4+ 1)(x —4) =0 hence
either Bx+1)=0ie. x = —%
or (x—4)=0ie.x =4

(b) 4x>+8x+3=02x+3)2x+1)

Thus (2x +3)(2x 4+ 1) =0 hence

either 2x +3)=0ie.x=-3

or x+1)=0ie.x=-1
Problem 21. The roots of a quadratic equation

are % and —2. Determine the equation in x.

It % and —2 are the roots of a quadratic equation then,
(X = +2)=0

; 2 1, _2_
ie. x*+2x—3x—5=0
; 24,5, 2_
i.e. x“+3x—5=0

or 32 +5x-2=0

Problem 22. Solve 4x2 +7x 42 = 0 giving the
answer correct to 2 decimal places.

From the quadratic formula if ax? 4 bx + ¢ = 0 then,

—b+Vb% —4ac
B e ——
2a

Hence if 4x2+7x+2=0

—T+/T2—4@)Q)

2(4)

—TE£17
8
—7+4.123

8
—7+4.123 —7-4.123

or
8 8
ie. x=-036 or —1.39

then x=
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Now try the following exercise

Exercise 4 Further problems on
simultaneous and quadratic equations

In problems 1 to 3, solve the simultaneous equa-
tions

1. 8x—3y=5l1
3x +4y = 14. [x=6,y=—1]
2. S5a=1-3b
2b+a+4=0. [a=2,b=-3]
x 2y 49
3. —+—=—
5+3 15
3x 'y 5
_— == — =0. = :4
7 2+7 0 [x=3,y ]

4. Solve the following quadratic equations by
factorization:

(@) x2+4x—32=0

(b) 8x2+2x —15=0.
[(@)4, -8 (b) 2, —3]

5. Determine the quadratic equation in x whose
roots are 2 and —5.

[x243x —10=0]

6. Solve the following quadratic equations, cor-
rect to 3 decimal places:

(@) 2x2+5x—4=0

(b) 412 — 11t +3 =0.
(a) 0.637, —3.137
(b) 2.443,0.307

1.4 Polynomial division

Before looking at long division in algebra let us revise
long division with numbers (we may have forgotten,
since calculators do the job for us!)

208
For example, 16 is achieved as follows:

13

16 ) 208
16

48
48

(1) 16 divided into 2 won’t go
(2) 16 divided into 20 goes 1
(3) Put 1 above the zero
(4) Multiply 16 by 1 giving 16
(5) Subtract 16 from 20 giving 4
(6) Bring down the 8
(7) 16 divided into 48 goes 3 times
(8) Put the 3 above the 8
(9) 3x16=48
(10) 48—-48=0

8
Hence T6 = 13 exactly

. 172 .
Similarly, 5 is laid out as follows:

11
15 ) 172
15

72 . 7
Hence — = 11 remainder 7or 11 + — = 11—

Below are some examples of division in algebra, which
in some respects, is similar to long division with
numbers.

(Note that a polynomial is an expression of the
form

f(x) =a+bx+cx?+dx>+--

and polynomial division is sometimes required when
resolving into partial fractions—see Chapter 2.)
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Problem 23. Divide 2x%> +x —3 by x — 1.

2x? +x — 3 is called the dividend and x — 1 the divi-
sor. The usual layout is shown below with the dividend
and divisor both arranged in descending powers of the
symbols.

2x+3
x—1 i2x2+ x—3
2x% —2x
3x—3
3x -3

Dividing the first term of the dividend by the first term
2

of the divisor, i.e. = gives 2x, which is put above
the first term of thexdividend as shown. The divisor
is then multiplied by 2x, i.e. 2x(x —1)= 2x> —2x,
which is placed under the dividend as shown. Subtract-
ing gives 3x — 3. The process is then repeated, i.e. the
first term of the divisor, x, is divided into 3x, giving
+3, which is placed above the dividend as shown. Then
3(x —1)=3x —3 which is placed under the 3x — 3. The
remainder, on subtraction, is zero, which completes the
process.

Thus 2x24+x-3) = (x —1)=Q2x + 3)

[A check can be made on this answer by multiplying
(2x 4 3) by (x — 1) which equals 2x2 4 x — 3]

Problem 24. Divide 3x3+x24+3x+5byx +1.

(H @& D
3x2-2x +5

x+1)3x3+ x243x+5
3x3 4 3x2

—2x243x+5

—2x2—2x
5x+5
5x+5

(1) x into 3x3 goes 3x2. Put 3x2 above 3x3

(2) 3x%(x+1)=3x3+3x2

(3) Subtract

(4) x into —2x2 goes —2x. Put —2x above the
dividend

(5) —2x(x+1)=—-2x>—2x

(6) Subtract

(7) x into 5x goes 5. Put 5 above the dividend
(8) 5(x+1)=5x+5

(9) Subtract

Thus

33 +x243x+5
x+x++1x+ =3x2-2x +5
X

x3+y3

Problem 25. Simplify
xX+y

ORNCNC
= xy +y

x+y)x3+ 0 4+ 0 +y3
x3+x2y

_x2y +y3

_x2y _ )Cy2
xy?4y3
xy? 4 y3

(1) x into x? goes x2. Put x? above x> of dividend
2) ¥’ +y)=x 2%y
(3) Subtract
(4) xinto —x?y goes —xy. Put —xy above dividend
5) —xy(r+y) =2ty —xy?
(6) Subtract
(7) x into xy® goes y2. Put y* above dividend
®) Y +y=xy>+y’
(9) Subtract
Thus
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The zero’s shown in the dividend are not normally
shown, but are included to clarify the subtraction process
and to keep similar terms in their respective columns.

Problem 26. Divide (x2 4 3x —2) by (x —2).

x +5
x—2ix2+3x— 2
x2—2x
5x— 2
5x —10
8
Hence
x243x =2 454
P S
x—2 x =2

Problem 27. Divide 4a> — 6a%b + 5b> by
2a — b.

2a% —2ab — b2

2a —b) 4a3 — 6a%b 453
4a3 —2a?b

—4a?b +5b3

—4a%b +2ab?
—2ab? +5b3
—2ab* + b3
ap3

Thus
4a3 — 6a?b + 5b3
2a —b
43

=2a% — 2ab — b®
@ t 20

Now try the following exercise

Exercise 5 Further problems on polynomial
division
1. Divide 2x2 +xy — y?) by (x + y).

[2x — ]

2. Divide (3x2 +5x —2) by (x +2).
[3x —1]

3. Determine (10x2 + 11x —6) = (2x +3).

[5x —2]
14x2 — 19x —
4, Find X —x=3 [7x +1]
2x —3
5. Divide (x* +3x%y +3xy% +y?) by (x + y).
[x2 +2xy + y*]
6. Find 5x2 —x +4)=(x —1).
g -
[5x+4+—
x—1]
7. Divide (3x3 +2x2 — 5x +4) by (x +2).
2 2 ]
3x“—4x+3 —
x+2 ]

8. Determine (5x* +3x3 —2x +1)/(x —3).

3 2 481 7]
Sx” + 18x +54x+160+m

1.5 The factor theorem

There is a simple relationship between the factors of
a quadratic expression and the roots of the equation
obtained by equating the expression to zero.

For example, consider the quadratic equation

x242x —8=0.

To solve this we may factorize the quadratic expression
x2 4 2x — 8 giving (x —2)(x +4).

Hence (x —2)(x +4) =0.

Then, if the product of two numbers is zero, one or both
of those numbers must equal zero. Therefore,

either (x —2) =0, from which, x =2
or (x +4) =0, from which, x = —4

It is clear then that a factor of (x —2) indicates a root
of +2, while a factor of (x +4) indicates a root of —4.
In general, we can therefore say that:

a factor of (x — a) corresponds to a
rootof x = a

In practice, we always deduce the roots of a simple
quadratic equation from the factors of the quadratic
expression, as in the above example. However, we could
reverse this process. If, by trial and error, we could deter-
mine that x = 2 is aroot of the equation x> 4+ 2x — 8 =0
we could deduce at once that (x —2) is a factor of the
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expression x? 4+ 2x — 8. We wouldn’t normally solve
quadratic equations this way — but suppose we have
to factorize a cubic expression (i.e. one in which the
highest power of the variable is 3). A cubic equation
might have three simple linear factors and the difficulty
of discovering all these factors by trial and error would
be considerable. It is to deal with this kind of case that
we use the factor theorem. This is just a generalized
version of what we established above for the quadratic
expression. The factor theorem provides a method of
factorizing any polynomial, f(x), which has simple
factors.
A statement of the factor theorem says:

‘if x = a is a root of the equation
f(x) = 0, then (x — a) is a factor of f(x)’

The following worked problems show the use of the
factor theorem.

Problem 28. Factorize x> — 7x — 6 and use it to
solve the cubic equation x> —7x — 6 =0.

Let f(x)=x>—7x—6

If x=1, then f()=13-7(1)—6=—12
If x=2, then f2)=23-7Q2)—6=—12
If x=3, then f3)=3>-73)—6=0

If £(3) =0, then (x — 3) is a factor — from the factor
theorem.

We have a choice now. We can divide x* —7x —6 by
(x — 3) or we could continue our ‘trial and error’ by sub-
stituting further values for x in the given expression —
and hope to arrive at f(x)=0.

Let us do both ways. Firstly, dividing out gives:

x24+3x +2
x—3)x3—0 —T7x —6
x3—3x2
3x2—7x —6
3x2 —9x
2x —6
2x —6
3 —7x -6 2
Hence ———— =x“+3x+2
x—3

ie. X =Tx—6=(x—-3)x2+3x+2)

x? + 3x + 2 factorizes ‘on sight’ as (x + 1)(x +2).
Therefore

W=Tx—6=(x=-3)x+Dx +2)

A second method is to continue to substitute values of
x into f(x).

Our expression for f(3) was 33 —7(3)—6. We can
see that if we continue with positive values of x the
first term will predominate such that f(x) will not
be zero.

Therefore let us try some negative values for x.
Therefore f(—1) = (—1)> —=7(=1)—6=0; hence
(x+1) is a factor (as shown above). Also
f(=2)=(=2)>-7(=2)—6=0; hence (x+2) is
a factor (also as shown above).

To solve x> —7x —6 =0, we substitute the fac-
tors, i.e.,

(x=3)x+Dx+2)=0

from which, x =3, x = —1and x = —-2.

Note that the values of x, i.e. 3, —1 and —2, are
all factors of the constant term, i.e. the 6. This can
give us a clue as to what values of x we should
consider.

Problem 29. Solve the cubic equation
x3 —2x% — 5x + 6 =0 by using the factor theorem.

Let f(x) =x3—2x2—5x+6 and let us substitute
simple values of x like 1, 2, 3, —1, —2, and so on.
f(H=1=2(1)>=5(1)+6 =0,

hence (x — 1) is a factor

f2)=2>-22)?-52)+6+0
3 =3"-23)-53)+6=0,

hence (x — 3) is a factor

(=) =(=1)°=2(=1)>=5(=1)+6+£0
f(=2)=(=2 =2(=2)> =5(-2) +6 =0,
hence (x +2) is a factor
Hence x> —2x2 —5x +6 = (x — 1)(x —3)(x +2)
Therefore if x3 —2x> —5x+6=0
then x—Dx-3)x+2)=0
from which,x =1, x =3and x = -2
Alternatively, having obtained one factor, i.e.
(x — 1) we could divide this into (x> —2x? — 5x +6)
as follows:
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x2— x -6

x—l)x3—2x2— 5x+6

x3— x?
— x2 —5x+6
— x2+ X
—6x+6

—6x+6

Hence x> —2x2—5x+6
=x—-DE>=—x—6)
=x-Dx-3)(x+2)

Summarizing, the factor theorem provides us with a
method of factorizing simple expressions, and an alter-
native, in certain circumstances, to polynomial division.

Now try the following exercise

Exercise 6 Further problems on the factor
theorem

Use the factor theorem to factorize the expressions
given in problems 1 to 4.

1. x242x-3 [(x —D(x +3)]

2. SB4+x2—4x—4
[(x+Dx+2)(x —2)]

3. 2x345x2—d4x—7
[(x + 1)(2x% +3x — 7)]

4. 233 —x2—16x+15
[(x —D(x+3)2x —5)]

5. Use the factor theorem to factorize
x3 +4x2 4+ x — 6 and hence solve the cubic
equation x> +4x% 4+ x — 6 =0.

kAt e =16
=x—-Dx+3)(x+2)

x=1l,x=—-3and x = -2

6. Solve the equation x> —2x> —x +2 =0.
[x=1,x=2and x = —1]

1.6 The remainder theorem

Dividing a general quadratic expression
(ax? +bx +¢) by (x — p), where p is any whole
number, by long division (see section 1.3) gives:

ax + (b +ap)

x—p)ax2+bx +c

ax* — apx

(b+ap)x +c
(b+ap)x —(b+ap)p

c+b+ap)p

The remainder, ¢+ (b+ap)p=c+bp+ap? or
ap®+bp +c. This is, in fact, what the remainder
theorem states, i.e.,

4f (ax? + bx + c) is divided by (x — p),
the remainder will be ap? + bp + ¢’

If, in the dividend (ax2 + bx + ¢), we substitute p for
x we get the remainder ap?® + bp + c.

For example, when (3x%—4x +5) is divided by
(x —2) the remainder is ap®+bp +c¢ (where a = 3,
b=—-4,c=5and p =2),

i.e. the remainder is
327+ (—4HQ2)+5=12-8+5=9

We can check this by dividing (3x% —4x +5) by

(x —2) by long division:
3x+2
x—=2 ) 3x2—4x+5
3x% —6x
2x+5
2x —4
9

Similarly, when (4x% —7x +9) is divided by (x+3),
the remainder is ap2 +bp+c, (Where a=4,b=-17,
¢ =9 and p = —3) i.e. the remainder is

4(=3)2 4+ (=7)(=3)+9 =36 +21+9 = 66.

Also, when (x2 4 3x —2) is divided by (x — 1), the
remainder is 1(1)2 +3(1) —2 = 2.

It is not particularly useful, on its own, to know
the remainder of an algebraic division. However, if the
remainder should be zero then (x — p) is a factor. This
is very useful therefore when factorizing expressions.

For example, when (2x>+x —3) is divided by
(x — 1), the remainder is 2(1)% 4+ 1(1) — 3 = 0, which
means that (x — 1) is a factor of (2x% 4 x — 3).
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In this case the other factor is (2x + 3), i.e.,
Qx> +x—=3)=(x—1Q2x—=3)

The remainder theorem may also be stated for a cubic
equation as:

“if (ax3 + bx?* + cx + d) is divided by
(x — p), the remainder will be
ap® +bp* +cp+ d’

As before, the remainder may be obtained by substitut-
ing p for x in the dividend.

For example, when (3x3 +2x% —x +4) is divided
by (x—1), the remainder is ap®+bp*>+cp+d
(where a=3, b=2, c=—-1, d=4 and p=1),
i.e. the remainder is 3(1)3 +2(1)> + (=1)(1) +4 =
3+2—-1+4=8.

Similarly, when (x3 —7x —6) is divided by (x —3),
the remainder is 1(3)° 4+ 0(3)%> —7(3) — 6 = 0, which
means that (x — 3) is a factor of (x> — 7x — 6).

Here are some more examples on the remainder
theorem.

Problem 30. Without dividing out, find the
remainder when 2x2 — 3x + 4 is divided by (x —2).

By the remainder theorem, the remainder is given by
ap® +bp+c,wherea=2,b=—-3,c=4and p =2.
Hence the remainder is:

202 +(=3)2)+4=8—6+4=6

Problem 31. Use the remainder theorem to
determine the remainder when
(3x3 —2x2 + x — 5) is divided by (x + 2).

By the remainder theorem, the remainder is given by
ap’ +bp*+cp+d, wherea=3,b=-2,c=1,d=
—5and p = 2.
Hence the remainder is:
3(-2° + (=2(=2* + (D(=2) +(=3)
=-24—-8-2-5
=-39

Problem 32. Determine the remainder when
(x3 —2x% — 5x 4 6) is divided by (a) (x — 1) and
(b) (x +2). Hence factorize the cubic expression.

(@) When (x> —2x2 — 5x +6) is divided by (x — 1),
the remainder is given by ap’+bp? +cp +d,
wherea=1,b=—-2,c=—-5,d=6and p=1,

(b)

i.e. the remainder = (1)(1)° + (=2)(1)?
+ (=5)(1)+6
=1-2-54+6=0

Hence (x — 1) is a factor of (x> — 2x? — 5x +6).

When (x3 —2x? — 5x 4+ 6) is divided by (x +2),
the remainder is given by

()(=2)* + (=2)(=2)* + (=5)(=2) +6
=-—8-8+10+6=0

Hence (x+2) is also a factor of (x3 —2x%—
5x +6). Therefore (x —1)(x +2)(x )=x3—
2x2 — 5x + 6. To determine the third factor (shown
blank) we could

(i) divide (x* —2x% —5x+6) by
(x—D(x+2).
use the factor theorem where f(x)=
x3 —2x? — 5x 46 and hoping to choose
a value of x which makes f(x) = 0.
use the remainder theorem, again hoping
to choose a factor (x — p) which makes
the remainder zero.

(i) Dividing (x*> —2x% — 5x 4 6) by
(x24+x—2) gives:
x =3
x2+x—2)x3—2x2—5x+6
X4 xr—2x
—3x2—3x+6
—3x2—3x+6

or (ii)

or (iii)

Thus (,vc3 —2x? —5x + 6)
=x-Dkx+2)(x -3

(i) Using the factor theorem, we let

fx)=x>—2x>—5x+6

Then f(3)=3>—23)>=53)+6
=27-18—15+6=0

Hence (x — 3) is a factor.

(iii) Using the remainder theorem, when
(x3 —2x?> —5x4+6) is divided by

(x —3), the remainder is given by
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ap’ +bp>+cp+d, where a=1,
b=-2,c=-5,d==6and p=3.

Hence the remainder is:
13)° + (=2)(3)* + (=5)(3) +6
=27—-18—=15+6=0

Hence (x — 3) is a factor.

Thus (x3 —2x% —5x + 6)
=x-1Dkx+2)(x-3)

Now try the following exercise

Exercise 7 Further problems on the
remainder theorem

1. Find the remainder when 3x2—4x +2 is
divided by

(@) (x=2) (b) (x+1D). [(@) 6 (b) 9]

Determine the remainder when
x3 —6x% +x — 5 is divided by

(@) (x+2) (b) (x =3). [(a) =39 (b) —29]

Use the remainder theorem to find the factors
of x3 —6x2 4+ 11x —6.
[(x = Dx —2)(x —3)]

Determine the factors of x3 +7x% 4 14x + 8

and hence solve the cubic equation

x> +7x% +14x 4+ 8 =0.
[x=—1,x=—-2and x = —4]

Determine the value of ‘a’ if (x +2) is a
factor of (x> — ax? + 7x + 10).
[a = 3]

Using the remainder theorem, solve the
equation 2x3 —x2 —7x +6 =0.
[x=1,x=—2and x = 1.5]



Chapter 2

Partial fractions

2.1 Introduction to partial fractions

By algebraic addition,

1 3 (x+D+3(x-2)
x—=2 x+1  (x=2x+1D

B 4x —5
x2—x=2

4x -5

The reverse process of moving from o a—
X% —x—

1

x—2 x+
fractions.
In order to resolve an algebraic expression into partial
fractions:

to is called resolving into partial

(i) the denominator must factorize (in the above
example, x2 —x —2 factorizes as (x —2) (x + 1)),
and

(i) the numerator must be at least one degree less than
the denominator (in the above example (4x —5) is
of degree 1 since the highest powered x term is x !

When the degree of the numerator is equal to or higher
than the degree of the denominator, the numerator must
be divided by the denominator until the remainder is of
less degree than the denominator (see Problems 3 and 4).

There are basically three types of partial fraction
and the form of partial fraction used is summarized in
Table 2.1, where f(x) is assumed to be of less degree
than the relevant denominator and A, B and C are
constants to be determined.

(In the latter type in Table 2.1, ax’>+bx+c is a
quadratic expression which does not factorize without
containing surds or imaginary terms.)

Resolving an algebraic expression into partial frac-
tions is used as a preliminary to integrating certain
functions (see Chapter 41) and in determining inverse
Laplace transforms (see Chapter 63).

2.2 Worked problems on partial

fractions with linear factors

Problem 1. Resolve al 3 into partial

x24+2x —

| fractions.
and (x2—x —2) is of degree 2).
Table 2.1
Type  Denominator containing Expression Form of partial fraction
A B C
1 Linear factors f(x;) + 5 +
(see Problems 1 to 4) x+a)(x —b)(x +c¢) x+a) (-0 ((x+o
A B C
2 Repeated linear factors L& + Tl 3
(see Problems 5 to 7) (x+a) Gta) Gta) (x+a)
. fx) Ax + B C
3 adratic factors
Quadrati (ax?+bx +c)(x +d) (ax>+bx+c) (x+d)

(see Problems 8 and 9)



14  Higher Engineering Mathematics

The denominator factorizes as (x — 1) (x +3) and the

numerator is of less degree than the denominator. Thus
11 —-3x

———— may be resolved into partial fractions.
x2+2x -3
I1-3x 11—-3x
xX242x =3 (x—DEx+3)
A n B
T x=1)  (x+3)

Let

where A and B are constants to be determined,

L -3 AGH3)+Ba-1)
T-DE+3) (—DE+3)

’

by algebraic addition.

Since the denominators are the same on each side
of the identity then the numerators are equal to each
other.

Thus, 11 -=3x=A(x+3)+B(x—1)

To determine constants A and B, values of x are chosen
to make the term in A or B equal to zero.

When x =1, then

11-3(1)=A(1+3)+B(0)
ie. 8§ =4A
i.e. A=2

When x = —3, then

11-3(-3)=A0)+ B(-3—-1)

11— ~
Thus 3 _ 2 . -5
24+2x-3 (x—-1) (x+3)
__ 2 5
=1 (x+3)
[Check: 2 __ 5 22(x+3)—5(x—1)
=D @+3) " a-DE+3)
_ 11 —3x
T x242x-3
2x% —9x — 35

into
G D —2)(x+3)
the sum of three partial fractions.

Problem 2. Convert

2x2 —9x —35
Let
x+Dx—2)(x+3)
_ A n B n C
T x+D x=2) ®+3)

(A(x -2 +3)+Bx+ D +3))
+Cx+Dx —2)
x+Dx—-2)(x+3)

by algebraic addition.
Equating the numerators gives:

2x2—9x —35=A(x —2)(x +3)

+Bx+1Dx+3)+Cx+Dx—2)

Let x= —1. Then

2(=1)2=9(=1)—=35=A(=3)(2)
+B0)(2)+C0)(=3)

i.e. —24 =—6A
—24
—6
Let x =2. Then

2(2)? —9(2) —35 =A(0)(5) + B3)(5)+ C(3)(0)

ie. —45=15B
—4

ie. B="Y__3
15

Let x=—3. Then

2(—3)? —9(—3) —35 = A(—5)(0) + B(—2)(0)

+C(=2)(=5)
i.e. 10 =10C
i.e. C=1
2x2—9x —35
hus
x+Dx—-2)(x+3)
4 3 1

Sa+D =2 T a+3

2

Problem 3. Resolve et into partial
i x2—3x+2
fractions.
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The denominator is of the same degree as the numerator.
Thus dividing out gives:

1

x2—3x+2ix2 +1

x2-3x 42
3x—1

For more on polynomial division, see Section 1.4,
page 6.

X241 3x—1
Hence =
x2—-3x+42 x2—=3x+2
_ 3x—1
o x—1Dx—-2)
3x—1 A B
Let a

G-Dx-2 G-D -2

AKX —=2)+Bx—1)
RN

Equating numerators gives:
3x—1=Ax—-2)+Bx—1)

Letx=1.Then 2=-A

i.e. A=-=-2

Let x=2.Then 5=B

3x—1 -2 5

Hence = +
x—DEx-2) -1 x-=2)

x2+1 2 5

Th =1-
- 3x+2 (x—1) + (x=2)

5 — D — dlse —d
x24x—2

Problem 4. Express in partial

fractions.

The numerator is of higher degree than the denominator.
Thus dividing out gives:
x—=3
x2+x—2) x3—2xr —d4x —4
x4+ x?—2x
—3x?—2x—4
—3x2-3x+6
x—10

- x3—2x2—4x—4 N x—10
us =x— _
xX24+x—-2 . x24+x-2
x—10
=x—-3+———
x+2)(x—1)
—10 A B
Let o

G1DG-D  G+2) G-D
Ax—-1)+B(x+2)
T c+2G-D)
Equating the numerators gives:
x—10=Ax—-1)+B(x+2)
Letx=—2.Then —12=-3A

1.e. A=4
Let x=1. Then —9=3B
i.e. =-3
x—10 4 3
Hence = —
x+2)x—-1) x+2) -1
3 —2x2—4x—4
us —————
X24x=-2
4 3
=x—-3+ -
x+2) x-=1

Now try the following exercise

Exercise8 Further problems on partial
fractions with linear factors

Resolve the following into partial fractions.

12 22 ]
x2-9 [(x—s) x+3) ]
, A9 50 1]
T ox2—-2x-3 [(X+1) (x—=3) ]
x2—3x+46 3 2 4 7
x(x —2)(x — ) [x+(x—2)_(x—l)_
32x2—8x—1)

(x+4)(x+D2x—1)

[ 7 _ 3 _ 2 ]
x+4) &+ @Ex-1
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2 2
x“+9x +8 [1+ 6 :|

x24+x—6 (x+3)+(x—2)

6.

= = 4l 2 N 3
x2—2x-3 x=3) @+

3x3 —2x2 = 16x +20
x=2)(x+2)

[3—2+1—5}
* @-2 (+2)

2.3 Worked problems on partial

fractions with repeated linear
factors

2
Problem 5. Resolve - X 13

22 into partial
x —_—

fractions.

The denominator contains a repeated linear factor,
(x —2)2.

Lt2x+3_ A B
22T G2 22
A@-2)+B
T x-2)2

Equating the numerators gives:
2x+3=A(x—-2)+B

Let x =2. Then 7=A0)+B

ie. B=7

2x+3=Ax—-2)+B=Ax—-2A+B

Since an identity is true for all values of the
unknown, the coefficients of similar terms may be
equated.

Hence, equating the coefficients of x gives: 2 = A.

[Also, as a check, equating the constant terms gives:

3=-2A+B

When A=2 and B=7,
RHS.=-212)+7=3=L.H.S.]

2x+3_ 2 + 7
x=22 (x=2)  (x-2)2

5x2—2x—19

Problem 6. Express AT 7 as the sum
x+3)(x —1)2

of three partial fractions.

The denominator is a combination of a linear factor and
a repeated linear factor.

5x2—2x—19
Let ——  ——
(x+3)(x —1)2
_ A N B N C
S @43 =D (k=172

_Ax—1)*4+Bx+3)(x -1+ Cx+3)
- (r +3)x - 1)?

by algebraic addition.
Equating the numerators gives:

5x2—2x —19= A(x — 1D’ +B(x+3)(x — 1)
+ C(x +3) (D

Let x =-3. Then
5(=3)2 —2(=3)—19= A(—4)*+ B(0)(—4)

+ C(0)
ie. 32=16A
ie. A=2
Let x =1. Then
5(1)2=2(1) — 19 = A(0)2 + B(#)(0) + C(4)
ie. —16 =4C
i.e. C=—-4

Without expanding the RHS of equation (1) it can
be seen that equating the coefficients of x? gives:
5=A+ B, and since A=2,B=3.

[Check: Identity (1) may be expressed as:
5x2-2x —19=A(2 —2x+1)
+B(x?+2x —3)4+C(x +3)
ie Sx2—2x —19=Ax?> —2Ax + A+ Bx®> +2Bx
—-3B+Cx+3C
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Equating the x term coefficients gives:
—2=-2A+42B+C
When A=2, B=3 and C =—4 then

—2A+2B+C =-22)+2(3)—4
=2 =LHS

Equating the constant term gives:
—-19=A-3B+3C

RHS=2-33)+3(-4)=2-9—12
= —19=LHS]

5x2—2x—-19
e—
(x+3)(x—1)
2 3 4
= =+ -
x+3) x=1 (x—1)

Henc

3x2 4+ 16x + 15

x13)? into partial
X

Problem 7. Resolve

fractions.

3x2 4 16x 415
(x +3)3
A B c
- (x+3)+ (x +3)2 + (x +3)3
A +3)?+Bx+3)+C
- (x+3)3

Let

Equating the numerators gives:

3024+ 16x+15=A(x +3)2+B(x +3)+C (1)

Let x =—3. Then

3(=3)2 +16(=3) + 15=A(0)> + B(0) + C
—-6=C

Identity (1) may be expanded as:

i.e.

3x2+16x+15= A(x% +6x +9)
+B(x+3)+C

ie 3x24+16x+15= Ax? +6Ax +9A
+Bx+3B+C

Equating the coefficients of x> terms gives: 3 = A

Equating the coefficients of x terms gives:
16=6A+B
Since A=3,B=-2
[Check: equating the constant terms gives:
15=9A+3B+C
When A=3, B=—2and C=—6,
9A+3B+C =93)+3(-2)+(—6)
=27-6—-6=15=LHS]
3x% +16x+ 15
(x+3)3

_ 3 _ 2 _ 6
T (x+3) x+3?2 (x+3)3

Thus

Now try the following exercise

Exercise9 Further problems on partial
fractions with linear factors

4x —3 [ 4 7

]

(x+1)? G+l (x+1)2
x247x+3 1.2 1
x2(x +3) I:x2 x (x+3):|
5x2 —30x + 44
3, = T
(x—2)3
5 10 4
[(X—Z) (x —2)? (x—2)3}
18 +21x — x2
(x —5)(x +2)2
[ 2 3 4 }
x—=5) @x+2) (x+2)0?

2.4 Worked problems on partial

fractions with quadratic factors

7x2+5x+13

— 1 tial
21D in partia

Problem 8. Express

fractions.
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The denominator is a combination of a quadratic factor,
(x2+2), which does not factorize without introduc-
ing imaginary surd terms, and a linear factor, (x + 1).
Let,

7x*+5x+13 _ Ax+B C

2+ +1) 242 (x+1D
_ (Ax+B)(x+ 1)+ C(x?+2)
- (2+2)(x+1)

Equating numerators gives:

Ix>4+5x+13=(Ax+B)(x + )+ C(x> +2) (1)
Let x=—1. Then
7(—=1)?+5(—=1) + 13=(Ax + B)(0) + C(1 +2)
ie. 15=3C
ie. Cc=5
Identity (1) may be expanded as:
7x% +5x +13 = Ax® + Ax + Bx + B+ Cx* +2C
Equating the coefficients of x? terms gives:
7=A+C,and since C=5,A=2
Equating the coefficients of x terms gives:
5=A-+B,andsince A=2,B=3
[Check: equating the constant terms gives:
13=B+2C
When B=3 and C =5,
B+2C =3+10=13=LHS]

7x2 +5x+13 2x+3 5
c =
@Z4+2)(x+1) (X242 (@x+1)

Henc

Problem 9. Resolve into

partial fractions.
Terms such as x> may be treated as (x +0), i.e. they
are repeated linear factors.

Cx+D
(x2+3)
_ Ax(x? 4+ 3) + B(x? +3) + (Cx + D)x?
- x2(x2+3)

Let

346x+4x2—-2x3 A
X

B
+—+
x2(x243) x2

Equating the numerators gives:

346x +4x2 —2x3 = Ax(x? +3) + B(x% +3)
+ (Cx + D)x?

= Ax> +3Ax + Bx>+3B
+ Cx3 + Dx?

Let x=0. Then 3=3B

ie. B=1

Equating the coefficients of x> terms gives:
—2=A+C (1)

Equating the coefficients of x? terms gives:

4=B+D
Since B=1, D=3

Equating the coefficients of x terms gives:

6=3A
i.e. A=2

From equation (1), since A=2, C = —4

H 346x+4x2-2x 2+ 1 +—4x+3
ence =4 =
2(x2+3) x  x2  x243
_2, 1, 3-4
Tx x2 0 x243

Now try the following exercise

Exercise 10 Further problems on partial
fractions with quadratic factors

x2—x—13
(2 +7)(x—2)

[ 2x+3 1
2 +7) (x—-2)]

6x —5 1 o 2—x ]
(x —4)(x%2+3) | x—4)  (x%2+43) ]

1545x+5x2—4x3 [1 3 2—5x

3. -+ —
x2(x245) | x + x2 + (x2+5) |




Partial fractions

x3+4x2 4+20x —7
(x =12 (x2+38)

3 2 1—2x
[(x— D a-n2 " <x2+8>}
When solving
&0 —6% _109=20—¢¥ by Lapl
dr? dr o d . A
transforms, for given boundary conditions, the

the differential equation

following expression for £{6} results:

PIEREL + 425 — 40
2

L) = s(s —2)(s2 — 65+ 10)

Show that the expression can be resolved into
partial fractions to give:

2 1 S5s—3
L0} =—-—
0 s 2(s—2) +2(s2—6s+10)

19




3.1 Introduction to logarithms

With the use of calculators firmly established, logarith-
mic tables are now rarely used for calculation. However,
the theory of logarithms is important, for there are sev-
eral scientific and engineering laws that involve the rules
of logarithms.

From the laws of indices: 16 =2*

The number 4 is called the power or the exponent or
the index. In the expression 2%, the number 2 is called
the base.

In another example: 64 =82

In this example, 2 is the power, or exponent, or index.
The number 8 is the base.

What is a logarithm?
Consider the expression 16 = 2.

An alternative, yet equivalent, way of writing this
expression is: log, 16 = 4.

This is stated as ‘log to the base 2 of 16 equals 4°.

We see that the logarithm is the same as the power
or index in the original expression. It is the base in
the original expression which becomes the base of the
logarithm.

The two statements: 16=2% and log,16=4 are
equivalent.
If we write either of them, we are automatically imply-
ing the other.

In general, if a number y can be written in the form
a*, then the index ‘x’ is called the ‘logarithm of y to the
base of a’,

ie. ify=a* then x=log,y

Chapter 3

Logarithms

In another example, if we write down that 64 = 82
then the equivalent statement using logarithms is:

logg 64 =2

In another example, if we write down that: log; 81 =4
then the equivalent statement using powers is:

3* =381

So the two sets of statements, one involving powers
and one involving logarithms, are equivalent.

Common logarithms
From above, if we write down that: 1000 = 103, then
3 =log;, 1000

This may be checked using the ‘log” button on your
calculator.

Logarithms having a base of 10 are called common
logarithms and log, is often abbreviated to Ig.

The following values may be checked by using a
calculator:

1g27.5=1.4393..., 1g378.1 =2.5776...
and 1g0.0204 = —1.6903...

Napierian logarithms
Logarithms having a base of e (where ‘e’ is a math-
ematical constant approximately equal to 2.7183) are
called hyperbolic, Napierian or natural logarithms,
and log, is usually abbreviated to In.

The following values may be checked by using a
calculator:

In3.65 =1.2947...,1n417.3 =6.0338...
and In0.182=-1.7037...

More on Napierian logarithms is explained in Chapter 4
following.

Here are some worked problems to help understand-
ing of logarithms.
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Problem 1. Evaluate log; 9.

Let x =logz9 then 3* =9 from the definition

of a logarithm,
ie. 3 =32 from which, x =2

Hence, logz9 =2

Problem 2. Evaluate log; 10.

Let x =log;y10 then 10" =10

definition of a logarithm,

from the

ie. 10* = 10"
log10 10=1

from which, x =1

Hence, (which may be checked

by a calculator)

Problem 3. Evaluate log¢ 8.

Let x =log;s8 then 16* =38 from the definition

of a logarithm,

ie. (2H* =23 ie.2* =23 from the laws of indices,

from which, 4x =3 and x = %

3
Hence, logs8 = !

Problem 4. Evaluate 1g 0.001.

Let x =1g0.001 =log;(;0.001
ie. 10" =10"°
12 0.001 = —3 (which may be checked

then 10" =0.001
from which, x = —3
Hence,

by a calculator)

Problem 5. Evaluate Ine.

Letx =Ine =log.e then e* =¢

ie. ef =el

from which, x =1

Hence, Ine =1 (which may be checked

by a calculator)

If lgx =3 then logox =3
and x=10° ie. x=1000

Iflogy x =5 then x =25 =32

1
Iflogsx=—2 then x=57=— = —

1
Problem 6. Evaluate log; T

1

Let x = log, —— then 3" = — 34
ctx =10 —_— cn = — ==
831 g1 3%
from which, x = —4
H lo ! 4
ence, — =
23 81

Problem 7. Solve the equation: lgx = 3.

Problem 8. Solve the equation: log, x = 5.

Problem 9. Solve the equation: logsx = —2.

1
52 25

Now try the following exercise

Exercise 11
logarithms

Further problems on laws of

In Problems 1 to 11, evaluate the given
expressions:

1. log;, 10000 [4] 2. log,16  [4]

3. logs 125 [3] 4. logy L [-3]

1
5. logg2 I:g:| 6. log;343 [3]
7. 1g100 [2] 8. 1g0.01 [-2]

9. log, 8

1 —1 10. 1 3 !
. (0) =
) 27 3

11. Ine? 2]
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In Problems 12 to 18 solve the equations:

12. logjgx =4 [10000]
13. 1lgx =5 [100000]
14. logzx =2 [9]
15. logyx = —2l _i_
2 32 |

16. lgx=-2 [0.01]
17. loggx = 4 _i_
3 16 |

18. Inx=3 [e’]

3.2 Laws of logarithms

There are three laws of logarithms, which apply to any
base:

(1) To multiply two numbers:
log(A x B) =log A +log B

The following may be checked by using a calcu-
lator:

lgl0=1

Also, g 5 +1g2 = 0.69897. ..
+0.301029... =1

Hence, Ig(5x2)=Igl0=I1g5+1g2

(i) To divide two numbers:
A
log|{ — ) =log A —log B
o(2) =t
The following may be checked using a calculator:
5
In (E) =1n2.5=0.91629...
Also, In5 —1n2 =1.60943... —0.69314...
=0.91629...

5
Hence, In (E) =In5—1n2

(iii) To raise a number to a power:

log A" =nlog A

The following may be checked using a calculator:
1g 52 =1g25 = 1.3979%4. ..

Also, 21g5 =2 % 0.69897... =1.39794...
Hence, Ig5%=2Ig5

Here are some worked problems to help understand-
ing of the laws of logarithms.

Problem 10. Write log 4 + log 7 as the logarithm
of a single number.

log4 +1log 7 =1log(7 x4)

by the first law of logarithms
=log 28

Problem 11. Write log 16 —log 2 as the logari-
thm of a single number.

16
log16 —log?2 =log 5

by the second law of logarithms

=log8

Problem 12. Write 2log 3 as the logarithm of a
single number.

2log 3 = log 3
=log9

by the third law of logarithms

1
Problem 13. Write 7 log 25 as the logarithm of a

single number.
1 1 . .
5 log 25 =log 252 by the third law of logarithms
=logv/25=1log$5
Problem 14. Simplify: log64 —log 128 +log32.
64 =2 128 =27 and 32 = 2°

Hence, log64 —log 128 +1og32
= log26 - log27 + log25
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=6log2 —7log2+ 5log2
by the third law of logarithms

=4log2

1 1
Problem 15. Write 3 log16 + 3 log27 — 2log5

as the logarithm of a single number.

1 1
Elog 16 + 3 log27 —2log5

— log167 +10g273 — log5?
by the third law of logarithms

= 10g«/1—6 + logﬁ —log25
by the laws of indices
=log4 +log3 —log25
~ log (4 X 3)
25

by the first and second laws of logarithms

12
=1 — ) =10g0.48
Og(ZS) 0g

Problem 16. Write (a) log30 (b) log450 in terms
of log2,log3 and log5 to any base.

(@) log30 =log(2 x 15) =1log(2 x3 x5)
=log2 +log3 +log5
by the first law of logarithms
(b) log450 =1log(2 x 225) =1log(2 x 3 x 75)
=log(2 x3x3x25)
=log(2 x 32 x 5?)

=log2 +1log3” +log5?
by the first law of logarithms

i.e. log450 =log2 +2log3 + 2log5s
by the third law of logarithms

8x V5.
31 in terms of

log2,log3 and log5 to any base.

Problem 17. Write log

8 x V/5
log( 2;/—) =log8 +logv/5 —log81

by the first and second

laws of logarithms

=log2? +10g5% —log3*
by the laws of indices

8x /5 1
ie. log( ’;l“/_)zslog2+zlogs—4log3

by the third law of logarithms

Problem 18. Evaluate:
log25 —log125 + %10g625
3log5 '

log25 —log125 + % log625

3log5
_ log5? —log5®+ 5 log5*
3log5
_ 2log5—3log5+3log5  1log5 1
3log5 3logs 3

Problem 19. Solve the equation:
log(x — 1) +1log(x + 8) = 2log(x +2).

LHS =log(x — 1) +1log(x + 8)
=log(x —1)(x +8)
from the first law of logarithms

=log (x> 4+7x —8)

RHS = 2log(x +2) = log (x +2)°

from the third law of logarithms

=log(x? +4x +4)
Hence, log (x? +7x — 8) = log (x> +4x +4)
from which, X2+ 7x —8=x>+4x+4
i.e. Tx —8=4x+4
ie. 3x=12
and x=4

1
Problem 20. Solve the equation: B log 4 =log x.

1
3 logd = 10g4% from the third law of logarithms
= log«/z from the laws of indices
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1
Hence, 5 log4d =logx
becomes log«/z =logx
ie. log2 =logx
from which, 2=x

i.e. the solution of the equation is: x =2

Problem 21. Solve the equation:
log (x2 = 3) —logx =log?2.

2 _
log (x2 - 3) —logx =log (x 3)
X

from the second law of logarithms

x2 =3

Hence, log =log?2

X

2 _
from which, x-S =2

X

Rearranging gives: x?—3=2x
and x?—2x—3=0
Factorizing gives: x=3)x+1)=0
from which, x=3 or x=-1
x = —1 is not a valid solution since the logarithm of a

negative number has no real root.

Hence, the solution of the equation is: x =3

Now try the following exercise

Exercise 12
logarithms

Further problems on laws of

In Problems 1 to 11, write as the logarithm of a
single number:

1. log2-+log3 [log 6]
2. log3-+log5 [log 15]
3. log3+log4—1logh [log 2]
4. log7+log2l —log49 [log 3]
5. 2log2+log3 [log 12]
6. 2log2+3log5 [log 500]
7. 2log5— %log81 +1log36 [log 100]

1 1

8. glog8— Elog81 +log27 [log 6]
1

9. 3 log4 —21og3 +log45 [log 10]
1

10. Zlog16+210g3—10g18 [log 1 =0]

11. 2log2+1log5—1logl0 [log?2]

Simplify the expressions given in Problems 12
to 14:

12. log27 —log9 + log81
[log243 or log3> or 5log3]

13. log64+1log32 —log128
[log16 or log2* or 4log2]

14. log8 —log4 +1og32
[log64 or 1og2° or 61og2]

Evaluate the expressions given in Problems 15
and 16:

%10g16— %log8

15. 0.5
log4 [0-5]
log9 —log3 + 1 log81
1§ = Rk [1.5]
2log3

Solve the equations given in Problems 17 to 22:

17. logx* —logx® =log5x — log2x

[x =2.5]

18. log2s3 —logt =log 16+ logt

[r=28]
19. 2logh? —3logh = log8h — log4b

[b=2]
20. log(x+1)+log(x —1)=1og3

[x =2]

1

21. 3 log 27 =1og(0.5a) [a = 6]
22. log(x?—5) —logx =log4 [x =5]

3.3 Indicial equations

The laws of logarithms may be used to solve certain
equations involving powers—called indicial equa-
tions. For example, to solve, say, 3*=27, logari-
thms to a base of 10 are taken of both sides,

ie. log|g3* =log27
and xlog;,3 =log;,27, by the third law of logarithms
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Rearranging gives

log;p27  1.43136...
YT Tog03 | 04771...

which may be readily checked

log8 8
Note, g% isnot equal to Ig{ =
log2 2

Problem 22. Solve the equation 2* =3, correct to
4 significant figures.

Taking logarithms to base 10 of both sides of 2* =3
gives:
log2* =logyy3

ie.  xlog;y2=log;y3
Rearranging gives:

log;p3  0.47712125...
X = =
logp2  0.30102999...

= 1.585, correct to 4 significant figures

Problem 23. Solve the equation 2*+! =325
correct to 2 decimal places.

Taking logarithms to base 10 of both sides gives:
log;p 2"+ =log; (3%
ie. (x +1)log;p2 =(2x —5)log;y3
xlog;p2 +1log|y2 =2xlog;y3 —5log;y3
x(0.3010) + (0.3010) =2x(0.4771) — 5(0.4771)
ie. 0.3010x +0.3010 =0.9542x —2.3855

Hence
2.385540.3010 =0.9542x — 0.3010x

2.6865 =0.6532x
2.6865

=4.11, correct to
0.6532

from which x =

2 decimal places

Problem 24. Solve the equation x3-2=41.15,
correct to 4 significant figures.
Taking logarithms to base 10 of both sides gives:

log;ox3? =log;(41.15

log;(41.15

Hence log;yx = = 0.50449

Thus x=antilog 0.50449 = 1003044 =3.195 correct to
4 significant figures.

Now try the following exercise

Exercise 13 Indicial equations

Solve the following indicial equations for x, each
correct to 4 significant figures:

1. 3*=6.4 [1.690]
2. 2°=9 [3.170]
3. 2r =321 [0.2696]
4. x'35=1491 [6.058]
5. 25.28=4.2% [2.251]
6. 4 1=5+2 [3.959]
7. x0%=0.792 [2.542]
8. 0.027*=3.26 [—0.3272]
9. The decibel gain n of an amplifier is given by:

P
n = 10log,, (F)
1

where P is the power input and P, is the
P
power output. Find the power gain Fz when

1
n =25 decibels.
[316.2]

3.4 Graphs of logarithmic functions

A graph of y =log(x is shown in Fig. 3.1 and a graph
of y=1log,x is shown in Fig. 3.2. Both are seen to be
of similar shape; in fact, the same general shape occurs
for a logarithm to any base.

In general, with a logarithm to any base a, it is noted
that:

(i) logal=0

Let log, =x, then a* =1 from the definition of
the logarithm.

If a* =1 then x =0 from the laws of indices.
Hence log,1=0. In the above graphs it is seen
that log;;1 =0 and log, 1 =0
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Figure

(ii)

3.1

logaa=1

Let log, a=x then a* =a from the definition of
a logarithm.

If a* =a then x=1.

Hence log, a=1. (Check with a calculator that
log;p10=1 and log.e=1)

0
-1
X 6 5 4 3 2 1 05 0.2 0.1
y=109,x[1.79 1.61 1.39 1.10 0.69 0 —0.69 —1.61 —2.30
-2
Figure 3.2
(iii) loga0 — —o0

Let log, 0=x then a* =0 from the definition of
a logarithm.

If a*=0, and a is a positive real number,
then x must approach minus infinity. (For
example, check with a calculator, 2-2=0.25,
2720=9.54x 1077, 2720=6.22 x 107°!, and
SO on)

Hence log, 0 — —o0



Chapter 4

Exponential functions

4.1 Introduction to exponential

functions

An exponential function is one which contains e*, e
being a constant called the exponent and having an
approximate value of 2.7183. The exponent arises from
the natural laws of growth and decay and is used as a
base for natural or Napierian logarithms.

The most common method of evaluating an expo-
nential function is by using a scientific notation cal-
culator. Use your calculator to check the following
values:

e! =2.7182818, correct to 8 significant figures,

e~ 1618 — (0.1982949, each correct to 7 significant
figures,
%12 = 1.1275, correct to 5 significant figures,
e 147 = 0.22993, correct to 5 decimal places,
e 081 = 0.6499, correct to 4 decimal places,

>3 = 11159, correct to 5 significant figures,

e 2785 =0.0617291, correct to 7 decimal places.

Problem 1. Evaluate the following correct to 4
decimal places, using a calculator:

0.0256 (e5-21 _ ez.49)

0.0256(e5-21 _ e2-49) = 0.0256 (183.094058...

—12.0612761...)

= 4.3784, correct to 4
decimal places.

Problem 2. Evaluate the following correct to 4
decimal places, using a calculator:

S @025 _ 025

¢0.25 1 ¢—025
5 025 _ o025
025 { 025

_ ( 1.28402541...—0.77880078... )

1.28402541...4-0.77880078...

(05052246
T T\ 2.0628262. ..

= 1.2246, correct to 4 decimal places.

Problem 3. The instantaneous voltage v in a
capacitive circuit is related to time 7 by the
equation: v = Ve /R where V, C and R are
constants. Determine v, correct to 4 significant
figures, when t = 50ms, C = 10 uF, R =47kQ
and V = 300 volts.

v = Ve /CR — 300e(—50x107%)/(10x1070x47x10%)



28 Higher Engineering Mathematics

Using a calculator,

y = 300e 1963829 — 300(0.89908025.. )
=269.7 volts

Now try the following exercise

Exercise 14 Further problems on
evaluating exponential functions

1. Evaluate the following, correct to 4 significant
figures: (a) e 18 (b) 7078 (¢) el
[(a) 0.1653 (b) 0.4584 (c) 22030]
2. Evaluate the following, correct to 5 significant
figures:
(a) e1.629 (b) e—2.7483 (c) 0.6264'178
[(a) 5.0988 (b) 0.064037 (c) 40.446]

In Problems 3 and 4, evaluate correct to 5 decimal
places:

1
3. (a) §e3'4629 (b) 8.52¢~ 12651 (c) ERmIE
[(a) 4.55848 (b) 2.40444 (c) 8.05124]

562'6921

21127 _ o—2.1127

2

5.6823
@ —Zmm  ©®
4(6_1'7295 -1
©) — a1

[(a) 48.04106 (b) 4.07482 (c) —0.08286]

5. The length of a bar, /, at a temperature 0
is given by I =1pe*?, where Iy and « are
constants. Evaluate 1, correct to 4 signifi-
cant figures, where [y = 2.587,60 = 321.7 and
a=1.771 x 1074 [2.739]

6. When a chain of length 2L is suspended from
two points, 2D metres apart, on the same hor-

izontal level: D =k {ln (H— Vézﬂ‘z) } Eval-

uate D when k =75m and L = 180 m.
[120.7m]

4.2 The power series for e*

The value of e* can be calculated to any required degree
of accuracy since it is defined in terms of the following
power series:
SN SO
e = +x+2!+3!+4!+~~~

(where 3! =3 x2 x 1 and is called ‘factorial 3”)
The series is valid for all values of x.

The series is said to converge, i.e. if all the terms are
added, an actual value for e® (where x is a real number)
is obtained. The more terms that are taken, the closer
will be the value of e* to its actual value. The value of
the exponent e, correct to say 4 decimal places, may be
determined by substituting x =1 in the power series of
equation (1). Thus,

2 3 4 5
- LSO A AN O
S T TR TR
ne 7 @
(OO
6! 7! 8!
=14+1+0.5+0.16667 + 0.04167
+0.00833 4+ 0.00139 4 0.00020
+0.00002 4 - - -

ie. e=2.71828=2.7183,
correct to 4 decimal places

The value of €9, correct to say 8 significant figures,

is found by substituting x =0.05 in the power series for
e*. Thus

0.05 _ (0.05)>  (0.05)3
P =140.05+ = 3
0.05)*  (0.05)°
+ o + = ...

=1+0.05+0.00125 + 0.000020833
+ 0.000000260 + 0.000000003
and by adding,
%% = 1.0512711, correct to 8 significant figures

In this example, successive terms in the series grow
smaller very rapidly and it is relatively easy to deter-
mine the value of ¢%%5 to a high degree of accuracy.
However, when x is nearer to unity or larger than unity,
avery large number of terms are required for an accurate
result.

If in the series of equation (1), x is replaced by —x, then,

_ (—X)2 (—x)3
X __ _
et =1+(x)+ X + 3 +
e etoloxil X
1e. e = —x+2!—3!+~~~

In a similar manner the power series for e* may be used

to evaluate any exponential function of the form a e,
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where a and k are constants. In the series of equation (1),
let x be replaced by kx. Then,

2 3
(kx) (kx) L ]

kx
—all+ (kx
aet =a) 4 k0 + ==+ =

Thus 5e¢2* =5{1+ (2x) +

2x)%  (2x)3
a0 e T ]

o P G
= X _— —_—
2 "6

4
ie. 5eX=5 1+2x+2x2+§x3+~~~]

Problem 4. Determine the value of 5¢%3, correct
to 5 significant figures by using the power series
for e*.

x2 53 4

e* _1+x+—+§+x—+
(0.5)2 0.5)3
H 5=1+4+05+
enee @0 T 3@
N 0.5)* 0.5)°
GHBRHD)A)  GHHBBR)(M)
N (0.5)°
6)S)HB)2)()
=1+0.5+0.125+0.020833
+0.0026042 + 0.0002604
+0.0000217
ie. e0-5 =1.64872,

correct to 6 significant figures

Hence 5e%5 =5(1.64872) = 8.2436,
correct to 5 significant figures

Problem 5. Expand e* (x2 — 1) as far as the term
: 5
in x°.

The power series for e is,

_1 x2 3 X
et = +x+—+§+—+§+

)(xz—l)

Hence e* (x2 —1)

+x+—+§+—+§+

S
x?4x3 +—+§+

| X2 X3 X
+x+—+§+—+§+

Grouping like terms gives:

e (x2-1)

_ 1 x2 3 x3
R CltTy Rl ST
x4 x4 )CS XS
")\ s )t

=—1-x+- x2+ x3

L1
—x —X
24" " 120

when expanded as far as the term in x°.

Now try the following exercise

Exercise 15
series for e*

Further problems on the power

1. Evaluate 5.6e~ !, correct to 4 decimal places,
using the power series for e*. [2.0601]

2. Use the power series for e* to determine, cor-
rect to 4 significant figures, (a) e2 (b)e 93 and
check your result by using a calculator.

[(a) 7.389 (b) 0.7408]

3. Expand (1 —2x) e2* as far as the term in x*.

8 3
[1—2x2— % —2x4:|

1
4. Expand (2 e"z) (x 7) to six terms.
1
2

3
2

4.3 Graphs of exponential functions

Values of e* and e ™ obtained from a calculator,

correct to 2 decimal places, over a range x=-—3
to x =3, are shown in the following table.
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x =30 —25 -20 —-15 —-1.0 -05 0
& 0.05 0.08 0.14 022 037 0.611.00
e " 20.09 12.18 7.39 448 272 1.651.00

X 0.5 1.0 15 20 2.5 3.0
& 1.65 272 448 739 12.18 20.09

e 061 037 022 0.14 008 0.05

Figure 4.1 shows graphs of y=e"* and y=e™*

Figure 4.1
Problem 6. Plot a graph of y=2¢%3* over a
range of x =—2 to x =3. Hence determine the value

of y when x =2.2 and the value of x when y=1.6.

A table of values is drawn up as shown below.

X =3 =2 =l 0 1 2 3

03x -09 -06 -03 O 03 06 09

2¢03 081 1.10 148 200 2.70 3.64 4.92

0.3x

A graph of y=2¢""* is shown plotted in Fig. 4.2.

y=1.6,x=-0.74.

e¥3r  0.407 0.549 0.741 1.000 1.350 1.822 2.460

From the graph, when x=2.2, y=3.87 and when

24

-3 -2 -1] 0 X
—0.74
Figure 4.2
Problem 7. Plot a graph of y= % e~ 2 over the
range x =—1.5 to x =1.5. Determine from the

graph the value of y when x =—1.2 and the value
of x when y=1.4.

A table of values is drawn up as shown below.

X -15 —-10 =05 0 05 1.0 15
—2x 3 2 1 o -1 -2 =3
e 2*  20.086 7.389 2.718 1.00 0.368 0.135 0.050

1
5e—bf 6.70 246 091 0.33 0.12 0.05 0.02

A graph of % e~2* is shown in Fig. 4.3.

VA
1 - 7}
/y:_e &
6 -
5 -
________ 4367
| 3t
I
| oL
: DN :__1'4
I I
1 : 1 : 1 .\A; o— rY t
-15 ]—1.0]—0.5 05 1.0 15 x
-1.2 -0.72
Figure 4.3

From the graph, when x =—1.2, y=3.67 and when
y=14,x=-0.72.

Problem 8. The decay of voltage, v volts, across

a capacitor at time # seconds is given by
=t .
v=250e 3 . Draw a graph showing the natural
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decay curve over the first 6 seconds. From the
graph, find (a) the voltage after 3.4 s, and (b) the
time when the voltage is 150 V.

A table of values is drawn up as shown below.
t 0 1 2 3

—t

e 3 1.00 0.7165 0.5134 0.3679

—t
v=250e3 250.0 179.1 1284 91.97

t 4 5 6
=i
e3 02636 0.1889  0.1353
=i
v=250e3 65.90 47.22 33.83

=L .
The natural decay curve of v=250e 3 is shown in

Fig. 4.4.

t
y=250e 3

Voltage v (volts)

1
1
1
1
|
80 F—————- [ ——
:
1
1
1
1
1
1

0 115 2
Time t(seconds)

v

wl
Wl
N
,h_
[6)]
[e)R S

Figure 4.4
From the graph:

(a) when time t =3.4s, voltage v=80V and
(b) when voltage v=150V, time t=1.5s.

Now try the following exercise

Exercise 16  Further problems on
exponential graphs

1. Plot a graph of y=3e%>" over the range

x=-—3 to x=3. Hence determine the value

of y when x=1.4 and the value of x when

y=4.5. [3.95,2.05]
2. Plot a graph of y= % e~ !5 over a range
x=—1.5 to x=1.5 and hence determine the
value of y when x =—0.8 and the value of x
when y=3.5. [1.65, —1.30]

3. In a chemical reaction the amount of starting

material C cm? left after # minutes is given by

C =40e9-00 Plot a graph of C against f and

determine (a) the concentration C after 1 hour,

and (b) the time taken for the concentration to
decrease by half.

[(a) 28 cm? (b) 116 min]

4. The rate at which a body cools is given by
6 =250e"095 where the excess of tempera-
ture of a body above its surroundings at
time ¢ minutes is 6°C. Plot a graph showing
the natural decay curve for the first hour of
cooling. Hence determine (a) the temperature
after 25 minutes, and (b) the time when the
temperature is 195°C.

[(a) 70°C (b) Smin]

4.4 Napierian logarithms

Logarithms having a base of ‘e’ are called hyperbolic,
Napierian or natural logarithms and the Napierian
logarithm of x is written as log, x, or more commonly
as Inx. Logarithms were invented by John Napier, a
Scotsman (1550-1617).

The most common method of evaluating a Napierian
logarithm is by a scientific notation calculator. Use your
calculator to check the following values:

In4.328 = 1.46510554 ...

= 1.4651, correct to 4 decimal places
In1.812 =0.59443, correct to 5 significant figures
In1=0
In527 = 6.2672, correct to 5 significant figures
In0.17 = —1.772, correct to 4 significant figures

In0.00042 = —7.77526, correct to 6 significant
figures

Ine® =3

Ine' =1
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From the last two examples we can conclude that:
log.e* =x

This is useful when solving equations involving expo-
nential functions. For example, to solve e =7, take
Napierian logarithms of both sides, which gives:

Ine* =In7

i.e. 3x =In7

1
from which X = 3 In7 = 0.6486, correct to 4

Problem 9. Evaluate the following, each correct
to 5 significant figures:

1 1n7.8693
Z1n4.7291 (b
@ 5 47291 ) =5 ©

3.171n24.07
o 0.1762

1 1
(@) 5In4.7291 = ~(1.5537349....) = 0.77687,

correct to 5 significant figures

In7.8693  2.06296911...

7.8693 7.8693
correct to 5 significant figures

(b)

=0.26215,

© 3.171n24.07 ~ 3.17(3.18096625...)
e 01762 (.83845027...
=12.027,
correct to 5 significant figures.

Problem 10. Evaluate the following:

Ine??> 5¢2231g2.23
(@) -5 (0) = —
g10%

(correct to 3

In2.23 decimal places).
@ Ine> 25 5
a _— = =
1g1095 0.5
5¢2-23192.23
(b) e lgesd
In2.23
_5(9.29986607 ...)(0.34830486....)
N 0.80200158.....

= 20.194, correct to 3 decimal places.

Problem 11. Solve the equation: 9 = 4e~3* to
find x, correct to 4 significant figures.

Rearranging 9 = 4e ™3 gives:

Z_e
4

decimal places.

Taking the reciprocal of both sides gives:
4 1

5 T e3x T
Taking Napierian logarithms of both sides gives:

4
In{ - ) =In(*
(5)=me
Since log.e* =, then In 5 =3x

1 4 1
Hence, x= 3 ln(g) =3 (—0.81093) =—0.2703,

correct to 4 significant figures.

13
Problem 12. Given32=70(1— e_f) determine
the value of ¢, correct to 3 significant figures.

13
Rearranging 32 = 70(1 —e™ 2) gives:

32 _L
—=1—-e 2
70
L 2
and e 2=1- 2 = 3
70 70
Taking the reciprocal of both sides gives:
70
62 = —
38

Taking Napierian logarithms of both sides gives:

L 70

Ine2 =In{ —

38

. t 70
i.e. —=In{—
2 38

70
from which, t=21n (ﬁ) = 1.22, correct to 3 signifi-

cant figures.

4.87
Problem 13. Solve the equation: 2.68 = In (—)
X

to find x.

From the definition of a logarithm, since

4.87 4.87
2.68=In (—) then &% =_—"—
X X
; e 4.87 —2.68
Rearranging gives: X = 268 = 4.87e
i.e. x = 0.3339, correct to 4

significant figures.

7
Problem 14. Solve 1= 3 correct to 4 signi-

ficant figures.
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Taking natural logs of both sides gives:

In— = Ine*
4
7
In— =3xIne
4
Since Ine =1 In 1 =3x
i.e. 0.55962 = 3x
i.e. x = 0.1865, correct to 4

significant figures.

Problem 15. Solve: e*~! = 2e3*~* correct to 4
significant figures.

Taking natural logarithms of both sides gives:
ln(ex_l) = 1n(2€3x—4)
and by the first law of logarithms,
ln(ex_l) =In2+ 1n(e3x—4)
ie. x—1=In2+43x -4

Rearranging gives: 4 —1—In2=3x—x

i.e. 3—1In2=2x
. 3—1In2
from which, X = 5
=1.153

Problem 16. Solve, correct to 4 significant
figures: In(x — 22 =In(x—2) — In(x+3) +1.6

Rearranging gives:
In(x —2)> —In(x —=2) +In(x +3)=1.6
and by the laws of logarithms,

2
IH[W]ZM
x—2)

Cancelling gives: In{(x —=2)(x +3)} =1.6

and (x—=2)(x +3) =el®
i.e. 24x—6=¢l0
or X24x—6-—e0=0

ie. x24+x—-10953=0

Using the quadratic formula,

_ —1£/12—4(1)(-10.953)

X
2
_ —1£4/44812  —1+£6.6942
- 2 - 2
ie. x =2.847 or —3.8471
x = —3.8471 is not valid since the logarithm of a

negative number has no real root.

Hence, the solution of the equation is: x = 2.847

Now try the following exercise

Exercise 17  Further problems on
evaluating Napierian logarithms

In Problems 1 and 2, evaluate correct to 5 signifi-
cant figures:

L @ tinsaon () IM82473
o e 4.829
5.621n321.62

12042

[(a) 0.55547 (b) 0.91374 (c) 8.8941]

1.7861ne!-70 501629
(b)
1g10141 21n0.00165
1n4.8629 —1n2.4711

5.173
[(a) 2.2293 (b) —0.33154 (c) 0.13087]

(©)

2. (a)

(©

In Problems 3 to 7 solve the given equations, each
correct to 4 significant figures.

3. Inx=2.10 [8.166]

4. 24+e* =45 [1.522]

5. 5=t 7 [1.485]

6. 1.5=4e [—0.4904]

7. 7.83=291e !7x [—0.5822]

t

8. 16:24(1—e‘i) [2.197]
X

. 5.17=In(—— 16.2

%9 “(4.64) [816.2]
1.59

10. 3.72In( — ) =243 [0.8274]

X
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VA
= A
11. 5=8{1—e2 [1.962]
y=Ae
12. In(x+3)—Inx =In(x—1) [3]
13. In(x—1)>—In3 =1In(x — 1) [4]
14, Inx+3)+2=12—In(x —2) [147.9]
15. e@tDh =3e2x—5) [4.901] - >
16. In(x+1)2=15—In(x —2) (@) X
+In(x + 1) [3.095]
yA
17. Transpose: b =1Int —alnD to make ¢ the
subject. S I
[t = ebtalnD _ boalnD _ ebelnD“
ie r=e DY)
_ _ ~A—kx
p Ry y=A(1-e"")
18. If — =10logg | — ) find the value of R;
0 Ry
when P =160, Q =8 and R, =5. [500]
(7v) ’ x
19. If U, =U;e\""/ make W the subject of the (b)
U
formula. [W = PVin (U_Z):| Figure 4.5
1
20. The work done in an isothermal expansion of (v) Biological growth y=yoek
a gas from pressure pj to p is given by: (vi) Discharge of a capacitor g = Qe—!/CR
P1
w=woln (5) (vii) Atmospheric pressure  p= poe /¢
cee . . _ _)\I
If the initial pressure p; = 7.0kPa, calculate (viii) Radioactive decay N=~Noe
the final pressure py if w = 3wy. (ix) Decay of current in an
[p2 =348.5Pa] inductive circuit i=Ie RI/L

(x) Growth of current in a
capacitive circuit i=1(1—e 1/CRy

4.5 Laws of growth and decay Problem 17. The resistance R of an electrical
conductor at temperature 6°C is given by

R= Rpe*’, where « is a constant and

Ro =5 x 10 ohms. Determine the value of «,
correct to 4 significant figures, when

R=6x 10° ohms and 6 = 1500°C. Also, find the
temperature, correct to the nearest degree, when the
resistance R is 5.4 x 103 ohms.

The laws of exponential growth and decay are of the
form y=Ae® and y= A(1 —e %), where A and k are
constants. When plotted, the form of each of these equa-
tions is as shown in Fig. 4.5. The laws occur frequently
in engineering and science and examples of quantities
related by a natural law include.

(i) Linear expansion I=lpe*? T R Rcaf g R »
B ) ) ) ransposing R = Rye*’ gives — =e*’.
(i1) Change in electrical resistance Ro
with temperature Ry =Rpe* Taking Napierian logarithms of both sides gives:
(iii) Tension in belts Ti = TyeH?
5 _ of
t In =Ine"™ =ab

(iv) Newton’s law of cooling 6 =6 ek Ro
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1. R 1 6x 103
Hence a=—-In—=——In{ ———
0 Ry 1500 5x 103

1
=——(0.1823215...
1500(0 823215..)

=1.215477---x 1074

Hence a=1.215x 1074,
correct to 4 significant figures.

R
From above, In— =6
Ro

1 R
0 =—In—
a Ry

hence

When R=54x103, o=1215477...x10~* and
Ry=5x103

1 5.4 %103
0= In
1.215477...x 104 5% 103
4

= (7.696104...x 107>
1215477, 096104...x 1075

= 633°C, correct to the nearest degree.

Problem 18. In an experiment involving
Newton’s law of cooling, the temperature 6 (°C) is
given by 6 =6y e . Find the value of constant k
when 6y =56.6°C, § =16.5°C and t =83.0seconds.

Transposing 0 =6pe ¥ gives
i — e—kt
0o
0 1
from which = = — = ekt
e~ 1

Taking Napierian logarithms of both sides gives:

O
In = = kt
0
from which,
1 6 1 56.6
k=-In—=——In{—
t 0 83.0 16.5
1
=—(1.2326486...
83.0( )

Hence k= 1.485 x 102

Problem 19. The current i amperes flowing in a
capacitor at time ¢ seconds is given by

i=8.0(1— ec_lg), where the circuit resistance R is
25 x 103 ohms and capacitance C is

16 x 10~ farads. Determine (a) the current i after
0.5 seconds and (b) the time, to the nearest
millisecond, for the current to reach 6.0 A. Sketch
the graph of current against time.

—t
(a) Currenti=8.0(1 —eCR)

—0.5
=8.0[1 —e(16x1079)(25x109) ] =8 0(1 —e~!2%)

=8.0(1—-0.2865047...)=8.0(0.7134952...)
= 5.71amperes

—t
(b) Transposing i =8.0(1 —eCR)

| —1
gives 81_0 =1—eCR

, . .
from which, eCR =1 — L 80—
8.0 8.0

Taking the reciprocal of both sides gives:

8.0
8.0—1

t
eCR =
Taking Napierian logarithms of both sides gives:

t 8.0
— =1In -
CR 8.0—1i
Hence

8.0
t = CRI
n(8.0—i)

= (16 x 107%)(25 x 103)1n(

8.0— 6.0)

when i = 6.0 amperes,

i t 4001 8.0 0.41n4.0
ie. =—1In{-—=) =0.4In4.
103 2.0

=0.4(1.3862943...) =0.5545s

=555ms, to the nearest millisecond.

A graph of current against time is shown in Fig. 4.6.
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=V
L

Figure 4.6

Problem 20. The temperature 6, of a winding

which is being heated electrically at time 7 is given
=

by: 6, =0;(1 —e © ) where 0, is the temperature (in

degrees Celsius) at time t =0 and 7 is a constant.

Calculate,

(a) 01, correct to the nearest degree, when 6, is
50°C, ¢t is 30s and 7 is 60s

(b) the time 7, correct to 1 decimal place, for 6 to
be half the value of 0.

(a) Transposing the formula to make 6, the subject

gives:
02 50
o1 = = =30
(1—eT) 1—e 60
50 50

T 1—e05 " 0.393469. ..

ie. 01=127°C, correct to the nearest degree.

(b) Transposing to make ¢ the subject of the formula

ives:
& 6 =t

—=]l—er
01

=t 0
from which, e = =1 — 2
01

t 0
— =1n(1 ——2)
T 91
0
i.e. t:—tln(l——z)
01

Si 0 ==6
mce 2 ) 1

1
t=—60In{1——
“( 2)

=—60In0.5=41.59s

Hence

Hence the time for the temperature 6, to be
one half of the value of 01 is 41.6s, correct to 1
decimal place.

Now try the following exercise

Exercise 18 Further problems on the laws
of growth and decay

1. The temperature, 7°C, of a cooling object
varies with time, # minutes, according to the
equation: 7 = 150e %%, Determine the tem-
perature when (a) t = 0, (b) ¢ = 10 minutes.

[(a) 150°C (b) 100.5°C ]

2. The pressure p pascals at height i metrgs
above ground level is given by p=pge C ,
where po is the pressure at ground level
and C is a constant. Find pressure p when
po=1.012 x 10° Pa, height #=1420m, and
C =71500. [99210]

3. The voltage drop, v volts, across an induc-
tor L henrys at time ¢ seconds is given

by v=2006%, where R=150Q and
L =12.5 x 1073 H. Determine (a) the voltage
when t =160 x 10~ and (b) the time for the
voltage to reach 85 V.

[(a) 29.32volts (b) 71.31 x 10~ 05]

4. The length / metres of a metal bar at tem-
perature 7°C is given by [=Ilpe*’, where
lp and o are constants. Determine (a) the
value of @ when [=1.993m, [j=1.894m
and r=250°C, and (b) the value of [y when
[=2.416,1=310°C and @ =1.682 x 10~*.

[(a) 2.038 x 10~* (b) 2.293m]

5. The temperature 6, C of an electrical conduc-
tor at time ¢ seconds is given by:
6, =6;(1—e /Ty, where 0 is the initial
temperature and 7 seconds is a constant.

Determine:
(a) 6, when 6;=159.9°C,r=30s and
T = 80s, and

(b) the time ¢ for 0, to fall to half the value
of 01 if T remains at 80s.
[(a) 50°C (b) 55.455s ]

6. A belt is in contact with a pulley for a
sector of 6 =1.12radians and the coefficient
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of friction between these two surfaces is
p=0.26. Determine the tension on the taut
side of the belt, T newtons, when tension
on the slack side 7p=22.7newtons, given
that these quantities are related by the law
T = Ty e*? Determine also the value of @ when
T =28.0newtons.

[30.4N, 0.807 rad]

7. The instantaneous current i at time ¢ is given

by: i= IOeC_It? when a capacitor is being

charged. The capacitance C is 7 x 10~ farads

and the resistance R is 0.3 x 10° ohms. Deter-

mine:

(a) the instantaneous current when ¢ is
2.5 seconds, and

(b) the time for the instantaneous current to
fall to 5 amperes

Sketch a curve of current against time from
t =0 to t =6seconds.
[(a) 3.04 A (b) 1.465]

8. Theamount of product x (in mol/cm?) found in
a chemical reaction starting with 2.5 mol/cm?
of reactant is given by x =2.5(1 —e~*) where
t is the time, in minutes, to form product x. Plot
agraph at 30 second intervals up to 2.5 minutes
and determine x after 1 minute.

[2.45 mol/cm?]

9. The current i flowing in a capacitor at time ¢
is given by:
=L
i=12.5(1—eCrR)
where resistance R is 30kilohms and the
capacitance C is 20 micro-farads. Determine:
(a) thecurrent flowing after 0.5 seconds, and

(b) the time for the current to reach
10 amperes. [(a) 7.07 A (b) 0.9665]

4.6 Reduction of exponential laws to

linear form

Frequently, the relationship between two variables, say
x and y, is not a linear one, i.e. when x is plotted against
y a curve results. In such cases the non-linear equation
may be modified to the linear form, y =mux + ¢, so that
the constants, and thus the law relating the variables can

be determined. This technique is called ‘determination
of law’.

Graph paper is available where the scale markings
along the horizontal and vertical axes are proportional
to the logarithms of the numbers. Such graph paper is
called log-log graph paper.

A logarithmic scale is shown in Fig. 4.7 where
the distance between, say 1 and 2, is proportional to
Ig2—1g1,i.e. 0.3010 of the total distance from 1 to 10.
Similarly, the distance between 7 and 8 is proportional
tolg 8 —1g7,1.e. 0.05799 of the total distance from 1 to
10. Thus the distance between markings progressively
decreases as the numbers increase from 1 to 10.

L 1 1
1 2 3

~
o
o+
~
o |
o
-
o

Figure 4.7

With log-log graph paper the scale markings are from
1 to 9, and this pattern can be repeated several times. The
number of times the pattern of markings is repeated on
an axis signifies the number of cycles. When the verti-
cal axis has, say, 3 sets of values from 1 to 9, and the
horizontal axis has, say, 2 sets of values from 1 to 9,
then this log-log graph paper is called ‘log 3 cycle x 2
cycle’. Many different arrangements are available rang-
ing from ‘log1 cycle x 1 cycle’ through to ‘log 5
cycle x 5 cycle’.

To depict a set of values, say, from 0.4 to 161, on an
axis of log-log graph paper, 4 cycles are required, from
0.1to 1, 1to 10, 10 to 100 and 100 to 1000.

Graphs of the form y =a ek~

Taking logarithms to a base of e of both sides of y = a e**
gives:

Iny =In(ae*) =Ina +1ne* =Ina +kxIne

ie. Iny=kx +1na (since Ine = 1)

which compares with Y =mX +c¢

Thus, by plotting In y vertically against x horizon-
tally, a straight line results, i.e. the equation y =a ek is
reduced to linear form. In this case, graph paper hav-
ing a linear horizontal scale and a logarithmic vertical
scale may be used. This type of graph paper is called
log-linear graph paper, and is specified by the number
of cycles on the logarithmic scale.

Problem 21. The data given below is believed to
be related by a law of the form y=ae**, where a
and b are constants. Verify that the law is true and
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determine approximate values of @ and b. Also
determine the value of y when x is 3.8 and the value
of x when y is 85.

y 93 222 348 712 117 181 332

Since y=ae’* then Iny=kx+Ina (from above),
which is of the form Y =mX + ¢, showing that to pro-
duce astraightline graph In y is plotted vertically against
x horizontally. The value of y ranges from 9.3 to 332
hence ‘log3 cycle x linear’ graph paper is used. The
plotted co-ordinates are shown in Fig. 4.8 and since a
straight line passes through the points the law y =a e
is verified.

Gradient of straight line,
_AB In100—In10 23026
T BC T 3.12—(—1.08)  4.20

= 0.55, correct to 2 significant figures.

Since Iny=kx + Ina, when x =0,Iny=1Ina,ie. y=a
The vertical axis intercept value at x =0 is 18, hence
a=18

1000
y

Figure 4.8

The law of the graph is thus y =18’

When x is 3.8, y =18e03338 = 18207

=18(8.0849) = 146
When y is 85, 85=18¢3*

85
Hence, e0-55x — T 47222
and 0.55x =1n4.7222 = 1.5523
1.5523
H = = 2.82
ence X 055

Problem 22. The voltage, v volts, across an
inductor is believed to be related to time, # ms, by

L
the law v=V eT, where V and T are constants.
Experimental results obtained are:

tms 104 21.6 378 43.6 56.7 72.0

Show that the law relating voltage and time is as
stated and determine the approximate values of V
and 7. Find also the value of voltage after 25 ms
and the time when the voltage is 30.0 V.

13
Since v=VeT then lnv=%t+ InV which is of the
form Y =mX +c.
Using ‘log3 cycle x linear’ graph paper, the points
are plotted as shown in Fig. 4.9.
Since the points are joined by a straight line the law
13
v="VeT is verified.
Gradient of straight line,
1 AB
T BC
_In100 —In10
365642
~2.3026
- =277
—-27.7
2.3026

Hence T =

=—12.0, correct to 3 significant figures.

Since the straight line does not cross the vertical axis
at t =0 in Fig. 4.9, the value of V is determined
by selecting any point, say A, having co-ordinates

13
(36.5,100) and substituting these values intov="VeT .
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Voltage, v volts

0 10 20 30 40 50 60 70 80

Time, tms
Figure 4.9

36.5
Thus 100 =Ve—120

i.e. V=

=2090 volts,
correct to 3 significant figures.

—t
Hence the law of the graph is v=2090e12.0.
When time ¢ =25ms,

—25
voltage v=2090e120 =260V

—t
When the voltage is 30.0 volts, 30.0=2090e12.0,

=t 30.0
hence el20 =——
2090
_t_ 2
and el20 = —090 = 69.67
30.0
Taking Napierian logarithms gives:
L 1n69.67 = 4.2438
12.0

from which, time ¢ = (12.0)(4.2438) = 50.9 ms

Now try the following exercise

Exercise 19

Further problems on reducing

exponential laws to linear form

1.

Atmospheric pressure p is measured at vary-
ing altitudes /& and the results are as shown
below:

Altitude, h m  pressure, p cm

500 73.39
1500 68.42
3000 61.60
5000 53.56
8000 43.41

Show that the quantities are related by the
law p=ael”", where a and k are constants.
Determine the values of a and k and state
the law. Find also the atmospheric pressure at
10000 m.

a=76k=—-7x1077,
p=76e"7x107h 37 74cm
At particular times, ¢ minutes, measurements
are made of the temperature, 6°C, of a

cooling liquid and the following results are
obtained:

Temperature 0°C  Time ¢ minutes

922 10
559 20
339 30
20.6 40
12.5 50

Prove that the quantities follow a law of the
form 6 =6y e, where 6y and k are constants,
and determine the approximate value of 6
and k.

[6o=152, k=—0.05]




Revision Test 1

This Revision Test covers the material contained in Chapters 1 to 4. The marks for each question are shown in
brackets at the end of each question.

1.

Factorise x> +4x%+x — 6 using the factor theo-
rem. Hence solve the equation

B +ax*+x—-6=0 (6)

Use the remainder theorem to find the remainder
when 2x3 +x2 —7x — 6 is divided by

(@ (x=2) (b) x+1)

Hence factorise the cubic expression (7)
6x24+7x —5
Sty 2 o s &)
2x—1
Resolve the following into partial fractions
x—11 3—x
b
® 252 ®eers
3
x> —6x+9
C) -~ 24
© (24)
Evaluate, correct to 3 decimal places,
50-0.982
— 2
31n0.0173

Solve the following equations, each correct to 4
significant figures:

(@ Inx=240 (b) 3* =52

(©) 5=8(1—¢7) (10)

7.

10.

(a) The pressure p at height 4 above ground level is
given by: p=poe ¥ where py is the pressure
at ground level and k is a constant. When pg
is 101 kilopascals and the pressure at a height
of 1500m is 100 kilopascals, determine the
value of k.

(b) Sketch a graph of p against & (p the vertical
axis and & the horizontal axis) for values of
height from zero to 12000m when pg is 101
kilopascals.

(c) If pressure p =95kPa, ground level pressure
po = 101kPa, constant k=5 x 10_6, deter-
mine the height above ground level, &, in

kilometres correct to 2 decimal places.  (13)
Solve the following equations:
(a) log(x? +8) —log(2x) = log3
(b) Inx +1In(x-3) =In6x—In(x-2) (13)

U,

R
If 6y —6; =—In{—) find the value of U
J Uiy

giventhat0y =3.5,60; =2.5, R =0.315, / = 0.4,
Uy =50 (6)

Solve, correct to 4 significant figures:

(a) 13e~1 =7e"

®) InGx+D2=In(x+1)-In(x+2)+2 (15)



Chapter 5

Hyperbolic functions

5.1 Introduction to hyperbolic

functions

Functions which are associated with the geometry of
the conic section called a hyperbola are called hyper-
bolic functions. Applications of hyperbolic functions
include transmission line theory and catenary problems.
By definition:

(i) Hyperbolic sine of x,

X

ef—e™*

sinh x=

(D
‘sinhx’ is often abbreviated to ‘shx’ and is
pronounced as ‘shine x’

(i) Hyperbolic cosine of x,

e‘4e™*
cosh x= +T )

‘coshx’ is often abbreviated to ‘chx’ and is
pronounced as ‘kosh x’

(iii) Hyperbolic tangent of x,

sinhx e*—e™*

3

coshx e*+e*

‘tanhx’ is often abbreviated to ‘thx’ and is
pronounced as ‘than x’

(iv) Hyperbolic cosecant of x,

2
sinhx  eX—e—*

cosech x=

“

‘cosech x’ is pronounced as ‘coshecx’

(v) Hyperbolic secant of x,

2
sech x= = 5)
coshx e¥+4e™*
‘sech x’ is pronounced as ‘shecx’
(vi) Hyperbolic cotangent of x,
1 e*+e™*
cothx= + (6)

tanhx ef—e*
‘cothx’ is pronounced as ‘kothx’

Some properties of hyperbolic functions

Replacing x by 0 in equation (1) gives:

inhO el —e 0 1—-1 0
sinth=——=— =
2 2

Replacing x by 0 in equation (2) gives:
eV 4e 0 1+l
22

If a function of x, f(—x)=—f(x), then f(x) is called
an odd function of x. Replacing x by —x inequation (1)
gives:

cosh(Q = 1

e ¥ —e (1) e _eX

2 )

et —e™*
= _(T) = —sinhx

Replacing x by —x in equation (3) gives:

sinh(—x) =

e —e () emX¥ X
tanh(—x) =

erte (D exter

et —e™*
=—| —— ) = —tanhx
et +e™*
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Hence sinh x and tanhx are both odd functions

1
(see Section 5.1), as also are cosech x (: - ) and
sinh x

1
cothx(: )
tanh x

If a function of x, f(—x)= f(x), then f(x) is
called an even function of x. Replacing x by —x in
equation (2) gives:

e X +e—(—x) _ e ¥ 4e¥
2 2

cosh(—x) =

= coshx

Hence cosh x is an even function (see Section 5.2), as
1
cosh x
Hyperbolic functions may be evaluated easiest using a
calculator. Many scientific notation calculators actually
possess sinh and cosh functions; however, if a calculator
does not contain these functions, then the definitions
given above may be used.

also is sechx (:

Problem 1. Evaluate sinh5.4, correct to 4
significant figures.
Using a calculator,

(i) press hyp

(i) press 1 and sinh( appears
(iii) typeinS5.4
(iv) press ) to close the brackets

(v) press =and 110.7009498 appears

Hence, sinh 5.4= 110.7, correct to 4 significant figures.

1
Alternatively, sinh 5.4 = 3 (65 4 _e™d '4)
1
=5 (221.406416...—0.00451658...)

1
= 5(221.401899...)
=110.7, correct to 4 significant figures.

Problem 2. Evaluate cosh 1.86, correct to 3
decimal places.

Using a calculator with the procedure similar to that
used in Worked Problem 1,

cosh 1.86 = 3.290, correct to 3 decimal places.

Problem 3. Evaluate th(0.52, correct to 4
significant figures.

Using a calculator with the procedure similar to that
used in Worked Problem 1,

th0.52 = 0.4777, correct to 4 significant figures.

Problem 4. Evaluate cosech 1.4, correct to 4
significant figures.

1
sinh 1.4

cosech1l.4 =

Using a calculator,

(1) presshyp

(i) press 1 and sinh( appears

—

(iii)) typein 1.4
(iv) press) to close the brackets
(v) press = and 1.904301501 appears
(vi) press x~!
(vii) press = and 0.5251269293 appears

Hence, cosech1.4 = 0.5251, correct to 4 significant
figures.

Problem 5. Evaluate sech(0.86, correct to 4
significant figures.

1

sech0.86 = ———
cosh0.86

Using a calculator with the procedure similar to that
used in Worked Problem 4,

sech0.86 = 0.7178, correct to 4 significant figures.

Problem 6. Evaluate coth(0.38, correct to 3
decimal places.

1

coth0.38 = ————
tanh0.38

Using a calculator with the procedure similar to that
used in Worked Problem 4,

coth0.38 = 2.757, correct to 3 decimal places.
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Now try the following exercise

Exercise20  Further problems on
evaluating hyperbolic functions

In Problems 1 to 6, evaluate correct to 4 significant
figures.

1. (a)sh0.64 (b)sh2.182
[(a) 0.6846 (b) 4.376]
2. (a)ch0.72 (b)ch2.4625
[(a) 1.271 (b) 5.910]
3. (a)th0.65 (b)th1.81
[(a) 0.5717 (b) 0.9478]
4. (a)cosech0.543 (b) cosech3.12
[(a) 1.754 (b) 0.08849]
5. (a)sech0.39 (b)sech2.367
[(a) 0.9285 (b) 0.1859]

6. (a)coth0.444 (b) coth1.843
[(a) 2.398 (b) 1.051]

7. A telegraph wire hangs so that its shape is
described by y=50 chi. Evaluate, correct

to 4 significant figures, the value of y when
x=25. [56.38]

8. The length / of a heavy cable hanging under
gravity is given by [ =2c¢sh (L/2¢). Find the
value of / when ¢=40 and L =30.

[30.71]

9. V2=0.55Ltanh (6.3 d/L) is a formula for
velocity V of waves over the bottom of shal-
low water, where d is the depth and L is the
wavelength. If d=8.0 and L =96, calculate
the value of V. [5.042]

5.2 Graphs of hyperbolic functions

A graph of y=sinhx may be plotted using calculator
values of hyperbolic functions. The curve is shown in
Fig.5.1. Since the graph is symmetrical about the origin,
sinhx is an odd function (as stated in Section 5.1).

A graph of y=coshx may be plotted using calculator
values of hyperbolic functions. The curve is shown in
Fig.5.2. Since the graph is symmetrical about the y-axis,

y=sinh x

e
o
L
"o
b
N -
w bk
x Vv

|
—
o
T

Figure 5.1

coshx is an even function (as stated in Section 5.1).
The shape of y = cosh.x is that of a heavy rope or chain
hanging freely under gravity and is called a catenary.
Examples include transmission lines, a telegraph wire or
a fisherman’s line, and is used in the design of roofs and
arches. Graphs of y=tanhx, y=cosechx, y=sechx
and y = cothx are deduced in Problems 7 and 8.

ya

y=cosh x

N A OO 0 O

-3-2-1

Figure 5.2

Problem 7. Sketch graphs of (a) y= tanhx
and (b) y = cothx for values of x between
—3 and 3.

A table of values is drawn up as shown below

x 3 2
shx 1002 —3.63 —1.18
chx 1007 376 154
h
y=thx=zh—x ~0.995 —0.97 —0.77
X
h
y:cothx:% ~1.005 —1.04 —131
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X (0] 1 2 3

shx 0 1.18 3.63 10.02

chx 1 1.54 3.76 10.07
shx

y=thx=—— 0 077 097 0.995
chx

chx
y=cothx=—— s£oo 131 1.04 1.005
shx

(a) A graph of y=tanhx is shown in Fig. 5.3(a)
(b) A graph of y= cothx is shown in Fig. 5.3(b)

Both graphs are symmetrical about the origin thus tanh x
and cothx are odd functions.

Problem 8. Sketch graphs of (a) y =cosech x
and (b) y=sech x from x =—4 to x =4, and, from
the graphs, determine whether they are odd or
even functions.

V4 y=tanh x

Figure 5.3

A table of values is drawn up as shown below

shx —2229 —10.02 —-3.63 —1.18
1
cosechx=— —-0.04 —-0.10 —-0.28 —0.85
shx
chx 2731 10.07 376 1.54
1
sechx =— 0.04 0.10 027 0.65
chx
X 0] 1 2 3 4
shx 0 1.18 3.63 10.02 27.29

1
cosechx=— <00 0.85 028 0.10 0.04
shx

chx 1 154 376 10.07 27.31

1
sechx =—— 1 0.65 027 0.10 0.04

chx

(a) A graph of y=cosechx is shown in Fig. 5.4(a).
The graph is symmetrical about the origin and is
thus an odd function.

(b) A graph of y=sechx is shown in Fig. 5.4(b). The
graph is symmetrical about the y-axis and is thus
an even function.

—3—2x1
y=cosech x

Figure 5.4
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5.3 Hyperbolicidentities

For every trigonometric identity there is a corres-
ponding hyperbolicidentity. Hyperbolic identities may
be proved by either

X —X

—e
(i) replacing shx by eT and chx by
ex +e—x
———.or
2

(ii) by using Osborne’s rule, which states: ‘the six
trigonometric ratios used in trigonometrical iden-
tities relating general angles may be replaced by
their corresponding hyperbolic functions, but the
sign of any direct or implied product of two sines
must be changed’.

For example, since cos’x+sin>x=1 then, by
Osborne’s rule, ch?x —sh?x=1, i.e. the trigonomet-
ric functions have been changed to their corresponding
hyperbolic functions and since sin” x is a product of two
sines the sign is changed from + to —. Table 5.1 shows
some trigonometric identities and their corresponding
hyperbolic identities.

Table 5.1

Trigonometric identity

Problem 9. Prove the hyperbolic identities
(@) ch?x —sh2x =1 (b) 1 —th?x =sech?x
(c) coth? x — 1 =cosech? x.

X —X X _ a—X
(a) chx+shx= (%) + (%) =e¥

e¥ fe ¥ e —eX
hx —shx = —
chx — shx ( s ) ( . )

_e+—x

(chx +shx)(chx —shx) = (e®)(e ) =e' =1
ie. ch?x—sh?x=1 (1)

(b) Dividing each term in equation (1) by ch®x
gives:

ch?x shzx_ 1
ch?x

ch’x ch%x

ie. 1—th®x=sech®x

Corresponding hyperbolic identity

Compound angle formulae

Double angles
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(©)

Dividing each term in equation (1) by sh’x
gives:
ch?x

shx sh?x sh?x

i.e. coth?x —1=cosech? x

sh?x 1

Problem 10. Prove, using Osborne’s rule
(a) ch2A=ch?A+sh?A
(b) 1 —th? x =sech?x.

(a) From trigonometric ratios,
cos2A = cos? A —sin? A (1)
Osborne’s rule states that trigonometric ratios
may be replaced by their corresponding hyper-
bolic functions but the sign of any product
of two sines has to be changed. In this case,
sin? A= (sin A)(sin A), i.e. a product of two sines,
thus the sign of the corresponding hyperbolic func-
tion, sh2A, is changed from + to —. Hence, from
(1), ch2A =ch? A +sh2A

(b) From trigonometric ratios,

1 +tan?x =sec?x 2)
ond tanlr — sin?x _ Gsinx)(sinx)
cosZx cos2 x
i.e. a product of two sines.
Hence, in equation (2), the trigonometric ratios
are changed to their equivalent hyperbolic func-
tion and the sign of th’x changed + to —, i.e.
1—th?x=sech®x
Problem 11. Prove that 1+2sh?>x =ch2x.

Left hand side (L.H.S.)

B 2 . ex_e—x 2
=142sh"x=142{ —

2
_ +2(62x _DeXe™X +e—2x)
4
_1+62x_2+e—2x
B 2
s er +e—2x 2
N 2 2
2x —2x
- % —ch2x =R H.S.

Problem 12. Show that th? x +sechZx=1.

sh? x 1

L.H.S. = th®>x +sech?x = > >
ch“x chx

B sh?x+1
T ch2x

Since ch? x —sh?x =1 then 1+ sh? x =ch?x

sh®x+1  ch’x

=——=1=R.H.S.
ch?x ch?x

us

Problem 13. Given Ae*+ Be "= 4chx—5shux,

determine the values of A and B.

Ae* + Be ™ =4chx —5shx

Y Gl TY ol
2 2

5 5
=2x 2—x__x _—x
e” +2e 26 +26

1. 9
=T3¢ e

1 1
Equating coefficients gives: A = — 2 and B= 45

Problem 14. If 4e* —3e™* = Pshx + Qchx,
determine the values of P and Q.

4e* —3e™* = Pshx + Qchx

et _e—xX eX e ¥
ZP( 2 )+Q( 2 )

Px P—x Qx Q—x
= —¢ 26 +26+26

(59 (550

Equating coefficients gives:

:P+Q

O—-P
2

4 and —3 =
ie. P+0Q0=8

~P+0=-6

ey
@)

Adding equations (1) and (2) gives: 20 =2,i.e. Q=1

Substituting in equation (1) gives: P =17.
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Now try the following exercise

Exercise21  Further problems on
hyperbolic identities

In Problems 1 to 4, prove the given identities.
1. (@ch(P—Q)=chPchQ—shPshQ
(b) ch2x =ch?x +sh?x
2. (a) cothx =2cosech2x +thx
(b) ch26 — 1=2sh26
thA—thB
1—thAth B
(b) sh2A=2shAch A
4. (a)sh(A+B)=shAchB+chAshB
sh®x +ch?x —1

3. (a)th(A—B)=

b) ————— = tanh*x
®) 2ch? x coth? x
5. Given Pe*— Qe *=6c¢chx —2shx, find P
and Q [P=2,0=—4]
6. If5e*—4e *=Ashx+ Bchux, find A and B.
[A=9, B=1]

5.4 Solving equations involving

hyperbolic functions

Equations such as sinhx =3.25 or cothx =3.478 may
be determined using a calculator. This is demonstrated
in Worked Problems 15 to 21.

Problem 15. Solve the equation sh x =3, correct
to 4 significant figures.

If sinhx = 3, then x = sinh~!3
This can be determined by calculator.
(i) Press hyp
(ii) Choose 4, which is sinh™!
(iii) Typein3
(iv) Close bracket )
(v) Press = and the answer is 1.818448459

i.e. the solution of sh x = 3 is: x = 1.818, correct to 4
significant figures.

Problem 16. Solve the equation ch x = 1.52,
correct to 3 decimal places.

Using a calculator with a similar procedure as in Worked
Problem 15, check that:

x =0.980, correct to 3 decimal places.

With reference to Fig. 5.2, it can be seen that there
will be two values corresponding to y = coshx =
1.52. Hence, x = £0.980

Problem 17. Solve the equation tanh6 = 0.256,
correct to 4 significant figures.

Using a calculator with a similar procedure as in Worked
Problem 15, check that gives

0 =0.2618, correct to 4 significant figures.

Problem 18. Solve the equation sech x = 0.4562,
correct to 3 decimal places.

x = sech™10.4562 =

1 1
cosh™! since cosh = ——
0.4562 sech

i.e. x =1.421, correct to 3 decimal places.

If sechx =0.4562, then

With reference to the graph of y = sechx in Fig. 5.4, it
can be seen that there will be two values corresponding
to y = sechx = 0.4562

Hence, x = £1.421

Problem 19. Solve the equation
cosech y = —0.4458, correct to 4 significant figures.

If cosechy= —0.4458, then y= cosech™! (—0.4458)

1
=sinh~! { ———— ) since sinh =
—0.4458 cosech
ie. y=—1.547, correct to 4 significant figures.

Problem 20. Solve the equation coth A=2.431,
correct to 3 decimal places.

If cothA=2.431, then A=coth™12.431 =

1 1
tanh~! { ——— ) since tanh = —
2.431 coth

ie. A= 0.437, correct to 3 decimal places.

Problem 21. A chain hangs in the form given by
y=40ch i Determine, correct to 4 significant

figures, (a) the value of y when x is 25, and (b) the
value of x when y = 54.30
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() y=40ch-—, and when x = 25,
40
25
y =40 ch =2 =40 ch 0.625
40

=40(1.2017536...) = 48.07

(b) When y=54.30, 54.3O=4OCh—:0, from which
X 54.30
¢ 40 40 3575

Hence, :—0 =cosh™!1.3575=+0.822219....

(see Fig. 5.2 for the reason as to why the answer
is=£) from which, x = 40(£0.822219....) = £32.89

Equations of the form achx +bshx=¢, where a, b and
¢ are constants may be solved either by:

(a) plotting graphs of y=achx+bshx and y=c
and noting the points of intersection, or more
accurately,

(b) by adopting the following procedure:

et —e™
(i) Change shx to (T) and chx to

et +e "
2

(i) Rearrange the equation into the form
pe*+qge ™ +r=0, where p, g and r are
constants.

(iii) Multiply each term by e*, which produces
an equation of the form p(e¥)>+re*+
g =0 (since (e ) (e*)=e"=1)

(iv)  Solve the quadratic equation p(e*)? 4+re*+
q =0 for e* by factorising or by using the
quadratic formula.

(v) Given e*=a constant (obtained by solv-
ing the equation in (iv)), take Napierian
logarithms of both sides to give
x = In(constant)

This procedure is demonstrated in Problem 22.

Problem 22. Solve the equation
2.6chx +5.1shx =28.73, correct to 4 decimal
places.

Following the above procedure:

(i) 2.6¢chx+5.1shx=8.73

e 26( S ) a5 () 2873
1.€. 2. _— . _— =09.
2 2

(i) 1.3e*+1.3e*+2.55¢* —2.55¢ *=8.73
i.e. 3.85¢* —1.25¢7*—-8.73=0
(iii) 3.85(e*)?>—8.73e* —1.25=0

(iv) e*

_ —(—8.73)£/[(—8.73)2—4(3.85)(—1.25)]
- 2(3.85)

_ 873+£+4/95.463 8.73+9.7705
- 7.70 N 7.70
Hence e* =2.4027 ore* =—0.1351

(v) x=1In2.4027 or x =1n(—0.1351) which has no
real solution.
Hence x=10.8766, correct to 4 decimal places.

Now try the following exercise

Exercise 22  Further problems on
hyperbolic equations

In Problems 1 to 8, solve the given equations
correct to 4 decimal places.

1. (a)sinhx=1 (b)shA=-243
[(a) 0.8814 (b) —1.6209]
2. (a)coshB =1.87 (b)2chx=3
[(a) £1.2384 (b) +0.9624]
3. (a)tanhy=—-0.76 (b)3thx =2.4
[(a) —0.9962 (b) 1.0986]
4. (a)sechB =0.235 (b)sech Z =0.889
[(a) £2.1272 (b) £0.4947]
5. (a)cosechf =1.45 (b)5 cosechx =4.35
[(a) 0.6442 (b) 0.5401]
6. (a)cothx =2.54 (b)2cothy =—-3.64
[(a) 0.4162 (b) —0.6176]
7. 35shx+4+25chx=0 [—0.8959]
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8. 2shx+3chx=5
9. 4thx—1=0

[0.6389 or —2.2484]
[0.2554]

10. A chain hangs so that its shape is of the

form y =56 cosh (i) . Determine, correct to
4 significant figures, (a) the value of y when
x is 35, and (b) the value of x when y is 62.35

[(a) 67.30 (b) £26.42]

Series expansions for cosh xand

sinh x
By definition,
_q X2 o Xt X
et = +x+—+§+—+§+
from Chapter 4.
Replacing x by —x gives:
_q X2 X3 XX
= —x+5—§+z—§+
1
coshx = E(ex +e™)
i+ +x2+x3+x4+x5+
— x — — — —
2 3! 5!
! 2 X3 XX
+ —X+E—§+Z—§+“"
1 2+2x2 2x4+
2 20 4
x2 4
i.e. coshx=1+— 2 +— a0 + ... (which is valid for all

values of x). coshx is an even function and contains
only even powers of x in its expansion.

' —e™)

1 )CZ )C3 x4 )CS
SRR T T

sinhx =

= N

1 2x3 2%
=5 2 —F— 4

o X o
i.e. smhx=x+§+§ + ... (which is valid for all

values of x). sinh x is an odd function and contains only
odd powers of x in its series expansion.

Problem 23. Using the series expansion for ch x
evaluate ch 1 correct to 4 decimal places.

2,4

chx = 1+%+ a0 + - -from above
Let x=1,

2 14
then ch =14 Tt w2l

16
+6x5x4x3x2x1+

=14+0.540.04167+0.001389+ - - -

ie. ch1=1.5431, correct to 4 decimal places,
which may be checked by using a calculator.

Problem 24. Determine, correct to 3 decimal
places, the value of sh 3 using the series expansion
for shx.

X

shx-x+§+§+

- from above

Let x =3, then

33 35 37 39 311
sh3 =3+ 2o+ 5+ oy g+ T

3151 91 11!
=344.5+2.025+0.43393 4+ 0.05424
+0.00444 + - - -

ie. sh3=10.018, correct to 3 decimal places.

Problem 25. Determine the power series for

0
2¢ch (E) —sh?20 as far as the term in 6.

. . 0
In the series expansion for chx, let x = 5 then:

0 ©/2)% /2"
20h(§)=2|:1+ TR +]
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In the series expansion for shx, let x =26, then:

@0 oY

sh26 =26 + 3 + 30

—29+493+ 495+
- 3 15

Hence

h 0 h26 2+92+ o +
C — ) —s = — —_—
2 4 192

4 4
—(29+—93+—95+~~~)

3 15
0> 4 04
=2-20+——-03+-——
+ 4 3 +192
4 5 . 5
_Eo + - .. as far the term in 6

Now try the following exercise

Exercise 23  Further problems on series
expansions for cosh xand sinh x

1. Use the series expansion for chx to evaluate,
correct to 4 decimal places: (a)ch 1.5 (b)ch 0.8

[(a) 2.3524 (b) 1.3374]

2. Use the series expansion for shx to evalu-
ate, correct to 4 decimal places: (a) sh0.5
(b) sh2

[(a) 0.5211 (b) 3.6269]

3. Expand the following as a power series as far
as the term in x: (a) sh3x (b) ch2x

9 81
(a) 3x + §x3 + —40x5
2 2 4
(b) 1+2x°+ 3

In Problems 4 and 5, prove the given identities,
the series being taken as far as the term in 6°
only.

4. sh20 —sho 9+793+31 5
. S —shf= = —
6 120
5 2h9 h9 146 92+93 i
o 2dl==En=== ==cgr= ==
2 2 8 24 384
95
* 1920



Chapter 6

Arithmetic and geometric

6.1 Arithmetic progressions

When a sequence has a constant difference between
successive terms it is called an arithmetic progression
(often abbreviated to AP).

Examples include:

i) 1,4,7, 10, 13,...where the common difference
is 3 and

(i) a, a+d, a+2d, a+3d,...where the common
difference is d.

General expression for the n’th term of an AP

If the first term of an AP is ‘a’ and the common
difference is ‘d’ then

the n’th termis: a +(n —1)d
In example (i) above, the 7th term is given by 1+
(7—1)3 =19, which may be readily checked.
Sum of n terms of an AP

The sum § of an AP can be obtained by multiplying the
average of all the terms by the number of terms.

[
The average of all the terms = atl , where ‘a’ is the

first term and [ is the last term, i.e. [=a+ (n — 1)d, for
n terms.
Hence the sum of n terms,

a+!
S"Z”( 2 )

= g{a+[a +(n— Dd1}

progressions

ie. S,= g[Za +—=1)d]

For example, the sum of the first 7 terms of the series 1,
4,17,10, 13,... is given by

7
S7 = E[2(1) +(7—1)3], sincea=1andd =3

= 7[2+18]— 7[20]—70
=5 =5 =

6.2 Worked problems on arithmetic

progressions

Problem 1. Determine (a) the ninth, and (b) the
sixteenth term of the series 2, 7, 12, 17, ...

2, 7, 12, 17,... is an arithmetic progression with a
common difference, d, of 5.

(a) The n’th term of an AP is given by a+ (n — 1)d
Since the first term a =2, d =5 and n =9 then the

9th term is:
2409—-1D5=2+B8)(5) =2+40=42

(b) The 16th term is:
24+ (16—1)5=2+(155)=2+75=717.

Problem 2. The 6th term of an AP is 17 and the
13th term is 38. Determine the 19th term.
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The n’th term of an APisa—+ (n —1)d

The 6th termis: a+5d =17 @))

The 13th term is: a + 12d= 38 2)

Equation (2) —equation (1) gives: 7d =21, from which,
21

d=—=3.
7

Substituting in equation (1) gives: a+15=17, from
which, a =2.

Hence the 19th term is:
a+(mn—1)d=24+19—-1)3=2+(18)(3) =
2+ 54 =56.

Problem 3. Determine the number of the term
whose value is 22 in the series 2%, 4, 5%, 7,...

2%,4,5%,7,... is an AP where a=2% and
1
d=15.
Hence if the n’th term is 22 then: a4+ (n — 1)d =22
ie. 25+(m—1)(13) =22
(n—1)(13) =22-2=191.
1

191
nol=—F=Badn=13+1=14
2

i.e. the 14th term of the AP is 22.

Problem 4. Find the sum of the first 12 terms of
the series 5,9, 13, 17, ...

5,9,13,17,...isan AP where a =5 and d =4. The sum
of n terms of an AP,

Sp= g[Za +(n—1)d]
Hence the sum of the first 12 terms,

12
7[2(5) + (12 - 1)4]
=6[10+444] =6(54) = 324

Spp=

Problem 5. Find the sum of the first 21 terms of
the series 3.5,4.1,4.7,5.3, ...

3.5,4.1,4.7,5.3,...isan AP where a=3.5 and d =0.6

The sum of the first 21 terms,

21
So1 = 7[2(1 + (n—1)d]

21 21
= S 126.5)+ @1 - 1)0.6] = (7 +12]

21 399
=—19)=—=199.5
2 (19) 2

Now try the following exercise

Exercise 24 Further problems on arithmetic

progressions
1. Find the 11th term of the series 8, 14, 20,
26, ... [68]
2. Find the 17th term of the series 11, 10.7, 10.4,
10.1, ... [6.2]
3. The seventh term of a series is 29 and the
eleventh term is 54. Determine the sixteenth
term. [85.25]
4. Find the 15th term of an arithmetic progression
of which the first term is 2.5 and the tenth term
is 16. [23.5]
5. Determine the number of the term which is 29
in the series 7,9.2, 11.4, 13.6, ... [1 lth]
6. Find the sum of the first 11 terms of the series
4,7,10, 13, ... [209]
7. Determine the sum of the series 6.5, 8.0, 9.5,

11.0,...,32 [346.5]

6.3 Further worked problems on

arithmetic progressions

Problem 6. The sum of 7 terms of an AP is 35
and the common difference is 1.2. Determine the
first term of the series.

n=7,d=1.2and S7=35
Since the sum of n terms of an AP is given by

Sy, = =[2a+ (n — 1)d], then

35=

NSRS ]

2a+(7—1)1.2] = ;[254 +7.2]
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35x2
Hence =2a+7.2
10=2a+7.2
Thus 20 =10—-7.2=2.8,
2.
from which a= 78 =14

i.e. the first term, a=1.4

Problem 7. Three numbers are in arithmetic
progression. Their sum is 15 and their product is 80.
Determine the three numbers.

Let the three numbers be (a —d), a and (a +d)

Then (a—d)+a+(a+d)=15, ie.
which, a=5

Also, a(a —d)(a+d)=80,i.e. a(a®>—d*)=80

3a=15, from

Since a =5,5(5>—d?*) =80

125 —5d%> = 80
125 — 80 = 542
45 =542

45
from which, d2= — =9. Hence d=+/9=43.

The three numbers are thus (5 —3), 5 and (5 + 3), i.e.
2,5 and 8.

Problem 8. Find the sum of all the numbers
between 0 and 207 which are exactly divisible by 3.

The series 3,6,9, 12, ...,207 is an AP whose first term
a=23 and common difference d =3

The last term is a+n—1)d =207

ie. 34+ (n—1)3 =207,

207 -3
from which n—1= 3 =68
Hence n=68+1=069

The sum of all 69 terms is given by

Seo = g[Za +(n—1d]

= 62—9[2(3) + (69 — 1)3]

— %[6 +204] = 6_29(210) —7245

Problem 9. The first, twelfth and last term of an
arithmetic progression are 4, 31 %, and 376%

respectively. Determine (a) the number of terms in
the series, (b) the sum of all the terms and (c) the
‘80’th term.

(a) Let the AP be a,a+d,a+2d,...,a+(n—1)d,
where a =4

The 12th termis: a+ (12— 1)d=31%
ie. 4+11d =314,

from which, 11d =313 —4=27}

2715
Hence d = T :25

The last termis a + (n — 1)d

ie. 4+ (n—1)(23) =3763

3763 —4
n—1)=—"2—
23
3721
=—2=149
23

Hence the number of terms in the series,
n=1494+1=150

(b) Sum of all the terms,

S150 = g[za +(n—1)d]

150 1
= [2(4)+ (150 — 1) (25)}
1
=75 [8+ (149) (25)}

=85[8 +372.5]

=75(380.5) = 28537%
(¢) The 80th term is:
a+(n—1)d=4+@80-1)(23)
=4+ (79)(2})
=4+4197.5 =201}
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Problem 10. An oil company bores a hole 80 m
deep. Estimate the cost of boring if the cost is £30
for drilling the first metre with an increase in cost of
£2 per metre for each succeeding metre.

The series is: 30, 32,34, ... to 80 terms, i.e. a = 30,
d=2and n =80

Thus, total cost,

S, = g[Za (- l)d]

= ?[2(30) + (80— 1)(2)]

=40[60+ 158] =40(218) = £8720

Now try the following exercise

Exercise 25 Further problems on arithmetic
progressions

1. The sum of 15 terms of an arithmetic progres-
sion is 202.5 and the common difference is 2.
Find the first term of the series. [—0.5]

2. Three numbers are in arithmetic progression.
Their sum is 9 and their product is 20.25.
Determine the three numbers. [1.5, 3, 4.5]

3. Find the sum of all the numbers between 5 and
250 which are exactly divisible by 4. [7808]

4. Find the number of terms of the series 5, 8,
11,... of which the sum is 1025. [25]

5. Insert four terms between 5 and 22.5 to form
an arithmetic progression. [8.5, 12, 15.5, 19]

6. The first, tenth and last terms of an arithmetic
progressionare 9,40.5, and 425.5 respectively.
Find (a) the number of terms, (b) the sum of
all the terms and (c) the 70th term.

[(a) 120 (b) 26070 (c) 250.5]

7. On commencing employment a man is paid
a salary of £16000per annum and receives
annual increments of £480. Determine his
salary in the 9th year and calculate the total
he will have received in the first 12 years.

[£19840, £223,680]

An oil company bores a hole 120 m deep. Esti-
mate the cost of boring if the cost is £70 for
drilling the first metre with an increase in cost
of £3 per metre for each succeeding metre.
[£29820]

6.4 Geometric progressions

When a sequence has a constant ratio between succes-
sive terms it is called a geometric progression (often
abbreviated to GP). The constant is called the common
ratio, r.

Examples include

i) 1,2,4,8,... where the common ratio is 2 and

(i) a,ar ar?, ar3, ... where the common ratio is r.

General expression for the n’th term of a GP

If the first term of a GP is ‘a’ and the common ratio is
r, then

the n’th term is: ar™ !

which can be readily checked from the above examples.

For example, the 8th term of the GP 1, 2, 4, §,... is
()(2)" =128, sincea=1 and r =2.

Sum of n terms of a GP

Let a GP be a, ar, ar®, ar?, ..., ar"™!
then the sum of n terms,

Sp=a+ar+ar’ +ar* +-Far" .. (1)

Multiplying throughout by r gives:

rS, = ar+ar* +ar’ +ar*

+...+arn_l+arn+... (2)
Subtracting equation (2) from equation (1) gives:
S, —rS, =a—ar"
ie. S,(1—r)=a(l—r"

Thus the sum of # terms, S, = “((11::’;)

when r < 1.

which is valid




Arithmetic and geometric progressions 55

Subtracting equation (1) from equation (2) gives

B a(r" = 1)

n= which is valid when r > 1.
r-1)

For example, the sum of the first 8 terms of the GP 1, 2,

o 18-
4,8, 16, ... 1is given by S§=————, since a=1 and
2-1D
r=2
1(256 — 1
Sum to infinity of a GP

When the common ratio » of a GP is less than unity, the
a(l—r")

———, which may be written
(I=r)
n

sum of n terms, S, =

a ar
1-r) ({d-=r)

Since r < 1, r"" becomes less as n increases, i.e. r' — 0
as n— 00.

as S, =

n

—0 as n—>o00. Thus S, —
(1-r) (1—r)

n— 00. u
The quantity ]

Hence

as

is called the sum to infinity, S,

and is the limiting value of the sum of an infinite number
of terms,

i.e. Seo= which is valid when —1 <r < 1.

a
a-r)
For example, the sum to infinity of the GP
I+5+ 5+ is

since a=1 and r:%, 1.e. Soo=2.

6.5 Worked problems on geometric

progressions

Problem 11. Determine the tenth term of the
series 3,6, 12,24, ...

3,6,12,24, ... is a geometric progression with a com-
mon ratio r of 2. The n’th term of a GP is ar"!,
where a is the first term. Hence the 10th term is:

(3)(2)10-1 =(3)(2)? =3(512) =1536.

Problem 12. Find the sum of the first 7 terms of
the series, %, 1%, 4%, 13%, ...

%, 1%, 4%, 13%, ...1s a GP with a common ratio r =3
n
—1
The sum of n terms, S,,:%
r—
127 1
53" —1 52187 —1 1
Hence S7= 2 )= 2 )=546_
B-1 2 2

Problem 13. The first term of a geometric
progression is 12 and the fifth term is 55. Determine
the 8’th term and the 11’°th term.

The Sth term is given by ar* =55, where the first term
a=12
4 55 55

Hence r"=—=—
a 12

55
d =Y=)=14631719...
ad (12)

The 8th term is ar’ = (12)(1.4631719...)" =172.3
The 11th term is ar'® = (12)(1.4631719...)!0 =539.7

Problem 14. Which term of the series 2187, 729,
243,...is §?

2187, 729, 243, ... is a GP with a common ratio r :%
and first term a =2187

The n’th term of a GP is given by: ar"~!

1 1\n—1
Hence 5 = (2187) (5)
. 1" ! 1 1
from which — = =
3 (9)(2187) 3237

Thus (n — 1) =9, from which, n=9+1=10
ie. % is the 10th term of the GP.

Problem 15. Find the sum of the first 9 terms of
the series 72.0, 57.6, 46.08, ...

. ar 57.6
The common ratio, r = —=——=0.8
a 72.0

| ar’ _4608 _ .
0 T 516 T
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The sum of 9 terms,

a(l—r") 72001 -0.87)
1-r)  (1-0.8)
_72.0(1—0.1342)

N 0.2

So =

=311.7

Problem 16. Find the sum to infinity of the
series 3, 1, %,

3,1, %, ... 1s a GP of common ratio, r:%
The sum to infinity,

Now try the following exercise

Exercise 26 Further problems on geometric
progressions

1. Find the 10th term of the series 5, 10, 20,
40, ... [2560]

2. Determine the sum of the first 7 terms of the
series §, 3,21, 63, ... [273.25]

3. The first term of a geometric progression is 4
and the 6th term is 128. Determine the 8th and
11th terms. [512,4096]

4. Find the sum of the first 7 terms of the
series 2, 5, 12%, ... (correct to 4 significant
figures). [812.5]

5. Determine the sum to infinity of the series 4,
2,1,... (8]

6. Find the sum to infinity of the series 2L 1 le
5 [1 Z]
s ee 5

6.6 Further worked problems on

geometric progressions

Problem 17. In a geometric progression the sixth
term is 8 times the third term and the sum of the
seventh and eighth terms is 192. Determine (a) the

common ratio, (b) the first term, and (c) the sum of
the fifth to eleventh terms, inclusive.

(a) Letthe GPbea,ar, ar?,ar’, ... ar*!
The 3rd term =ar? and the sixth term=ar
The 6th term is 8 times the 3rd.
Hence ar’ =8ar? from which, > =8, r = J8
i.e. the common ratio r =2.

(b) The sum of the 7th and 8th terms is 192. Hence
ar®+ar’ =192.

5

Since r =2, then64a+ 128a =192
192a = 192,
from which, a, the first term, =1.

(¢) The sum of the 5th to 11th terms (inclusive) is

given by:
Ca' =1 a@t-1)
T  rm—
e -n 12t -1

-1 @2-1
=e'-p-*-0D
=211 2% — 2048 — 16 = 2032

Problem 18. A hire tool firm finds that their

net return from hiring tools is decreasing by

10% per annum. If their net gain on a certain tool
this year is £400, find the possible total of all future
profits from this tool (assuming the tool lasts for
ever).

The net gain forms a series:

£400 + £400 x 0.9 + £400 x 0.9% + - - -,

which is a GP with a =400 and r =0.9.
The sum to infinity,

a 400

Soo = 1—r  (1-09)

= £4000 = total future profits

Problem 19. If £100 is invested at compound
interest of 8% per annum, determine (a) the value
after 10 years, (b) the time, correct to the nearest
year, it takes to reach more than £300.
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(a) Letthe GPbea,ar,ar?,...,ar"
The first term a = £100
The common ratio r = 1.08
Hence the second term is

ar = (100) (1.08) = £108,

which is the value after 1 year,
the third term is

ar? = (100) (1.08)> = £116.64,

which is the value after 2 years, and so on.
Thus the value after 10 years

=ar'" = (100) (1.08)'° = £215.89
(b)  When £300 has been reached, 300 =ar"
ie. 300 = 100(1.08)"
and 3 =(1.08)"
Taking logarithms to base 10 of both sides gives:
1g3 =1g(1.08)" =nlg(1.08),

by the laws of logarithms

1
from which, n = g_3 =
1g1.08

Hence it will take 15years to reach more than
£300.

Problem 20. A drilling machine is to have 6
speeds ranging from 50rev/min to 750rev/ min. If
the speeds form a geometric progression determine
their values, each correct to the nearest whole
number.

Let the GP of n terms be given by a, ar, ar?, ... ar" .

The first term a = 50rev/min
The 6th term is given by ar®~!, which is 750 rev/min,

ie. ar’ =750
s_ 750 _750 _

from which r =—=15
a 50

Thus the common ratio, r = J15=1.7188

The first term is a =50rev/min

the second term is ar = (50) (1.7188) =85.94,
the third term is ar? = (50) (1.7188)%>=147.71,
the fourth term is ar® = (50) (1.7188)% =253.89,

the fifth term is ar* = (50) (1.7188)* =436.39,
the sixth term is ar® = (50) (1.7188)° =750.06

Hence, correct to the nearest whole number, the 6 speeds
of the drilling machine are 50, 86, 148, 254, 436 and
750 rev/min.

Now try the following exercise

Exercise 27 Further problems on geometric
progressions

1. In a geometric progression the 5th term is
9 times the 3rd term and the sum of the 6th
and 7th terms is 1944. Determine (a) the com-
mon ratio, (b) the first term and (c) the sum
of the 4th to 10th terms inclusive.

[(a) 3 (b) 2 (c) 59022]

2. Which term of the series 3, 9, 27,... is
59049? [10th]

3. The value of a lathe originally valued at
£3000 depreciates 15% per annum. Calculate
its value after 4 years. The machine is sold
when its value is less than £550. After how
many years is the lathe sold?

[£1566, 11 years]

4. Ifthe population of Great Britain is 55 million
and is decreasing at 2.4% per annum, what
will be the population in 5 years time?

[48.71M]

5. 100g of a radioactive substance disintegrates
at a rate of 3% per annum. How much of the
substance is left after 11 years? [71.53¢]

6. If £250 is invested at compound interest of
6% per annum determine (a) the value after
15years, (b) the time, correct to the nearest
year, it takes to reach £750.

[(a) £599.14 (b) 19 years]

7. A drilling machine is to have 8 speeds rang-
ing from 100rev/min to 1000 rev/min. If the
speeds form a geometric progression deter-
mine their values, each correct to the nearest
whole number.

[100, 139, 193, 268, 373, 518,
720, 1000 rev/min]|




Chapter 7

The binomial series

7.1 Pascal’s triangle

A binomial expression is one which contains two terms
connected by a plus or minus sign. Thus (p+¢), (a +
x)2, (2x + y)3 are examples of binomial expressions.
Expanding (a + x)" for integer values of n from O to 6
gives the results as shown at the bottom of the page.
From these results the following patterns emerge:

(i) ‘a’ decreases in power moving from left to right.
(i) ‘x’ increases in power moving from left to right.

(iii) The coefficients of each term of the expansions are
symmetrical about the middle coefficient when n
is even and symmetrical about the two middle
coefficients when 7 is odd.

(iv) The coefficients are shown separately in Table 7.1
and this arrangement is known as Pascal’s tri-
angle. A coefficient of a term may be obtained
by adding the two adjacent coefficients immedi-
ately above in the previous row. This is shown
by the triangles in Table 7.1, where, for example,
1+3=4,104+5=15, and so on.

(v) Pascal’s triangle method is used for expansions of
the form (a + x)" for integer values of n less than
about 8.

Table 7.1
(a+x)° 1
(a+x)! 1 1
(a+x)? 1 2 1
(a+x)? W 3 1
(a+x)* 1 4 6 4 1
(a+x) 1 5 10 1
(a+x)° 1 6 15 20 15 6 1

Problem 1. Use the Pascal’s triangle method to
determine the expansion of (a + x)”.

From Table 7.1, the row of Pascal’s triangle corres-
ponding to (a +x)° is as shown in (1) below. Adding
adjacent coefficients gives the coefficients of (a +x)’
as shown in (2) below.

! 6 15 20 15 6 1 (1)
1 7 21 35 35 21 7 1 2)

The first and last terms of the expansion of (a4 x)” are
a’ and x7 respectively. The powers of ‘a’ decrease and
the powers of ‘x’ increase moving from left to right.

(a+x)° =

(a+x) =a+x

(a —i—x)2 =(@a+x)a+x) =
@+x)?=@+x)7?@+x) =
@+x)*=(@+x)3@+x) =
@+x)°=@+x)*a+x) =

1
a—+x
a?+2ax +x?2
a’ +3a%x + 3ax? + 13

a* +4a3x + 6a%x? + dax3® + x*
a’ +5a*x + 10a3x? + 10a?x3 + 5ax* + x°

(a+x)° = (a+x)°(a+x) =ab+6a>x + 15a*x% +20a3x3 + 15a%x* + 6ax> + x°
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Hence
(a+ x)7 =a’ +7a%x +21a°x* + 35a*x3
+35a3x* +21a%x° + Tax® +x7

Problem 2. Determine, using Pascal’s triangle
method, the expansion of (2p —3¢)°.

Comparing (2p —3¢)° with (a + x)> shows that
a=2pand x = —3q.
Using Pascal’s triangle method:

(a +x)5 =a’ +5a*x + 10a°x% + 10a°x> + - - -
Hence
2p —3¢)° = 2p)° +52p)*3q)
+102p)*3¢)*
+102p)*39)°
+52p)E39)* + 39)°
ie. 2p—3q)° =32p5—240p*q +720p3¢>

— 1080p%¢> +810pq* — 24345

Now try the following exercise

Exercise 28
triangle

Further problems on Pascal’s

1. Use Pascal’s triangle to expand (x — y)’.

57 — S AL Bl — a5
+35x3y* —21x2y + Txyb — y7_

2. Expand (2a + 3b)° using Pascal’s triangle.

32a° 4 240a*b + 720a°b?
+1080a%b* + 810ab* +243b7 |

7.2 The binomial series

The binomial series or binomial theorem is a formula
for raising a binomial expression to any power without
lengthy multiplication. The general binomial expansion

of (a +x)" is given by:

nn — l)an—zxz
2!
n(n— 13)’(" - 2)a11—3x3

((l + x)n =a" + nan—lx +

+ ...

where 3! denotes 3 x 2 x 1 and is termed ‘factorial 3’.
With the binomial theorem n may be a fraction, a
decimal fraction or a positive or negative integer.
When n is a positive integer, the series is finite, i.e.,
it comes to an end; when n is a negative integer, or a
fraction, the series is infinite.
In the general expansion of (a+x)" it is noted that the
nn—1)n-2) 41343
3!

very evident in this expression.

For any term in a binomial expansion, say the r’th
term, (r — 1) is very evident. It may therefore be rea-
soned that the r’th term of the expansion (a + x)" is:

4th term is: . The number 3 is

nn—1)@=2)...to (r—Dterms ,_._y) ,
r-1!

If a=1 in the binomial expansion of (a + x)" then:

x2

~1
(1+x)"=1+nx+n(n’ )

+Wxs+...

which is valid for —1 <x < 1.
When x is small compared with 1 then:

A+x)"~1+nx

7.3 Worked problems on the

binomial series

Problem 3. Use the binomial series to determine
the expansion of (2+x)’.

The binomial expansion is given by:

—1
(a_'_x)n:an_i_nan—lx_i_%an—ZxZ

—1D(n-2
nn=D0=2) .33
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Whena=2and n=7:

7)6)
T on
DO)G)@)

2 4.3
Ot D30

Q+x)=2"4+72)°x +
(1(6)(5)
3)2) (1)
(1 (6)(5)(4)(3)
G)HBR@) ()
(M (©6)(5) @ (3)(2)
6)SBHB)(2)(1)
(M (6)(S) @ (3)(2)(1) 7
(M (©6)(S5) @) (3)(2)(1)

ie.(24x)" =128+ 448x + 672x% + 560x3
+280x4 +84x5 +14x% 4+ x7

(2)5 2
(2)3x4
(2)2)C5

(2)x°

Problem 4. Use the binomial series to determine
the expansion of (2a — 3b)>.

n(n— 1)(1"_2x2
2!
—1 -2
T n(n 3)'(n )an_3x3 T

(a+x)"=a" +na" 'x+

Whena =2a,x =—-3bandn =5:

(2a)’ 4+ 5Qa)*(=3b)
5@ 3 2
- (2a)’3b

+ (2)(1)( )7 3b)

©ICOIE)
3@

SIOIENE)
@R

BB M)
G)HBG)(1)

i.e. (2a —3b)°= 32a° —240a*b + 72043 b>
—1080a%b3 + 810ab* —243b°

(2a —3b)’ =

—— "= (2a)*(-3b)°
(2a)3b)*

3b)°

1 5
Problem 5. Expand (c - —) using the binomial
c

series.

From equation (1), the binomial expansion is given by:

5
(C—l) =3 4+ 5¢4 (—l)
C C
(5)) 3( 1)2
Ton e

GDHG) , (_ 1 )3

Aam ¢
DO (_ 1 )“
@O\ ¢

5 @E @) (_ 1 )5
@M \ ¢

1\’ 10 5 1
i.e.(c——) =c-573 +10c——+—__5
4 c

Problem 6. Without fully expanding (3 + x)’,
determine the fifth term.

The r’th term of the expansion (a + x)" is given by:
nn—1)n—-2)...to(r—1) termsan_(r_l) o1
(r—1Dn!
Substitutingn =7, a=3 and r —1=5—1=4 gives:
DOGA 174 4
@R
i.e. the fifth term of (3 +x)7 =35(3)3x* =945x4

Problem 7. Find the middle term of
2p——1| .
( P 2q)

In the expansion of (a+x)'0 there are 10+1, i.e. 11
terms. Hence the middle term is the sixth. Using the
general expression for the r’th term where a=2p,

x=——,n=10and r — 1 =5 gives:
2q

5
w@ p)10-5 (_i)
)@ 3)(2)(1) 2q

s 1
=252(32p°) ~325

5

1\ 0
Hence the middle term of (2 p— 2—) is —252p—5
q q

Problem 8. Evaluate (1.002)° using the binomial
theorem correct to (a) 3 decimal places and (b) 7
significant figures.
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nn—1) (3.039)* may be written in the form (1 +x)" as:

(1+x)" =1 +nx + ———x*
2! (3.039)* =(340.039)*
nn—1)0n-2) 4 4
e [p(1+222)]
(1.002)° = (140.002)° =3%(140.013)*
Substituting x =0.002 and n=9 in the general expan- (1+0.013)* =1+4(0.013)
sion for (1 +x)" gives: 4 @3)
+-——2(0.013)?
. OB o @M
(1+0.002)° =1+9(0.002) + ———(0.002)
@) M(O 0133 +---
9)(8)(7 H2)1)
LOBD (o D&
3)2)(1) =1+0.052+0.001014
=140.018+0.000144 +0.000008788 + - - -
+0.000000672 + - - - —1.0530228

=1.018144672... correct to 8 significant figures

Hence (1.002)° =1.018, correct to 3 decimal places Hence (3.039)* =3%(1.0530228)
=85.2948, correct to 6 significant

=1.018145, correct to 7 significant
figures figures

Problem 9. Evaluate (0.97)° correct to 4 signi- Now try the following exercise

ficant figures using the binomial expansion.
Exercise29 Further problems on the

(0.97)° is written as (1 —0.03)° REres .
Using the expansion of (1+4x)" where n=6 and binomialseries
x=-—0.03 gives: 1. Use the binomial theorem to expand
(a+2x)*.
(1-0.03)°=1+6(—0.03) + w(—o 03)?
: - : 2)(1) ’ I:a4+8a3x3+ 24aixzi|
+32ax” 416
LOOG s e
@M 2. Use the binomial theorem to expand (2 —x)°.
©)S)HA) C0.03) 4+ ... 64 — 192x +240x2 — 160x3 ]
@M +60x* — 12x° + x5
=1-0.1840.0135 — 0.00054
3. Expand (2x —3y)*.
+0.00001215 — - -- i , 5
N 16x™ —96x°y +216x~y
~(.83297215 [ —216xy3 +81y*
ie. (0.97)°=0.8330 t to 4 significant >
ie. (0.97) 30, correct to 4 significan 4. Determine the expansion of (2x+ —) .
figures X
320
32x3 4 160x3 4 320x + —
Problem 10. Determine the value of (3.039)4, 2
correct to 6 significant figures using the binomial 1_60 2
x %

theorem.
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5. Expand (p+2¢)"! as far as the fifth term.
pll +22p10q+220p9q2
+1320p8%¢3 +5280p7¢*

13
6. Determine the sixth term of (3 p+ %) .

(34749 p8q¢3)

7. Determine the middle term of (2a — 5b)8.
[700000 a*b*]

8. Use the binomial theorem to determine, cor-
rect to 4 decimal places:

(a) (1.003)8 (b) (1.042)7
[(a) 1.0243 (b) 1.3337]

9. Use the binomial theorem to determine, cor-
rect to 5 significant figures:

(@) (0.98)" (b) (2.01)°
[(a) 0.86813 (b) 535.51]

10. Evaluate (4.044)6 correct to 3 decimal places.
[4373.880]

Further worked problems on the

binomial series

Problem 11.

(a) Expand in ascending powers of x as

(142x)3

far as the term in x>

, using the binomial series.

(b) State the limits of x for which the expansion
is valid.

(a) Using the binomial expansion of (1 +x)", where
n=—3 and x is replaced by 2x gives:

m = (1 + 2)6)_3
=34
2!
=3)EHES)
* 3!

=1—6x+24x2—80x3+---

=1+E3)2x) + (2x)?

Qx)* -

(b) The expansion is valid provided |2x| <1,
1

. 1 1
ie. |x|<zor——-<x<_

2 2 2
Problem 12.

(a) Expand ﬂ in ascending powers of x as
=

far as the term in x
theorem.

3, using the binomial

(b) What are the limits of x for which the expan-
sion in (a) is true?

1 1 1

LT

Z%(l—z)_z

Using the expansion of (14 x)"

(a)

1 1 =)
=1 -3)

= % [1 +62) (—%)

2)E3) 1 x\2
T (_Z)
2)E3)E4) 1 x\3
e
_1(1 r )
"\ T2t ettt

(b) The expansion in (a) is true provided E‘ <1,

ie. |x|<4 or —4<x<4

Problem 13. Use the binomial theorem to expand
+/4+x in ascending powers of x to four terms. Give
the limits of x for which the expansion is valid.

= )

=il ) =2(+3)

Using the expansion of (1+x)",

1
x\2
*7

[ )@ )
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(1/2)&1/2)3/2) (xy\3
oy

_2 1 + X x2 + x3
- 8 128 1024
X x2 x3

=24 T 4T ...
+4 64+512

This is valid when E‘<1,
ie. |x|<4or —d4<x<4

Problem 14. Expand in ascending

1
NN

powers of ¢ as far as the term in ¢3.

State the limits of ¢ for which the expression
is valid.

1
Ja =21

1
=(1-21)"2

1 «1/2)63/2)
=1+ (—5) 21) + T(—Zz‘)z

4 E1/2E3/265/2)

3
3! (_Zt) +"'a

using the expansion for (1 + x)"

3 2 5 3
:1 t —t —t coe
The expression is valid when |2¢] <1,
ie. [t] t !
ie. <5 or—j<t<y
JA=3x)/ 1A +x)

Problem 15. Simplify 3
(1+3)

given that powers of x above the first may be
neglected.

J(1=3x)/A+x)
1+ 1)
(1+3)

1 L/ xy-3
= (1-30)3(1+x)2 (1+§)

~ [1 + (%) (—3x)] [1 + (%) 00} 1+ (3)]

when expanded by the binomial theorem as far as the x
term only,

:(1—x)(1+§)(1—37x)

x  3x) when powers of x higher than
={1l-x+=-—-— .
2 2 unity are neglected
=(1-2x)
JA+2
Problem 16. Express M as a power
(1 —3x)

series as far as the term in x2. State the range of
values of x for which the series is convergent.

JaT+2x)
YT =3x%)

(1 +2x)% =1+ (%) (2x)

(1/2)1/2)
* 2!

:(1+2x)%(1 —3x)_%

2x)* +---
22
=1+x—?+~~~ which is valid for
1
2x] <1, ie. |x| < =
2
1
(1-3x)"3=1+(=1/3)(=3x)

L E3EA3)

2
B

=1+ x +2x%+--- which is valid for

1
B3x| <1, 1e. x| < 5

Hence

VA +2x)

1 _1
ﬁ: (1+2X)2(1—3)C) 3

2
:(1+x—%+~~~)(1+x+2x2+~~~)
2
2 2 X
=1l4+x4+2x"+x+=x -5

neglecting terms of higher power than 2,
5
=1+2x+ Exz

. . 1
The series is convergent if -3 <x <=

3
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Now try the following exercise

Exercise 30  Further problems on the
binomial series

In problems 1 to 5 expand in ascending powers of x

as far as the term in x3, using the binomial theorem.
State in each case the limits of x for which the series
is valid.
1
(1—=x)
D+x+x24+x3+---, x| <1]
5 1
C o (1+x)?
[1—2x+4+3x2—4x34+---, x| <1]
3 1
T Q2+4x)?
1 . 3x+3x2 5x3+ ]
8 2 2 4
|x] <2 |
4. 24+ x
2 3 7
X X X
o1+ -4 = ...
f( +4 32+ 128 )
|x] <2 |
5 1
© J1+3x
3 27 135
1—-= T2 T3
( PR T TR )
1
x| < =
3

6. Expand (2+ 3x)_6 to three terms. For what
values of x is the expansion valid?

1 189
~(1-9x+ 222
( ”4’“)

64
x| <3
3
7. When x is very small show that:
@ 1 142
) =3
(1 —x)2/(A—x) 2
& 2= it10
I—30f

/14 5x 19
© = ml+—x
1 —2x 6

8. If x is very small such that x> and higher pow-
ers may be neglected, determine the power

Vx+4Y8—x
1
-]
15

V(1 +x)3
9. Express the following as power series in
ascending powers of x as far as the term in
x2. State in each case the range of x for which
the series is valid.

@ (1 —x) ®) (14+x)v/ (1 =3x)2
1+x V(1 +x2)

12
(a)l—x+§x , |xl <1

series for

(b1 iz |x]| !
= 4 = =JF X < =
277 3

7.5 Practical problemsinvolving the

binomial theorem

Binomial expansions may be used for numerical approx-
imations, for calculations with small variations and in
probability theory (see Chapter 57).

Problem 17. The radius of a cylinder is reduced
by 4% and its height is increased by 2%. Determine
the approximate percentage change in (a) its
volume and (b) its curved surface area, (neglecting
the products of small quantities).

Volume of cylinder =7 r2h.

Let r and h be the original values of radius and
height.

The new values are 0.96r or (1 —0.04)r and 1.02A or
(140.02)h.

(a) New volume=7[(1 — 0.04)r]*[(1 4+ 0.02)A]
=nr2h(1 —0.04)2(140.02)

Now (1 —0.04)2 =1—2(0.04) + (0.04)2
=(1-0.08),

neglecting powers of small terms.
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Hence new volume

~ 7r’h(1 —0.08)(1 4+ 0.02)

~ r*h(1 —0.08 4-0.02), neglecting

products of small terms

~ 7r’h(1 —0.06) or 0.947r°h, ie. 94%

of the original volume

Hence the volume is reduced by approxi-
mately 6 %.

(b) Curved surface area of cylinder =27 rh.

New surface area
=27[(1 —0.04)r][(1 +0.02)h]
=2mrh(1 —0.04)(1 4+0.02)

~2mwrh(1 —0.04 4-0.02), neglecting

products of small terms

~ 27rh(1 —0.02) or 0.98(27rh),

i.e. 98% of the original surface area

Hence the curved surface area is reduced by
approximately 2%.

Problem 18. The second moment of area (3)f a

bl
rectangle through its centroid is given by —.

Determine the approximate change in the second
moment of area if b is increased by 3.5% and [ is
reduced by 2.5%.

New values of b and [ are (14 0.035)b and (1 —0.025)!
respectively.

New second moment of area
1
= E[(l +0.035)b][(1 — 0.025)(]°
b3 3
= E(l +0.035)(1 —0.025)

b3
= E(l +0.035)(1 — 0.075), neglecting

powers of small terms

b3
x E(l +0.035 —0.075), neglecting

products of small terms

"‘bl3(1 0.040) (O96)bl3 i.e. 96%
~ 1 . or (0. 12,1.6. o

of the original second moment of area

Hence the second moment of area is reduced by
approximately 4%.

Problem 19. The resonant frequency of a

1 Jk
vibrating shaft is given by: f = VT where k is
T

the stiffness and [ is the inertia of the shaft. Use the
binomial theorem to determine the approximate
percentage error in determining the frequency using
the measured values of k and / when the measured
value of k is 4% too large and the measured value
of I is 2% too small.

Let f, k and I be the true values of frequency, stiffness
and inertia respectively. Since the measured value of
stiffness, k1, is 4% too large, then

104

ki = —k=(14+0.04)k
=100 ( )
The measured value of inertia, /7, is 2% too small, hence
98
L=—I1=(1-0.02)1
1= 7007 = )

The measured value of frequency,

1 [k 1 3 -2

:Z E:gl 1

f

= L[(1 +0.04)k]% [(a- 0.02)1]_%
2

1 11 1 1
=—(1+0.04)2k2(1-0.02)"21"2
2

1 1 1 1 1
=—k21"2(14+0.04)2(1 —-0.02)" 2
2

ie. fi= fd +0.04)%(1 —0.02)‘%

e Qo] (eon]

~ f(140.02)(1+0.01)
Neglecting the products of small terms,
Si=(1+0.0240.00)f~1.03f

Thus the percentage error in f based on the measured
values of k and I is approximately [(1.03)(100) — 100],
i.e. 3% too large.
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Exercise 31
involving the binomial theorem

1.

Now try the following exercise

Further practical problems

Pressure p and volume v are related by
pv3 =c, where ¢ is a constant. Determine the
approximate percentage change in ¢ when
p is increased by 3% and v decreased by
1.2%. [0.6% decrease]

Kinetic energy is given by %mvz. Determine
the approximate change in the kinetic energy
when mass m is increased by 2.5% and the
velocity v is reduced by 3%.

[3.5% decrease]

An error of +1.5% was made when meas-
uring the radius of a sphere. Ignoring the
products of small quantities determine the
approximate error in calculating (a) the vol-
ume, and (b) the surface area.

(a) 4.5% increase
(b) 3.0% increase

The power developed by an engine is given
by I =k PLAN, where £ is a constant. Deter-
mine the approximate percentage change in
the power when P and A are each increased
by 2.5% and L and N are each decreased
by 1.4%. [2.2% increase]

The radius of a cone is increased by 2.7%
and its height reduced by 0.9%. Determine
the approximate percentage change in its
volume, neglecting the products of small
terms. [4.5% increase]

The electric field strength H due to a magnet
of length 2/ and moment M at a point on its
axis distance x from the centre is given by

M 1 1
H=— —
2 | (x=D%  (x+1)2
Show that if / is very small compared with x,

2M
then H ~ —-
X

10.

11.

12.

The shear stress t in a shaft of diameter
kT

xD3
Determine the approximate percentage error

in calculating 7 if 7' is measured 3% too small
and D 1.5% too large. [7.5% decrease]

D under a torque T is given by: =

The energy W stored in a flywheel is given
by: W =krd N2, where k is a constant, r
is the radius and N the number of revolu-
tions. Determine the approximate percentage
change in W when r is increased by 1.3% and
N is decreased by 2%. [2.5% increase]

Inaseries electrical circuit containing induct-
ance L and capacitance C the resonant fre-

1
——— . If the
271«/R
values of L and C used in the calculation are

2.6% too large and 0.8% too small respec-
tively, determine the approximate percentage
error in the frequency. [0.9% too small]

quency is given by: f, =

The viscosity 1 of a liquid is given by:
4
-
n:—l, where k is a constant. If there is
v

an error in 7 of +2%, in v of +4% and [ of
—3%, what is the resultant error in n?
[+7%]

A magnetic pole, distance x from the plane
of a coil of radius r, and on the axis of the
coil, is subject to a force F when a cur-

rent flows in the coil. The force is given by:
kx

F=—

the binomial theorem to show that when x is
small compared to r, then

, where k is a constant. Use

kx Sk
s 2r!
The flow of water through a pipe is given by:

(d)’H
G= . If d decreases by 2% and H

by 1%, use the binomial theorem to estimate
the decrease in G. [5.5%]




Revision Test 2

This Revision Test covers the material contained in Chapters 5 to 7. The marks for each question are shown in
brackets at the end of each question.

Evaluate correct to 4 significant figures: 9. Find the sum of the first eight terms of the series
(a) sinh247 (b) tanh0.6439 1,2.5,6.25, ..., correct to 1 decimal place. (4)
10. Determine the sum to infinity of the series
(¢) sech1.385 (d) cosech0.874 (6) 1.1
5 5 Ly §o e (3)
The increase in resistance of strip conductors 11. A machine is to have seven speeds ranging from
due to eddy currents at power frequencies is 25rev/min to 500rev/min. If the speeds form a
given by: geometric progression, determine their value, each
correct to the nearest whole number. (8)
o at [ sinhat +sinat ) ) ) .
=5 | coshar — cosar 12. Use the binomial series to expand (2a —3b)°.
(N
Calculate A, correct to 5 significant figures, when L\ 18
a=108andr=1. o) 13. Determine the middle term of (3x — 3—) .
y
If Achx—Bshx=4e*—3e™* determine the (6)
values of A and B. ©) 14. Expand the following in ascending powers of ¢ as
ia 43
Solve the following equation: far as the term in 7
1 1
3.52chx +8.42shx =5.32 a b
Chd @ 57 ® VT =30
correct to 4 decimal places. ) o )
For each case, state the limits for which the
Determine the 20th term of the series 15.6, 15, expansion is valid. (12)
14.4,138, ... (3) :
15. When x is very small show that:
The sum of 13 terms of an arithmetic progression | 3
is 286 and the common difference is 3. Determine — _~1——x 5)
2./
the first term of the series. 4) (I +x)*v (1 —x) 2
. . R4 0
An engineer earns £21000 per annum and receives 16. The modulus of rigidity G is given by G = -

annual increments of £600. Determine the salary
in the 9th year and calculate the total earnings in
the first 11 years. (®))

Determine the 11th term of the series 1.5, 3,6,
12, ... )

where R is the radius, 6 the angle of twist and
L the length. Find the approximate percentage
error in G when R is measured 1.5% too large,
0 is measured 3% too small and L is measured
1% too small. (7)



Chapter 8

Maclaurin’s series

8.1 Introduction

Some mathematical functions may be represented as
power series, containing terms in ascending powers of
the variable. For example,

2 x3

x_1 > X
e = +x+2!+3!+...
X3 x
Slnx—x—§+§—%+...
2 4
X< X
andcoshx=1+a+ﬂ+...

(as introduced in Chapter 5)

Using a series, called Maclaurin’s series, mixed func-
tions containing, say, algebraic, trigonometric and expo-
nential functions, may be expressed solely as algebraic
functions, and differentiation and integration can often
be more readily performed.

To expand a function using Maclaurin’s theorem,
some knowledge of differentiation is needed (More on
differentiationis given in Chapter 27). Here is a revision

yorf(x)  Zorf'(x)

ax" anx"1
sinax acosax
cosax —asinax
eax aeax
Inax %

sinhax acoshax
coshax asinhax

of derivatives of the main functions needed in this
chapter.

Given a general function f(x), then f’(x) is the
first derivative, f”(x) is the second derivative, and so
on. Also, f(0) means the value of the function when
x =0, f/(0) means the value of the first derivative when
x =0, and so on.

8.2 Derivation of Maclaurin’s theorem

Let the power series for f(x) be
f(x) =ap +a1x + axx? + azx> + agx*
+ asx’ +--- (1)

where ag, ai, as, ... are constants.

When x =0, f(0) = ay.
Differentiating equation (1) with respect to x gives:

f/(x) =ai +2axx + 3a3x2 + 4a4x3
+5asxt + (2

When x =0, f/(0) = a;.
Differentiating equation (2) with respect to x gives:

f(x) =2a2 + (3)(2azx + 4)(3)asx>
+ G)@asx>+--- (3)

Q)
2!
Differentiating equation (3) with respect to x gives:

When x =0, f"(0)=2a,=2'a,ie az =

() = (3)(2)az + @) (3)(2asx
+ BB B)asx* 4+ (@)

f n (0)

When x =0, f”(0)=3)(2)az =3!a3,i.e.az = 3
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iv
0
Continuing the same procedure gives ay =J¥,
Q)

5!

as= , and so on.

Substituting for ag, ai, az, ... in equation (1) gives:

Lo

117
0
10,

f@)=fO)+ f(O)x+

+

2
f(x) = (0) + xf(0) + %f”((l)
ie. ‘ (5)

x3
m

Equation (5) is a mathematical statement called
Maclaurin’s theorem or Maclaurin’s series.

8.3 Conditions of Maclaurin’s series

Maclaurin’s series may be used to represent any func-
tion, say f(x), as a power series provided that at
x =0 the following three conditions are met:

(@) f(0) # o0
For example, for the function f(x)=cosx,
f(0)=cosO=1, thus cosx meets the condi-
tion. However, if f(x)=1nx, f(0)=1n0=—o0,
thus Inx does not meet this condition.

®) f70), f"(0), f7(0), ... # oo
For example, for the function f(x)=cosx,
f'(0)=—sin0=0, f”(0)=—cosO0O=—1, and so
on; thus cosx meets this condition. However, if
fx)=Inx, f'(0)= % =00, thus Inx does not
meet this condition.

(c) The resultant Maclaurin’s series must be
convergent

In general, this means that the values of the terms,
or groups of terms, must get progressively smaller
and the sum of the terms must reach a limiting
value.

For example, the series 1 + % + 4—1‘ + % + ---iscon-
vergent since the value of the terms is getting
smaller and the sum of the terms is approaching a
limiting value of 2.

8.4 Worked problems on Maclaurin’s

series

Problem 1. Determine the first four terms of the
power series for cosx.

The values of £(0), f/(0), f”(0), ...inthe Maclaurin’s
series are obtained as follows:
f(©0)=cos0=1
f/(0)=—sin0=0
F(0)= —cos0=—1
F"(0)=sin0=0

f(x)=rcosx
f/(x) = —sinx
f(x)=—cosx
f""(x) =sinx
fYx)=cosx  fV(0)=cos0=1
fY(x)=—=sinx fY(0)=—sin0=0
fYix)=—cosx fYi(0)=—cosO=—1

Substituting these values into equation (5) gives:

2 3
F(x) =cosx =1 4x(0) + %(—1)+ %(O)

x4 x3 x6
+ Z(l)-l‘ 5(0)-1‘ a(—l)-l----

X

ie. cosx=1—i+a—a+---

Problem 2. Determine the power series for
cos26.

Replacing x with 20 in the series obtained in
Problem 1 gives:

cos20 =1—

20 ot (26)°

o A T e T
462 N 166%  64° N

2 24 720

2 4
ie c0s20=1—-202+26%— —0%+...
i.e. cos +3 45 +

Problem 3. Using Maclaurin’s series, find the
first 5 (non zero) terms for the function
f(x) =sinx.
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f(x) =sinx f(0)=sin0=0
f/(x) =cosx f'(0) =cosO0=1
f’(x) =—=sinx  f"(0) =—sin0=0
" (x) =—cosx f"(0) =—cos0=—1

f¥(0) =sin0=0

fi"(x) =sinx
fY(x) =cosx £Y(0) =cos0=1

fYix) = —sinx  fY1(0) = —sin0=0

fYi(x) = —cosx  fYi(0) = —cos0 = —1
Substituting the above values into Maclaurin’s series of

equation (5) gives:
2 3 4

. x x
smx=O+x(1)+§(o)+§(_l)+ﬂ(o)

+§(1)+a(0)+%(_1)+ """

. . ¥ A
ie. sinx = x — TR T

Problem 4. Using Maclaurin’s series, find the
first five terms for the expansion of the function

fx) =e>.

fx) =e* fO)=e=1
fl(x)=3e>*  f/(0)=3e"=3
f"(x) =9e*  f"(0)=9e"=9

f///(x) —27 e3x f///(o) —27 e0 —27
fiVx) =813 fV(0) =81e" =81

Substituting the above values into Maclaurin’s series of
equation (5) gives:
N ® 4 @45 7
e =1+x( )+§( )+§( )

4

X @81
+Z(8 )RR
9x2  27x3  81x*
3x __ el
et =1+4+3x+ o + 3 + o
92 93 27x4
. 3x
£. =1 b R Wi
ie. e +3x+ 2 + 2 + 3 +

Problem 5. Determine the power series for tan x

as far as the term in x°.

f(x) =tanx
f(©0)=tan0=0

f'(x) = sec’x

_ 20 — _
£(0) =sec 0 = o0 =

f(x) = (2secx)(sec x tanx)
= 2sec’ x tanx

f(0) =2sec’0tan0 = 0

£ (x) = (2sec? x)sec? x)

+ (tanx)(4secx secx tanx), by the
product rule,

=2sectx +4sec?xtan®x
£7(0) = 2sec* 0+ 4sec’Otan’ 0 =2

Substituting these values into equation (5) gives:

2 3
f@)=tanx =0+ (x)(1) + E(O) + 5(2)

. 15
1.e. tanx=x+4+ —x

3

Problem 6. Expand In(1 +x) to five terms.

f)=In(1+x) f(0)=In(14+0)=0

/ _ /! — 1 —
FO=rn TO=157!

" _ —1 0) = —1 -1
f (x)——(1+x)2 F( )_—(1+O)2__
" _ 2 ///O_ 2 _2
o=ty T O=a50p =
iv _ —6 iv _ —6 _
o= FO=a5or=7°
)= e )= e =24
AT L R
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Substituting these values into equation (5) gives:

2
F) =In(1+x) =04 x(1)+ %(—1)

X3 X4 XS
+ @+ O+ 524

e In(141) x2+x3 x4+x5
1.€. X)=X—— _——— — — s
2 3 4 5

Problem 7. Expand In(1 —x) to five terms.

Replacing x by —x in the series for In(l+x) in
Problem 6 gives:

2 3
In(1 —x) = (—x) — ¢ ;) (;)
(0 | (=)’
- =
4 5
i.e.ln(l—x)=—x—x—2—x—3—x——x——--.

2 3 4 5
Problem 8. Determine the power series for
( 1+x )
In .
1—x

1
ln( tx

1—x
arithms, and from Problems 6 and 7,

I 1+x x2+x3 x4+x5
n = x— — _— —_— e
1—x 2 4 5

=In(1+x)— In(1 —x) by the laws of log-

w|

2xt 24 20y
=2x+=x —-X
37 5

ie.m(1T) =2 +x3+x5+
1.€. = X _— J— cee
1—-x 3 5

Problem 9. Use Maclaurin’s series to find the
expansion of (2+ x)4.

f=2+x)* fO)=2*=16
fl)=42+x) f(0)=42)°=32

[ =122+x)7  f'(0)=12(2)* =48
F(x)=2424x)"  f(0)=24(2)=48
Yx)=24 V0)=24
Substituting in equation (5) gives:
2+x)*
x2 X3 x4 .
= f0)+xf'(0)+ 51 f(0)+ 37 0+ Tl 70
X2 x3 x4
=16+ ()(32) + 5, (48) + 27 (48) + - (24)
=16+ 32x + 24x* + 8x> + x*

(This expression could have been obtained by applying
the binomial theorem.)

Problem 10. Expand e? as far as the term in x%.

fx)=e? fO)=e"=1
f=set  fO)=2e" =1

2 2 2
F@W=ged 0= =1

4 4 4
fra = et 0= 1 =

8 8 8
U= et 0= =

16 16 16

Substituting in equation (5) gives:

2
el = f(0)+xf'(0)+ %f”(o)

x3 " x4 iv
+ 37O+ O+
1y x2/1\ x3(1
=1+x) (5)4'—2! (Z)+—3! (g)

+x4 ).
41 \16

1 1 1
x4+ -+ x4t

ie. el=1 -
te. ef =1+ 8* 748" T34
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Problem 11. Develop a series for sinhx using
Maclaurin’s series.

f(x)=sinhx  f(0)=sinh0=——S —0¢

f'(x)=coshx  f/(0)=cosh0= — " —1
f”(x) =sinhx  f”(0) =sinh0 =0
S (x)=coshx f"'(0)=cosh0=1
fV(x)=sinhx f¥(0)=sinh0=0
fY(x)=coshx fY(0)=coshO=1

Substituting in equation (5) giveS'
sinhx = f(0) + xf (0) + f”(O) + f///(o)
4

+ f”(0)+ —fv(0)+

2 3 4
=0+ (x)(1) + ;—!(0)+ ’;—!(1)5+ Z—!(O)

*a
T+
e
i.e. sinhx= x+3'+ + -

(as obtained in Section 5.5, page 49)

Problem 12. Produce a power series for cos? 2x

as far as the term in x°.

From double angle formulae, cos2A =2cos> A — 1 (see
Chapter 17).

1
from which, cos?A = > (1 +cos2A)

1
and cos22x = 5 (1 +cos4x)
From Problem 1,
| w2 x4 46
COSX = E-’_Z_a-’_
4x)? | (4ot @x)°
hence cosdx=1— T + a1 el +
32 256
=1 —8x24 Syt 64
X<+ 3 X 45x +

1
Thus cos?2x = 5(1 + cos4x)

1 32 256
(1 —g2 A6
2(+ 8x+3x 45x+ )

ie. cos?2x=1—4x*+ Ex gx+
3 45

Now try the following exercise

Exercise 32 Further problems on
Maclaurin’s series

1. Determine the first four terms of the power
series for sin2x using Maclaurin’s series.

sin2x =2x — —x3 + —x°

3 15
x4+

2. Use Maclaurin’s series to produce a power

series for cosh 3x as far as the term in x©.

9 27 81
1 2 o6
[+2x+8 +8Oxi|

3. Use Maclaurin’s theorem to determine the first
three terms of the power series for In(1 +e*).

! 2+x+x2
n —_— —_—
2 8

4. Determine the power series for cos 4¢ as far as
the term in £°.

32 256 ]
1824 =% — =46
[ 3 45

3x. q
5. Expande2* in a power series as far as the term

3 9 9
g 3 3
. 1
n x [+2x+8x +16x
6. Develop, as far as the term in x*, the power

10
series for sec2x. [1 +2x2 4+ ?x4i|

7. Expand e® cos 36 as far as the term in 62 using

5
Maclaurin’s series. [1 +20 — 5921|

8. Determine the first three terms of the series for
sin? x by applying Maclaurin’s theorem.

1 2
e S
[x 3x +45x i|

9. UseMaclaurin’s series to determine the expan-
sion of (3+421)%.

[81+216f 421612+ 961 + 1614
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8.5 Numerical integration using

Maclaurin’s series

The value of many integrals cannot be determined using
the various analytical methods. In Chapter 45, the trape-
zoidal, mid-ordinate and Simpson’s rules are used to
numerically evaluate such integrals. Another method of
finding the approximate value of a definite integral is to
express the function as a power series using Maclaurin’s
series, and then integrating each algebraic term in turn.
This is demonstrated in the following worked problems.
As a reminder, the general solution of integrals of the
form [ ax"dx, where a and n are constants, is given by:

axn+1
/ax”dx: +c
n+1

Problem 13. Evaluate 09'14 2e8% 4@, correct to
3 significant figures.

A power series for e5"? is firstly obtained using Maclau-

rin’s series.

f(e) — esin@ f(O) — esinO — eO — 1

£ ©) =cosfe™? £/ (0)=cos0e¥"0 =(1)e =1

F7(0) = (cosB)cos 0 em?) + (5"?)(—sinb),
by the product rule,

=e%"% cos? 6 —sinh):
£"(0) = e%os?0 — sin0) = 1
£70) = ") [(2cosO(—sinh) — cosH)]
+ (cos%0 —sin®)(cos O e’y
=M% cosO[—25in6 — 1 + cos? O — sinf]

£7(0) =e%cos0[(0—14+1—0)] =0
Hence from equation (5):
o 62 63
e = £(0) +0£'(0) + Ef//(0)+ ;f/”(O).q_...

92

04 0.4 92
Thus/ 2¢50% qp =/ 2(1+9+—)d9
0.1 0.1 2

0.4
=/ (24260 +6%)do
0.1

[ 202 937
2 3 0.1

3
= (0.8 +(0.4)> + %)

3
- (0.2 +0.1)% + %)

=0.98133 -0.21033

= 0.771, correct to 3 significant figures.

Lsing .
Problem 14. Evaluate / Tde using
0

Maclaurin’s series, correct to 3 significant figures.

Let f(@)=sin® f0)=0
fl(@)=cosb  fl(0)=1
@)= —sin f"(0)=0

f"(O)= —cosf f"(0)=—1
V@) =sind  f¥0)=0
fY@) =cosd  fYO0)=1

Hence from equation (5):
62 3
sind = f(O) +0f'0)+ = f(0) + =5 f(0)

ot . 95
+Zf (O)+§f 0)+---

92 93
=0+0()+ SO+ (=D
o* 63
O+ 5D+
63 0
i.e sm9=9—§+§—...
Hence
Lsing
—do
o 0
0> 05 o’
19—5-’—5—%-’—...
=/ do
0 6

1 92 94 96
- -+ -7 4. )as
/0 ( 6 T120 5040 " )
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03 0 o7 !
=0 - —4 — e
18 + 600  7(5040) + .

1 1 1

18 1600 ~ 7(3040)

=0.946, correct to 3 significant figures.

Problem 15. Evaluate f00'4x In(1 4 x) dx using
Maclaurin’s theorem, correct to 3 decimal places.

From Problem 6,

2 3 44 S

X
In(1 — 4
n(l+x)=x 2+3 4+5

0.4
Hence/ xIn(1+x)dx
0

5 2435

0.4
3 45 46 T ]

(04 04T 047 (04)°
U 15 24

0.02133 —0.0032 4-0.0006827 — - - -

= 0.019, correct to 3 decimal places.

Now try the following exercise

Exercise 33  Further problems on
numerical integration using Maclaurin’s
series

1. Evaluate fo(?'; 3e8in? 49, correct to 3 decimal
places, using Maclaurin’s series. [1.784]

2. UseMaclaurin’s theorem to expand cos 26 and
hence evaluate, correct to 2 decimal places,

1 cos26
/ do. [0.88]
0

1
03

3. Determine the value of fol V0 cosh do, cor-
rect to 2 significant figures, using Maclaurin’s
series. [0.53]

4. Use Maclaurin’s theorem to expand
J/xIn(x+1) as a power series. Hence
evaluate, correct to 3 decimal places,

93 /% In(x+ 1) dx. [0.061]

8.6 Limiting values

It is sometimes necessary to find limits of the form

lim I%], where f(a)=0 and g(a)=0.

x—a | g(x
For example,

i |x2+3x—4]_ 1+3-4 0

2—T7x+6| 1-74+46 0

m
x—1

and 8 is generally referred to as indeterminate.
For certain limits a knowledge of series can sometimes
help.

For example,

. tanx — x
lim I—]

x—0 x3

= lim
x—0 pY

3
) g_x +... ) 1 1
=lim{2Z——}=1lim{=-}=—
3 3

x—0 pY

Similarly,

. I sinh x ]
lim

x—0 pY

X

X+ =+t
lim 31 5!

x—0 pY

from Problem 11

x—=0 3t 5!
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However, a knowledge of series does not help with

. x243x—4
examples such as hm1
X—>

x2—Tx+6

L’Hopital’s rule will enable us to determine such
limits when the differential coefficients of the numerator
and denominator can be found.

L’Hopital’s rule states:

nmlﬂﬁi=1m4f%”]
] gy | T 52a| @)

provided g’(a)#0

/
It can happen that liml f/ (x)] is still %; if so, the

x—a g(x
numerator and denominator are differentiated again

(and again) until a non-zero value is obtained for the
denominator.

The following worked problems demonstrate how
L’Hopital’srule is used. Refer to Chapter 27 for methods
of differentiation.

Problem 16. Determine lim
x—1

x24+3x—4
x2—T7x+6

The first step is to substitute x =1 into both numer-
ator and denominator. In this case we obtain % It is
only when we obtain such a result that we then use
L’Hopital’s rule. Hence applying L’Hopital’s rule,

) |2x+3]
lim
x—>1|2x—=7

y x24+3x—4 B
x2—T7x+6]|

x—1

i.e. both numerator and
denominator have
been differentiated

:—:—1

-5

. . sinx — x
Problem 17. Determine lim I—Z]
x—0 X

Substituting x =0 gives

lim
x—0

sinx — x _ sinO—O_ 0
0 0

2

Applying L’Hopital’s rule gives

. sinx —x . cosx — 1
lim{———{=1lim{—
x—0 x2 x—0 2x

Substituting x =0 gives
cosO—1 1-1 0 .
———— = —— = — again
0 0 0
Applying L' Hopital’s rule again gives

. cosx — 1 . —sinx
lim{ — = lim =0
x—0 2x x—0 2

. . X —sinx
Problem 18. Determine lim I—]

x—0 | x —tanx

Substituting x =0 gives

Ix—sinx]_ 0—sin0 0

T 0—tan0 0

lim
x—0 | x —tanx

Applying L' Hopital’s rule gives

. X —sinx . 1 —cosx
lim{—=lim{ ——
x—0 | x —tanx x—0| 1 —secZx
Substituting x =0 gives
. 1 —cosx 1 —cos0O 1-1 0 .
lim = = = — again
x—0|1—sec?x 1—sec20 1—-1 O

Applying L' Hopital’s rule gives

. 1 —cosx . sinx
lim{——} = lim
x—0 [ 1 —sec?x x—0 | (=2secx)(ecx tanx)

. sinx
= lim -
x—0 | —2sec”xtanx

Substituting x =0 gives

sin(0 .
———— = — again
“2sec20tan0 0 ©
Applying L' Hopital’s rule gives

. sinx
lim — s
x—0 | —2sec”xtanx

COSXx

(-2 sec? X) (5602 X)
+ (tanx)(—4 sec? x tan X)

x—0

using the product rule

Substituting x =0 gives

cos0 1
“2sect0—4sec20tan20  —2-0

1

-2
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. X —sinx 1
Hence Iim { —— t = ——
x—0 | x —tanx

Now try the following exercise

Exercise 34  Further problems on limiting

values

Determine the following limiting values

. X3 —2x+1
1. lm{——7——
x—1 2X3+3X—5
. sinx
2. lim —]
x—0 X
In(1
3. lim ﬂ]
x—0 X

(1]

(1]

. x2 —sin3x
lim [—1]
x—0 | 3x+x2
. sinf — @ cos@ (17
lim, —— -
6—0 93 _3_
. I Int ] (17
lim 5 —
=1 tc—1 | 2 ]
. sinhx — sinx BE
lim{ ———— -
x—0 x3 _3_
. sinf — 1
lim { —— [1]
9—Z% | Insinf

. Isect—l] |:1:|
lim - —
t—0| tsint 2



Chapter 9

Solving equations by
iterative methods

9.1 Introduction to iterative methods

Many equations can only be solved graphically or by
methods of successive approximations to the roots,
called iterative methods. Three methods of successive
approximations are (i) bisection method, introduced in
Section 9.2, (ii) an algebraic method, introduction in
Section 9.3, and (iii) by using the Newton-Raphson
formula, given in Section 9.4.

Each successive approximation method relies on a
reasonably good first estimate of the value of a root
being made. One way of determining this is to sketch a
graph of the function, say y= f(x), and determine the
approximate values of roots from the points where the
graph cuts the x-axis. Another way is by using a func-
tional notation method. This method uses the property
that the value of the graph of f(x) =0 changes sign for
values of x just before and just after the value of a root.

(&)

,,,,,,,,,,,,,,),,,,,,,,,,,,8::::: IV 5

N

Figure 9.1

For example, one root of the equation x> —x —6=0 is
x=3. Using functional notation:

f(x):xz—x—6
f@Q)=2>-2-6=—4
f@4)=4>—-4—-6=146

It can be seen from these results that the value of f(x)
changes from —4 at f(2) to +6 at f(4), indicating that
a root lies between 2 and 4. This is shown more clearly
in Fig. 9.1.

9.2 The bisection method

As shown above, by using functional notation it is pos-
sible to determine the vicinity of a root of an equation by
the occurrence of a change of sign, i.e. if x; and x; are
such that f(x1) and f(x2) have opposite signs, there is
at least one root of the equation f(x)=0 in the interval
between x| and x (provided f(x) is a continuous func-

tion). In the method of bisection the mid-point of the
X1+ x2

interval, i.e. x3= , is taken, and from the sign

of f(x3) it can be deduced whether a root lies in the
half interval to the left or right of x3. Whichever half
interval is indicated, its mid-point is then taken and the
procedure repeated. The method often requires many
iterations and is therefore slow, but never fails to even-
tually produce the root. The procedure stops when two
successive values of x are equal—to the required degree
of accuracy.

The method of bisection is demonstrated in Prob-
lems 1 to 3 following.
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Problem 1. Use the method of bisection to find
the positive root of the equation 5x%+11x — 17=0
correct to 3 significant figures.

Let f(x)=5x>+11x—17
then, using functional notation:
fO)=-17
F=51)2+11(1)—17=-1
f2)=52)2+11(2)— 17 =+25
Since there is a change of sign from negative

to positive there must be a root of the equation between
x=1and x =2. This is shown graphically in Fig. 9.2.

f(x)
\ 20
f(x)=5x2+11x—17
10
=4 — 31— 2 — 15974410 D X

I} \1\0:

17

—20
Figure 9.2

The method of bisection suggests that the root is at

1+2
L =1.5, i.e. the interval between 1 and 2 has been

bisected.

Hence

f(1.5)=5(1.5%+11(1.5) — 17

= +10.75

Since f(1) is negative, f(1.5) is positive, and f(2) is
also positive, a root of the equation must lie between
x=1 and x=1.5, since a sign change has occurred
between f (1) and f(1.5).

i.e. 1.25 as the next

Bisecting this interval gives
root.

Hence
£(1.25)=5(1.25)> + 11x — 17
= +4.5625

Since f(1) is negative and f(1.25) is positive, a root
lies between x =1 and x =1.25.
+1.25

Bisecting this interval gives ie. 1.125

Hence
f(1.125) = 5(1.125)2 + 11(1.125)—17
= +1.703125

Since f(1) is negative and f(1.125) is positive, a root
lies between x =1 and x =1.125.

1+1.125

Bisecting this interval gives i.e. 1.0625.

Hence

£(1.0625) = 5(1.0625)% + 11(1.0625) — 17

= +0.33203125

Since f (1) is negative and f(1.0625) is positive, a root
lies between x =1 and x =1.0625.

1+1.0625 |

Bisecting this interval gives re. 1.03125.

Hence
f(1.03125) = 5(1.03125)2 + 11(1.03125) — 17
= —0.338867...

Since f(1.03125) is negative and f(1.0625) is positive,
aroot lies between x =1.03125 and x =1.0625.

Bisecting this interval gives

1.0312541.0625 |
— > i.e. 1.046875.

Hence
f(1.046875) = 5(1.046875)2 + 11(1.046875) — 17
= —0.0046386. ..

Since f(1.046875) is negative and f(1.0625) is posi-
tive, a root lies between x =1.046875 and x =1.0625.

Bisecting this interval gives

1.0468752+ 1.0625 e 10546875,

The last three values obtained for the root are 1.03125,
1.046875 and 1.0546875. The last two values are both
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1.05, correct to 3 significant figure. We therefore stop
the iterations here.

Thus, correct to 3 significant figures, the positive root
of 5x* 4+ 11x — 17 = 0 is 1.05

Problem 2. Use the bisection method to deter-
mine the positive root of the equation x + 3 =e*,
correct to 3 decimal places.

Let f(x)=x+3—¢e"
then, using functional notation:
f0)=0+3—-e"=+2
f)=1+3—el =+1.2817...
f2)=2+3—e*=-2.3890...
Since f (1) is positive and f(2) is negative, a root lies
between x =1 and x=2. Asketchof f (x) =x +3 —¢*,
i.e. x +3=e" is shown in Fig. 9.3.

U f(x)=x+3/
Il
T
T
4
(x)=ex
2
1
H_"‘ o 0 1 2-x

Figure 9.3

Bisecting the interval between x =1 and x =2 gives

142
+ ie. 1.5.

Hence

f15)=15+3—¢"
=+40.01831...
Since f(1.5) is positiveand f(2) is negative, a root lies

between x =1.5 and x =2.

2,
i.e. 1.75.

Bisecting this interval gives
Hence
fA.75)=1.75+3—¢'7
= —1.00460. ..

Since f(1.75) is negative and f(1.5) is positive, a root
lies between x =1.75 and x =1.5.

1.75+1.5
Bisecting this interval gives + ie. 1.625.

Hence

f(1.625) = 1.625+3 —e! %
=—0.45341...

Since f(1.625) is negative and f(1.5) is positive, a root
lies between x =1.625 and x =1.5.

1.625+1.5 .

Bisecting this interval gives ie. 1.5625.

Hence

F(1.5625) = 1.5625 + 3 — e!-325
= —0.20823...

Since f(1.5625) is negative and f(1.5) is positive, a
root lies between x =1.5625 and x =1.5.

Bisecting this interval gives

1.5625 + 1.
$ ie. 1.53125.

Hence

f(1.53125) = 1.53125 +3 —!331%
= —0.09270...

Since f(1.53125) is negative and f(1.5) is positive, a
root lies between x =1.53125 and x =1.5.

Bisecting this interval gives

1.53125+1.
LSS s

Hence

f(1.515625) = 1.515625 + 3 — 171562
=—0.03664. ..

Since f(1.515625) is negative and f(1.5) is positive, a
root lies between x =1.515625 and x=1.5.

Bisecting this interval gives

1.515625 + 1.
% ie. 1.5078125.

Hence

£(1.5078125) = 1.5078125 + 3 — ¢! 2078125
= —0.009026. ..
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Since f(1.5078125) is negative and f(1.5) is positive,
aroot lies between x =1.5078125 and x =1.5.

Bisecting this interval gives

1.5078125 + 1.
w i.e. 1.50390625.

Hence

£(1.50390625) = 1.50390625 + 3 — ¢! 20390625
= +0.004676. ..

Since f(1.50390625) is positive and f(1.5078125)
is negative, a root lies between x =1.50390625 and
x=1.5078125.

Bisecting this interval gives

1. 25 +1.507812
203906 52+ 2078 5i.e.1.505859375.

Hence

£(1.505859375) = 1.505859375 + 3 — ¢! 903839375
= —0.0021666. ..
Since f(1.50589375) is negative and f(1.50390625)

is positive, a root lies between x=1.50589375 and
x=1.50390625.

Bisecting this interval gives

1. 75+ 1. 2
2058593 52+ 20390623 ; .. 1.504882813.

Hence

£(1.504882813) = 1.504882813 + 3 — ¢! 204882813
= 40.001256...
Since f(1.504882813) is positive and
f(1.505859375) is negative,

a root lies between x=1.504882813 and x=
1.505859375.

Bisecting this interval gives

1.504882813 + 1.50589375
2+ ? i.e. 1.505388282.

The last two values of x are 1.504882813 and
1.505388282, i.e. both are equal to 1.505, correct to
3 decimal places.

Hence the root of x +3=e%is x= 1.505, correct to 3
decimal places.

The above is a lengthy procedure and it is probably
easier to present the data in a table as shown in the
table.

0 +2

1 +1.2817...

2 —2.3890...
1 2 1.5 +0.0183...
1.5 2 1.75 —1.0046...
1.5 1.75 1.625 —0.4534. ..
1.5 1.625 1.5625 —0.2082...
1.5 1.5625 1.53125 —0.0927...
1.5 1.53125 1.515625 —0.0366...
1.5 1.515625 1.5078125 —0.0090...
1.5 1.5078125 1.50390625  +0.0046...
1.50390625 1.5078125 1.505859375 —0.0021...
1.50390625 1.505859375 1.504882813 +0.0012...

1.504882813 1.505859375 1.505388282

Problem 3. Solve, correct to 2 decimal places,
the equation 21nx 4 x =2 using the method of
bisection.
Let f(x)=2lnx+x-2

f(0.1) =21In(0.1) +0.1 =2 = —6.5051...

(Note that In0 is infinite that is why
x =0 was not chosen)
f(2)=2In2+2—-2=-+1.3862...

A change of sign indicates a root lies between x =1 and
x=2.

Since 2Inx +x =2 then 2lnx =—x +2; sketches of
2Inx and —x + 2 are shown in Fig. 9.4.
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‘ 1. Find the positive root of the equation
2refx)=—x+2 x> +3x—5=0, correct to 3 significant
figures, using the method of bisection. [1.19]

2. Using the bisection method solve e* —x =2,
correct to 4 significant figures. [1.146]

T - 7 : X 3. Determine the positive root of x>=4cosx,
- correct to 2 decimal places using the method
of bisection. [1.20]

—{ 4. Solve x —2 —1Inx =0 for the root near to 3,
: correct to 3 decimal places using the bisection
method. [3.146]

Figure 9.4

. . 5. Solve, correct to 4 significant figures,
As shown in Problem 2, a table of values is produced x —2sin x =0 using the bisection method.

to reduce space. [1.849]

0.1 —6.6051...
1 1 9.3 Analgebraic method of successive
) 11.3862... approximations
1 2 1.5 +0.3109... This method can be used to solve equations of the form:
1 1.5 1.25 —0.3037... d+bx+cxltdxd4 =0
1.25 1.5 1.375 H0.0119.. where a, b, ¢, d, ... are constants.
1.25 1.375 1.3125 —0.1436... Procedure:
1.3125 1.375 1.34375 —0.0653...

First approximation

1.34375 1.375 1.359375 —0.0265.... . . . .
(a) Using a graphical or the functional notation

1.359375  1.375 1.3671875  —0.0073... method (see Section 9.1) determine an approxi-
1.3671875 1.375 1.37109375 +0.0023... mate value of the root required, say xi.
Second approximation
The last two values of x3 are both equal to 1.37 when
expressed to 2 decimal places. We therefore stop the (b) Let the true value of the root be (x1 +61).

1terations. (¢c) Determine x, the approximate value of (xj+381)

by determining the value of f(x;-+4;)=0, but

Hence, the solution of 2Inx+ x=2 is x=1.37, cor- A o
neglecting terms containing products of §;.

rect to 2 decimal places.
Third approximation

(d) Let the true value of the root be (x +62).

Now try the following exercise . .
(e) Determine x3, the approximate value of (x2 +82)

by determining the value of f(x2-+82)=0, but
Exercise35 Further problems on the neglecting terms containing products of 3.

SECE BRI (f) Thefourth and higher approximations are obtained

Use the method of bisection to solve the following in a similar way.

AT D (5 AERriensy (R, Using the techniques given in paragraphs (b) to (f),

it is possible to continue getting values nearer and
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nearer to the required root. The procedure is repeated
until the value of the required root does not change on
two consecutive approximations, when expressed to the
required degree of accuracy.

Problem 4. Use an algebraic method of
successive approximations to determine the value
of the negative root of the quadratic equation:
4x% —6x —7=0 correct to 3 significant figures.
Check the value of the root by using the quadratic
formula.

A first estimate of the values of the roots is made by
using the functional notation method

fx)=4x>—6x—7
£(0) =4(0)> —6(0)—7=—7
f(=D=4(-1)>-6(-1)-7=3

These results show that the negative root lies between 0
and —1, since the value of f(x) changes sign between
f(0)and f(—1) (see Section 9.1). The procedure given
above for the root lying between 0 and —1 is followed.

First approximation

(a) Let a first approximation be such that it divides
the interval O to —1 in the ratio of —7 to 3, i.e. let
x1=-—0.7

Second approximation

(b) Let the true value of the root, x, be (x; +61).

(¢) Let f(x1+461) =0, then, since x; = —0.7,

4(—=0.7+681)> —6(—0.7+81) —7=0
Hence, 4[(—0.7)% + (2)(—0.7)(81) + 8]
—(6)(—=0.7) =68, —7=0

Neglecting terms containing products of §;
gives:

1.96-5.661 +4.2—-661—7~0
re. =568 —-661=—196—-42+7

. —1.96-42+4+7
1.€. Y ——
—5.6—-6
084
T 116
~ —0.0724

Thus, x2, a second approximation to the root is
[—0.74(—0.0724)],

i.e. xo=—0.7724, correct to 4 significant figures.
(Since the question asked for 3 significant figure
accuracy, it is usual to work to one figure greater
than this).

The procedure given in (b) and (c¢) is now repeated
for xo =—0.7724.

Third approximation
(d) Let the true value of the root, x3, be (x +62).
(e) Let f(x2482)=0, then, since xo =—0.7724,

4(—0.7724 +82)> — 6(—0.7724+82) — 7 =0
4[(=0.7724)* + (2)(—0.7724)(82) + 831
— (6)(—0.7724) — 66, —7=0
Neglecting terms containing products of 8, gives:

2.3864 —6.17926,+4.6344 — 65, — 7T~ 0

23864 — 4.6344 +7

Le 2T T 1792 — 6
—0.0208
T 121792
~ +0.001708

Thus x3, the third approximation to the root is
(—0.7724 4+-0.001708),

i.e. x3= —0.7707, correct to 4 significant figures
(or —0.771 correct to 3 significant figures).

Fourth approximation

(f) The procedure given for the second and third
approximations is now repeated for

x3 = —0.7707
Let the true value of the root, x4, be (x3 +83).
Let f(x3 4 §3) =0, then since x3=—0.7707,
4(—0.7707 + 83)* — 6(—0.7707
+83)—7=0
4[(—0.7707)% + (2)(—0.7707) 83 + 831
—6(—0.7707) — 683 —7=0
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Neglecting terms containing products of §3 gives:

2.3759 — 6.1656 63 +4.6242 — 653 — 7~ 0

—2.3759 —4.6242 47

l.e. 83~
1693 —6.1656 — 6
~—0.0001
12,156
~ +0.00000822

Thus, x4, the fourth approximation to the root is
(—0.7707 4+ 0.00000822), i.e. x4 = —0.7707, cor-
rect to 4 significant figures, and —0.771, correct to
3 significant figures.

Since the values of the roots are the same on
two consecutive approximations, when stated to
the required degree of accuracy, then the negative
root of 4x? —6x —7=0 is —0.771, correct to 3
significant figures.

[Checking, using the quadratic formula:

Gl VI(=6)> = (=]
@@

= —0.771 and 2.27,

_ 6x12.166
8
correct to 3 significant figures]

[Note on accuracy and errors. Depending on the
accuracy of evaluating the f(x -+ 8) terms, one or two
iterations (i.e. successive approximations) might be
saved. However, it is not usual to work to more than
about 4 significant figures accuracy in this type of cal-
culation. If a small error is made in calculations, the only
likely effect is to increase the number of iterations.]

Problem 5. Determine the value of the
smallest positive root of the equation

3x3 — 10x2 4 4x +7 =0, correct to 3 significant
figures, using an algebraic method of successive
approximations.

The functional notation method is used to find the value
of the first approximation.

Fx)=3x3—10x% +4x +7
£(0)=3(0)>—1000)> +4(0)+7 =7

F(1)=3(1)°—10(1)*> +4(1)+7=4
f2)=32)°-102)* +42)+7=—1
Following the above procedure:

First approximation

(a) Let the first approximation be such that it divides
the interval 1 to 2 in the ratio of 4 to —1, i.e. let x
be 1.8.

Second approximation
(b) Let the true value of the root, x>, be (x; +61).
(c) Let f(x;+61) =0, then since x; = 1.8,
3(1.84+61)° —10(1.8 +81)>
+4(1.8+681)+7=0

Neglecting terms containing products of §; and
using the binomial series gives:

3[1.8% +3(1.8)28;1 — 10[1.8% + (2)(1.8) 1]
+4(1.848)+7~0

3(5.83249.72061) —32.4 — 3646
+7244614+7~0

17.496 4+29.1661 —32.4 — 3646
+7244614+7~0

_ —17.496+324-72 -7

81
29.16 —36+4
0.704
~—— =~ —0.247
2.84 0 ?

Thus x2 &~ 1.8 —0.2479=1.5521
Third approximation
(d) Let the true value of the root, x3, be (x2+682).
(e) Let f(x2+62) =0, then since x, =1.5521,
3(1.5521 4 82)° — 10(1.5521 + 8,)*
+ 4(1.5521+68,)+7=0

Neglecting terms containing products of §, gives:

11.217421.681 82 —24.090 — 31.042 5>

+6.2084+46,+7~0
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_ —11.217+424.090 — 6.2084 — 7

2= 21.681 —31.042+4
—0.3354
5361
~ 0.06256

Thus x3 & 1.5521 +0.06256 ~ 1.6147

(f) Values of x4 and x5 are found in a similar way.

f(x3+83) =3(1.6147 + 83)° — 10(1.6147
+83)> +4(1.6147+83)+7=0

giving §3 ~ 0.003175 and x4 ~ 1.618, i.e. 1.62
correct to 3 significant figures.

f(xa+684)=3(1.618 +684)° —10(1.618

+84)° +4(1.618484)+7=0

giving 84 ~ 0.0000417, and x5 &~ 1.62, correct to
3 significant figures.

Since x4 and x5 are the same when expressed to
the required degree of accuracy, then the required
root is 1.62, correct to 3 significant figures.

Now try the following exercise

Exercise 36  Further problems on solving
equations by an algebraic method of
successive approximations

Use an algebraic method of successive approx-
imation to solve the following equations to the
accuracy stated.

1. 3x245x—17=0, correct to 3 significant
figures. [—3.36, 1.69]

2. x?—2x+414=0, correct to 3 decimal places.
[—2.686]

3. x*—3x34+7x—-5.5=0, correct to 3 signifi-
cant figures. [—1.53, 1.68]

4. x*+12x3—13=0, correct to 4 significant
figures. [—12.01, 1.000]

9.4 The Newton-Raphson method

The Newton-Raphson formula, often just referred to as
Newton’s method, may be stated as follows:

If r1 is the approximate value of a real root of the
equation f (x) = 0, then a closer approximation to the
root ry is given by:

f(r)
fir)

rp=r|—

The advantages of Newton’s method over the alge-
braic method of successive approximations is that it
can be used for any type of mathematical equation
(i.e. ones containing trigonometric, exponential, loga-
rithmic, hyperbolic and algebraic functions), and it is
usually easier to apply than the algebraic method.

Problem 6. Use Newton’s method to determine
the positive root of the quadratic equation
5x2411x — 17 =0, correct to 3 significant figures.
Check the value of the root by using the quadratic
formula.

The functional notation method is used to determine the
first approximation to the root.

f)=5x>+11x—17
£(0)=50)>+11(0)— 17 = —17
F=5124+111)—17=-1
) =52)724+112)—17=25

This shows that the value of the root is close to x =1.

Let the first approximation to the root, ry, be 1.

Newton’s formula states that a closer approximation,

fr)

f(x)=5x2 +f1/gcl)— 17,

rn =r —

thus, f(r)=501)%+11(r1)—17
=512 +11(H)—17=—1
f'(x) is the differential coefficient of f(x),
ie. f/(x) =10x+11.
Thus f/(r1)=100r;) + 11
=10(1)+11 =21
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By Newton’s formula, a better approximation to the
root is:

—1
rn=1- 51 = 1 —(—0.048) = 1.05,

correct to 3 significant figures.

A still better approximation to the root, r3, is given by:
f(r2)
1 (r2)

[5(1.05)2 + 11(1.05) — 17]
[10(1.05) + 11]

n=r —

=1.05—-

=1.05—-0.003 = 1.047,

i.e. 1.05, correct to 3 significant figures.

Since the values of r» and r3 are the same when
expressed to the required degree of accuracy, the
required root is 1.05, correct to 3 significant figures.
Checking, using the quadratic equation formula,

1= J/[12T =43 (—17)]

e 2)6)
—11+21.47

- HEAe

The positive root is 1.047, i.e. 1.05, correct to 3 signi-
ficant figures (This root was determined in Problem 1
using the bisection method; Newton’s method is clearly
quicker).

Problem 7. Taking the first approximation as 2,
determine the root of the equation

x2 —3sinx +2In(x 4+ 1) =3.5, correct to 3
significant figures, by using Newton’s method.

Newton’s formula states that r, = r; — , where

S
rq is a first approximation to the root and r; is a better
approximation to the root.

Since f(x) =x? —3sinx +2In x+1)—35

f@r1) = f2)=2%—-3sin2+2In3 —3.5,

where sin2 means the sine of 2 radians

=4-2.727942.1972-3.5
= —0.0307

2
'(x) =2x -3 —_—
f(x) X cosx+x+1

F1r) = f/(2) =2(2) — 3cos 2+ %

=4+1.2484 4-0.6667

=59151
Hence, rmn =r — AGY
S
_ —0.0307
5.9151

=2.005 or 2.01, correct to
3 significant figures.

A still better approximation to the root, 73, is given by:

=y f(r2)
f'(r2)
2005 [(2.005)% —35in2.005 4 21n3.005 — 3.5]
2(2.005) —3c0s2.005 + ——
[ (2.005) =3 cos +2.005+1}
(—=0.00104)
005 50376 005 4 0.000175

i.e. r3 = 2.01, correct to 3 significant figures.

Since the values of r, and r3 are the same when
expressed to the required degree of accuracy, then the
required root is 2.01, correct to 3 significant figures.

Problem 8. Use Newton’s method to find the
positive root of:

(x +4)3 — !9 +500s§ =9,

correct to 3 significant figures.

The functional notational method is used to determine
the approximate value of the root.

) = (x +4)% —el92 +5cos§ —9

£0)=(0+4)> —e” +5c0s0—9 =59
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1
f(1)=53—e1-92+5cos§—9~ 114
f@ =6

fB)=7"—e>"0+5c081 -9~ 19

2
—e3-84+5cosg —9~ 164

4
f(4)=8%—¢"0 +5cos = =9~ —1660

From these results, let a first approximation to the root
be ry = 3.

Newton’s formula states that a better approximation to
the root,

ry =1 — f @)
S
for=fR) =7 -7 +5c081—9
=19.35

5
F1(x) =3(x +4)> — 1.92¢19% — 3 sin =

5
flr) = f'3)=3(7)> —1.928>76 — 3 sin 1
= —463.7

19.35

Thus, m=3——
—463.7

=3+0.042

=3.042 =3.04,
correct to 3 significant figures.

042
Similarly, r; = 3.042 — 5042
7(3.042)

114
_ 304 (21190
(—513.1)

=3.042 —-0.0022 = 3.0398 = 3.04,
correct to 3 significant figures.

Since r and r3 are the same when expressed to the
required degree of accuracy, then the required root is
3.04, correct to 3 significant figures.

Now try the following exercise

Exercise 37
method

In Problems 1 to 7, use Newton’s method to solve
the equations given to the accuracy stated.

Further problems on Newton’s

10.

1.

x2—2x—13=0, correct to 3 decimal
places. [—2.742,4.742]

3x3 — 10x = 14, correct to 4 significant
figures. [2.313]

x*—3x3+7x=12, correct to 3 decimal
places. [—1.721, 2.648]

3x* —4x3+7x —12=0, correct to 3 deci-
mal places. [—1.386, 1.491]

3Inx +4x =35, correct to 3 decimal places.
[1.147]

x3=5cos2x, correct to 3 significant figures.
[—1.693, —0.846, 0.744]

0
3006_29+§=6, correct to 3 significant
figures. [2.05]

Solve the equations in Problems 1 to 5,
Exercise 35, page 81 and Problems 1 to
4, Exercise 36, page 84 using Newton’s
method.

A Fourier analysis of the instantaneous value
of a waveform can be represented by:

(t+n)+ i t+1 in 3¢
= — sin — S1n
Y 4 8

Use Newton’s method to determine the value
of t near to 0.04, correct to 4 decimal places,
when the amplitude, y, is 0.880.

[0.0399]

A damped oscillation of a system is given by
the equation:

y=—7.4¢%sin3t.

Determine the value of ¢ near to 4.2, correct
to 3 significant figures, when the magnitude
y of the oscillation is zero. [4.19]

The critical speeds of oscillation, A, of a
loaded beam are given by the equation:

A3 —3.25002+ 1 —0.063=0

Determine the value of A which is approx-
imately equal to 3.0 by Newton’s method,
correct to 4 decimal places. [2.9143]



Chapter 10

Binary, octal and

10.1 Introduction

All data in modern computers is stored as series of bits,
abitbeing a binary digit, and can have one of two values,
the numbers 0 and 1. The most basic form of represent-
ing computer data is to represent a piece of data as a
string of 1’s and 0’s, one for each bit. This is called a
binary or base-2 number.

Because binary notation requires so many bits to rep-
resent relatively small numbers, two further compact
notations are often used, called octal and hexadeci-
mal. Computer programmers who design sequences of
number codes instructing a computer what to do would
have a very difficult task if they were forced to work
with nothing but long strings of 1’s and 0’s, the ‘native
language’ of any digital circuit.

Octal notation represents data as base-8 numbers with
each digit in an octal number representing three bits.
Similarly, hexadecimal notation uses base-16 numbers,
representing four bits with each digit. Octal numbers
use only the digits 0-7, while hexadecimal numbers
use all ten base-10 digits (0-9) and the letters A-F
(representing the numbers 10-15).

This chapter explains how to convert between the
decimal, binary, octal and hexadecimal systems.

10.2 Binary numbers

The system of numbers in everyday use is the denary
or decimal system of numbers, using the digits O to 9.
It has ten different digits (0, 1, 2, 3, 4,5, 6, 7, 8 and 9)
and is said to have a radix or base of 10.

hexadecimal

The binary system of numbers has a radix of 2 and
uses only the digits 0 and 1.

(a) Conversion of binary to decimal
The decimal number 234.5 is equivalent to
2x10°4+3x 10" +4 x 10°+5 x 107!

i.e. is the sum of terms comprising: (a digit) multiplied

by (the base raised to some power).
In the binary system of numbers, the base is 2, so

1101.1 is equivalent to:
Ix22+1x2240x2"+1x20+1x27!

Thus the decimal number equivalent to the binary
number 1101.1 is 8+4+0+1+%, that is 13.5 i.e.
1101.1, =13.51, the suffixes 2 and 10 denoting binary
and decimal systems of numbers respectively.

Problem 1. Convert 11011, to a decimal number.

From above: 110115 =1 x2%*+1x2340 x 22
+1x2'+1x2°
=16+8+0+2+1
=270

Problem 2. Convert 0.1011, to a decimal
fraction.

0.1011, =1x2'+0x2 2 +1x2 3 +1x274
1

1 1 1
=1XE+OX?+1X?+1X?
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1 1 1

=275 16
—=0.540.125 +0.0625
=0

687510

Problem 3. Convert 101.0101, to a decimal
number.

1010101, =1 x22 +0x2' +1x 20 +0x 27!
+1x27240x2341x274
=440+ 1+0+0.25+0+0.0625

= 53125y

Now try the following exercise

Exercise 38 Further problems on
conversion of binary to decimal numbers

In Problems 1 to 5, convert the binary numbers
given to decimal numbers.
1. (a) 110(b) 1011 (c) 1110 (d) 1001
[(a) 610 (b) 1110 (c) 1410 (d) 910l
2. (a) 10101 (b) 11001 (c) 101101 (d) 110011
[(a) 2110 (b) 2510 (¢) 4510 (d) S110]
3. (a) 101010 (b) 111000  (c) 1000001
(d) 10111000
[(@) 4210 (b) 5610 (c) 6510 (d) 18410]
4. (a) 0.1101 (b) 0.11001 (c) 0.00111
(d) 0.01011

(a) 0.812510
(c) 0.2187510

(b) 0.781251¢ |
(d) 0.343751

5. (a) 11010.11 (b) 10111.011 (c) 110101.0111
(d) 11010101.10111

(a) 26.7510 (b) 23.37510
(c) 53.437510 (d) 213.718751¢

(b) Conversion of decimal to binary

An integer decimal number can be converted to a cor-
responding binary number by repeatedly dividing by 2
and noting the remainder at each stage, as shown below
for 391¢.

2)39  Remainder
2)19
2)9
2)4
2)2
2)1

—_ 0 O = = =

—

1 00111

X 7
(most significant bit) (least significant bit)

The result is obtained by writing the top digit of the
remainder as the least significant bit, (a bit is a binary
digit and the least significant bit is the one on the right).
The bottom bit of the remainder is the most significant
bit, i.e. the bit on the left.

Thus 3939 =100111;,

The fractional part of adecimal number can be converted
to a binary number by repeatedly multiplying by 2, as
shown below for the fraction 0.625

0.625 X 2 =

(most significant bit) .1 0 1 (least significant bit)

For fractions, the most significant bit of the result is the
top bit obtained from the integer part of multiplication
by 2. The least significant bit of the result is the bottom
bit obtained from the integer part of multiplication by 2.

Thus 0.62519 = 0.101;
Problem 4. Convert 47 to a binary number.

From above, repeatedly dividing by 2 and noting the
remainder gives:

2)47  Remainder

2)23 1
2)11 1
2) 5 1
2) 2 1

2) 10
0 1 j
v v

Thus 4719=101111,
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Problem 5. Convert 0.406251¢ to a binary
number.

From above, repeatedly multiplying by 2 gives:

0.40625 X2 =

ie. 0.4062519=0.01101,

Problem 6. Convert 58.31251¢ to a binary
number.

The integer part is repeatedly divided by 2, giving:

2)58  Remainder
2)29
2)14
2) 7
2)3

2) 1
0

—_—— = O = O

=RRRAN

1 110 10

The fractional part is repeatedly multiplied by 2 giving:

03125 X2 = 0.625

0.625 X2= 1.25

025 X2= 0.5

0.5 X2 = ¢— 1.0
O 1 01

Thus 58.312519=111010.0101,

Now try the following exercise

Exercise 39 Further problems on
conversion of decimal to binary numbers

In Problems 1 to 5, convert the decimal numbers
given to binary numbers.

1. (a)5(b)15(c) 19 (d)29
@@ 101,  (b) 1111, |

|:(c) 10011, (d) 11101,

2. (a)31(b)42(c)57(d) 63
(a) 11111, (b) 101010, ]

|:(c) 111001, (d) 1111115 |

3. (a) 47 (b) 60 (c) 73 (d) 84
() 101111, (b) 111100, |
(¢) 1001001, (d) 1010100; |

4. (a)0.25 (b) 0.21875 (c) 0.28125
(d) 0.59375

(a) 0.01 (b) 0.00111,
(c) 0.010012 (d) 0.10011,

5. (a) 47.40625 (b) 30.8125 (c) 53.90625
(d) 61.65625

(a) 101111.01101,
(b) 11110.1101,

(c) 110101.11101,
(d) 111101.10101,

(c¢) Binary addition

Binary addition of two/three bits is achieved according

to the following rules:

sum carry sum carry
0+0=0 0 O0+0+0=0 0
0+1=1 0 O0+0+1=1 0
I+0=1 0 O0+1+0=1 0
I+1=0 1 O0+14+1=0 1
1+40+0=1 O
1+0+1=0 1
I1+1+0=0 1
I+1+1=1 1

These rules are demonstrated in the following worked

problems.

Problem 7. Perform the binary addition:
1001 + 10110
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Problem 8. Perform the binary addition:
11111+ 10101

11111

+10101

sum 110100
carry 11111

Problem 9. Perform the binary addition:
1101001 + 1110101

1101001

41110101

sum 11011110
carry 11 1

Problem 10. Perform the binary addition:
1011101 + 1100001 + 110101

1011101

1100001

+ 110101

sum 11110011
carry 11111 1

Now try the following exercise

Exercise 40 Further problems on binary

addition
Perform the following binary additions:

1.10+ 11

2.101 4 110 [1011]
3.1101 + 111 [10100]
4.1111 + 11101 [101100]
5.110111 + 10001 [1001000]
6. 10000101 + 10000101 [100001010]
7.11101100 + 111001011 [1010110111]
8.110011010 + 11100011 [1001111101]
9.10110 + 1011 + 11011 [111100]
10. 111 + 10101 + 11011 [110111]
11. 1101 + 1001 + 11101 [110011]

12.100011 + 11101 + 101110 [1101110]

10.3 Octal numbers

For decimal integers containing several digits, repeat-
edly dividing by 2 can be a lengthy process. In this case,
it is usually easier to convert a decimal number to a
binary number via the octal system of numbers. This
system has a radix of 8, using the digits 0, 1, 2, 3, 4,
5, 6 and 7. The decimal number equivalent to the octal
number 43173 is:

4x83+3x82+1x81+7x80

ie. 4x51243x64+1x84+7x1or225519

An integer decimal number can be converted to a cor-
responding octal number by repeatedly dividing by 8
and noting the remainder at each stage, as shown below
for 493 .

8)493  Remainder

8) 61 5
8) 7 5
0 7—l

7 5 5

Thus 49319=755g

The fractional part of adecimal number can be converted
to an octal number by repeatedly multiplying by 8, as
shown below for the fraction 0.4375¢

For fractions, the most significant bit is the top integer
obtained by multiplication of the decimal fraction by
8, thus,

0.437510 =0.34g

The natural binary code for digits 0 to 7 is shown
in Table 10.1, and an octal number can be converted
to a binary number by writing down the three bits
corresponding to the octal digit.

Thus 4373 =100011 111,
and 26.355 =010 110.011 101,
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Table 10.1
Octal digit Natural
binary number
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

The ‘0’ on the extreme left does not signify anything,
thus 26.355 =10 110.011 101,

Conversion of decimal to binary via octal is demon-
strated in the following worked problems.

Problem 11. Convert 3714 to a binary number,
via octal.

Dividing repeatedly by 8, and noting the remainder
gives:

Remainder

8)3714
8) 464 2
8) 58

0
8) 7 2
0 7

7 2 0 2

From Table 10.1, 7202g =111 010 000 0102
ie. 371419=111 010 000 010,

Problem 12. Convert 0.593751¢ to a binary
number, via octal.

Multiplying repeatedly by 8, and noting the integer
values, gives:

0.59375 X 8 = 4.75
0.75 X8 = 6.00

4 6

Thus 0.5937519 = 0.46g
From Table 10.1, 0.46g =0.100 110,
ie. 0.5937519=0.100 11,

Problem 13. Convert 5613.906251 to a binary
number, via octal.

The integer part is repeatedly divided by 8, noting the
remainder, giving:

Remainder

815613
8) 701
8) 87
8) 10
8) 1

0

— N W D

—

1 2 7 55

This octal number is converted to a binary number,
(see Table 10.1).

12755 =001 010 111 101 101,
ie. 5613;0=1010111 101 101,

The fractional part is repeatedly multiplied by 8, and
noting the integer part, giving:

0.90625 X 8 = 7.25
0.25 X 8= l_ 2.00
12
This octal fraction is converted to a binary number,
(see Table 10.1).
0.72§ = 0.111 0102
ie. 0.90625190 = 0.111 01

Thus, 5613.9062519 = 1010111101 101.111 01,
Problem 14. Convert 11 110011.100 01, to a
decimal number via octal.

Grouping the binary number in three’s from the binary
point gives: 011 110 011.100 0102
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Using Table 10.1 to convert this binary number to an
octal number gives 363.42g and 363.423

=3x8 +6x8 +3x80+4x814+2x82
=192+48+3+0.5+0.03125

=243.53125y9

Now try the following exercise

Exercise 41 Further problems on
conversion between decimal and binary
numbers via octal

In Problems 1 to 3, convert the decimal numbers
given to binary numbers, via octal.

1. (a)343(b) 572 (c) 1265

(a) 101010111, (b) 1000111100, T
(c) 100111100015

2. (a) 0.46875 (b) 0.6875 (c) 0.71875

(a) 0.011115 (b) 0.10115 ]
() 0.10111,

3. (a) 247.09375 (b) 514.4375 (c) 1716.78125

(a) 11110111.00011,
(b) 1000000010.0111,
(c) 11010110100.11001,

4. Convert the binary numbers given to decimal
numbers via octal.

(a) 111.011 1 (b) 101 001.01
(c) 1110011011 010.001 1

(a) 7.437510 (b) 41.2510
(c) 7386.18751¢

10.4 Hexadecimal numbers

The hexadecimal system is particularly important in
computer programming, since four bits (each consist-
ing of a one or zero) can be succinctly expressed using
a single hexadecimal digit. Two hexadecimal digits rep-
resent numbers from 0 to 255, a common range used,
for example, to specify colours. Thus, in the HTML
language of the web, colours are specified using three

pairs of hexadecimal digits RRGGBB, where RR is the
amount of red, GG the amount of green, and BB the
amount of blue.

A hexadecimal numbering system has a radix of
16 and uses the following 16 distinct digits:

0,1,2,3,4,5,6,7,8,9,A,B,C,D,E and F

‘A’ corresponds to 10 in the decimal system, B to 11,
C to 12, and so on.

(a) Converting from hexadecimal to decimal:

For example

1A16=1x 16"+ A x 16°
=1x16"+10x1
=16+10=26
ie. 1A16=261¢
Similarly, 2E16=2 x 16' +E x 16°
=2x 16" +14 x 16°
=32+ 14 =461
and 1BF16 =1 x 16 +B x 16! +F x 16°

—1x162+11x16'+15x 16°
=256+ 176 + 15 = 44719

Table 10.2 compares decimal, binary, octal and hexa-
decimal numbers and shows, for example, that
2310=10111,=278=171¢

Problem 15. Convert the following hexadecimal
numbers into their decimal equivalents:

(a) 7A16 (b) 3F16
(@) TAle=7x 16 +Ax16°=7x 16 +10x 1
=112410=122
Thus 7A16=12219

() 3F16=3x16'+Fx16° =3 x 16 +15x 1
=484+15=63

Thus 3F16=631¢
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Table 10.2

Decimal Binary Octal Hexadecimal

Problem 16. Convert the following hexadecimal
numbers into their decimal equivalents:
(@) C916 (b) BDjg

1 0001 1 1
(@ C916=Cx16' +9x16°=12x16+9 x 1

=19249=201
Thus C916=20119

3 0011 3 3

(b) BDig =B x 16! + D x 16°
=11x16+13x1=176+13 =189

5 0101 5 5

Thus BDy¢ =189
7 0111 7 7 18 D16 = 19710

Problem 17. Convert 1A4E ¢ into a decimal
number.

9 1001 11 9
IAAE;s=1x16+Ax167+4x 16" +E x 16°

11 1011 13 B —1x16°4+10x 162 +4 x 16!

+ 14 x 16°

13 1101 15 D = 1x 4096410 x 25644 x 16+ 14 x 1

=4096 +2560+ 64 + 14 = 6734
15 1111 17 E
Thus 1A4E16=673410

11
17 10001 21 (b) Converting from decimal to hexadecimal

This is achieved by repeatedly dividing by 16 and noting
19 10011 23 13 the remainder at each stage, as shown below for 26.

16)26 Remainder

21 10101 25 15 16) 1 10=A
23 10111 27 17 most significant bit 1 A < least significant bit

Hence 2610 = 1A16
25 11001 31 19

Similarly, for 44719

27 11011 33 1B 16)447 Remainder

16) 27 15=F4

29 11101 35 1D 16) 1 11 EBIGT
0 151161

3] 1111 25 IF I BF

Thus 44719=1BF¢
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Problem 18. Convert the following decimal
numbers into their hexadecimal equivalents:
(@) 3710 (b) 10819

(a) 16)37 Remainder

16)_2 5=516
0 2=24
25

most significant bit j L least significant bit

Hence 3710=251¢
(b) 16)108 Remainder
16) 6 12=Ci
0 6= 066
6 C

Hence 10819=6C1¢

Problem 19. Convert the following decimal
numbers into their hexadecimal equivalents:

(a) 16219 (b) 23910

(a) 16)162 Remainder
16) 10 2= 2
0 10=A —
A2
Hence 16210 =A21¢
(b) 16)239 Remainder
16) 14 15 = Fyq
0 14= E16 j
E F

Hence 23910 =EFy¢

Now try the following exercise

Exercise 42 Further problems on
hexadecimal numbers

In Problems 1 to 4, convert the given hexadecimal
numbers into their decimal equivalents.

1. E716 [23110] 2. 2Cyp [4410]
3. 9816 [15210] 4. 2Flie [75310]

In Problems 5 to 8, convert the given decimal
numbers into their hexadecimal equivalents.

5. 5419 [3616] 6. 20010 [C8i6]
7. 9110 [5Biel 8. 23810 [EEis]

(c) Converting from binary to hexadecimal:

The binary bits are arranged in groups of four, start-
ing from right to left, and a hexadecimal symbol is
assigned to each group. For example, the binary num-

ber 1110011110101001 is initially grouped in fours as:

1110 0111 1010 1001 .
—— —— =~ —— and a hexadecimal symbol

E 7 A
assigned to each group as above from Table 10.2.

Hence 1110011110101001, = E7A946

Problem 20. Convert the following binary
numbers into their hexadecimal equivalents:
(a) 110101102 (b) 11001112

(a) Grouping bits in fours from the right gives:

1101 0110
“T)"’ T and assigning hexadecimal symbols

to each group gives as above from Table 10.2.

Thus, 110101102 = D616

(b) Grouping bits in fours from the right gives:

0110 0111 o .
T T and assigning hexadecimal symbols
to each group gives as above from Table 10.2.

Thus, 11001112=6716

Problem 21. Convert the following binary
numbers into their hexadecimal equivalents:
(a) 110011112 (b) 1100111102

(a) Grouping bits in fours from the right gives:
1111

1100
? T and assigning hexadecimal symbols
to each group gives as above from Table 10.2.

Thus, 11001111, = CFy6

(b) Grouping bits in fours from the right gives:

0001 1001 1110 .o :
T T ? and assigning hexadecimal



Binary, octal and hexadecimal 95

symbols to each group gives as above from
Table 10.2.

Thus, 110011110, =19E6

(d) Converting from hexadecimal to binary:

The above procedure is reversed, thus, for example,

6CF316=011011001111 0011
from Table 10.2

ie. 6CF316=110110011110011,

Problem 22. Convert the following hexadecimal
numbers into their binary equivalents:
(a) 3F16 (b) Abis

(a) Spacing out hexadecimal digits gives:
3 F

and converting each into binary

— =
0011 1111
gives as above from Table 10.2.

Thus, 3F16=111111,
(b) Spacing out
A 6

—— ~ =
1010 0110
gives as above from Table 10.2.

hexadecimal  digits  gives:

and converting each into binary

Thus, A616=10100110,

Problem 23. Convert the following hexadecimal
numbers into their binary equivalents:
(a) 7B1s (b) 17D16

(a) Spacing out hexadecimal digits gives:
7 B

~—— ~—~—— and converting each into binary

0111 1011

gives as above from Table 10.2.
Thus, 7B16=1111011,

(b) Spacing out
1 7 D ) )
~— ~—— ~—— and converting each into
0001 0111 1101

hexadecimal  digits  gives:

binary gives as above from Table 10.2.

Thus, 17D16=101111101,

Now try the following exercise

Exercise 43 Further problems on
hexadecimal numbers

In Problems 1 to 4, convert the given binary
numbers into their hexadecimal equivalents.

1. 11010111, [D716]
2. 11101010, [EAj6]
3. 10001011, [8Bisl
4. 10100101, [AS16]

In Problems 5 to 8, convert the given hexadecimal
numbers into their binary equivalents.

5. 3716 [1101115]

EDys [11101101,]
7. 9Fs [10011111,]
8. A2l [1010001000015]




Revision Test 3

This Revision Test covers the material contained in Chapters 8 to 10. The marks for each question are shown in
brackets at the end of each question.

1.

Use Maclaurin’s series to determine a power series

for e2* cos 3x as far as the term in x2. )

Show, using Maclaurin’s series, that the first four
terms of the power series for cosh 2x is given by:

2 4
cosh2x = 1+2x2+§x4+—x6. (10)

45

Expand the function x”In(l+sinx) using
Maclaurin’s series and hence evaluate:
1

2
/ x2 In(1 4 sinx) dx correct to 2 significant

0
figures. (13)

Use the method of bisection to evaluate the root
of the equation: x* +5x =11 in the range x =1 to
x =2, correct to 3 significant figures. (11)

Repeat question 4 using an algebraic method of
successive approximations. (16)

The solution to a differential equation associated
with the path taken by a projectile for which the
resistance to motion is proportional to the velocity
is given by:

y=25e"—e ") +x—-25

10.

Use Newton’s method to determine the value of x,
correct to 2 decimal places, for which the value of
y is zero. (10)

Convert the following binary numbers to decimal
form:

(a) 1101 (b) 101101.0101 (5)

Convert the following decimal number to binary
form:

(a) 27 (b) 44.1875 C))

Convert the following decimal numbers to binary,
via octal:

(a) 479 (b) 185.2890625 9)
Convert

(a) 5Fje into its decimal equivalent

(b) 13249 into its hexadecimal equivalent

(c) 110101011, into its hexadecimal equivalent
@



Chapter 11

Introduction to trigonometry

11.1 Trigonometry

Trigonometry is the branch of mathematics which deals
with the measurement of sides and angles of trian-
gles, and their relationship with each other. There are
many applications in engineering where a knowledge
of trigonometry is needed.

11.2 The theorem of Pythagoras

With reference to Fig. 11.1, the side opposite the right
angle (i.e. side b) is called the hypotenuse. The theorem
of Pythagoras states:

‘In any right-angled triangle, the square on the
hypotenuse is equal to the sum of the squares on the
other two sides.’

Hence b?=a*+ c?

A

Figure 11.1

Problem 1. In Fig. 11.2, find the length of EF.
D

e=13cm
f=5cm :
E d F
Figure 11.2

By Pythagoras’ theorem:
F=d*+ f?

Hence 132 =d%+52

169 = d*> + 25

d> =169 —25 =144
Thus d=+144 =12cm
i.e. EF =12cm

Problem 2. Two aircraft leave an airfield at the
same time. One travels due north at an average
speed of 300 km/h and the other due west at an
average speed of 220km/h. Calculate their distance
apart after 4 hours.

After 4hours, the first aircraft has travelled 4 x 300 =
1200km, due north, and the second aircraft has trav-
elled 4 x 220 = 880 km due west, as shown in Fig. 11.3.
Distance apart after 4 hours = BC.

wﬂ_g

S 1200 km

B

880 km
Figure 11.3

From Pythagoras’ theorem:

BC? = 12002 + 8802 = 1440000+ 774400

and BC =+/(2214400)

Hence distance apart after 4 hours =1488 km.




98 Higher Engineering Mathematics

Now try the following exercise

Exercise 44 Further problems on the
theorem of Pythagoras

1.

In a triangle CDE, D =90°, CD = 14.83 mm
and CE =28.31 mm. Determine the length of
DE. [24.11 mm]

Triangle POR is isosceles, Q being a right
angle. If the hypotenuse is 38.47 cm find (a)
the lengths of sides PQ and QR, and (b) the
value of ZQPR. [(a) 27.20cm each (b) 45°]

A man cycles 24 km due south and then 20km
due east. Another man, starting at the same
time as the first man, cycles 32 km due east and
then 7 km due south. Find the distance between
the two men. [20.81km]

A ladder 3.5 mlong is placed against a perpen-
dicular wall with its foot 1.0m from the wall.
How far up the wall (to the nearest centimetre)
does the ladder reach? If the foot of the lad-
der is now moved 30 cm further away from the
wall, how far does the top of the ladder fall?

[3.35m, 10cm]

Two ships leave a port at the same time. One
travels due west at 18.4 km/h and the other due
south at 27.6 km/h. Calculate how far apart the
two ships are after 4 hours. [132.7km]

Figure 11.4 shows a bolt rounded off at one
end. Determine the dimension 4. [2.94 mm]

16 mm

!

45 mm

Figure 11.4

Figure 11.5 shows a cross-section of a
component that is to be made from a round bar.
If the diameter of the bar is 74 mm, calculate
the dimension x. [24 mm]

—

&15‘«\“‘ 72mm

Figure 11.5

11.3 Trigonometric ratios of acute

angles

(a) With reference to the right-angled triangle shown

in Fig. 11.6:
@ sined — opposite side
hypotenuse
b
ie. sinf =—
c
B . adjacent side
(i1) cosine = ——
hypotenuse
ie. cosf = ¢
c
opposite side
(ii1) tangent = ———

adjacent side

b
i.e. tanf =—

a
. hypotenuse
(iv) secant 6 = yp—
adjacent side
. c
ie. sec = —
a
hypotenuse
) cosecantf = ———
opposite side
. c
ie. cosecd=—

b
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adjacent side

(vi) cotangentd = —
opposite side
i.e. cotf = 4
b
c
b
0
a
Figure 11.6
(b) From above,
b
0 sind . b tand
i =—-=—=tané,
cosd 94 g
c
sinf
ie. tanf= m
cosf
a
(i) cosf . 0
ii =——=—=cot#,
sing b
c
cosf
ie. cotf=—
sinf
(i) secf =
cosf
@iv) cosecl =——
sin@
(Note ‘s’ and ‘c’ go together)
1
) cotf=——

tan6

Secants, cosecants and cotangents are called the
reciprocal ratios.

Problem 3. If cosX = % determine the value of

the other five trigonometry ratios.

Fig. 11.7 shows a right-angled triangle XY Z.
V4

41

Figure 11.7

9
Since cos X = —, then XY = 9 units and
XZ =41 units.
Using Pythagoras’ theorem: 412 =9%4YZ? from

which YZ = /(412 —92) = 40 units.

Thus

'nX—40tnX—40—44
A=t T9 =%

yod_ 1
cosec =20 =120’

secX “ 45 d cotX o
= — =4— an = —
9 9 40

Problem 4. If sind =0.625 and cos6 =0.500
determine, without using trigonometric tables or
calculators, the values of cosec 8, secf, tan
and cot 6.

1 1

cosecd = — = —— =1.60

sinfd  0.625
1 1

sech = =——=2.00
cosf  0.500

tanf = sin® = @ =1.25
cosf  0.500

0 .

cotg = 280 _ 0500 _ g9

sinfd  0.625

Problem 5. Point A lies at co-ordinate (2, 3) and
point B at (8, 7). Determine (a) the distance AB,
(b) the gradient of the straight line AB, and (c) the
angle AB makes with the horizontal.

(a) Points A and B are shown in Fig. 11.8(a).

In Fig. 11.8(b), the horizontal and vertical lines
AC and BC are constructed.

Since ABC is a right-angled triangle, and
AC=(8—-2)=6 and BC=(7—3)=4, then by
Pythagoras’ theorem
AB? = AC? + BC? = 6% + 47
and AB =+/(62+42) =+/52="7211,
correct to 3 decimal places.

(b) The gradient of AB is given by tan A,

. . BC 4 2
i.e. gradient =tan A = — = - = —
AC 6 3

(c) Theangle AB makes with the horizontal is given
by tan~! % =33.69°.
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f(x) 4

8_
U e xB
6_

w
T
I
I
I
X

v

Figure 11.8

Now try the following exercise

Exercise 45 Further problemson
trigonometric ratios of acute angles

1. In triangle ABC shown in Fig. 11.9, find
sin A, cos A, tan A, sin B, cos B and tan B.

sinA:%,cosA:%,tanA:%
sinB:%‘,cosB:%,tanB:%1
B
7 3
A @

Figure 11.9

1
2. IfcosA= 1—5 find sin A and tan A, in fraction

form. sin A= i, tan A= ﬁ
17 15

3. For the right-angled triangle shown in
Fig. 11.10, find:

(a) sina  (b) cosf (c)tand

15 15 8
[(a) 17 (b) 17 (© E:|

Figure 11.10

4. Point P lies at co-ordinate (—3, 1) and point
Q at (5, —4). Determine
(a) the distance PQ

(b) the gradient of the straight line PQ and

(c) the angle PO makes with the horizontal.
[(a) 9.434 (b) —0.625 (c) 32°]

11.4 Evaluating trigonometric ratios

The easiest method of evaluating trigonometric func-
tions of any angle is by using a calculator.

The following values, correct to 4 decimal places,
may be checked:
sine 18° = 0.3090, cosine 56° = 0.5592
sine 172° =0.1392 cosine 115° = —0.4226,
sine 241.63° = —0.8799, cosine 331.78° = 0.8811

tangent 29° = 0.5543,
tangent 178° = —0.0349
tangent 296.42° = —2.0127

To evaluate, say, sine 42°23’ using a calculator
]

means finding sine42 0 since there are 60 minutes

in 1 degree.
23

0= 0.3833 thus 42°23' = 42.383°

Thus sine 42°23’ = sine 42.383° = 0.6741, correct to 4
decimal places.

]

Similarly, cosine 72°38’ = cosine 72 0 =0.2985,

correct to 4 decimal places.

Most calculators contain only sine, cosine and tan-
gent functions. Thus to evaluate secants, cosecants and
cotangents, reciprocals need to be used. The following
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values, correct to 4 decimal places, may be checked:

1
secant 32° = =1.1792
cos32°
1
t75° = =1.0353
cosecan T
t t41° ! 1.1504
cotangen = =1.
& tan41°
1
secant215.12° = ——— = —1.2226
cos215.12°
1
cosecant321.62° = ————— = —1.6106
sin321.62°
1
t t263.59° = —— =0.112
cotangent263.59 an263.59° 0 3

If we know the value of a trigonometric ratio and need
to find the angle we use the inverse function on our
calculators.

For example, using shift and sin on our calculator gives
sin~! (

If, for example, we know the sine of an angle is 0.5 then
the value of the angle is given by:

sin"'0.5=30° (Check that sin30° = 0.5)

(Note that sin~! x does not mean ——; also, sin~! x may

sinx’
also be written as arcsin x) e
Similarly, if cos® = 0.4371 then
0 =cos~10.4371 = 64.08°

and if tan A = 3.5984 then A = tan—!3.5984
=74.47°

each correct to 2 decimal places.
Use your calculator to check the following worked
examples.

Problem 6. Determine, correct to 4 decimal
places, sin43°39’

]

39
sin43°39' = sin43=— = sin43.65°
60
=0.6903

This answer can be obtained using the calculator as
follows:

1. Press sin 2. Enter 43 3. Press®’”™
4. Enter 39 5. Press®’”” 6. Press )
7. Press = Answer = 0.6902512....

Problem 7. Determine, correct to 3 decimal
places, 6cos62°12/

]

12
6c0s62°12" = 6¢c0s62 0 = 6¢c0s62.20°

=2.798

This answer can be obtained using the calculator as
follows:

1. Enter 6 2. Press cos 3. Enter 62
4. Press®’” 5. Enter 12 6. Press®’™
7. Press) 8. Press = Answer = 2.798319....

Problem 8. Evaluate correct to 4 decimal places:
(a) sine 168°14’ (b) cosine271.41°
(c) tangent98°4/

]

14
(a) sine 168°14’ = sine 168 0 = 0.2039

(b) cosine271.41° = 0.0246

4
(c) tangent98°4’ = tan 98% = —7.0558

Problem 9. Evaluate, correct to 4 decimal places:
(a) secant 161° (b) secant 302°29’

(a) secl6l°= =-1.0576
cosl61°
(b) 302°29’ ! !
sec = = .
c0s 302029’ 08302 29
60
=1.8620

Problem 10. Evaluate, correct to 4 significant
figures:
(a) cosecant 279.16° (b) cosecant 49°7’

(a) cosec279.16°=——=-1.013
sin279.16°
(b) cosec49°7 = ! = !
sin4907 . 7°
sin49 —
60
=1.323

Problem 11. Evaluate, correct to 4 decimal
places:
(a) cotangent17.49° (b) cotangent 163°52’
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1
(1) cot17.49°=—— —3.1735
tan 17.49°
(b) cot163sy=— 1 = !
tan 163052’ tan 163 52
60
=-=3.4570

Problem 12. Evaluate, correct to 4 significant
figures:
(a) sin1.481 (b) cos(37/5) (c)tan2.93

(a) sin1.481 means the sine of 1.481radians. Hence
a calculator needs to be on the radian function.
Hence sin1.481 = 0.9960

(b) cos(37w/5)=cos1.884955.--=-0.3090
(¢) tan2.93=-0.2148

Problem 13. Evaluate, correct to 4 decimal
places:

(a) secant5.37 (b) cosecantw /4

(c) cotangentrr /24

(a) Again, with no degrees sign, it is assumed that
5.37 means 5.37 radians.

H 37= —1.6361
ence sec5.3 o5 537 3
1
b 4= -
(b) - cosec (m/d) = G ) = Sin0.785398 ..
—1.4142
1
(c) cot(Sm/24)= =
tan(57/24)  tan0.654498 . ..
—1.3032

Problem 14. Find, in degrees, the acute angle
sin~!0.4128 correct to 2 decimal places.

sin~!0.4128 means ‘the angle whose
sine is 0.4128’

Using a calculator:
1. Press shift 2. Presssin 3. Enter 0.4128
4. Press) 5. Press = The answer 24.380848......

is displayed

Hence, sin~10.4128 = 24.38°

Problem 15. Find the acute angle cos~!0.2437 in
degrees and minutes

cos~10.2437 means ‘the angle whose
cosine is 0.2437°

Using a calculator:

1. Press shift 2. Press cos 3. Enter 0.2437

4. Press) 5. Press = The answer 75.894979...
is displayed

6. Press ° " and 75°53'41.93" is displayed

Hence, cos™10.2437 =75.89° = 77°54'
correct to the nearest minute.

Problem 16. Find the acute angle tan~!7.4523 in
degrees and minutes

tan~!7.4523 means ‘the angle whose
tangent is 7.4523’

Using a calculator:

1. Press shift 2. Press tan 3. Enter 7.4523

4. Press) 5. Press = The answer 82.357318...
is displayed

6. Press ° " and 82°21'26.35" is displayed

Hence, tan~!7.4523 = 82.36° = 82°21'
correct to the nearest minute.

Problem 17. Determine the acute angles:

(a) sec™12.3164 (b) cosec ~'1.1784
(c) cot=12.1273

1
-1 -1
2.3164 =
(a) sec 316 cos (2.3164)

=cos 10.4317...
= 64.42° or 64°25'

or 1.124 radians

1
b ~11.1784=sin~!
(b) cosec sin (1.1784)

=sin"10.8486...
= 58.06° or 58°4’

or 1.013radians
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(c) cot~!'2.1273=tan"!
2.1273

=tan"' 0.4700...
— 25.18° or 25°11’

or 0.439radians

Problem 18. Evaluate the following expression,
correct to 4 significant figures:

4sec32°10' —2cot 15°19
3 cosec 63°8/tan 14°57/

By calculator:
sec32°10" = 1.1813, cot15°19" = 3.6512
cosec 63°8’ =1.1210, tan 14°57" = 0.2670

4sec32°10' —2cot15°19’
3 cosec 63°8'tan 14°57’

Hence

_ 4(1.1813) —2(3.6512)
©3(1.1210)(0.2670)

4725273024
- 0.8979

—2.
= —2.5772 =-2.870,
0.8979

correct to 4 significant figures.

Problem 19. Evaluate correct to 4 decimal places:
(a) sec(-115°) (b) cosec (-95°47")

(a) Positive angles are considered by convention to be
anticlockwise and negative angles as clockwise.

Hence —115° is actually the same as 245° (i.e.

360°—115°)
1
Hence sec(—115°) =sec245°= ——
cos245°
= —2.3662
1
(b) cosec (—95°47")= =-1.0051

siny — 95

Problem 20. In triangle EFG in Fig. 11.11,
calculate angle G.

E

8.71
2.30

F G
Figure 11.11

With reference to ZG, the two sides of the triangle
given are the opposite side EF and the hypotenuse
E G, hence, sine is used,

2.30

ie. sinG = —— =0.26406429. ..
8.71

from which, G = sin~10.26406429 ...

ie. G =15.311360...

Hence, /G =15.31° or 15°19

Now try the following exercise

Exercise 46  Further problemson
evaluating trigonometric ratios

In Problems 1 to 8, evaluate correct to 4 decimal
places:

1. (a) sine 27° (b) sine 172.41°
(c) sine 302°52'
(a) 0.4540 (b) 0.1321
[(c) —0.8399 :|

2. (a) cosine 124° (b) cosine21.46°
(c) cosine284°10
(a) —0.5592 (b) 0.9307
[ (c) 0.2447 :|

3. (a) tangent 145° (b) tangent310.59°
(c) tangent49°16’
(a) —0.7002 (b) —1.1671
(c) 1.1612

4. (a) secant73° (b) secant286.45°
(c) secant 155°41’

(a) 3.4203 (b) 3.5313
(c) —1.0974
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5. (a) cosecant213° (b) cosecant 15.62°
(c) cosecant311°50/

[ (a) —1.8361 (b) 3.7139]

| (c) —1.3421

6. (a) cotangent71° (b) cotangent151.62°
(c) cotangent321°23’

[ (a) 0.3443 (b) —1.8510]

| (©) —1.2519

2
7. (a)sine Tn (b) cos 1.681 (c) tan3.672

(a) 0.8660 (b) —0.1010
() 0.5865

8. (a) sec% (b) cosec2.961 (c) cot2.612

(a) 1.0824 (b) 5.5675
(c) —1.7083

In Problems 9 to 14, determine the acute angle
in degrees (correct to 2 decimal places), degrees
and minutes, and in radians (correct to 3 decimal
places).

9. sin—10.2341

13.54°,13°32/, ]
0.236rad

34.20°,34°12/,

-1
10. cos™'0.8271 |:0.597rad |
39.03°,39°2, ]
1 ’ ’
11. tan='0.8106 [0.681rad

12. sec'1.6214

51.92°,51°55,
0.906rad

23.69°,23°41",
-1 ’ ’
13. cosec™2.4891 [0,413rad |
27.01°,27°1", ]
-1 ’ ’

14. cot~'1.9614 [0.471rad

15. Inthetriangle showninFig. 11.12, determine
angle 6, correct to 2 decimal places.

[29.05°]

Figure 11.12

16. Inthetriangle showninFig. 11.13,determine
angle 0 in degrees and minutes.  [20°21']

23

Figure 11.13

In Problems 17 to 20, evaluate correct to 4 signifi-
cant figures.

17. 4co0s56°19' —3sin21°57 [1.097]
11.5tan49°11’ — sin90°
5.805
3 cos45° [ ]
5sin86°3’
19. _s51
’ 3tan 14°29’ — 2 cos31°9’ [—5.325]
6.4 29°5/ — 81°
20, cosec sec 07199)

2cot12°
21. Determine the acute angle, in degrees and
minutes, correct to the nearest minute, given
. 1 (4-32sin42°16' ,
by sin _ [21°42"]
7.86

22. If tanx =1.5276, determine secx, COSecCXx,

and cotx. (Assume x is an acute angle)

[1.8258,1.1952, 0.6546]

In Problems 23 to 25 evaluate correct to 4 signifi-
cant figures
(sin 34°27") (cos 69°2")

23. 0.07448
(2tan 53°39") [ ]

24. 3cot14°15 sec23°9’ [12.85]

e cosec27°19" + sec45°29’ (-1.710]
1 — cosec27°19"sec45°29’

26. Evaluate correct to 4 decimal places:
(a) sine (—125°) (b) tan(—241°)
(c) cos(—49°15")
(a) —0.8192 (b) —1.8040
[(c) 0.6528 :|
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27. Evaluate correct to 5 significant figures:
(a) cosec (—143°) (b) cot(—252°)
(c) sec(—67°22)
(a) —1.6616 (b) —0.32492
(c) 2.5985

11.5 Solution of right-angled

triangles

To ‘solve a right-angled triangle’ means ‘to find the
unknown sides and angles’. This is achieved by using
(i) the theorem of Pythagoras, and/or (ii) trigonometric
ratios. This is demonstrated in the following problems.

Problem 21. In triangle POR shown in
Fig. 11.14, find the lengths of PQ and PR.

P
38°
Q 7.5cm R
Figure 11.14
P P
tan38° = —Q = —Q
QR 7.5
hence PQ =7.5tan38° = 7.5(0.7813)
=5.860 cm
R 7.
€08 38° = Q— = —5
PR PR
7. 7.
hence PR = > > =9.518cm

cos38°  0.7880
[Check: Using Pythagoras’ theorem

(7.5)% + (5.860)> = 90.59 = (9.518)2]

Problem 22. Solve the triangle ABC shown in
Fig. 11.15.

35mm

’J 37mm

Figure 11.15

To ‘solve triangle ABC’ means ‘to find the length
AC and angles B and C’

35
inC = — =0.94595
sin 37

hence /C =sin~!0.94595=71.08°=71°5".
/B=180°—90°—71°5'=18°55" (since angles in a
triangle add up to 180°)

. AC
sinB = —

37

hence AC =37sin18°55" = 37(0.3242)

=12.0mm

or, using Pythagoras’ theorem, 372 =35%+ AC?, from

which, AC = /(372 —352) = 12.0mm.

Problem 23. Solve triangle XYZ given
/X =90°, /Y =23°17" and Y Z =20.0mm.
Determine also its area.

It is always advisable to make a reasonably accurate
sketch so as to visualize the expected magnitudes of
unknown sides and angles. Such a sketch is shown in
Fig. 11.16.

ZZ =180°—90° —23°17 = 66°43’

X7
sin23°17 = —
20.0
V4
20.0mm
23°17’
X

Figure 11.16

hence XZ =20.0sin23°17
—20.0(0.3953) = 7.906 mm
01mr XY
c0s23°17 = —
20.0
hence XY =20.0c0s23°17

—=20.0(0.9186) = 18.37 mm

[Check: Using Pythagoras’ theorem
(18.37)2 + (7.906)% = 400.0 = (20.0)?]
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Area of triangle XYZ
= % (base) (perpendicular height)
= 1(XY)(XZ) = 1(18.37)(7.906)
=72.62mm’

Now try the following exercise

Exercise 47 Further problems on the
solution of right-angled triangles

1. Solve triangle ABC in Fig. 11.17(i).
|:BC=3.500m, AB :6.100m,:|

/B =55°
D
= 3cm G H
4.cm E
' 15.0 mm
el Ol
AT 50em [ |

Figure 11.17

2. Solve triangle DEF in Fig. 11.17(ii).
[FE=5cm, /E=53°8, /F =36°52']

3. Solve triangle GHI in Fig. 11.17(iii).
GH=9.841mm, GI=11.32mm,
ZH=49°

4. Solvethe triangle JKL in Fig. 11.18(i) and find
KL=5.43cm, JL=8.62cm,
£J=39°, area =18.19cm’

5. Solve the triangle MNO in Fig. 11.18(ii) and
find its area.
MN=28.86mm, NO=13.82mm,
[ £0=64°25, area :199.4mm2:|

its area. [

25°35’
J M 3.69m

P Q
6.7 cm 32.0 mm N 8.75m
O AN R
K L o
U} (i) (i)
Figure 11.18

6. Solve the triangle POR in Fig. 11.18(iii) and
find its area.
PR =7.934m, £Q = 65°3/,
[m =24°57', area = 14.64m2:|

7. A ladder rests against the top of the perpendi-
cular wall of a building and makes an angle of
73° with the ground. If the foot of the ladder is
2m from the wall, calculate the height of the
building. [6.54m]

11.6 Angles of elevation and

depression

(a) If, in Fig. 11.19, BC represents horizontal gro-
und and AB a vertical flagpole, then the angle of
elevation of the top of the flagpole, A, from the
point C is the angle that the imaginary straight
line AC must be raised (or elevated) from the
horizontal CB, i.e. angle 6.

Figure 11.19

(b) If, in Fig. 11.20, PQ represents a vertical cliff and
R a ship at sea, then the angle of depression of
the ship from point P is the angle through which
the imaginary straight line PR must be lowered
(or depressed) from the horizontal to the ship, i.e.

angle ¢.

Figure 11.20

(Note, ZPRQ is also ¢p—alternate angles between
parallel lines.)

Problem 24. An electricity pylon stands on
horizontal ground. At a point 80 m from the base of
the pylon, the angle of elevation of the top of the
pylon is 23°. Calculate the height of the pylon to the
nearest metre.

Figure 11.21 shows the pylon AB and the angle of
elevation of A from point C is 23°
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Hence height of pylon AB
= 80tan23° = 80(0.4245) = 33.96m

= 34m to the nearest metre.

.

c 80m B

Figure 11.21

Problem 25. A surveyor measures the angle of
elevation of the top of a perpendicular building as
19°. He moves 120 m nearer the building and finds
the angle of elevation is now 47°. Determine the
height of the building.

The building PQ and the angles of elevation are shown
in Fig. 11.22.

In triangle PQOS,
o h
tan19° =
x+120
hence h =tan19°(x + 120),
ie. h =0.3443(x 4+ 120) (D
P
h
47° N R 19° 3
Qe »le »
X 120
Figure 11.22
. h
In triangle POR, tan47° = —
X
hence h =tan47°(x), i.e. h = 1.0724x )

Equating equations (1) and (2) gives:

0.3443(x + 120) = 1.0724x

0.3443x + (0.3443)(120) = 1.0724x
(0.3443)(120) = (1.0724 — 0.3443)x

41.316=0.7281x
41.316
X = =
0.7281
From equation (2), height of building,
h=1.0724x = 1.0724(56.74) = 60.85 m.

56.74m

Problem 26. The angle of depression of a ship
viewed at a particular instant from the top of a 75 m
vertical cliff is 30°. Find the distance of the ship
from the base of the cliff at this instant. The ship is
sailing away from the cliff at constant speed and

1 minute later its angle of depression from the top of
the cliff is 20°. Determine the speed of the ship

in km/h.

Figure 11.23 shows the cliff AB, the initial position
of the ship at C and the final position at D. Since the
angle of depression is initially 30° then ZACB =30°
(alternate angles between parallel lines).

AB 75
tan30° = — = —
BC BC
75 7
hence BC > =1299m

~ n30° 05774
= initial position of ship from
base of cliff

Figure 11.23

In triangle ABD,
AB 75
tan20° = — = ———
BD BC+CD
B 75
T 129.94x
75 75
129.9 = =
Hence Y= an20° 03640
=206.0m
from which x=206.0—1299=76.1m

Thus the ship sails 76.1 m in 1 minute, i.e. 60s, hence
speed of ship

distance  76.1
= - = — m/S
time 60
B 76.1 x 60 x 60

60 x 1000

km/h =4.57km/h
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Now try the following exercise

Exercise 48 Further problems on angles of
elevation and depression

1. Ifthe angle of elevation of the top of a vertical
30m high aerial is 32°, how far is it to the
aerial? [48m]

2. From the top of a vertical cliff 80.0m high
the angles of depression of two buoys lying
due west of the cliff are 23° and 15°, respecti-
vely. How far are the buoys apart? [110.1m]

3. From a point on horizontal ground a surveyor
measures the angle of elevation of the top of
a flagpole as 18°40’. He moves 50 m nearer
to the flagpole and measures the angle of ele-
vation as 26°22'. Determine the height of the
flagpole. [53.0m]

4. A flagpole stands on the edge of the top of a
building. At a point 200 m from the building
the angles of elevation of the top and bot-
tom of the pole are 32° and 30° respectively.
Calculate the height of the flagpole. [9.50m]

5. From a ship at sea, the angles of elevation of
the top and bottom of a vertical lighthouse
standing on the edge of a vertical cliff are
31° and 26°, respectively. If the lighthouse is
25.0m high, calculate the height of the cliff.

[107.8 m]

6. From awindow 4.2 m above horizontal ground
the angle of depression of the foot of a building
across the road is 24° and the angle of elevation
of the top of the building is 34°. Determine,
correct to the nearest centimetre, the width of
the road and the height of the building.

[9.43m, 10.56 m]

7. The elevation of a tower from two points, one
due east of the tower and the other due west
of it are 20° and 24°, respectively, and the two
points of observation are 300 m apart. Find the
height of the tower to the nearest metre.

[60m)]

11.7 Sine and cosine rules

To ‘solve a triangle’ means ‘to find the values of
unknown sides and angles’. If a triangle is right angled,

trigonometric ratios and the theorem of Pythagoras may
be used for its solution, as shown in Section 11.5. How-
ever, for a non-right-angled triangle, trigonometric
ratios and Pythagoras’ theorem cannot be used. Instead,
two rules, called the sine rule and the cosine rule,
are used.

Sinerule

With reference to triangle ABC of Fig. 11.24, the sine
rule states:

a b c

sinA sinB sinC

Figure 11.24

The rule may be used only when:
(i) 1 side and any 2 angles are initially given, or
(i) 2 sides and an angle (not the included angle) are
initially given.
Cosine rule

With reference to triangle ABC of Fig. 11.24, the cosine
rule states:

a?=b*+c% —2bccos A
or b®>=a?+c?—2accos B
or ¢2=a?+b*—2abcosC
The rule may be used only when:

(i) 2 sides and the included angle are initially given,
or

(i1) 3 sides are initially given.

11.8 Area of any triangle

The area of any triangle such as ABC of Fig. 11.24 is
given by:



Introduction to trigonometry 109

@) % x base x perpendicular height, or

ii) Labsin C or Lacsin B or lbcsinA, or
2 2 2

(iii) A/[s(s —a)(s —b)(s —c)], where
. a+b+c

2

11.9 Worked problems on the

solution of triangles and
finding their areas

Problem 27. In a triangle XYZ, /X =51°,
ZY=67° and YZ=15.2cm. Solve the triangle and
find its area.

The triangle XYZ is shown in Fig. 11.25. Since
the angles in a triangle add up to 180°, then
Z=180°—51°—67°=62°. Applying the sine rule:

152y  z
sin51° ~ sin67°  sin62°
Usi 15.2 dt . .
sin = and transposing gives:
& sin51°  sin67° P g8
15.2 sin67°
y=—""120 _ 18.00em=XZ
sin51°
Usi 15.2 dt . .
sin = and transposing gives:
& in51°  sin62° P g8
15.2sin62°
=—— =1727cm=XY
sin51°
Figure 11.25

Area of triangle XYZ = %x ysinZ
= %(15.2)(18.00) sin 62° =120.8 cm? (or area
=1xzsinY =1(15.2)(17.27)sin 67° =120.8 cm?).

It is always worth checking with triangle problems
that the longest side is opposite the largest angle, and

vice-versa. In this problem, Y is the largest angle and
XZ is the longest of the three sides.

Problem 28. Solve the triangle POR and find its
area given that QR =36.5mm, PR = 29.6 mm and
£Q =36°.

Triangle POR is shown in Fig. 11.26.

P

g=29.6mm

36°
p=236.5mm

Q
Figure 11.26

Applying the sine rule:

29.6 B 36.5
$in36°  sin P

from which,

36.5sin36°

=0.7248
29.6

sin P =

Hence P = sin~!0.7248 =46°27 or 133°33'.
When P =46°27" and Q =36° then
R=180°—46°27—36°=97°33".
When P =133°33" and Q =36° then
R=180°—133°33'—36°=10°27".

Thus, in this problem, there are two separate sets of
results and both are feasible solutions. Such a situation
is called the ambiguous case.

Case 1. P =46°27', 0 =36°, R=97°33,
p=36.5mm and g =29.6 mm.
From the sine rule:

r B 29.6
sin97°33  sin36°
from which,

29.65in97°33
y =

- =49.92 mm
sin 36°
Area = 1 pgsin R = 1(36.5)(29.6)sin97°33’
= 535.5mm>

Case 2. P=133°33/, 0 =36°, R=10°27,
p=36.5mm and g =29.6 mm.
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From the sine rule:
296 5. j=3.85cm, k=3.23cm, K =36°.

sin 1’(;027/ = $in36° J=44°29', L = 99°31’,
[ =5.420cm, area = 6.132cm? or
J=135°31", L = 8°29/,
I =0.811cm, area = 0.917 cm?
6. k=46mm,/=36mm, L =35°.
K =47°8", ] =97°52/,
j =62.2mm, area = 820.2mm? or
= 97.98 mm?. K =132°52', J = 12°8’,
j =13.19mm, area = 174.0 mm?

from which,

29.6sin10°27’
y =

Sin36° =9.134mm

Area = 1 pgsin R = 3(36.5)(29.6) sin 10°27’

Triangle POR for case 2 is shown in Fig. 11.27.

133°33'
P 9.6 mm 11.10 Further worked problems on
S.1e4mm : solving triangles and finding
@ 36.5mm \ R their areas
36° 10°27'
; Problem 29. Solve triangle DEF and find its area
Haure 1127 given that EF =35.0mm, DE=25.0 mm and

LE=064°.

Now try the following exercise . . L
Triangle DEF is shown in Fig. 11.28.

Exercise 49 Further problems on solving D
triangles and finding their areas
f=25.0mm €
In Problems 1 and 2, use the sine rule to solve the A
triangles ABC and find their areas. E—Qg=3.0mm [
1. A=29°, B=68° b=27mm. Figure 11.28
C=83°a=14.1mm,
¢ =28.9mm, area= 189 mm? Applying the cosine rule:
2. B=71°26/,C=56°32, b=8.60cm. > =d’+ f>—2d fcosE
SSDILeSsten, ie. ¢ =(350)+(25.0)
a =7.152cm, area = 25.65 cm
) —[2(35.0)(25.0) cos 64°]
In Problems 3 and 4, use the sine rule to solve the
triangles DEF and find their areas. =1225+625—-767.1 = 1083
3. d=17cm, f=22cm, F=26°. from which, e=+/1083=32.91 mm
D=19°48', E=134°12' : :
2 2 Applying the sine rule:
[e =36.0cm, area=134 cm2:| PPyIng
3291  25.0

4. d=32.6mm, e=25.4mm, D=104°22". ' ==
[ E =49°(0. F =26°38’ :| sin64°  sin F

25.0sin64°
f=15.09mm, area=185.6 mm? from which, sin F = % =0.6828
In Problems 5 and 6, use the sine rule to solve the .1 )
Thus ZF =sin" " 0.6828

triangles JKL and find their areas.

=43°4' or 136°56’
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F =136°56' is not possible in this case since
136°56’ 4 64° is greater than 180°. Thus only
F=43°4 is valid

/D = 180° — 64° — 43°4" =72°56'

Area of triangle DEF :% dfsinE
= % (35.0)(25.0) sin 64° =393.2 mm?.

Problem 30. A triangle ABC has sides a =
9.0cm, b=7.5cm and ¢=6.5cm. Determine its
three angles and its area.

Triangle ABC is shown in Fig. 11.29. It is usual first
to calculate the largest angle to determine whether the
triangle is acute or obtuse. In this case the largest angle
is A (i.e. opposite the longest side).

Applying the cosine rule:
a’> =b* +c* —2bccos A

from which, 2bccos A=b2+c* —a?
b +c*—a*  752+6.52-9.0°

and cosA = =
2bc 2(7.5)(6.5)
=0.1795
A
c=6.5cm b=7.5cm
a=9.0cm

Figure 11.29

Hence A= cos™!0.1795 =79°40’ (or 280°20’, which is
obviously impossible). The triangle is thus acute angled
since cos A is positive. (If cos A had been negative, angle
A would be obtuse, i.e. lie between 90° and 180°).

Applying the sine rule:
9.0 7.5

sin79°40' _ sin B

from which,
. 7.5sin79°4(0
sin B = Y 0.8198

Hence B =sin"'0.8198 = 55°4’
and C = 180° —79°40" — 55°4' = 45°16’

Area = /[s(s —a)(s — b)(s — )],

a+b+c 90+4+75+6.5
-2~ 2
=11.5cm

where s

Hence area

=/[11.5(11.5—-9.0)(11.5 — 7.5)(11.5 — 6.5)]

= /[11.5(2.5)(4.0)(5.0)] = 23.98 cm?

Alternatively, area = %ab sinC

=1(9.0)(7.5)sin45°16' =23.98 cm?.

Now try the following exercise

Exercise 50 Further problems on solving
triangles and finding their areas

In Problems 1 and 2, use the cosine and sine
rules to solve the triangles POR and find their
areas.
1. g=12cm,r=16cm, P=54°.
p=132cm, Q =47°21,
R=78°39', area="77.7 cm?
2. q=3.25m,r=4.42m, P=105°.
p=6.127m, Q = 30°50/,
R=44°10', area = 6.938 m?
In problems 3 and 4, use the cosine and sine
rules to solve the triangles XY Z and find their
areas.
3. x=10.0cm, y=8.0cm, z=7.0cm.
X =83°20/,Y = 52°37,
Z =44°3, area = 27.8 cm?
4. x=21mm, y=34mm, z=42mm.
X =29°46', Y = 53°30/,
7 =96°44', area = 355 mm?

11.11 Practical situations involving

trigonometry

There are a number of practical situations where the
use of trigonometry is needed to find unknown sides and
angles of triangles. This is demonstrated in the following
problems.

Problem 31. A room 8.0m wide has a span

roof which slopes at 33° on one side and 40° on the
other. Find the length of the roof slopes, correct to
the nearest centimetre.
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A section of the roof is shown in Fig. 11.30. The resultant
B OA =/ (17257) = 1314V
Applying the sine rule:
i 53° 40° . pplying
8.0m 1314 100
Figure 11.30 sin135°  sinAOB
100sin135°
from which, sinAOB=——
Angle at ridge, B=180°—33°—40°=107° 131.4
From the sine rule: =0.5381
8.0 a o1
m107° _ sin33° Hence angle AOB=sin""0.5381=32°33" (or
s s 147°27', which is impossible in this case).
from which,
$.0sin33° Hence the resultant voltage is 131.4 volts at 32°33’
= L —=4.556m to V.
sin 107°
Also from the sine rule: Problem 33. InFig. 11.32, PR represents the
8.0 c inclined jib of a crane and is 10.0 long. PQ is 4.0m
sn107° — sind0° long. Determine the inclin'ation of the jib to the
. vertical and the length of tie OR.
from which,
8.0sin40°
= ———=5.377
sintoze ~o7m

Hence the roof slopes are 4.56 m and 5.38 m, correct
to the nearest centimetre.

Problem 32. Two voltage phasors are shown in
Fig. 11.31. If V1=40V and V, =100V determine
the value of their resultant (i.e. length OA) and the

angle the resultant makes with V. Figure 11.32
Applying the sine rule:
PR PQ
sin120°  sinR
from which,
0
V=40V B iR PQsin120°  (4.0)sin 120°
sinR = =
Figure 11.31 PR 10.0
=0.3464

Angle OBA=180" —45°=135° Hence /R = sin~10.3464 = 20°16' (or 159°44, which

Applying the cosine rule: is impossible in this case).
/ZP=180°—120°—20°16'=39°44’, which is the
inclination of the jib to the vertical.

=402 4 100% — {2(40)(100) cos 135°} Applying the sine rule:
= 1600+ 10000 — {5657} 10.0 OR

OA* = V{ 4+ Vi — 2V V5 cos OBA

= 1600+ 10000 + 5657 = 17257 sin120°  sin39°44/
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from which, length of tie,

_ 10.0sin 39044/

R = =17.38
e sin 120° 38m

Now try the following exercise

Exercise 51

Further problems on practical

situations involving trigonometry

1.

A ship P sails at a steady speed of 45km/h in
a direction of W 32° N (i.e. a bearing of 302°)
from a port. At the same time another ship O
leaves the port at a steady speed of 35km/h in
a direction N 15° E (i.e. a bearing of 015°).
Determine their distance apart after 4 hours.

[193 km]

Two sides of a triangular plot of land are
52.0m and 34.0m, respectively. If the area
of the plot is 620m? find (a) the length of
fencing required to enclose the plot and (b)
the angles of the triangular plot.

[(a) 122.6m (b) 94°49', 40°39, 44°32']

A jib crane is shown in Fig. 11.33. If the tie
rod PR is 8.0 long and PQ is 4.5 m long deter-
mine (a) the length of jib RQ and (b) the angle
between the jib and the tie rod.

[(a) 11.4m (b) 17°33]

130°UP

Figure 11.33

A building site is in the form of a quadrilat-
eral as shown in Fig. 11.34, and its area is
1510m?. Determine the length of the peri-
meter of the site. [163.4m]

28.5m
34.6 m

52.4m

Figure 11.34

5. Determine the length of members BF and EB
in the roof truss shown in Fig. 11.35.
[BF=39m, EB=4.0m]

A 5m B 5m C
Figure 11.35

6. A laboratory 9.0m wide has a span roof
which slopes at 36° on one side and 44° on
the other. Determine the lengths of the roof
slopes. [6.35m, 5.37m]

11.12 Further practical situations

involving trigonometry

Problem 34. A vertical aerial stands on
horizontal ground. A surveyor positioned due east
of the aerial measures the elevation of the top as
48°. He moves due south 30.0m and measures the
elevation as 44°. Determine the height of the aerial.

In Fig. 11.36, DC represents the aerial, A is the initial
position of the surveyor and B his final position.

. ., DC
From triangle ACD, tan48° = —,
AC
fi hich __ne
rom whic = ndge
Similarly, from triangle BCD,
DC

C =
tan44°
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D

44° 30.0m

Figure 11.36

For triangle ABC, using Pythagoras’ theorem:

BC? = AB? + AC?
DC \? 5 DC \?
(tan44°) = G007+ (tan48°)

DC? 1 =30.0°
tan244°  tan248°

DC?(1.072323 — 0.810727) = 30.0°

30.02

DC? = ———
0.261596

=3440.4

Hence, height of aerial,

DC = /34404 = 58.65m

Problem 35. A crank mechanism of a petrol

engine is shown in Fig. 11.37. Arm OA is 10.0cm
long and rotates clockwise about O. The connecting
rod AB is 30.0cm long and end B is constrained to

move horizontally.

Figure 11.37

(a)

(b)

(a)

(b)

For the position shown in Fig. 11.37 determine
the angle between the connecting rod AB and
the horizontal and the length of OB.

How far does B move when angle AOB
changes from 50° to 120°?
Applying the sine rule:
AB A0
sin50°  sinB
from which,
) AOsin50°  10.0sin50°
sinB = =
AB 30.0
=0.2553

Hence B=sin~!0.2553=14°47" (or 165°13,
which is impossible in this case).

Hence the connecting rod AB makes an angle
of 14°47’ with the horizontal.

Angle OAB =180° —50° — 14°47' =115°13'.
Applying the sine rule:
300 OB
sin50°  sin115°13/
from which,

30.0sin115°13’
0B="""""""" _3543cm
sin50°
Figure 11.38 shows the initial and final positions of
the crank mechanism. In triangle O A’ B’, applying
the sine rule:

300 100
sin120° ~ sinA’B’O
from which,
10.0sin 120°
sin A'B'0 = — 7Y 0887
30.0

Figure 11.38

Hence A'B’O=sin"10.2887=16°47" (or 163°13
which is impossible in this case).
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Angle OA’B’ = 180° — 120° — 16°47" = 43°13'.
Applying the sine rule:

300 OB’
sin 120°

"~ sin43°013/

from which,

0B — 30.0.sin43°13’
sin 120°

Since OB = 35.43cmand OB’ = 23.72cm then BB’ =
3543 —-23.72=11.71cm.

=23.72cm

Hence B moves 11.71 cm when angle AOB changes
from 50° to 120°.

Problem 36. The area of a field is in the form of a
quadrilateral ABCD as shown in Fig. 11.39.
Determine its area.

Figure 11.39

A diagonal drawn from B to D divides the quadrilateral
into two triangles.

Area of quadrilateral ABCD
= area of triangle ABD + area of triangle BCD

= 1(39.8)(21.4) sin 114° + § (42.5)(62.3) sin 56°

=389.04 + 1097.5 = 1487 m>

Now try the following exercise

Exercise 52  Further problems on practical
situations involving trigonometry

1. PQ and QR are the phasors representing the
alternating currents in two branches of a cir-
cuit. Phasor PQ is 20.0 A and is horizontal.

Phasor QR (which is joined to the end of PQ
to form triangle POR) is 14.0A and is at an
angle of 35° to the horizontal. Determine the
resultant phasor PR and the angle it makes with
phasor PQ. [32.48 A, 14°19']

Three forces acting on a fixed point are repre-
sented by the sides of a triangle of dimensions
72cm, 9.6cm and 11.0cm. Determine the
angles between the lines of action and the
three forces. [80°25’,59°23', 40°12']

Calculate, correct to 3 significant figures, the
co-ordinates x and y to locate the hole centre
at P shown in Fig. 11.40.

[x=69.3mm, y=142mm]

—aP

Figure 11.40

An idler gear, 30mm in diameter, has to be
fitted between a 70 mm diameter driving gear
and a 90mm diameter driven gear as shown
in Fig. 11.41. Determine the value of angle 6
between the center lines. [130°]

90 mm dia

99.78 mm 0

@ 30 mm dia

— 70 mm dia

Figure 11.41

A reciprocating engine mechanism is shown
in Fig. 11.42. The crank AB is 12.0cm long
and the connecting rod BC is 32.0cm long.
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For the position shown determine the length
of AC and the angle between the crank and
the connecting rod. [40.25cm, 126°3']

Figure 11.42

From Fig. 11.42, determine how far C moves,
correct to the nearest millimetre when angle
CAB changes from 40° to 160°, B moving in
an anticlockwise direction. [19.8 cm]

A surveyor, standing W 25° S of a tower mea-
sures the angle of elevation of the top of the
tower as 46°30’. From a position E 23° S from

the tower the elevation of the top is 37°15'.
Determine the height of the tower if the
distance between the two observations is 75 m.

[36.2m]

An aeroplane is sighted due east from a radar
station at an elevation of 40° and a height
of 8000m and later at an elevation of 35°
and height 5500m in a direction E 70° S. If
it is descending uniformly, find the angle of
descent. Determine also the speed of the aero-
plane in km/h if the time between the two
observations is 45's. [13°57’, 829.9km/h]

Sixteen holes are equally spaced on a pitch cir-
cle of 70 mm diameter. Determine the length of
the chord joining the centres of two adjacent
holes. [13.66 mm]



Chapter 12

Cartesian and polar

12.1 Introduction
There are two ways in which the position of a point in
a plane can be represented. These are
(a) by Cartesian co-ordinates, i.e. (x, y), and

(b) by polar co-ordinates, i.e. (r, ), where r is a
‘radius’ from a fixed point and 6 is an angle from
a fixed point.

12.2 Changing from Cartesian into

polar co-ordinates

In Fig. 12.1, if lengths x and y are known, then the
length of r can be obtained from Pythagoras’ theorem
(see Chapter 11) since OPQ is a right-angled triangle.
Hence r2 = (x2 + yz)

from which, r=./x2+y?

yVa
P
I
, I
by
I
f I
[l >
O<—>|Q X
X

Figure 12.1

co-ordinates

From trigonometric ratios (see Chapter 11),

tanO:X
X

from which 6 =tan™—!

==

r=vx2+y? and @ =tan™! Y. are the two formulae we
x

need to change from Cartesian to polar co-ordinates. The
angle 6, which may be expressed in degrees or radians,
must always be measured from the positive x-axis, i.e.,
measured from the line OQ in Fig. 12.1. It is suggested
that when changing from Cartesian to polar co-ordinates
a diagram should always be sketched.

Problem 1. Change the Cartesian co-ordinates
(3, 4) into polar co-ordinates.

A diagram representing the point (3, 4) is shown in
Fig. 12.2.

Hoeemm g
N

Figure 12.2
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From Pythagoras’ theorem, r =+/32 +42=35 (note that
—5 has no meaning in this context). By trigonometric
ratios, § = tan~! § = 53.13° or 0.927 rad.

[note that 53.13°=53.13x(;r/180)rad=0.927 rad]

Hence (3, 4) in Cartesian co-ordinates corres-
ponds to (5, 53.13°) or (5, 0.927rad) in polar
co-ordinates.

Problem 2. Express in polar co-ordinates the
position (—4, 3).

A diagram representing the point using the Cartesian
co-ordinates (—4, 3) is shown in Fig. 12.3.

H------

A4
o
xv

v .

Figure 12.3

From Pythagoras’ theorem, r =+/42+32=5.
By trigonometric ratios, o=tan~! 4—3‘236.87o or
0.644 rad.

Hence 6 =180° —36.87°=143.13° or
0=m —0.644=2.498rad.

Hence the position of point P in polar co-ordinate
form is (5, 143.13°) or (5, 2.498 rad).

Problem 3. Express (=5, —12) in polar
co-ordinates.

A sketch showing the position (—5, —12) is shown in
Fig. 12.4.

r=+v524122=13

12
and a=tan" ! =
5

=67.38%0r1.176rad
Hence 6=180°+67.38° =247.38°0r
O=m+1.176 =4.318rad

12

Figure 12.4

Thus (-5, —12) in Cartesian co-ordinates corres-
ponds to (13, 247.38°) or (13, 4.318rad) in polar
co-ordinates.

Problem 4. Express (2, —5) in polar
co-ordinates.

A sketch showing the position (2, —5) is shown in
Fig. 12.5.

r=+/22452=4+/29 = 5.385 correct to

3 decimal places
—1 5 o
o= tan 5= 68.20° or 1.190rad

Hence 6=360° —68.20° =291.80° or
0=2mr —1.190 =5.093 rad

2

b 4

(o

Figure 12.5

Thus (2, —5) in Cartesian co-ordinates corresponds
to (5.385, 291.80°) or (5.385, 5.093rad) in polar
co-ordinates.
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Now try the following exercise If lengths r and angle 6 are known then x =r cos6 and
y=rsin# are the two formulae we need to change from

. . polar to Cartesian co-ordinates.
Exercise 53  Further problems on changing

from Cartesian into polar co-ordinates Problem 5. Change (4, 32°) into Cartesian

In Problems 1 to 8, express the given Cartesian co-ordinates.
co-ordinates as polar co-ordinates, correct to 2 dec-
imal places, in both degrees and in radians. A sketch showing the position (4, 32°) is shown in
1. 3,5  [(5.83,59.04°) or (5.83, 1.03rad)] Fig. 12.7.
oy ] Now x=rcost =4cos32°=3.39
2. (6.18,2.35) (OO, 20257 e dano
(6.61,0.36rad) and y=rsinf =4sin32° =2.12
_ [ (4.47,116.57°) or |
3 (=29 | (4.47,2.03rad) | ya
[ (6.55, 145.58°) or |
4. (=54,37) | (655,2.54rad) | oy |
— - I y
(7.62,203.20°) or =32 -
> 7.=3) (7.62, 3.55rad) ] P— 14
- - X
[ (4.33,236.31°) or | ,
6. (_24’ _36) i (433’ 412rad) ] Figure 12.7
[ (5.83,329.04°) or | Hence (4, 32°) in polar co-ordinates corresponds to
7. 6. =3 (5.83, 5.74tad) (3.39, 2.12) in Cartesian co-ordinates.
(15.68,307.75°) or | Problem 6. E 6, 137°) in Cartesi
8. (9.6, —12.4 . Express (6, ) in Cartesian
( ) [ (15.68,5.37rad) | co-ordinates.

A sketch showing the position (6, 137°) is shown in
Fig. 12.8.

12.3 Changing from polar into

q - = 0 =6cos137° = —4.388
Cartesian co-ordinates e rees €08

which corresponds to length OA in Fig. 12.8.
From the right-angled triangle OPQ in Fig. 12.6.
y=rsinf = 6sin137° = 4.092

X . Y . -
cost = - andsinf = e from which corresponds to length AB in Fig. 12.8.
trigonometric ratios
B VA
Hence x = rcosé and y = rsinéd
|
: r=6
ya |
|
, 9=137°
P H R
| A 0 X
!
: y
0 = R Figure 12.8
0« ~ Mo x
Thus (6, 137°) in polar co-ordinates corresponds to

(—4.388, 4.092) in Cartesian co-ordinates.

Figure 12.6
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(Note that when changing from polar to Cartesian
co-ordinates it is not quite so essential to draw
a sketch. Use of x =r cosf and y =r sin6@ automatically
produces the correct signs.)

Problem 7. Express (4.5, 5.16rad) in Cartesian
co-ordinates.

A sketch showing the position (4.5, 5.16rad) is shown
in Fig. 12.9.

x=rcosd =4.5c0s5.16 =1.948

VA
0=5.16 rad
[N\ A R
N :
r:|4.5
I
|
B

Figure 12.9

which corresponds to length OA in Fig. 12.9.

y=rsinf =4.5sin5.16 = —4.057

which corresponds to length AB in Fig. 12.9.

Thus (1.948, —4.057) in Cartesian co-ordinates
corresponds to (4.5, 5.16 rad) in polar co-ordinates.

Now try the following exercise

Exercise 54 Further problems on changing
polar into Cartesian co-ordinates

In Problems 1 to 8, express the given polar co-
ordinates as Cartesian co-ordinates, correct to
3 decimal places.

1. (5,75°) [(1.294, 4.830)]

2. (4.4, 1.12rad)
3. (7, 140°)

4. (3.6,2.51ad)
5. (10.8,210°)

[(1.917, 3.960)]
[(=5.362, 4.500)]
[(—2.884,2.154)]

[(=9.353, —5.400)]

6. (4,4rad) [(—2.615, —3.207)]
7. (1.5,300°) [(0.750, —1.299)]
8. (6,5.5rad) [(4.252, —4.233)]
9. Figure 12.10 shows 5 equally spaced holes on

an 80 mm pitch circle diameter. Calculate their
co-ordinates relative to axes Ox and Oy in (a)
polar form, (b) Cartesian form.

Calculate also the shortest distance between
the centres of two adjacent holes.

[(a) 40£18°, 40490°, 40£162°,
40£234°, 40£306°,

(b) (38.04+j12.36), (0 +j40),
(—38.04 +j12.36), (—23.51 — j32.36),
(23.51 —j32.36)
47.02mm]

VA

Figure 12.10

12.4 Use of Pol/Rec functions on

calculators

Another name for Cartesian co-ordinates is rectangu-
lar co-ordinates. Many scientific notation calculators
possess Pol and Rec functions. ‘Rec’ is an abbrevi-
ation of ‘rectangular’ (i.e., Cartesian) and ‘Pol’ is an
abbreviation of ‘polar’. Check the operation manual for
your particular calculator to determine how to use these
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two functions. They make changing from Cartesian to
polar co-ordinates, and vice-versa, so much quicker and
easier.

For example, with the Casio fx-83ES calculator, or
similar, to change the Cartesian number (3, 4) into polar
form, the following procedure is adopted:

1. Press ‘shift’ 2. Press ‘Pol’ 3. Enter 3
4. Enter ‘comma’ (obtained by ‘shift’ then ))

5. Enter 4 6. Press )

7.Press = The answeris: r =5,0 =53.13°

Hence, (3, 4) in Cartesian form is the same as
(5,53.13°) in polar form.

If the angle is required in radians, then before repeating
the above procedure press ‘shift’, ‘mode’ and then 4 to
change your calculator to radian mode.

Similarly, to change the polar form number
(7, 126°) into Cartesian or rectangular form, adopt the
following procedure:

1. Press ‘shift’

4. Enter ‘comma’

5. Enter 126 (assuming your calculator is in
degrees mode)

6. Press )

2. Press ‘Rec’ 3. Enter 7

7. Press =

The answer is: = —4.11, and scrolling across,
Y =5.66, correct to 2 decimal places.

Hence, (7, 126°) in polar form is the same as
(—4.11,5.66) in rectangular or Cartesian form.
Now return to Exercises 53 and 54 in this chapter and

use your calculator to determine the answers, and see
how much more quickly they may be obtained.




Chapter 13

The circle and its properties

13.1 Introduction

A circle is a plain figure enclosed by a curved line, every
point on which is equidistant from a point within, called
the centre.

13.2 Properties of circles

(i) The distance from the centre to the curve is
called the radius, r, of the circle (see OP in
Fig. 13.1).

Figure 13.1

(i) The boundary of a circle is called the circum-
ference, c.

(iii) Any straight line passing through the centre and
touching the circumference at each end is called
the diameter, d (see QR in Fig. 13.1). Thus
d=2r.

. . circumference
(iv) The ratio ——

- =a constant for any
. diameter
circle.

This constant is denoted by the Greek letter 7
(pronounced ‘pie’), where 7 =3.14159, correct
to 5 decimal places.
Hence ¢/d=m or ¢ = wd or c=2mr.

(v) A semicircle is one half of the whole circle.

(vi) A quadrant is one quarter of a whole circle.

(vii) A tangent to a circle is a straight line which
meets the circle in one point only and does not
cut the circle when produced. AC in Fig. 13.1 is
a tangent to the circle since it touches the curve
at point B only. If radius OB is drawn, then angle
ABO is aright angle.

(viii) A sector of a circle is the part of a circle between
radii (for example, the portion OXY of Fig. 13.2
is a sector). If a sector is less than a semicir-
cle it is called a minor sector, if greater than a
semicircle it is called a major sector.

X

N,

D\
R
Figure 13.2

(ix) A chord of a circle is any straight line which
divides the circle into two parts and is termin-
ated at each end by the circumference. S7, in
Fig. 13.2 is a chord.

(x) A segment is the name given to the parts into
which a circle is divided by a chord. If the
segment is less than a semicircle it is called a
minor segment (see shaded area in Fig. 13.2).
If the segment is greater than a semicircle it is
called a major segment (see the unshaded area
in Fig. 13.2).

(xi) An arc is a portion of the circumference of a
circle. The distance SRT in Fig. 13.2 is called
a minor arc and the distance SXYT is called a
major arc.
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(xii) The angle at the centre of a circle, subtended by
an arc, is double the angle at the circumference
subtended by the same arc. With reference to
Fig. 13.3, Angle AOC =2 x angle ABC.

(xiii) The angle in a semicircle is a right angle (see
angle BOP in Fig. 13.3).

Figure 13.3

Problem 1. If the diameter of a circle is 75 mm,
find its circumference.

Circumference, c=m x diameter =7 d
=m(75)=235.6mm.

Problem 2. InFig. 13.4, AB is a tangent to the
circle at B. If the circle radius is 40 mm and
AB=150mm, calculate the length AO.

B

Figure 13.4

Atangentto acircleis at right angles to aradius drawn
from the point of contact, i.e. ABO=90°. Hence, using
Pythagoras’ theorem:

AO?* = AB* + OB?

AO =/ (AB? + 0B?) = /[(150)2 + (40)2]

=155.2mm

Now try the following exercise

Exercise 55 Further problemson
properties of circles

1. If the radius of a circle is 41.3 mm, calculate
the circumference of the circle.

[259.5mm)]

2. Find the diameter of a circle whose perimeter
is 149.8 cm. [47.68 cm]

3. A crank mechanism is shown in Fig. 13.5,
where XY is a tangent to the circle at point X. If
the circle radius OX is 10cm and length OY is
40cm, determine the length of the connecting
rod XY. [38.73 cm]

X

O 40cm

Figure 13.5

4. If the circumference of the earth is 40 000 km
at the equator, calculate its diameter.

[12730km]

5. Calculate the length of wire in the paper clip
shown in Fig. 13.6. The dimensions are in
millimetres. [97.13 mm]

2.5rad

32
12

2.5rad \{'_ :k 5 |

3rad

Figure 13.6

13.3 Radians and degrees

One radian is defined as the angle subtended at the
centre of a circle by an arc equal in length to the radius.

Figure 13.7

With reference to Fig. 13.7,
for arc length s,

. S
0 radians = —
-
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When s = whole circumference (=2nr) then
s 2nr
=—=—=2m
r r
i.e. 2z radians =360° or x radians= 180°
180°
Thus, 1rad = = 57.30°, correct to 2 decimal
places.
. b4 T T
Since r rad = 180°, then 7= 90°, 3 =60°, 7= 45°,
and so on.

Problem 3. Convert to radians: (a) 125°
(b) 69°47’.

(a) Since 180° = rad then 1° =7 /180 rad, therefore
125° = 125 (l) —2182rad
180

(Note that © means ‘circular measure’ and indi-
cates radian measure.)

47°
b) 69°47' =69
(b) 0

=69.783°

T

69.783° = 69.783 (180

)C —1.218rad

Problem 4. Convert to degrees and minutes:
(a) 0.749 rad (b) 37/4 rad.

(a) Since s rad=180° then 1 rad=180° /7, therefore

1 ]
0.749=0.749 (ﬁ) =42915°
b4

0.915°=(0.915 x 60) =55/, correct to the near-
est minute, hence

0.749 rad = 42°55’

180\°
(b) Since 1 rad = (—) then

3 37 (180)° 3
2 rad = 22 (22) = 2(180)° = 135°
4 s\ 4

Problem 5. Express in radians, in terms of 7,
(a) 150° (b) 270° (c) 37.5°.

Since 180° = rad then 1°=180/x, hence

5
(1) 150°=150 (1180) rad = T” rad

(b) 270°=270 (l) rad =% rad

180 2
o v 75w Sn
(© 37.5°=375 (1—80) rad= T rad =7 rad

Now try the following exercise

Exercise 56
and degrees

Further problems on radians

1. Convert to radians in terms of 7: (a) 30°
b4 S S
b) 75° (c) 225°. — (b)) — —
(b) 75° (¢) [(a) 3 (b) 2 (© 1 }

2. Convert to radians: (a) 48° (b) 84°51
(c) 232°15'.
[(a) 0.838 (b) 1.481 (c) 4.054]

5 4
3. Convert to degrees: (a) Fnrad (b) ?nrad

(c) %rad. [(a) 150° (b) 80° (c) 105°]

4. Convert to degrees and minutes: (a) 0.0125rad
(b) 2.69rad (c) 7.241rad.

[(a) 0°43’ (b) 154°8' (c) 414°53']

13.4 Arclength and area of circles

and sectors

Arc length
From the definition of the radian in the previous section
and Fig. 13.7,

arc length, s =rf where 0 is in radians

Area of circle

For any circle, area = 7 X (radius)?

i.e. area = r?

2
nd
2 or —

d
Since r = —, then area =mr
2 4
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Area of sector

0
Area of a sector = 360 (r?) when 6 is in degrees

when 6 is in radians

Problem 6. A hockey pitch has a semicircle of
radius 14.63 m around each goal net. Find the area
enclosed by the semicircle, correct to the nearest
square metre.

. 1
Area of a semicircle = 57‘[?'2

1
When r = 14.63m, area = E71(14.63)2

ie. area of semicircle = 336 m?

Problem 7. Find the area of a circular metal
plate, correct to the nearest square millimetre,
having a diameter of 35.0 mm.

wd?

Area of a circle = 7r? =

7(35.0)°
4
i.e. area of circular plate = 962mm?

When d =35.0mm, area=

Problem 8. Find the area of a circle having a
circumference of 60.0 mm.

Circumference, ¢ = 2mr

from which radius r = £ _ 60.0 — M

T2 oxm
Area of a circle = 71?2
30.0\2
i.e. area =1 (—) = 286.5mm?
T

Problem 9. Find the length of arc of a circle of
radius 5.5 cm when the angle subtended at the
centre is 1.20rad.

Length of arc, s =r6, where 6 is in radians, hence

s = (5.5)(1.20) = 6.60cm

Problem 10. Determine the diameter and
circumference of a circle if an arc of length 4.75cm
subtends an angle of 0.91 rad.

s 4.75
—=——=>522cm
6 091
Diameter=2 x radius=2 x 5.22=10.44 cm

Circumference, c=md =7 (10.44) =32.80 cm

Since s = r0 thenr =

Problem 11. If an angle of 125° is subtended by
an arc of a circle of radius 8.4 cm, find the length of
(a) the minor arc, and (b) the major arc, correct to

3 significant figures.

(a) Since 180°=mrad then loz(%)rad and

T
125°=125 (—)rad.
180
Length of minor arc,
T
s=rf = (8.4)(125) (1—80) —18.3cm,

correct to 3 significant figures.

(b) Length of major arc
= (circumference — minor arc)

=2m(8.4) —18.3=34.5cm,
correct to 3 significant figures.

(Alternatively, major arc =r6
=8.4(360—125)(7/180)=34.5cm.)

Problem 12. Determine the angle, in degrees and
minutes, subtended at the centre of a circle of
diameter 42 mm by an arc of length 36 mm.
Calculate also the area of the minor sector formed.

Since length of arc, s =r0 then 6 =s/r

diameter 42
—————=—=21mm
2 2

36

hence 0=~ = 2> =1.7143rad
r 21

Radius, r =

1.7143rad = 1.7143 x (180/7)° = 98.22°=98°13' =
angle subtended at centre of circle.

Area of sector
=1120=121)2(1.7143) = 378 mm?.

Problem 13. A football stadium floodlight can
spread its illumination over an angle of 45° to a
distance of 55 m. Determine the maximum area that
is floodlit.
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Floodlit area = area of sector

12 1 5 T
= 120 = ~(55)% (45 x =
27 0=5¢ )( X18O)

= 1188 m?

Problem 14. An automatic garden spray produces
a spray to a distance of 1.8 m and revolves through
an angle o which may be varied. If the desired
spray catchment area is to be 2.5m?, to what should
angle « be set, correct to the nearest degree.

Area of sector = %r29, hence 2.5= %(1.8)205

25x2
=1.5432rad
1.82

from which, o =

180°
1.5432rad=( 1.5432 x — ) =88.42°
T
Hence angle o =88°, correct to the nearest degree.

Problem 15. The angle of a tapered groove is
checked using a 20 mm diameter roller as shown in
Fig. 13.8. If the roller lies 2.12 mm below the top of
the groove, determine the value of angle 6.

Ym 30mm
7

\4
|

2.12mm

Figure 13.8

In Fig. 13.9, triangle ABC is right-angled at C (see
Section 13.2 (vii)).

2.12mm
l b 30mm
‘(
A
Figure 13.9

Length BC=10mm (i.e. the radius of the circle), and
AB=30—-10—2.12=17.88 mm from Fig. 13.9.
.0 10 0 .1 10
Hence, sin— = —— and — =sin ——— | =34°
2 17.88 2
and angle 6 = 68°

Now try the following exercise

Exercise 57 Further problems on arc
length and area of circles and sectors

1. Calculate the area of a circle of radius 6.0 cm,
correct to the nearest square centimetre.
[113cm?]

2. Thediameter of acircleis 55.0 mm. Determine
its area, correct to the nearest square
millimetre. [2376 mm?]

3. The perimeter of a circle is 150 mm. Find its
area, correct to the nearest square millimetre.
[1790 mm?]

4. Find the area of the sector, correct to the
nearest square millimetre, of a circle having
a radius of 35mm, with angle subtended at
centre of 75°. [802 mm?]

5. An annulus has an outside diameter of
49.0mm and an inside diameter of 15.0 mm.
Find its area correct to 4 significant figures.

[1709 mm?]

6. Find the area, correct to the nearest square
metre, of a 2m wide path surrounding a
circular plot of land 200 m in diameter.

[1269m?]

7. A rectangular park measures 50 m by 40m. A
3m flower bed is made round the two longer
sides and one short side. A circular fish pond
of diameter 8.0m is constructed in the centre
of the park. It is planned to grass the remaining
area. Find, correct to the nearest square metre,
the area of grass. [1548 mz]

8. Find the length of an arc of a circle of radius
8.32 cm when the angle subtended at the centre
is 2.14 rad. Calculate also the area of the minor
sector formed.

[17.80cm, 74.07 cm?]

9. If the angle subtended at the centre of a circle
of diameter 82 mm is 1.46rad, find the lengths
of the (a) minor arc (b) major arc.

[(a) 59.86 mm (b) 197.8 mm]

10. A pendulum of length 1.5m swings through
an angle of 10° in a single swing. Find, in
centimetres, the length of the arc traced by the
pendulum bob. [26.2cm]
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11.

12.

13.

14.

15.

16.

Determine the length of the radius and circum-
ference of a circle if an arc length of 32.6cm
subtends an angle of 3.76rad.

[8.67cm, 54.48 cm]

Determine the angle of lap, in degrees and min-
utes, if 180 mm of a belt drive are in contact
with a pulley of diameter 250 mm.

[82°30/]

Determine the number of complete revolutions

a motorcycle wheel will make in travelling

2km, if the wheel’s diameter is 85.1 cm.
[748]

The floodlights at a sports ground spread its
illumination over an angle of 40° to a distance
of 48 m. Determine (a) the angle in radians,
and (b) the maximum area that is floodlit.
[(a) 0.698rad (b) 804.1 m?]

Determine (a) the shaded area in Fig. 13.10
(b) the percentage of the whole sector that the
area of the shaded portion represents.

[(a) 396 mm? (b) 42.24%]

Figure 13.10

Determine the length of steel strip required to
make the clip shown in Fig. 13.11.
[701.8 mm]

100 mm

100mm

Figure 13.11

17. A 50° tapered hole is checked with a 40 mm
diameter ball as shown in Fig. 13.12. Deter-
mine the length shown as x.

[7.74 mm)]

A 4

_¢x_‘ 70mm B

4

Figure 13.12

13.5 The equation of a circle

The simplest equation of a circle, centre at the origin,
radius r, is given by:

2yt =p2

For example, Fig. 13.13 shows a circle x> 4 y? =9.
More generally, the equation of a circle, centre (a, b),
radius r, is given by:

(x—a)’ +(y —b)* =r? (1)

Figure 13.14 shows a circle (x —2)> 4 (y —3)? =4.
The general equation of a circle is:

x4y +2ex4+2fy+c=0 )

Figure 13.13

Multiplying out the bracketed terms in equation (1)
gives:

x2—2ax+az+y2—2by+l)2=r2
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y
S
4 (//7,
H T2 i
Fbh=3 H
[
e 2

Figure 13.14

Comparing this with equation (2) gives:

2e=—2a, i 2e
e=—2a, ic.a=——
==

2
and 2f =-2b, ie. b= —%

and c=a?+b%*—r?,
ie, r=vV@+b -c
Thus, for example, the equation

x2+y2—4x—6y+9=0

. . —4
represents a circle with centre a:—(T),

—6
b= —(7), i.e. at (2, 3) and radius
r=+(2%2432-9)=2.
Hence x2+ y? —4x —6y +9=0 is the circle shown in

Fig. 13.14 (which may be checked by multiplying out
the brackets in the equation

(x =27+ (y—3)" =4

Problem 16. Determine (a) the radius, and (b) the
co-ordinates of the centre of the circle given by the
equation: x% 4 y% 4 8x —2y+8=0.

x2 4 y? +8x — 2y +8=01is of the form shown in equa-
tion (2),

where a = — 8 =4, b=— -2 -1
2 2

and r=[(=4)2+(1)2—8]=+/9=3

Hence x% + y2 +8x —2y+8=0 represents acircle cen-
tre (—4, 1) and radius 3, as shown in Fig. 13.15.

N

B

Figure 13.15

Alternatively, x>+ y?48x —2y+8=0 may be rear-
ranged as:

@42+ (y=1D*=9=0
ie. x+4>+(y-1)2=32
which represents a circle, centre (—4, 1) and radius 3,

as stated above.

Problem 17. Sketch the circle given by the
equation: x>+ y> —4x +6y—3=0.

The equation of a circle, centre (a, b), radius r is
given by:
(x—a)+(y—b’=r

The general equation of a circle is

x2+y2+26x+2fy+c=0.
2e 2f

From above a=——, b=——— and
2 2

=@ o).

Hence if x> +y? —4x 46y —3=0

then a:—(_—4) =2, b:—(g) =-3
2 2

and r =12 +(=3)> = (-3)]

Thus the circle has centre (2, —3) and radius 4, as
shown in Fig. 13.16.

Alternatively, x> 4 y? —4x+6y—3=0 may be rear-
ranged as:

(x—2)2+(y+3)2-3-13=0
ie. (x =22+ (y+3)?=4>
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Figure 13.16

which represents a circle, centre (2, —3) and radius 4,
as stated above.

Now try the following exercise

Exercise 58 Further problems on the
equation of a circle

1. Determine the radius and the co-ordinates of
the centre of the circle given by the equation
x2+y24+6x—2y—26=0.

[6, (=3, D]

2. Sketch the circle given by the equation
x2+y? —6x+4y—3=0.

[Centre at (3, —2), radius 4]

3. Sketch the curve x2 + (y— 1)2-25=0.
[Circle, centre (0, 1), radius 5]

4. Sketch the curve x =6,/ [1 = (y/6)2].
[Circle, centre (0, 0), radius 6]

13.6 Linear and angular velocity

Linear velocity

Linear velocity v is defined as the rate of change of
linear displacement s with respect to time 7. For motion
in a straight line:

change of displacement

linear velocity = -
change of time

ie. V= - (D)
The unit of linear velocity is metres per second (m/s).

Angular velocity

The speed of revolution of a wheel or a shaft is usually
measured in revolutions per minute or revolutions per
second but these units do not form part of a coherent
system of units. The basis in SI units is the angle turned
through in one second.

Angular velocity is defined as the rate of change
of angular displacement 6, with respect to time ¢.
For an object rotating about a fixed axis at a constant
speed:

. angle turned through
angular velocity =

time taken

ie. w=- @)

The unit of angular velocity is radians per second
(rad/s). An object rotating at a constant speed of
n revolutions per second subtends an angle of 2wn
radians in one second, i.e., its angular velocity w is
given by:

w=2xnrad/s 3)

From page 124, s=r0 and from equation (2) above,
0 =wt
hence s =r(wt)

from which ; = wr
However, from equation (1) v = §

hence V=wr 4)
Equation (4) gives the relationship between linear

velocity v and angular velocity .

Problem 18. A wheel of diameter 540 mm is

0
rotating at rev/min. Calculate the angular

velocity of the wheel and the linear velocity of a
point on the rim of the wheel.

From equation (3), angular velocity w = 27n where n
is the speed of revolution in rev/s. Since in this case
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1500

. 00
n= rev/min= —— =rev/s, then

60

1500
angular velocityw = 27 (—) =50rad/s
601

The linear velocity of a point on the rim, v = wr, where

r is the radius of the wheel, i.e.

4 .
ﬂrnrn=%m20.27m.
2 2

Thus linear velocity v = wr = (50)(0.27)
=13.5m/s

Problem 19. A car is travelling at 64.8 km/h and

has wheels of diameter 600 mm.

(a) Find the angular velocity of the wheels in both
rad/s and rev/min.

(b) If the speed remains constant for 1.44 km,
determine the number of revolutions made by
the wheel, assuming no slipping occurs.

(a) Linear velocity v =64.8km/h

648 1000 LB g
=648 77 X 10005 X S0 s — 18 m/s:

. 600
The radius of a wheel = - = 300mm

=0.3m.

From equation (5), v = wr, from which,

angular velocit v 18
ular velocity w = — = —
& YeO=TT03

=60rad/s

From equation (4), angular velocity, w = 2nn,
where 7 is in rev/s.

w 60
Hence angular speed n = — = —rev/s
2r  2mw

60
=60 x —rev/min
2
= 573rev/min
(b) From equation (1), since v =s/t then the time

taken to travel 1.44km, i.e. 1440m at a constant
speed of 18 m/s is given by:

) s 1440m
timet = — = =
v 18m/s

Since a wheel is rotating at 573 rev/min, then in
80/60 minutes it makes

80
573 rev/min x % min = 764 revolutions

Now try the following exercise

Exercise 59 Further problems on linear
and angular velocity

1. A pulley driving a belt has a diameter of
300mm and is turning at 2700/ revolutions
per minute. Find the angular velocity of the
pulley and the linear velocity of the belt
assuming that no slip occurs.

[w=90rad/s, v=13.5m/s]

2. Abicycleistravelling at 36 km/h and the diam-
eter of the wheels of the bicycle is 500 mm.
Determine the linear velocity of a point on the
rim of one of the wheels of the bicycle, and
the angular velocity of the wheels.

[v=10m/s, ®=40rad/s]

3. Atrainis travelling at 108 km/h and has wheels
of diameter 800 mm.
(a) Determine the angular velocity of the
wheels in both rad/s and rev/min.

(b) Ifthe speed remains constant for 2.70 km,
determine the number of revolutions
made by a wheel, assuming no slipping

occurs.
(a) 75rad/s, 716.2rev/min
(b) 1074 revs

13.7 Centripetal force

When an object moves in a circular path at constant
speed, its direction of motion is continually changing
and hence its velocity (which depends on both magni-
tude and direction) is also continually changing. Since
acceleration is the (change in velocity)/(time taken), the
object has an acceleration. Let the object be moving
with a constant angular velocity of @ and a tangential
velocity of magnitude v and let the change of veloc-
ity for a small change of angle of 6 (=wt) be V in
Fig. 13.17. Then vy —v;=V. The vector diagram is
shown in Fig. 13.17(b) and since the magnitudes of v;
and vy are the same, i.e. v, the vector diagram is an
isosceles triangle.
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2]

SIS

(a) (b)

Figure 13.17

Bisecting the angle between vy and v gives:

.0 V2 Vv
Sin— = — = —
2 v 2v
. .0
i.e. V =2vsin— (1)
2
Since 0 =wt then
0
t=— )
w

Dividing equation (1) by equation (2) gives:
vV 2vsin(0/2) _ vwsin(6/2)

o O/ 0/
sin(0/2)
For small angles ———— =~ 1,
©/2)
V' change of velocity

hence — = -
t change of time

= acceleration a = vw

However, w = Y (from Section 13.6)
r

v2

v
thus vw=v-— = —
r r

2
. . . v .
i.e. the acceleration a is — and is towards the centre of

;
the circle of motion (along V). Itis called the centripetal
acceleration. If the mass of the rotating object is m, then
mv
by Newton’s second law, the centripetal force is —

r
and its direction is towards the centre of the circle of
motion.

Problem 20. A vehicle of mass 750kg travels
around a bend of radius 150 m, at 50.4 km/h.
Determine the centripetal force acting on the
vehicle.

2
mv
The centripetal force is given by —— and its direction

is towards the centre of the circle.

Mass m =750kg, v =50.4km/h

50.4 x 1000
=————m/s
60 x 60
=14m/s
and radius r =150m,
750(14)?
thus centripetal force = # =980 N.

Problem 21. An object is suspended by a thread
250 mm long and both object and thread move in a
horizontal circle with a constant angular velocity of
2.0rad/s. If the tension in the thread is 12.5N,
determine the mass of the object.

Centripetal force (i.e. tension in thread),
mv?
F=——=125N
r

Angular velocity w=2.0rad/s and
radius » =250mm=0.25m.

Since linear velocity v=cwr, v=(2.0)(0.25)

=0.5m/s.
. mv? Fr
Since F = ——, then mass m = —
r v
12.5)(0.25
i.c. mass of object, m= % =12.5kg

Problem 22. An aircraft is turning at constant
altitude, the turn following the arc of a circle of
radius 1.5km. If the maximum allowable
acceleration of the aircraft is 2.5 g, determine the
maximum speed of the turn in km/h. Take g as
9.8 m/s?.

The acceleration of an object turning in a circle is
2

v . .
—. Thus, to determine the maximum speed of turn,
;

v2

=2.5g, from which,

r
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velocity, v = /(2.5 gr) = /(2.5)(9.8)(1500)

=+/36750=191.7m/s
60 x 60

d191.7m/s=191.7
an s 71000

km/h=690km/h

Now try the following exercise

Exercise 60 Further problems on
centripetal force

1. Calculate the tension in a string when it is used
to whirl a stone of mass 200 g round in a hor-
izontal circle of radius 90cm with a constant
speed of 3m/s. [2N]

Calculate the centripetal force acting on a
vehicle of mass 1 tonne when travelling aro-
und a bend of radius 125 m at 40 km/h. If this
force should not exceed 750N, determine the
reduction in speed of the vehicle to meet this
requirement.

[988N, 5.14km/h]

A speed-boat negotiates an S-bend consist-
ing of two circular arcs of radii 100m and
150 m. If the speed of the boat is constant at
34 km/h, determine the change in acceleration
when leaving one arc and entering the other.
[1.49 m/s?]



Revision Test 4

This Revision Test covers the material contained in Chapters 11 to 13. The marks for each question are shown in
brackets at the end of each question.

1.

A 2.0m long ladder is placed against a perpen-
dicular pylon with its foot 52 cm from the pylon.
(a) Find how far up the pylon (correct to the near-
est mm) the ladder reaches. (b) If the foot of the
ladder is moved 10cm towards the pylon how far
does the top of the ladder rise? (7

Evaluate correct to 4 significant figures:
(a) cos124°13" (b) cot72.68° “)

From a point on horizontal ground a surveyor
measures the angle of elevation of a church spire
as 15°. He moves 30m nearer to the church and
measures the angle of elevation as 20°. Calculate

the height of the spire. )
If secant 6=2.4613 determine the acute
angle 0 4)

Evaluate, correct to 3 significant figures:

3.5cosec31°17" — cot(—12°)
3sec79°41’

&)

A man leaves a point walking at 6.5km/h in
a direction E 20°N (i.e. a bearing of 70°). A
cyclist leaves the same point at the same time in a
direction E40° S (i.e. abearing of 130°) travelling
at a constant speed. Find the average speed of the
cyclist if the walker and cyclist are 80km apart
after 5 hours. (8)

A crank mechanism shown in Fig. RT4.1 com-
prises arm OP, of length 0.90m, which rotates
anti-clockwise about the fixed point O, and
connecting rod PQ of length 4.20 m. End Q moves
horizontally in a straight line OR.

(a) If ZPOR is initially zero, how far does end
Q travel in ;11 revolution.

Figure RT4.1

10.

11.

12.

13.

(b) If ZPOR is initially 40° find the angle
between the connecting rod and the horizon-
tal and the length OQ.

(c) Find the distance Q moves (correct to the
nearest cm) when ZPOR changes from 40°
to 140°. (16)

Change the following Cartesian co-ordinates into
polar co-ordinates, correct to 2 decimal places, in
both degrees and in radians:

(a) (—2.3,54) (b) (7.6,-9.2) (10)

Change the following polar co-ordinates into
Cartesian co-ordinates, correct to 3 decimal
places: (a) (6.5, 132°) (b) (3, 3rad) (6)

(a) Convert 2.154 radians into degrees and
minutes.

(b) Change 71°17’ into radians. 4)

140mm of a belt drive is in contact with a pul-
ley of diameter 180 mm which is turning at 300
revolutions per minute. Determine (a) the angle
of lap, (b) the angular velocity of the pulley, and
(c) the linear velocity of the belt assuming that no
slipping occurs. )

Figure RT4.2 shows a cross-section through a
circular water container where the shaded area
represents the water in the container. Determine:
(a) the depth, &, (b) the area of the shaded portion,
and (c) the area of the unshaded area. (11)

Figure RT4.2

Determine, (a) the co-ordinates of the centre of
the circle, and (b) the radius, given the equation

x4+ y?—2x+6y+6=0 (7



Chapter 14

Trigonometric waveforms

14.1 Graphs of trigonometric

functions

By drawing up tables of values from 0° to 360°, graphs
of y=sin A, y=cos A and y=tan A may be plotted.
Values obtained with a calculator (correct to 3 deci-
mal places—which is more than sufficient for plotting
graphs), using 30° intervals, are shown below, with the
respective graphs shown in Fig. 14.1.

(a) y=sin A
A 0 30° 60° 90° 120° 150° 180°
sinA 0 0.500 0.866 1.000 0.866 0.500 0

A 210°  240° 270° 300° 330° 360°
sinA —0.500 —0.866 —1.000 —0.866 —0.500 0

(b) y=cos A
A 0 30° 60° 90° 120° 150° 180°
cos A 1.000 0.866 0.500 0 —0.500 —0.866 —1.000

A 210° 240°  270° 300° 330° 360°

cosA —0.866 —0.500 O 0.500 0.866 1.000

(c)y=tan A
A 0 30° 60° 90° 120° 150°  180°
tanA 0 0.577 1.732 oo —1.732 —0.577 O

A 210° 240° 270° 300° 330°  360°

tanA 0.577 1732 oo —1.732 —0.577 O

(a) ) Z N
1.0

0.5

b — — — — ——

(2]

o
>

o

-0.5

-1.0

—————————®

(b) yaA
1.0

05

0 30 60 90\ 120 150 180 210 240,270 300 330 360 A°

|
|
|
:
6
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

30 60 90 120 A

Figure 14.1

From Fig. 14.1 it is seen that:

(i) Sine and cosine graphs oscillate between peak
values of +£1.

(i) The cosine curve is the same shape as the sine
curve but displaced by 90°.

(iii) The sine and cosine curves are continuous and
they repeat at intervals of 360°; the tangent
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curve appears to be discontinuous and repeats at
intervals of 180°.

14.2 Angles of any magnitude

@

180°

Figure 14.2 shows rectangular axes XX’ and YY’
intersecting at origin 0. As with graphical work,
measurements made to the right and above 0 are
positive while those to the left and downwards
are negative. Let OA be free to rotate about 0.
By convention, when OA moves anticlockwise
angular measurement is considered positive, and
vice-versa.

90°
Y

Quadrant 2 Quadrant 1

+ +

_ .o

360°

Quadrant 3 Quadrant 4

270°

Figure 14.2

(ii)

Let OA be rotated anticlockwise so that 0; is any
angle in the first quadrant and let perpendicular
AB be constructed to form the right-angled tri-
angle OAB (see Fig. 14.3). Since all three sides
of the triangle are positive, all six trigonometric
ratios are positive in the first quadrant. (Note: OA
is always positive since it is the radius of a circle.)

(iii)

(iv)

)

(vi)

Let OA be further rotated so that 6, is any angle
in the second quadrant and let AC be constructed
to form the right-angled triangle OAC. Then:

+ J—
sinp = — =+ costh=— = —
+ +
+ +
tanth = — = — cosecth = — =+
— +
+ J—
secth = —

=— cothh=—=—
+

Let OA be further rotated so that 65 is any angle
in the third quadrant and let AD be constructed
to form the right-angled triangle OAD. Then:

sinfs = i = — (and hence cosec 03 is —)
costs = i = — (and hence sec0s is +)
tan63 = — = (and hence cot 3 is —)

Let OA be further rotated so that 64 is any angle
in the fourth quadrant and let AE be constructed
to form the right-angled triangle OAE. Then:

sinfy = i = — (and hence cosec 04 is —)
+ .

cosfy = I = + (and hence secy is +)

tan 6y = i = — (and hence cotfy is —)

The results obtained in (ii) to (v) are summarized
in Fig. 14.4. The letters underlined spell the word
CAST when starting in the fourth quadrant and
moving in an anticlockwise direction.

135

90°
Quadrant 2 Quadrant 1
5 A
I & + I
* 5 I+
0. + O °
180° LII—' _ b 04 - 0
Cc! b3 A %4 TEB 360°
| |
- f n :,
! |
|
A A
Quadrant 3 Quadrant 4
270°
Figure 14.3

90°
Sine (and cosecant) All positive
positive
<] OO
180 360°
Tangent Cosine
(and cotangent) (and secant)
positive positive

270°

Figure 14.4
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(vii) In the first quadrant of Fig. 14.1 all the curves
have positive values; in the second only sine is
positive; in the third only tangent is positive;
in the fourth only cosine is positive (exactly as
summarized in Fig. 14.4).

A knowledge of angles of any magnitude is needed
when finding, for example, all the angles between 0°
and 360° whose sine is, say, 0.3261.1f 0.3261 is entered
into a calculator and then the inverse sine key pressed
(or sin~! key) the answer 19.03° appears. However
there is a second angle between 0° and 360° which the
calculator does not give. Sine is also positive in the sec-
ond quadrant (either from CAST or from Fig. 14.1(a)).
The other angle is shown in Fig. 14.5 as angle 6
where 6 =180°—19.03°=160.97°. Thus 19.03° and
160.97° are the angles between 0° and 360° whose
sine is 0.3261 (check that sin 160.97° = 0.3261 on your
calculator).

90°

19.03° 19.03° 0°

180° 360°

270°

Figure 14.5

Be careful! Your calculator only gives you one of these
answers. The second answer needs to be deduced from
a knowledge of angles of any magnitude, as shown in
the following problems.

Problem 1. Determine all the angles between 0°
and 360° whose sine is —0.4638

The angles whose sine is —0.4638 occurs in the
third and fourth quadrants since sine is negative in
these quadrants (see Fig. 14.6(a)). From Fig. 14.6(b),
6 =sin"'0.4638=27°38.

Measured from 0°, the two angles between 0° and
360° whose sine is —0.4638 are 180°+27°38/, i.e.
207°38" and 360°—27°38’, i.e. 332°22’. (Note that
a calculator generally only gives one answer, i.e.
—27.632588°).

y A y=sinx

207°38" 332°42'

—0.4638

-1.0

90°
S A
o°
180° 11— B 360°
T c
270°
(b)

Figure 14.6

Problem 2. Determine all the angles between 0°
and 360° whose tangent is 1.7629

A tangent is positive in the first and third quad-
rants (see Fig. 14.7(a)). From Fig. 14.7(b),
0 =tan"!1.7629 =60°26'. Measured from 0°, the two

y=tan x
e "( | | |
| | | |
| | | |
17629 —f1---4-—f | |
I R
of /90" sA80°/ 270° /" 1360° X
60°26'I 1240°26" !
| | | |
| | | |
| | | |
(@)
90°
s A
180° d o
o 360°
T c
270°
(b)
Figure 14.7
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angles between 0° and 360° whose tangent is 1.7629
are 60°26’ and 180° + 60°26’, i.e. 240°26’.

Problem 3. Solve sec™! (—2.1499) =« for angles
of o between 0° and 360°.

Secant is negative in the second and third quad-
rants (i.e. the same as for cosine). From Fig. 14.8,

0 =sec 12.1499 =cos ! =62°17".

2.1499
Measured from 0°, the two angles between 0° and 360°

whose secant is —2.1499 are
o =180°—62°17 =117°43’ and
o =180°+62°17 = 242°17

90°

o

i 0
180 £ 360°

270°

Figure 14.8

Problem 4. Solve cot™!1.3111=a« for angles of
o between 0° and 360°.

Cotangent is positive in the first and third quad-
rants (i.e. same as for tangent). From Fig. 14.9,

f=cot~'1.3111=tan"! (1.3111) =37°20.
90°
S A
180° ; 0 oo
T C
270°

Figure 14.9

Hence o = 37°20
and a = 180° +37°20" = 217°20'

Now try the following exercise

Exercise 61 Further problemson
evaluating trigonometric ratios of any
maghnitude

1. Findall the angles between 0° and 360° whose
sine is —0.7321.
[227°4 and 312°56]

2. Determine the angles between 0° and 360°
whose cosecant is 2.5317.
[23°16" and 156°44']

3. [If cotangent x =—0.6312, determine the val-
ues of x in the range 0°<x<360°.
[122°16 and 302°16']
In Problems 4 to 6 solve the given equations.

4. cos~!(—0.5316)=¢

[£=122°7" and 237°53']
5. sec12.3162=x

[x =64°25" and 295°35']

6. tan—10.8314=0
[0 =39°44" and 219°44']

14.3 The production of a sine and

cosine wave

In Fig. 14.10, let OR be a vector 1 unit long and
free to rotate anticlockwise about O. In one rev-
olution a circle is produced and is shown with
15° sectors. Each radius arm has a vertical and
a horizontal component. For example, at 30°, the
vertical component is 7'S and the horizontal component
is OS.
From trigonometric ratios,

T T
8in30° = —S = —S, i.e. TS =sin30°
TO 1
and cos30° = ﬁ = ﬁ, i.e. OS =cos30°
TO 1

The vertical component 7'S may be projected across
to 7'S’, which is the corresponding value of 30°
on the graph of y against angle x°. If all such
vertical components as 7S are projected on to the
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yaA
90° 1.0}
""" ' y=sin x
T : /
Lo
bl Angle x°
:S ! 1 1 1 1 1 1 1 1 Py #
30° 60° 120° 210° 270° 330°
-—0.5
270° I
Figure 14.10
y=cos x
S|4
|
|
’ Angle x°
900 : O ! 1 1 1 1 1 1 1 1 t
30° 60° 120° 180° 240° 300° 360°

-
n
o
°

T

Figure 14.11

graph, then a sine wave is produced as shown in
Fig. 14.10.

If all horizontal components such as OS are projected 0 0 0 225 450 1.0
on to a graph of y against angle x°, then a cosine wave
is produced. It is easier to visualize these projections by

A° 2A  sin2A A° 2A  sin2A

30 60 0.866 240 480 0.866

redrawing the circle with the radius arm OR initially in 45 90 1.0 270 540 0
a vertical position as shown in Fig. 14.11.

From Figs. 14.10 and 14.11 it is seen that a cosine 60 120 0.866 300 600 —0.866
curve is of the same form as the sine curve but is 90 180 0 315 630 —1.0

displaced by 90° (or 7 /2radians).
120 240 —-0.866 330 660 —0.866

) X 135 270 —1.0 360 720 0
14.4 Sine and cosine curves
150 300 —0.866

Graphs of sine and cosine waveforms 180 360 0

1) A g¥aph of y= sipA is §h0wn by tht') broken line 210 420 0.866
in Fig. 14.12 and is obtained by drawing up a table
of values as in Section 14.1. A similar table may
be produced for y =sin2A. A graph of y=sin2A is shown in Fig. 14.12.




VA

1.0

—-1.0F

Figure 14.12

(i) Agraphofy=sin %A isshowninFig. 14.13 using

the following table of values.

A° 1A SUEY\
0 0 0
30 15 0.259
60 30 0.500
90 45 0.707
120 60 0.866
150 75 0.966
180 90 1.00
210 105 0.966
240 120 0.866
270 135 0.707
300 150 0.500
330 165 0.259
360 180 0
7\ :
y=sinA y=sin1A
o X 2
/
/// \\\
/ AN
/ . \ . ! .
0 90° 180°  270° 3602 A0
N /
\\ //
\ /
//
-1.0F S~

Figure 14.13

Trigonometric waveforms
VA
1.0~~~
N\

0 A
\ /
N\ /7

AN 7/
-1.0f S~

Figure 14.14

(iii) A graph of y=cos A is shown by the broken line
in Fig. 14.14 and is obtained by drawing up a
table of values. A similar table may be produced
for y=cos2A with the result as shown.

(iv) A graph of y=cos %A is shown in Fig. 14.15
which may be produced by drawing up a table
of values, similar to above.

7
1.0 y=costA y=cosA_--
>
/
/
/
! 1 >
0 90° 180~ 2/70o 360° A°
\\
\
\\
~1.0} -

Figure 14.15

Periodic functions and period

@

(i1)

(iii)

Each of the graphs shown in Figs. 14.12 to 14.15
will repeat themselves as angle A increases and
are thus called periodic functions.

y=sin A and y=cos A repeat themselves every
360° (or 2mradians); thus 360° is called the
period of these waveforms. y=sin2A and
y=cos2A repeat themselves every 180° (or
7 radians); thus 180° is the period of these
waveforms.

In general, if y=sin pA or y=cos pA (where p
is a constant) then the period of the waveform is
360°/p (or 21t/ prad). Hence if y=sin3A then
the period is 360/3, i.e. 120°, and if y=cos4A
then the period is 360/4, i.e. 90°.

139
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Amplitude

Amplitude is the name given to the maximum or peak
value of a sine wave. Each of the graphs shown in
Figs. 14.12 to 14.15 has an amplitude of +1 (i.e. they
oscillate between +1 and —1). However, if y=4sin A,
each of the values in the table is multiplied by 4 and
the maximum value, and thus amplitude, is 4. Simi-
larly, if y=5cos2A, the amplitude is 5 and the period is
360°/2, i.e. 180°.

Problem 5. Sketch y=sin3A between A=0°
and A=360°.

Amplitude=1; period=360°/3 =120°.
A sketch of y=sin3A is shown in Fig. 14.16.

VA
y=sin 3A
1.0}
0 90° 180° 270° 360° A0
71 o -

Figure 14.16

Problem 6. Sketch y=3sin2A from A=0 to
A =2 radians.

Amplitude=3, period=2m /2 = rads (or 180°).
A sketch of y=3sin2A is shown in Fig. 14.17.

yA
=3sin 2A
sl y
¢ ! ; L »
0 90"\/180" 270° 360° A°
73 -

Figure 14.17

Problem 7. Sketch y=4cos2x from x =0° to
x=360°.

Amplitude=4; period=360°/2=180°.
A sketch of y=4cos2x is shown in Fig. 14.18.

VA
4 y=4cos 2x
7
1 1 1 1 t
0 90° 180° 270° 360° X°
74 -

Figure 14.18

3
Problem 8. Sketch y=2sin gA over one cycle.

360°  360° x5
Amplitude=2; period= = TX

3 =600°.
5

3
A sketch of y=2sin gA is shown in Fig. 14.19.

7y
2F Ch i 3
/y72 sin 5A
1 1 1 '] t
0 180° 360° 540° / 600° A°
—2F

Figure 14.19

Lagging and leading angles

(i) A sine or cosine curve may not always start at 0°.
To show this a periodic function is represented
by y=sin(Ax«a) or y=cos(Ax«a) where «
is a phase displacement compared with y =sin A
or y=cos A.
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(ii)) By drawing up a table of values, a graph of
y=sin(A—60°) may be plotted as shown in
Fig. 14.20. If y=sin A is assumed to start at 0°
then y=sin(A —60°) starts 60° later (i.e. has a
zero value 60° later). Thus y=sin(A —60°) is
said to lag y =sin A by 60°.

o 60°
o y=sn y=sin(A— 60°)
Ve
/
/
/
/
/
/
1 '|/ t
0 270°  360° e
\
\
\
\
\\
71 0 -
60°

Figure 14.20

(iii) By drawing up a table of values, a graph of
y=cos(A+45°) may be plotted as shown in
Fig. 14.21. If y=cos A is assumed to start at 0°
then y =cos(A +45°) starts 45° earlier (i.e. has a
zero value 45° earlier). Thus y =cos(A +45°) is
said to lead y =cos A by 45°.

VA

y=cos A
?ﬂ \\{/ y=cos (A+ 45°) N
\

Ny 1
90° 180°

~N
Nk

IS

o

w
@t

S

o
v

Figure 14.21

(iv) Generally, a graph of y=sin(A —«) lags
y=sin A by angle «, and a graph of
y=sin(A+ «) leads y=sin A by angle «.

(v) A cosine curve is the same shape as a sine curve
but starts 90° earlier, i.e. leads by 90°. Hence
cos A=sin(A+90°).

Problem 9. Sketch y=35 sin(A+30°) from
A=0°to A=360°.

Amplitude=35; period=360°/1=360°.
5 sin(A+30°) leads 5sinA by 30° (i.e. starts 30°
earlier).

A sketch of y=5 sin(A+ 30°) is shown in Fig. 14.22.

yA 4>‘30°’47
5 -
- \\/y= 5sin A
. _ y=5sin(A+30°)

Figure 14.22

Problem 10. Sketch y=7 sin(2A — 7r/3) in the
range 0 <A <2m.

Amplitude=7; period =27 /2 = radians.

In general, y=sin(pft—a) lags y=sinpt by a/p,
hence 7 sin(2A—m/3) lags 7sin2A by (7/3)/2,
i.e. w/6rad or 30°.

A sketch of y="7sin(2A — w/3) is shown in Fig. 14.23.

V4
y=7sin2A

y=7sin(2A — 7/3)

270°
3m/2 /1271'

Figure 14.23

Problem 11.
one cycle.

Sketch y=2 cos(wt —3m/10) over

Amplitude=2; period=2m /wrad.
2 cos(wt —3m/10) lags 2coswt by 3w /10w seconds.

A sketch of y=2 cos(wt—3m/10) is shown in
Fig. 14.24.
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y1L37T/1 0w rads (ii) A graph of y=cos®>A is shown in Fig. 14.26
obtained by drawing up a table of values, similar
. y=2cos wt ., to above.
//
y=2cos(wt—37/10)
yaA
0 >
t 1.0 y=cos® A
05F
_2 -
1 1 1 1 #
Figure 14.24 0 90° 180° 270° 360° A

Figure 14.26
Graphs of sin”A and cos?A

(i) A graphof y=sin? A is shown in Fig. 14.25 using

the following table of values. (iii) y=sin®A and y=cos® A are both periodic func-
tions of period 180° (or 7 rad) and both contain
only positive values. Thus a graph of y=sin?2A
has a period 180°/2, i.e. 90°. Similarly, a graph
of y=4cos?3A has a maximum value of 4 and a

(sinA)? =sin?A

30 0.50 0.25 period of 180°/3, i.e. 60°.
60 0.866 0.75
20 Ly Ly Problem 12. Sketch y=3sin? %A in the range
120 0.866 0.75 0<A<360°.
150 0.50 0.25
180 0 0 Maximum value =3; period =180°/(1/2) =360°.
A sketch of 3sin? %A is shown in Fig. 14.27.
210 —0.50 0.25
240 —0.866 0.75 va
270 —10 10 3k yZSSInQ%A
300 —0.866 0.75
330 —0.50 0.25
360 0 0 0 90°  180°  270°  360° Ai
VA Figure 14.27
1.0} y=sin® A
0.5F Problem 13. Sketch y=7cos?>2A between
. . . . R A=0°and A=360°.
0 90°  180°  270°  360° 4

Maximum value =7; period =180°/2=90°.
Figure 14.25 A sketch of y=7cos?2A is shown in Fig. 14.28.
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y A
14.5 Sinusoidal form A sin (ot £ a)

y 7cos®2A

/ In Fig. 14.29, let OR represent a vector that is free to
rotate anticlockwise about O at a velocity of wrad/s.
A rotating vector is called a phasor. After a time

0 900 180° 2700 360° e tsecor}ds OR will have turngd through an angl‘e
ot radians (shown as angle TOR in Fig. 14.29).If ST is
constructed perpendicular to OR, then sinwt =ST/TO,
Figure 14.28 ie. ST=TOsinwt.

If all such vertical components are projected on to a
graph of y against wt, a sine wave results of amplitude
OR (as shown in Section 14.3).

If phasor OR makes one revolution (i.e. 2 radians)

Now try the following exercise

Exercise 62 Further problems on sine and in T seconds, then the angular velocity,
cosine curves w=2m/Trad/s, from which, T"=2m /w seconds.
} ) T is known as the periodic time.
In Problems 1 to 9 state the amplitude and period The number of complete cycles occurring per second
of the waveform and sketch the curve between is called the frequency, f
0° and 360°.
1. y=cos3A 1,120°
Y= [ ] number of cycles 1
Sx Frequency = ——MmMM@MMMm™ = —
2. y=2sin > [2, 144°] second T
3. y=3sinds 3, 90°] =2 e =21
0 2 2
4, y=3<:os§ [3, 720°]
7 3y Hence angular velocity, o =2xf rad/s
5. y= 5 sin ) |:§ ) 9600:| Amplitude is the name given to the maximum or peak

value of a sine wave, as explained in Section 14.3. The

6. y=06sin(t —45°%) 6, 360°] amplitude of the sine wave shown in Fig. 14.29 has an
7. y=4cos(20 +30°) [4, 180°] amplitude of 1.
9 . A sine or cosine wave may not always start at 0°.
8. y=2sin"2t (2, 90°] To show this a periodic function is represented by
3 y=sin(wf £a) or y=cos (wt £«), where « is a phase
— 2 o
I Y= cos 29 [5; 120°] displacement compared with y=sinA or y=cosA.
A graph of y=sin(wt —«) lags y=sinwt by angle
VA
o rads/s 10k y=sin ot
TN ] -
| |
ot o P90 180°  270° 360:/
0 S |R 0| ot w2 T 37/2 27 ot
_1 0 -

Figure 14.29
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a, and a graph of y=sin(wt +«) leads y=sinwt by
angle .
The angle wt is measured in radians (i.e.

d
(a) ri) (ts) = wtradians) hence angle o should also
S

be in radians.
The relationship between degrees and radians is:

360° = 2xr radians or 180° = 7 radians

Hence 1

180
rad=——=57.30° and, for example,
b3

71°=71 x —— =1.239rad.
180

Given a general sinusoidal function
y =A sin(wt £ a), then

(i) A=amplitude
(i1)) w=angular velocity=2mx f rad/s
2

(iii) —— =periodic time T'seconds
w

@iv) @ =frequency, f hertz
2

(v) a=angle of lead or lag (compared with
y=Asinwt)

Problem 14. An alternating current is given by
i =30 sin(100r ¢t +0.27) amperes. Find the
amplitude, periodic time, frequency and phase
angle (in degrees and minutes).

i=30sin(1007r¢ 4+0.27) A, hence amplitude =30 A
Angular velocity w= 1007, hence

s . 2 2w 1
periodic time, 7 = — = —— = —
w 100 50
=0.02s or 20ms

1 1
Frequency, f = T o0m= 50Hz

180Y\°
Phase angle, « = 0.27rad = (0.27 X —)
T

= 15.47° or 15°28' leading

i = 30sin(10077)

Problem 15. An oscillating mechanism has a
maximum displacement of 2.5 m and a frequency of
60Hz. At time ¢ =0 the displacement is 90 cm.
Express the displacement in the general form
Asin(wt + ).

Amplitude=maximum displacement=2.5m.
Angular velocity, =2 f =27 (60) = 1207 rad/s.
Hence displacement=2.5 sin(1207¢ 4+ o) m.
When ¢ =0, displacement=90cm=0.90m.

Hence 0.90 =2.sin(0 4+ «)
Le. sina = 220 _ 036
2.5
Hence o = arcsin0.36 = 21.10° =21°6’

= 0.368rad
Thus displacement =2.5 sin(120z ¢+ 0.368) m

Problem 16. The instantaneous value of voltage
in an a.c. circuit at any time ¢ seconds is given by
v=23405sin(50t — 0.541) volts. Determine:

(a) the amplitude, periodic time, frequency and
phase angle (in degrees)

(b) the value of the voltage when r=0
(c) the value of the voltage when t =10ms

(d) the time when the voltage first reaches
200V, and

(e) the time when the voltage is a maximum.

Sketch one cycle of the waveform.

(a) Amplitude=340V
Angular velocity, w=50m

T 2 2w 1
Hence periodic time, T = — = — = —
w 500 25
=0.04s or 40 ms
Fr ne L1 _ 25H
CAqUeneys J =7 =004 =

180
Phase angle = 0.541rad = (0.541 X —)
T
= 31° lagging v = 340sin(505¢t)
(b) Whent =0,

v = 340sin(0 — 0.541) = 340sin(—31°)
= —175.1V
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(c) Whent=10ms
. 10
then v = 340sin{ 507 — — 0.541
103

= 340sin(1.0298) = 340sin59°
=2914V

(d) When v=200volts
then 200 = 340sin(50t — 0.541)

2
200 _ sin(507rt — 0.541)
340

Hence (50t —0.541) = arcsin @
T 340

=36.03° or 0.6288rad
50t =0.6288 + 0.541
=1.1698

Hence when v=200V,

1.1
698 =7.447ms

time, t =

(e) When the voltage is a maximum, v=340V.

Hence 340 = 340sin(50¢ —0.541)
1 =sin(50mt —0.541)
50t —0.541 = arcsin 1
=90°r 1.5708 rad

S50t =1.5708 +0.541 =2.1118

2.1118
g

Hence time, t = =13.44ms

A sketch of v =340 sin(50rt —0.541) volts is shown in

Fig. 14.30.

Voltage V &

340 |
291.4 -7~
200 |-/~ -

V=340 sin(50 vt — 0.541)

I
l V=340 sin 50 7t
I
I

0 ]10[ 20, 30
1751/ 74471344 \ J/

—340} ~2

Figure 14.30

Now try the following exercise

Exercise 63 Further problems on the
sinusoidal form A sin(ef £ a)

In Problems 1 to 3 find the amplitude, periodic
time, frequency and phase angle (stating whether
it is leading or lagging A sin wt) of the alternating
quantities given.
1. i=40sin(507¢+0.29) mA
40,0.04s,25Hz,0.29rad
(or 16°37’) leading 40sin507¢ |
2. y=75sin(40t —0.54) cm
75cm, 0.157s,6.37Hz, 0.54rad ]
(or30°56) lagging75sin 407 |
3. v=300sin(2007r7 —0.412) V

300V,0.01s,100Hz, 0.412rad
(or 23°36') lagging 300sin2007¢ i

4. A sinusoidal voltage has a maximum value of
120V and a frequency of 5S0Hz. Attime t =0,
the voltage is (a) zero, and (b) S0V.

Express the instantaneous voltage v in the
form v=A sin(wt +«).

(a) v =120sin 1007 ¢ volts
(b) v =120sin(1007¢ 4+ 0.43) volts

5. An alternating current has a periodic time of
25ms and a maximum value of 20 A. When
time =0, current i =—10 amperes. Express
the current i in the form i = A sin(wf £ o).

. b4
[i =20 sm(SOnt = g) amperes ]

6. Anoscillating mechanism has amaximum dis-

placement of 3.2m and a frequency of 50Hz.

At time =0 the displacement is 150cm.

Express the displacement in the general form
Asin(wt o).

[3.2 sin(1007r ¢ +-0.488) m]

7. The current in an a.c. circuit at any time
t seconds is given by:

i =5sin(100rt — 0.432) amperes

Determine (a) the amplitude, periodic time,
frequency and phase angle (in degrees) (b) the
value of current at t =0 (c) the value of current
at t =8 ms (d) the time when the current is first
a maximum (e) the time when the current first
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reaches 3A. Sketch one cycle of the waveform
showing relevant points.

(a) 5A,20ms, 50Hz,

24°45' lagging

(b) —2.093 A

(c) 4.363A

(d) 6.375ms

(e) 3.423ms

14.6 Harmonic synthesis with

complex waveforms

A waveform that is not sinusoidal is called a complex
wave. Harmonic analysis is the process of resolving a
complex periodic waveform into a series of sinusoidal
components of ascending order of frequency. Many of
the waveforms met in practice can be represented by the
following mathematical expression.

v = Vigsin(ot + o) + Vo, sinQRwt + )
+ -+ Vypsin(not + o)

and the magnitude of their harmonic components
together with their phase may be calculated using
Fourier series (see Chapters 66 to 69). Numerical
methods are used to analyse waveforms for which
simple mathematical expressions cannot be obtained.
A numerical method of harmonic analysis is explained
in the Chapter 70 on page 637. In alaboratory, waveform
analysis may be performed using a waveform analyser
which produces a direct readout of the component waves
present in a complex wave.

By adding the instantaneous values of the fundamen-
tal and progressive harmonics of a complex wave for
given instants in time, the shape of a complex waveform
can be gradually built up. This graphical procedure is
known as harmonic synthesis (synthesis meaning ‘the
putting together of parts or elements so as to make up a
complex whole’).

Some examples of harmonic synthesis are con-
sidered in the following worked problems.

Problem 17. Use harmonic synthesis to construct
the complex voltage given by:

v1 = 100sinwt + 30sin 3wt volts.

The waveform is made up of a fundamental wave of
maximum value 100V and frequency, f=w/2n hertz

and a third harmonic component of maximum value
30V and frequency =3w/2m (=3 f), the fundamental
and third harmonics being initially in phase with each
other.

In Fig. 14.31, the fundamental waveform is shown
by the broken line plotted over one cycle, the periodic
time T being 2 /wseconds. On the same axis is plotted
30sin3wt, shown by the dotted line, having a maximum
value of 30V and for which three cycles are completed
in time 7 seconds. At zero time, 30sin3wt is in phase
with 100sinwt.

The fundamental and third harmonic are combined by
adding ordinates at intervals to produce the waveform
for vy, as shown. For example, at time 7/12 seconds,
the fundamental has a value of 50V and the third har-
monic a value of 30 V. Adding gives a value of 80V for
waveform v; at time 7'/12seconds. Similarly, at time
T /4 seconds, the fundamental has a value of 100V and
the third harmonic a value of —30V. After addition,
the resultant waveform vy is 70V at 7'/4. The proce-
dure is continued between =0 and =T to produce
the complex waveform for vy. The negative half-cycle
of waveform v is seen to be identical in shape to the
positive half-cycle.

If further odd harmonics of the appropriate amplitude
and phase were added to v; a good approximation to a
square wave would result.

Problem 18. Construct the complex voltage
given by:

v2 = 100sinwt + 30sin (3a)t + %) volts.

The peak value of the fundamental is 100 volts and the
peak value of the third harmonic is 30 V. However the

third harmonic has a phase displacement of %radian

leading (i.e. leading 30sin3w? by %radian). Note that,

since the periodic time of the fundamental is 7 seconds,
the periodic time of the third harmonic is 7'/3 seconds,

and a phase displacement of T radian or — cycle of the

third harmonic represents a time interval of (7/3) =4,
i.e. T/12seconds.
Figure 14.32 shows graphs of 100sinwt and

30sin (3a)t + z) over the time for one cycle of the fun-

damental. When ordinates of the two graphs are added
at intervals, the resultant waveform v, is as shown.
If the negative half-cycle in Fig. 14.32 is reversed it
can be seen that the shape of the positive and negative
half-cycles are identical.
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Voltage v (V) 4
T
100 EARER AR EAR AR AAR AR
= v4= 100 sin wt+ 30 sin 3wt [T
T
100 sin wt
T
%0 30 sin 3wt
30|/
‘ -
o7 T T 3T Time t(ss
11q 4 2 \y 4
30 L] N
~50 k :
-100 0 Sallhag
Figure 14.31
Voltage v (V) &
100
_v,=100sin wt+ 30 sin (3wt +7)
T
—100 sin ot
HHHHHHH
50 30 sin (3wt +7)
N i
30 7 TTh T 37
: 4 2 4 -
0 ’ Time t(s)
_30 /
~50 L
/|
-100

Figure 14.32

Problems 17 and 18 demonstrate that whenever
odd harmonics are added to a fundamental waveform,
whether initially in phase with each other or not, the

Problem 19. Use harmonic synthesis to construct
the complex current given by:

positive and negative half-cycles of the resultant com-

plex wave are identical in shape. This is a feature
of waveforms containing the fundamental and odd

harmonics.

i1 = 10sinwt + 4 sin 2wt amperes.

Current i; consists of a fundamental compon- ent,
10sinwt, and a second harmonic component, 4 sin2wt,
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Current 4
1A [T
L 'ij=10 sin wt+ 4 sin 2wt
10 AN CTTTTTTT
10 sin ot
\
VULV LD NN L L 4 sin et [ [ LLLLLLLL L]
\
4l ] N
£ T : 3T
d N4 n4 ;
0 7— Time t(s)
2]
—4 \ /
\ /
7
~10 =N

Figure 14.33

the components being initially in phase with each other.
The fundamental and second harmonic are shown plot-
ted separately in Fig. 14.33. By adding ordinates at
intervals, the complex waveform representing i; is pro-
duced as shown. It is noted that if all the values in the
negative half-cycle were reversed then this half-cycle
would appear as a mirror image of the positive half-cycle
about a vertical line drawn through time, t =T7/2.

Problem 20. Construct the complex current
given by:

ip = 10sinwt +4sin (2a)t 4k %) amperes.

The fundamental component, 10sinwt?, and the second
harmonic component, having an amplitude of 4 A and

a phase displacement of %radian leading (i.e. leading

4sin2wt by % radian or 7'/8 seconds), are shown plotted

separately in Fig. 14.34. By adding ordinates at inter-
vals, the complex waveform for i; is produced as shown.
The positive and negative half-cycles of the resultant
waveform are seen to be quite dissimilar.

From Problems 18 and 19 it is seen that when-
ever even harmonics are added to a fundamental
component:

(a)

if the harmonics are initially in phase, the negative
half-cycle, when reversed, is a mirror image of

the positive half-cycle about a vertical line drawn
through time, t =T7/2.

(b) if the harmonics are initially out of phase with
each other, the positive and negative half-cycles

are dissimilar.

These are features of waveforms containing the funda-
mental and even harmonics.

Problem 21. Use harmonic synthesis to construct
the complex current expression given by:

i =32 + 50sinw? +20sin (2a)t — %) A

The current i comprises three components—a 32 mA
d.c. component, a fundamental of amplitude 5S0mA
and a second harmonic of amplitude 20mA, lag-

ging by %radian. The fundamental and second har-
monic are shown separately in Fig. 14.35. Adding
ordinates at intervals gives the complex waveform
50sinar +20sin (201 — %)

This waveform is then added to the 32mA d.c.
component to produce the waveform i as shown.
The effect of the d.c. component is to shift the whole
wave 32mA upward. The waveform approaches that
expected from a half-wave rectifier.
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(a)

(b)

Voltage 4

v (V) v=2339.4 sin 100 =t + 67.9 sin(300 wt—%—),

N

339.4 1T

Vs | 11-1339.4 sin 100 =t
N\
67.9 sin(300 wt—%”):
111
67.9 N 1 THTTTTRT
A 5 1 4 Time t(ms)
—339.4 1 7

Figure 14.36

Problem 22. A complex waveform v comprises a
fundamental voltage of 240V rms and frequency
50Hz, together with a 20% third harmonic which
has a phase angle lagging by 37 /4rad at time  =0.
(a) Write down an expression to represent voltage
v. (b) Use harmonic synthesis to sketch the
complex waveform representing voltage v over one

cycle of the fundamental component.

A fundamental voltage having an rms value of
240V has a maximum value, or amplitude of
V2 (240) i.e. 339.4 V.

If the fundamental frequency is 50Hz then
angular velocity, =2 f=27(50)= 1007 rad/s.
Hence the fundamental voltage is represented
by 339.4sin100m¢volts. Since the fundamen-
tal frequency is 50Hz, the time for one cycle
of the fundamental is given by 7=1/f=1/50s
or 20ms.

The third harmonic has an amplitude equal to
20% of 339.4V, i.e. 67.9V. The frequency of
the third harmonic componentis 3 x 50=150Hz,
thus the angular velocity is 2m(150), i.e.
300m rad/s. Hence the third harmonic voltage
is represented by 67.9sin(3007rt — 37 /4) volts.
Thus

voltage, v =339.4sin 1007 ¢
+67.9sin (300z¢—3x /4) volts

One cycle of the fundamental, 339.4sin1007¢,
is shown sketched in Fig. 14.36, together with

three cycles of the third harmonic compon-
ent, 67.9sin(3007rt — 37 /4) initially lagging by
3mw/4rad. By adding ordinates at intervals,
the complex waveform representing voltage is
produced as shown.

Now try the following exercise

Exercise 64

Further problems on harmonic

synthesis with complex waveforms

1.

A complex current waveform i comprises
a fundamental current of 50 Arms and fre-
quency 100Hz, together with a 24% third
harmonic, both being in phase with each other
at zero time. (a) Write down an expression
to represent current i. (b) Sketch the complex
waveform of current using harmonic synthesis
over one cycle of the fundamental.

(a) i = (70.71sin628.3¢
+16.97sin 18857) A

A complex voltage waveform v is comprised
of a 212.1 Vrms fundamental voltage at a fre-
quency of 50 Hz, a30% second harmonic com-
ponent lagging by 7 /2rad, and a 10% fourth
harmonic component leading by s /3rad.
(a) Write down an expression to represent
voltage v. (b) Sketch the complex voltage
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waveform using harmonic synthesis over one
cycle of the fundamental waveform.

(a) v = 300sin314.2¢
+905in(628.3f — 7/2)
+30sin(1256.6¢ + 7/3) V

A voltage waveform is represented by:

v =20+ 50sinwt
+ 20sin(2wt — 1w /2) volts.

Draw the complex waveform over one cycle of
the fundamental by using harmonic synthesis.

Write down an expression representing a
current 7 having a fundamental component of
amplitude 16 A and frequency 1 kHz, together
with its third and fifth harmonics being respec-
tively one-fifth and one-tenth the amplitude
of the fundamental, all components being
in phase at zero time. Sketch the complex

current waveform for one cycle of the funda-
mental using harmonic synthesis.

i = 16sin27 1037 + 3.2sin 67 103¢
+1.6sin710%* A

A voltage waveform is described by

v = 200sin377¢ + 80sin (11311‘ + %)

. 11
+ 20sin (18851‘ — g) volts

Determine (a) the fundamental and harmonic
frequencies of the waveform (b) the percent-
age third harmonic and (c) the percentage
fifth harmonic. Sketch the voltage waveform
using harmonic synthesis over one cycle of the
fundamental.

(a) 60Hz, 180Hz, 300 Hz

(b) 40%

(c)10%




Chapter 15

Trigonometric identities

15.1 Trigonometric identities

A trigonometric identity is a relationship that is true
for all values of the unknown variable.

sin6 cosf
tan 0 = ——,cotd = ——, secl =
cos6 sinf cos6
1
cosec) = —— and coth =
sin6 tan6

are examples of trigonometric identities from
Chapter 11.

Applying Pythagoras’ theorem to the right-angled
triangle shown in Fig. 15.1 gives:

a’?+b*=c? (1)

Figure 15.1
Dividing each term of equation (1) by ¢? gives:

aZ b2 CZ

222

e (O (Y) =

0s0)? + sinh)2 =1

and equations

Hence  cos?6 +sin’0 = 1 2)

Dividing each term of equation (1) by a? gives:

a? br 2

a2 a2 a2

, b\* e\
i.e. 1+ (;) = (;)
Hence 1+ tan®0 = sec’6 3)

Dividing each term of equation (1) by b? gives:

a? br 2

PR T
. a\2 c\2
i.e. (;) +1= (;)
Hence  cot?6 + 1 = cosec’ 4

Equations (2), (3) and (4) are three further examples
of trigonometric identities. For the proof of further
trigonometric identities, see Section 15.2.

15.2 Worked problems on

trigonometric identities

Problem 1. Prove the identity
sin2 6 cotd secH = sin#.

With trigonometric identities it is necessary to start with
the left-hand side (LHS) and attempt to make it equal to
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the right-hand side (RHS) or vice-versa. It is often useful _ sin6 + cos 6 cost
to change all of the trigonometric ratios into sines and sin@ cos® +sinf
cosines where possible. Thus, cos
= —— =cotf =RHS
LHS = sin”6 cot 0 sec § sin6
. 5, f{cosO 1
=sin0| =\ cosd Problem 4. Show that

) ) cos26 — sin?f =1—2sin?6.
= sinf (by cancelling) = RHS
From equation (2), cos?6 + sin”6 =1, from which,

cos?6=1-—sin?0.
Problem 2. Prove that

tanx +-secx Hence, LHS
( tanx) - = cos?0 —sin®6 = (1 —sin*0) —sin’6
secx |1+
seex =1—sin®0 —sin®0 = 1 — 2sin%0 = RHS

LHS — tanx +secx

( tan x) Problem 5. Prove that
secx {1+
secx (1 —sinx)
— ) =secx —tanx.
sinx " 1 1+ sinx
_ COSX  COSX
- sinx
1 1 4+ Cosx LHS — 1— s?nx _ (1- s%nx)(l - s%nx)
cosx 1 1 +sinx (1 4+sinx)(1 —sinx)
cosx :
sinx + 1 B I(l—smx)2]
o (1 —sin%x)
_ cosx
! 1+ Sy (cosx) Since cos? x + sin®x =1 then 1 — sin® x = cos®x
CcoSX CcoSX 1
sinx + 1 LHS — I (1- S%n;c)2 ] _ I (1 —sinx)?2 ]
_ Cos X (1 —sin“x) cosZx
( ! )[1+sinx] _ l—sinx 1 sinx
cosx T cosx  COSX  COSX
sinx + 1 cosx =secx —tanx = RHS
_( cosx )(1+sinx)

= 1(by cancelling) = RHS Now try the following exercise

Problem 3. Prove that w = cotf. Exercise 65 Further problemson
1+ tan® trigonometric identities
1 +cotd .In PT(?blems 1 to 6 prove the trigonometric
LHS = —— identities.
1 +tanf
cosf sinf + cos 6 1. sinxcotx=cosx
I+ — - 1
sinf _ sinf 2 — o)

=, sinf = cos0 +sind  Ji—cov0)
1_’_sm CcoSt + sin (1 —cos?6)

cos6 cos6
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3. 2cos?A—1=cos?A—sin?A
COSX — OS> X .
4, —————— —=sinxcosx
sinx

5. (14 cotf)?+ (1 — coth)* =2 cosec26
sin? x(secx + cosecx)

6. =1+ tanx
COS x tan x

15.3 Trigonometric equations

Equations which contain trigonometric ratios are called
trigonometric equations. There are usually an infinite
number of solutions to such equations; however, solu-
tions are often restricted to those between 0° and 360°.

A knowledge of angles of any magnitude is essential
in the solution of trigonometric equations and calcula-
tors cannot be relied upon to give all the solutions (as
shown in Chapter 14). Fig. 15.2 shows a summary for
angles of any magnitude.

90°
Sine
(and cosecant All positive
positive)
00
1 <]
80 360°

Tangent Cosine
(and cotangent (and secant
positive) positive)

270°

Figure 15.2

Equations of the type a sin?A + b sinA +¢ =0

(i) When a=0, bsin A+ c=0, hence
SinA= —% and A = sin~! (_IE))
There are two values of A between 0° and
360° which satisfy such an equation, provided

—1< % <1 (see Problems 6 to 8).

(i) When b=0, asin® A+ c=0, hence
) c . C
Sin“A=——,sinA = (——)

a a

and A = sin~1 (—E)
a

If either a or ¢ is a negative number, then the
value within the square root sign is positive.
Since when a square root is taken there is a pos-
itive and negative answer there are four values
of A between 0° and 360° which satisfy such an

equation, provided —1 < < <1 (see Problems 9
a
and 10).

(iii) When a, b and c are all non-zero:
asin? A+bsin A+c=0 is a quadratic equation
in which the unknown is sin A. The solution of
a quadratic equation is obtained either by fac-
torizing (if possible) or by using the quadratic

formula:
—b+/(b? — 4ac)
2a

sin A =

(see Problems 11 and 12).

(iv) Often the trigonometric identities
cos? A+sinfA=1, 1+tan®?A=sec?A and
cot? A+ 1=cosec2A need to be used to reduce
equations to one of the above forms (see
Problems 13 to 15).

15.4 Worked problems (i) on

trigonometric equations

Problem 6. Solve the trigonometric equation
5sin® +3 =0 for values of 6 from 0° to 360°.

5sinf + 3 =0, from which sinf = —% = —0.6000

Hence 6 = sin~! (—0.6000). Sine is negative in the third
and fourth quadrants (see Fig. 15.3). The acute angle
sin~!(0.6000) =36.87° (shown as « in Fig. 15.3(b)).
Hence,

0 =180°+36.87°, i.e.216.87° or

0 =360° —36.87°, i.e.323.13°

Problem 7. Solve 1.5tanx —1.8=0 for
0° < x <360°.
1.5tan x1—81.8 =0, from which
tanx = — = 1.2000.
1.5
Hence x = tan—! 1.2000
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y A y=siné
1.0
216.87° 323.13°
. VANV
0 90° 1807 270° :360" 0
-06F-——-———"———-X————-
-1.0|
(a)
90°
S A
o /\ .
180 o X 360°
T c
270°
(b)
Figure 15.3

Tangent is positive in the first and third quadrants (see
Fig. 15.4).
The acute angle tan~! 1.2000=50.19°. Hence,

x=150.19° or 180° +50.19° =230.19°

Y A | _y=tanx | |
! | | |
I I I I
I I I I
I I I I
12— I A |
P A L
0 / 90 180 / 270° /360° x

50.19° | 1230.19°! !
| | | |
| | | |
| | | |
| | | |

(a)

90°

S A
50.19° @°
180° 0
50.19° 360°
T c
270°
(b)
Figure 15.4

Problem 8. Solve for 6 in the range
0° <6 < 360° for 2sinf = cos@

o . . 2sinf
Dividing both sides by cos 6 gives: =1
- cos6
. sin6
From Section 15.1, tanf = ——,
cos6

hence 2tan6 = 1

Dividing by 2 gives: tanf = %
from which, # = tan~! %

Since tangent is positive in the first and third quadrants,

0 =26.57° and 206.57°

Problem 9. Solve 4sect =5 for values of ¢
between 0° and 360°.

4sect =5, from which sect = % =1.2500

Hence 7 = sec™! 1.2500

Secant=(1/cosine) is positive in the first and
fourth quadrants (see Fig. 15.5) The acute angle
sec™!1.2500=36.87°. Hence,

t=36.87° or 360° —36.87° = 323.13°

90°
S A
36.87° 0°
180°
36.87° 360°
T C
270°

Figure 15.5

Now try the following exercise

Exercise 66  Further problemson
trigonometric equations

In Problems 1 to 3 solve the equations for angles
between 0° and 360°.

1. 4—7sin6=0 [0 =34.85° or 145.15°]

2. 3cosecA+5.5=0
[A=213.06° or 326.94°]

3. 4(2.32—5.4cott)=0
[t =66.75° or 246.75°]
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In Problems 4 to 6, solve for 6 in the range

0° < 6 < 360°.
4. secO=2 [60°, 300°]
5. cotd =0.6 [59°,239°]

6. cosecH =1.5

In Problems 7 to 9, solve for x in the range

—180° < x < 180°.
7. secx=-—1.5
8. cotx=1.2

9. cosecx =—2

In Problem 10 and 11, solve for 6 in the range

0° <6 < 360°.
10. 3sinf =2cos0O

11. 5cosf = —sinf

15.5 Worked problems (ii) on

trigonometric equations

Problem 10. Solve 2 —4cos? A=0 for values of

A in the range 0° < A <360°.

2 —4cos? A=0, from which cos? A= % =0.5000
Hence cos A=/(0.5000) ==+0.7071 and
A= cos~!(£0.7071).

Cosine is positive in quadrants one and four and neg-
ative in quadrants two and three. Thus in this case there
are four solutions, one in each quadrant (see Fig. 15.6).

The acute angle cos~!0.7071=45°. Hence,
A =45°,135°,225° or 315°

Problem 11. Solve  cot? y=1.3 for
0° < y < 360°.

1 cot? y=1.3, from which, cot? y =2(1.3)=2.6

Hence coty=+/2.6==+1.6125, and

quadrant. The acute angle cot™! 1.6125=31.81°.
Hence y=31.81°,148.19°,211.81° or 328.19°.

[41.81°,138.19°]

[£131.81°]
[39.81°, —140.19°]
[-30°, —150°]

[33.69°,213.69°]

[101.31°,281.31°]

y:cot_1
(£1.6125). There are four solutions, one in each

y 4
1.0
0.7071

y=cos A

135° 225°

»

1
315° 360°

Exercise

Now try the following exercise

67 Further problems on

trigonometric equations

o 45° pe
—0.7071 fp—-——=== === —f———————-
-1.0F

(a)
90°

S A

45° 45° 0

180°

45° 45° 360°

T (o
270°
(b)

Figure 15.6

In Problems 1 to 3 solve the equations for angles
between 0° and 360°.

1. 5sin?y=3

230.77° or 309.23°

|:y=50.77°, 129.23°,]

2. cos?h =025

[6 = 60°,120°, 240° or 300°]

3. tan’x =3

[6 = 60°, 120°, 240° or 300°]

4. 5+3cosec?D=38

[D=90° or 270°]

5. 2cot?9=5

0=32.32°,147.68°,
212.32° or 327.68°
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15.6 Worked problems (iii) on

trigonometric equations

Problem 12. Solve the equation
8sin’6 +2sinf — 1 =0,
for all values of 6 between 0° and 360°.

Factorizing 8 sin® @ +2sinf — 1 =0 gives
(4sinf —1) (2sinf0+1)=0.
Hence 4sinf — 1 =0, from which, sinf = 4—1‘ = 0.2500,
or 2sinf + 1 =0, from which, sinf = —% = —0.5000.
(Instead of factorizing, the quadratic formula can, of
course, be used).

0=sin"10.2500=14.48° or 165.52°, since sine
is positive in the first and second quadrants, or
6 = sin~!(—0.5000) =210° or 330°, since sine is neg-
ative in the third and fourth quadrants. Hence

0 =14.48°,165.52°,210° or 330°

Problem 13. Solve 6cos?0 +5cosd —6=0 for
values of 6 from 0° to 360°.

Factorizing 6cos?6 +5cosf —6=0 gives

(3cosf —2) (2cosf+3)=0.

Hence 3cosf —2=0, from which, cosf = % = 0.6667,
or 2cosf +3 =0, from which, cosf = —% =—1.5000.

The minimum value of a cosine is —1, hence the lat-
ter expression has no solution and is thus neglected.
Hence,

0 = cos10.6667 = 48.18° or 311.82°

since cosine is positive in the first and fourth quadrants.

Now try the following exercise

Exercise 68 Further problems on
trigonometric equations

In Problems 1 to 3 solve the equations for angles
between 0° and 360°.

1. 15sin? A+ sinA—2=0
A =19.47°,160.53°,
203.58° or 336.42°

2. 8tan?f+2tanf=15
[9 =51.34°, 123.69",}

231.34° or 303.69°

3. 2cosec?t—5cosect=12
[t =14.48°, 165.52°,:|

221.81° or 318.19°

4. 2¢0s20+9cosh —5=0
[6 = 60° or 300°]

15.7 Worked problems (iv) on

trigonometric equations

Problem 14. Solve 5cos?t +3sint —3 =0 for
values of ¢ from 0° to 360°.

Sincecos’t 4 sin?t =1, cos”t =1 — sin® . Substituting
for cos? ¢ in 5cos? 1 43sint —3 =0 gives:
5(1 —sin®1) 4+ 3sint —3 =0
5—5sin’t +3sinr —3 =0
—5sin’t +3sint +2 =0

5sin’t —3sint —2 =0

Factorizing gives (5sint+2)(sint —1)=0. Hence
5sint +2=0, from which, sint= —% =-0.4000, or
sint — 1 =0, from which, sinz =1.

t=sin~!'(—0.4000) =203.58° or 336.42°, since sine
is negative in the third and fourth quadrants, or
t=sin"! 1=90°. Hence t=90°,203.58° or 336.42°
as shown in Fig. 15.7.

y A
10f--- y=sint
203.58°  336.42°
0 90° 270° 360° o
_04 ____________________
_1 0 -
Figure 15.7

Problem 15. Solve 18sec? A —3tan A=21 for
values of A between 0° and 360°.
1+ tan> A=sec’A. Substituting for sec’A in
18sec> A—3tan A=21 gives
18(1+ tan% A) — 3tan A=21,
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ie. 18+ 18tan’A—3tanA—21=0
18tan’ A —3tanA —3 =0

Factorizing gives (6tan A —3)(3tan A+ 1) =0.

Hence 6tan A — 3 =0, from which, tan A = % = 0.5000
or3tan A+ 1=0, from which, tan A = —% = —(0.3333.
Thus A= tan~!(0.5000)=26.57° or 206.57°, since
tangent is positive in the first and third quadrants, or
A=tan"'(—0.3333)=161.57° or 341.57°, since tan-
gent is negative in the second and fourth quadrants.
Hence,

A =26.57°,161.57°,206.57° or 341.57°

Problem 16. Solve 3cosec?0 —5=4cot0 in the
range 0 <6 <360°.

cot?@+ 1= cosec?d. Substituting for cosec’f in
3cosec?d —5=4cotf gives:

3(cot29+ 1) =5 =4coth
3cot’0 +3—5=4cotd
3cot’ —4coth —2=0

Since the left-hand side does not factorize the quadratic
formula is used. Thus,

e VI=4? —403)(=2)]

cotf
2(3)
_4£J/(06+24) 4+4/40
B 6 6
10.3246 2.3246
= or —
6 6

Hence cot0=1.7208 or —0.3874, O=cot™!
1.7208=30.17° or 210.17°, since cotangent

is positive in the first and third quadrants, or
6=cot™!(—0.3874)=111.18° or 291.18°, since
cotangent is negative in the second and fourth quadrants.

Hence,

60 =30.17°,111.18°,210.17° or 291.18°

Now try the following exercise

Exercise 69

Further problems on

trigonometric equations

In Problems 1 to 12 solve the equations for angles
between 0° and 360°.

1.

10.

11.
12.

2¢0826 +sinf = 1
[0 =90°,210°, 330°]

4cos’t 4 5sint =3
[ =190.1°,349.9°]
2cosf —4sin’6 =0
[0 =38.67°,321.33°]
3cosh 4 2sin’0 =3
[0 =0°,60°,300°, 360°]

12sin%6 — 6= cos
6 =48.19°,138.59°,
221.41° or 311.81°

16secx —2=14tan’x
[x =52.53° or 307.07°]

4cot>? A—6cosec A+6=0 [A=90°]

5sect+2tan®t =3
[r=107.83° or 252.17°]

2.9cos?a—T7sina+1=0
[a=27.83° or 152.17°]
3cosec? B=8—Tcotf
B=60.17°,161.02°,
240.17° or 341.02°

cotf = sinf [51.83°,308.17°]

tan6 + 3cotf = SsecH [30°, 150°]



Chapter 16

The relationship between
trigonometric and
hyperbolic functions

16.1 The relationship between

trigonometric and hyperbolic
functions

In Chapter 21, it is shown that

cosf + jsinf =el? (D)
and cos® — jsind =e /7 (2)

Adding equations (1) and (2) gives:
1 i
cosO:E(eJ +e1% 3)
Subtracting equation (2) from equation (1) gives:
; L jo_ -6
sinf = — (e’ —e™%) 4)
2j
Substituting j6 for 6 in equations (3) and (4) gives:
0= Lo itio) 4 omitit)
COS]@:E(EJ 19) 7717y
1 o o
and sin jO = —(e /U —e 70D
2j

Since j2=—1,cosj9=%(e_9+eg)=%(e9+e_9)

Hence from Chapter 5, cos j# = cosh@ (@)

1 1
Similarly, sinj6 = — (@ % —e?) = —— (@’ —e™)
2j 2

UL,
_j[z(e © )}

1
= ——sinhf (see Chapter 5)

But ——.I——.X—.I—.Lzzj,
J J J J

hence sin j@ = j sinh@ (6)

Equations (5) and (6) may be used to verify that in all
standard trigonometric identities, j6 may be written for
0 and the identity still remains true.

Problem 1. Verify that cos? j@ + sin? jo=1.

From equation (5), cos jO= cosh6, and from equa-
tion (6), sin jO = jsinh6.

Thus, cos? jO+ sin? jO = cosh?6 + j2sinh26, and
since j2=—1,

cos? Jjo+ sin? jo= cosh?6 — sinh?6
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But from Chapter 5, Problem 6,
cosh?6 — sinh?6 = 1,
hence cos? jO +sin® jo =1
Problem 2. Verify that sin j2A =2sin jAcos jA.

Fromequation (6), writing 2A for 6, sin j2A=j sinh2A,
and from Chapter 5, Table 5.1, page 45, sinh2A =
2sinh Acosh A.

Hence, sin j2A = j(2sinhAcosh A)

But, sinh A= %(eA —e 4) and coshA= %(eA +e 4

o CfeA_e A\ feAfe A
Hence, sin j2A= j2 5 5

_ 2 fed—e A ed e 4
T 2 2

2 (sinjO .
— ) (cos j0)
J

J

= 2sin jAcos jA since j2= —1

ie.  sinj2A =2sin jAcos jA

Now try the following exercise

Exercise 70  Further problems on the
relationship between trigonometric and
hyperbolic functions

Verify the following identities by expressing in
exponential form.

1. sinj(A+ B)=sin jAcos jB+ cos j Asin jB
cos j (A — B) = cos jAcos jB + sin j Asin jB
cos j2A=1—2sin? jA
sinjAcosjB:%[sinj(A+B)+ sin j (A— B)]

SO

sin jA — sin jB

(A+B\ . (A—B
=2cosj 5 sin j —

16.2 Hyperbolicidentities

From Chapter 5, cosh = %(eg +e %)
Substituting jO for 6 gives:
cosh jO = %(ejg + e7/9%) =cos #, from equation (3),
i.e. cosh j@ = cosé@ @)
Similarly, from Chapter 5,

sinhf = %(eg —e7 %
Substituting jO for 6 gives:

sinh jO = %(eﬂ’ —e /%) = jsin@, from equation (4).

Hence sinh j# = jsin@ )
) sin j 6@
tan jO = -
cosh j6O

From equations (5) and (6),
sinjO  jsinh6

— = = jtanh6
cosj&  coshé
Hence tan jf = jtanhé )
L ) sinh j6O
Similarly, tanhjO = -
cosh joO
From equations (7) and (8),
sinhj6  jsinf |
— Y = =] tan6
coshjO  cos6
Hence tanh jé = jtanéd (10)

Two methods are commonly used to verify hyperbolic
identities. These are (a) by substituting j6 (and j¢) in
the corresponding trigonometric identity and using the
relationships given in equations (5) to (10) (see Prob-
lems 3 to 5) and (b) by applying Osborne’s rule given
in Chapter 5, page 45.

Problem 3. By writing jA for 6 in cot? + 1=
cosec 26, determine the corresponding hyperbolic
identity.

Substituting jA for 6 gives:
cot? JA+1= cosecsz,
e, cos’jA 1

sin? jA ~ sin? JA
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But from equation (5), cos jA= cosh A

and from equation (6), sin jA= jsinh A.

0 cosh? A n 1
ence =

j2sinh? A j2sinh? A

. 2 cosh? A 1
andsince j =-1,—-——>—+l=——-—
sinh” A sinh” A

Multiplying throughout by —1, gives:

cosh? A 1

sinh?A  sinh® A

ie. coth’A —1 = cosech?A

Problem 4. By substituting jA and ;B for 6 and
¢ respectively in the trigonometric identity for
coshA —cosh B

cos6 — cos ¢, show that
. A+BY . A—B
= 2sinh sinh —

cosf —cos¢p = —ZSin(e +¢) sin(e _¢)
2 2

(see Chapter 17, page 172)
thus cos jA — cos jB

..(A+B)..(A—B)
= —2sin j sin j 5

But from equation (5), cos jA= cosh A

and from equation (6), sin jA= jsinh A
Hence, cosh A — cosh B

.. A+BY . . A—B
= —2 jsinh{ ——— ) jsinh{ ——
2 2
B\ . A—B
sinh{ ——
2

") on 15

Problem 5. Develop the hyperbolic identity
corresponding to sin36 =3sinf — 4sin’ 6 by
writing jA for 6.

A
= —2j2sinh( +

But j2=—1, hence

A
coshA —coshB = Zsinh( +

Substituting jA for 6 gives:
sin3 jA = 3sin jA — 4sin’ jA
and since from equation (6),
sin jA = jsinh A,
jsinh3A =3jsinh A —4 j3sinh® A
Dividing throughout by j gives:
sinh3A = 3sinh A — j24sinh’ A
But j2=—1, hence
sinh3A = 3sinh A + 4sinh*A

[An examination of Problems 3 to 5 shows that when-
ever the trigonometric identity contains a term which
is the product of two sines, or the implied product
of two sine (e.g. tan? = sin”6/cos’6, thus tan’0 is
the implied product of two sines), the sign of the cor-
responding term in the hyperbolic function changes.
This relationship between trigonometric and hyperbolic
functions is known as Osborne’s rule, as discussed in
Chapter 5, page 45].

Now try the following exercise

Exercise71  Further problems on
hyperbolic identities

In Problems 1 to 9, use the substitution A= j6 (and
B =j¢) to obtain the hyperbolic identities corre-
sponding to the trigonometric identities given.

1. I+tan®?A =sec’A
[1 — tanh? 6 = sech? 6]
2. cos(A+ B)=cosAcos B— sinAsin B
cosh(6 +¢)
= cosh6 cosh ¢ + sinh 8 sinh¢
3. sin(A— B)=sinAcos B— cos Asin B
[sinh(@ + ¢) =sinh 6 cosh ¢ :|

— cosh @ sinh ¢
2tan A
4. tan2A=———
1—tanZ A
2tanh @
tanh26 = —————
1 + tanh” 60
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1 3 1
5. cosAsinB = E[sin(A+B)—sin(A—B)] 6. sin3A=ZsinA—Zsin3A
1 [sinh39 = 1sinh39 3 sinh9:|

cosh® cosh¢ = > [sinh(6 + ¢) T4 4

7. cot?Agec?A—1)=1

—sinh(6 — ¢)] [coth?f(1 — sech?6) = 1]




Chapter 17

Compound angles

17.1 Compound angle formulae

An electric current i may be expressed as i=
Ssin(wt —0.33) amperes. Similarly, the displacement
x of a body from a fixed point can be expressed as
x =10sin(27 +0.67) metres. The angles (wt —0.33) and
(2t 40.67) are called compound angles because they
are the sum or difference of two angles. The compound
angle formulae for sines and cosines of the sum and
difference of two angles A and B are:

sin(A + B) =sin Acos B 4+ cos Asin B
sin(A — B) =sin Acos B —cos Asin B
coS(A+ B) =cosAcos B —sinAsin B
coS(A — B) =cosAcos B +sinAsin B

(Note, sin(A+ B) is not equal to (sin A+ sinB), and
SO on.)

The formulae stated above may be used to derive two
further compound angle formulae:

tan A +tan B
tan(A+B) = —————
an(A+B) 1 —tanAtan B

tan A —tan B
tan(A — B) =

1+tanAtan B

The compound-angle formulae are true for all values of
A and B, and by substituting values of A and B into the
formulae they may be shown to be true.

Problem 1. Expand and simplify the following
expressions:

(a) sin(r +a) (b) —cos(90°+ B)

(c) sin(A— B) —sin(A+ B)

(a) sin(w +«) =sinz cosa + cos sina (from
the formula forsin(A + B))
= (0)(cosa) + (—1)sina = —sina

(b) —cos(90°+ pB)
= —[c0s90° cos B — sin90° sin B]
= —[(0)(cos B) — (1)sin B] =sinB
(¢) sin(A— B)—sin(A+ B)

= [sinAcos B — cos Asin B]
— [sin Acos B + cos Asin B]

= —2cosAsinB

Problem 2. Prove that

cos(y — ) + sin (y 4k %) =0.

cos(y — ) = cosycosm +sinysinmw

= (cos y)(=1) + Gin y)(0)
= —CoSYy
. T . T . T
sm(y + E) = s1nycos 5 + cosysmE
= (siny)(0) + (cos y)(1) =cosy

. b4
Hence cos(y—m)+ s1n(y+5)
= (—cosy)+ (cosy) =0

Problem 3. Show that

tan(x+ %) tan(x — %) =—1.
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tanx -+ tan %

T
an( 4 T) = e ran
. 4 1—tanxtan%

from the formula fortan(A + B)

_ tanx + 1 _ 1+ tanx
T 1—(anx)(1)

1 —tanx

. T
since tan— =1
4

T tanx — tan 7 tanx — 1
tan(x — —) = r =
4 1+tanxtanz 1 +tanx

T T
Hence tan (x + —) tan (x — —)
4 4

_ 1 +tanx tanx — 1
“\1—tanx 1 +tanx
_ tanx — 1 _ —(1 —tanx) 1

" l—tanx 1 —tanx

Problem 4. If sin P=0.8142 and cos Q =0.4432

evaluate, correct to 3 decimal places:

(a) sin(P — Q), (b) cos(P + Q) and
(c) tan(P + Q), using the compound-angle
formulae.

Since sin P =0.8142 then
P=sin"!0.8142=54.51°.

Thus cos P = c0s54.51°=0.5806 and
tan P = tan54.51°=1.4025

Since cos Q =0.4432, Q = cos~ 1 0.4432 =63.69°.
Thus sin Q = sin63.69° =0.8964 and
tan Q = tan 63.69° =2.0225
(@ sin(P—0Q)
=sin Pcos Q —cos Psin Q
= (0.8142)(0.4432) — (0.5806)(0.8964)
=0.3609 — 0.5204 = —0.160

(b) cos(P+ Q)
=cosPcosQ—sin Psin Q
= (0.5806)(0.4432) — (0.8142)(0.8964)
=0.2573 —0.7298 = —0.473

(¢) tan(P+ Q)
tan P +tan Q _ (1.4025) + (2.0225)

~ 1—tanPtan Q0 1-—(1.4025)(2.0225)

= A0 ) 86
—1.8366

Problem 5. Solve the equation
4sin(x —20°) = 5cosx

for values of x between 0° and 90°.

4sin(x —20°) = 4[sinx cos 20° — cos x sin20°],
from the formula forsin(A — B)
=4[sinx(0.9397) — cos x(0.3420)]
= 3.7588sinx — 1.3680cosx

Since 4 sin(x —20°) = 5cosx then
3.7588 sinx — 1.3680cosx = Scosx
Rearranging gives:

3.7588sinx = 5cosx + 1.3680cosx

=6.3680cosx
and sinx _ 6.3680 — 1.6942
cosx  3.7588

i.e. tanx =1.6942, and x=tan"! 1.6942=59.449° or
59°27

[Check: LHS = 45sin(59.449° — 20°)

= 45in39.449° = 2.542
RHS = 5cosx = 5¢0859.449° = 2.542]

Now try the following exercise

Exercise 72  Further problems on
compound angle formulae

1. Reduce the following to the sine of one
angle:

(a) sin37°c0s21° + cos37°sin21°
(b) sin7tcos3t — cos 7t sin 3¢
[(a) sin58° (b) sin4t]

2. Reduce the following to the cosine of one
angle:

(a) cos71°c0s33° —sin71°sin33°
(b) cos % cos % + sin % sin %
(a)cos 104° = —cos76°

b4
b =
(b)cos 2
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3.  Show that:

(a) sin(x + %) + sin (x + 2?71) = /3cosx
and
. 37
(b) —sm(7 — (]5) =cos¢

4. Prove that: .
(a) sin(@ + %) — sin(@ — Tn)
=+/2(sin® + cosO)
cos(270° +0) .y
cos(360° —0)
5. Given cos A=0.42 and sin B =0.73 evaluate
(a)sin(A — B), (b) cos(A — B), (c) tan(A+ B),

correct to 4 decimal places.
[(a) 0.3136 (b) 0.9495 (c) —2.4687]

an@

In Problems 6 and 7, solve the equations for
values of 6 between 0° and 360°.

6. 3sin(@ +30°)="7cosb
[64.72° or 244.72°]

7. 4sin(@ —40°)=2sin6
[67.52° or 247.52°]

17.2 Conversion of a sin wt + b cos wt

into R sin(wt + )

(i) Rsin(wt + ) represents a sine wave of maxi-
mum value R, periodic time 27 /w, frequency
w/2r and leading Rsinwt by angle «. (See
Chapter 14).

(i) Rsin(wt+«a) may be expanded using the
compound-angle formula for sin(A + B), where
A=wt and B=«. Hence,

Rsin(wt +a)
= R|[sinwt cosa + coswt sin |
= Rsinwtcosa + Rcos wt sinx

= (Rcosa)sinwt + (Rsin &) cos wt

(iii) If a=Rcosa and b=Rsina, where a and
b are constants, then Rsin(wt +«)=asinwt +
bcoswt,i.e.asine and cosine function of the same
frequency when added produce a sine wave of the

same frequency (which is further demonstrated in
Chapter 25).

(iv) Since a= Rcosw, then cosa =a/R, and since
b=Rsinc, then sina =b/R.

Figure 17.1

If the values of a and b are known then the values
of R and o may be calculated. The relationship between
constants a, b, R and « are shown in Fig. 17.1.

From Fig. 17.1, by Pythagoras’ theorem:

R=\/¢12+b2

and from trigonometric ratios:

o =tan™! bla

Problem 6. Find an expression for 3 sinwt +4
coswt in the form Rsin(w? + o) and sketch graphs
of 3sinwt, 4coswt and Rsin(wt + o) on the

same axes.

Let 3sinwt +4 coswt = R sin(wt + o)
then 3 sinwt +4 coswt
= R[sinwt cosa + cos wt sina ]

= (Rcos ) sinwt + (Rsin o) cos wt

Equating coefficients of sinwt gives:

3
3 = Rcos«, from which, cosa = rl

Equating coefficients of cos wt gives:

4
4 = Rsin«, from which, sina = R
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There is only one quadrant where both sino and coso
are positive, and this is the first, as shown in Fig. 17.2.
From Fig. 17.2, by Pythagoras’ theorem:

Problem 7. Express 4.6 sinwt —7.3coswt in the
form Rsin(wt + ).

R=v(3%2+4%)=5 Let 4.6sinwt — 7.3 coswt = Rsin(wt + ).
then 4.6 sinwt — 7.3 coswt
= R[sin wt cosa + cos wt sin |

= (Rcosa)sinwt + (Rsin &) cos wt

R 4
Equating coefficients of sinwt gives:
o
3 4.6 = Rcosa, from which, cosa = ?
Figure 17.2 Equating coefficients of coswt gives:
4 . . . =73
From trigonometric ratios: o =tan~! 37=53.13° or —7.3 = Rsine, from which, sina = R
0.927 radians. ) o '
Hence 3sinw? + 4coswt = Ssin(w? +0.927). There is only one quadrant where cosine is positive and

sine is negative, i.e. the fourth quadrant, as shown in
A sketch of 3sinwt, 4coswt and 5sin(wt +0.927) is Fig. 17.4. By Pythagoras’ theorem:
shown in Fig. 17.3.

R =[(4.6)2 +(—7.3)2] =8.628

Two periodic functions of the same frequency may be By trigonometric ratios:

combined by, (73
a=tan | ——

(a) plotting the functions graphically and combining 4.6

ordinates at intervals, or
= —57.78° or —1.008 radians.

(b) byresolution of phasors by drawing or calculation.

Hence
Problem 6, together with Problems 7 and 8 following,

demonstrate a third method of combining waveforms. 4.6sinwt—7.3coswt=8.628sin(wt —1.008).

A

0.927rad

y=4coswt

~
~
\/
N

L= 5 sin(wt+ 0.927) /

y

5
4 .
3 y=3sinwt
2

1—/

0
71 -
0.927 rad

—2

»
»

wt (rad)

Figure 17.3
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4.6

Figure 17.4

Problem 8. Express —2.7sinwt —4.1 coswt in
the form R sin(wt + o).

Let —2.7sinwt — 4.1 coswt = Rsin(wt + o)

= R[sin wt cos o + coswt sin |

= (Rcosa)sinwt + (R sin a)cos wt

Equating coefficients gives:

—2.7

—2.7 = Rcos«, from which, cosa = e

. . . —4.1

and —4.1 = Rsin«, from which, sina = T

There is only one quadrant in which both cosine and
sine are negative, i.e. the third quadrant, as shown in
Fig. 17.5. From Fig. 17.5,

R =/[(=2.7)2 4 (—4.1)2] = 4.909

4.1
d 6 =tan" ! == =56.63°
an an 2.7

90°
i -27 TN 0°
180 m 360°
0
-4 B
270°

Figure 17.5

Hence a=180°+56.63°=236.63° or 4.130 radians.
Thus,

—2.7sinwt —4.1coswt =4.909sin(wt +4.130).

An angle of 236.63° is the same as —123.37° or —2.153
radians.

Hence —2.7sinwt —4.1coswt may be expressed also
as 4.909sin(w ¢ —2.153), which is preferred since it is
the principal value (i.e. —7 <« < 7).

Problem 9. Express 3sinf +5cos6 in the form
Rsin(6 +«), and hence solve the equation

3sinf + 5 cosf = 4, for values of 6 between 0° and
360°.

Let 3sinf+5cosf = Rsin(0 + «)
= R[sin0 cosa + cosf sina ]
= (Rcosa)sinf + (Rsin «)cosH

Equating coefficients gives:

3 = Rcos«, from which, cosa =

S|l x| w

and 5 = Rsinw, from which, sina =

Since both sin« and cos « are positive, R lies in the first
quadrant, as shown in Fig. 17.6.

Figure 17.6

From Fig. 17.6, R=+/(32+5%)=5.831 and
a=tan"' 3 =59.03°.

Hence 3sinf + 5cosf =5.831sin(d +59.03°)
However 3sinf +5cosf =4

Thus 5.831sin(0 +59.03°) =4, from which

4
0 +59.03°) =sin~' [ ——
©+ )= sin (5.831)
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ie. 0 + 59.03° = 43.32° or 136.68°
Hence 6 =43.32°—-59.03° = —15.71°
or 0 = 136.68° —59.03° =77.65°
Since —15.71° is the same as —15.71°4360°, i.e.
344.29°, then the solutions are § =77.65° or 344.29°,

which may be checked by substituting into the original
equation.

Problem 10. Solve the equation
3.5co0s A—5.8sinA=6.5 for 0° < A < 360°.

Let 3.5cos A—5.8sinA=Rsin(A+«)
= R[sin Acosa + cos Asin«/]

= (Rcosa)sinA + (Rsina)cos A

Equating coefficients gives:

3.5
3.5 = Rsin «, from which, sina = 3
. —5.8
and —5.8 = Rcos«, from which, cosa = =

There is only one quadrant in which both sine is posi-
tive and cosine is negative, i.e. the second, as shown in
Fig. 17.7.

90°
R
35 .
P
180° N o
5.8 360°
270°

Figure 17.7

From Fig. 17.7, R=+/[(3.5)2 + (—5.8)2]=6.774 and
35

6=tan"! == =31.12°.
5.8

Hence o =180° — 31.12° =148.88°.

Thus

3.5c08A—5.8sin A=6.774sin(A + 144.88°)=6.5

Hence sin(A + 148.88°) = 6774’ from which,
6.5
A+148.88°) =sin~! ——
(A+148.88°) =sin 5774

= 73.65° or 106.35°
Thus A =73.65° —148.88° = —75.23°
= (—75.23°4+360°) =284.77°
or A =106.35° — 148.88° = —42.53°
= (—42.53°4+360°) =317.47°

The solutions are thus A =284.77° or 317.47°, which
may be checked in the original equation.

Now try the following exercise

Exercise 73  Further problems on the
conversion of a sinw? + bcosw? into
Rsin(wt + o)

In Problems 1 to 4, change the functions into the
form Rsin(wt + o).

1. Ssinwt+8coswt [9.434sin(wt +1.012)]

2. 4sinwt —3coswt [5sin(wt —0.644)]
3. —7sinwt+4coswt
[8.062 sin(wt +2.622)]

4. —3sinwt —6coswt
[6.708 sin(wt —2.034)]

5. Solve the following equations for values of 6
between 0° and 360°: (a) 2sinf + 4cosf =3
(b) 12sin6 —9cosh =7.
(a) 74.44° or 338.70°
[(b) 64.69° or 189.05°i|

6. Solve the following equations for
0°<A<360° (a) 3cosA+2sinA=2.8
(b) 12 cosA—4sinA=11.
(a) 72.73° or 354.63°
[(b) 11.15° or 311.98°i|

7.  Solve the following equations for values of 6
between 0° and 360°: (a) 3sinf + 4 cosf =3

(b) 2cos6 +sinf = 2.
[(a) 90° or 343.74° (b) 0°, 53.14°]
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8. Solve the following equations for values of
0 between 0° and 360°: (a) 6¢cosf + sinf =
/3 (b) 25in30 +8cos30 = 1.

(a) 82.9°,296°
(b) 32.36°,97°,152.36°, 217°,
272.36° and 337°

9. The third harmonic of a wave motion s given
by 4.3 cos360 —6.9sin36. Express this in the
form Rsin(360 £«). [8.13sin(30 +2.584)]

10. The displacement x metres of a mass from
a fixed point about which it is oscillating is
given by x =2.4sinwt + 3.2 coswt, where ¢
is the time in seconds. Express x in the form
Rsin(wf +a). [x=4.0sin(wt +0.927)m]

11. Two voltages, vi =5 coswt and
vy = —8sinwt are inputs to an analogue cir-
cuit. Determine an expression for the output
voltage if this is given by (vi +v2).

[9.434 sin(wt +-2.583)]

17.3 Double angles

(i) If, in the compound-angle
sin(A+ B), we let B=A then

formula for

sin2A =2sin A cos A

Also, for example,
sin4A = 2sin2Acos2A

and sin8A =2sin4Acos4A, and so on.

(i) If, in the compound-angle formula for

cos(A+ B), we let B= A then
c0s2A = cos’> A —sin? A
Since cos? A+ sin? A=1, then
cos? A=1—sin? A, and sin? A=1— cos? A, and
two further formula for cos2A can be produced.
Thus cos2A = cos® A —sin” A
= (1 —sin®> A) —sin’ A
ie.  cos2A=1-2sin’A
and cos2A = cos® A —sin” A
=cos? A — (1-— cos? A)
ie. c0s2 A =2cos?A—1

Also, for example,

cos4A = cos’2A —sin’2A or
1 —2sin?2A or
2cos?24 —1
and cos6A =cos’3A —sin’3A or
1 —2sin’3A or
2cos?34 1,
and so on.

@iii) If, in the compound-angle formula for

tan(A+ B), we let B=A then

2tan A

tan2A = ————
an 1—tan2A

Also, for example,

2tan2A
tan4dA = ——
1 —tan22A
2tan % A
and tanS5A = — s and so on.
1 — tan? EA
Problem 11. [I3sin 36 is the third harmonic of a

waveform. Express the third harmonic in terms of
the first harmonic sin6, when I3 =1.

When I3 =1,
I3sin360 = sin36 = sin(26 +0)
= sin26 cosO + cos26 sinf,
from the sin(A + B) formula

= (2sinf cosO)cosd + (1 —2 sin29) sin®,
from the double angle expansions

= 25infcos26 +sinh — 2sin> 6

=2sin@(1 —sin%6) +sin® — 2sin’ 6,
(since cos?f =1 —sin? 0)

= 2sin6 —25in39+sin9 —2sin’0

i.e. sin30 = 3sind — 4sin30

1 — cos26
Problem 12. Prove that ——
sin

=tan6.
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1—cos20 1—(1—2sin%6)
LHS = - = -
sin 26 28inf cosf
. 2sin? 6 B sinf
" 2sinfcost  cosd
=tan6d = RHS

Problem 13. Prove that

cot2x + cosec 2x = cot x.

cos2x 1

LHS = cot2x + cosec2x =

sin2x  sin2x

cos2x +1
= sin2x
(2cos?x —1)+1
- sin2x
B 2cos?x 2cos? x

sin2x 2sinxcosx

cosx
= —— =cotx =RHS
sinx

Problem 14. Solve the equation

c0s26 = 1 —2sin’ 6 gives:
1 —2sin*6 +3sind =2

Rearranging gives:

which is a quadratic in sinf

(2sinf — 1)ind —1) =0

from which, 2sinf —1=0 or sinf—1=0

and sinf = % or sinf =1

from which, 0 = 30° or 150° or 90°

c0s260 +3sinf =2 for 6 in the range 0° <6 <360°.

Replacing the double angle term with the relationship

—2sin20 4+ 3sinf —1=0
or 2sin?@ —3sinf +1=0

Using the quadratic formula or by factorising gives:

Now try the following exercise

angles

R and cos2t when v="V cost.

Exercise 74  Further problems on double

1. The power p in an electrical circuit is given by

v . .
p=—. Determine the power in terms of V/,

VZ
I:ﬁ(l + cos2t)

2. Prove the following identities:

@ 1— ZZZZZ Zz — tan2¢

1+ cos2t

(b) ———=2cot*s
sin“ ¢
(tan2x)(1 + tanx) _ 2
tanx " 1—tanx

(d) 2cosec26cos20=cotf — tanf

3. [Ifthe third harmonic of a waveform is given by
V3 cos 360, express the third harmonic in terms
of the first harmonic cos6, when V3=1.

[cos36 =4cos’6 -3 cosf]

In Problems 4 to 8, solve for 6 in the range
—180° <6 < 180°

4. cos26 =sin6 [—90°,30°, 150°]

5. 3sin26 +2cosf =0
[—160.47°, —90°, —19.47°,90°]

6. sin26 +cosf =0
[—150°, —90°, —30°, 90°]

7. cos20+2sinf = —3 [—90°]

8. tanf +coth =2 [45°, —135°]

17.4 Changing products of sines and

cosines into sums or differences

formulae in Section 17.1)

i.e. sinAcosB

= 1[sin(A + B) +sin(A — B)] 1)

(ii) sin(A+ B)—sin(A— B)=2cos AsinB

i.e. cosAsinB

=1Isin(4 +B)—sin4-B)] ()

(iii) cos(A+ B)+cos(A— B)=2cosAcos B

i.e. cosAcosB

=1[cos(A + B) + cos(A — B)] 3)

sin(A+ B) +sin(A — B) =2sin Acos B (from the
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(iv) cos(A+ B)—cos(A— B)=—2sinAsin B
i.e. sinAsinB

=—1[cos(A + B) — cos(A — B)] 4)

Problem 15. Express sin4x cos3x as a sum or
difference of sines and cosines.

From equation (1),
sindx cos3x = %[sin(4x +3x) +sin(4x — 3x)]

= %(sin7x + sinx)

Problem 16. Express 2cos56sin26 as a sum or
difference of sines or cosines.

From equation (2),
1
2c0s56sin26 = ZIE [sin(56 +26) — sin(59—29)]]

=sin76 —sin 360

Problem 17. Express 3 cos4zcost as a sum or
difference of sines or cosines.

From equation (3),
1
3cosdtcost =3 IE [cos(4t + 1) + cos(4t — t)]]

3
= E(cos 5t +cos3t)

Thus, if the integral [ 3 cos4tcosrdr was required (for
integration see Chapter 37), then

3
/30054tcostdt:/5(0055t+cos3t)dt

5 T3

_ 3 [ sin5¢
)

sin 3t]
+c

Problem 18. In an alternating current circuit,
voltage v=>5sinwt and current i = 10sin(wt —
7/6). Find an expression for the instantaneous
power p at time ¢ given that p =wvi, expressing the
answer as a sum or difference of sines and cosines.

p =vi = (5sinwt) [10sin (ot —/6)]

= 50sinwt sin(wt — 1 /6)

From equation (4),

50 sinwt sin(wt — 7 /6)

= (50) [—% {cos(a)t + ot —1/6)

—cos[a)t — (ot — 71/6)]}]

= —25{cosRwt — 1 /6) — cos 7 /6}

i.e. instantaneous power,

p =25[cosm /6 —cos Qwt — m/6)]

Now try the following exercise

Exercise 75

Further problems on changing

products of sines and cosines into sums or
differences

In Problems 1 to 5, express as sums or differences:

1.

2.

sin7¢ cos 2t [%(sin9t + sin5t)]
cos 8x sin2x [% (sin 10x — sin 6x)]
2sin7¢ sin 3¢ [cos4t — cos 10¢]
4cos36cosb [2(cos40 + cos20)]
3sin " cos ™ 3 ( . i T )_
sin — cos — —|sin — +sin —
3 () 2 2 6/ |
Determine [ 2sin3zcostdt.
cosd4t  cos2t

4 2 ]
b4 -

2 20

Evaluate / 4cosSxcos2xdx. —71
0 .

Solve the equation: 2sin2¢sing = cos¢ in
the range ¢ = 0 to ¢ = 180°.
[30°,90° or 150°]

17.5 Changing sums or differences of

sines and cosines into products

In the compound-angle formula let,

and

(A+B)=X

(A—B)=Y
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Solving the simultaneous equations gives:

X-Y
and B= ——
2
Thus sin(A+ B) + sin(A — B) =2sin A cos B becomes,

. . . (X+Y X-Y
sin X +sinY = 2sin > cos > (®)]

X+Y
A=+

Similarly,

. . X+Y\ . L  [(X-Y
sinX —sinY = 2cos > sin > (6)

Y X-Y 7
> )cos( > ) (7)
X+Y\. [ X-Y

> )sm(T) (8)

Problem 19. Express sin56 +sin 36 as a product.

X+
cos X +cosY = 2cos(

cosX —cosY = =2 sin(

From equation (5),

50 + 36 06— 360
sin59+sin39=25in( ;3 )cos(5 23 )

= 2sin40 cos
Problem 20. Express sin7x — sinx as a product.

From equation (6),

. . Tx+x\ . (Tx—x
sin7x — sinx = 2cos 5 sin 5

= 2cos4xsin3x

Problem 21. Express cos2t — cos 5t as a
product.

From equation (8),

2t +5t\ . (2t —5¢
cos2t — cosS5t = —2sin > sin >

1. 3 .7 .3
= —2sin—tsin{ —=¢ | = 2sin—¢sin —¢
2 2 2 2

. . 3 .3
since sin{ —=¢ ) = —sin =¢
2 2

cos 6x + cos2x

Problem 22. Show that =cot4x.

sin 6x + sin2x

From equation (7),

cosb6x +cos2x = 2cos4x cos2x

From equation (5),

sin6x + sin2x = 2sin4x cos2x

Hence
cos6x + cos2x _ 2cosdx cos2x

sinbx +sin2x  2sindx cos2x

cosdx
= — =cotdx
sin4x

Problem 23. Solve the equation
cos46 + cos 26 =0 for 6 in the range 0° <6 <360°.

From equation (7),
460 + 20 460 — 26
cos46 + cos260 =2 cos 5 cos

2
2cos30cosf =0

cos36cosf =0

Hence,
Dividing by 2 gives:

Hence, either cos30 =0 or cosfd =0

Thus, 30 =cos™'0 or O =cos 10

from which, 36 =90° or 270° or 450° or 630° or
810° or 990°

and 6 =30°,90°,150°,210°, 270° or 330°

Now try the following exercise

Exercise 76  Further problems on changing
sums or differences of sines and cosines into
products

In Problems 1 to 5, express as products:

1. sin3x+4sinx [2sin2x cosx]
2. 36in90—sin76) [cos 80sind]
3. cos5t+cos3t [2cos4tcost]
4 %(cosSt—cost) [—A—l1 sin 3¢ sin2t]

5 1 ( T o n) I T
. 5 (cos =+ cos— COS — COS —
2 3 4 24 24
6. Show that:
sin4x —sin2x
(a) ——— =tanx

cosdx + cos2x

(b) {sin(5x —a) — sin(x +a)}
=cos3xsin(2x — )
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In Problems 7 and 8, solve for 6 in the range 0° <
6 < 180°.

7. cos66 +cos20 =0
[22.5°,45°,67.5°,112.5°,135°, 157.5°]

8. sin36 —sinf =0
[0°,45°,135°,180°]

In Problems 9 and 10, solve in the range
0° to 360°.

9. cos2x =2sinx [21.47° or 158.53°]

10. sin4t+sin2t =0
[0°,60°,90°, 120°, 180°, 240°,
270°,300°, 360°]

17.6 Power waveforms in a.c. circuits

(a) Purely resistive a.c. circuits

Let a voltage v=Vy,sinwt be applied to a cir-
cuit comprising resistance only. The resulting current
is i =1I,sinwt, and the corresponding instantaneous
power, p, is given by:

p =vi = (Vysinwt) ([, sinwt)

ie. p=Vyuly sin” wt
From double angle formulae of Section 17.3,

c0s2A = 1 —2sin? A, from which,
sin? A = %(1 —cos2A) thus

sin? wt = %(1 —cos2wt)

Then power p =V, I, [%(l — Cos 2a)t)]

ie. P =2VuIn(l—cos2wt)

The waveforms of v, i and p are shown in Fig. 17.8. The
waveform of power repeats itself after 7 /w seconds and
hence the power has a frequency twice that of voltage
and current. The power is always positive, having a max-
imum value of V,, I,,,. The average or mean value of the
power is % Vinlm.

Vin
V2

k]

The rms value of voltage V =0.707V,,, i.e. V=
from which, V,, = J2V.

‘i ______________________ Maximum
power
P
i
Y | [ 55580\ A Average
+ power
0 t(geconds)
v
Figure 17.8

Similarly, the rms value of current, /= I—m, from
V2

which, I, = /2 I. Hence the average power, P, devel-
oped in a purely resistive a.c. circuit is given by
P= %lem = %(«/EV)(«/EI) =V I watts.

Also, power P=1I?R or V2/R as for a d.c. circuit,
since V=1IR.

Summarizing, the average power P in a purely
resistive a.c. circuit given by

VZ

P=VI=I*R
R

where V and I are rms values.

(b) Purely inductive a.c. circuits

Let a voltage v=V,, sinwt be applied to a circuit con-
taining pure inductance (theoretical case). The resulting

- . TN .
current is i = I, sin (a)t - E) since current lags voltage
T . . . . L
by Eradlans or 90° in a purely inductive circuit, and
the corresponding instantaneous power, p, is given by:
. . . T

p =vi=(Vysinwt)Il, sm(a)t — E)
. . . b4
ie. p=Vyl,sinwt sm(a)t — E)
However,

. b4
sin (a)t - E) = —coswt thus
p = —Vul,sinwt coswt.

Rearranging gives:

p= —% Vi Iy (2 sin wt coswt).
However, from double-angle formulae,

2sinwt cos wt = sin2wt.

Thus power, p= —%V,,,Im sin2wt.
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;
o
glx

Figure 17.9

The waveforms of v, i and p are shown in Fig. 17.9.
The frequency of power is twice that of voltage and
current. For the power curve shown in Fig. 17.9, the area
above the horizontal axis is equal to the area below, thus
over a complete cycle the average power P is zero. It
is noted that when v and i are both positive, power p is
positive and energy is delivered from the source to the
inductance; when v and i have opposite signs, power p
is negative and energy is returned from the inductance
to the source.

In general, when the current through an inductance
is increasing, energy is transferred from the circuit to
the magnetic field, but this energy is returned when the
current is decreasing.

Summarizing, the average power P in a purely
inductive a.c. circuit is zero.

(c) Purely capacitive a.c. circuits

Let a voltage v=V,sinwt be applied to a circuit
containing pure capacitance. The resulting current is
i=I, sin(a)t + %), since current leads voltage by 90°
in a purely capacitive circuit, and the corresponding
instantaneous power, p, is given by:

p=vi=(Vysinot)l, sin(a)t + %)
. . . T
e. p=Vy,l,sinwt sm(a)t + E)

. b4
Howeyver, sin (a)t + E) = coswt

thus p = Vil sinwt coswt
Rearranging gives p =1 V,, I, (2sinwt cos wr).
Thus power, p= %V,,, I,,sin2wt.

The waveforms of v, i and p are shown in Fig. 17.10.
Over a complete cycle the average power P is zero.
When the voltage across a capacitor is increasing,
energy is transferred from the circuit to the electric
field, but this energy is returned when the voltage is
decreasing.

Summarizing, the average power P in a purely
capacitive a.c. circuit is zero.

(d) R-L or R-C a.c. circuits

Let a voltage v=Vysinwt be applied to a cir-
cuit containing resistance and inductance or resis-
tance and capacitance. Let the resulting current be
i =1, sin(wt +¢), where phase angle ¢ will be posi-
tive for an R—C circuit and negative for an R—L circuit.
The corresponding instantaneous power, p, is given by:

p =vi = (Vysinwt) I, sin(wt + ¢)
ie. p=Vyl,sinwtsin(wt + ¢)
Products of sine functions may be changed into differ-

ences of cosine functions as shown in Section 17.4,
i.e. sinAsinB= —%[COS(A + B) — cos(A— B)].
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HEEERY % :%T t (seconds)

Figure 17.10
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e 5 / 207)7 “~t (seconds)
Figure 17.11
Substituting wt = A and (wt 4+ ¢) = B gives: (i) a constant term, %Vm I, cos ¢ (since ¢ is constant

fi ticular circuit).
power, p=1V, Im{—% [cos(wt + wt 4 ¢) or a particular circuit)

— cos(wt — (ot +d)]} Thus the average value of power, P = %Vm I, cos .

ie. P = 3Vinlnlcos(—) — cosQut + )] Since Viy=+/2V and I,,=+/21, average power,
P =1W2V)(2I)cos

However, cos(—¢) = cos¢ 2( ) ) ¢

Thus p = %lem[cosqﬁ —cosQwt + ¢)]

. . ie. P=VIcos
The instantaneous power p thus consists of ¢

(i) a sinusoidal term, —%Vm I, cosQwt 4+ ¢) which The waveforms of v, i and p, are shown in Fig. 17.11
has a mean value over a cycle of zero, and for an R-L circuit. The waveform of power is seen to
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pulsate at twice the supply frequency. The areas of the
power curve (shown shaded) above the horizontal time
axis represent power supplied to the load; the small
areas below the axis represent power being returned to
the supply from the inductance as the magnetic field
collapses.

A similar shape of power curve is obtained for an
R—C circuit, the small areas below the horizontal axis
representing power being returned to the supply from
the charged capacitor. The difference between the areas

above and below the horizontal axis represents the heat
loss due to the circuit resistance. Since power is dissi-
pated only in a pure resistance, the alternative equations
for power, P = II%R, may be used, where I is the rms
current flowing through the resistance.

Summarizing, the average power P in a circuit
containing resistance and inductance and/or capaci-
tance, whether in series or in parallel, is given by
P=VIcos¢ or P= I%R (V,I and Ip being rms
values).



Revision Test 5

This Revision Test covers the material contained in Chapters 14 to 17. The marks for each question are shown in
brackets at the end of each question.

1.

Solve the following equations in the range 0°
to 360°.

(a) sin~}(—0.4161)=x

(b) cot™1(2.4198)=46 3
Sketch the following curves labelling relevant
points:

(@) y=4cos(@ +45°)

(b) y=5sin(2t —60°) (8)

The current in an alternating current circuit at
any time ¢ seconds is given by:

i = 120sin(100r ¢t 4+ 0.274) amperes.

Determine

(a) the amplitude, periodic time, frequency and
phase angle (with reference to 120sin 1007 ¢)

(b) the value of current when r =0
(c) the value of current when t =6ms
(d) the time when the current first reaches 80 A

Sketch one cycle of the oscillation. (19)

A complex voltage waveform v is comprised
of a 141.4Vrms fundamental voltage at a fre-
quency of 100Hz, a 35% third harmonic com-
ponent leading the fundamental voltage at zero
time by m/3radians, and a 20% fifth harmonic
component lagging the fundamental at zero time
by m/4radians.

(a) Write down an expression to represent
voltage v.

(b) Draw the complex voltage waveform using
harmonic synthesis over one cycle of the
fundamental waveform using scales of 12cm
for the time for one cycle horizontally and
lecm=20V vertically. (15)

Prove the following identities:

@) 1— cos?0 — tan®
- 2o |

3 .
(b) cos (7 +q§) =sing

sin? x
© ————=

= Ltan?
14 cos2x anx ©)

N—

Solve the following trigonometric equations in the
range 0° <x <360°:

(a) 4cosx+1=0

(b) 3.25cosecx =5.25

(c) 5sin’x+3sinx =4

(d) 2sec?6+5tanf =3 (18)

Solve the equation 5sin(6 —m/6) =8cos6 for
values 0 <6 < 2. ®)

Express 5.3 cost —7.2sint in the form

Rsin(f 4+ o). Hence solve the equation

5.3cost — 7.2sint =4.5 in the range

0<t<2m. (12)

Determine [2cos37sinzdz. 3)



Chapter 18

Functions and their curves

18.1 Standard curves

When a mathematical equation is known, co-ordinates
may be calculated for a limited range of values, and
the equation may be represented pictorially as a graph,
within this range of calculated values. Sometimes it
is useful to show all the characteristic features of an
equation, and in this case a sketch depicting the equa-
tion can be drawn, in which all the important features
are shown, but the accurate plotting of points is less
important. This technique is called ‘curve sketching’
and can involve the use of differential calculus, with,
for example, calculations involving turning points.

If, say, y depends on, say, x, then y is said to be a func-
tion of x and the relationship is expressed as y = f(x); x
is called the independent variable and y is the dependent
variable.

In engineering and science, corresponding values are
obtained as a result of tests or experiments.

Here is a brief resumé of standard curves, some of
which have been met earlier in this text.

(i) Straight Line

The general equation of a straight line is y=mux +c,
where m is the gradient (i.e.j—i}) and c is the y-axis
intercept.

Two examples are shown in Fig. 18.1

(ii) Quadratic Graphs

The general equation of a quadratic graph is
y=ax?+bx+c, and its shape is that of a parabola.
The simplest example of a quadratic graph, y=x?, is

shown in Fig. 18.2.

(iii) Cubic Equations

The general equation of a cubic graph is
y=ax>+ bx*>+cx+d.

xv

Figure 18.1

Figure 18.2
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The simplest example of a cubic graph, y=x>, is (v) Circle (see Chapter 13, page 122)

shown in Fig. 18.3. 2

The simplest equation of a circle is x>+ y>=r2,
with centre at the origin and radius r, as shown in
Fig. 18.5.

X2+ y2=r2

xv

XV

Figure 18.3 Figure 18.5

(iv) Trigonometric Functions (see Chapter 14, More generally, the equation of a circle, centre (a, b),

page 134) radius r, is given by:
Graphs of y=sinf, y=cos6 and y =tan6 are shown in (x—a)*+ (y— b =r?
Fig. 18.4.

Figure 18.6 shows a circle

(=27 +(y =37 =4

y A
10} V= sinf /
0 T T 37 21 (; y4
B 2 2
-1.0f 51 (x=22+(y—3)2=4
(@) 417
3
y A P
B b=3
1.0 ‘XJ‘/— cos 6 / |
B 1 1 »
! 5 ! ! ! ! ! ! ! 4 ! ! 2| » 0 2 4 ;
aa o
I z 3 2m oy >
-1.0} a=
(b) Figure 18.6
y A . .
y—tang (vi) Ellipse
L The equation of an ellipse is
f ! 1 ! ! | f ! ! ! ! | »
0 T T 3 2 5 x2 y2
i 2 2 —+ =1
L / / a? b2

and the general shape is as shown in Fig. 18.7.
The length AB is called the major axis and CD the
Figure 18.4 minor axis.
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y A

-
"

In the above equation, ‘a’ is the semi-major axis and
‘b’ is the semi-minor axis.

.}
[
D |
ol 4

Figure 18.7

2 2
X
(Note that if b=a, the equation becomes — + b =1,

a? a2
i.e. x2 +y?=a?, which is a circle of radius a).

(vii) Hyperbola
The equation of a hyperbola is
2

— 2

y2
2

Qlk
)
S

and the general shape is shown in Fig. 18.8. The
curve is seen to be symmetrical about both the
x- and y-axes. The distance AB in Fig. 18.8 is given
by 2a.

y A
2 2
L
a b

A | B R

o X

Figure 18.8

(viii) Rectangular Hyperbola

The equation of a rectangular hyperbola is xy=c or

y= < and the general shape is shown in Fig. 18.9.
X

(ix) Logarithmic Function (see Chapter 3, page 26)

y=Inx and y = Igx are both of the general shape shown
in Fig. 18.10.

(x) Exponential Functions (see Chapter 4, page 30)

y=e" is of the general shape shown in Fig. 18.11.

y A
3 -
y=%
2
1
1 1 1 1 1 1 ;
-3 -2 -1 0 1 2 3 X
_1 -
_2 -
_3 -
Figure 18.9
y A
y=log x
0 1 4

Figure 18.10

(xi) Polar Curves

The equation of a polar curve is of the form r = f(6).
An example of a polar curve, r =asin6, is shown in
Fig. 18.12.
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xv

Figure 18.11

r=asinf

Figure 18.12

18.2 Simple transformations

From the graph of y= f(x) it is possible to ded-
uce the graphs of other functions which are transfor-
mations of y= f(x). For example, knowing the graph
of y= f(x), can help us draw the graphs of y=af (x),
v=f)+a,y= fGx+a)y= f(ax),y=— f(x)and
y=f(=x).

@) y=af(x)

For each point (x1, y;) on the graph of y= f(x) there
exists a point (x1, ay;) on the graph of y=af (x).
Thus the graph of y=af(x) can be obtained by
stretching y= f(x) parallel to the y-axis by a scale
factor ‘a’.

Graphs of y=x+1 and y=3(x+1) are shown in
Fig. 18.13(a) and graphs of y=sinf and y=2sin6 are
shown in Fig. 18.13(b).

y A

y=3(x+1)

xv

o
-
o

NS
|

(b)

Figure 18.13

i)y =f(x)+a

The graph of y= f(x) is translated by ‘a’ units par-
allel to the y-axis to obtain y= f(x)+a. For exam-
ple, if f(x)=x, y= f(x)+3 becomes y=x-+3, as
shown in Fig. 18.14(a). Similarly, if f(6)= cos#,
then y= f(0)+2 becomes y= cosf +2, as shown in
Fig. 18.14(b). Also, if f(x):xz, then y= f(x)+3
becomes y=x2+3, as shown in Fig. 18.14(c).

(iii) y = f (x + a)

The graph of y = f (x) is translated by ‘a’ units parallel
to the x-axis to obtain y= f(x +a). If ‘a’ >0 it moves
y= f(x) in the negative direction on the x-axis (i.e. to
the left), and if ‘a’ <0 it moves y= f(x) in the positive
direction on the x-axis (i.e. to the right). For example, if

. b/ . b4
f(x)=sinx, y=f ( — g) becomes y = sin (x - g)
as shown in Fig. 18.15(a) and y = sin (x + %) is shown
in Fig. 18.15(b).
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y A

0 2 4 6 X
(a)
A
3
y=cosf+2
1
\ /<y=0059
1 1 #
21 0

Figure 18.14

(@)

a

4

‘_:I‘\/yzsmx
\\

N y=sin(x +%)

xv

(b)

Figure 18.15

Similarly graphs of y=x?, y=(x—1)> and
y = (x 4+2)? are shown in Fig. 18.16.
(iv) y=f(ax)
For each point (x1, y;) on the graph of y= f(x), there
exists a point (ﬂ, y1) on the graph of y= f(ax). Thus
the graph of yi f(ax) can be obtained by stretching

y= f(x) parallel to the x-axis by a scale factor —

a
y A
y=x2
y=(x+2)? 6
W
A y=(x-1)?
1 1 1 1 #
-2 -1 0 1 2 X

Figure 18.16
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1
For example, if f(x)=(x—1)?, and a= 3 then

X | 2
fan=(5-1)"
Both of these curves are shown in Fig. 18.17(a).
Similarly, y=cosx and y=cos2x are shown in
Fig. 18.17(b).
W y=—fx
The graph of y=— f(x) is obtained by reflecting
y= f(x) in the x-axis. For example, graphs of y=e¢*

and y=—e" are shown in Fig. 18.18(a) and graphs of
y=x?+2and y=—(x%+2)areshowninFig. 18.18(b).

y A
y=(x—1?
4_
L X
2 y=(5-1)7
-2 0 2 4 6 x
(a)
y A
y=cosx y=cos 2x
o \« /X /
\ /
\ /
\ /
\I 1 I/ 1 »
0 m\ T \\3_7 21 ;
2" 2
\ /
_1 O - \\_//
(b)
Figure 18.17
y A
y=e*
1
»
—1 X
= —eX
./y
(a)

Figure 18.18

y 4

Figure 18.18 (Continued)

(vi) y=f(—-x)

The graph of y= f(—x) is obtained by reflecting
y= f(x) in the y-axis. For example, graphs of y=x>
are shown in Fig. 18.19(a)

and y= (—x)3 =—x3

\ y A
X
\
Ny=tat o Por )
\ y=x
\\
x_ 10
= 1 1
sl 2 3

b3
y A
—_  y=-Inx
Tt~ y=Inx
~.
” >
N\
-1 \\0 1 X
\
\
\
\
|
(b)

Figure 18.19
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and graphs of y=Inx and y=—Inx are shown in
Fig. 18.19(b).

Problem 1. Sketch the following graphs, showing
relevant points:

@ y=@x-4H2 b)) y=x>-8

(a) InFig.18.20 a graph of y=x? is shown by the bro-
ken line. The graph of y=(x —4)? is of the form
y=f(x+a). Since a=—4, then y=(x —4)? is
translated 4 units to the right of y=x2, parallel to
the x-axis.

(See Section (iii) above).

Figure 18.20

(b) In Fig. 18.21 a graph of y=x? is shown by the
broken line. The graph of y=x3—8 is of the
form y= f(x)+a. Since a=—8, then y=x>—8
is translated 8 units down from y = x>, parallel to
the y-axis.

(See Section (ii) above).

Figure 18.21

Problem 2. Sketch the following graphs, showing

relevant points:
@ y=5-@+2)°

(b) y=1+43sin2x

(a) Figure 18.22(a) shows a graph of y=x>.
Figure 18.22(b) shows a graph of y = (x + 2)3 (see
f(x+a), Section (iii) above).

20 4
y=x°
10 4
2 X
(@)
y A
20
ly=(x+2)3
10 1

—10

—204

Figure 18.22

xv

(b)
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20+

xXv

(c)

2 4

(d)

Figure 18.22 (Continued)

(b)

Figure 18.22(c) shows a graph of y= — (x+2)3
(see — f(x), Section (v) above). Figure 18.22(d)
shows the graph of y=5—(x +2)3  (see
f(x)+ a, Section (ii) above).

Figure 18.23(a) shows a graph of y=sinx.
Figure 18.23(b) shows a graph of y=sin2x
(see f(ax), Section (iv) above).

Figure 18.23(c) shows a graph of y =3sin2x (see
a f(x),Section (i) above). Figure 18.23(d) shows a
graph of y=1+43sin2x (see f(x)+ a, Section (ii)
above).

y A
Tr y=sin x
0 N X
2 2
_1_
(a)
VA
[AWA
O %\/” C’ﬂ\\/z”;
2
_1_
(b)
y A
sl _-y=3sin2x
ZA A
1
0 7_'r T 3w 277;
2 2
71_
_2_
_3_
(c)
VA
al /y=1+3sin2x
3
2
1
R B o - T
2 2 X
_1_
_2_

Figure 18.23

(d)
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Now try the following exercise

Exercise 77 Further problems on simple
transformations with curve sketching

Sketch the following graphs, showing relevant

points:
(Answers on page 200, Fig. 18.39)
1. y=3x-5
2. y=—-3x+4
3. y=x243
4. y=(x-3)?
5. y=(x—4)>+2
6. y=x—x?
7. y=x342
8. y=142cos3x
9. y=3—25in(x+%)
10. y=2Inx

18.3 Periodic functions

A function f(x) is said to be periodic if f(x+T)=
f(x) for all values of x, where T is some positive
number. T is the interval between two successive repe-
titions and is called the period of the function f (x). For
example, y = sinx is periodic in x with period 27 since
sinx = sin(x + 2m) = sin(x +4), and so on. Similarly,
y=cosx is a periodic function with period 27 since
cosx = cos(x +2m) = cos(x +4s), and so on. In gen-
eral, if y=sinwt or y=coswt then the period of the
waveform is 277 /w. The function shown in Fig. 18.24 is

F(x) &

xv

-2 —r 0 T 2m

Figure 18.24

also periodic of period 27 and is defined by:

—1, when —7 <x <0

1, whenO0<x<m

o |

18.4 Continuous and discontinuous

functions

If a graph of a function has no sudden jumps or breaks it
is called a continuous function, examples being the
graphs of sine and cosine functions. However, other
graphs make finite jumps at a point or points in the inter-
val. The square wave shown in Fig. 18.24 has finite
discontinuities as x =7, 2w, 37, and so on, and is
therefore a discontinuous function. y = tan x is another
example of a discontinuous function.

18.5 Even and odd functions

Even functions

A function y = f(x) is said to be even if f(—x)= f(x)
for all values of x. Graphs of even functions are always
symmetrical about the y-axis (i.e. is a mirror image).
Two examples of even functions are y = x2 and y = cos x
as shown in Fig. 18.25.

y A
8_
6_
ar y=x2
2_
-3 -2 —1 1 2 3 x
(a)
VA
/Xy—cosx
- -m 0 i3 T
\/2 2\\/)(

(b)
Figure 18.25
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Odd functions

A function y= f(x) is said to be odd if f(—x)=—f(x)
for all values of x. Graphs of odd functions are
always symmetrical about the origin. Two examples
of odd functions are y=x> and y=sinx as shown in
Fig. 18.26.

Many functions are neither even nor odd, two such
examples being shown in Fig. 18.27.

YA y:x3

27

xv

—27F

1k y=sinx

Figure 18.26
y A

20 y

Il
@
>

10

e 4

xv

(b)

Figure 18.27

Figure 18.28

Problem 3. Sketch the following functions and
state whether they are even or odd functions:
(a) y=tanx

T
2, whenOfxfE

b4 3
—2, when 3 <x=<-—,

(b) f(r)= 5

3
2, when — <x <2mw

and is periodic of period 2.

(a) A graph of y=tanx is shown in Fig. 18.28(a) and
is symmetrical about the origin and is thus an odd
function (i.e. tan(—x) = —tanx).

(b) A graph of f(x) is shown in Fig. 18.28(b) and
is symmetrical about the f(x) axis hence the
function is an even one, ( f(—x)= f(x)).

VA y=tanx
=7 /o /7 /orx
(@
f(x) &
2
27 [-7 |0 T | 2r X
72_

Problem 4. Sketch the following graphs and state
whether the functions are even, odd or neither even
nor odd:

(@) y=Inx

(b) f(x)=ux in the range —m to 7 and is
periodic of period 2.
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(a) A graph of y=Inx is shown in Fig. 18.29(a)
and the curve is neither symmetrical about the
y-axis nor symmetrical about the origin and is thus
neither even nor odd.

(b) A graph of y=x in the range — to 7 is shown in
Fig. 18.29(b) and is symmetrical about the origin
and is thus an odd function.

y A

1.0} y=Inx

0.5}

-05f
(@
y 4 y=x
T\
—27 —m 0o w 27 x
bk

Figure 18.29

Now try the following exercise

Exercise 78 Further problems on even and
odd functions

In Problems 1 and 2 determine whether the given
functions are even, odd or neither even nor odd.

1. (a x* (b) tan3x (c) 2¢* (d) sin®x
[(a) even (b) odd :|

(c) neither (d) even

cos6
0

2. (a) 53 (b)eF+e* (¢) (d) e*

(a) odd (b) even
(c) odd (d) neither

3. State whether the following functions, which
are periodic of period 27, are even or odd:

@ £©) 6, when —m <6 <0
2 f6) = —60, when0<6 <mw

/4 T

X, Wwhen _E <x < 5

(b) f(x) = T 37

0, when — <x <—
2 2

[(a) even (b) odd]

18.6 Inverse functions

If y is a function of x, the graph of y against x can be
used to find x when any value of y is given. Thus the
graph also expresses that x is a function of y. Two such
functions are called inverse functions.

In general, given a function y = f (x), its inverse may
be obtained by interchanging the roles of x and y and
then transposing for y. The inverse function is denoted
by y=f""(x).

For example, if y=2x+ 1, the inverse is obtained by

. . . y—=1 y 1
t fi L. x=——==——and
(1) transposing for x, i.e. x 2 ) an
(i) interchanging x and y, giving the inverse as
x 1
’=372

1
Thus if f(x)=2x + 1, then f_l(x)zg— 3

A graph of f(x)=2x+1 and its inverse f~!(x)=
1
X~ isshownin Fig. 18.30 and f~'(x) is seen to be

a reflection of f(x) in the line y=x.
Similarly, if y = x, the inverse is obtained by

(i) transposing for x, i.e. x ==4,/y and

(ii) interchanging x and y, giving the inverse
y==4/x.

Hence the inverse has two values for every value of x.
Thus f(x)=x2 does not have a single inverse. In
such a case the domain of the original function may
be restricted to y=x2 for x >0. Thus the inverse is
then y=-++/x. A graph of f(x)=x? and its inverse
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y A

Hence if f(x)=x— 1, then f1(x)=x+1

- (b) If y= f(x), then y=x>—4 (x>0)
2 Ty=x Transposing for x gives x =/y +4

g Interchanging x and y gives y=+/x+4

Hence if f(x)=x?>—4 (x >0) then

ey =Vx+dif x>—4

Figure 18.30

1 (¢) If y= f(x), then y=x2+1

2 Transposing for x gives x =4/y — 1

> Interchanging x and y gives y =+/x — 1, which has
X two values.

Hence there is no inverse of f(x)=x%+1, since
the domain of f(x) is not restricted.

Inverse trigonometric functions

If y=sinx, then x is the angle whose sine is y.
Inverse trigonometrical functions are denoted by pre-

fixing the function with ‘arc’ or, more commonly, ™!

Hence transposing y=sinx for x gives x=sin"!y.

Interchanging x and y gives the inverse y=sin~! x.

Similarly, y= cos L, y= tan" L x, y= sec L,
y=cosec !x and y=cot~!x are all inverse trigono-
metric functions. The angle is always expressed in
radians.

Inverse trigonometric functions are periodic so it is
necessary to specify the smallest or principal value of the
angle. For sin"!x, tan~!x, cosec™!x and cot~!x, the

1

Figure 18.31

b4 Fid
principal value is in the range -3 <y< 7 Forcos™ " x

and sec ™! x the principal value is in the range 0 < y < 77.
Graphs of the six inverse trigonometric functions are
shown in Fig. 33.1, page 335.

Problem 6. Determine the principal values of

f~!(x)=/x forx > 0isshowninFig. 18.31 and, again, (a) arcsin 0.5 (b) arctan(—1)
f~1(x)isseentobeareflection of f(x)intheliney=ux.

It is noted from the latter example, that not all func- ©) s (_ «/_3 ) @) e «/5)
tions have an inverse. An inverse, however, can be 2

determined if the range is restricted.

. . Using a calculator,
Problem 5. Determine the inverse for each of the

following functions: (a) arcsin0.5 = sin~' 0.5 = 30°
(@ f)=x—1 (b) f(x)=x*—4 (x>0)
© f)=x2+1 — % rad or 0.5236rad

(@) Ify= f(x), theny=x—1 (b) arctan(—1) = tan”!(~1) = —45°

Transposing for x gives x =y + 1

T
Interchanging x and y gives y=x+1 -7 rad or —0.7854rad
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(c) mccos(—%g) = cos_l(—?) =150°

= ST” rad or 2.6180rad

(d) arccosec («/E) = arcsin(%)

1
co—1 o
=sin” | — ) =45

- %rad or 0.7854rad

Problem 7. Evaluate (in radians), correct to

3 decimal places: sin~!0.30+ cos~!0.65.
sin~10.30 = 17.4576° = 0.3047 rad
cos~10.65 = 49.4584° = 0.8632rad

Hence sin~10.30+ cos~10.65

7. tan~'1 [%or0.7854rad]
8. cot™12 [0.4636rad]
9. cosec”!2.5 [0.4115rad]
10. sec”'1.5 [0.8411rad]

11 sin—l(L [1 or07854rad]
. v T or .

12. Evaluate x, correct to 3 decimal places:

. 1 1 4 1 8
X=sn —-4cos — —tan —
3 5 9

[0.257]

13. Evaluate y, correct to 4 significant figures:
y= 3sec”! V2 —4cosec! V2

+ 5cot™ 12
[1.533]

=0.3047+0.8632=1.168, correct to 3 decimal places. 18.7 Asymptotes

Now try the following exercise

Exercise 79 Further problems on inverse
functions

Determine the inverse of the functions given in
Problems 1 to 4.

1. fx)=x+1 [F')=x—1]
2. f)=5x—1 [f—l(x)zé(xﬂ)]
3. f@)=x’+1 [ f 1) =% —1]
1 . 1
4. fx)=—+2 [f (x)=—}
X x—2

Determine the principal value of the inverse func-
tions in Problems 5 to 11.

5. sinl(=1) [—% or —1.5708rad]

6. cos—10.5 [% or 1.0472rad]

is drawn

If a table of values for the function y = a

up for various values of x and then y pl():tted against x,
the graph would be as shown in Fig. 18.32. The straight
lines AB, i.e. x=—1, and CD, i.e. y=1, are known as
asymptotes.

An asymptote to a curve is defined as a straight
line to which the curve approaches as the distance
from the origin increases. Alternatively, an asymp-
tote can be considered as a tangent to the curve at
infinity.

Asymptotes parallel to the x- and y-axes

There is a simple rule which enables asymptotes paral-
lel to the x- and y-axis to be determined. For a curve

y=fx):

(i) the asymptotes parallel to the x-axis are found by
equating the coefficient of the highest power of x
to zero.

(i) the asymptotes parallel to the y-axis are found by
equating the coefficient of the highest power of y
to zero.
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Figure 18.32

2
With the above example y= ol i T rearranging gives:
X

yx+1)=x+2
ie. yx+y—x—-2=0 (D

and x(y—1)+y—2=0

The coefficient of the highest power of x (in this case x )
is (y — 1). Equating to zero gives: y —1=0
x+2
From which, y=1, which is an asymptote of y = %
X
as shown in Fig. 18.32.

Returning to equation (1): yx+y—x—2=0

from which, yx+1)—x—-2=0.

The coefficient of the highest power of y (in this case
y!) is (x+1). Equating to zero gives: x +1=0 from
2
which, x=—1, which s another asymptote of y = %
X
as shown in Fig. 18.32.

Problem 8. Determine the asymptotes for the

S a
unction y =
2

and hence sketch the curve.
x+1

2x+1

Rearranging y = gives: y2x +1)=x-3
i.e. 2xy+y=x-3

or 2xy+y—x+3=0

and xQy—-1D+y+3=0

Equating the coefficient of the highest power of x to
zero gives: 2y —1=0 from which, y=% which is an
asymptote.

Since y(2x + 1) =x — 3 then equating the coefficient of
the highest power of y to zero gives: 2x +1=0 from
which, x= —% which is also an asymptote.

-3 =3
Whenx:O,y=;+1=T=—3 and when y=0,
0=-—— from which, x —3=0 and x =3.

2x +1 3

x_

is shown in Fig. 18.33.

A sketch of y=
2x +1
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X
2x+1

y

Figure 18.33
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Problem 9. Determine the asymptotes parallel to
the x- and y-axes for the function
x2y?=9(x2+y?).

Asymptotes parallel to the x-axis:

Rearranging x2y? =9(x? + y?) gives

x2y? —9x2 —9y2 =0
hence x%(y>—9)—9y>=0
Equating the coefficient of the highest power of x to zero
gives y> —9=0 from which, y>=9 and y==3.
Asymptotes parallel to the y-axis:

Since x2y? —9x2 -9y =0
then y>(x>—9)—9x2>=0
Equating the coefficient of the highest power of y to zero

gives x2—=9=0 from which, x2=9 and x==3.
Hence asymptotes occur at y==+3 and x=+3.

Other asymptotes

To determine asymptotes other than those parallel to
x- and y-axes a simple procedure is:

(i) substitute y=mx + ¢ in the given equation
(i) simplify the expression

(iii) equate the coefficients of the two highest powers
of x to zero and determine the values of m and c.
y=mx +c gives the asymptote.

Problem 10. Determine the asymptotes for the
function: y(x + 1) = (x —3)(x +2) and sketch the

curve.

Following the above procedure:

(1) Substituting y=mx + ¢ into
yx+1)=(x—-3) (x +2) gives:

mx+co)x+1)=x—-3)(x+2)
(i) Simplifying gives
2 _ 2
mx“+mx+cx+c=x"—x—06

and (m—1Dx>+@m—+c+1Dx+c+6=0

(iii) Equating the coefficient of the highest power
of x to zero gives m—1=0 from which,
m=1.

Equating the coefficient of the next highest power
of x to zero gives m+c+1=0.

and since m=1, 14+c+1=0 from which,
c=-2.

Hence y=mx+c=1x—2.

i.e. y=x—2 is an asymptote.
To determine any asymptotes parallel to the x-axis:

Rearranging y(x +1) = (x —3)(x +2)
gives yx+y=x>—x—6

The coefficient of the highest power of x (i.e. x?)is 1.
Equating this to zero gives 1 =0 which is not an equation
of a line. Hence there is no asymptote parallel to the
X-axis.
To determine any asymptotes parallel to the y-axis:
Since y(x+1)=x—3)(x+2) the coefficient of
the highest power of y is x-+1. Equating this to
zero gives x + 1 =0, from which, x = —1. Hence x=—1
is an asymptote.
When x=0, y(1)=(-3)(2), i.e. y=—6.
Wheny=0,0=(x —3)(x +2),i.e. x=3 and x=-2.

A sketch of the function y(x +1)=(x —3)(x 4+2) is
shown in Fig. 18.34.

Problem 11. Determine the asymptotes for the
function x3 —xy? +2x —9=0.

Following the procedure:

(i) Substituting y=mx +c gives
x3—x(mx +c¢)?>+2x —9=0.

(i) Simplifying gives

X3 = x[m?x% 4+ 2mex + 24+ 2x —9=0
ie. x3—m?x3 —2mex? —Ax+2x —9=0

and x3(1 —m?) —2mex? —2x+2x —9=0

(iii) Equating the coefficient of the highest power of x
(i.e. x3 inthis case) to zero gives 1 — m? =0, from
which, m ==+1.

Equating the coefficient of the next highest power
of x (i.e. x? in this case) to zero gives —2mc=0,
from which, ¢=0.
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Figure 18.34
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Hence y=mx+c=+£1x+0, ie. y=x and y=—x
are asymptotes.

To determine any asymptotes parallel to the x- and
y-axes for the function x> — xy? +2x —9=0:

Equating the coefficient of the highest power of x term
to zero gives 1 =0 which is not an equation of a line.
Hence there is no asymptote parallel with the x-axis.

Equating the coefficient of the highest power of y term
to zero gives —x =0 from which, x =0.

Hence x=0, y=x and y= — x are asymptotes for the
function x> — xy? +2x —9=0.

Problem 12. Find the asymptotes for the function

x24+1

y= and sketch a graph of the function.

X
X2

Rearranging y= gives yx =x241.

Equating the coefficient of the highest power x term to
zero gives 1 =0, hence there is no asymptote parallel to
the x-axis.

Equating the coefficient of the highest power y term to
zero gives x =0.

Hence there is an asymptote at x=0 (i.e. the
y-axis).

To determine any other asymptotes we substitute
y=mx +c into yx =x>+ 1 which gives

(mx +c)x =x2+1
i.e. mx24+cex =x2+1
and (m—Dx?>+cx—1=0

Equating the coefficient of the highest power x term to
zero gives m — 1 =0, from whichm = 1.
Equating the coefficient of the next highest power x term
to zero givesc=0. Hence y=mx +c=1x+0,i.e.y=x
is an asymptote.

2

1
A sketch of y= Tt

X
It is possible to determine maximum/minimum points
on the graph (see Chapter 28).

is shown in Fig. 18.35.

. 241 x2 1 1
Since y= =—+—=x+x
X X X

d
then = =1-x2=1——=0

1
dx x2

for a turning point.

1

Hence 1 = = and x2 =1, from which, x==+1.
X

When x=1,

2
1 I+1
:x+ :Lzz

Y X 1
and when x =—1,
D241
y=——"qT =
i.e.(1,2)and (—1, —2) are the co-ordinates of the turning
. dzy 32 2y . ..
points. — =2x"°= —; when x =1, — 1is positive,
dx2 3 2
which indicates a minimum point and when x =—1,

d?y . . L . .

ﬁ is negative, which indicates a maximum point, as
X

shown in Fig. 18.35.

Now try the following exercise

Exercise 80 Further problems on
asymptotes

In Problems 1 to 3, determine the asymptotes
parallel to the x- and y-axes.

_x—2

— =1,x=—1

Y= [y=1,x ]

2. y2=xi3 [x=3,y=1and y=—1]
x(x +3)

YT GG+ )
[x=—1,x=—2and y=1]

In Problems 4 and 5, determine all the asymptotes.
4. 8x—104+x>—xy2=0
[x=0, y=x and y=—x]
5. x2(y2—16)=y
[y=4,y=—4and x=0]
In Problems 6 and 7, determine the asymptotes and
sketch the curves.
2
x“—x—4
6. y=—m
4 x+1
x=—-1l,y=x—-2,
see Fig 18.40, page 202
7. xy?—x’y4+2x—y=5

x=0,y=0,y=x,
see Fig. 18.41, page 202
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7

Figure 18.35

X ) X (a) Iftheequationisunchanged when —x is substi-
18.8 Brief guide to curve sketching tuted for x, the graph will be symmetrical about

the y-axis (i.e. it is an even function).
The following steps will give information from which

the graphs of many types of functions y = f(x) can be (b) If the equation is unchanged when —y is substi-
sketched. tuted for y, the graph will be symmetrical about
the x-axis.
(i) Use calculus to determine the location and nature
of maximum and minimum points (see Chap- (¢) If f(—x)=—f(x), the graph is symmet-
ter 28) rical about the origin (i.e. it is an odd

(i) Determine where the curve cuts the x- and y-axes function).

(iii) Inspect the equation for symmetry. (iv) Check for any asymptotes.
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18.9 Worked problems on curve

sketching

Problem 13. Sketch the graphs of

(@) y=2x%+12x+20

(b) y=—3x2+12x—15

(a)

(b)

y=2x2412x+420 is a parabola since the equa-
tion is a quadratic. To determine the turning
point:

d
Gradient= d—y =4x +12=0 for a turning point.
X

Hence 4x =—12 and x =—3.
When x =-3, y=2(—3)2 +12(=3)+20=2.

Hence (—3, 2) are the co-ordinates of the turning
point

dzy

dx?, .
minimum pOlnt.

=4, which is positive, hence (-3, 2) is a

When x =0, y=20, hence the curve cuts the
y-axis at y=20.

Thus knowing the curve passes through (-3, 2)
and (0, 20) and appreciating the general shape
of a parabola results in the sketch given in
Fig. 18.36.

y=—3x2+412x—15 is also a parabola (but
‘upside down’ due to the minus sign in front of
the x?2 term).

d
Gradient= d—y =—6x+12=0 for a turning point.
X
Hence 6x =12 and x =2.
When x =2, y=—3(2)>2+12(2) —15=-3.

Hence (2, —3) are the co-ordinates of the turning
point

d2

d—); =—6, which is negative, hence (2, —3) is a
X

maximum point.

When x =0, y = —15, hence the curve cuts the axis

at y=—15.

The curve is shown sketched in Fig. 18.36.

y A

20f

y=2x2+12x+20

Figure 18.36

Problem 14. Sketch the curves depicting the
following equations:

(@) x=4/9—y2 (b) y>=16x

(c) xy=5

(a)

(b)

(©)

Squaring both sides of the equation and trans-
posing gives x>+ y?=9. Comparing this with
the standard equation of a circle, centre ori-
gin and radius a, i.e. x2+y2=a2, shows that
x2+y? =9 represents a circle, centre origin and
radius 3. A sketch of this circle is shown in
Fig. 18.37(a).

The equation y?>=16x is symmetrical about the
x-axis and having its vertex at the origin (0, 0).
Also, when x=1, y=44. A sketch of this
parabola is shown in Fig. 18.37(b).

The equation y= 4 represents a rectangular
X
hyperbola lying entirely within the first and third
5
quadrants. Transposing xy=5 gives y=—, and

therefore represents the rectangular hyperbola
shown in Fig. 18.37(c).
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y A
3
X
(a) x=(9-y?
X
(b) y2=16x
y A
X
(c) xy=5

Figure 18.37

Problem 15. Sketch the curves depicting the
following equations:

(@) 4x2=36—9y% (b) 3y2+15=>5x2

(a)

By dividing throughout by 36 and transposing,
the equation 4x>=36—9y? can be written as

K22

r} + T 1. The equation of an ellipse is of the
2 2

form ) + = 1, where 2a and 2b represent the

2 2
length of the axes of the ellipse. Thus 7 + 2= 1

represents an ellipse, having its axes coinciding

with the x- and y-axes of a rectangular co-ordinate
system, the major axis being 2(3), i.e. 6 units long
and the minor axis 2(2), i.e. 4 units long, as shown
in Fig. 18.38(a).

y A
A / \
4 >
| "
v
- 6 »
(a) 4x2=36 —9y?
y A
>
X
23

(b) 3y2 +15=5x2

Figure 18.38

(b)

Dividing 3y%+ 15=>5x? throughout by 15 and

2 2
transposing gives % -5 =L The equation
22 2
P 1 represents a hyperbola which is sym-

metrical about both the x- and y-axes, the distance

between the vertices being given by 2a.
K22
Thus a sketch of 35 1 is as shown in

Fig. 18.38(b), having a distance of 2+/3 between
its vertices.

Problem 16. Describe the shape of the curves
represented by the following equations:

(@) x=2 /[1— (%)2} (b) y—82=2x

)CZ 1/2
(©) y=6(1 = 1_6)

(a)

2
Squaring the equation gives x> =4 [1 - (%) i|

and transposing gives x> =4 —y?, i.e.
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(b)

(©

x>+ y?=4. Comparing this equation with
x2 4+ y?>=a? shows that x>+ y?> =4 is the equa-
tion of a circle having centre at the origin (0, 0)
and of radius 2 units.

32
Transposing —=2x gives y=4./x. Thus
y i
ry =2x is the equation of a parabola having its
axis of symmetry coinciding with the x-axis and
its vertex at the origin of a rectangular co-ordinate
system.

2 1/2 y
=6(1—— be t d to ==
y ( 16 ) can ¢ transpose 0 6

w2\ /2
(1—1—6) and squaring both sides gives

2 2 2 2
Yool el

36 16 16 36

This is the equation of an ellipse, centre at the ori-
gin of a rectangular co-ordinate system, the major
axis coinciding with the y-axis and being 2+/36,
i.e. 12 units long. The minor axis coincides with
the x-axis and is 2+/16, i.e. 8 units long.

Problem 17. Describe the shape of the curves
represented by the following equations:

N e P

(a)

(b)

2 4 2

X y\2
Since =~ = (|1 (_)
1nce5 [+ 3 i|
x2 V2
m-1)
25 + 2
o2 y?
ie. ———=1

25 4

This is a hyperbola which is symmetrical about
both the x- and y-axes, the vertices being 2+v/25,
i.e. 10 units apart.

(With reference to Section 18.1 (vii), a is equal
to +5)

15
The equation Y — 2 s of the form y= g, a=
2x X
60
5=
This represents a rectangular hyperbola, sym-
metrical about both the x- and y-axis, and lying
entirely in the first and third quadrants, similar in
shape to the curves shown in Fig. 18.9.

30.

Now try the following exercise

Exercise 81 Further problems on curve
sketching

7
1. Sketch the graphs of (a) y=3x2+9x+ 1
(b) y=—5x2+20x +50.

_(a) Parabola with minimum
value at (—%, —5) and
passing through (O, 1;31) .

(b) Parabola with maximum
value at (2, 70) and passing
through (0, 50).

In Problems 2 to 8, sketch the curves depicting the
equations given.

2. x=4 [1—(%)2]

[circle, centre (0, 0), radius 4 units]
3. Jx= g

parabola, symmetrical about
x-axis, vertex at (0, 0)

2_)c2—16
T4

hyperbola, symmetrical about
x- and y-axes, distance
between vertices 8 units along

4. vy

x-axis
2 2
y X
5. —=5——
5 2

ellipse, centre (0, 0), major axis |
10 units along y-axis, minor axis
24/10 units along x-axis

6. x=3{1+y2

hyperbola, symmetrical about |
x- and y-axes, distance
between vertices 6 units along
X-axis

7. x2y?2=9

rectangular hyperbola, lying in |
first and third quadrants only
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8. x= % (36 — 18y2) hyperbola, symmetrical about x-
and y-axes, vertices 2 units

ellipse, centre (0, 0), apart along x-axis

major axis 4 units along x-axis,

minor axis 2+/2 units 12. y=+9—x2

along y-axis [circle, centre (0, 0), radius 3 units]
9. Sketch the circle given by the equation 13. y=7x"1!
x2+y*—4x+10y+25=0. rectangular hyperbola, lying |
[Centre at (2, —5), radius 2] in first and third quadrants,
symmetrical about x- and
. y-axes
In Problems 10 to 15 describe the shape of the -
curves represented by the equations given. 4. y=(3 x)l/ 2
parabola, vertex at (0, 0), sym-_
10. y=[3(1—x?)] [metrical about the x-axis
ellipse, centre (0, 0), major axis 15. y?—8=—2x2
2+/3 units along y-axis, minor ellipse, centre (0, 0), major |
axis 2 units along x-axis axis 2+/8 units along the
y-axis, minor axis 4 units
1. y= [3(x2—1)] along the x-axis |

Graphical solutions to Exercise 77, page 186

1. 2.
N VA
10
4
51 2|
y=3x-5

0/2 3 X 0 1 2 3 x
72_

y=—3x+4

Y A Y A

N~ O

|
N

|
-
o
-
N
xv
o
N

Figure 18.39
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6
Yy A
0.50
0.25 /{X—XZ
0 1 X
8.
Yy a
y=1+2cos 3x
3
| /\ /
1 -
sl 0 T = 3m o X
2 2
_1 -
_10_
10.
VA
y A 3r
6_
y=8-2sin(x+7) ot
4_
2 T
0 m ™ 3 2w ; 0
2 2
_1 -
_2_

Figure 18.39 (Continued)




202  Higher Engineering Mathematics

Graphical solutions to Problems 6 and 7, Exercise 80, page 195

Figure 18.40

y &
xy? —x%y +2x—y =5
6 b
4
2
- C > 4 6 i
Xy — “ xy? — x?y +2x—y =
4

Figure 18.41




Chapter 19

Irreqular areas, volumes and
mean values of waveforms

19.1 Areas of irregular figures

Areas of irregular plane surfaces may be approximately
determined by using (a) a planimeter, (b) the trapezoidal
rule, (c) the mid-ordinate rule, and (d) Simpson’s rule.
Such methods may be used, for example, by engineers
estimating areas of indicator diagrams of steam engines,
surveyors estimating areas of plots of land or naval
architects estimating areas of water planes or transverse
sections of ships.

(a) A planimeter is an instrument for directly mea-
suring small areas bounded by an irregular curve.

(b) Trapezoidal rule
To determine the areas PORS in Fig. 19.1:

Y1 Yoo V3 \Ya V5 |V |V7

Figure 19.1

(i) Dividebase PSinto any number of equal inte-
rvals, each of width d (the greater the number
of intervals, the greater the accuracy).

(ii) Accurately measure ordinates yj, y2, y3, etc.

(iii) Areas PORS

+
=d[yl—2y7+yz+y3+y4+y5+ys}

In general, the trapezoidal rule states:

Area =
width of\ | 1 [first+ sum of
interval | | 2 last + remaining
ordinate ordinates

(c) Mid-ordinate rule

To determine the area ABCD of Fig. 19.2:

)

Figure 19.2

(i) Divide base AD into any number of equal
intervals, each of width d (the greater the
number of intervals, the greater the accuracy).

(ii) Erect ordinates in the middle of each interval
(shown by broken lines in Fig. 19.2).
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(iii) Accurately measure ordinates yp, y2, y3, etc.

(iv) Area ABCD = d(y1+ y2+ y3+ ya+ ys+ ye)

In general, the mid-ordinate rule states:

width of sum of
Area =
interval mid-ordinates

(d) Simpson’s rule
To determine the area PORS of Fig. 19.1:

(i) Divide base PS into an even number of inter-
vals, each of width d (the greater the number

of intervals, the greater the accuracy).
(i) Accurately measure ordinates yi, y2, y3, etc.
d
(iii) Area PQRS = 3 (1 +y1)+402+ya+

v6) +2(y3 + y5)]

In general, Simpson’s rule states:
1 ( width of first +last
Area=—{ . .
3 \ interval ordinate
A sum of even
ordinates
5 sum of remaining
odd ordinates
Problem 1. A car starts from rest and its speed is

measured every second for 6s:

Time 7 (s) o1 2 3 4 5 6
Speed v (m/s) 0 2.5 5.5 8.75 12.5 17.5 24.0

Determine the distance travelled in 6 seconds (i.e.
the area under the v/¢ graph), by (a) the trapezoidal
rule, (b) the mid-ordinate rule, and (c) Simpson’s
rule.

A graph of speed/time is shown in Fig. 19.3.

(a) Trapezoidal rule (see para. (b) above)

The time base is divided into 6 strips each of
width 1s, and the length of the ordinates measured.

30 Graph of speed/time

251

20

151

Speed (m/s)

10

Time (seconds)

Figure 19.3

Thus

0+24.0
area = (1) - +25+55

+8.75+12.5+ 17.51|
=58.75m

(b) Mid-ordinate rule (see para. (c) above)

The time base is divided into 6 strips each of width
1 second.

Mid-ordinates are erected as shown in Fig. 19.3 by
the broken lines. The length of each mid-ordinate
is measured. Thus

area = (1)[1.2544.047.0410.75
+ 15.0+20.25]
=58.25m

(c) Simpson’s rule (see para. (d) above)

The time base is divided into 6 strips each of
width 1s, and the length of the ordinates measured.
Thus

area = 1(1)[(0+24.0) +4(2.5+8.75
+17.5)+2(5.5+12.5)]
=58.33m
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Problem 2. A river is 15m wide. Soundings of
the depth are made at equal intervals of 3 m across
the river and are as shown below.

Depth(m) 0 22 33 45 42 24 0

Calculate the cross-sectional area of the flow of
water at this point using Simpson’s rule.

From para. (d) above,

Area=1(3)[(0+0)+4(22+4.5+2.4)

+2(3.3+4.2)]

= (1[0 +36.4+15] =51.4m>

Now try the following exercise

Exercise 82 Further problems on areas of
irregular figures

1.

Plot a graph of y =3x —x? by completing
a table of values of y from x =0 to x =3.
Determine the area enclosed by the curve, the
x-axis and ordinate x = 0 and x = 3 by (a) the
trapezoidal rule, (b) the mid-ordinate rule and
(c) by Simpson’s rule. [4.5 square units]

Plot the graph of y = 2x? 4 3 between x = 0
and x = 4. Estimate the area enclosed by the
curve, the ordinates x = 0 and x = 4, and the
x-axis by an approximate method.

[54.7 square units]

The velocity of a car at one second intervals is
given in the following table:

AN 0 1 2 3 4 5 6
\Ehetias 0 2.0 4.5 8.0 14.0 21.0 29.0

Determine the distance travelled in 6 seconds
(i.e. the area under the v/t graph) using
Simpson’s rule. [63.33m]

The shape of a piece of land is shown in
Fig. 19.4. To estimate the area of the land,
a surveyor takes measurements at intervals
of 50m, perpendicular to the straight portion
with the results shown (the dimensions being
in metres). Estimate the area of the land in
hectares (1ha = 10*m?). [4.70ha]

140(160 | 200 | 190 | 180 | 130

50 150 | 50 | 50 | 50 | 50

Figure 19.4

5. The deck of a ship is 35m long. At equal
intervals of 5m the width is given by the
following table:
0 28 52 65 58 4.1 3.0 23
Estimate the area of the deck. [143m?]

19.2 Volumes of irregular solids

If the cross-sectional areas A1, Az, Az, ... of anirregular
solid bounded by two parallel planes are known at equal
intervals of width d (as shown in Fig. 19.5), then by
Simpson’s rule:

d
volume, V = 3[(A1 + A7) +4(Ay + Ay

+ Ag) +2(A3 + As)]

\

\

\
|
Azl
1

1

I

/

d d d d d d

Figure 19.5

Problem 3. A tree trunk is 12m in length and has
a varying cross-section. The cross-sectional areas at
intervals of 2 m measured from one end are:

0.52, 0.55, 0.59, 0.63, 0.72, 0.84, 0.97m?

Estimate the volume of the tree trunk.
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A sketch of the tree trunk is similar to that shown
in Fig. 19.5 above, where d=2m, A =0.52m?,
A> =0.55m?, and so on.
Using Simpson’s rule for volumes gives:
Volume = £[(0.52 4 0.97) +4(0.55 +0.63
+ 0.84) +2(0.59 4 0.72)]

= 2[1.49 +8.08 +2.62] = 8.13m’

Problem 4. The areas of seven horizontal
cross-sections of a water reservoir at intervals of
10m are:

210, 250, 320, 350, 290, 230, 170m?

Calculate the capacity of the reservoir in litres.

Using Simpson’s rule for volumes gives:

10
Volume = —=[(210+170) +4(250 +350
+ 230) + 2(320 +290)]
10
= <[380+3320 4 1220]
=16400m>

16400 m3 = 16400 x 10°cm? and since
1litre = 1000 cm?,

. . 16400 x 105
capacity of reservoir = ———— litres
1000

= 16400000

= 1.64 x 10 litres

Now try the following exercise

Exercise 83  Further problems on volumes
of irregular solids

1. The areas of equidistantly spaced sections of
the underwater form of a small boat are as
follows:

1.76, 2.78, 3.10, 3.12, 2.61, 1.24, 0.85m>

Determine the underwater volume if the
sections are 3 m apart. [42.59m3]

2. To estimate the amount of earth to be removed
when constructing a cutting the cross-
sectional area at intervals of 8 m were esti-
mated as follows:

26, 0m’

0, 28, 3.7, 45, 41,

Estimate the volume of earth to be excavated.
[147 m3]

3. Thecircumference of a 12mlong log of timber
of varying circular cross-section is measured
at intervals of 2m along its length and the
results are:

Distance from Circumference
one end (m) (m)
0 2.80
2 3.25
4 3.94
6 4.32
8 5.16
10 5.82
12 6.36

Estimate the volume of the timber in cubic
metres. [20.42 m3]

19.3 The mean or average value of a

waveform

The mean or average value, y, of the waveform shown
in Fig. 19.6 is given by:

__area under curve
)= length of base, b
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(iv) of a half-wave rectified waveform (see

| 1
| |
| |
| | |
W AAARRNARRNANED
O I A A A A W P
i Yo [ Vs | Va | Vs | Ve | V7

e e e e e Wl Sl
“dldldldldld 7
» R

>

b

Figure 19.6

If the mid-ordinate rule is used to find the area under the
curve, then:

sum of mid-ordinates

y= number of mid-ordinates

(_ Vi+ty2+y3+yatys+ye+y7
N 7

for Fig. 19.6)

For a sine wave, the mean or average value:

(i) overone complete cycle is zero (see Fig. 19.7(a)),

(a) (b)

%
0 t
(c)
Figure 19.7

(i) over half a cycle is 0.637 x maximum value, or
(2/7) x maximum value,

(iii) of a full-wave rectified waveform (see Fig.
19.7(b)) is 0.637 x maximum value,

Fig. 19.7(c)) is 0.318 x maximum value, or
(1/7) maximum value.

Problem 5. Determine the average values over
half a cycle of the periodic waveforms shown in
Fig. 19.8.

Voltage (V)
n
o

Current (A)
= N W

(b)

Voltage (V)
o

ol 2 4 Wa t(ms)
710_

(c)

Figure 19.8

(a) Areaunder triangular waveform (a) for ahalf cycle
is given by:

Area= % (base) (perpendicular height)
=12 x107%)(20)
=20x 1073 Vs

Average value of waveform

area under curve
"~ length of base

_20x 1073 Vs
© 2% 1073

=10V
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(b) Area under waveform (b) for a half
cycle=(1x1)4+ 3 x2)=TAs.

Average value of waveform

area under curve

length of base

_7As
T 3s

=233A

(¢) A half cycle of the voltage waveform (c) is
completed in 4 ms.

Area under curve = %{(3 —1)1073}(10)
=10x 1073 Vs
Average value of waveform

area under curve

length of base

10 x 1073 Vs
4% 10735

=25V

Problem 6. Determine the mean value of current
over one complete cycle of the periodic waveforms
shown in Fig. 19.9.

E St
€
o
5
(@]
0 4 8 12 16 20 24 28 t(ms)
(a)
2 e
€
g
S
(@]
1 Il 1 1
0 2 4 6 8 10 12 t(ms)
(b)
Figure 19.9

(a) One cycle of the trapezoidal waveform (a) is
completed in 10ms (i.e. the periodic time is
10ms).

Area under curve = area of trapezium
= % (sum of parallel sides) (perpendicular
distance between parallel sides)
=2{@+8) x 1073}(5 x 1073)
=30x 107%As
Mean value over one cycle

__area under curve _ 30 x 1070 As
N T 10x 10735

length of base
=3mA

(b) One cycle of the sawtooth waveform (b) is com-
pleted in 5ms.

Area under curve = %(3 x 1073 )(2)
=3x 1077 As
Mean value over one cycle

area under curve _ 3x 1073 As
T 5% 107 3s

length of base
=0.6A

Problem 7. The power used in a manufacturing
process during a 6 hour period is recorded at
intervals of 1 hour as shown below.

Time (h) 0o 1 2 3 4 5 6

Power (kW) 0 45 23 0

14 29 51
Plot a graph of power against time and, by using the
mid-ordinate rule, determine (a) the area under the
curve and (b) the average value of the power.

The graph of power/time is shown in Fig. 19.10.

(a) The time base is divided into 6 equal inter-
vals, each of width 1hour. Mid-ordinates are
erected (shown by broken lines in Fig. 19.10)
and measured. The values are shown in
Fig. 19.10.
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Graph of power/time

50 —-\,\

Power (kW)
w
o

|

|

| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
2. 9
| |

7|'O 21|.5 42.0 | 49.5

0 1 2 3
Time (hours)

Figure 19.10

Area under curve = (width of interval)
x (sum of mid-ordinates)
= (1)[7.0421.54+42.0
+49.5+37.0+10.0]
=167kWh(i.e. a measure

of electrical energy)
(b) Average value of waveform

area under curve

length of base
167kWh
_ LO7kWh _ 57 83kw
6h

Alternatively, average value

sum of mid-ordinates

number of mid-ordinates

Problem 8. Fig. 19.11 shows a sinusoidal output
voltage of a full-wave rectifier. Determine, using
the mid-ordinate rule with 6 intervals, the mean
output voltage.

10

< 1|t

° Ak

= NEREEE

= ]

S

> ]

1 1 1 1 1 1 1
0| 30°60°90° 180° 270° 360° [’}

T T 37 2w
2 2

Figure 19.11

One cycle of the output voltage is completed in 7 radians
or 180°. The base is divided into 6 intervals, each of
width 30°. The mid-ordinate of each interval will lie at
15°, 45°,75°, etc.

At 15° the height of the mid-ordinate is
10sin15°=2.588 V.

At 45° the height of the mid-ordinate is
10sin45°=7.071V, and so on.

The results are tabulated below:

Mid-ordinate = Height of mid-ordinate

15° 10sin15°=2.588V
45° 10sin45°=7.071V
75° 10sin75°=9.659V
105° 10sin105°=9.659V
135° 10sin135°=7.071V
165° 10sin165°=2.588V

sum of mid-ordinates =38.636 V

Mean or average value of output voltage

sum of mid-ordinates

" number of mid-ordinates
_ 38.636

6
=6439V

(With a larger number of intervals a more accurate
answer may be obtained.) For a sine wave the actual
mean value is 0.637 x maximum value, which in this
problem gives 6.37 V.

Problem 9. An indicator diagram for a steam
engine is shown in Fig. 19.12. The base line has
been divided into 6 equally spaced intervals and the
lengths of the 7 ordinates measured with the results
shown in centimetres. Determine (a) the area of the
indicator diagram using Simpson’s rule, and (b) the
mean pressure in the cylinder given that 1 cm
represents 100 kPa.

|
12.0cm !

Figure 19.12
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12.0
(a) The width of each interval is Tcm. Using

Simpson’s rule,

area = $(2.0)[(3.6 + 1.6) +4(4.0

0 15 30 t(ms)

+2941.7)+2(3.5+2.2)]

=3[52+344+114]
©

2
=34cm Figure 19.13 (Continued)

(b) Mean height of ordinates ) o
2. Find the average value of the periodic wave-

 area of diagram 34 forms shown in Fig. 19.14 over one complete

= = cycle. [(a) 2.5V (b) 3A]
length of base 12 Y
=2.83cm S
£
o 10+
Since 1cm represents 100kPa, the mean pressure 2
in the cylinder 3
=2.83cm x 100kPa/cm = 283 kPa. 0 > ' 4 6 8 10 t(ms)

(@)

Now try the following exercise

Exercise 84 Further problems on mean or

average values of waveforms i n i n "
of 2 4 6 8 10 t(ms)

(b)

Current (A)
(6]

1. Determine the mean value of the periodic
waveforms shown in Fig. 19.13 over a half

cycle. [(@)2A (b) 50V (c) 2.5A] Figure 19.14
i:’ 3. Analternating current has the following values
§ 2 at equal intervals of Sms
3
o

b 0 5 10 15 20 25 30
@iivicnaey] 0 09 2.6 49 58 35 0

0 10 20 t (ms)

(b)

Figure 19.13

-2

EY Plot a graph of current against time and esti-
S mate the area under the curve over the 30 ms
%100 i period using the mid-ordinate rule and deter-

% mine its mean value.
= . [0.093 As, 3.1A]

0 ® 10 t(ms)

\/ 4. Determine, using an approximate method, the
—100 b average value of a sine wave of maximum

value 50V for (a) a half cycle and (b) a
complete cycle. [(a) 31.83V (b) 0]
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An indicator diagram of a steam engine is
12cm long. Seven evenly spaced ordinates,
including the end ordinates, are measured as
follows:

5.90, 5.52, 422, 3.63, 3.32, 3.24, 3.16cm

Determine the area of the diagram and the
mean pressure in the cylinder if 1cm repre-

sents 90 kPa.

[49.13cm?, 368.5kPa]




Revision Test 6

This Revision Test covers the material contained in Chapters 18 and 19. The marks for each question are shown in
brackets at the end of each question.

1.

Sketch the following graphs, showing the relevant
points:

@ y=x-22 (@ x>+y>—2x+4y—4=0

(b) y=3—cos2x (d) 9x*—4y*=36

1 —7<x< T
- 2
© fW=] x —Zsx=>
o f&= n="=0
b4
1 Efxfn
(15)
Determine the inverse of f(x)=3x+1 3)

Evaluate, correct to 3 decimal places:
2 tan"!1.64 +sec™12.43 —3cosec13.85 3)

Determine the asymptotes for the following
function and hence sketch the curve:

(x-—Dx+4)

YT a—2@ -5 &

Plot a graph of y=3x2+5 from x=1 to x =4.
Estimate, correct to 2 decimal places, using 6 inter-
vals, the area enclosed by the curve, the ordinates

x=1and x =4, and the x-axis by (a) the trapezoidal
rule, (b) the mid-ordinate rule, and (c) Simpson’s
rule. (11)

A circular cooling tower is 20m high. The inside
diameter of the tower at different heights is given
in the following table:

0 5.0 10.0 15.0 20.0

Diameter (m) 16.0 133 10.7 8.6 8.0

Height (m)

Determine the area corresponding to each diameter
and hence estimate the capacity of the tower in cubic
metres. (&)

A vehicle starts from rest and its velocity is
measured every second for 6 seconds, with the
following results:

Timet(s) 0 1 2 3 4 5 6

Velocity 0 12 24 37 52 6.0 92

v (m/s)

Using Simpson’s rule, calculate (a) the distance
travelled in 65 (i.e. the area under the v/¢ graph)
and (b) the average speed over this period. (®))



Chapter 20

Complex numbers

20.1 Cartesian complex numbers

There are several applications of complex numbers
in science and engineering, in particular in electrical
alternating current theory and in mechanical vector
analysis.

There are two main forms of complex number —
Cartesian form and polar form - and both are
explained in this chapter.

If we can add, subtract, multiply and divide complex
numbers in both forms and represent the numbers on
an Argand diagram then a.c. theory and vector analysis
become considerably easier.

(i) If the quadratic equation x>+2x4+5=0 is
solved using the quadratic formula then,

_ 2=+ VIR = (DHG)]

2(1)
_ 2+[-16] -2+ J/[16)(=D)]
= 5 = 5
_ 2EV16(/-1 2441
2 B 2

=—14+2v-1

It is not possible to evaluate /—1 in real
terms. However, if an operator j is defined as
j=+/—1 then the solution may be expressed as
x=—1=%j2.

(i) —1+j2 and —1— j2 are known as complex
numbers. Both solutions are of the form a + jb,
‘a’ being termed the real part and jb the
imaginary part. A complex number of the form
a+jb is called Cartesian complex number.

(iii) In pure mathematics the symbol i is used to
indicate /—1 (i being the first letter of the word
imaginary). However i is the symbol of electric
current in engineering, and to avoid possible con-
fusion the next letter in the alphabet, j, is used to

represent 4/ —1.

Problem 1. Solve the quadratic equation
x24+4=0.

Since x2 +4=0 then x2=—4 and x =+/—4.

ie, x=VI=D®=V(=DVi=j=2)
== j2, (since j = Jv=1)
(Note that + j2 may also be written £2j).

Problem 2. Solve the quadratic equation
2x2+3x+5=0.

Using the quadratic formula,

Lo 3 EY [(3)2 —4(2)(5)]

2(2)
_ S34V-31 0 3£ J/(=DV31
- 4 a 4

—34 j/31

4

V31

3
Hence x= ~1 + jT or —0.750 £ j1.392,

correct to 3 decimal places.

(Note, a graph of y=2x?+3x+5 does not cross
the x-axis and hence 2x%+3x+5=0 has no real
roots.)
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(a)
(b)
(©

(d)

Problem 3. Evaluate

—4
@ j* ® j* © j*? @ =5

j3=j*x j=(=1)x j=—j, since j2=—1
Jt= 2% == x (- =1
JPR=jx jP=jx(jH"=jx (D"

—jx(=1)=—j
JP=ixit=ix(Ht=jx(=D?
=jx1=j
—4 -4 -4 —j 4j
Hence.—9=—.=—.><—J.=—J.2
J J J —J —J
4j .
= =4djor j4
(=1

L J e o> B

10.

Now try the following exercise

Exercise 85 Further problems on the
introduction to cartesian complex numbers

In Problems 1 to 9, solve the quadratic equations.

1.

x2425=0 [+ 5]
x2=2x42=0 [x=1+ /]
x2—4x+5=0 [x=2%+ j]
x?—6x+10=0 [x=3% ]
2x2—2x+1=0 [x=0.5+ j0.5]
x2—4x+8=0 [x=24+ j2]
25x2—10x+2=0 [x=0.2+ j0.2]

2x24+3x+4=0
[—%ij@ or —0.750+ j1.199

412 -5t +7=0
[%ij@ or 0.625+ j1.166

Evaluate (a) j8 (b) ! (c) 4
J -0 T
]7 2 ]l3

[@) 1 (b) —j (c) —j2]

20.2 The Argand diagram

A complex number may be represented pictorially on
rectangular or cartesian axes. The horizontal (or x) axisis
used to represent the real axis and the vertical (or y) axis
is used to represent the imaginary axis. Such a diagram
is called an Argand diagram. In Fig. 20.1, the point A
represents the complex number (3 + j2) and is obtained
by plotting the co-ordinates (3, j2) asin graphical work.
Figure20.1 also shows the Argand points B, C and D rep-
resenting the complex numbers (—2+ j4), (=3 —j5)
and (1 — j3) respectively.

Imaginary
axis

___j4.

A
|
|
|
:
3

Real axis

Figure 20.1

20.3 Addition and subtraction of

complex numbers

Two complex numbers are added/subtracted by adding/
subtracting separately the two real parts and the two
imaginary parts.

For example, if Z1 =a+ jb and Z>=c+ jd,

then Zi+Zy=(a+jb)+(c+ jd)
=(a+c)+ j(b+d)

and Z1—Zy=(a+jb)—(c+ jd)
=@—o+jb-d)
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Thus, for example,
2+ j3)+@3—j4d=2+j3+3— j4
=5—-j1
and 2+ j3)—(G3—j4)=2+4+j3-34 j4
=—=14,7
The addition and subtraction of complex numbers may

be achieved graphically as shown in the Argand diagram
of Fig. 20.2. (24 j3) is represented by vector OP and

Imaginary
axis
. P (2+/3
jak \( J3)
. \
2t .
. \
Ir AN
\
1 1 1 I\ 1
0 1™—2—3 4 5 Realaxis
_j2 B //
/
. /
—j3 - //
/
AT ,
Q(3—j4)
(a)
Imaginary
axis
S (—1+j7) 7t
AN
A g
AN
j5 '\\
\\
Q' jar \
\ \ \\
\ 1 .
N /? r P(2+/3)
\
\\ j2 B
\
\\j -
1 1 1 N 1 1 1
-3 -2 -10 1 2 3 Realaxis
_j |
,/2 -
_j3 L
—jat Q (3—j4)

(b)

Figure 20.2

(3 — j4) by vector 0Q.InFig. 20.2(a) by vector addition
(i.e. the diagonal of the parallelogram) OP +O0Q =OR.
R is the point (5, —j 1).

Hence 2+ j3)+ (3 — j4)=5—j1.

In Fig. 20.2(b), vector OQ is reversed (shown as OQ")
since it is being subtracted. (Note O0Q =3 —j4 and
0Q'=—0B—j4)=-3+j4).

OP —0Q = OP + 0Q’ =0S is found to be the Argand
point (—1, j7).

Hence 2+ j3)—Q3— j4)=-14j7

Problem 4. Given Z1=2+ j4and Z,=3—j
determine (a) Z| + Z», (b) Z1 — Z», (¢) Z> — Z; and
show the results on an Argand diagram.

(@) Z1+2=2+ jH+CB—))
=24+3)+j@4-1)=5+,3
®) Z1-Z2=2+ jH-C—))
=2-3)+j@-(=1))=-1+5
(© Z2-Z1=03—-))-2+jb
=CB-2)+j(-1-4)=1-j5
Each result is shown in the Argand diagram of
Fig. 20.3.
Imagi_nary
axis

(=1+/5) g j5T

Real axis

(1-/9)

Figure 20.3
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20.4 Multiplication and division of

complex numbers

(i) Multiplication of complex numbers is achieved

by assuming all quantities involved are real and

then using j2=—1 to simplify.

Hence (a+ jb)(c+ jd)
=ac+a(jd)+(jb)c+(jb)(jd)
=ac+ jad+ jbc+ j*bd
=(ac—bd)+ j(ad+bc),

since jZ=—1
Thus 3+ j2)(4—j5)
=12—j15+j8— ;210
=(12—-(-10))+ j(—=15+38)
=22—j7
(ii) The complex conjugate of a complex num-
ber is obtained by changing the sign of the
imaginary part. Hence the complex conjugate
of a+ jb is a— jb. The product of a complex

number and its complex conjugate is always a
real number.

For example,
B+jHGB—j4H=9—j12+ 12— j216
=9+16=25

[(a+ jb)(a— jb)may be evaluated ‘on sight’ as
a’+b2).

(iii) Division of complex numbers is achieved by
multiplying both numerator and denominator by
the complex conjugate of the denominator.

For example,

G—Jjb
G—Jjd

2-j5_2-J5
3+j4 3+ j4

_6—j8—j15+j220
- 32+42

_ —14-j23  -14 23
=7 25 25 33

or —0.56 — j0.92

Problem 5. If Z;=1- j3,Z,=—2+ j5and
Z3=—3— j4,determine in a + jb form:

Z
(a) 212, (b) —
Z3
© 212 & 7,2,7
G 14243

(@) Z1Zy=(1—j3)(=2+j5)
=—2+j5+j6—j%15

=(—2+15)+ j(5+46),since j2=—1,

=13+j11
Zi 1—j3 1—j3 —3+j4
R et L RS
Zy —3—j4 —3—j4° —3+j4
344+ j9— 212

- 32+42

L9413 9 13
725 257 7%

or 0.36 + j0.52
© Z1Z,  (1—=j3)(=2+j5)
Z1+Zy (A—j3)+(-24j5)
1 11
:3_'_—],, from part (a),
—14j2
13411 —1—;2

= X
—1+j27 —1—,2
=13 26— j11— j222
B 12422
9—j37 9

37
= =—-—j—orl.8—j7.4
5 3 ]Sor 8—j

(d) Z1Z2Z3=(13+ j11)(—3 — j4), since
Z1Z> =13+ j11, from part (a)
=—39— 52— j33— j%44
=(—39+44)—j(52+33)
=5-j85

Problem 6. Evaluate:

1+ j3\2
(b)j(l)

& - j2

2
1+ )
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@ A+ )=+ HU+)H=14j+j+ j>

(b)

=1+j+j-1=j2

1+ H* =10+ HP=(j2)?= j4=—4
2 2 1
Hence ———=—=——
A+ )% —4 2
1+/3 143 1+j2
1—j2 1—j27 14,2

142434 % —5+5

12 422 5

=—l4jl=—1+4j

LaN\2
(1+’.3) — (14 )= (14 )14 ))
1—j2

Hence j (

=1-j-j+j’=-j2
1+73\ .. 2

= — 2:— 2:2’
1_j2) J(=j2)==]

since j2=

-1

Now try the following exercise

Exercise 86

Further problems on

operations involving Cartesian complex
numbers

1.

Evaluate (a) @B+ j2)+(5—j) and
(b) (=24 j6)—(3— j2) and show the
results on an Argand diagram.

[((@ 8+ (b) =5+ 8]

Write down the complex conjugates of
(@) 3+ j4,(b)2— .

[(@)3—j4 (b)2+ /]

If z=24,j and w=3-—j evaluate
@ z+w b)) w—z () 3z—2w (d)
Sz4+2w (e) jRw—3z) ()2jw—jz

[@ 5 (b) 1-j2 (¢ j5 (d) 16+3
() 5 (£)3+j4]

In Problems 4 to 8 evaluate in a+ jb form
given Z1=1+4 j2, Zr=4—j3, Z3=—-2+j3
and Z4=-5—j.

4. @ Z1+22—-Z3(b)Zr—Z1+ 24

[(@7—j4 (b)-2—j6]

5. (a) Z1Z;3 (b) Z3Z4

[(a) 10+ j5 (b) 13— j13]

6. (a) Z1Z3+Z4 (b) Z1Z2Z3

[@) —13— j2 (b) —35+ j20]

Z1+ 273
—Zy
[ -2 11 —19

7. ()—()

@ =iz () o= +igs

25

8. (a) (b) Zz+ +Z3

Z+Z

41
[(a) —r ]2_6 (b) —

9. Evaluate (a) ( ) ——

1+]

. 1 1
[(a) —J (b)i_]i}

251+ 2 2—j
10.  Show that 25( tiz 15)

3+ 4 —j
=57+ j24

20.5 Complex equations

If two complex numbers are equal, then their real parts
are equal and their imaginary parts are equal. Hence if

a+ jb=c+ jd,thena=c and b=d.

Problem 7. Solve the complex equations:

(@ 2(x+jy)=6—3
) A+ j2)(-2—j3)=a+ jb

(@ 2(x+jy)=6—j3hence2x+ j2y=6—j3

Equating the real parts gives:
2x =6, ie.x=3
Equating the imaginary parts gives:

2y = -3, i.e.y=—%
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(®) A+ j2)(=2—j3)=a+ jb
—2— j3—j4—j%6=a+ jb
Hence 4 — j7=a+ jb

a=4and b=-7

Problem 8. Solve the equations:
(@ @2—-j3)=+(a+jb)
b @x—j2y)+(y—j3x0)=2+j3

@ Q- j3)=(a+jb)
Hence (2—j3)Y=a+ jb,
ie. 2—-j3)2—-j3)=a+jb
Hence 4—j6—j6+ j9=a+ jb
and —5—j12=a+jb
Thus a=—5 and b= —12

(b) (x— j2y)+(y— j30)=2+ )3

Hence (x +y)+ j(—2y—3x)=2+j3

x+y=2
and —3x —2y =3

Multiplying equation (1) by 2 gives:
2x +2y=4
Adding equations (2) and (3) gives:

—x =7, 1e,x=-7

in equation (2).

Equating real and imaginary terms gives:

Equating real and imaginary parts gives:

i.e. two simultaneous equations to solve.

ey
©))

3

From equation (1), y =9, which may be checked

Now try the following exercise

Exercise 87
equations

L 2+j)3—-j)=a+jb

Further problems on complex

In Problems 1 to 4 solve the complex equations.

[a=8,b=—1]

245 . .
1—].=J(x+1y)
=J

2-j3)=V@t b  [la=-5b=—12]

(x—j2y)—=(y—jx)=2+j [x=3,y=1]

If Z=R+ joL+1/jwC, express Z in
(a+ jb) form when R=10, L =5, C=0.04
and w=4. [Z=10+ j13.75]

20.6 The polar form of a complex

®

number

Let a complex number z be x + jy as shown in
the Argand diagram of Fig. 20.4. Let distance
OZbe r and the angle OZ makes with the positive
real axis be 6.
From trigonometry, x =r cosé and
y=rsinf
Hence Z=x+4jy =rcosf+ jrsinf
=r(cosf + jsinb)
Z =r(cos 0+ jsinf) is usually abbreviated to

Z=rZ/0 which is known as the polar form of
a complex number.

Imaginary
axis

V4

r VL
|Ify
9 l

————» i
e} X A Real axis

Figure 20.4

(ii)

r is called the modulus (or magnitude) of Z and
is written as mod Z or | Z].

r is determined using Pythagoras’ theorem on
triangle OAZ in Fig. 20.4,

ie. r=xx+y?)
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(iii) O is called the argument (or amplitude) of Z and
is written as arg Z.

By trigonometry on triangle OAZ,

argZ =0 = tan™! J
x

(iv) Whenever changing from cartesian form to polar
form, or vice-versa, a sketch is invaluable for
determining the quadrant in which the complex
number occurs.

Problem 9. Determine the modulus and argument
of the complex number Z =2+ j3, and express Z
in polar form.

Z=2+ j3 lies in the first quadrant as shown in
Fig. 20.5.

Imaginary
axis

I

Real axis

Figure 20.5

Modulus, | Z| =r =+/(22 +32) =+/13 0r 3.606, correct
to 3 decimal places.

913
Argument, argZ =6 =tan" " 5
=56.31° or 56°19
In polar form, 2+ j3 is written as 3.606.56.31°.

Problem 10. Express the following complex
numbers in polar form:

(@3+,j4 (b)-3+j4
(©)=3—j4 (d)3-j4

(@) 34 j4 is shown in Fig. 20.6 and lies in the first
quadrant.

Modulus, r=+/(324+42)=5 and argument

0 =tan~'% =53.13°.

Hence 3 + j4 =5/53.13°

Imaginary
axis

(—3+j4) (3+j4)

jar
j3r

Real axis

|
_—— e ————— w-__________
|
N
|
| -
N
T
R
N
N
_——— e ———— w —_—— e e e — -

) —jat

T
w
|
~
N

(3-74)

Figure 20.6

(b) —3+ j4 is shown in Fig. 20.6 and lies in the
second quadrant.

Modulus, r=5 and angle o=53.13°, from
part (a).

Argument=180°—53.13°=126.87° (i.e. the
argument must be measured from the positive real
axis).

Hence —3 + j4 =5/126.87°

(c) —3— j4isshown in Fig. 20.6 and lies in the third
quadrant.

Modulus, » =5 and @ =53.13°, as above.

Hencetheargument = 180°+53.13°=233.13°,
which is the same as —126.87°.

Hence (—3 — jd4) =5/233.13° or 5/—126.87°

(By convention the principal value is normally
used, i.e. the numerically least value, such that
—m <6 <m).

(d) 3— j4isshown in Fig. 20.6 and lies in the fourth
quadrant.

Modulus, r =5 and angle « =53.13°, as above.

Hence (3 —j4)=5/-53.13°

Problem 11. Convert (a) 4430° (b) 7£—145°
into a + jb form, correct to 4 significant figures.

(a) 4430° is shown in Fig. 20.7(a) and lies in the first
quadrant.
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Imaginary
axis

4 ! I .
30° 4 1y
— Real axis

(@)

Real axis
145°

Figure 20.7

Using trigonometric ratios, x =4 cos 30° =3.464
and y =4sin30°=2.000.

Hence 4/30°=3.4644;2.000

(b) 7/£145° is shown in Fig. 20.7(b) and lies in the
third quadrant.

Angle o =180° — 145°=35°

Hence x=7co0s35°=5.734

and y="7sin35° =4.015

Hence 7/—145°=—-5.734 — j4.015

Alternatively

74—145°="7cos(—145°) + j7sin(—145°)
=-5.734 — j4.015

Calculator

Using the ‘Pol’ and ‘Rec’ functions on a calculator
enables changing from Cartesian to polar and vice-versa
to be achieved more quickly.

Since complex numbers are used with vectors and
with electrical engineering a.c. theory, itis essential that
the calculator can be used quickly and accurately.

20.7 Multiplication and divisionin

polar form

If Zy=r1£6; and Z> =r, /6, then:
(1) Zi1Zy=rir2Z(01+6) and
Z1 r

(i) o= L (01—6,)
2 r

Problem 12. Determine, in polar form:

(a) 8/25° x 4/60°
(b) 3/16° x 5/—44° x 2./80°

(a) 8425°x4/60°= (8 x4)£(25°+60°) = 32./85°

(b) 3416° x 54 —44° x 2/80°
= (3x5x2)/[16°4 (—44°)480°] = 30£52°

Problem 13. Evaluate in polar form

10.Z x 12,2
4 2

16/75°
b
@ 2/15° ®) 64—2
3
16/75° 16
=2 /(75° —15°) =8./60°
@ 5 150 =75 <057 =159)

b4 b4

b4 4 4
b - (>=+=—(-=
®) 64—% 6 (4+2 ( 3))
13x 11
:2()4? or ZOZ—E or

20£195° or 20£—-165°

Problem 14. Evaluate, in polar form
2/30°+54—-45°—4/120°.

Addition and subtraction in polar form is not possible
directly. Each complex number has to be converted into
cartesian form first.

2/30°=2(cos30°+ j sin30°)

=2c0s30°+ j2sin30°=1.732+ j1.000

5/—45°=5(cos(—45°) + jsin(—45°))
=5c0s(—45°) + j5sin(—45°)
=3.536— j3.536

4/120°=4(cos 120°+ jsin 120°)
=4cos120°+ j4sin120°
=-2.000+ j3.464

Hence 2/30°+5/—45°—4/120°
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=(1.732+ j1.000)+(3.536 — j3.536)
—(=2.000+ j3.464)
=7.268 — j6.000, which lies in the fourth quadrant

—6.000
7.268

=/[(7.268)2 4 (6.000)?]/ tan—" (

=9.425/-39.54°

Now try the following exercise

Exercise 88
form

Further problems on polar

1. Determine the modulus and argument of
(@)2+j4 () —5-j2 () j2— ).
(a)4.472,63.43°
(b)5.385, —158.20°
(c)2.236,63.43°
In Problems 2 and 3 express the given Cartesian

complex numbers in polar form, leaving answers
in surd form.

2. (a)24 j3 (b) —4 (c) =6+ j
(a)+/13£56.31° (b)4/180°]
(c)V/37£170.54°

3. (@ —j3 ) (=24 ) (©j30—-j)
(@)34-90°  (b)+/1252£100.30° ]
(©)v2/—135°

In Problems 4 and 5 convert the given polar com-
plex numbers into (a+ jb) form giving answers
correct to 4 significant figures.
4. (a)5430° (b) 3£60° (c) 7£45°
(a)4.330 + j2.500 |
(b)1.500 + j2.598
(€)4.950 + j4.950 |
5. (a)6£125° (b) 44w (c) 3.54-120°
(a) —3.441 + j4.915 ]
(b) —4.000+ ;O
(c) —1.750 — j3.031 |

In Problems 6 to 8, evaluate in polar form.

6. (a)3/20° x 15/45°

(b) 2.4£65° x4.4/-21°
[(a) 45£65° (b) 10.56.£44°]

7. (a) 6.4427°=2/—15°
(b) 5£30° x 4/80° + 10.£—40°
[(a) 3.2/42° (b) 2/150°]

T T
8. 4/ —+3/—
(a) 5 + g

(b) 2/120° +5.2/58° — 1.6/ —40°
[(a) 6.986./26.79° (b) 7.190./85.77°]

20.8 Applications of complex

numbers

There are several applications of complex numbers
in science and engineering, in particular in electrical
alternating current theory and in mechanical vector
analysis.

The effect of multiplying a phasor by j is to rotate
it in a positive direction (i.e. anticlockwise) on an
Argand diagram through 90° without altering its length.
Similarly, multiplying a phasor by — j rotates the pha-
sor through —90°. These facts are used in a.c. the-
ory since certain quantities in the phasor diagrams
lie at 90° to each other. For example, in the R—L
series circuit shown in Fig. 20.8(a), V1 leads I by
90° (i.e. I lags Vr by 90°) and may be written as
Jj Vi, the vertical axis being regarded as the imagi-
nary axis of an Argand diagram. Thus Vgx+ jVp =V
and since VR =IR, V=1X (where X is the induc-
tive reactance, 27 fL ohms) and V =1Z (where Z is
the impedance) then R+ jX;=Z.

]
9}

|

V¥ —

Figure 20.8
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Similarly, for the R—C circuit shown in Fig. 20.8(b),
Ve lags I by 90° (ie. I leads V¢ by 90°) and
Vr— jVc=V, from which R— jXc=Z (where X¢

is the capacitive reactance

ohms).
7 f

Problem 15. Determine the resistance and
series inductance (or capacitance) for each of the
following impedances, assuming a frequency of
50Hz:

(a) 4.0+ j7.0) 2 (b) —j20 2
(c) 15£-60° Q

(a) Impedance, Z=(4.0+ j7.0) Q2 hence,
resistance =4.0 2 and reactance="7.00 .

Since the imaginary part is positive, the reactance
is inductive,

ie. X, =7.0Q
Since X =2xfL then inductance,

X 7.
L=t _ 79 0023Hor22.3mH
2nf 2w (50)

(b) Impedance, Z= j20,i.e. Z=(0— j20) <2 hence
resistance=0 and reactance=20€2. Since the
imaginary part is negative, the reactance is cap-

itive, i.e., Xc=20% and si Xe=——
acitive, i.e c and since X¢ 3fC
then:
1 1

Xy 22(50)20)

o 10°
270200 "

capacitance, C =

F=159.2pF
(¢) Impedance, Z
=15/—-60° = 15[ cos (—60°) + j sin(—60°)]
=750—,1299Q

Hence resistance=7.50 2 and capacitive reac-
tance, X =12.99Q

1
Since X¢= then capacitance,
2nfC

1 100
2nfXe  2m(50)(12.99)

= 245uF

Problem 16. An alternating voltage of 240V,
50Hz is connected across an impedance of

(60 — j100) 2. Determine (a) the resistance (b) the
capacitance (c) the magnitude of the impedance and
its phase angle and (d) the current flowing.

(a) Impedance Z= (60— j100)<2.
Hence resistance = 60

(b) Capacitive reactance Xc=100Q and since

Xc= then
2nfC
. 1 1
capacitance, C = =
2rfXc  2m(50)(100)
109
2 (50)(100)
=31.83uF

(c) Magnitude of impedance,

1Z| = V[(60)2 + (—100)2] = 116.6 2

—100
Phase angle, arg Z = tan~! (W) — —59.04°
Vv 24020°
(d) Current flowing, [ =—=————
Z 116.6£-59.04°
=2.058 £59.04° A

The circuit and phasor diagrams are as shown in
Fig. 20.8(b).

Problem 17. For the parallel circuit shown in
Fig. 20.9, determine the value of current / and its
phase relative to the 240V supply, using complex
numbers.

R=4Q  X,=30Q
_‘:'—NV'\_
R,=100Q
| S p
Ry;=120Q Xc=50Q
/
) 240V, 50Hz

Figure 20.9
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Current [ =

N| <

. Impedance Z for the three-branch
parallel circuit is given by:
11 n 1 n 1
Z Zv Zo Z3
where Z1=4+ j3, Z=10and Z3=12— 5
. 1 1
Admittance, Y| =— = -
Z1 4+4j3
1 4—j3 4-—j3
= X =
4473 4—j3 42432

=0.160 — j0.120 siemens

1 1
Admittance, Y, =— = — = 0.10 siemens
» 10

1 1
Admittance, Y3=— = -
Zy 12—j5
1 12455 12455
= X =
12—j5 12+j5 122452

=0.0710+ j0.0296 siemens

Total admittance, Y=Y, +Y, +7Y3
=(0.160 — j0.120) + (0.10)
+(0.0710 + j0.0296)
=0.331 —;0.0904

=0.343/—15.28° siemens

Current [ = =VY

N| <

= (240£0°)(0.343£—-15.28°)
=82.32/-15.28°A

Problem 18. Determine the magnitude and
direction of the resultant of the three coplanar
forces given below, when they act at a point.

Force A, 10N acting at 45° from the positive
horizontal axis.

Force B, 87N acting at 120° from the positive
horizontal axis.

Force C, 15N acting at 210° from the positive
horizontal axis.

The space diagram is shown in Fig. 20.10. The forces
may be written as complex numbers.

Thus force A, fa =10£45°, force B, fp=8/£120°
and force C, fc=154210°.

8N 10N
210°
‘A\
45°
15N
Figure 20.10
The resultant force
= fa+ fB+ fc

=10£45° +8/120° + 15/210°
= 10(cos45° + j sin45°) 4 8(cos 120°
+ jsin120°) 4+ 15(cos 210° + j sin210°)
= (7.071+ j7.071) + (—4.00 + j6.928)
+(—12.99 — j7.50)
=-9.919+ j6.499

Magnitude of resultant force

= V/[(=9.919)2 + (6.499)2] = 11.86 N

Direction of resultant force

4
= tan"! 0-499 = 146.77°
—9.919

(since —9.919 4 j6.499 lies in the second quadrant).

Now try the following exercise

Exercise 89 Further problemson
applications of complex numbers

1. Determine the resistance R and series induc-
tance L (or capacitance C) for each of the
following impedances assuming the frequ-
ency to be SOHz.

(@ G+/8)K (b)(2—;3)%
(c) j14Q (d) 8£-60°Q

(@R=3Q,L=255mH
(bR =2Q,C = 1061 uF
(©)R =0, L = 44.56mH

(AR =4Q,C=459.4F
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Two impedances, Z;=(3+ j6)Q2 and
Zr=(4— j3)Q2 are connected in series to
a supply voltage of 120V. Determine the
magnitude of the current and its phase angle
relative to the voltage.

[15.76 A, 23.20° lagging]

If the two impedances in Problem 2 are con-
nected in parallel determine the current flow-
ing and its phase relative to the 120V supply
voltage. [27.25A, 3.37° lagging]

A series circuit consists of a 12 2 resistor, a
coil of inductance 0.10 H and a capacitance of
160w F'. Calculate the current flowing and its
phase relative to the supply voltage of 240V,
50Hz. Determine also the power factor of the
circuit. [14.42 A, 43.85° lagging, 0.721]

For the circuit shown in Fig. 20.11, determine
the current / flowing and its phase relative to
the applied voltage. [14.6A,2.51° leading]

Determine, using complex numbe