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Preface

In July 2007 the international summer school “Nonlinear Dynamics in Movement 
and Cognitive Sciences” was held in Marseille, France. The aim of the summer 
school was to offer students and researchers a “crash course” in the application  
of nonlinear dynamic system theory to cognitive and behavioural neurosciences. 
The participants typically had little or no knowledge of nonlinear dynamics and 
came from a wide range of disciplines including neurosciences, psychology, engi-
neering, mathematics, social sciences and music. The objective was to develop 
sufficient working knowledge in nonlinear dynamic systems to be able to recog-
nize characteristic key phenomena in experimental time series including phase 
transitions, multistability, critical fluctuations and slowing down, etc. A second 
emphasis was placed on the systematic development of functional architectures, 
which capture the phenomenological dynamics of cognitive and behavioural phe-
nomena. Explicit examples were presented and elaborated in detail, as well as 
“hands on” explored in laboratory sessions in the afternoon. This compendium can 
be viewed as an extended offshoot from that summer school and breathes the  
same spirit: it introduces the basic concepts and tools adhering to deterministic 
dynamical systems as well as its stochastic counterpart, and contains correspond-
ing applications in the context of motor behaviour as well as visual and auditory 
perception in a variety of typically (but not solely) human endeavours. The chap-
ters of this volume are written by leading experts in their appropriate fields, re-
flecting ta similar multi-disciplinary range as the one of the students. This book 
owes its existence to their contributions, for which we wish to express our  
gratitude. We are further indebted to the Technical Editor Dr. Thomas Ditzinger 
for his advice, guidance, and patience throughout the editorial process, and the 
Series Editor Janusz Kacprzyk for inviting and encouraging us to produce this 
volume.  
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Dynamical Systems in One and Two Dimensions:
A Geometrical Approach

Armin Fuchs

Abstract. This chapter is intended as an introduction or tutorial to nonlinear dynami-
cal systems in one and two dimensions with an emphasis on keeping the mathematics
as elementary as possible. By its nature such an approach does not have the math-
ematical rigor that can be found in most textbooks dealing with this topic. On the
other hand it may allow readers with a less extensive background in math to develop
an intuitive understanding of the rich variety of phenomena that can be described and
modeled by nonlinear dynamical systems. Even though this chapter does not deal ex-
plicitly with applications – except for the modeling of human limb movements with
nonlinear oscillators in the last section – it nevertheless provides the basic concepts
and modeling strategies all applications are build upon. The chapter is divided into
two major parts that deal with one- and two-dimensional systems, respectively. Main
emphasis is put on the dynamical features that can be obtained from graphs in phase
space and plots of the potential landscape, rather than equations and their solutions.
After discussing linear systems in both sections, we apply the knowledge gained to
their nonlinear counterparts and introduce the concepts of stability and multistabil-
ity, bifurcation types and hysteresis, hetero- and homoclinic orbits as well as limit
cycles, and elaborate on the role of nonlinear terms in oscillators.

1 One-Dimensional Dynamical Systems

The one-dimensional dynamical systems we are dealing with here are systems that
can be written in the form

dx(t)
dt

= ẋ(t) = f [x(t),{λ}] (1)

In (1) x(t) is a function, which, as indicated by its argument, depends on the variable
t representing time. The left and middle part of (1) are two ways of expressing

Armin Fuchs
Center for Complex Systems & Brain Sciences, Department of Physics,
Florida Atlantic University
e-mail: fuchs@ccs.fau.edu
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2 A. Fuchs

how the function x(t) changes when its variable t is varied, in mathematical terms
called the derivative of x(t) with respect to t. The notation in the middle part, with
a dot on top of the variable, ẋ(t), is used in physics as a short form of a derivative
with respect to time. The right-hand side of (1), f [x(t),{λ}], can be any function
of x(t) but we will restrict ourselves to cases where f is a low-order polynomial or
trigonometric function of x(t). Finally, {λ} represents a set of parameters that allow
for controlling the system’s dynamical properties. So far we have explicitly spelled
out the function with its argument, from now on we shall drop the latter in order to
simplify the notation. However, we always have to keep in mind that x = x(t) is not
simply a variable but a function of time.

In common terminology (1) is an ordinary autonomous differential equation of
first order. It is a differential equation because it represents a relation between a
function (here x) and its derivatives (here ẋ). It is called ordinary because it contains
derivatives only with respect to one variable (here t) in contrast to partial differential
equations that have derivatives to more than one variable – spatial coordinates in
addition to time, for instance – which are much more difficult to deal with and not
of our concern here. Equation (1) is autonomous because on its right-hand side the
variable t does not appear explicitly. Systems that have an explicit dependence on
time are called non-autonomous or driven. Finally, the equation is of first order
because it only contains a first derivative with respect to t; we shall discuss second
order systems in sect. 2.

It should be pointed out that (1) is by no means the most general one-dimensional
dynamical system one can think of. As already mentioned, it does not explicitly
depend on time, which can also be interpreted as decoupled from any environment,
hence autonomous. Equally important, the change ẋ at a given time t only depends
on the state of the system at the same time x(t), not at a state in its past x(t − τ) or
its future x(t + τ). Whereas the latter is quite peculiar because such systems would
violate causality, one of the most basic principles in physics, the former simply
means that system has a memory of its past. We shall not deal with such systems
here; in all our cases the change in a system will only depend on its current state, a
property called markovian.

A function x(t) which satisfies (1) is called a solution of the differential equation.
As we shall see below there is never a single solution but always infinitely many and
all of them together built up the general solution. For most nonlinear differential
equations it is not possible to write down the general solution in a closed analytical
form, which is the bad news. The good news, however, is that there are easy ways
to figure out the dynamical properties and to obtain a good understanding of the
possible solutions without doing sophisticated math or solving any equations.

1.1 Linear Systems

The only linear one-dimensional system that is relevant is the equation of continuous
growth

ẋ = λ x (2)
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where the change in the system ẋ is proportional to state x. For example, the more
members of a given species exist, the more offsprings they produce and the faster
the population grows given an environment with unlimited resources. If we want to
know the time dependence of this growth explicitly, we have to find the solutions
of (2), which can be done mathematically but in this case it is even easier to make
an educated guess and then verify its correctness. To solve (2) we have to find a
function x(t) that is essentially the same as its derivative ẋ times a constant λ . The
family of functions with this property are the exponentials and if we try

x(t) = eλ t we find ẋ(t) = λ eλ t hence ẋ = λ x (3)

and therefore x(t) is a solution. In fact if we multiply the exponential by a constant
c it also satisfies (2)

x(t) = ceλ t we find ẋ(t) = cλ eλ t and still ẋ = λ x (4)

But now these are infinitely many functions – we have found the general solution of
(2) – and we leave it to the mathematicians to prove that these are the only functions
that fulfill (2) and that we have found all of them, i.e. uniqueness and completeness
of the solutions. It turns out that the general solution of a dynamical system of
nth order has n open constants and as we are dealing with one-dimension systems
here we have one open constant: the c in the above solution. The constant c can
be determined if we know the state of the system at a given time t, for instance
x(t = 0) = x0

x(t = 0) = x0 = ce0 → c = x0 (5)

where x0 is called the initial condition. Figure 1 shows plots of the solutions of (2)
for different initial conditions and parameter values λ < 0, λ = 0 and λ > 0.

We now turn to the question whether it is possible to get an idea of the dynamical
properties of (2) or (1) without calculating solutions, which, as mentioned above,
is not possible in general anyway. We start with (2) as we know the solution in this

t

x(t)

λ<0

t

x(t)

λ=0

t

x(t)

λ>0

Fig. 1 Solutions x(t) for the equation of continuous growth (2) for different initial conditions
x0 (solid, dashed, dotted and dash-dotted) and parameter values λ < 0, λ = 0 and λ > 0 on
the left, in the middle and on the right, respectively.
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x

ẋ

λ<0

x

ẋ

λ=0

x

ẋ

λ>0

Fig. 2 Phase space plots, ẋ as a function of x, for the equation of continuous growth (2) for
the cases λ < 0, λ = 0 and λ > 0 on the left, in the middle and on the right, respectively.

case and now plot ẋ as a function of x, a representation called a phase space plot and
shown in fig. 2, again for λ < 0, λ = 0 and λ > 0. The graphs are straight lines given
by ẋ = λ x with a negative, vanishing and positive slope, respectively. So what can
we learn from these graphs? The easiest is the one in the middle corresponding to
ẋ = 0, which means there are no changes in the system. Where ever we start initially
we stay there, a quite boring case.

Next we turn to the plot on the left, λ < 0, for which the phase space plot is a
straight line with a negative slope. So for any state x < 0 the change ẋ is positive,
the system evolves to the right. Moreover, the more negative the state x the bigger
the change ẋ towards the origin as indicated by the direction and size of the arrows
on the horizontal axis. In contrast, for any initial positive state x > 0 the change ẋ is
negative and the system evolves towards the left. In both cases it is approaching the
origin and the closer it gets the more it slows down. For the system (2) with λ < 0
all trajectories evolve towards the origin, which is therefore called a stable fixed
point or attractor. Fixed points and their stability are most important properties of
dynamical systems, in particular for nonlinear systems as we shall see later. In phase
space plots like fig. 2 stable fixed points are indicated by solid circles.

On the right in fig. 2 the case for λ > 0 is depicted. Here, for any positive (neg-
ative) state x the change ẋ is also positive (negative) as indicated by the arrows and
the system moves away from the origin in both direction. Therefore, the origin in
this case is an unstable fixed point or repeller and indicated by an open circle in the
phase space plot. Finally, coming back to λ = 0 shown in the middle of fig. 2, all
points on the horizontal axis are fixed points. However, they are neither attracting
nor repelling and are therefore called neutrally stable.

1.2 Nonlinear Systems: First Steps

The concepts discussed in the previous section for the linear equation of continuous
growth can immediately be applied to nonlinear systems in one dimension. To be
most explicit we treat an example known as the logistic equation
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ẋ = λ x− x2 (6)

The graph of this function is a parabola which opens downwards, it has one inter-
section with the horizontal axis at the origin and another one at x = λ as shown
in fig. 3.

These intersections between the graph and the horizontal axis are most important
because they are the fixed points of the system, i.e. the values of x for which ẋ = 0
is fulfilled. For the case λ < 0, shown on the left in fig. 3, the graph intersects the
negative x-axis with a positive slope. As we have seen above – and of course one
can apply the reasoning regarding the state and its change here again – such a slope
means that the system is moving away from this point, which is therefore classified
as an unstable fixed point or repeller. The opposite is case for the fixed point at
the origin. The flow moves towards this location from both side, so it is stable or
an attractor. Corresponding arguments can be made for λ > 0 shown on the right
in fig. 3.

An interesting case is λ = 0 shown in the middle of fig. 3. Here the slope van-
ishes, a case we previously called neutrally stable. However, by inspecting the state
and change in the vicinity of the origin, it is easily determined that the flow moves
towards this location if we are on the positive x-axis and away from it when x is neg-
ative. Such points are called half-stable or saddle points and denoted by half-filled
circles.

As a second example we discuss the cubic equation

ẋ = λ x− x3 (7)

From the graph of this function, shown in fig. 4, it is evident that for λ ≤ 0 there
is one stable fixed point at the origin which becomes unstable when λ is increased
to positive values and at the same time two stable fixed points appear to its right
and left. Such a situation, where more than one stable state exist in a system is
called multistability, in the present case of two stable fixed points bistability, an
inherently nonlinear property which does not exist in linear systems. Moreover, (7)

x

ẋ

λ<0

x

ẋ

λ=0

x

ẋ

λ>0

Fig. 3 Phase space plots, ẋ as a function of x, for the logistic equation (6) for the cases λ < 0,
λ = 0 and λ > 0 on the left, in the middle and on the right, respectively.
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x

ẋ
λ<0

x

ẋ

λ=0

x

ẋ
λ>0

Fig. 4 Phase space plots, ẋ as a function of x, for the cubic equation (7) for the cases λ < 0,
λ = 0 and λ > 0 on the left, in the middle and on the right, respectively.

becomes bistable when the parameter λ switches from negative to positive values.
When this happens, the change in the system’s dynamical behavior is not gradual
but qualitative. A system, which was formerly monostable with a single attractor
at the origin, now has become bistable with three fixed points, two of them stable
and the origin having switched from an attractor to a repeller. It is this kind of
qualitative change in behavior when a parameter exceeds a certain threshold that
makes nonlinear differential equations the favorite modeling tool to describe the
transition phenomena we observe in nature.

1.3 Potential Functions

So far we derived the dynamical properties of linear and nonlinear systems from
their phase space plots. There is another, arguably even more intuitive way to find
out about a system’s behavior, which is by means of potential functions. In one-
dimensional systems the potential is defined by

ẋ = f (x) = −dV
dx

→ V (x) = −
∫

f (x)dx + c (8)

In words: the negative derivative of the potential function is the right-hand side of
the differential equation. All one-dimensional systems have a potential, even though
it may not be possible to write it down in a closed analytical form. For higher di-
mensional systems the existence of a potential is more the exception than the rule
as we shall see in sect. 2.5.

From its definition (8) it is obvious that the change in state ẋ is equal to the nega-
tive slope of the potential function. First, this implies that the system always moves
in the direction where the potential is decreasing and second, that the fixed points of
the system are located at the extrema of the potential, where minima correspond to
stable and maxima to unstable fixed points. The dynamics of a system can be seen
as the overdamped motion of a particle the landscape of the potential. One can think
of an overdamped motion as the movement of a particle in a thick or viscous fluid
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like honey. If it reaches a minimum it will stick there, it will not oscillate back and
forth.

Examples

1. ẋ = λ x = −dV

dx
→ V (x) = −

∫
λ xdx + c = −1

2
λ x2 +c︸︷︷︸

=0

The familiar linear equation. Plots of ẋ and the corresponding potential V as
functions of x are shown in fig. 5 for the cases λ < 0 (left) and λ > 0 (middle);

2. ẋ = x− x2 = −dV
dx

→ V (x) = −1
2

x2 +
1
3

x3

A special case of the logistic equation. The potential in this case is a cubic
function shown in fig. 5 (right);

x

ẋ V

x

ẋ V

x

ẋ V

Fig. 5 Graphs of ẋ (dashed) and V (x) (solid) for the linear equation (λ < 0 left, λ > 0 middle)
and for the logistic equation (right).

3. ẋ = λ x− x3 → V (x) = − 1
2 λ x2 + 1

4 x4

The cubic equation for which graphs and potential functions are shown in fig. 6.
Depending on the sign of the parameter λ this system has either a single attractor
at the origin or a pair of stable fixed points and one repeller.

4. ẋ = λ + x− x3 → V (x) = −λ x− 1
2 x2 + 1

4 x4

For the case λ = 0 this equation is a special case of the cubic equation we have
dealt with above, namely ẋ = x− x3. The phase space plots for this special case
are shown in fig. 7 in the left column. The top row in this figure shows what
is happening when we increase λ from zero to positive values. We are simply
adding a constant, so the graph gets shifted upwards. Correspondingly, when we
decrease λ from zero to negative values the graph gets shifted downwards, as
shown in the bottom row in fig. 7.

The important point in this context is the number of intersections of the graphs
with the horizontal axis, i.e. the number of fixed points. The special case with
λ = 0 has three as we know and if we increase or decrease λ only slightly this
number stays the same. However, there are certain values of λ , for which one of
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x

Vẋ

λ<0

x

Vẋ

λ=0

x

Vẋ

λ>0

Fig. 6 Graph of ẋ (dashed) and V (x) (solid) for the cubic equation for different values of λ .

x

ẋ
λ=0

x

ẋ
0<λ<λc

x

ẋ
λ=λc

x

ẋ
λ>λc

x

ẋ
λ=0

x

ẋ
−λc <λ<0

x

ẋ
λ=−λc

x

ẋ
λ<−λc

Fig. 7 Phase space plots for ẋ = λ +x−x3. For positive (negative) values of λ the graphs are
shifted up (down) with respect to the point symmetric case λ = 0 (left column). The fixed
point skeleton changes at the critical parameter values ±λc.

the extrema is located on the horizontal axis and the system has only two fixed
points as can be seen in the third column in fig. 7. We call these the critical val-
ues for the parameter, ±λc. A further increase or decrease beyond these critical
values leaves the system with only one fixed point as shown in the rightmost col-
umn. Obviously, a qualitative change in the system occurs at the parameter values
±λc when a transition from three fixed points to one fixed point takes place.

A plot of the potential functions where the parameter is varied from λ < −λc

to λ > λc is shown in fig. 8. In the graph on the top left for λ < −λc the po-
tential has a single minimum corresponding to a stable fixed point, as indicated
by the gray ball, and the trajectories from all initial conditions end there. If λ is
increased a half-stable fixed point emerges at λ = −λc and splits into a stable
and unstable fixed point, i.e. a local minimum and maximum when the parame-
ter exceeds this threshold. However, there is still the local minimum for negative
values of x and the system, represented by the gray ball, will remain there. It
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takes an increase in λ beyond λc in the bottom row before this minimum dis-
appears and the system switches to the only remaining fixed point on the right.
Most importantly, the dynamical behavior is different if we start with a λ > λc,
as in the graph at the bottom right and decrease the control parameter. Now the
gray ball will stay at positive values of x until the critical value −λc is passed and
the system switches to the left. The state of the system does not only depend on
the value of the control parameter but also on its history of parameter changes –
it has a form of memory. This important and wide spread phenomenon is called
hysteresis and we shall come back to it in sect. 1.4.

x

V

λ<−λc

x

V

λ=−λc

x

V

−λc <λ<0

x

V

λ=0

x

V

0< λ<λc

x

V

λc =λc

x

V

λ>λc

Fig. 8 Potential functions for ẋ = λ +x−x3 for parameter values λ < −λc (top left) to λ > λc

(bottom right). If a system, indicated by the gray ball, is initially in the left minimum, λ has to
increase beyond λc before a switch to the right minimum takes place. In contrast, if the system
is initially in the right minimum, λ has to decrease beyond −λc before a switch occurs. The
system shows hysteresis.

1.4 Bifurcation Types

One major difference between linear and nonlinear systems is that the latter can
undergo qualitative changes when a parameter exceeds a critical value. So far we
have characterized the properties of dynamical systems by phase space plots and
potential functions for different values of the control parameter, but it is also possible
to display the locations and stability of fixed points as a function of the parameter in
a single plot, called a bifurcation diagram. In these diagrams the locations of stable
fixed points are represented by solid lines, unstable fixed points are shown dashed.
We shall also use solid, open and half-filled circles to mark stable, unstable and
half-stable fixed points, respectively.

There is a quite limited number of ways how such qualitative changes, also called
bifurcations, can take place in one-dimensional systems. In fact, there are four basic
types of bifurcations known as saddle-node, transcritical, and super- and subcritical
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pitchfork bifurcation, which we shall discuss. For each type we are going to show a
plot with the graphs in phase space at the top, the potentials in the bottom row, and
in-between the bifurcation diagram with the fixed point locations x̃ as functions of
the control parameter λ .

Saddle-Node Bifurcation

The prototype of a system that undergoes a saddle-node bifurcation is given by

ẋ = λ + x2 → x̃1,2 = ±
√

−λ (9)

The graph in phase space for (9) is a parabola that open upwards. For negative values
of λ one stable and one unstable fixed point exist, which collide and annihilate when
λ is increased above zero. There are no fixed points in this system for positive values
of λ . Phase space plots, potentials and a bifurcation diagram for (9) are shown in
fig. 9.
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Fig. 9 Saddle-node bifurcation: a stable and unstable fixed point collide and annihilate. Top:
phase space plots; middle: bifurcation diagram; bottom: potential functions.

Transcritical Bifurcation

The transcritical bifurcation is given by

ẋ = λx + x2 → x̃1 = 0, x̃2 = λ (10)

and summarized in fig. 10. For all parameter values, except the bifurcation point
λ = 0, the system has a stable and an unstable fixed point. The bifurcation diagram
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Fig. 10 Transcritical bifurcation: a stable and an unstable fixed point exchange stability. Top:
phase space plots; middle: bifurcation diagram; bottom: potential functions.
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Fig. 11 Supercritical pitchfork bifurcation: a stable fixed point becomes unstable and two
new stable fixed points arise. Top: phase space plots; middle: bifurcation diagram; bottom:
potential functions.
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consists of two straight lines, one at x̃ = 0 and one with a slope of one. When these
lines intersect at the origin they exchange stability, i.e. former stable fixed points
along the horizontal line become unstable and the repellers along the line with slope
one become attractors.

Supercritical Pitchfork Bifurcation

The supercritical pitchfork bifurcation is visualized in fig. 11 and is prototypically
given by

ẋ = λx− x3 → x̃1 = 0, x̃2,3 = ±
√

λ (11)

The supercritical pitchfork bifurcation is the main mechanism for switches between
mono- and bistability in nonlinear systems. A single stable fixed point at the origin
becomes unstable and a pair of stable fixed points appears symmetrically around
x̃ = 0. In terms of symmetry this system has an interesting property: the differential
equation (11) is invariant if we substitute x by −x. This can also be seen in the phase
space plots, which all have a point symmetry with respect to the origin, and in the
plots of the potential, which have a mirror symmetry with respect to the vertical axis.
If we prepare the system with a parameter λ < 0 it will settle down at the only fixed
point, the minimum of the potential at x = 0, as indicated by the gray ball in fig. 11
(bottom left). The potential together with the solution still have the mirror symmetry
with respect to the vertical axis. If we now increase the parameter beyond its critical
value λ = 0, the origin becomes unstable as can be seen in fig. 11 (bottom second
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Fig. 12 Subcritical pitchfork bifurcation: a stable and two unstable fixed points collide and
the former attractor becomes a repeller. Top: phase space plots; middle: bifurcation diagram;
bottom: potential functions.
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Fig. 13 A system showing hysteresis. Depending on whether the parameter is increased
from large negative or decreased from large positive values the switch occurs at λ = λc or
λ = −λc, respectively. The bifurcation is not a basic type but consists of two saddle-node
bifurcations indicated by the dotted rectangles. Top: phase space plots; middle: bifurcation
diagram; bottom: potential functions.

from right). Now the slightest perturbation will move the ball to the left or right
where the slope is finite and it will settle down in one of the new minima (fig. 11
(bottom right)). At this point, the potential plus solution is not symmetric anymore,
the symmetry of the system has been broken by the solution. This phenomenon,
called spontaneous symmetry breaking, is found in many systems in nature.

Subcritical Pitchfork Bifurcation

The equation governing the subcritical pitchfork bifurcation is given by

ẋ = λx + x3 → x̃1 = 0, x̃2,3 = ±
√
−λ (12)

and and its diagrams are shown in fig. 12. As in the supercritical case the origin is
stable for negative values of λ and becomes unstable when the parameter exceeds
λ = 0. Two additional fixed points exist for negative parameter values at x̃ = ±√−λ
and they are repellers.



14 A. Fuchs

System with Hysteresis

As we have seen before the system

ẋ = λ + x− x3 (13)

shows hysteresis, a phenomenon best visualized in the bifurcation diagram in fig. 13.
If we start at a parameter value below the critical value −λc and increase λ slowly,
we will follow a path indicated by the arrows below the lower solid branch of stable
fixed points in the bifurcation diagram. When we reach λ = λc this branch does not
continue and the system has to jump to the upper branch. Similarly, if we start at
a large positive value of λ and decrease the parameter, we will stay on the upper
branch of stable fixed points until we reach the point −λc from where there is no
smooth way out and a discontinuous switch to the lower branch occurs.

It is important to realize that (13) is not a basic bifurcation type. In fact, it consists
of two saddle-node bifurcations indicated by the dotted rectangles in fig. 13.

2 Two-Dimensional Systems

Two-dimensional dynamical systems can be represented by either a single differ-
ential equation of second order, which contains a second derivative with respect to
time, or by two equations of first order. In general, a second order system can al-
ways be expressed as two first order equations, but most first order systems cannot
be written as a single second order equation

ẍ + f (x, ẋ) = 0 →
{

ẋ = y

ẏ = − f (x,y = ẋ)
(14)

2.1 Linear Systems and their Classification

A general linear two-dimensional system is given by

ẋ = ax + by

ẏ = cx + dy
(15)

and has a fixed at the origin x̃ = 0, ỹ = 0.

The Pedestrian Approach

One may ask the question whether it is possible to decouple this system somehow,
such that ẋ only depends on x and ẏ only on y. This would mean that we have two
one-dimensional equations instead of a two-dimensional system. So we try

ẋ = λx

ẏ = λy
→ ax + by = λx

cx + dy = λy
→ (a−λ )x + by = 0

cx +(d−λ )y = 0
(16)
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where we have used (15) and obtained a system of equations for x and y. Now we
are trying to solve this system

y = −a−λ
b

x → cx− (a−λ )(d−λ )
b

x = 0

→ [(a−λ )(d−λ )−bc︸ ︷︷ ︸
=0

]x = 0
(17)

From the last term it follows that x = 0 is a solution, in which case form the first
equation follows y = 0. However, there is obviously a second way how this sys-
tem of equation can be solved, namely, if the under-braced term inside the brackets
vanishes. Moreover, this term contains the parameter λ , which we have introduced
in a kind of ad hoc fashion above, and now can be determined such that this term
actually vanishes

(a−λ )(d−λ ) − bc = 0 → λ 2 − (a+ d)λ + ad− bc = 0

→ λ1,2 = 1
2{a +d±√(a +d)2−4(ad−bc)}

(18)

For simplicity, we assume a = d, which leads to

λ1,2 = a± 1
2

√
4a2 − 4a2 +4bc = a±

√
bc (19)

As we know λ now, we can go back to the first equation in (17) and calculate y

y = −a−λ
b

x = −a− (a±√
bc)

b
x = ±

√
c
b

x (20)

So far, so good but we need to figure out what this all means. In the first step we
assumed ẋ = λ x and ẏ = λy. As we know from the one-dimensional case, such
systems are stable for λ < 0 and unstable for λ > 0. During the calculations above
we found two possible values for lambda, λ1,2 = a±√

bc, which depend on the
parameters of the dynamical system a = d, b and c. Either of them can be positive
or negative, in fact if the product bc is negative, the λ s can even be complex. For
now we are going to exclude the latter case, we shall deal with it later. In addition,
we have also found a relation between x and y for each of the values of λ , which is
given by (20). If we plot y as a function of x (20) defines two straight lines through
the origin with slopes of ±√c/b, each of these lines corresponds to one of the
values of lambda and the dynamics along these lines is given by ẋ = λ x and ẏ = λy.
Along each of these lines the system can either approach the origin from both sides,
in which cases it is called a stable direction or move away from it, which means
the direction is unstable. Moreover, these are the only directions in the xy-plane
where the dynamics evolves along straight lines and therefore built up a skeleton
from which other trajectories can be easily constructed. Mathematically, the λ s are
called the eigenvalues and the directions represent the eigenvectors of the coefficient
matrix as we shall see next.
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There are two important descriptors of a matrix in this context, the trace and the
determinant. The former is given by the sum of the diagonal elements tr = a +d and
the latter, for a 2×2 matrix, is the difference between the products of the upper-left
times lower-right and upper-right times lower-left elements det = ad− bc.

The Matrix Approach

Any two-dimensional linear system can be written in matrix form

ẋ =
(

a b
c d

)
x = L x → x̃ =

(
0
0

)
(21)

with a fixed point at the origin. If a linear system’s fixed point is not at the origin a
coordinate transformation can be applied that shifts the fixed point such that (21) is
fulfilled. The eigenvalues of L can be readily calculated and it is most convenient
to express them in terms of the trace and determinant of L

∣∣∣∣a−λ b
c d−λ

∣∣∣∣= λ 2 −λ (a +d)︸ ︷︷ ︸
trace tr

+ ad− bc︸ ︷︷ ︸
determinant det

= 0 (22)

→ λ1,2 = 1
2{a +d±√(a +d)2 −4 (ad− bc)}

= 1
2{tr ±

√
t2
r −4det}

(23)

x

y

fasteigendirection

slow

eigendirection

Fig. 14 Phase space portrait for the stable node.
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Depending on whether the discriminant t2
r −4det in (23) is bigger or smaller than

zero, the eigenvalues λ1,2 will be real or complex numbers, respectively.

t2
r −4det > 0 → λ1,2 ∈ R

If both eigenvalues are negative, the origin is a stable fixed point, in this case called
a stable node. An example of trajectories in the two-dimensional phase space is
shown in fig. 14. We assume the two eigenvalues to be unequal, λ1 < λ2 and both
smaller than zero. Then, the only straight trajectories are along the eigendirections
which are given by the eigenvectors of the system. All other trajectories are curved
as the rate of convergence is different for the two eigendirections depending on the
corresponding eigenvalues. As we assumed λ1 < λ2 the trajectories approach the
fixed point faster along the direction of the eigenvector v(1) which corresponds to
λ1 and is therefore called the fast eigendirection. In the same way, the direction
related to λ2 is called the slow eigendirection.

Correspondingly, for the phase space plot when both eigenvalues are positive the
flow, as indicated by the arrows in fig. 14, is reversed and leads away from the fixed
point which is then called an unstable node.

For the degenerate case, with λ1 = λ2 we have a look at the system with

L =

(−1 b

0 −1

)
→ λ1,2 = −1 (24)

The eigenvectors are given by

(−1 b

0 −1

)
=

(
v1

v2

)
→

−v1 + bv2 = −v1

−v2 = −v2

→ bv2 = 0 (25)

For b �= 0 the only eigendirection of L is the horizontal axis with v2 = 0. The fixed
point is called a degenerate node and its phase portrait shown in fig. 15 (left). If
b = 0 any vector is an eigenvector and the trajectories are straight lines pointing
towards or away from the fixed point depending on the sign of the eigenvalues. The
phase space portrait for this situation is shown in fig. 15 (right) and the fixed point
is for obvious reasons called a star node .

If one of the eigenvalues is positive and the other negative, the fixed point at the
origin is half-stable and called a saddle point. The eigenvectors define the direc-
tions where the flow in phase space is pointing towards the fixed point, the so-called
stable direction, corresponding to the negative eigenvalue, and away from the fixed
point, the unstable direction, for the eigenvector with a positive eigenvalue. A typi-
cal phase space portrait for a saddle point is shown in fig. 16.

t2
r −4det < 0 → λ1,2 ∈ C → λ2 = λ ∗

1

If the discriminant t2
r − 4det in (23) is negative the linear two-dimensional system

has a pair of complex conjugate eigenvalues. The stability of the fixed point is then
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stable degenerate node stable star node

Fig. 15 Degenerate case where the eigenvalues are the same. The degenerate node (left) has
only one eigendirection, the star node (right) has infinitely many.

x

y

stabledirection

unstable

direction

Fig. 16 If the eigenvalues have different signs λ1λ2 < 0 the fixed point at the origin is half-
stable and called a saddle point.

determined by the real part of the eigenvalues given as the trace of the coefficient
matrix L in (21). The trajectories in phase space are spiraling towards or away from
the origin as a stable spiral for a negative real part of the eigenvalue or an unstable
spiral if the real part is positive as shown in fig. 17 left and middle, respectively. A
special case exists when the real part of the eigenvalues vanishes tr = 0. As can be
seen in fig. 17 (right) the trajectories are closed orbits. The fixed point at the origin
is neutrally stable and called a center.
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Fig. 17 For complex eigenvalues the trajectories in phase space are stable spirals if their real
part is negative (left) and unstable spirals for a positive real part (middle). If the real part of
the eigenvalues vanishes the trajectories are closed orbits around the origin, which is then a
neutrally stable fixed point called a center (right).

To summarize these findings, we can now draw a diagram in a plane as shown
in fig. 18, where the axes are the determinant det and trace tr of the linear matrix L
that provides us with a complete classification of the linear dynamical systems in
two dimensions.

On the left of the vertical axis (det < 0) are the saddle points. On the right (det > 0)
are the centers on the horizontal axis (tr = 0) with unstable and stable spirals located
above and below, respectively. The stars and degenerate nodes are along the parabola
t2
r = 4det that separates the spirals from the stable and unstable nodes.
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Fig. 18 Classification diagram for two-dimensional linear systems in terms of the trace tr and
determinant det of the linear matrix.
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2.2 Nonlinear Systems

In general a two dimensional dynamical system is given by

ẋ = f (x,y) ẏ = g(x,y) (26)

In the one-dimensional systems the fixed points were given by the intersection be-
tween the function in phase space and the horizontal axis. In two dimensions we
can have graphs that define the locations ẋ = f (x,y) = 0 and ẏ = g(x,y) = 0, which
are called the nullclines and are the location in the xy-plane where the tangent to
the trajectories is vertical or horizontal, respectively. Fixed points are located at the
intersections of the nullclines. We have also seen in one-dimensional systems that
the stability of the fixed points is given by the slope of the function at the fixed point.
For the two-dimensional case the stability is also related to derivatives but now there
is more than one, there is the so-called Jacobian matrix, which has to be evaluated
at the fixed points

J =

⎛
⎝

∂ f
∂ x

∂ f
∂ y

∂g
∂ x

∂ g
∂ y

⎞
⎠ (27)

The eigenvalues and eigenvectors of this matrix determine the nature of the fixed
points, whether it is a node, star, saddle, spiral or center and also the dynamics in its
vicinity, which is best shown in a detailed example.

Detailed Example

We consider the two-dimensional system

ẋ = f (x,y) = y− y3 = y(1− y2), ẏ = g(x,y) = −x− y2 (28)

for which the nullclines are given by

ẋ = 0 → y = 0 and y = ±1

ẏ = 0 → y = ±√−x
(29)

The fixed points are located at the intersections of the nullclines

x̃1 =
(

0
0

)
x̃2,3 =

(−1
±1

)
(30)

We determine the Jacobian of the system by calculating the partial derivatives

J =

⎛
⎝

∂ f
∂ x

∂ f
∂ y

∂g
∂ x

∂ g
∂ y

⎞
⎠=

(
0 1− 3y2

−1 −2y

)
(31)
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x

y

Fig. 19 Phase space diagram for the system (28).

A phase space plot for the system (28) is shown in fig. 19. The origin is a center
surrounded by closed orbits with flow in the clockwise direction. This direction is
readily determined by calculating the derivatives close to the origin

ẋ =
(

y− y3

−x− y2

)
at x =

(
0.1
0

)
→ ẋ =

(
0

−0.1

)
→ clockwise

The slope of the trajectories at the two saddle points is given by the direction of their
eigenvectors, and whether a particular direction is stable or unstable is determined
by the corresponding eigenvalues. The two saddles are connected by two trajectories
and such connecting trajectories between two fixed points are called heteroclinic
orbits. The dashed horizontal lines through the fixed points and the dashed parabola
which opens to the left are the nullclines where the the trajectories are either vertical
or horizontal.

Second Example: Homoclinic Orbit

In the previous example we encountered heteroclinic orbits, which are trajectories
that leave a fixed point along one of its unstable directions and approach another
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fixed point along a stable direction. In a similar way it is also possible that the
trajectory returns along a stable direction to the fixed point it originated from. Such
a closed trajectory that starts and ends at the same fixed point is correspondingly
called a homoclinic orbit. To be specific we consider the system

ẋ = y− y2 = y(1− y)
ẏ = x → x̃1 =

(
0

0

)
x̃2 =

(
0

1

)
(32)

with the Jacobian matrix

J =

(
0 1−2y

1 0

)
→ J (x̃1,2) =

(
0 ±1

1 0

)
(33)

From tr[J (x̃1)] = 0 and det [J (x̃1)] = −1 we identify the origin as a saddle point.
In the same way with tr[J (x̃2)] = 0 and det [J (x̃2)] = 1 the second fixed point is
classified as a center.

The eigenvalues and eigenvectors are readily calculated

x̃1 : λ (1)
1,2 = ±

√
2, v(1)

1,2 =

(
1

±√
2

)
x̃2 : λ (2)

1,2 =±i
√

2 (34)

The nullclines are given by y = 0, y = 1 (vertical) and x = 0 (horizontal).
A phase space plot for the system (32) is shown in fig. 20 where the fixed point

at the origin has a homoclinic orbit. The trajectory is leaving x̃1 along the unstable
direction, turning around the center x̃2 and returning along the stable direction of
the saddle.

2.3 Limit Cycles

A limit cycle, the two-dimensional analogon of a fixed point, is an isolated closed
trajectory. Consequently, limit cycles exist with the flavors stable, unstable and
half-stable as shown in fig. 21. A stable limit cycle attracts trajectories from both
its outside and its inside, whereas an unstable limit cycle repels trajectories on both
sides. There also exist closed trajectories, called half-stable limit cycles, which at-
tract the trajectories from one side and repel those on the other. Limit cycles are
inherently nonlinear objects and must not be mixed up with the centers found in
the previous section in linear systems when the real parts of both eigenvalues van-
ish. These centers are not isolated closed trajectories, in fact there is always another
closed trajectory infinitely close nearby. Also all centers are neutrally stable, they
are neither attracting nor repelling.

From fig. 21 it is intuitively clear that inside a stable limit cycle, there must be
an unstable fixed point or an unstable limit cycle, and inside an unstable limit cycle
there is a stable fixed point or a stable limit cycle. In fact, this intuition will guide
us to a new and one of the most important bifurcation types: the Hopf bifurcation.
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Fig. 20 Phase space diagram with a homoclinic orbit.

x

y

stable

x

y

unstable

x

y

half−stable

Fig. 21 Limit cycles attracting or/and repelling neighboring trajectories.

2.4 Hopf Bifurcation

We consider the dynamical system

ξ̇ = μ ξ − ξ |ξ |2 with μ ,ξ ∈ C (35)

where both the parameter μ and the variable ξ are complex numbers. There are
essentially two ways in which complex numbers can be represented
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1. Cartesian representation: ξ = x + iy for which (35) takes the form

ẋ = εx−ωy− x(x2 + y2)

ẏ = εx+ ωy− y(x2 + y2)
(36)

after assuming μ = ε + iω and splitting into real and imaginary part;

2. Polar representation: ξ = r eiϕ and (35) becomes

ṙ = εr− r3 ϕ̇ = ω (37)

Rewriting (35) in a polar representation leads to a separation of the complex equa-
tion not into a coupled system as in the cartesian case (36) but into two uncoupled
first order differential equations, which both are quite familiar. The second equation
for the phase ϕ can readily be solved, ϕ(t) = ωt, the phase is linearly increasing
with time, and, as ϕ is a cyclic quantity, has to be taken modulo 2π . The first equa-
tion is the well-known cubic equation (7) this time simply written in the variable
r instead of x. As we have seen earlier, this equation has a single stable fixed point
r = 0 for ε < 0 and undergoes a pitchfork bifurcation at ε = 0, which turns the
fixed point r = 0 unstable and gives rise to two new stable fixed points at r = ±√

ε.
Interpreting r as the radius of the limit cycle, which has to be greater than zero, we
find that a stable limit cycle arises from a fixed point, when ε exceeds its critical
value ε = 0.

To characterize the behavior that a stable fixed point switches stability with a
limit cycle in a more general way, we have a look at the linear part of (35) in its
cartesian form

ξ̇ = μξ = (ε + iω)(x + iy) →
(

ẋ
ẏ

)
=
(

ε −ω
ω ε

)(
x
y

)
(38)

The eigenvalues λ for the matrix in (38) are found from the characteristic polyno-
mial ∣∣∣∣ ε −λ −ω

ω ε −λ

∣∣∣∣ = λ 2 − 2ε λ + ε2 +ω2

→ λ1,2 = ε ± 1
2

√
4ε2 −4ε2 − 4ω2 = ε ± iω

(39)

A plot of ℑ(λ ) versus ℜ(λ ) is shown in fig. 22 for the system we discussed here
on the left, and for a more general case on the right. Such a qualitative change
in a dynamical system where a pair of complex conjugate eigenvalues crosses the
vertical axis we call a Hopf bifurcation, which is the most important bifurcation
type for a system that switches from a stationary state at a fixed point to oscillation
behavior on a limit cycle.
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Fig. 22 A Hopf bifurcation occurs in a system when a pair of complex conjugate eigenvalues
crosses the imaginary axis. For (39) the imaginary part of ε is a constant ω (left). A more
general example is shown on the right.

2.5 Potential Functions in Two-Dimensional Systems

A two-dimensional system of first order differential equations of the form

ẋ = f (x,y) ẏ = g(x,y) (40)

has a potential and is called a gradient system if there exists a scalar function of two
variables V (x,y) such that

(
ẋ

ẏ

)
=

(
f (x,y)

g(x,y)

)
= −

⎛
⎜⎜⎝

∂ V (x,y)
∂x

∂ V (x,y)
∂y

⎞
⎟⎟⎠ (41)

is fulfilled. As in the one-dimensional case the potential functionV (x,y) is monoton-
ically decreasing as time evolves, in fact, the dynamics follows the negative gradi-
ent and therefore the direction of steepest decent along the two-dimensional surface
This implies that a gradient system cannot have any closed orbits or limit cycles.

An almost trivial example for a two-dimensional system that has a potential is
given by

ẋ = −∂V
∂x

= −x ẏ = −∂V
∂x

= y (42)

Technically, (42) is not even two-dimensional but two one-dimensional systems that
are uncoupled. The eigenvalues and eigenvectors can easily be guessed as λ1 = −1,
λ2 = 1 and v(1) = (1,0), v(2) = (0,1) defining the x-axis as a stable and the y-axis as
an unstable direction. Applying the classification scheme, with tr = 0 and det = −1
the origin is identified as a saddle. It is also easy to guess the potential function
V (x,y) for (42) and verify the guess by taking the derivatives with respect to x and y
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V (x,y) =
1
2

x2 − 1
2

y2 → ∂V
∂x

= x = −ẋ
∂V
∂y

= −y = −ẏ (43)

A plot of this function in shown in fig. 23 (left). White lines indicate equipotential
locations and a set of trajectories is plotted in black. The trajectories are following
the negative gradient of the potential and therefore intersect the equipotential lines
at a right angle. From the shape of the potential function on the left it is most evident
why fixed points in two dimensions with a stable and an unstable direction are called
saddles.

Fig. 23 Potential functions for a saddle (42) (left) and for the example given by (46) (right).
Equipotential lines are plotted in white and a set of trajectories in black. As the trajectories
follow the negative gradient of the potential they intersect the lines of equipotential at a right
angle.

It is easy to figure out whether a specific two-dimensional system is a gradient
system and can be derived from a scalar potential function. A theorem states that a
potential exists if and only if the relation

∂ f (x,y)
∂y

=
∂ g(x,y)

∂ x
(44)

is fulfilled. We can easily verify that (42) fulfills this condition

∂ f (x,y)
∂y

= −∂x
∂y

=
∂ g(x,y)

∂x
=

∂y
∂x

= 0 (45)

However, in contrast to one-dimensional systems, which all have a potential, two-
dimensional gradient systems are more the exception than the rule.

As a second and less trivial example we discuss the system

ẋ = y +2xy ẏ = x + x2 − y2 (46)
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First we check whether (44) is fulfilled and (46) can indeed be derived from a
potential

∂ f (x,y)
∂y

=
∂ (y+ 2xy)

∂y
=

∂ g(x,y)
∂x

=
∂ (x + x2 − y2)

∂x
= 1 +2x (47)

In order to find the explicit form of the potential function we first integrate f (x,y)
with respect to x, and g(x,y) with respect to y

ẋ = f (x,y) = −∂V
∂x

→ V (x,y) = −xy− x2y+ cx(y)

ẏ = g(x,y) = −∂V
∂y

→ V (x,y) = −xy− x2y+ 1
3 y3 + cy(x)

(48)

As indicated the integration “constant” cx for the x integration is still dependent on
the the variable y and vice versa for cy. These constants have to be chosen such
that the potential V (x,y) is the same for both cases, which is evidently fulfilled by
choosing cx(y) = 1

3 y3 and cy(x) = 0. A plot of V (x,y) is shown in fig. 23 (right).
Equipotential lines are shown in white and some trajectories in black. Again the
trajectories follow the gradient of the potential and intersect the contour lines at a
right angle.

2.6 Oscillators

Harmonic Oscillator

The by far best known two-dimensional dynamical system is the harmonic oscillator
given by

ẍ +2γ ẋ + ω2x = 0 or

{
ẋ = y

ẏ = −2γ y−ω2x
(49)

Here ω is the angular velocity, sometimes referred to in a sloppy way as frequency,
γ is the damping constant and the factor 2 allows for avoiding fractions in some
formulas later on. If the damping constant vanishes, the trace of the linear matrix is
zero and its determinant ω2, which classifies the fixed point at the origin as a center.
The generals solution of (49) in this case is given by a superposition of a cosine and
sine function

x(t) = acosωt +b sinωt (50)

where the open parameters a and b have to be determined from initial conditions,
displacement and velocity at t = 0 for instance.

If the damping constant is finite, the trance longer vanishes and the phase space
portrait is a stable or unstable spiral depending on the sign of γ . For γ > 0 the time
series is a damped oscillation (unless the damping gets really big, a case we leave
as an exercise for the reader) and for γ < 0 the amplitude increases exponentially,



28 A. Fuchs

t

x(t)

t

x(t)

Fig. 24 Examples for “damped” harmonic oscillations for the case of positive damping γ > 0
(left) and negative damping γ < 0 (right).

both cases are shown in fig. 24. As it turns out, the damping not only has an effect
on the amplitude but also on the frequency and the general solution of (49) reads

x(t) = e−γt{acosΩ t +bsinΩ t} with Ω =
√

γ2 −ω2 (51)

Nonlinear Oscillators

As we have seen above harmonic (linear) oscillators do not have limit cycles, i.e.
isolated closed orbits in phase space. For the linear center, there is always another
orbit infinitely close by, so if a dynamics is perturbed it simply stays on the new
trajectory and does not return to the orbit it originated from. This situation changes
drastically as soon as we introduce nonlinear terms into the oscillator equation

ẍ + γ ẋ + ω2x +N(x, ẋ) = 0 (52)

For the nonlinearites N(x, ẋ) there are infinitely many possibilities, even if we re-
strict ourselves to polynomials in x and ẋ. However, depending on the application
there are certain terms that are more important than others, and certain properties of
the system we are trying to model may give us hints, which nonlinearities to use or
to exclude.

As an example we are looking for a nonlinear oscillator to describe the move-
ments of a human limb like a finger, hand, arm or leg. Such movements are indeed
limit cycles in phase space and if their amplitude is perturbed they return to the for-
merly stable orbit. For simplicity we assume that the nonlinearity is a polynomial in
x and ẋ up to third order, which means we can pick from the terms

quadratic: x2,x ẋ, ẋ2

cubic: x3,x2 ẋ,x ẋ2, ẋ3 (53)

For human limb movements, the flexion phase is in good approximation a mirror
image of the extension phase. In the phase space portrait this is reflected by a point
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symmetry with respect to the origin or an invariance of the system under the trans-
formation x →−x and ẋ →−ẋ. In order to see the consequences of such an invari-
ance we probe the system

ẍ + γ ẋ + ω2x +ax2 +bx ẋ+ cx3 + d x2 ẋ = 0 (54)

In (54) we substitute x by −x and ẋ by −ẋ and obtain

− ẍ− γ ẋ−ω2x +ax2 +bx ẋ− cx3 − d x2 ẋ = 0 (55)

Now we multiply (55) by −1

ẍ + γ ẋ + ω2x−ax2 −bx ẋ+ cx3 + d x2 ẋ = 0 (56)

Comparing (56) with (54) shows that the two equations are identical if and only if
the coefficients a and b are zero. In fact, evidently any quadratic term cannot appear
in an equation for a system intended to serve as a model for human limb movements
as it breaks the required symmetry. From the cubic terms the two most important
ones are those that have a main influence on the amplitude as we shall discuss in
more details below. Namely, these nonlinearities are the so-called van-der-Pol term
x2 ẋ and the Rayleigh term ẋ3.

Van-der-Pol Oscillator: N(x, ẋ) = x2 ẋ

The van-der-Pol oscillator is given by

ẍ + γ ẋ + ω2x + ε x2 ẋ = 0 (57)

which we can rewrite in the form

ẍ+(γ + ε x2)︸ ︷︷ ︸
γ̃

ẋ +ω2x = 0 (58)

Equation (58) shows that for the van-der-Pol oscillator the damping ”constant” γ̃
becomes time dependent via the amplitude x2. Moreover, writing the van-der-Pol
oscillator in the form (58) allows for an easy determination of the parameter values
for γ and ε that can lead to sustained oscillations. We distinguish four cases:

γ > 0, ε > 0 : The effective damping γ̃ is always positive. The trajectories are
evolving towards the origin which is a stable fixed point;

γ < 0, ε < 0 : The effective damping γ̃ is always negative. The system is unstable
and the trajectories are evolving towards infinity;

γ > 0, ε < 0 : For small values of the amplitude x2 the effective damping γ̃ is
positive leading to even smaller amplitudes. For large values of x2 the effec-
tive damping γ̃ is negative leading a further increase in amplitude. The system
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evolves either towards the fixed point or towards infinity depending on the initial
conditions;

γ < 0, ε > 0 : For small values of the amplitude x2 the effective damping γ̃ is
negative leading to an increase in amplitude. For large values of x2 the effective
damping γ̃ is positive and decreases the amplitude. The system evolves towards
a stable limit cycle. Here we see a familiar scenario: without the nonlinearity the
system is unstable (γ < 0) and moves away from the fixed point at the origin.
As the amplitude increases the nonlinear damping (ε > 0) becomes an important
player and leads to saturation at a finite value.

t

x

x

x

Ω

x(Ω)

ω 3ω 5ω

Fig. 25 The van-der-Pol oscillator: time series (left), phase space trajectory (middle) and
power spectrum (right).

The main features for the van-der-Pol oscillator are shown in fig. 25 with the
time series (left), the phase space portrait (middle) and the power spectrum (right).
The time series is not a sine function but has a fast rising increasing flank and a
more shallow slope on the decreasing side. Such time series are called relaxation
oscillations. The trajectory in phase space is closer to a rectangle than a circle and
the power spectrum shows pronounced peaks at the fundamental frequency ω and
its odd higher harmonics (3ω,5ω . . .).

Rayleigh Oscillator: N(x, ẋ) = ẋ3

The Rayleigh oscillator is given by

ẍ+ γ ẋ+ω2x +δ ẋ3 = 0 (59)

which we can rewrite as before

ẍ +(γ +δ ẋ2)︸ ︷︷ ︸
γ̃

ẋ+ ω2x = 0 (60)

In contrast to the van-der-Pol case the damping ”constant” for the Rayleigh oscilla-
tor depends on the square of the velocity ẋ2. Arguments similar to those used above
lead to the conclusion that the Rayleigh oscillator shows sustained oscillations in
the parameter range γ < 0 and δ > 0.

As shown in fig. 26 the time series and trajectories of the Rayleigh oscillator
also show relaxation behavior, but in this case with a slow rise and fast drop. As for
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Fig. 26 The Rayleigh oscillator: time series (left), phase space trajectory (middle) and power
spectrum (right).

the van-der-Pol oscillator, the phase space portrait is almost rectangular but the long
and short axes are switched. Again the power spectrum has peaks at the fundamental
frequency and the odd higher harmonics.

Taken by themselves neither the van-der-Pol nor Rayleigh oscillators are good
models for human limb movement for at least two reasons even though they fulfill
one requirement for a model: they have stable limit cycles. However, first, human
limb movements are almost sinusoidal and their trajectories have a circular or ellip-
tic shape. Second, it has been found in experiments with human subjects performing
rhythmic limb movements that when the movement rate is increased, the amplitude
of the movement decreases linearly with frequency. It can be shown that for the van-
der-Pol oscillator the amplitude is independent of frequency and for the Rayleigh it
decreases proportional to ω−2, both in disagreement with the experimental findings.

Hybrid Oscillator: N(x, ẋ) = {x2ẋ, ẋ3}

The hybrid oscillator has two nonlinearities, a van-der-Pol and a Rayleigh term and
is given by

ẍ+ γ ẋ+ω2x + εx2ẋ +δ ẋ3 = 0 (61)

which we can rewrite again

ẍ+(γ + εx2 +δ ẋ2)︸ ︷︷ ︸
γ̃

ẋ +ω2x = 0 (62)

The parameter range of interest is γ < 0 and ε ≈ δ > 0. As seen above, the relax-
ation phase occurs on opposite flanks for the van-der-Pol and Rayleigh oscillator. In
combining both we find a system that not only has a stable limit cycle but also the
other properties required for a model of human limb movement.

As shown in fig. 27 the time series for the hybrid oscillator is almost sinusoidal
and the trajectory is elliptical. The power spectrum has a single peak at the funda-
mental frequency. Moreover, the relation between the amplitude and frequency is a
linear decrease in amplitude when the rate is increased as shown schematically in
fig. 28. Taken together, the hybrid oscillator is a good approximation for the trajec-
tories of human limb movements.
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Fig. 27 The hybrid oscillator: time series (left), phase space trajectory (middle) and power
spectrum (right).
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Fig. 28 Amplitude-frequency relation for the van-der-Pol (dotted), Rayleigh (∼ ω−2, dashed)
and hybrid (∼−ω , solid) oscillator.

Beside the dynamical properties of the different oscillators, the important issue
here, which we want to emphasize on, is the modeling strategy we have applied.
Starting from a variety of quadratic and cubic nonlinearities in x and ẋ we first used
the symmetry between the flexion and extension phase of the movement to rule out
any quadratic terms. Then we studied the influence of the van-der-Pol and Rayleigh
terms on the time series, phase portraits and spectra. In combining these nonlinear-
ities to the hybrid oscillator we found a dynamical system that is in agreement with
the experimental findings, namely

• the trajectory in phase space is a stable limit cycle. If this trajectory is perturbed
the system returns to its original orbit;

• the time series of the movement is sinusoidal and the phase portrait is elliptical;

• the amplitude of the oscillation decreases linearly with the movement frequency.

For the sake of completeness we briefly mention the influence of the two remaining
cubic nonlinearities on the dynamics of the oscillator. The van-der-Pol and Rayleigh
term have a structure of velocity times the square of location or velocity, respec-
tively, which we have written as a new time dependent damping term. Similarly, the
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remaining terms xẋ2 and x3 (the latter called a Duffing term) are of the form loca-
tion times the square of velocity or location. These nonlinearities can be written as a
time dependent frequency, leading to an oscillator equation with all cubic nonlinear
terms

ẍ+(γ + εx2 + δ ẋ2)︸ ︷︷ ︸
γ̃ damping

ẋ+(ω2 +α ẋ2 +βx2)︸ ︷︷ ︸
ω̃2 frequency

x = 0 (63)

Further Readings

Strogatz, S.H.: Nonlinear Dynamics and Chaos. Perseus Books Publishing, Cambridge
(2000)
Haken, H.: Introduction and Advanced Topics. Springer, Berlin (2004)





Benefits and Pitfalls in Analyzing Noise in
Dynamical Systems – On Stochastic Differential
Equations and System Identification

Andreas Daffertshofer

1 Introduction

The search for a mathematical framework for describing motor behavior has a long
but checkered history. Most studies have focused on recurrent, deterministic fea-
tures of behavior. The use of dynamical systems to account for the qualitative fea-
tures of end-effector trajectories of limb oscillations gained momentum in the last
twenty-five years or so. There, salient characteristics of human movement served
as guidelines for model developments. For instance, trajectories of limb cycling de-
scribing a bounded area in the position-velocity or phase plane may be interpreted
as indicative of a limit cycle attractor, at least when modeling efforts are restricted to
identifying deterministic forms, thereby disregarding variability. By using averaging
methods, which are typically applied for first-order analyses of nonlinear oscilla-
tors, e.g., harmonic balance, Kay et al (1987, 1991) derived second-order nonlinear
differential equations that mimic experimentally observed amplitude-frequency re-
lations and phase response characteristics of rhythmic finger and wrist movements.
The self-sustaining oscillators include weak dissipative nonlinearities that stabilize
the underlying limit cycle, cause a drop of amplitude and an increase in peak veloc-
ity with increasing movement tempo or frequency.

Random noise is omnipresent in motor behavior but noise in limb oscillations, al-
though explicitly acknowledged by at least some authors (e.g., Eisenhammer et al,
1991; Kay, 1988), is viewed as mere artifact obscuring the deterministic dynamics.
Noise should thus be eliminated by means of filtering or averaging. In consequence,
deterministic and stochastic features of human movement are rarely assessed in
conjunction. Fortunately, more recently studies are on the rise, which do appreci-
ate the novel dynamic characteristics caused by noise in the dynamics. In these
more recent studies, stochasticity is considered a hallmark property of human
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movement that needs to be addressed because it possesses functional qualities
(e.g., Harris and Wolpert, 1998; Körding and Wolpert, 2004; Riley and Turvey, 2002;
Schöner et al, 1986; Schöner, 2002). For instance, variability in endpoint trajectory
has been associated with task difficulty (Todorov and Jordan, 2002): variability is
reduced in more difficult tasks to comply with accuracy constraints, whereas in
easier tasks the variability can increase in order to enhance system flexibility. An-
other example of the usefulness of motor variability can be found in studies of
interlimb coordination conducted from a dynamical systems perspective. In this
context, variability has been incorporated as random fluctuations to account for
phenomena like critical fluctuations and critical slowing down in the immediate
vicinity of so-called phase transitions, that is, situations in which a system switches
between stable states or attractors, e.g., changes from antiphase to in-phase coor-
dination (Haken et al, 1985; Kelso, 1984; Post et al, 2000; Schöner et al, 1986, and
the Chapter by Calvin and Jirsa in the current volume). Put differently, random
fluctuations seem to compete with stability and thus contribute to the flexibility of
a system. Strong fluctuations reflect less stable states between which the system
may readily switch, whereas weak fluctuations indicate more stable states that can
be steadily maintained. Formally, variability may be accounted for by incorporating
either additive or multiplicative random fluctuations yielding stochastic differential
equations. Schöner et al (1986) formulated stochastic models similar to the above-
mentioned deterministic limit cycle models under the impact of stochastic forces.
Schöner (1990) also suggested similar accounts of discrete movement and postural
sway, albeit without providing any empirical support.

Here, the mathematical framework of stochastic differential equations will be
briefly discussed. Several examples ranging from classic physical problems to hu-
man movement will be highlighted. Reducing the description of the dynamics to that
of a single (scalar) variable, a periodic forcing will be included to illustrate the phe-
nomenon of stochastic resonance. Finally, a recently established analysis method of
system identification will be described that allows for an unbiased specification of
deterministic and stochastic system components. Its expediency is illustrated in an-
alyzing kinematic data of rhythmic tapping. The ultimate goal of this analysis is to
find mathematical descriptions that exhibit the main dynamic features of the system
under study.

2 Probability

Stochastic behavior can be considered as the time evolution of a process under the
impact of random fluctuations. To express this behavior, a mathematical description
that allows for predicting behavior given a current state is required. By definition,
however, the future states of a stochastic process cannot be fully determined but only
estimated to some extent. That is, any prediction is conditional upon the probability
that a certain future state will occur or to find the system’s state at a certain instant
in time in a specific area in state space. A collection of such probabilities, which
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indicate the likelihood of the occurrence of specific states is called a probability
distribution function.

Throughout this Chapter the probability distribution corresponding to a continu-
ous stochastic dynamics will be defined via a (virtual) ensemble of identical systems
meaning that, e.g., the mean, variance, or higher order cumulants are computed over
this ensemble of systems rather than over the evolution of a single realization. Put
differently, the probability distribution is given via a distribution of a collection of
these identical systems that intermingle as a result of their spontaneous evolution
influenced by random fluctuations.

2.1 Mean and Expectation Values

If an ensemble of stochastic variables is known, one can index any specific real-
ization of the ensemble by ξk. This yields the mean value over all realizations as

ξ =
1
N

N

∑
k=1

ξk. (1)

N denotes the number of realizations. Equivalently, the mean of an arbitrary function
f of ξ reads

f (ξ ) =
1
N

N

∑
k=1

f (ξk). (2)

For the sake of convenience, we consider the case in which the ensemble is infinitely
large, i.e. we look at the limit N →∞. As will be shown below, in this limit the mean
(2) agrees with the expectation value of the stochastic variable ξ , which can hence
be given as

E [ f (ξ )] = lim
N→∞

1
N

N

∑
k=1

f (ξk). (3)

2.2 Probability Distribution and Density

The probability distribution function Prξ of a system that relates to the stochastic
variable ξ can be readily defined using the so-called Heaviside function, or unit step
function, which is given by Θ (x) = 0 for all x < 0 and 1 otherwise. With this func-
tion the number M of realizations ξk that are smaller or equal to a fixed value x can
be written as M = ∑k Θ (x− ξk). Accordingly, the probability to find a realization ξ
being smaller or equal than x in an ensemble of N realizations follows as

Prξ (ξ ≤ x) =
M
N

=
1
N

N

∑
k=1

Θ (x−ξk) ,

or, if looking again at the limit N → ∞,
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Prξ (ξ ≤ x) = lim
N→∞

1
N

N

∑
k=1

Θ (x−ξk) = E [Θ (x− ξk)] .

In consequence, the probability for a realization to fall in the interval x < ξ ≤ x+Δx
is given as difference

Prξ (x < ξ ≤ x+ Δx) = E [Θ (x +Δx−ξ)−Θ (x− ξ )] , (4)

which, in turn, defines the probability distribution function Prξ . Converting this
difference to a differential, i.e. considering Δx → dx to be infinitesimal, yields the
probability density function pξ

pξ (x) =
∂
∂x

Prξ (ξ ≤ x) =
∂
∂x

E [Θ (x− ξ)] = E

[
∂Θ (x−ξ)

∂x

]
= E [δ (x− ξ)] (5)

that provides the probability to find the stochastic variable ξ in the infinitesimal
interval of state values [x,x + dx]. Here, Prξ denotes the probability distribution as
is common in the mathematics literature. In physics, however, pξ is often also called
distribution sometimes causing confusion. Therefore, we here always refer to pξ as
probability density function.

In Eq. (5) δ refers to Dirac’s δ -distribution, which has the interesting properties:
δ (x) = 0 for all x �= 0 and

∫ ε
−ε δ (x)dx = 1 for all ε > 0, and

∫
f (x)δ (x− y)dx = f (y) .

Note that these properties reveal the consistency of Eq. (3) when starting off the
conventional definition of the expectation value by means of

E [ f (ξ )] =
∫

f (x) pξ (x)dx =
∫

f (x)E [δ (x−ξ )]dx =
∫

f (x)

[
lim

N→∞

1
N

N

∑
k=1

δ (x−ξk)

]
dx

= lim
N→∞

1
N

N

∑
k=1

∫
f (x)δ (x−ξk)dx = lim

N→∞

1
N

N

∑
k=1

f (ξk) .

2.2.1 Moments and Cumulants

A probability distribution and its density function can be determined by their cor-
responding statistical characteristics like its moments or its cumulants. The cumu-
lants relate to the so-called characteristic function of the probability density, i.e. its
Fourier transform, that provides an alternative description of the stochastic process
of interest (see Risken, 1989, Chap 2.2 for more details). In the one-dimensional
case the moments are directly and the cumulants recursively defined via

mk =
∫

xk pξ (x)dx = E

[
ξ k
]

and c1 = m1 and for k > 1

ck = E

[
(ξ −m1)

k
]
−

k−1

∑
l=1

(
k−1
l −1

)
ceE

[
(ξ −m1)

k−l
]
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respectively. The first cumulant is hence equal to the mean, the second is the vari-
ance, i.e. the second centered moment, the third is the third centered moment that
relates to the skewness, and so on1. For the sake of completeness we list the charac-
teristic function that reads

∫
eixy pξ (x)dx = E

[
eiξ y
]

= 1+
∞

∑
k=1

(iy)k

k!
mk = exp

{
∞

∑
k=1

(iy)k

k!
ck

}
.

3 Dynamics and Noise

Before discussing the dynamics of the probability density function the (more intu-
itive) notion of dynamics under influence of random fluctuations will be defined. Let
us consider an arbitrary, real-valued, random variable describing the system under
study and denote it by ξ . This variable can be the n-dimensional representation of
the system. For the sake of legibility, however, here we restrict the notation to scalar
values (more general descriptions can be found in, e.g., Gardiner, 2004; Risken,
1989).

3.1 Stochastic Dynamics

In the case of a dynamical system, the stochastic variable is identified as a function
of time in terms of ξ = ξ (t). We discuss dynamical systems that can be cast in the
form of a so-called generalized Langevin equation meaning that the time evolution
of ξ can be formally written as2

ξ̇ (t) = f (ξ (t) ,t)+ g(ξ (t) ,t)Γ (t) . (6)

The function f combines all deterministic forces acting on ξ , and the function g
represents possible state dependent forms that may modulate random fluctuations
Γ (t) before they are incorporated into the dynamics. The dot-notation refers to the
derivative with respect to time t. The functions f and g may also explicity depend
on time but unless stated otherwise this case will here not further pursued.

In dynamical systems, noise can be incorporated in (at least) two different ways.
Either the noise is just added to the state variable but does not influence the dynam-
ics – that case is commonly viewed as so-called measurement noise and will not
be considered here; see (Siefert et al, 2003) for an in-depth discussion. More inter-
esting is the case in which the noise is an intrinsic part of the dynamics, i.e. it is
included in the system’s evolution as, for instance, shown in (6). This intrinsic ran-
domness either multiplies or just adds into the dynamics, which means in (6) that the
function g explicitly depends on ξ or not, respectively. Moreover, one discriminates

1 Note that a normal or Gaussian distribution is completely specified by its mean and
variance.

2 ξ is a stochastic variable and not necessarily differentiable. Here, the temporal derivative
is just a symbolic notion; see Gardiner (2004) for more details.
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between uncorrelated (or white) and correlated (or colored) noise. The latter, how-
ever, simply entails the presence of a supplementary deterministic component that
generates some correlations in an otherwise random process. For example, exponen-
tially correlated noise can be expressed as linearly damped dynamics systems with
additive uncorrelated noise; see below in Paragraph 3.1.1. Put differently, correlated
or colored noise can be seen as the presence of an auxiliary (or hidden) variable that
follows a certain deterministic dynamics under impact of uncorrelated, white noise.
In the present Chapter, however, all the deterministic forces are combined in the
function f (ξ ). By this we can restrict ourselves to the discussion of uncorrelated
noise. Without loss of generality, we also assume that the noise values are normally
distributed and have vanishing mean. In combination we therefore always consider
so-called mean-centered Gaussian white noise, for which one writes

E [Γ (t)] = 0 and E
[
Γ (t)Γ

(
t ′
)]

= Qδ
(
t − t ′

)
. (7)

Before investigating the dynamics of the probability density corresponding to Eq.
(6), the averaged solutions of the two seminal examples will be discussed: Brow-
nian motion and the so-called Wiener process. These examples already provide a
feel for the underlying mathematical forms and the expected outcome for the sub-
sequently deduced, more general description. As indicated above, we consider (in-
finitely) many realizations of a specific system and compute the expectation value
over all these realizations. To investigate temporal characteristics of the system, we
further compute its temporal correlations, e.g., the auto-correlation function or the
closely related least-squared displacement.

3.1.1 Brownian Motion

The most well-known stochastic dynamical system is the one describing Brown-
ian motion, i.e. the time evolution of non-interacting particles, each with mass m,
damped by a linear force with strength b, and under influence of thermal noise Γ̃ (t).
Using ψ as state variable and Γ̃ (t) for the noise, the dynamics may be written as

mψ̈ (t)+ bψ̇ (t) = Γ̃ (t) . (8)

That equation can be transformed into the form of (6) when substituting ξ = ψ̇ ,
c = b/m, and

√
2QΓ (t) = (1/m)Γ̃ (t). This leads to

ξ̇ (t) = −cξ (t)+
√

2QΓ (t) . (9)

For the general functions in the dynamics (6) this implies f to be linear, i.e. f (ξ ) =
−cξ , and g to be constant and equal to

√
2Q, i.e. the noise is additive3. The square

root notation in the dynamics is a convenient way to introduce the correlation
strength 2Q of the included noise, which here equals its variance. The solution of
Eq. (9) formally reads

3 This means additive in the dynamics, not a mere addition to the state variable.
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ξ (t) = ξ0e−ct +
∫ t

t0
Γ (τ)e−c(t−τ)dτ,

where ξ0 is given by some initial condition. That said we now consider the afore-
mentioned many realizations of such a system – think of the many non-interacting
particles – and use definition (3), which provides the average evolution of an ensem-
ble of Brownian particles as

E [ξ (t)] = ξ0e−ct +E

[∫ t

0
Γ (τ)e−c(t−τ)dτ

]

︸ ︷︷ ︸
=
∫ t

0 E[Γ (τ)]e−c(t−τ)dτ=0

= ξ0e−ct . (10)

In words, the expectation value E [ξ ] evolves like an individual member of the en-
semble in the absence of noise (Q = 0), i.e. in the purely deterministic version of
(9). More interestingly, however, the system’s auto-correlation is found as

E [ξ (t +Δ t)ξ (t)] =
Q
2c

e−cΔ t ;

note that for the sake of simplicity we put the initial value ξ0 to zero. That is, Brow-
nian motion has an exponentially decaying expectation value and an exponentially
decaying auto-correlation; the latter can be used to, e.g., generate exponentially cor-
related noise (see above for the discussion on white viz. colored noise). Of course,
these exponential decays merely reflect that the dynamics under study is linear (see
also Appendices A & B).

3.1.2 Wiener Process

An even ‘simpler’ example than Brownian motion is that of a dynamics that does
not contain any deterministic force. Since we consider uncorrelated Gaussian noise,
such a dynamics may be written as

ξ̇ = Γ (t) or ξ (t) =
∫ t

0
Γ (τ)dτ, (11)

which describes a non-stationary stochastic process, i.e. the integral over white
noise, referred to as Wiener process. The non-stationarity can be immediately re-
alized by looking again at the temporal correlation structure of the process. In view
of the non-stationarity it turns out to be somewhat simpler to study the least-squared
displacement than the auto-correlation function, as it measures the diffusiveness (or
spread) of the increments of a stochastic system. This least-squared displacement
explicitly reads

E

[
{ξ (t +Δ t)− ξ (t)}2

]
= E

[
{ξ (t)}2

]
+ E

[
{ξ (t + Δt)}2

]

− 2E [ξ {t +Δ t)ξ (t)]︸ ︷︷ ︸
=auto−correlation

= QΔt. (12)
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In words, every ensemble of different realizations of a Wiener process spreads lin-
early in time. This linear growth of the least-squared displacement is the most simple
form of diffusion, which can be addressed in very general terms using the evolution
of the corresponding probability distribution.

3.2 Time-Dependent Probability Density Functions

As mentioned above, the probability density function can be characterized by vari-
ous statistical quantities, like its moments or its cumulants. For instance, if the pro-
cess is nothing but diffusive, then the first two cumulants – mean and variance – fully
determine the dynamics of the probability density while higher order cumulants turn
out to be irrelevant, i.e., there are no jumps in the evolution of the probability den-
sity (see, e.g., Honerkamp, 1998, chap 5.6). Human movement can frequently be
characterized as (the result of) such a diffusion process indeed, because it can often
be captured in the form of the common stochastic differential equations (6), that is,
a dynamical system (or differential forms) comprised of distinct deterministic and
stochastic components. The unique link between these deterministic and stochastic
components and the first two cumulants of the corresponding probability density
function is well documented (Gardiner, 2004; Risken, 1989; Stratonovich, 1963). In
fact, this link has provided a theoretical framework for a rigorous understanding of
the interactions between deterministic and random features in complex dynamical
systems (Haken, 1974).

The time dependence of the stochastic variable ξ suggests that the corresponding
probability density is, in general, also time-dependent that can be formalized in
terms of E [δ (x− ξ (t))] = pξ (t) (x) = p (x,t). For the sake of legibility, we drop the
sub-script ξ (t) and only note that the evolution can be expanded by means of

p(x,t +Δ t) = p(x,t)−E

[
∂δ (x− ξ (t))

∂x
Δξ
]
+

1
2

E

[
∂ 2δ (x− ξ (t))

∂x2 (Δξ )2
]
− . . .

After some lengthy mathematical derivations (Gardiner, 2004; Kramers, 1940; Moyal,
1949), this expansion can be transformed into a dynamics4

ṗ(x,t|x0,t0) =
∞

∑
k=1

1
k!

(
− ∂

∂x

)k [
D(k) (x) p (x,t|x0,t0)

]
(13)

which provides a full description of the evolution of probability density function
p(x,t). Here, we abbreviated the so-called Kramers-Moyal coefficients

D(k) (x) = lim
Δt→0

1
Δt

E

[
{ξ (t +Δ t)−ξ (t)}k

]
(14)

4 We only consider Markov processes, i.e. processes that can be fully described by their
two-time correlation function; see Paragraph 4.2.
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that agree with the cumulants of the conditional (or transition) probability from a
state at time t to a state at time t + Δt; see also in Paragraphs 2.2.1 & 4.1.

3.2.1 Diffusion Equation

Under many circumstances the expansion (13) converges very quickly. In fact,
whenever the third-order cumulant D(3) vanishes, all higher-order terms immedi-
ately disappear (Pawula, 1967) so that the dynamics of p(x,t) includes only the first
two Kramers-Moyal coefficients. These initial coefficients are referred to the drift,
D(1), and diffusion, D(2), coefficients. As the name of the latter already implies the
dynamics reduces to a diffusion equation. Then, the dynamics is given by the so-
called Fokker-Planck equation, which reads

ṗ(x,t|x0,t0) = − ∂
∂x

[
D(1) (x) p(x,t|x0,t0)

]
+

1
2

∂ 2

∂x2

[
D(2) (x) p(x,t|x0,t0)

]
. (15)

In this case, the coefficients D(1) and D(2) are of primary interest because, when sub-
stituting them into Eq. (6), the stochastic differential equation of the system under
study can be rewritten as

ξ̇ = D(1) (ξ )+
√

2D(2) (ξ )Γ (t) (16)

How can these coefficients be determined given a set of empirical data? Before
sketching a method to determine drift and diffusion coefficients in Paragraph 4 and,
by this, estimating the dynamics (16), the following sections concisely illustrate the
relationship between the Langevin equation and the Fokker-Planck description by
discussing dynamical models that are frequently discussed in the context of coordi-
nation dynamics.

3.3 Example: The HKB-Model

Kelso (1984) reported a by now paradigmatic experiment on rhythmic finger move-
ments, which demonstrated the occurrence of phase transitions in human interlimb
coordination. When subjects start out to cycle their index fingers (or hands) rhythmi-
cally in antiphase (simultaneous activation of nonhomologous muscle groups) and
gradually increase the cycling frequency as prescribed by a metronome, a sponta-
neous, involuntary switch to the in-phase pattern (simultaneous activation of homol-
ogous muscle groups) occurs at a distinct, critical movement frequency. Beyond the
critical frequency only the in-phase coordination can be stably performed. The ob-
served change in coordination can be considered an instance of qualitative changes
in macroscopic systems (here fingers) described by the theory of pattern formation
in open systems far away from thermal equilibrium. Haken et al (1985) presented
a theoretical model for the phase transitions of interest, now widely known as the
HKB-model. Using the notion in Eq. (6), Schöner et al (1986) sketched its stochas-
tic extension, which generally allows for studying the stability characteristics of the
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phase difference between the oscillating end-effectors in terms of its time-varying
statistical properties as outlined above. In a nutshell, the deterministic part of the
evolution can be described in terms of a gradient dynamics that involves a potential
V = V (φ). With that the ‘full’ stochastic HKB-dynamics reads5

ξ̇φ = − dV
dξφ

+
√

2QΓ (t) with V (φ) = −cosφ − ε
4

cos2φ . (17)

The minima of the potentialV (φ), represent stable attractor states, here, the in-phase
and antiphase coordination modes of the relative phase between the end-effectors;
see also Eq. (35) below. ε serves as so-called control parameter, which has to be
capable of inducing changes in V in order to account for the transition from anti-
to in-phase coordination patterns. The critical value equals ε = 1, where the stable
solution for antiphase coordination is annihilated; see Fig. 1, left panel.

With the results from Paragraph 3.2.1, the dynamics of the corresponding prob-
ability density function readily obtains the form

ṗ(φ ,t) =
∂

∂φ

[{
sinφ +

ε
2

sin2φ
}

p(φ ,t)
]
+Q

∂ 2

∂φ 2 p(φ ,t) , (18)

which can indeed be solved analytically. For the stationary solution one finds

pst (φ) ∝ e−V(φ)/Q; (19)

V (φ) is given in the right hand side of (17). A sketch of this stationary density as
function of the state variable and of the control parameter ε is shown in Fig. 1 (right
panel) that clearly resembles the roughly inverted potential function V (left panel).

ε ε

Fig. 1 HKB-model: left panel: potential V = V (φ) as a function of the state variable and the
control parameter ε ; the bifurcation occurs at ε = 1; right panel: corresponding stationary
probability density also as function of the state variable and the control parameter; see text
for further explanation.

5 The mere addition of noise in the phase dynamics is, strictly speaking, an oversimplifica-
tion when starting of an oscillator dynamics with additive noise, since then the noise in the
phase dynamics is stronger for smaller amplitudes. The noise strength is inversely related
with the amplitude of the oscillator; see Eq. (27).



Analyzing Noise in Dynamical Systems 45

In the HKB-potential the bifurcation parameter ε is considered to depend recipro-
cally on movement frequency. To formalize this relation, the HKB-model has been
derived using a system of two coupled oscillators mimicking the moving limbs as
limit cycle oscillators (Haken et al, 1985). Any smoothly evolving, deterministic os-
cillator can be formalized as second-order differential equation ẍ+ω2

0 x = n(x, ẋ), or
in its equivalent two-dimensional form of first-order equations listed in Eq. (20) be-
low. The self-sustaining (autonomous) oscillators of limb movements contain next
to a positive, linear component, also different negative, nonlinear damping terms
(e.g., Rayleigh and van der Pol terms), which may generate specific dependency on
the oscillator’s amplitude and natural frequency ω0. More important for the deriva-
tion of the HBK-model, however, is the choice of the coupling function between
the two participating oscillators (see, e.g., Haken et al, 1985; Beek et al, 2002, for
details). However, instead of pursuing this admittedly very important issue, we here
focus on the dynamics of a single oscillator and investigate the effects of additive
noise on its amplitude (and phase) dynamics.

3.4 Spurious Drift in the Amplitude Dynamics of a Limit Cycle
Oscillator

Nonlinear oscillators have been frequently discussed in various scientific disciplines
and their rigorous mathematical investigation goes back to the 19th century. Com-
parably new are studies of randomly forced limit cycles, though they also date back
to the mid of the 20th century (Wax, 1954; Stratonovich, 1963; Has’minskiı̆, 1980).
We concentrate on specific types of weakly nonlinear oscillators by writing

d
dt

(
x
y

)
=
(

0 1
−ω2

0 0

)(
x
y

)
+
(

0
1

)
f (x,y) (20)

and including the aforementioned Rayleigh, Van der Pol, and Duffing nonlinearities
by means of

f (x,y) = ω0

(
α − β

3ω2
0

y2 − γx2
)

y− ω2
0 η
3

x3. (21)

Here β · · · refers to the Rayleigh, γ· · · to the van der Pol, and η· · · to the Duffing
component6. The stochastic extension is, as usual in this Chapter, realized by an
addition of white noise into the dynamics. Explicitly, the oscillator in the (ξx,ξy)-
state space reads

d
dt

(
ξx

ξy

)
=
(

0 1
−ω2

0 0

)(
ξx

ξy

)
+
(

0
1

)
f (ξx,ξy)+ ω2

0

√
2Q

(
0
1

)
Γ (t) . (22)

6 A Rayleigh oscillator ẍ + x − ẋ + β ẋ3 also describes a van der Pol oscillator ÿ + y− ẏ +
3β̄ y2ẏ for the corresponding velocity y = ẋ.
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Using the so-called van der Pol transformation, one can rescale time, basically to
guarantee that the fundamental period of the oscillator equals 2π , and transform the
oscillator into polar coordinates, that is, τ = ω0t and x = rcosθ and y =−ω0r sinθ .
By this the dynamics (22) reads

d
dτ

(
ξr

ξθ

)
=
(

0
1

)
− 1

ξr

{
f (r cosθ ,−ω0r sinθ )

ω2
0

+
√

2Q
ξr

Γ (τ/ω0)
}(

ξr sinξθ
cosξθ

)
.

(23)
After inserting the nonlinearities (21) one can average over a period 2π , which leads
to a diffusion equation for amplitude r and phase θ (here = instantaneous frequency)
in form of (see Daffertshofer, 1998, for more details)

d
dτ

p(r,θ ,τ) ≈ − ∂
∂ r

[{
n̄0(r)+

Q
2r

}
p(r,θ ,τ)

]
+

Q
2

∂ 2

∂ r2 p(r,θ ,τ)

−ψ̄0(r)
∂

∂θ
p(r,θ ,τ)+

Q
2r2

∂ 2

∂θ 2 p (r,θ ,τ) , (24)

with f̄0(r) = −dV̄0/dr and

V̄0(r) = −1
4

{
α − β + γ

8
r2
}

r2 , and ψ̄0(r) := 1 +
η
8

r2 . (25)

The oscillator is considered to evolve along a stable limit cycle, which implies that
the amplitude’s potential V̄0 (r) has a stable fixed point at a finite, non-vanishing
value r0 = ±2

√
α/(β + γ); see Fig. 2 (left panel) and the phase increases linearly

in time yielding a frequency of ψ̄0(r), i.e. the (corrected) frequency of a Duffing
oscillator; if η = 0 the frequency equals that of a harmonic oscillator. Recall that
time has been rescaled by ω0.

Thus, the averaging results in a decoupling of amplitude and phase dynamics. In
consequence, one finds for Eq. (23) a so-called stochastically equivalent system, i.e.
a stochastic dynamics that yields an identical Fokker-Planck equation (24), in the
form of

d
dτ

(
ξr

ξθ

)
=
(

f̄ (ξr)
ψ̄(ξr)

)
+

√
Q

ξr

(ξrΓ
(r)

τ/ω0

Γ (θ)
τ/ω0

)
. (26)

In Eq. (26) the abbreviations (25) have been used as well as f̄ (r) = −dV̄/dr and

V̄ (r) := V̄0(r)− Q
2

lnr , and ψ̄(r) := ψ̄0(r)+
Q

2r2 . (27)

When comparing the forms (27) with the noiseless case (25), one can realize a di-
verging term ∝ lnr, which is added to the amplitude’s potential V̄0. Of course, this
merely reflects the negligible probability to find the oscillator at the origin: the ori-
gin is a fixed point but it is an unstable point; in the presence of noise it will never
be occupied. However, this effect also yields a spurious drift in that the steady am-
plitude is increased, i.e. the effective potential V̄ has minima at different locations
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Fig. 2 Left panel: effective potential V̄ of the amplitude dynamics for different noise strength
Q, for definition see (27); right panel: corresponding stationary probability densities pst ∝
exp{−V̄/Q}; see text for further explanation.

than V̄0; see Fig. 2 and refer to Stratonovich (1963); Graham and Haken (1971).
Also, the frequency of the oscillator is altered due to the presence of additive noise:
it increases with increasing fluctuation strength Q but drops with increasing ampli-
tude r. Put differently, the smaller the amplitude the faster the oscillation, an effect
that has been ignored in more phenomenological studies on, e.g., additional noise in
the (relative) phase dynamics of self-sustaining oscillators where the noise was just
added without any dependency on the amplitude (e.g., Schöner et al, 1986).

3.5 Periodically Forced Potentials – Stochastic Resonance and
More

Noise is usually considered detrimental for signal detection and information trans-
mission, which appears obvious if the system under study is linear. In a linear system
the response to the sum of multiple stimuli equals the sum of its responses to the
corresponding individual stimuli, that is, (additive) noise can only reduce the signal-
to-noise ratio when assessing the deterministic signal. If the system under study is
nonlinear, the effects of adding noise may alter dramatically. For specific dynamical
systems an increase in input noise can result in an increase in the signal-to-noise ra-
tio (SNR), thereby enhancing the detectability of a signal. Benzi et al (1981) showed
that a bistable system, subject to a periodic forcing in combination with a particular
level of random perturbation may show a (local) maximum in is spectral distribution
in the vicinity of the forcing frequency, which is absent when either the periodic
forcing or the random perturbation have improper strength. This behavior is typi-
cally referred to as stochastic resonance, which has been mathematically discussed
to great detail by McNamara and Wiesenfeld (1989). One may say that the signature
of stochastic resonance is that the detection of a sub-threshold stimulus is optimally
enhanced with a particular non-zero level of input noise, i.e. with increasing input
noise signal-to-noise ratio increases to some peak and subsequently decreases.

Here, the phenomenon of stochastic resonance is illustrated using the example
of the aforementioned bimodal potential in the presence of noise and a periodic
external force; see Fig. 3. Explicitly, this bistable dynamics can read
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ξ̇ = −dV
dξ

+AsinΩ t +
√

2QΓ (t) with V (x) = −ε
2

x2 +
1
4

x4 (28)

with a corresponding diffusion equation like

ṗ(x,t) =
∂
∂x

[{
dV
dξ

−AsinΩ t

}
p(x,t)

]
+Q

∂ 2

∂x2 p(x,t) . (29)

That is, the system response is driven by the combination of the two forces, i.e. the
sinusoidal force and the noise, which compete/cooperate to make the system switch
between the two stable states (located at the minimal of the bimodal potential). The
switching rate thus depends on the interplay between the two forces and at a certain
relationship a maximal response can occur in that the periodic driving is pronounced
above the ‘underlying’ noise level. The point of this maximal signal-to-noise ratio
SNR is hence a resonance induced by noise. The SNR of the dynamics (28) can be
estimated as

SNR ∝ Q−2e−V0/Q. (30)

The potential relevance of stochastic resonance for motor control still needs to be
explored. However, a process for which this interplay between noise and nonlinear-
ity in a dynamical system might be of general importance is postural control as this
is well-known to display many complex characteristic. Upright stance requires the
(transient) stabilization of an unstable orbit; see Paragraph 6. Any small excursion
from the equilibrium position during quiet stance may result in a progressive growth
of the torque around the ankle due to gravity, accelerating the body away from the
equilibrium position. To maintain upright stance, activity of muscles crossing the an-
kle joints is necessary to counteract the destabilizing torque due to gravity. Despite
a huge variety of theories describing postural control, it is commonly accepted that
the control relies on feedback mechanisms that are based on visual, vestibular, and
proprioceptive information (see, .e.g., Peterka, 2002, for review). Part of the propri-
oceptive information is plantar tactile information. Meyer et al (2004) showed that,
in the absence of visual information, postural sway velocity largely increased as a
result of reduced plantar tactile sensation. If, by the process of stochastic resonance,
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Fig. 3 Left panel: example of a bimodal potential (solid line) that is tilted (dashed and dashed-
dotted lines) reflecting a periodic forcing. Right panel: Non-monotonic change in signal-to-
noise ratio dependent on the noise strength. In a linear system one would find a monotonic
decrease in the signal-to-noise ratio; see text for further details.
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presenting noise to the mechanoreceptors improves the detectability of plantar tac-
tile stimuli, this could facilitate postural control and therefore increase postural
stability.

3.5.1 Periodic Potentials

In view of the afore-discussed HKB-model, which does not include a simple bi-
modal potential as in (28) as it has to apply for a 2π-periodic variable (the phase),
one may ask if comparable resonance effects also occur in periodic potentials that
are periodically forced. Thinking of so-called ratchet-dynamics, an asymmetry of
the potential is the key ingredient yielding a net macroscopic current of ensemble
member, i.e. all ‘particles’ move into one direction yielding a macroscopic drift.
The HKB-potential, however, is symmetric. Do symmetric external forces influence
stochastic systems when their nonlinear potentials are also symmetric? In fact, it has
been shown that in systems like

ξ̇ = −dV
dξ

+ AsinΩ t +
√

2QΓ (t) with V (x) = −cosx, (31)

for which the Fokker-Planck equation is equivalent to Eq. (29) by substituting the
according potential V , the diffusion rate can be greatly enhanced if the various
forcings (periodic and noisy) are chosen in an optimal manner (Gang et al, 1996).
In particular, one may obtain diffusion rates larger than the rate of free diffusion;
see Fig. 4.
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Fig. 4 Diffusion plots as function of noise strength and forcing. The figures show the ratio
η between the free diffusion (diffusion in the absence of a potential, i.e. V = 0) and the
diffusion of the system (31) for different parameter combinations: (a) η as a function of noise
strength Q; (b) η as a function of forcing amplitude A; (c) η as a function of forcing period
T = 2π/Ω . In all cases an increase in diffusion rate as compared to the free diffusion can be
observed, that is η > 1.

4 System Identification

While the analytical discussion in the previous sections served to illustrate in
essence the qualitative effects of noise in nonlinear dynamical systems, the hands-on



50 A. Daffertshofer

merits of this perspective for studying human movement have yet to be demon-
strated. To this aim, a signal analysis approach to experimentally obtained data
will be summarized and applied to finger tapping in order to extract its underly-
ing stochastic dynamics.

Since its introduction by Friedrich and Peinke (1997), the extraction procedure
has indeed found many applications in physics (e.g., Friedrich and Peinke, 1997;
Waechter et al, 2003), engineering (Gradišek et al, 2000, 2002), economics
(Friedrich and Peinke, 1997), sociology (Kriso et al, 2002), or meteorology (Sura,
2003), just to mention a few. The method has been successfully tested by analyzing
physiological signals (Kuusela et al, 2003) and, here most importantly, kinematic
data (van Mourik et al, 2006a, 2008; Huys et al, 2008; Gottschall et al, 2009). For
instance, Frank et al (2006) derived a stochastic differential equation for isometric
force production and showed that in their experimental data the force variability
increased with the required force output because of a decrease of deterministic sta-
bility and an accompanying increase of noise intensity. Frank et al (2006) could
determine a deterministic linear control loop and the random component involving
a noise source that scales with force output. Before discussing these applications
in the study of human movement in more detail, we outline the method’s general
principles and requirement as also outlined by van Mourik et al (2006a).

4.1 Drift and Diffusion Coefficients

The extraction of the deterministic and stochastic components is based on the cal-
culation of probability densities. All the necessary numerical implementations to
estimate probabilities and Kramers-Moyal coefficients are added (in form of Matlab
functions) in Appendix C.

If we view human movement as a deterministic process with noise that obeys a
system of stochastic differential equations, the time evolution of the corresponding
probability density can be described by an equation of motion. Aim is thus to iden-
tify the drift and diffusion coefficients D(1) and D(2) in the Fokker-Planck equation
(15) to reconstruct the dynamics (6) or (16). As explained above, the drift and dif-
fusion coefficients are identical to the first and second-order cumulants or the first
two Kramers-Moyal coefficients of the conditional probability density. In line with
the previous form (14), a cumulant of an arbitrary order k (or the kth-order Kramers-
Moyal coefficients) can be computed as

D(k) (x) = lim
Δt→0

1
k!

1
Δ t

∫ [
x′ − x

]k
p
(
x′,t +Δ t|x,t)dx′, (32)

where Δt represents an infinitesimal time step as the limit approaches zero. The
conditional probability density function p(x′,t + Δ t|x,t) represents the probability
of the system to be found in state x′ at time t + Δt, given a previous state x at time
t. Once this probability is estimated, Eq. (32) can be used to pinpoint drift and
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Fig. 5 Upper panel: A snapshot of a realization ξ = ξ (t) of a stochastic system described by
ξ̇ = εξ −ξ 3 +

√
2QΓ (t) with Q = 1,ε = 1, and time step 10−2. Lower panels: Kramer-Moyal

coefficient D(1), D(2), and D(4). In particular the latter vanishes rendering the diffusion ap-
proximation valid; see text (for more details see also Van Mourik et al, 2006b).

diffusion coefficients7. First, the data have to be binned, that is, the range of values
of each variable has to be subdivided into equally spaced parts or bins. Subsequently,
the conditional probability density p(x′,t ′|x,t) can be determined by computing the
probability to find a sample at time t ′ in a bin with center x′ assuming that at time t
the previous sample was found in a bin with center x (note that t ′ > t). This compu-
tation has to be carried out for all neighboring pairs of samples and all combinations
of bins. Then, according to Eq. (32), the resulting values of the conditional probabil-
ity density are multiplied by their corresponding differences (raised to the power k)
so that integration over the bins of the ‘next’ sample and scaling by the time step re-
sults in the proper drift and diffusion coefficients. Figure 5 illustrates the procedure
in the one-dimensional case (see Van Mourik et al, 2006b, for more details).

Interestingly, this approach has been extended to weakly non-stationary data by
which the analysis becomes applicable for systems exhibiting phase transitions.

7 Before applying this extraction procedure, however, the underlying description in
terms of stochastic dynamics given by equation (6) needs to be validated (see, e.g.,
van Mourik et al, 2006a, for more details). For instance, one has to verify whether the
system under study can be described as a Markov process as mentioned earlier, that is, as
a system whose future probability density depends only on its present value and not on its
history; see Paragraph 4.2.
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Fig. 6 Results of subsequent extractions of the drift coefficient of a Langevin system with
cubic nonlinearity; cf. Fig. 5. 107 samples were simulated (time step 10−2, Q=1/20). Here
we linearly increased ε from -1 to 1 resulting in a bifurcation at ε = 0. Per time window
(T = 105 samples) we estimated D(1) and determined its extrema via a polynomial fit: filled
dots represent stable points; open dots are unstable points.

To illustrate this ‘moving window’ technique in Fig. 6, we revisit the simulated,
stochastic dynamics of Fig. 5 that includes a cubic nonlinearity and undergoing a
super-critical pitchfork bifurcation via a slow increase of the corresponding bifur-
cation parameter.

4.2 Markov Properties and the Chapman-Kolmogorov Test

The sketched approach requires the system to be a Markov process. To test for
Markov properties, we denote the system’s state variables by x, and p(x′,t ′|x,t) is
the probability density to find the system at time t ′ at state x′ where we presume
the previous state x at time t (with t ′′ > t ′ > t). Then one has to verify the integral
Chapman-Kolmogorov equation, which reads

p
(
x′′,t ′′|x,t) =

∫
p
(
x′′,t ′′|x′,t ′) p

(
x′,t ′|x,t)dx′

︸ ︷︷ ︸
= p̃(x′′,t′′ |x,t)

(33)

In words, one calculates the conditional probability for the time difference t ′′− t and
compares it to the r.h.s. of (33) via, for instance, a conventional χ2-statistics, as

χ2 =
∫ ∫ [p (x′′,t ′′|x,t)− p̃(x′′,t ′′|x,t)]2

p(x′′,t ′′|x,t)+ p̃(x′′,t ′′|x,t) dx′′dx (34)

If Eq. (33) holds, we have p(x′′,t ′′|x′,t ′,x,t) = p(x′′,t ′′|x,t), implying the ‘absence
of memory’ in the system, i.e. Markovianity. Note, if this equality cannot be verified,
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then the outlined method is not applicable and may yield unpredictable results. In
this case one should abstain from proceeding with this approach.

5 Rhythmic Movements

A major advantage of the just sketched analysis over conventional approaches is
that the separation of the dynamics into Kramers-Moyal coefficients allows for de-
tailed studies of smooth (differentiable) but otherwise arbitrary deterministic and
stochastic parts in dynamical systems with noise. The method does not require any
assumptions regarding possible analytical forms of the underlying, generating dy-
namics and can thus be viewed as an entirely unbiased tool. That is, the to-be-
extracted dynamics is not limited to the aforementioned combination of Rayleigh
and van der Pol oscillators, Duffing-like cubic or quintic stiffness, et cetera. Not
only the steady-state but also transient behavior can be invoked, which may actually
improve numerical estimates by increasing the phase space area that is accessible
for analysis.

Fig. 7 depicts the method’s implementation to synthetic tapping data. Areas in
phase space can be identified and interpreted in terms of their respective experimen-
tal constraints, e.g., flexion/extension differences, ‘discontinuities’ like in tapping
and anchoring phenomena. Notice that the suggested interpretation of vector fields
(van Mourik et al, 2008) are by no means exhaustive; they merely served as eas-
ily accessible examples of the kind of information one might be able to glean from
the extracted deterministic dynamics. Of course, this also applies to the interpreta-
tion of the stochastic component, which is not shown here but can be found in, e.g.,
van Mourik et al (2008). In combination with the study of local effects of determinis-
tic forms this provides insight into the dynamical structure and the structure of noise
as functions of location in phase space, also in relation to experimental conditions.

The extracted functions are not prescribed, i.e., no assumptions regarding appro-
priate analytical forms are required. If desired, however, analytical functions can be
identified in the extracted dynamics, e.g., to quantitatively compare findings with
earlier studies. Then, vector fields like the ones currently depicted can provide im-
portant means to constrain the modeler’s intuition in choosing relevant analytical
terms when seeking to reconstruct a certain dynamics. In (van Mourik et al, 2006a),
particular dissipative terms could be identified as deterministic components of a
limit cycle description of smooth rhythmic movements in which inertia and impact
forces played a marginal role, whereas higher order terms and more dimensions ap-
pear to be indispensable in reconstructing the dynamical equations of motion for
real tapping with contact.

The extraction procedure allows for a direct assessment and evaluation of the
deterministic and stochastic parts of an experimental system of interest as repre-
sented by empirical data. Thus, the method may render an objective analysis tool
that is, in principle, independent of a priori assumptions regarding the analytical
form of the underlying dynamics. Possible changes of the dynamic structure due
to altered experimental circumstances can be pinpointed by analyzing the extracted
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Fig. 7 Procedure to determine the dynamics of a time series, here tapping data. Position and

velocity signals are simulated, ξ1 and ξ2 = ξ̇1, respectively. Kramers-Moyal coefficients D(1)
1

and D(1)
2 are determined using Eq. (14), with which the deterministic part of the dynamics

can be reconstructed. Here a polynomial fit is added with which the deterministic dynamics
can be written as ẋ1≈0.2+0.2x1 −0.2x1

2 − x2 +0.1x1x2 and ẋ2≈−0.6+1.1x1 +0.2x1
2 +

0.5x1
3 − 0.7x1x2 + 1.2x1

2x2 − 0.6x2
2. The diffusion coefficient can be treated equally, see

van Mourik et al (2008).

dynamics in its corresponding phase space. Interestingly, in a recent experiment in
which human participants performed finger flexion-extension movements at various
movement paces and under different instructions Huys et al (2008) used this ap-
proach for topological analyses of the flow in state space. In doing so it was shown
that distinct control mechanisms underlie discrete and fast rhythmic movements:
discrete movements require a time keeper, while fast rhythmic movements do not.

5.1 HKB-Bifurcation – Real Data

Van Mourik et al (2006b) applied aforementioned moving windows to experimental
data, in which an external control parameter was slowly varied inducing a switch in
the qualitative behavior of the steady response of the system under study (∼ phase
transition). Subjects produced isometric forces through thumb adduction in between
the beats of a metronome. When the metronome’s tempo was increased, subjects
switched involuntarily to adduction at the beats of the metronome. I.e. there was a
qualitative change in coordination from syncopation to synchronization.
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π

Fig. 8 Results of D(1) estimate using moving windows that were shifted along time series ob-
tained in an experiment on coordinative instabilities (see text). The relative Hilbert phase φ(t)
between metronome and response (produced force) was calculated from the data (sampling
frequency 1250Hz). The change in metronome tempo from 1Hz to 3Hz induced a change
in coordination from syncopation (φ ≈ π) to synchronization (φ ≈ 2π or φ ≈ 0). The dots
indicate stationary points that were determined via simulation of the reconstructed dynamics
until steadiness.

The resulting bifurcation revealed Schöner’s extension of the HKB-model (17)
that here reads

ξ̇φ = −sinξφ − ε
2

sin2ξφ +
√

2QΓ (t) . (35)

6 Posture – Center-of-Pressure Dynamics

The problem of postural balance is well-known for producing erratic motions of
the center-of-mass and center-of-pressure (COP) alike. The complex interactions
between the upright body and the environment result in quite irregular body sway
patterns, which will here be analyzed by means of COP trajectories, the point loca-
tion of the vertical ground reaction force vector, acquired from force platform data.
The erratic fashion of COP migration is an indirect result of the complex interplay
between gravity-line migration and inertial forces (Zatsiorsky & Duarte, 1999). In-
terestingly, previous research on COP time series analyses have repeatedly reported
evidence for the existence of processes that take place on two different time scales
(Amblard et al., 1985; Collins & De Luca, 1994; Frank et al., 2001; Zatsiorsky &
Duarte, 2000). The mechanisms that account for such ‘slow’ and ‘fast’ dynamics
have not yet been pinpointed explicitly but a number of authors have made a variety
of suggestions.

Gottschall et al (2009) used the outlined extraction method to analyze the COP
dynamics during quiet stance. Drift and diffusion coefficients were estimated and
fitted by a simplified parametrization: a linear fixed point dynamics. While this ap-
proach appears interesting in that it capitalizes on the delicate interplay between the
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target

COP
Fig. 9 In (Boulet et al, 2010) visual feed-
back of the COP during standing was pre-
sented at delays ranging from zero to one
second in increments of 250 milliseconds.
Using stochastic delay differential equa-
tions, the COP and centre-of-mass (COM)
dynamics could be explicitly modeled with
two independent delay terms for vision and
proprioception.

deterministic and stochastic components in the COP, one has to realize that more
than a decade ago Collins and De Luca (1993); Collins and De Luca (1994) already
analyzed COP trajectories as one- and two-dimensional random walks and extracted
repeatable, physiologically meaningful parameters from stabilograms. Their postur-
ographic analyses demonstrated that COP trajectories cannot be modeled as mere
diffusion processes. Indeed the COP might be modeled via fractional Brownian mo-
tion and that at least two control systems – a short-term mechanism and a long-term
mechanism – were operating during quiet standing. Fractional Brownian motion pro-
cesses and according analysis methods are briefly summarized in Appendices A & B;
Eke et al (see also 2002). One should realize that the COP dynamics may not fulfill
the aforementioned Markov properties in Paragraph 4.2 rendering the application of
the present extraction procedure questionable. The non-Markov characteristics were
recently accounted for by Boulet et al (2010) in a study on a visuo-postural con-
trol loop in upright stance; see Fig 9. Using stochastic differential equations, that by
contrast to the afore-listed model included distinct delays, COP and centre-of-mass
(COM) dynamics were explicitly modeled. Two independent delay terms were in-
cluded, one for vision and another for proprioception. Using a novel ‘drifting fixed
point’ hypothesis to describe the fluctuations of the COM with the COP being mod-
eled as a faster, corrective process of the COM. The model turned out to agree well
with the data in terms of probability density functions, power spectral densities, short
and long-term correlations (i.e. Hurst exponents) as well as the critical time between
the two ranges. The linearized dynamics of the COP along the anterior/posterior
direction ξAP and the visual feedback ξfb reads as follows:

ξ̇AP = εξAP −κξAP (t − τint)+
√

2QintΓ (int) (t)+ ξfb

ξ̇fb = −γξAP (t − τfb)+
√

2QfbΓ (fb) (t) , (36)

in which τint denotes an intrinsic delay (i.e., through delayed proprioception), τfb is
the experimentally manipulated delay in the visual feedback, ε relates to the (linear)
drift that causes the inverted pendulum ‘body’ to fall over, κ quantifies the corre-
sponding restoring force, and γ parametrizes the tendency to put the visual feedback
on target; see Fig. 9 and Boulet et al (2010) for detailed discussion. As said, the pres-
ence of delays introduces a non-trivial memory to the COP-dynamics. This kind
of dynamics becomes more common in the study on human movement. Interest-
ingly, Patanarapeelert et al (2006) investigated a linear stochastic delay differential
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equation of second order with time delay and computed its variance as a function
of the time delay. Strikingly, close to the parameter regime in which their determin-
istic system exhibits Hopf bifurcations (switches between fixed-point to limit cycle
dynamics), they found that the variance as a function of the time delay exhibits
a sequence of pronounced peaks. These peaks were interpreted as delay-induced
destabilization resonances arising from so-called oscillatory ghost instabilities. On
the basis of the obtained theoretical findings, re-interpretations of previous human
motor control studies and predictions for human motor control studies were pro-
vided. To what extent these approaches are indeed feasible remains to be seen.
In any case, the lack of Markov properties forms a challenge when using mere
time series for a stochastic system identification. A very promising approach to this
important issue is the approximation of non-Markovian processes by so-called non-
linear Fokker-Planck equations (Frank, 2005), that is, diffusion equations like
Eq. (15), but where the probability density p occurs in a nonlinear form (e.g., p2).
The extraction of drift and diffusion coefficients has indeed been extended to that
case (Frank and Friedrich, 2005) but future work has to reveal the appropriateness
of this method to the analysis of COP data.

7 Summary

Random noise is omnipresent in motor behavior. Any mathematical approach to the
behavioral or neuronal dynamics alike hence requires a proper account for random-
ness. In this Chapter, the mathematical framework of stochastic differential equation
has been briefly summarized. With this terminology at hand, some profound dynam-
ical properties of stochastic systems were explained, for instance, spurious drifts or
stochastic resonance. In addition to this ‘forward modeling’ approach, noise and its
consequent statistics were used to define a generic analysis technique for extract-
ing so-called drift and diffusion coefficients. This just recently established analy-
sis method has been advocated as it allows for an unbiased identification of both
types of system components. The deterministic components are revealed in terms of
drift coefficients and vector fields (while the stochastic components can be assessed
in terms of diffusion coefficients, see, e.g., van Mourik et al, 2008). The general
principles of the procedure and its application were explained and exemplified by
extracting deterministic and stochastic aspects of various instances of movement,
including finger tapping and the erratic motion of the center-of-pressure. It was also
indicated how the extracted numerical forms can be analyzed to gain insight into the
dependence of dynamical properties on experimental conditions.
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Eisenhammer, T., Hübler, A., Packard, N., Kelso, J.A.S.: Modeling experimental time series
with ordinary differential equations. Biological Cybernetics 65(2), 107–112 (1991)

Eke, A., Herman, P., Kocsis, L., Kozak, L.: Fractal characterization of complexity in temporal
physiological signals. Physiological Measurement 23(1), 1–38 (2002)

Frank, T., Friedrich, R.: Estimating the nonextensivity of systems from experimental data: a
nonlinear diffusion equation approach. Physica A 347, 65–76 (2005)

Frank, T.D.: Nonlinear Fokker-Planck equations. Springer, Berlin (2005)
Frank, T.D., Friedrich, R., Beek, P.J.: Stochastic order parameter equation of isometric force

production revealed by drift-diffusion estimates. Physical Review E 74(5), 051905 (2006)
Friedrich, R., Peinke, J.: Description of a turbulent cascade by a Fokker-Planck equation.

Physical Review Letters 78(5), 863–866 (1997)
Gang, H., Daffertshofer, A., Haken, H.: Diffusion of periodically forced brownian particles

moving in space-periodic potentials. Physical Review Letters 76(26), 4874–4877 (1996)
Gardiner, C.W.: Handbook of Stochastic Methods. Springer, Berlin (2004)
Gottschall, J., Peinke, J., Lippens, V., Nagel, V.: Exploring the dynamics of balance data -

movement variability in terms of drift and diffusion. Physics Letters A 373(8-9), 811–816
(2009)
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Appendix A - More General, Continuous 1D Random Processes

A chapter on noise needs to address more formal definitions of general random
processes, at least to some degree. Here we will briefly add processes that exhibit so-
called power law characteristics. The mathematical forms go back to early studies
of Mandelbrot and van Ness (1968), who searched for explanatory forms of what is
these days called the Hurst effect: a nonlinear drop in the auto-correlation function
of a process under study. The nonlinearity ought to reflect a scale-free (and self-
similar) process so that the drop in correlation follows a power of the form ∝ t−2H

where H refers to the Hurst exponent.

A.1 Definitions

As usual in this Chapter, Γ (t) denotes white noise with zero mean and unit variance.
E [ξ ] is the average over the random variable ξ in the sense of distributions8. The
noise is considered ‘white’ because its frequency spectrum is flat, i.e. all frequencies

8 By assuming ergodicity this average equals the mean over time but estimates over finite
time spans should usually be seen as approximation.
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are equally present. For the correlation this ‘whiteness’ translates into an ‘uncorre-
latedness’ in the sense of a temporal δ -distribution, i.e. E [Γ (t)Γ (t ′)] = δ (t − t ′).

More general random processes ξ (t) can be considered as linear combinations of
white noise, which in its easiest form may be realized as weighted sum or, given the
continuous dependency of time, in the integral of time modulated by some delayed
kernel function K, i.e. a K-convoluted or a K-filtered white noise. Starting at t0 from
an initial value ξ0 this process hence may read

ξ (t) = ξ0 + ε
∫ t

t0
K (t − τ)Γ (τ)dτ

The aforementioned properties of white noise yield the average of ξ (t) as

μ = E [ξ (t)] = E [ξ0]+ ε
∫ t

t0
E [Γ (τ)]K (t − τ)dτ

E[Γ (τ)]=0
= E [ξ0] = μ0

and the auto-covariance reads

σ2 (t, t ′)= E
[
[ξ (t)−μ ]

[
ξ
(
t ′
)−μ

]]
= σ2

0 +ε2
∫ 1

2 (t+t ′−|t−t ′|)

t0
K
(
t ′ − τ

)
K (t − τ)dτ

when σ2
0 denotes the variance of the initial density {ξ0}. Notice that we directly

obtain the conventional, time-dependent variance by using t ′ = t as

σ2 (t) = σ2
0 + ε2

∫ t

t0
K2 (t − τ)dτ

We further obtain the so-called mean squared displacement as

ψ2 (t,t ′)= E

[[
ξ (t)− ξ

(
t ′
)]2]= σ 2 (t)+ σ 2 (t ′)− 2σ 2 (t,t ′)

Note that quite often the initial density {ξ0} is chosen as a mean-centered
δ -distribution, i.e. μ0 = 0 and σ 2

0 → 0.

A.2 Again the Wiener Process

Before analyzing more general forms let us briefly recapitulate the earlier discussed
case of a Wiener process (11), for which

K (t − τ) =
{

1 for 0 ≤ τ ≤ t
0 otherwise

holds. That is, we have ξw (t) = ξ0,w + ε
∫ t

0 Γ (τ)dτ . We replaced ξ by ξw for the
sake of legibility. Using μ0 = 0, σ 2

0 → 0, and t0 →−∞ (or just t0 ≤ 0), the average,
variance, etc. directly become μw = 0, σ 2

w (t) = ε2t,

ψ2
w

(
t,t ′
)

= ε2
∣∣t − t ′

∣∣ and σ 2
w

(
t,t ′
)

=
1
2

ε2 (t − ∣∣t − t ′
∣∣+ t ′

)
.
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A.3 Fractional Brownian Motion

If the kernel is more complicated by means of

K (t − τ) =

{
(t − τ)H− 1

2 for 0 ≤ τ ≤ t

(t − τ)H− 1
2 − (−τ)H− 1

2 otherwise

and we directly use μ0 = 0, σ 2
0 → 0, and t0 →−∞, then the dynamics reads

ξ f Bm (t) = ε
∫ 0

−∞

[
(t − τ)H− 1

2 − (−τ)H− 1
2

]
Γ (τ)dτ + ε

∫ t

0
(t − τ)H− 1

2 Γ (τ)dτ.

Now the statistical measures9 become μ f Bm = 0 and σ 2
f Bm (t) = Cε2t2H . Further-

more we have

ψ2
f Bm

(
t,t ′
)

= Cε2
∣∣t − t ′

∣∣2H
and σ 2

f Bm

(
t,t ′
)

=
1
2

Cε2
[
t2H − ∣∣t − t ′

∣∣2H + t ′2H
]
.

A.4 Fractional Gaussian Noise

An often discussed case is that for discrete increments t → t + Δ of the fractional
Brownian motion as these increments turn out to be stationary. Since the increments’
distribution is Gaussian they are referred to as fractional Gaussian noise ξ f Gn (t)
though we will not further pursue this notion. Instead we consider

Δξ f Bm (t) = ξ f Bm (t +Δ)−ξ f Bm (t) = ε
∫ t

t0
K (t − τ) [Γ (τ +1)−Γ (τ)]dτ.

With μ0 = 0, σ 2
0 → 0, and t0 →−∞, we find μΔ f Bm = 0 and

ψ2
f Bm (t +Δ ,t) = σ 2

Δ f Bm (t) = Cε2Δ 2H ,

that is, the variance of the increments is independent of time t. The auto-covariance
(here = auto-correlation) becomes

σ2
Δ f Bm

(
t,t ′
)

=
1
2

Cε2
[∣∣t − t ′ +Δ

∣∣2H −2
∣∣t − t ′

∣∣2H +
∣∣t − t ′ −Δ

∣∣2H
]
.

and, in particular for t ′ − t = T we have

σ 2
Δ f Bm (t,t +T) =

1
2

Cε2
[
|T −Δ |2H − 2 |T |2H + |T +Δ |2H

]
,

which is also independent of time t and converges for T → ∞ to

9 Here we abbreviate with C = 2
∫ ∞

0

[
1−
(

1+
1
τ

)H− 1
2

]
τ2H−1dτ.
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lim
T→∞

σ 2
Δ f Bm (t,t +T) = Cε2 HΔ 2

2H −1
T 2H−2.

For 1
2 < H < 1 the auto-covariance or auto-correlation decays so slowly that its inte-

gral diverges. Put differently, for 1
2 < H < 1 correlations in the fractional Gaussian

noise are persistent, whereas for 0 < H < 1
2 correlations are anti-persistent.

Fractional Gaussian noise is sometimes referred to as ‘derivative’ of fractional
Brownian motion, i.e. ξ̃ f Gn (t) = ξ̇ f Bm (t), with

ξ̇ f Bm (t) = ε
∫ t

t0

dK (t − τ)
dt

Γ (τ)dτ + ε lim
τ→t

K (t − τ)Γ (t)

= ε
∫ t

−∞
(t − τ)H− 3

2 Γ (τ)dτ + . . .

There, previous calculations for the fractional Brownian motion can be, by and large,
adopted10 after substituting H by H − 1.

Appendix B - A Bit on Time Series Analysis

In following, estimates of power law characteristics and scaling exponents H are
briefly sketched to provide a link with linear time series analysis. An in-depth dis-
cussion of the methods is, however, beyond the scope of the current Chapter. For the
interested reader (Rangarajan and Ding, 2003; Sornette, 2004) provide very useful
entry points into this exciting topic.

B.1 Power Spectra: The Wiener-Khinchin Theorem

One can relate the auto-covariance function to the spectral density, a fact that is
often exploited to estimate the correlation characteristics in time series, e.g., power
laws, so-called one-over-f features, et cetera. The Wiener-Khinchin theorem states

Pf Bm (ω) = E
[
ξ ∗

f Bm (ω)ξ f Bm (ω)
]

∝
1

|ω |2H+1 = |ω|−β

where ξ f Bm(ω) denotes the time series ξ f Bm Fourier transform and ‘*’ refers to the
conjugate complex value. This implies in all generality β = 1 + 2H. For example,
conventional Brownian motion (H = 1

2 ) has β = 2. White noise, by contrast has,
β = 0 implying, in turn, H = − 1

2 , i.e. fractional Gaussian noise as derivative of
fractional Brownian motion with H = 1

2 . The case β = 1 corresponds to H = 0.
Note that we also have

10 Notice that with ẋ f Bm (t) = ε
∫ t
−∞ (t −τ)ϑ−1 Γ (τ)dτ + . . . one often finds that 0 < ϑ < 1

2
corresponds to persistent correlations in the fractional Gaussian noise while − 1

2 < ϑ < 0
implies that correlations are anti-persistent.
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PΔ f Bm (ω) = E
[
ξ ∗

Δ f Bm (ω)ξΔ f Bm (ω)
]

∝
1

|ω |2H−1 = |ω |−β̃ .

B.2 (Rescaled Range) R/S-Statistics: Hurst Effect

In his original paper Hurst (1951) studied the rescaled range that is defined as

Rξ (t,Δ) = [sup− inf]
0≤δ≤Δ

{∫ t+δ
t ξ (τ)dτ − δ

Δ
∫ t+Δ

t ξ (τ)dτ
}

Sξ (t,Δ ) =

√
1
Δ
∫ t+Δ

t

[
ξ (τ)− 1

Δ
∫ t+Δ

t ξ (τ ′)dτ ′
]2

dτ

⎫⎪⎪⎬
⎪⎪⎭

→ (R/S)ξ =
Rξ (t,Δ)
Sξ (t,Δ)

;

Here, sup and inf refer to the limit superior and limit inferior, respectively. Exploit-
ing the self-similarity properties, Mandelbrot and van Ness (1968) have shown that
for the discrete increments of a fractional Brownian motion the following power law
holds

R f Bm (t,Δ)
S f Bm (t,Δ)

∝ Δ H+1 and
RΔ f Bm (t,Δ)
SΔ f Bm (t,Δ)

∝ Δ H .

Hurst found in his data the H is typically larger than 1
2 , i.e. the underlying fractional

Gaussian noise has persistent (long-term) correlations.

B.3 Detrended Fluctuation Analysis

Instead of the aforementioned R/S-statistics one can alternatively write ξ̃ (Δ ;t) =∫ t+Δ
t ξ (τ)dτ and define a linear trend mΔ δ with mΔ (t) = 1

Δ ξ̃ (Δ ;t), which leads to

Rξ̃ (t,Δ) = [sup− inf]
0≤δ≤Δ

{
ξ̃ (δ ;t)−mΔ (t)δ

}
.

One may further improve this guessed linear trend mΔ (t) with by an estimate of its
mean over the time span [t, . . . , t + Δ ], yielding time-dependent coefficients aΔ (t)

and bΔ (t) that minimize E

[[
ξ̃ (Δ ;t)−aΔ (t)t −bΔ (t)

]2
]

. If this trend is subse-

quently removed11, the remainder is analyzed in terms of its variance or standard-

deviation (Peng et al, 1995): DFAξ (Δ) =
√

σ 2
ŷ (Δ) with ŷ (Δ ;t) =

∫ t+Δ
t ξ (τ)dτ −

[aΔ (t)t +bΔ (t)]. If ξ represents the discrete increments of a fractional Brownian
motion, i.e. ξ (t) = Δξ f Bm (t), then its integral displays fractional Brownian motion
and we find

DFA f Bm (Δ) ∝
√

Δ 2H+2=Δ H+1 and DFAΔ f Bm (Δ) ∝
√

Δ 2H=Δ H .

11 One may also say that per interval [t, . . . , t + Δ ] eventual offsets in ξ (t) are eliminated
piecewise.
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Appendix C - Matlab Codes

The Matlab functions below can be used as starting point to implement the extrac-
tion method summarized in Paragraph 4. This section merely provides some ideas
of the numerics. Source codes, including graphical output and a full documentation
can be accessed via http://www.move.vu.nl/members/andreas-daffertshofer.

C.1 Examples

One-dimensional case (Fig. 5); use the dynamics

ξ̇ = εξ − ξ 3 +
√

2QΓ (t)

and sample 106 data points at a rate of 100Hz (ε = 1,Q = 1), compute D(1) and D(2)

for 50 bins and plot the results as function of the state-space x:

xi=pitchfork_sde(1,1,10ˆ6,1/100,0);
[D,x]=KM(xi,50,1/100,[1,2],1,100);

i=find(isfinite(D{1}) & isfinite(D{2}));
X=x{1}(i);

for k=1:2
subplot(2,1,k);
plot(X,D{k}(i),’bo’);
c=polyfit(X,D{k}(i),3*(k==1));
hold on; plot(X,polyval(c,X),’k-’); hold off;

end
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Two-dimensional case, cf. Eqs. (21 & 22); use the oscillator dynamics

ξ̈ = −κ1ξ +κ2ξ̇ + κ3ξ̇ 3 + κ4ξ 2ξ̇ + κ5ξ 3 +
√

2QΓ (t)
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and sample 106 data points at a rate of 100Hz (κ = {1,0.5,0,1,1},Q = 0.5), com-

pute D(1)
1 and D(1)

2 for 50 bins and plot the resulting 2-dim. vector field:

xi=osci_sde([1,1,0,-1,0],0.5,10ˆ6,1/100,0);
[D,x]=KM(xi,50,1/100,[1],1,100);

[X,Y]=ndgrid(x{1},x{2});
i=find(isfinite(D{1})&isfinite(D{2}));

plot(xi(1:5000,1),xi(1:5000,2));
hold on;
quiver(X(i),Y(i),D{1}(i),D{2}(i));
hold off;
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Three-dimensional case, the Lorenz attractor; use the dynamics

ξ̇ = κ1 (ψ − ξ )+
√

2QΓξ (t)

ψ̇ = ξ (κ2 − χ)−ψ +
√

2QΓψ(t)

χ̇ = ξ ψ −κ3χ +
√

2QΓχ(t)

and sample 106 data points at a rate of 100Hz (κ = {10,28,8/31},Q = 5), compute

D(1)
1...3 for 50 bins and plot the resulting three-dim. vector field:

xi=lorenz_sde([10,28,8/3],1,10ˆ6,1/100,0);
[D,x]=KM(xi,50,1/100,[1]);

[X,Y,Z]=ndgrid(x{1},x{2},x{3});
i=isfinite(D{1}) &...
isfinite(D{2}) & ...
isfinite(D{3});

plot3(xi(:,1),xi(:,2),xi(:,3),...
’color’,[.7,.7,.7]);

hold on;
quiver3(X(i),Y(i),Z(i),...
D{1}(i),D{2}(i),D{3}(i));

hold off;
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C.2 The Core Function KM.m

Computation of n-dimensional Krames-Moyal coefficients; for an extended version
of KM.m consult the aforementioned URL:

function [D,x,orders]=KM(xi,bins,dt,order,transitionStep,minNumOfVals)
% compute bin edges bins and centers x
[x,bins]=bincenters(xi,bins);
[len,dim]=size(xi);
% define bin arrays
M=ones(1,dim); for k=1:dim, M(k)=length(x{k}); end
numbins=prod(M);
if numbins>2ˆ32, error(’total # of bins is too large (max = 232)’); end
% assign every sample in xi a integer index uniquely defining a bin
binnedvalue=int32(ones(1,len));
for d=1:dim

index=false(len,1);
nb=prod(M(1:d-1));
for k=1:M(d)

i=xi(:,d)<=bins{d}(k+1);
index=xor(index,i);
binnedvalue(index)=binnedvalue(index)+nb*(k-1);
index=i;

end
end
% determine number of (unique) KM coefficients for a given order ...
nKM=0; for o=1:length(order), nKM=nKM+nPolyExp(dim,order(o)); end
% ... and initialize output arrays D ...
D=cell(nKM,1); for d=1:nKM, D{d}=NaN*zeros([M,1]); end
% ... and output orders
orders=cell(nKM,1); j=1; for o=1:length(order)

n=sortrows(polyExp(dim,order(o)),-1);
for k=1:size(n,1), orders{j}=n(k,:); j=j+1; end

end
% and loop along all bins ...
for k=1:numbins

index=binnedvalue==k; % get the number of entries in xi at bin k
s_index=sum(index);
if s_index>minNumOfVals % if a min. number of entries is present

% compute the conditional histgram: take only the already found
% entries, go steps ahead (transitionStep)
p=reshape(histc(binnedvalue([false(1,transitionStep),...

index(1:end-transitionStep)]),1:numbins),[M,1]);
% normalize histrogram to obtain the probability distribution
n=p; for d=1:dim, n=trapz(x{d},n,d); end; p=p/n;
A=ind2subC(dim,[M,1],k);
% compute the KM coefficients
for o=1:nKM % loop over all dimensions and orders

aux=p;
for d=1:dim

if orders{o}(d)
dist=(x{d}-x{d}(A(d))).ˆ(orders{o}(d));
m_ind=mod(fix((0:numbins-1)/prod(M(1:d-1))),M(d));
for j=1:M(d)

ind=find(m_ind==j-1);
aux(ind)=dist(j)*aux(ind);

end
end

end
for d=1:dim, aux=trapz(x{d},aux,d); end
D{o}(k)=(1/factorial(sum(orders{o})))*aux/dt;

end
end

end
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C.3 The Simulated Models

A one-dimensional dynamics with cubic nonlinearity:

function x=pitchfork_sde(epsilon,Q,N,dt,x0)
langevinforce=sqrt(2*Q*dt)*randn(N,1); % define the Langevin force
x=zeros(N,1); x(1)=x0; % initialize the output array
for k=2:N % and Euler-forward integration

x(k)=(1+epsilon*dt)*x(k-1)-x(k-1)ˆ3*dt+langevinforce(k);
end

A two-dimensional oscillator containing Rayleigh, van der Pol, and Duffing terms:

function x=osci_sde(kappa,Q,N,dt,x0)
langevinforce=sqrt(2*Q*dt)*randn(N,1); % define the Langevin force
x=zeros(N,2); x(1,:)=[x0(:)]’; % initialize the output array
for k=1:N-1 % Euler-forward integration

x(k+1,1)=x(k,1)+x(k,2)*dt;
x(k+1,2)=x(k,2)+(-kappa(1)*x(k,1)+kappa(2)*x(k,2) ...

+kappa(3)*x(k,2).ˆ3+kappa(4)*x(k,1).ˆ2.*x(k,2) ...
+kappa(5).*x(k,1).ˆ3)*dt+langevinforce(k);

end

The Lorenz system with three noise terms:

function x=lorenz_sde(kappa,Q,N,dt,x0)
langevinforce=sqrt(2*Q*dt)*randn(N,3); % define the Langevin force
x=zeros(N,3); x(1,:)=[x0(:)]’; % initialize the output array
for k=1:N-1 % and Euler-forward integration

x(k+1,1)=x(k,1)+kappa(1)*(x(k,2)-x(k,1))*dt+langevinforce(k,1);
x(k+1,2)=x(k,2)+((kappa(2)-x(k,3))*x(k,1)-x(k,2))*dt+langevinforce(k,2);
x(k+1,3)=x(k,3)-(kappa(3)*x(k,3)-x(k,1)*x(k,2))*dt+langevinforce(k,3);

end

C.4 Some Auxilliary Functions
function [x,b]=bincenters(xi,b) % Definition of bins given a data array
[len,dim]=size(xi);
if iscell(b)==0, bb=b; b=cell(size(bb,2),1); for k=1:size(bb,2), b{k}=bb(:,k); end, end
if length(b)==1, b(1:dim)=b;
elseif length(b)˜=dim, error(’xi-dim and b-dim must match’);
end
x=cell(dim,1); for k=1:dim

if length(b{k})==1, b{k}=binset(min(xi(:,k)),max(xi(:,k)),b{k}); end
x{k}=(b{k}(1:end-1)+b{k}(2:end))/2; b{k}(end)=Inf;

end

function b=binset(xmin,xmax,N)
b=(xmin:(xmax-xmin)/N:xmax)’;

function c=ind2subC(nout,siz,ndx) % determine the subscript values
% corresponding to a given single index into an array:
if length(siz)<=nout, siz=[siz ones(1,nout-length(siz))];
else siz=[siz(1:nout-1) prod(siz(nout:end))];
end
k=[1 cumprod(siz(1:end-1))]; c=zeros(1,length(siz));
for i=length(siz):-1:1,

vi=rem(ndx-1,k(i))+1; vj=(ndx-vi)/k(i)+1; c(i)=vj; ndx=vi;
end

function num=nPolyExp(dim,order) % counting elements in n-dim. polynomials:
num=nchoosek(dim+order,order)-nchoosek(dim+order-1,order-1);

function exps=polyExp(dim,order)
if dim==1, exps=order; return; end
if order==0, exps=zeros(1,dim); return;
elseif order==1, exps=eye(dim); return;
end
num=npolyExp(dim,order); exps=zeros(num,dim);
j=0; for k=0:order

e=polynomExponents(dim-1,order-k);
exps(j+(1:size(e,1)),1)=k; exps(j+(1:size(e,1)),2:end)=e;
j=j+size(e,1);

end
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The Dynamical Organization of Limb 
Movements 

Raoul Huys1 

Abstract. The early 1980s saw the development of a new perspective on motor 
control inspired by theories of self-organization and dynamical systems theory. Its 
first efforts were directed at the investigation of rhythmic movements in terms of 
two-dimensional (autonomous) limit cycle oscillators. The corresponding studies 
are characterized by the development of detailed and generally task-specific mod-
els, which have resulted in a detailed documentation of the relation between oscil-
lator properties and task requirements. The study of discrete movements for a long 
time received far less attention; its conjunctional theoretical and empirical investi-
gation has only recently set off and is characterized by an explicit focus on phase 
flows and topologies therein.  

1   Introduction 

Over the last 25 years or so, the notion that (perceptual) motor behavior may be 
conceived of in terms of dynamical structures, such as limit cycles and fixed 
points, has become widely accepted. Why so? What do we learn about the control 
of movements under this perspective? Do we actually learn anything about motor 
control or is the corresponding research essentially a sophisticated descriptive data 
fitting exercise (cf. Rosenbaum, 1998)? What has instigated the notion that by 
definition abstract mathematical structures are an appropriate conceptualization of 
motor behavioral patterns that originate from a biological structure in the first 
place? These and related questions are central to the present chapter with a focus 
on single end-effector movements (for the coordination between movements, see 
the chapter of Calvin and Jirsa, this volume). While the present chapter only 
scratches the surface of the wealth of studies that have focused on this issue, we 
hope that it will provide an overview communicating the gist of the approach. 

Single limb movements are oftentimes categorized as discrete, continuous or 
rhythmic. Discrete movements constitute singularly occurring motion preceded 
                                                           
Raoul Huys 
Theoretical Neuroscience Group, Université de la Méditerranée, UMR 6233  
“Movement Science Institute”, CNRS, Faculté des Sciences du Sport,  
13288, Marseille cedex 09, France 
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and followed by a period without motion (i.e., with zero velocity and accelera-
tion). Continuous movements lack such recognizable start and end points, and are 
referred to as rhythmic if a particular ‘movement event’ is periodic (that is, repeats 
itself with a period T). Rhythmic movements have, in the dynamical framework, 
received far more attention than discrete movements, which follows from theoreti-
cal, methodological, and historical reasons. As for the latter, the development and 
popularization of the dynamical paradigm owes much to the study of the coordina-
tion between rhythmic movements and their formalization by Haken, Kelso and 
Bunz (1985; the HKB-model). A crucial aspect here is that the coordination be-
tween two limbs in terms of coupled oscillators allows for the derivation of  
relative phase between them (see Calvin & Jirsa, this volume). The relative phase 
follows a one-dimensional dynamics that allows for an easily comprehensible con-
ception in terms of a potential landscape, rendering the formulation mathemati-
cally more accessible. Indeed, the larger part of all studies inspired by the  
HKB-model focuses solely on the relative phase dynamics and ignores how the 
individual oscillators contribute to this dynamics. Methodologically, rhythmic 
movements have the advantage of being repetitive, which allows for the collection 
of considerably longer time series than is the case for non-rhythmic movements. 
Consequently, a battery of time series analysis techniques can be used that are 
either inaccessible to discrete movements or, at least, will have less statistical 
power. Finally, rhythmic movements are theoretically attractive as they, at least in 
principle, allow for mathematically autonomous description, which is not the case 
for non-rhythmic movements. The previous two issues have been essential for  
the widespread study and maturation of the dynamic approach; the latter one, 
however, played a central role in its early development.  

In the following, we will discuss the investigation of rhythmic movements  
followed by a discussion of their discrete counterparts. In that regard, while few 
(if any) would deny that biological systems are inherently stochastic, the present 
chapter focuses solely on their deterministic part (see the chapter of Daffertshofer, 
this volume, for the issue of stochasticity). We will first, however, briefly outline 
the theoretical motivations that underlie the conceptualization of motor control in 
terms of self-organized dynamical structures. 

2   The Birth of the Dynamical Perspective 

The influence of the Russian physiologist Nikolai Aleksandrovich Bernstein 
(1896/1966) on motor control theory can hardly be overestimated. Bernstein (in the 
1967s English translation) posited the ‘problem’ of control and coordination in the 
course of action as a degrees-of-freedom problem. The human motor apparatus, for 
instance, comprises more than 200 bones, 110 joints and over 600 muscles, each 
one of which either spans one, two or even three joints. While the degrees of free-
dom are already vast on the biomechanical level of description, their number be-
comes dazzling when going into neural space. Functional goal-directed behavior 
requires that a certain order arises in this multi-degree of freedom system. From  
a control-theoretical perspective, this poses a seemingly unsolvable problem.  
Bernstein’s gist was that during action, these degrees of freedom are temporally 
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organized into a functional unit, referred to as a synergy or coordinative structure, 
so that the (mechanical) degrees of freedom are effectively minimized. But how are 
synergies formed? What principles underlie their formation? 

These were the questions that Kugler, Kelso and Turvey addressed in their 
1980 seminal paper, in which the conceptualization of movement and control in 
terms of dynamical structures, in particular rhythmic movements in terms of 
nonlinear oscillators (i.e., limit cycles), became firmly established. At the time, the 
main stream conception of motor control was coined in terms of central represen-
tations and ‘higher level algorithmic computations’ (by necessity involving an 
intelligent regulator) imposing control onto the ‘lower level machinery’ (the skele-
tal-muscular system). This notion basically boils down to the idea that an organ-
ism’s sensory organs allow it to construct a representation of the environment on 
the basis of which it may compute a set of appropriate motor commands that are 
sent to the muscular apparatus (see for instance Richard Schmidt’s widely adhered 
to famous general motor program; Schmidt, 1975; Schmidt & Lee, 2005). A few 
scholars, however, expressed their dissatisfaction with this essentially Cartesian 
paradigm (cf. Meijer & Roth, 1988, for discussions between opponents and pro-
ponents of this view), which stems from two insights. First, the implication of 
representations implies an entity, a controller or goal-directed agent that under-
stands and acts upon them. In other words, it implies positing an entity similar to 
the one that is to be explained in the first place. The question to be answered is 
merely shifted from one entity (or level) to the next, inevitably leading to infinite 
regress (Dennett, 1978; 1991). Second, the embodiment of the computing entity is 
problematic—computing automata deal with quite different constraints than bio-
logical organisms: while the former deal with mathematical and logical con-
straints, the latter are inherently subjected to physical and biological ones.  

Bernstein’s degree-of-freedom problem (1967) may be viewed as a particular 
case of a more general question that was discussed in the 1970s among theoretical 
biologists, namely how order arises in biological systems (cf. Pattee 1972, 1973; 
Iberall 1970, 1977, 1978; and in particular a series edited by Waddington, 1968-
1972). At the same time, theories of self-organization, the emergence and transi-
tions between spatiotemporal patterns were developed in theoretical physics 
(Haken, 1977; Nicolis & Prigogine, 1989; Prigogine 1969; Prigogine & Nicolis, 
1977). Accordingly, order and disorder, and transitions between ordered states 
may arise in open systems (i.e., systems with a continuous flux of energy, matter 
and/or information) that are far from thermodynamic equilibrium. These systems 
consist of numerous non-linearly interacting elements (Haken, 1977, 1983, 1996) 
and are referred to as ‘dissipative structures’ (Prigogine & Nicolis, 1977), which 
do not drift toward thermodynamic equilibrium, but rather conserve their stability 
through energy dissipation.  

Inspired by these developments, and asserting that repetitive cycles of events 
are ubiquitous to biological systems (see Goodwin, 1963; 1970; Iberall, 1970, 
1977, 1978), Kugler et al. pointed out that stability should be understood in a dy-
namical sense (1980, p 15; see also Chapter 1 by Fuchs, this volume). Indeed, un-
der the premise that cyclicity is a manifestation of a universal design principle for 
autonomous systems (cf. Kelso, Holt, Kugler & Turvey, 1980, and Kelso, Holt, 
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Rubin, & Kugler, 1981, and references therein), the focus on oscillatory phenom-
ena (rhythmic movements) imposes itself naturally. When using ordinary differen-
tial equations, a general dynamical formulation of an oscillatory system reads 

( ) ( ) ( ),x f x x g x F t+ + =                                           (1) 

where x  and x  represent the first and second time derivatives of x, ( ),f x x  the 

damping (or dissipation) function, g(x) the stiffness (or elasticity) function, and 
F(t) a time-dependent forcing function. (Inertia equals mx , m being mass, which 
we set here to 1.) The continuation of cyclical events can come about either 
through a forcing function F(t) (in which case the system is non-autonomous due 
to its time dependency) or by the proper regulation of energy inflow and outflow 
based on the oscillatory motion itself (i.e., F(t) = 0, in which case the system is 
autonomous). A non-autonomous formulation was not sought for, as it necessitates 
explanation of the forcing function F(t), that is, its inclusion puts the causation on 
another, not further explained level and thus paves the way to infinite regress (see 
also above). Oscillatory motion is self-sustaining (autonomous) if the energy in-
flow and outflow depend on the oscillator properties only and cancel each other 
out over a cycle. This is the case for so-called limit cycle oscillators, for which the 
energy book keeping depends on the damping (or dissipation) function. How en-
ergy is lost and inserted in the cycle depends on the specifics of the oscillator, that 
is, its stiffness and damping terms. In the well-known van der Pol oscillator, for 
instance, the damping function ( ),f x x  equals ( )21x x− − , and is negative for 

│x│< 1, in which case energy is inserted into the system while for │x│> 1 energy 
is lost. Van der Pol damping is thus position dependent. In contrast, the Rayleigh 
damping function (i.e., ( ) ( )2, 1f x x x x= − − ) is velocity dependent. The energy 

book keeping in these limit cycles thus depends on the position versus velocity of 
the system’s motion, respectively. The identification of an oscillator’s ‘ingredi-
ents’ thus reveals, among others, the variable that determines the energy injection 
into the system and where this occurs.  

In view of these considerations, Kugler et al. (1980) proposed to conceptualize 
coordinative structures, which they defined as “a group of muscles often spanning 
a number of joints that is constrained to act as a single functional unit” (p. 17), as 
dissipative structures. Its stable state is maintained via energy freed up by meta-
bolic processes. It should be noted that synergies are spatiotemporal organizations; 
the constituting components are temporally assembled so as to form a functional 
collective. (For example, the muscles spanning the ankles, knees and hips which 
are coordinated in a particular manner during walking are also involved in hop-
ping albeit in a different manner.) The conceptualization of coordinative struc-
tures, or synergies, in terms of limit cycles, or dissipative structures, constitutes a 
non-reductionistic approach, since it does not attempt to describe behavior in 
terms of the (lower) level of biomechanical or neurophysiological processes or 
mechanisms. The damping and stiffness terms do not simply map onto its coun-
terparts in biomechanical variables. The behavior of the system in equation 1  
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above can be fully described by the so-called state variables x and x . In general, 
the variables that capture the system’s order at the macroscopic level chosen are 
referred to as collective variables or order parameters (in synergetics). While these 
variables in general are abstract, they are thought to reflect the system’s underly-
ing (neural –– at least in the context of human and animal motion) organization in 
a specific context1. 

3   The Empirical Study of Rhythmic Movements as Limit 
Cycles 

The properties of limit cycles are well established in dynamical systems theory (cf. 
Guckenheimer & Holmes, 1983; Perko, 1991; Strogatz, 1994; Jordan & Smith, 
1999). Fundamental, in that regard, is the notion that a limit cycle is an isolated 
closed trajectory (in phase or state space) and is stable (or attractive) if all 
neighboring trajectories approach it (see also Fuchs, chapter one, this volume). By 
implication, a perturbed trajectory should return to the limit cycle. This line of  
reasoning was adopted by Kelso et al. (1981) to investigate if the conception of 
rhythmic human movement in terms of limit cycles cuts ice. In their experiments, 
participants were instructed to perform cyclical finger flexion–extension move-
ments at a self-chosen, comfortable pace. At specific moments, the moving finger 
was mechanically perturbed. It was found that the oscillation frequency and ampli-
tude following the perturbation was not different than prior to it. In other words, the 
cyclical movements revealed a certain orbital stability, which was the first confir-
mation (to our best knowledge) for the portrayal of rhythmic movements in terms 
of limit cycles.  

A detailed quantitative investigation to identify the oscillator underlying human 
movement was picked up by Kay and colleagues (1987) by examining the effect 
of oscillation frequency on the corresponding amplitude. In their study, the par-
ticipants executed amplitude-unconstrained wrist movements at preferred fre-
quency as well as at frequencies from 1 to 6 Hz (with 1 Hz steps). With increasing 
frequency, movement amplitude decreased while peak velocity increased. In addi-
tion, for each frequency a strong linear correlation was found between movement 
amplitude and peak velocity. Following Haken et al. (1985), and using averaging 
techniques from oscillator theory (the slowly varying amplitude and rotating wave 
approximation; cf. Strogatz, 1994; Jordan, & Smith, 1999) to study amplitude and 
peak velocity as a function of frequency, Kay et al. established that their partici-
pants’ wrist movements could be accurately modeled by the hybrid oscillator 

combining van der Pol (~ 2x xγ ) and Rayleigh damping (~ 3xβ );  

                                                           
1 Fundamental to synergetics are the circular causality and slaving principle, which  

formulate the relation between the behavior of a system’s multi-element microscopic 
level and the macroscopic behavior. While the latter reflects the behavior of the ensemble 
of microscopic elements, theirs is, in turn, enslaved by the macroscopic dynamics  
(cf. Haken, 1983; 1996). This bi-directional mechanism is formalized in a material  
substrate-independent manner. 



74 R. Huys
 

3 2 2 0x x x x x xα β γ ω+ + + + =                                     (2) 

Across participants, the experimentally observed frequency amplitude and  
frequency–velocity relations could be realized by adjustment of the linear stiffness 
parameter ω. These results further testified to the existence of limit cycles in  
(human) motor behavior. 

Subsequently, Kay, Saltzman and Kelso (1991) investigated whether human 
rhythmic movements were autonomous and exhibit equifinality, as should be the 
case under their conception in terms of limit cycles. A system possesses equifinal-
ity if it reaches its equilibrium independent of initial conditions (implying relaxa-
tion back onto the limit cycle following perturbations). In the experiment, the par-
ticipants were instructed to rhythmically move their index finger at their preferred 
frequency. In perturbation trials, mechanical perturbations in two directions and of 
two different magnitudes were delivered at eight equidistant positions in the 
movement cycle. Movement frequency, amplitude and peak velocity were exam-
ined prior to and following the perturbations –– these variables should return to 
their pre-perturbation values following perturbations under the assumption that the 
movements are governed by a limit cycle dynamics. In addition, to estimate the 
strength of the attractor Kay et al. examined the relaxation time (i.e., the time 
taken to return to the limit cycle, which is shorter the stronger the attractor) as well 
as the phase response to further characterize the limit cycle (cf. Winfree, 1980). 
For instance, simple sinusoidally forced linear damped mass-spring systems reveal 
no phase shift (after a transient) following perturbation, while the amount of phase 
shift of different autonomous limit cycles depends on the magnitude and position 
of the perturbation. It was found that the frequency, amplitude and peak velocity 
were similar before and after the perturbations and were all independent of the 
perturbation properties. Furthermore, the relaxation time scaled with the magni-
tude of the perturbation. These observations are in line with the hybrid oscillator 
model proposed in the previous study (Kay et al., 1987). Two observations, how-
ever, were not compatible with it. First, the attractor’s strength (assessed via the 
exponential return of the system back onto the limit cycle), but not relaxation 
time, appeared non-uniform in the phase plane. Second, a phase-dependent phase 
advance was observed; on average, the movement was temporarily sped up di-
rectly following the perturbation. To account for these observations Kay et al. 
suggested that either the autonomy assumption may have been incorrect –– the 
system under study may have been forced or that an oscillator at the neural level 
driving a peripheral oscillatory component may be a better conception of human 
rhythmic motion than a two-dimensional autonomous oscillator. 

An alternative explanation was brought forward by Beek and colleagues (Beek, 
Rikkert & van Wieringen, 1996). These authors set out to verify the hybrid model 
and to examine whether the dynamical features are limb independent –– after all, 
even though the description is abstract in the sense that the coordination dynamics 
cannot be trivially reduced to biomechanical and neurophysiological factors, the 
dynamics still arise within a particular biological substrate. These considerations 
motivated the choice to investigate elbow movements, rather than wrist move-
ments, while further remaining as close as possible to the study of Kay et al.  
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(1987); similar movement frequencies were implemented and the same kinematic 
relationships were examined. In contrast to Kay et al. however, Beek and col-
leagues performed the analysis on individual performances so as to assess how 
and to which degree individual (anatomical and neurophysiological) differences 
were expressed in the observable dynamics. Beek et al. found that whereas the 
(individually based) observed frequency–amplitude relations were consistent with 
the hybrid model, the frequency–peak velocity relationships were not. This  
inconsistency could be solved, however, by making the Rayleigh damping  
frequency dependent (i.e., β 

3x in equation 2 becomes βω 3x ). Consequently, the 
stiffness and damping terms are linked, and the energy book keeping appears as a 
function of frequency. Further, the preferred frequency of wrist rotations in  
Kay et al. appeared about twice as high as the elbow rotation, which supposedly 
reflected inertial differences between the respective oscillators. The comparison 
across these studies highlighted that even though the abstract dynamics could not 
be trivially reduced to the underlying biological structure, it clearly was molded 
by it. In fact, a similar influence was found to be exerted by various task con-
straints, in that the composition of the damping (and stiffness) function depended 
on the task requirements under which a coordinative structure was assembled 
(Beek, Schmidt, Morris, Sim & Turvey, 1995).  

While the above may seem to suggest that the oscillatory properties of human 
movement are limited to van der Pol and Rayleigh forms, other forms are possible 
as well. As early as 1988, Beek and Beek derived a ‘catalog’ of nonlinear oscilla-
tor ingredients (i.e., the terms appearing in ( ),f x x  and g(x) in equation 1 above) 

and discussed a variety of graphical techniques allowing for their identification 
from measured data (Beek & Beek, 1988). The authors distinguished  
conservative terms, that is, those that do not change the limit cycle’s total energy 
and non-conservative terms that do affect the limit cycle’s energy booking  
(see Table 1). The former conservative terms tend to influence the oscillation  

 

Table 1 Admissible series expansion of ( ),f x x  and g(x). Adopted from Beek & Beek 

(1988). 

   
Conservative: ( ),f x x  =  x0, x2, x4, … van der Pol series 

  0 2 4, ,x x x ,… Rayleigh series 

  0 0 2 2 4 4, ,x x x x x x ,… π-mixed series (even) 

Non-conservative: ( ),f x x  =  3, ,xx xx …  

  3 3 3,x x x x ,… π-mixed series (odd) 
g(x) =  x3, x5, x7,… Duffing series 
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frequency but not its amplitude, and will thus play a role when precise timing is  
required. The non-conservative terms, in contrast, do not affect frequency but play 
a role when spatial precision is required, as in reaching movements.  

4   Rhythmic Movements under Precision Requirements 

In the studies discussed so far, no explicit demands were placed on the move-
ments’ amplitude. Quite often, however, movements are executed so as to manipu-
late the environment, such as reaching for an object. In such cases, movement  
accuracy determines whether or not the goal underlying the action will be reached. 
It is well known that movement accuracy and amplitude are inversely related to 
movement time (Fitts & Petterson, 1964; Meyer, Abrams, Kornblum, Wright, & 
Smith, 1988; Woodworth, 1899). The most well-known formulation of this  
so-called speed–accuracy trade-off was formalized by Fitts (1954). Accordingly, 
movement time MT equals a + b × ID, where a and b represent parameters to be 
experimentally determined, and ID – the index of difficulty, a measure reflecting 
task difficulty, relates to target distance D and width W according to ID = 
log2(2D/W). That is, movement time increases linearly with the ID via an increase 
of distance D and/or a decrease of width W. To examine how distance and  
accuracy constraints influence the dynamics in a repetitive precision aiming task 
(Fitts’ task), Mottet and Bootsma (1999) examined Fitts’ task from the perspective 
that rhythmic precision aiming is governed by limit cycle dynamics. In their ex-
periment, participants performed a rhythmic aiming task at 18 IDs, ranging from 3 
to almost 7 by manipulating distance and accuracy. The data were, next to phase 
plane representations, represented in (normalized) Hooke’s portraits (i.e., the 
space spanning position versus acceleration). This representation was chosen to 
(in particularly, locally) assess the stiffness function (Guiard, 1993, 1997). In this 
representation, a purely linear (harmonic) oscillator appears as a straight line; de-
viations thereof reflect the influence of nonlinearities. The data clearly showed 
that the participants moved in an almost pure harmonic fashion at low IDs  
(indicated as a straight line in the Hooke’s portrait), and that the influence of 
nonlinearities increased with increasing ID (the straight line became more and 
more N-shaped). Mottet and Bootsma (see also Bootsma, Boulard, Fernandez & 
Mottet, 2002: Mottet & Bootsma, 2001) proposed a minimal dynamical model to 
account for these main features including Rayleigh damping and Duffing stiffness,  

3 3
10 30 01 03 0x c x c x c x c x+ − − + =                                   

(3) 

The authors associated the stiffness with the time constraints inherent to the task 
and the damping with its spatial constraints (see also above). Mottet and Bootsma 
showed that through the appropriate parameterization of the damping and stiffness 
terms, their model was able to capture most of the variance (albeit decreasingly so 
with increasing ID). The model falls short, however, in that it cannot account for 
cases in which the stiffness locally vanishes (i.e., when the position reaches the 
root of the stiffness function), which would imply that the system would diverge  
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to infinity (i.e., target overshoots cannot be dealt with). This problem can poten-
tially be overcome, however, by including an additional stiffness term (a quintic 
Duffing term; cf. Mottet & Bootsma, 1999; Schöner, 1990). Furthermore, their 
data indicated that at low IDs (below approximately 4), the dissipative Rayleigh 
term was negative, rendering the limit cycle unstable: a flaw that can be overcome 
by adding van der Pol terms, and assuming these to be stronger than the Rayleigh 
terms at low IDs and weaker than them at high IDs.  

As the task difficulty increases in a Fitts’ task, the movements not only become 
slower and slower but corrective sub-movements also start to occur during the 
final ‘homing-in’ phase (at the target; cf. Elliot, Helsen, & Chua, 2001; Meyer  
et al., 1988). In addition, the time on the target (the dwell time) also increases 
(Adam & Paas, 1996; Buchanan, Park, Ryu, & Shea, 2003). That is, the move-
ments obtain discrete characteristics. During discrete movements, energy is totally 
dissipated when the oscillation is at its excursions, i.e., the ratio of the acceleration 
at its maximal absolute position and the maximal acceleration vanishes. In con-
trast, harmonic movements reveal total energy conservation and the ratio above 
equals one (cf. Guiard, 1993, 1997). In the performance of a repetitive Fitts’ task 
from low to high ID, this ratio goes from approximately one to zero. In other 
words, the (periodic) movements are continuous under low accuracy constraints 
and become discrete when the accuracy constraints are stringent, which led Mottet 
and Bootsma (1999) to suggest that the Rayleigh–Duffing model may provide a 
single dynamical structure allowing for rhythmic and discrete movements under a 
range of accuracy constraints.  

A potential point of critique of the studies discussed so far is that the tasks 
therein lacked ecological validity, and one may question whether the concepts and 
methods that hold in highly constrained laboratory settings are also valid under 
ecologically more valid contexts, that is, in more complex tasks. It appears so. 
Beek (1989; see also Beek & Beek, 1988) investigated expert jugglers’ hand mo-
tions during juggling. Using graphical and statistical analysis, he found clear indi-
cations that the part of the cycle where the hand carried a ball was governed by 
van der Pol behavior, while Duffing behavior was observed when the hand was 
unloaded (i.e., from the toss to the catch). In other words, the juggling hand cycle 
contains two dynamical régimes. In addition, he reported a structural involvement 
of discrete forcing ‘pulses’ at the position of the point of ball release (the throw) 
and, to a lesser extent, the point of the catch. Beek concluded that while an 
autonomous description of a juggler’s hand was a good first order approximation, 
a detailed description required the incorporation of discrete pulses. Beek sug-
gested that the location of forced pulses most likely depended on the phasing of 
the airborne balls rather than on the dynamics of the hand movement itself. Rather 
than proposing that the forcing is time-dependent, he suggested that the forcing is 
informational (i.e., a function of information instead of time per se). A fully 
autonomous description of the system should thus in this instance not be sought at 
the level of the hand movement’s description solely, but requires the incorporation 
of an information-driven forcing. 
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5   Perspectives Incorporating Discrete Movements 

In the introduction, we provided a kinematically based definition of discrete and 
continuous movements –– rhythmic or otherwise –– in terms of the presence  
versus absence of a motionless period preceding and following a movement. 
While this definition is correct (taking into consideration that the first two time 
derivatives of position vanish; cf. Hogan & Sternad, 2007), it remains silent as 
regards the control structure underlying the movements. In that regard, there has 
been a longstanding debate in the literature on whether motor control is fundamen-
tally discrete (in which case rhythmic movements are mere concatenations of dis-
crete motion elements) or rhythmic (in which case discrete movements are merely 
aborted rhythmical movements) or whether both movements are controlled dis-
tinctly and cannot be reduced to each other (cf. Huys et al., 2008; Sternad, 2008).  

Kugler et al. (1980)2, in the paper briefly discussed above (see also the accom-
panying paper of Kelso et al., 1980) argued against the need to conceive of  
discrete and rhythmic behaviors as arising from different mechanisms. These 
authors indicated that a mass-spring system (see equation 1) may, via the appro-
priate parameterization of damping and stiffness, reveal discrete behavior by  
moving to an equilibrium point in the absence of oscillations. Since mass-spring 
systems are intrinsically rhythmic, discrete and rhythmic movements may be  
conceived of as different manifestations of the same organization, as argued by 
the authors. 

It took, however, another 10 years before a full-fledged, explicit dynamical 
model was developed by Schöner (1990) in his attempt to provide a unified dy-
namical model to account for posture (the absence of movement), as well as 
rhythmic and discrete movements. To that aim, Schöner used the Piro-Gonzales 
oscillator (Gonzales & Piro, 1987), 

2 2 2 3 2 5( ) 2 4 2

x v

v a x av bx v abx b xω
=

= − + + − + −
                       (4) 

(here, we neglect the noise term incorporated in Schöner, 1990). This particular 
structure was chosen as it is analytically solvable and allows for several dynamical 
régimes including a single fixed point, two simultaneously stable fixed points and a 
limit cycle –– the dynamical ingredients necessary to model posture, and discrete 
and rhythmic movements. In addition, Schöner used the concept of behavioral  
information, which he and Kelso had previously introduced to account for modifi-
cations of dynamic patterns via behavioral requirements (such as environmental, 
intentional, learned and so on) in terms of the dynamics (Schöner & Kelso, 1988; 
see also Kelso, 1995). In this conception, the behavioral information (directly)  
contributes to the phase flow (or vector field; see below) in an additive fashion, 
 

                                                           
2 In essence, Kugler et al. discussed Feldman’s equilibrium point model (Feldman, 1980, 

1986) in terms of dynamical systems.    
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and the intention to move (but not the movement’s temporal evolution) is treated 
as such. After incorporation of the additive contribution of intention, the equation 
reads 

                           

 (5) 

where χ indicates the time interval [t0,t0+Δt] during which the intention to move is 
‘on’ (i.e., it is equal to 1 within the interval and 0 outside it), and the strength of 
the behavioral information cint is larger than zero. The fint takes the system  
from the fixed point(s) régime to the limit cycle régime (its simplest form reads  
fint = -x). Intention thus stabilizes the limit cycle, and a discrete movement can be 
seen as a limiting case of a rhythmic movement (i.e., it constitutes a half or a  
full cycle). It should be noted that in Schöner’s conception discrete –– but not 
rhythmic –– movement execution requires that the phase flow underwriting the 
movement changes on the time scale of the movement. 

6   Phase Flows and Topologies 

From the sections above, it is clear that much effort has been directed into the ex-
plicit characterization of rhythmic motor behavior through the identification of 
damping and stiffness terms and thereby learn about the oscillator’s properties 
under particular task realizations. A similar degree of explicitness characterizes 
Schöner’s model (1990), even though the development of his rationale for choos-
ing the particular model formulation appears (partly) vector field based. In other 
words, model development was driven by the aim to examine quantitative fea-
tures. In contrast, Jirsa and Kelso (2005) recently formulated a model construct 
with the aim to provide a general theoretical framework of human movement and 
coordination –– its scope is therefore qualitative, but allowing for quantitative 
precision if so required. Jirsa and Kelso’s perspective explicitly stresses phase 
flow properties and, in particular, the topological structure(s) therein. The impor-
tance of the concept of phase (or state) space is that deterministic, time-continuous 
and autonomous systems can be unambiguously described through their flow in it, 
which in the case of movement is the space spanned by the system’s position and 
velocity: at least so under the commonly adopted assumption that movements al-
low for description in two dimensions (but see below). While the phase flow quan-
titatively describes the system’s evolution as a function of its current state, its 
qualitative behavior is uniquely determined by its topology. For the classification 
of dynamical systems, two theorems are of key importance. First, for two-
dimensional systems, the Poincaré–Bendixson theorem states that if a phase plane 
trajectory is confined to a closed bounded region that contains no fixed points, it 
must eventually approach a closed orbit. By implication, chaos cannot occur in 
two-dimensional systems and the possible dynamics in these systems are severely 
limited: only fixed points, limit cycles and separatrices can exist (see also Fuchs, 
chapter one, this volume). Second, the Hartman–Grobman theorem states that the 
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phase flow near a hyperbolic fixed point3 is topologically equivalent to the phase 
flow of the linearization. This theorem implies the existence of a continuous invert-
ible mapping, a so-called homeomorphism, between both local phase flows. While 
the Hartman–Grobman theorem is solely valid for fixed points, the notion of topo-
logical equivalence applies to other topological structures as well. Intuitively, one 
may think of dynamical systems as being topological equivalent if their underlying 
structure remains invariant under particular ‘distortions’. For instance, ‘bending’ 
and ‘stretching’ (of closed orbits, for instance) are allowed, but disconnecting 
closed trajectories is not (cf. Steward, 1995, chapter 10 and 12, for an intuitive, 
non-technical introduction). The upshot is that only a limited number of dynamical 
structures can be found in two-dimensional systems, and that dynamical systems 
belong to the same class if, and only if, they are topologically equivalent. In other 
words, armed with theorems from dynamical system theory, it is possible to 
uniquely define movements classes. Phase flow topologies identify all behavioral 
possibilities within a class: while all behaviors within a class can be mapped upon 
others, such maps do not exist between classes (see also Huys et al., 2008b). 

The model construct proposed by Jirsa and Kelso (2005) that allows for fixed 
points and limit cycles in phase space (so to account for discrete and rhythmic 
movements, respectively) reads 

( )
( )

1

2 , /

x x y g x

y x a g x y I

τ

τ

= + −⎡ ⎤⎣ ⎦
= − − + −⎡ ⎤⎣ ⎦                                    

(6) 

Here, x  and y  represent the time derivatives of x and y, respectively, τ a time 

constant and in which I represents an external (instantaneous) input. For an appro-
priate choice of g1(x) and g2(x,y), this model belongs to the class of excitable sys-
tems (cf. FitzHugh, 1961; Murray, 1993). Furthermore, g1(x) and g2(x,y) have to 
be chosen so as to assure the system’s boundedness and to implement specific task 
constraints, respectively. The minimal realization satisfying these (and certain 
other) constraints for g1(x) and g2(x,y) are g1(x) = x3/3 and g2(x,y) = b·y (see Jirsa 
& Kelso for details). Under this realization, the parameters a and b determine 
whether the topological structures in phase space are one or two fixed points and a 
separatrix (a structure that locally divides the phase space in regions with oppos-
ing flows) or a limit cycle. The presence or absence of particular topological struc-
tures can be readily illustrated on the basis of the system’s nullclines, that is, the 
curves in phase space where the flow is purely horizontal (i.e., 0y = ) or vertical 

(i.e., 0x = ). The nullclines in the present realization are defined by 

( )
33 / 30 / 3

/0

y x xx x y x

y a x by x a by

⎧ = − +⎫= = + − ⎪⇒⎬ ⎨ = −= = − + − ⎪⎭ ⎩
                            (7) 

 

                                                           
3 A fixed point of an nth-order system is hyperbolic if all eigenvalues λ of the linearization 

have a non-vanishing real part (i.e., ( ) 0iλℜ ≠ for i = 1…n), which is the case for most 

fixed points (and those under consideration at present). 
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(setting I = 0 and τ  = 1). A fixed point is found at the intersection of both  
nullclines. From these equations and Figure 1 it can be appreciated that only the 
nullcline with no vertical flow is affected by the parameterization and that its 
translation (via a) or rotation (via b) determines whether we find a single stable 
fixed point (referred to as the mono-stable condition), two stable fixed points in-
terspersed with an unstable one (referred to as the bi-stable condition) or a stable 
limit cycle. 

Two aspects of this perspective are crucial. First, with an eye on Figure 1 it can 
be readily appreciated that the phase space topology will be invariant under multi-
ple choices for g1(x) and g2(x,y): numerous different nullclines can yield the par-
ticular intersections found in Figure 1  (under the adoption of some constraints; 
see Jirsa & Kelso [2005] for a detailed discussion). To reiterate, while different 
choices of g1(x) and g2(x,y) will affect detailed features of the phase flow, and thus 
the resulting quantitative behavior, the system’s qualitative behavior is independ-
ent hereof. In this sense, this perspective may be said to be model independent. 
Second, a system settled at a fixed point will by definition stay there for all  
time unless an external ‘force’ kicks it away from it across the separatrix (see also 
Figure 1). That is, in the mono- and bi-stable condition the system will traverse 
through phase space (i.e., execute a movement) only in the presence of an external 
input I. In the case of a voluntary self-paced action, the external input I can hypo-
thetically be considered as the activity of some neural (timer) structure. The sys-
tem is thus non-autonomous (and strictly speaking [at least] 3-dimensional). In the 
limit cycle case, however, the system is autonomous and no input is required. 

For discrete movement initiation, the separatrix can be thought of as a threshold 
mechanism: only if the system is brought across, a movement will be executed. Its 
existence (in the mono- and bi-stable conditions) predicts that the system may 
execute false starts, that is, execute a movement in the absence of an external 

Fig. 1 Nullclines in phase space in the mono-stable (middle panel; a=1.05, b=0), bi-
stable (left panel; a=0, b=2) and limit cycle condition (right panel; a=0, b=0). The dark 
gray arrows indicate the flow in phase space; the black lines represent the nullclines. 
Black dots represent stable fixed points; white dots represent unstable fixed points. The 
gray closed orbit in the right panel represents a stable limit cycle. No closed orbits exist 
in the mono- and bi-stable conditions. 
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stimulus (see Figure 2). Demonstrating the occurrence of false starts in humans 
would thus provide evidence that humans utilize this dynamic control mechanism. 
In the absence of an ‘external’ stimulus, noise could bring the system across the 
separatrix, although the noise strength thereto will under natural conditions most 
likely (and luckily!) be too small for this to occur. Fink and colleagues (Fink, 
Kelso & Jirsa, 2009) recently found evidence that humans utilize the mono-stable 
mechanism by evoking false starts via the application of mechanical perturbations. 
If a perturbation brings the systems nearer to the separatrix, then the additional 
impact of noise will be more likely to get the system across the separatrix. In the 
experiment, participants were instructed to execute a finger flexion–extension 
movement as fast as possible upon the presentation of an auditory stimulus  
(i.e., a reaction time task). In a quarter of the trials, a mechanical perturbation  
was applied either in the movement direction (i.e., flexion) or opposed to it (i.e., 
extension) just before the auditory stimulus presentation. In the trials without a 
perturbation, false starts were observed only in 2% of the trails. In contrast, false 
starts occurred in 34 and 9% of the trails in which perturbations were applied in 
the motion direction or opposed to it, respectively. This finding, and in particular 
the perturbation–direction dependence on the percentage of false starts, supports 
the idea that a motor control mechanism involving a separatrix is used by humans. 

 

Fig. 2 The fixed point and separatrix in the mono-stable condition. The left panel repre-
sent the caricature of the phase flow in the mono-stable condition; the arrows indicate the 
flow, the black dot the fixed point, and the separatrix is visualized as the dashed line. A 
movement will be executed only if the system is brought across the separatrix (be it by an 
external stimulus or noise). The middle panel represents the phase space and its flow, and a 
trajectory of the model simulations without input I but with noise added of equation 7 (for a 
= 1.05, b = 0, and τ = 1, after transformation of the state variables into position and veloc-
ity, see Jirsa & Kelso, 2005). The left panel represents the trajectory in the middle panel as 
a time series. Here, two movements were executed as noise brought to the system across the 
separatrix.  

The perspective outlined above inspired Huys and colleagues (Huys et al., 
2008) to examine the implementation of discrete and rhythmic movements as a 
function of movement frequency. To investigate the behavioral capacity of  
the system described in equation 6 in the mono-stable and limit cycle régime,  
they computationally analyzed it under a wide range of parameters (including  
frequency ω). In addition, Huys et al. investigated human unimanual finger  
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movements in comparable movement frequency régimes. In the experiment, the 
participants executed auditory-paced flexion–extension finger movements at fre-
quencies from 0.5 Hz up to 3.5 Hz (with steps of 0.5 Hz) under the instruction to 
move as fast as possible, as smooth as possible or without any specific instruction 
(referred to as the ‘fast’, ‘smooth’, and ‘natural’ condition, respectively). The 
simulated data and human data were both examined using several measures; the 
behavioral data were also subjected to a vector field reconstruction (the Kramers-
Moyal [KM] expansion; see Daffertshofer, chapter two, this volume and refer-
ences therein). The computational analysis indicated that at low frequencies, the 
‘discrete’ system (i.e., the model prepared in the mono-stable régime) produced 
trajectories similar to those of the human participants under the ‘natural’ and ‘fast’ 
conditions at low frequencies. At higher frequencies, the pacing of the external 
stimuli interfered with the system’s ‘intrinsic dynamics’ (which occurs due to the 
occurrence of the stimulus before the system reaches the fixed point) and the re-
quired movement frequency could no longer be achieved. In contrast, in the limit 
cycle régime, the system was able to comply with all imposed temporal demands. 
It thus appeared that an externally driven system cannot produce movements at 
high frequencies while satisfying the required temporal constraints.  

As for the human data, the reconstruction of the vector fields underlying the 
behavioral data were clear cut: under the ‘fast’ condition a fixed point was identi-
fied in the phase flows at low frequencies (and for half of the participants in the 
‘natural’ condition). At high frequencies, however, irrespective of the instructions, 
no indications for the existence of fixed points were found, and it was concluded 
that the participants’ movements were thus governed by limit cycle dynamics 
(which could not have been otherwise under the assumption that the phase space 
for such movements is two dimensional). This conclusion was supported by the 
other analyses. These results were taken to indicate that humans can employ two 
different timing mechanisms and naturally switch from a discrete mechanism to a 
rhythmic mechanism at a certain frequency, and that by implication, a movement 
initiation and timing mechanism should be involved at low, but not at high,  
frequencies.  

In a follow-up study, Huys, Fernandez, Bootsma and Jirsa (2010) asked how 
spatial constraints impact the implementation of the identified timing mechanisms 
in the context of the well-known speed–accuracy trade-off (Woodworth, 1899) 
using Fitts’ task (Fitts, 1954; Fitts & Peterson, 1964 see also above). Ten partici-
pants repetitively moved a stylus between two targets for 30 cycles (per trial) un-
der instructions stressing speed as well as accuracy. Ten different target widths 
were used resulting in ten IDs ranging from 2.1 to 6.9. The data analysis was 
based on the phase plane analysis as above. It was found that at low IDs, the par-
ticipants’ movements were governed by limit cycle dynamics, while at high IDs 
they were governed by fixed point dynamics. The transition occurred at an ID of 
around 5. In other words, when the task difficulty increases humans utilize a 
mechanism corresponding to discrete movement generation. Huys et al. also ana-
lyzed the duration of each movement’s acceleration and deceleration phase.  
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Fig. 3 Movement time, and acceleration and deceleration time as a function of ID. 
Movement time (black dots), acceleration time (blue dots) and deceleration time (red dots) 
as a function of ID for a single participant. The discontinuity in the acceleration time was 
identified by piece-wise linear regressions (represented by the black lines).  

It turned out that for the rhythmic movements, the duration of both movement 
phases contributed approximately equally to the MT increase as a function of ID, 
while for the discrete movements the MT increase was almost exclusively due to 
an increase in the deceleration’s phase duration, and the duration of the accelera-
tion phase was close to constant as a function of ID. (The discontinuity in the  
acceleration phase was identified via regression analysis; see Huys et al., 2010 for 
details). The deceleration phase involved a discontinuity as a function of ID, 
which occurred at the rhythmic-discrete transition (see Fig. 3). By implication, 
Fitts’ law involves a discontinuity. In a second experiment, it was shown that nei-
ther of these phenomena occurred when the participants performed similarly timed 
movements in the absence of the accuracy constraints; the movements were never 
generated in a discrete fashion. It appears, therefore, that humans abruptly engage 
a different control mechanism when task difficulty increases. 

7   In Conclusion 

The investigation of single limb movements from a dynamical perspective  
has been quite successful. As for the study of rhythmic movements, in terms of 
limit cycles, most predictions that can be derived form oscillator theory have been 



The Dynamical Organization of Limb Movements 85
 

confirmed, even though a few detailed features that have shown up under a magni-
fying glass were not consistent with particular proposed nonlinear oscillators. 
Such little flaws were in some cases ingeniously ‘repaired’ in subsequent studies, 
as for instance the introduction of the frequency-dependent damping term by  
Beek et al., (1996) so as to improve the match of hybrid model to empirical data 
(see above). In other words, the conception of rhythmic movements in terms of 
limit cycle oscillators has proven to be justifiable and has, as a consequence, be-
come widely adhered to. In addition, more recent approaches incorporating 
rhythmic and discrete movements have provided strong argument that both 
movements belong to classes that are not reducible to each other—or at least, it so 
appears. That is not to say that no criticism can be formulated –– it has been, par-
ticularly so regarding the assumption that rhythmic movements can be fully de-
scribed in terms of two-dimensional systems. In the early 1970s, Wing and 
Kristofferson (1973a, 1973b) developed a simple model that could produce a 
negative lag-one correlation between successive finger taps, indicating people’s 
tendency to alternate the duration of successive taps around the mean tap interval. 
The negative (lag-one) correlation has turned out to be a very robust phenomenon, 
and has been reported for repetitive actions such as finger tapping (Hazeltine, 
Helmuth, & Ivry, 1997; Ivry, Keele, Diener, 1988; Wing & Kristofferson 1973a, 
1973b), successive catches in juggling (Post, Daffertshofer, Beek, 2000; Huys, 
Daffertshofer & Beek, 2003) and saccadic eye movements (Collin, Jahanshahi, 
Barnes, 1998). Such repetitive actions are commonly conceived of as limit cycles, 
at least so by researchers in coordination dynamics. Daffertshofer (1998), how-
ever, analytically showed that two-dimensional autonomous limit cycles are un-
able to produce the negative lag-one correlation, irrespective of noise. At first 
blush, this suggests that repetitive movements revealing the negative lag-one cor-
relation are thus controlled otherwise, be it by externally driven (‘forced’) limit 
cycles, by autonomous limit cycles of a dimension larger than two or as sequences 
of discrete movements.  Experimental evidence, however, indicates that the nega-
tive lag-one correlation is present when the repetitive movements involve me-
chanical impact, as in tapping on a tabletop, but not in its absence, as in ‘freely’ 
oscillating one’s finger (Delignières, Torre & Lemoine, 2008; Torre & Delig-
nieres, 2008). The autonomous limit cycle description, however, breaks down in 
the presence of external mechanical impacts, as the latter provides a (spatial) dis-
continuity in the phase flow and haptic input. In other words, Daffertshofer’s re-
sult is in line with experimental findings but does not by itself imply that an 
autonomous two-dimensional limit cycle description for rhythmic movements is 
insufficient. Nevertheless, the assumption of (complete) autonomy –– at least so at 
the level of limb motion –– has also been questioned by (among others) Kay and 
colleagues (1991) and Beek (cf. Beek, 1989; Beek & Beek, 1988; see also Kay, 
1988, for a dimensionality analysis of rhythmic movements). Thus, while the  
two-dimensional description has proven to be a good approximation, which, in con-
junction with the manageability of two-dimensional relative to higher dimensional 
systems, undoubtedly explains the widespread tendency to stick to them, it  
cannot account for all experimentally observed phenomena pertaining to single 
rhythmic limb movements. In addition, for discrete movements an autonomous 
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two-dimensional description is out of the question. Should this be taken to imply 
that the dynamical solution to Bernstein’s degree-of-freedom problem has failed? 
Although it would be premature to formulate a definitive answer, our gist is  
“no”. For those instances in which full autonomy cannot be established in two  
dimensions –– and it may well be that such will be the case for many instances un-
der a scrutinizing view –– the challenge is to identify at what level of description 
additional dimensions should be incorporated. One example of an attempt thereto 
was briefly discussed above for the case of juggling (Beek, 1989); others can be 
found in Beek et al., (2002) and Jirsa et al. (1998). In other words, while some im-
portant issues remain to be resolved, it seems fair to say that the dynamical ap-
proach to motor control and coordination has proven its worth and may be trusted 
to continue to deliver novel insights for years to come.  
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Perspectives on the Dynamic Nature of 
Coupling in Human Coordination 

Sarah Calvin and Viktor K. Jirsa1 

Abstract. This chapter focuses on motor coordination between similar as well as 
different classes of movements from a phase flow perspective. Most studies on 
coordination dynamics are concerned with coordination of rhythmic movements. 
This constraint enables the modeler to describe the interaction between the oscil-
lating movement components by a phase description, and its dynamics by a poten-
tial function. However, potential functions are extremely limited and exist only in 
a limit number of cases. In contrast, dynamical systems can be unambiguously 
described through their phase flows. The present chapter elaborates on coordina-
tion dynamics from the phase flow perspective and sheds new light on the mean-
ing of biological coupling. The phase flow deformations of coupled systems may 
be understood using the notion of convergence and divergence of the phase space 
trajectories and aid in explaining the mechanisms of trajectory formation and the 
interaction (coupling) between arbitrary movements. 

On the Nature of Coordination 

1   Introduction 

The human body can be understood as a complex system, since it is composed of 
millions of cells organized in tissues that form organs responsible for basic behav-
ior such as breathing and walking, but also cognitive and complex behavior such 
as speaking, reasoning, thinking, learning and so on. A multitude of components 
interact together at any level (molecular, cellular, tissular, behavioral, psychologi-
cal, social ...). An important question is how such a high-dimensional system can 
be organized, at least temporarily, to achieve a given (task) goal. For Bernstein 
(1967), it is a problem of reducing the number of variables to be controlled in  
                                                           
Sarah Calvin ּ Viktor K. Jirsa 
Theoretical Neuroscience Group 
Université de la Méditerranée, UMR 6233 “Movement Science Institute”,  
CNRS, Faculté des Sciences du Sport, 13288, Marseille cedex 09, France 



92 S. Calvin and V.K. Jirsa
 

mastering the several degrees of freedom involved. He hypothesized that they 
might be –– temporarily or not –– (dis)integrated into a functional coordinative 
structure (unit). Then, functionally speaking, the coordination is probably the most 
efficient tool that nature disposes to manage the complexity. Indeed, coordination 
implies that two or more subsystems work together rather than independently: we 
call this coupling. From that cooperation between the different parts, patterns of 
behavior emerge. How can the coordinated behavior of complex biological systems 
to be understood? Among others, the dynamical pattern theory using concepts and 
methods gleaned from sciences of complexity (Synergetics; Haken (1977)) and 
theories of nonequilibrium phase transitions, proposed a theoretical framework to 
describe laws and principles that govern pattern formation and coordination. The 
emergence of patterns is possible only in nonlinear1 complex systems that are open 
(i.e., interacting with environment), far from equilibrium known to exhibit some 
properties such as self-organization. This property allows these systems to exhibit 
spontaneous transition between different states and patterns of activity, as a  
result of internal regulation in response to changes in external condition that are 
unspecific to the emerging pattern Haken (1983). These states or patterns are  
“attractors”2 and correspond to a stable mode of behavior that the system tends to 
spontaneously adopt and maintain depending on the constraints applied on it.  

Despite the complexity of a system’s behavior, it is still often possible to pro-
vide a low-dimensional description of its evolution. To do so, it is necessary to 
isolate a set of variables, the so-called collective variables or order parameters. 
These variables completely characterize the emerging patterns in the system, and 
hence reduce the degrees of freedom available to the system (Haken 1983; Kelso 
1995). The identification of collective variables is a longstanding issue and typi-
cally cannot be addressed a priori by the experimenter; they are often predominant 
near regions of pattern change i.e., when the stability of an ongoing coordination 
pattern changes and instabilities occur. These instabilities are induced by change 
of a so-called control parameter that leads the system in an unspecific manner 
through a series of different states and state transitions. Indeed, when the control 
parameter crosses a critical value, instabilities occur leading to the emergence of 
new coordinative patterns different from the formerly ones, and to the disappear-
ance of previous ones. Once identified, the examination of the dynamics of the 
collective variable (i.e., how does the collective variable change as the control 

                                                           
1 The nonlinearity can be understood as a loss of the proportionality of cause and conse-

quence. Thus differently to linear systems, the behavior of a nonlinear system cannot be 
inferred and even constructed from the behavior of its components (“the whole is more 
than and different from the sum of the parts”, Phil Anderson (1972)). The nonlinearity 
provides the complex system with the possibility to exhibit different qualitative and  
multiple behaviors. 

2 An attractor is a structure toward which all the trajectories in state space converge as time 
goes to infinity. Different kinds of attractors are known: a/ (stable or unstable) fixed 
point, b/ (stable or unstable) limit cycle when the system exhibits a periodic behavior  
and c/ strange attractors when the system displays a chaotic, unpredictable quasi-cyclical 
behavior. The state space is defined by the set of the system’s state variables. 
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parameter varies) allows to understand how (and which) coordinated behaviors are 
produced in complex systems. For example, it is possible to examine if the order 
parameter tends to adopt specific value(s) and, in other words, if the system con-
verges to one (or several) attractor(s) as time goes to infinity, but also if some val-
ues of the order parameter act as repellor(s), i.e., an unstable state from which the 
system evolves away. From that, dynamical laws can be written; they usually cor-
respond to a set of mathematical (differential) equations formalizing the temporal 
evolution of the collective variable(s). These laws are helpful for studying, under-
standing and predicting how a system behaves. A common way to represent at-
tractors and repellors is to symbolize them as “valleys” and “hills”, respectively 
(see figure 1) by using a potential. To model the intrinsic dynamic of a system, we 
can imagine a ball in a landscape with valleys and hills. Once the ball leaves its 
initial condition on top of a hill, it will slide down into the “valley” and away from 
the top of the “hill“, i.e., the repellor. The part of the landscape between a repellor 
and an attractor is the basin of attraction. The deeper the valley, the stronger (and 
consequently the more stable) is the attractor.  

BASIN OF ATTRACTION 1 BASIN OF ATTRACTION 2

ATTRACTOR 1

ATTRACTOR 2

REPELLOR 1 REPELLOR 2

 

Fig. 1 Representation of a dynamics with attractors and repellors using a potential. The 
attractors correspond to the valleys, and the repellors to the hill tops of the landscape. The 
ball symbolizes the evolution of the system toward the attractor as time evolves. 

In the movement domain, motor behavior such as motor coordination and more 
specifically rhythmic coordination is viewed as self-organized pattern formation 
processes and studied from the dynamics perspective Kelso (1995). Scott Kelso 
named this line of thinking Coordination Dynamics, which finds its roots and 
mathematical formalization in the more general field of synergetics pioneered by 
Hermann Haken (1977, 1983). In this framework, coordination is viewed as an 
emergent product from the interaction between components. In the human, ex-
perimental observations showed that coordinated movements are spontaneously 
performed following characteristic stable patterns of behavior. These stable pat-
terns (or modes), however, exist in small numbers. For instance, when asked to 
move rhythmically two hands or fingers at the same pace, humans produce only 
two patterns with relative phasing, φ, of both limbs equal to 0° and 180° referred  
to as in-phase and anti-phase patterns, respectively (Tuller et al., 1989; Yamanishi  
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et al., 1979). These observations revealed that without any learning or guidance, it 
is almost impossible to naturally produce rhythmic coordination patterns with dif-
ferent relative phasing other than 0° and 180° as if values outside of these distinct 
(stable) states were inaccessible Turvey (1990). Consequently, questions arise 
why complex systems composed of muscles, tendons, joints and neurons can pro-
duce spontaneously only two stables modes among multiple, in fact infinitely 
many, possibilities. The mean principles underlying the emergence of coordina-
tion together with their modeling will be treated in the next paragraph.  

2   Coordination Depends on Intrinsic Dynamics and Coupling 

To understand how coordination comes about in two coupled systems (indexed by 
1 and 2 in the following), it is useful to provide a general formulation:  

1 1

2
1 1 1 1 1 1 1 2 2

2 2

2
2 2 2 2 2 2 2 1 1

intrinsic dynamics coupling

( , ) ( , , , )

( , ) ( , , , )

x y

y x f x y C x y x y

x y

y x f x y C x y x y

ω

ω

=⎧⎪
⎨

= − + +⎪⎩
=⎧

⎪
⎨ = − + +
⎪⎩

 

The four state variables, positions x1, x2 and velocities y1, y2, define a  
four-dimensional system and hence the system “lives” in a four-dimensional state 
space. The dots on the variables denote the time derivative and ω1, ω2 are the pre-
ferred frequencies (eigenfrequencies). In conjunction, the eigenfrequencies and the 
function f define the intrinsic dynamics. The coupling between components is 
given by the function C. Evidently, the system behavior depends (only) on the 
intrinsic dynamics and the coupling amongst the components. 

Following Haken, Kelso, Bunz (1985), let us imagine that the coupled systems 
are nonlinear hybrid oscillators3 and that the coupling is nonlinear. Within a state 
space, the coordinates of which correspond to the oscillators’ state variables, i.e., 
position and velocity, the dynamics of each oscillator takes the form of a circle 
(limit cycle), which is being traced out periodically (see figure 2). The angular 
position on the circle is called the phase. Since movements in mechanics are often 
periodic, the phase plays an important role and the state space is often referred to 
as the phase space. When uncoupled, each oscillator can take any phase value or, 
equivalently, any relative phase, φ= φ1- φ2, between the two oscillators is possible.  

                                                           
3 In motor control, much of our knowledge on laws and principles governing coordination 

dynamics originates from studies involving rhythmic movements. Movements of individ-
ual limb involved in a periodical activity are used to be modeled as a two-dimensional 
self-sustained hybrid oscillator. This kind of oscillator exhibits a decrease in amplitude 
together with an increase of peak velocity when the frequency is increased. The term hy-
brid comes from the fact that rhythmic biological movements are modeled as oscillators 
characteristics of which are a combination of the well-known Rayleigh and van der Pol 
oscillators. 
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Fig. 2 Phase portrait of two uncoupled hybrid oscillators. The trajectories of each oscillator 
lie on the limit cycle (A, B) during rhythmic movements.  

Once the two hybrid oscillators are coupled, coordination emerges. From this 
coupling, two phenomena arise (in its simplest case). First, it induces a frequency 
locking of the two oscillators; they start to oscillate with a common frequency, 
intermediate to their own preferred frequencies. Second, it limits the relative phase 
values that the two oscillators can take: for the in-phase relationship, the coupling 
brings the phases of the two oscillators together, whereas for the anti-phase rela-
tionship, the two phases are in opposition. In other words, the coupling induces (or 
mediates) phase-attraction and phase-repulsion processes. Once the coordination 
is established, its dynamics (i.e., the number and the type of emerging patterns on 
one hand, and how these patterns evolve in time, on the other hand) will depend 
not only on the nature of the coupling but also on the intrinsic characteristics of 
each involved component. 

2.1   Effect of the Coupling 

Multistability and multifunctionality of a complex system necessitate nonlinearity, 
which may be captured either in the intrinsic dynamics of the system or its cou-
pling function. In the Haken–Kelso–Bunz (HKB) system, both contributions are 
nonlinear; in particular, the coupling function C reads 

2
2 2 1 1 1,2 2,1 1,2 2,1

2
1,2 2,1 1,2 2,1 1,2 2,1

( , , , ) ( )( ( ) )

( ) ( ( ) ( ))

A B

C x y x y x x x x

x x x x x x

α β

α β

= − + −

= − + − −  

In this equation, the term A creates the presence of the attractor φ=0° and the  
term B contributes to both, the creation of the attractor at φ=0° and 180°. When 
the frequency increases, the amplitude of the trajectories of the two oscillators  
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decreases and results in a decrease of 
2

1,2 2,1( )x xβ −  if φ=180°, thus reducing the 

term B and consequently reducing the stability of the 180° attractor. The φ=0° 
attractor is unaffected. At the critical value of frequency, the mode of coordination 
corresponding to the anti-phase pattern no longer exits, and a transition to in-phase 
occurs. 

2.2   Effect of the Intrinsic Dynamics 

The second critical element is the intrinsic dynamics of the coordinated element 
itself, that is its inherent characteristic behavior in the absence of any coupling. It 
is easy to understand when considering that an interaction between elements un-
derlies the confrontation of two following mechanisms: The first is the tendency, 
called M(agnet) effect Von Holst (1973), each oscillator displays to attract the 
other to its own frequency, and the second is opposed and constitutes the mainte-
nance tendency in which each component tends to stay at its personal tempo.  

2.2.1   Coupling Components with Identical Intrinsic Dynamics 

Let us imagine the two coupled oscillators, each oscillating following an eigenfre-
quency ω1 and ω2, respectively. The detuning, that is the difference between the two 
oscillators, can be calculated as follows 2 1ω ω ωΔ = − . Of course, when Δω=0,  
the components do not differ and oscillate individually following the same cycling 
rate 1 2ω ω ω= = . In this case, the M effect is strong and the coordination is fre-

quency- and phase-locked. The former means oscillation with the same frequency, 
and the latter indicates that the phase difference of the oscillators is fixed. In the fol-
lowing, we discuss coupled systems with identical intrinsic dynamics.  

A classic example is provided by the coordination of two index fingers (or any 
other limbs) by means of a biological coupling. The dynamics of this kind of coor-
dination is now well documented in the field of the motor control domain since the 
works of Kelso (1981, 1984), who first investigated the idea that motor coordina-
tion may be characterized by principles of self-organization, giving birth to the 
dynamical pattern perspective4. These experiments examined bimanual coordina-
tion between finger oscillatory movements and created the paradigm of the “wrig-
gling fingers”. Moreover, they also allowed the elaboration of the first model, the  
well-known HKB model Haken (1985). Subjects were asked to oscillate their index 
fingers with the same frequency. With no training whatsoever, they were able to 
comfortably perform two coordination patterns. The in-phase pattern was produced 
by the co-activation of the homologous muscles, so that the two fingers flexed and 
extended together led to a phasing of 0° between the limbs. The anti-phase was  
 

                                                           
4 The dynamical pattern perspective is a theoretical framework used for more than 20 

years. It aims to identify laws and principle underlying pattern formation in the motor 
domain and is grounded in the theory of complex systems and synergetics.  
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produced by the co-activation of the non-homologous muscles so that one finger 
was flexed as the other one was extended leading to a phasing of 180°. The dy-
namics of these preferred coordination modes was explored by increasing the fre-
quency of oscillation. When the coordination was first initiated in-phase, a relative 
phase was maintained around 0° in a stable fashion (i.e., with a minimal variabil-
ity) when the frequency increased. On the other hand, when the subjects started to 
oscillate in anti-phase, the increase of the imposed frequency made a 180° phasing 
between the fingers difficult to maintain, so that abrupt switching to the in-phase 
patterns occurred when the frequency crossed critical values. Before this phase 
transition, the variability of the relative phase (required at 180°) between the two 
fingers was dramatically enhanced as the frequency increased. However, after the 
transition from the anti-phase to the in-phase, the variability of the relative phase 
was low and comparable to that produced during a pattern directly prepared in-
phase. This phenomenon is referred to as critical fluctuations and is indeed an in-
dicator of being near a threshold of a phase transition. The observation of critical 
fluctuations is one of the strongest arguments supporting the interpretation of the 
“wiggling finger” transition as a phase transition. Other explanations would have 
difficulty in explaining naturally their occurrence.  

In summary, these experiments provided several key insights. First, the relative 
phase between coordinated segments qualifies as a good candidate for the status as 
a collective variable since it expresses the relationships between the different parts 
(here, the two fingers) and reports the dynamics of these patterns and particularly 
their changes. Second, the frequency serves as a control parameter in this para-
digm. In other words, the control parameter controls the stability of the different 
coordinative patterns. Third, the existence of critical fluctuations underwrites the 
nature of the transition mechanism to be a bifurcation and a generic mechanism of 
pattern switching.  

Inspired by these experimental findings, Haken, Kelso and Bunz (1985) pro-
posed a model not only explaining Kelso’s experimental results, but also making 
new predictions. This model captured with a one-dimensional dynamical equation 
the phenomena experimentally observed by Kelso (1981, 1984). More precisely, 
the model formalized the rhythmic interlimb coordination at two interconnected 
levels: a system of two (identical) coupled nonlinear oscillators describing the 
individual limb movements and, consistent herewith, a so-called potential function 
that describes the dynamics of the collective variable interpreted as the relative 
phase (φ) between the oscillators Haken (1985). The potential function and its 
dependence on the control parameter are shown in figure 3. 

Remember, the experimental findings reported that at a low frequency regime, φ 
can take two stable values: φ=0° and φ=180°. These two stationary states –– in 
other words the bistability of the system –– were modeled as two fixed point attrac-
tors. To account for the transition, the bistability must change toward monostability 
(where only φ=0° is stable) when the frequency reaches a critical value.  
Since symmetry exists between left and right limb movements, the model must be 
able to describe the same coordination dynamics under the exchange of indices.  
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Fig. 3 The HKB model. A series of potential fields (from top left to bottom right) is plotted 
for different values of the control parameter. The upper left potential describing the coordi-
nation dynamics at the slowest frequency: the attractors corresponding to Φ=0° and  
Φ =180° (here, equivalent to its value in radians, π) are present as minima in the potential. 
As the frequency increases (from left to right, upper row first), the minimum at Φ =180° 
becomes more shallow and finally disappears, leaving a maximum at its place. 

To model the dynamics of the order parameter, Haken et al. proposed the  
dynamics 

φ
φφ

d

dV )(−=  

where φφφ 2sin2)sin( ba −−=  and the potential function 

)2cos()cos()( φφφ baV −−= , and a and b are constants. With this potential func-

tion formulation, the temporal evaluation of φ corresponds to the damped motion of 
a mass in the potential landscape, with valleys and peaks representing stable and 
unstable solutions, respectively Haken (1985). The b/a ratio simulates the change in 
frequency (i.e., the increase of the control parameter). Changing the ratio from 1 to 
0 corresponds to increase in the frequency rate. As shown in figure 5, modifying 
this ratio induces a change in the shape of the potential reflecting the dynamics of 
φ. More precisely, when the ratio is close to 1, the dynamics is bistable and the  
potential exhibits two minima (attractors) centered on 0° and ± 180°. The minimum 
corresponding to 0° is deeper and more straight than that corresponding to  
180°, reflecting the differential stability of the in-phase and anti-phase patterns. 
When b/a goes to 0, the 180° valley progressively vanishes and disappears totally  
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for high-frequency cycling. Then the system (here, two coupled fingers) cannot 
any longer stay in this 180° valley and is attracted to the 0° valley (still present, 
but shallower). This reflects the anti-phase to in-phase pattern phase transition. 
Imagine now that the system is first located at the bottom of the 0° valley, mean-
ing that the system begins to oscillate in-phase. Because of the depth of the well, 
the system cannot jump out of the 0° basin of attraction. Later stochastic forces 
were added to account for the mechanisms responsible for the phase transition, 
which is the critical fluctuations of the order parameter that are elicited by the  
interaction of the different parts of the system Schöner (1990).  

2.2.2   Coupling Components with Different Intrinsic Dynamics 

2.2.2.1   Similar Oscillators with Different Eigenfrequency 
How does the coordination dynamics evolve when the coupled elements do not 
share the same characteristics? In terms of behavior, dynamical phenomena  
(pattern formation, multistability, phase transition, critical fluctuations ...), first 
identified by Kelso (1981, 1984), turned out to be generic and were reported when 
coupling oscillators of various nature, i.e., when coupling a limb and an auditory 
metronome (Kelso et al., 1990; Wimmers et al., 1992) or in case of coordination 
between two (or more) non-homologous (a wrist and an ankle, for instance) limbs 
(Kelso et al., 1992; Kelso et al., 1991; Salesse et al., 2005) with different length, 
size and weight, and consequently.  

In such coordination, components exhibit different individual eigenfrequencies, 
Δω differs from zero. More precisely, the higher Δω, the more heterogenic are  
the components. This is of importance because a stable synchronization (that is 
constantly maintaining a phase- and frequency-locked coordination) can only be 
produced for a certain range of  Δω values (see figure 6). For concreteness,  
let us imagine a one-dimensional system sincφ ω φ= Δ −  with 1 2φ φ φ= − , 

1 2ω ω ωΔ = −  and c the coupling function. To find the phase-locked states, we set 

0 sin 0 sin 1c
c

ωφ ω φ φ Δ= ⇔ Δ − = ⇒ = < . In a more general manner, figure 4 

clearly illustrates that the synchronization and phase-locking phenomena depend 
on both the coupling (c) and the intrinsic dynamics of each oscillator (Δω).  

Even if the M effect and the attraction to a certain phase still exist, they are 
strongly counterbalanced, even dominated by the maintenance tendency. Then in 
this case, φ can take a large range of values giving birth to a new kind of behavior 
labeled “relative” coordination. The latter is characterized by the fact that it  
does not correspond to a mode locking. Then, due to the detuning, we can observe 
systematic and progressive slippage in the phase relation between components 
interrupted by stationary stages of phase locking. The latter has been termed 
intermittency by Kelso. The potential function V(Φ) = -Δω -acos(Φ)-bcos(2Φ) for 
various values of detuning, Δω, is plotted in figure 5. 
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Fig. 4 The rate of change of Φ is plotted against 
c

ωΔ
. The figure shows that the oscillators 

are phase locked ( 0φ = ) only when 
c

ωΔ
 varies between -1 and 1. 

 
Fig. 5 Representation of the potential V(f) with broken symmetry (Δω). The amount  
of detuning (Δω) together with the frequency increase (from black to light gray lines, 
b/a=1, 0.75, 0.5, 0.25, 0) induces the progressive vanishing of stable fixed points located  
at φ=0, ±180° together with a shifting away from the pure in-phase (0°) and anti-phase 
patterns (180°).  
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2.2.2.2   Interaction of Movement of Different Type 
So far, we have focused on coordination involving oscillatory movements. How-
ever, simultaneously moving two limbs in a rhythmical fashion constitutes only a 
subset of human motor behavior, especially so when considering the upper limbs. 
Most of the time our limbs move either in a discrete or rhythmic fashion, or in a 
combination thereof. Discrete movements are segmented motions preceded and 
followed by a period of quiescence where the velocity is zero. Such endpoints do 
not exist when executing periodical movements and rather appear smooth and 
regular, often sinusoidal. Using a classification based on phase flow topologies, 
recent works of Huys and colleagues Huys (2008) unambiguously showed that 
discrete and rhythmic movements pertain to different classes. The discrete move-
ment can be described in terms of fixed point dynamics, whereas the rhythmic 
movement can be described in terms of limit cycle. These two topologically dif-
ferent structures cannot be reduced to each other and have consequently a different 
(intrinsic) dynamics5 (Perko, 1991; Strogatz, 1994 (see also Raoul Huys in this 
volume)]. Various studies, in particular led by Dagmar Sternad and colleagues, 
have investigated the interaction between simultaneously executed arbitrary 
movements such as discrete and rhythmic movements (Latash, 2000; Michaels  
et al., 1994; Sternad, 2008; Sternad et al., 2007; Sternad et al., 2000; Sternad et al., 
2007; Wei, 2003). The results of these studies are many, however, not univocal, 
because often appropriate control conditions were lacking or were different across 
different studies; frequently only limited ranges of frequency were examined, and 
it has not been clear if the adopted variables characterized the system dynamics 
sufficiently. In other words, the coordination dynamics of non-rhythmic move-
ment is far less understood than that of rhythmic movements. This is not surpris-
ing considering that rhythmic movements are sufficiently described by its phase 
variable, which is not trivially the case for discrete movements. In other words, 
rhythmic movements appear to be lower dimensional than discrete movements. In 
a recent study, some of us Calvin (2010) have examined the coupling between 
discrete and rhythmic movements through an behavioral experiment. We manipu-
lated the position in the rhythmic cycle of ‘discrete stimulus deliverance’ as well 
as the rhythmic movement frequency. Participants performed auditory-paced left-
handed oscillations around the wrist at 0.5 Hz, 1.0 Hz, 1.5 Hz, 2.0 Hz and 2.5 Hz. 
They were instructed to perform a single (i.e., discrete) flexion–extension move-
ment as fast as possible at the onset of a auditory stimulus that was given at differ-
ent phases relative to the left-handed oscillations (at 0°, 45°, 90°, 135°, 180°, 
225°, 270° and 315°). Analyses indicated that the coupling affects both the dis-
crete and the rhythmic movement. Indeed, reaction time (RT) and movement time 
(MT) of the discrete hand movement was longer as the frequency of oscillation of 
the contralateral left hand was slower. No effect of the phase of discrete move-
ment initiation was found. In contrast, the (normalized) Hilbert phase progression 
(indicating the degree of acceleration/deceleration) of the rhythmically moving 
left hand varied as a function of frequency as well as the point of discrete  
 

                                                           
5 A fixed point is a point in phase space where velocity is zero. A limit cycle, as previously 

described, is a closed structure describing repetitive motion. For details, please see the 
chapter by Armin Fuchs in this volume. 
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Fig. 6 A- Normalized phase progression of the rhythmic hand movement during the 
discrete flexion movement. AP = anti-phase (180°); IP = in-phase (0°). Values larger 
(smaller) than one indicate acceleration (deceleration) relative to uncoupled rhythmic 
movement. Note the change from a bimodal to unimodal structure with increasing fre-
quency. B- 3D representation of the HKB model. The potential describing the relative 
phase dynamics is plotted as a function of the frequency. At low frequencies, the system 
may, depending on the initial conditions, settle at the (global) minimum at IP or the (local) 
minimum at AP. As frequency increases, the local minimum at AP vanishes (the stable 
solution destabilized).  

movement initiation. Figure 6 A summarizes our key result: it shows how at low 
frequencies the rhythmic hand accelerated when the discrete movement was initi-
ated at around 90° and 270°, but not at 0° and 180°. When movement frequency 
increased, the acceleration vanished, and a deceleration was observed when the 
discrete movement was initiated at approximately 180° for high frequencies. This 
pattern shows a remarkable correspondence to the famous bimodal to unimodal 
probability distributions at increasing frequency in the rhythmic – rhythmic coordi-
nation scenario (compare figure 6 B). This finding is the first signature shadowing 
rhythmic–rhythmic coordination in the rhythmic––discrete case, and provides an 
exciting entry point to the claim that the HKB coupling can be invariant across 
components irrespective of their intrinsic dynamics.  

In the framework of the dynamical patterns perspective, the interaction between 
discrete movements received even less attention. Kelso et al. (1979) explored this 
kind of coordination and evidenced as a main result that when the two hands per-
formed simultaneously discrete actions with different amplitudes, the coupling 
induces a synchronization of the two segments due to the acceleration of the hand 
that performs the longer movement and a deceleration of the hand that performs 
the shorter movement.  

In terms of modeling, the relevance of the HKB model to formalize the interac-
tion between rhythmic movements is beyond dispute, but its application remains 
limited to this type of action and can by itself predict neither the dynamics of a dis-
crete–discrete coordination nor that of a rhythmic–discrete coordination. It needs to 
understand and model the discrete movement, which has been done by Huys et al. 
(2008). Alternative models exist, for instance, Schöner (1986) proposed a model to 
capture the dynamics of coordination between two discrete movements using  
Gonzalez Piro oscillators coupled by the HKB coupling. However, this model  
was not validated experimentally, which limited its impact. Coordination between 
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discrete and rhythmic movement was modeled by Sternad and collegues (2000)  
for the interaction between joints of the same limb and included a different ad hoc 
coupling function.  

3   Extracting Principles Underlying the Formation of 
Coordinative Patterns: Convergence and Divergence 

An apparent gap among the different paradigms on coordination exists. The rhyth-
mic–rhythmic coordination is well, almost exhaustively, studied. More general forms 
of coordination involving non-rhythmical movements are far less studied and less 
well understood (see Sternad (2008) for an overview). It is evident that the mecha-
nisms underlying human motor behavior in general and motor coordination in par-
ticular cannot be understood by a simple extrapolation of our knowledge (in term of 
concepts as well as tools) from the rhythmical paradigm. More precisely, concepts 
and tools suitable for investigation of rhythmic coordination are not simply converti-
ble to other coordination. For example, the concept of stability developed for the 
rhythmic domain cannot be transferred to the rhythmic – discrete coordination, since 
the latter cannot be described by a fixed point dynamics or potential function; fur-
thermore, discrete movements are by definition transient. Hence, what needs to be 
developed is a framework that is more general and includes the bimanual rhythmic 
description as a special case. Attempts thereof have been made (Schöner, 1990;  
Sternad, 2000), but have not provided any generalizable concepts so far. 

To fill these gaps, a theoretical framework based on first principles was recently 
introduced in terms of phase flows Jirsa (2005). More precisely, these authors have 
recently proposed that mechanisms and processes responsible for movement gen-
eration, timing and motor coordination can be conceived as phase flows (see the 
Huys Chapter for detailed explanations and usage of phase flows). Phase flows 
describe the rate of change in a system’s state space and govern the evolution of the 
system as a function of its current state. The fundamental aspect of phase flows is 
that they can be classified according to their flow topology. Any dynamic system 
with the same phase flow topology is member of the same class and essentially 
describes the same system. Then, the phase flow topology is an unbiased general 
representation of “processes” executed by a dynamical system within its phase 
space. Following the example of Schöner (1990), Jirsa & Kelso (2005) used the 
HKB coupling to couple two distinct phase flows capable of mimicking discrete 
movements. Later works established that these phase flows indeed are likely to be 
used by the human motor system (Fink et al., 2009; Huys et al., 2008).  

In the current chapter, we wish to push this line of thought further and extend it 
to a generalizable conceptual framework. We summarize the nature of a biological 
coupling as follows: If a given coupling between two or more effectors is weak, 
then the coupling will induce deformations in the phase flows of the effectors. In 
other words, the coupling will be considered weak, if the phase flow of the intrin-
sic dynamics of each subsystem is preserved as a whole (for instance, a limit cycle 
will remain a limit cycle rather than being turned into a bistable fixed point  
system by the coupling). The phase flow deformations by the coupling will be such 
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that certain trajectories in the state space (equal to processes) will be favored and 
others will be suppressed. In phase space, a selection of certain trajectories implies 
the exclusion of others; as a consequence the corresponding trajectories converge 
(motions attract each other) to each other toward the selected trajectory; or trajec-
tories may equally diverge (motions repel each other) from each other in case of 
bistability in the system. The idea of convergence and divergence of phase space 
trajectories has already been put forward by Jirsa & Kelso (2005) when analyzing 
the dynamics of two coupled end effectors with discrete movement phase flows. 
More generally, Jirsa & Kelso (2004) suggested that convergence/divergence, 
integration/segregation or grouping/ungrouping of trajectories in phase space can 
be the key mechanisms responsible for trajectories formation, perceptual behavior 
and sensorimotor coordination. Observations from motor coordination domain 
revealed that interaction between limb movements (irrespective of the discrete or 
rhythmic nature of coordinated movement) implies that the movement of one 
 accelerates or decelerates the other (and vice versa) (see Kelso et al., 1979 for 
discrete–discrete coordination, Calvin (2007) for rhythmic–discrete coordination, 
De Poel (2007) for rhythmic–rhythmic coordination). Our above formulation of 
the nature of coupling allows us to generalize this thought to arbitrary couplings 
and their function, as well as providing a precision of the vocabulary. This formu-
lation of coupling includes the specific case of bimanual rhythmic coordination 
and can be generalized to phenomena including perception–action. In the follow-
ing we wish to elaborate thereupon. 

3.1   Experimental Evidence for Convergence/Divergence in 
Perception–Action 

Studies on perception have showed that the formation of percepts change as a 
function of the spatiotemporal cohesion of the stimuli. Herzog & Koch (2001) 
showed that grouping can influences visual processes inducing the emergence of 
different visual percepts from the same stimuli. Furthermore, when listening to 
sequences of sounds, the sounds may be grouped together and so perceived as 
emanating from a single source, or perceived as separate auditory streams that 
originate from distinct sources. For understanding these auditory phenomena, 
Bregman (1990) introduced the concept of auditory streams as the critical phase in 
the perceptual process of interpreting the auditory environment. Auditory stream-
ing entails two complementary mechanisms: 1/ how sounds cohere to form a sense 
of continuation is the subject of stream fusion or stream integration; 2/ since  
more than one source can sound concurrently, a second domain of study is how 
concurrent activities retain their independent identities –– the subject of stream 
segregation. In normal hearing, the most obviously demonstrable cues for stream 
segregation are frequency separation and rate of presentation ((Bregman et al., 
1971; Van Noorden, 1975). In an early work of Van Noorden (1975), listeners 
were presented with sequences of pure tones (A and B) differing in frequency and 
presented with different tempo. It was observed that when the difference in fre-
quency between A and B was small and the tempo was low, sounds tended to be 
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grouped together perceptually and listeners perceived a single melodic stream (one 
stream). In contrast, as the tempo and the frequency separation between alternat-
ing tones increase, so does the probability of hearing two distinct auditory streams 
(two streams). In this case, listeners perceived the sequence as consisting of two 
streams, one formed by the A tones and the other by the B tones. This experiment 
revealed that different perceptual patterns emerge when manipulating two parame-
ters: the frequency difference between tones and the tempo (tone repetition) that 
act as control parameters inducing changes in percept dynamics. In the context of 
our present chapter, two patterns or modes of perception emerge, that is segrega-
tion (two streams) and integration (one stream). Both perceptual modes are in 
competition with each other (see Almonte et al., 2005 for a dynamic modeling 
study using competition networks), displaying either monostability (only one 
mode exists) or bistability (both modes are possible) as a function of the control 
parameters, not unlike the foreground–background separation in vision or the 
situation in bimanual coordination as discussed previously. In a conceptually re-
lated study on multisensory integration, Dhamala et al. (2007) used functional 
magnetic resonance imaging (fMRI) to shed light on the neural mechanisms  
underlying perceptual integration and segregation. They presented two stimuli 
(auditory stimuli precede the visual one and vice versa) together with a time delay 
separating them (Δt from 0 to 200 ms). The control parameters of stimulation fre-
quency and time delay were varied and subjects were required to classify percepts. 
As a function of the timing parameters (control parameters), three percepts were 
identified: one “synchronous” percept (the tone and the flash were perceived si-
multaneously), two “segregated” percepts, one corresponding to sound preceding 
the light and the other light preceding the sound; and one “drift” percept corre-
sponding to a perception, in which the subjects were unable to report the order. 
These findings revealed the existence of two distinct perceptual states, again a 
bistable regime composed of both integrated and segregated patterns and an in-
termediate regime (drift) where none of the segregated or integrated patterns were 
clearly adopted and maintained. The analysis of the fMRI data identified neural 
networks involving prefrontal, auditory, visual, and parietal cortices and midbrain 
regions for perceptions of physically integrated, segregated (auditory–visual or 
visual–auditory) events and drift. Remarkably, the perception of integration and 
segregation revealed differential network activations, whereas the drift network 
was mostly left with rudimentary network activations. These findings provide fur-
ther, and in addition neural, support for the ontological interpretation of integra-
tion and segregation as behavioral (perceptual) patterns of operation. 

We wish to emphasize one more time that perceptual patterns, integration and 
segregation, correspond to an emerging mode of operation and result in a stable 
(perceptual) state displaying all properties (multistability, hysteresis, transitions, 
etc.) known from dynamic systems and as discussed previously. Hence, we have to 
conclude that the corresponding state space, in which the perceptual dynamics 
evolves (and which is so far inaccessible to us by measurement), has converging and 
diverging trajectories; hereby the converging trajectories evolve toward the stable 
patterns of integration and segregation. Then the diverging trajectories correspond to 
the areas of phase space in which the flows evolve into opposite directions. This 
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reasoning allows us to better formalize the concepts of convergence and divergence, 
as well as segregation and integration. Convergence and divergence describe the 
directions of flow in the phase space, whereas integration and segregation refer to 
modes of operation of the perception action system. This is in subtle contrast to the 
formulation by (Kelso, 1995; Lagarde & Kelso, 2006), in which “integration” refers 
to grouping of individual coordinating elements that lead to the emergence of phase- 
and frequency-locked (stable) coordinative behaviors, whereas “segregation” is 
clearly associated with the notion of loss of frequency and phase locking –– as in 
phase drift for example –– induced by the fact that components become independ-
ent. The difference is mostly of semantic nature, though it needs to be clarified here. 
Lagarde & Kelso (2006) interpret segregation as the loss of integration, which is 
closer to our here formalized notion of phase flow divergence.  

Obviously, evidence for binding, grouping and integration is not restricted to 
the study of perception and has been studied in detail in various works of sensori-
motor coordination as already discussed in this chapter. Other relevant works in-
clude the one by Kelso et al. (1990) who reported that the coordination pattern of 
synchronizing the index finger flexion with an auditory metronome signal was 
significantly more stable than the syncopation pattern where the flexion of the 
index finger falls between two successive auditory events. These sensorimotor 
patterns correspond directly to the notions of integration (synchronization) and 
segregation (syncopation), as we presented them here. These results have been 
confirmed in experiments dealing with multisensory coordination dynamics 
(Kelso et al., 2001; Lagarde & Kelso, 2006). Indeed, the authors showed that the 
organization of movement in harmony with different stimuli from different sen-
sory modalities (audition and tact) was correlated to their temporal and spatial 
congruency. For example, in Kelso et al’s experiments (2001) subjects were asked 
to coordinate finger flexion or extension with an auditory metronome, the fre-
quency of which was systematically increased. At the same time, they were re-
quired to touch a haptic contact realized by a physical stop, located either in coin-
cidence with or in counterphase with the auditory stimulus. Results showed that at 
a critical frequency, irrespective of whether subjects used flexion or extension for 
synchronizing with the (auditory) metronome, the subjects (re)organized their co-
ordination dynamics of sound, touch and movement. At low frequencies regimes, 
the two separate modalities were segregated; however when frequency increased, 
stable coordination was maintained only if auditory and haptic signals were inte-
grated to compose a “coherent perception–action unit” Kelso et al. (2001). 

3.2   Formalization of Convergence/Divergence in the State Space 

As shown above, the phase flow in state space (or phase space) contains all infor-
mation about the dynamics of a given system. Since the phase flow topology is the 
only determining criterion about the nature of a system, the invariant flow ele-
ments in phase space giving rise to topologically relevant structures will be of 
particular interest. The latter includes fixed points, limit cycles and separatrices, 
where a separatrix is defined as a set of phase space points at which the direction 
of the phase flow vector changes its orientation (in a given dimension) pointing 
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away from the separatrix. Stated simply, a separatrix is an element that “separates” 
two regions of phase space with opposite flows. In a one-dimensional system, 
every stable fixed point is an area of convergence; every unstable fixed point is an 
area of divergence and identical to a separatrix. In two-dimensional systems stable 
fixed points remain to be the areas of convergence; however, the saddle points and 
separatrices act as areas of divergence, but not the unstable fixed points (though 
the latter are topologically relevant). In the following, we illustrate these notions 
with various examples. 

Our one-dimensional system of choice is the HKB system, but not in its poten-
tial representation, but rather formalized by its phase flow in state space. It reads 
as follows: 

( ) sin 2 sin 2f a bφ φ φ φ= = − −  

with φ  as the relative phase between two nonlinear oscillators. The phase flow 
f(φ) is a vector field on the line and prescribes the rate of change φ  at each value 

of φ. When 0φ >  the vector field points to the right and when 0φ <  the vector 

field points to the left. When 0φ = , there is a fixed point. The fixed point is stable 
when the phase flow points toward it, else it is unstable. The phase flow for vari-
ous values of a and b is plotted in figure 10. If the two oscillators are uncoupled, 
a=b=0, then all phase relationships are possible, i.e., φ can take any value. Thus 

0φ =  for all values of φ. These fixed points are neither stable nor unstable. If a 
perturbation is imposed on one of the two oscillators or to the both, it induces de-
viations of the trajectories of the oscillators and consequently the establishment of 
new phase relationships. If the two oscillators are coupled, then their dynamics is 

described in figure 10. When 1
b

a
=

 
and a,b>0 (figure 7 A), then we find the 

fixed points *φ  by setting 0φ =  and obtain 
3

* ; ;
2 2

π πφ π= ± ± ± . To determine the 

stability of these fixed points, let us examine the vector field:  
when sin 2 sin 2 0a bφ φ− − > , the flow is to the right and it is to the left  

when sin 2 sin 2 0a bφ φ− − < . Thus, * ;0φ π= ±  are stable fixed points, since the 
flow converges toward them. These points act as areas of convergence, where 

* 0φ =  indicates integration (the oscillators move synchronously) and *φ π= ±  
indicates segregation (the oscillators move in anti-phase). On the contrary, 

3
* ;

2 2

π πφ = ± ±  are unstable fixed points and their neighboring flow points away 

from them. These points are areas of divergence. The arrows  
represent the vector field: when starting at π/4 <φ0 ≤ π/2, the flow moves to the left 
increasingly slowly until it crosses φ=π/4 where f(φ) reaches its minimum. Then 
the flow starts moving increasingly faster when approaching the stable fixed point 
φ=0. Starting at π/2 <φ0 ≤ 2π/3, the flow moves to the right faster and faster until it 
crosses φ=2π/3. Then the flow starts slowing down and approaches the stable  
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fixed point φ=π. The velocity with which the phase is attracted by the fixed point 
located at φ=0 is greater than that at φ=π. In terms of behavior, it reflects the 
bistability of the coordination dynamics at low frequency regime: indeed in-phase 
and anti-phase patterns are the two attractors of the coordinative behavior and  
the in-phase pattern is more stable than the anti-phase pattern. As the 
 

 

 
Fig. 7 Phase flow representation of the dynamics of the relative phase (φ) obtained for dif-
ferent values of b/a (see text for explanation). 
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Fig. 7 (continued) 

movement frequency increases, the ratio decreases, 1
b

a
< . Note that

b

a
  

expresses the relative importance of the phase attraction at 0 and π; 

when 0.75
b

a
= , the shape of the phase flow changes but the phase flow  

topology stays the same (figure 7 B, C). Indeed, all stable fixed points are still 
located at the same locations, but the unstable fixed points shift progressively 
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from 
3

* ;
2 2

π πφ = ± ± toφ π= ± . When 0.25
b

a
≥ , the topology of the phase flow 

changes qualitatively (Figure 7 D, E, F). The unstable fixed points collapse with 
the stable fixed points at φ π= ±  and leave the system with one unstable fixed 
point only. The slope of f(φ) is negative at φ=0, signaling the presence of a stable 
fixed point and is positive at φ=π indicating the presence of an unstable fixed 
point. In terms of behavior, it corresponds to the fact that when the frequency in-
creases, the anti-phase pattern no longer exists and a phase transition occurs to the 
more stable in-phase pattern. 

For the higher-dimensional system, we represent indeed the same HKB dynamics, 
but in its original four-dimensional configuration (two coupled oscillators). We start 
off with figure 2, representing the two oscillators in their respective two-dimensional 
phase planes. In conjunction, these two phase planes span a four-dimensional system, 
in which the system as a whole is characterized by one limit cycle. The two phase 
planes then represent projections into the individual subspaces. If they are uncoupled, 
then all phase relationships are possible corresponding to different angles of the tra-
jectory in the four-dimensional space. A representation thereof is found in figure 8, in 
which three axes (position x1 and x2 of the two oscillators and velocity y1) are shown. 
The different trajectories with different relative phases cover continuously a cylinder 
and no particular phase is preferred.  

When the oscillators are coupled, then the trajectories corresponding to the 
relative phase 0 and 180° are selected and stabilized. The coupling deforms  
the uniform phase flow seen in figure 8 and causes the trajectories to converge to 
the two stabilized patterns of in-phase and antiphase (see figure 9). 

 
Fig. 8 Trajectories of the same oscillators are represented in a 3D phase space. A cylinder is 
plotted along with the trajectories to help their visualization. When the two oscillators are 
uncoupled, they are able to establish all phase relationships, and the trajectories correspond-
ing to these relationships are represented along the cylindrical manifold.  
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Fig. 9 When the two oscillators are coupled, the coupling restricts the phase relationships 
that the two oscillators can establish, only two persist: one trajectory corresponding to the 
in-phase (0°) in blue and another corresponding to anti-phase (180°) motion in red are 
shown. These trajectories indicate regions of convergence. The arrows indicate the newly 
established phase flow. In the middle on the cylinder (black line) is the separatrix, where 
the phase flow diverges toward either of the convergence zones. 

As the control parameter passes through the critical value, the phase flow reor-
ganizes and the convergence zone around the anti-phase trajectory disappears, 
rendering itself to a zone of divergence (see figure 10).  

 
Fig. 10 The same situation is shown as in figure 9, but for a value of the control parameter 
greater than the critical value. Only the in-phase trajectory (blue) is stable, the anti-phase 
trajectory (red) is unstable.  
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4   Conclusions 

In the current chapter, we have discussed in great detail the effects of coupling 
between biological oscillators with a focus on movement coordination. We at-
tempted to provide an overview of the existing knowledge on dynamic descrip-
tions of movement phenomena. We particularly emphasized the perspective of 
phase flows, in which biological coupling can be understood as weak deforma-
tions of the phase flow of the intrinsic dynamics of biological oscillators. The line 
of thinking provides us with a generalized description of coordination dynamics 
with the potential of applications to non-rhythmic behaviors. Future research will 
show its fruitfulness in applications to behavioral neuroscience. 
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Do We Need Internal Models for Movement 
Control? 

Frédéric Danion1 

Abstract. The issue of how humans and animals perform accurate movements has 
been addressed in various ways. Although this book is promoting concepts 
stemming from dynamical systems theory, other approaches have contributed to 
the understanding of movement as well. Among others, the equilibrium point 
theory and the computational theory deserve to be listed for their contribution to 
this field of research called motor control. In this chapter, using single-joint 
rhythmic movement as an example, I will start first emphasizing the respective 
contributions and drawbacks of each approach. Then I will address the issue of 
parameter selection. Indeed, despite diverging opinions about the possible nature 
of control parameter(s), all three approaches must deal with the problem of how 
adequate parameter(s) to achieve a desired movement are selected. At the end of 
this chapter, I will expose how the concept of internal model may offer a solution 
to this problem.     

1   Dynamical Systems Theory   

Dynamical systems theory and its applications have been addressed extensively in 
the other chapters of this book. In this section, I will concentrate on a number of 
studies issued from this approach that have addressed the control of single-limb 
rhythmic movements (see Huys, this volume). As reported by Beek and colleagues 
(1996), in those studies, the dynamics of rhythmic movement are typically 
captured by a second order differential equation of the form: 

( , ) ( ) 0mx f x x x g x+ + =                                         (1) 

where x is the angular displacement, x  and x  the first and second derivative of x 
with respect to time. The first term expresses the inertia of the system, the second 
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expresses the system’s damping (viscosity), and the third one accounts for the 
system’s stiffness (elasticity).  

Several ways to implement damping and stiffness have been proposed to 
account for experimental data. In a seminal study, Kay and colleagues (1987) 
investigated oscillatory wrist movement at various frequencies (from 1 to 6 Hz). 
The authors emphasized that wrist movement kinematics can be well accounted by 
the following differential equation: 

2 2 2( ) 0x x x x xα β γ ω+ + + + =                               (2) 

In this equation, stiffness is a linear function while damping is a non-linear 
function. For those familiar with oscillators, equation 2 is in fact a combination of 
Rayleigh (when γ=0) and Van Der Pol oscillators (when β=0). These two types of 
oscillators exhibit limit cycles and self-sustained oscillations. The interesting 
feature of this so-called hybrid oscillator is that by adjusting the value of 
parameters α, β, γ, and ω, it becomes possible to account for the kinematics of 
wrist movements over a wide range of frequencies. Rhythmic movements are not 
perfectly sinusoidal. In fact, there are subtle changes in their kinematics as a 
function of frequency (Kay et al., 1987; Beek et al., 1996). By adjusting the value 
of each parameter, it is possible to account for a wide variety of movement 
kinematics. For instance, to vary the frequency of oscillation, one can change the 
value of ω. Then, by modulating the damping terms (α, β, γ), it becomes possible 
to make the oscillations more or less harmonic. In addition, the amplitude of 
movement is (directly or indirectly) under the influence of all parameters. 

In another study, performed by Mottet and Bootsma (1999), a differential 
equation was also proposed to account for the changes in movement kinematics 
resulting from changes in accuracy constraints during a reciprocal aiming task. 
The equation was the following one: 

3 3 0x Ax Bx Cx Dx+ − − + =                                   (3) 

While keeping the same equation, and adjusting the value of the parameters (A, B, 
C, and D), the authors obtained a good fit of experimental trajectories performed 
under various indices of difficulty (by manipulating target width and movement 
amplitude). The corresponding set of parameters for each index of difficulty is 
provided in Figure 1. 

The earlier studies show the power of differential equations to account for 
rhythmic movements. However, one may eventually question the physical or 
biological relevance of the parameters present in those equations (Rosenbaum, 
1998). Although some of the terms are often proposed as the expression of 
damping and stiffness present into the oscillating system, should we understand 
that ω in equation 2 really accounts for the stiffness of the wrist? The answer is no 
because, even if some salient properties of an oscillating system can be derived 
from its kinematics during steady-state regimes, the only valid way to assess  
its stiffness is to investigate its response to a mechanical perturbation (the  
smaller the effect, the greater the stiffness). This problem is illustrated by the  
 

 



Do We Need Internal Models for Movement Control? 117
 

 
Fig. 1 Value of coefficients A, B, C, and D, as a function of the index of difficulty. 
Increasing difficulty shows a parallel increase of the damping (triangles) and stiffness 
(squares) coefficients, denoting an increasing contribution of the nonlinear terms. 
(Reprinted with permission from Mottet & Bootsma, 1999) 

following example. Each of us can maintain a slow rhythmic movement of the 
wrist while modulating concurrently the degree of cocontraction between agonist 
and antagonist muscles. Although the kinematics remain unaffected by this 
procedure, the response to a given mechanical perturbation will change depending 
on the level of muscle cocontraction. With a higher level of cocontraction, the 
deviation from the initial trajectory will decrease, thereby supporting a higher 
stiffness. This example demonstrates that observations of phase portraits are not 
sufficient to infer the ‘true’ stiffness of an oscillating system, i.e. its resistance to 
perturbation.  

Another difficulty arises from the fact that it is hard to compare values of 
stiffness measured through perturbation techniques, with values of stiffness 
estimated in the earlier studies, simply because they are provided in completely 
different units. For instance, stiffness is expressed in Nm/rad in Bennet et al. 
(1992), while it is expressed in Hz in Kay et al. (1987). This partly explains why 
discrepancies can be found between the two approaches. For instance, although 
techniques based on mechanical perturbation indicate that elbow stiffness is 
constantly modulated during each cycle of movement (Bennet et al., 1992), some 
studies stemming from the dynamical approach assumed that stiffness is not time-
varying (e.g. see equation 2).  
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Altogether, should those conflicting interpretations question the biological 
relevance of the parameters used in differential equations? Or did we simply 
misunderstand some of the concepts behind those differential equations? A 
response can partly be found in the paper of Beek et al (1996), who state that in 
the dynamical systems approach, “stiffness and damping are abstract control 
parameters that refer to the space-time behavior of the system as a whole, 
whereas in (bio)mechanics, they refer to locally identifiable concrete force and 
structures” (p.1077). This means that stiffness and damping do not account only 
for the physical properties of the limb, but also include the dynamical properties 
stemming from the nervous system (at both cortical and spinal levels), as well as 
the physical properties of the environment in which movement is taking place 
(external forces). This means that if the subject is oscillating vertically his or her 
wrist within a stiff and/or viscous manipulandum, the resulting set of parameters 
needed to account for the wrist kinematics refers to both the physical properties of 
the limb, the nervous system, the apparatus, and the external forces (here gravity). 
The dynamical approach, in general, does not evaluate the relative contribution of 
each of those components. The strategy is rather to propose a single equation that 
summarizes all those contributions.              

Obviously, when we perform an oscillatory movement, we have the possibility 
to modulate several of its features. The rate at which we oscillate the limb 
(frequency) and the distance covered between two extrema (amplitude) can be 
adjusted within a certain range. Let’s assume that you are oscillating your limb at 
1 Hz, and that now you want to oscillate at 2 Hz. What are you supposed to do? 
Assuming that our earlier differential equation is still adequate for this situation, 
something in your brain must happen to change the value of one or several 
parameters, otherwise your movement will not change. Returning to the study of 
Mottet & Bootsma (1999), there are several possibilities to increase frequency. A 
first possibility would be to decrease C. A second option would be to increase A. 
A third possibility is to do both. Just by using this simple example, we already see 
that there are multiple options to obtain the desired effect. This well-identified 
problem in motor control is known as the redundancy problem and has been first 
pointed out by Bernstein (1967) to emphasize the difficulty of controlling the end-
effector in multi-joint movement. Despite this ambiguity in selecting a strategy to 
increase movement frequency, none of us would end up decreasing his or her 
frequency, even if suddenly asked. This observation simply means that the brain 
has a priori some knowledge about the influence of those parameters on 
movement kinematics. How this knowledge is used and stored in the brain will be 
addressed in section 5.  

2   Positional Control and Equilibrium Point Theory   

In contrast to the dynamical systems approach, the equilibrium point theory allows 
to disentangle the relative contribution of external forces, limb properties, and 
motor commands. A key difference is that this theory suggests that movement is 
initiated through changes in parameters that have a biological meaning. In its most  
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famous version, this parameter corresponds to the threshold of the tonic stretch 
reflex (for reviews see Feldman 1986; Latash, 1993; Feldman & Levin, 1995). 
More specifically, it is assumed that for each muscle, the brain can adjust the 
threshold length (λ) at which the tonic stretch reflex is engaged. If the actual 
length L of a muscle is greater than λ, then the tonic stretch reflex is elicited, and a 
resisting force proportional to L minus λ is generated by the muscle, meaning that 
electromyographic (EMG) activity should be observed. In contrast if L is equal or 
inferior to λ there is no EMG activity and the muscle resisting force is null. 
Altogether, here muscles are viewed as a special kind of springs. First, they can 
generate force only in one direction (so as to shorten). Second, their resting length 
is adjustable. A crucial point is that, even if the λ of the biceps is held constant, 
EMG activity in my biceps can change depending on the conditions. For instance, 
if there is no external load applied on my biceps, then L = λ, and my biceps is at 
rest (i.e. no EMG activity). In contrast, if an external load (e.g. gravity) stretches 
my biceps beyond its resting length, EMG activity is instantiated to resist this 
external load. It is fundamental to realize that in this framework, EMG activity 
and movement are only indirectly connected with motor commands, since  
EMG emerges from the interaction between motor commands and external  
forces. Therefore muscle activity (and muscle force) must be interpreted 
cautiously, as well as differences across EMG patterns obtained under different 
types of external load.  

Obviously, we have more than one muscle, and this ultimately requires the 
existence of multiple λs. Instead of dealing with one λ per muscle, many defenders 
of the equilibrium point theory assumed that muscles being functionally identical 
are driven by a single λ (Latash, 1993; Feldman & Levin, 1995). In the case of 
muscles acting at the same joint, this lead to one λ for the agonist muscle group, 
and one λ for the antagonist muscle group. The difference and the sum between 
the two λ define new variables that still have physical meaning.  If we stick to the 
spring analogy, by changing the resting lengths of the springs in opposite 
directions, we modify the equilibrium position of the joint. Now if we modify the 
resting length of the springs in similar direction, we do not affect the equilibrium 
position of the joint, but we change its stiffness. If λ for agonist and antagonist are 
shortened by a similar amount, this leads to increased joint stiffness. Searching for 
simplification, a new set of variables has been proposed. The reciprocal variable 
(R) accounts for changes of λ in opposite direction, while the coactivation variable 
(C) accounts for changes of λ in similar direction. This change in coordinate 
system is ensured by the following equations:   

( ) / 2ag antR λ λ= −
 
and ( ) / 2ag antC λ λ= +                           (4) 

with λag and λant accounting for the length of the agonist and antagonist muscle 
above which a tonic stretch reflex is engaged. If λag and λant refer to threshold joint 
angles, the sign + and – should be exchanged. Note that the existence of separate 
neuronal systems for reciprocal activation and coactivation is supported by 
cortical recordings in monkeys (Humphrey and Reed, 1983).   
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To account for single-joint oscillatory movement, Feldman (1980) suggested 
that beyond 1 Hz, R shifts back and forth by while C is held relatively constant 
between certain limits (see Figure 2A). Although more complex changes in R and 
C commands (see Figure 2B,C) have been proposed later by Latash (1992), in 
both versions, the C command is envisaged to increase as a function of movement 
frequency (this idea being reminiscent from what we proposed under the 
dynamical system approach). In addition, both versions suggest that the amplitude 
of shifts in R command is tailored so as to match the desired movement amplitude. 
Similarly, the frequency of shifts in R command is also tailored to match the 
desired frequency of movement.  

 

Fig. 2 Patterns of R and C commands hypothesized for the maintenance of a rhythmic 
movement.  

Let us now raise a few issues showing why controlling movement through 
shifts in equilibrium point does not necessarily simplify movement control. When 
I exposed the influence of the R and C commands, I did so in the absence of 
external forces. However, the net effect of changes in R and C commands 
becomes less trivial in the presence of an external load (Gottlieb, 1995; Flanagan 
et al., 1995). For instance, if we hold our forearm stable horizontally (i.e. against 
gravity), a change in R command will affect the equilibrium position of the limb, 
meaning that the forearm will move up or down (depending on the change in R). 
On the other hand, one should realize that a change in C command can also move 
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the forearm upward or downward; for instance, if C drops, the forearm will move 
down. As a result, the same shift in elbow position can a priori be obtained 
through many changes in control parameters, making the interplay between R and 
C commands more complex than initially envisaged. Again, we are facing the 
redundancy problem in selecting the appropriate set of motor commands. At last, 
because movement emerges from the interaction between R, C, and the external 
forces, the issue of maintaining the same kinematics against different external 
loads is not trivial. As pointed out by Gottlieb (1998a) in a commentary, the rules 
for changes in control parameters are neither obvious nor simple. It follows that 
the issue of how the brain sends the adequate motor signals to the muscles to 
generate the desired movement has been rarely addressed by the promoters of the 
equilibrium point theory (although see Gribble & Ostry, 2000), but I will come 
back to this point later.   

3   Force Control and Computational Theory 

In contrast to the dynamical system approach and equilibrium point theory, the 
computational theory proposes that the “strings” pulled by the brain to generate 
movements are muscle forces/torques. Because EMG reflects neural activation, 
and because EMG relates to muscle force (Gottlieb & Agarwal, 1971; Olney & 
Winter, 1985; Thelen et al, 1994), some researchers find attractive that the 
nervous system could deal directly with muscle force when producing voluntary 
movements. This view is supported by numerous studies in which invariant 
strategies were found when investigating changes in EMG activity as a function of 
task parameters such as movement amplitude, or movement speed (Gottlieb et al, 
1989; Almeida et al, 1995; Gottlieb, 1998b). For instance, in Figure 3, one can 
quickly notice that changes in EMG are relatively simple when a fast movement is 
performed over different amplitudes. Altogether, modulating the amplitude of the 
agonist burst (i.e. biceps) and the timing of the antagonist burst (i.e. triceps) 
provides a strategy that can account for a large variety of movements. This interest 
in EMG signals is also encouraged by many neurophysiological studies showing 
close relationships between the activity of cortical neurons and muscle force in the 
monkey (Georgopoulos et al, 1992; for a review see Ashe, 1997). In humans, 
using brain imaging techniques, Dai and colleagues (2001) have found that hand 
muscle activation (based on EMG and grip force) was directly proportional to the 
amplitude of the brain signal.   

Controlling directly muscle force may seem like an attractive way to produce 
movements, however, this may rapidly become a difficult task. Indeed, although 
the relationship between EMG and muscle force is relatively linear in static 
(isometric) conditions (Lippold, 1952), it is no longer the case during movement, 
for at least three reasons. First, muscles act on joints by means of torques, and 
moment arm of muscles can vary in a rather complex fashion as function of joint 
angle. Additionally, those functions can be relatively different across muscles 
(Pigeon et al, 1996). Second, even when considering muscle force only, it has 
been demonstrated that the ability of a muscle to produce force changes as a  
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Fig. 3 Kinematics and filtered EMG patterns associated with fast elbow joint flexion 
movements performed over different amplitudes (adapted with permission from Gottlieb et 
al, 1989)  

function of its length, as well as the rate of change of its length. Again those 
functions, known as force-length and force-speed relations, are both non linear 
(Hill, 1938). Third, even in the simplest case (i.e. when muscle length is constant, 
isometric conditions), progressive increase in non-linearity is evident in EMG-
force relationship above 50% of maximal force (Solomonow et al, 1986). 
Altogether, there are many evidences that the relationship between neural 
activation and muscle force/torque is not trivial.  

On top of non-linearities between neural activation and muscle force, recall that 
movement results from the interaction of many forces, muscle force being just one 
of them. Indeed, in many circumstances other forces, such as gravitational force, 
coriolis force, interaction torques, reactive force, contribute to movement as well. 
As a result, if muscle forces are explicitly controlled by the nervous system, they 
must be precisely tailored to achieve the desired trajectory. Lets examine the 
different forces/torques that contribute to the motion of the arm involving the 
shoulder and the elbow joint. The set of equations shown in Figure 4 allows for 
computing muscle torques based on individual joint kinematics. The method used 
here is called inverse dynamics. The ‘philosophy’ behind this method is to 
calculate the net torque acting at each joint (this is done based on the acceleration 
of the limb and its inertia) and to subtract for each value all the non-muscular 
torques also known to contribute to movement. For instance in our case, we  
know that the movement of the shoulder joint influences the movement of the  
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Fig. 4 Set of equations accounting for the movement of a bi-articular movement performed 
in the horizontal plane (adapted with permission from Sainburg & Kalakanis, 2000). 

elbow joint by means of interaction torques. As a result, these interaction torques 
are subtracted from the net torque of the elbow. When all non-muscular 
contributions are removed, the leftover is considered as the joint muscle torque. 
Although this set of equations is already complex, one should realize it would 
become even more intricate if movement was performed in the vertical plane, 
since this time a gravitational torque would also contribute to the shoulder and 
elbow net torque, the latter one being again a non-linear function of the arm 
orientation.  

Ultimately the question emerges, as to how the brain deals with this complexity 
arising from mechanical laws if it explicitly controls muscle force? The 
assumption made by the force control hypothesis is that the brain has some ways 
of evaluating the respective contribution of each force prior to movement 
initiation. More specifically, it is assumed that the brain possesses some internal 
representations of the body mechanics interacting with the environment. Those 
representations, also called internal models, would allow the brain to perform 
inverse dynamic computations so as to determine the adequate muscle forces 
needed to achieve the desired movement (Kawato, 1999). More details will be 
provided on internal models in the next section.  

Even though the concept of internal representations may offer a solution to 
muscle force computation, certain problems persist when controlling explicitly 
muscle force (Feldman & Levin, 1995; Ostry & Feldman, 2003). One of the 
concerns raised by Feldman and colleagues relates to the fact that switching from 
one muscle force to another does not always guarantee that we can make the 
intended movement. Let’s imagine that you want to flex or extend your elbow, 
and that the initial position of your forearm is such that it is parallel to the floor 
(see Figure 5). In this position the gravitational torque is maximal and the muscle 
torque acting at the elbow must compensate for the gravitational torque. As we  
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Fig. 5 Ambiguity of force control models when switching between postures. In posture A 
and B, the gravitational torque (Tgrav) is the same; as a result the muscle torque needed to 
stabilize the arm in A and B are identical.  

move away from this position, either upwards or downwards, the gravitational 
torque decreases. In fact, when the elbow stabilizes at 60° of flexion or extension, 
both postures can be maintained with 50% of the original muscle torque. Now 
how does the brain discriminate between these two postures if they both require 
the same muscle torque? And how can we switch unambiguously from the initial 
position to position A or B if they both require the same final muscle torque?  

One advantage of the equilibrium point approach is that posture A and B are 
determined by distinct R commands, thereby avoiding any ambiguity between 
postures and central commands. In contrast, with the force model approach those 
postures cannot be distinguished since they are based on similar motor commands. 
Note that this problem (setting postures) would be even more prominent in the 
absence of external forces. Indeed, in the absence of gravity (i.e. horizontal plane), 
all flexed and extended postures of the elbow can be maintained with the same 
(null) muscle torque (Ostry & Feldman, 2003). One option to circumvent this 
problem is that the brain may not only be concerned with the final muscle torque, 
but also with the successive muscle torques that leads to the final muscle torque. 
Taking into account the action of inertial load acting on the elbow, patterns of 
muscle torques can be separated for movement A and B. If the hand goes up 
(elbow flexion) by 60°, muscle torque will first increase and then decrease. In 
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contrast, if the hand goes down (elbow extension) by 60° muscle torque will first 
decrease and then increase. Altogether prescribing the time course of muscle 
torque may offer a solution to this problem. Obviously, as movement speed is 
decreased, the influence of the inertial load becomes smaller and smaller, and the 
similarity between the two patterns of muscle torque increases.  

Another weakness of the force control hypothesis is its inherent instability with 
respect to noise in motor signals. In the earlier example, serious drift in position 
can occur if the muscle torque at the elbow fluctuates. In contrast, with positional 
control, even if R and C commands fluctuate, movement drift will be much more 
restricted. At last, it is unclear how the force control hypothesis deals with muscle 
cocontraction (Ostry & Feldman, 2003), since what matters first is the difference 
between the agonist and the antagonist muscle torques (i.e. net muscle torque), 
while their respective values hardly matter. Still, because muscle cocontraction is 
known to change as a function of learning, accuracy constraints, or expectation 
about perturbations, it is often considered as a key variable for movement control 
(Gribble et al, 2003; Darrainy & Ostry, 2008). Further developments of the force 
control hypothesis suggest that inverse dynamics models could be assisted by an 
impedance controller dealing specifically with the issue of muscle cocontraction 
and related limb stiffness (Franklin et al, 2003).    

4   Mapping between Movements and Control Signals   

In the previous sections we have exposed three different theoretical approaches 
that account for rhythmic movements. Let us now compare more explicitly those 
approaches in term of the underlying control signals. We would like to particularly 
insist on the nature of these control signals as well as the complexity of their 
patterns in relation to movement kinematics (see Figure 6). In the dynamical 
systems approach, a rhythmic movement is sustained without the need of time-
varying input signals. Coming back to equation 2 and 3, as long as the parameters 
are held constant, the limb is supposed to keep oscillating at the same frequency 
and amplitude. In contrast, the equilibrium point approach and the computational 
approach both require time-varying input signals. If the underlying pattern of 
control signals can remain relatively simple in the equilibrium point approach 
(Gribble et al., 1998; Latash, 1993), it can become much more complex in the 
computational approach. Indeed, after removing the influence of external torques 
(such as gravity, or interaction torques) and other non-linearities (such as muscle 
moment arm), the net muscle force can exhibit a very complex pattern.  

To better illustrate the influence of time-varying input signals versus constant 
input signals, we propose to address the effect of a subtle mechanical perturbation 
that would temporarily impede an oscillatory movement (i.e. then leading to a 
phase lag with respect to initial kinematics). Assuming that humans can maintain 
input signals despite the perturbation, we can make distinct predictions about how 
the oscillatory movement is restored after the perturbation. In the case of non-time 
varying input signals, as provided by equation 2 and 3, we predict that the phase 
lag should persist well after the perturbation (see the example in upper row of  
Figure 7). In contrast, with time-varying input signals, the longer cycle will be 
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Fig. 6 Control signals used for a rhythmical movement in various approaches in motor 
control.  

 

Fig. 7 Effect of a subtle perturbation that creates a phase lag in an oscillatory movement. 
The interval between two consecutive vertical lines corresponds to the period prior the 
perturbation. In the upper row, the phase lag is maintained after the perturbation (phase 
resetting), whereas in the lower row, the phase lag is compensated by faster cycles (no 
phase resetting).  
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followed by shorter cycles so that the initial phase is progressively restored (see 
the example in lower row of Fig 7). In fact, the time varying signals act as a kind 
of “internal clock” that makes its phase more robust to external perturbation. In 
physics, the first example corresponds to an autonomous oscillator, whereas the 
second example corresponds to a forced oscillator. To date, experimental data 
provide evidences of phase resetting with transcranial magnetic stimulation 
(Wagener & Colebatch, 1996; Latash et al, 2003), but it is very unlikely that input 
signals were preserved by this procedure.    

In Figure 8, we compare changes in controlled parameter(s) underlying a 
rhythmic movement across the three theoretical approaches addressed in this 
chapter. The aim of this figure is to emphasize how the hypothetical controlled 
variable can be more or less closely related to the desired output (i.e. movement 
kinematics) in the different theoretical approaches. At the top of Figure 8, the 
dynamical systems approach proposes that the transformation from intention to 
movement is mediated by changes in abstract variables such as global stiffness or 
viscosity. Such changes may be followed by other changes in EMG, torques, 
reflexes, etc, but the latter are not explicitly controlled by the brain. At the other 
extremity (see bottom of Figure 8), the force control hypothesis suggests that the 
brain is explicitly concerned with fine details of the movement such as EMG and 
muscle torques that can be explicitly measured. The equilibrium point approach 
provides an intermediate position in which changes in EMG and muscle torques 
emerge from changes in reflex thresholds which are considered the key variables.  

 
 
Fig. 8 Relation between intention, controlled parameter(s), and movement, in various 
approaches in motor control.  
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There is no doubt that the processes underlying the transformation of an 
intention into an action are complex. However, depending on the theoretical 
approach, this complexity is accounted for differently by the properties of the 
control signal, and the controller (providing the adequate control signal). For the 
dynamical systems approach, the controller seems to provide relatively simple 
patterns of control signals, but the causal relationship between the underlying 
control signals and their effects on movement related parameters (such as muscle 
torques and EMGs) is less trivial. In contrast, with the force control hypothesis, 
the relation between movement and changes in control parameters is much 
straightforward (i.e. explained by the laws of mechanics), but the issue of how the 
brain specifies the appropriate patterns of input signals becomes less trivial. 
Altogether, none of these two theoretical frameworks really offers a simple 
solution to movement control. In the first case, movement complexity is rather 
accounted by the abstract properties of the control signals, whereas in the second 
case it is essentially taken care by the smart design of the controller. In contrast to 
these approaches, the equilibrium point approach offers an intermediate opinion 
under which movement complexity is accounted (more) equally by the properties 
of the control signals and the controller.  

Despite many differences across theoretical accounts, I would like to point out 
that, no matter the exact nature of the strings being pulled by the brain to produce 
a movement, the brain must know something about the relationship between those 
strings and their behavioral consequences when they are pulled. As a result, the 
issue of which strings should be pulled, and eventually how hard it should be 
pulled, is a question that can be formulated for each of the three approaches. 
Interestingly, while this question has been addressed frequently by the 
computational approach, it has been addressed less in the context of the dynamical 
system and equilibrium point approaches.  

Another important related issue is that the mapping between motor commands 
and their effect on our body can change over time. The properties of our body 
change, and do so over different time scales (Newell et al, 2001). Indeed, during 
development, although our body grows slowly, we are confronted with geometric 
and inertial changes in our segments, as well as changes in our muscle force 
capabilities (Shadmehr & Mussa-Ivaldi, 1994). In adults, body properties can also 
change due to physical training or weight loss, and sometimes quite rapidly due to 
phenomena such as muscle fatigue. Note that humans also like using tools, 
carrying objects, wearing shoes, which turns out to affect the inertia of their 
segments, and therefore the mapping between motor commands and movement 
(Shadmehr & Mussa-Ivaldi, 1994). As a result, it may not be surprising that 
teenagers become temporarily clumsy when their body properties change 
relatively rapidly, or that during pregnancy women exhibit larger postural 
instabilities (Jang et al, 2008). Now changes in the external environment can also 
alter the way our body responds to motor commands. Lets imagine that you walk 
or ride a bike, and that suddenly strong gusts of wind start to blow from the left 
side of the road. It is very unlikely that you will be able to maintain your speed 
and direction if the motor commands sent to your arm and legs do not take into 
account this new force. The same reasoning applies when we want to perform the 
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same movement in the air and under water, with or against gravity. Therefore, it 
should be made clear that there is no such thing as a unique mapping between 
motor commands and a resulting movement. Depending on the conditions (e.g. 
body properties and external forces), one motor command can give rise to two 
different movements, and conversely the same movement can originate from 
different motor commands. This conclusion fits well with the pioneering work of 
Nicholai Bernstein (1967): "the relationship between movements and the 
innervational impulses which evoke them is extremely complex and is, moreover, 
by no means univocal" (p.15). 

5   Internal Models versus Look Up Tables 

In the previous section we have discussed significant differences across motor 
control approaches. However, we have also pointed that all those approaches are 
based upon the existence of parameters whose value must be changed to initiate, 
maintain, and/or terminate an action. Let us take the example of a simple goal 
directed movement like that of our hand when we want to grasp an object. Each 
time we initiate such an action, our movement tend to be straight (Morasso, 1981), 
such that the initial direction of our hand is oriented toward the object (Sarlegna et 
al, 2004; see also Figure 10A). Because during the very first part of the movement 
(<50 ms), the brain has no access yet to sensory feedback resulting from the 
movement, this part of the movement can only be controlled in a feedforward 
manner. On top of demonstrating our ability to localize objects, this observation 
demonstrates that the brain possesses some knowledge about the relationship 
between (changes in) input signals and their effect on our body. Sometimes this 
knowledge can be partly of genetic origin (e.g. walking, swallowing, breathing…), 
but in many cases prior experience is necessary to acquire this knowledge. The 
question we would like to ask now is how this knowledge is stored in our brain? 
As proposed by Shadmehr and Mussa-Ivaldi (1994), there are two main options. A 
first option is to keep trace of behavioral (sensory) consequences induced by each 
parameter change that we have previously experienced, and to build a lookup 
table. A second option is using prior experience to create some kind of 
algorithm/function/internal model that allows for the computation of the 
relationship between our motor commands and their behavioral consequences. 

To better illustrate the concepts of internal model and lookup table, let us take 
the following mathematical example (see Figure 9). When being asked for the 
product of 5 times 5, anyone (I suspect) can respond 25 very quickly and without 
the need of doing some mental calculus. In fact, we just learnt the result of this 
operation (as well as many other ones) by heart when we went to elementary 
school. On the other hand, when being now asked what the product of 12 by 27 is, 
you will certainly take a longer time to respond, and start doing some kind of 
computation because the results of this operation is not stored in your memory. 
Still, most of us are able to provide the correct response (i.e. 324). This is possible 
because what is stored in our brain is a method (or algorithm) that allows us to 
compute the product of 2 digit numbers, or more. Ultimately we can consider that  
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Fig. 9 Look up table versus internal model approach when dealing with multiplication. 

what we use in the first case is a look up table, whereas it is more like an internal 
model in the second case. Note that without an internal model, we would be forced 
to store the results of all the possible pairs in our memory. The neat advantage of 
having an internal model is that we can provide correct answers to questions you 
have never been asked before. On the other hand, if someone was taught an 
inadequate method to compute 12 by 27, we expect this person to make errors for 
many other operations. This is where the lookup table may become more 
advantageous. Indeed, errors (can) remain local in a lookup table. We can easily 
imagine that someone being taught that 5 times 5 equals 26 can still correctly 
answer to what is the product of 5 times 4 or 5 times 6. These local versus global 
effects have been exploited to test whether the knowledge about our body and its 
environment is stored in lookup tables or in internal models (Shadmehr and 
Mussa-Ivaldi, 1994). 

The need to update the knowledge between changes in parameters and their 
consequences on the body is particularly obvious in the context of changes in 
external forces. By means of a robot arm, researchers can apply various external 
force fields ranging from elastic, viscous, to even more complex ones (Shadmehr 
and Mussa-Ivaldi, 1994; Shadmehr and Brashers-Krug, 1997; Malfait et al, 2002, 
2005). When subjects are confronted with unusual force fields, they typically 
experience difficulties in making straight movements and reaching targets (see 
Figure 10B). This difficulty arises from the fact that the ‘natural’ mapping 
between motor commands and their behavioral consequences has been modified 
through the action of the force field. Nevertheless, after a period of training, 
subjects can ultimately restore movement accuracy (see Figure 10C). A crucial  
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Fig. 10 Hand trajectories during exposure to a force field. A. No force field is generated by 
the robot arm. B. Early exposure to force field. C. Late exposure to force field. D. Trials in 
which the force field is unexpectedly removed. Movements originate at the center. Dots are 
10 msec apart (adapted with permission from Shadmehr & Brashers-Krug, 1997).  

feature of this learning phase is that if the force field generated by the robot arm is 
unexpectedly removed (so that initial conditions prior to the perturbation are 
restored), subjects start making again inaccurate movements, although now they 
deviate in the opposite direction (see Figure 10D). The presence of aftereffects is 
consistent with the view that some adaptive processes occurred during the task. In 
other words, aftereffects demonstrate that the knowledge between motor 
commands and their consequences has been updated during the learning phase. 

To disentangle the update of an internal model and the update of lookup table, 
the trick used by experimenters is to test the generality of the knowledge is that is 
acquired during force field exposure (Shadmehr, 2004; Malfait et al, 2002, 2005). 
For instance, during the learning phase subjects are asked to make reaching 
movements toward a fixed number of targets, then when accuracy in performance 
is restored, subjects are tested with a new set of targets. The rationale is that if 
subjects are still able to make accurate movements, even though they have no 
previous experience with these new targets, this means that the knowledge 
acquired by the subjects is not supported by a lookup table. The update (or 
building) of an internal model remains the only option to account for the 
generalization of learning. The fact that Conditt and colleagues (1997) observed 
that subjects were able to accurately draw circles after adaptation to a viscous field 
while making reaching movements supports the notion of an internal model. Using 
a slightly different methodology, Shadmehr and Mussa Ivaldi (1994) also support 
this view when reporting that subjects exhibited aftereffects in regions of the 
workspace that were not experienced during adaptation.  

Since this seminal study, many experiments have tried to circumscribe the 
generality of the knowledge acquired by motor learning. In most cases, results 
show that learning is rarely restricted to the exact conditions in which it was 
obtained, but at the same time they also point out some limitations in 
generalization. For instance, if one subject learned to compensate a force field 
with the right arm, he or she does not necessarily know how to make accurate 
movements with the left arm (Malfait & Ostry, 2004). In fact, this transfer 
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between limbs appears relatively context dependent (Malfait & Ostry, 2004; 
Nozaki et al, 2006). Obviously, one possibility is that certain internal models are 
limb specific, while others are not (Morton et al, 2001). 

6   Conclusion 

Our initial question was do we need internal models for movement control? In the 
previous sections, I have reviewed and compared three approaches to motor 
control. Although opinions can diverge substantially about the nature of the 
variables that are effectively manipulated by the brain during a voluntary 
movement, at one point or another, all three approaches need to cope with the 
issue of parameter selection. They also need to cope with the fact that the mapping 
between parameter changes and their effects on the body is complex, redundant, 
and often need to be updated so as to preserve movement accuracy. Whether this 
mapping is organized in lookup tables or internal models is a question that will 
need further investigations. In any case, I hope that the information provided in 
this chapter made clear that the concept of internal model addresses a fundamental 
issue for anyone being interested in motor control. At last, although the concept of 
internal model is often restricted to the force control approach, I hope this chapter 
can extend its relevance to other approaches as well.  
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Nonlinear Dynamics in Speech Perception 

Betty Tuller, Noël Nguyen, Leonardo Lancia, and Gautam K. Vallabha1 

Abstract. The history of research on speech perception and speech production  
is replete with examples of nonlinearities between articulation and acoustics,  
and between acoustics and perception. These nonlinearities are useful for 
communication. They allow 1) adequate production of speech sounds and words 
despite people having different vocal tracts with different resonance capabilities, 
and 2) adequate word recognition despite variation in the acoustic signal across 
speakers, emphasis, background noise, etc. Yet context and the listener’s 
expectancies often strongly influence what is perceived; perception is dynamic, 
influenced by multiple factors that change slowly or quickly as speech goes on. In 
this chapter we present a selected history of demonstrations of nonlinearities in 
speech and attempt to exploit the nonlinearities in order to uncover the dynamics 
of both perception and production of speech. 

1   Introduction 

Speech perception depends largely on information in an acoustic stream that is 
inherently dynamical in that it changes constantly and fades rapidly. Yet many of 
the psychoacoustic studies that formed the basis for the exploration of speech 
acoustics historically used pure or complex tones with little temporal change. In 
this chapter, we present selected examples of nonlinearities in speech production 
and perception, especially with regard to context sensitivity, stability, and 
flexibility. Next, we present work that exploits these nonlinearities in order to 
explore the dynamics. Throughout the chapter, we provide links to a web site  
with demonstrations of many of the perceptual phenomena (file:///C:/data/ 
Springer%20book/tuller/tuller_et-al/index.html). 
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2   Nonlinearity 

Psychoacoustics refers to the psychological (subjective) correlates of the physical 
parameters of acoustics. Much of the work on psychoacoustics has been based on 
non-speech stimuli, such as pure or complex tones, that vary little or not at all over 
time (see B.C. J. Moore, An introduction to the psychology of hearing, for a good 
introduction to psychoacoustic research). In general, the relationship between a 
physical aspect of the acoustic signal and its subjective correlate is logarithmic, 
following the patterns described by E.H. Weber and G.T. Fechner in the 19th 
century (see also S.S. Stevens, 1946). The logarithmic relationship means that as 
the physical stimulus increases in a geometric progression, the subjective 
perception changes in an arithmetic progression (see Gescheider, 1997 for 
review). In other words, each additional step change in the physical stimulus 
corresponds to a relatively smaller perceptual change. For example, the frequency 
of corresponding notes in adjacent octaves differs by a factor of two. This means 
that although the perceived pitch relationship between middle C and C one octave 
higher is the same as the pitch difference between D above middle C and D in the 
next higher octave, the absolute frequency difference is smaller between the 
successive C notes (~ 261.63 Hz and 523.25 Hz, respectively) than between the 
Ds (~ 293.66 Hz and 587.33 Hz, respectively). Another well-known logarithmic 
scale describing a psychoacoustic relationship is the decibel scale, which captures 
the relationship between sound intensity and loudness.  

Another way of looking at these psychoacoustic relationships is by asking the 
question, “For a given value of an acoustic parameter (e.g., frequency, intensity, or 
duration), how small of a difference in that parameter can the human auditory 
system detect?” Intriguingly, the answer depends on the type of acoustic signal. In 
general, the size of the minimal acoustic change that can be detected (the so-called 
“just noticeable difference,” or JND), is larger for speech or speech-like stimuli 
than for pure tones or, in some cases, noise. JNDs for loudness of pure tones or 
wideband noise at amplitudes in the speech range are about 0.3-1.0 dB. The JND 
for loudness of a vowel’s second formant (a formant is a frequency band in the 
vowel that is of relatively high energy) is much larger, namely about 3dB  
(K.N. Stevens, 1998).  

The larger JNDs for speech may contribute to the remarkable stability of 
speech perception across acoustic variation due to context, speaker, speaking rate, 
and so on. But there is an important underlying principle implied by the larger 
JNDs, namely, a strong nonlinearity in the relationship between speech acoustics 
and perception. This nonlinearity is exemplified by the extreme difficulty native 
speakers have in discriminating between acoustically different speech stimuli that 
are categorized as the same linguistic segment (see Repp, 1984, for a review).  
We should note that discrimination is not difficult to the same extent for all types 
of speech stimuli, e.g., vowels are more easily discriminated than are stop 
consonants. One of the early demonstrations of nonlinear perceptual pattern 
formation in speech was provided by Liberman, Harris, Hoffman, and Griffith 
(1957) who presented listeners with synthetic syllables consisting of a consonant 
followed by a synthesized approximation to the vowel in “gate”. The vowel was  
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Place of articulation for stop consonants

1      2       3       4      5      6       7      8       9     10    11    12    13    14 

Stimulus 300 ms 

Freq  
(kHz) 

2.5 
2.0 
1.5 
1.0 
0.5 
0

b d g

Adapted from Liberman, Harris, Hoffman, and Griffith (1957)
Journal of Experimental Psychology  54, 358-368

Equal acoustic changes
(onset frequency of 2nd formant) Nonlinear changes in percept

 

Fig. 1 When the onset frequency of the second formant changes in equal sized steps, 
perception of the initial consonant's identity changes  abruptly. 

not very life-like in that the energy resonances (the formant trajectories) did not 
change as the vowel progressed, which they would do in a naturally-produced 
vowel. Liberman et al. varied the onset frequency of the second formant (F2) in 
equal steps and found that listeners’ perceptions did not change equally with each 
acoustic step change. Instead, several syllables with different F2 were perceived as 
“bay.” After the F2 frequency reached a critical value, listeners perceived the 
syllable as “day” and, after a few more step changes in F2 onset frequency, they 
perceived “gay” (Figure 1). That is, a sequence of equal acoustic changes 
produced nonlinear shifts in perception. Liberman et al. confirmed that the results 
did not stem from listeners having no label for intermediate speech sounds; when 
asked simply to discriminate between stimuli, listeners discriminated worst when 
they had identified two stimuli as the same speech sound. Another way to think of 
this is that the JNDs were not equal across the stimulus set but were smallest at 
category boundaries. 

This diminished ability to discriminate between speech stimuli that are 
categorized as the same speech sound is termed categorical perception and has 
been replicated many times in the intervening years with different stimulus 
continua and in different contexts. Outside the laboratory as well, a wide range of 
acoustic instances are categorized identically, such as when the same word is 
produced by different speakers. The boundaries between categories are flexible 
and adjust with factors such as individual speaker differences, different listeners, 
phonetic context, speaking rate, and linguistic experience (Repp & Liberman, 
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1987). Nevertheless, the shifts in the perceived identity of a sound tend to be 
abrupt rather than continuous. An easy way to get a sense of this phenomenon is to 
make the sound "s" (as in the word “sip”). While continuing to blow air through 
your mouth so you still hear the sound, slowly move your tongue back along your 
palate. You will probably still perceive that you are making the "s" sound even 
though your tongue has moved back a little. At some point, however, you will 
perceive an abrupt change to the "sh" sound (as in "ship"). Moving the tongue 
even further back will have little effect on the identity of the "sh" sound (although 
the quality changes and there is, of course, a limit). An acoustic example may be 
found as demonstration 1 at the website link. 

3   Context Sensitivity 

The perceptual dynamics of speech are not simply nonlinear but also highly 
context dependent. Different acoustic patterns can be perceived as the same 
phoneme when they appear in their acoustically appropriate context. Similarly, 
different articulatory patterns are used to produce the same phoneme in different 
contexts1. In 1966, Öhman studied the articulatory movements that occur in 
vowel-consonant-vowel sequences. He observed that the tongue position for a /d/ 
was quite different when it was surrounded by different vowels. Figure 2, adapted 
from Öhman (1966), shows contour tracings from x-ray motion pictures for the 
consonant /d/ surrounded by the vowel /y/ (as in the French “du") top graph), /a/ 
(middle), and /u/ (bottom, as in the English word “do”). The x-ray is at the point 
when the tongue is occluding the vocal tract for production of the consonant 
closure. Note the very different tongue positions for /d/ closure in the three 
different vowel contexts. The consonant production is contextually sensitive to the 
vowel environment. 

To summarize this brief introduction, humans categorize a variety of speech 
signals (arising from a variety of articulatory events) identically, which gives 
communication stability across context. But humans can also categorize the 
identical acoustic signal differently depending on its context, rate, etc. In a now 
classic demonstration, Ladefoged and Broadbent (1957) synthesized six versions 
of the sentence “Please say what this word is .” Four test words were also 
synthesized (“bet,” “bit,” “bat,” and “but”). A trial consisted of one version of the 
sentence followed by one test word. Identification of the test word strongly 
depended on the formant structure of the introductory sentence. In Ladefoged and 
Broadbent’s words, “…the linguistic information conveyed by a vowel sound does 
not depend on the absolute values of its formant frequencies, but on the 
relationship between the formant frequencies for that vowel and the formant 
frequencies of other vowels pronounced by that speaker.” This suggests that 
listeners “normalize” their percepts to the overall characteristics of a given 
speaker, allowing great flexibility in the service of communication. An acoustic 
example may be found as demonstration 2 at the website. 
                                                           
1 The ability to obtain a particular task result via different motor means, referred to as motor 

equivalence, is a well-known phenomenon in motor control. 
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4   Stability and Flexibility 

First, a definition. A stable system (in the present context) is one that is robust 
across non-linguistic variation (see Fuchs, chapter one, this volume for a more 
general treatment). That is, parts of the signal can be changed or even missing 
without disrupting understanding. This quality is complementary to the flexibility  
exemplified by the Ladefoged and Broadbent work described above, as veridical 
perception needs to be both stable and flexible. Speech can undergo many kinds of 
distortion, in addition to the contextual modulations introduced earlier, and remain 
intelligible. An example of this was provided by Warren in 1970 and was dubbed 
“phonemic restoration.” If a segment in connected speech is replaced by noise, 
 

 

Fig. 2 Different articulatory patterns are used to produce the same phoneme in different 
contexts. Note the position of the tongue during the /d/ in the three vowel environments. 
Adapted from Öhman (1966) 
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listeners usually do not notice that it is missing, and cannot accurately report 
during which segment the noise occurred (Warren 1970, 1996). Phonemic 
restoration is strongly influenced by the semantic context. Warren and Warren 
(1976) performed a study in which they replaced a phoneme with a cough. In the 
following sentences, the * denotes the cough sound. Listeners heard a) The *eel 
was on the axle; b) The *eel was on the shoe; c) The *eel was on the orange; d) 
The *eel was on the table. They perceived a) The wheel was on the axle; b) The 
heel was on the shoe; c) The peel was on the orange; d) The meal was on the table. 
In other words, the semantic context was used to ‘fill in’ the phoneme that was 
(supposedly) obstructed by the cough. An example of this semantically guided 
phonemic restoration may be found as demonstration 3 on the website (from 
Bregman Audio CD demonstrations1:12). 

Note that the effects of semantic and phonemic context can occur over an 
extended time. But the question of what information in the acoustic signal itself is 
allowing the global context sensitivity and stability is unclear. An intriguing line 
of research uses a form of speech synthesis called “sinewave synthesis” (Remez, 
Rubin, Pisoni, & Carrell, 1981) in which the formants in speech are replaced with 
pure tone whistles that follow the center frequency of the formants. Some listeners 
spontaneously perceive sinewave speech as continuous speech. Others perceive 
sinewave speech as nonspeech whistles and glides but can be primed so that they 
hear the stimulus as speech if they know what the sentence is supposed to be. This 
means that listeners can perceive speech without traditional speech cues, paving 
the way for a view of speech as a dynamic pattern of trajectories through 
articulatory-acoustic space (demonstration 4 on the website). 

Our own work is motivated by the realization that changes in speech 
categorization that occur as the acoustic signal or psychological context is  
altered may be indicative of a pattern formation process with its own perceptual 
dynamics (multistability, loss of stability, switching, etc.). Perceptual dynamics 
characterizes the time-dependent behavior of the speech system in terms of its 
(nonlinear) dynamics; that is, equations of motion describing the temporal 
evolution of the perceptual process, especially the stability and change of 
perceptual forms. This approach is analogous to the theoretical framework of 
coordination dynamics used to understand goal-directed movements (e.g., Kelso, 
1995). Coordination dynamics does not refer to biomechanics per se (e.g., masses 
and stiffnesses of moving segments) but rather characterizes the spatiotemporal 
patterns of coordinated actions produced by the nervous system which in turn 
produce dynamic (and in the present context, acoustic) trajectories. Empirical 
work becomes, in part, a search for principles of autonomous pattern formation in 
speech articulation, perception and brain function. 

In the next sections, we describe our own work exploring the idea that speech 
dynamics involves the pattern of trajectories through articulatory-acoustic space as 
well as the time-dependent behavior of the perceptual system itself. This 
characterization helps account for the ability of the speech production/perception 
system to cope with the huge variety of phoneme realizations. We address this and 
other issues in the next sections describing empirical work on both vowels  
and consonants. 
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5   Dynamics of Vowel Perception and Imitation 

The nature of vowel representation has long been a contentious topic. The 
perception of a vowel sound depends upon its phonemic status (e.g., a good versus 
bad exemplar of a category), phonetic quality (e.g., produced with a larger versus 
a smaller vocal tract constriction), and temporal dynamics (e.g., whether the 
acoustics vary or are constant over the course of the vowel). Part of the difficulty 
in assessing these different factors is that the methods typically used to evaluate 
vowel perception – categorization, discrimination, and rating – discretize a 
fundamentally continuous percept to varying degrees and this discretization may 
obscure some of the features of the representation. An alternative method is that of 
vowel imitation, in which the subject is presented with vowel-like targets of 
systematically varying phonetic quality, and asked to imitate them as closely as 
possible. The differences in formant location between the target and the imitation 
may then be examined for clues to the underlying vowel representations. This 
method may be especially apt for speech categories because there is a tight linkage 
between speech perception and production, manifested by accurate imitation of 
vowels at remarkably short response latencies (Porter and Lubker, 1980) and by 
spontaneous imitation of words during shadowing (Shockley, Sabadini, & Fowler, 
2004). In addition, imitation has been posited to be central to language acquisition 
by children (Kuhl, 2000) and language evolution in general (Studdert-Kennedy, 
2000). Here we explore whether for individuals, the dynamics of vowel perception 
and production are complementary. 

Early studies that used imitation to study vowel representation (Chistovich et 
al, 1966; Kent, 1973; Repp & Williams, 1985) attempted to evaluate whether 
vowel representation was granular, and if so, whether the grain was phonemic or 
allophonic (an allophone is a variant of a phoneme; changing the allophone does 
not change the meaning of a word). In the earlier studies, synthesized vowel-like 
stimuli were uniformly spaced along a one-dimensional cut in a  space whose 
dimensions were the first and second formant  frequencies (energy concentrations 
in the spectra) and presented as targets for imitation. An example of a one-
dimensional cut in this “F1 X F2 space” would range from /i/ as in “tea” to /u/ as 
in “to.” The imitations gravitated toward certain regions of the F1 X F2 space, 
suggesting some granularity in the representations. However, these results were 
confounded by the synthetic nature of the targets, since a speaker cannot 
reproduce arbitrary formant patterns but only those that are physiologically 
possible for his or her vocal tract. Repp and Williams (1987) addressed this 
confound by presenting a speaker's own productions as targets for imitation. 
Remarkably, the response tendencies ("biases") persisted even with imitation of 
self-produced targets.  

Vallabha and Tuller (2004) examined the biases by having subjects imitate 
synthetic vowel-like stimuli, systematically spaced in a two-dimensional grid over 
the F1 X F2 space (denoted as [V]). From the 100 imitations by each speaker, 45 
were selected such that they were well distributed over the entire vowel space, and 
each speaker imitated his 45 self-produced targets. In addition, each speaker’s  
productions of natural words were recorded so as to provide a “map” of the  
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Fig. 3 The imitation behavior for one male (UM1) subject and one female subject (UF2) 
imitating their own productions of a vowel in isolation, or preceded by a /d/ (the [V] and 
[dV] conditions). The base of each arrow is a target and the tip is the mean of the 10 
imitations of that target. Hatched regions are the 1-sd principal components for the /hVd/ 
productions. Solid arrowheads indicate statistically significant bias vectors (Hotelling’s T2 
test, p < .05). Arrows with circles at their base indicate natural [V] and [dV] targets. 

speaker’s individual vowel prototypes. In a parallel experiment, Vallabha and 
Tuller preceded the vowel-like stimuli by the consonant /d/, forming /d/-vowel 
syllables ([dV]).  

Figure 3 illustrates the bias vectors for one female and one male subject, both 
from South Florida. The vectors were calculated from the frequency values for F1 
and F2 at the midpoint of each vowel in successive imitations. The significance of 
each vector was evaluated using Hotelling’s T2 test, which is a multivariate version 
of the z-test. Across subjects, the systematic biases produced were not attracted by 
the proximal vowel prototypes nor were they strongly driven by centralization. 
Note also that subjects with the same dialect did not necessarily have similar 
patterns of bias. This variety could not be attributed to noise, since most of the bias 
vectors were statistically significant, and the magnitudes of the biases were 
significantly larger than those predicted by a model of articulatory noise.  
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When we considered reproduction of acoustic trajectories, instead of “target 

values,” we observed that subjects were remarkably accurate in reproducing the 
F1 and F2 trajectories in the more dynamic d-vowel syllables. Imitation of d-
vowel syllables also showed less imitation variability than for the isolated [V] 
targets. Thus, although the early work on imitation (Chistovich et al, 1966; Kent, 
1973; Repp & Williams, 1985, 1987) interpreted the “response preferences” as 
evidence for categorical representations, our results do not support such an 
interpretation. Nor do they support the notion that vowel-like sounds are 
represented with reference to immutable perceptual anchors or attractors. In fact, 
our results call into question the assumption that the vowel space is stable and 
organized around a few well-defined phonemic categories. It appears more likely 
that vowel-like sounds are represented with respect to the various linguistic and 
pragmatic contexts of vowel production. This perspective accounts naturally for 
the context-sensitivity and non-categoricality of vowel perception (e.g., Pisoni, 
1973; Repp, Healy & Crowder, 1979; Repp & Crowder, 1990) and the importance 
of fine phonetic detail for perception (Hawkins, 2003). It can potentially also 
account for the perceptual relevance of dynamic trajectories through articulatory-
acoustic space. A temporally varying sound can be more diagnostic of the 
linguistic and pragmatic context than a steady-state sound and therefore more 
valuable to a listener (see Muchisky & Bingham, 2002, for an analogous argument 
about "trajectory forms" in visual perception).  

6   Dynamics of Consonant Perception: English and French 

In our earlier discussion of categorical perception we described the nonlinearity 
between speech acoustics and consonant perception. But can we understand the 
nonlinear relationship between acoustics and categorization as a dynamic system? 
To reiterate, we are exploring whether dynamics can reconcile the highly context-
dependent sensitivity of perception to the detailed acoustic structure of the speech 
input with the characterization of language as having a limited number of stable 
states. In a dynamical view, the stable states are not purely symbolic 
representations but themselves have a dynamic. The stable states are viewed as 
attractors, which allow the system to perform the discretization of perceptual 
space associated with abstract perceptual categories.  

In our early experiments (Case, Tuller, Ding & Kelso, 1995; Tuller, Case, Ding 
& Kelso, 1994), stimuli on a say-stay continuum were presented to the listener in 
either a randomized order, or a sequential order. The individual tokens differed 
only in the duration of the short silent gap after the fricative noise of the /s/ sound. 
Stimuli with short (or absent) silent gaps were perceived as “say” whereas stimuli 
with long gaps were perceived as “stay.” Monolingual speakers of American 
English heard sequential presentations of the entire set of stimuli, starting at one of 
the two endpoints (e.g., say with 0-ms silent gap), progressing to the other (stay 
with 76-ms silent gap), and then back again to the first one (say) with the gap 
duration of successive stimuli changing in 4-ms steps. Listeners were required to  
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identify each stimulus as either “say” or “stay.” The specific measures of interest 
were a comparison of where an individual listener’s percept switched from one 
word to the other as the silent gap (the control parameter) increased or decreased, 
and the variability around the switch point. In sequential presentations, there are 
only three possible response patterns: 1) a critical boundary, where the switch 
between the two percepts occurs at the same stimulus regardless of the direction of 
presentation across the continuum; 2) hysteresis, defined as the tendency for the 
listener's response at one endpoint to persist across the ordered sequence of stimuli 
towards the other endpoint, and 3) contrast, in which the listener quickly switches 
from the initial categorization. The results showed that critical boundary was 
much less frequent than hysteresis and contrast, which occurred equally often over 
the entire experiment, although hysteresis was far more frequent during the first 
half of the experiment. The observation of hysteresis and contrast implies 
bistability in perception: two percepts are possible for the same acoustic token. 
Moreover, the introduction of “noise” (for example, repetition of the same token) 
increased the likelihood of a perceptual switch only in the bistable region. These 
data provide strong support for the idea of speech perception as a process, 
characterized by a rich variety of dynamical properties. Readers are referred to 
Tuller et al. (1994) and Case et al. (1995) for further detail on these experiments 
and to the website for a demonstration (#5) of a sequential presentation of the 
continuum. 

Nguyen, Lancia, Bergounioux, Wauquier-Gravelines & Tuller (2005) extended 
Tuller and colleagues' (1994) hypotheses and experimental paradigm to the 
categorization of speech sounds in French. They  manipulated the same acoustic 
variable as did Tuller and colleagues, but this time the stimulus continuum ranged 
between the French words cèpe (a type of mushroom) and steppe (in physical 
geography, a steppe, that is, a plain without trees). Just as for the English listeners, 
French listeners perceived stimuli with short silent intervals after the /s/ noise as 
being followed directly by the vowel (cèpe) and perceived stimuli with longer 
silent gaps as having a /t/ after the /s/ (steppe). Native speakers of French listened 
to the stimuli and were asked to respond as quickly as possible after each stimulus 
whether they heard cèpe or steppe (demonstration #6 on website). Lancia,  
Nguyen & Tuller (2008) and Nguyen, Wauquier, & Tuller (2009) devised an 
index referred to as the Contrast-Hysteresis (CH) index to measure the amount 
that hysteresis or contrast contributed to each subject's responses to sequentially 
presented stimuli (Figure 4). This entailed locating the position on the continuum 
of the stimulus associated with the switch from one response to the other in the 
first part of the presentation and comparing it with the location of the switch in the 
second part of the presentation. The distance between these two points was then 
measured. Results showed that in French as in English, hysteresis and contrast 
prevailed over critical boundary (note that the CH index is positive in the right 
panel of Figure 4).  
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Fig. 4 The Contrast-Hysteresis (CH) index for perception of cèpe or steppe by French 
monolingual listeners during sequential presentation of stimuli. Left panel: distribution 
across all the presentations. Right panel: mean value and standard deviation for each of the 
20 sequential presentations (from Nguyen, Wauquier, & Tuller, 2009). 

These results confirm that the speech perception system can be modelled as a 
nonlinear dynamical system. A dynamical system is one that evolves over time 
such that its present state always depends in some rule-governed way on previous 
states. Differential equations or maps of essential variables offer a mathematical 
description of how a behavior’s essential parameters change as time passes and 
contextual parameters change (spectral composition, rate of presentation/ 
production etc.). In such a system, phonological categories are equivalent to 
attractors (stable behaviors of the system) and switching between phonological 
categories means changes in the relative stability of the attractors. Thus, there 
exist ranges of acoustic parameter variation within which the perceptual form 
remains relatively stable (i.e. resistant to change as a function of parameter 
variation or noise). In other ranges, however, even small variations in the acoustic 
parameter can cause large (nonlinear) changes in categorization of the input and 
these perceptual changes are enhanced in the presence of noise. At these critical 
values, which are sensitive to context, history, linguistic factors, etc., the existing 
attractor(s) lose stability and the observed behaviors may change gradually or 
abruptly as other attractors dominate. Abrupt, or qualitative, changes are called 
phase transitions or bifurcations. Signature properties of dynamical systems (e.g. 
hysteresis) were observed for both French and English listeners in that the critical 
point for switching in any given trial depended on the direction of changing gap 
duration in the stimulus sequence and the initial percept. The switching between 
categories was modeled as the appearance and disappearance of attractive states in 
the underlying dynamical system such that changes in perceived category occur 
when the attractor corresponding to the initial category loses stability.  

A simple dynamical model, developed to describe the results, has been useful 
as a tool for predicting patterns of categorization (see also Fuchs, chapter one, this 
volume). The model was designed to account for listeners' response patterns in the 
binary-choice speech categorization task. Here, we conceptualize articulatory/ 
perceptual motion towards a linguistic category under the influence of the forces 
supplied by the changing acoustics, task, intention, etc.  
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V(x) = kx – x2 / 2 + x4 / 4                                                 (1) 

In equation (1), x represents the perceptual form (say vs. stay, or cèpe vs. steppe), 
k a control parameter and V(x) a potential function which may have up to two 
stable perceptual forms, indicated by minima in the potential function, depending 
on the value of k. The control parameter k itself depends on the acoustic 
characteristics of the stimulus (the gap duration of the /s/ sound), and the 
combined effects of learning, linguistic experience and attentional factors, in a 
way described by the following equation: 

k(λ) = k0+ λ + ε / 2 + εθ(n – nc )(λ– λf)                                 (2) 

where k0 refers to the system's initial state, λ represents the acoustic parameter that 
is manipulated in the stimuli (in the present case, the duration of the silent gap 
between the /s/ noise and the vowel), ε is a parameter that characterizes the 
lumped effect of learning, linguistic experience and attention, εθ(n – nc ) is the 
discrete form of the Heaviside step function, n is the number of perceived stimulus 
repetitions in a given run, nc represents a critical number of accumulated 
repetitions (which we define as occurring at the turnaround point in a run, for lack 
of a more precise value), and λf denotes the value of λ at the other extreme from 
its initial value (so that, for example, if λ=0ms then, in our experiment, λf = 76ms). 
The value of λ and λf depend on the parameter range and the direction of 
parameter change. 

 

Fig. 5 Shape of the potential function V(x) for five values of k. Adapted from Tuller et al. 
(1994). 

For a given value of k, the system's state evolves in the x perceptual space to get 
trapped into a local minimum, or attractor, of V(x). Each of the two possible 
responses in a binary categorization task corresponds to one attractor in the 
perceptual space. Figure 5 shows the shape of the potential function for five values 
of k between -1 and 1. The potential function has one minimum only for extreme 
values of k, which correspond to stimuli unambiguously associated with either of 
the two categories, and two minima in the middle range of k, where both 
categories are possible. As k increases in a monotonic fashion (from left to right in 
Figure 5), and in the vicinity of a critical value kc , the system's state, represented 
by the filled circle in Figure 5, abruptly switches from the basin of attraction in 
which it was initially located, to the second basin that has gradually formed as the 
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first one disappears. The stability of the attractor can be observed in the 
categorization data: fluctuation (variability) increases as the attractor becomes less 
stable, and decreases after the switch into the new, more stable attractor (a phase 
transition).  

This model was developed to help understand the dynamics of changes in 
categorization with acoustic variation. However, the transition between 
categorizations has also shown to be an important entry point for understanding 
the acquisition of nonnative sounds (Tuller, Jantzen, & Jirsa, 2008). In fact, the 
model shows a number of general properties that, in our view, open the way 
towards a novel, hybrid view to speech perception that gets beyond the dichotomy 
traditionally established between symbolic and dynamic representations of speech 
perception (Nguyen, Wauquier, & Tuller, 2009). In recent years, this dichotomy 
has been couched in terms of abstractionist and exemplar-based approaches to 
speech perception. In an abstractionist approach, the speech signal is converted by 
listeners into a set of context-independent abstract phonological units. Variations 
in the acoustic instantiation of a given word, including cross-speaker differences 
are thought to be factored out at an early stage of processing (see Johnson, 2005 
for review). In an abstractionist framework, there is a clear demarcation between 
the surface phonetic form of a word and the underlying phonological 
representation associated with that word.  

In the exemplar approach, each acoustic instantiation of a given word (an 
exemplar) accumulates in memory as listeners’ exposure increases, causing the 
boundaries between categories to be continuously pushed around in perceptual 
space. As a result, categories represented by a larger number of exemplars 
gradually come to prevail over ones less frequently encountered. Perceptual 
categories are thus taken to be time-dependent and to evolve continuously in the 
course of the conversational interactions in which speakers/listeners engage. This 
of course has major theoretical implications, as frequency of use is expected to 
shape the form of phonological representations. 

Experimental evidence supports a role for both exemplars and abstract 
phonological categories in speech perception. Hybrid models (Hawkins, 2003, 
2007; Luce & McLennan, 2005; McLennan & Luce, 2005; Pierrehumbert, 2006) 
are governed by the assumption that abstract phonological categories and the fine 
phonetic detail that differentiates among exemplars of a category combine with 
each other in the representations associated with words in memory. The dynamical 
model outlined here is a form of a hybrid model.On the one hand, speech 
perception is assumed to be a highly context-dependent process sensitive to the 
detailed acoustic structure of the speech input. On the other hand, it is viewed as a 
non-linear dynamical system characterized by a limited number of stable states, or 
attractors, which allow the system to perform a discretization of perceptual space 
and which are associated with abstract perceptual categories. The categorization 
patterns observed partly derive from the mapping of the speech sounds onto a 
discrete and finite set of perceptual categories by means of a continuous potential 
function, as opposed to the sharp division between sounds and categories often 
posited. Unlike other hybrid approaches, however, the dynamical approach takes 
relative stability as a fundamental aspect of the categorization system. Gradient 
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acoustic properties, frequency of occurrence of perceived categories, trajectory of 
speech sounds in the acoustic space, training, native language, and so on, affect 
the relative stability of categories and in turn, switching behavior. From this stems 
the wide range of phenomena observed, such as hysteresis, contrast, and 
bifurcations, that cannot be explained by an incremental averaging of exposures 
(statistical models that are based on interactive activation exhibit many of the 
same phenonema; McClelland & Vallabha, 2009).  

Nonlinear dynamics offers an explanation of the bistability of speech 
perception, attributed to the coexistence of nearby but mutually exclusive attractor 
states in the perceptual space. In addition, theoretical and methodological tools 
(e.g., Erlhagen et al., 2006) are available that may allow the non-linear dynamical 
framework to be extended to the study of conversation interaction between 
speakers and to model the changing organization of perceived categories as this 
interaction unfolds in time. 
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A Neural Basis for Perceptual Dynamics 
Howard S. Hock and Gregor Schöner1

Abstract. Perceptual stability is ubiquitous in our everyday lives. Objects in the 
world may look somewhat different as the perceiver’s viewpoint changes, but it is 
rare that their essential stability is lost and qualitatively different objects are 
perceived. In this chapter we examine the source of this stability based on the 
principle that perceptual experience is embodied in the neural activation of 
ensembles of detectors that respond selectively to the attributes of visual objects. 
Perceptual stability thereby depends on processes that stabilize neural activation. 
These include biophysical processes that stabilize the activation of individual 
neurons, and processes entailing excitatory and inhibitory interactions among 
ensembles of stimulated detectors that create the "detection instabilities" that 
ensure perceptual stability for near threshold stimulus attributes. It is shown for 
stimuli with two possible perceptual states that these stabilization processes are 
sufficient to account for spontaneous switching between percepts that differ in 
relative stability, and for the hysteresis observed when attribute values are 
continually increased or decreased.

The responsiveness of the visual system to changes in stimulation has been the 
focus of psychophysical, neurophysiological, and theoretical analyses of 
perception. Much less attention has been given to the role of persistence, the effect 
of the visual system's response to previous visual events (its prior state) on its 
response to the current visual input. Perceiving an object can facilitate its 
continued perception when a passing shadow briefly degrades its visibility, when 
attention is momentarily distracted by another object, when the eyes blink, or 
when a random fluctuation within the visual system potentially favors an 
alternative percept. Having perceived an object's shape from one viewpoint can 
facilitate its continued perception despite changes in viewpoint that distort its 
retinal projection, potentially creating a non-veridical percept. These examples 
highlight the importance of the visual system's prior state, not just for perceptual 
stability, but also for perceptual selection; i.e., for the determination of which 
among two or more alternatives is realized in perceptual experience. 

In this essay we discuss three neural properties that form a sufficient basis for a 
theory of perceptual dynamics that addresses the relationship between persistence, 
responsiveness to changes in stimulation, and selection. These neural properties 
are: 1) Individual neurons have the intrinsic ability to stabilize their activation 
state. 2) Neurons responsive to sensory information (i.e., detectors) are organized 

Howard S. Hock 
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into ensembles whose members respond preferentially to different values of the 
same attribute (e.g., motion direction). Members of such ensembles have 
overlapping tuning functions; i.e., a detector responding optimally to one stimulus 
value will also respond, though less strongly, to similar attribute values. 3) The 
activation levels of a detector affects and is affected by nonlinear excitatory and 
inhibitory interactions with other detectors.  

On this basis, we examine the persistence of steady-state detector activation 
despite the presence of random perturbations, the effect of neural stabilization on a 
detector's response to stimulation, the crucial role of "detection instabilities" in 
minimizing perceptual instability and uncertainty for near-threshold stimuli, and 
the importance of differences in the rate-of-change in activation for perceptual 
selection. Finally, we demonstrate that the signature features of perceptual 
dynamics, spontaneous switching between percepts differing in relative stability, 
and hysteresis, follow from the same three neural properties.  

1   Perceptual Stability: Natural or Otherwise 

Natural, everyday percepts are almost invariably monostable. The same percept 
occurs each time a stimulus is presented. It rarely happens that two qualitatively 
different percepts are formed for the same stimulus (this would constitute bistability), 
and the experience of spontaneous switching between alternative percepts is likewise 
rare. Because everyday experiences of monostability are so pervasive, stability is not 
always recognized as an important perceptual property. Not so for James Gibson 
(1966), who attributed the stability of real-world percepts to the tuning of our visual 
system to unambiguous, invariant properties of stimulation.  

Although Yuille and Kersten (2005) take a different position, maintaining that 
natural images are inherently ambiguous, they join Gibson (1966) and others in 
disdaining the usefulness of artificial stimuli for an understanding of perception in 
the natural environment. It is arguable, however, that many natural objects are 
potentially bistable (e.g., bumps and holes), but there is sufficient disambiguating 
contextual information in the natural environment to over-ride the potential of 
such objects to exhibit the dynamical behavior that is readily observed in the 
laboratory. Indeed, it is the exceptional situations accessible in the laboratory that 
most clearly bring the fundamental indeterminance of perceptual bistability into 
the domain of phenomenal perception.  

Our dynamical research has taken place in well-controlled laboratory settings, 
where we have studied single-element apparent motion (Hock, Kogan & Espinoza, 
1997; Hock, Gilroy & Harnett, 2002), displaced targets embedded in noise 
(Eastman & Hock, 1999), displaced rows of evenly spaced dots (Hock & Balz, 
1994; Hock, Balz & Smollon, 1998; Hock, Park & Schöner, 2002), and the motion 
quartet (which is described below).  

Single element displacements result in unique motion percepts, and many stimuli 
with multiple element displacements result in the perception of unique motion 
patterns. For instance, parallel horizontal motions are perceived for two vertically 
aligned elements alternating with two vertically aligned elements that are horizontally 
displaced, as in Figure 1a. This percept uniquely solves the motion correspondence 
problem; i.e., how visual elements presented during successive points in time are 
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"paired" with respect to the start and end of perceived motion paths (Ullman, 1979). 
This is the case even though diagonal motions are in principle also possible for this 
stimulus. That is, despite single element motion being easily perceived for each 
independently presented diagonal displacement (Figures 1b and 1c), intersecting 
diagonal motions are never seen when the two diagonal displacements are combined 
in the same stimulus, as in Figure 1a.  

Fig. 1 (a) An illustrative apparent motion stimulus for which there is a unique solution to 
the motion correspondence problem (horizontal motion always is perceived), even though 
diagonal motions are possible (b and c). (d) The motion quartet, an apparent motion 
stimulus for which there are two qualitatively different solutions to the motion 
correspondence problem. For intermediate aspect ratios (the vertical divided by the 
horizontal distance between the elements), either horizontal or vertical motion is perceived. 
Horizontal motion predominates for relatively large aspect ratios (e) and vertical motion 
predominates for relatively small aspect ratios (f).
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In contrast to the stimulus in Figure 1a, the motion quartet is an apparent 
motion stimulus for which two qualitatively different solutions can be realized in 
experience; either horizontal or vertical motion is perceived, the proportion of 
each depending on the aspect ratio of the quartet (Figures 1d-1f). Our research 
with this bistable stimulus has included psychophysical experiments and the 
dynamical modeling of spontaneous switching, hysteresis, selective adaptation, 
and activation-dependent detector interactions (Hock, Kelso & Schöner, 1993; 
Hock, Schöner & Hochstein, 1996; Hock, Schöner & Voss, 1997; Hock, Schöner 
& Giese, 2003; Hock, Bukowski, Nichols, Huisman, & Rivera, 2005; Hock & 
Ploeger, 2006; Nichols, Hock & Schöner, 2006). We currently are studying the 
effect of neural feedback on the stabilization of global motion patterns for stimuli 
composed of multiple motion quartets (Hock, Brownlow & Taler, in preparation). 

It is for stimuli like the motion quartet that it is possible to directly observe the 
nonlinear mechanisms that bind stimulus specification with the ongoing neural 
activity resulting from preceding visual events, revealing fundamental properties 
of the processing mechanisms that are the basis for perception, not just in the 
laboratory, but in the natural environment as well. The most fundamental of these 
properties is neural self-stabilization.  

2   Neural Stabilization 

Whether an individual neural detector is activated by a stimulus or not, random 
events (perturbations) will cause its activation to fluctuate randomly with respect 
to some steady-state value. However, the variability of these fluctuations does not 
increase indefinitely over time. Although at first glance this may not be surprising, 
the "boundedness" of variability reflects a crucial, though often unrecognized 
feature of neural behavior, namely, that a neuron's activation is actively stabilized.  

This idea can be made concrete by starting with any activation level for a 
neuron at any moment in time, and assuming that there is no interaction with other 
neurons. A random perturbation, if unconstrained, with equal probability will 
increase or decrease the neuron’s activation. Assume it increases activation. The 
next and all following random perturbations will again with equal probability 
increase or decrease activation. Thus, there is nothing that systematically returns 
the activation from its increased level. Similarly, if an initial perturbation 
decreases activation, there is nothing that returns the activation from its decreased 
level. The same logic applies to any activation state generated by perturbations. 
Over time, states further and further removed from the initial activation state can 
be reached (e.g., by the chance event of a number of consecutive random increases 
in activation) and nothing drives the system systematically back from such states. 
It is intuitively clear, therefore, that the variance of activation would increase 
indefinitely over time. A formal argument of this kind led to an account for 
Brownian motion and the increase in time of the uncertainty about the location of 
a Brownian particle (Einstein, 1905).  
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The essential feature that keeps the variance of random fluctuations bounded is 
that successive random perturbations do not increase or decrease the neuron's 
activation level with equal probability. That is, the effects of random perturbations 
on activation are not unconstrained. When a random perturbation causes a 
fluctuation in activation, the change is opposed by the neuron's intrinsic ability to 
stabilize its activation, which reduces the size of the fluctuation. It is because of 
this resistance to the effects of random perturbations that there is an upper bound 
to the variance of random fluctuations in activation. The steady-state activation 
value of a neuron (or population of neurons) that is thus stabilized against the 
effects of random perturbations is referred to as an attractor. 

2.1   The Biophysical Basis of Neural Stabilization 

The biophysics of individual neurons provides a mechanism for achieving this 
stabilization of neural activation (Trappenberg, 2002). Specifically, the electrical 
potential across the membrane that separates the interior of a nerve cell from its 
inter-cellular environment is kept stable through the mechanisms of osmotic 
pressure. Ion pumps keep the concentration of different kinds of ions unequal on 
both sides of the membrane, the resulting flow of ions being in equilibrium when 
the electrical potential across the membrane just counterbalances the difference in 
ion concentration. If the equilibrium is perturbed (e.g., by an electrical current 
injected into the cell), the flow of ions quickly re-establishes the steady-state 
membrane potential.  

With a neuron's membrane potential thus stabilized, synaptic input to the 
neuron increases the potential, increasing the probability that the neuron's 
activation will be transmitted to other neurons through action potentials traveling 
down its axon. In our account of neural dynamics (and most other such accounts) 
the stabilized membrane potential, averaged over local neural populations 
composed of hundreds or thousands of individual neurons, is sufficient to account 
for the mapping of psychophysical events onto patterns of neural activation. To be 
sure, the mathematical relationship between ion flows that stabilize the membrane 
potential of individual neurons and the stability properties of neural populations is 
not well understood. Eggert and van Hemmen (2001) have provided one such 
account, but it is limited by the simplifying assumptions that the constituents of a 
neural population are both identical in their responsiveness to stimulation and non-
interactive. This notwithstanding, it is reasonable to proceed based on the 
principle that stability properties of neural populations are inherited from the 
dynamics through which individual neurons stabilize their membrane potential 
(Jancke, Erlhagen, Dinse, Akhavan, Giese, Steinhage & Schöner, 1999).  

2.2   The Time Scale 

The extent to which a neuron or population of neurons resists fluctuations in 
activation caused by random perturbations depends on how quickly fluctuation-
opposing changes emerge within the neurons. This determines the time scale of 
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stabilization. If there were only one instantaneous perturbation, the pre-
perturbation activation level (i.e., the average membrane potential) would be 
restored over an interval determined by the time scale. This is called the 
“relaxation time.” However, random perturbations occur continually, so 
depending on the time scale, there is sufficient time only for the partial restoration 
of the fluctuation in activation caused by one perturbation before the next one 
occurs. The faster the time scale, Τ, the greater the restoration of activation, and 
therefore, the greater the resistance to the effects of the random perturbation. 

2.3   The Core Dynamical Concept 

Neural stabilization provides the basis for the core concept of a theory of 
perceptual dynamics. That is, whatever causes a change in the current neural 
activation, u, will be opposed in the immediate future by a change in activation, 
du/dt, in the opposite direction. Activation increases in the immediate future when 
the change in activation, du/dt, is positive (because u has decreased) and it 
decreases in the immediate future when the change in activation, du/dt, is negative 
(because u has increased). This relationship among current levels of activation, u,
and changes in activation that will occur in the immediate future (du/dt) can be 
expressed as: 

du/dt =  - u / Τ
where Τ  is the time scale of perturbation-opposing reactions within the neuron. Τ
determines the size of the change in activation in opposition to random 
fluctuations, with larger compensating changes (larger values of du/dt) occurring 
when Τ is smaller/faster.  

2.4   Stable Activation States in the Absence of Stimulation 

In classical, non-dynamical approaches to the study of perception, unstimulated 
detectors are simply inactive, and although there are numerous dynamical 
accounts of perception, they generally do not address the status of detectors when 
they are unstimulated. In our dynamical conceptualization, however, a neuron's 
ability to stabilize its activation means that populations of detectors have stable 
activation states even when they are unstimulated, and irrespective of their 
connectivity to other detectors. This means that unstimulated detectors can 
maintain activation near an attractor value that is below the threshold level 
required for perception, thereby minimizing the likelihood that random 
fluctuations would cause the activation of unstimulated detectors to rise above this 
threshold. The stabilization of activation in the absence of stimulation (i.e., in the 
vicinity of the no-stimulus, resting level) can be characterized by adding h to the 
dynamical equation:  

du/dt = (- u + h) / Τ

where h is the detector's resting level.  
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Fig. 2 The straight lines with negative slope represent the stabilization of activation (u) in 
the absence of stimulation (i.e., in the vicinity of the no-stimulus, resting level). This is 
determined by the dynamical equation: du/dt = (- u + h) / Τ, where the rate-of-change, 
du/dt, determines whether and by how much activation will increase or decrease in the 
immediate future. h is the detector's resting level and Τ is the time scale of activation 
change. Because of the negative slope, random fluctuations in activation are resisted by 
changes in the opposite direction, with activation stabilizing at the attractor for the no-
stimulus/resting state (u* = h). Panels (a) and (b) differ with respect to whether the 
perturbation increases or decrease activation

As can be seen in the graphical representation of the equation (Figure 2), the 
attractor for the no-stimulus (resting) state is the activation value u* = h. By 
simple calculation from the above equation, it is the steady-state activation level 
when the rate-of-change, du/dt, is 0. When a perturbation occurs, it imposes a 
randomly determined upward or downward rate of change in activation; i.e., it 
creates a tendency for activation to change in a particular direction. Such 
perturbations cannot be instantaneous. They must last long enough for activation 
to reach a value different from h. It can be seen in Figure 2a that the value of du/dt 
is negative when the perturbation imposes a positive rate of change, so neural 
stabilization opposes the effect of the perturbation by proportionally decreasing 
activation following the perturbation. It similarly can be seen in Figure 2b that the  
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value of du/dt is positive when a random perturbation imposes a negative rate of 
change in activation, so neural stabilization opposes the effect of the perturbation 
by proportionally increasing activation after the perturbation. Irrespective of 
direction, the larger the change in activation caused by the perturbation, the 
greater the opposing change, du/dt. The latter, together with randomness with 
respect to whether perturbations have positive or negative effects, stabilizes 
activation in the vicinity of the resting level. 

2.5   Response to Stimulation 

What happens when a stimulus is presented for which detectors are responsive? In 
classical non-dynamical approaches, the steady-state activation level of a detector 
is determined by the strength of the stimulus, and there is little concern with how 
activation evolves over time toward these steady-state values. In our dynamical 
conceptualization, however, the initial response to the presentation of a detector-
activating stimulus occurs in the context of activation states (at the resting level) 
that are stabilized with respect to the effects of random perturbations. This 
stabilization mechanism therefore determines how activation evolves from the 
resting level toward the steady-state activation level determined by the stimulus. 

This can be made intuitive by imagining that a stimulus presented for a finite 
period of time is equivalent to a dense sequence of activation-increasing 
perturbations (rather than a random sequence of positive and negative 
perturbations, as in the preceding section). Each of these "perturbation-induced" 
upward fluctuations in activation is partially opposed by neural stabilization, so at 
a rate determined by the time scale,Τ, of the neural stabilization mechanism, 
successive excitatory perturbations incrementally move a detector's activation 
away from its (no-stimulus) resting level, toward the stimulus-determined 
activation level. By imagining the stimulus as a dense sequence of partially 
restored excitatory fluctuations, it can be understood that the time course of the 
activation as it rises from the resting level depends on the same neural 
stabilization mechanism that keeps the activation of unstimulated detectors from 
randomly fluctuating above the threshold level for perception. The activational 
effect of a stimulus on a detector ensemble therefore can be characterized by 
adding S to the previously introduced dynamical equation: 

du/dt = (- u + h + S) / Τ

When the stimulus is presented, it imposes a positive rate-of-change on activation; 
i.e., activation increases immediately after the stimulus is presented, which moves  
it from the no-stimulus attractor, u* = h, toward the stimulus-determined attractor, 
u* = h + S. (It can be seen from the graphs in Figure 3 that du/dt is positive in 
relation to the stimulus-determined attractor when activation has been at the 
resting level.) A comparison of Figures 3a and 3b shows that the time scale 
determines how quickly activation changes as it moves away from the resting 
level, toward the stimulus-determined attractor; smaller/faster time scales result in 
larger, more rapid shifts in activation toward the attractor. 
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Fig. 3 The broken straight lines with negative slope represent the stabilization of activation 
(u) in the absence of stimulation, as in Figure 2, and the parallel solid lines represent the 
stabilization of activation (u) in the presence of stimulation. The latter is determined by the 
dynamical equation: du/dt = (- u + h + S) / Τ, where the rate-of-change, du/dt, determines 
whether and by how much activation will increase of decrease in the immediate future. h is 
the detector's resting level, Τ is the time scale of activation change, and S is the stimulus-
initiated activation. Activation increases to the steady-state attractor value, u* = h + S, at a 
rate determined by the time scale of the dynamics, which differs in panels (a) and (b).  

This evolution of activation for the stimulated detector is illustrated in Figure 4 
for two different time scales, which shows that there is a greater rate-of-change in 
activation for the faster time scale as activation rises from the resting level. In 
addition, random fluctuations are less variable (with the same level of random 
noise perturbations) for the faster time scale. So long as the detector's activation is 
not influenced by interaction with other detectors (or adaptation), activation would 
settle near the attractor, u* = h + S, for both time scales. For the simulations in 
Figure 4a, h = -8 and S = 16, so it is readily calculated from the above equation 
that when du/dt is zero, the attractor is at u* = -8+16 = 8.

It is important to note that the comparisons in Figures 3 and 4 are made in order 
to provide an intuitive understanding of the effects of time scale on changes in 
activation. At this juncture, it is not possible to directly determine time scales for 
perceptual dynamics (slower time scales cannot be discriminated from higher 
levels of noise) or to separate contributions to time scale from the stabilization of  
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Fig. 4 This evolution of activation as the result of stimulation for two time scales, 
demonstrating the faster change in activation for the briefer time scale. Activation settles 
near the attractor, u* = h + S, for both time scales, with S = 16 in panel (a) and S = 8 in 
panel (b). Activation for the latter would straddle the threshold for perception, u* = -8 + 8 = 
0, so even small random fluctuations would render perception highly unstable.  

membrane potentials for individual neurons, and from to-be-discussed interactions 
between detectors that compose neural ensembles. 

2.6   Perceptual Thresholds, Perceptual Stability and Uncertainty 

In accounts of perception based on neural dynamics, it is assumed that a stimulus 
attribute is perceived when the average activation of detector populations 
responsive to that attribute is stabilized at a level that exceeds a particular 
threshold value (perhaps determined by the level of membrane potential that 
results in the transmission of action potentials). However, neural stability does not 
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guarantee perceptual stability. If the stimulus-initiated activation in the preceding 
example were weaker (S = 8), the stabilized activation (i.e., the attractor) would 
straddle the threshold for perception, u* = -8+8 = 0. As a result, even small 
random perturbations would rapidly shift activation back and forth across the 
threshold, rendering perception highly unstable, and therefore, highly uncertain 
(Figure 4b).  

This kind of near-threshold uncertainty, which is classically the domain of signal 
detection theory (Green & Swets, 1966), parallels the dynamical account presented 
thus far. That is, both entail the detection of a signal (the steady-state activation 
level) embedded in noise (random fluctuations in activation), and a criterion (the 
perceptual threshold) that determine whether or not the attribute is present 
(perceived). While signal detection theory is sufficient to account for the near-
threshold uncertainty that occurs in many contexts, near-threshold uncertainty does 
not generally obtain in motion perception. For example, Hock, Kogan and Espinoza 
(1997) found values of luminance contrast change that result in the perception of 
single-element apparent motion for half the trials and the perception of nonmotion 
for the other half. For almost all the trials, either motion or nonmotion was clearly 
perceived. There were only occasional trials for which subjects were uncertain 
regarding what they perceived. Consistent with such experimental results, 
perceptual uncertainty does not occur in our dynamical conceptualization because 
as activation rises from the resting level for individual detectors, interaction with 
other detectors emerges, and what would be near-threshold activation levels for the 
individual detectors are boosted to above-threshold levels and further stabilized at 
those levels. How this occurs is discussed next.  

3   The Stabilization of Activation within Detector Ensembles 

Up until this point in the discussion we have focused on the stabilization 
properties of individual detectors (or populations of detectors) in the absence of 
interaction among them. In this section we step back to establish the neuro-
anatomical basis for detector interactions and the particular interactions that are 
the basis for detection instabilities.  

3.1   Neural Connectivity 

In a neural network conceptualization of perception, stimulus specification is 
roughly characterized by the feedforward path through the network. Activation 
induced in this path is largely stimulus determined, the preferential responding of 
different detectors occurring by virtue of their receptive fields being structured to 
realize various feature extraction filters (for motion, orientation, line length, 
texture, color, etc.). However, most neuronal activity entails more than the 
feedforward stream. Braitenberg (1978) has estimated that 95% of the input to 
each cortical neuron comes from its connectivity with other cortical neurons, and 
Felleman and Van Essen (1991) have determined that there is more feedback than 
feedforward connections between higher- and lower-level areas in the brain. 
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Given this neuro-anatomical evidence, one cannot expect the visual system to 
simply “compute” the perceptual output from the stimulus input. When a stimulus 
is presented, it is necessary to also take into account what already is occurring 
within highly interconnected neural networks. This is the domain of neural 
dynamics, which was first introduced into the study of perception by Stephen 
Grossberg and his colleagues (Grossberg, 1973; Grossberg & Mingolla, 1985; 
Grossberg & Rudd, 1992; Francis, & Grossberg, 1996; Chey, Grossberg, &  
Mingolla, 1997; Baloch & Grossberg, 1997). In our analysis, perceptual dynamics 
describe how activation within a network of detectors evolves in time under the 
influence of both current input (stimuli consistent with the preferential responding 
of detectors in the network) and ongoing activity (persistent activation due to 
earlier stimulus input). 

3.2   Interaction

The most important consequence of neural connectivity is that a detector, when 
activated, can influence the activation levels of other detectors, either by 
increasing their activation through excitatory interaction or decreasing their 
activation through inhibitory interaction. An essential feature of such interactions 
is that they are activation dependent. That is, the more strongly a detector is 
activated, the greater its interactive influence on the detectors with which it is 
connected. This is illustrated by the sigmoidal function in Figure 8b. 

Thus, each detector in an interconnected network is subject not only to the 
time-varying activational effect of the stimulus and random perturbations that 
produce fluctuations in its activation, but also to activation-dependent interactive 
influences from other detectors. (Another kind of influence, which we will ignore 
in this chapter, is activation-dependent adaptation; but see Hock et al. 2003; 
Nichols et al. 2006.) Because of this interaction, all contributions to a detector's 
activation change its influence on other detectors, which ultimately comes around 
again by affecting their interactive influence on the detector whose activation is 
the source of the interaction. This ongoing re-cycling of change, or recurrence, 
reflects the state-dependence of the network; i.e., the evolving activation state of a 
detector depends on its own previous activation state as well as the activation state 
of the detectors with which it interacts. In this way, the presentation of a stimulus 
initiates a recurrent cycle of activation change in networks of detectors that moves 
activation toward steady-state values, values for which rates-of-change in 
activation are near zero. 

3.3   Interaction within Detector Ensembles 

As indicated earlier, a detector's activation can be stabilized at a steady-state 
value, but this will not result in perceptual stability if the steady-state value is near 
the threshold for perception. Even small random perturbations would then be 
sufficient to rapidly shift activation back and forth across the threshold, rendering  
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perception unstable and uncertain. This "problem" can be resolved by assuming 
that perception requires the stimulus-initiated activation of individual detectors, 
but that it is ultimately determined by the pattern of activation within ensembles of 
interacting detectors that respond preferentially to different values of the same 
attribute. Because these detectors have overlapping tuning functions, some will 
respond optimally to one attribute value, others will respond, though less strongly, 
to that attribute value, and still others will not respond at all to that attribute value. 
It is within the population of stimulated detectors that excitatory and inhibitory 
interactions create detection instabilities.  

3.4   Detection Instability 

When an appropriate stimulus is presented, the activation of responding ensemble 
members rises from their resting levels (at a rate determined by each detector’s 
neural stabilization mechanism), and an activation level is approached for which 
the population of detectors will boost each others' activation through mutual 
excitatory interaction. Up until this point, activation is still subthreshold for 
perception, so whether or not further growth in stimulus-initiated activation 
engages excitatory interactions will have dramatic effects on activation levels for 
the population of stimulated ensemble members. If stimulus-initiated activation is 
insufficient to initiate excitatory interactions among ensemble members, activation 
for the stimulated detectors will be stabilized below the threshold level required 
for perception. However, if stimulus-initiated activation is sufficient to initiate 
excitatory interactions, detectors that respond optimally will increase the 
activation of detectors that prefer similar, but different attribute values. And the 
latter, in turn, will increase the activation of the detector already responding 
optimally to the stimulus.  

This reciprocal excitation will result in detector activation rapidly passing 
through a "detection instability" (Bicho, Mallet, & Schöner, 2000; Schöner, 2008; 
Schneegans & Schöner, 2008). Activation will accelerate well past levels that are 
near-threshold for perception because detector interactions are activation 
dependent; i.e., the more strongly a detector is activated the greater its excitatory 
effect on other ensemble members. The indefinite increase in activation for these 
self-excited detectors is prevented by the accompanying rise in activation-
dependent inhibitory interactions, resulting in activation settling at a stable value 
(attractor) for the population of detectors that respond preferentially to attribute 
values at or near to the attribute value of the stimulus. The inhibitory interactions 
that limit the growth in self-excited activation, though weaker than the excitatory 
interactions, come from ensemble members with preferences for a wider range of 
attribute values (Amari, 1977; Wilson & Cowan, 1973). As a result, pairs of 
detectors with similar preferences will more strongly excite than inhibit each 
other, whereas the reverse will be the case for pairs of detectors with dissimilar 
preferences.  

Inhibitory interactions are thus comparatively long-range. They can be effective 
over longer distances (in attribute space) than short-range excitatory interactions, 
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so they prevent the spread of activation to inter-connected detectors with 
preferences for attribute values that are much different than the attribute value of 
the stimulus. It will be seen in Section 4 that this long-range inhibition also is 
important for perceptual selection, which comes into the picture when stimulus-
initiated activation for much different attribute values makes it possible for the 
activation of more than one population of ensemble members to pass through a 
detection instability.  

3.5   Stabilization of Activation within Detector Ensembles 

When a self-excited population of detectors passes through a detection instability, 
its activation is boosted well past the threshold level required for perception, and 
in addition, its stability is enhanced with respect to the fluctuations in activation 
produced by random perturbations. The reason is as follows. If the net effect of 
random perturbations over the population of detectors is for activation to fluctuate 
upwards, the increased activation will spread through detector pairs with similar 
preferences via short-range excitatory interactions. However, detector activation 
due to the net-upward fluctuations is compensated for by increased inhibitory 
interactions. In the case of inhibition there is both short-range inhibition between 
pairs of detectors with similar preferences, and long-range inhibition between 
pairs of detectors with dissimilar preferences. The net effect will be to oppose the 
net-increase in activation by increasing activation-reducing inhibitory interactions. 

The opposite occurs when random perturbations result in a net downward 
fluctuation in activation for the population of self-excited detectors. The reduced 
activation will spread through the reduction in short-range excitation between 
detector pairs with similar preferences. However, the reduction in activation also 
will decrease both short-range inhibition between pairs of detectors with similar 
preferences, and long-range inhibition between pairs of detectors with dissimilar 
preferences. The net effect will be for the population of self-excited detectors to 
oppose the net-decrease in activation by decreasing activation-reducing inhibition, 
which effectively increases activation.  

Stability therefore is asymmetrical for the two states associated with the 
detection instability. If stimulus-initiated activation is too weak to engage the 
excitatory interactions that boost the ensemble's activation, activation will remain 
below the threshold level required for perception. Stability in the presence of 
random perturbations then would be determined by the intrinsic neural 
stabilization properties of the stimulated detectors (i.e., by the balance of 
membrane potentials and ion concentrations). If stimulus-initiated activation is 
sufficient for activation to produce a self-excitatory boost in activation, stability in 
the presence of random perturbations would then be determined by both the neural 
stabilization properties of the stimulated detectors and the balance of excitatory 
and inhibitory interactions that results from their passing through a detection 
instability, as described above. 
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3.6   Removing the Stimulus 

The new stable state induced by the detection instability resists decay when the 
activation-initiating stimulus is removed. This is because excitatory interactions 
keep boosting detector activation even as the removal of the stimulus induces a 
reduction in activation. Although this resistance to the removal of the stimulus 
ultimately fails, it slows the return of activation to the detectors’ no-stimulus 
resting levels, so that activation persists for time intervals that are much longer 
than those needed to initially stimulate the detectors and boost activation through 
the detection instability. This lingering of activation (below the threshold for 
perception, but above the resting level) potentially accounts for percepts 
exhibiting stability over surprisingly long temporal intervals (Leopold, Wilke, 
Maier & Logothetis, 2002). 

4   Perceptual Selection 

Thus far we have discussed how activation within a detector ensemble is stabilized 
around detectors that optimally respond to a particular attribute value. The 
principle is that above-threshold activation for these self-excited detectors would 
signify the perception of this attribute value. However, in natural perception (and 
in the laboratory), activation can be simultaneously initiated around more than one 
attribute value. For example, both horizontal and vertical motions are 
simultaneously stimulated by the motion quartet described in Figures 1d-1f. When 
the detectors responsive to one attribute value are more strongly stimulated than 
the detectors responsive to other attribute values, the long-range inhibitory 
interactions that stabilize activation in one part of the attribute space (Sections 3.3 
and 3.4) can reduce stimulus-initiated activation in other parts of the attribute 
space, preventing activation at that location from passing through an activation-
boosting detection instability. This can result in one overwhelmingly dominant 
percept (the horizontal motion in Figure 1a), even though the alternative attribute 
values (the diagonal motions in Figures 1b and 1c) would be perceived in the 
absence of competition from the detectors that respond optimally to horizontal 
motion. The characteristics of this inhibitory competition, which would contribute 
to the monostability typical of natural perception, is best studied in the case of 
bistability; i.e., when the competing stimulus attributes are relatively similar with 
respect to the level of activation that they stimulate.   

4.1   Perceptual Bistability 

Perception is said to be bistable when two different percepts are possible for the same 
stimulus. When the competing percepts are based on different values of the same 
attribute (we will call the values A and B), the value selected for perception depends 
on activation-dependent inhibitory interactions between the populations of detectors 
responsible for the perception of each attribute value. When the stimulus-initiated 
activations for A and B are equal, random fluctuations occurring as activation rises  
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Fig. 5 When the stimulus-initiated activations for attributes A and B are equal, random 
fluctuations occurring as activation rises from the resting level result in detector 
populations that preferentially respond to one attribute having a momentary activational 
advantage over detector populations that preferentially respond to the other attribute. 
Reciprocal, activation-dependent inhibitory interactions between the two populations drive 
their activations apart such that the randomly advantaged attribute has its activation 
stabilized at an above-threshold level (u* = 8) while its competitor is suppressed to a sub-
threshold activation level (u* = -3). 

Fig. 6 When the stimulus-initiated activations for attributes A and B are unequal, and there are 
no activation-dependent inhibitory interactions between the detector populations responsive to 
these attributes, both would reach levels of activation that are above the threshold value 
required for perception, so both would be perceived simultaneously. 
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Fig. 7 Graphical representations for the stabilization of activation for non-interactive 
detector populations responsive to attributes A (panel a) and B (panel b), which differ with 
respect to their stimulus-initiated activation, as in Figure 6. Activation departs more quickly 
from the resting level (h) for the stronger (SA) compared with the weaker attribute (SB). This 
follows from the rate-of-change, du/dt, being larger for attribute A because its new attractor 
(u* = h + SA) is further from the initial, no-stimulus attractor (u* = h) compared with the 
new attractor for B (u* = h + SB) .  

from the resting level result in detectors that preferentially respond to one attribute 
value having a momentary activational advantage over detectors that preferentially 
respond to the other attribute value, enabling the former to inhibit the latter more than 
vice versa (Figure 5). As activation increases, reciprocal, activation-dependent 
inhibition drives their activation levels further and further apart, with activation 
stabilizing at an above threshold level for one alternative and at a subthreshold level 
for the other. In this way, random fluctuations in activation lead to the perceptual 
selection of one of the equally stimulated alternatives. (In all the simulations, the 
inhibitory interaction has a maximum value of 11. With SA = SB = 16 for the 
simulation in Figure 5, the attractor for the above-threshold attractor is near u* = -
8+16 = 8, and the attractor for the subthreshold attractor is near u* = -8+16-11 = -3.) 
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4.2   Rates of Change in Activation 

We next examine selection between competing attribute values, A and B, when 
the detectors that respond preferentially to A are more strongly stimulated than the 
detectors that respond preferentially to B. If there were no activation-dependent 
inhibitory interactions between these detector populations, both would reach levels 
of activation that are above the threshold value required for perception. Both 
would be simultaneously perceived, which is contrary to true bistability. This is 
illustrated by trajectories (without interaction) for the evolution of activation 
toward the attractors for A, uA* = h + SA, and for B, uB* = h + SB, are indicated in 
Figure 6. (With SA = 17 and SB  = 15, uA* = -8+17 = 9 and uB* = -8+15 = 7.) It can 
be seen in Figure 6 that upon stimulus presentation, the rate of change of 
activation as it rises from the no-stimulus resting state is greater for the detectors 
responding preferentially to A than for the detectors responding preferentially  
to B. This is shown in a different way by the graphical representations in Figure 7.  

Fig. 8 When there are reciprocal, activation-dependent inhibitory interactions between 
detector populations, differences in the rate-of-change of activation (panel a) are of critical 
importance. As illustrated in panel b, this is because the detector population (for attribute 
A), with the faster rate-of-change, will reach an activation level where it will begin to 
inhibit its competing detector population (for attribute B), with a slower rate-of-change, 
before there can be an inhibitory influence in the opposite direction.  
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That is, activation for the stronger stimulus departs more quickly from the resting 
level, h, because the value of du/dt is greater when the new attractor is further 
from the resting level.  

4.3   Perceptual Selection of the Favored Stimulus Alternative 

As illustrated in Figure 8, the key to the perception of attribute value A when it is 
favored by the stimulus is that its detectors reach an activation level where  
they can begin inhibiting the activation of the detectors for attribute value B 
before the reverse occurs. This is why differences in the rate-of-change of 
activation are of critical importance. As a consequence of its faster rate-of-change, 
the activation for A increases to its above-threshold attractor value near u* = h + 
SA = -8+17 = 9), while at the same time activation for B is suppressed by 
inhibition from A, stabilizing below the perception threshold at attractor value 
near u* = h + SB – IA = -8+15-11 = -4 (Figure 9). A comparison of Figures 6 and 9 
shows that the reciprocal inhibitory interaction substantially separates the 
alternative activation states, facilitating the perceptual selection of the alternative 
that is most strongly specified by the stimulus. (Note: The simulations in this 
section and the remainder of the essay do not include the additional divergence in 
activation due to the self-excitation that occurs when the more strongly activated 
alternative passes through a detection instability.) 

Fig. 9 The evolution of activation in the presence of reciprocal, activation-dependent 
inhibitory interactions when the more strongly activated detector population (for attribute 
A) suppresses the activation of its competitor, the detector population for attribute B.  
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4.4   Perceptual Selection of the Unfavored Stimulus Alternative 

The detectors for A are more strongly stimulated than the detectors for B, so its 
perception is signified most of the time when the stimulus is presented. However, 
bistability means that B also can be perceived, though not necessarily as often as 
A. As illustrated by the activation trajectories in Figure 10, a sufficiently large 
fluctuation can result in B's activation becoming larger than A's as activation for 
both increase from the no-stimulus, resting level, h. B then can begin inhibiting its 
stimulus-favored competitor, A, before the reverse occurs. B’s activation would 
then rise to an attractor value near uB* = h + SB = -8+15 = 7, which lies above the 
threshold for perception, while A's activation decreases toward an attractor value 
near uA* = h + SA – IB  = -8+17-11 = -2, which is subthreshold for perception. The 
perceptual selection of B is signified, but because this requires a random 
fluctuation that reverses the relative activation of the detectors for A and B as they 
rise from the resting level, it is perceived less often than A. 

Fig. 10 The evolution of activation in the presence of reciprocal, activation-dependent 
inhibitory interactions when the more weakly activated detector population (for attribute B) 
gains a momentary activational advantage as a result of random fluctuations in activation, 
and suppresses the activation of its competitor, the detector population for attribute A. 

5   Objects and Feature Integration 

We have focused in this essay on the dynamical basis for the perception of individual 
attributes, arguing that it is determined by the pattern of activation over an ensemble 
of detectors responsive to different values of the same attribute. However, natural 
objects and even artificial objects created in the laboratory are multi-dimensional. The 
integration of the attributes (or features) belonging to the same object, called the  
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binding problem, has been the subject of numerous empirical and computational 
studies (see Treisman, 1998). The dynamical framework described in this essay 
suggests that short-range excitatory interactions among attribute/feature ensembles at 
similar retinal locations might be sufficient to account for their integration. 
Alternatively, higher-level object units or units in working memory might receive 
input from attribute ensembles at similar retinal locations, and in turn provide 
feedback to those ensembles that maintains precise spatial information and affects 
activation within each attribute ensemble in a manner consistent with the activated 
higher-level units (Johnson, Spencer & Schöner, 2008).  

Evidence consistent with the latter alternative comes from a recent study with 
stimuli composed of four motion quartets, as illustrated in Figure 11  
(Hock, Brownlow & Taler, in preparation). For this arrangement, the motion 
directions for the individual quartets are integrated into a global rotational pattern 
(alternating clockwise and counterclockwise rocking motion; the rotation of the 
outer elements predominates), likely due to the activation of global motion 
detectors in Area MSTd (Tanaka & Saito, 1989). Feedback from the global to 
motion detector ensembles with different directional preferences was indicated by 
the motion for the quartets being in directions consistent with global rotation. For 
example, horizontal motion for the quartets on the top and bottom of the 
configuration even though their aspect ratio would otherwise favor motion in 
vertical directions, as in Figure 1f. This kind of result is consistent with Treisman's 
(1998) prediction that "The strongest evidence will come when changes in neural 
activity are found to coincide with perceived changes in binding, perhaps in 
ambiguous figures or attentional capture (page 35)." 

Fig. 11 Stimuli composed of four motion quartets arranged in a configuration for which the 
motion directions for the individual quartets can be integrated into a global rotational 
rocking pattern (alternating clockwise and counterclockwise rotation, with the perception of 
rotation predominating for the outer elements). 
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6   The Signature Features of Perceptual Dynamics 

The stated purpose of this essay was to show that three neural properties are sufficient 
to provide the basis for a theory of perceptual dynamics that accounts for the 
relationship between persistence, responsiveness to stimulation, and selection. We 
have shown how perceptual persistence results from the intrinsic neural stabilization 
of individual detectors (through the balance of the membrane potential and ion 
concentrations; Section 2.1) and from the balance of excitatory/inhibitory interactions 
within a population of self-excited detectors with preferences for similar attribute 
values (Section 3.4). We have shown how change-resistant neural mechanisms  
affect the rate at which activation changes in response to changes in stimulation 
(Section 2.5), and how near-threshold perceptual uncertainty is minimized when 
stimulus-initiated activation is amplified by self-excitation (Section 3.3). Finally, we 
have shown how bistability arises as a result of reciprocal, activation-dependent 
inhibitory interactions between populations of detectors that preferentially respond to 
different values of the same attribute, and why differences in the rate-of-change 
activation are critical for the perceptual selection of the alternative percept that is 
most strongly specified by the stimulus (Sections 4.2 and 4.3). We show in this 
section that a perceptual dynamics based on these neural properties can result in the 
signature features of a dynamical system: spontaneous switching between percepts 
differing in relative stability, and hysteresis. 

6.1   Spontaneous Switching 

When two percepts are possible for the same stimulus, sufficiently large random 
perturbations can cause spontaneous switches between the percepts. The 
probability of a switch is inversely related to the likelihood of perceiving one of 
the alternatives when the bistable stimulus is presented. That is, the more likely it 
is for a percept to occur when a stimulus is presented, the less likely it is that there 
will be a spontaneous switch to the alternative percept.  

This is illustrated by our earlier example in which stimulus-initiated activation 
is greater for the detectors responsible for the perception of A than for the 
detectors responsible for the perception of B. A is more likely to be perceived 
because it is more strongly specified by the stimulus, but sometimes B is 
perceived instead. Comparing Figures 9 and 10, it can be seen that the activational 
difference between the perceived and unperceived (subthreshold) alternatives is 
greater when the more likely of the alternatives is perceived (Figure 9) than when 
the less likely of the alternatives is perceived (Figure 10). A larger, less probable 
perturbation would be required to overcome the larger activational advantage of 
the perceived alternative when it is favored by the stimulus (A) compared with 
when it is not favored by the stimulus (B). 

The relative stability of the two percepts is further illustrated in Figure 12 by 
continuing the simulation for a longer period of time, which provides more 
opportunity for the occurrence of random perturbations large enough to produce  
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Fig. 12 A simulation demonstrating the relative stability of the percepts for which attributes 
A and B are perceived. Stimulus-initiated activation is greater for attribute A, so its 
perception is more stable than the perception of attribute B. This is indicated by the longer 
temporal intervals over which attribute A is perceived compared with the perception of 
attribute B.  

perceptual switches (noise strength was increased in order to increase the 
frequency of switching). As is evident in Figure 12, both A and B are perceived, 
but the temporal intervals over which A is perceived are much longer than the 
temporal intervals over which B is perceived. The perception of A is more stable. 

6.2   Hysteresis 

Persistence (or its lack) in the presence of non-systematic, random events  (passing 
shadows, distractors of attention, eye blinks, neural fluctuations) is observed 
dynamically in Section 6.1 as the dependence of spontaneous perceptual switching on 
the relative stability of the alternative percepts that are possible at a given moment. 
Such switching is rare in the natural environment because of the strong dominance of 
one percept, and because of the presence of disambiguating contextual information. 

Persistence also facilitates the continuation of a previously established percept 
despite systematic changes in stimulus input, as might occur when the retinal 
projection of an object is distorted by gradual changes in viewpoint (due to the 
motion of an object or the egomotion of the perceiver). Objects in the world are 
invariant despite changes in viewpoint, so it is of obvious benefit to maintain the 
percept of an object that is established with less distorting projection angles. 

To frame this in a manner consistent with our earlier examples, assume that 
perceiving the veridical shape of an object depends on the perception of attribute 
value A, but changes in viewpoint distort the retinal projection, favoring the  
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Fig. 13 A simulation demonstrating hysteresis. The perception of attribute A is established 
during the first 300 millisecond interval, when it is the stronger of the two attributes. 
Hysteresis is indicated by the perception of attribute A persisting during the second 300 
millisecond interval despite the stimulus changing such that B becomes the stronger 
attribute. It is only during the final 300 millisecond interval, when the perception of 
attribute B is even more strongly favored by the stimulus, that there is a switch to its 
perception. 

perception of attribute value B, and thus, a different, nonveridical shape. 
Hysteresis, the persistence of percept A despite systematic changes in the relative 
strength of attributes A and B, is illustrated in Figure 13. It can be seen in the 
figure that the perception of A, established when it is the stronger of the two 
attributes (during the first 300 millisecond interval of the simulation), is 
maintained despite the stimulus changing, and B becoming the stronger attribute 
(during the second 300 millisecond interval of the simulation). It is only when the 
advantage of stimulus-initiated activation more strongly favors attribute B that the 
initial perception of A gives way to the perception of B (during the final 300 
millisecond interval of the simulation). 

7   Conclusion 

Over the years, there have been many physics- and mathematics-based entry 
points into the study of perceptual dynamics (e.g., Ditzinger & Haken, 1990; 
Poston & Stewart, 1978). As indicated earlier, Grossberg and his colleagues were 
the first to specifically study brain functions in terms of dynamics, building 
complex neural architectures in order to account for a wide range of perceptual 
and cognitive phenomena. (See also Wilson & Kim, 1994.) We have taken a 
different approach in this essay and in an earlier article (Hock, Schöner & Giese, 
2002). That is, we have shown that a few basic neural properties are sufficient to 
provide the foundation for an understanding of the dynamical characteristics of 
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perception, characteristics often over-looked or "taken for granted" by most 
investigators of perceptual phenomena and perceptual behavior. 
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Optical Illusions: Examples for Nonlinear 
Dynamics in Perception* 

Thomas Ditzinger 

Abstract. Simple and intriguing examples for nonlinear dynamics in visual per-
ception are presented by means of optical illusions. Well known visual effects 
such as the temporal perception of ambiguous figures, autostereograms, and mov-
ing patterns are presented and interpreted from the perspective of nonlinear dy-
namics. Furthermore new results on the interdependency between the perception 
of colour and motion are presented, including an explanation of the classic  
"Fluttering Hearts effect" and the new "Leaning Tower of Pisa effect" which is  
responsible for a perceptual shift of rotating coloured areas. 

1   Ambiguous Figures 

Ambiguous patterns are well known and fascinating examples for optical illusions. 
Because of their reliability in the experimental procedure ambiguous figures are 

a popular tool in psychophysics. When test persons look at a figure as shown in  
Fig 1, they experience a temporal oscillation in perception, e.g. the three-
dimensional cube becomes suddenly dynamic. The plane seen in the foreground 
suddenly appears to be lying in the background for some seconds, then in the 
foreground again, then again in the background, etc. The best known psychologi-
cal hypothesis to explain these findings is that of saturation of perception, pro-
posed by Köhler (1940).  There is a general agreement among psychologists that 
the observed oscillations  result from neuronal fatigue, inhibition or saturation.  

This perceptual behaviour can be successfully mimicked by a nonlinear model 
of human perception of ambiguous patterns (Ditzinger, Haken 1989, 1990) which 
is in excellent agreement with the experimental findings. The model is a straight-
forward extension of a general algorithm for pattern recognition by machines 
known as synergetic computer (Haken 2004) on the one hand and of the saturation 
of attention parameters on the other. It simulates the recognition of ambiguous 
patterns by humans by a set of coupled differential equations which describe the 
formation of percepts by means of order parameters.  The degree to which an in-
divdual pattern k is recognized by a subject is described by the order parameters 

                                                           
Thomas Ditzinger 
Springer Verlag, Tiergartenstr, Heidelberg, Germany 
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kξ which in turn is determined by the saturation of the corresponding attention  

parameters kλ . In our model (1-4) for the perception of ambiguous figures these 

attention parameters are subjected to a damping mechanism mimicking the effect 
of saturation of attention and synaptic connections with a,b, γ  constant.  In this 

way oscillations of perception arise quite naturally.  

 

Fig. 1 The Necker cube (Necker 1840) 
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Our approach takes also ambiguous patterns with bias into account which leads  
to different periods of the attention paid to the one or the other interpretation  
of the pattern. The perceptual weight of a bias of a percept k is denoted by the 
bias parameter α . A typical simulation result can be seen in figure 2 including  
fluctuatios )(tFk

 of the attention parameters. 
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Fig. 2 Temporal behaviour of the order parameters 1ξ  and 2ξ . The typical oscillations of 

the perception can be clearly seen 

Our model is in excellent agreement with the experimental findings and  
intuition. As can be seen in Fig. 2 when a certain alternative has been perceived, it 
remains stable over some time until suddenly the other alternative is perceived.  

The two alternatives of perception are rarely of exactly equal strength. In  
most cases one is preferred against the other. Despite of that, if the bias of one  
alternative is not strong, a reversion occurs, but the reversion times of the individ-
ual components become different. The stronger the bias, the longer the reversion 
time. 

 

Fig. 3 Oscillations of perception between percepts with different bias (upper part: α = 
0.064, lower part:α =0.128. 
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Our model (1-4) shows exactly the same behaviour which can be seen in Fig. 3 
for ambiguous figures with increased bias. In the upper part, the time evolution is 
shown for α  = 0.064, in the lower part forα  = 0.128. As can be seen the share of 
the alternative 2 (dashed line) is increased. With increasing bias also the sum of 
the individual reversion times increases in good agreement to the measurement.  

With our model we can also show that the duration of the period as a sum of the 
reversion times becomes longer with increasing bias of one alternative of perception.  

With our model we can also demonstrate the phenomenon of hysteresis in 
perception. If one considers the sequence of pictures of Fig. 4 from the left upper 
corner to the right lower corner and then in the opposite on the direction of view 
direction, one observes that the transition from the face of a man to a girl occurs at 
different points. 

 

Fig. 4 Hysteresis in perception: the place of transition depends on the direction of view. 

2   The Verbal Transformation Effect 

While there are usually two alternatives reported in experiments with visual  
ambiguous figures, the number of reported alternative phonemic structures is  
typically much greater. The most general form of multistability in perception can be 
studied in hearing in the form of the verbal transformation effect. For the first time 
Richard Warren studies in 1958 the perception of listeners to repeatedly presented 
auditory stimuli such as syllables, words or phrases. He found that most of the subjects 
perceive the stimulus in variety of alternative forms.  
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In a recent experiment (Tuller et al. 1997)  the syllable [ke] was reproduced 
1000 times with a 500-ms silent interval between successive tokens and presented 
to subjects. All subjects reported hearing changes in the syllable presented (e.g., 
‘ke’, ‘ka’, ‘cat’, ‘kayah’, ‘chair’).  Although subjects may report dozens of differ-
ent alternative forms during the course of the experiment, listeners tend to cycle 
between only two forms at a time, not three or more. 

It was found that the main organization of the perceptual transition is in pairs  
(Ditzinger et al. 1997). For example, when a single syllable was repeatedly pre-
sented, cycling between two phonemic forms was far more common than cycling 
among three or more forms. This means that the perceptual order for three alterna-
tives 1,2,3 is perceived in paircoupled sequences such as 1212121313131323232 
instead of  e.g. circular sequences such as 123123123. It was shown that the  
paircoupled transforms of perception have a faster and more stable dynamics than 
the nonpaircoupled transforms. 

As can be shown our model of multistable perception produces exactly the 
same temporal paircoupling behaviour as in the measurement. A straightforward 
generalization of our model (1-4) to more than 2 alternatives k leads to the full 
model 
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There is very good agreement between the empirically observed properties of the 
verbal transformation effect and the properties detected by our full model. With 
our model it can be shown that the main organization of the perceptual transitions 
is into pairs as in the experiments. This pairwise coupling is pronounced in the 
frequency of switching to pair members, but not in their dwell times (the time 
spent perceiving a given phonemic form before switching to another form). As in 
the experiments the paircoupled transforms of perception have a faster and more 
stable dynamic than the non - paircoupled transforms.  

3   3D Vision and Autostereograms  

Recently, a very impressive method of encoding three-dimensional information in 
2D pictures was designed in the form of computer-generated patterns of colored 
dots. At first glimpse, these so-called autostereograms appear as structured but 
meaningless patterns.  After a certain period of observation, a 3D pattern emerges 
suddenly in an impressive way. In Fig. 5 an expample of an autostereogram is  
presented. After some time of observing the fiat, periodic random dot pattern, a  
striking phase transition in perception occurs, and  3D rabbits becomes visible.  

Human 3D perception of autostereograms is only possible if the eyes see two 
slightly different images, although observing only one autostereogram. The left-
image is any segment of the original autostereogram. The right image is a segment  
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Fig. 5 Example of an Autostereogram: Rabbits 

of the same size but taken from a position horizontally shifted with respect to the 
left image. The amount of the shift is connected with the eye distance and the vis-
ual angle. In order to obtain a stereoscopic perception the convergence of the eyes 
has to be controlled and the sight has to go behind the paper plane. This means 
that the accommodation of the lenses to the paper plane and the convergence of 
the eyebeams (behind the paper plane) have to be decoupled. By means of the 
amount of the horizontal difference of the two pictures – the disparity- the corre-
sponding image of the eyes are fused and a meaningful 3D perception becomes 
possible. This impressive transition between the initial state and the 3D perception 
state takes place in a very short time. 

When humans concentrate long enough on an autostereogram, they can per-
ceive a variety of different 3D by the vergence eye movement control aspects. 
Looking at an original autostereogram as in Fig. 5, the most probable and impres-
sive aspect is the perception of two 3D rabbits. The eyes of the observer are  
initially uncrossed by a certain amount. The vergence eye movement stops when 
the horizontal shift from the left image to the right image is approximately one pe-
riod length in dot sequence to the right. Other possible 3D aspects are induced by 
initially uncrossing the eyes even further, leading the vergence eye movement 
control to produce a horizontal shift of 2 or more period lengths. Thereby, the 3D 
background impression becomes deeper, and in the foreground, different 3D ghost 
images become apparent. In the case of a horizontal shift of 2 period lengths, six 
slighty different rabbits become visible: four in the background at the same depth 
and two, incomplete ones in the foreground. The shape of the incomplete rabbits  
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is the overlapping of the four background shapes. Some persons are able to  
perceive an inverse 3D picture, too. The background of the original uncrossed eye 
case becomes the foreground and vice versa. This is the result of initially crossing 
the eyes, producing a horizontal shift of the left image to the right image in the 
opposite direction as before. 

All these characteristic properties of human perception of autostereograms  
can be simulated by a nonlinear model for stereo-vision (details see Reiman and 
Haken 1994) which was applied to the perception of autostereograms (Reimann  
et al. 1995). The model shows a fully satisfactory agreement with the multivalent 
perception experienced by humans. As in nature, in our model the phase transition 
between the initial state and the 3D perception state takes place in a very  
short time.  

 

Fig. 6 The 3D - model at Work 

The temporal development of the simulated depth maps of the model can be 
seen in Fig. 6.  

In the upper part the temporal evolution of the depth map is shown for regular 
uncrossed 3D- viewing according to the linear scale given at the right hand side: 
blue indicates the foreground, orange the deepest background. In the first picture, 
the result for the first iteration steps is shown. Up to now, only a few 'conscious' 
parts of the 3D pattern are perceived by the system. In the course of time, the 
depth map suddenly completes itself in a self-organizing way. Order is created by 
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competition and cooperation in a self-organizing process. The final state can be 
seen in the third picture, which clearly shows the two rabbits as perceived by  
humans.  

Other possible 3D aspects are induced by initially uncrossing the eyes further, 
leading the vergence eye movement control to produce a horizontal shift of 2 or 
more period lengths. Thereby, the 3D background impression becomes deeper, 
and in the foreground, different 3D ghost images become apparent. As shown in 
the second row of Fig. 6 in the case of a horizontal shift of 2 period lengths, our 
model perceives six different rabbits: four in the background at the same depth 
and two more, incomplete ones in the foreground. The shape of the incomplete 
rabbits is the overlapping of the two background shapes. This is in full accordance 
to human perception. 

The case of  inverse 3D picture recognition can be simulated in full amount, 
too. This can be seen in the bottom part of Fig. 6. After some initial time steps 
suddenly a clear perceipt appears in inverted depths. In the third figure of the third 
row you can see the orange ear of the right hand rabbit indicating the deepest level 
of the depth map, while the purple plain in this inverted view indicates the  
perceived foreground. 

Our nonlinear model has proven to be fully capable to simulate the properties 
of human 3D vision processes in the perception of autostereograms. As in human 
perception our model shows multistability in autostereogram perception according 
to the number and 3D- positioning of perceived rabbits.   

4   Perception of Motion, Colour and Brightness 

4.1   The Leaning Tower of Pisa Illusion 

A complete nonlinear dynamic model of human perception should also be able to 
simulate the perception of motion, colour and brightness. In this paragraph we  
focus on a new, striking and easily accessible optical illusion mediated by interac-
tions of colour, brightness, form and motion perception – the Leaning tower of 
Pisa (LTOP) illusion (Ditzinger et al 2000). In some circumstances the perception 
of orientation of coloured forms is radically altered by rotary movement. This illu-
sion can be easily demonstrated with a common record turntable.  By using opti-
mized colour and brightness combinations between foreground and background an 
illusory tilt of 8 degrees and more can be observed. 

In Figure 7 a coloured Leaning tower of Pisa is visible with its original 5,5  
degrees tilt. At speeds obtainable form a record turntable (33-78 rpm) the tilt dis-
appears! The LTOP effect is also visible in the orientation of the yellow bar sym-
bolising the horizon which upon turntable rotation appears to be parallel to  
the bottom of the cyan picture frame. Further experiments show that this phe-
nomenon is dependent on rotation rate and on the used combination of colour and 
luminance.  
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Fig. 7 The Leaning Tower of Pisa Illusion. The original tilt of 5,5 degrees disappears when 
rotated on a regular turntable player and the tower appears to be upright. 

This can be impressively demonstrated by means of a pattern (see figure 8) with 
a set of parallel blue lines on a red background. Additionally there is a green and a 
yellow line, tilted 6° clockwise from the set of parallel blue lines. Upon rotation the 
green line appears parallel to the blue lines, but the tilted yellow line appears still 
tilted. This shows that the colour combination red/green produce a strong LTOP ef-
fect, while the combinations red/blue or red/yellow produce no effect or only a 
weak one.  The effect is dependent on the direction of movement. If e.g. Fig. 7 or 8 
are rotated in the opposite way it can be seen that the orientation of the targets 
(tower in Fig. 7, green line in Fig. 8) appears exaggerated by movement.  

The LTOP illusion appears to be in good agreement with the venerable flutter-
ing heart illusion (Wheatstone 1844, Brewster 1844, von Helmholtz 1867). If a 
coloured target attached to a differently coloured background is shaken in dim  
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Fig. 8 The yellow and the green line is tilted 6° clockwise from a set of parallel blue lines. 
When spun on a turntable player the green line appears to be parallel to the blue lines but 
not the yellow.  

illumination and viewed in peripheral vision, then for some colour combinations 
the target appears to become detached from the background and to lead or lag the 
background motion with a characteristic delay. We found that the interacting 
combinations of colour and brightness are the same as in the LTOP illusion.  The 
fluttering heart illusion is less intense and stable than the LTOP illusion though  
And it is restricted to dim illumination and peripheral vision, which is not the case 
for the LTOP illusion. A possible explanation for the perceptual strength of the 
LTOP illusion is the different geometry of target movements. While the move-
ment in the fluttering heart illusion is a one-dimensional oscillation with variable 
velocity and speed, the LTOP movement is a uniform circular motion (in two di-
mensions) with constant speed. This constant speed produces constant temporal 
viewing conditions - in contrast to the fluttering heart illusion.  
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As of now we know of no complete explanation and modelling of the fluttering 
heart illusion nor the LTOP phenomenon but hypothesize that the effect is con-
nected with the different temporal delays in the perception of different colours and 
their luminances.  

A new finding on the way to an explanation is that each colour not only has an 
interacting motion partner in colour but also in greyscale. This can be seen in the 
upper part of Fig. 9 showing 11 areas with different greyscale values on a magenta 
background  (greyscale =0.0, 0.1, 0.2.. 1.0).  Dependent on the printer conditions 
one of the grey areas appears to detach from ground when shaken and move with a 
delay. The same result occurs with the LTOP experiment. This means that the de-
taching phenomenon is not only caused by interacting ingenious pairs of colours 
but by a more general process connected to greyscale values.  

 

Fig. 9 Detecting coherent colours 

In the lower part of Fig 9 it can be seen that also the opposite behaviour occurs: 
for each greyscale background an interacting coloured foreground can be found in 
each colour tone. This is demonstrated for a background with the greyscale value 
0.4 and 11 cyan areas with different brightness values (C=0., 0.1, 0.2..). At least 
one detaching area can be perceived by each subject with the fluttering heart  
illusion as well as the LTOP phenomenon. 

In each case a detachment effect appears for a special value of C. As measure-
ments with a spotmeter show the detaching areas have comparable brightness  
values as their background! This means that there is not only a special pair of in-
teracting colours but that every colour can shake with every other if just the lumi-
nance is right! We have tested this hypothesis with our printer for various colour 
combinations – for all of them the existence of the transitivity law was fullfilled.  
The detection procedure can be demonstrated by the example of Fig 9. For our 
printer in the upper part the area with 0.4 grey value interacted the most with the  
magenta background. Using this background in the lower part we found for our 
conditions and cyan foreground that the 50% luminance area in the middle  
interacted the most. And we finally saw, that this colour also fully interacts with 
the magenta background from the upper part of Fig.9!  
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Due to this circular transitivity it is reasonable to hyothesize, that the areas ap-
pear to detach from the ground if they have exactly the same perception times. If 
the perception times are of the same size a resonance effect takes place. This reso-
nance effect is not possible for different perception times, because they produce a 
ambiguity in spatial perception of the areas: on some locations the areas would 
appear to intersect and on some locations none of the areas would be unambigu-
ous. Therefore it looks like our cognition system overrules this inconsistent visual 
input  in the form of a new Gestalt law: the uniformity of motion. This may be 
done by using haptic information and experience to produce a well-defined per-
ceipt. This is not the case for exactly the same perception times: no ambiguity  
appears, the different areas are able to move with the same time delay. 

It looks like that there are important consequences to well known optical illu-
sions using the interaction of coherent colour pairs. We saw that these colours re-
duce the illusion of the stereokinetic effect/rotoreliefs drastically. They also  
reduce the effect of the Ouchi apparent motion illusion and the wakes and spokes 
illusion. 

Impacts to the Benhams disks are under consideration. 
These new findings should help to build a complete nonlinear model of human 

perception including 3D- vision, multivalent perceipts, brightness, colour and  
motion in the near future. 
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A Dynamical Systems Approach to Musical 
Tonality* 

Edward W. Large 

Abstract. Music is a form of communication that relies on highly structured 
temporal sequences comparable in complexity to language.  Music is found among 
all human cultures, and musical languages vary across cultures with learning. 
Tonality – a set of stability and attraction relationships perceived among musical 
frequencies – is a universal feature of music, found in virtually every musical 
culture. In this chapter, a new theory of central auditory processing and 
development is proposed, and its implications for tonal cognition and perception 
are explored. A simple model is put forward, based on knowledge of auditory 
organization and general neurodynamic principles. The model is simplified as 
compared to the organization and dynamics of the real auditory system, 
nevertheless it makes realistic predictions about neurodynamics. The analysis 
predicts the existence of natural resonances, the potential for tonal language 
learning, the perceptual categorization of intervals, and most importantly, relative 
stability and attraction relationships among musical tones. This approach  
suggests that high-level music cognition and perception may arise from the 
interaction of acoustic signals with the dynamics of the auditory system. Musical 
universals are predicted by intrinsic neurodynamics that provide a direct link to 
neurophysiology, and Hebbian synaptic modification could explain how different 
tonal languages are established.  

1   Introduction 

The music of almost every instrumental culture is tonal. In tonal music, one 
specific tone, called the tonic, provides a focus around which other tones are 
organized. Musical melodies typically involve discrete tones, organized in 
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archetypal patterns that are characteristic of musical genres, styles, and cultures. 
These patterns may be related to a scale, an ordered collection of all the tones used 
in a given melody, summarizing the frequency ratios that govern the intervals 
between tones in a melody. The Western tuning system defines an inclusive scale, 
the chromatic scale, which divides the octave into 12 steps, called semitones. A 
subset of these 12 tones, called a diatonic scale, is typically used to create a 
melody. In modern Western tonality, the main diatonic scales are major and 
minor. When a melody is in a key, say C major, the notes of the C major scale are 
used to create that melody. One feature that the melodies of most musical systems 
share is that they give rise to tonal percepts. The tonic – C, in the key of C major – 
is said to be the most stable tone in that key. Stability means that the tone is 
perceived as a point of repose. For example, a melody in the key of C major will 
almost always end on the tonic, C. Among the other tones of the scale, there is a 
hierarchy of relative stability, such that some tones are perceived as more stable 
than others. Less stable tones provide points of dissonance or tension, more stable 
tones provide points of consonance or relaxation. Finally, less stable tones are 
heard relative to more stable ones, such that more stable tones are said to attract 
the less stable tones.  

What processes and network architectures in the nervous system could give rise 
to such perceptions in music? This chapter argues that nonlinear neural resonance 
underlies the perception of tonality. Universal properties of nonlinear resonance 
predict the perception of stability and attraction in tonal music as well as 
preferences for small integer ratios and perceptual categorization. Such principles 
could provide a set of innate constraints that shape human musical behavior and 
enable the acquisition of musical knowledge. 

2   Tonality 

The oldest theory of musical consonance is that perceptions of consonance and 
dissonance are governed by ratios of whole numbers. Pythagoras is thought to 
have first articulated the principle that intervals of small integer ratios are pleasing 
because they are mathematically pure (Burns, 1999). He used this principle to 
explain the musical scale that was in use in the West at the time, and Pythagoras 
and his successors proposed small-integer-ratio systems for tuning musical 
instruments, such as Just Intonation (JI) (see Table 1). Because transposition on 
fixed tuning instruments, like the piano, is problematic for JI, modern Western 
equal temperament (ET), divides the octave into 12 intervals that are precisely 
equal on a log scale. ET approximates JI, and transposition in ET is perfect, 
because the frequency ratio of each interval is invariant.  However, aside from 
octaves the intervals are not small integer ratios, they are irrational. The fact that 
equal tempered intervals sound approximately as consonant as neighboring small-
integer-ratio intervals is generally considered prima facie evidence against the 
Pythagorean theory of musical consonance.  

Helmholtz (1863) hypothesized that the dissonance of a pair of simultaneously 
sounding complex tones was due to the interference of its pure tone components, 
explaining dissonance as an unpleasant sensation of roughness produced by the 
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beating of sinusoids. This phenomenon, called sensory dissonance, is heard when 
tones interact within an auditory critical band (Plomp & Levelt, 1965), and the 
interaction of pure tone components correctly predicts ratings of consonance for 
pairs of complex tones (Kameoka & Kuriyagawa, 1969). However, sensory 
consonance does not fully explain the perception of musical consonance. For one 
thing, the sensory dissonance phenomenon applies to isolated clusters of 
simultaneously sounded tones, whereas musical consonance and dissonance are 
intrinsically dynamic: “ … a dissonance is that which requires resolution to a 
consonance” (Dowling, 1978).  

Table 1 Tuning systems: Tone frequencies are chosen to divide the octave into 
(approximately) equal steps. Just intonation uses small integer ratios; equal temperament 
provides an approximation. The major scale (white notes) is one diatonic subset used to 
create melodies.  

 

In tonal music, some tones are perceived as more stable than others 
(Krumhansl, 1990; Lerdahl, 2001). More stable tones function as points of relative 
rest, whereas less stable tones tend to resolve to more stable ones. Theoretically, 
the stability of each pitch class relative to the other pitch classes is often described 
as a hierarchy (e.g., Lerdahl, 2001; see Figure 1A).  Tones that are more stable 
occupy higher levels in the hierarchy; tones on a lower level are heard in relation 
to tones on the adjacent higher level. Krumhansl and Kessler (Krumhansl & 
Kessler, 1982) asked listeners to rate how well individual pitches fit within a tonal 
context. Such experiments provide profiles that quantify the stability of each tone 
within a musical key (see Figure 4, below). When applied to Western tonal 
contexts, the measured hierarchies are found to be consistent with music-theoretic 
accounts (Krumhansl, 1990; Krumhansl & Kessler, 1982). Moreover, stability 
measures correlate well with empirical frequencies of occurrence of tones in tonal  
 



196 E.W. Large
 

 

F
ig

. 
1 

M
us

ic
 t

he
or

et
ic

 d
ep

ic
ti

on
s 

of
 t

on
al

 s
ta

bi
lit

y 
an

d 
at

tr
ac

ti
on

. 
A

) 
T

he
 b

as
ic

 p
itc

h 
cl

as
s 

sp
ac

e 
fo

r 
a 

to
ni

c 
ch

or
d 

in
 t

he
 k

ey
 o

f 
C

 M
aj

or
.  

A
tt

ra
ct

io
ns

 t
o 

su
pe

ro
rd

in
at

e 
ne

ig
hb

or
s 

ar
e 

sh
ow

n 
se

pa
ra

te
ly

 f
or

 e
ac

h 
le

ve
l 

of
 t

he
 b

as
ic

 s
pa

ce
: 

ch
ro

m
at

ic
 (

B
),

 d
ia

to
ni

c 
(C

) 
an

d 
tr

ia
di

c 
(D

).
  

A
rr

ow
s 

in
di

ca
te

 g
oa

ls
 a

nd
 s

iz
es

 o
f 

at
tr

ac
ti

on
s.

 R
ep

ro
du

ce
d 

fr
om

 L
er

dh
al

, 2
00

1.
 

A
)

B
) C
)

D
)



A Dynamical Systems Approach to Musical Tonality 197
 

songs (e.g. Knopoff & Hutchinson, 1983). The strong expectancy for less stable 
tones to resolve to more stable ones is called attraction. Some theorists have 
described tonal attraction by analogy to physical forces, such as gravity and inertia 
(Larson, 2004); others link it to the resolution of musical dissonance (Bharucha, 
1984). Transition probabilities in databases of folksongs (e.g., Eerola & 
Toiviainen, 2004), as well as listener’s expectations about the completion of 
musical sequences (Bharucha & Stoeckig, 1986; Cuddy & Lunney, 1995; Larson, 
2004), all show a strong influence of tonal attraction. Lerdahl’s tonal pitch space 
summarizes such findings, quantifying net resultant attraction of pitches at one 
level of a stability hierarchy toward pitches at the next level of stability (Lerdahl, 
2001) as shown in Figure 1, Panels B, C and D. 

The tuning systems of the world’s largest musical cultures, Western, Chinese, 
Indian, and Arab-Persian, are based on small integer-ratio relationships (Burns 
1999). However, each tuning system is different, and this has led to the notion that 
frequency relationships do not matter in high level music cognition; rather, 
auditory transduction of musical tones results in abstract symbols, as in language. 
If this were true, stability and attraction relationships would have to be learned 
solely based on the frequency-of-occurrence statistics of tonal music (e.g. 
Krumhansl, 1990; Tillmann, Bharucha, & Bigand, 2000). However, this general 
approach does not explain why the statistics of tonal music would develop as they 
have; it assumes that statistical properties are given a priori. It also does not 
explain the significance of different tuning systems; it would make the same 
predictions given two different sets of tone frequencies with the same statistical 
relationships. The main hypothesis of this chapter is that nonlinear resonance in 
the central nervous system underlies the perception of tonality. Universal 
characteristics of nonlinear resonance predict that the perception of stability, tonal 
attraction, preference for small integer ratios, and perceptual categorization, are 
intrinsic to the dynamics of neural processing. Hebbian learning, which requires 
only passive exposure, accommodates the heterogeneity of tonal systems while the 
physics of nonlinear resonance predicts constraints on what can be learned. 

3   A Dynamical Systems Approach 

Interaction of excitatory and inhibitory neurons, illustrated schematically in Figure 
2A, can give rise to neural oscillation. The current discussion follows the analysis 
of neural oscillation by Hoppenstadt and Izhikevich (Hoppensteadt & Izhikevich, 
1996a, 1996b, 1997), extending the analysis to gradient frequency networks of 
neural oscillators driven by acoustic stimuli (Large, Almonte, & Velasco, 2010). 
Neural oscillation can be modeled theoretically using Equation 1 (Wilson & 
Cowan, 1973), which consists of two variables, describing the activity of 
excitatory (x) and inhibitory (y) neural populations:  

 x = −x + S(ρx + ax − by)

y = −y + S(ρy + cx − dy)  
(1) 
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The overdot represents differentiation with respect to time,  x = dx /dt, and S is a 
sigmoid function. ρx and ρy are bifurcation parameters. Gradient frequency neural 
oscillator networks – under the influence of external input – can be written as 

τ i  x i = f i(xi,λ) + εgi(x,λ,ρ,ε)                                          (2) 

where x is the 2-dimensional state vector for an oscillator, λ  is a vector of 
parameters, ρ  represents external input, and ε is the strength of the coupling 
nonlinearity (Hoppenstadt & Izhikevich, 1996a). The parameters are chosen such 
that τ i = 1/ f i , where f i  is natural frequency in Hz. The behavior of an oscillator 
under the influence of external input (Figure 2A) can be understood in detail by 
rewriting it in normal form (Wiggins, 1990; see Equation 3). The analysis involves 
a coordinate transformation, followed by Taylor expansion of the nonlinearities, 
truncating at some point to eliminate high order terms (abbreviated as h.o.t. in 
Equation 3). This results in z, a new, complex valued state variable, resulting from 
the coordinate transformation, and complex-valued parameters a and b 
( a = α + iω , where ω  is the radian frequency, 2π f, and b = β + iδ ), which can be 

related to the parameters of the original system. x(t) represents external input, 
either from another oscillator or from an acoustic signal. 

z = z(a + b z
2
) + c x(t) + h.o.t.                                         (3) 

The parameter, c, determines input connectivity and here we assume it to be real, 
although in general it could be complex (Hoppensteadt & Izhikevich, 1996a). The 

external stimulus x(t) = A(t)eiθ ( t )  has frequency ω0.  
The behavior of this system can be understood by transforming it to polar 

coordinates using the relation z = r(t)eiφ (t ). This allows the independent study of 
amplitude, r , and phase, φ , dynamics of the oscillator.  

r = r(α + βr2 ) + cAcos(θ − φ) + h.o.t.

φ=ω+δr2 + c
A

r
sin(θ − φ) + h.o.t.

 

(4) 

Interactions between oscillators of different frequencies are found in the higher 
order terms. To understand these interactions, we expand out the higher order 
terms, keeping in mind that any resonant relationship among oscillator frequencies 
of the form  

m1ω1 + ... + m nω n + m Rω R = 0                                         (5) 

is a resonance among eigenvalues of the uncoupled system and thus cannot  
be eliminated (Hoppenstadt & Izhikevich, 1997). This includes harmonics, 
subharmonics, and summation and difference tones of various orders. For example, 
for a pair of oscillators with ω1 = 2ω 2 

z 1 = z1(a + b z1

2
) + εc12z2

2 + O(ε)

z 2 = z2(a + b z2

2
) + εc21z1z 2 + O(ε)

 

 

(6) 
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Fig. 2 Nonlinear resonance. A) A neural oscillator consists of interacting excitatory and 
inhibitory neural populations. B) Four synapses are possible from one neural oscillator to 
another. Changes in synaptic efficacy affect both the strength and the phase of oscillators’ 
interaction and can be modified via Hebbian learning. C) A multi-layered, gradient 
frequency nonlinear oscillator network for responding to auditory stimulation. 

 
and for a pair of oscillators with ω1 = 3ω2 

z1 = z1(a1 + b1 z1

2 + εd1 z1

4
) + εc12z2

3 + O(ε ε )

z2 = z2 (a3 + b2 z2

2 + εd2 z2

4
) + εc21z1

2z2 + O(ε ε )
 

 

(7) 

Carrying the analysis out further leads to a canonical model for gradient-frequency 
networks of nonlinear neural oscillators  (Large, et al., 2010): 

 τ izi = zi (a + b1 zi

2 + εb2 zi

4 + ...) + (x + ε x2 + εx3 + ...) ⋅ (1+ ε zi + εzi
2 + ...)  

 (8) 

The simulations reported in the paper were based on numerical solution of this 
differential equation (see Large, Almonte & Velasco, 2010 for further details). 
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Next, consider analysis of sound by the auditory system. Acoustic signals 
stimulate the cochlea, which performs a nonlinear time-frequency transformation 
(e.g., Camalet, Duke, Julicher, & Prost, 1999; Ruggero, 1992). Central auditory 
networks in cochlear nucleus, inferior colliculus, thalamus, and primary auditory 
cortex phase-lock action potentials to both sinusoidal and amplitude modulated 
(AM) signal features, further transforming the stimulus (Langner, 1992). Phase-
locking deteriorates at higher-frequencies as the auditory pathway is ascended. 
The role of neural inhibition in the central auditory system is not yet fully 
understood. However, phase-locked inhibition exists in many auditory nuclei  
and plays a role in the temporal properties of neural responses (Grothe, 2003; 
Grothe & Klump, 2000) that could be consistent with nonlinear resonance. A 
simple model consistent with the known facts and the hypothesis of nonlinear 
resonance in the auditory system is illustrated in Figure 2C. It is based on 
networks of neural oscillators, in which each is tuned to a distinct natural 
frequency, or eigenfrequency, following a frequency gradient, similar in concept 
to a bank of bandpass filters. Within this framework, the input, x, to a gradient-
frequency network of neural oscillators, would consist of afferent, internal and 
efferent input. For a network responding directly to an auditory stimulus, the 
afferent input would correspond to a sound. Despite the fact that the physiology of 
neural oscillation of oscillators can vary greatly, all nonlinear oscillators share 
many universal properties, providing certain degrees of freedom and also 
significant constraints, discussed next.  

4   Predicting Tonality 

Nonlinear resonance. Nonlinear oscillators possess a filtering behavior, responding 
maximally to stimuli near their own eigenfrequency. This is sometimes referred to as 
frequency selective amplification, due to extreme sensitivity to low amplitude stimuli. 
The first simulation (Figure 3) modeled frequency transformation of a sinusoidal 
stimulus by a single layer network of critical nonlinear oscillators (Equation 8), to 
demonstrate some basic properties. For this simulation the parameter values 
α = 0; ω = 2π; β1 = β2 = βn = −1; δ1 = 1; ε = 1.0  were used, and τ i = 1/ f i , where fi is 

the natural frequency of each oscillator in Hz. All other parameters were set to zero. 
The frequencies of the network were distributed along a logarithmic frequency 
gradient, with 120 oscillators per octave, spanning four octaves. The choice of 
α = 0; βn < 0  makes this a critical nonlinear oscillator, network similar to models 

that have been proposed for cochlear hair cell responses (Camalet, et al., 1999). No 
internal network connectivity was used in this simulation. 

Figure 3 shows how a nonlinear oscillator bank responds as stimulus intensity 
varies. At low levels, high frequency selectivity is achieved. As stimulus 
amplitude increases, frequency selectivity deteriorates due to nonlinear excitation. 
As a nonlinear oscillator responds to a stimulus near its eigenfrequency, frequency 
entrains to that of the stimulating waveform, such that instantaneous frequency  
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Fig. 3 Response amplitudes, r, of a gradient frequency nonlinear oscillator array 
(frequencies 250 ≤ f ≤ 4000 Hz) to a sinusoid (frequency f0 = 1000 Hz) at three different 
stimulus amplitudes. 

comes to match stimulus frequency. A nonlinear oscillator array also responds at 
frequencies that are not physically present in the acoustic stimulus. At low 
stimulus intensities, higher-order resonances are small; they increase with  
increasing stimulus intensity. The strongest response is observed at the stimulus 
frequency, and additional responses are observed at harmonics and subharmonics  
of the sinusoidal stimulus. The second sub- and super-harmonics (1:2 and 2:1) are 
the strongest resonances, predicting the universality of the octave. Additionally, 
the response frequency of the oscillator depends on the amplitude of the 
resonance, i.e., frequency changes as amplitude increases. Such frequency 
detuning can be seen in Figure 3 as a bend in the resonance curve as stimulus 
intensity, and therefore, response amplitude increases. Frequency detuning could 
predict systematic departures from ET (and JI), which are commonly observed in 
category identification experiments (Burns, 1999), including octave stretch, as 
discussed below. 

Natural resonances. For multi-frequency stimulation, the response of an 
oscillator network may include harmonics, subharmonics, integer ratios, and 
summation and difference tones, some of which are illustrated in Figure 3. To 
explore the natural resonances in a gradient frequency network a bifurcation 
analysis was used. Analysis of the higher-order resonances was based on the phase 
equations: 

 

φ1= ω1+ c12 ε (k +m−2)/2 sin(kφ2 − mφ1)

φ2 = ω2 + c21 ε (k +m− 2)/2 sin(mφ1 − kφ2 )
 

 
(9) 

where the frequency ratio is k:m and the effects of amplitude are neglected. Here 

cij ε (k+ m− 2)/2  is the strength, or relative stability, of the k:m resonance, where cij   
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Fig. 4 Resonance regions. A) Bifurcation diagram showing natural resonances in a gradient 
frequency nonlinear oscillator array as a function of connection strength, c , and frequency 
ratio ω i /ω0. An infinite number of resonances are possible on this interval; the analysis 
considered the unison (1:1), the octave (2:1) and the twenty-five most stable resonances in 
between. B) Bifurcation diagram for a nonlinear oscillator network with internal 
connectivity reflecting an equal tempered chromatic scale. Internal connectivity can be 
learned via a Hebbian rule given passive exposure to melodies. Resonance regions whose 
center frequencies match ET ratios closely enough are predicted to be learned.  

is coupling strength, a parameter that would be learned, and ε is the degree of 
nonlinearity in the coupling. This bifurcation analysis (Figure 4) assumes ε =1 
(maximal nonlinearity) and plots resonance regions as a function of coupling 
strength on the vertical axis and relative frequency, ω i /ω0, on the horizontal axis. 
The phase equations (9) were used to derive the boundaries of the resonance 
regions, or Arnold tongues according to 

k

m
± c

m + k

mk
. 

The analysis varied oscillator frequency and coupling strength, assuming equal 
stimulation to each oscillator at a fixed frequency (the tonic, ω0). The result 
depicts the long-term stability of various resonances in the network, displayed as a 
bifurcation diagram called Arnold tongues (Figure 4A). It predicts how different 
pools of neural oscillators will respond by showing the boundaries of resonance 
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neighborhoods as a function of coupling strength and frequency ratio. The 
oscillators in each resonance region frequency-lock at a specific ratio with the 
stimulus.  

An infinite number of resonances exist on the interval between 1:1 and 2:1 and 
are found at integer ratios; smaller integer ratios are more stable and therefore 
more likely to be observed in the limit. This analysis displayed the 25 largest 
resonance regions on this interval, to provide a picture of the “natural” resonances 
in such a network. From the point of view of a gradient-frequency oscillator 
network, the Arnold tongues can be thought of as displaying the resonance for 
each oscillator in the network interacting with an oscillator outside the network 
(for example, an oscillator providing afferent stimulation) whose frequency 
corresponds to the tonic (1:1). The analysis considers pairwise interactions only; it 
neglects interactions between the oscillators within the gradient frequency 
network. Thus, it provides a somewhat simplified picture of network behavior, but 
one that is highly informative. 

Nonlinear resonance predicts a generalized preference for small integer ratios. 
This prediction does not correspond to any specific musical scale; rather, natural 
resonances predict constraints on which frequency relationships can be learned. 
When stimulus frequency does not form a precise integer ratio with the 
eigenfrequency of an oscillator, resonance is still possible, provided that coupling 
is strong enough. Resonances affect not only oscillators with precise integer ratios; 
they also establish patterns of resonant neighborhoods.  

Learning. Hebbian learning provides a theoretical basis for the acquisition of 
tonality relationships. Connections between oscillators can be learned via a 
Hebbian rule (Hoppensteadt & Izhikevich, 1996b), providing a mechanism for 
synaptic plasticity wherein the repeated and persistent co-activation of a 
presynaptic cell and a postsynaptic cell lead to an increase in synaptic efficacy 
between them. Between two neural oscillators four synapses are possible (Figure 
2B, above), providing both a strength and a natural phase for the connection 
between neural oscillators (Hoppensteadt & Izhikevich, 1996a). Hebbian learning 
rules have been proposed for neural oscillators and the single-frequency case has 
been studied in some detail (Hoppensteadt & Izhikevich, 1996b). For the single-
frequency case, the Hebbian learning rule can be written as follows:   

 c ij = −δcij + kij ziz j                                                   (10) 

This model can learn both amplitude and phase information for two oscillators 
with a frequency ratio near 1:1. In the current study, learning of higher-order 
resonances is also of interest. The following generalization of the above learning 
rule enables the study of learning for higher order resonant relationships 

c ij = −δcij + kij (zi + εzi
2 + εzi

3 + ...) ⋅ (z j + εz j
2 + εz j

3 + ...). 
           

(11) 

Coupling strength, cij , is the parameter that would be altered by learning. Due to 

computational complexity, extensive simulation of learning on melodies has not 
yet been carried out. However, analysis of multi-frequency Hebbian learning  
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(Eq. 11) shows that connections to near-resonant frequencies, such as integer 
ratios, can be learned in a gradient frequency network. Assuming stimulation with 
melodies using ET tone frequencies, connections would be learned between an 
oscillator at the frequency of the tonic (1:1) and the most stable resonances that 
approximate the ET tone frequencies closely. Thus, a second bifurcation analysis 
was performed, in which the k and m parameters were chosen as the largest 
resonance region (smallest integer ratio) that approximated the ET tone frequency 
to within 1%1. The result of this analysis is shown in Figure 4B. Learning would 
likely result in different coupling strengths for each resonance, therefore analysis 
shows each resonance region for a range of coupling strengths. 

This analysis predicts that, as Western melodies are heard, the network would 
learn the most stable attractors whose center frequencies closely approximate the 
ET chromatic frequencies. Hebbian synaptic modification would effectively prune 
some resonances, while retaining others. The resulting resonances reflect the 
chromatic scale as shown in Figure 4B. In principle a similar learning analysis 
could be performed for any tuning system, such as gamelan, whose frequency 
ratios differ significantly from 12-tone ET.  

Perceptual Categorization. In Figure 4B, the center frequencies of the 
resonances do not precisely match ET frequencies; however, as connection 
strength increases, larger regions of the network resonate, emanating from integer 
ratios, and encompassing ET ratios. Such regions predict perceptual categorization 
of musical intervals. Perceptual categorization and discrimination experiments 
reveal that musicians show categorical perception of melodic intervals (Burns & 
Campbell, 1994), and although such experiments are more difficult with  
non-musicians, Smith et al. (Smith, Nelson, Grohskopf, & Appleton, 1994) 
demonstrated that nonmusicians also perceive pitch categories. Dependence of 
frequency on amplitude further predicts that perceptual categories might not be 
precisely centered on integer ratios. In interval identification experiments, mean 
frequency deviates systematically from ET, although not always in the direction 
predicted by JI. Musicians prefer flatter small intervals and sharper large intervals 
(Burns, 1999). In fact, in many tuning systems (including the piano) octaves are 
stretched, i.e., tuned slightly larger than 2:1. In performance on instruments 
without fixed tuning (e.g., the violin, or the human voice), mean frequency also 
deviates systematically, similarly to perceptual categorizations (Loosen, 1993). 
More importantly, frequency variability is quite large in music performance, even 
during the “steady state” portions of tones, emphasizing the importance of pitch 
categorization in the perception of tonality. 

Attraction. The theory also makes predictions about tonal attraction. In areas 
where resonance regions overlap (e.g., Figure 4B), more stable resonances 
overpower less stable ones, such that the instantaneous frequency of the 
population in the overlap region is attracted toward the frequency of the more 
stable resonance. To understand the implications for tonal attraction, a nonlinear 
                                                           
1 Operationalization of “close” frequency as 1% is somewhat arbitrary, and different 

choices result in different resonance regions for the weaker resonances, changing the 
predictions slightly, but not altering the basic results. 



A Dynamical Systems Approach to Musical Tonality 205
 

oscillator network was simulated using internal connectivity among oscillators 
that reflected the structure of the major scale. The simulation was based on a two-
layer network, modeling a cochlear transformation followed by a neural 
transformation. This minimal model provided a simple example in which  
tonal attraction can be observed. The first layer parameters were 
α = −.01; ω = 2π; β1 = β2 = βn = −1; δ1 = δ2 = δn == 0; ε = 0.1 and τ i = 1/ f i , where fi 

is the frequency of each oscillator in Hz, similar to the first simulation, but without 
frequency detuning. The frequencies of the network were distributed along a 
logarithmic frequency gradient, with 120 oscillators per octave, spanning two 
octaves. A Gaussian kernel modeled local basilar membrane coupling (cf.  
Kern & Stoop, 2003).  

The parameters of the second network were set to τ i =1/ f i  where fi  
is the frequency of each oscillator in Hz, and α = −0.4; β1 = 1.2; β2 = βn = −1;

 
δ1 = −0.01; ε = 0.75 . All other parameters were set to zero. Again, the frequencies 
of the network were distributed along a logarithmic frequency gradient, with 120 
oscillators per octave, spanning two octaves. The center frequency of both 
networks was chosen to match middle C. Afferent connectivity from the cochlear 
network was one-to-one, with oscillators of the cochlear network stimulating 
oscillators of the neural network according to frequency. In the second network 
internal connectivity was constructed to reflect learning of the ET scale, as 
described above. Each oscillator was connected to the others that are nearby in 
frequency, as well as to those whose eigenfrequencies approximated the frequency 
ratios of the scale. The main feature of this simulation is that the parameters of the 
second (neural) network are chosen to be near a degenerate Hopf bifurcation, also 
known as a Bautin bifurcation (Guckenheimer & Kuznetsov, 2007). For this 
reason, the nonlinear coupling allows amplitude peaks to self-stabilize at the 
frequencies of stimulation, such that after the stimulus is removed, the peaks 
remain. This behavior is seen in Panels D, E, and F of Figure 5. Individual peaks 
interact with one another as well. Interactions in the gradient frequency network 
are complex, and a complete analysis is beyond the scope of this chapter. 
However, self-stabilizing amplitude peaks have been observed and analyzed for 
single-frequency oscillator networks with nonlinear coupling near a Bautin 
bifurcation (Drover & Ermentrout, 2003). 

The network was stimulated with a C-major triad (the notes C, E, and G), 
which was followed after a delay by a leading tone (the note B; Figure 5A & B), 
and the instantaneous frequencies (Panel C) and amplitudes (Panels D, E, F) of the 
oscillators in the network were measured. The stimulus was prepared using Finale 
Notepad Plus 2005a, saved as a MIDI file, and rendered to a digital audio file as 
pure tones. After stimulation with the triad, a dynamic field self-stabilized to 
embody a set of resonant frequencies that was consistent with the prior 
stimulation, embodying a memory of the stimulus. Immediately before 
introduction of the leading tone (t = 1.0), stable amplitude peaks corresponding to 
the populations of oscillators surrounding C, E and G are observed (Panel D), and 
the instantaneous frequencies of the three oscillators at C, E and G also appear 
stable (Panel C, t = 1.0). After the leading tone is introduced, a corresponding  
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Fig. 5 Attraction. A network with ET scale connectivity is stimulated with a C major triad 
(C, E, G; scale degrees 1, 3, 5), followed after a delay with a leading tone (B, scale degree 
7). A) Musical notation. B) Stimulus waveform. C) Instantaneous frequency of four 
oscillators (out of 241 in the network) closest in eigenfrequency to scale degrees 7 (green), 
1 (black), 3 (red), 5 (blue). After the triad is silenced, the dynamic field remains stable (D) 
with peaks corresponding to scale degrees 1, 3, and 5. When stimulation at scale degree 7 
begins, a corresponding peak arises (E) and its frequency stabilizes (green). After 
stimulation ceases, the oscillator with eigenfrequency near scale degree 7 loses stability, the 
peak dies away (F), and its instantaneous frequency is attracted toward the tonic. 

amplitude peak is observed (Panel E) and the instantaneous frequency is stabilized 
by the external stimulus (Panel C; t = 1.2, green). The important observation is 
that when the external stimulus is removed, this oscillation loses stability (t = 1.4) 
and its frequency is attracted toward the note C, the tonic frequency. This network 
behavior predicts a physical correlate for the perceived attraction of the leading 
tone to the tonic, and in general for expectation of what should follow in a tonal 
context.  

Stability. The next analysis asked whether theoretical stability of higher order 
resonances could predict perceived stability of tones (Krumhansl, 1990). For the  
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Fig. 6 Comparison of theoretical stability predictions and human judgments of perceived 
stability for two Western modes. A) C major, B) C minor. 

stability analysis, frequency ratios were fixed according to the previous analysis of 
learning (Figure 4B). It was further assumed that all the non-zero c  were equal, 
effectively eliminating one free parameter (although in principle, the coupling 
strength, c , could be different for each resonance as a result of learning). Relative 

stability of each resonance was predicted by 2/)1( −+mkε , where k and m are the  
numerator and denominator of the frequency ratio, respectively, and 0 ≤ ε ≤ 1  is  
a parameter that controls nonlinear gain (Hoppensteadt & Izhikevich, 1997). The 
analysis assumed that each tone listeners heard as part of the context sequence was 
stabilized in the network, and those that were not heard were not stabilized. This 
assumption reflects the behavior of the network simulated in the previous analysis. 

Thus, each context tone received a stability value of 
2/)1( −+mkε , and those that did 

not occur in the context sequence received a stability value of 0. For major and 
minor Western modes, the parameter ε was chosen to maximize the correlation 

( r2 , different from oscillator amplitude, r, used previously) with the stability 
ratings of listeners. This provides a single parameter fit to the perceptual data on 
stability, shown in Figure 6. 

Predicted stability matched the perceptual judgments well (C major: r2 = .95,  
p < .0001, ε = 0.78 ; C minor: r2 = .77, p < .001, ε = 0.85), as shown in Figure 6. In 
other words, the theoretical stability of higher-order resonances of nonlinear 
oscillators predicts empirically measured tonal stability for major and minor tonal 
contexts. This result is significant because it does not depend on the statistics of 
tone sequences, but instead it predicts the statistics of tone sequences, which are 
known to be highly correlated with stability judgments (Krumhansl, 1990).  

5   Discussion 

While the properties of nonlinear resonance predict the main perceptual features 
of tonality well, this theory makes two additional significant predictions: 1) that 
nonlinear resonance should be found in the human auditory system and 2) that 
animals with auditory systems similar to humans may be sensitive to tonal 
relationships. Recently, evidence has been found in support of both predictions.   

Helmholtz (1863) described the cochlea as a time-frequency analysis 
mechanism that decomposes sounds into orthogonal frequency bands for further 
analysis by the central auditory nervous system. Von Bekesey (1960) observed 
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that human cadaver cochlear responses behave linearly over the range of 
physiologically relevant sound intensities. However, the weakest audible sounds 
impart energy per cycle no greater than that of thermal noise (Bailek, 1987), and 
the system operates over a range of intensities that spans at least 14 orders of 
magnitude. Moreover, laser-interferometric velocimetry performed on living, 
intact cochleae has revealed exquisitely sharp mechanical frequency tuning 
(Ruggero, 1992). Recent evidence, including the discovery of spontaneous 
otoacoustic emissions (Kemp, 1979), suggest that the sharp mechanical frequency 
tuning, exquisite sensitivity and operating range of the cochlea can be explained 
by critical nonlinear oscillations of hair cells (Choe, Magnasco, & Hudspeth, 
1998). Thus, the cochlea performs an active, nonlinear transformation, using a 
network of locally coupled outer-hair cell oscillators, each tuned to a distinct 
eigenfrequency.  

There is a growing body of evidence consistent with nonlinear oscillation in the 
central auditory system as well. In mammals, action potentials phase-lock to both 
fine time structure and temporal envelope modulations at many different levels in 
the central auditory system, including cochlear nucleus, superior olive, inferior 
colliculus (IC), thalamus and A1 (Langner, 1992), and recent evidence points to a 
key role for synaptic inhibition in maintaining central temporal representations. 
Hyperpolarizing inhibition is phase-locked to the auditory stimulus and has been 
shown to adjust the temporal sensitivity of coincidence detector neurons (Grothe, 
2003), while stable pitch representation in the IC may be the result of a 
synchronized inhibition originating from the ventral nucleus of the lateral 
lemniscus (Langner, 2007). Moreover, neurons in the IC of the gerbil have been 
observed to respond at harmonic ratios (3:2, 2:1, 5:2, etc.) with the temporal 
envelope of the stimulating waveform (Langner, 2007). Pollimyrus, an fish that 
lacks a sophisticated peripheral structure for mechanical frequency analysis, has 
modulation-rate selective cells in the auditory midbrain that receive both 
excitatory and inhibitory input, and are well described as nonlinear oscillators 
(Large & Crawford, 2002). Finally, residue pitch shift – a central auditory 
phenomenon – is consistent with 3-frequency resonances of nonlinear oscillators, 
making nonlinear resonance viable as a candidate for the neural mechanism of 
pitch perception in humans (Cartwright, Gonzalez, & Piro, 1999). 

If key aspects of tonality depend directly on auditory physiology, one would 
predict that non-human animals might be sensitive to certain tonal relationships. 
Wright et al. tested two rhesus monkeys for octave generalization in eight 
experiments by transposing 6- and 7-note musical passages by an octave and 
requiring same or different judgments (Wright, Rivera, Hulse, Shyan, & Neiworth, 
2000). The monkeys showed complete octave generalization to childhood songs 
(e.g., "Happy Birthday") and tonal melodies (from a tonality algorithm). They 
showed no octave generalization to random-synthetic melodies, atonal melodies, 
or individual notes. Takeuchi's Maximum Key Profile Correlation measure of 
tonality, based on human tonality judgments (Takeuchi, 1994) accounted for 94 
percent of the variance in the monkey data. These results provide evidence that 
tonal melodies retain their identity when transposed with whole octaves, as they 
do for humans. Adult listeners can recognize transpositions of tonal but not atonal 
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melodies (Dowling & Fujitani, 1971). Preverbal infants can recognize transposed 
tonal melodies (Trehub, Morrongiello, & Thorpe, 1985), and melody 
identification is nearly perfect for octave (2:1 ratio) transpositions, even for novel 
melodies (Massaro, Kallman, & Kelly, 1980), as is also the case for macaques.  

Zuckerkandl (1956) argued that the dynamic quality of musical tones “…makes 
melodies out of successions of tones and music of acoustical phenomena.” The 
current approach predicts that the perceived dynamics of tonal organization arise 
from the physics of nonlinear resonance. Thus, nonlinear resonance may provide 
the neural substrate for a substantive musical universal. In some ways, this idea is 
similar to the concept of universal grammar in linguistics (Prince & Smolensky, 
1997). However, in the case of music, these perceptual universals are predicted  
by universal properties of nonlinear resonance, offering a direct link to 
neurophysiology. Learning would alter connectivity to establish different 
resonances, and different tonal relationships. Higher-order resonances may give 
rise to dynamic tonal fields in the central nervous system, with localized patterns 
of activation self-stabilizing to embody the musical system of the listener’s 
culture. Musical melodies would be perceived in relation to the tonal field, 
creating a dynamic context within which perception of tone sequences takes place.  
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Schöner, Gregor 151

Tuller, Betty 135

Vallabha, Gautam K. 135


	Cover
	Studies in Computational Intelligence, Volume 328
	Nonlinear Dynamics in
Human Behavior
	ISBN 9783642162619
	Preface
	Contents


	Dynamical Systems in One and Two Dimensions: A Geometrical Approach
	One-Dimensional Dynamical Systems
	Linear Systems
	Nonlinear Systems: First Steps
	Potential Functions
	Bifurcation Types

	Two-Dimensional Systems
	Linear Systems and their Classification
	Nonlinear Systems
	Limit Cycles
	Hopf Bifurcation
	Potential Functions in Two-Dimensional Systems
	Oscillators


	Benefits and Pitfalls in Analyzing Noise in Dynamical Systems – On Stochastic Differential Equations and System Identification
	Introduction
	Probability
	Mean and Expectation Values
	Probability Distribution and Density

	Dynamics and Noise
	Stochastic Dynamics
	Time-Dependent Probability Density Functions
	Example: The HKB-Model
	Spurious Drift in the Amplitude Dynamics of a Limit Cycle Oscillator
	Periodically Forced Potentials – Stochastic Resonance and More

	System Identification
	Drift and Diffusion Coefficients
	Markov Properties and the Chapman-Kolmogorov Test

	Rhythmic Movements
	HKB-Bifurcation – Real Data

	Posture – Center-of-Pressure Dynamics
	Summary
	References

	The Dynamical Organization of Limb Movements
	Introduction
	The Birth of the Dynamical Perspective
	The Empirical Study of Rhythmic Movements as Limit Cycles
	Rhythmic Movements under Precision Requirements
	Perspectives Incorporating Discrete Movements
	Phase Flows and Topologies
	In Conclusion
	References

	Perspectives on the Dynamic Nature of Coupling in Human Coordination
	Introduction
	Coordination Depends on Intrinsic Dynamics and Coupling
	Effect of the Coupling
	Effect of the Intrinsic Dynamics

	Extracting Principles Underlying the Formation of Coordinative Patterns: Convergence and Divergence
	Experimental Evidence for Convergence/Divergence in Perception–Action
	Formalization of Convergence/Divergence in the State Space

	Conclusions
	References

	Do We Need Internal Models for Movement Control?
	Dynamical Systems Theory
	Positional Control and Equilibrium Point Theory
	Force Control and Computational Theory
	Mapping between Movements and Control Signals
	Internal Models versus Look Up Tables
	Conclusion
	References

	Nonlinear Dynamics in Speech Perception
	Introduction
	Nonlinearity
	Context Sensitivity
	Stability and Flexibility
	Dynamics of Vowel Perception and Imitation
	Dynamics of Consonant Perception: English and French
	References

	A Neural Basis for Perceptual Dynamics
	Perceptual Stability: Natural or Otherwise
	Neural Stabilization
	The Biophysical Basis of Neural Stabilization
	The Time Scale
	The Core Dynamical Concept
	Stable Activation States in the Absence of Stimulation
	Response to Stimulation
	Perceptual Thresholds, Perceptual Stability and Uncertainty

	The Stabilization of Activation within Detector Ensembles
	Neural Connectivity
	Interaction
	Interaction within Detector Ensembles
	Detection Instability
	Stabilization of Activation within Detector Ensembles
	Removing the Stimulus

	Perceptual Selection
	Perceptual Bistability
	Rates of Change in Activation
	Perceptual Selection of the Favored Stimulus Alternative
	Perceptual Selection of the Unfavored Stimulus Alternative

	Objects and Feature Integration
	The Signature Features of Perceptual Dynamics
	Spontaneous Switching
	Hysteresis

	Conclusion
	References

	Optical Illusions: Examples for Nonlinear Dynamics in Perception*
	Ambiguous Figures
	The Verbal Transformation Effect
	3D Vision and Autostereograms
	Perception of Motion, Colour and Brightness
	The Leaning Tower of Pisa Illusion

	References

	A Dynamical Systems Approach to Musical Tonality*
	Introduction
	Tonality
	A Dynamical Systems Approach
	Predicting Tonality
	Discussion
	References

	Author Index

