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Preface

A little over half a century ago, it was said that even an ingenious per-
son could not be an engineer unless he had nearly perfect skills with the
logarithmic slide rule. The advent of the computer changed this situa-
tion crucially; at present, many young engineers have never heard of the
slide rule. The computer has profoundly changed the mathematical side
of the engineering profession. Symbolic manipulation programs can cal-
culate integrals and solve ordinary differential equations better and faster
than professional mathematicians can. Computers also provide solutions
to differential equations in numerical form. The easy availability of mod-
ern graphics packages means that many engineers prefer such approximate
solutions even when exact analytical solutions are available.

Because engineering courses must provide an understanding of the fun-
damentals, they continue to focus on simple equations and formulas that
are easy to explain and understand. Moreover, it is still true that stu-
dents must develop some analytical abilities. But the practicing engineer,
armed with a powerful computer and sophisticated canned programs, em-
ploys models of processes and objects that are mathematically well beyond
the traditional engineering background. The mathematical methods used
by engineers have become quite sophisticated. With insufficient base knowl-
edge to understand these methods, engineers may come to believe that the
computer is capable of solving any problem. Worse yet, they may decide
to accept nearly any formal result provided by a computer as long as it was
generated by a program of a known trademark.

But mathematical methods are restricted. Certain problems may ap-
pear to fall within the nominal solution capabilities of a computer program
and yet lie well beyond those capabilities. Nowadays, the properties of so-
phisticated models and numerical methods are explained using terminology
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from functional analysis and the modern theory of differential equations.
Without understanding terms such as “weak solution” and “Sobolev space”,
one cannot grasp a modern convergence proof or follow a rigorous discus-
sion of the restrictions placed on a mathematical model. Unfortunately, the
mathematical portion of the engineering curriculum remains preoccupied
with 19th century topics, even omitting the calculus of variations and other
classical subjects. It is, nevertheless, increasingly more important for the
engineer to understand the theoretical underpinning of his instrumentation
than to have an ability to calculate integrals or generate series solutions of
differential equations.

The present text offers rigorous insight and will enable an engineer to
communicate effectively with the mathematicians who develop models and
methods for machine computation. It should prove useful to those who
wish to employ modern mathematical methods with some depth of under-
standing.

The book constitutes a substantial revision and extension of the earlier
book The Calculus of Variations and Functional Analysis, written by the
first two authors. A new chapter (Chapter 2) provides applications of the
calculus of variations to nonstandard problems in mechanics. Numerous
exercises (most with extensive hints) have been added throughout.

The numbering system is as follows. All definitions, theorems, corol-
laries, lemmas, remarks, conventions, and examples are numbered consecu-
tively by chapter (thus Definition 1.7 is followed by Lemma 1.8). Equations
are numbered independently, again by chapter.

We would like to thank our World Scientific editor, Mr. Yeow-Hwa Quek.

Leonid P. Lebedev
Department of Mathematics, National University of Colombia, Colombia

Michael J. Cloud
Department of Electrical and Computer Engineering, Lawrence Technolog-
ical University, USA

Victor A. Eremeyev

Institute of Mechanics, Otto von Guericke University Magdeburg, Germany
South Scientific Center of RASci and South Federal University, Rostov on
Don, Russia
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Chapter 1

Basic Calculus of Variations

1.1 Introduction

Optimization is a universal goal. Students would like to learn more, receive
better grades, and have more free time; professors (at least some of them)
would like to give better lectures, see students learn more, receive higher
pay, and have more free time. These are the optimization problems of real
life. In mathematics, optimization makes sense only when formulated in
terms of a function f(x) or other expression. One then seeks the mini-
mum value of the expression. (It suffices to discuss minimization because
maximizing f is equivalent to minimizing — f.)

This book treats the minimization of functionals. The notion of func-
tional generalizes that of function. Although the process of generalization
does yield results of greater generality, as a rule the results are not sharper
in particular cases. So to understand what can be expected from the calcu-
lus of variations, we should review the minimization of ordinary functions.
All quantities will be assumed sufficiently differentiable for the purpose at
hand. Let us recall some terminology for the one-variable case y = f(x).

Definition 1.1. The function f(z) has a local minimum at a point z if
there is a neighborhood (z¢ — d, 29 + d) in which f(x) > f(zg). We call z
the global minimum of f(x) on [a,b] if f(x) > f(x¢) holds for all z € [a, b].

The necessary condition for a differentiable function f(z) to have a local
minimum at xq is

f'(z0) = 0. (1.1)
A simple and convenient sufficient condition is
f"(xo) > 0. (1.2)
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Unfortunately, no available criterion for a local minimum is both sufficient
and necessary. So the approach is to solve (1.1) for possible points of local
minimum of f(z) and then test these using an available sufficient condition.
The global minimum on [a, b] can be attained at a point of local mini-
mum. But there are two points, a and b, where (1.1) may not hold (because
the corresponding neighborhoods are one-sided) but where the global min-
imum may still occur. Hence given a differentiable function f(z) on [a,b],
we first find all zj at which f/(x;) = 0. We then calculate f(a), f(b), and
f(x) at the x, and choose the global minimum. Although this method
can be arranged as an algorithm suitable for machine computation, it still
cannot be reduced to the solution of an equation or system of equations.
These tools are extended to multivariable functions and to more com-
plex objects called functionals. A simple example of a functional is an
integral whose integrand depends on an unknown function and its deriva-
tive. Since the extension of ordinary minimization methods to functionals
is not straightforward, we continue to examine some notions from calculus.
A continuously differentiable function f(z) obeys Lagrange’s formula

flx+h) —f@)=f(z+0R)h  (0<O<1). (1.3)
Continuity of f’ means that
F(x+0h) — f'(x) =ri(z,0,h) >0 ash— 0,
hence
flz+h)=f(z)+ f()h+7ri(z,0,h) ]k

where ri(x,0,h) — 0 as h — 0. The term r(z, 0, h) h is Lagrange’s form
of the remainder. There is also Peano’s form

flx+h) = f(x)+ f'(2)h +o(h), (1.4)

which means that

L fat ) f@) - @b

0.
h—0 h

The principal (linear in h) part of the increment of f is the first differ-
ential of f at x. Writing dz = h we have

df = f'(z) du. (1.5)

“Infinitely small” quantities are not implied by this notation; here dz is a
finite increment of z (taken sufficiently small when used for approximation).
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The first differential is invariant under the change of variable z = ¢(s):

df = f'(z)dzx = w ds, where dz = ¢'(s)ds.

Lagrange’s formula extends to functions having m continuous deriva-
tives in some neighborhood of x. The extension for x + h lying in the
neighborhood is Taylor’s formula:

Floth) = F() + F@h+ o f @R+ Fo D

(m—1)!
+ %f(m)(:v +ORE™  (0<6<1). (1.6)
Continuity of f(™) at z yields
FO (x4 60n) — fO (2) = rp(x,0,h) = 0 as h— 0,

hence Taylor’s formula becomes
1 1
flo+h) = f(@) + F@h+ 5 f"(@)h? + -+ — f (@)™

1 m
+ mrm(x,e,h)h

with remainder in Lagrange form. The dependence of the remainder on the
parameters is suppressed in Peano’s form

Flath) = F@)+ f@ht g f @R+ @R o). (17)

The conditions of minimum (1.1)—(1.2) can be derived via Taylor’s for-
mula for a twice continuously differentiable function having

f@+h) = f(x) = f(x)h+ %f”(x)h2 +o(h?). (1.8)

Indeed f(x+h) — f(x) > 0 if z is a local minimum. The right side has the
form ah + bh? + o(h?). If a = f'(x) # 0, for example when a < 0, then for
h < ho with sufficiently small hg the sign of f(z + h) — f(z) is determined
by that of ah; hence for 0 < h < hg we have f(x + h) — f(x) < 0, which
contradicts the assertion that x minimizes f. The case a > 0 is similar,
resulting in the necessary condition (1.1). The increment formula gives

1
Flah) — F(@) = L (@2 + o).
The term f”(z)h? defines the value of the right side when h is sufficiently
close to 0, hence when f”(z) > 0 we see that for sufficiently small |h| # 0
flx+h)— f(z)>0.

So (1.2) is sufficient for = to be a minimum point of f.
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A function in n variables

Consider the minimization of a function y = f(x) with x = (21,...,2p).
More cannot be expected from this theory than from the theory of functions
in a single variable.

Definition 1.2. A function f(x) has a global minimum at the point x* if
the inequality

fx) < f(x"+h) (1.9)

holds for all nonzero h = (hy,...,h,) € R™ The point x* is a local
minimum if there exists p > 0 such that (1.9) holds whenever ||h| =

(W4 hR)Y2 < p.

Let x* be a minimum point of a continuously differentiable function
f(x). Then f(x1,25,...,2%) is a function in one variable z; and takes its
minimum at . It follows that 9f/0z1 = 0 at z1 = «}. Similarly, the rest
of the partial derivatives of f are zero at x*:

=0, i=1,...,n. (1.10)

0% |y
This is a necessary condition of minimum for a continuously differentiable
function in n variables at the point x*.

To get sufficient conditions we must extend Taylor’s formula. Let f(x)
possess all continuous derivatives up to order m > 2 in a ball centered at
point x, and suppose x + h lies in this ball. Fixing these, we apply (1.7) to
f(x+th) and get Taylor’s formula in the variable ¢:

- df (x + th) 1 d®f(x + th) )
f(x + th) - f(x) + dt tzot + 2| dt2 tzot
1dm th
+...+_M tm—i—o(tm).
m! dtm =0

The remainder term is for the case when ¢ — 0. From this equality for
sufficiently small ¢, the general Taylor formula can be derived.
The minimization problem for f(x) is studied using only the first two
terms of this formula:
df (x + th) 1 d&*f(x + th)
th = _— B ——
St th) = 760+ S| 4 S

We calculate df (x + th)/dt as a derivative of a composite function:

dfx+th)| _ 9f(x) 9f(x) 9f(x)
dt o Om ha+ Oxo hp otk Oz, fin-

t2 +o(t?). (1.11)
t=0
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The first differential is defined as

U0 4, 2, 0f(x)

df = dzy dz. 1.12
If = +g s e oz, (1.12)
The next term,
d? f(x+th) ~
dt? _ Z ax]

- 6,j=

defines the second differential of f:

2f=3 8xfé):1{7)- d; d;. (1.13)
i OTj

ij=1

Taylor’s formula of the second order becomes

af( 1L H2
fx+h)= +Z f 21, awf(,g )hh +o(|[h)?). (1.14)

The necessary condition for a minimum, df = 0, follows from (1.11) or
(1.10). By (1.11), the condition

d?f(x + th)

e > 0 for any sufficiently small | h]|

t=0

suffices for x to minimize f. The corresponding quadratic form in the
variables h; is

’f(x) . 0f(x)

817% 0x1%y hy

1 1
2—32 e, it =5 (o)

2500 . 2560 | \n,

Oznx1 ox:

The n x n Hesstan matriz is symmetric under our smoothness assump-
tions on f. Positive definiteness of the quadratic form can be verified via
Sylvester’s criterion.

The problem of global minimum for a function in many variables on a
closed domain €2 is more complicated than the corresponding problem for
a function in one variable. Indeed, the set of points satisfying (1.10) can
be infinite for a multivariable function. Trouble also arises concerning the
domain boundary 9Q: since it is no longer a finite set (unlike {a, b}) we must
also solve the problem of minimum on 02, and the structure of such a set
can be complicated. The algorithm for finding a point of global minimum
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of a function f(x) cannot be described in several phrases; it depends on the
structure of both the function and the domain.

Issues connected with the boundary can be avoided by considering the
problem of global minimum of a function on an open domain. We will take
this approach when treating the calculus of variations. Although analogous
problems with closed domains arise in applications, the difficulties are so
great that no general results are applicable to many problems. One must
investigate each such problem separately.

Constraints of the form

gi(x) =0, i=1,...,m, (1.15)

permit reduction of constrained minimization to an unconstrained problem
provided we can solve (1.15) and get

xk:wk(xla"'axn—m)’ kzn—m—i—l,,n

Substitution into f(x) would yield an ordinary unconstrained minimization
problem for a function in n — m variables

F@1, o Zpmmy ooy U (X1, o Tem))-

The resulting system of equations is nonlinear in general. This situation can
be circumvented by the use of Lagrange multipliers. The method proceeds
with formation of the Lagrangian function

L1, @ Ay Am) = F(X) 4 ) Ajgi (%), (1.16)

by which the constraints g; are adjoined to f. Then the z; and \; are all
treated as independent, unconstrained variables. The resulting necessary
conditions form a system of n+m equations in the n+ m unknowns x;, A;:

Bg]
8:01

= 1=1,...,n,
g;(x) :O7 i=1,...,m. (1.17)

Functionals

The kind of dependence in which a real number corresponds to another
(or to a finite set) is not enough to describe many natural processes. Ar-
eas such as physics and biology spawn formulations not amenable to such
description. Consider the deformations of an airplane in flight. At some
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point near an engine, the deformation is not merely a function of the force
produced by the engine — it also depends on the other engines, air resis-
tance, and passenger positions and movements (hence the admonition that
everyone remain seated during potentially dangerous parts of the flight).
In general, many real processes in a body are described by the dependence
of the displacement field (e.g., the field of strains, stresses, heat, voltage)
on other fields (e.g., loads, heat radiation) in the same body. Each field is
described by one or more functions, so the dependence is that of a func-
tion uniquely defined by a set of other functions acting as whole objects
(arguments). A dependence of this type, provided we specify the classes to
which all functions belong, is called an operator (or map, or sometimes just
a “function” again). Problems of finding such dependences are often formu-
lated as boundary or initial-boundary value problems for partial differential
equations. These and their analysis form the main content of any course
in a particular science. Since a full description of any process is complex,
we usually work with simplified models that retain only essential features.
However, even these can be quite challenging when we seek solutions.
Humans often try to optimize their actions through an intuitive — not
mathematical — approach to fuzzily-posed problems on minimization or
maximization. This is because our nature reflects the laws of nature in
total. In physics there are quantities, like energy and enthalpy, whose val-
ues in the state of equilibrium or real motion are minimal or maximal in
comparison with other “nearby admissible” states. Younger sciences like
mathematical biology attempt to follow suit: when possible they seek to
describe system behavior through the states of certain fields of parameters,
on which functions of energy type attain maxima or minima. The energy
of a system (e.g., body or set of interacting bodies) is characterized by a
number which depends on the fields of parameters inside the system. Thus
the dependence described by quantities of energy type is such that a numer-
ical value E is uniquely defined by the distribution of fields of parameters
characterizing the system. We call this sort of dependence a functional. Of
course, in mathematics we must also specify the classes to which the above
fields may belong. The notion of functional generalizes that of function so
that the minimization problem remains sensible. Hence we come to the
object of investigation of our main subject: the calculus of variations. In
actuality we shall consider a somewhat restricted class of functionals. (Op-
timization of general functionals belongs to mathematical programming, a
younger science that contains the calculus of variations — a subject some
300 years old — as a special case.) In the calculus of variations we min-
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imize functionals of integral type. A typical problem involves the total
energy functional for an elastic membrane under load F = F(z,y):

=3[+ () o e

Here u = u(x,y) is the deflection of a point (z,y) of the membrane, which
occupies a domain S and has tension described by parameter a (we can
put a = 1 without loss of generality). For a membrane with fixed edge, in
equilibrium F(u) takes its minimal value relative to all other admissible (or
virtual) states. (An “admissible” function takes appointed boundary values
and is sufficiently smooth, in this case having first and second continuous
derivatives in S.) The equilibrium state is described by Poisson’s equation

Au=—F. (1.18)
Let us also supply the boundary condition
ul,g = ¢ (1.19)

The problem of minimizing E(u) over the set of smooth functions satisfying
(1.19) is equivalent to the boundary value problem (1.18)—(1.19). Analogous
situations arise in many other sciences. Eigenfrequency problems can also
be formulated within the calculus of variations.

Other interesting problems come from geometry. Consider the following
isoperimetric problem:

Of all possible smooth closed curves of unit length in the
plane, find the equation of that curve L which encloses the
greatest area.

With r = r(¢) the polar equation of a curve, we seek to have

2 1 27
/ r2 4+ d¢ dqb*l 5/0 r? d¢ — max.

Notice how we denoted the problem of maximization. Every high school
student knows the answer, but certainly not the method of solution.

We cannot list all problems solvable by the calculus of variations. It is
safe to say only that the relevant functionals possess an integral form, and
that the integrands depend upon unknown functions and their derivatives.

Again, we can suppose that the theory for minimizing a functional
should represent an extension of the theory for minimizing a multivari-
able function. As in the latter theory, we must appoint a domain on which
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the functional is determined. Even for a multivariable function, this is not
always an easy task. For the functional it is much harder, as the arguments
now belong to certain classes of functions, and the answer can depend on
the class as well as the detailed calculations we perform. The study of
function spaces falls under the heading of functional analysis, considered in
Chapter 4. General description of the domains of functionals can be under-
taken via normed spaces of functions. The classical calculus of variations
arose long before functional analysis, and dealt with the classes of continu-
ously differentiable (or n-times continuously differentiable) functions under
certain conditions on the boundary of the integration domain.

We expect the notions of local minimum and global minimum to appear
in the study of functionals. A definition of local minimum will require a
precise notion of a neighborhood of the minimizing function. In this case
functional analytic ideas are quite helpful. As we said, however, the calculus
of variations predated functional analysis. The notion of a neighborhood
of a function was developed in the calculus of variations and later inherited
by functional analysis.

The necessary conditions (1.10) can be suitably extended to the problem
of minimum for a functional. We will see this explicitly when we approx-
imate the functional with a function in n variables. But for the complete
treatment of a functional, the conditions should be given at any point along
the minimizing function. These conditions are known as Euler equations
or Euler-Lagrange equations. They are obtained when the minimizer lies
inside the domain of the functional (i.e., the minimizer should lie some
distance away from the boundary of the domain, and this will be assumed
even if not stated).

Finally, the Euler equation for a functional represents only a necessary
condition for a minimum. Sufficient conditions are more subtle and require
separate investigation. However, in certain physical problems (such as those
associated with linear models in continuum mechanics) where a point of
minimum total potential energy is sought, we obtain a unique extremum
that automatically turns out to be a minimum.

In the next section, we show how the problem of minimum for one
special functional is related to the problem of minimum for a multivariable
function.
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Minimization of a simple functional using calculus

Consider a general functional of the form

b
Fly) = / fy,y) de, (1.20)

where y = y(z) is smooth. (At this stage we do not stop to formulate
strict conditions on the functions involved; we simply assume they have
as many continuous derivatives as needed. Nor do we clearly specify the
neighborhood of a function for which it is a local minimizer of a functional.)

From the time of Newton’s Principia, mathematical physics has formu-
lated and considered each problem so that it has a solution which, at least
under certain conditions, is unique. Although the idea of determinism in
nature was buried by quantum mechanics, it remained an important part
of the older subject of the calculus of variations. We know that for the
equilibrium problem for a membrane to have a unique solution, we must
impose boundary conditions. So let us first understand whether the prob-
lem of minimum for (1.20) is well-posed; i.e., whether (at least for simple
particular cases) a solution exists and is unique.

The particular form

[ VTR

yields the length of the plane curve y = y(z) from (a,y(a)) to (b,y(d)).
The obvious minimizer is a straight line y = kx 4+ d. Without boundary
conditions (i.e., with y(a) or y(b) unspecified), k and d are arbitrary and
the solution is not unique. We can impose no more than two restrictions
on y(z) at the ends a and b, because y = kz + d has only two indefinite
constants. However, the problem without boundary conditions also makes
sense; its solution is the set of horizontal segments y = d starting at the
vertical line z = a and ending at x = b.

Problem setup is a tough yet important issue in mathematics. We shall
eventually face the question of how to pose the main problems of the cal-
culus of variations in a sensible fashion.

Let us consider the problem of minimum of (1.20) without additional
restrictions, and attempt to solve it using calculus. Discretization, in this
case the approximation of the integral by a Riemann sum, will reduce the
functional to a multivariable function. In the calculus of variations other
methods of investigation are customary; however, the current approach
is instructive because it leads to some central results of the calculus of
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variations and shows that certain important ideas are extensions of ordinary
calculus.
We begin by subdividing [a, b] into n partitions each of length

b—a
—

h:

Denote z; = a + ih and y; = y(z;), so yo = y(a) and y, = y(b). Take an
approximate value of y/(z;) as
o Yi+1 — Y

Nop:) g ZEL — J0
y(wl) h

Approximation of (1.20) by the Riemann sum

b n—1
| @) dem b Y faonon /@) (1.21)
a k=0
gives
b n—1
[ /e =Y fonn G~ w)/h)
a k=0
Since ®(yo, . - -, Yn) is an ordinary function in n + 1 independent variables,
we set

8(1)(3./0, Y1y vy yn)
Jy;

=0, i=0,...,n (1.23)

Again, any function f encountered is assumed to possess all needed deriva-
tives. Henceforth we denote partial derivatives using

of _of _of

fy:a_ya fy/fa_y,a 7%5

f. (1.24)

and the total derivative using

df (z,y(z),y'(v))
dx

= folz,y(2), 9 () + fy(z,y(x), ' (2)) ¥/ ()
+ fy (@, y(x), y' (2) y" (). (1.25)

Observe that in the notation f,, we regard y’ as the name of a simple
variable; we temporarily ignore its relation to y and even its status as a
function in its own right.
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Consider the structure of (1.23). The variable y; appears in the sum
(1.22) only once when i = 0 or i = n, twice otherwise. In the latter case
(1.23) gives, using the chain rule and omitting the factor h,

Yi — Yi—1 Yir1 — Yi
fy (iﬂz‘—layi—l, T) Ty (»”Uiayi, +T)
h B h

+ £y <:cy %) —0. (1.26)

For 7 = 0 the result is

for <x0 %o y1y0>

Yy I )

Y1 — Yo h

h fy (anyOa h ) - h =0

or

fy’ (‘rananl;yO) _hfy (‘rananl_yO) =0. (127)

For i = n we obtain

fy’ (xn—la Yn—1, %) =0. (128)

In the limit as h — 0, (1.27) and (1.28) give, respectively,
fy (@ y(2).y'@)|,_, =0,  fy(x,y(@).y'(@)|,_, =0

Finally, considering the first two terms in (1.26) for 0 < i < n,

For @i,y Yi+1 — ¥i S Yi —Yi—1
Yy i Yis h 7 i—1y Yi—1, L
h )
we recognize an approximation for the total derivative —df, /dz at y;_1.

Hence (1.26), after h — 0 in such a way that x;_; remains a fixed value ¢,
reduces to

d

fy_afy’ =0 (1'29)

at £ = ¢. A nonuniform partitioning will yield this equation similarly for
any = ¢ € (a,b). In expanded form (1.29) is

fy*fy/x*fy/yy/*fy’y’y”:oa T e (a,b). (1'30)
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The limit passage has given us this second-order ordinary differential equa-
tion and two boundary conditions

fy’|$:a:07 fy’

Equations (1.29) and (1.31) play the same role for the functional (1.20) as
equations (1.10) play for a function in many variables. In the absence of
boundary conditions on y(x), we get necessarily two boundary conditions
for a function on which (1.20) attains a minimum.

Since the resulting equation is of second order, no more than two bound-
ary conditions can be imposed on its solution (see, however, Remark 1.20).
We could, say, fix the ends of the curve y = y(x) by putting

., =0. (1.31)

y(a) = co, y(b) = c1. (1.32)

If we repeat the above process under this restriction we get (1.26) and cor-
respondingly (1.29), whereas (1.31) is replaced by (1.32). We can consider
the problem of minimum of this functional on the set of functions satisfying
(1.32). Then the necessary condition which a minimizer should satisfy is
the boundary value problem consisting of (1.29) and (1.32).

Conditions such as y(a) = 0 and y'(a) = 0 are normally posed for
a Cauchy problem involving a second-order differential equation. In the
present case, however, a repetition of the above steps implies the addi-
tional restriction fy/|y,=, = 0. A problem for (1.29) with three boundary
conditions is, in general, inconsistent.

We have obtained some possible ways to set up the problem of minimum
of the functional (1.20).

Notation for various types of derivatives

It will be necessary to take derivatives of composite functions. When such
functions are integrated by parts, we encounter “total derivatives” that
must be distinguished from the usual partial derivatives. We denote total
derivatives in the same way as ordinary derivatives, using the differential
symbol d: therefore d/dx will denote a total derivative with respect to .
We often denote partial derivatives by subscripts so that 9(-)/dz will be
denoted by (-), or sometimes (-);. Let us consider two common cases.

1. Suppose

f = f(z,y(z),y’(:z:))
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so that f depends on z through (1) an independent variable z, and (2) the
variables p = y(x) and ¢ = y'(x) that are each functions of = as well. We
will denote the partial derivative with respect to x as

0
fm = %f(xvpaq)

p=y(z), q=y’ (x)
where, during differentiation, we regard p and ¢ as independent variables.
Other partial derivatives are

0 0
fyza_pf(zapv(I) ] fy':a_qf(xvpaq)

p=y(z), =y’ (x) p=y(z), ¢=y’(z)

The total derivative with respect to x, denoted d/dx, arises when we dif-
ferentiate while considering y(x) and y'(x) to be functions of z. The total
derivative of the partial derivative f,. is, by the chain rule,

d d
Efy’ = Efy’ (:Ea y(m), y/(.%')) = fy’z + fy’yyl + fy’y’y”a

where, for example,
0 0
fy/y:__f(xvpaq) .
9p 9q p=y(x), =y’ (z)
2. Consider the composite function
f = f(za yv ’LL(SC, y)? ’U,z(SC, y)a Uy(za y))

depending on independent variables x, y and on a function w and its deriva-
tives, which depend on z,y as well. Now we denote

p:U(I,y), q:um(zay)v T:Uy(l',y),

where u; and u, are partial derivatives with respect to = and y, respec-
tively. Introducing variables p,q,r, we get a function f = f(z,y,p,q,7)
in five independent variables. The following notations are used for partial
derivatives:

0
fI*%f(xvyapvth) )

p=u(z,y), g=ux (2,y), r=uy (z,y)

0
fy_a_yf(mayapv(JaT) )

p=u(z,y), ¢=uz (z,y), r=uy (z,y)

0
fu*a_pf(xvyapvtbr) )

p=u(z,y), g=ux (2,y), r=uy (z,y)
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b
p=u(z,y), ¢=uz (,y), r=uy(z,y)

fum = aﬁqf(mayvpaan)
and

0
fuy - Ef(zayvpaqvfr)

p=u(z,y), g=uz (z,y), r=uy(z,y)

Finally, let us display the notation for the total derivative d/dx of f,_,
where f denotes f = f(z,y,p,q,7):

4
dx

b)
p=u(z,y), g=uz (z,y), r=uy (z,y)

fum = (qu + fqpu:v + quumm + fqruyz>

and a similar formula for the total derivative with respect to y:

d
dy

Ju, = (fqy + fapty + faqUay + fqruyy)

p=u(z,y), g=uz (z,y), r=uy(z,y)

The formulas for higher derivatives are denoted similarly.

Brief summary of important terms

A functional is a correspondence assigning a real number to each function
in some class of functions. The calculus of variations is concerned with
variational problems: i.e., those in which we seek the extrema (maxima or
minima) of functionals.

An admissible function for a given variational problem is a function that
satisfies all the constraints of that problem.

A function is sufficiently smooth for a particular development if all re-
quired actions (e.g., differentiation, integration by parts) are possible and
yield results having the properties needed for that development.

1.2 Euler’s Equation for the Simplest Problem
We begin with the problem of local minimum of the functional
b
Fo) = [ ey (1.33)

on the set of functions y = y(z) that satisfy the boundary conditions

y(@)=co,  yb)=ci1. (1.34)
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The existence of a solution can depend on the properties of this set. We
must compare the values of F(y) on all functions y satisfying (1.34). In
view of (1.29) it is reasonable to seek minimizers that have continuous first
and second derivatives on [a, b]. How should we specify a neighborhood of
a function y(z)? Since all admissible functions must satisfy (1.34), we can
consider the set of functions of the form y(x) + ¢(z) where

v(a) = ¢(b) = 0. (1.35)

With the intention of using tools close to those of classical calculus,
we first introduce the idea of continuity of a functional with respect to an
argument which, in turn, is a function on [a, b]. A suitably modified version
of the classical definition of function continuity is as follows: given any small
e > 0, there exists a J-neighborhood of y(x) such that when y(z) + ¢(x)
belongs to this neighborhood we have

[F(y+¢) - Fy)| <e.
If the neighborhood of the zero function is specified by the inequality

max_|p(x)| + max |¢'(z)] < 4, (1.36)
z€[a,b] z€[a,b]
the definition can become workable when f(z,y,y’) is continuous in the
three independent variables x,y,%’. This is not the only possible definition
of a neighborhood; later we shall discuss other possibilities. But one benefit
is that the left side of (1.36) contains the expression usually used to define
the norm on the set of all functions continuously differentiable on [a, b]:
— /

(o)l o = max lp@)]+ max |/ (137
Definition 1.3. The space C(Y)(a,b) is the normed space consisting of
the set of all functions ¢(z) that are continuously differentiable on [a, b],
supplied with the norm (1.37). Its subspace of functions satisfying (1.35) is

denoted C’él)(a, b). The set of all functions having k continuous derivatives
on [a,b] is denoted C'¥)(a, b).

In many books these spaces are denoted by C*)([a,b]) to emphasize
that [a, b] is closed. To keep our notation reasonable throughout the book,
we introduce

Convention 1.4. In cases where no ambiguity should arise, we typically
abbreviate the space designation subscript on a norm symbol. g
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For example, the notation ||-[|ca)(, ) (Where the dot stands for the
argument of the norm operation) is shortened to ||-|| in the present section.
At times, only some aspect of the full label can be suppressed. For example,
we may use the notation ||-|| ;) if only the domain [a, b] is understood. With
this convention in mind let us proceed to

Definition 1.5. A §-neighborhood of y(x) of admissible functions is the set

of all functions of the form y(x) + ¢(x) where p(z) is such that p(z) €
1

Gy (a,b) and [[p(x)]| < 3.

When no boundary conditions are imposed on y, then the definition of
d-neighborhood does not require ¢ to vanish at the endpoints.

Definition 1.6. A function y(x) is a point of local minimum of F(y) on
the set satisfying (1.34) if there is a d-neighborhood of y(x), i.e., a set of
functions z(x) such that z(z) — y(x) € C’él)(a, b) and ||z(z) — y(z)| < 4, in
which F'(z)— F(y) > 0. If in a é-neighborhood the relation F(z)— F(y) >0
holds for all z(z) # y(x), then y(z) is a point of strict local minimum.

We may speak of more than one type of local minimum. According to
Definition 1.6, a function y is a minimum if there is a § such that

F(y+ ¢) — F(y) > 0 whenever H<,0||C[()1)(a,b) < 0.

Historically this type of minimum is called “weak” and we shall use only this
type and simply call it a minimum. Those who pioneered the calculus of
variations also considered “strong” local minima, defining these as values of
y for which there is a § such that F(y+¢) > F(y) whenever ¢(a) = ¢(b) =0
and max |¢| < § on [a,b]. Here the modified condition on ¢ permits “strong
variations” into consideration: i.e., functions ¢ for which ¢’ may be large
even though ¢ itself is small. Note that when we “weaken” the condition
on ¢ by changing the norm from the norm of Cél)(a,b) to the norm of
Co(a, b) which contains only ¢ and not ¢’, we simultaneously strengthen the
statement made regarding y when we assert the inequality F(y+¢) > F(y).

Let us turn to a rigorous justification of (1.29). We restrict the class
of possible integrands f(z,y,z) of (1.33) to the set of functions that are
continuous in (x, y, z) when € [a, b] and |y—y(z)|+|z—y'(x)| < §. Suppose
the existence of a minimizer y(z) for F(y) (see, however, Remark 1.13 on
page 21). Consider F'(y + ty) for an arbitrary but fixed ¢(z) € C’(()l)(a, b).
It is a function in the single variable ¢, taking its minimum at ¢t = 0. If it
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is differentiable then

dF (y + ty)

o 0 (1.38)

t=0

To justify differentiation under the integral sign, let f(x,y,y’) be contin-
uously differentiable in the variables y and y’. But, since (1.30) shows
that we shall need the existence of other derivatives of f as well, let us
assume f(x,y,y’) is twice continuously differentiable, in any combination
of its arguments, in the domain of interest. By the chain rule, (1.38) yields

d b
:%/ [,y +to,y + o) de
a t=0

b
:/ (fy(z,y, 9 )+ fur(z,y,y")¢] da. (1.39)

Definition 1.7. The right member of (1.39) is denoted 6 F'(y, ¢) and called
the first variation of the functional (1.33).

Integration by parts in the second term on the right in (1.39) gives

b b
d
/ fy (@, y,y )¢ do = —/ wafyf(w,y,y’)dw

where the boundary terms vanish by (1.35). It follows that

b
/ [fy(ac,y,y') — %fy/ (m,y,y')} pdx =0. (1.40)

In the integrand we see the left side of (1.29). To deduce (1.29) from (1.40)
we need the fundamental lemma of the calculus of variations.

Lemma 1.8. Let g(z) be continuous on [a,b], and let

b
/ g(z)p(x)der =0 (1.41)

hold for every function p(x) that is differentiable on [a,b] and vanishes in
some neighborhoods of a and b. Then g(x) = 0.

Proof. Suppose to the contrary that (1.41) holds while g(xg) # 0 for
some g € (a,b). Without loss of generality we may assume g(z¢) > 0. By
continuity we have g(z) > 0 in a neighborhood [zg —¢&, 20 +¢] C (a,b). It is
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easy to construct a nonnegative bell-shaped function ¢g(x) such that ¢g(z)
is differentiable, po(z) > 0, and @o(x) = 0 outside (¢ — &,z + €):

2
£
exXpl ———————5 |, |r—x0| <¢g,
plx) = p((w—z@?—a?) [ = ol

0, | — x| > &.

See Fig. 1.1. The product g(z)po(x) is nonnegative everywhere and positive
near zo. Hence f; g(x)p(z)dx > 0, a contradiction. O

Xg-€ Xq xote X

Fig. 1.1 Bell-shaped function for the proof of Lemma 1.8.

It is possible to further restrict the class of functions ¢(z) in Lemma 1.8.

Lemma 1.9. Let g(x) be continuous on [a,b], and let (1.41) hold for any
function o(x) that is infinitely differentiable on [a,b] and vanishes in some
neighborhoods of a and b. Then g(z) = 0.

The proof is the same as that for Lemma 1.8: it is necessary to con-
struct the same bell-shaped function () that is infinitely differentiable.
This form of the fundamental lemma provides a basis for the theory of gen-
eralized functions or distributions. These are linear functionals on the sets
of infinitely differentiable functions, and arise as elements of the Sobolev
spaces to be discussed later.

Now we can formulate the main result of this section.

Theorem 1.10. Suppose y = y(x) € C?(a,b) locally minimizes the func-
tional (1.33) on the subset of C™M(a,b) consisting of those functions satis-
fying (1.34). Then y(x) is a solution of the equation

d

fy_Efy’ =0. (1.42)
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Proof. Under the assumptions of this section (including that f(x,y,y’)
is twice continuously differentiable in its arguments), the bracketed term in
(1.40) is continuous on [a,b]. Since (1.40) holds for any ¢(z) € Cél)(a,b),
Lemma 1.8 applies. O

Definition 1.11. Equation (1.42) is known as the FEuler equation, and a
solution y = y(x) is called an extremal of (1.33). A functional is stationary
if its first variation vanishes.

Taken together, (1.42) and (1.34) constitute a boundary value problem
for the unknown y(x).

Example 1.12. Find a function § = g(x) that minimizes the functional

1
F(y) = /O [v* + (y')* — 2] dw
subject to the conditions y(0) =1 and y(1) = 0.
Solution. Here f(z,y,y') = y? + (y')? — 2y, so we obtain
fy=29y-2,  fy =2y,
and the Euler equation is
y' —y+1=0.
Subject to the given boundary conditions, the solution is

e’ —e™”
gz) =1— ——.
y(z) |
We stress that this is an extremal: only supplementary investigation can
determine whether it is an actual minimizer of F'(y). Consider the difference

F(y + ¢) — F(j) where ¢(z) vanishes at = 0, 1. It is easily shown that

F(g+p) - Fg) = / 0+ (¢)?] d > 0.

so the global minimum of F(y) really does occur at g(x). Although such
direct verification is not always straightforward, a large class of important
problems in mechanics (e.g., problems of equilibrium for linearly elastic
structures under conservative loads) yield single extremals that minimize
their corresponding total energy functionals. This happens because of the
quadratic structure of the functional, as in the present example. O

Certain forms of f lead to simplification of the Euler equation:
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(1) If f does not depend explicitly on y, then f,, = constant.
(2) If f does not depend explicitly on z, then f — f,/y' = constant.
(3) If f depends explicitly on y’ only and fy,» # 0, then y(z) = c1z + ca.

Remark 1.13. On page 17 we assumed the existence of a minimizer. This
can lead to incorrect conclusions, and it is normally necessary to prove the
existence of an object having needed properties. Perron’s paradox illus-
trates the trouble we may encounter by supposing the existence of a nonex-
istent object. Suppose there exists a greatest positive integer N. Since N?
is also a positive integer we must have N2 < N, from which it follows that
N = 1. If we knew nothing about the integers we might believe this result
and attempt to base an entire theory on it. g

1.3 Properties of Extremals of the Simplest Functional

While attempting to seek a minimizer on a subset of C'!)(a, b), we imposed
the illogical restriction that it must belong to C®)(a,b) (note that f does
not depend on y”). Let us consider how to circumvent this requirement.

Lemma 1.14. Let g(x) be a continuous function on [a,b] for which the
following equality holds for every p(x) € C’él)(a, b):

b
/ g(x)¢' (z) dx = 0. (1.43)
Then g(x) is constant.

Proof. For a constant c it is clear that f; ey (x) de = 0 whenever p(x) €

C’(()l)(a, b). So g(z) can be an arbitrary constant. We show that there are
no other forms for g. From (1.43) it follows that

b
/ lg(z) — c]¢'(z) dz = 0. (1.44)
Take ¢ = cg = (b—a)~! f:g(:n) dz. The function ¢(z) = [[g(s) — co] ds

is continuously differentiable and satisfies p(a) = ¢(b) = 0. Hence we can
put it into (1.44) and obtain

/ab[g(w) —¢co)*dx =0,

from which g(z) = ¢. O
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Lemma 1.14 provides a necessary condition for a relative minimum.

Theorem 1.15. Suppose y = y(x) € CV(a,b) locally minimizes (1.33)
on the subset of functions in CV(a,b) satisfying (1.34). Then y(x) is a
solution of the following equation, where ¢ is a constant:

/Ow fy(s,9(5), 9/ (s) ds — fy (z,y(2), 4/ (2)) = c. (1.45)

Proof. Let us return to the equality (1.39),

b
/ U@y, o+ fy ey, )] da =0,

which is valid here as well. Integration by parts gives

b b prx
/fy(z,y(z),y’(x))w(w)dw:*// Fu(s,9(s),y/ (5)) ds ' (x) da.

The boundary terms were zero by (1.35). It follows that
b x
[ |- [ et enas + oo @] o' s =o.

This holds for all p(z) € Cél)(a, b). So by Lemma 1.14 we have (1.45). O

The integro-differential equation (1.45) has been called the Fuler equa-
tion in integrated form.

Corollary 1.16. If
fyry (@, y(@), ' (x)) #0
along a minimizer y = y(z) € CM(a,b) of (1.33), then y(x) € C®(a,b).

Proof. Rewrite (1.45) as

fy (e y(@) ) (@) = / Cf (s y(s), 5/ () ds — .

The function on the right is continuously differentiable for any y = y(x) €
CM(a,b). Thus we can differentiate both sides of the last identity with
respect to x and obtain

fye+ fy’yy/ + fyryry" = a continuous function.

Considering the term with y”(z) on the left, we prove the claim. O
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It follows that under the condition of the corollary equations (1.42) and
(1.45) are equivalent; however, this is not the case when fy,/ (z, y(z), y'(z))
can be equal to zero on a minimizer y = y(z). Since y”(x) does not appear
in (1.45), it can be considered as defining a generalized solution of (1.42).

At times it becomes clear that we should change variables and consider a
problem in another coordinate frame. For example, if we consider geodesic
lines on a surface of revolution, then cylindrical coordinates may seem more
appropriate than Cartesian coordinates. For the problem of minimum of a
functional we have two objects: the functional itself, and the Euler equation
for this functional. Let y = y(z) satisfy the Euler equation in the original
frame. Let us change variables, for example from (z,y) to (u,v):

x = z(u,v), y =y(u,v). (1.46)

The forms of the functional and its Euler equation both change. Next we
change variables for the extremal y = y(z) and get a curve v = v(u) in the
new variables. Is v = v(u) an extremal for the transformed functional? It
is, provided the transformation does not degenerate in some neighborhood
of the curve y = y(z): that is, if the Jacobian

Ty Ty
Yu Yo
there. This property is called the invariance of the Euler equation. Roughly
speaking, we can change all the variables of the problem at any stage of
the solution and get the same solutions in the original coordinates. This
invariance is frequently used in practice. We shall not stop to consider the
issue of invariance for each type of functional we treat, but the results are
roughly the same.

We have derived a necessary condition for a function to be a point
of minimum or maximum of (1.33). Other functionals will be treated in
the sequel. An Euler equation is the starting point for any variational
investigation of a physical problem, and in practice its solution is often
approached numerically. Let us consider some methods relevant to (1.33).

J= £0

1.4 Ritz’s Method

We now consider a numerical approach to minimizing the functional (1.33)
with boundary conditions (1.34). Corresponding techniques for other prob-
lems will be presented later; we shall benefit from a consideration of this
simple problem, however, since the main ideas will be the same.
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In §1.1 we obtained the Euler equation for (1.33). The intermediate
equations (1.26) with boundary conditions (1.27)—(1.28), which for this
case must be replaced by the Dirichlet conditions

y(a) = yo = do, Y(b) = yn = du,

present us with a finite difference variational method for solving the problem
(1.42), (1.34), belonging to a class of numerical methods based on repre-
senting the derivatives of y(z) in finite-difference form and the functional
as a finite sum. These methods differ in how the functions and integrals
are discretized. Despite widespread application of the finite element and
boundary element methods, the finite-difference variational methods remain
useful because of certain advantages they possess.

Other methods for minimizing a functional, and hence of solving certain
boundary value problems, fall under the heading of Ritz’s method. Included
are modifications of the finite element method. Ritz’s method was popular
before the advent of the computer, and remains so, because it can yield
accurate results for complex problems that are difficult to solve analytically.

The idea of Ritz’s method is to reduce the problem of minimizing (1.33)
on the space of all continuously differentiable functions satisfying (1.34)
to the problem of minimizing the same functional on a finite dimensional
subspace of functions that can approximate the solution. Formerly, the
necessity of doing manual calculations forced engineers to choose such sub-
spaces quite carefully, since it was important to get accurate results in as
few calculations as possible. The choice of subspace remains an important
issue because a bad choice can lead to computational instability.

In Ritz’s method we seek a solution to the problem of minimization of
the functional (1.33), with boundary conditions (1.34), in the form

Yn(x) = po(x) + Z crpr(T). (1.47)
k=1

Here ¢o(x) satisfies (1.34); a common choice is the linear function pg(x) =
ax + B with

_dy—do _ bdy — ad,
 b—a’  b—a
The remaining functions, called basis functions, satisfy the homogeneous
conditions

(0%

(1.48)

vr(a) = i (b) =0, k=1,...,n.

The ¢, are constants.
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Definition 1.17. The function y(x) that minimizes (1.33) on the set of
all functions of the form (1.47) is called the nth Ritz approzimation.

The Ritz approximations satisfy the boundary conditions (1.34) auto-
matically. The above mentioned subspace is the space of functions of the
form >")'_, crpr(x). For a numerical solution it is necessary that the ¢y ()
be linearly independent, which means that

chgok(z) =0 onlyifep=0for k=1,...,n.
k=1

For manual calculation this was supplemented by the requirement that a
small value of n — say 1, 2, or 3 at most — would suffice. The requirement
could be met since the corresponding boundary value problems described
real objects, such as bent beams, whose shapes under load were understood.
Now, to provide a theoretical justification of the method, we require that
the system {¢x(2)}52, be complete. This means that given any y = g(x) €
Cél)(a, b) and € > 0 we can find a finite sum Y ;_, cxpr(x) such that

<e.

Joto) - icmm

k=1

Here the norm is defined by (1.37). It is sometimes required that
{¢r(2)}32, be a basis of the corresponding space, but this is not needed
for either the justification of the method or its numerical realization.

We therefore arrive at the problem of minimizing the functional

b
/ f(a:, ymy;z) dx

where y,, () is given by (1.47). The unknowns are the ¢y, so the functional
becomes a function in n real variables:

b
@(cl,...,cn):/ f(@,yn,y,,) da.

To minimize this we solve the system

0P(c1, ..., cp)

=0, k=1,...,n 1.49
aCk K Y ) n ( )
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Denoting cp = 1, we have

8(1)(61,...,
6—ck (’“)c /f ynayn
a n n
- CiPi ) CiP;
[ (- ?& i Byl

/ (Zczs@z Zcz% ) () dw
/ (Zczs@z Zcz% ) () da,

hence (1.49) becomes

b n n
/fy (x,chgaz ,chgol ) (z)dx

1=0 =0
—|—/ < chtpl chtpl ) (x)dx =0 (1.50)
for k = 1,...,n. This is a system of n simultaneous equations in the n
variables c1, ..., c,. It is linear only if f is a quadratic form in cg; i.e., only

if the Euler equation is linear in y(z). For methods of solving simultaneous
equations, the reader is referred to books on numerical analysis.

Note that (1.50) can be obtained in other ways. We could put y = y,
and ¢ = @y in (1.39), since while deriving (1.50) we used the same steps
we used in deriving (1.39). Alternatively, we could put y,, into the left side
of the Euler equation,

d
_f’y/(xvynvy;@)a (]‘51)

f’y(xvynay;z) - dr

and then require it to be “orthogonal” to each ¢j. That is, we could multi-
ply (1.51) by ¢y, integrate the result over [a, b], use integration by parts on
the term with the total derivative d/dz, and equate the result to zero. This
is opposite the way we derived (1.50). This method of approximating the
solution of the boundary value problem (1.42), (1.47) is Galerkin’s method.
In the Russian literature it is called the Bubnov—-Galerkin method, because
in 1915 I.G. Bubnov, who was reviewing a paper by S.P. Timoshenko on
applications of Ritz’s method to the solution of a problem for a bending
beam, offered a brief remark on another method of obtaining the equations
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of Ritz’s method. The journal in which Timoshenko’s paper appeared hap-
pened to publish the comments of reviewers together with the papers (a
nice way to hold reviewers responsible for their comments). Hence Bubnov
became an originator of the method. Galerkin was Bubnov’s successor,
and his real achievement was the development of various forms and appli-
cations of the method. In particular, there is a modification wherein (1.51)
is multiplied not by ¢y, the functions from the representation of y,, but
by other functions v, ...,%,. This is sometimes a better way to minimize
the residual (1.51).

Popular basis functions ¢ for one-dimensional problems include the
trigonometric polynomials and functions of the form (z — a)(x — b)Px(x)
where the Py(x) are polynomials. Here the factors (z — a) and (z — b)
enforce the required homogeneous boundary conditions at * = a and x = b.

When deriving the equations of the Ritz (or Bubnov—Galerkin) method,
we imposed no special conditions on {¢x} other than linear independence
and some smoothness: ¢ (z) € C’él)(a,b). In general each of the equa-
tions (1.50) contains all of the c¢;. By the integral nature of (1.50), if we
select basis functions so that each g (x) is nonzero only on some small
part of [a,b], we get a system in which each equation involves only a sub-
set of {¢;}. This is the background for the finite element method based
on Galerkin’s method: depending on the problem each equation involves
just a few of the ¢; (typically three to five). Moreover, the derivation of
Galerkin’s equations suggests that it is not necessary to have basis functions
with continuous derivatives — it suffices to take functions with piecewise
continuous derivatives of higher order (first order for the problem under
consideration) when it is possible to calculate the terms of (1.50).

Ritz’s method can yield good results using low-order approximations. A
disadvantage is that the calculations at a given step are almost independent
from those of the previous step. The ¢x do not change continuously from
step to step; hence, although the next step gives a better approximation,
the coefficients can change substantially. Accumulation of errors imposes
limits on the number of basis functions in practical calculations.

Example 1.18. Consider the problem

T(y) = /O {y*(x) + [1 + 0.1sin(z)]y?(x) — 2zy(2)} dz — min

subject to y(0) = 0 and y(1) = 10. Find the Ritz approximations for
n =1,3,5 using po(x) = 10z and the following basis sets:
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() er(z) =1 —2)2* k> 1,
(b) r(z) =sinknz, k> 1.

Solution. Note that ¢g(x) was chosen to satisfy the given boundary con-
ditions. We find the expansion coefficients ci by solving the system

0 - ,
a—Ck\I/ (gpo(z)nLZcigai(z)) =0, i=1,...,n.

For brevity let us denote i
(y,2) = /0 {/(2)2'(z) + [1 + 0.1sin(z)]y(z)z(2)} dz

so that

\I’(y)<y7y>2/0 xy(z) de.

Using the symmetry of the form (y, z) we write out Ritz’s equations:

1
c1{p1, 1) + c2{pa, o1) + - + cnlpn, 1) = — (o, P1) +/ rp1(z) dz,
0

1
c1{p1,92) + c2(2, 02) + -+ + cn{Pn, p2) = — (o, P2) +/ xpa () dz,
0

1

c1{p1,¢n) + c2(P2,Pn) + -+ + cn{on, n) = *<<P07<Pn>+/ Tpn (z) dz.
0

(1.52)

For small n this system can be solved by hand, otherwise computer solution

is required. In the present case we find that for the first basis set the Ritz
approximations are

y1(z) = 10z — 2.1622(1 — x),
y3(z) = 10z + (—1.409z — 1.35622 — 0.2462°)(1 — x),
ys(r) = 10z + (—1.4042 — 1.4042% — 0.1402° — 0.0632* — 0.0072°)(1 — x).
For the second basis set we obtain the Ritz approximations

z1(z) = 10z — 0.289 sin 7z,

zg(x) = 10z — 0.289 sin 7z + 0.063 sin 27 — 0.017 sin 37,

z5(x) = 10z — 0.289 sin 7z + 0.063 sin 27 — 0.017 sin 3w

+ 0.008 sin4mx — 0.004 sin 57z,
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as required. O

In this example we employed the bilinear form (y, z). The symmetry of
this form with respect to its arguments simplified the calculation. In the
static problems of linear elasticity, such a form is naturally induced by the
energy expression for an elastic body. Moreover, the form of the left sides of
(1.52) is the same for all such problems, whether they are three-dimensional
problems of elasticity, or problems describing elastic beams or shells.

In Ritz’s time such approximate solutions were sought for problems de-
scribing elastic beams and plates. The resulting systems of equations were
fairly hard to solve by hand. The method was justified by comparison
with experimental data. A full justification of Ritz’s and similar methods
requires the tools of functional analysis, which forms the subject of Chap-
ter 4. However, we would like to discuss some aspects of the method on an
elementary level using Example 1.18 as a model.

Notes on basis functions

First let us comment on the approximations. The normal working viewpoint
is that one compares each pair of successive approximations and terminates
the calculation process upon reaching a pair whose difference is less than
some predetermined tolerance ¢.

For each type of approximation, if we appoint € = 0.01 then we can stop
at k = 5. Calculation out to & = 10 shows that the k = 5 approximations
are both very good. However, they do differ from each other by a maximum
of about 0.25. So which is “more” correct? We can answer this by substitu-
tion into the functional, which gives ¥ (ys5) a2 127.046 and ¥(z5) ~ 127.449.
This is evidence that polynomial approximation is preferable. It is not hard
to see why: the true solution is not oscillatory, so the oscillatory behavior
of the trigonometric polynomials is not helpful in this case. So the “practi-
cal” approach to terminating the numerical process may not work well for
trigonometric approximation. In this particular example it can be shown
that the trigonometric approximations do converge, but slowly.

We have selected the polynomial-type Ritz approximations. But our ob-
servation regarding trigonometric approximations is cause for concern since
the situation with ordinary polynomials should not differ in principle from
that with trigonometric polynomials. Let us further discuss the problem of
basis functions.

In formulating Ritz’s method we required completeness of the set of
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basis functions. Weierstrass’s theorem of calculus states that any function
f(z) continuous on [0, 1] can be approximated uniformly by a polynomial
to within any accuracy. In other words, given € > 0 there exists an nth
order polynomial P, (x) such that

max |f(z) — Po(z)| <e.

z€[0,1]

It follows that to within any accuracy we may use a polynomial to uniformly
approximate a function f(x) together with its continuous derivative. In-
deed, given ¢ > 0, we begin with approximation of the derivative f'(z) by
a polynomial @, (z):

max |f'(z) — Qu(2)| <e/2.

z€[0,1]
P,(z) = f(0) +/0 Qn(t)dt
approximates f(z):

|f(z) - I‘f /f t)dt — (0)/01Qn(t)dt'

s/o /(1) — Qu(t)] dt
<g/2  forxze|0,1].

The polynomial

In the same way it can be shown that a function n-times continuously dif-
ferentiable on [0, 1] can be approximated to within any prescribed accuracy
by a polynomial together with all n of its derivatives on [0,1]. The set of
monomials {*} constitutes a complete system of functions in C'™[0, 1] for
any n.

Note that Weierstrass’ theorem guarantees nothing more than the exis-
tence of an approximating polynomial. When we decrease ¢ we get a new
polynomial where the coefficient standing at each term z*
nificantly from the corresponding coefficient of the previous approximating
polynomial. This is because the set {z*} does not have the uniqueness
property required of a true basis. Moreover, in mathematical analysis it

may differ sig-

is shown that we can arbitrarily remove infinitely many members of the
family {2*} and still have a complete system {z*7}. It is necessary only
to retain such members of the family that the series Y =, 1/k, diverges.
So the system {2*} contains more members than we need. Although any
finite set of monomials z* is linearly independent, as we take more and



Basic Calculus of Variations 31

more elements the set gets closer to becoming linearly dependent; that is,
given any £ > 0 we can find infinitely many polynomials approximating the
zero function to within e-accuracy on [0, 1]. This leads to numerical insta-
bility. The difficulty can be avoided by using other families of polynomials
for approximation: namely, orthogonal polynomials for which numerical
instability shows itself only in higher degrees of approximation.

As we know from the theory of Fourier expansion, the second system
of functions {sinkmz} is orthonormal. It is, moreover, a basis (but not
of C’él)((),w)) as we shall discuss later. This provides greater stability in
calculations to within higher accuracy. However, in low-order Ritz approx-
imations it can be worse than a polynomial approximation of the same
problem, at least for many problems whose solutions do not oscillate.

One more aspect of the approximation is seen in the above results. For
Ritz’s approximations we compared their values. Comparing the values of
their derivatives, we find that much better agreement is obtained for the
values of the approximating functions than for the derivatives. It is obvious
that the same holds for the difference between an exact solution and the ap-
proximating functions. This property is common to all projection methods.
So, for example, in solving problems of elasticity we get comparatively good
results in low-order approximations for the field of displacements, whereas
the fields of stresses, which are expressed through the derivatives of the
displacement fields, are approximated significantly worse.

1.5 Natural Boundary Conditions

In § 1.1 we found that by using discretization on the problem of minimum of
the functional (1.33) without boundary conditions (“with free boundary”)
we obtain the Euler equation and some boundary conditions. We shall
demonstrate that the same boundary conditions appear by the method of
§1.2. They are known as natural boundary conditions.

Consider the minimization of (1.33) when there are no restrictions on
the boundary for y = y(x).

Theorem 1.19. Let y = y(x) € C®)(a,b) be a minimizer of the functional

f:f(m,y,y') dx over the space CV(a,b). Then for y = y(x) the Euler
equation

fy — %fy/ =0 for all z € (a,b) (1.53)
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holds along with the natural boundary conditions
fol_.=0.  fyl._, =0 (1.54)

Proof. We can repeat the initial steps of §1.2. Namely, consider the
values of the functional on the bundle of functions y = y(x) + tp(x) where
o(x) € CM(a,b) is arbitrary but fixed. Here, however, there are no restric-
tions on (z) at the endpoints of [a, b].

For fixed y(z) and ¢(z) the functional f:f(m,y + to,y' + t¢') dx be-
comes a function of the real variable ¢, and attains its minimum at ¢ = 0.
Differentiating with respect to ¢ we get

z=b

r=

b
/ [fy (@, u,9 ) o + fy(z,y,y")¢'] de=0.

Integration by parts gives
z=b

b
P Ry ) e AT ) I

r=a

(1.55)
From this we shall derive the Euler equation for y(x) and the natural bound-
ary conditions. The procedure is as follows. We limit the set of all continu-
ously differentiable functions () to those satisfying ¢(a) = ¢(b) = 0. For
these functions we have

b
/ {fy(iﬁ, y,y') — %fy/ (z, y,y/)} pdx =0. (1.56)

This equation holds for all functions () that participate in the formulation
of Lemma 1.8. Hence the continuous multiplier of ¢(x) in the integrand of
(1.56) is zero, and the Euler equation (1.53) holds in (a, b).

Now let us return to (1.55). The equality (1.56), because of the Euler
equation, holds for all p(z). From (1.55) it follows that

z=b

fy(@,y(@),y' (x)e(x)| =0 (1.57)

for any ¢(z). Taking ¢(z) = = — b we find that fy|,=¢ = 0; taking
¢(x) = — a we find that f/|z=p = 0. 0

Let us call attention to the way this result was obtained. First we re-
stricted the set of admissible functions to those for which we could get a
certain intermediate result (the Euler equation); using this result, we ob-
tained some simplification in the first variation. We finished the argument
by considering the simplified first variation on all the admissible functions.
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Natural boundary conditions are of great importance in mathematical
physics. For some models of real bodies or processes it may be unclear which
(and how many) boundary conditions are necessary for well-posedness of
the problem. The variational approach usually clarifies the situation and
provides natural boundary conditions dictated by the nature of the problem.
The bending of a plate is a famous example. For her pioneering studies of
this problem Sophie Germain received a prize from the French Academy
of Sciences. She derived the biharmonic equation for the deflections of the
midsurface of the plate, but with three boundary conditions as seemed to
be in accordance with mechanical intuition; variational considerations later
demonstrated that only two were independent.

It is worth noting that in mechanical problems, the natural boundary
conditions are dual to kinematic conditions on the boundary. They do
not arise at a boundary point when we “clamp” as fully as allowed by
the model. Incomplete clamping at a point always results in a natural
boundary condition of force type there. If no kinematic constraint prevails
at a point, then the natural boundary conditions express the equilibrium of
forces. A simple example is afforded by the stretched rod treated later on;
application of a force F' at the right end of the rod results in the natural
boundary condition ES(I)u/(I) = F, which means that the cross section
at point [ is in mechanical equilibrium under F' and the reaction of the
remainder of the rod.

Remark 1.20. In §1.1 we discussed the question of which boundary con-
ditions can be imposed to get a well-posed boundary value problem for
minimizing the functional (1.33). General considerations are nice; however,
consider the minimization of

/1(9’2 +2y) dx (1.58)
0

on the set of continuously differentiable functions. Its Euler equation is
y"” =1, thus all the extremals take the form

1
y:§x2+lm+b.

The natural boundary conditions are y'(0) = 0, y'(1) = 0. These imply
k = 0. So the problem of minimum of (1.58) (with natural boundary
conditions) has a family of solutions y = %SCQ + b with arbitrary constant b.
Thus we may impose an additional condition, say y(0) = 2. But in general,
such a third condition for an ordinary differential equation of second order
can yield a boundary value problem that has no solution.
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Although (1.58) is simple, the situation we just described is not unim-
portant. Indeed, the same situation holds for the whole class of functionals
that govern the equilibrium states of linear elastic systems in terms of dis-
placements. If we impose no geometrical restrictions on the position of an
elastic body (it is normally the case of natural boundary conditions) we
can always change the coordinate frame, and all the displacements can be
changed in such a way that the body appears to be shifted as a whole (i.e.,
to move as a “rigid body”). Depending on the model of the body there are
apparently one to six free constants describing such a motion — hence we
can impose additional boundary conditions at some points and still preserve
the well-posedness of the problem. In a one-dimensional problem (where
the dimension is a spatial coordinate) the situation is exactly as it is for
(1.58): it is possible to impose an additional boundary condition when con-
sidering the problem with “free” ends. Caution is often warranted when
applying the outcomes of very general considerations. 0

1.6 Extensions to More General Functionals

Let us consider two extensions of the above results.

The functional f: f(z,y,y')dx

Let us replace y(z) in (1.33) by a vector function

y(@) = (41 (@), yn(2)).

We denote the integrand of the functional as

fla,y(2),y'(z)) or flz,yi(z),.. . yn(2), ¥1(2), .., yn (@)
interchangeably. The task is to treat functionals of the form
b
F(y) = / flz,y,y')dx. (1.59)

First consider the problem of minimizing (1.59) when y(x) takes bound-
ary values

y(a) = co, y(b) = ci, (1.60)

with vector constants co = (co1,Co2, - - -, Con), €1 = (c11,C12,-..,C1n). We
take y(z) € C®(a,b) to mean that each coordinate function y;(z) €
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C®)(a,b); that is, each y;(x) possesses all derivatives up to order k and
these are all continuous on [a, b]. Imposing the norm

ly(z) ||c<k)(a b) Z llyi(z ||c<k>(a b) (1.61)

on C™®)(a,b), we can define e-neighborhoods as needed to describe mini-
mizers of (1.59). We seek a minimizer y(z) of (1.59) from among all vector
functions belonging to C'")(a, b) and satisfying (1.60).

Theorem 1.21. Suppose y(z) € C®)(a,b) locally minimizes the functional
f;f(m,y,y') dx on the subset of vector functions of CV(a,b) satisfying
(1.60). Then y(x) satisfies

d
Vyf— %Vy/f =0. (1.62)
Here we use the gradient notation

0 0 0 0
Vy—(a_yl,...,a—y’n), Vy’—<a_yi7...7a—y;l>.

The vector equation (1.62) can be written as n scalar equations
d )
fyi_EnyZOa i=1,...,n, (1.63)
each having the form of the Euler equation.
Proof. Over the same construction of admissible functions, y(z) + te(z)
where ¢(a) = ¢p(b) = 0, we consider (1.59):
F(y(z) + te(x /fwy+t<py+t<p)d (1.64)

For fixed y(x) and ¢(x) this becomes a function of the real variable ¢ and
takes its minimum at ¢ = 0 for any ¢(z). Take ¢(x) of the special form
@, (z) = (p(2),0,...,0) where the only nonzero component stands in the
first position. Then (1.64) becomes

Fly(x) + ty (z /f:cy1 2) + (@), y2 (), .., 4 @),

() + 1" (@), y5 (@), .,y () d. (1.65)

Now the function of ¢ becomes a particular case of the function of §1.2,
F(y(x)+tp(x)), with the evident notational change y — y1. A consequence
of the minimum of (1.65) at ¢t = 0 is the corresponding Euler equation

d
fyl - @fyl =0
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This is the first equation of (1.63). Similarly, the ith equation of (1.63) is
derived by taking ¢(x) in the form ¢, (z) = (0, ..., pi(z),...,0), where the
only nonzero component stands in the ¢th position. O

Let us derive the natural boundary conditions for (1.59). Now we should
not impose any conditions for y at points * = a and x = b in advance,
and thus it is the same for ¢ at these points. For a moment consider all
components of the minimizer y(z) other than y;(x) to be given. Then (1.59)
can be formally considered as a particular case of (1.33) with respect to the
ordinary function y = y;(z). Admissible vector functions differ from y(x)
only in the ith component: ¢(z) = ¢,(z) = (0,...,¢(z),...,0). We can
repeat the reasoning of §1.3. Thus considering the problem of minimum of
(1.59) without boundary restrictions, we get n pairs of boundary conditions:

fy/. a 0, fy/.

i i

wep =0 1=1,...,n.

r=

These are natural boundary conditions for a minimizer.

The functional f: flx,y,9y,...,y™)de

The functional

b
Fo(y) =/ fuyy,. .. y™)de (1.66)

may be considered on the set of functions satisfying certain boundary con-
ditions. Alternatively, we may impose no boundary conditions and seek
natural boundary conditions.

First consider the problem with given boundary equations. The corre-
sponding Euler equation will have order 2n, hence we take n conditions at
each endpoint:

y(a) = ¢, y(b) = 5",
y'(a) = i, y'(b) = ",
Yy (a) = ¢y, y"H0) =y (1.67)

A sufficiently smooth integrand f(x,y,v’,..., y™) belongs to C™ on the
domain of all of its variables, at least in some neighborhood of a minimizer.

Theorem 1.22. Suppose y(x) € C3™(a,b) locally minimizes F,(y) in
(1.66) on the subset of vector functions of C™ (a,b) satisfying (1.67). Then
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y(x) satisfies the Euler—Lagrange equation

d P2 dn
fy_afy"i_@fy”_”""(_l) @fy(") = 0. (1.68)

Proof. Let us recall what it means for y(z) to be a local minimizer of
F,.(y). Consider the bundle of functions y(x)+ ¢ (x) where ¢(x) is arbitrary
and belongs to C(™(a,b). Because the bundle must satisfy (1.67) for any
o(x), we see that p(z) must satisfy the homogeneous conditions

@(a) 0, @(b =0,
¢'(a)=0 ©'(b) =0,
eV (a) =0, e (b) = 0. (1.69)

Let Cén)(a, b) denote the subspace of C(™)(a,b) containing functions ¢(x)
that satisfy (1.69). A function y(z) € C™(a,b) satisfying (1.67) is a local
minimizer of F,(y) if F,,(y+¢) > Fy(y) for any o(x) € C(g") (a, b) such that
[l o (q,) < € for some e > 0.

As usual we introduce the parameter ¢ and consider the values of F),(y)
on the bundle y(z)+ty(x). Considering F, (y(z)+te(x)) for a momentarily
fixed p(x) as a function of ¢, we see that it takes its minimal value at t =0
and thus

dF, (y(z) + te(x))

=0.
dt —o
In detail,
AP (y(x )+t90( )
t=0
/ fla,y+to,y +t y" +to" .y 4 te™) d
t=0
= / (fyw + Ly + e e+ fy<n)<p<">) da (1.70)

(in the last line of the formula the arguments are f = f(z,4,%/,...,y™)).
Now we apply (multiple) integration by parts to each term containing
derivatives of ¢ so that on the last step the integrand contains only .
For the term f: [y ¢’ dz we already have (1.55). For the term f: fyr! dx
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we produce

/ fy// (p” d:L' = — / (pl%fy// d{L‘ —|— Splfy”
b 2 z=b
d d
Similarly
b b 43
/a fy///SDI/I d:L' = —/a @@fyu/ d{L’
d &2 v=b
—|— <80ny/// — @/%fy/// —|— @wvfy/u) o

and, in general,

b b dr

r=b

dnfl

_ n— d n—
+ <<p(" 1)fy<n) — ¢ 2)£fy(”) 4 (=1) 190ny<"))

r=a

By (1.68) the boundary terms vanish, and collecting results we have

b d d2 n an
i fy*d—fy’ﬁL@fy“*"'Jr(*l) %fy(n) pdx =0. (1.71)

T

Since this holds for any p(z) € C(g") (a,b), we can quote the fundamental
lemma to complete the proof. ([l

Let us investigate the natural boundary conditions for F,(y). Now
o(x) € C™(a,b) with no boundary restrictions. The first steps of the
previous discussion still apply; however, now there are the boundary terms
in the expression for the first variation of F,(y) (the right side of (1.70)),
so in obtaining the result analogous to (1.71) we should collect all terms
including boundary terms. We rearrange the boundary terms, collecting
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coefficients of each ¢(*)(z):

b 2 n
d d d
/a (fy— E'fy/ —i—@fy// _+(—1) @fy(")) (,Ddx

z=b
+ fy(n)sﬁ(n_l)
a z=b
<f ()~ fy(")> P2 -

z=b

d d? _
oy 2fy<n)) =3

+ <fy(n2) d

r=a

z=b

m—1
+<fy,_%fy,,+...+(—1) ddn 1f<n)> = 0. (1.72)

We now realize the common plan. First we consider (1.72) only on the
subset Cé")(a,b) of all p(z) € C™(a,b). Then (1.72) reduces to (1.71),
implying that (1.68) holds. Equation (1.72) becomes

r=a

z=b
fy(n)sﬁ(nil)
d z=b
<f ()~ o fy<n)> pn=2)

z=b

d d2 (n—3)
+ | fyom-2 — Efym—l) + @fym ©

Tr=a

z=b

dnfl
=0. (1.73)

d o
+ <fy’ - %fy” +- 4+ (=1) 1—dx"—1 fy<n)> ®

It is easy to construct a set of polynomials Py (zx), for kK = 0,1 and ¢ =
0,...,n—1, with the following properties:

r=a

& Py y & Py .

d =’ . =0 =0,1,...,n—1
dw] rea 77 dw] z:b ) ‘] ) ) 7n )
& Py & Py j ,

- =0 - =4’ =0,1,...,n—1
dxi s ) dxi - %) J s Ly 1 ;

where 5f is the Kronecker delta symbol defined by 6f =1 for i = j and
8] = 0 otherwise. Substituting these polynomials into (1.73), we get the
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natural boundary conditions for a minimizer y(z):

dx

r=a

d e dnfl
<fy' - @fy”ﬁL"'ﬂL(*l) 1—_1fy<n)> = 0.

z=b

Note that the last two conditions contain y(2»~1) (x). In general, the natural
boundary conditions contain higher derivatives than the equations (1.67).
What if we appoint some of the boundary conditions (1.67)? For exam-
ple, let y(a) = ¢f be the only boundary restriction for a minimizer. Then
we need to require that ¢(a) = 0, and we will get all the natural boundary
conditions for y(z) except the one whose expression is the multiplier of ¢(a)
in the boundary sum (1.73). We must remove
m—1
(fyf - %fyff o (-1 fy“”) -

d$"71

r=a
from the list.

The reader should consider what happens to the natural boundary con-
ditions in case the following apply (consider each case separately):

(1) y(a)+ ky/(a) = c.
(2) y(a) + ky(b) = c.

Example 1.23. Derive the Euler-Lagrange equation and natural boundary
conditions for the energy functional whose minimizer defines the equilib-
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rium of a bent cantilever beam described by parameters F,I. The beam is
subjected to a distributed load ¢(z), as well as a shear force @Q* and torque
M* applied to the end x = I:

l l
E(y) = %/0 EI(y")? dx —/0 qydr — Q y(l) — M*y'(1),
y(0) =4'(0) = 0.

Note that the natural boundary conditions now have mechanical meaning:
they account for the given torque and shear force at the “free” end x = I.

Solution. In this case the energy functional involves terms outside an in-
tegral, so it makes sense to repeat the derivation of the Euler-Lagrange
equation for the functional fab f(z,y,9/,...,y™)dz to understand how M*
and @Q* enter the natural boundary conditions. Supposing y is a solution,
we consider E(y) on the bundle y + t¢ with arbitrary but fixed : that is,
we consider E(y +ty) where p(0) = 0 = ¢'(0). As a function of ¢ this takes
a minimum at ¢ = 0, so its derivative at this point is zero:

l 1
| Breds - [ apdo—@o) - M) <o,
0 0

Two integrations by parts in the first integral give

l
l l * *
/ (EIy® — q)pdx + EIy"¢' |, — EIy" ¢|, — Q*¢(l) — M*¢/(1) = 0
0

and, because ¢(0) = 0 = ¢'(0), we have
!
J B~ apodo+ (BIY/Q) = M) D) = (BIY"(0) + Q)olt) =0,
0

Now we repeat the steps connected with the choice of ¢. First we take
those ¢ for which ¢(I) = 0 = ¢'(l), which brings us to the equation

l
/ (B — q)pdz = 0;
0

then, because of the arbitrariness of ¢, we invoke the fundamental lemma
to arrive at the Euler-Lagrange equation

EIy® —qg=0 on|0,1].
Hence for any ¢ that does not vanish at x = [ we have

(EIy"(l) = M*)¢'(1) — (EIy"(I) + Q")¢(l) = 0.
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It follows that
Ely"(l) = M*, Ely" () = -Q",

which are the natural boundary conditions for the cantilever beam.
From the strength of materials we know the relations between the de-
flection y of the beam, the torque M, and the shear force Q:

M=FEL/, Q=-M =-EIy".

We see that the natural boundary conditions really do represent the condi-
tions on the torque and shear force given at the free end = = 1. (|

Let us discuss the example further. The solution of this simple bound-
ary value problem constitutes a considerable part of any textbook on the
strength of materials. At one time people relied on graphical approaches,
although it is now easy to solve the problem analytically. In practice we
encounter largely piecewise continuous load functions ¢ displaying linear
and parabolic-type dependences.

The example did force us to consider a case omitted by the general
theory of this section: the integrand can have points of discontinuity. Es-
sentially nothing happened though. The Euler—Lagrange equation holds
everywhere except at a discontinuity of ¢, and at such a point a jump in
g will give rise to a jump in y®. The lower-order derivatives of y remain
continuous.

In practice it is common to introduce external point torques and shear
forces on the beam. What can we say in such cases? In the strength of
materials, mechanical reasoning is used to show that at such points the
moments and shear forces have corresponding jumps. Can we show this
using the tools of the calculus of variations?

We consider a particular problem of the bending of a beam with fixed
ends. The beam carries a distributed load ¢ and is a subjected to a point
torque M™ and shear force Q* at some point c. The total energy functional,
which takes its minimum value on a solution, has the form

1

l l
2 /0 El(y")* dz — /0 qydz — Q" y(c) — M™y'(c).

The hypothesis for the model of a beam requires continuity of y and 3’
at all points including x = c¢. Let us see what actually happens at this
point. As in the example above, the energy functional is be considered on
the bundle y + tp where ¢, together with its first derivative, goes to zero
at the endpoints of the segment [0,!]. Since we are unsure of what happens
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at x = c¢ it makes sense to split the integral into two parts: one over the
domain [0, ¢] and the other over the domain [c,]. We shall use the notation
x = ¢ — 0 to denote a limit taken from the left, and x = ¢ + 0 to denote a
limit taken from the right. The approach taken in the example brings us
to the following equation:

c l
/ By — qpds + / (B — qpda
0 c

+ ETy"(c = 0)p(c — 0) — EIy" (c + 0)p(c +0)
— EIy" (¢ — 0)p(c — 0) + EIy" (¢ + 0)p(c + 0)
— M"¢'(c) = Q¢p(c) = 0.

Supposing ¢(c) = 0 = ¢/(c), we obtain the same equation EIyY) — ¢ =0
on both segments [0, ¢) and (c,!]. Returning to the above equation with ¢
unrestricted at x = ¢, we see that the second and third derivatives of y do
indeed have jumps at x = ¢ defined by M* and Q*, respectively:

BI(y"(c~0) ~y"(c+0) = M*, BI(y"(c~0) ~y"(c+0) = Q"

The reader may treat the case in which the beam characteristic ET
changes from Ely to EI; at x = c. He or she can derive the conditions for
solving the equilibrium problem for a beam under load at point x = ¢. The
solution is a point of minimum of the above total energy functional E(y).

1.7 Functionals Depending on Functions in Many Variables

Although obtaining the Euler equation has become somewhat routine for
us, we will not be fully prepared to treat practical problems until we can
seek unknown minimizers in many variables.

The two variable case is the simplest; extension to three or more inde-
pendent variables is straightforward. Consider a functional of the form

Fu) = //S flr,y,u(z,y), ug(z,y), uy(x,y)) de dy. (1.74)

Here u, and u, denote the partial derivatives Ou/0x and Ou/dy, respec-
tively. We confine ourselves to cases where S is simple; practical problems
normally involve such domains and much complexity is thereby avoided.
Let S be a closed domain in R? with a piecewise smooth boundary 5.
(We do not elaborate on the meaning of “smooth.” Our attitude toward
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this issue is common among practitioners: we simply require everything
needed in intermediate calculations.)

We consider two main minimization problems for (1.74): the problem
with the Dirichlet boundary condition

u(z,y)|  =1(s), (1.75)

a8

and the problem “without” boundary conditions (i.e., the problem for which
natural boundary conditions appear).

We first obtain the analogue to the Euler equation for (1.74). The gen-
eral approach is to repeat the steps of §1.2. Specifically we (1) introduce
classes of functions over which we may consider the problem of minimum,
(2) formulate the fundamental lemma for the two variable case, and (3) re-
call how to integrate by parts in the two variable case.

Let C™*)(S) denote the set of functions continuous on a compact domain
S together with all their derivatives up to order k. The norm for defining
a neighborhood of a function is

9*hu(a,y) ‘

B (1.76)

lulleos) = max, max

Cék) (S) is the subset of C'*)(S) consisting of functions which, together with
all their derivatives up to order k — 1, vanish on the boundary 0.S. We shall
use the corresponding notations C(*)(S) and Céoo)(S ) for sets of functions
infinitely differentiable on S.

Lemma 1.24. Let g(x) be continuous on S, and let

// x) dz dy = 0 (1.77)

hold for any function p(x) € Céoo)(S). Then g(x) = 0.

Proof. We imitate the proof of Lemma 1.8. Suppose to the contrary that
at some interior point x¢ of S we have g(xg) # 0, say g(xo) > 0. Then
g(x) > 0 for all x in some disk C. having radius € and center x¢. It is
easy to construct a bell-shaped surface of revolution centered at xy. The
corresponding function pg(x) € C'(OO)(S) gives

// X)po(x dxdy—// x)dx dy > 0,

which contradicts (1.77). O
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To integrate by parts we use

//u dxdy:—// auvdmdy—i—]{ uvn; ds. (1.78)
s s Oz as

Here n; is the cosine of the angle between the unit outward normal n and
the unit vector along the x; axis (z; = x,y for i = 1,2, respectively). The
length variable s parameterizes contour 95.

ov
8:1:1-

Remark 1.25. When applying integration by parts in this book, we
encounter composite functions such as fu, (2, y,u(z,y), uz(z,y), uy(z,y))
which must be differentiated completely with respect to x via the chain
rule, because u and its derivatives depend on z. Such derivatives are called
total derivatives. The total derivatives with respect to the spatial variables
z and y will be denoted by d/dz and d/dy. On the other hand, “ordinary”
partial derivatives with respect to z and y will be denoted by f, and f,.
Recall the discussion regarding notation, starting on page 13. g

The main result of this section is the following. Let f(x,y,u,p,q) be a
continuous function having continuous first partial derivatives with respect
to all of its arguments.

Theorem 1.26. Let u = u(x,y) € C?(S) be a minimizer of the functional
W f(z,y, 1, g, uy) dedy on the subset of CM(8) consisting of those func-
tions satisfying (1.75). Then the Euler equation

dfu,  dfu,\
Ju— < o T W) =0 (1.79)

holds in S. Here d/dx and d/dy are total partial derivatives, analogous
to the total derivative in the one-dimensional case, when the function
u = u(z,y) as well as its partial derivatives ug, and u, are considered as
depending on x and y respectively.

Proof. Consider the functional on the usual bundle u = u(z,y)+tp(z, y)
where o(z,y) is a function from Cél)(S); that is, it has first derivatives
continuous on S and satisfies

e(2,y)|55 = 0. (1.80)

The functional F(u+ ty) for a fixed ¢(x,y) becomes a function of the real
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variable ¢ and takes its minimum at ¢t = 0. Thus

dF(u+ty)

0:
dt

t=0

d
== (// f(w,y,qutsD,um+ts01,uy+ts0y)dwdy>
S

t=0
= / ; (fup + fuspz + fu,py) dzdy.

Integration by parts in the last two terms of the integrand gives

// [fu _ (dfum dgzy)} sDdgcdghtj{ (Furte + fu,my) s = 0.

(1.81)

Remembering that o(x,y) satisfies (1.80), we get

// [f“_(dfw dﬁzy)]@dxdy—o (1.82)

Equation (1.79) follows from Lemma 1.24. O

Theorem 1.27. Let u = u(x,y) € C?(S) be a minimizer of the functional
Ws f(@ g, u,uz, uy) dedy on C(S) (without any boundary conditions).
Then the Euler equation (1.79) holds in S, and u(z,y) satisfies the natural
boundary condition

(fuonz + fu,my) | =0. (1.83)
as
Proof. Consider F(u+tp) on the bundle u-+tp where p(z,y) € CM(S) is
arbitrary but momentarily fixed. For all such functions we establish (1.81)
using the same reasoning as above. Restriction of ¢(z,y) to the set C’él) (9)
then shows that (1.74) holds in S. So (1.82) holds whether ¢ belongs to
c{M(S) or C(S). Hence

j{ (fusne + fu,ny) pds = 0. (1.84)
S

Now we use the fact that on S, ¢ = ¢(s) is an arbitrary differentiable
function. We do not prove the corresponding fundamental lemma for
such an integral, but it is clear that a proof could be patterned after
that of Lemma 1.8. (We could use the function ¢o(x) from the proof of
Lemma 1.24; the point x¢ would be a chosen point of the boundary where
the corresponding multiplier g(x) is not equal to zero, by the contrary as-
sumption.) Hence (1.83) follows from (1.84). O
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Example 1.28. Demonstrate that for the functional

U (u) = %//S(ui—i—uz)dxdy—//sFudxdy (1.85)

with F' = F(z,y) a given continuous function, the Euler equation and the
natural boundary conditions are

Au=—-F inS (1.86)
and
% =0, (1.87)
on|yg

respectively. Show that on a solution u* of the latter boundary value prob-
lem, if it exists, the functional ¥(u) attains a global minimum.

Solution. The derivation of (1.86) and (1.87) is straightforward. Denoting
— 1 2 2 F

we get

dfu, | dfu,\
Ju ( dr dy ) =-F-Ay

which leads to (1.86). The left-hand expression in (1.83) is
fumnx + fuyny = UgNgy + Uy Ty,

which is du/On on the boundary.

Before demonstrating the last statement in the example, we note that
U(u) expresses the total energy of an elastic membrane. From physics
we know that at points of minimum of a total energy functional for a
mechanical system with conservative loads, the system is in equilibrium.
In particle mechanics it is even shown that such an equilibrium state is
stable at a point of strict minimum. Let us see what happens in this case
of a spatially distributed object. We suppose that a solution u* of the
boundary value problem (1.86)—(1.87) exists. Consider the values of ¥ over
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the bundle u* 4 ¢, where ¢ is arbitrary:

U(u*+¢) = // (uf 4 @z )? (uZ—l—goy)Q)d:cdy

—/ F(u* + ¢) dx dy
s

n [// (e i) iy~ [[ ngdxdy]
S S
1
+§// ((piJrgOi)dzdy.
S

Because of (1.86)—(1.87) (which, in the above theory, were derived as a
direct consequence of the following equality and thus are equivalent to it
when u* is sufficiently smooth) we see that

//S (uhn + uyoy) d:cdy//SFgad:z:dyO.

So
U(u* + ) — // o +¢r)dudy > 0,

which means that ¥(u) takes its global minimum at u = u*. O

We are in the habit of supposing that a minimizer exists for each prob-
lem we encounter. But the problem of minimizing (1.85), which describes
the equilibrium of a membrane, demonstrates that not every problem which
seems sensible at first glance has a solution. Indeed, if we take u = ¢, a
constant, then the first integral in (1.85) is zero. If [y F dx dy # 0, then by
changing ¢ we make the value of the functional any large negative number.
So the problem has no solution and (at least) the condition ([ F dx dy = 0
becomes necessary for the problem to be sensible. In fact, this has a clear
mechanical sense: it is the condition of self-balance of the forces. A free
membrane subjected to a load F' can move as a whole in the direction nor-
mal to the membrane. In this model we neglect its inertia, so the problem
of equilibrium of the membrane without the condition of self-balance of the
load is senseless as we showed formally. Later we consider this question in
more detail.
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1.8 A Functional with Integrand Depending on Partial
Derivatives of Higher Order

Now we derive the Euler equation for a minimizer w = w(zx,y) of a func-
tional of the form

F(w) = // f(x7 y) w? wE) wy; wII) w:Ey; wyy) diC dy (188)
s
on the functions of class C(?)(S) satisfying the boundary conditions
ow
w|as = wo(s), an o = wi(s). (1.89)

The steps are now routine. Assume a minimizer w = w(z,y) € C¥(S).
Let o(x,y) be an arbitrary but fixed function from 082)(5 ), which implies
in particular that

o¢

0, on

=0. (1.90)
oS

Plos =

F(w + ty) takes its minimum at ¢ = 0 and thus dF'(w + tgp)/dt|t:O = 0.
This equation takes the form

//S(fw‘P""fwm(Pm+fwy(Py""fwm@mm“"fwmy@my‘f'fwyy(Pyy) drdy = 0. (1-91)

Supposing f has continuous derivatives of third order, we can integrate by
parts in (1.91) and get

d d &2
//S <fw - %fwz - d—yfwy + wfwm

d? d?
———— fuw,, + d—y2fwyy><pdz dy = 0. (1.92)

+ dxdy

The boundary terms vanish by (1.90). By Lemma 1.24 we obtain the Euler

equation for the functional (1.88):

d d d?

@l T gy dudy
Y Y

valid in S. Here d/dx and d/dy are total partial derivatives when w =

w(z,y) is considered as depending on its arguments x, y.

We could derive the form of the natural boundary conditions for (1.88),
but this is cumbersome so we prefer to treat an illustrative case. We shall
consider a problem of minimizing a total energy functional, whose solution
describes the equilibrium of an elastic plate with free edge.

d2 d2
fw_ fwy'i_@fwmm'i' fwmy+d_y2fwyy :O, (193)
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It is time to discuss how problems of minimization arose. Some came
from geometrical considerations, like the isoperimetric problem mentioned
in §1.1; some were designed specifically as exercises, written out by anal-
ogy with other, more or less easily solved, problems. But for the most
part the real problems of the calculus of variations came from physics —
in particular, mechanics. There it was found that minimizers or maximiz-
ers of certain functionals describe important states of physical systems. It
is interesting to note how this idea progressed in importance. Early in
the development of classical mechanics, variational principles were derived
using the “fundamental” equations of statics and mechanics; they were
regarded as consequences, although in many circumstances they were ac-
tually equivalent. It was soon found that some problems were easier solved
by variational methods, and the variational approach to mechanics gained
a life of its own. In the theory of elasticity, for example, a great many
variational principles have been derived; moreover, the name “variational
principle” is applied not only to the minimization of functionals, but to
any circumstance in which an important equation can be derived from an
integro-differential equation having the form of the first variation of a func-
tional being equal to zero, even if there is no functional for which it is the
first variation. For example, the Virtual Work Principle arose as a con-
sequence of the principle of minimum of potential energy of a mechanical
system. But the former continues to hold in the case of nonconservative
forces where it is impossible to compose the potential energy functional.

Early in the development of linear elasticity, an energy functional was
derived whose minimizer describes the equilibrium of an elastic body. The
procedure was to write out the equilibrium equations, multiply by appro-
priate components of the vector of displacements, and integrate over the
region. Using integration by parts with regard for homogeneous Dirichlet
boundary conditions, from the terms with second-order partial derivatives
it was possible to get a symmetrical form (in the components of the strain
tensor) for potential energy. The originators of this method were comforted
by the fact that the associated natural boundary conditions coincided with
the boundary conditions assigned to the same problem when considered
as a problem of equilibrium with applied forces given on the boundary.
This led to the idea that the Principle of Minimum Potential Energy (or,
correspondingly, the Virtual Work Principle) could be used to derive bound-
ary conditions for models of elastic plates and shells. Workers investigat-
ing such models had previously run into difficulty in posing appropriate
boundary conditions: upon simplification from the three-dimensional case,
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uncertainties had arisen regarding precisely what force conditions should
be appointed on the boundary of an object. The variational formalism pro-
vided the needed result in a simple fashion. Why are we taking the time to
discuss this now? We are going to consider the problem of equilibrium of an
elastic plate from the viewpoint of the calculus of variations. The first step
is to formulate the energy functional. The left side of the equation describ-
ing a thin elastic plate bent under load contains a biharmonic operator. In
this case there is no uniquely defined procedure to derive the energy func-
tional. Moreover, integration by parts can yield several expressions for the
energy of an elastic plate with homogeneous Dirichlet conditions (1.90).
For each of these forms one can derive the natural boundary conditions,
but only one form gives the conditions corresponding to mechanics. So to
formulate the problem (i.e., the functional) properly, one should have some
knowledge of mechanics — perhaps this is why so many pure mathemati-
cians prefer to study only classical problems where everything is formulated
in advance! To work purely mathematical exercises, one is seldom required
to know the actual physical behavior of the object under consideration. But
correct mathematical procedures often depend in large part on the details
of a particular realm of application.

The energy functional of an isotropic homogeneous plate bending under
load F' = F(z,y) is

D
E(w) = 5 //S (w2, + wy, + 20weawyy + 2(1 — v)wl,) du dy

- //S Fuwdx dy (1.94)

where D is the rigidity of the plate, v is Poisson’s ratio, and w = w(x,y)
is the deflection at point (x,y) of S, the compact domain occupied by the
mid-surface of the plate. A minimizer of E(w) describes the equilibrium de-
flection of the mid-surface. Using the standard method, we shall derive the
Euler equation for the minimizer and the corresponding natural boundary
conditions.

Let w € C™(S) minimize the functional (1.94) over C®)(S). Consider
E(w +ty) at a fixed ¢ € C?(9) as a function of the parameter t. It takes
its minimum at ¢ = 0, so as a consequence we have

S

+2(1—V)wmy<pmy]d:cdyf// Fodedy =0
S
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which is a particular case of (1.92). Now it is necessary to integrate by
parts in the first integral on the left. We get

D//S[(wm + vy )Pz + (Wyy + VWar )Py + 2(1 — V)Way Py d dy
0 0
=-D g wI%(wm + vwyy) + wya—y(wyy + VWyy)
+ (1 = V)Wayys + (1 — V)Weaypy | drdy

+D [(Waz + VWyy )pane + (Wyy + VWey ) pyny
as
+ (1 = v)way (pany + pyng)| ds (1.95)

where n, the unit normal to the boundary 05, has components (ng,n,).
Note that we have preserved the symmetry of the expressions. Integrating
by parts once more in the first integral on the right, denoted by A, we get

A=D // [(waz + VWyy)zx + (wyy + Vwm)yy +2(1 - V)wzzyy]‘zpdx dy
S

= D § [0 + i) s + 10+ )y,
+ (1 = v) (Wayyng + Wagyny )| ds.
The first integral in A is
D // (Wazge + 2Waayy + Wyyyy)pdrdy = D //S ©A?w dx dy.

Thus (1.95) takes the form

D// OA%w dx dy — // Fodrdy
s

+D ‘7{ [(Waz + VWyy ) ana + (Wyy + VWes)pyny
S
+ (1 - V)Way (Pany + Spynw)] ds
-D % [(Waz + VWwyy)ane + (Wyy + VWey)yny
S

+ (1 — v)(Wayyna + Wazyny )| ds = 0. (1.96)

First consider the subset of admissible functions ¢(z,y) satisfying (1.90).
Equation (1.96) reduces to

/ (DA*w — F)pdz dy = 0. (1.97)
S
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By the fundamental lemma we obtain the Euler equation
DA*w—F =0 inS. (1.98)

Because of (1.98) the equality (1.97) holds for any admissible ¢(z,y),
thus the two first integrals over S disappear from (1.96). In equation (1.96)
there remains the sum of two contour integrals that equals zero for any
p € CA(9).

We might think that since we have three arbitrary functions ¢, ¢z, @y
on S, we could set their multipliers equal to zero and obtain three natural
boundary conditions. But this is incorrect. We see this first on mechanical
grounds: these “boundary conditions” would depend on x and y, hence
would not be invariant under coordinate rotations. Mathematically, it ap-
pears that we cannot choose ¢, ¢, and ¢, independently on S. Indeed
let us fix ¢ on S: then its derivative ¢, in the tangential direction 7T is
determined uniquely — only the derivative ¢, of ¢ in the normal direction
is really independent of ¢ on the contour.

Thus we first need to introduce this change of coordinates, getting a
local frame (7,n). The transformation formulas for derivatives are

Oz = PNy — PsTy, Oy = PNy + PsNg. (1.99)
Let us put these into the integrand of the first contour integral:
(Waz + vWyy ) Pana + (Wyy + VWea )yny + (1 — V)way (@any + ©yna)
= (Waz + VWyy ) (Pnnz — PsTiy)Ng + (Wyy + VWaz) (PnTty + PsNa)ny

+ (1 = V)way[(Prne — @sny)ny + (Pany + @sna)ng]

= (1= ){(wyy — waa)nany + woy(nf — 1) }os
+ {(Wae + vawyy)ng + (wyy + VWZZ)n +2(1 = v)waynany fon
= (1= v){(wyy — Waa)nanty + way (n} — 1) }ps
+ {vAw + (1 — v)(ween? + wyyny + 2wy Nany) Fon. (1.100)

Change the integrand of the first contour integral in (1.96) by (1.100) and
remember that ¢, = dp/0s and ¢, = dp/On:

D 85(1 _V){(wyy www)nwny+wwy( )}—ds
2 2 dp
+D ¢ {vAw + (1 — v)(weany + wyyny, + 2waynany)} - ds
oS 371
-D [(Waz + VWyy )N + (Wyy + VW )yny
oS

+ (1 — v)(Wayyna + Wazyny )] ds = 0. (1.101)
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If S is smooth enough we can integrate by parts in the first integral with
respect to s. This gives

i
D (1 — v){(wyy — Wz )nzny + wmy(ni - ni)} ds

a8 %
— D) f 02 {(wyy — was)rany + wey (0% — n2)} ds.
a8 68
It follows that

-D [(wm + vwyy ) et + (Wyy + VWes)yny
oS

+ (1 = V) (Wayyne + Wazyny)]
d
+ (1 — V)%[(wyy — W )My + Wy (N — ”12/)]} pds

+D ¢ {vAw+ (1 —v)(ween? + wyynf} + waynxny)}? ds =0.
as n

By independently choosing ¢ and d¢/0n, we get the following natural
boundary conditions:

VAW + (1 = v)(Wean + wyyns + 2weyngny)| =0, (1.102)
as

[(Waz + vwyy)yne + (Wyy + vWaa)yny + (1 — V) (WayyNa + Waayny)]
d
+(1- V)E[(wyy — Waa)NaNy + Wey(nf —n2)] = 0. (1.103)
The first means that the shear force on the lateral surface of the plate is
zero, whereas the second means that the bending moment is zero.
We have assumed that 0S5 is sufficiently smooth so we could integrate

by parts in (1.101). At corner points (1.103) is not valid. The reader may
wish to derive an appropriate corner condition.

1.9 The First Variation

This book is written for those who will use the calculus of variations. Al-
though a simple exposition is the goal, continued exploitation of the same
technique would prevent real progress. We need ideas applicable to more
complex problems. As before, these will be extensions of elementary ideas
from calculus. A principal analytical tool is the differential of a function.
The first differential extracts the main part of the increment of the function
when its argument changes by a small amount Az. This main part is linear
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with respect to Az. In this way, we approximate the change of a smooth
function in some neighborhood of a point by an expression linear in Ax.
The extension to functionals is called the first variation.

A few technical details

Definition 1.29. We say that f(z) = o(g(x)) when & — xq if

x
lim M =0. (1.104)

a0 g(x)
Here x can be a real variable or an element of a more general metric or
normed space; in the latter case, x — xg refers to convergence in that
space. We often use the abbreviated notation f = o(g) and say that f is of

a higher order of smallness than g.

So if the o relation holds then given any € > 0 we can find § > 0 such
that |f(z)/g(z)| < € whenever ||z — z¢|| < §.1 Note the following.

(1) The functions f(z) and g(z) are not required to possess individual
limits as * — x¢; only the ratio must possess a limit.

(2) In practice, g(z) will usually be some power of a simple real variable x.

The statement f(x) = o(1) as © — xg, for example, means nothing more
than limg ., f(z) =0. If f(z) = o(x — z9) as x — xo, then f(z) tends to
zero even faster as x — xg since the ratio f(z)/(z — x0) tends to zero even
though its denominator tends to zero as x — xg.

Definition 1.30. We write f(z) = O(g(z)) as * — xq if in some neighbor-
hood of zg an inequality

@],
’g(z) < (1.105)

holds for some constant ¢. We often use the abbreviated notation f = O(g)
and say that f is of the same order of smallness as g.

The statement f(x) = O(1) as x — 0 means that in some neighborhood
of 0 we have |f(x)| < ¢ (i.e., f is bounded in this neighborhood). If f(x) =
O(z) as © — 0, then in some neighborhood of zero we have |f(z)| < c|z|.

IHere we refer to a more general vector norm. A reader unfamiliar with the subject of
norms will find a more complete discussion in §1.11. For now it is sufficient to think in
terms of real numbers, where the role of norm is played by the absolute value.
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This implies that f(z) — 0 as « — 0, hence that f(z) = o(1). But
f(z) = O(x) tells how fast f(x) tends to zero.

Let f(z) and its first n+1 derivatives be continuous in an interval about
x = xg. Then according to Taylor’s theorem

(n+1)
R e

f(”)(xo)

n!

f(x) = fxo)+f (xo)(x—x0)+- -+

for some £ between xp and x. The last term on the right is the Lagrange
form of the remainder and is clearly O(|z — x| ). Addition and subtrac-
tion of the term

f(n+1)($ ) n+1
(n+1)? (2 = 20)™
gives
(n 1) (4
@) = £la) + £o)a =) +--+ Lo o gyt
+ [f(n+1)(§) — f(n+1)($0)] ($ _ .Z‘o)n+1.

(n+ 1!

This is a Taylor expansion with one more term and a new “remainder.”
Because f"t!(z) is continuous, the bracketed term f"+1D(¢) — f(n+1) (z)
tends to zero when z — x¢ (recall that £ is an intermediate point of (x, zo)).
Hence the ratio of the new remainder to the factor |z —xo|" ! tends to zero
as T — xo:

f(n+1)(x0)

J(@) = f@o)+f o) w=ao) + -+

(z—zo)"+1+0 (|:17 — :c0|"+1) .

This is Peano’s form of Taylor’s theorem.

Theorem 1.31. Let f(x) and its first n derivatives be continuous in an
interval about x = xo. Then

"(z (") (x
£la) = Flao) + L8 @ gy o ) g1 )

n!

With this we can say something about the behavior of the remainder
term in the nth-order Taylor expansion even if we know nothing about
continuity of the (n + 1)th derivative.
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Back to the first variation

In calculus, we consider the increment f(x + Az) — f(x) of a function f(z)
of a real variable z. If it is possible to represent it in the form

f(z+ Az) — f(z) = AAz + w(Ax) (1.106)
where w(Az) = o(Az) as Az — 0, then

o AAx is called the first differential of f at x, and is denoted by df (),
e A is the derivative of f at x, denoted by f’(x), and

e the increment Az of the argument z is redenoted by dz and is called
the differential of the argument.

We may therefore write
df(x) = AAx = f'(z) dx.

In the mind of a calculus student the differential dx and its corresponding
df (x) are extremely small quantities. Let us now banish this misconception:
both dz and df(x) are finite. When dz is small then so is df(z) and it
approximates the difference f(x + dx) — f(z): the smaller the value of dz,
the better the relative approximation. However, neither dx nor df(z) is
small in general.

Let us repeat the same steps for a functional. This is especially easy
to do for a quadratic functional. These arise in physics, corresponding to
natural laws that are linear in form (of course, linearity is often a condition
imposed rather artificially on models of real phenomena). Consider, for

example,
1
F(u) = 5//S(ui+u§) d:cdy—//SFud:cdy. (1.107)

”

We denote the “increment” of the argument u = u(z) by ¢(x). Note that
() must have certain properties; it should be admissible in the sense of
§1.5. (Later we shall soften the smoothness conditions for this problem.)
In mechanics ¢ is usually denoted by du; this maintains a visual similarity
between the two notions of increment dz and du, and in this notation du is
called a virtual displacement. Now

F(u+¢) — F(u) —//S(uxgoeruygay)d:cdy//S Fodz dy

1
+5 // (02 + ¢2) da dy. (1.108)
S
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The first two integrals on the right are linear in ¢ and pretend to analogy
with the differential of calculus; together they are called the first variation
of the functional F'(u) at u:

// UgpPz + Uypy) da dy — / Fodzdy. (1.109)

The third integral in (1.108), quadratic in ¢, is analogous to w(Az) in
(1.106). We should introduce the smallness of the increment ¢ in such a
way (and we did this in §1.5) that this quadratic term becomes infinitely
small in comparison with the linear terms.

In §1.5 we found that if v = w(z) is a minimizer of F(u), then the
expression (1.109) is zero for all admissible (:

// Ugp Pz + Uypy) da dy — / Fodrdy = 0. (1.110)

From this we derived the Euler equation (1.86) for the membrane. We
now derive (1.110) in a different way. Let us suppose that v = wu(z,y) is
a minimizer of F(u); that is, F(u+ ¢) — F(u) > 0 for any admissible ¢.
Assume, contrary to (1.110), that

//(umsﬁiJruwa)dxdy*//F@*dwdy#O
S S

for some admissible ¢*. Then putting another admissible function t¢* into
the inequality F(u + ¢) — F(u) > 0, we get

0 < F(u-+tp*) — F(u)
= // (ustpy +uytpy,) dr dy —/ Fto* dxdy
s s

1
by [ B o duay
2J)Js
=t {// (uzpy + uypy,) dr dy — // Fo* d:z:dy}
S

—// ¢i2 4 pi?) da dy. (1.111)

Suppose the bracketed term differs from zero. If we take ¢ such that it
is sufficiently close to zero and the term ¢[---] is negative, then the term
which is quadratic in t is much smaller than the term which is linear in ¢.
Therefore F'(y 4 ty) — F(y) < 0, which contradicts the leftmost inequality
of (1.111). So (1.110) holds for any admissible ¢.
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It is clear that we can repeat everything in terms of the plate problem
of §1.8. The differences are only technical.

We used the fact that at least for some (positive and negative) small
t the function tp* is admissible. In the membrane problem this is trivial.
However, in some problems the set of admissible functions is restricted (e.g.,
it may be that ¢ > 0); free choice of ¢ is thereby precluded. Such problems
fall outside the scope of the classical theory, and in fact belong to the theory
of variational inequalities.

We consider a general case of the simplest functional with respect to
functions satisfying any of the types of boundary conditions we have dis-
cussed. Let us find its increment over the increment (z) of the function
y(x). So we consider the increment of the functional

b
Fly) = / fla,y,y) de

when the argument gets an admissible increment ¢ = ¢(z). Whether the
boundary conditions are stipulated or not (free ends), we have

b
F(y+¢) - F(y) =/ [z y+o,9 +¢) = flz,y,y)] de.

a

Regarding the arguments of f as simple real variables, we can apply the
Taylor expansion to f. If f has continuous second partial derivatives, then

f(x7y+@7yl+¢/)7f(x7ya y/) = f’y(xvya y/)90+fy/ (Ia yvyl)@/+o(|@|2+|sa/|2)
Thus

b
Fly+¢)—F(y) = / Uy(@y, v ) + fy(z,y,y) e da

b
+0 </ (Jo|* + |<p'|2)d:c> . (1.112)

The last integral is of the order O(H(pHé(l)(a,b)) because

b b
/ (ol + |¢'?) da < / (ol + 1¢/])? da

< (b—a) max (Jo| + [¢])?
z€[a,b]
2
< (b-a) [max (ol +1eD)] -
z€la,b]
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For admissible functions ¢ that are small in the norm of C(Y)(a, b), the last
term on the right side of (1.112) has a higher order of smallness in ¢ than
the integral term which is linear in ¢. Thus we have a complete analogy
with the first differential of a function.

Definition 1.32. The expression

b
5F(y,<p)5/ oz, y, v ) + fy(z,y,y)¢] de, (1.113)

often denoted simply by §F, is the first variation of F(y).

Let y = y(x) be a minimizer of F(y) for some boundary conditions
considered above. For any admissible function ¢, the equation

b
/ [fy(@, 9,9 )0 + fy(2,y,9")¢ | de = 0 (1.114)

holds. Indeed, for any admissible ¢ we have F'(y + ¢) — F((y) > 0. Assume
that (1.114) fails at some admissible ¢*. Suppose that tp* for small ¢ is
also admissible so that

0< F(y+te*) — F(y)

b
= t/ oy, 9" + fyr (2,9, 9™ d + O 9™ |G (). (1.115)

Now the smallness of the increment of the argument is governed by ¢. For
small ¢ the sign of the right side of (1.115) is determined by the first integral
term. Since we can choose ¢t to be negative or positive and its coefficient is
not zero, we can find a small ¢* such that

b
t*/ [fy(xayay/)sp* + fy’(x’yay/)go*/] dl’ + O(t*Q HSD*Hi‘(l)(a,b)) < 0.

This contradicts the leftmost inequality of (1.115).

Let us note that in dF'(y + tga)/dt’tzo we obtain the same expression
(1.113), i.e., the first variation of the functional. The two methods of ob-
taining the first variation are equivalent if the integrand f is sufficiently
smooth. But in the general theory of functionals our method of differentia-
tion (i.e., the selection of the linear part of the difference F'(y + ¢) — F(y))
corresponds to the use of the Fréchet derivative, whereas the computation
of dF'/dt|i—¢ corresponds to the use of the Géteaur derivative.

The reasoning of this section can be repeated for any of the functionals
and their associated minimum problems we considered earlier. We leave
this to the reader as a number of exercises.
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Variational derivative

We have seen that the Euler equation is analogous to the equation ¢/(z) = 0
from elementary calculus. Let us consider another approach to deriving
the Euler equation. This will provide a representation for the increment
of a functional F'(y) under bell-shaped disturbances of y(z). The resulting
formula will be needed later for treatment of the isoperimetric problem.

Let us preview the approach before tackling the details. We first recall
the proof of the fundamental lemma on page 18. The lemma states that
f(z) must vanish if it is continuous and if

b
/ f(@)g(x) dz = 0

for an arbitrary continuous function g(x) that vanishes at the endpoints
a,b. However, the proof required only a subset of such functions g(x):
those that were bell-shaped and whose supports were small enough. (The
support of a function g(z) is the closure of the set over which g(x) # 0.)
Hence we can reframe the problem of minimizing a functional in terms of
disturbance functions taken from this subset only. So let us consider what
happens if take the set of bell functions of the form

52
exp| —— |, |z|<e,
pe(z) = p<w2 —52) g (1.116)
0, |z| > e,

which have supports of length 2e and maximum values of unity. Clearly for
the minimizer yo(z) of a functional F' we also get

xo+e d
t=0 N /LE (fy a Efy,)goa(x - :EO) =0

0—¢€

P (go(a) + b — 20)

From arbitrariness of zy and &, and continuity of the parenthetical expres-
sion, it follows that the Euler equation holds at any zg € (a,b).

Let us use the smallness of €. Recall the second mean value theorem for
integrals:

Theorem 1.33. Let f(x) be continuous on [a,b]. If g(x) is integrable and
does not change sign in [a,b], then

b b
/ f(@)g(x) da = £(€) / o(z) da (1117)

for some & € [a, b].
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Because ¢, () is nonnegative and f, — df,//dz is continuous, we get

xo+e
L (fy_%fy’)@a(x_wo)dw: (fy_%fy’)

d
[(n- 2

To+e
o :/ we(x — x0) da

0—¢&

O¢

w=¢

+alz.)|o.

T=xo

where

is the area under the bell and a(z,e) — 0 uniformly as e — 0. On the left
we have 0F (yo(z), e (x —x0)). If we divide both sides of this by o. and let
e — 0 (or equivalently o. — 0), we get

tim SFWo(@), pe(z —20)) _ (fy _ dify>

o.—0 O¢

T=T0
The last equality holds for any smooth function y, not just for the mini-
mizer, and can be rewritten as

5P (y(), e — o)) = Kf - dif>

where o« — 0 as 0. — 0.
Since §F(y(x), te:(x — x0)) is the principal linear part of the increment
AF(y(z), tye(x — m0)) = F(y(x), tye(x — x0)) — F(y(x))
as t — 0, we seek a similar relation for AF(y(x), t¢.(x — x0)), which is

i AFWo(2), pe(z —a0)) _ <fy _ dify)

Jroz] Oc, (1.118)

T=IQ

, (1.119)

Ut’5_>0 O-taa r=xq

where
xo+e
Ote = / toe(z — x0) dx
Tro—E€
is the area under the bell tp.(z — x0). If (1.119) holds, then the limit on
the left side is called the variational derivative of F' at y and is denoted by

5y r=x0 4,60 Ot,e

T=xo

In this case, we obtain the relation for the increment

F(y(z) + tps(x — xo)) — F(y(x)) = (‘Z_F

+ ﬁ) Ore (1.120)

=
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where 5 — 0 when o — 0, or

AF(y(z), tpe(z — m0)) = F(y(z) + to-(z — x0)) — F(y(z))

d
= (fy - Efy’ +ﬁ)
which will be of use in §1.10.
Now we consider the question of when the variational derivative of F'

Ore (1.121)

Tr=xo

exists. It turns out that the limit exists only if, together with ¢ — 0, we
take ¢ — 0 in some specific relationship to the change in €. In particular,
we can take t = 3. Indeed, let us start with (1.112), which we rewrite for
p =to-(x — x) as follows:

|AF(y(z), tpe(x — x0)) — 0F (y(), tpe (x — 0))|
< CtQ/ ' (¢2(x — w0) + ¢ (v — w0)) dar

0—¢€

with some constant C. By (1.118),

SF(y(), te (& — 7o) = [<f . fy/>

+ oz] to.

T=T0
with o — 0 as € — 0. From these it is seen that, to prove (1.121), it suffices
to find a dependence of t on & such that

1 xo+e 9
_t2/ (gpg(x—xo)qL(p; (zf:co)) dr — 0

toe o—e

as € = 0. To show that a workable dependence is t = €3, we must calculate
a few integrals. It is sufficient to put xp = 0. The change of variables
T = eu gives

1
1
to, =te Ky where K, E/ exp (2—> du.
1 us—1

Observe that K7 is a positive constant. Also

12, 4t2etg? 2¢?
e (2) = (@2 —e2p P\ p 2
and we obtain

xote ) t2
/ (02(z) + .7 (2)) do = Kyt’e + Ks—

0—¢€

where K5 and K3 are the positive constants

1 1 2
2 4y 2
Kg:[lexp (m) du, K3:[1 (u271)4 exp (u21) du.
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Hence when t = 2 we have

1 [Tote K. Kyt
— [ el = 2t RS < Kae
O¢ 2o—¢ &g

where K is a constant which, for small ¢, is less than (K + K3)/K;. This
completes the proof.

Brief review of itmportant ideas

The increment F(y + @) — F(y) of the functional F(y) can be written as

F(y+¢) = F(y) = 6F(y,%) + O 2 (apy) (1.122)

where the first variation

b
SF(y, ¢) = / o0,V + fy (2 y)e) de (1.123)

is the principal part (i.e., the portion of the increment that is linear in ().
We have

dF(y,) =0 (1.124)

when y = y(z) is a minimizer of F(y) for some given boundary conditions;
this holds for any admissible increment ¢ of the function y. A functional
is said to be stationary at y if its first variation vanishes.

The idea of the variational derivative is analogous to the idea of a partial
derivative of a multivariable function. We define the variational derivative
of a functional F(y), at a point zg, for a curve y = y(x), as follows. We give
y(x) an increment which is nonzero only in a small neighborhood of zy; we
choose a small bell-shaped bump tp. (x — x¢), and denote the area between
it and the z-axis by o.. We then get the main linear (with respect to t) part
0F of the increment AF under this special type of localized disturbance.
By continuity of the Euler expression f, — % fy we can approximate §F as
the Euler expression times to.. Then we prove that for ¢t = €3 and to. — 0
the expression AF/to.S has the same limit as 6F/to.S. In this way we
define the variational derivative given by

oF d
— = - — 1.125
Sl =(mn)| (1.125)
If y is a minimizer of F', then
oF
il =0
Y |ymzy
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for each zg € (a,b), which is the Euler equation.

1.10 Isoperimetric Problems

We have found a way (1.125) of obtaining the Euler equation by setting
the variational derivative to zero. Let us apply this to the solution of an
isoperimetric problem.

It is said that the first problem of this type was solved practically by
Dido, legendary queen of ancient Carthage, who was offered as much land as
she could surround with the skin of a bull. Using a fuzzy formulation of this
“mathematical” problem, she cut the skin into thin bands, tied them end
to end, and surrounded the town with this long “rope.” Note that Dido’s
problem was quite hard; several issues had to be addressed, including (1)
how to get the longest rope from the skin, (2) how to find the closed curve
of a given length that would enclose the greatest planar area, and (3) how
to choose the most desirable piece of land. We can only treat the second of
these issues here. Let us begin by formulating the

Simplest Isoperimetric Problem. Find the minimum of the functional

b
F(y) = / f(x,y,y) da (1.126)
from among the functions y € C(M)(a,b) that satisfy
y(a) =co,  y(b) =ci, (1.127)
and
b
Gly) = / g(z,y,y) de =1 (1.128)

where [ is a given number.

Condition (1.128) is analogous to the condition that the length of a
curve is given. We know a similar problem from calculus: given a restriction
g(x) = ¢, find a minimum of f(x). This is solved using Lagrange multipliers:
there is a constant A such that a minimizer of the problem is a stationary
point of the function f(z)+ Ag(z) — that is, a solution of the equation
f'(x) + A\¢'(x) = 0. We correctly surmise that something similar should
exist for the isoperimetric problem.

Note that our previous technique cannot be used because the restric-
tion (1.128) has complicated the notion of the neighborhood of a function.
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Indeed, if g(x,y,y’) is not linear in y and y’ then we cannot expect that
a sum of two admissible small increments of a minimizer is also admissi-
ble: condition (1.128) can fail for the sum. The same comment applies to
increments of the form ty if ¢ is an admissible increment. However, the
technique of §1.9 does not depend on such transformations in the set of
admissible increments, so we will try to use it.

Theorem 1.34. Lety = y(x) be a local solution of the Simplest Isoperimet-
ric Problem, and suppose y is not an extremal of the functional G(z). Then
there is a real number X such that y = y(x) is an extremal of F(z)+ AG(z)
on the set of functions from C)(a,b) satisfying (1.127).

The problem of finding this extremal is well defined in principle. A solu-
tion of the Euler equation for F'(z) + AG(z) should have three independent
constants: A, and the two independent constants expected in the general
solution of the (second-order) Euler equation. These can be determined
from (1.128) and (1.127).

Proof. We will try the results of § 1.9. We must consider the set of small
increments of the minimizer such that the incremented functions satisfy
both (1.127) and (1.128). So we construct the set of increments by combin-
ing two bell-shaped functions of the class By with centers of symmetry at
and xa, 71 < z2: that is, A;p., (v — x;), |A;| = €3, i = 1,2. Denote this in-
crement by n(z) = Y, Aipe, (x —x;). We can assume that e; < (x2 —1)/2,
so the two nonzero domains of such an increment do not intersect (or we
could argue that we produced two bell-shaped increments of y at different
points successively). Since the supports of the two bell-shaped functions
do not intersect we can extend (1.120) to this case:
+ oy

d
AF(y,n) = l(fy - %fy') B

d
(=7)

Ti+e
Oe; = Ai/ e, (x — x;) dx, |A;| = {—:g’,
xT

i€

O¢q

+ + o | ocy (1.129)

T=T2

where for ¢ = 1,2 we have

and o; — 0 when 0., — 0.
We must choose the increment 7 so that y + 7 satisfies (1.128). Thus
G(y+n) — G(y) = 0. This and the analogue of (1.121) for G(y +n) — G(y)
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imply

d d
9y — Egy’ 9y — Egy’

with the same o, as in (1.129) and 8; — 0 when o, — 0.
Since y = y(x) is not an extremal of G(z), there is a point 25 € (a,b)
where g, — % gy # 0. For sufficiently small e5 we get 32 as small as desired,

+B1| oey + + B2

T=T2

0e, =0

r=x1

thus the second square bracket is nonzero in this case and so

d
(gy - %gy/> o + 51
Ogy = — 3 i s o -
Gy d:cgy’ s 2
Then
d
AF(y,W) = fy - %fy’ + a1 | oey
d
d (gy B Egy,) r=x1 + 61
- Jy— Efy’ + o d =
=22 (gy — %gy/> + B2
T=T2
(1.130)

Denoting

we get from (1.130)

d d
AF(y,n) = l(fy - %fy’) + A <9y - @974’)

The first variation of the functional that must vanish on the solution is

d d
O0F (y,m) = [(fy - Efyf) +A (gy - Egyf) ] o., = 0.

Since we can choose o, arbitrarily, it follows that for any x; € (a,b) we

have
d d
<fy - @fy/> e +A <gy - %gy/>

oey + 0(loe, |).

T=T1 T=T1

I
e

T=T1
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This means y = y(z) is an extremal of F' + AG. 0
For an isoperimetric problem where the functional F' depends on a vector
function y = (y1,...,yn) and there are m restrictions of integral type
G, = /gzxyy i=1,...,k,

there is a corresponding statement. For this problem a minimizer y is
an extremal of the functional F + Zle A:G;. The reader can derive the
corresponding Euler equations. It is clearly impossible to satisfy k integral
restrictions for y considering only the two-belled increments, so here it is
necessary to introduce increments composed of k + 1 bell-shaped functions.
This requires additional technical work.

Two problems

Let us consider two special problems. The first was mentioned in § 1.1: find
the plane curve enclosing the maximum possible area for a given perimeter.
One approach is to examine all curves y(x) that, except for their endpoints,
lie in the upper half of the zy-plane, and that have endpoints (+a,0) and
a given length [. (Note that a is not specified in advance.) In the notation
of Theorem 1.34 we have
a a
F(y) = / yde,  Gly)= [ 1+ () dz;
—a —a

hence

f@yy)=y,  glx.yy)=V1+ )%

and f 4+ Ag does not depend on x explicitly. So we can write

2
(f+Ag) = (F+ 29y =y + 21+ (y 7):@,

1+ (y)?
which simplifies to
B —A
T iy
Put
y' = dy _ tant (1.131)
dz

where t is a parameter; then

y—cL = A A st (1.132)

V1+tan?t sect
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Now from (1.131) and (1.132)

1 1 d 1
tant tant dt tant

so that upon integration we have z = Asint + ¢3. From the equations

Asintdt = Acostdt

T — co = Asint, Yy —c1 = —Acost,
we may eliminate ¢ to produce
(r—co)? + (y—c1)* = N2
Thus all extremals of F(y) + AG(y) are portions of a circle. The conditions
(—a—co)? +(0—c1)? = N2, (a—co)? +(0—c1)* = N2,

may be subtracted to show that co = 0. The vertical shift ¢; of the center
and the radius A clearly depend on the given [. The reader can verify
directly that a maximum has been obtained.

Another approach is to use polar coordinates. Calling these (r, ¢) and
placing the coordinate origin inside the desired closed curve r = r(¢), we
have

1
f+XAg= 57"2 F A2+ ()2
and the corresponding Euler equation
Ar d Ar’ B
24+ (r2  do \/r2 + (r')2
Differentiation and simplification give

L o= 2(r")? — r?

N [r2 + (r)2]3/2
which shows that the curvature of r(¢) is a constant 1/\ and yields a circle
again.

It is worth noting that we formulated the problems for a minimum but
solved for a maximum. This is analogous to the standard calculus trick of
maximizing a function f by minimizing —f. Of even more interest is the
idea of obtaining a dual problem by reversing the roles of the functionals F'
and G. For example, the maximum area that can be enclosed by a curve
having length [ is {2/4w. The dual problem is to find a closed curve of
minimum length that borders a flat domain with area [2/47w. Of course,
the solution is a circle having circumference I.

We now turn to another classical isoperimetric problem. Early in the
development of mathematics people became curious about the precise form

T+ 0.
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assumed by a chain hanging from both ends (such chains were used, for
instance, as “fences” along the sides of bridges). This is a hard problem if
one wishes to consider it in full detail (including friction, nonuniformities in
the individual links, and so on); it is possible to show that many peculiarities
arise, and even the full setup of the problem is quite cumbersome. A
successful approach depended on the construction of a tractable model for
the chain. First an ideal chain was introduced, consisting of extremely small
elements that were all identical; this permitted the tools of calculus to be
applied. An even simpler model was a uniform filamentary rope — heavy,
flexible, and absolutely unstretchable. Unlike a chain, such an idealized
rope could lie in a plane.

Let us therefore suppose that a uniform, flexible rope of a given fixed
length hangs in equilibrium with its ends attached to two fixed points:
what is the shape assumed by the rope? Denote by ! the length of the
rope, assume it has a unit mass density, and let the endpoints be (a, hq)
and (b, hy). Clearly we need b — a < I. The y coordinate of the center of
gravity is proportional to the integral f; y(s) ds where s is arc length along
the rope; since the center of gravity will find the lowest possible position,
we are led to minimize the functional (ds = /1 + (y')? dx)

b
F(y) =/ yv 1+ (y)*dx

subject to the side condition

b
G(y) :/ V14 (y')2de =1.

Accordingly we minimize

b
F(y) + \G(y) = / (y+ANV1+(y)*da.

Since the integrand does not depend on z explicitly, we write out the first
integral of the differential equation,

(y+ M)
FOVI+ (Y)?2 - == =,
(y+A) ) i
and then simplify to obtain

y+A=av1+ )%

We find a parametric representation of the solution, introducing a param-
eter ¢ by the substitution 3’ = sinh¢. Then

Y+ A =cicosht
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and the dependence of x on ¢ is

1 1 d
Yt =

1
sinh ¢ v= sinht dt ~ sinht

(Cl sinh t) dt = Cldt
so that
xr —co9 = cit.

Elimination of ¢ leads to the equation of a catenary:

y+)\:clcosh<x_c2).

C1

The given conditions can be used to determine ¢, ¢z, and A. (Of course
c2=0if b= —a.)

Once again we do not provide formal verification that a minimum has
actually been obtained. Indeed, with many problems that arise from geom-
etry or physics it is intuitively clear whether we have the desired solution.
For the hanging chain problem, we can assert on physical grounds that a
solution exists; since the solution we obtained is unique, we can rest assured
that it is the desired one.

It is possible to state other types of minimum problems with restrictions
which, for their solution, require a technique similar to that of Lagrange
multipliers. For example, it is possible to pose a problem of minimizing
the functional f;ol f(z,y, 2,9, 2) de under some boundary conditions when
there is a restriction g(z,y,2) = 0 (in more advanced books this is called
minimizing a functional on a manifold). Here a minimizer is an extremal
of a functional f: [f — Mx)g] de without integral restrictions imposed by
g, and A(z) is a new unknown function that is treated as given when we
compose the Euler equations. Of course to define it one must use the
equation g(z,y, z) = 0. Some problems in mechanics involve restrictions of
even more general type; e.g., g(x,y, z,y’,2") = 0.

Quick summary

We have concentrated on an isoperimetric problem of the following general
form: find the minimizer of the simplest integral functional from among
those functions y that satisfy

b
@) =co,  yB)=cr,  Gly) = / ooy, o) de =1
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where G(y) and [ are given. A solution method is to introduce a real number
A (analogous to a Lagrange multiplier) and seek to minimize the functional
F + A\G subject to the given endpoint conditions on y.

1.11 General Form of the First Variation

We would like to consider the minimization problem for functionals of the
form (1.33) when the endpoints of integration can change.

We have seen for various functionals that at a point of minimum the first
variation is zero. Let us demonstrate this in general. First let us introduce
some notions. In subsequent chapters we shall use the notion of a normed
space; now we quote only the definition. A normed space is a linear space
of elements x such that for each x a function called the norm ||z|| is defined.
The norm must possess the following three properties:

(i) for any x, ||z|| > 0; ||z|| = 0 if and only if = 0;
(ii) [|Az|| = |A] ||=|| for any real number A;
(iii) [lz + yll < [l + [lyll-

The third property is called the triangle inequality. For example, the norm
(1.37) for functions in C(Y)(a, b) satisfies the above properties.

We can define a functional on a general normed space. A functional on
a normed space X is a function that takes values in R; i.e., to any x € X
there corresponds no more than one real number. A functional ®(z) is
linear if for any x,y belonging to its domain and any real A, u,

D(\r + py) = A0 () + pd(y). (1.133)

Finally, a linear functional ®(xz) is continuous in X if there is a constant ¢
such that for any = € X,

|®(z)] < c=]]. (1.134)

The infimum of all such ¢ is called the norm of ® and is denoted ||®|| (it is
actually a norm according to the norm properties listed above).

Let F(z) be a functional on X, and assume that in some ball about a
point 2z € X (a ball is a set of elements = + dz € X, where éx € X, such
that ||dz|| < e for some e > 0) there is a representation

F(z + 6z) — F(z) = 6F(z, 6z) + o(|6z])) (1.135)
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where 0F(z,dx) is a linear functional continuous in dz. We have called
it the first variation of F'(z), but it also has another name: the Fréchet
differential of F(x) at x. Hence we have extended the definition of the first
variation to abstract functionals.

Let z be a local minimizer of F: that is, F(x + dz) — F(x) > 0 for any
[|0z]| < e with some & > 0.

Theorem 1.35. Let x be a minimizer of F' on the set of elements {x + 0z |
l6z]| < e}, and suppose F has the first variation at x such that (1.135)
holds on this set. Then 6F(z,dx) = 0.

Proof. Suppose to the contrary there exists an z* € X such that
dF(x,2*) # 0. Then for small enough ¢ we have

0< F(z+tx*) — F(x) =0F (z,tx*) + o(t||z"|)) =t 6F (z, %) + o(t).

For small |¢| the difference on the left is determined by the first term on the
right. Choosing an appropriate ¢ we get t 6 F'(x,z*) < 0, which contradicts
the leftmost inequality. O

Thus for a problem of minimum of a functional, as a first step, we have
to derive its first variation, equate it to zero, and then find solutions of this
equation for any admissible disturbances (or virtual variations) dz.

We return to the beginning of this section and claim again that we would
like to consider a minimization problem for a more general functional than
(1.33), i.e., the functional

F) = [ " fanyy) do (1.136)

where the endpoints x¢ and z; can move. Thus we need the expression for
the first variation in this case. To realize the above idea we must suppose
that all changes are of the same order of smallness. Here we have not only a
change ¢ in y to consider, but also changes dx¢ and dz; of the ends zy and
x1 respectively. Since dxg and dz1 are arbitrary and we could have dxg < 0
or dz1 > 0, we must agree on a way of extending a given function to points
outside the segment [z, z1]. We do this by linear extrapolation, using the
tangent lines to y = y(z) at z¢ and z1 to define the values of the extension.
The ends of the extended curve have coordinates (xo + dxo,yo + dyo) and
(561 + 5561, Y1 + 5y1)

Our problem is to derive the linear part of the increment for (1.136)
when ¢, ¢’ dxg, 0yo, dx1, and dy; have the same order of smallness; that is,
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to extract the part of the increment that is linear in each of these quantities.
Denote

e = 1ellcm wo,er) T 1020] + [dy0] + [621] + 3]

The increment is

x1+0x1 1
AF(y) :/ fl@,y+ 9,9 +¢) dw*/ f(x,y,y) dx.
zo+dxo o

The first integral can be decomposed as

z1+0x xr1 x1+dx1 xo+dxo
xo+dxo zo T o

Recall that all the functions y = y(z), ¢ = p(z), are linearly extrapo-
lated outside [z, x1], preserving continuity of the functions and their first
derivatives. Thus

AF(y) = /ml[f(fc,y + o,y +¢") = f(z,y,y)] de

0

z1+0x1
+/ f@y+ey +¢)de

1

To+0x0
—/ f@y+ey +¢)dr. (1.137)

Zo

The integral over [zg, 21] can be transformed in the usual manner:

/ 1[f(x,y+¢,y’+sﬁ’) — f(z,y,y)] dx

0

=/ 1 [fy(w,y,y') - %fy'(w,y,y')} pdx

9
r=x1

+ fyr (2, y(x), ¥ (x))p(x)

Let us represent ¢ at the endpoints using dyo and Jy;.
Fig.1.2 shows that

p(x1) = oy1 — ¢/ (z1)d21 + 0(e). (1.138)
Similarly,

¢(20) = dyo — Y (x0)dwo + o(e). (1.139)
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¥ = () to(x)

>
X
Fig. 1.2 Quantities appearing in equations (1.138) and (1.139).

Thus

/ fy+ey +¢)— flzyy) de

0

1 d
:/ {fy(zayvy/)%fy/(zayvy/) Sﬁdx

+ fy (z1,y(21), ¥ (21))0y1 — fyr (20, y(20), ¥ (20)) Y0
— [fy (@1, y(21), 9 (21))y' (x1)d1
— [y (@o, y(z0), ¥ (20))y (x0)dx0] + 0(e).

Now consider the two other terms for AF in (1.137). Extracting the terms
of the first order of smallness in € we have

r14+0x1 r1+0xy
/ f(x,y+¢,y’+sa’)d:c:/ Flz,y,y") dz + o(e)

1 1

= f(z1,y(z1),y (x1))dz1 + o(€)

and similarly

zo+dxo
/ f@y+ o,y +¢)de = f(zo,y(xo),y' (x0))dz0 + of€).

0
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Collecting terms we have

AF = / [fy:vyy) ff(w,y,y’) pdz

+ fyr (@1, y(x1), 9 (21))0y1 — fyr (o, y(x0), ¥ (20))dyo
+ [flzr,y(z), v (1)) = fyr (21, y(1), v (21))y (21)]021
— [f(zo,y(20), ¥ (w0)) — fy (@0, y(z0), ¥ (0))y (z0)]6z0 + 0(€).

So the following is the general form of the first variation of the functional
when the ends of the curve can move:

T d
o8 = [ (8 ot ) et Sy

0

— Q,|&‘

1 1

+(f =9y fy)oz| . (1.140)

Zo Zo

The reader can demonstrate that for a functional

=/ flz,y,y')dx

with movable boundaries, the general form of the first variation is

5F = Z/ (fyl 4 )%d:chZfMyz <f—zy£fy;>5w
1=1

1 1

zo

1.12 Movable Ends of Extremals

In the previous section we found the general form (1.140) of the first vari-
ation of a functional when the boundaries of integration can move. Note
that when the boundaries are fixed then dz; = 0 and (1.140) reduces to the
left side of (1.55). Thus in this case the equation 6F = 0 for a minimizer
gives us the Euler equation and natural boundary conditions. The problem
with natural boundary conditions can be reformulated as follows: given two
vertical lines z = a and & = b, find a minimizer of the functional (1.33)
that starts on the line © = a and ends on the line 2z = b (or that connects
these lines).

This formulation suggests that by using (1.140) it is possible to find
equations to solve the following problem.

Given two curves y = ¢o(z) and y = ¥1(z), find a minimizer of
(1.33) that starts on 9o(x) and ends on ¢ (z).

Let us call this the “problem with movable boundaries.”
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We assume any other functions of interest are defined (and twice contin-
uously differentiable) wherever the boundary functions v;(z) are given. (If
these latter functions are not defined on the same interval, we construct an
interval that encompasses all points of interest and assume that everything
is defined on this larger interval.) Moreover we assume the endpoints of the
minimizer are not endpoints of the graph for the ;(x).

A

Yif= ey

»
>
X

Fig. 1.3 Quantities near movable end of an extremal.

So we start with

Il,’izl :El,izl
+ (f - ylfy/) ox;

Io,i:O IU,iZO

(1.141)
For admissible increments ¢ of a minimizer y = y(x), the first variation of

T d
v = [ (8- gohv ) o+ 00

0

the functional is equal to zero. Although the expression § F' above contains
all the terms of the increment of the first order of smallness, it is not the
first variation in the present case. Admissible ¢ now are those that are
continuously differentiable and such that both

(z0,y(x0)) and  (wo + o, y(z0 + 070) + (20 + d70))
belong to the curve y = to(x), and both
(z1,y(21)) and (21 + 021, y(21 + 021) + @21 + 621))

belong to the curve y = ¢ (x).
Consider Fig.1.3. Here each dy; (i =0 or 1) and its corresponding dz;
are no longer independent; it is clear that for small dx; we have

0yi
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where the ¢; are of a higher order of smallness than §z; and dy;. Substitut-
ing this into the right side of (1.141), we select only the terms of the first
order of smallness and get

x1,i=1 x1,i=1

+ (f - y/fy’) 0x;

T d
/ (fy_afy’)@dw'i'fy’wz{&wi

0 IQ,i:O IQ,i:O

This is the first variation of the functional (note that it is equal to dF in
(1.141) only up to terms of the first order of smallness in the norm of the
increment). Thus

€T d
/ 0 (fy - %fyf) o do+ fylon

for all admissible ¢.

Let us derive the consequences of this equation. First, from among
the admissible increments y = ¢(x) we take only those which satisfy the
conditions ¢(xg) = ¢(z1) = 0. For any such ¢ we have

/ﬂ: (fy - %fy') pdr =0

and thus by the fundamental lemma the Euler equation

:El,izl
=0
IU,iZO

(1.142)

Il,’izl

+ (f - ylfy’) ox;

Io,izo

d
2, =0
Ty dz Ty
is satisfied on (zg,21). Hence the integral in (1.142) vanishes for any ad-

missible ¢, and it follows that

11,i:1

(f + (Wi = y') fy) 0 = 0. (1.143)

:E(),i:O

Because we can “move” the ends of the curve independently, (1.143) implies
two boundary conditions for the minimizer:

F+ W =], =0, (F+@h—y)f)

For the problem under consideration the minimizing curve y = y(z)

=00 (1144)

satisfies conditions (1.144) which are an extension of the natural boundary
conditions. The way in which the minimizer intersects the boundary curves
y = ¥;(x) has a special name:

Definition 1.36. The curve y = y(x) is transversal to the curves y =
’lﬁi(f[:), = O, 1.
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Let us analyze the setting of the boundary value problem in this case.
There is the Euler equation whose solution is determined up to two un-
known constants (it is not always so; in nonlinear equations the situation
with constants is sometimes much more complex, but when we analyze the
problem qualitatively we keep in mind the terms of the linear case). The
two conditions (1.144) could define those constants, but they contain un-
known quantities ¢ and 7 so we need to find two more equations. They
are y(zo) = Yo(zo) and y(x1) = ¥1(x1), and thus the setup of the necessary
conditions for y = y(z) to be a minimizer is completed.

Example 1.37. Show that for functionals of the form
x1
[ awn)VIF R s
zo

where ¢(z,y) # 0 at the endpoints zy and x;, conditions (1.144) imply
orthogonal intersections between y(z) and the curves ¢o(z) and ¢ (x) at
the points xg and x1, respectively.

Solution. Take, for example, the condition (f + (¢¥] — y') fy) | = 0. Di-

1
rect substitution and a bit of simplification give

L+ Y1y
(2, y)———v
L+ (y)
If q(IE, y)|x1 7é 05 then (1 + wiylﬂml = 07 i'e'v
1
/
Yoy = =7
e =

The slopes are negative reciprocals, so y is orthogonal to ¥ at x = x1. U

=0.

x1

Quick review

The problem with movable boundaries for the simplest integral functional
involves finding a minimizer that connects two given curves y = ¢o(x) and
y = 1(x). We first solve the Euler equation, obtaining a solution in terms
of two unknown constants. We then impose the transversality conditions

(F+ W5 =) |, =0, (1.145)
(F+ W=y )], =0, (1.146)

where 21 and zo are also unknowns. After the use of y(xzo) = ¥(x0) and
y(z1) = ¥(x1), all constants should be determined.
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Special cases: (1) If one of the 1; is a horizontal line, say 1 (x) = constant,
then ¢} = 0 and the corresponding transversality condition becomes

(f _y/fy’) ‘11 =0.

(2) If 41 is a vertical line (z = constant) then f,/| =0.

ZT1

1.13 Broken Extremals: Weierstrass—Erdmann Conditions
and Related Problems

We have required a minimizer y = y(z) of (1.33) to assume given values
at the endpoints of [a,b]. Is it possible to retain these conditions and also
require that y(z) assume a third given value at an interior point of [a, b]?
That is, can we impose three conditions of the form y(a) = co, y(b) = c1,
and y(a) = co where o € (a,b)? If we require the minimizer to be in
C(l)(a, b), then the answer is, in general, no: a solution of the second-order
Euler equation cannot be made to satisfy three conditions at once. If we
omit the condition of continuity of the minimizer at x = «, the problem can
be solvable in principle. However, in this case we can consider two separate
problems of minimizing two functionals, one of which is given on [a, ] and
the other on [a,b]. So in this case we reduce the three-point problem to
the two-point problem already considered.

With some problems it makes sense to assume that a minimizing curve
has a finite number of points at which continuity of its derivative fails. We
cannot appoint the position of such points on (a, ) in advance. It happens
that at such points the Weierstrass—Erdmann conditions must be satisfied.
Let us derive these, assuming the existence of one point of discontinuity of
the first derivative of the minimizer. They will hold at every such point.

Suppose & = « is a point at which the first derivative of a minimizer is
not continuous.

Theorem 1.38. Let © = « € (a,b) be a point at which the tangent to a
minimizer y = y(x) of the functional f; f(z,y,y') dx has a break. Then y
satisfies the Euler equation on the intervals (a,a) and («,b), and at v = «
the Weierstrass—Erdmann conditions

fy/ r=a—0 fy’ ‘m:a+0’

(F =) oeao = (F =¥ )| oo (1.148)

(1.147)

hold.
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Before giving the proof, let us discuss how to state the corresponding
boundary value problem. On each of the intervals (a,«) and («,b) the
minimizer satisfies the Euler equation. So in general the minimizer is de-
termined up to four unknown constants. Also unknown is «. There are
five conditions to determine these constants: the two boundary conditions
at a and b, the conditions (1.147)-(1.148), and the continuity condition
y(a — 0) = y(a 4+ 0). Thus in principle the boundary value problem is
formulated properly.

Proof. Consider for definiteness the boundary conditions y(a) = ¢y and
y(b) = ¢ for a minimizer. The minimizer should be continuous at z = «.
Perturbing the minimizer by an admissible ¢ and supposing that the point
(o, y(@)) gets the increments (dx, 0y), we apply the general formula for the
first variation

xr1 d
[ (5= gt ) oot 0

0

1 1

(1.149)

=+ (f - y/fy/)5:r

Zo Zo

twice, on each of intervals (a, o) and («, b) separately, taking into account
that the increment (dx, dy) at (o, y(«)) is the same on the left and the right
of a. Remembering that dz and dy are zero at x = a and = = b for all
admissible increments, we have

a b
(5F:(5</ f(:c,y,y')dw—i—/ f(q;,y,y')dx>

* d
[ (5 ot ) oot gy

+(f =y fy) o

r=a—0 r=a—0
b d
+/ <fy - d_fy/> pdx — fydy —(f =y fy)ox
« xz r=a—+0 r=a+0
Thus for all admissible increments
« d b d
[ (=gt oo [ (1= gt o
+ |:fy/ r=a—0 fy/’I:a+0:| 6y
i [(f ) |y — (F =Y f) \x:am} 5z =0. (1.150)

Now we choose certain classes of admissible increments ¢ to show that
each term summed in (1.150) is equal to zero separately. Let us take first
those admissible ¢ that are zero on [, b]. Also take dz = dy = 0. All terms
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except the first integral on the left are equal to zero identically now. Thus

/aa (fy - %fy') pdr =0

for all differentiable functions ¢ that equal zero at a and «. By the funda-
mental lemma the Euler equation

d
fy*%fy/ =0

holds on (a, a). Because of this the first integral is zero not only for those
© that satisfy ¢(a) = 0, but for all admissible increments. A similar choice
of those ¢ that are zero on [a, a] together with the assumption dx = dy =0
brings us to similar conclusions: the minimizer y satisfies the Euler equation
on (a,b) and so for all admissible ¢ we have

b d
[ (5=t ) piz =0
It follows that

|:fy/ ’x:a70 a fy’ ‘I:a+0:| oy
+ |:(f o ylfy,) ’x:a70 o (f o ylfy/) ’:c:aJrO} oz =0
for all admissible dz and dy, hence we obtain (1.147) and (1.148). O

For the functional f: f(z,y,y’) dx depending on a vector function, at a
discontinuity of a component y; there are the similar conditions

fyg r=al0’ (f— y;fy{) r—a0 (f - y;fyi)

Indeed, when deriving the corresponding equation for the first variation of
the functional, we can appoint the increments of all the components except
y; to be zero, so formally the corresponding equation does not differ from
(1.150).

The Weierstrass—Erdmann conditions are similar in form to the natural
boundary conditions for a functional. The idea of the proof of Theorem 1.38
can be applied to other types of problems.

r=a—0 = fy: r=a+0"

Example 1.39. Consider the problem of minimizing the functional

8 b
/ f(w7y,y’)d:v+/ g(x,y,y') da (1.151)
a 8

where (3 is a fixed point of (a,b), and y is continuous on [a, b], twice con-
tinuously differentiable on (a,8) and (8,b), and satisfies y(a) = ¢o and
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y(b) = c1. Assume the integrand is discontinuous at = 3, hence y has no
continuous derivative there.

Solution. Problems of this form are frequent in physics, arising from spa-
tial discontinuities. A specific instance of this is when a ray of light crosses
the interface between two media. We are interested in how to appoint the
conditions at such points, since the equation of propagation is not valid
there. Variational tools can often supply us with such conditions. Let us
demonstrate how this can happen.

For the functional (1.151) we need to derive the expression for the first
variation and set it to zero for admissible increment-functions. For this we
use (1.149) as above, but should take into account that S is fixed so that
d0x =0 at x = 8. The changes are evident:

B d b d
[ (1) | (o)
—+ |:fy/ I:ﬁ+0:| 5y = 0

Thus in a similar fashion at x = 3, in addition to the continuity condition
y(B—0) =y(B +0) we get f .

z=B-0 Gy’

z=£-0 =9y ’m:ﬁJrO'

Let us now consider a particular problem of the same nature with an-
other type of functional. We seek the deflections under transverse load ¢(z)
of a system consisting of a cantilever beam with parameters £ and I and
whose free end connects with a string as shown in Fig. 1.4.
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Fig. 1.4 A coupled mechanical system consisting of a beam and a string.

The models of a string and of a beam are of different natures; they are
derived under different sets of assumptions, and the corresponding ordinary
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differential equations have different orders. It is clear that at the point of
connection the function y describing the deflections must be continuous.
However, we can imagine that the angles of inclination of the beam and the
string can differ under certain loads; this means that we cannot require 7’
to be continuous at the point of coupling. What are the other conditions
at this point? There are two ways to find them. One is to undertake
a careful study of the theory of beams and strings and, understanding
the mechanical meaning of each derivative at the point, to write out the
conditions of equilibrium of the node (coupling unit). Another is to employ
variational tools. Normally the latter is preferable, as it is less likely to
yield incorrect conditions. We begin with the expression for total potential
energy of the system: beam-string-load. We take the lengths of the beam
and the string to be 1 m and 5 m, respectively. The stretching of the string
is characterized by a parameter a:

1 a [© 6
B) =3 | B0 @P e+ 5 [ @@= [ gt i
We see from the figure that
y(0)=0,  ¢(0)=0, y(6)=0.

Using tools developed earlier, we obtain the first variation

1 6 6
OF :/ ElIy"y" d:cha/ y' o dw —/ q(z)p(x) dx
0 1 0
of the energy functional. For all admissible functions that necessarily satisfy
©(0) =0, ¢'(0) =0, and ¢(6) = 0, we have
0E =0.
Integration by parts gives

_ EIy/I/SD
r=1-0 r=1-0

1 6
f/ qgodz—/ qpdz = 0.
=140 0 1

We now reason as in the proof of Theorem 1.38. Putting ¢ = 0 on [1, 6]
and the “boundary” values ¢(1 — 0) and ¢’(1 — 0) equal to zero, we get

EIy® —¢=0 on (0,1)

1
/ EIyWede + EIy"
0

6
- a/ y'pdr —ay'e
1

for the beam equation; similarly, we get

ay’+q¢=0 on (1,6)
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for the string equation. Hence we deduce two additional boundary condi-
tions at the point of connection:

Ely”’]gc:k0 =—ay'|,_1 .0 (1.152)

and

Ely"| 0. (1.153)

z=1-0
Condition (1.152) means that, at the connection point, the shear force in
the beam is balanced by the vertical component of the tension force in the
string. As the string cannot resist a torque, condition (1.153) states that
the moment at this point of the beam is zero.

Such constructions consisting of elements of different natures are com-
mon in practice, and now the reader knows how to set up the corresponding
boundary value problems.

Quick review

In some problems it becomes necessary to extend the class of admissible
functions to include those that are piecewise smooth. Let y(x) be a min-
imizer of the simplest integral functional, and suppose y’(x) is continuous
on the closed intervals [a, o] and [a, b] where o € (a,b) is the sole corner
point. The position of a cannot be determined in advance, but is subject
to the Weierstrass—Erdmann conditions

fy’ r=a—0 fy’ ‘I:O{+O,
(F = fo) oo = (F =V Ty | saior (1.155)

In addition to the Euler equation on the intervals (a,«) and (a,b) then,
y must satisfy (1) the Weierstrass—Erdmann conditions, (2) any given
endpoint conditions on y(a) and y(b), and (3) the continuity condition
y(a — 0) = y(a + 0). A piecewise smooth extremal with a corner (or with
multiple corners) is called a broken extremal.

(1.154)

1.14 Sufficient Conditions for Minimum

Thus far we have studied some of the techniques used to identify possi-
ble minimizers. It is also of interest to know how to solve the boundary
value problems that yield corresponding extremals, although the treatment
of this topic falls outside the scope of this book (and within the scope of
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books on ordinary and partial differential equations). But the solutions of
these problems represent only the first step in a full solution of the problem
of minimization; the next step is to learn whether an extremal is a mini-
mizer. As we shall see, for many linear problems of mathematical physics
an extremal satisfying boundary conditions is automatically a minimizer.
Nonlinear problems, as a rule, need additional investigation. For this we
need to derive sufficient conditions for an extremal to be a minimizer. First
we shall derive conditions analogous to those found in the calculus of func-
tions of many variables.
We reconsider the problem of minimum of the simplest functional

b
F(y) = / fla,y,y) de

in the class C(Y)(a,b) under the boundary conditions y(a) = co, y(b) = c1.
Let y be a minimizer of the problem under consideration and Ay(z) an
admissible increment of y. Consider the increment of F:

AF = F(y + Ay) — F(y)

b
= / [f(z,y + Ay,y" + Ay') = f(z,y,y)] da. (1.156)

Denote p = y(x), ¢ = y'(x), and g(p,q) = f(x,p,q), and let Ap and Aq
be the increments of p and ¢, respectively (in this case they are p(z) and
¢’ (z) in our old notation). If in some small neighborhood of the point (p, q)
the function g has continuous derivatives up to second order, then in this
neighborhood we can write the Taylor expansion of g:

g+ Ap,q+ Aq) = g(p, q) + [gp(p, ) AP + g4(p, ¢) Aq]
+ %[gpp(p, 0)(Ap)* + 2gpq(p, 9) ApAq
+ 94q(. ) (A0)°] + B(p, ¢, Ap, Aq)[(Ap)* + (Ag)?]

where ((p,q, Ap, Aq) — 0 when (Ap)? + (Aqg)? — 0. We can write this
expansion in terms of f, y, and Ay at each x € [a, b]:

flay+ Ay y +AyY) = f(,y,y) + [fy(@,9.9) Ay + fy (2, 9,9") AY]
+ %[fyy(z, Y y/)(Ay)Q + 2 fyy (2, 9,y ) Ay Ay’
+ fyry (9,0 ) (AY)?] + B, v, 0/, Ay, Ay)[(Ay)? + (Ay')?] (1.157)
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(we keep the same notation f for the remainder function). Let us assume
that for all z € [a, b] we have

1B(z,y.y', Ay, Ay')| < a(Ay, Ay')

where a(Ay, Ay') — 0 when (Ay)? + (Ay’)? — 0. This is an important
assumption in what follows.
Let us return to the notation ¢ = Ay and rewrite (1.157) as

fy+oy +¢) = flyy)+ fy@yy)e+ fuleyy)e
1
+ i[f’yy('rv ya y/)S02 + 2fyy/(xa ya y/)QOSO/

+ fyry (2,5, (9] + 0(9® + (¢)?). (1.158)

Here o(p? + (¢’)?) indicates that the term which is uniform in x is small in
comparison with ¢? + (¢’)2. Now apply the expansion (1.158) to (1.156):

b
AF:/ Uy y,y) e+ fy (@, y,y)¢] da

1 b
+ 5 / [fyy(xa Y, y/)(p2 + 2fyy’(xa Y, y/)(P(P/ + fy’y’ (:T, Y, y’)(ap’)Q] dx

to </ (0?4 ((p')2)dx> .

Since y is a minimizer of the problem we necessarily have

b
/ [fy(@,y,9")e + fy(2,y,y)¢ T dz =0
(cf., §1.1) and thus
b
AF =F(y+y¢) — F(y) = 8F +o (/ (@2+(¢’)2)dw>
where §2F is the second variation defined by

1 b
§’F = 5/ [y (@ u, )0 + 2y (2, y, 9 )0’ + fyry (@,9,9)(¢))?] da.

Integration by parts gives
b b i,
/ nyy’(w’y,y’)w’dx:/ Foy (2,9,y') 2= da

b ,d
— - [ P fwleye)y @) do
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since p(a) = ¢(b) = 0. Then
52 _ i b AN i / 2 / N2 d
F=3 Fou(@.y.9) = = Fuw (@.9,9) | @7+ fyry (2,9,5) () ¢ da

The quantlty 0%F is quadratic in ¢ and ¢’. Suppose it is bounded from
below as follows:

6*F > m/b(<,02 + (¢')?) da, (1.159)

where the constant m > 0 does not depend on the choice of admissible
increment ¢ (note that here we do not need assumptions on the smallness
of ). It then follows that

Fly+e)—F(y) >0

for all admissible increments ¢ (i.e., ¢ € Cél)(a, b)) with sufficiently small
norm [[¢[|cay (4 This means that (1.159) is sufficient for y to be a local
minimizer of the problem under consideration.

Thus we seek conditions for (1.159) to hold. Let us denote

Q) = Foulr, 9 (@) () — - Fory(), ' (),
P(x) = fyy (@,y(x),y ().

The functions Q(x) and P(x) can be regarded as momentarily given when
we study whether y = y(z) is a minimizer. So we must study the functional

b(p) = [ [P)e” (@) + Q) @) do

in the space Cél)(a, b).
It is easy to formulate the following restrictions:

Pz)>c and Q(z)>c>0 for all z € [a, b].

Under these the inequality (1.159) holds for all ¢ € C’él)(a,b). Unfor-
tunately these restrictions fail in many cases when y = y(x) is really a
minimizer, so we need more useful conditions.

Note that if y = y(x) is a minimizer then ®(p) > 0 at least. For if there
were an admissible increment ¢ such that ®(¢) < 0 then we could find a ¢
so small that for all 0 < t <ty we would have F(y +ty) — F(y) <0, and y
would not be a minimizer. Let us suppose ®(p) is nonnegative.

)=
)=

Theorem 1.40. Let P(z) and Q(x) be continuous on [a,b] and ®(p) > 0
for all p € C’él)(a, b). Then P(x) >0 on [a,b].
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Proof. Suppose to the contrary that P(zp) < 0 for some zy. Then
P(z) < v < 0 in some e-neighborhood [zg — €,z + €] of zy. Choose
o(x) € CM(a,b) as the particular function

sin® {LC — 7o)

c :|a 1'6[50076,11704’5],

p(x) =
0, otherwise.

Then for x € [z — &, 20 + €] we have

¢/(x) = 2sin r(x = 5’“’0)} cos [W(f" - 1’0)] (T) = Tan [M}

9 9 9 9 9

and therefore

B(p) = (5)2/:0+8P(:c) sin? [M} dz

€ o—e €
To+e _
+ [ Qsint [Q} d.
ro—E€ €
But
zo+e _ To+e _
/ P(l’) Sil’l2 {M} dx < 7/ Sin2 {M} dx = e
ro—E€ € ro—E€ €
and
Tote m(x — xp) Tote m(x — ) 3Me
/ Q(x) sin? [7] dx < M/ sin? {7} dx =
ro—E€ € ro—E€ € 4

where M = max,e[q,5 |Q(x)|. Hence

2

T2 3Me 7wy 3Me
)< (£) e B - 2
(p) < € et 4 € * 4
Recall that v < 0; for sufficiently small € we can make ®(¢) < 0, a contra-
diction. 0

Thus, besides the Euler equation we have established another necessary
condition for y to be a minimizer of the problem under consideration:

fyy (z,y(2), 9y (x)) >0 for all z € [a,b]. (1.160)

This is Legendre’s condition.

Legendre believed that satisfaction of the strict inequality f,,» > 0
for all z € [a,b] should be sufficient for y to be a minimizer, and even
constructed a flawed proof. However, even the mistakes of great persons
are useful — on the basis of this “proof” a useful sufficient condition was
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subsequently established. Jacobi proposed to study the functional ®(y)
using the tools of the calculus of variations itself. The Euler equation for
this functional is

[P(z)¢' ()] = Q(x)¢(x) = 0. (1.161)

This clearly has the trivial solution ¢ = 0. Let P(z) be continuously
differentiable. Jacobi studied the zeros of a solution of (1.161) for the
Cauchy problem ¢(0) = 0, ¢'(0) = 1. The nearest value x¢p > a where
©(x0) = 0 he called the point conjugate to a (with respect to the functional
®(p)). This point is denoted a* (we agree to call a* = oo if ¢(z) has no
zeros to the right of z = a). Jacobi established another necessary condition
for y to be a minimizer: that the interval (a,b) does not contain a*.

The following set of three conditions is sufficient for y to be a minimizer
of the problem under consideration:

(1) y satisfies the Euler equation

d
fy - Efy’ = 0;

(2) fyry (z,y(x), ¥ (z)) > 0 for all z € [a, b];

(3) [a,b] does not contain points conjugate to a with respect to ().

We shall not offer a proof of this, but do wish to note the following. The
result is beautiful, but for many years it seemed impractical: the Jacobi
condition (3) was quite difficult to check before the advent of the computer.
Today, however, there are many good algorithms with which Cauchy prob-
lems for ordinary differential equations may be solved. Hence it is easy to
check the Jacobi condition numerically.

Example 1.41. For which range of the constant c is an extremal of the
functional

1
2
/ (y/ - CQyQ - 2y) dﬁC, y(o) = Oa y(]‘) = ]-a
0
a minimizer?

Solution. The extremal exists, as the reader can verify. We suppose ¢ > 0.
Let us check the sufficiency conditions given above. Legendre’s condition
holds automatically. The Jacobi equation with initial conditions is

y'+cfy=0, y(0)=0, ' (0)=1.
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Lsin cz, hence the conjugate point occurs where cx =

Its solution is y = ¢~
m. Thus, by sufficient conditions, the extremal really is a minimizer of the
functional when a* = 7/c > 1, and by symmetry in ¢, the extremal is a
minimizer when |¢| < 7. When a* < 1, then extremal is not a minimizer

and, moreover the functional has no minimizer at all (why?). O

The Jacobi theory of conjugate points and corresponding results can be
established for a functional depending on an unknown vector-function.

Some field theory

We now turn to a brief, introductory discussion of certain concepts needed
to express conditions sufficient for a strong minimum. The main idea is
that of a field of extremals.

Let D be a domain in the xy-plane. Let

y =y(r;a)

be a family of curves lying in D, a separate curve being generated by each
choice of the parameter . If a unique curve from the family passes through
each point of D, then we call the family a proper field in D. A proper
field can be regarded as a sort of cover for D, associating with each point
(z,y) € D a unique slope p(z,y) (i.e., the slope of the particular curve
passing through that point). As a simple but standard example, let D be
the unit disk

D= {(z,y): 2> +y* < 1}

and let y = y(z; ) = kx + a where k is a fixed constant. This is a field of
parallel straight lines with slopes p(x,y) = k.

If all curves of a family y = y(x; o) pass through a certain point (z, yo),
then the family is known as a pencil of curves and (zg, yo) is called the center
of the pencil. For example, the family y = ax is a pencil having center at
the origin. Of course, a pencil of curves having center (z¢,yo) € D cannot
be a proper field of curves in D. However, if a pencil of curves assigns a
unique slope p(z,y) to all points in D other than (xo,yo), we speak of a
central field of curves in D.

A field of extremals is a family of extremal curves (for some variational
problem) that generates a proper or central field in a domain D. The Euler
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equation for the simplest functional

b
F(y) = / flay,y') da (1.162)

has solutions that form a two-parameter family of curves y = y(z; ;).
(Here v and B are the integration constants in the general solution of the
Euler equation.) If one of the constants, say «, is determined by imposing
a given fixed endpoint condition y(a) = ¢ on the general solution, then all
the extremals in the resulting one-parameter family will issue from the same
point (a,cp). The resulting family y = y(z;8) may be a field (proper or
central) in some specified domain D. For example, consider the functional

b
/ W — () de

with @ = 0 and y(0) = 0. The integrand does not depend explicitly on z,
so y2 — ()% — (—2y")y’ = c1. It follows that the extremals have the form
y = cosin(z 4 ¢3), which gives us a pencil having center (0,0). Another
example we mention is for the functional

b
/ (y'2 —1)%dz.

The extremals are straight lines. When suitably restricted, the two-
parameter family of curves y(z) = c1x + c2 can form a field in a couple
of different ways: (1) when ¢; is fixed, we obtain a family y = y(x; c2) that
can form a proper field in the unit disk D; (2) when c2 = 0, the resulting
pencil centered at the origin can form a central field in D.

Let y = y(x; o) generate a field of extremals (central or proper) in some
domain D. Each choice of a then gives an extremal; by setting o = ay,
we select a particular extremal y*(x) = y(z;a0) from the field. If this
extremal y*(x) has no common points with the boundary of D, it is said to
be admissible in the field. Note that a given extremal may be admissible
in more than one field covering a domain D. Returning to the example in
which D is the unit circle, the two fields

y(z;o) =z +a,  yla) =az,

mentioned above each admit the straight line extremal y*(z) = c12.
Armed with an understanding of the field concept, we proceed to the
next step. Let D be a domain in which there is distributed a proper field
of extremals for the simplest functional F(y) of equation (1.162). Suppose
further that this field admits the particular extremal y = y*(x) satisfying
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given endpoint conditions y(a) = cg, y(b) = ¢1. Now let y = y(x) be any
curve that lies in D and connects the desired endpoints (a, cp) and (b, c1).
We also assume that the integral

b
H(y) = / @ y.p) + (' — p)fola,y,p)] de (1.163)

exists for y = y(x), where p = p(x,y) is the slope function (i.e., its value at
(x,y) is the slope y’ of the extremal through point (z,y)) of the field in D.
This integral is extremely important for the theory.

When y(z) = y*(x), the integral (1.163) reduces to (1.162) because
y’ = p in that case. It can be shown that (1.163) is path independent in D.
For this reason it is known as Hilbert’s invariant integral.

We use these facts as follows. Defining

AF = F(y) — F(y"),
we have AF = F(y) — H(y*) = F(y) — H(y) so that

b b
AF:/ f(rc,y,y’)d:r*/ [f(z,y,p) + (v —p) fo(,y,p)] dx

b
=/ (@, y,9") = f(z,9,0) — (Y — ) fp(z,y,p)] de.
Thus

b
aF = [ oy p)ds (1.164)
where the integrand

E(z,y,y',p) = f(x,y,9") = f(z,9,p) = (v — p)fp(2,y,D) (1.165)

is known as the Weierstrass excess function. The following conditions are
sufficient for y = y*(z) to be a strong minimum of F(y):

(1) The curve y = y*(x) is admissible in a field of extremals for F(y), and

(2) E(z,y,y’,p) > 0 for all points (z,y) lying sufficiently close to the curve
y = y*(z) and for arbitrary values of y’.

These have been called the Weierstrass conditions. The proof is nearly
obvious. Suppose condition (1) holds, and let y = y(z) be any other curve
lying in the domain covered by the field of extremals and connecting the
desired endpoints. Then according to condition (2),

b
AF:/ E(z,y,y,p)dz >0
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for all curves y = y(x) that connect the endpoints and lie within some
neighborhood of y*(x); moreover, the slope of y need not be close to that
of y* so the minimum is strong.

Although the Weierstrass conditions are attractive because of their sim-
plicity, we can run into trouble when attempting to apply them to certain
functionals. This happens, for example, with the problem of minimizing

32y

/ —— dz, y(0)=1, y(3/2)=1/4.
o (W)?

The difficulty is related to the fact that the family of extremals has a so-

called envelope.

Our treatment of sufficient conditions for the problem of minimum has
been intentionally brief. We have formulated a couple of sets of such condi-
tions; in fact, however, these are seldom used by practitioners. Rather, nec-
essary conditions are usually applied to obtain extremals, and then various
other methods are employed in place of sufficient conditions. For example,
if a functional has a unique minimum residing in a class of functions, and
if a unique extremal is found for the problem, then the desired minimum
must be reached on the extremal found. If several extremals qualify as can-
didates for the minimum, it is often possible to test each one by calculating
the corresponding values taken by the functional. The true minimum may
then be identified and selected. Hence sufficient conditions may be viewed
as largely of theoretical interest.

1.15 Exercises

1.1 Each functional below has the form (1.33). Write out the Euler equation
and the natural boundary conditions,

d .
fy_%fy’:() in (a,b), fy"x:azo’ v

r=b = 07
given in Theorem 1.19.

@ [ Ve e

(b) / @+ (15 @) do

@ [ [0 -ar2yie]
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b 2
(d) / [Ty (z) — (1+ z?) y2(:v)} dx, a<b.
b 2
(e) / V(@) + (1+ %) (@) de + y(@)?, a<b.
3 2
(0) / [oy/(@) + (2 — 9)42(2)] d + 557 (1) + v2(3).
b
(g) / [53/2(:0) +Vzx— ayz(:c)} dr +y(a)’, 0<a<b.
() / V(@) + 222 (@)] dx + 4°(2).

(i) / [y (@) + zy*(z)] da + y(c), a<c<b.

) / " [3y%(2) - 25" (@)] de + [y(r) — y(0)].

) / " vy (@) — cos(y(@))] dz + [y(m)]*.

) fo (v (z) — 1)? + 4*(z)] da.

1.2 For each functional below, write out the Euler—Lagrange equation (1.68) and
the natural boundary conditions given on page 40.

(a) /O1 [y (2) + 2% (2)] da.

(b) /O 1 " (2) + 2" ()] da.

@ [ 1@+ + o)

(d) /O 1 [y (x) — y"*(2) + 2(1 — 2%)y*(2)] da.

b
(e) / [V (@) - y'*(@) + 2(c)] dz, a<b.

1.3 The following functionals have the form (1.74). Write out the Euler equations
and the natural boundary conditions given in Theorems 1.26 and 1.27:

dfua: df“y _ . _
fu— < e + a )~ 0 in S, (fumnx +fuyny) o =0.
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(@) /:/cd [(0e)? + 2(uy)® + 30 — 2u] dudy, a<b, c<d.

(b) /ab/cd [(uz)2+(uy)2+u2}dxdy+/abu2(x,c)dx, a<b c<d.
© /:/Cd [(ux>2+(uy>2—u2}dmdy+/cdu2(b,y)dy, a<b c<d
@ /ab/cd () — (uy)? +2u] dady, a<b, c<d.

© /ab/:l[(ux)”—&-(uy)"]dxdy, a<b e<dntl

() /ab /cd[sm(uz)mn(uy)}dmy, a<b, c<d

() /ab /Cd [2 - cos(uz) — cos(uy)] dady, a<b, c<d.

w [ [ VI @Ry

O [ [ o) +atw,)) ey

) /O /O (1+ (ue)” + (uy)®)" dxdy, n>0.

1.4 In the zy-plane, find the smooth curve between (a,yo) and (b, y1) which by
revolution about the z-axis generates the surface of least area.

1.5 The brachistochrone problem is a famous classical problem in which one must
find the equation of the plane curve down which a particle would slide from one
given point to another in the least possible time when acted upon by gravity
alone. Show that the required curve is a portion of an ordinary cycloid.

1.6 Show that if f in the simplest functional depends explicitly on 3" only, then
the extremals are straight lines.

1.7 During the time interval [0, T'] a particle having mass m is required to move
along a straight line from the position z(0) = zo to the position z(T') = x1. De-
termine the extremal for the problem of minimizing the particle’s average kinetic
energy. Explain your result physically.

1.8 Apply Ritz’s method with basis functions of the form o, (z) = z%(1 — z)%z*
to minimize the functional

/(; {(y”)2 +[1+0.1sin :c](y')2 +[1+0.1 cos(Zx)]y2 — 2sin(2z)y} du.
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The boundary conditions for the problem are y(0) = y'(0) = y'(1) =0, y(1) = 1.

1.9 (a) Consider the problem of minimum for the simplest functional (1.20) with
boundary condition y(a) + y(b) = 1. Find a supplementary natural boundary
condition for this case. (b) Repeat for a condition of the more general form
Y(y(a),y(b)) = 0 where ¢ = ¥(a, B) is a given function of two variables.

1.10 Find the equation of the plane curve down which a particle would slide
from one given point (a,yo) to cross the vertical line x = b in the least possible
time when acted upon by gravity alone.

1.11 Find the smooth curve of least length between two points on the surface of
the cylinder of radius a.

1.12 For a functional of the form
b
! 17
Fy(y) = / f(x,y,y',y") de,

find the Ritz system of equations corresponding to (1.50).

1.13 Find the first variation of the functional of the form
T
F(y) = / f(x,y,y',y") dx (1.166)
zo

where the endpoints o and z1 can move.

1.14 For problems of beam equilibrium posed as minimum energy problems,
we know the extremals are given by continuous functions having continuous first
derivatives; the second derivatives are continuous except at points where the
beam parameters have jumps or point loads are applied. With this in mind,
consider the extremals of the functional (1.166) that are continuous on (a, b), have
continuous first derivatives, and have continuous second derivatives everywhere
except at « = ¢ where y” can have a jump. Find the differential equations for the
extremals, the endpoint conditions, and an analogue of the Weierstrass—Erdmann
conditions at point c.

1.15 What happens to the equations defining a “broken” extremal of the func-
tional of Exercise 1.14 if the position ¢ is known and fixed?

1.16 Consider the equilibrium problem for a plate when given forces f act on
the edge. It is described as the minimization problem for the functional

F(w) = g //S[wzz +why + 20Wapwyy + 2(1 — v)wl,] dx dy

f// Fwdzxdy — fwds.
s as

What is the form of the Euler equation? What are the natural boundary condi-
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tions for a minimizer?

1.17 Suppose a plate consists of two parts, with different constant rigidities D
and Ds, that join along a line I' of the midplane (Fig.1.5). Write out the con-
ditions on the border line assuming the deflection w and its first derivatives are
continuous over the whole domain. Note that these conditions have the same na-
ture as the natural boundary conditions. They have a clear mechanical meaning.

Fig. 1.5 Left: a compound plate. Right: calculation of one-sided limits.

1.18 Find the Euler equation and the natural boundary conditions for the func-
tional F(u) = E(u) — A(u), where

E(u):%//Lg(ui+u§)dxdy+%/asau§ds, A(u)://sfud:vdy+/asguds.

Assume f is a given function on S, and g and « are given functions on the
boundary 95 of S.

1.19 Show that E(u) from Problem 1.18 is unbounded from below if a@ < 0 on
any portion of 9S.



Chapter 2

Applications of the Calculus of
Variations in Mechanics

2.1 Elementary Problems for Elastic Structures

Now we consider some elementary problems in elasticity from the stand-
point of the calculus of variations. In textbooks on the strength of materi-
als, such problems are solved by elementary methods. Nonetheless, points
of confusion often remain — typically in the problem setups. Our goal is
to analyze proper variational setups and to show how these provide addi-
tional natural conditions describing the action of loads on the boundary.
Along the way, we apply powerful variational methods to several interesting
mechanics problems.

The structures considered in this section contain rods, beams, and
springs connected at certain angles. The first question concerns the model
to be employed for each structural element. The answer must come from
engineering experience rather than pure mathematics. Model selection will
provide a set of variables describing each structural element. Normally
these sets are independent but must satisfy interrelationships along bound-
aries between the individual models. The length parameter along a beam is
usually denoted by the same letter (such as z, s, or t) for all the elements.
The displacement variables are denoted by different letters or by indices.

The general plan for posing minimization-type setups for such equilib-
rium problems involves the following steps.

(1) Establish notation for all variables in the structural description.

(2) Construct the strain energy functional W, which is the sum of the
strain energies of all structural elements (rods, beams, cables, springs)
described in local coordinates.

(3) Construct the work functional A for the external load over general

99
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displacements.

(4) Write down the total potential energy functional £ = W — A needed to
pose the minimization problem.

To this list we should add

(5) Account for any geometrical boundary restrictions. These should be
evident from a sketch of the structure proposed in the problem.

The leftmost portion of Fig. 2.1 indicates the only type of geometric restric-
tion for a rod; this is rigid clamping, expressed as u|4 = 0 (or as u|4 = ¢
for a given constant ¢). For a beam, the same sketch implies that two con-

P

Fig. 2.1 Rigid clamping of rods and beams (A); hinged clamping (B1—Bs).

ditions should be posed at A: w = 0 and w’ = 0 (or possibly some given
nonzero values). A beam can also be subjected to hinged supports as indi-
cated in the rest of the figure. Note that the points By may be endpoints
or intermediate points of the beam. A hinged connection restricts the dis-
placement at a point (e.g., w = 0) but not the angle of rotation there (i.e.,
it does not restrict w’). We must also

(6) Consider compatibility restrictions, arising as mutual constraints on the
displacements or rotation angles at points of coupling between struc-
tural elements.

Typical of these are rigid clamping. In the case of coupled beams (Fig. 2.2,
left), both the displacement vectors of the coupled points and the rotation
angles must be the same (hence, in the simple beam model, the values
of w’ must agree at the point of coupling). In the case of hinged beams
(Fig. 2.2, right) the displacement vectors are equal but the angles of rotation
(i.e., the values of w’) are independent. Consideration of other modes of
coupling are left to the exercises; they are usually clear from inspection of
a diagram. For beams coupled under an angle, the equilibrium equations
contain only lateral displacements as unknown functions; despite this fact,
the conditions at the joint contain the full displacement vectors of the
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A B

Fig. 2.2 Rigid joint of beams (A); hinged joint (B).

elements. Because the coordinate system used in the strength of materials
is opposite that used in an ordinary calculus textbook, we will present the
transformation formulas for the displacement vectors needed to formulate
geometric compatibility conditions.

The coordinate unit vector i lies along the midline of a beam in the di-
rection of increasing length coordinate z, and the unit vector j is orthogonal
to 1 with the orientation shown in Fig. 2.3. For another beam, we introduce

L

A 4

by

v

Fig. 2.3 Transformation of coordinate bases.

the respective unit basis vectors i; and j;. The angle o between i and i is
positive if the rotation from i to i; is counterclockwise. The displacement
vector u takes the form

u=ui + wj = u1i1 + wljl.
Dot multiplication yields

uliu(ii1)+’w(ji1), w1 :u(ij1)+w(jj1),
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and thus

U1 = ucosa — wsin «,

w1 = usin o + w cos a. (2.1)

When using these transformation formulas, one must remember that in the
beam model the longitudinal displacement is uniform along the beam. In
the rod model, the displacement normal to the rod axis takes the “rigid
body motion” form w = a + bzx.

We denote Young’s modulus by E, the moment of inertia of the beam
cross section by I, the cross-sectional area by S, and the length of the beam
(or rod) by a.

Example 2.1. Consider the equilibrium of a cantilever beam of length a,
under load ¢(x), clamped at the left end and coupled with a spring at the
right end (Fig.2.4). The beam parameters are E and I(x), and the spring
coefficient is k. (1) Write down the total potential energy of the system,
along with the boundary and compatibility equations. (2) Write down the
functional that should be minimized in order to obtain the equilibrium equa-
tions and natural boundary conditions. (3) Applying the general procedure
of the calculus of variations, derive the differential equation of equilibrium
and the natural boundary conditions.

q(x)

Fig. 2.4 System consisting of coupled beam and spring under load g(z).

Solution. (1) Let y(z) be the normal deflection of point = of the beam.
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The system carries total potential energy

1

a a 1
E(y) = —/ EI(y")? dw*/ qydx + skz?,
2 Jo 0 2

where z is the contraction suffered by the spring. The conditions at the left
end are y(0) = 0 and y'(0) = 0. The compatibility condition between the
beam and spring at x = a is z = y(a).

(2) The required functional is

1 /¢ @ 1
Ey) = 5/ FI(y")?dx —/ qydx + §k/’y2(a).
0 0

(3) The equilibrium equation in integral form (§€ = 0) is

/ EIy"y" dx — / qedz + ky(a)p(a) = 0.
0 0

Two integrations by parts in the first integral yield

/O B — ypds + EI()y" (a)¢ (a)

—E(Iy")| _, e(a) + ky(a)p(a) =0,

since y(0) = 0 = 3/(0). Selecting the set of admissible ¢ such that ¢(a) =
0 = ¢'(a) and using Lemma 1.8, we obtain the differential equation of
equilibrium:

E(Iy")" —q=0 on (0,a).
Then, returning to the integral equation of equilibrium, we get

El(a)y"(a)¢'(a) — E(I(2)y" ()| ,_,¢(a) + ky(a)p(a) = 0

for all admissible ¢. This yields

El(a)y"(a) =0,  E(I(2)y"(x))'|,_, = ky(a),

for the natural boundary conditions. O

Example 2.2. Two systems of coupled beams often encountered in the
strength of materials are shown in Fig.2.5. In the left portion of the figure
the joints are hinged; in the right portion the beams are clamped. For
both systems, construct (1) the models, (2) the energy functional to mini-
mize, and (3) the kinematic restrictions. Finally, (4) derive the equilibrium
differential equations and the natural boundary conditions.
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Fig. 2.5 Two beam systems.

Solution. The structural elements of the first system can be modeled as
rods because they are in pure tension or compression. The elements of
the second system, in contrast, are subject to bending as well. Hence we
should consider them as rods in the axial direction and as the beams in the
transverse direction.

(a) The system of coupled rods (left portion of the figure). The rods are
described by parameters E and S. Suppose rod AC has length a, and
denote its displacement components by (u,w) where u is the longitudinal
component. The displacement components of the inclined rod BC' are
(u1,w1). Let the projections of the force P at the hinge onto the unit vectors
i and j (recall Fig.2.3) be P; and P», respectively. The total potential
energy functional is

a a 1 a
EL =7 / ESu™(x)dz — / By(z)u(z)dz + 5 / ESu” (v) dx
2 0 0 2 0

a/cosa
- [ R e - Pute) - Pao)

Note the presence of the normal displacement w. The geometrical boundary
conditions are u(0) = 0 and u;(0) = 0. Equations (2.1) apply at point C
except that we must replace o by —a since the rotation from i to iy is
clockwise.

Next we derive the natural boundary conditions. The equilibrium equa-
tion, that the first variation of £, must vanish, is

a a/cosa a
/0 ESu'(z)¢'(z) dx _/0 Fy(z)p(z) dx —i—/o ESu'(z)p1(x) dz

a/cosa
— /0 Fi(z)p1(z)dz — Prp(a) — Patp(a) =0, (2.2)
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where ¢ and ¢; are independent admissible longitudinal displacements
and 1(a) is the admissible normal (along j) displacement at C. Taking
©1(z) = 0 and an arbitrary ¢ that vanishes at the endpoints, we obtain the
equilibrium equation for rod AC. Then, taking ¢ = 0 and ¢y # 0, we get
another equilibrium equation:

ESu"(x) + Fa(x) =0 on (0,a),
" _ a
ESu!(z) + Fi(z) = 0 on (o, Cosa) . (2.3)
Returning to (2.2), we have
ESu'go‘C—I—ESu'l(pl’C —Pup’c —Pgw‘c = 0. (2.4)

The displacement vector at point C' must be the same for both rods. Hence,
by (2.1) (with @ — —«) the admissible displacements must satisfy

gpl}c = gp}ccosa+z/1|csino¢,
7,/11}0 = 7<p|csino¢+1/)‘ccoso¢ (2.5)

(for this rod system we do not need the second transformation equation for
the normal displacement). Substitution into (2.4) gives

ESu'¢|, + ESuj(p|, cosa+ 9| sina)|, — Pro|, — P, = 0.
Using independence of | and ¥|c we get two natural conditions
(ESu' + ESu) cosa)|,, = P, ESu)sinal, = P,
that express equilibrium at C.

(b) The rod—beam system (right portion of the figure). To account for the
possibility of bending, we employ rod and beam models simultaneously.
The total potential energy functional now includes the energy of bending
for two beams:

1 a 5 1 a/cosa 5
SR:E,'L—i——/ Elw" (:I:)d:l:—i——/ ElIw!"(z)dx.
2 Jo 2 Jo
The boundary conditions are
u(0) = w(0) = w'(0) = 0, u1(0) = w1 (0) = wi(0) = 0.

The beam-type joint conditions at C' now include (2.1), which in this case
become

U] = ucosa + wsina,

w1 = —usina + w cos a,
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as well as the condition
’ o
vl =wif,
expressing the requirement that the rotation angles for the deformations

of both beams must match at C. To derive the natural conditions we will
need both of (2.5) along with

Vo=l (2.6)

The rest of the derivation parallels that for part (a), modifications be-
ing required to treat the bending energy terms. We begin by writing
0Er = 0. Then, selecting from the admissible virtual displacement func-
tions ¢, 1,1, 11 that vanish on one of the beams, we derive four equations.
Two of these are (2.3) for the displacements along the beams; the other two
are for beam bending:

EIw™® =0 in (0,a),
Erw!” =0in (0, a ) .
COS

Hence 6Er = 0 yields
ESu’(p’C + ESu’lgol}C - Pltp‘c - PQ’L/J’C

+ EIw"y'|, — EIw"'¢|, + Elw — EIw{"{1 |, = 0.

!

e
Using (2.5) and (2.6) and changing the set ¢1,v1,%] to ¢,¥,9’ at point
C, we get an equation that contains only ¢,,%’ at C. As the values
of these variables at C' are arbitrary and independent, their coefficients
must vanish. So we obtain three relations at C for w,w, uy,wy, which are
the natural boundary conditions. These differ from the natural boundary
conditions in part (a) but are still the equations of force balance of the
section at C'. Two of the equations contain all the terms seen in part (a);
the third expresses the vanishing of the resultant couple at C. The details
are left to the reader. O

Example 2.3. An elastic system consists of four identical beams rigidly
clamped together (Fig. 2.6). Each beam has length a. Construct the model,
write out the total potential energy functional and kinematic restrictions,
and derive the equilibrium equations and natural boundary conditions.

Solution. Use the model of rigidly clamped elastic beams. Denote the
deflection functions for the beams as follows: w; for AB, ws for BC, ws for
BE, and wy for CD. For each beam, use an independent length parameter
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q,(x)

A

q,(x)

Fig. 2.6 Four beam system under load.

whose zero reference lies at the initial point of the beam. The total potential
energy functional is

4
1 a a
5:25/0 Elwgﬂ(ac)dw—/ ¢ (z)wi(x) dx
i=1

0

— /0 q1(z — a)ws(z) dr — /0 g2 (x)wy(z) de + Pws(a).

Here we have considered that g; initially was a given function on the interval
[0,2a]. The kinematic boundary conditions are

w1(0) =0 =w(0), ws(a)=0, wi(a)=0=wy(0), wa(a)=0,
w3(0) =0, ws(a)=0.
These take into account that the beams do not alter their lengths in the tan-

gential directions. The joint constraints that define the additional natural
boundary conditions are

wi(a) = wy(0) = ws(0),  wy(a) =w)(0).

These define three additional natural restrictions; moreover, two natural
restrictions also arise at the points E and D. A solution of the three fourth-
order beam equilibrium equations will involve twelve integration constants.
The total number of conditions at the points A, B, C, D is also twelve. [
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2.2 Some Extremal Principles of Mechanics

Many physical — in particular, mechanical — problems drove the develop-
ment of the calculus of variations. So it is not surprising that continuum
mechanics and structural mechanics contain a host of variational principles.
In this section we will consider some variational principles in the theory of
elasticity and in linear plate theory, without penetrating too deeply into
the mechanical details.

Elasticity

Describing small deformations of bodies under load, linear elasticity rep-
resents an extension of the ideas of §2.1. But linear elasticity is only a
first step toward describing spatial bodies made from various materials,
elastic and non-elastic. Mechanicists employ more complex models related
to heat transfer, viscous and plastic materials, problems of deterioration
under load, etc.

Let us consider the mathematical formulation of boundary value prob-
lems in classical linear elasticity. (Henceforth the word “linear” will be
omitted but understood.) These problems appear in many textbooks, e.g.,
[5; 15]. In Cartesian coordinates, the equations of motion are given by

oiji + i =pujw 1,5 =1,2,3, (2.7)

where o0;; are the components of the stress tensor, u; are the components
of the displacement vector u = (u1,u2,us), f; are the components of the
volume force vector f = (f1, fa, f3), and p is the material density. The
stress components o;; describe the force interactions between portions of an
elastic body. The following notation will be used for partial differentiation
with respect to the spatial coordinates x; and time ¢:

Oe=92 0=

In this chapter we modify our notation for partial derivatives in order to use
Einstein’s convention for repeated subscripts ¢, j, k, [, m, n. This will permit
more concise expressions. Because the variable ¢ is reserved for time and the
subscripts z, y for partial derivatives with respect to the space variables, no
summation over z,y, t is implied even when the symbols are repeated. For
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example, equation (2.7) is written instead of the more cumbersome form

3
8oij
6:101-

2, .
0%u;

Wv ]:17253

+fi=p
=1

In elasticity it is shown that the matrix [0;;] is symmetric so that o;; = 0j;.
The Cartesian components €4 of the strain tensor are given by

1
Esk = §(u5,k =+ uk,s). (2.8)

By definition, the matrix [e4] is also symmetric. The stress and strain ten-
sors are related by the generalized version of Hooke’s law. For an isotropic
body this takes the form

O3 = )\Ekk(sij + 2/L€ij, (29)

where p and A are Lamé’s constants. Relation (2.9) is an extension of
Hooke’s law for the rod: ¢ = Ee. Young’s modulus E may be obtained
from Lamé’s constants as

3A+2
g HBA+2p)
At p
A more general form of Hooke’s law for an anisotropic body is
05 = Cijmnsmn

where the elastic moduli C;jm» (the components of a tensor of elastic mod-
uli) satisfy

Cijmn = Cjimn = Cijnm = Cmnz]

As a result, the set Cjjp,, consists of no more than 21 independent con-
stants. For an isotropic body, the number of independent elastic constants
is two; they can be chosen as the Lamé constants 1 and A so that

Cijmn = XNij0mn + 1(0imdjn + Sindjm),

where §;; is Kronecker’s symbol.
Substitution of (2.9) and (2.8) into (2.7) yields the equations of motion
in terms of the displacements:

(A 4 p)wi ki + ki + pfr = pug,ee t,k=1,2,3. (2.10)
For equilibrium problems, the equations of motion reduce to

oija+fi=0, j=123 (2.11)
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or, in terms of displacements,
(/\ + u)uiyki + pug i + fk =0, k= 1,2, 3. (212)

Two types of boundary conditions occur in the formulation of boundary
value problems in elasticity. Suppose the boundary S = 9V of a body
consists of two nonoverlapping portions S; and S5 so that S = S; U S5 and
S1 NSy = . If the displacement vector is given on S, we have a boundary
condition of the form

ui’SI = i=1,2,3, (2.13)

79

9 is a given function. If external forces (p1,pa,p3) act over S, the

condition is

where u

niaij|sz = Dpj, j=1,2,3, (2.14)

where the p; are given functions and n; are the components of the outward
unit normal to S. A mized boundary value problem would involve both
types of conditions. On the other hand, it is possible for a condition of the
form (2.13) to prevail over all of S, or for a condition of the form (2.14) to
prevail over all of S. The dynamic problems of elasticity also require initial
conditions of the form

ui‘t:o = Ui, Uit|,_q = Vi, 1=1,2,3.

In elasticity, the strain energy function W is introduced as a quadratic
function of the &,,,:

W(emn) = Q%Cijmngmn.
For an isotropic material this reduces to
W(emn) = %/\51%' + pEij€ij (2.15)
From thermodynamic considerations it follows that W is positive definite:
W(emn) >0 whenever e, # 0. (2.16)
This implies the following inequalities for the elastic moduli:
3A+2u >0, w> 0. (2.17)
It can be shown that W is the potential for stresses:

O'ij = ng]. .
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The existence of W allows us to formulate Lagrange’s variational principle
for elasticity:

Theorem 2.4. A stationary point u = (uy,us,us) of the total potential
energy functional

E(u)—///VW(amn)dV//Vfiuidv//SzpiuidS

on the set of admissible displacements subject to (2.13) satisfies the equilib-
rium equations (2.11) in the volume V and the boundary condition (2.14).
The converse also holds. This stationary point is the minimum of £.

Proof. Using the formula

d
0 = Eg(u + TSO)’T:O’ p = (@13@23@3))

let us find the first variation of &:

1
6E = /// W (0ig + i) dV — // JipidV — // piwi dS
\74 2 1% 52
—[[[ wesersav ~ [[[ sesav - [[ pioias
14 \4 Sa
= /// oijpjidV — /// figidV — // pipi dS.
14 14 S

We show that if 6€ = 0 for all admissible ¢;, then (2.11) and (2.14) hold.
The Gauss—Ostrogradski formula gives

0:55:/// Uij(,Dj7idV—/// fi(PidV_// pi(ﬂids
\% \%4 Sa
= —/// (Uij,i+fj)<deV+// ok ;S
174 S1

+// (nkok; — pj)p; dS.
Sa

Recall that the ¢; satisfy the homogeneous version of (2.13), i.e., p;|s, = 0.

From the arbitrariness of ¢;, a two-step derivation (first for the volume
integrals where we take ¢ = 0 on Sa, then for the surface integrals) yields
the required equations

oiji+ f;=0inV, nkakj}& = pj.

Conversely, on a solution u of the equilibrium problem we have §& = 0
for any admissible ; that vanishes on S;. Indeed, multiply the ith equation
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of (2.11) by ¢;, add the results, then integrate over V. Using a similar
formula obtained by multiplying the ith equation of (2.14) by ¢;, summing,
and integrating over Sy, we get

0= /// (Okik + fi) pi dV — // (nkoki — pi)pi dS
\% Sa
= */// TkjPjk dV+// fipi dV
v v
+ // NEOLip; dS — // (nkoki — pi)pi dS
S Sa
= 7/// O’kjsﬁj7kdv+// flgDZdVﬁL// pip; dS
\% \% Sa

= —6¢.

Hence a stationary point of £ is a solution to the equilibrium problem
for the elastic body, and vice versa.

Finally we show that £ attains its minimum at the stationary point.
The proof uses the fact that W is a positive definite quadratic form in
the strain components. Let @ = (@1, G2, U3) be another admissible vector
function satisfying (2.13) and consider the difference

AE =&(n) — E(u).
We get

AE:///‘/W(émn)dV—///‘/fiﬁidV—/[92piaidS
_///VW(amn)dV+///vfiuidv+//52piuid5
=[] WG - Wy av
_//Vfi(ﬁi—ui)dV—/[92pi(ﬁi—ui)dS_

Let ¢; = @; — u;. Because @; and u; coincide on Sp, we have ¢;|s, = 0.
Next,

2[W (Emn) = Wlemn)] = A5, + 2uéijéij — Nel; — 2peijei;
= )\E:i + 2#6:‘”'&;1']' + 2/\5”5” + 4#6:‘”'51']'

= QW(gmn) + 2)\5”5“ + 4,U§ij§ij
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where

1
Emn = 5('&/771,71 + ﬂ/n,m)a Emn = E(QPm,n + (pn,m)

Therefore

AE:///V W(gmn)deL///‘/()\Eiigii+2u€ij§ij)dv
J[f = ff s
:///VW(Emn)dv+///Vaij<pj,idv
J[f = ff s
:///‘/W(Emn)dv+56.

Because u = (u1,u2,us) is a solution, the first variation 6 = 0 for any
admissible ¢ and we have

AS:///VW(émn)dV. (2.18)

The positive definiteness of W means that AE > 0 for any admissible ;.
Hence the set of u; are a global minimizer of £. O

This proof also establishes the virtual work principle:

Theorem 2.5. Sufficiently smooth functions wu; that vanish on Si are a
solution to the boundary value problem (2.11), (2.13), (2.14), if and only if
the equation

///v i AV — // y fipi dV — //S2 pig; dS = 0, (2.19)

with o;; given by (2.9), holds for any sufficiently smooth functions y; that
also vanish on 0S51.

The virtual work principle underlies the notion of weak solutions in
elasticity (Chapter 5). It is more general than Lagrange’s principle as it
can be extended to nonconservative systems for which total potential energy
functionals do not exist.

Hamilton’s least action principle is the basis for variational formulations
in dynamics. Let the kinetic energy density of a body be given by

1
K= gp(uf,t + Ug,t + u%t)
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In this case we say that a function is admissible if it (1) vanishes on S;
and (2) takes the values of a solution to the dynamical problem at time
instants t; and ¢5. This means that we consider the admissible variations
vi(x1,22,x3,t) of the solution to the problem such that goi‘sl = 0 and

<pi’ —t, = 0= <pi’ ity Hamilton’s principle is formulated as follows.

Theorem 2.6. A solution to a boundary value problem in the dynamics
of elastic solids (i.e., a solution to (2.7), (2.13), and (2.14)) is a stationary
point of the action functional

8A(u):/: (///V(K—W)dV+//VfiuidV—i-//SzpiuidS)dt

in the class of admissible functions that satisfy (2.13) and take prescribed
values coincident with the solution at time instants t1 and to. Conversely,
a stationary point of Ea4 in the class of admissible functions is a solution
to the dynamical boundary value problem for an elastic body.

Proof. The first variation of £4 is

2}
064 = / (/// (puitie = 0ijpja + fiws) AV + // bivs dS> o
t1 v ”

Integrating by parts, we have

ta
5514 :/ </// (fpuiyttgpi +O'ij,i§0j + fz%ﬁz) dV — // nkO'kngj dS
tl 1% S
ta
+// Di®i dS> dt+/// PUG P4 dVv
Sa 14

=0 and %}t:tl =0= gpi}t:tQ, SO

to
55,4:/ (/// (7p’u,j7tt+0'ij,i+fj>90j av
21 \4
- // (niok; + pj)e; dS) dt.
S

Hence if €4 = 0 for all admissible ¢;, the equations of motion (2.7) and
the boundary conditions (2.14) follow.

Conversely, if u is a solution to the dynamic problem, the first variation
of £4 is zero. The proof is similar to the proof of the corresponding part of
Lagrange’s principle. The difference lies in the sets of admissible functions
and in the domain of integration, which for Hamilton’s principle is V' x
[t1,t2]. The details are left to the reader. O

t=
t=t
But %}Sl
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We should note that Hamilton’s principle is not minimal; it yields sta-
tionary points of the action functional.

Other variational principles in elasticity bear names such as Castigliano,
Reissner, Washizu, Tonti, and Hashin-Strikman. Some are minimal or max-
imal like Lagrange’s principle; others are stationary like Hamilton’s prin-
ciple. In addition to their roles in proving existence theorems, they form
the basis for practical engineering approaches such as the finite element
method. Moreover, extensions of variational methods turned out to be use-
ful in the theory of more complex problems in nonlinear elasticity, plasticity,
viscoelasticity, and so on.

Reissner—Mindlin plate theory

In Chapter 1 we examined the plate equations in the framework of Kirch-
hoff’s theory. We used the energy functional (1.94) to derive the Euler—
Lagrange equations, which are the equilibrium equations for the plate, and
the natural boundary conditions (cf., equations (1.94)-(1.103) and Exer-
cise 1.16). These results are revisited later in this section. Now we consider
the more general plate theory of Reissner and Mindlin, also known as shear-
deformable plate theory of first order.

In Reissner—Mindlin plate theory, the bending of an elastic plate is de-
scribed by the equations

Mg+ Moz — Qv = pJ 01, (2.20)
Mgy + M2z o — Q2 = pJiau, (2.21)
Q11+ Q2,2 +p = phw s, (2.22)

where the M,z are the bending and twisting moments (a, 5 = 1, 2), the Qq
are the transverse shear forces, the ¥, are the averaged rotations of fibers
normal to the plate midsurface before deformation, w is the deflection, p is
the density, J is the moment of inertia, h is the plate thickness, and p is the
transverse load. We recall that the partial derivatives of the components
of vector functions are denoted by () o = 9()/0xq, where 1 = z and
x9 = y are Cartesian coordinates in the midplane. Note that Greek letters
are used for the subscripts. In shell theory, Greek indices usually range
over the values 1 and 2. The Latin indices typically employed in the three-
dimensional theory range over the values 1, 2, and 3.

The constitutive equations — i.e., the relations between the bending
and twisting moments, the transverse shear forces, and the surface strain
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measures — are given by

My = D(¥1,1 + via2), Mo = D(¥2,2 + v 1), (2.23)
D(1—-v
My = My = ¥(191,2 +Y2.1), (2.24)
Q1=T(wi+791), Q2=T(wz+7s2), (2.25)
EhR3
D= 5y ko, (2.26)

where E is Young’s modulus, p is the shear modulus, v is Poisson’s ratio,
D is the bending stiffness, I' is the transverse shear stiffness, and k is the
shear correction factor. For k, Reissner proposed k = 5/6 whereas Mindlin
took k = m2/12. Other values of k also appear in the literature.
In this theory, on the boundary contour 95 or a portion 957, kinematic
boundary conditions consist of given deflections and rotations:
wlyg, =W, Valyg = o (2.27)

Static boundary conditions are
naMag|yg, = M, Qalalyg, = Q- (2.28)

In (2.27)-(2.28), the quantities w?, 6, Mg, and Q) are given functions of
the arc-length parameter s. The quantities ni and ne are the components
of the outward unit normal to 0S.

In equilibrium, equations (2.20)—(2.22) reduce to

Mg+ M2 — Q1 =0, (2.29)
Mg+ Mazo — Q2 =0, (2.30)
Q11+ Q22+p=0. (2.31)

Solving (2.29) and (2.30) for @ and @2, and substituting these into (2.31),
we obtain

Mi111 +2Mio 12 + Moz oo +p = 0. (2.32)

The strain energy density for plate bending is

1
W(%a,@a')/a) = 5 [Ma,@%a,@ + Qo/)/a]

1—v
=35 %%1 + %%2 + 23112090 + T(%fz 4 23¢195091 + %%1)

r
(i +3),

3
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where 5,3 are the components of the bending tensor (or tensor of change
of curvature), and ~, are the shear strain components defined by
Hap = Va8 Yo =Wa + Yo
It can be directly verified that
ow ow
Qa = 6—
Ve
In the Reissner-Mindlin plate theory, the kinetic energy density is

K = %(w,t)z + % [(92,0)* + (02,0)°] -

Plate theory features variational principles similar to those in linear

Mz =

2.
s (2:33)

elasticity. Lagrange’s variational principle is exhibited in the following the-
orem.

Theorem 2.7. A solution of boundary value problem (2.29)—(2.31), (2.27),
(2.28) is a stationary point of the energy functional

E(w,ﬁl,ﬁg)://WdS—// pwdS — (Q%w + MJ9g)ds. (2.34)
S S 0852

Conversely, sufficiently smooth functions 9, and w that constitute a sta-
tionary point of € in the class of all admissible functions (i.e., satisfying
the kinematic boundary conditions (2.27) ), satisfy the equilibrium equations
(2.29)—(2.31) and boundary conditions (2.28). Moreover, at a stationary
point € takes its global minimum value.

Proof. 1If ¢ = 0 for all admissible variations, then (2.29)-(2.31) and
(2.28) hold. Indeed, let g, ¢1, and 2 be any three continuously differen-
tiable functions that vanish on 95;. Consider £(w+7o, 91 +7¢1, J2+7¢01)
and calculate its derivative with respect to 7 at 7 = 0. Using (2.33) and
integration by parts, we get

d
o0& = E(‘:(’w—l—Tﬁpo,ﬁl +T901,192+Tg01)

7=0

/ /S (Mag s+ Qalgoa + ¢a))dS — / / P dS
S
f/ Q%0 + Mpg) ds
0S->

=- //S(Ma&a - Qp)es + (Qa,a +1)podS

+ / [(naQa — Q%0 + (naMag — Mg)pg] ds.
9S>
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Since o, 1, @2 are arbitrary, from & = 0 it follows that (2.29)—(2.31) are
the Euler-Lagrange equations and (2.28) are the natural boundary condi-
tions for the energy functional £ from the Reissner—Mindlin theory.
Conversely, let w and ¥, constitute a solution to the boundary value
problem (2.29)—(2.31), (2.27), (2.28). We show that the first variation of
& vanishes on this solution. Again let g, 1, 2 be any smooth functions
that vanish on 957. Multiply (2.29) and (2.30) by ;1 and @9, respectively;
multiply (2.31) by ¢o. Then add the results and integrate over S. We
perform similar operations with the boundary conditions: multiply (2.28);
by ¢ and (2.28)2 by o, add the results, and integrate over 0.S,. We get

0= //S(Maﬁ,a —Qp)ws + (Qa,a +P)po dS
= [ [0%Qa = @20 + (Mo — M)oo] s
- — //S(Ma,@()o,@,a — P%o + Qa(‘PO,a + (Poz)) ds

+/ (@0 + MBps) ds
0Ss
— _5€,

which proves the assertion.

To show that a stationary point of £ is its global minimum, we use the
positive definiteness of the quadratic form representing the strain energy
W. Let w and 9, constitute a stationary point of £. Suppose @ and U,
also satisfy (2.27). Consider the difference between the values of the strain
energy functional for these two sets:

AE = E(,04) — E(w, Va).

It can be shown that
A€ = // W(Asxup, Ave) dS,
S

where
Asop =Vap —Vas AYa=Ua+Va—wao—Va

Hence £ takes its global minimum value at w, ¥,. a

This proof also establishes the virtual work principle in plate theory:
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Theorem 2.8. Sufficiently smooth functions w, ¥, that vanish on 051
constitute a solution of the boundary value problem (2.29)—(2.31), (2.27),
(2.28) if and only if the equation

//S(Mawﬂ,a + Quo,a + Qupa — Po) dS — /as (Qnpo + Mgpg) ds = 0,
2

(2.35)
with Mog and Qo given by (2.23)—<(2.25), holds for any sufficiently smooth
functions o, p1, e that also vanish on 057.

Equation (2.35) forms the basis for various versions of the finite element
method in plate theory.

Hamilton’s variational principle holds for dynamic problems in plate
theory:

Theorem 2.9. A solution to the dynamical boundary value problem
(2.20)—(2.22), (2.27), (2.28) is a stationary point of the action functional

5A=/: (//S(K—W)ds+//Spwds+/852(cz2w+Mgz95)ds> dt.

in the class of admissible functions (i.e., satisfying (2.27) and taking pre-
scribed values coincident with the solution at times t; and t2). Conversely,
a stationary point of E4 in the class of admissible functions is a solution of
the dynamical boundary value problem for the plate.

The proof mimics the proof of Hamilton’s principle in elasticity and is
left to the reader. As in elasticity, Hamilton’s principle for plates is not a
minimal principle; it is only a stationary principle.

Kirchhoff plate theory

The classical Kirchhoff theory is easily derived from the Reissner—Mindlin
theory. In the former, the rotations ¥, and the deflection w are related by

191 = —w,, 192 = —w,2. (236)

So in Kirchhoff theory, bending of the plate is described by one function:
the deflection w(z,y,t). This allows us to return to a simpler notation for
the partial derivatives of w. We shall write w1 = w;, w12 = Wy, etc. The
constitutive equations for the moments now take the form

M1 = —D(wyy + vwyy), Mg = —D(wyy + vwg,), (2.37)
M12 = M21 = 7D(1 - l/)wxy. (238)
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Equilibrium equation (2.32) reduces to an equation in w that we saw in
Chapter 1:

DAw +p = 0. (2.39)

The strain energy functional for a Kirchhoff plate is (1.94):

£(w) ://SWdS—//SpwdS, (2.40)
D

W= (w3, + W, + 2Vwepwyy, +2(1 — v)w?, ] . (2.41)

To avoid awkward formulas we assumed here an absence of boundary loads,
ie., QY = Mg = 0. See also the derivation of the natural boundary con-
ditions (1.102) and (1.103) in Chapter 1. In Kirchhoff’s plate theory, the
rotational inertia is usually neglected, so the kinetic energy becomes

h
K = %(wt)2.

Hamilton’s variational principle reduces to finding stationary points of the
functional

[2)

Eaw) = / (K — W + pw) dS dt
t1

on the class of admissible functions w(z,y,t) that take prescribed values

at times t; and to. The main results of the Kirchhoff theory parallel the

corresponding theorems formulated above in the Reissner—Mindlin theory.

Detailed formulations and proofs are left to the reader.

Interaction of a plate with elastic beams

In engineering, plates are sometimes reinforced with elastic beams. Deduc-
tion of compatibility conditions for deformation of a plate-beam system is
not a trivial problem. Mathematically, we must seek compatibility equa-
tions for a system of partial differential equations for the plate and a system
of ordinary differential equations for the beams. Physically, it is important
to analyze the deformation and tension fields in the neighborhood of the
joints between the plate and the beams.

Here we will consider the variational deduction of the equilibrium equa-
tions for a plate connected with an elastic beam over a portion of its bound-
ary contour (Fig.2.7). The approach is to represent the potential energy
functional as a sum of the energy functionals for the coupled plate and
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A

Fig. 2.7 Left: plate with part of its boundary contour supported by beam AB. Right:
detail of the beam support.

beam. Formulating kinematic compatibility conditions for the displace-
ments and rotations for the plate and the beam, we then derive static
compatibility conditions for the plate and the beam. These are the natural
boundary conditions for the energy functional.

To understand what is happening in this problem, we will treat a simpli-
fied problem that has its own significance. Consider a rectangular plate of
dimensions a and b, supported by two straight beams as shown in Fig. 2.8.
Suppose the edge AD is rigidly clamped and the edge BC is free from kine-
matic restrictions. The beams are clamped along AB and C'D. Physically,
bending of the plate implies rotation of the beam cross sections. Therefore
in describing the deformations of the coupled system we must account for
torsion as well as bending. Earlier we considered the bending equations for
a beam. The energy functionals for beam bending for AB and C'D are

b
Epi(ur) /E111 )? dy — /ql(y)ul(y)dy,
0
b
Epa(ug) / By (uf(y))? dy — / q2(y)ua(y) dy,
0

where the E, are Young’s moduli, I, are the moments of inertia of the
beams, and u,(y) are the vertical beam deflections.

Torsion in a beam is a classical problem in the strength of materials [29;
28]. The energy functionals for torsion in the beams AB and CD are

En(v) = / Dp1 (¥ (y dy, Ea(1ha) = / Dra(v5(y

Here 1), denotes the beam twisting angles per unit length, and Dz, is the
torsional rigidity.
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g

Fig. 2.8 A cantilever plate supported by two straight beams.

Thus the total potential energy functional of the plate with two rein-
forcement beams is

E(w, V1,02, ur, uz, ¥1,12) / Wdz dy — //pwdzdy
s
+ Epr(ur) + Ep2(uz) + Eu (Y1) + Ea (). (2.42)

Kinematic boundary conditions are the equations that describe rigid clamp-
ing of the plate along AD, clamping of the beams at points A and D, and
the equality of the twisting angle to zero at A and D:

w|y:b =0= ﬂl‘y:b = 191|y:b’

=0= ¢1\y:b = wgyy:b. (2.43)

u1 ’y:b = uz‘y:b

Kinematic compatibility of deformation for the plate and beams requires
equality between the defections of the plate edges and the beams,

ui(y) = w(0,y) = ri(y), ua(y) = wla,y) +ria(y), (2.44)

and equality of the corresponding rotation angles:

V1(y) = 01(0,), Yaly) = V1(a,y). (2.45)

The kinematic compatibility conditions (2.44) describe coupling between a
plate and a pair of beams having circular cross sections of radius r as in
Fig. 2.8. Clearly this is not the only way to fix beams to a plate. For beams
of more complicated cross section, the kinematic compatibility conditions
can differ from (2.44); however, the analysis will be similar.
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By (2.44) and (2.45), the energy functional takes the form

E(w,¥1,92) / W dx dy — // pw dx dy
S

+ gbl( (Oa y) —rth (Oa y)) + gb?(w(aa y) +rth (aa y))
+ €t1(191 (0, y)) =+ th (191((1, y)) (246)

Natural boundary conditions for the plate follow from the condition §€ = 0.
We have

0=0E= / / aﬁ a QB)SOB + (Qa,a +p)500] dx dy

+ / (naMaﬁwa + naQa‘PO) ds
0852
b
+/ [Er]i (wyy — rd1yy) (Poyy — T1yy) — q1(o — 1¢1)] ’x:O dy
0
b
+ / [Eala(wyy + rd1yy) (Poyy + 701yy) — @200 + 1¢01)] |Z:a dy
0

b b
+ / DT1191y501y|Z:0 dy + / DT2191y§01y|$:a dy
0 0

after use of integration by parts.

In this problem, 955 is the contour ABC'D. On side AB we have
ny = —1 and ny = 0. On side BC we have n; = 0 and nys = —1. On
side CD we have n; = 1 and ny = 0. In the equation 6€ = 0, the integral
over S and the contour integral are zero independently. This is achieved
by appropriate selection of admissible variations. Vanishing of the surface
integral yields the equilibrium equations (2.29)—(2.31). Vanishing of the
contour integral yields

b a
/0 (Miges + Qureo)|,_ody — /0 (Magpp + QQ@O)‘FO dx
b
+/ (Miges + Qipo)|,_, dx
Ob
+ /0 [Er I (wyy — 1014) (Poyy — TP1yy) — @1 (0 — T01)] ‘x:O dy
b
+ /0 [E2 Iz (wyy + 1014y ) (Poyy + TP14y) — q2(P0 + 7¢01)] ‘m:a dy

b b
+/ DTlﬂlysﬁly’IZO dy+/ DTzﬂlywly’I:a dy = 0.
0 0
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Integration by parts reduces this to the form

b
/ (Migps — Dridiyyer + Qupo
0
+ Evli (wyyyy — rd1gyyy) (o — re1) — q1(eo — T‘Pl))‘xzo dy

f/ (Mappp +Qz<ﬁo)\y:0 dx
0

b
+/ (Migpg — Dratiyyer + Q1o
0

+ Ex Iz (wyyyy + rdiyyyy) (0o + 1e1) — g2(p0 + T‘PI))‘x:a dzx
+ [ElIl (wyy — r1yy) (Poy — 7"‘Ply)’gc:o

—E1 I (wyyy — 7014yy) (90 — 7"801)‘1:0}

+ [E2I2(wyy + rdiyy) (Poy + 7"<Ply)|z:a

—Ep Iz (wyyy + 10145y ) (00 + 7"%01)}1:@]

y=b y=b
+ (Drduer],o) |+ (Drdyen|,_)| =0
y=0 y=0

The functions ¢g and ¢, are zero on AD, i.e., when y = b. As they are
arbitrary, we get the following set of natural boundary conditions:

AB: M1 — DpiY1yy +7Q1 =0, Ma =0,
Q1+ Erli(wyyyy — rdiyyyy) — @1 =0,
BC: My =0, Myp=0, Q2=0,
CD: My — Doty —7Q1 =0, Mz =0,
Q1+ Eala(wyyyy + rdiyyyy) — g2 = 0.
At the corner B = (0,0) the conditions
Wyy — 101y = Wyyy — T01yyy =0, Y1y =0
hold, at the corner C' = (a,0)
Wyy + 101y = Wyyy +101yyy =0, 1y =0
hold, while at A = (0,b) and D = (a, b) we have
Wyy — T01yy =0 and  wyy + 1701yy = 0.

We note the following.
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(1) On a plate edge supported by a beam, the boundary conditions contain
the functions and their normal derivatives as for an unsupported edge.
But they also contain derivatives of the functions in the direction tan-
gential to the boundary contour. Moreover, the tangential derivatives
are of higher (namely, second and fourth) order.

(2) At the beam endpoints we also see natural boundary conditions. These
correspond to the conditions given at corresponding points of the plate
edge. Mathematically, such conditions can lead to singularities in the
solution.

(3) In this elementary problem we have shown how to obtain the compat-
ibility conditions for a Reissner—Mindlin plate with a classical beam of
symmetric cross section clamped to the plate edge. For other ways of
establishing the compatibility equations for coupled beams, plates, and
shells, see, e.g., [22; 4].

Let us return to the more general problem of Fig.2.7. The kinematic
conditions for coupling between the plate and a beam along AB take the
form

u:(w—rﬂn)‘AB, w(s):ﬂnE(n1ﬂ1+n2192)‘AB.

Here u(s) is the vertical deflection and t(s) is the twisting angle of the
beam. It follows that the energy functional of a plate with edge reinforced
by a beam along a portion of its contour is

5(’[0,191,192)://WdS*//p’LUdS*/ (Q%w + Mgig) ds
S S 0S2

1 (B B
+3 / [EI(w” — r9)? + Dr(9,)*] ds — / qu ds,
A A
(2.47)
where () = %(-). Skipping some technical details, we present the final

form of the conditions on the reinforced edge:
M, — Dr9! +rQ, =0, M,=0, Q.+ EI(w" —r9)")—-q=0,
where
M, =noMagng, M;=—-noMqns+naMaoni, Qn =mnaQq.

It is worth noting that in many cases, the variational derivation allows us
to formulate correct natural boundary conditions. However, a purely formal
application of this method can lead to errors. Sometimes an understanding
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of the physical features of a model are more important than mathematical
rigor. This can be seen in the following example.

Example 2.10. Consider a horizontal square plate with a vertical rod of
length a attached at point (zg, yo) and loaded with a force P and a twisting
moment M at the endpoint (Fig. 2.9). Find the natural boundary condition

lp

(5.2

/

Fig. 2.9 Plate with a vertical rod.

related to contact between the rod and plate.

Solution. Clearly the rod does not bend, hence the rod model is justified
(instead of a beam model). The energy functional is

Ew, 01, 92y, ) = // Wds+ / (BA(')? + Dp(s/)?) ds
— Pu(a) — M(a), (2.48)

where u(s) is the longitudinal displacement along the rod and t(s) is the
twisting angle. Taking into account the kinematic compatibility conditions
u(0) = w(xo,yo), we get a natural boundary condition that corresponds to
the action of a point force at (zq, yo):

Q11+ Q22+ EAU(0)6(x — 20,y — yo) = 0.

There is no problem with this physically. But if we consider the influence
of the drilling moment M, we see that there is no kinematic compatibility
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condition relating v, w, and 19¥,. Correspondingly, the torsion problem for
the rod yields the natural conditions

Dry'(0) = 0, Dri'(a) = M.

Hence the torsion in the rod does not appear to be affected by clamping to
the plate: the lower end of the rod appears to be free. Clearly, this strange
conclusion must come from physical assumptions hidden in the model. The
Reissner—Mindlin plate theory is derived under assumptions in which the
drilling moment does not enter as a load. In this situation we could use
a more general plate or shell theory (see [17; 4]). Alternatively, we could
consider the three-dimensional tension-deformation fields near the coupling
points, using three-dimensional elasticity for both the plate and rod. O

2.3 Conservation Laws

The conservation laws (conservation of energy, momentum, etc.) play a
central role in physics. They are all statements of a similar nature, but
exhibit very different external forms. A united mathematical presentation
of the conservations laws related to the calculus of variations is the goal of
this section.

Let u;, ¢ = 1,...,m, be functions depending on the variables z;, j =
1,...,n. Functions u; describing a physical object are defined by some
simultaneous differential equations

lp(xj,ui,ui7j) ZO, p= 1,...,k, (249)
where for brevity we have denoted u, ; = Ou;/Jx; as in elasticity. Let P =
(P1,...,P,) be a vector function with components P, = Py(z;, ui, wij),
q=1,...,n. The equation

dPy dP,
2. =0 2.50
dxy ot dz, ’ ( )

which holds for all solutions of the system (2.49), is called a conservation
law for the physical object. Here dP;/dx; denotes the complete derivative
of P, with respect to x;; for a function g(z;, u;, u; ), we have

d:Ck 8:ck 8u1 8:ck i 8ui,j 8:1:k '

In the following part of the chapter, Einstein’s summation convention will
be in force.
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Using the n-dimensional divergence operator, we can rewrite (2.50) in
the form

divP = 0. (2.52)

Let us relate the definition (2.50) of a conservation law to some known
physical conservation laws.

Let n = 1; that is, consider a system described by ordinary differential
equations with respect to some unknown functions wu;(x) of the variable z:

lp(z,ui,uf) =0, i=1,...,m. (2.53)

Equation (2.50) reduces to

®_,

dx
and it follows that any solution of (2.53) takes the form P = constant. This
is the typical form of a conservation law in physics: over any solution of
(2.53), the value of P is preserved. In the theory of ordinary differential
equations, an equality of the form P = constant valid for any solution of
a system is called a first integral. First integrals play an important role,
as they provide general information about solutions in the absence of the
solutions themselves. A set of m independent first integrals is equivalent
to the solution of (2.53).

The familiar law of energy conservation for a particle in the gravitational
field can be broadly extended to particle systems, to rigid body dynamics,
and to other objects in the same general form: the sum of the kinetic
energy K and the potential energy W is constant with respect to time ¢.
This relation K + W = constant can be written in the above form of a
conservation law by time differentiation:

d
—(K =0.
dt( +W)=0

This equality can also be regarded as the result of minimizing K + W
over the solutions of the system of equations governing some object; it is
a functional dependent on the functions that describe the object. This
is another reason why conservation laws are discussed in the calculus of
variations.

(2.54)

Consider the more complex case of a system of equations with u; de-
pending on two variables (z1, 23). With n = 2, (2.50) takes the form
ap, , dp,

=0. 2.55
dl‘l d,TQ ( )
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Integration over an arbitrary domain S and application of the divergence

0= // divP dxi dxs = / (P1n1 + P2n2) ds,
S a8

where 95 is the boundary contour of S (Fig.2.10) and n,ns are the com-

theorem give

ponents of the outward unit normal n to 9S. This is the integral form of
(2.55). From a physical standpoint the quantity P-n = Pyn; + Pong is the
flux of P through some portion of S over a unit time interval. Thus, for
solutions of (2.49), the flux P through 05 is zero.

A X

\

Fig. 2.10 A two-dimensional domain.

In the three-dimensional case, the conservation laws for the mass of a
liquid or for electric charge distributed in space also fall under the above
definition of a conservation law. Let p = p(x1, 22, x3,t) be the density of
a liquid that depends on the Cartesian space coordinates (x1,x2,x3) and
time ¢. The mass of liquid contained in an arbitrary volume V' at time ¢ is

J[[ s aasyav

During the time interval [t1, 2], the change of mass within V is

/// p(x1, x2,3,t2) dV — /// p(z1, z2, 23, t1) dV.
v v

Assume this change of mass is due purely to flux of liquid through the
boundary AV of V' over the same time interval. The flux is given by

/tt (//avpv'nd5> dt,
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where v is the velocity of the particle having coordinates (z1, 22, z3) and n
is the outward unit normal from 0V. The divergence theorem permits us

to rewrite this as
12
/ (/// div(pv) dV) dt.
t1 1%

So in integral form, mass conservation is expressed by the equality

///V p(wlvw%w?nh)d‘/—///Vp(w1,:vz,x3,t1)dv
= /1:2 (///V div(pv) dV> dt.

Dividing through by t2 — t1, letting to — ¢1, and rearranging slightly, we
find that at t = t; the integral equation

1], (3 i)~

holds for any volume V. Provided the integrand is a continuous function,
we see that at any interior point of the liquid
8t —div(pv) =0.
The law of charge conservation may be obtained by simply changing the
interpretation of p to electric charge density. Conservation laws for other
quantities, whose values in a volume can change only via flux through the
boundary surface, follow similarly.
We see that mass conservation takes the general form
dPy, dP, dPs; dPy
doy * dwy  dwy | db
with Py = p and Py = —puy for k = 1,2,3. Clearly (2.56) can describe
more than just the conservation of mass or charge. By reversing the steps

=0 (2.56)

taken above, we can obtain the integral form of this conservation law:

d
dt v ov

where n = (n1,n9,n3). Physically, this states that the change of quantity
P, in volume V is determined by the flux Pini + Pane + Pang over the
boundary OV

Many physical conservation laws take the form (2.57). Again, conser-
vation laws play a pivotal role in physics. In §2.4 we show how they are
obtained for a general system of equations representing the Fuler-Lagrange
equations for a functional.
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2.4 Conservation Laws and Noether’s Theorem

We would like to derive the conservation laws for systems of differential
equations representing the Euler-Lagrange equations for certain function-
als. One approach was proposed by Amalie Emmy Noether (1882-1935).
It employs a type of invariance of the functional under infinitesimal trans-
formations.

The simplest case

Recall that the simplest functional from the calculus of variations,

b
Fly) = / f(y(@). v (@) de, (2.58)

depends on an unknown function y(z) of the variable z and has Euler
equation

d
——f, =0. 2.59
We seek the quantity P in the corresponding conservation law

L Pl yla). v/ @) = 0.

Consider the question of infinitesimal invariance of F' under transformations
of the form
x—x* =x+el(z,y), (2.60)
y =y =y+ed(a,y), (2.61)

where ¢ is a small parameter and £(z,y) and ¢(z,y) are given functions.
Denoting the value of F' under this change of variables by F*, we have

b
dy*
F* *) * * d *
(v") /a f<x Y ,—dx*> x
where a* = a + ££(a,y(a)) and b* = b+ €£(b, y(b)).

Definition 2.11. The functional F' is infinitesimally invariant under the
transformation (2.60)—(2.61), for some fixed functions £ and ¢, if the equal-
ity F* = F holds in the asymptotic sense up to linear terms in € as € — 0
for an extremal y = y(x) of F'; this means that

lim F* = F  and limF —F

e—0 e—0 e

= 0. (2.62)
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We may also say that F' has variational symmetry with respect to this
infinitesimal transformation.

Later on, we will see how one may relate the variational symmetry of
F with conservative laws for solutions of the corresponding Euler equation
for F.

Very provisionally, the geometrical relation between F' and F* may be
envisioned as in Fig.2.11. In the terminology of asymptotic analysis, F'

AF —
F*y &)

¥

»
>

Fig. 2.11 The values of F' and F* coincide on an extremal with respect to which we
apply Definition 2.11, and the influence of the transformation is absent in the terms that
are linear in €.

(which does not depend on ¢) and F'* are asymptotically equal up to linear
terms in a neighborhood of ¢ = 0.

With some smoothness assumed for F', relations (2.62) can be rewritten
as

dF*

F*l.—o = F.
|€—0 ) dE

=0.

e=0

Let us express the variational invariance property of F' in terms of ¢, &,
and f.

Theorem 2.12. The functional F is infinitesimally invariant under the
transformation (2.60)—(2.61) if

) 9 dp  ,de\ 8 d¢
o (T8 T

3 dw] Ff=0 (2.63)
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or, equivalently,
d , , d
@ -ty +EF |+ G- | fy— o fr| =0 (264)

Proof. To investigate some consequences of the variational invariance of
F, let us express F* in terms of z, y, and y’. First we derive dy*/dz*. Tt

is clear that
d dx d dz\ "' d e\t d
— — — = 1 _|_ £— -
dxr* dz* dx dzr dzr dzr dx

where we have used (2.51). So

dy* e\ [, do
= 1 ] —_—
dxr* ( +Ed:c) (y +€d:c
and therefore

, —1
F*:/ f<z+5§(z,y)7y+€¢(z,y)v (1+6%> (y/+€%)>
X (1 + 5%) dz.

Let us expand F'* in a series with respect to € at zero, explicitly showing
the linear part of the expansion. Using

d d
(1+5d§) 1—5£+O(52)

we get

dy . (do de
dw*ere(d:v dw)JrO( )

In a neighborhood of € = 0 we expand the integrand in a Taylor series with
respect to €, keeping only terms of the first order of smallness in e:

b
:/ f(z,y,y)dx

ve [ ncrsorsy (2 -v) %) w o)

B L) dp  ,de\ O de
—F+€/a [fg'f'(ba_y'i‘(E Y )ay ]fd +O()
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Clearly F is invariant in the above sense if the integrand of the integral
coeflicient of € in the expansion vanishes:

) 9 dp  ,d¢\ o de¢],
oo (6 v oyt @)1=

for some functions £ and ¢. This proves (2.63). Next, in (2.63) we select
the first terms with the derivative d/dx that we see in (2.64). We have

(553
v da

dz
d
= {6~y + €]~ by 44 ey Y fy €D
d
=0 —vOfy +¢f] - %fy/ +y"efy + y’sﬁfy/
—&(fe+ Y fy +y" fy)
d d
= O —vOfy +&f] = (6 - &) fy = (€fe +¥/ES)
so that
dop  ,dg\ 0 d¢
o[ oty () )
: , d
-4 [(qﬁ—yé)fyf rer] +6-an [n- ]
This completes the proof. O

A consequence of the variational invariance of F' under an infinitesimal
transformation is Noether’s theorem.

Theorem 2.13. Suppose that for an extremal y, the functional F is in-
finitesimally invariant under (2.60)—(2.61). Then a conservation law of the

form
d
—P=0 2.65
o (2.65)

holds, where
P=ofy +&(f =y fy) (2.66)
In this case, P is termed a flux.

A more general version of Noether’s theorem was published in 1918
(see, e.g., [23]). The above formulation is commonly used in physics and
engineering.
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Proof. In the proof of Theorem 2.12, we saw that variational invariance
yields the equation used to find the transformation functions £ and ¢:

< [<¢ — ) fy + 54 (6 - &) [fy -z fy,] _o.

Since y(x) is an extremal of F', it satisfies the Euler-Lagrange equation
(2.59). Hence the second term is zero and (2.64) takes the form of (2.65):

d , B
E[(Q/)_QOJCZJ’ +§f] =0.
Because
(@ =y fy +&f = ofy +E(f =¥ fy),
we obtain the needed expression for P in (2.66). O

Thus we have established that the infinitesimal invariance of F' involves

the conservation law in one dimension

d
—P =0.
dzr

Under this condition, the transformed functional F'* takes a simple form:
b
dP
F*:F+E/ d—d$+0(€2)
o dzx

=F+e(P|,_, —P|,_,)+0(E. (2.67)

Let us pause for a brief overview. The condition for invariance (or
variational symmetry) of the functional

b
F = / f(x,y,y') de
under the transformation
x—a" =x+ef(x,y), y—=y =y+eo(z,y), (2.68)
is

0 0 d¢ ,dé 0 gl ,
|:€£+¢a—y+(a—ya>a—y,+aj|f—o (2.69)

The functions £(z, y) and ¢(x,y) should be found from equation (2.69). We
should note that finding variational symmetry is a very nontrivial problem.
It consists of finding two unknown functions &(x,y) and ¢(z,y) such that
(2.69) holds for all y(x) satistying the Euler-Lagrange equation

d
fy - %fy/ = 0.
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Certain variational symmetries, i.e., the functions &(x,y) and ¢(z,y), can
be suggested by the form taken by the integrand of the functional — when
it is independent of some of the variables, for example, as will be shown
below. In the general case, some nontrivial and less obvious symmetries
can be identified using (2.69) (and similar equations for other cases), e.g.,
via symbolic machine computation. Nontrivial conservation laws have been
regularly discovered up to the present time. On the other hand, in physics
(and particularly in mechanics), there are known systems of equations pos-
sessing “poor” sets of symmetries; in these cases the conservation laws were
established by other methods.

If £(z,y) and ¢(x,y) are known and (2.69) holds, then the conservation
law is easily obtained from

d
EP:O’ with P =¢fy +&(f —y'fy). (2.70)

Let us consider a particular case.

Example 2.14. Find a conservation law for the functional

b
F- / ) de.

Solution. Consider the transformation (which we can write out because
we already know the answer to the problem)

r =zt =x+e, y—y =y.

In other words, we took £ = 1 and ¢ = 0. Equation (2.69) reduces to
fo = 0, which evidently holds. Then from (2.70) we get the expression

P=f- y/fy/
for the flux. O

Functional depending on a vector function

The above considerations can be easily extended to the functional

b
F(y) = / fla,y,y') dz, (2.71)

where y = (y1(2),...,ym(z)). We will consider the invariance of F' under
a transformation of the form

x—=xt=x+el(ny), vi—y =vyitedi(zy), i=1,....m (2.72)
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which can be rewritten in vector notation as

r— " =x+e(x,y), y =y =y +eo(z,y).

With suitable changes in the meanings of F* and F', Definition 2.11 con-
tinues to apply. We present only the steps that involve more than trivial
modifications from the case where F' was given by (2.58). Expanding the
new F* in the vicinity of zero out to linear terms, we get the following
relation between F* and F:

b
. ) ) )
prerie e vog ooy

oy ey 9 don 1 dE 0 d
+<d:z: yldw) oy + dz "z angrdx J de.

We conclude that a sufficient condition for invariance of F under the trans-

d dgi  ,d§\ 0 d&] .
{58 +¢1 : <d$1d$>ay+%]fo, (2.73)

formation is

where summation over ¢ is implied. In vector notation this is

[s—+¢ v, +(j§’ Ly ) v, +d§}f=0- (2.74)

As in the case of the simplest functional, (2.73) or (2.74) can be reduced to
d , , d

:%[d’vy/f'i‘f(f_y/vy/f)] +(¢)—§y/) (vyf_%v)ﬂf) :0

Since y satisfies the Euler-Lagrange equations (1.62), we arrive at the con-

servation law
d
%P:O with P:¢-Vy/f+§(f—y’~vy/f). (2.75)

A reformulation of Theorem 2.12 for (2.71) is left to the reader. As an
example, we derive the conservation laws for particle motion in a central
force field.

Example 2.15. Obtain conservation laws for the functional

F= /{ 1+2)W(r)]dx, r=r(z)=/yi +u3,
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where W (r) is the potential of central forces acting on the particle with
coordinates y; and yo, which is a differentiable function of r, and x plays
the role of the time variable.

Solution. In this example, f is the Lagrangian of the unit point mass
in a central force field; it equals the difference between the kinetic energy
K = (> +,%)/2 and the potential energy W of the particle. The Euler-
Lagrange equations are the equations of motion of the particle:

y// _ dW U1 y// _ aw Y2
1= 57 5 3o 2 = g 3., 3o
dr \/yi +y5 dr \/y? +y3
It is clear that F' possesses two symmetries. The first is with respect to

translation along the x-direction by a distance ¢, which we express as the
transformation

=" =x+e¢, y—oy =y.

The second is with respect to rotation of the vector y through an infinites-
imal angle €, which is described by the transformation

r—at =, Y1 — Y] = Y1 + €ya, Yo — Y5 = —E€Y1 + Yo.

We see that F' does not change when y rotates through any finite angle ¢,
i.e., with respect to the finite transformation

Y1 — Y] = Y1 COSE + yYasine, Y2 — Y5 = —y18ine + Yo cose,

but at present it will suffice for us to consider the conservation of F' over in-
finitesimal angles €. Invariance with respect to the first symmetry transfor-
mation is similar to that treated in Example 2.14; it yields the conservation
flux law P; = constant where

1 2 2
Pr=f=yify; —vafu, = =3 (yi + Y5 ) - W(r).

This is the energy conservation law: the sum of the kinetic and potential
energies is constant, K + W = constant. For the rotational transformation,
in general terms we have £ =0, ¢1 = yo2, ¢2 = —y1. Then (2.75) reduces to
P, = constant with

Py =yafy —y1fy, = yay1 — v1vs-

In celestial mechanics this law is known as the conservation of kinetic mo-
mentum; it was published by Johannes Kepler in 1609. g
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2.5 Functionals Depending on Higher Derivatives of y

Functional depending on y”’

Let us extend the above considerations, regarding infinitesimal invariance
with respect to transformations, to functionals dependent on higher deriva-
tives. We start with a dependence F on y”:

b
F= / f@y.y,y") da.
Consider the change of F' under infinitesimal transformations of the form
v oot =z+el(ny), y—oy =y+ted(ny). (2.76)

Now F™* denotes

b* * 2, %
- . Ayt dy .
F (y ):/ f(:l? Y 7d$*7d$*2>d:€'

To define infinitesimal invariance of this F' with respect to the transforma-
tion (2.76), we again use Definition 2.11 with the new F' and F*.

Theorem 2.16. For an extremal y, let F' be infinitesimally invariant under

the transformation (2.76). Then a conservation law of the form

d
d:z:

holds.

S lerr 0 (- ghir) + frgto- )] =0 )

Proof. We express F* in the initial variables x and y, first deriving
d*y*/ dz*? in these terms. Using the formula

d de

dz* (1 te d:c) dx’

dy* e\, do
= (14+& i

dz* ( +€dw) <y e )

L) ()]
(1re) " () - (1) S ()

we get

and so

Py d dy* de\
v = y:<1+5_§)

dz*?  da* dz*
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Taylor’s expansion of d?y*/ dz*? with respect to ¢ at zero gives

de* d2¢ d§ d2§
dz*2=y”+a<d s -2 Y >+O( )

Thus we get

' ,d
= [ tewarae e [ [resnos s (v

2 2
+fy~(M 2%y d£)+fﬂdx+0(e2>

dx dx?
br o d JdeN 9
~re | [56 Ty +<di v §)ay
¢ pde d%E dg§
+<dx2 2y %y@> ay” ]fd +0(E).

As in the case of the simplest functional, we obtain the sufficient condition
for infinitesimal invariance of F' as the equality to zero of the integrand of
the integral coefficient of e:

0 0 do ,dEN 0
o ront (208 o

&2 de d2§ o de
9" 8 S as
+ (d:vQ Ve Y dw2) oy + dx

] f=0. (2.78)

This condition can be presented in another form:

(Ey )

fy +§ _fy

ol

T |ossver-van-

, d d?
+(¢_€y) [fy_afy"i'@fy”] =0. (2.79)

The second term vanishes on solutions of the Euler-Lagrange equation,
hence the infinitesimal invariance condition for F' reduces to P = constant
with

d(&y’ d d d
P=ofy+e(—o/fy) - L0 ey L B0, oLy,
d
—¢f+ 0= Iy - he| + e o- @) (2.80)
as stated in the theorem. O

To illustrate, let us consider a functional dependent on y” only.
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Example 2.17. Find a conservation law for the functional

b
F= / f") da.
a
With f = EIy"?/2, this becomes the strain energy functional for a beam;
use this fact to illustrate the results.
Solution. Clearly, F' possesses a few types of symmetry.

(1) It is invariant with respect to translation along the z-direction by a
distance €, i.e., with respect to the transformation

Tt =x+e, y—yt=y.

With £ = 1 and ¢ = 0, equation (2.80) yields the following expression for
the flux:

d
P=f+ y/%fy” - y//fy”-
For the beam this law reads
EI(y'y" —y"?/2) = constant.
(2) It is invariant with respect to translation along the y-direction by a
distance e:
r— " =ux, y—y =y+e.

So with the corresponding ¢ = 0 and ¢ = 1, equation (2.80) gives

d
P = 7—fy//,

dx
For the beam this takes the form
—EIy" = constant

and expresses constancy of the shear force along the beam. Indeed there is
no load acting on the beam.

(3) It is invariant with respect to translation along the y-direction by a
distance ex:

x— ot =ux, y =y =y+er.

With £ =0 and ¢ = z, equation (2.80) gives

d
P = 7$%fy// + fy//,
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For the beam this is
EI(y" — xy"") = constant.

Differentiating this, we get EIzy® = 0. In terms of the shear force Q =
—FEIy" we get Q' = 0 or Q = constant, which is mechanically evident
because the beam is loaded at its ends. 0

Because f = EIy"* /2 is a quadratic form, beam theory provides addi-
tional symmetries as shown in the next example.

Example 2.18. Find an additional conservation law for the functional

I >
in/ EIy"* dx.

Solution. The quadratic nature of F' implies variational symmetry with
respect to coordinate scaling of the form y — k“y, where k is the scale
parameter and « is a value to be determined. The corresponding transfor-
mation

r— " =x+e¢x, y —y* =y + aey,

is obtained by changing k to 1 4+ ¢ and dropping terms with " for » > 1.
Thus we take £ = z and ¢ = ay. Substituting £ and ¢ into (2.78), we
find that o = 3/2, with which (2.78) holds. Hence F has a symmetry with
respect to the above transformation if « = 3/2. The respective flux is

2
xy” o gyy/// +:17y’y”’

1///
+2yy .

P=FEI|-

The reader can verify that P’ = 0 when y® (z) = 0, the Euler-Lagrange
equation for the functional, holds. O

Conditions for variational symmetry of functionals depending on higher
derivatives of y, along with their respective conservation laws, can be found
in [23]. See also Exercise 2.12.
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2.6 Noether’s Theorem, General Case

Functional depending on a function in n variables and its
first derivatives

Let us consider Noether’s theorem for the functional
u) = / flzi,u,u,;)dV = / f(x,u, Vu)dV, (2.81)
1% 1%

where x = (21,...,2,) and Vu = (u,1,...,u,,) is the gradient of u. As
before, we consider the infinitesimal transformations of the form

x =) =x; +e€i(x,u), i=1,...,n,
u—u" =u+ep(x,u). (2.82)
So the transformation is defined by a set of n+ 1 functions &, =1,...,n,

and ¢. The vector form of (2.82) is
x = X" =x+e€(x,u),
u—u" =u+ep(x,u).

Variational symmetry of F' is again expressed by the formulas

lim F* — F and  lim _on,

e—0 e—0 IS

where
F* = flay,u', 5= ) dV* = f(x*u*, Vi) dvV™,
and V™ is the new integration domain corresponding to the change x — x*.
The existence and form of the conservation laws under infinitesimal
invariance is given by the following version of Noether’s theorem. In this
case the flux is a vector function P.

Theorem 2.19. For an extremal u, let the functional F be infinitesimally
invariant under tmnsformation (2.82), i.e

do d&,\ 0
i = - ii| f=0. 2.
{5 ozx; + (b <d:1:i u’pdxi) ou ; | f=0 (2:83)
Then a conservation law of the form
divP =0 (2.84)

holds, where

o o
P=(P,....,P,), P = 8uf- (féik—wkan_). (2.85)
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Proof. We proceed as in the proofs of Theorems 2.12 and 2.13. We find
the linear approximation of F* with respect to €, neglecting higher-order
terms, and obtain the variational symmetry condition in terms of £ and
¢. Then, remembering that the extremals of F' satisfy the Euler-Lagrange
equation, we cast the variational symmetry condition in divergence form.

To deduce the form of F*, we derive expressions for the partial deriva-
tives of u*. The formulas for a change of variables in partial differentiation
are

0 Oz 0 0  Oxy 0
dxr 8—562‘8—5616’ dx;  Ox; 817,’;’

3

where we sum over the repeated index k. The transformation matrix takes

the form
oxj d&y,
=0d; .
8:01- k te d:l?l
The portion of the inverse of this matrix that is linear in ¢ is
aTk dfk 2
— =0k — O(e*).
Ox} k Ed:z:i +0(e%)
So we have

ai = Ozy; Ou = Oz <u7k+5%> :u,i+5<d¢ —u d§k> +O(52)'
k

Ox} o a—xfa—xk o a—xf dx; ’kdxi

Expanding F™* in a Taylor series with respect to € and dropping higher-order
terms, we get

= fx* u*, V™) dv*
V*
do d&y, o] AV
— i — d
/‘/f[x+5£,u+s¢,u7 +€<d$i U,kdwi>+o(€ )} G Vv
d d
e | {fxi§i+fu¢+fui ( g 5’“) +fdiv£] av + 0(e?)
1% “\dx; dx;
after using the formula
d dv* dg
— = =di
Eav |, dm -

for differentiating the Jacobian (see, e.g., [6]).
Thus, when F' has variational symmetry, the following integrand is zero:

d¢ &

U,k
d:z:i ’ d:z:i
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Formulation (2.83) for variational symmetry is proved.

By technically cumbersome transformations it can be shown that (2.83)
takes the form
d¢ &

— U
d.”L'i ’ d:z:i

d of

+ (¢ — &iui) (fu - %fu) =0.

K2

)+fdiv£

+ &k (f(sik — Uk ;uf_ )}

The last parenthetical term vanishes on extremals u, i.e., on solutions of
the Euler-Lagrange equation. So (2.83) can be reduced to divergence form,
and a conservation law (2.84) holds with flux given by (2.85). O

Let us consider some special cases.

Example 2.20. Find a conservation law for the functional

F:/Vf(Vu)dV. (2.86)

Solution. Since f, = 0, the functional has the symmetry with respect to
the transformation

x — X" =x, u—ut=u+e.

Correspondingly we have £ = 0, ¢ = 1 and the conservation law
=0
dz; fu’l

This law is uninteresting, as it coincides with the Euler-Lagrange equation

for F, so we proceed to another possibility. Because 0f/0x, = 0 for k =
1,...,n, the functional has symmetry with respect to the transformation

x = x*=x+4el, ix=1(0,0,...,1,...,0), u—u* =u,

where iy is the kth Cartesian basis vector. This corresponds to & = i and
¢ =0. As k runs from 1 to n, we obtain the n conservation laws

0
diVPk = 0, Pk = fik - (ik . V’U,)a—vf:u,

where we denote

af<3f 3f)

OVu  \Ouy’' " Ou,



146 Advanced Engineering Analysis

In component form,

Pk: (—u,kﬁ,...,f—u
8u71

of of )

8u7k ’ ’ 8u7n

Example 2.21. Treat the functional

1
F= 5//S(ui—uf/)dgcdy,

noting that its Euler-Lagrange equation is the wave equation gz, —uyy = 0.

Solution. We use the solution to Example 2.20 with f(Vu) = (u} —uZ)/2
and x1 = z, o = y. Symmetry with respect to the translations in the
u-direction gives

divP =0, P = (ug, —uy).

Symmetry with respect to translations in the x- and y-directions gives

1 1
divP; = O, P, = <—U2 - —’LL2 um“y) s
. 145 1,
divP; =0, Py = | —uzuy, §um + §uy .

See [23] for other conservation laws associated with the wave equation. O

Functional depending on vector function in several variables

In physics, and in mechanics in particular, we encounter functionals more
general than those treated above. Let us consider a functional of the form

F(u):/Vf(xz,uj,uw)dv:/Vf(x,u, Vu)dV, (287)

where x = (z1,...,2,), u = (u1,...,Un), and Vu denotes the matrix of
the first partial derivatives Ou;/0x; = u;;forj=1,...,mandi=1,...,n.

By analogy with previous cases, we consider infinitesimal transforma-
tions of the form

x; — ) = x; +e&i(x,u), i=1,...,n, (2.88)
u; — u; =uj +ep;(x,u), ji=1,...,m. (2.89)

So the transformation is defined by m + n functions & and ¢;. In vector
form, (2.88) and (2.89) are

x = x* =x+e€(x,u), u—u' =u+egp(x,u). (2.90)
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The conditions for variational symmetry of (2.87) in terms of £ and ¢ are
given, along with the formulation of the conservation law, in

Theorem 2.22. For an extremal u, let F' be infinitesimally invariant under
the tmnsformation (2.88)—(2.89), i.e

Sig - +¢>Jaa <@u- @) 0 +§“}f0. (2.91)

dx; P du; ou; i
Then the conservation law divP = 0 holds, where P = (Py, Ps, ..., P,) and
8f of
P, = Oik — — . 2.92
Gja— au; +§k (f k up,kaup,i) (2.92)

Proof. The proof mostly follows the proofs of the simpler versions of
Noether’s theorem. As in those cases, we expand F* in a Taylor series in &
and retain only first-order terms:

d d
F*:F+€/ [fz &+ fu; &5 + fuys (%ujkdik

+ O(&?).

It can be shown that

)+

do; d

of of
|:¢j +§k <f51k Up,k%)]

d
+(¢j B giujyi) <fuj - %fu”) =0

The last parenthetical expression is the left side of the Euler-Lagrange

equation. The details are left to the reader, including the derivation of the
Euler—Lagrange equation itself. (|

2.7 Generalizations

Divergence invariance

Noether’s theorem is not the only way to establish the conservation laws.
One of its extensions, obtained in 1921, is referred to as the Bessel-Hagen
extension.

Definition 2.23. Consider the infinitesimal transformation

x = x* =x+ e€(x,u), u—u' =u+ep(x,u).
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The functional F' is infinitesimally divergence invariant under this trans-
formation if, in an asymptotic sense, the difference F* — F' is an integral of
the divergence of some vector field K. This means that

F*—F
lim F* =F and lim :/diVKdV (2.93)
e—0 e—0 \%
where K = (Ki,...,K,) is a vector function dependent on x, u, and

Vu. We also say that F' has divergence symmetry with respect to the
infinitesimal transformation.

If K = 0, the definition reduces to that of variational symmetry. The
function K must be found together with the other unknowns £ and ¢. In
terms of K, £, and ¢, the condition for infinitesimal divergence invariance
and the consequent form of the conservation law are given by

Theorem 2.24. For an extremal u, let F' be infinitesimally invariant under
the tmnsformation (2.88)—(2.89), i.e

& P a(z <% Y dgp) 0 +§m] f=Kii  (294)

d:z:i 7P d.”L'l Bujﬂ-
Then a conservation law of the form
div(iP -K)=0 (2.95)
holds, where P = (Py,...,P,) and
f of
P, = Oik — — . 2.96
i ou +€k foik Uk gy (2.96)

In advance of the proof let us note that this extension of Noether’s
theorem is quite natural. Indeed, Noether’s theorem requires asymptotic
equality of F* and F' to within quadratic precision with respect to £. On
the extremals this condition of coincidence reduces to the divergence form,
which yields a conservation law. However, to get a conservation law, it is
sufficient that F* and F' coincide asymptotically up to an integral whose
integrand is the divergence of some field. Such an integrand is called a null
Lagrangian.

If we can find a field K, a new conservation law is formulated for the
vector field P — K.

Proof. As in Theorem 2.22, expansion of F* into a Taylor series in &
yields

o PP F /{fx§1+fuj¢j+fu“<d¢j " dfk)+fdvg]

k
e—0 3 xi 7 dx
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So the condition for infinitesimal divergence invariance is

d¢; .~ d&k
d.”L'i gk d.”L'l

Jzi&i + fu; &5 + fu,, < > + fdivé = divK.

Transforming as in the proof of Theorem 2.22, we get

d 0 0
. [éf)ja—f + &k <f5ik - Up,k—f) - Kl}

Uj,i (’“)upJ-
d
o5 (1 - ) =

On the solutions of the Euler-Lagrange equations where the last parenthet-
ical term vanishes, this reduces to the conservation law for P — K. |

This fruitful extension of Noether’s theorem can provide additional con-
servation laws. We consider an example from classical mechanics.

Example 2.25. Find the conservation laws for a system of particles having
masses M), and position vectors y, € R3, k = 1,..., N. The variable
plays the role of time. The Lagrangian for a system of N particles is the
difference between the kinetic energy K and the potential energy W:

1 N
1
F:/ — g My -y, — W(yi,...,yn)| dz.
0 2k:1

The Euler-Lagrange equations for the functional having this Lagrangian
are the equations of motion

Mpyl =Wy,, k=1,...,N. (2.97)

Solution. Let us return to our earlier notation for Noether’s theorem by
introducing a “long vector” y = (y1,...,yn) € R3V,

From physical considerations it is clear that the potential energy of
the system does not change if we shift the coordinate origin by a vector
a = (a1,az,a3) € R3; this just means that the whole set of particles has
undergone the same parallel translation. Hence F' is invariant under a
transformation of the form

r— " =um, YE 2 Y =Yk +ea

This can also be represented in the “long vector” form y — y* =y + ¢ca
where & = (a,...,a) = (a1,0a2,4as,...,a1,a2,a3). The functions defining
the transformation are

&E=1, ¢,=a or ¢=a.
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For this transformation the conservation law (2.75) reduces to

N
Z My}, - a = constant.
k=1

By arbitrariness of a, the quantity

N
Z My}, = constant.
k=1
This is the conservation of linear momentum.
The given F' also has variational symmetry with respect to time shifts,
i.e., with respect to the transformation

Tz =x+¢, Vi = Vi = Yk

Here ¢ = 0 and £ = 1. The corresponding conservation law (2.75) is the
law of energy conservation

N
1
K + W = constant, KZE;MICY%'Y;@-

Finally, consider the Galilean boost
=z =uz, Vi = Yi =Y +eza. (2.98)

Here £ =0, and ¢, = za or ¢ = xra. Unlike the two cases considered above,
the conditions of infinitesimal invariance do not hold for the Galilean boost.
Indeed, substitution of &, ¢, and f into (2.73) or into (2.74) gives
N dp,, al ,
Z [gbk-vykf—i— E'vy%f} = Z[—xa-vykW—i—Mka-yk] =0.
k=1 k=1
This holds only when a = 0. In other words, the Galilean boost does not
correspond to the variational symmetry of F'. However, F' does have in-
finitesimal divergence invariance. Let us verify that (2.94) holds for (2.98).
For convenience we introduce K = Zszl Kj,. Equation (2.94) reduces to
N
[~za-Vy, W+ Mia-y), — K;] = 0. (2.99)
k=1
Changing Vy, W to My} via the equations of motion (2.97), we reduce
(2.99) to the divergence form
N
[—za - My, +2Ma -y, — K] = 0.
k=1
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Let us take
Ky = —Myza-y) +2Mya - y.

The corresponding conservation law P — K = constant takes the form
N
Z (xMya - y) — Mya - yi) = constant,
k=1
and since a is constant,
N
(x Mgy} — Myy})) = constant.
k=1
Dividing through by the total mass of the system M = Zivzl My, and
recalling that the momentum M}y, = constant, we obtain a familiar result
from classical mechanics that the center of mass of the particle system
undergoes uniform, rectilinear motion:

N
_ 1
y= M};Mkyk =1zC; + Co,
where C; and Cs are constant vectors. O

These examples show how divergence symmetry can provide additional
conservation laws. As an example, for f = ¢/ 2 /2, infinitesimal divergence
invariance extends the number of conservation laws from three to five (Ex-
ercise 2.13).

Other generalizations

There are still other ways to obtain conservation laws. For example, it is
possible to study the infinitesimal symmetries of equations (2.49) without
restricting oneself to the case where the equations are the Euler-Lagrange
equations for some functional (see [23]). Let us consider one such method
that uses the notion of null Lagrangian and its properties.

Definition 2.26. A function f(x,u, Vu) is a null Lagrangian if the Euler—
Lagrange equations for the functional with integrand f(x,u, Vu) vanish
identically for all x and u.

An example is the function f = y3’. Indeed, its Euler equation reduces
to the identity

d , d
fyfﬁfy’*y *%yfo-
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Similar cases exist for f depending on a function in many variables: f =
Ul + uuy, for instance.
Note that

/—i y_2 Uy + uu —i u_2 _;’_i u_2
W= \2 ) ¥ Yoo de \ 2 dy \ 2 )’

We see that an expression that happens to be the divergence of some vector
field can be a null Lagrangian. This idea is valid, and so is the converse
idea:

Theorem 2.27. A function f(x,u, Vu) is a null Lagrangian if and only if
it is equal to the divergence of some field P:

f=divP
where P = P(x,u, Vu).

See (23] for a proof. It follows that two functionals have the same Euler—
Lagrange equations if and only if their integrands differ by the divergence of
some vector field. These facts serve as a basis for constructing conservation
laws for the system (2.49). The idea of the method is as follows.

(1) Multiply each equation from (2.49) by a function g,(x;,us, u;;), p =
1,...,k and add the resulting equations to get

k
Zqp(:vj,ui,ui7j)lp(xj,ui,ui,j) =0. (2100)
p=1

(2) By Theorem 2.27, the left side of the last expression is the divergence
of some vector field if and only if the Euler-Lagrange equations for the
functional having integrand

k
F=" apwg s, wi )l (@, wi,wi )
p=1

are satisfied identically. So the functions g, should be selected according
to the condition that the Euler-Lagrange equations for the functional
having integrand f become identities.

This neutral action method leads to overdetermined systems of equations
in the gp. On the other hand, it applies to systems of partial differential
equations that are not the Euler-Lagrange equations of some functional.
Applications to mechanical problems can be found in [12].
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2.8 Exercises

2.1 Let the structure of Example 2.1 be strengthened with another spring of
rigidity k2 as shown in Fig.2.12. (a) Write down the total potential energy of
the system and the boundary and compatibility equations. (b) Write down the
functional that should be minimized to get the equilibrium equations and natural
boundary conditions. (c¢) Applying the general procedure of the calculus of vari-
ations, derive the differential equation of equilibrium and the natural boundary
conditions.

q(x)

e ey

Fig. 2.12 Beam with two springs under load ¢(z) and P.

2.2 A cantilever beam having length 2a and parameters E, I is supported with
a spring of rigidity &£ at point a and a clock spring of rigidity ¢ at point 2a
(Fig. 2.13). Choose a mathematical model, write down the total potential energy
functional and kinematic restrictions, and derive the equilibrium equations and
natural boundary conditions.

2.3 Consider the system shown in Fig.2.14. Using Example 2.2 as a guide,
write down the energy functional, kinematic restrictions, and first variation of
the energy functional. Then derive the equilibrium equation and the natural
boundary conditions. Repeat for the system of Fig.2.15; also consider the case
when both beam and rod models are employed simultaneously.

2.4 Fig. 2.16 shows a system of three rigidly coupled beams having parameters
E, I and respective lengths a1,a2,a3. Construct a mathematical model of the
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q(x)

Fig. 2.13 Cantilever beam supported with springs under load.

AxYr

Fig. 2.14 System consisting of three rods.

structure, write out the energy functional and kinematic restrictions, and derive
the equilibrium equations and natural boundary conditions.

2.5 Two beams having parameters E, I, a are related elastically. Using Winkler’s
model of the elastic junction with parameter k (Fig.2.17), construct a model for
the system, write down the energy functional and kinematic restrictions, and
derive the equilibrium equations and natural boundary conditions.

2.6 A square is composed of equal beams having parameters E, I,a (Fig.2.18).
Construct the model, write out the energy functional and kinematic restrictions,
and derive the equilibrium equations and natural boundary conditions. Find the
conditions under which the equilibrium problem makes sense (has a solution).

2.7 A system of coupled beams with a supporting clock spring appears in
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Fig. 2.15 System consisting of three beams.

q(x)

Fig. 2.16 Three beam system under load.

Fig. 2.19. Construct the mathematical model, write out the total potential energy
functional and kinematic restrictions, and derive the equilibrium equations and
natural boundary conditions.

2.8 A system of coupled beams with a supporting spring is shown in Fig. 2.20.
(Also known as von Mises truss, the system is used to study the stability of elastic
systems.) Construct a mathematical model, write out the energy functional and
kinematic restrictions, and derive the equilibrium equations and natural boundary
conditions.
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Fig. 2.17 Two beams related elastically.

q,(x)

e

q,(x)

AR

q,(x)

Fig. 2.18 A square constructed of beams under load.

2.9 Find the conservation laws for a functional of the form

F=/abf(y')dfv4
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B C P

Fig. 2.20 Two beam system.

2.10 Find the conservation laws for the functional
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2.11 Show that the functional
1 b
F= 5/ (v')? da,

has no variational symmetries other than those obtained in Exercises 2.9 and
2.10.

2.12 Find the variational symmetry condition for the functional

1 b
F= 5/ f(:l?,y7y(k))d$7

where the constant k > 2.

2.13 Find divergence symmetries for the functional

1 b N2
F=§ (y')" dx.



Chapter 3

Elements of Optimal Control Theory

3.1 A Variational Problem as a Problem of Optimal Control

Let us consider a special problem in the calculus of variations:

/ flzyy(x),y'(z))de —  min (3.1)
yeCM (a,b)
y(a)=yo
Let y(z) be fixed for a moment. We introduce an equation for a new
function z = z(x):

Y(@) = fa,y(@),y' @), 2(a) = 0.
It is clear that

2(b) = 2(b) — 2(a) = / cm—/fmy (x)) da.

Now we introduce another function u(z) = y'(z). Problem (3.1) can be
formulated as follows:!

Problem of Terminal Control. Given ordinary differential equations

y'(@) =u(x),  2(x)=flz,y(@) ulz)), (3.2)
and initial conditions y(a) = yo and z(a) = 0 find u = u(z) € C(a,b) at

which z(b) attains the minimal value.

Since z(b) is the value of the integral, this formulation is equivalent to
the formulation of the problem of strong minimum of the functional (3.1).

IThanks to Dr. K.V. Isaev of Rostov State University, who furnished the authors with
a notebook of his lectures on control theory. The presentation of the terminal control
problem follows, in large part, Dr. Isaev’s lectures.

159
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Note that the last formulation does not involve integration. The solution
of the Cauchy problem for an ordinary differential equation (ODE) is less
computationally intensive than the solution of the corresponding integral
equation. This transformation of a variational problem to another form
is numerically advantageous; moreover, it allows us to pose a new class of
minimization problems along with new solution methods. Note that the
new formulation should still give us the Euler equation for a minimizer and
the natural boundary condition at « = b.

The formulation (3.1) is equivalent to the Problem of Terminal Control if
f is sufficiently smooth. But the Problem of Terminal Control has brought
us to a new class of problems that fall outside the calculus of variations.
These problems also fall outside classical ODE theory, since for the Cauchy
problem in the latter, the number of differential equations always equals the
number of unknown functions. In our formulation we have two equations
and three unknowns y, z,u. But if u is given we have a Cauchy problem
in which y and z are uniquely determined. We solve a special minimum
problem, seeking the minimum value of z at point b, changing u in the
class of continuous functions. Continuity of u was stipulated by the tools
of the calculus of variations. But for many problems having the form of
the Problem of Terminal Control or something similar, this condition is
too restrictive. We shall consider other tools for treating such problems —
tools not equivalent to those of the calculus of variations.

The Problem of Terminal Control belongs to optimal control theory. The
designation “terminal control” refers to the fact that something, namely z,
is to be minimized at a final time instant x = b. A more general formulation
is presented in §3.2.

We have thus examined a variational problem as a problem of optimal
control. Let us take a moment to compare the setups of these two problems.
Each must provide a functional to be minimized. In the variational setup
this functional is an integral that incorporates some information about the
system structure. In the control problem these elements are separated: the
system is governed by a set of ODEs relating internal parameters y, z to an
external parameter u that can be changed at will (under some restrictions
of course), while the “cost functional” is formulated separately. There are
advantages in choosing to disentangle the elements of the problem setup
in this way; in fact, many practical problems are so posed naturally and
cannot be posed as variational problems. Consider, for example, a child on
a playground swing. The amplitude of the oscillations is governed by the
pendulum equation — an ODE — and the effective length u = u(t) of the
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pendulum is under the child’s control. There is no reason why this control
parameter must be changed in a continuous fashion; every child knows that
the best results can be obtained by sudden shifts in his or her center of
gravity. Hence we should be able to accommodate discontinuities in wu.
Of course, it is easy to cite examples on a much larger scale of economic
importance — examples ranging from space travel to the damping of a
ship’s oscillations in the ocean.

In short, we shall consider problems involving a “system” or “controlled
object” having a control parameter u. In general we seek u that mini-
mizes a cost functional G, which in turn depends on u through an initial
or boundary value problem for a set of ODEs. We will not consider all as-
pects of standard mathematical optimal control theory, including existence
theorems, etc. But we will present an introduction to certain practical as-
pects relating to the numerical solution of optimal control problems. The
expression for the increment of the cost functional G which we will derive
is analogous to the first variation in the calculus of variations, or to the dif-
ferential in calculus. Its expression provides a basis for various numerical
approaches to optimal control problems. It also brings us Pontryagin’s max-
imum principle, which allows us to determine whether a governing function
u is optimal.

3.2 General Problem of Optimal Control

First we generalize the Problem of Terminal Control. A controlled system
is described by n + m functions, which depend on a known variable. We
shall call this latter variable t or  and regard it as the time variable. Given
are n ordinary differential equations involving the first n parameters of the
system 1, . ..,y and their first derivatives. These equations are written in
normal form. The vector y = (y1,...,yn) is often called the state vector,
and its component functions yi, ..., ¥y, the state variables. The remaining
m parameters uq, ..., U, are considered as free parameter-functions. We
call u = (uy,...,um) the control vector, and its component functions the
control variables. The differential equations are

yll(t) = fl(tayl(t)v te 7yn(t)au1(t)a s ,um(t)),

y;z(t) = fn(tayl(t)v s 7yn(t)au1(t)a s aum(t))v
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or

y'(t) =£(t,y(t), u(t)). (3.3)
Equations (3.3) should be supplemented with conditions at the initial time
t= to:

y(to) = Yo, (3.4)

where yq is a given initial state.
We now consider a problem of the form

G(y(T)) — min

over the set of admissible u, where T is a fixed (final) time instant. The
quantity G(y(T)) is a functional dependent on the values taken by u and y
over [tg, T]. The space in which these vector functions reside is an important
issue to be discussed later. Whereas in variational problems we permit
only smooth functions for comparison and consider non-smooth functions as
exceptions, here we consider non-smooth control functions since these tend
to be more useful in applications (and, often more importantly, allowed by
the method of solution and investigation).

Many optimal control problems arise in classical mechanics. There a
system, described by the equations of classical mechanics, can be acted
upon by forces whose magnitudes and directions are subject to certain
restrictions. We obtain a problem of terminal control if we attempt to
minimize the value of a function, depending on the internal parameters of
the system, at a certain (final) time instant. For example, we may wish to
bring the system to a certain state with the best accuracy.

We can generalize the Problem of Terminal Control by supplanting the
initial values (3.4) with n equations given at some fixed points t, € [to, T]:

By(y(tx)) =0, k=1,...,n
The goal function can incorporate values of y at other points of [to, T]:

G(y(m),...,y(rr)) — min.

Such a problem is solved practically by any system that has to meet some
time schedule (e.g., by a flight team who must land at several airports at
scheduled times during a flight).

Let us consider another type of optimal control problem:

Time-Optimal Control Problem. A system is described by (3.3). It is
necessary to move the system from state y(fo) = yo to state y(T') =y in
minimal time T
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Again, we leave the class of admissible u as an issue for the future. Note
that for this problem an existence theorem is essential in many cases, since
there are mechanical and other systems for which an initial-final pair of
states yo,yy is impossible to take on for any time.

We see that in Time-Optimal Control we have 2n given boundary con-
ditions, but there is an additional unknown parameter 7' that must be
determined as an outcome of the solution. We see a big difference in the
number of boundary values for the state vector y in these problems. This
is provided by the arbitrariness of the control vector u, changes in which
can lead to the requirement for new boundary conditions. The restriction
on the number of boundary conditions r at each “boundary” (initial, final,
or intermediate) point of time is that it cannot exceed m, the number of
components of y and, in total, at any admissible fixed u we have to ob-
tain a boundary value problem for our system of equations that is solvable
(not necessarily uniquely). When the boundary value system has too few
boundary conditions for uniqueness, then, in the same way there arise natu-
ral boundary conditions in the calculus of variations, there arise additional
boundary conditions for y in the optimal control problems. In some ver-
sions of the numerical methods that are used for solving the corresponding
problems, such natural conditions do not participate explicitly — as is also
the case for natural conditions in the calculus of variations — however, an
optimal solution obeys them.

These are not the only possible setups for optimal control problems. We
can consider, for example, problems where the cost functional is given in
an integral form which takes into account the values of y at all instants of
time.

Above we mentioned restrictions on the control vector u, but many
problems require restrictions (frequently in the form of inequalities) on y as
well. For example, the problem of manned spaceflight forces us to minimize
expenses while restricting accelerations experienced during the flight.

Many real problems of optimal control require us to consider (nonlinear)
systems of PDEs rather than ODEs. The interested reader can find this
discussed elsewhere. Often, however, these problems can be reduced to the
problems that appear in this chapter. Each practical problem for the same
object can lead to a different mathematical setup, as well as to different
theoretical and practical results. In this book we will consider only mathe-
matical aspects of the problems of optimal control, leaving applications to
many other sources. First we would like to slightly reduce the setup of the
problems under consideration.



164 Advanced Engineering Analysis

The system (3.3) is autonomic if f does not depend explicitly on t.
Henceforth we shall consider only autonomic systems with tg = 0. We may
do this without loss of generality. First, given ty # 0 we may shift the time
origin by putting x = ¢t — tg. Let us consider the transformation to auto-
nomic form. In principle there is nothing to limit the number of components
that y may have. So we can always extend it by an additional component
Yn+1, sSupplementing (3.3) with an additional equation y;,,,(x) = 1 and
initial condition y,41(0) = 0. Then (3.3) takes the form

y’(ac) = f(yn-l-l(x)v y(m)’ u(x))

Thus, redenoting y = (y1,...,Yn+1) and the corresponding f, we arrive
again at (3.3) but in the form

y'(t) = £(y(t), u(t)). (3-5)

This is the autonomic form we shall consider.

3.3 Simplest Problem of Optimal Control

So far we have said little about the restrictions to be placed on the behavior
of u(t). We shall take the class of admissible controls to consist of those
vector functions that are piecewise continuous on [0, 7]. This is in contrast
to what we saw in the calculus of variations. It is possible to relax this
restriction on u(t), requiring it to be merely measurable in some sense, but
we leave this and related questions of existence? for more advanced books.

What constitutes a “small” variation (increment) of a control function?
In the calculus of variations we regarded a variation (increment) of a func-
tion as small if its norm in the space C(1)(0,T) was small. With such a
small increment taken in its argument, the increment of a functional was
also guaranteed to be small, and we were led to apply the tools of calcu-
lus. To obtain the Euler equation and the natural boundary conditions
we linearized the functional with respect to the increment of the unknown
function. Here we would like apply the same linearization idea and ob-
tain necessary conditions for the objective functional to attain its minimal
value, but at the same time introduce another notion of smallness of the
increment of a control function.

2Such questions are more theoretical than we are able to treat here, but this does not
mean they are unimportant. There are practical problems for which no optimal solution
exists. In such cases, however, it is often possible to obtain a working approximation to
an optimal solution.
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When we linearize an expression we use the fact that a small increment
in the independent variable brings a small increment in the value of the
expression. We understand that if we change the control function in some
small way then the increment of the output function will be small. But in
Newtonian mechanics if a large force acts on a material point for a short
time then the deviation of the point trajectory during a finite time is small
— the shorter the time of action, the smaller the deviation. So “small-
ness” of the increment can be provided by a force of small magnitude or
by a force of short duration. This situation is quite typical for disturbances
to ODEs, and suggests a new class of “small” increments to control func-
tions. From a more mathematical viewpoint, the norm of C(0,7T) is not
the only norm with which we can define small increments while requiring
that the change in a solution exhibit continuous dependence on changes in
the control function. In particular, we may use the norm of L(0,T).

Let us build a class of functions ¢ in which we seek control functions
u = u(t). U is a set of functions piecewise continuous on [0,7], and is
restricted by some conditions: normally simultaneous linear inequalities
given pointwise. An example of such a restriction is

0<u(t) <1.

The simplest problem of optimal control theory is the following problem of
terminal control:

Simplest Problem of Optimal Control. Let a controlled object be
described by the equation

y'(t) = f(y(t), u(t)) (3.6)
subject to
y(0) = yo. (3.7)

Among all functions belonging to a class U described above, find a control
function w(¢) that minimizes g(y(¢)) at t = T

T)) — in .
g(y(T)) Jnin,

Here ¢(y) is a continuously differentiable function on the domain of all
admissible values of y = y(t).3

3Rather than formulating explicit restrictions on f and g, we simply assume they are
sufficiently smooth. In particular we shall differentiate g(y) and f(y,u) with respect
to y supposing that the corresponding derivatives are continuous, we shall assume a
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First we define the main elementary increment of the control function,
a so-called needle-shaped increment. This is where optimal control theory
begins to depart from the calculus of variations. We choose some u(t) € U
and let ¢ = s be a point at which u(t) is continuous. For definiteness
we consider all the functions u(¢) to be continuous from the left on [0, T].
Consider another function v*(¢) that differs from w«(¢) only on the half-open
segment (s — €, s] as shown in Fig.3.1. Analytically this function is

u(t), té¢(s—e,sl,

u*(t) =
®) v, te(s—e,sg,

(3.8)

where € > 0 is sufficiently small. The increment
du(t) = u*(t) — u(t),

which is zero everywhere except in the interval (s —¢, s] of length e, is what
we term needle-shaped. Its smallness is characterized by

T
18wl 0.y = / 5] dt,

which is of order «.

A
D pr— u= u(l‘)

Fig. 3.1 A control function subject to a needle-shaped increment.

In what follows we suppose u*(t) belongs to U. We also assume that
together with some u*(t), defined by €9 > 0 and v, the class U contains all
the u*(t) having the same final point s of the jump for which ¢ < g. Since

continuous dependence of f(y,u) on u, and we shall suppose that for any fixed admissible
u(t) € U the Cauchy problem (3.6)—(3.7) has a unique solution that depends continuously
on the initial condition yg. All this could be formulated purely in terms of the given
functions f and g and it is possible that doing so would yield sharper results, but we
choose clarity over rigor at this stage. In fact, the simple problem we have chosen to
consider is not the most realistic one available. However, its investigation will open the
way to general problems without obscuring the essential ideas.
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the restrictions for I are usually given piecewise by simultaneous linear
inequalities, this assumption does not place additional restrictions on such
problems.

Many textbooks consider needle-shaped functions that are constant on
the interval (s — ¢, s], but we consider them only for small € so the norm in
L(0,T) of the difference between the above introduced and the traditional
needle-shaped functions is of order higher than €. We took our definition
only for convenience. Note that we can approximate (in the uniform norm)
any u(t) € U with a finite linear combination of needle-shaped functions.

Since g(y(T")) is a number that depends on u(t) through (3.6) and (3.7),
we have a functional defined on Y. Experience suggests that we apply the
ideas of calculus. We need to find the increment of the functional under
that of the control function, introducing something like the first differen-
tial. Now du(t) is an elementary needle-shaped function whose smallness
is determined by . From the corresponding increment of ¢g(y(7')) we must
select the part that is proportional to € and neglect terms of higher order
in €.

As an intermediate step we will have to obtain the increment in y(7T)
corresponding to Ju(t). Let us denote the solution of (3.6)—(3.7) corre-
sponding to u*(t) by y*(¢):

y () = Flyt (@), (1), ¥ (0) = yo.
We denote
Ay(t) =y () —y(®),  J(w) = g(y(T)),
and seek the main (in ¢) part of the increment
Adep(u) = J(u™) — J(u). (3.9)

Again, this main part must be linear in e; we neglect terms of higher order
in €. In this, we consider u(t) as given and hence y(t) is known uniquely as
well.

Theorem 3.1. Lett = s be a point of continuity of a control function u(t).
We have

AJsw(u) =€ ds,,J(u) + o(e), e >0, (3.10)
where

05,0 (u) = P(s)[f(y(s), uls)) = fy(s),v)] (3.11)
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and where 1(s) is a solution of the following Cauchy problem (in the reverse
time):

dg(y(T))

M) — — T) = — . 3.12

V() Sy, )= - (312)
The quantity 0s,J(uw) in (3.10) is called the variational derivative of
the second kind.

¥

AN(T) ()

Yo

\ 4

S-& Ky T t

Fig. 3.2 The deviation of a trajectory y(t) under a needle-shaped change of the control
function on the time interval [s — ¢, s].

Proof. Take ¢ > 0 so small that all the points of [s — ¢, s] are points
of continuity of u(t). We require that w*(¢), which differs from u(t) by a
needle-shaped increment, is admissible and has the form (3.8). We divide
the proof into several steps.

Step 1. First let us find the main part in e of the increment of y(t),
in particular at ¢ = T'. In Fig. 3.2 we show the behavior of y(¢) and y*(¢).
When ¢t < s — e we have u*(t) = u(t) and thus y*(t) = y(t).

Let t € [s — €, s]. Subtracting the equations for y* and y we get

() =y (1) = [y (1), v) — fy(t), u(t))
or, since Ay(t) = y*(t) — y(t), the increment of y(t) satisfies

Ay'(t) = f(y(t) + Ay(t), v) — fly(t), u(t)). (3.13)
Besides, we have the “initial” condition for this interval
Ay(s—e)=0 (3.14)

since y*(s —e) = y(s — ¢). Integration of (3.13) gives us an equivalent
integral equation on [s — &, s]:

By(t) = By(s —2) = [ [f(y(r) + By(r),) = Flur),u(r)] dr.
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By (3.14) we have

Byt) = [ 1) + By(r).0) ~ Fy(o) u()]dr on [s - <.,

We assume f(y,u) is continuous and bounded on the domain where the pair
(y,u) takes its value, and thus when ¢ is small the modulus of the integral
on the right is bounded by Me for ¢t € [s—e, s]. So this integral has the first
order of smallness in € when ¢ € [s — ¢, 5], and thus the same value bounds
|Ay(t)| on the same segment. Since ¢ is small and y(t), u(t) are continuous
on [s — &, s], the integrand is continuous as well, and we introduce in the
values of this integral an error of order higher than the first in € if we replace
the integrand by the constant value f(y(s),v) — f(y(s),u(s)). So

Ay(t) = /_ [f(y(s),v) = f(y(s), u(s))] dr + ofe)
= (t=s+)[f(y(s),v) — fy(s), u(s))] + ofe),

and thus

Ay(s) = elf(y(s),v) = fy(s), uls))] + ole). (3.15)
This gives us the “initial” value for the solution y*(¢) on [s,T]. Note that
on [s — &, s] the change of Ay(t) in ¢ is almost linear, which is expected
since ¢ is small.
On [s,T], subtracting the equations for y(t) and y*(t) we get

Ay'(t) = fy(t) + Ay(t), u(t)) — f(y(t), u(?)). (3.16)
This is supplemented by the initial condition (3.15), which is small when &
is small. Since y and y* obey the same equation on [s,T] but their initial
values differ by a small value Ay(s) of order e, we can expect that there is
continuous dependence of the solution on the initial data and hence that
the difference between y* and y, which is Ay, remains of order € when T is
finite. So we linearize (3.16) using the first-order Taylor expansion

F6(0) + 3y(0).u(0) - 760, 0(0) = LU 50 1 o890

to get

() = 20000

The main part of Ay(t), denoted by dy(t), satisfies

) - L0

Ay(t) + o(e).

y(t). (3.17)
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This can be integrated explicitly since y(¢) and u(t) and the initial condition
for dy(t) are defined by (3.15) as

dy(s) = elf(y(s),v) = fly(s), uls))]-

However, we should allow for an extension to a system of ODEs. So we shall
produce a mathematical trick of “finding” the solution in other terms. At
this point we must interrupt the proof and cover some additional material.

3.4 Fundamental Solution of a Linear Ordinary Differential
Equation

Consider a linear ODE
2/ (t) = a(t)x(t). (3.18)

This has a unique solution for any initial condition z(s) = xg, a(t) being a
given continuous function (it can be continuous on an interval if we consider
the equation on this interval or at any t). The fundamental solution is a
function (¢, s) which at any fixed s satisfies

B _ ot s) (3.19)

and the condition
(s, 8) = 1. (3.20)

This function in two variables has many useful properties, the first of which
is trivial:
Proposition 3.2. A solution of (3.18) satisfying the initial condition
x(s) =z 1s

x(t) = xop(t, s). (3.21)
Proposition 3.3. We have

p(tss) = p(t,7)p(T, 5) (3.22)

for anyt, s, and 7.

Proof. Indeed, for fixed 7,s the function (¢, 7)p(7,s) of the variable ¢
is a solution to (3.18) when ¢ is an independent variable, since ¢(7, s) does
not depend on ¢. Thus we have two solutions to (3.18): the functions (¢, s)
and (¢, 7)p(T, s). But for t = 7 they correspondingly reduce to ¢(7, s) and
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o(r,7)e(1,8) = 1- (7, s), and thus at t = 7 they coincide. By uniqueness
of the solution to the Cauchy problem for (3.18) (the initial value is given
at t = 7) they coincide at any ¢. O

Since ¢(s, s) = 1 we have ¢(s,t) ¢(t,s) = 1, hence
p(ts) = 1/p(s,1). (3.23)
In §3.5 we shall need dyp(t, s)/ds. By (3.23) we have

Proposition 3.4. The function (t,s) considered* as a function in s sat-
isfies

% = —a(s) o(t, s). (3.24)
Proof. Using (3.23) we have
d‘PC(lia 5) _ d(‘aoidisv t)) _ *5072(57 t) d(wc(i_z’ t)) = 79072(5, t) a(s) (,O(S, t)
= —a(s)p (s,t) = —a(s)e(t, s). 0

Now we can continue the proof of Theorem 3.1.

3.5 The Simplest Problem, Continued

Setting

Af(y(t), u(®))
Oy ’

we apply the notion of fundamental solution to (3.17). So the solution® of
(3.17) on [s, T satisfying (3.22) is

y(t) = e [f(y(s),v) = Fy(s), uls))] ¢(t, ).

a(t) = (3.25)

Hence
oy(T) = [f(y(s),v) — fy(s),u(s)] (T, s)
and we can write

Ay(T) = e [f(y(s),v) = fy(s), uls))] (T, ) + ofe). (3.26)

4Here we consider t as a fixed parameter, which is why we use the notation for an
ordinary derivative rather than a partial derivative.
50f course, this is really just a useful representation rather than an explicit solution.
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Step 2. The main part of the increment of J(u) = g(y(7")) can be found
using the same idea of linearization and Taylor expansion:

AJ(u) = J(u*) = J(u)
=9(y(T) + Ay(T)) — g(y(T))
_dg(y)

Ay(T) + o(|Ay(T)))-

y=y(T)
With regard for (3.26) this brings us to

dy

AJ(u) =  d9(y)

dy [£(y(s),v) = F(y(s), ul(s))] (T, 5) + o).

y=y(T)

So we have found the main part of the increment of the objective functional;

however, we must still represent it in the form shown in Theorem 3.1.
Step 3. Let

_d9(y)

v(e) = -

o(T, s). (3.27)
y=y(T)
With this notation AJ(u) takes the form (3.10). It remains only to demon-
strate that 1(s) satisfies (3.12). The second relation of (3.12) holds by
definition of the fundamental solution:

o(1) = -2

~ dg(y)
a o(T,T) = ———

dy

y=y(T) y=y(T)

Let us show that 1(s) satisfies the first equation of (3.12):

d@i}iiS) _ % [dle_;y) T
W oy 7T
—-29) [
- a(s)dgd—(yy) y:y(T)w(T, 5).

Here we used (3.24) to eliminate the derivative of (T, s) with respect to
the second argument. Finally, remembering (3.27) we obtain

' (s) = —a(s)Y(s).
This is the needed equation since a(t) is given by (3.25).
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3.6 Pontryagin’s Maximum Principle for the Simplest
Problem

What have we established in Theorem 3.17 To find the increment in the
goal functional under a needle-shaped increment of the control function
u(t), we should do the following:

(1) Solve the Cauchy problem (3.6)—(3.7). In practice this is often done
numerically (e.g., by the Runge-Kutta method).

(2) Having obtained y(T), formulate equations (3.12) and solve this Cauchy
problem with respect to ¥(s) in the “reversed” time.

(3) Write out (3.10).

The second condition in (3.12) is analogous to the natural boundary con-
dition in the calculus of variations. The first equation in (3.12) is called
the conjugate equation; there is a weak analogy between this and the Euler
equation. We also observe that in performing steps (1) and (2) we effec-
tively solve a boundary value problem for the pair y(t), ¥ (s). A similar pair
of equations arises for other types of optimal control problems, but in the
terminal control problems they split.

Let us reformulate this problem, introducing a new function H(y,, )
in three variables:

H(y,v,u) =1 f(y,u). (3.28)
Because
OH (y,,u) OH(y,¢,u)  0f(y,u)
T - f(ya U), 6y - 6y 1/)7

we can rewrite (3.6) and (3.12) as

OH (y(t), (1), u(t))
B ’

y'(t) =

y'(t) = Hy(y(t), 0(t),ult), () = —Hy(y(t), (1), ult).  (3.29)

This is the so-called Hamilton form of a system of ODEs that is frequent
in physics. L.S. Pontryagin called H(y,,u) the Hamilton function, but
it was subsequently called the Pontryagin function. Again, we will obtain
equations of the form (3.29) when we consider any sort of control problem
for the system described by (3.6).
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Let us rewrite the increment AJ(u) under a needle-shaped increment
with parameters e, v given at ¢ = s, which is presented by (3.10), in terms

of H(y,v,u):
AJ(u) = e (H(y(s),(s), uls)) — H(y(s), ¢(s),v)) + ole).
Now we can formulate a necessary condition of minimum for J(u), known

as Pontryagin’s maximum principle:

Theorem 3.5. Let u(t) be an optimal control function at which J(u) at-
tains its minimal value on U, the set of all admissible control functions, and
let y(t) and ¥(t) be solutions of the boundary value problem (3.6), (3.7),
(3.12). At any point t = s of continuity of u(t), the function H(y(s),y(s),v)
considered as a function in the variable v takes its maximum value at
v =u(s).

Proof. J(u) attains its minimum at u = u(t). For any admissible control
function u*(t) given by (3.8) we have

J(w*) — J(u) > 0.

For a point ¢ = s of continuity of u = w(t), in terms of the Pontryagin
function this is

e (H(y(s), ¢(s),u(s)) — H(y(s),(s),v)) + o(e) = 0.

Note this is valid for any admissible v and small, nonnegative . It follows
immediately that

H(y(s),1(s),u(s)) — H(y(s),1(s),v) 2 0,
so for any admissible v we get H (y(s), ¥ (s),u(s)) > H(y(s),v(s),v). O

Let us consider the application of these results to a simple example.

Example 3.6. Find the form of the control function u(t), |u(t)| < 2, that
gives minimum deviation of y(¢) from 10 at ¢t = 1 (described by the function
g(y(1)) = (10 — y(1))?) for a system governed by

y'(t) +yt) =ut), y0)=1

Solution. We stay with our previous notation. Rewrite the equation as

y' = —y + u and construct Pontryagin’s function
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We need to learn when this function takes its maximum value with respect
to u along a solution. For this we need to know some properties of 1. Let
us establish how ¢ changes. The conjugate equation for v is

Its general solution is ¢ = ce’

. For this example we need not find (y, )
for any control function, so we will not formulate the final value for ¢ but
merely note that its sign coincides with that of the constant ¢. This means
that along any possible solution y = y(t), at any point of continuity of y, the
maximum is taken when ¢ (¢)u(t) takes its maximum. Since this expression
is linear in u, the maximum is taken when u takes one of its extreme values
u = %2 and, because of the constancy of sign of ¢, it cannot change from
one extreme to another.”

So now we must consider the governing equation in two versions, with
u = 2 and u = —2. These are

y=-y+2, y=-y-2
The initial condition leads to the respective solutions
y(t) = —e "+ 2, Ya(t) = 3e~ " — 2.

Comparing the values of the cost function g(y) for y; and y2 at t = 1, we see
that u = u(t) = 2 is the optimal control. Correspondingly y(t) = —e~t + 2,
and the minimum value of g is g(y(1)) = (8 + e~ 1)2. O

This example shows that not every optimal control problem has a solution.
Indeed, if we pose the minimum time problem for the same equation with
y beginning at y = 1 and ending at y = 10, under the restriction |u| < 2,
then there will be no solution; a solution starting from the point y(0) = 1
never takes the value 10.

Let us continue consideration of the same problem. We denote by J(u)
the value g(y(1)) so J is defined as a functional of the control function w.

Example 3.7. For the system of the previous example, find the main part
of the increment of the goal functional under a needle-shaped disturbance
of w if its value is u(t) = 1 for all ¢.

6 A reader familiar with the elements of linear programming will note that the situation
is the same as in that theory. Since many optimal control problems are described by
relations containing a control vector in a linear manner, the reader sees that at this
stage it is necessary to solve a linear programming problem in which we must maximize
a linear function over a set in a finite vector space restricted by linear inequalities.
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Solution. The governing equation of the system for u=1isy' = —y + 1.
The solution that satisfies the initial condition is y = 1. Thus the final
value for v is

v = -2 5 91—,

and the corresponding solution of the conjugate equation is
P(t) = det, d = 18e.
Thus the main part of the increment of the goal functional is

e0s,0d (u) = p(s)[f (y(s), u(s) = f(y(s), v)]
=18z (0 +1 )
= 18ece! (1 —v)

for any time s. It is clear that if we wish to decrease locally at any point s
the value of the functional, then we should take the maximum admissible
value of v, which is v = 2. O

This problem is important because it shows how we can improve an initial
approximation to u. For sufficiently small ¢, introducing a needle-shaped
change of u at some s we reduce the value of g(y(1)). Choosing ¢ and s and
decreasing correspondingly the value of J(u) (of course, this happens only
when €05 ,J(u) has negative values on [0, 1] — if there are no such values
then a corresponding function w is optimal) we get a better approximation
to the optimal control function. But the choice of &, s is not uniquely
defined even for this simple problem. If £ is small and fixed, it is clear that
the maximal change in J(u) happens (in this problem) when we take the
maximum admissible value of v, that is v = 2. But what is the value of
s? It is clear that we should introduce the needle-change into u at s where
€ds v J(u) takes the lowest negative value. In this problem it is easy to see
that it is the point s = 1. Changing u to 2 on [1 — ¢, 1] with some small
¢ we get a new control function u* that is not optimal again. So we need
to repeat the same steps: find d,,J(u*), choose € and s, and introduce
optimally a new needle-shaped perturbation into u to maximally decrease
J(u). This gives a second approximation to the optimal solution, and so
on. In this simple case the approximation will be quite accurate. However,
in practical problems, when we do not know the solution u in advance, it
can be difficult to choose € and s at each step.

Pontryagin’s maximum principle allows us to test a given control func-
tion for optimality. In addition, we shall see later that for some relatively
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simple problems it can suggest an approach to finding solutions. Next we
would like to note that formula (3.10) is the background for a class of nu-
merical methods for finding an optimal solution. We shall discuss this for
the general problem of terminal control, which should be further considered.
In § 3.7 we present some essential mathematical tools.

3.7 Some Mathematical Preliminaries

When we considered the simplest problem of control theory we used the
notions of fundamental solution and linearization. To extend these to vector
functions one can use the tools of matrix theory, but the resulting formulas
are much more compact and clear when presented in tensor notation. We
therefore pause to present a small portion of tensor analysis. In doing
so we shall confine ourselves to the simplest case involving only Cartesian
frames having orthonormal basis vectors ej,...,e,. In the general case
the controlled functions y(¢) take values in the n-dimensional vector space
spanned by this basis, so we can represent y(t) as

n
y(t) = wilt)ei. (3.30)
i=1
From now on we omit the summation symbol and write simply

y(t) = vi(t) e:. (3.31)

This is the usual convention, due to Einstein, for dealing with Cartesian
tensors: whenever we meet a repeated index (in this case ¢) we understand
that summation is to be performed over this index from 1 to n. Now we shall
demonstrate how this expansion can be used along with the dot product to
produce representations of vectors, and to reproduce common operations
involving vectors and matrices.

Matrices as the component representations of tensors and
vectors

To perform operations with a vector x we must have a straightforward
method of calculating its components z1,...,x, with respect to a basis
€,...,e,. This can be done through simple dot multiplication. For addi-
tional clarity let us momentarily suspend use of the summation convention.
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Dotting x with e; we have
x-e = (x1e1+ -+ xpey)- €1
=z1(e1-e1)+ -+ x,(e, -e1).
Because e; - e = 1 and the remaining dot products vanish, we obtain
r1 =X-eg.

Here the key observation is that

e e = {1’ j::Z:’ (3.32)

0, j#i,
and this same observation can be used in similar fashion to develop the
formulas
To=X-€, X3=X-€3 ..., Tp=3X-€H.
In terms of the Kronecker delta symbol (page 39) we could have written
x-e; = (r1e1+ -+ a,e,) €1
= 21011+ + Tpon1
=1

to calculate x1. We can now return to the summation convention and repeat
these calculations in tensor notation. If x is given by

X = rpey (3.33)
then for i =1,2,...,n we have
T =X-€ (3.34)

since x - €; = xpei - € = Trp0p; = x; for each . Thus in a given basis
e; the components x; of the vector x are determined uniquely, and x is
determined by these values x;. It is convenient to display the components
of x in a column matrix:

T1

In

Hence a matrix can act as the component representation of a vector. It
is important to understand that a vector itself is an objective entity: it
is independent of coordinate frame. Consequently if we expand the same
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vector x relative to a different Cartesian basis €1, €2, ..., €, and repeat the
above steps, we will in general arrive at a matrix representation

T

Tp
whose entries Z, differ from the z;. We shall return to this issue later after
examining tensors.
If x and y are two vectors, their dot product is a scalar:

c=x-y. (3.35)

When we represent each of x and y with respect to a basis e; as
X = Ti€y, Yy = Yjej,
we can easily calculate c as
Xy =€ -y = z;yj(e; - €) = x;y;0i5 = T;Yi.

Of course, this same result arises from the matrix multiplication

W
c=(z1 - z) | | (3.36)
Yn

This familiar correspondence between dot multiplication of vectors and mul-
tiplication of the component matrices will be extended in what follows.

A vector is an example of a tensor of the first rank. The development
of our subject will also require some simple work with tensors of the sec-
ond rank. Just as a vector can be constructed as a linear combination of
basis vectors e;, a tensor of the second rank can be constructed as a linear
combination of basis dyads. These are in turn formed from pairs of vectors
through the use of a tensor product. This operation, denoted ®, obeys laws
analogous to those for ordinary multiplication: if a, b, and c are vectors
then

(Aa) @b =a® (Ab) = A(a®b),
(a+b)®c=a®c+b®ec,
a®(b+c)=a®b+ax®ec, (3.37)

for any real number A. We shall shorten the notation for the tensor product
somewhat by omitting the ® symbol: thus we write ab instead of a ® b.
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The quantity ab is an example of a dyad of vectors. If we expand each of
the vectors a and b in terms of a basis e;, the dyad ab becomes

ab = aieibjej = aibj €;€e;.

In this way the n? different basis dyads e;e; make their appearance. The
dyads e;e; form the basis for a linear space called the space of tensors of
the second rank. An element A of this space has a representation of the
form

A= ai;€;€; (338)

where the a;; are called the components of A relative to the basis e;e;.
Here we again use Einstein’s summation rule. Note that we can write out
the components of A as a square array

air ai2 -+ Qin
a1 G2 --° a2n

b
Anl Gp2 - Gpn

and thus we get a correspondence between the tensor A and this matrix of
its components.

One goal of the discussion is to demonstrate the usefulness of the dot
product. The dot product of a dyad ab and a vector c is defined by the
equation

(ab)-c=a(b-c). (3.39)

The result is a vector directed along a. Analogously we can define the dot
product from the left:

c-(ab) =(c-a)b. (3.40)

These operations have matrix counterparts: (3.39) corresponds to multipli-
cation of a matrix by a column vector and (3.40) corresponds to multipli-
cation of a row vector by a matrix. For example let us write

v = (ab) - c, (3.41)

expand ¢ as ¢ = cieg, expand ab according to (3.37), and use (3.39) to
write

VvV = aibjeiej - Cp€er = aibjcsjkckei = aibjcjei.
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Hence
v; = aibjcj (342)

for i = 1,2,...,n. Pausing to unpack the succinct tensor index notation,
we see that (3.42) actually means the system of equalities

vy = aibicy + arbacy + - -+ arbpcn,

vy = agbicy + agbacy + - - - + asbpcp,

Up = anblcl + anb202 + -+ anbncn;

or, in matrix form,

U1 a1b1 a1b2 tee albn C1
(%) a2b1 a2b2 tee agbn Co

= . o : - (3.43)
Up, anbr apbs -+ anby, Cn

We now recall the analogy between (3.35) and (3.36), and examine (3.41)
and (3.43) with similar thoughts in mind. Dot multiplication once again
stands in correspondence with matrix multiplication; moreover, it is clear
that the dyad ab is represented by the square matrix

a1b1 albg T albn
a2b1 agbg T agbn
anbl aan e anbn

We have seen that a dyad ab can map a vector c¢ into another vector v
through the dot product operation given in (3.41). This idea carries through
to general tensors of the second rank, of which dyads are examples. If A is
a tensor of second rank and x is a vector, then A can map x into an image
vector y according to

y=A -x (3.44)

It is easy to check that the individual components of A = a;;e;e; are given
by

Qi = €4+ A - €j, (345)
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and that (3.44) corresponds to

Y1 ail a2 -+ Qin Z1
Y2 a21 Q22 - QA2n T2
Yn anl Ap2 *°* Qapn T

A dot product operation known as pre-multiplication of a tensor by a vector
is also considered: the quantity y - A is defined by the requirement that

(y-A)x=y-(A-x)

for all vectors x. This can be also obtained as a consequence of the formal
definition of left-dot-multiplication of a vector by a dyad:

a-bc=(a-b)c. (3.46)

We see both dot product operations (pre-multiplication and post-
multiplication) applied to the definition of the important unit tensor E,
which satisfies

E-x=x-E=x (3.47)

for any vector x. It is easy to find the components of E from this definition.
We start by writing E = e;;e;e; and then apply (3.47) with x = e, to get

€;j€;€j - € = €.
Pre-multiplying by e,, we obtain
€ij0miljk = Omk

since e, - €; = 0y, €; - € = dji, and ey, - €, = Oy Hence e, = dpi and
we have

E = 5Z-jeiej = €;€;.

Of course, the corresponding matrix representation is the n x n identity
matrix

o O =
o = O
_ o O
o O

000 .- 1

Thus E is equivalent to the unit matrix.
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The strong parallel that exists between tensors and matrices leads us to
apply the notion of transposition to tensors of the second rank. Accordingly,
if A = a;;e;e; then we define

AT = a;;€;€; = 0;;€;€;. (348)
It is easy to see that
A-x=x-AT (3.49)

for any vector x and any tensor A of the second rank. It is even more
obvious that (AT)T = A. If A is the matrix representation of A, then AT
represents AT

A dot product between two tensors is regarded as the composition of the
two tensors viewed as operators. That is, A - B is defined by the equation

(A-B)-x=A-(B-x). (3.50)
A tensor B of the second rank is said to be the inverse of A if
A-B=B-A=E. (3.51)

In this case we write B = A~1.

A central aspect of the study of tensors concerns how their components
transform when the frame is changed. Although such frame transformations
will not play a significant role in the discussion, the reader should under-
stand that to express a tensor in another frame we would simply substitute
the representation of the old basis vectors in terms of the new ones. As a
simple example we may consider the case of a tensor of rank one: a vector.
Let the components of x relative to the frame e; be z; so that x = z;e;.
If a new frame €; is introduced according to the set of linear relations
e; = A;;€;, then x = 2;4;;€; and we see that x = Z;€&; where Z; = A;;z;.
The point is that we are not free to assign values to the Z; in any way we
wish: once the frame transformation is specified through the A;;, the new
components Z; are completely determined by the old components z;. The
situation with tensors of higher order is the same.

Note that the correspondence between tensors and matrices is one-to-
one only for a fixed basis. As soon as we change the basis, the matrix
representation of a tensor changes by strictly defined rules. For example,
if we take a non-Cartesian basis in space, the matrix representation of the
tensor E is not the unit matrix, and thus E is not something we could call
the unit tensor. Rather, it is known as the metric tensor.
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Elements of calculus for vector and tensor fields

Now we consider how differentiation is performed on tensor and vector
functions using tensor notation. Let us begin with a function y(¢) = y;(¢) e;.
Since e; does not depend on ¢, differentiation of y(¢) with respect to ¢
reduces to differentiation of the component scalar functions y;(t):

Y (t) = yi(t) es. (3.52)
Similarly, the differential of a vector function y(t) is
dy(t) = dyi(t) e;. (3.53)

Now suppose we wish to differentiate a composite function f(y)(t) with
respect to t. Writing this as f(y;(¢) e;) or f(y1(t),...,yn(t)), we have by
the chain rule

%f(y(t)) = %f(yl(t)’ -3 Yn(t)

i=1
f(y(t)
= ———"y;(t). 3.54
2y (3:54)
Let us write out the right side of (3.54) in vector form. For this we introduce
V, a formal vector of differentiation (known as the gradient operator):

= 0 0

Vy = i— = €;—. 3.55

Y ;e oy, oy, (8.55)

(We show the subscript y on V to indicate the vector whose components

participate in the differentiation. The subscript can be omitted if this is

clear from the context.) When we apply Vy to a function f(y) we get a

vector
~ Of(y) _ 9f(y)

\Y% = i = i 3.56

I =Yg = g e (3:56)

Let us dot multiply Vy f(y(t)) by y'(t) = y;(t)e;. Remembering that
e;-e; = 0;;, we get

Vot 0)y' (0 = L eryvye; = LD g5, - 2Ly,

Since the right side of this coincides with that of (3.54), we have

L0 = Vi ly(6) ¥ (1),
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The differential of f(y(¢)) is given by
df (y(t)) = Vy f(y(t)) - dy(?). (3.57)

Using this formula or, equivalently, the first-order Taylor approximation,
we get

Fy() + Ay () = f(y(1) = Vy f(y(2) - Ay(t) + o([Ay (D))

where Ay(t) is a small increment of y(t).

Now we would like to present the first-order Taylor approximation of
the increment of a vector function f that depends on a vector function y(t).
We assume that f takes values in the same space as y(¢) and thus can be
represented as f = f; e; where f; = f;(y(¢)). For this we find the differential

of f(y(t)) at y(t):
df(y(t)) = d(f;(y(t))e;) = df;(y(t))e;
=Vy fi(y(@)) - dy(t) e;
_0fiy(®)
y;

The right side can be represented as

(ijgi(t))ejei) ~dyk(t)er or dyk(t)es - (%Zi(t))eiej) - (3.58)

We see that in both brackets there is a sum of dyads so both of them are
functions whose values are tensors of the second rank. A formal application
of Vy to f(y(t)) gives

e; - dyx(t) e e

V(1) = eiaiy_fxy(t)) o) = %:Z“”

K2

Thus V,f(y(t)) is the expression in brackets of the second equation (3.58)
and the differential can be represented as

df(y(t)) = dy(t) - Vyf(y(t)). (3.59)

The term in the bracket of the first equation of (3.58) differs from the
corresponding term of the second equation by a transposition of the vectors
e; and e; so it can be written as (Vyf(y(t)))” and thus the differential can
be presented in the other form

di(y (1)) = (Vyf(y(1))" - dy (0). (3.60)

The expression Vy,f(y(t)) is called the gradient of f. Let us see how it
appears in more common matrix notation. We have said that a second rank
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tensor can be represented by a matrix of coefficients; in this representation
the index 7 in the first position denotes the ith row of the matrix whereas
the second index j denotes the jth column. Thus the matrix representation

of the gradient of the vector function %;ﬁmeiej is
oy Oy o
ofn 0k Ok
y2  Oyz Y2

Its determinant is the Jacobian of the transformation z = f(y).

Now, using the formula for the differential (3.59) (or (3.60)) we are able
to present an increment of a composite vector function f(y(¢)) under the
increment Ay(t) of the argument:

fly() + Ay(t)) — £(y (1)) = Ay (1) - VyE(y(@)) + o([|[ Ay (D)])-

Let the components of a tensor A(t) = a;;(t)e;e; be continuously dif-
ferentiable functions of ¢t. Then by the rule for differentiating a matrix we
have

= g €;€;. (361)

The derivative of the dot product of two second-rank tensors obeys a for-
mula similar to the ordinary product rule:

d

< a®r)-B(r) = ( d

dt

= A(t)) B(t) + A(t) - (%B(t)) . (3.62)

A similar formula holds for the dot product of a tensor by a vector:

(A1) - y(1) = A'(t) - y(t) + At) - y'(1). (3.63)

If one factor does not depend on ¢ then it can be removed from the symbol
of differentiation:

(A -B(1)) = A - B(1). (3.64)
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Fundamental solution of a linear system of ordinary differ-
ential equations

Consider a linear system of ODEs

Y1 (t) = ann(H)y1(t) + ar2(t)y2(t) + - - - + arn(t)yn(t),
Yo (t) = a2 (t)y1(t) + aza(t)y2(t) + - - - + agn(t)yn (),

Yn(t) = an1(Dy1(t) + ana(O)y2(t) + -+ + ann(yn (t).

In terms of the tensor function A(t) = a;;(t)e;e; and the vector y(t) =
yi(t)e; this system can be rewritten as

¥'(t) = A1) - y(0). (3.65)

Definition 3.8. A tensor function ®(t, s) in two variables ¢, s is called the
fundamental solution” of (3.65) if it satisfies two conditions:

(i) ®(t,s) is a solution of (3.65) in the first variable ¢:

d
Z®(t.5) = A(t) - B(t,5) (3.66)

(here we use the symbol for the ordinary derivative, thinking of s as a
fixed parameter).

(ii) For any s,
®(s,s) =E. (3.67)

This fundamental solution exists for any finite ¢, s if the tensor A(t) is
continuous. The problem of finding it consists of n Cauchy problems for the
same system of equations with n initial conditions given at ¢ = s. Hence
the fundamental solution is determined uniquely.

Now we would like to extend the results for the fundamental solution
of a single linear ODE to the general case. We present them in a similar
manner.

Proposition 3.9. A solution of (3.65) satisfying the initial condition
y(s) =yo is

y(t) = ®(t,s) - yo. (3.68)

"The function ®(t, s) is also known as the fundamental tensor or fundamental matriz.
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Indeed, dot-multiplying vector-equation (3.66) by yo from the right we see
that ®(t, s) - yo satisfies (3.65). By (3.67) this solution satisfies the initial
condition y(s) = yo.

Proposition 3.10. For any t,s and T we have
B(t,s) = ®(t,7) - B(7,9). (3.69)

A consequence of this property and relation (3.67) is the equation for the
mnverse

&t 5) = B(s,1) (3.70)
which follows when we write out a particular case of (3.69),
E=®(tt) = ®(t,s)  B(s,t).

Proof. Let us prove (3.69). Dot multiply (3.66) by ®(s, 7) from the right.
On the left we have

<%<I>(t, s)> - ®(s,7) = % (®(t,s) ®P(s,7))

since ®(s,7) does not depend on ¢; on the right we have
A(t) - ®(t,s) - R(s,7) = A(t) - (R(t,5) - B(s,7)) .

So ®(t, s) - ®(s,T) satisfies d¥ /dt = A(t)- ¥ with parameters s, 7. Putting
t = s in this solution we get

B(t,s) ®(s,7)|t=s = ®(s,8)  ®(s,7) = ®(s,7).

So ®(t,s)- ®(s,7) coincides with ®(¢,7) at t = s; by uniqueness of solution
to the Cauchy problem, they coincide for all t. To complete the proof it
remains to interchange s and 7. 0

Proposition 3.11. The equation

0
&@(t, s)=—®(t,s)  A(s)

holds.

Proof. It is easily verified that the derivative of the inverse to a differ-
entiable tensor function W(t) is given by

(7))

!’

=W t) - W(t) - B(t). (3.71)
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Hence by (3.70) we have
o®(t,s) (@ '(s,1))

0s 0s
_ o®(s,t) _ _
— 1 R S A 1
=—® (s,1) P D (s,1)

0P (s,t)
s
Finally, since s is the first argument in the derivative on the right we can

change this derivative using (3.66):

oP(t,s) B
5s —B(t,s) - A(s) - B(s,t) - P(t,s) = —P(¢,8) - A(s). -

= —{)(t, s) - . (P(t,s).

Proposition 3.12. The solution of the Cauchy problem
y'(t) = A(t) - y(t) +8(t),  y(0)=0,

with a given vector function g(t) is

¢
y(t) = / ®(t,5) - g(s)ds. (3.72)
0

Proof. Let us find the derivative of y(¢) given by (3.72):

d d [*

D0 =5 [ 2.9 g

td
—®(t.0)-g(0)+ [ () g(5)ds

=E-g(t) +/0 A(t) - ®(t,s)-g(s)ds

=AW [ B(t.s) gl ds+ g0

=A(t)-y(t) +g(t).

3.8 General Terminal Control Problem

We have stated the general problem of terminal control. Our understanding
of the scope of the optimal control problem has changed, however, so it is
appropriate to reexamine the setup of the terminal control problem.
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The object of terminal optimal control is described by a vector function
of time y(¢) with values in Euclidean vector space E™ whose behavior is
determined by a system of ODEs (or a vector ODE)

y'(t) = £(y(t), u(t)) (3.73)
The vector function f(y(t), u(t)) must be such that when the control func-
tion u(t) is given and admissible (i.e., belongs to the class ), then the
Cauchy problem for (3.73) supplemented with initial conditions has a
unique continuous solution on a finite time interval [0, T']. Thus the history
of the object determines uniquely its present state. Systems of this type
are called dynamical systems.

The set U of admissible controls consists of vector functions u(t) tak-
ing values in the Euclidean space E™ that are piecewise continuous in t.
In particular, U can consist of functions that take values in a finite set of
vectorial values. The former is important when the control function de-
scribes several fixed positions that are taken by some governing device; it
describes, say, the effect of some additional device that can exist only in
“on—off” states.

Everything said so far in this section applies to all optimal control prob-
lems. The distinguishing feature of terminal control is the specification of
the initial condition

y(0) =yo (3.74)
and the form of the objective functional
J(u) = Gy(T)). (3.75)

Thus we can consider terminal control as the problem of finding the minimal
output value (3.75) when the input is determined by the initial vector yq
and the control function u(¢) and the output is G(y(7T')). See Fig.3.3. Our
objective can be formulated as

Gy(™T) — ur(rtl)igu' (3.76)

This is known as the main setup of the problem (3.73)—(3.76). We can
reduce various other other optimal control problems to this form.

Problem. For a system described by (3.73) whose initial state is given by
(3.74), among all the admissible control vectors u € U find such for which
an objective functional

T
/0 oy (1), u(t)) dt
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u(?)

YO=% | v =tyouey |CYD

Fig. 3.3 A controlled object described by y’ = f(y,u): the input is y(0) = yo, the
control vector is u, and the output is G(y(T)).

takes its minimum value.

The reduction of this problem to the main form of the terminal con-
trol problem is done by introducing the additional component y, 1 for y.
Namely, we write down an additional scalar equation

Ynr1(t) = g(y(t),u(t),  541(0) =0.

Now it is clear that

T
na() = [ atyte),ue) e (3.77)
and thus the objective functional from (3.75) takes the form

J(u) = yn-i—l(T)'

We can consider another version of the terminal control problem when
it is necessary to minimize the objective functional

T
/0 o(y(H), u(t) dt + G(y(T))

for the same system described by (3.73)—(3.74). Then the same additional
component for y given by (3.77) reduces the problem to the necessary form.
The objective functional now is

J() = yn1(T) + G(y(T)).

Let us consider the main form of the terminal control problem (3.73)-
(3.76) using an extension of the procedure for the simplest problem of op-
timal control. Much of the reasoning for the latter is simply reformulated
to go from the scalar to the vector version. For the simplest problem, the
main step involved finding the main part of the increment of J(u) under a
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needle-shaped increment of a fixed control function. We shall do this here
also. The next step involved establishing the condition under which a con-
trol function would be optimal for the problem. This led to Pontryagin’s
maximum principle. We shall extend this to the general problem. Finally
we shall discuss how to use the formula for the increment of the functional,
as well as the maximum principle, to find an optimal solution.

Let ¢t = s be a point of continuity of a control function u(t). Giving u(t)
a needle-shaped increment (i.e., a vector whose components are all needle-

shaped functions with perturbations in (s — ¢,s]) we get a new control
defined by

wi(t) = {u(t)’ té(s—es, (3.78)

v, te(s—e, sl

We can continue to refer to Fig.3.1. We can also refer to Fig.3.3 for a
representation of the function y*(¢) that satisfies the equation

(v ()" = £(y" (1), u*(t)) (3.79)

and the same initial condition y(0) = yo. We suppose that at least for all
positive ¢ less than some small fixed number ¢y, the incremented control
function u*(t) is admissible.

The main part of the increment J(u*) — J(u), linear in small e, is
determined by

Theorem 3.13. Let t = s be a point of continuity of a control function
u(t). The increment of J(u) is

Ju*) = J(u) =edsvJ(u) + o(e) (3.80)
where
Os,vJ(0) = W(s) - [f(y(s),u(s)) — £(y(s),v)] (3.81)

and W(s) is a solution of the following Cauchy problem (in the reverse
time):

W'(s) = —Vyf(y(s), u(s)) - ¥(s), ¥(T)=-VyG(y(T)). (3.82)
dsvJ () is called the variational derivative of the second kind of the func-

tional J(u).

Proof. Take ¢ > 0 so small that all points of [s — ¢, s] are points of con-
tinuity of u(t) and the corresponding incremented control functions u* ()
are admissible. We divide the proof into several steps.
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Step 1, the main part of the increment of y(t). On [0, s — €] the control
functions coincide. The initial conditions for y(¢) and y*(¢) coincide as
well, so on this segment we have y*(¢t) = y(¢).

Let us find the increment of y(¢) for t € [s — &, s]. Subtracting term by
term (3.73) from (3.79) we have

(" () —y'(t) = £(y* (1), v) — £(y(t), u(?)).
Denoting Ay(t) = y*(t) — y(t) we get
Ay'(t) = £(y(t) + Ay (t), v) — £(y(t), u(t)). (3.83)

This equation, which holds on (s — ¢, s], is supplemented by the “initial”
condition

Ay(s—e)=0 (3.84)

which follows from the above coincidence of y(t) and y*(¢). Let us reduce
the Cauchy problem (3.83)—(3.84) for Ay(t), integrating (3.83) with respect
to the time parameter:

By(t) = By(s =) = [ [f(y(r) + Ay(n).v) = £(y(r). u(r)] dr.

By (3.84) this reduces to

Ay(t) = /7 [f(y(r) + Ay(7),v) — £(y(7), u(r))] dr. (3.85)

Since we assume f(y,u) to be continuous and thus bounded, the integral
on the right of (3.85) is of order € and so is Ay(t). Thus replacing in the
integrand the quantities y(7) and u(7) by y(s) and u(s) respectively, and
placing Ay(7) = 0, we introduce in the value of the integral an error of
order o(¢) for t € [s — ¢, s]. Hence (3.85) reduces to

By(t) = [ [£(3(5).%) ~ E(s) u)] dr + ofe),
which can be rewritten as

Ay (t) = (t —s+2)[f(y(s),v) — £(y(s), u(s))] + ole),

and thus on this small segment [s—e¢, s] the difference Ay(¢) changes almost
linearly from zero, taking at ¢t = s the value

Ay(s) = e[f(y(s),v) — £(y(s),u(s))] + ofe). (3.86)
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This is the initial value for the solution Ay(¢) on [s,T] of the equation
Ay'(t) = £(y(t) + Ay(t), u(t)) — £y (1), u(?)) (3.87)

(we recall that on this interval u*(¢) = u(t) and it is considered to be known

at this moment). Linearizing the right side of (3.87) with respect to Ay(t)
(taking into account (3.60)) we have

Ay'(t) = (Vyf(y (), u®))" - Ay(t) + o(| Ay (t)])). (3.88)
Because of smallness of the initial condition of Ay(¢) at t = s and the form
of (3.88) we expect the solution of the corresponding Cauchy problem on
the finite interval (s, T] to be of order ¢ and, up to terms of order higher
than €, equal to the solution of the following Cauchy problem:

3y’ (t) = (Vyf(y(t),u(t)))" - oy (2), (3.89)

dy(s) = e[f(y(s),v) — £(y(s), u(s))l; (3.90)
which is the linearization of the complete initial problem (3.87), (3.86). By
the linearity of this problem its solution is proportional to e.

To find the main part of the increment Ay(T) it remains to solve the
Cauchy problem (3.89)—(3.90). This can be integrated (often numerically)
but we will use the notion of the fundamental solution from the previous
section.

Let us denote A(t) = (Vyf(y(t),u(t)))? and leave the notation of § 3.7
for this fundamental solution, which satisfies

d
—®(t,5) = A(t) - @(t,5)

and the “initial” condition ®(s,s) = E for all s. By Property 3.9 of §3.7
the solution to (3.89)-(3.90) is
y(t) = e®(t,s) - [f(y(s),v) — £(y(s), u(s))]
and thus, assuming “good” behavior of Ay(t) we have
Ay(T)=e®(T,s) - [f(y(s),v) — £(y(s),u(s))] + o(e). (3.91)
Step 2, the main part of the increment of J(u) = G(y(T)). We again
use the formula of the differential (3.57) for linearization of the increment
of J(u) with respect to Ay(t):
AJ(u) = Ju") — J(u)
= Gy(T)+Ay(T)) = G(y(T))
= VG| - AY(T) + o1 By (D).
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Using (3.91) we get
AT(W) = £ Vy G5,y B(T,5) - [E(3(s),v) — £(3(s),u(s))] + ofe).
This is the required formula. It remains to represent it in the form asserted
by the theorem.
Step 3, the final step. Let us define a vector function ¥(s) as
W(s) = nyG(y)’y:y(T) - ®(T, s).
With this notation for AJ(u) we do have the representation (3.80)—(3.81),
so it remains to demonstrate that ¥(s) satisfies (3.82). The second relation
of (3.82) is a consequence of the equality ®(7,T) = E; indeed,

U(T) = =VyG¥)|,_yor) BT T) = =VyGY)| ,_yiry-
Let us show that it satisfies the first equation of (3.82) as well. The deriva-
tive of W(s) is

d\IldiS) = dis [_vyG(Y)‘y:y(T) "I)(Ta S)} = _vyG(Y)’y:y(T) : C%(I)(Tvs)'
Let us now use the equation for the derivative with respect to the second
argument of the fundamental solution, which is given by Property 3.11:

dq;is) = —VyGW)|,_ ) - (~B(T,5) - Als))
== (—VyG(y)!y:y(T) : <I>(T,s)) -A(s)
=—W(s) - A(s) = —(A(s))" - ¥(s).
Remembering the above notation for A(s) we complete the proof. O

3.9 Pontryagin’s Maximum Principle for the Terminal Op-
timal Problem

First we would like to discuss the statement of Theorem 3.13. When we
seek a response of an object described by the problem

Y'(#) =fy(®),u®),  y(0)=yo, (3.92)
to a needle-shaped disturbance of the control function u(t) we obtain a dual
problem

W' (s) = —Vyf(y(s),u(s)) - ®(s), (3.93)

U(T) = =VyG(y(T)). (3.94)
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The dual equation (3.93) plays a role like that of the Euler equation of the
calculus of variations, and the condition (3.94) is the condition of transver-
sality. Together (3.92)—(3.94) compose a boundary value problem having a
unique solution when u(¢) is given. This splits into two “initial value prob-
lems” for y(¢) and ¥(s). For problems other than the problem of terminal
control, other types of boundary conditions are given but the equations
yielding a response to a needle-shaped disturbance are the same. Let us
introduce an equivalent form of the equations for this boundary value prob-
lem. We define a scalar function in three variables y, ¥, and u(t), called
Pontryagin’s function:

H(y, ®,u)=f(y,u)- L. (3.95)
Simple calculation demonstrates that
vyH(Ya \Ila u) = vyf(}’a u) ' ‘Ila
V\I’H(ya \Ila u) = f(ya u)a

where the second relation is a consequence of the equality

VxX = eia—wi(zjej) = e;e; = E.

It follows that (3.92) and (3.94) can be written as

y'(t) = Ve H(y(t), ¥(t), u(t)),
W'(t) = —VyH(y(t), ®(t),u(t)).

This is the Hamiltonian form.
In terms of Pontryagin’s function the second kind derivative of J(u)
(3.81) can be written as

55,v‘](u) = H(Y(S)a \I’(S), U(S)) - H(y(5)7 \11(5)7 V)' (396)
Now we can formulate Pontryagin’s maximum principle.

Theorem 3.14. Let u(t) be an optimal control function at which J(u)
attains its minimal value on U, the set of all admissible control functions,
and let y(t) and ¥(t) be a solution of the boundary value problem (3.92)—
(3.94). At any point t = s of continuity of u(t), the Pontryagin function
H(y(t), ®(t),v), considered as a function of the third argument v, takes its
mazimum value at v = u(s).
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Proof. Since J(u) attains its minimum at u(¢) then for any admissible
control function u*(¢) we have

J(u*) — J(u) > 0.

In particular it is valid for an admissible u*(¢) that is a disturbance of u(t)
by a needle-shaped vector function

o (f) = {um, b (s—es)

v, te (s—e,s,
and thus, for sufficiently small ¢ because of (3.80) and (3.96) we have
J(u*) = J(w) = = (H(y(s), ®(s), u(s)) — H(y(s), ¥(s),v)) + (&) > 0.
From this it follows that H(y(s), ¥(s),u(s)) — H(y(s), ®¥(s),v) >0. O

Pontryagin’s principle of maximum gives us an effective tool to check
whether u(t) is a needed control function at which J(u) attains its mini-
mum, but it does not show, except for quite simple problems, how to find
this. However, (3.80) is the background of various numerical methods used
to find this minimum. We shall discuss them in brief.

The formula (3.80) for the increment of J(u), which can be rewritten
as

J(u) ~ J(u*) —edsvJ(u), (3.97)

generates an iterative procedure that begins with selection of a finite num-
ber of the time instants (71,...,7.) at which one may introduce needle-
shaped disturbances for finding a more effective control function. Next one
must find an instant 7; and a corresponding admissible value of v, which
we denote by v;, at which the maximum of the numerical set

{6rvJ(0),..., 0, vJ(u)}

is attained. Denoting the control parameters of the previous step as u(? (t)
and u*(t) where u(¥*(t) is just determined, one must choose the value
of €, denoted by ¢;, at which (3.97) provides a sufficiently precise approxi-
mation. Then the next approximation of the value of J(u) is given by the
formula

Ju) = J(uD*) — g, 6,, o, J(u).

Versions of this procedure differ in their methods of determining each step,
in particular the points 7;. They are called the methods of coordinate-by-
coordinate descent.
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A modification is called the group descent procedure. We have found
the main linear part of the increment of J(u) under a needle-shaped dis-
turbance of u(t) at ¢t = s, which is characterized by the pair of parameters
g, v. This means that if u(¢) is disturbed by a finite set of N such needle-
shaped variations, the ith of which is lumped at a point s; of continuity
of u(t) and is characterized by the pair €;, v;, then denoting by u**(¢) the
corresponding control function we get the main part of the increment as
the sum of increments of J(u) due to each of the needle-shaped increments
of u(t):

N
J(u™) = J(u) = Zei[H(y(S% W(s),u(s)) — H(y(s), ¥(s),vi)]

+ o(max(e1,...,eN)) - (3.98)

Then we can decrease the value of J(u) on the next step of approximation
using a group of needle-shaped increments and the formula (3.98).

3.10 Generalization of the Terminal Control Problem

Let us consider a generalized terminal control problem whose setup coin-
cides with that of the usual problem except for the form of the objective
function (functional). This set up is

Definition 3.15. From among the piecewise continuous control functions
u(t) € U on [0,T], find one that minimizes the functional Z(u),

A — mi
() = min,

when Z(u) is defined as
Z(u) = G(y(s1),y(s2),---,¥(sn)),

G(y(s1),y(s2),...,y(sn)) being a function continuously differentiable in
all its variables, 0 < s1 < s2 < -+ < sy = T some fixed points of time,
and y(t) satisfying the equations

y'(t) =f(y(®),u(®),  y(0)=yo.

Such a form of the objective function can appear, for example, if the
objective functional contains an integral depending on y(¢) which is dis-
cretized according to some simple method such as Simpson’s rule or the
rectangular rule. To proceed further we need some additional material. We
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shall obtain a nonstandard Cauchy problem and then find a way to present
it in a form that resembles the usual form for such a problem. For this we
digress briefly to discuss the Dirac §-function.

The é-function concept was originated by physicists and used for many
years before being given a rigorous footing (called the theory of distri-
butions) by mathematicians. Although rigor has certain advantages, the
heuristic viewpoint of the early physicists will suffice for our purposes. This
viewpoint rests on the notion that §(¢) is a function of the argument ¢, tak-
ing the value zero for ¢ # 0 and an infinite “value” at ¢ = 0 such that

+oo
/ S(tydt = 1. (3.99)

Now from a mathematical viewpoint we are in trouble already because it
can be shown that there is no such function. But we nonetheless proceed
formally with the understanding that every step we take can be justified rig-
orously (with tremendous effort and with full chapters of extra explanation
which, unfortunately, would not lend clarity to the topic).

The d-function is a generalized derivative of the step function h(t) given
by

1, t>0
h(t) = ’ - 3.100
0 {@t<@ (3.100)

and we shall exploit this property. The introduction of the generalized
derivative uses the main lemma of the calculus of variations and the formula
for integration by parts. Let ¢(¢) be a function infinitely differentiable on
(=00, +00) and with compact support (the support of ¢(t) is the closure of
the set of all ¢ for which ¢(t) # 0). Let us denote this class by D. For any
differentiable function f(¢) the formula for integration by parts holds:

+o0 too
| toewd=- [ roew (3.101)

— 00 — 00

The main lemma of the calculus of variations states that if the equality

+oo +oo
/ f@d@ﬁ=—/ g(t)p(t) dt (3.102)

holds for any ¢(t) € D then g(¢t) = f’(¢). This is valid for a differentiable
function f(t), but the same equation defines the generalized derivative of
an integrable function f(¢): a function g(¢) is called the generalized deriva-
tive of f(¢) if (3.102) holds for any ¢(t) € D. The generalized derivative
is denoted by the usual differentiation symbols. The main lemma of the
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calculus of variations (more precisely, its variant) provides uniqueness of
definition of the generalized derivative. Let us check that h'(t) = §(¢) in
the generalized sense. Indeed,

“+o0 [e'e) [e'e)
| o= [ nogwa= [ @i =-p0)
—o00 0 0
and by the definition of é-function
—+o0

| e =),
Thus for the pair h(t),d(t) the definition of generalized derivative is valid
and so h'(t) = d(t). Using this property we can write out the Cauchy
problem

y'(t) =g(t,y(t),  y(0)=wo, (3.103)

in an equivalent form

y'(t) = f(t.y() +y00(t),  w(t)],,_, =0 (3.104)

Indeed, integration of (3.104) with respect to ¢ (the starting point is ¢ = —0)
implies the equation

y@=Af@mm%+mwx

which is equivalent to (3.103).
Now let us formulate the main theorem of this section, in which we keep
the notation of § 3.8 for u*(t) and y*(¢).

Theorem 3.16. Let t = s be a point of continuity of a control function

u(t) that is different from s1,89,...,sy =T. The increment of Z(u) is
Z(u*) —Z(u) = €05 vZ(u) + o(e) (3.105)
where
SunZ(w) = B(s) - [£(y(5), u(s) — E(y(s), V)] (3.106)

and ¥ (s) is a solution of the following Cauchy problem (in the reverse time)

U'(s) = —Vyf(y(s),u(s)) - ®(s)

N
+ Z 0(5i = 8)Vy(s)G(y(51),¥(52),...,¥(sn)),

y(T +0) = 0. (3.107)
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Comparison with Theorem 3.13 shows that the current theorem differs
only in the form of the problem for ¥(s).

Proof. 1t is clear that y*(¢) for this problem coincides with that of § 3.8,
so we can use the corresponding formulas of that section. In particular, for
t > s the main part of the increment Ay(t) of the corresponding solution
y(t) on (s,T], under the needle-shaped increment of the control vector u,
is

Oy (t) = e ®(t,s) - [f(y(s),v) — f(y(s),u(s))]. (3.108)
So we immediately go to the increment of the goal function. First we use the
formula for the complete differential to get the main part of the increment

of Z(u) = G(y(s1),y(s2),-..,y(sn)), which is
AZ(u) =Z(u*) —Z(u)
= G(y(s1) + Ay(s1),y(s2) + Ay(s2), ..., y(sn) + Ay(sn))
= G(y(s1),y(s2), .-, ¥(sn))

N
=D Va0 Gy (s1),¥(s2). - y(sn) - Ay (s:)

+o (max ||Ay(sj)||) (3.109)
j
To implement (3.108) we rewrite it in the form

Sy(t) = ®(t,s) - [£(y(s),v) — £(y(s), u(s))] h(t - s)
so it becomes valid for use in (3.109) for all ¢ € [0,7] when the interval

s — g, s] does not contain any s; (assumed). en the increment o u
d t tai d). Then the i t of 7
can be rewritten as

AZ(u) =Z(u*) —ZI(u)
N
=€ {Z Vy(s)G(y(s1),¥(s2), ..., ¥(sn)) - ®(ss,5)h(si — S)} :

[E(y(s),v) = £(y(s), u(s))] + o(e).
Denoting
N

U(s) = — Zvy(si)G(Y(sl);Y(52); o y(sN)) - ®(si,8)h(s; — s) (3.110)
=1

we get, as in §3.8,

OsvI(u) = W(s) - [f(y(s),uls)) — f(y(s),v)]
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and for the increment of objective functional
Z(u*) —Z(u) = edsvI(u) + o(e).

Note that the presence of h(s; —s) in the sum of the definition (3.110) means
that at s = s; the value of ¥(s) has some step change for an additional
term in the sum.

It remains only to check the validity of (3.107). When s > sy =T we
get W(s) =0 so the second of (3.107) holds. To show that the first is valid
let us find the derivative of ¥(s). Taking into account Property 3.11 which
in our terms is

d

2 ®(si5) = = ®(si,9) - (Vyf(y(s),u(s))"

N
d‘II(S) = Z VY(Si)G(y(Sl)aY(S2)’ o ’Y(SN)).

~h(si = 8)®(si,5) - (Vyf(y(s), u(s))"

+ XN: VysnG(y(s1),¥(s2), .., y(sn)) - B(s4,5)0(si — )
= —;(18) (Vyf(y(s),u(s)”
+ XN: Vys)G(y(s1),y(s52), ..., ¥(sn))0(s: — 5).
In the last trans;mation we used ®(si,5)0(s; — s) = Ed(s; — s). 0

The form of Pontryagin’s maximum principle for the generalized termi-
nal control problem is the same as in the previous section. We leave its
formulation to the reader.

This kind of generalized terminal control problem is used in practice and,
as a rule, requires numerical solution of the problems when the formula for
the increment (3.106) of the goal functional is used.

3.11 Small Variations of Control Function for Terminal
Control Problem

The form of the increment of the objective functional for the generalized
terminal control problem provides a hint that the conjugate equations and
similar material should enter not only for needle-shaped variations of the
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control function, but for any small variations. We will see that this is really
so, and for this case we will find the expression for the increment of the
objective functional under the increment of control vector of other type.
We reconsider the terminal control problem described by the dynamical
system

y'(t) =£(y@®),u®),  y(0)=yo.
We wish to find the increment of the objective functional J(u) = G(y(T))
under a small increment Au(t) of the control function u(¢).

We demonstrated that one of the problems of the calculus of variations
was covered by the setup of a problem of optimal control, but did not use
the type of variations used in the calculus of variations until now. Here we
will demonstrate how it can be done.

Let us define v(t) = u(t) + Au(t) and require that v(¢) is admissible.
Smallness of Au(t) means that supy 1 [Au(t)]| is sufficiently small. We
suppose that the changed value y*(¢) satisfying the Cauchy problem

(y () =£(y"(®),v(1),  y"(0) =yo,
is such that Ay(t) = y*(t) — y(t) is also small enough, that is
max(o, 7y [|Ay(t)| is small.
Now we would like to find the increment of J(u) under such a small
admissible increment of u(t). The answer is given by

Theorem 3.17. Suppose supyy 1 [|Au(t)|| = €. Then the increment of
J(u) is
J(u*) — J(u) =dJ(u) + o(e)

where

6me:A W(1) - [f(y (1), u(t) — £y (t), v(1))) dt

and ¥(s) is a solution of the following Cauchy problem (in the reverse
time):

W(s) = ~Vyf(y(s) uls) - (s),  W(T) = —V,Gy(T)). (3.111)
Proof. Let us note first that the conjugate equation (3.111) for ¥(s) co-
incides with the conjugate equation we established for the terminal control
problem in §3.8. Much of that reasoning will apply here. Suppose for sim-

plicity of notation that Ay(¢) for all ¢ € [0,T] is of order . The problem
defining the increment Ay (t) is

Ay'(t) = f(y(t) + Ay (1), v(t)) — £(y (1), u(t)), (3.112)
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Ay(0) = 0.

We need to find the main part of Ay(t) at ¢ = T. Let us transform the
right side of (3.112):

f(y + AYa V) - f(Yﬂ u) = f(y + AYa V) - f(Yﬂ V) + [f(y7 V) - f(y7 u)]
= Vyf(y.v) - Ay + [f(y,v) — £(y, w)] + o([| Ay]])
= Vyf(y,u) - Ay + [f(y,v) — f(y,u)] + o(| Ay])).

Thus (3.112) becomes

(Ay (1) = Vyf(y(t),u(t)) - Ay(t) + [f(y(t), v(t)) — £(y(t), u(t))]
+o(lAy@®)I])-

The main linear part of Ay(t) is described by the following problem:

Oy ()" = Vyf(y(t),u(®)) - oy (t) + [f(y (1), v(t)) — £(y(£), u(®))],
dy(0) = 0.

Now we can use Property 3.12 and write out the form of the solution:
t
S¥(t) = | B(t.)- [E(3(5),v() ~ £y (s), ()] ds.
0

So the main linear part of Ay(7T) is

5y(T) = / B(T,s) - [{(y(s), v(s)) — £(y(s), u(s))] ds.

Now we can find the main linear part of the increment of the objective
functional J(u):

AJ(u) = VyG(y(T)) - Ay(T) + o(|Ay(T)])
T
:/O VyG(y(T)) - ®(T,s) - [f(y(s), v(s)) — £(y(s),u(s))] ds + ofe).

Denote ¥(s) = —V,G(y(T)) - ®(T,s). Then the last relation takes the
form

T
AJ(u) /0 W(s) - [f(y(s),uls)) — £(y(s), v(s))] ds + o(e)

as stated by the theorem. Since ¥(s) is defined exactly as in § 3.8, we have
completed the proof. O
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3.12 A Discrete Version of Small Variations of Control

Function for Generalized Terminal Control Problem

The formulas presented above for finding the change of the goal functional of
a problem are used in practical calculations, but the problem itself should
be discretized for this. Following the lecture of Dr. K.V. Isaev (Rostov
State University) but in vector notation, let us consider one of the versions
of possible discretization of the generalized terminal control problem. Let
us recall the original problem. Given the governing equation

y'(t) = £(y(t),u(t)) (3.113)
for y = y(t) with the initial value y(0) = yo, find an admissible control
function u = u(t) such that

Z(u) — min
uelU

where

Z(u) = G(y(s1),y(s2),---,¥(sn))- (3.114)

We suppose that u(t) changes by a small variation du(t) and would like to
find the main part of the increment AZ(u) = Z(u+du) —Z(u) that is linear
in Ju. We will not find the solution for this problem but will discretize the
problem in whole and formulate the result for the latter.

Let us partition the interval [0, sy]| by points tgp = 0 < t1 < ... < tg,
tr = SN, in such a way that the distance between two nearby points is small
and the set {¢;} contains all the points s; from (3.114). On the segment
(ti—1,t;] we will approximate the control function u(t) by a constant value
denoted u[i]. Similarly, let us denote y[i] = y(¢;). Considering y[i — 1] as
the initial value for equation (3.113) on [t;—1, ;] with u(t) = u[i], we can
find the value y[i] that can be considered as a functional relation

y[il = :(yli — 1), ull). (3.115)

If all the u[i] are given, then starting with y[0] = yo we get, by (3.115), all
the uniquely defined values y[i]. In this way a discrete dynamical system
is introduced. Note that it is not necessary to obtain (3.115) from (3.113);
it can be formulated independently, and so the reasoning below is valid in
a more general case that is not a consequence of the continuous dynamical
system (3.113). The restriction for control function u € U for discrete
control functions is rewritten as u € U*. Correspondingly the discrete
generalized control problem can be reformulated as:
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Problem. Given

ylil = @i(yli = 1], ali)),  y[0] = yo,
Z(u) = G(ylir], ylizl, - . ., y[in]), (3.116)
find u € U* such that
Z(u) — min .

ueU*

The main part of the increment of Z(u) that is linear in du is given by
the following

Theorem 3.18. The main part of the increment of Z(u) that is linear in
du = duli] is

R
OZ(w) = 3 VuyZ(w) - duli (3.117)
where
Vi Z(w) = (Ve (v[i — 1, uli])) - 4[] (3.118)

and Y[i] satisfy the equations

Ylil = (Vypein (ylil, uli +1])) - 9pli + 1]
+ Vy[l]Q(y[zl],y[zg], e ,y[ZN]), Z = R — 1, R — 2, ey 1,
Y[R] = VyrQy[ia], yliz, ..., ylin])- (3.119)

Proof. Before giving the proof we would like to point out the similar-
ity between this and the result for the corresponding continuous control
problem; in particular, there arises a system of equations for the comple-
mentary function 1 of the parameter ¢, whose solutions should be found
in the reverse order, from [R] to #[1]. It is clear that it does not mat-
ter on which step and how we discretize the problem, the main features
of solution should be the same. First let us mention that now Z(u) is an
ordinary function in many variables u[é] so all we need to find is the first
differential of Z(u) under constraints from (3.116). Thus the formula for

the first differential gives us

R
0Z(u) = Zvumf(u) - ouli]
i=1
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which is (3.117). Next

vu[z]z(u) = vu[i]Q(y[il]a y[iQ]v s 7Y[iN])

Vaaylil - VyQylial ylial, -, ylin])- (3.120)

Il
M=

1

<.
Il

Here we used the chain rule for differentiation, formulated for the gradient.
Let us find Vu[l-]y[j]. For this we introduce a new vector function Fj;
induced by (3.115) that is defined for j > i:

ylil = Fji(y[i]).
Let us formulate the properties of Fj;. It is obvious that
Fii(yli]) = ylil,
Fip1i(y[i) = yli +1] = i1 (v, uli + 1]).
Finally, it follows by the definition that
Fji(y[i) = Fjira(yli + 1) = Fjipa (pira (vl uli + 1)) (3.121)

It is evident that the components of Fj; depend only on the components
ufi+1],ui +2],...,u[j] and do not depend on the rest of the components
of u. Let us return to finding V;)y[j] using the chain rule again:

V¥l = VuFii(y[il) = Vauylil - VyaFii(yli)
= Ve, (yli — 1, ufi]) - Vg Fj(yli).

Returning to (3.120) we get

VauZ(u Z Vi (i — 1, ufi)) - Vy Fi(yli])-

-V QUylir], yliz], - . ., y[in]).

Denoting

we get

which is (3.118).
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It remains to derive equations for [i]. We begin with formula (3.121):
Fji(y[i]) = Fjira(y[i + 1]).
Applying the gradient by y[i] to both sides we get
VyaFji(y[i]) = Vymei (vl uli + 1)) - Vg Fj o (v[i + 1)) -

Substituting this into (3.122) we get

R
Pli] = Z Vi Fji(yli]) - VyQ(ylir], ylizl, - - -, ylin])

R
= Y Vyuei (liluli + 1)) - Vg Fj o (v[i +1]) -
j=it1

: Vy[j]Q(Y[il]’ y[i2]’ s ay[iN])
+ VyaFu(yli]) - VyQylia], ylizl, - -, ylin])
= Vyupir1(ylil,uli + 1)) - li + 1] + Vy [ Qylia], ylizl, - . ., ylin])

where we have used the fact that Vy(;Fi;(y[i]) = E. So we have obtained
the first of (3.119). From the intermediate result of this equality chain the
second of (3.119) follows. O

We now turn to another class of problems.

3.13 Optimal Time Control Problems

We recall that the problems of this type are as follows. The object is
described by a dynamical system

y'(t) = £(y(t), u(t)) (3.123)

for which we must find an admissible control function u(t) in such a way
that the parameters of the system must be changed from the initial state

y(0) = yo (3.124)
to the final state
y(T) =y (3.125)

in minimal time 7. Unlike the terminal control problem, here the final
state of the system is fixed but not the time interval.
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Let us note that in this problem the set U of admissible control functions
is limited not only by the external inequality restrictions, but also by the
boundary conditions (3.124)—(3.125) because it may happen so that there
are no admissible control vectors such that the system, starting with the
initial state yg, can reach the final state y; in finite time 7.

Next we recall that for the terminal control problem we obtained a
conjugate problem with an initial (i.e., “final”) condition at T" which was
called the condition of transversality. The optimal time problem has both
the boundary conditions for y of the same form as the condition at ¢ = 0 of
the terminal control problem. Thus we should expect that if Pontryagin’s
principle of maximum is valid in this or that form for the optimal control
problem then any boundary conditions for W(s) are absent. This means
that the uniqueness for finding W¥(s) needed for this problem is not pro-
vided by some explicit equations. The explicit formula for the increment
of the objective functional for the optimal control problem is not obtained.
So we formulate without proof the statement of Pontryagin’s principle of
maximum for the optimal control problem.

Theorem 3.19. Let u(t) be a control function at which T, the length of
the time interval, attains its minimal value among all the admissible con-
trol functions, for which (3.123)—(3.125) has a solution y(t). There is a
nontrivial vector function W(s) that is a solution of the conjugate equation

d
E‘I’(S) = —W(s)  Vyf(y(s),u(s))
such that the Pontryagin function H(y, ¥, u) = f(y,u) - ¥, with respect to

the third argument, takes its maximal value for all points of continuity of
u(t):

H(y(t), ¥ (t),u(t)) = H(y(t), ¥(t), v).

Let us note that in simple cases when u(t) comes into the equations
linearly this theorem reduces the set of possible control functions to those
which take values at boundaries of U at each time ¢. Indeed, then u(t)
comes linearly into the presentation of H(y, ¥,u) = ¥ - f(y,u) and thus
its maximal value can be taken only at some extreme points of u(t).

Example 3.20. Consider the simplest optimal time problem. Let a ma-
terial point of unit mass move along a straight line under the action of a
force whose magnitude F' cannot exceed unity. How should we vary F' so
that the point moves from one position to another in the shortest time?
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Solution. If the velocity of the point at its initial and final states is zero
then the solution is clear mechanically: first we need to accelerate the point
with maximal force until it comes to the middle point between the initial
and final state, and then to switch the force to the opposite direction leav-
ing the maximal magnitude so the point is maximally decelerated. When
the appointed initial and final velocities are not zero one must have good
mechanical intuition to tell what the law for the force should be. Let us
solve this problem using Theorem 3.18. The governing equation is

() =F(), z(0)=ap, 2'(0)=ai, z(T)=by, z'(T)=by, (3.126)
and the restriction for F'(t) is
|F(t)| < 1. (3.127)
Let us rewrite this using the notation we used above:
n(t) =z(t),  pat)=210), ul)=F(Q).

Thus we introduce the phase coordinates of the point. Then equations
(3.126)—(3.127) take the form

the boundary conditions
y1(0) = ao, and y1(T) = bo,
y2(0) = ax, y2(T) = b1,
and the restriction that defines the set U of piecewise continuous functions
—1<u(t) <1

Let us first introduce the Pontryagin function H = y21)1 + uths. Let y(t)
and W(t) be the needed solutions of the main and conjugate systems of
equations. The conjugate equations are

Y1 =—0H/0y1 =0,

Yy = —0H/Oys = —¢1.
The solution of this system results in ¥y = dit 4+ d2 and thus may have no
more than one point ¢y € [0,7T] at which it changes sign. By Pontryagin’s
principle, it is the only point at which the control function v must switch

sign as H can take its maximum when o (¢)u(t) takes its maximum. Thus ¢o
splits [0, T'] into two parts having v = 1. Thus the solution to our simplest



Elements of Optimal Control Theory 211

optimal time control problem should be synthesized from trajectories of the
two systems

y1(t) = y2(t), 1

ya(t) =1, ya(t) = —1.
The particle trajectories on the phase plane (y1,y2) are parabolas. For the
first system y; = t2/2 + c1t + c2 and for the second y; = —t2/2 + c3t + c4.
Geometrically it is evident that there are no more than two parabolas,
one from each family, through the end points which intersect. That is
the solution trajectory of the problem. Analytically we must compose five
equations for unknown ¢; and ty. The first is that at ¢o the curves intersect,
that is

f3/2+01t0 +co = —t%/2+03t0 +cq.

The other four equations (boundary conditions) depend on which of
switched values of u goes first. If w = 1 on [0,tp] and thus u = —1 on
the rest,

co = ag, €1 =aj, —T2/2+C3T+C4=b0, —T 4+ c3 = by.
If u = —1 on [0, o] then
cy = ag, €3 =aj, T2/2+61T+02=b0, T+ ¢y = b;.

Only one of these systems has a solution where real ¢ lies in [0,7] and it
is what we have sought. |

We would like to note that when the controlled object’s equations are
simple, the maximum principle of Pontryagin gives a good tool to find an
optimal solution. For many industrial problems it is necessary to use other
methods. In the same manner as Example 3.20, any optimal time problem
for a system described by the equation z” + ax’ + bx = u can be solved
analytically. Textbooks are full of such problems from various areas of
science, their analytical solutions as well as geometrical interpretation of
some of their solutions.

Our next remark is the following. The terminal control problems and
the optimal time problems are in a certain sense, the extremes of all con-
trol problems with respect to boundary conditions. For “intermediate”
problems, with other types of boundary conditions at starting and ending
moments, the conjugate system is supplemented with some conditions of
transversality. The situation is similar to that for natural conditions in the
calculus of variations.
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3.14 Final Remarks on Control Problems

In this chapter we considered in large part the methods for finding opti-
mal solutions. Of course it was an introductory chapter, and we limited
ourselves to a small portion of the theory — that portion which is used
in many industrial control processes and other applications. We did not
touch on the problem of existence of solutions of control problems, which
is extremely important since there are many practical problems that are
formulated quite nicely from a common sense standpoint but that lack so-
lutions.

We mention only another important part of control theory that is called
dynamical programming. It was developed by R. Bellman and used quite
successfully in many problems of optimal control. To give the reader some
idea of what this theory is about and to lend vividness to the presentation
we consider a very simple problem (in a form that might hold the attention
of many undergraduate students):

Example 3.21. A racketeer has been drunk for three weeks and has failed
to perform his job properly. One morning he receives a phone call from
his boss, reminding him of a $32,000 debt he owes the boss in one hour.
Along with this reminder comes a suitable threat about one lost tooth for
each $1000 he fails to bring in. The racketeer lives quite far from his boss,
and wishes to collect as much additional money as possible on the way. He
has a street map showing how much money he can collect on each possible
route. He is constrained to move ahead only, and cannot turn back.

Solution. We draw the map as a graph (Fig.3.4) that should begin at
point O and end at B. To get a more convenient presentation at the final
point B we split all routes to B and draw them along the final line By-B;
as shown on the picture. On the lines connecting the nodes we put the
amounts of money that the racketeer expects to be able to collect from the
peaceful citizenry. g

Let us discuss this problem. Of course, for this small map the racketeer
could test all the possibilities and find the optimal way quite quickly. There
are six levels at each of the way can branch so there are few possibilities.
Let us imagine that this map has 1000 such levels; then the number of
possible ways grows to 21000
a quick result. So it becomes necessary to propose a procedure for which
the number of operations could be sufficiently small, say several million.

and simple experimentation would not bring
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Optimal
trajectory

Fig. 3.4 A racketeer’s possible routes; optimal trajectory shown as the thick line.

Any cross-section of the map would not bring the needed optimal result
since the optimal trajectory can be quite strange. The crucial step to the
solution is to choose the first step as follows. Suppose that we are at the
999th level of nodes. From each node of this level we exactly know where to
move since it is a choice between two possibilities. Near each node of this
level we write down where we should move (Down or Up) and the amount.
On the 998th level we again should fulfill few operations at each node:
moving along the upper street we then add the figure of this street with the
price of corresponding 999th node after which we should decide between the
two possibilities and to write near the node Up or Down (showing where
to go next) and the optimal cost. On the 997th level everything will be
repeated: the finding of two sums of two numbers, the choosing of the
bigger one, and the placement of the necessary information near the node.
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This is must be done at each level. In this way we come to the initial point,
getting the optimal sum of money as the resulting figure at it, and the
optimal trajectory moving along signs Up and Down.

At first glance this seems to be a nice problem for a high school math
competition, since it is solved using only “common sense”. However, its
solution is based on a hard mathematical idea: when we come to some
point of the optimal trajectory, the remainder of the optimal trajectory is
optimal for the “reduced” problem whose initial point is this one at which
we just stopped.

We shall not discuss the many fruitful applications of this principle of

3

Bellman. As the central principle of dynamical programming it has brought
many results, both theoretical and practical, in discrete and continuous
problems.

We leave it to the reader to explore other books, and thereby to discover
other ways to view problems in optimal control and the calculus of varia-
tions. These are indeed part of the more general branch of mathematics
known as Mathematical Programming.

3.15 Exercises

3.1 Show that the coefficients of the squared gradient
V?, =Vy (Vy)

applied to a scalar valued function f(y(¢)) constitute the Hessian matrix of f.
3.2 Establish the formula (3.71).

3.3 Formulate the form of the main linear part of the increment of J(u) under
the sum of the increments of the control function by the needle-shaped vector
function and a small increment as discussed in § 3.3.

3.4 (A harder problem.) Let the objective functional for the terminal control
problem be changed to

T
J*(u) = / G(y(t)) dt.
0
What is the form of the main part of its increment in this case?

3.5 A mechanical oscillator (a mass on a spring) oscillates under force |F(¢)|
such that |F(t)] < 1. The governing equation is mz” + kz = F, m =1, k = 1.
Find the law of the change of the force when the mass goes from state z(0) = a,
2’ (0) = b to the state of equilibrium, z(T) = 0, 2'(T) = 0 in the shortest time T'.



Chapter 4

Functional Analysis

Over the long history of engineering, numerous analytical and theoretical
tools were developed for the approximate solution of complex mathematical
problems. These techniques are still meaningful and tend to dominate en-
gineering textbooks. However, modern engineering incorporates models so
complex that their theoretical solution is practically impossible. A reliance
on computers has pushed aside analytic methods even when the latter can
be applied. Approaches such as the finite element method enable solutions
of extremely complex problems that are impossible to solve analytically
and, moreover, produce numerical results that may be presented in an at-
tractive graphical manner. An engineer may have the impression that these
programs can solve nearly any problem — at least in his or her range of
interests. But this is not the case. Computers are finite automata; they act
with finite sets of numbers. Computers reduce differential equations and
other continuous models to equations in finite dimensional spaces.
Engineers working with computer programs may become accustomed to
the idea that finite dimensional results are good approximations to experi-
mental results. In mathematical terms, they begin to view the ideology of
linear algebra in R™ as infallible. This viewpoint is not entirely invalid. We
may take, for example, the equations of the finite element method, obtained
from boundary value problems for differential equations. If deduced while
taking proper account of the principal physical laws, these equations are in-
deed finite dimensional models of certain objects or processes. Hence they
can sometimes approximate real objects no worse than differential (infinite
dimensional) models that are also merely approximate. But the phrase
“deduced while taking proper account of the principal physical laws” is
essential, and finite dimensional models may lack certain important prop-
erties. Furthermore, restrictions on calculation time will necessitate trun-
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cation errors, the effects of which can be gauged only through comparison
with experiment (which is often impractical) or with results from infinite
dimensional models.

We can expect manual solution methods to continue their slow decline
in engineering practice. Within a few generations, students may be unable
to integrate simple functions or solve ordinary differential equations (con-
sider what happened with the logarithmic slide rule). But a grasp of the
basic properties of finite dimensional and infinite dimensional operators and
their relations will be needed for understanding what computers do with
numerical models and what can be expected from them.

As finite dimensional and infinite dimensional problems appear to be
related, it is attractive to use the methods and ideology elaborated in finite
dimensions for the infinite dimensional case. Many aspects of standard ma-
trix analysis remain valid under the transition to infinite dimensional prob-
lems. But this is not uniformly the case. For example, closed and bounded
sets are guaranteed to be compact only in finite dimensional spaces. An-
other example concerns infinite dimensional vectors, often written in the
harmless looking form (1,2, ...), which do not conform to all the rules
that apply to ordinary vectors. Many such examples could be given.

Although these sorts of issues are studied in the portion of mathematics
that still lies outside the typical engineering curriculum, the situation is
bound to change. Engineers must understand the background of the tools
they employ.

A principal tool in the modern analysis of partial differential equations,
functional analysis allows us to shift our perspective on functions from
the viewpoint of ordinary calculus to a viewpoint in which we deal with
a function (such as a differential or integral operator) as a whole entity.
We accomplish this conceptual shift by extending the notion of an ordinary
three-dimensional vector so that a function can be viewed as an element of
a linear vector space. Because this extension involves some subtle points
regarding the dimension of a vector space, the present chapter is devoted
to a suitable introduction.

As a branch of mathematics, functional analysis is in large part de-
lineated by the tools it offers to the practitioner. Important applications
arise in a variety of areas: differential and integral equations, the theory
of integration, probability theory, etc. It has been said that functional
analysis is not a special branch of mathematics at all, but rather a united
point of view on mathematical objects of differing natures. A full presen-
tation of functional analysis would require many volumes. The goal of the
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present chapter is to offer the reader a relatively brief but still self-contained
treatment, and therefore to provide all the tools necessary for the study of
boundary value problems.

It is worth noting that the pioneers of functional analysis were not all
pure mathematicians. Stefan Banach received a polytechnical diploma and
for many years taught courses in theoretical mechanics. He also published
an interesting textbook on mechanics. John von Neumann, who pioneered
the application of computers to engineering practice, wrote a fundamental
textbook on functional analysis that had important influences on quantum
mechanics and other areas of physics. Functional analysis spawned many
important applications of mathematics to physics and engineering. While
some of its subtopics did arise in pure mathematics, they are often pow-
erfully applicable. The approaches taken in books on functional analysis
depend strongly on the interests of the authors. Many are deeply theoreti-
cal. In this short chapter, we consider a portion of functional analysis used
to study mathematical problems in mechanics.

Before we begin, recall two standard theorems from ordinary calculus.

Theorem 4.1. Suppose a sequence {f,(x)} of functions continuous on a
compact set Q C RF converges uniformly; that is, for any e > 0 there is an
integer N = N(g) such that |fn(x) — fm(x)| < € whenever n,m > N and
x € Q. Then the limit function

f(x) = lim f(x)
is continuous on €.

This is called Weierstrass’ theorem. The next one shows the properties
of a continuous function on a compact set.

Theorem 4.2. Suppose f(x) is continuous on a compact set 2 C R*. Then
f(x) is uniformly continuous on §2; that is, for any e > 0 there is a 6 > 0
(dependent only on e) such that |f(x) — f(y)| < &€ whenever ||[x —y|| < d
and x,y € Q.

4.1 A Normed Space as a Metric Space

Regarding a function as a single object (a viewpoint which functional anal-
ysis inherited from the calculus of variations), we must provide a way to
quantify the difference between two functions. The simplest and most con-
venient way to do this is to use the tools of normed spaces. First of all a
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normed space, consisting of elements of any nature (of functions in partic-
ular), must be a linear space. This means we can add or subtract any two
elements of the space, or multiply an element of the space by a number, and
the result will always be an element of the same space. If complex num-
bers are used as multipliers then the linear space is called a complex linear
space; if purely real numbers are used then the space is a real linear space.
The definition of a linear space can be stated rigorously in terms of axioms
and the reader has undoubtedly seen these in a linear algebra course. The
main distinction between a general linear space and a normed space is the
existence of a norm on the latter. A norm is a real-valued function |||
that is determined (which means it carries a unit and takes a finite value)
at each element x of the space and satisfies the following axioms:

(1) ||z]| = 0 for all z; ||z|| = 0 if and only if 2 = 0;
(2) ||Az|| = |A| ||z|| for any 2 and any real number A;
@) Mz +yll < llzll + llyll for all z,y.

The first of these is called the axiom of positiveness, the second is the axiom
of homogeneity, and the third is the triangle inequality.

Definition 4.3. A normed linear space is a linear space X on which a norm
||| is defined.

More specifically, ||-|| is “defined” on X if the number ||z|| exists and is
finite for every element z € X.

In classical functional analysis one deals with dimensionless quantities.
In applications this restriction is not necessary: one can use numbers with
dimensional units and get norms having dimensional units. Although this
causes no theoretical complications and is sometimes useful, we follow the
classical procedure and consider all elements to be dimensionless.

Example 4.4. Show that if ||z|| is any norm on X and z,y € X, then

izl =Nyl | < lle = yll- (4.1)

We shall find this inequality useful later. In particular, by the definition of
continuity it means that the norm is continuous with respect to the norm
itself.

Solution. Let us begin by replacing  with  — y in norm axiom 3:

]l =Nyl < ll= = yll.-
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Interchanging the roles of x and y in this inequality, we get

Iyl = llzll < lly — =]

But the right sides of these two inequalities are the same; indeed, ||y — z|| =

[(=1)(z —y)|| = ||z —y| by norm axiom 2. So the quantity |z —y| is
greater than or equal to both ||z| — ||y|| and |ly|| — ||=||. This means it is
greater than or equal to | ||z| — ||yl |- O

We have introduced the normed space C'®)(Q) of functions that are k
times continuously differentiable on a compact set {2 with the norm

110l = pagf91 + 32 maglonred), - (12)
where
Hled
D*f = f la] = a1 4+ -+ ap. (4.3)

a 0
Ox{"---O0xn

As with any other proposed norm, the reader should verify satisfaction of
the axioms.! A particular case is the space of all functions continuous on
Q with the norm

160y = mae | £ GO (14)

In the space of functions continuous on a compact {2 we can impose another
norm:

wwm=(4vwwmﬁ”p (b>1). (45)

The norm axioms can be verified here also (the triangle inequality being

known as Minkowski’s inequality).?

Hence on the same set (linear space)
of elements we can impose one of several norms. On the same compact )

we can consider the set of all bounded functions and introduce the norm

1f (x|l = sup [f(x)] - (4.6)
xeN

The resulting space will be called M (€2). The space C(2) is a subspace of
M () (note that for a continuous function the norm (4.6) reduces to (4.4)).
Note that a normed space is defined by the set of elements and the form of

IFor example one could take the set of functions continuous on [0, 1] and try to impose
a “norm” using the formula || f(x)|| = |f(0.5)|. Which norm axiom would fail?

2We assume  is Jordan measurable. This is a safe assumption for our purposes,
because we consider only domains occupied by physical bodies having comparatively
simple shape.
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the norm imposed on it. So to refer properly to a space, we must display
a pair (X, ||-||) consisting of the set of elements X and the norm. For the
most frequently used spaces it is common to use shorthand notation such
as C(§2) where the norm is understood. This is especially appropriate when
there is a unique norm imposed on a set, and we shall adopt the practice.
When it is necessary to distinguish different norms, we indicate the space
by a subscript on the norm symbol as in (4.2) and (4.4).
The functional

d(z,y) = ||z —yll, (4.7)

defined for each pair of elements of a normed space, satisfies the axioms of
a metric:

(1) d(z,y) > 0 for all x,y, and d(z,y) = 0 if and only if x = y;
(2) d(z,y) = d(y, ) for all z,y;
(3) d(z,y) < d(z,z) +d(z,y) for all z,y, 2.

If such a functional (metric) d is defined for any pair of elements of a set
X, then we have a metric space.

Definition 4.5. A metric space is a set X on which a metric d(z,y) is
defined.

Hence every normed space is a metric space (the metric (4.7) is called
the natural metric and is said to be induced by the norm). The notion of
metric space is more general than that of normed space. Not all metric
spaces can be normed: first of all a metric space need not be a linear space
(a fact which is sometimes important, as in applications of the contraction
mapping principle). Note that the use of elements with dimensional units
would give a metric having dimensions as well; although the metric is a
generalization of the notion of distance, this distance can be expressed in
units of force, power, etc.

The axioms of a metric replicate the essential properties of distance from
ordinary geometry: (1) distance is nonnegative, the distance from a point
to itself is zero, and the distance between two distinct points is nonzero;
(2) the distance between two points does not depend on the order in which
the points are considered; and (3) the triangle inequality holds, meaning
that for a triangle the length of any side does not exceed the sum of the
lengths of the other two sides. In this way, the more general notion of
metric preserves many terms and concepts from ordinary geometry.
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Definition 4.6. An open ball with center xy and radius R is the set of
points & € X such that d(xo,z) < R. The corresponding closed ball is the
set of all © € X such that d(zo,2) < R, and the corresponding sphere of
radius R is the set of all z € X such that d(zo,z) = R.

Note that the term “ball” can denote various objects depending on the
metric chosen: if we impose the metric
d — o
(,y) = max |a; — il
in ordinary three-dimensional space where x = (z1,22,23) and y =
(y1,y2,y3), then a ball is really shaped like a cube. The other abstract
space structures also provide notions that correspond to those of ordinary
geometry. In a linear space of vectors we can determine a straight line
through the points z; and x2 by

txy + (1 — t)xo, t € (—o0,00),

and can obtain the segment having x; and x2 as endpoints by restricting ¢
to the interval [0,1]. It is especially important that we can use the notion
of metric to introduce the tools of calculus in such a way that functions can
be dealt with as whole objects. (Metric spaces are not linear in general,
so they include spaces that cannot be normed. However, even some linear
metric spaces cannot be normed.)

Armed with a notion of distance in a normed space, we can introduce
any of the notions from calculus that are connected with the notion of
distance. The first is convergence.

Definition 4.7. A sequence {z,} is convergent to an element x if to
each positive number € there corresponds a number N = N(g) such that
d(zy,x) < € whenever k > N.

The reader can easily phrase this definition in terms of the norm, using
(4.7). As in calculus, we call z the limit of {x)} and write

lim zp =x
k— o0

or xp — x as k — oo.

Example 4.8. (a) Show that every convergent sequence in a metric space
has a unique limit. (b) Show that if z,, — x and y,, — v, then d(z,, yn) —
d(x,y) as n — 0.
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Solution. (a) We suppose that z,, — = and x,, — 2, then show that 2’ = «
follows. Let € be an arbitrarily small positive number. By assumption we
can choose N so large that the inequalities d(xy,z) < £/2 and d(zn,2') <
£/2 both hold. Hence, by the triangle inequality,

d(z,2") < d(z,zn)+d(zy,2') <e.
Since the distance d(z, ") is both nonnegative and smaller than any preas-

signed positive number, it must equal zero. According to metric axiom 1,
we conclude that x = 2. (b) The generalized triangle inequality

d(xlazn) S d(fl‘l, :EQ) + d(IQa :E3) +-+ d(znflv :Cn)

is easily established through the use of mathematical induction. We can
use this fact as follows. We write

d(z,y) < d(vp, ) + d(Tn, yn) + d(Yn, y)

and

and then combine these two inequalities into the form

|d(2n, yn) — d(z,y)| < d(Tp, ) + d(Yn,y).

Now for any ¢ > 0 there exists IV so large that n > N implies both
d(zp, ) < e/2and d(yn, y) < £/2. This means that |d(x,, y,)—d(x,y)| < e,
as desired. 0

Clearly, a sequence of functions continuous on [0, 1] and convergent in
the norm (4.4) is also convergent in the norm

I (@)l =2 maX}If(:C)I-

z€[0,1

However there are other norms, of LP(0, 1) say, under which the meaning of
convergence is different. If two norms ||-||; and |[-||, satisfy the inequalities

m |y < lzfly < M [l (4.8)

for some positive constants m and M that do not depend on z, then the
two resulting notions of convergence on the set of elements are the same.

Definition 4.9. Two norms ||-||; and |||, that satisfy (4.8) for all z € X
are equivalent on X.

We shall not distinguish between normed spaces consisting of the same
elements and having equivalent norms.
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4.2 Dimension of a Linear Space and Separability

The dimension of a linear space is the maximal number of linearly inde-
pendent elements of the space. Recall that the elements xy, k =1,2,...,n,
are linearly independent if the equation

c1x1 + coxo + -+ cpxy =0

with respect to the unknowns c¢g implies that ¢, =0 for all k =1,2,...,n.
We shall deal for the most part with infinite dimensional spaces. An im-
portant example is the space C(0, 1) of functions f(x) continuous on [0, 1].
Indeed, any set of monomials fi(z) = z¥ is linearly independent in this
space, since for any integer n the equation

ar+ ez + - Fepz” =0

cannot hold for any x unless ¢, = 0 for all k = 1,2,...,n. Therefore the
dimension of C(0,1) cannot be finite.

Let us discuss the problem of the number of elements in an abstract
set. We say that two sets have equal power if we can place their elements
in one-to-one correspondence. The simplest known infinite sets are those
whose elements can be placed in one-to-one correspondence with the set
of natural numbers. Such sets are said to be countable. An example is
the set of all integers. It is clear that a finite union of countable sets is
countable, since we can successively count first the elements standing at
the first position of each of the sets, then the elements at standing at the
second position, etc. There is a sharper result:

Theorem 4.10. A countable union of countable sets is countable.

Proof. Let X, be the nth countable set and denote its kth element by
Tnk, k= 1,2,.... The union of the X, is the set of all elements z,,. We
need only to show how to recount them; this can be done as follows. The
first element is x11. The second and third elements are z12 and x21, i.e., the
elements whose indices sum to 3. The next three elements are the elements
whose indices sum to 4: x13, T22 x31. We proceed to the elements whose
indices sum to 5, 6, etc. In this way we can associate any element of the
union with an integer. g

It follows that the set Q of all rational numbers is countable. Recall
that a rational number can be represented as i/j where i and j are integers;
denoting z;; = i/j, we obtain the proof. Thus a countable set can have a
great many elements. However, it can be shown that



224 Advanced Engineering Analysis

Theorem 4.11. The points of the interval [0,1] are not countable.

The reader is referred to books on real analysis for a proof. We say
that the points of [0,1] form a continuum. One might wonder whether
there exist any sets intermediate in power between the countable sets and
continuum sets. It turns out that the existence or non-existence of such
a set is an independent axiom of arithmetic, a fact which points to the
interesting (and sometimes mysterious) nature of the real numbers.

Example 4.12. Show that the set P, of all polynomials with rational co-
efficients is countable.

Solution. For each fixed nonnegative integer n, denote by P the set of
all polynomials of degree n having rational coeflicients. The set P can be
put into one-to-one correspondence with the countable set

(@x@x...x@
—_—
n+1 times

where Q is the set of all rational numbers. Finally, the set P, is given by

oo
P”‘ = U P;lv
n=0
and this is a countable union of countable sets. O

Another example of a countable set is the collection of all finite trigono-
metric polynomials of the form

ao + Z(ak cos kx + by sin kx)
k=1

with rational coefficients ag, ax, by.

Let us discuss the real numbers further, keeping in mind that many of
our remarks also apply to the complex numbers. Any real number can be
obtained as a limit point of some sequence of rational numbers. This fun-
damental fact is, of course, the reason why a computer can approximate a
real number by a rational number. The ability to approximate the elements
of a given set by elements from a certain subset is important in general.

Definition 4.13. Let S be a set in a metric space X. A set Y C S is dense
in S if for each point s € S and € > 0, there is a point y € Y such that
d(s,y) < e.
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Alternatively, Y is dense in S if for any s € S there is a sequence
{yn} C Y that converges to s. The set of rational numbers is dense in the
set of real numbers.

Example 4.14. Let A, B,C be sets in a metric space. Show that if A is
dense in B, and B is dense in C, then A is dense in C.

Solution. Suppose A is dense in B and B is dense in C'. Let ¢ be a given
point of the set C', and let € > 0 be given. There is a point b € B such
that d(c,b) < /2. Similarly, there is a point a € A such that d(b,a) < &/2.
Since

d(c,a) <d(c,b) +d(b,a) <e/2+¢e/2=¢,
there is a point a € A that lies within distance € of ¢ € C. O

Definition 4.15. If a metric space X contains a countable subset that is
dense in X, then X is separable.

Example 4.16. Demonstrate that the set of all complex numbers with the
natural metric (induced by the absolute value of a number) is a separable
metric space.

Solution. Consider the subset of complex numbers having rational real
and imaginary parts. This set is clearly countable (it can be placed into
one-to-one correspondence with the countable set Q x Q). We must still
show that it is dense in C. Let z = u + iv be a given point of C, i = \/—1,
and let € > 0 be given. Since u and v are real numbers, and the rationals
are dense in the reals, there are rational numbers © and v such that

lu —a| < e/V2, lv — 3] < e/V2.

The number zZ = @ + i? is a complex number with rational real and imagi-
nary parts. Noting that

(2,2 = Va7 4 00 < \/VDR + (/v =<,
we are finished. g
Theorem 4.17. Every finite dimensional normed space is separable.

Proof. Every finite dimensional linear space has a finite basis, and the
set of all finite linear combinations of the basis elements with rational co-
efficients is countable and dense in the space. O
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The following result is important in practice.
Theorem 4.18. Every subspace of a separable space is separable.

Proof. Let E be a subspace of a separable space X. Consider a countable
set consisting of (z1, 22, ...) which is dense in X. Let By; be a ball of radius
1/k about ;. By Theorem 4.10, the set of all By; is countable.

For any fixed k the union U;By; covers X and thus E. For every By;,
take an element of E which lies in By; (if it exists). Denote this element by
eri. For any e € By; N E, the distance d(e, ey;) is less than 2/k. Tt follows
that the set of all ex; is, on the one hand, countable, and, on the other
hand, dense in F. O

Recall that a subspace of a linear space X is a subset of X whose ele-
ments satisfy the linear space axioms. Normally the separability of function
spaces is proved via the approximation of functions by polynomials with ra-
tional coefficients. These polynomials constitute a countable set. When we
establish separability of spaces used for the setup of boundary value prob-
lems, certain conditions on the boundary are involved in defining the useful
subspaces. The polynomials usually do not satisfy these conditions and
therefore are not included in the needed subspace. However, we can prove
separability of the principal space without boundary restrictions. Separa-
bility of the subspace with the restrictions follows from Theorem 4.18.

An important result from analysis is the Weierstrass approzimation the-
orem: if f is continuous on a compact domain in R", then there is a se-
quence of polynomials that can “uniformly approximate” f on that domain.
Upon this result rests

Theorem 4.19. If Q is a compact domain in R™, then the space C(Q) is
separable.

Proof. The set of all polynomials with rational coefficients is dense in
the set of all polynomials. Then the Weierstrass theorem implies that the
set P, of all polynomials with rational coefficients is dense in C'(£2). Since

P, is countable, C'(€?) is separable. O

We also have

Theorem 4.20. The space C¥)(Q) is separable for any integer k.
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4.3 Cauchy Sequences and Banach Spaces

If x,, — x, then the triangle inequality
d(szrm; zn) S d(anrmv :C) + d(SC, -rn)

shows that for any € > 0 there is a number N = N(g) such that for any
n > N and any positive integer m,

d(Iner; zn) S €.

In calculus such a sequence is given a special name:

Definition 4.21. A sequence {x,} is a Cauchy sequence if to each ¢ > 0
there corresponds N = N(e) such that for every pair of numbers m,n the
inequalities m > N and n > N together imply that d(z,,z,) < e.

Every convergent sequence is a Cauchy sequence. According to a famous
theorem of calculus, any Cauchy sequence of real numbers is necessarily
convergent to some real number, so in R the notions of Cauchy sequence
and convergent sequence are equivalent. In a general metric space this is
not so, as is demonstrated next.

Example 4.22. Show that the sequence of functions

0, 0<z<3,
falr)=qnz—%, $<z<i+i (n=2,3,4,...)
1 s+i<z<l,

continuous on [0, 1] is a Cauchy sequence in L(0,1) but has no continuous
limit. Note: the norm in the space L(0, 1) is given by || f(x)| = fol |f(z)| dx.
Is this a Cauchy sequence in the norm of C(0,1)?

Solution. Each f,(z) is continuous on [0, 1]. To see that {f,} is a Cauchy
sequence, assume m > n and calculate

1o = o)~ )

b
+/ 17(nz72)‘d:c
141 2

1 1
(———)—>0 as m,n — oQ.
nom
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However, f, — f where

because

1
1—(nx—ﬁ)‘dm=——>0 as n — oo.
2n

3+%
U@ = | .

The function f(z) is clearly not continuous. O

Example 4.23. Show that if a sequence converges, then any of its subse-
quences also converges and has the same limit.

Solution. Let {z,, } be a subsequence of {z,} where z,, — z. Given
€ > 0, we can find N such that n > N implies d(z,,z) < €. Since ng > k
for all k, we have d(z,,,z) < € whenever k > N. 0

Example 4.24. Show that if some subsequence of a Cauchy sequence has
a limit, then the entire sequence must converge to the same limit.

Solution. Suppose {z,,} is a convergent subsequence of a Cauchy se-
quence {z,}. We show that if =, — x, then x,, — x. Let € > 0 be given
and choose N such that d(z,,zn) < /2 for n,m > N. Since z,, — z,
there exists ny > N such that d(z,,,z) < £/2. So for n > N we have
d(Tp,x) < d(@n, Tn,) + d(@n,,x) <e/2+e/2=c¢. O

Example 4.25. A set S in a normed space X is bounded if there exists
R > 0 such that ||z|]] < R whenever x € S. Show that every Cauchy
sequence is bounded.

Solution. Let {x,} be a Cauchy sequence. There exists N such that
zn — 2Nl <1
whenever n > N. For all n > N we have
[znll < llzn — 2Nl + leyall < [lenall 4+ 1.
Hence an upper bound for ||z, || for any n is given by
B = max{l|z1[[,..., len |l [lenall + 1}

Therefore {x,,} is a bounded sequence. O
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The property that any Cauchy sequence of a metric space has a limit
element belonging to the space is so important that a metric space having
this property is called complete. If a normed space is complete, it is called
a Banach space in honor of the Polish mathematician Stefan Banach who
discovered many important properties of normed spaces.

Definition 4.26. A metric space X is complete if every Cauchy sequence
in X converges to a point in X. A Banach space is a complete normed
space.

Example 4.27. Show that R" is complete.

Solution. Let {x(®} be a Cauchy sequence in R”. The kth term of this
sequence is an n-tuple

xF) = (x§k>, ey,

Since {x(®} is a Cauchy sequence, for each ¢ > 0 there exists N such that
m > N and p > 0 imply

" 1/2
2
d(x(m+p),x(m)) _ lE : ’xEerp) o xz(m)‘ ] <e.
i=1

Since all terms in the sum are nonnegative, we have

pmtP) :vl(-m)} <e foreachi=1,...,n (4.9)

2

(@

whenever m > N and p > 0. Hence z;”’ is a Cauchy sequence of reals for

©)

any ¢ = 1,...,n. By the completeness of R we know that z;”’ converges
(as j — 00) to a limit, say =}, in R. Now let
x* = (z7,...,2}).
We will show that
x®) 5 x* (4.10)

where convergence is understood in the sense of the Euclidean metric on
R™. Fix m > N; by (4.9) we get

lim [ — (M| <
pP—00

x g,

hence

x¥

: f:cl(m)|§5 foreachi=1,...,n.



230 Advanced Engineering Analysis

So

2

" 1/2
<Z x; — :c(m)’2> =d(x*,x'™) < V/ne
3 I —
i=1
for m > N, and (4.10) is proved. Since every Cauchy sequence in R"
converges to a point of R™, the space R" is complete. (|

In applications we encounter solutions to many problems expressed in
the form of functional series. To deal with them as with series of elements in
the usual calculus, let us introduce series in a Banach space. By definition,
a series of the form

doa (k€ X)
k=1

converges to an element s € X if the sequence {s,,} of partial sums
n
Sp = Z Tk
k=1

converges to s € X in the norm of X. The notion of absolute convergence
may also be adapted to series in Banach spaces.

Definition 4.28. The series Y .-, zx converges absolutely if the numerical
series Y oo ||k || converges.

In a Banach space, as in ordinary calculus, absolute convergence implies
convergence:

Theorem 4.29. Let {x} be a sequence of elements in a Banach space X .
If the series Y p, xr converges absolutely, then it converges.

Proof. By the triangle inequality we have, for any n and p > 1,

n—+p n

D k=)
k=1

k=1

n+p n
< ’

D el =D Nl
k=1 k=1

By hypothesis the sequence Y __, ||zx| converges and is therefore a Cauchy
sequence. By the inequality above, Y, z is a Cauchy sequence and will
converge to an element of X by completeness. (|

Example 4.30. Show that under the conditions of the previous theorem,

o o
> k| <D llell.
k=1 k=1
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Solution. We have

oo
D

k=1

n

n o0
lim g < lim E ||$k||:§ k]l -
n—o0 n—00
k=1 k=1 k=1

We used the continuity of the norm, and then the triangle inequality for

n

2o

k=

= lim
n—oo

finite sums. O

Many of the other results from ordinary calculus also carry over to series
in Banach spaces. We can add convergent series termwise:

Zwk-i-zyk—z T + Yr)- (4.11)
k=1

We can also multiply a series by a scalar constant A in the usual way:

/\ixk = i/\zk (412)
k=1 k=1

Definition 4.31. An element = of a metric space X is a limit point of a
set S if any ball centered at x contains a point of S different from z. The
set S is closed in X if it contains all its limit points.

Limit points are sometimes called points of accumulation. The following
result provides a useful alternative characterization for a closed subset of a
complete metric space.

Theorem 4.32. A subset S of a complete metric space X supplied with the
metric of X is a complete metric space if and only if S is closed in X .

Proof. Assume S is complete. If z is a limit point of S, then there is a
sequence {z,} C S such that z, — x. But every convergent sequence is a
Cauchy sequence, hence by completeness {x,,} converges to a point of S.
From this and uniqueness of the limit we conclude that x € S. Hence S
contains all its limit points and is therefore a closed set.

Now assume S is closed. If {x,} is any Cauchy sequence in S, then
{xn} is also a Cauchy sequence in X and converges to a point € X. This
point x is also a limit point of S however, hence x € S. So every Cauchy
sequence in S converges to a point of S, and S is complete. O

We turn to some examples of Banach and normed spaces. The simplest
kind of Banach space is formed by imposing a norm on the linear space
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R™ of n-dimensional vectors x = (z1,...,2y). A standard norm defined on
this space is the Euclidean norm

1/2
x|, = (Zx) : (4.13)

The resulting Banach space (R", ||-||.) is finite dimensional. The following
result allows us to ignore the distinction between different normed spaces
that are formed from the same underlying finite dimensional vector space
by imposing different norms:

Theorem 4.33. On a finite dimensional space all norms are equivalent.

Proof. It is enough to prove that any norm is equivalent to the Euclidean
norm ||-||,. Take any basis i, that is orthonormal in the Euclidean inner
product. We can express any x as © = »_,_, ¢xix. Then

n 1/2
Jell, = (z) |

For an arbitrary norm |||,

1/2
n n n
<Y erl il < D7D el lixl = m ]|,
k=1 k=1 \j=1

where m = >"7'_, |Jix] is finite. So one side is proved. For the other side,
consider ||z|| as a function of the n variables c¢;. Because of the above

llell =

inequality it is a continuous function in the usual sense. Indeed
]l = [lz2ll | < flo1 — 22|l < m |2y — 22|,

which for z1 = >"7_ cpix and z = >0 (e + Ak)ik can be rewritten as

n
E Ckik —mg Ak
k=1

and from which we get ordinary e-0 definition of continuity of the function

n

Z(Ck + Ay)i

k=1

at any point (c1,...,¢,). Now it is enough to show that on the sphere
lz]|, = 1 we have inf ||z|]| = a > 0 (because of homogeneity of norms).
Being a continuous function, ||z| achieves its minimum on the compact set
lz]|, = 1 at a point zg. So [[zo|| = a. If a = 0 then 2o = 0 and thus
does not belong to the unit sphere (in the Euclidean norm). Thus a > 0
and for any x we have |z|| / |z, > a. O
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The notion of an infinite dimensional vector x = (x1,22,...) with a
countable number of components is, of course, a straightforward general-
ization of the notion of a finite dimensional vector x = (x1,...,xy). Such
a vector can be encountered by considering a numerical sequence {z;} as
a whole entity; the individual terms x; of the sequence become the com-
ponents of a vector x. We shall use the terms infinite dimensional vector
and sequence interchangeably. Another way to introduce vectors with in-
finitely many components is to consider expansions of functions, such as
Fourier or Taylor expansions. The expansion coefficients can be collected
into something like a vector with infinitely many components.

Simple infinite dimensional Banach spaces can be formed by imposing
suitable norms on spaces of infinite dimensional vectors. The results are
sequence spaces. For example, we may take the set ¢ of all convergent
numerical sequences and impose the norm

||| = sup |z;].
1

Note that an infinite dimensional vector x does not belong to c if a subse-
quence {z;, } of its components satisfies z;, — 0o as i, — 00. So ¢ contains
only a subset of all infinite dimensional vectors.

An interesting family of sequence spaces can be defined, one for each
integer p > 1. The space ¢? is the set of all vectors x such that Y .o |z;P <
00, and its norm is taken to be

00 1/p
[l = <Z Iwil”> : (4.14)

=1

The fact that (4.14) is a norm is a consequence of the Minkowski inequality

00 1/p s 1/p s 1/p
(lei +yi|p) < (zmp) N (zw) (4.19)
1=1 =1 =1

since satisfaction of the other norm axioms for (4.14) is evident. An im-
portant special case is the space ¢2 of square summable sequences x with

Zfil |951|2 < o0 and norm
I~ 1/2
(Z |33i|2> - (4.16)

i=1

x| =
Looking ahead, we mention that any element in a separable Hilbert space
H (it is a complete space with an inner product that is similar to the dot
product in a Euclidean space) can be represented as a Fourier expansion
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with respect to an orthonormal basis of H, and there is a one-to-one corre-
spondence between the elements of H and ¢2. So all the general properties
we could establish for the elements of £ can be reformulated for a separable
Hilbert space H and vice versa. We can add that ¢? was the first space
introduced by David Hilbert and initiated functional analysis as a branch
of mathematics.

We emphasize that the normed spaces ¢ and ¢P are not defined on the
same underlying set of vectors. For example, the vector x = (1,1,1,...)
obviously belongs to ¢ but not to ¢F for any p > 1. Moreover, there is no
analog to Theorem 4.33 for infinite dimensional spaces.

There is a subspace of ¢ denoted by ¢o that consists of vectors (se-
quences) having zero limit. Note that a set of sequences converging to
some fixed nonzero limit could not be a linear space. If we wish to consider
the set of all convergent sequences with some nonzero limit, we call it a
cone. We can restrict a cone to some of its subsets by placing additional
conditions on the components of vectors.

It is also possible to study weighted spaces of sequences with norms of
the form

o 1/2
x|l = <Z kilxil2> (4.17)
i=1

where the k; > 0 are constants used to weight the terms of the sequence.
We can show that all of the spaces mentioned above are Banach spaces.

Example 4.34. Show that ¢ is a Banach space.

Solution. We use the fact that the normed space consisting of the set R
of real numbers under the usual norm |z| is a Banach space. Let {x(®}
be a Cauchy sequence in c¢. The kth term of this sequence is a numerical
sequence:

xF) = (zgk),zgk), :cgk), cl)

To each € > 0 there corresponds N = N(g) such that

(nm) _ (netm) _ ) <

Ix x|, = sup|z; 7)<
3

whenever n > N and m > 0. This implies that
2"t — 2| <& for each i (4.18)

whenever n > N and m > 0. Hence {IZ(J )} is a Cauchy sequence of real
numbers for any fixed . By the completeness of the normed space (R, ||||)
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we know that {,TZ(-j)} converges (as j — o) to a limit, say z}, in R. Now
let

X" = (a],23,23, ..)-

We will show that
xF) 5 x*. (4.19)
Fix n > N; by (4.18) and continuity

lim |:c§n+m) - :cgn)| <e
m—r oo

which gives

zr — 2™ <e for cach i.

Hence

supla} — 2| = x* — x|, < e
1

for n > N, so (4.19) is established. Finally we must show that x* €
¢ by showing that {z}} converges. Since every Cauchy sequence of real
numbers converges, it suffices to show that {«}} is a Cauchy sequence. Let
us consider the difference

= | < o — 2P|+ [l — 2] + |2l — o

and use an £/3 argument. Let £ > 0 be given. We can make the first
and third terms on the right side less than £/3 for any n,m by fixing k
sufficiently large. For this k, {:cgk)} is a Cauchy sequence; therefore we can
make the second term on the right side less than £/3 by taking n and m
sufficiently large. g

Note the general pattern of these completeness proofs. We take an
arbitrary Cauchy sequence {z,} in (X,d), construct an element x that
appears to be the limit of {z,}, prove that z € X, and prove that z,, — x
with respect to d.

Example 4.35. Show that ¢¢ is a Banach space.

Solution. Let {x(®)} be a Cauchy sequence in cg. The kth term of this
sequence is a numerical sequence

k k k
xF) = (zg ),:cé ),zg) ol

)
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that converges to 0. As with a Cauchy sequence in the space ¢, we can
show that

x®) 5 x* = (aF, 23, 25,..) where x; = lim ng)

Jj—o0
(As before, in the process we find that by fixing n sufficiently large we can
get the inequality |z} — xEn)| < ¢ to hold for all i.) To complete the proof
we must show that x* € g, i.e., that 7 — 0 as 7 — co. Let € > 0 be given.

We have
jf] < |z —al® |+ |27,

We can fix k large enough that the first term on the right is less than /2
for all ¢. For this k, we can choose i large enough that the second term on
the right is less than /2. O

Now let us turn to function spaces. We have introduced the space
C(Q). If 2 is a compact set in R™, then C'(2) is a Banach space. Indeed,
the Weierstrass theorem states that a uniformly convergent sequence of
functions defined on a compact set has as a limit a continuous function.
A sequence of functions {fi(x)} is a Cauchy sequence in C() if to each
€ > 0 there corresponds N = N(¢) such that

e | oo (%) = f ()] < 2

for any n > N and any positive integer m. This definition means that
{fn(x)} converges uniformly on 2 and thus its limit point exists and belongs
to C(£2). (Note that the uniform convergence of a sequence of functions
in calculus and convergence with respect to the norm of C(€2), 2 being
compact, are the same.) That is, by definition, C'(2) is a Banach space.
Similarly, C*)(Q) is a Banach space.

We mentioned earlier that on the set of functions continuous on a com-
pact set {2 we can impose

16Ny = [ 17007 a0) (420)

for p > 1. Writing out the corresponding Riemann sums for the integral and
then using the limit passage, we may show that the triangle inequality holds
(this is Minkowski’s inequality for integrals). Fulfillment of the remaining
norm axioms is evident. Example 4.22 shows that the set of continuous
functions under this norm, for the case p = 1, is not a Banach space. The
situation is the same for any p > 1 and for any dimension of 2.
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On the set of differentiable functions we can impose an important class

of norms called Sobolev’s norms. A simple but useful example is the norm
of W12(0,1):

1 1/2

@l = ([ (7@ + 1)) do)

This was first studied by Banach. The general form of a Sobolev norm is
1/p

£ wirey = | [ DsGPan) . pzi ey

o <1

The set of I-times continuously differentiable functions on €2 is not complete
in the norm (4.21). Under this norm, as with the L? norm, the difference
between “close” functions can be very large on subdomains of small area.
Later we shall study Banach spaces having these norms.

Example 4.36. The Cartesian product X x Y of two linear spaces X and
Y can form a linear space under suitable definitions of vector addition and
scalar multiplication. If X and Y are also normed spaces with norms ||-|| v,
Illy, respectively, then X x Y is a normed space under the norm

1@, Il = Izl x + llylly - (4.22)
Show that if X and Y are Banach spaces, then sois X x Y.

Solution. Choose any Cauchy sequence {(zx,yx)} C X x Y. Then

(@, Ym) — (xmyn)HXxY = [[(#m — Tny Ym — yn)”XxY

= [lzm = znllx + lym = ynlly =0
as m,n — 0o, hence
|Tm —2n|lx =0 and  |[ym —ynlly =0 asm,n — oco.

So {zr} and {yxr} are each Cauchy sequences in their respective spaces
X,Y; since these are Banach spaces there exist z € X and y € Y such that
zr — x and yp — y. Finally, (zr,yx) — (z,y) in the norm of X x Y

(@rs i) = (@, W) xxy = 1@k — 2,96 — W)l x5y
=|lzr — x| x + lus —ylly =0 ask — oo

We see that X x Y is complete. O
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4.4 The Completion Theorem

Incomplete spaces can be inconvenient. For example, using only rational
numbers we leave out such numbers as v/2 and 7, and so cannot obtain
exact solutions for many quadratic equations or geometry problems. Var-
ious approaches can be used to introduce irrational numbers. To define
an irrational number 7w, we can define a sequence of approximations such
as 3, 3.1, 3.14, 3.141, and so on. The limit of this sequence is what we
call 7. But the approximating sequence 4, 3.2,3.142, ... also consists of ra-
tional numbers and can be used to define the same number w. There are
infinitely many sequences having this same limit, and we can collect this
set of Cauchy sequences together as an entity that defines m. We call such
sequences equivalent. The same can be done with any irrational number. If
we then regard a real number as something defined by a set of all equivalent
sequences, a rational number can be represented as a set of all equivalent
sequences one of which is a stationary sequence having all terms equal to
the rational number. We shall use this idea to “extend” an incomplete space
to one that is complete. In advance we shall introduce several notions.

Definition 4.37. Two sequences {x,}, {y»} in a metric space (M,d) are
equivalent if d(z,,y,) — 0 as n — oo. If {z,,} is a Cauchy sequence in M,
we can collect into an equivalence class X all Cauchy sequences in M that
are equivalent to {z,}. Any Cauchy sequence from X is a representative
of X. To any x € M there corresponds a stationary equivalence class
containing the Cauchy sequence z,z,z, .. ..

Definition 4.38. A mapping F': M; — M, is an isometry between
(Ml,dl) and (MQ,dQ) if dl(I,y) = dQ(F(Z‘),F(y)) for all T,y S Ml. Dis-
tances are obviously preserved under such a mapping. If F' is also a one-to-
one correspondence between M; and Mo, then it is a one-to-one isometry
and the two metric spaces are said to be isometric. Isometric spaces are
essentially the same, the isometry amounting to a mere relabeling of the
points in each space.

Now we can state the completion theorem:
Theorem 4.39. For a metric space M, there is a one-to-one isometry

between M and a set M which is dense in a complete metric space M*.
We call M* the completion of M.
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Proof. As we said, we shall use the same idea as above for introducing
the needed space. The proof consists of four steps: (1) introduction of
the elements of the space M*; (2) introduction of a metric on this space
and verification of the axioms; (3) demonstration that the new space is
complete; (4) verification of the remaining statements of the theorem.

1. As indicated in Definition 4.37, we collect into an equivalence class X
all Cauchy sequences in M that are equivalent to a given Cauchy sequence
{zn}. We denote the set of all the equivalence classes by M*, and the set
of all stationary equivalence classes by M.

2. We impose a metric on M*. Given X,Y € M*, we choose any represen-
tatives {z,} € X and {y,} € Y and define

d(X,Y) = lim d(zn,yn)- (4.23)
n—oo
This same metric is applied to the subspace M of M*. To see that d(X,Y)

is actually a metric, we must first check that the limit in (4.23) exists and
is independent of the choice of representatives. Metric axiom D4 implies

d(Tn, Yn) < d(Tn, Tm) + A(@Tms Ym) + A(Ym, Yn)
so that
d(xna yn) - d(:l?m, ym) < d(l‘n, zm) =+ d(yma yn)

Interchanging m and n we obtain a similar inequality; combining the two,
we obtain

|d(zn, Yn) — d(@m, ym)| < (@0, Tm) + d(Yns Ym)-

But d(2n, ©m) — 0 and d(yn, Ym) — 0 as m,n — oo because {z,,} and {y,}
are Cauchy sequences. Thus

|d(@n, Yn) — AT, Ym)| — 0 as myn — oo

and {d(zn,yn)} is a Cauchy sequence in R. By completeness of R, the
limit in (4.23) exists. To show that it does not depend on the choice of
representatives, we take any {z],} € X and {y,,} € Y and show that

. 12 12 . .
Because lim,, o0 d(xy, z),) = 0 = limy,,—, o0 d(yn, 4, ), the inequality

|d(zn, yn) — d(z3,y5)| < d(@0,23,) + d(Yn, yy,)
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gives
Jim|d(zn, yn) — d(z7,y,)| =0
which implies (4.24). We check that the metric axioms are satisfied by
d(X,Y):
D1: Since d(zn,yn) > 0 for all n, it follows that
d(X,Y) = nh_}rrgo d(xn,yn) > 0.

D2: If X =Y then d(X,Y) = 0 (we can choose the same Cauchy sequence
{z,} from both X and Y, and since the limit is unique we get the
needed conclusion). Conversely, if d(X,Y) = 0 then any two Cauchy
sequences {z,} € X and {y,} € Y satisfy lim, o d(2n,yn) = 0. By
definition they are equivalent, hence X =Y.

D3: We have

d(Xa Y) = lim d(znayn) = lim d(ynvxn) = d(YvX)
n— o0

n—oo

D4: For xn,yn, z2n € M the triangle inequality gives
d(xn,yn) < d(Tn, 2n) + d(zn, yn);
as n — oo we have
d(X,)Y)<d(X,Z)+d(Z,Y)

for the equivalence classes X, Y, Z containing {z,}, {yn}, {2zn}, respec-
tively.

3. To see that M* is complete, we must show that for any Cauchy sequence
{X*} € M*, there exists
X = lim X' e M*. (4.25)

1—> 00

Indeed, from each X? we choose a Cauchy sequence {wgz)} and from
gi)) < 1/i whenever j > i. To
see that {z;} is a Cauchy sequence, denote by X; the equivalence class

containing the stationary sequence (x;,x;,...) and write
d(:z:i, ,Tj) = d(Xl, X])
< d(X;, XY+ d(X, X))+ d(X7, X;)

this an element denoted x; such that d(z;,x

1 . . 1
<<+ d(X7XT) + -
i J
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As i,j — o0, d(z;,z;) — 0 as required. Finally, denote by X the equiva-
lence class containing {x;}. Because {z;} is a Cauchy sequence,

1
(3

1
= -+ lim d(x;,z;) >0 asi— occ.
1 J—00

This proves (4.25).
4. M is dense in M*. To see this, choose X € M*. Selecting a repre-

sentative {z,} from X, we denote by X,, the stationary equivalence class
containing the stationary sequence (z, z,...). Then

d(X,,X) = liin d(xp,zm) =0 asn — oo

since {z,} is a Cauchy sequence.
The equality

d(X,Y) = d(z,y)

if X and Y are stationary classes corresponding to = and y, respectively,
demonstrates the one-to-one isometry between M and M. |

Corollary 4.40. If M is a linear space, the isometry preserves algebraic
operations.

Since a normed space is a linear metric space we immediately have

Theorem 4.41. Any normed space X can be completed in its natural met-
ric d(x,y) = ||z — y||, resulting in a Banach space X*.

We will also make use of the following result:
Theorem 4.42. The completion of a separable metric space is separable.

Proof. Suppose X is a separable metric space, containing a countable,
dense subset S. The completion theorem places X into one-to-one corre-
spondence with a set X that is dense in the completion X*. Let S be the
image of S under this correspondence. Since the correspondence is also an
isometry, S is dense in X. So we have S C X C X*, where each set is dense
in the next; therefore S is dense in X*. Since S is evidently countable, the
proof is complete. O
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We have lingered over the completion theorem because it is the back-
ground for many important notions, including the Lebesgue integral and
the Sobolev and energy spaces.

4.5 LP Spaces and the Lebesgue Integral

To introduce the Lebesgue integral and the LP(2) spaces, we will apply
the completion theorem to the set of functions continuous on a closed and
bounded (i.e., compact) subset © of R™. Fix p > 1. The set S of functions
f(x) continuous on €2 becomes a normed space under the norm

69N, = ey = [ rcor an) ™ oo

(recall Convention 1.4 on page 16). It is therefore also a metric space under
the natural metric

dp(f(x),9(x)) = £ (x) = g, - (4.27)
In these equations the integral is an ordinary Riemann integral. We saw

in Example 4.22 that a sequence of continuous functions on [0, 1] can be a
Cauchy sequence with respect to the metric

1£@) - g@)| —/ (@) — g(a)| da

and yet lack a continuous limit. More generally, the metric space formed
using S and the metric dp(f, g) for p > 1 is incomplete. The completion of
this space is called LP(Q2). The elements of LP(2) can be integrated in a
certain sense; although we have used Riemann integration in the definition,
on the resulting space we shall end up introducing a more general type of
integration. Our approach to the Lebesgue integral will be different from,
but equivalent to, the classical one due to Lebesgue. The Lebesgue integral
extends the notion of the Riemann integral in the sense that for an element
corresponding to a usual continuous function the Lebesgue integral equals
the Riemann integral.

In this section we shall denote an element of LP(§2) using uppercase no-
tation such as F'(x). An element F'(x) € LP(Q) is, of course, an equivalence
class of Cauchy sequences of continuous functions. In this case “Cauchy”
means Cauchy in the norm |-, and two sequences {fn(x)} and {gn(x)}
are equivalent if

[fn(x) = gn(x)[|, = 0 asn — cc.
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Linear space operations may be carried out in the space LP(Q). If F(x) €
LP(2) and A is a scalar, we take AF(x) € LP(f) to be the element for
which {Af,(x)} is a representative whenever {f,(x)} is a representative
of F(x). A sum such as F(x) + G(x) is interpreted similarly, in terms of
representative Cauchy sequences.

The main goal of this section is to define the Lebesgue integral

/ F(x)dQ for F(x) € LP(Q).
Q

We will do this in such a way that if F(x) belongs to the dense set in
L?(Q) that corresponds to the initial set of continuous functions, then the
value of this new integral is equal to the Riemann integral of the continuous
preimage. In the process we shall make use of Hélder’s inequality

[ 1seaeoraa< ([ eor dﬂ)”p ([ 1seor dﬂ)l/q (128)

which holds under the conditions

1 1
-+ -=1, p>1.
p q

This is an integral analogue of Holder’s inequality for series

e’} o 1/1’ 0o 1/‘1
z|fngn|g(z Ifn|p> (zmnw) )
n=1 n=1 n=1

See [10] for further details. Let us mention that for nontrivial f(x) and
g(x) the sign of equality in (4.28) holds if and only if there is a positive
constant A such that |f(x)| = A|g(x)| almost everywhere. A consequence
of (4.28) is Minkowski’s inequality

1f () + 9, < IF ), + g, . (4.30)
from which the useful result
‘IIf(X)II,, —lg)l,| < I1f(x) —g(x)ll,, (4.31)

is easily obtained.
We begin by defining the integral
|F(x)[P ds, F(x) € LP(Q).
Q

We take a representative Cauchy sequence {f,,(x)} from F(x) and consider
the sequence {K,} given by

Kn = [faX)l, -
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This is a Cauchy sequence of numbers; indeed
(K — K| = |[[fm (), = I fn )],
< fim(x) = frn(x)[l, =0 as m,n — oo.

Because { K} is a Cauchy sequence in R or C, by completeness there exists
a number

1/p
Q

n—00 n—00

It can also be shown that K is independent of the choice of representative
sequence. If {f,(x)} is another representative of F(x), i.e., if

12 () = Fa ()]l = 0,
then we can set
K= lim K, = lim | f.(x)[l,
but subsequently find that

K~ K|=

Tim 7,69, — Tim || GOl
= Jim_ [[1£ o), = 172 G0)l

< nh—>120 | fn(x) — fn(x)llp =0.

The uniquely determined number K7,

1/
o= [ ([ oram)”

is defined as the Lebesgue integral of |F'(x)|P. That is, we have

p

— i p
= lim [ ()P a0,

|F(x)|P d2 = lim / | fn(x)|P dQ
Q n—oo Jqo

where {f,(x)} is any representative of F'(x).
We show that when (2 is compact the LP spaces are nested in the sense
that

LP(Q) C L"(2) whenever 1 <7 <p. (4.32)
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Let g be such that 1/g+r/p = 1 and apply Holder’s inequality:

[ (o) ([
~ (mes ) ([ 1700l a) "

£, < (mes Q)77 || F(x)]l, (4.33)

where mes Q = [, 1dQ is the measure® of Q. Putting f(x) = fn(X) = fm(x)
n (4.33), we see that { f,(x)} is a Cauchy sequence in the norm ||-||,. if it is
a Cauchy sequence in the norm |[|-|| . Putting f(x) = fu(x) — gn(x), we see
that any two Cauchy sequences equivalent in the norm ||-[|, are equivalent

or

in the norm ||-||,.. Hence
F(x) e LP(Q) = F(x) e L"(Q)

for 1 < r < p, and we have established (4.32). We thus observe that if
F(x) € LP(Q) then [, |F(x)|" dQ is defined for any r such that 1 <7 < p.
Moreover, putting f(x) = fn(x) in (4.33) we see that passage to the limit
as n — oo gives

IFG)], < (mesQ)= 5 [F(x)[,, 1<r<p. (4.34)

Subsequently will interpret this by saying that LP(€2) imbeds continuously

into L™(2). That is, the elements of LP(€2) belong to L"(€2) as well, and

the inequality means continuity of the correspondence (imbedding opera-

tor) between the elements of LP(Q2) and the same elements considered as

elements of L"(£2). In a similar way we can show that many inequalities

satisfied by the Riemann integral are also satisfied by the Lebesgue integral.
It is now time to introduce the Lebesgue integral

/F(x)dQ, F(x) € LP(9).
Q

3Because we use the Riemann integral to construct the Lebesgue integral, we must
exclude some “exotic” domains 2 that are actually permitted in Lebesgue integration.
Physical problems involve relatively simple domains for which Riemann integration gen-
erally suffices. In particular we assume the Riemann integral fQ 1dQ exists for all of our
purposes, giving the quantity we call the “measure” of 2. The full notion of Lebesgue
measure is far too involved to consider here; fortunately, our domains are all simple
enough that we can use the notation “mes2” without a full chapter of explanation.
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Taking a representative { f,(x)} from F(x), we use the modulus inequality

ﬂ@ﬂﬂs/uwwm, (4.35)
Q Q

to show that the numerical sequence { [, fn(x) d2} is a Cauchy sequence:

[ 5a0= [ 160 dﬂ] - \ [ 1560 £ a0
g[l|fn<x>—fm<x>| a0

< (mes )7 || fu(x) = ()],

—0 asm,n — 0.

The quantity

/ F(x)dQ = lim [ f,(x)dQ (4.36)
Q n=ee Jo

is uniquely determined by F'(x) and is called the Lebesgue integral of F'(x)
over 2. If the element F'(x) happens to correspond to a continuous function,
then the Lebesgue integral equals the corresponding Riemann integral. Of
course, it is important to understand that F'(x) is not a function in the
ordinary sense: it is an equivalence class of Cauchy sequence of continuous
functions. Nevertheless, for manipulative purposes it often does no harm to
treat an element like F'(x) as if it were an ordinary function; we may justify
this by our ability to choose and work with a representative function that is
defined uniquely by some limit passage. With proper understanding we can
also relax our notational requirements and employ lowercase notation such
as f(x) for an element of LP(€2). We shall do this whenever convenient.

The Lebesgue integral satisfies the inequality

X mes Q)1/4 X — 4+ - =1. .
/{f()d@\s( L O (4.37)

This results directly from passage to the limit n — oo in

F2(0) 49 < (mes €)' 17,0,
Q
It can also be shown that a sufficient condition for existence of the integral

/ F(x)G(x) dS2
Q
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is that F'(x) € LP(Q) and G(x) € L%(Q) for some p and ¢ such that 1/p+
1/q = 1. In this case Holder’s inequality

/Q F(x)G(x) dQ‘ < ( /Q |F(x)|de)1/p ( /Q |G(x)|qdﬂ>1/q (4.38)

holds, with equality if and only if F'(x) = AG(x) for some A.
If p > 1, then LP() is a Banach space under the norm

I (x </ |F(x |de) " (4.39)

Verification of the norm axioms for ||F'(x)||, is mostly straightforward, de-
pending on familiar limiting operations. To verify the triangle inequality

1F(x) + G, < [F&), + G,
for instance, we write
[fn(x) + gn (), < [, + [lgn ()1,

for representatives {f,(x)} and {g,(x)} of F(x) and G(x), and then let
n — oo. In fact the validity of this is a consequence of the completion

theorem, but we wished to prove it independently. The only norm axiom
that warrants further mention is

PG, =0 <= F(x)=0.

The statement “F(x) = 0” on the right means that the stationary sequence
(0,0,0,...), where 0 is the zero function on €, belongs to the equivalence
class F'(x). So LP(2) is indeed a normed linear space. That it is a Banach
space follows from its construction via the metric space completion theorem.
According to Theorem 4.39, LP(2) is complete in the metric

d(F(x),G(x)) = lim </ ) = gn P dQ)l/p

n—oo

(/ F(x) - G dﬂ)w,

which of course coincides with the metric induced by the norm (4.39).

We began our development with the base set S of continuous functions
on Q, and introduced LP(f2) as the completion of S in the norm (4.26).
We defined the Lebesgue integral so that for any element of LP() it is the
unique number that coincides with Riemann integral of f if F' corresponds
to a continuous function f in the base set. In addition to the fact that the
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Lebesgue integral is defined for a wider set of functions than the Riemann
integral, the Lebesgue integral is more convenient for performing limit pas-
sages. These operations include taking the limit of an integral with respect
to a parameter in the integrand (Lebesgue’s theorem) and interchanging
the order of integration in a repeated integral (Fubini’s theorem). The the-
ory of Riemann integration is based on the notion of Jordan measurability
of a set in R™. The classical theory of Lebesgue integration starts with a
wider notion of measurability of a set in R™. Under this definition the set
of all rational points on the segment [0, 1] is measurable and its Lebesgue
measure is zero. These considerations fall outside our scope, and the inter-
ested reader should consult standard textbooks on real analysis for details.
Lebesgue integration is not only useful in itself; it finds applications to
Sobolev spaces and to the generalized setup of boundary value problems.

Example 4.43. Show that LP(2) is separable for compact 2.

Solution. First we show that the space of continuous functions with the
L? metric is separable. We know that the set P.(£2) of polynomials defined
on Q and having rational coefficients is dense in C(£2), where C(Q) is the
space of continuous functions under the metric

1£66) = 969llcy = max | F(x) — 9] (4.40)

This follows from the classical Weierstrass theorem. Hence for any f(x)

continuous on 2 we can find p.(x) € P,(€2) such that

13
rileag}ldf(x) _pa(x)l < W

(This is why the domain € was required to be compact.) Therefore we have

|ﬂw—mmw(4uw—mwwmfmg@igémnga

So imposing the LP metric on the space of functions continuous on 2, we

get a separable metric space. Furthermore, LP () is the completion of this
space. Since the completion of a separable metric space is separable, the
conclusion follows. g

4.6 Sobolev Spaces

We proceed to some normed spaces that play an important role in the
modern treatment of partial differential equations. On the set of [ times
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continuously differentiable functions f(x) given on a compact set 2, we
have defined the family of norms
1/p
1£69l, = ey = | [ 3 p2sGrae) o o=
ler|<i

(4.41)
(again, recall Convention 1.4 on page 16). The resulting normed spaces are
incomplete in their natural metrics. Applying the completion theorem to
this case (in the same way we produced the Lebesgue spaces LP()), we
obtain a family of Banach spaces known as the Sobolev spaces W'P(Q). The
form of the norm (4.41) suggests that the elements of a Sobolev space pos-
sess something like derivatives. We shall discuss these generalized deriva-
tives momentarily, but at this point (4.41) seems to indicate that they be-
long to the space LP(2). Because W'P(Q) is a completion of the separable
space C)(Q), Theorem 4.42 gives us

Theorem 4.44. W'P(Q), p > 1, is a separable normed space.

We can use the following definition for a generalized derivative. For
u € LP(§), K.O. Friedrichs called v € LP(Q) a strong derivative D*(u) if
there exists a sequence {@,}, ¢, € C(*®)(Q), such that

/|u (x)[PdQ— 0 and

/ [v(x) — D%p (x)|PdQY — 0 asn — oo.
Q

Since C(*)(Q) is dense in any C*)(Q), an element of W™P(Q) has all
strong derivatives up to the order m lying in LP({2). Note that in this
definition we need not define intermediate derivatives as is done for standard
derivatives. But this definition does not seem too classical or familiar. In
[27], the notion of generalized derivative was introduced using variational
ideas. Sobolev introduced this for elements of LP(2) (not for just any
element of course, but for those elements for which it can be done). He
called v € LP(Q)) a weak derivative D*u of u € LP(2) if for every function
»(x) € D the relation

/u(x)Do‘go(x) dQ = (—1)'0“/1)()()90(}() dQ (4.42)
Q Q

holds. Here D is the set of functions that are infinitely differentiable on
Q and that vanish in some neighborhood of the boundary of Q (the neigh-
borhood can vary from function to function). This definition of derivative
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inherits some ideas from the calculus of variations: in particular, the fun-
damental lemma insures that we are defining the derivative in a unique
way. For elements of WP (Q) it can be demonstrated that the two notions
of generalized derivative are equivalent. Of course, the name “generalized
derivative” is warranted because classical derivatives (say, of functions con-
tinuous on Q) are also generalized derivatives, but not vice versa.

Later we will discuss the Sobolev imbedding theorem.

4.7 Compactness

Definition 4.45. Let S be a subset of a metric space. We say that S is
precompact if every sequence taken from S contains a Cauchy subsequence.

In many textbooks, the term “relatively compact” is used instead of
“precompact.”

Any bounded set in R™ is precompact. We know this from calculus,
where the classical Bolzano—Weierstrass theorem asserts that any bounded
sequence from R”™ contains a Cauchy subsequence. This is not necessarily
the case in other spaces, however (see Theorem 4.52). In § 4.3 we introduced
¢, the space of convergent numerical sequences with norm

[[xI| = sup |z;]. (4.43)

The sequence of elements

x1 = (1,0,0,0,...),
x3 = (0,1,0,0,...),
x3 = (0,0,1,0,...),

taken from ¢ has no Cauchy subsequence, since for any pair of distinct ele-
ments x;, X; we have |x; — x;|| = 1. Nonetheless, this sequence is bounded:
we have ||x;|| = 1 for each 7. So the Bolzano—Weierstrass theorem for R”
does not automatically extend to all other normed spaces.

What is the principal difference between a bounded set in ¢ and a
bounded set in R™? In R™, using, say, three decimal places, we can approx-
imate all the coordinates of any point of the unit ball up to an accuracy
of 0.001. There are a finite number of points lying within the unit ball
whose coordinates are the approximated coordinates of the actual points
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(the reader could calculate the actual number of such points for a space of
n dimensions). Increasing accuracy through the use of m decimal places,
m > 3, we again have a finite number of points with which we can better
approximate any point of the unit ball. In ¢, as is shown by the above
example, such an approximation of all the points of the unit ball by a finite
number of elements within a prescribed precision is impossible.

Let us consider the abstract variant of an approximating finite set for
some given set of points:

Definition 4.46. Let S and E be subsets of a metric space. We call FE a
finite e-net for S if E is finite and for every x € S there exists ¢ € E such
that d(x,e) < e. We say that S is totally bounded if there is a finite e-net
for S for every € > 0.

Note that a set is totally bounded if when we draw a ball of radius &
about each point of an e-net of the set, then the set is covered by the union
of these balls (i.e., any point of the set is a point of one of the balls).

In particular, if a set is totally bounded, it is bounded. Indeed taking a
1-net we get a finite collection of balls that covers the set. It is clear that
there exists some ball of finite radius that contains all these balls inside
itself, and so all the points of the initial set, and this implies that the initial
set is bounded.

Total boundedness of a set is exactly the same property we described
for a ball of R™, on the existence of finite sets of points with which we can
approximate the coordinates of any point of the ball within any prescribed
accuracy. We said this was a crucial property in determining whether a set
is compact. This is confirmed by the following Hausdorff criterion.

Theorem 4.47. A subset of a metric space is precompact if and only if it
is totally bounded.

Proof. Let S be a precompact subset of a metric space X. To show that
S is totally bounded, we prove the contrapositive statement. Suppose S
has no finite gg-net for some particular g > 0. This means that no finite
union of balls of radius €y can contain S. Taking x; € S and a ball By of
radius €g about x1, we know that there exists xo € S such that zo ¢ By
(otherwise x1 by itself would generate a finite ep-net for .S). Constructing
the ball By of radius ¢ about x5, we know that there exists 3 € S such
that x3 ¢ B; U By. Continuing in this way, we construct a sequence {x,,}
such that d(zy, m) > €0 whenever n # m. Because {z,} cannot contain a
Cauchy subsequence, S is not precompact.
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Conversely, suppose S is totally bounded and take any sequence {z,}
from S. We begin to select a Cauchy subsequence from {z,} by taking
g1 = 1/2 and constructing a finite £1-net for S. One of the balls, say
B, must contain infinitely many elements of {z,}. Choose one of these
elements and call it 2;,. Then construct a finite eo-net for S with eo = 1/22.
One of the balls, say By, must contain infinitely many of those elements
of {x,} which belong to B;. Choose one of these elements and call it x;,.
Note that d(z;,,z;,) < (2)(1/2) = 1 since both z;, and x;, belong to Bj.
Continuing in this way we obtain a subsequence {z;,} C {z,} where, by
construction, x;, and x;,,, reside in a ball By of radius e, = 1/2’“ so that

1 1
d(xik,xiHl) S 2 (2_k) = 2k—1 .

Thus

d(‘rik ) xik+m) < d(xlk ) xik+l) + d(wik+1 ) wik+2) + 4+ d(‘rik+m71 ) xik+m)

1 1 1 1
Sttt o < gie
for any m > 1, and {z;,} is a Cauchy sequence. O

Definition 4.48. Let S be a subset of a metric space. We say that S is
compact if every sequence taken from S contains a Cauchy subsequence
that converges to a point of S.

Note that a compact subset of a metric space is closed. But a closed
set is not, in general, compact. (In R™ a closed and bounded set is com-
pact according to the present definition.) Let us reformulate the Hausdorff
criterion for compactness:

Theorem 4.49. A subset of a complete metric space is compact if and only
if it is closed and totally bounded.

The proof is left as an exercise.
Example 4.50. Show that the Hilbert cube
S={x=(&4,&,..)elP:|&|<Lforn=1,2,..}
is a compact subset of £2.

Solution. We show that S is closed and totally bounded in the complete
space (2. Let y = (n1,72,...) be a limit point of S. There is a sequence
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{xW} C S such that

ly = xDU2 = e — 2+ 0 asj— oo,
k=1

Hence for each k we have |m — §,(€j)| — 0 as j — oo. By the triangle
inequality

] < e — €] + €9 < e — €57 + -

and passage to the limit as j — oo gives |nk| < for each k. This shows
that y € S, hence S is closed. Next we show that S is totally bounded. Let
€ > 0 be given. We begin to construct a finite e-net by noting that the nth
component of any element z = ({1, (2, ...) € S differs from zero by no more
than 1/n. Since the series Y 1/n? is convergent we can choose N such that

oo

> el <2

n=N+1

Now take the first N components and consider the corresponding bounded
closed hypercube in RY. For this there certainly exists a finite £2/2-net of
N-tuples, and we can select (£1,...,&y) such that

N
Z |Cn - €n|2 < 52/2'
n=1

We construct a corresponding element x. € ¢? by appending zeros:

Xe = (51,...,61\],0,0,...).

For this element

N oo
lz =%l =D o —&lP+ D > <e?/2+4%/2=¢
n=1 n=N+1
as desired. O

Theorem 4.51. Every precompact metric space is separable.

Proof. Let X be a precompact metric space. For each k =1,2,3,..., let
er = 1/k and construct a finite ex-net (xg1, Tg2,...,2xN) for X. (Here N
depends on k.) The union of these nets is countable and dense in X. O

Theorem 4.52. Every closed and bounded subset of a Banach space is
compact if and only if the Banach space has finite dimension.
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The proof of Theorem 4.52 requires Riesz’s lemma:

Lemma 4.53. Let M be a proper closed subspace of a normed space X. If
0 < e <1, then there is an element x. ¢ M having unit norm such that

inf [y — 1—e.
nf fly — e >1-e¢

3

(Here we use the term “proper” to exclude the case M = X.)

Proof. Take an element o € X that does not belong to M and let
d = inf -yl
inf Jlzo

We have d > 0; indeed, the assumption d = 0 leads to a contradic-
tion because it implies the existence of a sequence {yr} C M such that
lzo — yx|| — O, hence yr — xo, hence zy € M because M is closed. By
definition of infimum, for any ¢ > 0 there exists y. € M such that

d
d< — < —F.
The normalized element
Lo — Ye
Te = ——
[0 — vell
has the properties specified in the lemma. It clearly has unit norm and
does not belong to M. Moreover, for any y € M we have

w0 — e Mmoo = (ye + llzo — yell v) |l
lze =yl =||7— —y|| = =
lzo — yell lzo — vell
d €
>d/—= —=1-:
/1 —¢/2 2

where the intermediate inequality holds because y. + ||xg — yc|| y belongs
to M. g

As an application of Riesz’s lemma, let us show that the unit ball
B={zeX: ||z <1} (4.44)

is not compact if X is infinite dimensional. (This is the “only if” part
of Theorem 4.52.) Take y; € B. This element generates a proper closed
subspace E; of X given by E1 = {ay1: a € C}. By Riesz’s lemma (with € =
1/2) there exists yo such that y; € B, y2 ¢ E1, and |ly1 — y2| > 1/2. The
elements y;,ys generate a proper closed subspace Fy of X, and by Riesz’s
lemma there exists y3 such that y3 € B, y3 ¢ E», and ||y; —ys| > 1/2
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for i = 1,2. Since X is infinite dimensional we can continue this process
indefinitely, producing a sequence {y,} C B any two distinct points of
which are separated by a distance exceeding 1/2. Since no subsequence of
{yn} is a Cauchy sequence, B is not compact.

Definition 4.54. Let M be a set of functions continuous on a compact set
Q C R™. We say that M is

(1) uniformly bounded if there is a constant ¢ such that for every f(x) € M,
|f(x)| < ¢ for all x € Q.

(2) equicontinuous if for any £ > 0 there exists 6 > 0, dependent on £, such
that whenever |x —y| < ¢, x,y € Q, then |f(x) — f(y)| < € holds for
every f(x) € M.

Uniform boundedness simply means that the set of functions lies in a
ball of radius ¢ in C(Q2) (in Arzeld’s time the normed space terminology
was not yet in full use). Since the space C(Q) is infinite dimensional, this
cannot be the sole condition for compactness. We also note that any finite
set of continuous functions is equicontinuous by Weierstrass’s theorem from
calculus. Given € > 0, we can find the required § > 0 for each individual
function. We then take the minimum of these values, which is not zero,
and use it as 0 for the whole set. An infinite set of continuous functions
need not be equicontinuous.

The space of continuous functions is one of the main objects of calcu-
lus, differential equations, and many other branches of mathematics. It is
important to have a set of practical criteria under which a subset of this
space must be precompact. This is provided by Arzela’s theorem.

Theorem 4.55. Let ) be a compact set in R™, and let M be a set of
functions continuous on Q. Then M is precompact in C(Q) if and only if
it is uniformly bounded and equicontinuous.

Proof. Suppose M is precompact in C'(2). By Theorem 4.47 there is a
finite e-net for M with € = 1; i.e., there is a finite set of continuous functions
{g:(x)}%_, such that to any f(x) there corresponds g;(x) for which

1) = :x) | = max | (x) — s (x)| < 1.

Since the g;(x) are continuous there is a constant ¢; such that |g; (x)|| < ¢1
for each j. Using the inequality || f(x)|| < ||g:(x)]|+ ]| f(x) — g:(x)]|, we have

<ep L
max | f(x)] < e1 +



256 Advanced Engineering Analysis

It follows that M is uniformly bounded with ¢ = ¢; + 1. We proceed to
verify equicontinuity. Let & > 0 be given, and choose a finite ¢/3-net for
M, say {g:(x)}"™ . Since the number of g;(x) is finite and, by a calculus
theorem, each of them is equicontinuous on €2, there exists § > 0 such that
|x —y| < ¢ implies

lg:(%) —g:(y)l <&/3, i=1...,m.
For each f(x) € M, there exists g,(x) such that
|f(x) — gr(x)] < e/3 for all x € Q.

Whenever x,y € Q are such that |x —y| < ¢ then, we have

[F(x) = FWI < (%) = 9- ()| + 19 (%) = - (V)| + |9 (y) = F(¥)]
<e/3+¢/3+¢/3=¢

as desired.

Conversely suppose M is uniformly bounded and equicontinuous. We
must show that from any sequence of functions { fx(x)} C M we can choose
a Cauchy subsequence. Let {xj} be the set of all rational points of Q2 (enu-
merated somehow); this set is countable and dense in 2. Consider the
sequence {fr(x1)}. Because this numerical sequence is bounded, we can
choose a Cauchy subsequence {fx,(x1)}. We have thus chosen a subse-
quence {fx, (x)} C {fr(x)} that is a Cauchy sequence at x = x3. From
the bounded numerical sequence { fi, (x2)} we can choose a Cauchy subse-
quence { fi,(x2)}. The subsequence {fx,(x)} is thus a Cauchy sequence at
both x = x; and x = x2. We continue in this way, taking subsequences
of previously constructed subsequences, so that on the nth step the sub-
sequence { fi, (x,)} is a Cauchy sequence and, since it is a subsequence of
any previous subsequence, the sequences obtained by evaluating { fx, (x)}
at x1,...,x,-1 are Cauchy sequences as well.

The diagonal sequence { f,, (x)} is a Cauchy sequence at x = x; for all
i. We show that it is a Cauchy sequence in the norm of C(€2). Let £ > 0 be
given. According to equicontinuity we can find § > 0 such that |x —y| < ¢
gives for every n

| fr, (%) = [, (¥)| < /3.

Take §’ < § and construct a finite ¢’-net for Q with nodes {z;}7_, C {x;}.
Since r is finite we can find N such that whenever n,m > N we have

| (Z0) = fon, (z0)| < /3, i=1,... 7
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Choose any x €  and let z; be the point of the §’-net nearest x so that
|x — z| < ¢’. Then n,m > N implies
| (%) = fing ) < | f (%) = fr (20)] + | fr (Z1) = Fin (Z0)]
+ [ frmm (Zk) = fn, (%) <e/3+¢e/3+¢/3=¢,

hence
max | fn,, (%) = fr, (X)] = 1 fn, (%) = fin, ()l <€
for all n,m > N. O

Remark 4.56. In the proof we made use of the diagonal sequence idea.
Since this is a standard technique in analysis and will be used again in this
chapter, we take a moment to clarify the ideas involved.

Suppose we start with a sequence {x,} and want to extract a sub-
sequence that satisfies some set of convergence-related criteria py (k =
1,2,3,...). Let us agree to write {x,;} for the subsequence we select at
the kth step of the process (k =1,2,3,...), and x,, for the nth element of
that subsequence (n =1,2,3,...).

The process begins with the selection of successive subsequences:

1. From {z,} we select {x,} that satisfies p;. It is clear that the whole
sequence {z,;} as well as each of its subsequences satisfies p.

2. Then from {z,,} we take {x,} that satisfies ps. The whole sequence
as well as each of its subsequences satisfies p3. Being a subsequence of
{zn1}, it and all of its subsequences satisfy p; as well.

3. The same is done with {z,5}: choose {x,3} that satisfies p3, so all of
its subsequences satisfy p3 and, simultaneously, p; and ps.

k. Choose {x,;} that satisfies py and p1,...,pg—1.

We now form the sequence

{Tnntner = 211, T22, T33, - (4.45)

This is the desired diagonal sequence.

The sequence (4.45) is automatically contained in {x,;}. Except pos-
sibly for the first term, it is also contained in {z,,}; the first term is a
non-issue because the behavior of a finite number of terms has no impact
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on the satisfaction of pa. Except possibly for the first two terms, (4.45)
is also contained in {z,3}, and so on. So the diagonal sequence, except
for finite numbers of terms, is contained in {x,;} for each k. It therefore
satisfies py for k =1,2,3,.... O

Example 4.57. Let 2 be a compact subset of R", and suppose S is a
collection of functions {fx(x)} continuous on €. Further, suppose S is
bounded in C(2) and that K(x,y) is a function continuous on € x €.
Show that the set

A= { [ Ky i) dﬂy}

is precompact in C(€2).

Solution. The members of A clearly belong to C(£2). Uniform bounded-
ness of A is shown by the inequality

max
xEN

/ K (% y)fi(y) dy
Q

< . K . Q
< max | fi(x)| (x,;r)lggml (%, y)| - mes €,

since the set { fx(x)} is itself uniformly bounded so that maxxcq | fx(x)] < ¢
where ¢ is some constant that does not depend on k. Equicontinuity of A
follows from the inequality

/K(X,y)fk(y)dﬂy_/K(X/)Y)fk(y)dﬂy
Q Q

<e. / K (x,y) — K(x,y)| dSy.
Q

Indeed, for any € > 0 there exists § = d(¢) such that

K — K(x' <
|K(x,y) (x,Y)I_CmeSQ

whenever |x — x’| < ¢ (independent of y € Q). Because A is a uniformly
bounded and equicontinuous subset of C(Q), it is precompact in C(2) by
Arzeld’s theorem. O

People working in application areas often prefer to have crude but conve-
nient sufficient conditions for the fulfillment of some properties. In the case
of C(a,b), the space of functions continuous on [a, b], a sufficient condition
is given by

Theorem 4.58. A set of continuously differentiable functions bounded in
the space CM)(a,b) is precompact in the space C(a,b).
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Proof. The proof follows from the classical Lagrange theorem which for
any continuously differentiable function f(z) and arbitrary x,y guarantees
the existence of z € [x,y] such that f(z) — f(y) = f'(2)(z — y). Equicon-
tinuity of a bounded subset of C")(a,b) is a consequence of this. Uniform
boundedness of the set is evident. 0

The reader can formulate and prove the similar statement for the more
general space C')(Q). Indeed there is an analogue of the mean value the-
orem for multivariable functions belonging to C'")(Q) where Q is compact
and convex. A region (2 is said to be convex if for any two points x,y € )
the connecting segment A = {ty + (1 — t)x}, ¢t € [0,1], lies in Q. Consider
a function f(x) € CM(Q). For fixed x,y, the function

F(t) = f(ty + (1 = t)x)

of the real argument ¢ belongs to C1)(0, 1), hence the one-dimensional form
of Lagrange’s formula yields

F(1) — F(0) = Fy(t)|t=¢(1 — 0) for some & € [0,1].
Rewriting this in terms of f we get
f(Y) - f(X) = vf(z)‘z:{er(lfg)x ’ (y - X)a

which is also called Lagrange’s formula. The estimate
[f(y) = fx)| < max |V f(z)[ly —x)]

follows immediately. In the same way, beginning with the Newton—Leibniz
formula

F(1) - F(0) = /01 Fy(t)dt

it is easy to prove the integral formula

F5) = 100 = [ V@) iy by =)

From this we can derive the above estimate as well.

Note that now we consider the same continuously differentiable func-
tions as elements of different spaces, CV)(Q) and C(Q2). When we consider
the correspondence between an element in C(1)(Q) and the same element
in C(R), it is not an identity mapping since the spaces are different and
the properties of the operator are defined not only by the elements but also
by the properties of the spaces. This a typical example of an operator of
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imbedding (we imbed a set of C)(Q) into C(Q)). Using this term and
the notion of compact operator given in §4.16, we can reformulate the last
theorem as follows:

Theorem 4.59. Let Q2 be a compact set in R™. The imbedding operator
from CN(Q) into C(Q) is compact.

The concept of an imbedding operator between normed spaces will be
covered formally in §4.18.

4.8 Inner Product Spaces, Hilbert Spaces

The existence of the dot product in Euclidean space offers many advantages
with respect to the operations that may be performed in the space. The
dot product also generates the norm in Euclidean space. In order that there
might exist a functional defined on each pair of elements of a normed space
and possessing the properties of the dot product, a linear space X should
have quite special properties. Let us define what we call an inner product.
This is a functional (z,y) defined (i.e., always giving a uniquely defined
finite result) for any pair of elements x,y of the space X, and having the
following properties:

(1) (z,2) >0 for all z € X, with (z,z) =0 if and only if z = 0.

(2) (y,z) = (x,y) for all x,y € X.
(3) Az + py,z) = Mz, 2) + u(y, z) for all z,y,2 € X and any complex
scalars A, .

We have defined this for a complex space. If X is a real space instead, then
property 2 must be changed to

2. (y,z) = (z,y) forall z,y € X

and in property 3 we must use only real scalars A, u. Note that the inner
product is linear in the first argument and conjugate linear in the second
argument:

(1x1 + asr2,y) = a1(21,y) + az(22, ), (4.46)
(SC, a1Y1 + 04292) = al (SC, yl) + EQ(ZE, y2) (447)

Example 4.60. Let X be an inner product space under the inner product
(,-). Show that (z,2) = (y,2) holds for arbitrary z € X if and only if
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T =y.

Solution. The “if” part of the proposition is trivial. To prove the “only
if” part, assume (x,z) = (y, 2) for all z € X. Rearranging this as

(z,2) = (y,2) =0,
we can use property 3 to get (x —y,z) = 0. Since this holds for all z € X,
it holds in particular for z =z — y:
(x—yw—y) =0.
By property 1 we conclude that © —y =0 or z = y. |
Since this functional, the inner product, is defined by copying the main
properties of the dot product, we preserve the terminology connected with
the dot product in Euclidean space. In particular there is the notion of
orthogonality. We say that two elements x,y are mutually orthogonal if

(z,y) = 0. We say that = is orthogonal to Y, a subspace of X, if x is
orthogonal to each element of Y.

Definition 4.61. A linear space with an inner product possessing the prop-
erties listed above is an inner product space or a pre-Hilbert space.

First we demonstrate
Theorem 4.62. A pre-Hilbert space is a normed space.

Proof. By similarity to Euclidean space let us introduce a functional
denoted as a norm

]| = (z,2)"/2. (4.48)

This functional is defined for any element of X. Let us demonstrate that
it satisfies all the axioms of the norm. Norm axiom 1 is fulfilled by virtue
of inner product axiom 1. We verify norm axiom 2 by noting that

Az = [z, A2)]'/2 = Mz, Aa)]'/2 = A, )] /2
= (W) (@, 2)]"/? = [ AP (z,2)]"/?
= Al(z,2)'/2.
Verification of norm axiom 3 requires us to use the Schwarz inequality

(@, y)l < llzlllyll, (4.49)
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in which for nonzero z and y the equality holds if and only if there is a
number A such that z = Ay. Using it we have

Iz +yI* = @ +y,2+y)
= (z,2) + (,9) + (y,2) + (v, )
< l2ll® + =]l [yl + =l 1yl + lly])*
= (=] + llyl)?
as required. O

It remains to establish (4.49). We start by noting that if x = 0 or
y = 0 then (4.49) is evidently valid. So let y # 0. If X is any scalar, then
(x 4+ Ay, + Ay) > 0 and expansion gives

(@ + My, x4+ Ay) = (2,2) + My, 7) + Mz, y) + Ay, y).
The particular choice A = —(z,y)/(y, y) reduces this to

(@ 9)1” 1@ y)l* yl®

||'T||2 -2 2 + 4 =0,
l[ll l[ll
and (4.49) follows directly.
Example 4.63. Show that
2 2 2 2
lz+yll” + [z —ylI” = 2 l=[I” + 2|ylI" . (4.50)

This is known as the parallelogram equality.
Solution. We write
(@+yz+ty)+(@-—yz—y)
=@ z+y)+@r+y)+@z—y) - (r-y)
=(@+y2)+@+yy)+ (@ —yz) - (r—yy)
= (z,2) + (y,2) + (2,9) + (y,9) +
+ (@,2) = (y,2) = (2, 9) + (4, 9)
=2z, 2) +2(y, y)
=2|z]” + 2|ly|I”
and have the desired result. ]

lz +y* + llz — yl* =

Example 4.64. Show that if x and y are orthogonal vectors in an inner
product space, then

2 2 2
[l +ylI” = [l + lyl”- (4.51)
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This is known as the Pythagorean theorem.
Solution. We write
lz +ylI* = (2 +y,2 +y)
=@z +y)+(Yy,z+y)
= (z,2) + (z,y) + (y,2) + (¥, 9)
and simply note that (z,y) = (y,z) = 0 for orthogonal vectors. O
Example 4.65. Assume the norm is induced by the inner product, and

suppose that =, — x and y,, — y. Show that (z,,y,) — (x,y). That is,
any inner product is a continuous functional in each of its arguments.

Solution. Let us write

[(@nsyn) = (@, 9)] = [(@n, Yn) — (@0, y) + (@0, y) — (2,9)]
= (@n,yn —y) + (20 — 2,9)|

(@, yn = y)| + (20 — 2, 9)]
<lznll llyn =yl + llan — =[] Iyl

Since {z,} is convergent it is bounded. The other n-dependent quantities
can be made as small as desired by choosing n sufficiently large. O

Example 4.66. Let M be a dense subset of an inner product space X,
and let v € X. Show that if (v,m) = 0 for all m € M, then v = 0.

Solution. Use continuity of the inner product. Let v € X be fixed. Since
M is dense in X there is a sequence of elements my, € M such that my — v
as k — oo. Since 0 = (v, my,) for all k, we can take the limit as k — oo on
both sides and use continuity of the inner product to obtain

0= lim (v,myg) = <v lim mk) = (v,v).
k—o0 k— o0
Hence v = 0. O
Definition 4.67. A complete pre-Hilbert space is a Hilbert space.

Let us consider some Hilbert spaces. The space 2 is the space of infinite
sequences having inner product

X,y) = Z%E (4.52)
i=1
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in the complex case and
i=1

in the real case. The corresponding generated (induced) norm is

1/2
x| = (z,2)/? = <Z|:c |2> : (4.54)

As we noted earlier, the theory of the space ¢2 was the predecessor of
functional analysis. It plays an extremely important role in the functional
analysis of Hilbert spaces because, as we shall see later, with any separa-
ble Hilbert space we have a one-to-one isometric correspondence with ¢2
that preserves algebraic operations in the spaces. This is done by Fourier
expansion of elements of the Hilbert space.

In the space L?(2) an inner product can be introduced as

<ﬂ@y@»=4ﬂwﬂﬁaz (4.55)

in the complex case and

<ﬂmy@»:ljwm&ma (4.56)

in the real case. We have defined the inner product in such a way that
the induced norm coincides with the norm imposed earlier on L?(£2). This

raises the question of how to introduce an inner product in any Sobolev
space WH2(£2). We use

(f(x),9(x)) = /2 > D*f(x)Dg(x) dS.
2 al<i

The induced norm is the norm we introduced earlier in W2(Q).

4.9 Operators and Functionals

Definition 4.68. A correspondence between two sets (metric spaces) X
and Y, under which to any element of X there corresponds no more than
one element of Y, is an operator. Frequent synonyms for “operator” are
map, mapping, function, correspondence, and transformation.
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Let A be an operator. The set of elements z € X for which there is a
corresponding element y € Y is the domain of A and is denoted D(A). We
write y = A(z) and call y the image of x under A. It is not necessarily
true that each element y € Y is the image of some element x € X under
A; the set of all elements of Y that are images of elements of X is known
as the range of A and is denoted R(A). We say that A acts from X to Y.
IfY = X, we say that A acts in the set X.

Definition 4.69. If Y is C (or R), then an operator acting from X to Y
is a complex (or real) functional defined on X.

An important role in functional analysis is played by linear operators.
To explore this notion we need X and Y to be linear spaces.

Definition 4.70. An operator A from a linear space X to a linear space
Y is a linear operator if for any elements x1 and x5 of X and any scalars A
and p we have

A(Axy + paa) = AA(z1) + pA(xs). (4.57)

For a linear operator A, we often write Az instead of A(x). Linear
operators are not as elementary as they may seem. Many physical problems
are linear. We now extend the definition of function continuity to operators:

Definition 4.71. Let A be an operator from a normed space X to a normed
space Y. We say that A is continuous at x¢ € X if to each £ > 0 there corre-
sponds § = () > 0 such that ||Az — Axo||, < e whenever ||z — 2|y < 0.

Example 4.72. Show that any norm is a continuous mapping from X to
R. Note, however, that it is not a linear functional.

Solution. Using the inequality of Example 4.4 we can write
Hlzll = flzoll | < [l — ol| -
Given € > 0 then, we can choose d = ¢ in the definition of continuity. [
For linear operators there is a convenient theorem:

Theorem 4.73. A linear operator defined on a normed space X is contin-
wous if and only if it is continuous at x = 0.

Proof. Immediate from the relation Az — Azg = A(z — x0). O
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There is a central theorem that shows how to check whether a linear
operator is continuous:

Theorem 4.74. A linear operator A from a normed space X to a normed
space Y is continuous if and only if there is a constant ¢ such that for all

x € D(A),

[Az| < c|lz| (4.58)
Proof. Assume (4.58) holds. Then with § = £/c¢ in the definition of
continuity we see that A is continuous at x = 0. Conversely, suppose A

is continuous at z = 0. Take ¢ = 1; by definition there exists § > 0 such

that ||Az|| < 1 whenever ||z|| < §. For every nonzero x € X, the norm of
x* =0x/(2]z|) is

"] = ll62/(2 [|z]])

| =4d/2 <,
so ||[Az*|| < 1. By linearity of A this gives us
2
[Az| < = |2l
which is (4.58) with ¢ = 2/4. O
So continuous linear operators are often called bounded linear operators.

Definition 4.75. The least constant ¢ satisfying (4.58) is the norm of A,
denoted || A]|.

Note that | A|| satisfies all the norm axioms:

(1) ||A]l is clearly nonnegative. If ||A|| = 0 then ||Az|| = 0 for all z € X,
i.e., A =0. Conversely, if A =0 then ||A]| = 0.

(2) Tt is obvious that ||AA] = || ||A]].
(3) From

I(A+ B)z| = [[Az + Bz|| < [[Az[| + || Bz| < [|A[l ||| + [|B] ||z
we get [[A+ Bl < [[All + [ B].

Let L(X,Y) denote the normed linear space consisting of the set of all
continuous linear operators from X to Y under this operator norm.

There is also a notion of sequential continuity; as in ordinary calculus,
it is equivalent to the notion of continuity according to Definition 4.71:

Theorem 4.76. An operator A from X to Y is continuous at xy € X if
and only if A(x,) = A(xg) whenever x,, — xg.



Functional Analysis 267

The proof is easily adapted from the corresponding proof that appears
in any calculus book. This result justifies manipulations of the form

A ( lim :Cn) = lim Az, (4.59)

n—oo n—oo
for continuous operators A.
Suppose A is a continuous operator acting in a Banach space X. The
convergent series s = » ., | x), may be defined by the limiting operation

n
s = lim g Tk-
n—oo
k=1

But (4.59) allows us to write

A (ixk> = lim A <ixk> .
k=1 nee k=1

If A is also linear, then

o0 n o0
A (Z :ck> = nh_}n(}o ZA:Z?k = Z Axy,.
k=1 k=1 k=1
Hence interchanges of the form
o0 o0
A Z T = Z A:Z?k
k=1 k=1
are permissible with convergent series and continuous linear operators.

The most frequent operation in mathematical physics is that of finding
a solution x to the equation

Az =y (4.60)

when y is given. Let us introduce the notion of the inverse to A. If for
any y € Y there is no more than one solution € X of (4.60), then the
correspondence from Y to X defined by (4.60) is an operator; this operator
is the inverse to A and is denoted A1,

Lemma 4.77. If A and B are each invertible, then the composition BA is
invertible with (BA)~t = A=1B~1.

The proof is left to the reader.
Theorem 4.78. Let XY be normed spaces. A linear operator A on

D(A) C X admits a continuous inverse on R(A) CY if and only if there
is a positive constant ¢ such that

[[Az|| > c|lz|| for all x € D(A). (4.61)
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Proof. Assuming (4.61) holds, Az = 0 implies x = 0 so the inverse A1
exists. Then the same inequality means that the inverse is bounded (hence
continuous) on R(A). The converse is immediate. O

An operator A that satisfies (4.61) is said to be bounded below.

Example 4.79. Show that a bounded linear operator maps Cauchy se-
quences into Cauchy sequences.

Solution. Let {z,} be a Cauchy sequence in X. Let € > 0 be given and

choose N so that n,m > N implies ||z, — zm|| < &/ ||A]]. For n,m > N we
have

[Azy — Ay || = [|A(zn — 2zm)l| < [All 20 = zm]| <,
so {Azy} is a Cauchy sequence in Y. O

Example 4.80. Show that every bounded linear operator has a closed null
space.

Solution. Let A be a bounded linear operator. The null space of A, often
denoted by N(A), is the set of elements x such that Az = 0. Let {x,} be a

sequence of points in N(A) with z,, — x¢ as n — oo. It is easy to see that
xo belongs to N(A):

Ao :A(hm :cn> — lim Az, = lim 0=0.
n—o0 n—00 n—00

Hence N(A) is a closed set. O

Example 4.81. Show that if k(z, ) is a continuous, real-valued function
of the real variables x, £ on [a, b] X [a, b], then the operator A given by

Af = / ke, €)F(€) de

is a bounded linear operator from C(a,b) to itself.

Solution. The linearity of A is obvious. To see that A is bounded, observe
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that

b
IAfl = s | [ b 07(6) e

max [/ ERIIHC >|d5]

max [max |f(z |/ |k$§|d§]

I A

IN

z€[a,b] | z€la,b]

I mas, [ 1469

So || Af|l < o[£, where

a= max/ |k(z, &)| dE.
O

Example 4.82. Show that if a linear operator is invertible, then its inverse
is a linear operator.

Solution. Suppose A is linear and A~! exists. Let yi,y2 € R(A) where
yi = Azx; (1 = 1,2) and let a1, a2 be scalars. We have

a1y1 + a2y2 = alA:cl + CLQASCQ = A(al:zzl + CLQZCQ)
so that
AN ary1 + agy2) = a121 + asxy = a1 A7 Yy + a2 Ay

as required. O

4.10 Contraction Mapping Principle

We know that the iterative Newton method of tangents for finding zeros of
a differentiable function g(z) demonstrates fast convergence and is widely
used in practice. In this method we reduce a given problem to a problem
of the form

z = f(x) (4.62)

and the procedure for finding zeros of g(x) is

Tny1 = f(Tn)- (4.63)
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A solution z* of (4.62) is such that the value of f(z) at z* is z*, so a
solution is a fized point of the mapping f. There are different ways in
which an equation g(x) = 0 may be reduced to the form (4.62), the simplest
but not the best of which is to represent the equation as © = = — g(z).
Such a transformation is good only when the iterative procedure of solution
converges fast enough. It turns out that we can reduce various equations
of different natures, from systems of equations to boundary value problems
and integral equations, to forms of the type (4.62) so that the iterative
procedure gives us a good approximation to a solution with few iterations
required. The methods of reduction of a general equation G(z) = 0 extend
those known for the simple equation g(z) = 0. In this section we discuss a
class of problems of the general form

x = F(z) (4.64)
where F'(z) is a mapping on a metric space M, i.e.,
F:M— M,

and x € M is the desired unknown. If x is to satisfy (4.64) then the image
of z under F must be x itself, so we continue to use the term “fixed point”
in this more general case.

We would like to use an iterative process to solve equation (4.64). The
iteration begins with an initial value zy € M (sometimes called the seed
element) and proceeds via use of the recursion

Tpy1 = F(zg) k=0,1,2,.... (4.65)

Under suitable conditions the resulting values xg, 1, z2, ... will form a se-
quence of successive approximations to the desired solution. That is, if the
approach works we will have

lim z = 2* (4.66)

k— o0

where z* is a fixed point of F. With this background, let us formulate
conditions providing the applicability of the method.

Definition 4.83. Let F(z) be a mapping on M. We say that F(z) is a
contraction mapping if there exists a number « € [0,1) such that

d(F(x), F(y)) < ad(,y) (4.67)

for every pair of elements z,y € M.
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Repeated application of (4.67) yields
d(il?k+1,$k)§0[kd($1,$0), k:071527"'7

and with 0 < a < 1 the successive iterates will land closer and closer
together in M. We might expect these iterates to converge to a solution;
rigorous confirmation that they do is provided by the following celebrated
result due to Banach. It is known as the contraction mapping theorem.

Theorem 4.84. A contraction mapping F with constant o, 0 < a < 1,
on a complete metric space M has a unique fixed point. Convergence of
successive approximations to the fized point is independent of the choice of
seed element.

Proof. We choose an arbitrary seed element x¢p € M for the recursion
(4.65). Using the triangle inequality for several elements, for m > n we
have

AT, xn) < d(@m, Tm—1) + A Xm—1, Tm—2) + - - -
+d(znt2, Tnt1) + d(Tnt1, Tn)
hence
(@, ) < (@™ +a™ 24+ o™ @) (2, 30)
=a"(l+a+ - +a™ "2+ a™ " ) d(21, 20)
< a™(1—a) td(xr,20)
—0 asn— oo.

In this, we summed up the geometrical progression. So {zy} is a Cauchy
sequence, and by completeness of M there is a point * € M such that
T — ¥ as k — oo. From the contraction condition for F' it follows that
F(z) is continuous on M, hence

2 = lim F(azp) =F ( lim :ck> = F(z*).

k—o0 k—o0

We have therefore established the existence of a fixed point of F'(z). Unique-
ness is proved by assuming the existence of another such point y*. Then

d(z*,y*) = d(F(z%), F(y")) < acd(z",y")
so that
(1—a)d(z*,y")=0.

But a < 1, so we must have d(z*,y*) = 0 and hence z* = y*. O



272 Advanced Engineering Analysis

The proof of Theorem 4.84 provides information concerning the rate of
convergence of the iterates xy to x*. Specifically, we have

Corollary 4.85. Let F(x) be a contraction mapping on a complete metric
space M. Then the estimates

d(xy,z") < - d(x1,x0) (4.68)

and

(0%

d(xn, ") <
(@ :C)_l—a

d(Xp, Tp—1) (4.69)

both hold for n = 0,1,2,..., where a is the contraction constant for F(x)
and x* is the fized point of F'.

Proof. In the inequality

an

l1—«

AT, Tn) < d(x1,x0)

we can let m — oo and obtain (4.68). If on the right side of (4.68) we take
Zo to be x,,—1, then z1 becomes z,, and we obtain (4.69). O

Inequality (4.68) is called an a priori error estimate, since it provides
an upper bound on d(z,,z*) in terms of quantities known at the start
of the iteration procedure. Inequality (4.69) is called an a posteriori error
estimate, and can be used to monitor convergence as the iteration proceeds.

The contraction mapping principle can be applied to a variety of prob-
lems.

Example 4.86. Consider a (possibly finite dimensional) system of linear
equations

mi:Zaijxj—i—ci (i=1,2,3,...).
j=1

Solution. To solve this problem by iteration we can write
xF+H) = p(x®)) = Ax®) + ¢

where ¢ = (c1,¢2,¢3,...) is a given vector, {x(®)} is a sequence of vector
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iterates
X(o):( (0) .(0) . ) ),

N
x) = (:Cgl) :vgl),xé),...),

X = (o) o) 2D, ),

and A is the mapping given by

(k) ZalJ ZQQJ Zag:zz Yo

We should note that the possibility to employ iteration (and even simply to
solve the system) depends on the space in which we seek a solution. Here
we will study the iteration procedure in ¢*°, and therefore suppose that
c € >°. We recall that > is the space of all bounded sequences under the
norm

1%l oo = sup |zi.
i>1
For the operator A to act in £°° it is sufficient that the quantity
o0
K= supz laij]
i>1 57

is finite. This follows from the fact that ¢ € ¢* and the next chain of
inequalities, with which we will determine when F' is a contraction on ¢°°.
We have

i>1

IF(x) = F(x)l o =sup || Y agz;+ei | = | D aial +c
j=1 j=1

i>1

[e'e) o0
oSS 29| <o Sl =
=1 21 j=1
o0
< sup (sup lz; — $;|) Z |aij|
; i>1

i>1 Jj=Z j=1

oo
= supz la;;] (sup |z; — $;|)
i>1 4 j>1
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hence

IF(x) = F(x)lo < K [x = x| -

lloo

With K = sup,>; .5, |ai;| < 1 we have a contraction and Banach’s the-
orem applies. O

In other sequence spaces the appropriate conditions for a;; are different.
The reader can treat the problem for iterations and a solution in ¢2.

Let us state another corollary to the contraction mapping theorem. By
F* we denote the k-fold composition of the mapping F: that is, we have

Fti(z) = F(F"(2)), n=1,23,...,
where it is understood that F! = F.

Corollary 4.87. If F* is a contraction mapping on a complete metric space
for some integer k > 1, then F has a unique fixed point. Convergence of
successive approximations is independent of the choice of seed element.

Proof. F* has a unique fixed point z* by Theorem 4.84; moreover,
: k\n %
nlirréo(F '(z) ==
for any x € M. Putting z = F(2*) we obtain
(FFY"F(z*) = lim F(F¥)"(z*) = lim F(z*) = F(z*),
n—oo n—oo

x* = lim
n—oo
hence z* is also a fixed point of F. (Here we have used the assumption
that 2* is a fixed point of F*, hence it is a fixed point of (F¥)", hence
(FF)"(2*) = z*.) If y* is another fixed point of F, then y* is also fixed

point of F* hence y* = z*. O
Let us proceed to a second example.

Example 4.88. An integral equation of the form
vie) =g +A [ K@ou@d,  seldl, @)

where 1 (x) is unknown, is said to be a Volterra integral equation. Suppose
g(x) is continuous on [a, b], and that the kernel K (x,t) is continuous on the
closed, triangular region a <t < z, a < x < b. Show that the mapping F
given by

Pl = 9(0) + A [ K o(e)

will generate convergent iterates in C'(a,b).
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Solution. The approach will be to prove that F'™ is a contraction mapping
for some integer n > 1. First, let u(z) and v(xz) be any two elements of
C(a,b) and observe that

Flote)] = Flu(@)]l < [ 1K 0llo(0) () .

Now K (z,t), being continuous on a compact set, is bounded by some num-
ber M. So

[Flv(@)] = Flu(z)]] < IA\M/I o(t) —u(t)| di

< I\M max |v(t)fu(t)|/ it
t€la,b] a

= [AM(z —a)d(v,u). (4.71)
We show by induction that

P o)) — Fu(a)]] < a2

! dv,u), n=1,2,3,.... (4.72)

The case n = 1 was established in (4.71). Assuming (4.72) holds for n = k,
we have

\Fk+1[v(;u)] - Fk+1[u(x)]] <A /1 | K (x,t)] ‘Fk[u(t)] - Fk[u(t)]] dt

x t* k
§|)\|M/ et =9 ) ar

k!
T —a k+1
= Gt d,),

which is the corresponding statement for n = k + 1. Taking the maximum
of (4.72) over z € [a, b] we get

b—a)”
aF o], Fiu]) < P O gy .
For any A we can choose n so large that
b—a)”
="

n!

so F™ is a contraction mapping for sufficiently large n. By Corollary 4.87
then, (4.70) has a unique solution that can be found by successive approxi-
mations starting with any seed element. The usual choice for seed element

is ¥ (z) = g(). O
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Example 4.89. An integral equation of the form

b
(z) = glx) + A / Ko (a<z<b),

is called a Fredholm equation of the second kind. Suppose that g(z) is
continuous on [a,b], and that K(x,t) is continuous on the square [a,b] x
[a,b]. Find a condition on A for the equation to be uniquely solvable by
iteration in the space C(a,b).

Solution. We need the integral operator

b
F(z)) = glz) + A / K () (1) dt

to be a contraction mapping on C(a,b). Now K(z,t), being continuous on
a compact set, is bounded: |K(z,t)| < B on [a,b] x [a,b] where B is some
constant. Hence if u(x) and v(z) be arbitrary elements of C(a,b), we have

d(F(u), F(v)) = max
me[a b]

/ K(x,t)] —o(t)]dt

< max W [ IKGlatt) - w0

< BJ|A| max / lu(t) — v(t)| dt
< BIA[(b —a) max [u(z) —v(z)|
z€[a,b]
= BIA|(b — a) d(u(z), v(2)).
So F will be a contraction on C(a,b) if |A\| < 1/B(b— a). O

Note that for application of the Banach principle we do not need the
space to be linear. This fact is used in the solution of nonlinear problems
which can have several solutions. The principle applies when it is possible
to find a domain M in the original space M such that M; is a complete
metric space, the operator A acts in M7, and is a contraction on it.

4.11 Some Approximation Theory

Let X be a normed space. Given x € X and a set of elements ¢1,...,g, €
X, it is reasonable to seek scalars Ay, ..., A, that will minimize the distance
between z and the linear combinations Y . ; Xig;. So we would like to
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find the best approximation of x from among all the linear combinations
Yo Aigi- This general problem of approzimation can be rephrased as

(A, ) = \ min (4.73)

17'--;>\n

where ¢ is the functional given by

O, ) = : (4.74)

n
z =Y \igi
i=1

We take the g; to be linearly independent. If they are not linearly inde-
pendent, the solution of the approximation problem will not be unique.
Note that ¢(Aq1,...,\,) is a usual function in the n variables \;, so we can
employ the usual tools of calculus.

Theorem 4.90. For any x € X there exists x* =Y . \ig; such that

|l —2*|| = inf  o(A1,..., \n). (4.75)
ALsesAn
Proof. An application of the inequality
=yl = [zl =Nyl (4.76)
permits us to show that ¢(Aq, ..., \,) is continuous in the n scalar variables

>\1;---7>\n:
|¢()\1+h1;---;)\n+hn)_(b()\la---a)\n)l

2= (N + ha)gil[ — ||z — Z; Aigi
=1

i=1
n

< Z hil 193]l -
=1

IN

[93 = > i+ hi)gi

i=1
n
> higi
i=1

Continuity of the function

YA, ) =

> Aigi
i=1

is also apparent since it is a particular case of ¢(A1,...,\,) at & = 0, and
¥(A1, ..., An) must therefore reach a minimum on the sphere ", [X;|* =1
at some point (A1g,...,Ano). By linear independence of the g; we have
Y(A10,. -+, Ano) = d > 0. Also note that ¢ is a homogeneous function,

1/}(k>\15 7k>\n) = |k|w()\la 7>\n)a
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which means that

n 1/2
1,°"" »"An Z when 1 = )
»(A An) > Rd  wh (ZM |2> R

i=1
and that ¥(A\1,...,An) > Rd for (A\1,...,\,) outside a sphere of radius R.
We wish to show that ¢(A1,...,\,) actually attains its minimum value at
some finite point.
Since

P An) = (A1, An) — 2|
by (4.76), we see that for (A1,...,\,) outside a ball of radius R we have
d(A,.. o, An) > Rd — ||z -
Outside of the sphere of radius R = Ry = 3 ||z|| /d we have
(A1, ) > 2|2

whereas inside this sphere ¢(0,...,0) = ||z|. Hence when x # 0 (to the
reader: what happens when z = 0?) the minimum of ¢ is inside the sphere
of radius Ry with center at the origin. Thus the corresponding closed ball
of radius Ry contains the minimum point. O

The preceding proof holds in a complex space X as well.
Uniqueness can be addressed with the help of the following concepts.

Definition 4.91. A normed space X is strictly normed if from the equality
e +yl = llzll +[lyll, = #0, (4.77)

it follows that y = Az for some nonnegative .
Not all normed spaces are strictly normed. For example, the space C(f2)
is not strictly normed. But some important classes of spaces are strictly

normed, including L?(2) and W'?(Q). Later we shall show that every inner
product space is strictly normed.

Definition 4.92. A subset S of a linear space is convex if for any pair
x,y € S it contains the whole segment

Az + (1 - M)y, 0<A<L

Theorem 4.93. Let X be a strictly normed space, and let M be a closed
convex subset of X. For any v € X, there is at most one y € M that
minimizes the distance ||z — y||.
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Proof. Suppose that y; and y» are each minimizers:
- = ||z — = inf ||z —y| =d. 4.78
lz =yl = lle = gell = inf flz —y] (4.78)

If x € M, we obtain that y; = ya = x. Suppose z ¢ M. Then d > 0. By
convexity (y1 +y2)/2 € M, hence

Hx_w -
2
But
Y1+ Yo T—Y1 T — Y2 1 1
|- 25 vt e e -l =
SO
T—=Yr Tyl _||T U1 T —Y2
2 * 2 2 * 2

Because X is strictly normed we have z — y1 = A(z — y2) for some A > 0,
hence ||z —y1|| = Al — y=2||. From (4.78) we deduce that A = 1, thus
Y1 = Y. U

By this theorem we see that, for a strictly normed space, a solution to
the general problem of approximation is unique. A set of spaces important
in applications are included here, as shown next.

Lemma 4.94. Every inner product space is strictly normed.

Proof. Let X be an inner product space and suppose x,y € X satisfy
(4.77). We have ||z +y[|* = (||| + |ly[|)?; rewriting this as

2 2 2 2
)™+ 2Re(z, y) + l[yl™ = =1 + 2 [l [ Iyl + vl
we obtain
Re(z,y) = [z [lyll -
This and the Schwarz inequality show that Im(x,y) = 0 so that

(@, y) = ll=[ [yl -

But this last equation represents the case of equality holding in the Schwarz
inequality, which can happen only if y = Ax for some A. Making this
replacement for y we obtain (z,\z) = ||z|| | Az, hence X ||z||* = |A| |z]>.
Since z # 0 we have A = ||, and therefore A > 0. O
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The subspace H,, of an inner product space H that is spanned by g;, i =
1,...,n, is finite dimensional. We know that for any € H there is a unique
element that minimizes the distance ||z — y|| over y € H,. In a Euclidean
space this element is a projection of the element onto the subspace H,,. Let
us show that this result on the unique existence of the projection extends
to a Hilbert space. This extension is the basis for an important part of
the theory of Hilbert spaces connected with Fourier expansions and many
other questions.

Theorem 4.95. Let H be a Hilbert space and let M be closed convex subset
of H. For every x € H, there is a unique y € M that minimizes ||z — y||.

Proof. Fixx € H. By definition of infimum there is a sequence {y;} C M
such that

Jim o~ gl = inf o~ y]|.
By the parallelogram law
2 2 2 2
122 = i — g5l + i — w3l =2 (e = wal> + o = 351

hence
2

2 2 2 Yi +y;
I =351 =2 (o = sl o = 35 2) — 4 o - 52

Since ||z — y;]|> = d2 + &, where £; — 0 as j — oo, it follows that
lyi —yslI> < 2(d? + 4+ d? +¢5) —4d® = 2(e; + ;) = 0 asi,j — 0.

Therefore {yi} is a Cauchy sequence, and converges to an element y € M
since M is closed. This minimizer y is unique by Theorem 4.93. g

4.12 Orthogonal Decomposition of a Hilbert Space and the
Riesz Representation Theorem

Definition 4.96. Let M be a subspace of a Hilbert space H. An element
n € H is orthogonal to M if n is orthogonal to every element of M.

In R?® we may imagine a straight line segment inclined with respect
to a plane and with one end touching the plane. We may then define the
projections of the segment onto the plane and onto the normal, respectively.
The length of the normal projection is the shortest distance from the other
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end of the segment to the surface. The next result extends this fact to inner
product spaces.

Lemma 4.97. Let H be a Hilbert space and M a closed linear subspace of
H. Givenxz € H, the unique minimizer m € M guaranteed by Theorem 4.95
is such that (x —m) is orthogonal to M.

Proof. Let v e M. The function
fla) =[lx —m - av|?

of the real variable « takes its minimum value at o« = 0, hence

daf
doloco = 0.
This gives
d
E(zfmfow,z—m—om) o —2Re(z — m,v) = 0.
Replacing v by iv we get Im(z — m,v) = 0, hence (z — m,v) = 0. O

Definition 4.98. Two subspaces M and N of H are mutually orthogonal
if every n € N is orthogonal to M and every m € M is orthogonal to N.
In this case we write M | N. If, furthermore, any x € H can be uniquely
represented in the form

T=m+n, m¢& M, ne€ N, (4.79)

then we write H = M+N and speak of an orthogonal decomposition of H
into M and N.

Note that mutually orthogonal subspaces have zero as their only point
of intersection.

Theorem 4.99. Let M be a closed subspace of a Hilbert space H. There is
a closed subspace N of H such that M+N is an orthogonal decomposition
of H.

Proof. Let N be the set of all elements of H that are orthogonal to M.
We assume M # H, hence N has nonzero elements. If ny,ns € N so that
(n1,m) = (n2,m) = 0 for every m € M, then (Ain1 + Aang,m) = 0 for
any scalars A, A2. Hence N is a subspace of H. To see that N is closed,
let {nr} be a Cauchy sequence in N. The limit element n* = limy_,o ng
exists; it belongs to N because

(n*,m) = klim (ng,m)=0 forallme M
— 00
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by continuity of the inner product.

For any element 2 € H the representation (4.79) exists because we can
project x onto M to obtain the element m, then obtain n from n = z—m. To
show uniqueness, assume that for some x there are two such representations:

r=mi+ny, T = Mo + No.
Equating these, we obtain
mp — Mo = N1 — Ng.

Taking the inner product of both sides of this equality with m; — mo and
then with n; — ny, we get |[my —ma||® = 0 and [|ny — na||* = 0. O

Let us turn to a principal fact we shall need from the theory of Hilbert
spaces. We consider a simple case first. Let {eq,...,e,} be an orthonormal
basis of R™ so that any vector x € R™ can be expressed as

n
X = E xT;e;.
i=1

Now suppose F(x) is a linear functional defined on R™. It is easy to see
that F(x) has a representation of the form

F(x) = Z xic; (4.80)

where the ¢; are scalars independent of x; indeed, with ¢; = F'(e;) we have

i=1 i=1 i=1
by linearity of F. We can write (4.80) as
F(x) = (x,¢)

where c is a vector in R™, independent of x, whose value is uniquely de-
termined by F'; in this sense we can say that F' has been “represented by
an inner product.” More generally, we have the following important result
known as the Riesz representation theorem:

Theorem 4.100. Let F(x) be a continuous linear functional given on a
Hilbert space H. There is a unique element f € H such that

F(z) = (z,f) for every xz € H. (4.81)
Moreover, |F|| = || f]l
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Hence any bounded linear functional defined on a Hilbert space can be
represented by an inner product. The element f is sometimes called the
representer of F(x).

Proof. Let M be the set of all x for which
F(z)=0. (4.82)

By linearity of F'(x) any finite linear combination of elements of M also
belongs to M, hence M is a subspace of H. M is also closed; indeed, a
Cauchy sequence {my} C M is convergent in H to some m* = limg_, o m,
and by continuity of F'(x) we see that m* satisfies (4.82). By Theorem 4.99,
there is a closed subspace N of H such that N 1L M and such that any
x € H can be uniquely represented as z = m +n for some m € M and n €
N. We can deduce the dimension of N. If n; and ns are any two elements
of N, then so is ng = F(n1)n2 — F(n2)ny. Since F(n3) = F(n1)F(n2) —
F(ng2)F(n1) = 0 we have ng € M. But the only element that belongs to
both N and M is the zero vector. This means that ns is a scalar multiple
of n1, hence N is one-dimensional.

Now choose n € N and define ng = n/ ||n||. Any = € H can be repre-
sented as

xr =m+ ang, me M,

where a = (z,n0), and therefore

F(z) = F(m) + aF(ng) = aF(ng) = F(no)(x,ng) = (z, F(ng)no).

Denoting F(ng)ng by f we obtain the representation (4.81). To establish
its uniqueness, let f; and fs be two representers:

Fz) = (z, f1) = (2, f2).

So (z, fi — f2) = 0 for all z. Setting # = f1 — fo we have ||f1 — fo|* = 0,
hence f1 = fs.

Finally, we must establish ||F|| = ||f]|. Since this certainly holds for
F =0 we assume F' # 0. Then f # 0, and

1117 = (. £) = F(H) < I P
gives || f|| < ||F||. On the other hand

F
17l = sup Z@L_ g @D, Ll
lz0 Nl lelzo  lzll lalo  N12]]

= [If1l

by the Schwarz inequality. g
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The Riesz representation theorem states that a continuous linear func-
tional on a Hilbert space H is identified with an element of H; this corre-
spondence is one-to-one, isometric, and preserves algebraic operations with
respect to the elements and functionals. The set of all continuous linear
functionals on a normed space X is called the dual space to X and is denoted
by X'. In these terms, the Riesz theorem states that X’ is isometrically
isomorphic to X.

Example 4.101. (a) Let a functional in L?(0,2) be given by

F(f) = / f(@)g() da

where g(x) € L?(0,1) is given. What is the representer of this functional
given by Theorem 4.100 in L2(0,2)? (b) Define on L?(0,1) a linear func-
tional by the formula

G(f) = f(0.5).
What is the Riesz representer of this functional?

Solution. (a) We can use

Gy = {9 =)
0, z e (1,2,

as a representer. (b) The functional G is linear but not continuous in
L?%(0,1), so Theorem 4.100 does not apply. The functional by its form
relates to the d-function, which lies outside L?(0,1). O

The Riesz representation theorem will play a key role when we consider
the generalized setup of some problems in mechanics.

4.13 Basis, Gram—Schmidt Procedure, and Fourier Series
in Hilbert Space
If Y is an n-dimensional linear space, then there are n linearly independent

elements ¢g1,...,g, € Y such that every y € Y can be uniquely represented
in the form

Y= org (4.83)
k=1
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for scalars aq, ..., a,. The scalars are called the components of x. We refer
to the finite set {g;}"_, as a basis of Y. A basis is not unique. The concept
of basis can be extended to infinite dimensional normed spaces.

Definition 4.102. Let X be a normed linear space. A system of elements
{ei} is a basis (or Schauder basis) of X if any x € X can be represented
uniquely as

x = Z ageg (4.84)
k=1

for scalars {ay}.

The elements e; of a basis play the role of coordinate vectors of the space.
Every such basis is linearly independent. Indeed, with z = 0 equation (4.84)
holds with a = 0, and the aj are unique by assumption.

A normed space X having a basis is separable. To see this, we note that
the set of all linear combinations Zzozl qrer with rational coefficients gy is
countable and dense in X. Countability is evident. To show denseness let
z € X and £ > 0 be given. Write = Y ;7 aper. Let e = > 07 ryey
where 7 is a rational number such that

o =7l < 5
TS 2 e

Then

[l —ell = Zlakfrklllekll<sz2k:€

k=1

00
E Oékfrk
k=

as required.
In practice we often use finite approximations of quantities. Finite linear
combinations of basis elements are appropriate.

Definition 4.103. Let X be a normed space. A countable system {g;} C
X is complete in X if for every x € X and € > 0 there is a finite linear

combination 27:(81) a;(£)g; such that Hz - Z?:(El) a;(e)gi|| < e.

Note that the coefficients «; need not be continuous in .

The space X is separable if it has a countable complete system: the set
of finite linear combinations with rational coefficients is dense in the set of
all linear combinations, and thus in the space.

Among all the bases of R™ an orthonormal basis has some advantages
for calculation. The same can be said of an infinite dimensional Hilbert
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space. A system of elements {gx} C H is said to be orthonormal if

1, m=n,

(gmagn) = {07 m 7& n. (485)

If we have an arbitrary basis {f;}52; of a Hilbert space, we sometimes
need to construct an orthonormal basis of the space. An orthonormal basis
of a Hilbert space is not unique. One way to produce such a basis is
the Gram-Schmidt procedure. The process is straightforward. A linearly
independent set of elements cannot contain the zero vector, so we may
obtain ¢g; by normalizing f:

g1 = f1/ I f1ll -

To obtain go, we first generate a vector ey by subtracting from fo the
“component” of fy that is the projection of fo on the direction of g;:

ez = fo— (f2,91)01
(recall that ¢y is a unit vector). We then normalize es to obtain go:
g2 = ea/ [lez]l -

(Note that es # 0, otherwise f; and fy are linearly dependent. The same
applies to the rest of the e;).

We obtain g3 from f3 by subtracting the components of f3 that are the
projections of f3 on both g; and go:

e3 = f3— (f3,91)91 — (f3,92)92, g3 = e3/ |les]| .

In general we set

1—1
€; .
gi = HelH where ei:fi_ E (fi;gk)gka 12233743""
¢ k=1

The reader should verify directly that the Gram—Schmidt procedure yields
an orthogonal set of elements.

In linear algebra it is shown that a system { f; }1_; is linearly independent
in R” if and only if

(fi, fr) (fi.fe) - (fisfn)

(f2, f1) (fas f2) -+ (f2s fn)
. £0.

G ) (Farf2) - (P fo)
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The determinant on the left is the Gram determinant. A finite dimensional
inner product space stands in a one-to-one correspondence with R™, a cor-
respondence in which inner products are preserved. Thus the same Gram
criterion is valid for an inner product space as well. It is easy to see that
every finite orthonormal system is linearly independent, since the Gram
determinant would reduce to +1 in that case.

In the space R™ we find the components of a vector x with respect to the
orthonormal frame vectors i, by direct projection of x onto ix: xx = x - ig.
Similarly, the components of an element in a Hilbert space are given by

Definition 4.104. Let {g;} be an orthonormal system in a complex Hilbert
space H. Given f € H, the numbers «y defined by

Qg = (fagk)v k= 172537"'7 (486)
are the Fourier coefficients of f with respect to the system {g;}.

We use the same terms as in the classical Fourier theory of expansion of
functions, because all the results and even their proofs parallel the results
for Fourier expansions established in the space L?(a,b).

Theorem 4.105. Let H be a Hilbert space. A complete orthonormal system
{g:} C H is a basis of H; with respect to {g;}, any f € H has the unique
representation

f= Z Ok (4.87)
k=1

where oy, = (f, gi) is the kth Fourier coefficient of f. The series (4.87) is
called the Fourier series of [ with respect to {g;}.

Proof. Let f € H be given, and consider approximating f by a finite
linear combination Y ,_, cxgx of the elements {g;}!_;. The approximation
error is given by

n 2 n n
|- S = (5~ w3
k=1 k=1 k=1
and manipulation of the right side allows us to put this in the form

n 2 n n
Hf—Zczcgk = ||f|\2—2|ak|2+2|0k—ak|2.
k=1 k=1 k=1
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Clearly the error is minimized when ¢, = ay for each k, so the best ap-
proximation is the element given by

n

fn = Z(fa gk).gk-

k=1
We call f,, the nth partial sum of the Fourier series for f. Since the error
is nonnegative we also have

Z |(f7 gk)|2 < Hf”2 )

k=1
known as Bessel’s inequality. This shows that

n+m 2 n+m
2
fnim = £l =1 D (Fro0)ge| = D [(fr96)]*> =0 asn— oo,
k=n+1 k=n+1

hence {f,} is a Cauchy sequence in H. Since H is a Hilbert space the
sequence has a limit. We need to show that it coincides with f. Indeed, by
completeness of {g;}, for any £ > 0 there exists N = N(g) and coefficients
¢k (e) such that
2

<E.

N
- aem
k=1

But fn is at least as good an approximation to f, so

N 2 N 2
2
If = fal? = ] F=Y onge|| <|F=D ale)gn| <e
k=1 k=1
and we conclude that fy — f. From this we obtain
f= lim f,,
n—oo
and the proof is complete. ]
Corollary 4.106. Parseval’s equality
2
o190l =111 (4.88)
k=1

holds for any f € H and any complete orthonormal system {g;}.
Proof. We established above that

Hchf,gk)gk e (4.89)
k=1 k=1

Passage to the limit as n — oo yields (4.88). O
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The proof shows that the sequence of partial Fourier sums is a Cauchy
sequence regardless of whether {g;} is a complete system. We formulate

Corollary 4.107. Let {gi} be an arbitrary orthonormal system in H (not
necessarily complete). The sequence of partial Fourier sums f, of f € H
converges to an element f* such that || f*|| < ||f|l. If the system is complete,
then f* = f.

Definition 4.108. We say that {g;} C H is closed in H if the system of
equations

(fygr)=0forall k=1,2,3,... (4.90)
implies that f = 0.

Theorem 4.109. An orthonormal system {g;} in a Hilbert space H is
complete in H if and only if it is closed in H.

Proof. 1If {g;} is a complete orthonormal system in H, then any f € H
can be written as

= (f 98)9n
k=1

by Theorem 4.105. Enforcement of the condition (4.90) obviously does
yield f = 0, hence {g;} is closed. Conversely, assume {g;} is a closed
orthonormal system in H. We established previously (Corollary 4.107)
that for any f € H the sequence of partial Fourier sums f, = Y ;_; gy is
a Cauchy sequence converging to some f* € H since H is a Hilbert space.
We have

(fff 7gm) :nh~>ngo <f 5 Oéka,Qm) = Qm — Oy = 0
k=1
hence

(f—f* gm)=0forallm=1,2,3,....

It follows that f* = f since {g;} is closed. Because f, = > ;_, argk
converges to f, the system {g;} is complete by Definition 4.103. O

The existence of the Gram—Schmidt process implies

Theorem 4.110. A system of elements {g;} (not necessarily orthonormal)
in a Hilbert space H is complete in H if and only if it is closed in H.
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Theorem 4.111. A Hilbert space H has a countable orthonormal basis if
and only if H is separable.

Proof. We saw earlier that the existence of a countable basis in a Hilbert
space provides for separability. Conversely, assume H is separable and
select a countable set that is dense in H. To this set the Gram—Schmidt
procedure can be applied (removing any linearly dependent elements) to
produce an orthonormal system. Since the initial set was dense it was
complete, hence the Gram—Schmidt procedure yields an orthonormal basis
of H. 0

One advantage afforded by the tools of functional analysis is that we can
discuss many common procedures of numerical analysis in terms to which
we are accustomed in finite dimensional spaces. A knowledge of this theory
gives us an understanding, without long deliberation, of when we can do
so and when we cannot — some nice finite dimensional pictures become
invalid or doubtful in spaces of infinite dimension.

The following result will be used in §4.21.

Theorem 4.112. Any bounded subset of a Hilbert space H is precompact
if and only if H is finite dimensional.

Proof. If H is finite dimensional then we can place it in one-to-one cor-
respondence with R™ for some n. Then precompactness of any bounded set
follows from calculus.

Next let us suppose that any bounded set of H is precompact but, to
the contrary, that H is infinite dimensional. We can construct an infinite
Fourier basis {ex}. Since |lex —en||> = 2 for k # n, the sequence {ey}
cannot contain a Cauchy subsequence, hence the unit ball of H cannot be
precompact. O

Example 4.113. Show that every separable, infinite dimensional, complex
Hilbert space is isometrically isomorphic to ¢2.

Solution. Let X be a Hilbert space as described. By separability X has a
countable, complete orthonormal set E = {e;}72 ;. For any « € X, denote
the nth Fourier coefficient with respect to E by a,,. Since E is complete
we have [|z]* = 32°°, |an|? < oo, hence a = (aj,as,...) € £2. Define a
transformation A from X to ¢? by Az = a. Because A is clearly linear we
can show that it is injective by showing that N(A) = {0}. But Az =0
implies a = 0, hence each ay = 0, hence (z,ex) = 0 for each k, hence
x = 0 since the orthonormal set E is closed. Next we show that A is
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surjective. Choose any y = (n1,72,...) € €2 since Yo, [7a]? < oo, the
series Zzozl Nnen = x for some x € X. Moreover we have 7, = (z,e,) for
2 2 2
all n, and hence [|[Az|” = [ly|” = 2205, Inal? = 327, [(z,en)|* = 2|
That is, A is also an isometry. g

4.14 Weak Convergence

It is easy to show that {x;} is a Cauchy sequence in R™ if and only if each
of its component sequences {(xx,i;)}, 7 = 1,...,n, is a numerical Cauchy
sequence. So in R™, norm convergence is equivalent to component-wise
convergence. Remember that, besides, all the norms in R™ are equivalent.
Unlike R™, in an infinite dimensional Hilbert space, where the role of com-
ponents is played by the Fourier coefficients of an element, the component-
wise convergence of a sequence does not guarantee strong convergence of
the same sequence. Indeed, consider the sequence composed of the elements
of an orthonormal basis {gr}. The sequence of the jth Fourier component
(9%, 95) — 0 as k — oo because of the mutual orthogonality of the elements
of the basis; hence, by similarity to the case of R™, we could conclude that
the zero element is a limit. But {g;} does not have a strong limit, because
llgk — gml|l = V2 whenever k # m. However, component-wise convergence
in a Hilbert space is still important, and we need to introduce a suitable
notion. A component in Hilbert space is given by the Fourier coefficient,
which is found through the use of an inner product. This coefficient is a
continuous linear functional on H. So a natural extension of the definition
of component-wise convergence is

Definition 4.114. Let {x;} C H where H is a Hilbert space. We say
that {xx} is a weak Cauchy sequence if {F(xy)} is a (numerical) Cauchy
sequence for every continuous linear functional F'(x) defined on H.

In contrast, we know that {x} is a Cauchy sequence in H if
lzn — 2m|] = 0 as m,n — oco.

In this latter case we shall refer to {z;} as a strong Cauchy sequence
whenever there is danger of ambiguity. It is apparent that every strong
Cauchy sequence is a weak Cauchy sequence. We also observe that, by
Theorem 4.100, {zx} is a weak Cauchy sequence if the numerical sequence
{(zn, f)} is a Cauchy sequence for every element f € H. But above we
showed the existence of a sequence that is a weak Cauchy sequence but not
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a strong Cauchy sequence. Thus we have defined a new kind of convergence
in a Hilbert space. We shall rephrase all the notions of strong continuity
for the weak version.

Definition 4.115. Let 29 € H. If F(x,) — F(xo) for every continuous
linear functional F(z) defined on H, we write

Ty — X0

and say that {x,} is weakly convergent to x. Alternatively, by the Riesz
representation theorem we have x,, — x¢ if and only if (x,, f) — (zo, f)
for every element f € H.

Recalling that the strong limit of a sequence is unique, we might wonder
whether weak limits also share this property. The answer is affirmative:

Theorem 4.116. If a sequence in a Hilbert space has a weak limit, the
limit is unique.

Proof. Suppose there are two weak limits x* and z** of a sequence {xzy}.
An arbitrary continuous linear functional, by Theorem 4.100, is F(z) =
(x, f). When k tends to infinity the numerical sequence (xy, f) can have
only one limit (by calculus), so (**, f) = («*, f). This holds for any f € H,
and thus for f = 2** — 2*. But then it follows that [|z** —2z*|* =0. O

There is a simple and convenient sufficient condition for a weakly con-
vergent sequence to be strongly convergent:

Theorem 4.117. Suppose x) — x¢ in a Hilbert space H. Then ||zk| —
|zo|| implies that x, — xo as k — oo.

Proof. For each k we have
ek = x0]|* = (wx — w0, 1 — w0) = l|zkl|* = (w0, @x) — (wx, x0) + o] .

But as k — oo both (¢, x;) and (zy,a0) approach |zo||* by definition
of weak convergence, and we have |xg|| — ||zo]] by assumption. So
|lzx — zo|| = 0 as k — oo. O

A strong Cauchy sequence is bounded, but it is not immediately appar-
ent that a weak Cauchy sequence has this property.

Theorem 4.118. In a Hilbert space, every weak Cauchy sequence is
bounded.
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Proof. Suppose {x,} is a weak Cauchy sequence in H with ||z, || — oo
as n — oo. Before seeking a contradiction we establish an auxiliary fact: if
B(yo, €) is a closed ball of radius € > 0 and arbitrary center yo € H, then
there is a sequence {y,} C B(yo, ) such that the numerical sequence

(Tpn,Yn) = 0O as n — oo. (4.91)

The sequence {y,} given by
Ty,
= 0 + E——
T e
is suitable. Indeed
ETn €
—wll =z =5<¢
b= = | 52| =
shows that y,, € B(yo,¢) for each n. Furthermore,
€ 3
(TnsYn) = (Tn,y0) + m(zmzn) = (Tn,%0) + 3 x|l

establishes (4.91) since the numerical sequence {(x,,y0)} is a Cauchy se-
quence by definition of weak convergence of {z,}, and every Cauchy se-
quence is bounded.

We are now ready to obtain a contradiction. Starting with e; = 1 and
yo = 0, we can find z,,, and y; € B(yo, 1) such that

(Tn,,y1) > 1. (4.92)

By continuity of the inner product in the second argument, there is a ball
B(y1,e2) C B(yo,e1) such that (4.92) holds not only for y; but for all
y € B(y1,¢e2):

(Tny,y) > 1 for all y € B(y1,e2).
Similarly, we can find x,,, (with ny > n1) and y2 € B(y1,€2) such that
(Tny,y2) > 2,
and, by continuity, a ball B(ys,e3) C B(y1,€2) such that
(Tny,y) > 2 for all y € B(yz,e3).

Continuing this process we generate a nested sequence of balls B(yx, €x+1)
and a corresponding subsequence {zy, } of {x,} such that

(Xn,,,y) >k for all y € B(yk, ext1)-

Since H is a Hilbert space the intersection (), B(yk,ex+1) is nonempty,
hence there exists y* such that (z,,,y*) > k for each k. For the continuous
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linear functional F*(z) = (z,y*) then, the numerical sequence {F*(z,, )}
is not a Cauchy sequence. Because {z,, } is not a weak Cauchy sequence,
neither is {x,}. This is the contradiction sought. O

As a byproduct of this proof we have

Lemma 4.119. If {4} is an unbounded sequence in H, i.e., ||xg] — oo
as k — oo, then there exists y* € H and a subsequence {x,, } such that
(Tn,,y") — 00 as k — oo.

We now present another important theorem with which we can show
boundedness of some sets in a Hilbert space. Set boundedness plays an
important role in the applications of functional analysis to mathematical
physics. The present result is the principle of uniform boundedness:

Theorem 4.120. Let {Fy(z)}32, be a family of continuous linear func-
tionals defined on a Hilbert space H. If sup,, |Fx(x)| < oo for each x € H,
then supy, || Fi|| < co.

Proof. Each Fj(x) has Riesz representation Fy(x) = (z, f) for a unique
fr € H such that || fx|| = || Fk||- So it suffices to show that if sup,, |(z, fi)| <
oo for each © € H, then supy || fr]] < co. We prove the contrapositive of

this. If sup ||fx]] = oo, then Lemma 4.119 guarantees the existence of
xo € H and a subsequence {fx,} such that |[(xo, fr,)| = o0 as k — .
This completes the proof. O

Corollary 4.121. Let {Fy(x)} be a sequence of continuous linear function-
als given on H. If for every x € H the numerical sequence {F(x)} is a
Cauchy sequence, then there is a continuous linear functional F(x) on H
such that

F(z) = klim Fi(x) forallze H (4.93)
—00
and
[ F| < liminf || Fy| < oc. (4.94)
k— o0

Proof. The limit in (4.93) exists by hypothesis and clearly defines a linear
functional F'(z). By Theorem 4.120 we have supy, || F|| < oo; from

[F(x)| = lim [Ey(2)] < sup || Fx[| [l
—r 00 k

it follows that F'(x) is continuous. Writing

|F(2)] = lim [Fj(z)| < liminf [|Fy]| [|2],
k—o0 k—o0
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we establish (4.94). O

Because of the Riesz representation theorem we can rephrase this as

Theorem 4.122. A weak Cauchy sequence in a Hilbert space has a weak
limit belonging to the space. Hence any Hilbert space is weakly complete.

It is therefore unnecessary for us to define weak completeness for a
Hilbert space separately.

Theorem 4.123. A sequence {x,,} C H is a weak Cauchy sequence if and
only if the following two conditions hold:

(i) {xn} is bounded in H;

(i1) for any element from a complete system {f,} in H, the sequence of
numbers {(xn, fo)} is a Cauchy sequence.

Proof. Since necessity of the two conditions follows from Theorem 4.118
and Definition 4.115, we proceed to prove sufficiency. Suppose conditions (i)
and (ii) hold, and let £ > 0 be given. Condition (i) means that ||z,| < M
for all n. Take an arbitrary continuous linear functional defined by its
Riesz representer f € H as (z, f). By (ii) there is a linear combination
fe= Zivzl ¢k fr such that

|f = fell <e/3M.
We have

|(-Tn _:Emaf |

|($n — T, fe+ f — fa)|
|(:17n 7"Emaf€)| + |(In *;’Em,f - fs)|

IN

| A

N
ZleH = Zms i)l + (2l + lem ) | f = fell-
=1

By (i), {(zn, fx)} is a Cauchy sequence for each k. Therefore for sufficiently
large m,n we have

N

Z lex|[(zn — m, fr)| < €/3.

k=1
So

(zn, — Xm, f)| <e/3+2Me/(B3M) =¢

for sufficiently large m, n, as required. O
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Definition 4.124. A set S in an inner product space X is weakly closed if
T, — o € X implies that zo € S.

Lemma 4.125. In a Hilbert space, any closed ball with center at the origin
is weakly closed.

Proof. From the ball ||z|] < M, choose a sequence {x,} that converges
weakly to g € H. We shall show that ||zo|| < M. The formula

F(y) = lim (y,zn)
defines a linear functional on H. It is bounded (continuous) because
[F(y)| = lim [(y,zn)| < M [ly]|,

and we have ||F|| < M. Applying Theorem 4.100 we obtain F(y) = (y, f)
for a unique f € H such that ||f|| < M. So

Jim (y,2n) = (9, f)
for any y € H, and conclude that x, — f. (]

A result known as Mazur’s theorem (see, for example, [32]) states that
every closed convex set in a Hilbert space is weakly closed. This would
apply to the previous case, as well as to any closed subspace of a Hilbert
space.

Definition 4.126. Let S be a subset of an inner product space. We say
that S is weakly precompact if every sequence taken from S contains a weak
Cauchy subsequence. We say that S is weakly compact if every sequence
taken from S contains a weak Cauchy subsequence that converges weakly
to a point of S.

Next, we see that a bounded set in a separable Hilbert space is weakly
precompact.

Theorem 4.127. Fvery bounded sequence in a separable Hilbert space con-
tains a weak Cauchy subsequence.

Proof. Let {z,} be a bounded sequence in a separable Hilbert space H,
and let {g,} be an orthonormal basis of H. By Theorem 4.123 it suffices to
show that there is a subsequence {x,, } such that, for any fixed gy, the nu-
merical sequence {(zn,, gm)} is a Cauchy sequence. Let us demonstrate its
existence. From the bounded numerical sequence {(z,, g1)} we can choose
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a Cauchy subsequence {(zy,,¢1)}. Then, from the bounded numerical se-
quence {(zn,,92)} we can choose a Cauchy subsequence {(x,,,g2)}. We
can continue this process, on the kth step obtaining a Cauchy subsequence
{(zn,,9x)}. The diagonal sequence {xz,, } has the property that for any
fixed g, the numerical sequence {(x,, , gm)} is a Cauchy sequence. Hence
{xn, } is a weak Cauchy sequence. O

A simple but important corollary of this and Lemma 4.125 is

Theorem 4.128. In a Hilbert space, any closed ball with center at the
origin is weakly compact.

That is, a bounded sequence {z,} with ||z,] < M has a subsequence
that converges weakly to some xz* with [|z*|| < M. We shall use this fact
in the next chapter.

Example 4.129. Prove the following assertions. (a) If {z,} is a (strong)
Cauchy sequence, then it is a weak Cauchy sequence. (b) Let {z,} be a
weak Cauchy sequence, and suppose that one of its subsequences converges
(strongly) to xo. Then {x,} converges weakly to xo. (c) If {z,} converges
weakly to xg, so do each of its subsequences. (d) Suppose xp — x and
yr — y. Then xp + yr — = + y, and axp, — ax for any scalar a. (e) Let
Zp — xg and y, — yo. Then (z,, yn) = (20, y0) as n — oo.

Solution. Let F' be an arbitrary continuous linear functional. (a) Lete > 0
be given, and choose N so large that n,m > N imply ||z, — x| < e/ ||F]
Then for n,m > N we have

|F(20) = F(zm)| = [F(xn — 2p)| < |F| |20 — 2ml <e.

(b) Since {x,} is weakly Cauchy, the sequence {F(zy)} is Cauchy. Also,
Zn, — To implies that F(z,,) — F(z¢). Because the Cauchy sequence
{F(xn)} has a subsequence {F'(zy,)} that converges to F(xg), the whole
sequence converges to F'(xg). This shows that x,, converges to z¢ weakly.
(¢) If z, — =g, then F(z,) — F(xo). But then F(z,,) — F(zo) for
every subsequence {F(zy, )} of {F(zy,)}. (d) We have F(zx) — F(z) and
F(yx) — F(y). Hence

F(og +yi) = Fog) + Fyr) = F(z) + F(y) = F(z +y)
and

F(azy) = aF(xg) = aF(x) = F(ax).
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(e) We have

|(@n; yn) — (20, Y0)| < [(Tn,Yn) — (Tn; yo)| + [(%n, ¥o) — (20, Y0)]
= [(@n, Yn — Yo)| + [(zn,y0) — (0, yo)]
< lznll lyn — yoll + [(zn: yo) — (xo, yo)|-

The first term tends to zero as m — oo because the weakly convergent
sequence {z,} is bounded and ||y, — yo|| = 0. The second term tends to
zero by weak convergence of {z,} to xo. O

4.15 Adjoint and Self-Adjoint Operators

In the theory of matrices, for a matrix A the equality

(Ax,y) = (x,ATy)

which is valid for any x,y, defines a dual (conjugate) matrix A”. The
formula for integration by parts (when g(0) = 0 = g(1)),

/0 f(@)g(x) / e

introduces a correspondence between the operator of differentiation (of the
first argument f) and a dual operator, —d/dz, for the second argument. For
a linear differential operator with constant coefficients, integration by parts
can be used to find a corresponding dual operator that plays an important
role in the theory of differential equations. An extension of these ideas to
the general case brings us to the notion of adjoint operator.

Let H be a Hilbert space and A a continuous linear operator from H
to H. For any fixed y € H, we can view the inner product (Az,y) as a
functional with respect to the variable € H. This functional is linear:

(A(Azy + pws), y) = (NAzy + pAza,y) = A(Az1,y) + p (A2, y) -
It is also bounded (i.e., continuous) since
[(Az, y)| < [ Az [ [lyll < [|A] lyll [l
by the Schwarz inequality and the fact that A is bounded. By Theo-

rem 4.100 we can write
(Az,y) = (2, 2)

where z € H is uniquely determined by y and A. The correspondence
y +— z defines an operator that we shall denote by A*.
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Definition 4.130. Let A be a continuous linear operator acting in H. The
operator A* from H to H given by

(Az,y) = (x, A*y) forall z € H
is the adjoint of A.

Let us verify that A* is a linear operator. For any y1,y2 € H we have
(A‘Tvyl) = (‘T’A*yl)a (A$7y2) = (‘T’A*yQ)a
and, if A and p are any scalars, (Az, A\y1 +py2) = (2, A*(Ay1 +py2)). Hence
(2, A" (g1 + py2)) = MAz, y1) + fi(Az, y2)
X(:C, A*yl) + ﬁ(:l?, A*yQ)
= ((E, )‘A*yl) + ((E, MA*y2)
Therefore, since x € H is arbitrary,

A*(Ay1 + py2) = A Yy + pA%ya

Let us proceed to some other properties of A*.

Lemma 4.131. We have
(A4 B)* = A* + B*, (AB)* = B*A*,
for any continuous linear operators A, B acting in H.
Proof. The first property is evident. We write
(z,(AB)"y) = ((AB)x,y) = (A(Bx),y) = (Bx,A"y) = (z,B"(A"y))
— (o, (B"A")y)
to establish the second property. O

Lemma 4.132. If A is a continuous linear operator, then so is A*; more-
over, we have ||A*|| = ||A].

Proof. Define*

A
e s (A9
cven 2l Tyl

By the Schwarz inequality

A
2 < sup LALLE ]
evdn Tl Tyl

= [l

4Here it is evident that the sup should be taken only over z,y # 0, so we suppress this
condition to simplify the notation.
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But we also have
A*
M s @A)
zyer 2| [yl

and can put z = A*y to obtain a new value

Ay, A* A*
My — s (ABAD _ 1A
veir 1Tl = oeh Tol

Since M7 < M we see that A* is bounded and

My =||A"| <M < ||A].
So A* is continuous with ||A*|| < ||A]|. The reverse inequality, obtained as
Al = [1(A™)"]| < [|A™],
rests on the next lemma. O
Lemma 4.133. (A*)* = A.
Proof. Since A* is continuous we have
(z, (A")"y) = (A"z,y) = (y, A*2) = (Ay, ) = (v, Ay)

for any z,y € H. 0

We are now ready to consider some specific examples. In preparation
for this it will be helpful to have

Definition 4.134. An operator A is self-adjoint if A* = A.

Let us note that for boundary value problems the equality A* = A
means not only coincidence of the form of the operators, but coincidence
of their domains as well. This remark becomes important when in math-
ematical physics one introduces the notion of the adjoint to an operator
having a domain that is only dense in the space. Then one may introduce
symmetrical operators (these are such that the form of the adjoint operator
remains the same) and self-adjoint operators for which there is complete
coincidence with the original operator.

On the space ¢? having elements x = (1,72, . ..), we can define a matrix
operator A by

(AAX)z = Z AijTyj.
j=1
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It follows from

271/2 1/2
oo oo
[l = [ D D aija; ZZlaul zjlﬂ%l2
i=1 \j=1 =1 j=1
that
1/2
oo o
JAL < Y0 ais
i=1j=1
Suppose
1/2
oo oo
SSS) <u

i=1 j=1

so A becomes continuous. From

(Ax,y) ZZa”szl Z:cj <Z alj%) (x, A*y)

=1 j=1
we see that A* is defined by

(A'y); =D iy
1=1

It is evident that A is self-adjoint if a;; = @;; for all indices 4, j. A continuous
analogue is the integral operator B acting in L?(0,1) defined by

(Bf)(x) = / Kz, ) f(s) ds

where k(z, s) is known as the kernel of the operator. The inequality

1Bl 01 = ( [ : dx) 2
(/ </ |’“fs|2ds/ s |zds)d$>

/2

~( / / |kxs|2dsdx) 11l 20

shows that B is bounded if k(z,s) € L?([0, 1] x [0,1]) and that

18]l < (/ / k(e 5) ds o

/01 k(z,s)f(s) ds

/2

1/2
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Manipulations analogous to those done for the matrix example above show
that B* is given by

1
(B*g)(s) = / Rz, 9)g(z) da.

Clearly B is self-adjoint if k(x, s) = k(s, z) and k(z, s) € L?([0,1] x [0,1]).

Definition 4.135. An operator acting in a Hilbert space is weakly contin-
uwous if it maps every weakly convergent sequence into a weakly convergent
sequence.

Lemma 4.136. A continuous linear operator acting in a Hilbert space is
also weakly continuous.

Proof. Let A be continuous on H and choose {z,} such that z, — zg in
H. An arbitrary continuous linear functional F'(x) takes the form F(z) =
(z, f) for some f € H, hence we must show that (Ax, — Azo, f) — 0 as
n — 0o. But

(Az, — Az, f) = (X — 29, A"f) > 0 asn— oo
since A*f € H and {z,} converges weakly to zo. O
The proof shows that
T, = x99 — Az, — Az,

analogous to the case with ordinary (strong) continuity.
The following lemma plays an important role in justifying many numer-
ical methods for the solution of boundary value problems.

Lemma 4.137. Assume that A is a continuous linear operator acting in a
Hilbert space H. If x,, = x¢ and y, — yo in H, then (Axy,,yn) — (Azo, yo).

Proof. We will show that (Az,,y,) — (Azo,yo) — 0. We have
(AZn,yn) — (Ao, Y0) = (Tn, A"Yn) — (z0, A"y0)
= (‘Tna A*yn) - (‘rna A*yo) + (‘Tna A*yo) - (mo, A*yo)
= (zn, A*(Yn — Y0)) + (Tn — 0, A"y0).
The first term on the right tends to zero because
[(@n, A™(yn = o)) < [lznll [A™[Hyn — voll

and y, — yo (here ||z,] is bounded since {z,} is weakly convergent); the
second term tends to zero because x,, — xg. O
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Sometimes it is important to obtain an exact value or accurate bound
for the norm of an operator. For a self-adjoint operator this can be done
via the following theorem.

Theorem 4.138. If A is a self-adjoint continuous linear operator given on
a Hilbert space H, then

[All = sup |(Az,z)]. (4.95)

lzll<1
Proof. We denote the right side of (4.95) by . By the Schwarz inequality

v < sup {[|Az] [lz]]} < HSLHIEI{IIAH lz)*} = 1Al

llzll<1

The reverse inequality, which completes the proof, takes a bit more effort to
establish. First, by definition of 7 we have |(Az, z)| < v whenever ||z|| < 1.
Hence, replacing x by x/ ||z||, we can write

|(Az, )| < |||

for any x € H. Setting 1 = y + Az and zo = y — Az where A € R and
Y,z € H, we have

C = |(Axy,21) — (Aza, 29)]
= [2)||(Ay, 2) + (Az, )|
= [2X|[(Ay, 2) + (2, Ay)|.

On the other hand
C < |[(Azy,21)] + |(Azz, 22)|
<Al ) + lw2l*)
2 2

= 2y([lyllI” + A 1Iz]%)

by the parallelogram equality, so
122 [(Ay, 2) + (2, Ay)| < 2v(llyl* + A* [|=I").
Since this holds for all y, z € H we may set z = Ay to obtain
4] 1Ay [1* < 2v(llyll* + A* (| Ay]*).

With A = ||ly|| / ||Ay|| this reduces to ||Ay|| < v |ly|| and so ||A] < 4. O

The theorem implies that a self-adjoint continuous operator A in a
Hilbert space is zero if and only if (Az,z) =0 for all x € H.
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4.16 Compact Operators

Using computers we can successfully solve finite systems of linear algebraic
equations. A computer performs a finite number of operations, so if we
need to solve a problem with some accuracy it should have a structure
close to that of finite algebraic equations. An important class of operators
with which problems of this kind arise is the class of compact operators. In
this section we take X to be a normed space and Y a Banach space.

Definition 4.139. A linear operator A from X to Y is compact if it maps
bounded subsets of X into precompact subsets of Y.

It suffices to show that A maps the unit ball of X into a precompact
subset of Y. (By “the unit ball” of a space, if nothing is said about its
center, we mean a ball of unit radius centered at the origin of the space.)
This follows from the linearity of A. It is also evident that A is compact
if and only if every bounded sequence {z,} in X has a subsequence whose
image under A is a Cauchy sequence in Y.

In the space R™ with a fixed basis, a matrix A defines a continuous linear
operator that is denoted by A as well. Such an operator A maps a closed and
bounded subset of R™ into a closed and bounded subset of R™; so the image
is compact, and A is a compact operator. In an infinite dimensional space
a continuous linear operator is not in general compact. For example, the
identity operator I on C(0,1) performs the simple mapping f(z) — f(x).
Therefore I maps the unit ball of C(0,1) into itself, but the unit ball of
C(0,1) is not precompact.

Theorem 4.140. Every compact linear operator is bounded (continuous).

Proof. Suppose A is not bounded. Then we can find a bounded sequence
{zn} in X such that ||Az,| — oo. As {Ax,} contains no convergent
subsequence, A is not compact. O

It is clear that the zero operator is compact. Let us present a nontrivial
example of a compact linear operator. Consider the operator A from C(0,1)
to C(0,1) given by

(Af)(t) = / Wt ) f(r) dr,

where the kernel function h(t,7) is continuous on the square [0, 1] x [0, 1].
Let By be the unit ball of C(0,1), and let S = A(B;). Because h is
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continuous there exists a > 0 such that |h(¢,7)| < @, and thus

< <
e I(Af)®)] < o max lf(t)] <«

whenever f(t) € By (i.e., whenever |f(¢)] <1 on [0,1]). We conclude that
S is uniformly bounded. S is also equicontinuous: we have

)

I(Af)(tz)(Af)(tl)IS/O |h(ta, 7) = bty T)[ | f(7)] dr

< max_|h(te, 7) — h(t1,7)]

7€[0,1]
for f(t) € By, and, given € > 0, the uniform continuity of h(¢, 7) guarantees
that we can find § such that |h(t1,7) — h(t1,7)| < € whenever [ta — t1| < &
and 7 € [0,1]. So by Arzeld’s theorem S is precompact, and we conclude
that A is a compact operator.

Let us consider a practically important class of compact linear operators.
An operator is called one dimensional if its image is a one dimensional
subspace. The general form of a continuous one dimensional linear operator
T is evidently

Tx = (F(x))yo

where F' is a continuous linear functional and yg is some fixed element of
the image. A one dimensional linear operator is compact. Indeed, the
functional F' maps the unit ball B with center at the origin into a bounded
numerical set F'(B), so it is precompact. Thus the set F(B)yo is precompact
in the space Y as well. A linear operator T, is called finite dimensional if
n
Thx = Z(Fk ()
k=1

where the Fj are linear functionals in X and the y; are some elements of
Y. If the F} are continuous then so is 7;,. Because each component of T,
is a compact linear operator, so is T,,; this is a consequence of the following
general theorem.

Theorem 4.141. If A1 and As are compact linear operators from X to Y,
then so is each operator of the form AAy + uAs where A\, o are scalars.

Proof. 1If {x,} is a bounded sequence in X, it has a subsequence {z,, }
for which {A;z,, } is a Cauchy sequence in Y. Because this subsequence is
itself bounded, it has a subsequence {z, } for which {Asxzy,} is a Cauchy
sequence. The image subsequences {412y, } and {Asx,,} are both Cauchy
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sequences then. Weighting by the scalars A and u does not affect whether
a sequence is a Cauchy sequence, and the sum of two Cauchy sequences is
a Cauchy sequence. Hence the operator AA; + pAs is compact. O

This theorem means that the set of compact linear operators from X to
Y is a linear subspace of L(X,Y).

Lemma 4.142. Let A and B be linear operators in X. If A is compact and
B is continuous, then the composition operators AB and BA are compact.

Proof. First consider the operator AB. If M is any bounded subset of X,
then B(M) is bounded. But the compact operator A maps bounded sets to
precompact sets, so AB(M) is precompact as required. Now consider the
operator BA. Let {z,} be a bounded sequence in X. Then {Ax,} has a
Cauchy subsequence {Azy,, }. But a bounded linear operator maps Cauchy
sequences into Cauchy sequences. So {BAz,,} is a Cauchy sequence, as
required. O

Theorem 4.143. If A € L(X,Y) is compact, then A maps weak Cauchy
sequences from X into strong Cauchy sequences in'Y .

Proof. Let {z,} be a weak Cauchy sequence in X. Then {z,} is bounded
and, since A is a compact operator, the sequence { Az, } contains a strong
Cauchy subsequence {Az,, }. This subsequence converges to some y € Y
since Y is a Banach space. It is easy to show that {Az,} is a weak Cauchy
sequence in Y; furthermore, because one of its subsequences converges
strongly to y, the whole sequence {Ax,,} converges weakly to y € Y.

We now show that {Ax,} converges strongly to y. Suppose to the
contrary that it does not. Then there is a subsequence {Az,,} and € > 0
such that

[Azn, —yl > (4.96)

for each ny. But from {Axz,,} we can select a subsequence {Ax,,} that
is a strongly Cauchy sequence in Y and thus has a limit y; € Y. This
subsequence converges weakly to the same element y;. By the paragraph
above it also converges weakly to y. But we must have y; = y by uniqueness
of the weak limit; hence Ax,, — y, and this contradicts (4.96). O

In a separable Hilbert space this result can be strengthened:
Theorem 4.144. A linear operator A acting in a separable Hilbert space

H is compact if and only if it takes every weak Cauchy sequence {x,} into
the strong Cauchy sequence {Axy} in H.



Functional Analysis 307

Proof. Suppose A maps each weak Cauchy sequence {z,} C H into a
strong Cauchy sequence {Az,} C H. To show that A is compact, we
take a bounded set M C H and show that A(M) is precompact. Take
a sequence {y,} C A(M) and consider its preimage {z,} C M (i.e., the
sequence for which Axz,, = y,,). Since {x,,} is bounded it has a weak Cauchy
subsequence {z,, }. By hypothesis { Az, } is a strong Cauchy sequence in
H, hence A(M) is precompact.

The converse was proved in Theorem 4.143. 0

Example 4.145. Show that if x, — x9, and A from X to Y is compact,
then Az, — Axg as n — oo.

Solution. If {x,} is weakly convergent then it is weakly Cauchy and by
Theorem 4.143 we have Az, — y for some y € Y. Since strong convergence
implies weak convergence we have Ax,, — y for some y € Y. On the other
hand A is compact, hence continuous, hence weakly continuous, so x,, — xg
implies Az, — Azg. Finally, y = Axg by uniqueness of the weak limit. [

Recall that L(X,Y) is a normed linear space under the operator norm
|-l If {A,} is a sequence of linear operators such that

lim ||A, — Al =0,
n—00

then {4, } is said to be uniformly convergent and the operator A is known
as the uniform operator limit of the sequence {4, }.

Theorem 4.146. A uniform operator limit of a sequence of compact linear
operators is a compact linear operator.

Proof. Let {A,} C L(X,Y) be a sequence of compact linear operators
and suppose |4, — A|| = 0 as n — oo. The approach is to take any
bounded sequence {z,} C X and show that we can select a subsequence
whose image under A is a Cauchy sequence in Y. By compactness of 41 we
can select from {z,} a subsequence {z,, } such that {A4;z,,} is a Cauchy
sequence. Similarly, by compactness of Az we can select from {z,,} a
subsequence {x,,} such that {Asx,, } is a Cauchy sequence. Continuing in
this way, after the kth step we have a subsequence {x,, } for which {Ayz,, }
is a Cauchy sequence. The diagonal sequence &, = z,, has the property
that {Ar&,} is a Cauchy sequence for each fixed k. Then for any m > 1 we
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have

| Adptm — A
= [(Aéntm — Akbntm) + (Ak€ntm — Akbn) + (Ar&n — A&
<A = Al Entmll + 1Akn+m — Axéall + | Ak — Al €]l
< 2b||A — Akl + [[Ak€ntm — Aréall

where ||§,]] < b for all n. Given € > 0 we can choose and fix p so that
[|IA — Ap|| < e/4b; then

| Alntm — Aul|l < /2 + HApgner - Apfn” )

and we can finish the proof by choosing N so large that the second term
on the right is less than £/2 for n > N and any m > 1. 0

Thus the set of all compact linear operators from X to Y is a closed
linear subspace of L(X,Y).

Above we introduced the set of finite dimensional linear operators; these,
being continuous, are compact. The importance of this class is given by
the following theorem, which states that this class is dense in the set of
compact linear operators in a Hilbert space.

Theorem 4.147. If A is a compact operator acting in a separable Hilbert
space, then there is a sequence of finite dimensional continuous linear op-
erators {An} having uniform operator limit A.

Proof. A Hilbert space H has an orthonormal basis {g,}, in terms of
which any f € H can be represented as

F=> (1, 91)9x-
k=1

Since A is a continuous operator we have

Af = "(f95) Agi.-

k=1
We define A,, by

n

Anf = (f,95) Agi

k=1
and show that

|A— Ay =o0. (4.97)

lim
n—oo
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By definition

[A=Anll = sup [[(A—An)fll
If1<1

First we show that there exists f such that
[fall <1 and [|A—An|| = [[(A—An) Sl (4.98)
By definition of the supremum there is a sequence {fx} such that

1Al <1 and  lim (A= Au)fil = 14— A

This bounded sequence in a separable Hilbert space has a weak Cauchy
subsequence { fx, }, and this subsequence converges weakly to an element f;*;
moreover, by the proof of Lemma 4.125 we have || f|| < 1. Because A— A,
is compact the sequence {(A — A,,) f, } converges strongly to (4 — Ay)f;:,
i.e., a subsequence of the convergent sequence {||(4 — Ay)fx||} converges
to the number ||(A — A4,)f%| as k& — oo. So the second relation in (4.98)
also holds. But

(A=A f; = A (Z(f:,gwgk) =S ) Age = A ( 3 <f:;,gk)gk>
k=1 k=1 k=n+1

so taking the norm of both sides we have, by (4.98),

o0

JA = Al = [Agall where wu= > (i 1) (4.99)
k=n+1

The sequence {,} C H converges weakly to zero. Indeed for any f € H
we can write

(on, f) = < > (Fr)ge Y (frgm gm>
m=1

k=n+1
- ( Z (f, g1) 9k, Z (f,gm)gm>
k=n+1 m=n-+1

= > (ngn)(Frgn),

k=n-+1
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hence

o 1/2 00 1/2
|(en, )l < < > |(f§2,gk)l2> ( > |(f,gk)|2>

k=n-+1 k=n-+1

oo 1/2
< < > I(f,gk)l2> If7 =0 asn— oo

k=n-+1

since || fx]] < 1and Yoo, |(f,g)* = | £]I” < oo by Parseval’s equality (i.c.,
the parenthetical quantity represents the tail of a convergent series). Since
pn — 0 and A is compact we have

lim ||4e,| = 0.
n—00
By (4.99) this proves (4.97). O

We will need the following simple theorem.

Theorem 4.148. If A is a compact linear operator acting in a Hilbert
space, then A* is compact.

Proof. We take a sequence {f,} such that f, — fo and show that
A* f, — A* fu. We have

|A* o — A" foll> = (A" fr — A" fo, A* o — A* fo)
= (fn — fo, AA™(fn — f0))
< lfn = foll IAA*(fn — fo)
< (Ifall + 11 foll) 1AA* (£ = fo)l -

But || fn|| < M for some constant M, and the product AA* is compact since
A* is continuous. Hence AA*(f,, — fo) — 0 as n — o0, and so

|A* fr — A" fol? = 0 asn — .
This completes the proof. ]

Sobolev’s imbedding theorem states that some imbedding operators
from a Sobolev space are compact. A simple illustration can serve to clarify
this idea. Let us consider the mapping under which a continuously differ-
entiable function f(z) (we show this as f(z) € C(1(0,1)) is regarded as
an element of the space C(0,1), the space of functions continuous on [0, 1].
Although this mapping is an operator, we cannot call it an identity opera-
tor since its domain and range are different spaces. Instead, we refer to it
as the imbedding operator from C'"(0,1) to C(0, 1).
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Theorem 4.149. The imbedding operator from C1(0,1) to C(0,1) is com-
pact.

Proof. We need to check that the image S of the unit ball of the domain is
a precompact set in C(0,1). By Arzeld’s theorem we need to show that the
set of functions S is uniformly bounded and equicontinuous. It is uniformly
bounded since a function of the unit ball of C()(0,1) satisfies |f(x)| <
1 and thus is inside the unit ball of C(0,1). The Lagrange mean value
theorem then states that for any z1 < x2 from [0, 1] where the function is
continuously differentiable there exists £ € [x1, 23] such that

fx) = f(21) = £'(§) (22 — a1).
Since |f/(€)] < 1 for any f € S, we have

|f(z2) = f21)| < |22 — 21].
This implies the equicontinuity of S. O

4.17 Closed Operators

We have considered the case of a continuous linear operator whose domain
is the whole space. However, the differentiation operator d/dz acting on
the space of functions continuous on [0, 1] does not have the entire space
C(0,1) as its domain, since there are continuous functions that are nowhere
differentiable on [0, 1]. But this operator, as we shall see below, has some
properties that are “better” than the properties of a general operator with
an arbitrary domain. We shall show that it resides in a class of operators
that is wider than the class of continuous operators, but such that there
remains the possibility for us to perform some limit passages with it. The
class is given by the following definition.

Definition 4.150. Let A be a linear operator mapping elements of a Ba-
nach space X into elements of a Banach space Y. We say that A is closed if
for any sequence {z,,} C D(A) such that z,, = x and Az, — y as n — oo,
it follows that x € D(A) and y = Ax.

It is evident that A is closed if A is continuous and D(A) = X. There
are, however, closed operators that are not continuous. An example is the
derivative operator A = d/dt acting from C(0,1) to C(0,1). The domain
of A is the subset of C(0, 1) consisting of those functions having continuous
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first derivatives on [0, 1]. To see that A is closed, we first assume that
xn(t) = x(t) asn — o0
in the norm of C(0, 1), where each z/,(¢) is continuous, and that
Az, (t) = 2}, (t) = y(t) asn — oo,

also in the norm of C'(0,1). Realizing that convergence in the max norm is
uniform convergence, we recall a theorem from ordinary calculus:

Theorem 4.151. If f,(t) is continuous for each n and f,(t) = f(t) uni-
formly on [0, 1], then
(1) f(t) is continuous on [0,1], and

(2) uniform convergence of the sequence {f,(t)} of derivatives that are con-
tinuous on [0,1] implies that f'(t) exists, is continuous on [0,1], and

that f(t) — f'(t).

By this theorem A = d/dx on C(0,1) meets the definition of a closed
operator. To see that A is not continuous, consider its action on the set of
functions {¢"}. This set is bounded with

[t"]| =1 for each n,

but its image under A is unbounded with
d
—x,(t
(0
So A does not map every bounded set into a bounded set.

If Q ¢ R™ is compact, then the more general differential operator A
given by

’ ]| = .

Af(x) = Y ca(x)Df(x), (4.100)

la|<n

with continuous coefficients c,(x) and acting from C(™(Q) to C(Q), is a
closed operator.

Definition 4.152. Let A be an operator from X to Y. Suppose that an
operator B, also from X to Y, satisfies the following two conditions:

(1) D(A) C D(B), and
(2) B(xz) = A(z) for all z € D(A).

Then B is an extension of A.
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Lemma 4.153. A linear operator A acting from a Banach space X to a
Banach space Y has a closed extension if and only if from the condition

(*) {zn} C D(A) is an arbitrary sequence such that z,, — 0 and Az, —y

it follows that y = 0.

Proof. Necessity follows from Definition 4.150. To prove sufficiency let
us explicitly construct a closed extension B of A.

We define B, then verify its properties. Let D(B) consist of those
elements z for which there exists {z,} C D(A) such that z, — =z and
Az, — y as n — oo; for each such z, define Bx = y. Condition (*) ensures
that y is uniquely defined by x. Indeed, suppose two sequences {z,} and
{zn} in D(A) both converge to x, and Az, — y while Az, — y’. Then

Ty — 2n — 0, A(xp — 2n) = Az — Az =y — 1/,

and from (*) it follows that y — 3y’ = 0.

To see that B is linear, we take two elements z, Z in D(B) and any two
scalars A, p. By definition of D(B) there are sequences {z,} and {Z,} in
D(A) such that

Ty — T, Axr, — v, Tn — T, AZp — 7,
and we define Bx =y, BT = . But Az + u& € D(B) because
ALy, + Uy, = Az + puZ, A(Ax, + uZn) = Mz, + Az, — Ay + ug,

and we therefore define B(Ax + uz) = Ay + pg = ABx + uB2Z.

Finally, let {u,} C D(B) be such that u,, — u and Bu,, = v. According
to Definition 4.150 we must prove that v € D(B) and Bu = v. Let us
construct a sequence {x,} C D(A) that is equivalent to {u,}, and then
verify the desired properties for {z,}. Fix wu,. By definition of B there
exists {wp} C D(A) such that wy,; — u, and Aw,, — Bu, as k — .
Hence there exists N such that for all kK > N we have both ||wp) — u,|| <
1/n and ||Awyy — Buy|| < 1/n. Choose one of the points wpyy, where
ko > N, and denote this point x,,. Now consider the sequence of points
{zn} € D(A). The inequalities ||z, — un| < 1/n and ||Az, — Bu,|| < 1/n
show that z,, — u and Ax,, — v as n — oo. By definition of B we have
u € D(B) and Bu = v. O

It sometimes happens that we can establish boundedness of an operator
directly on a subspace that is everywhere dense in the space. To establish
that it is continuous on the whole space, we may employ
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Theorem 4.154. Let A be a closed linear operator whose domain is a
Banach space X and whose range lies in a Banach space Y. Assume there
1s a set M which is dense in X and a positive constant ¢ such that

|Az|| < cllz| for all x € M.

Then A is continuous on the whole space X.

Proof. For any xg € X, we can find {z,} C M such that ||z, — zo| <
1/n for each n. The inequality

[ Ak pm — Awg|| < clleprm — zpl < c(l[@rtm — 2ol + ok — oll) < 2¢/k

shows that {Axzy} is a Cauchy sequence in Y. We have Az, — y for some
y € Y since Y is a Banach space; since A is closed, Axg = y. Now we can
write

[Azol| = lim [|Azg| < lim ¢zl = cllzof -
k—o0 k—o0

Since x( is an arbitrary element of X and ¢ does not depend on z(, the
proof is complete. O

Closed operators can be considered from another viewpoint. If X and
Y are Banach spaces over the same scalar field, then the Cartesian product
space X x Y with algebraic operations defined by

(mlayl) + ($25y2) = (1'1 +x2,y1 + y2)a CY((E,y) = (aaﬁ,ay),
and norm defined by
1, )l = (=5 + lyl5)">,

is also a Banach space.

Definition 4.155. Let A be an operator acting from D(A) C X to Y.
Then the set

G(A) ={(z,Az) e X xY: 2z € D(A)} (4.101)
is the graph of A.

Theorem 4.156. A linear operator A acting from D(A) C X toY is closed
if and only if G(A) is a closed linear subspace of X x Y.

Proof. Suppose A is a closed operator. Let (z,y) be a limit point of
G(A). Then there is a sequence {(x,,Az,)} C G(A) that converges to
(z,y) in the norm of X x Y. Evidently this implies that as n — oo we
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have z,, — z in X and Az, — y in Y. Because A is closed, € D(A) and
y = Az. Hence (z, Ax) € G(A) by definition of G(A).

Conversely, suppose G(A) is closed in X x Y. Let {z,} C D(A) be
such that, as n — oo, , — = in X and Az, — y in Y. The sequence
{(zn, Azy)} C G(A) converges in the norm of X x Y to (z,y). Since G(A)
is closed, (z,y) € G(A). By definition of G(A) this means that € D(A)
and y = Az. |

Theorem 4.157. If A is an invertible closed linear operator, then A™! is
also closed.

Proof. We can obtain G(A™!) from the graph of G(A) by the simple
rearrangement (x, Az) — (Ax,z). Hence G(A™!) isclosed in Y x X. O

We can now formulate Banach’s closed graph theorem.

Theorem 4.158. Let X and Y be Banach spaces. If A is a closed linear
operator having D(A) = X, then A is continuous on X.

See [32] for a proof. In applications the following simple consequence of
the theorem can establish continuity of an operator.

Corollary 4.159. Let X and Y be Banach spaces. If a closed linear op-
erator A from X to Y is one-to-one and onto, then A™! is continuous on
Y.

Proof. The operator A~! is closed by Theorem 4.157 and continuous by
Theorem 4.158. 0

4.18 On the Sobolev Imbedding Theorem

The most important result obtained by S.L. Sobolev is the imbedding the-
orem. It gives some properties of the elements of Sobolev spaces and, in
particular, relates them to continuously differentiable functions. An exam-
ple of an imbedding can be seen from the estimate

||f(x)||wl,q(sz) < Mgp Hf(X)HWL,p(Q) 3 q<p, (4.102)

which can be shown for any f € W'P() to hold with a constant mg, that
depends on ¢, p, and € only. Note that for ¢ < p we have

fx) e WP (Q) = f(x) e Wh(Q);
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hence the Sobolev space WP () is a subset of the Sobolev space Wh4(€):
whe(@Q) cwhi(Q), g <p.

But the estimate (4.102) gives us more than just this subset inclusion. We
met inclusions of this type when considering the LP(2) spaces. We called
them imbeddings. Now we provide a general definition of this term.

Definition 4.160. The operator of imbedding from X to Y is the one-to-
one correspondence between a space X and a subspace Y of a space Z
under which we identify elements x € X with elements y € Y in such a
way that the correspondence is linear. If, besides, the correspondence is
continuous so that

Iylly <m ] x

for some constant m that does not depend on x, then we call it the contin-
uous operator of imbedding. We sometimes employ the notation

X <Y,

to indicate the existence of an imbedding from X to Y.

Some words of explanation are in order here. The reader should note
that the formal definition of a continuous imbedding operator does not differ
from that of a continuous linear operator. However, the term “imbedding”
is reserved for situations in which we identify an element in X with its image
in Y, and thereby effectively consider the “same element” as a member of
two different spaces. (In this way an imbedding operator acts somewhat like
the identity operator that serves to map elements of a space into themselves;
the difference is that in the case of an identity operator the domain and
range must be the same space.) The degree to which one may take literally
the “identification” process between elements of X and their images in Y
depends on the specific type of imbedding under consideration. In some
instances the elements of X and Y are of the same basic nature (e.g., both
are ordinary functions); in other instances this is not the case (e.g., the
elements of Y may be functions while the elements of X are equivalence
classes of Cauchy sequences of functions). Note, however, that even when
the elements of Y and X are of the same nature, the norms associated
with the spaces Y and X may be very different. Finally, we remark that
there are imbedding operators that are compact and not merely continuous.
We shall state this when it applies, but shall relegate coverage of compact
operators to a later section of this chapter.
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Example 4.161. Show that ¢9 is continuously imbedded into ¢ if p > q.

Solution. The first step is to show that the norms [|-[|, and [|-[|, of the
spaces (P and (7 satisfy x|, < [|x||, whenever p > ¢ (Exercise 4.11). This
gives the subset inclusion /9 C /P whenever p > ¢, and also shows that
¢4 — (P with a constant m = 1 in the imbedding inequality. O

Remark 4.162. There is only a limited analogy between the sequence
space P and the Lebesgue space LP(Q) for a bounded domain 2. In the
latter space an application of Holder’s inequality gives

oot < ([1rae) " ([ reopaa)” = mmesoyia g,
/ ([rra) ( wooran)

but a similar application in ¢ would give

S o < (i 1q> " <i |zk|p>1/p — oo+,

k=1 k=1 k=1

Put simply, when we consider LP(€2) with bounded €, the “bad points” are
those where some function f becomes infinite. Larger values of p make such
behavior worse because |f(x)[? > |f(x)|? for p > ¢. On the other hand, a
sequence x € (P has terms xj, that satisfy |zx| < 1 for sufficiently large k.
In this case |xk|P < |x|? for p > g, so larger values of p aid in convergence.
This is why for p > ¢ we have LP(Q) — L%() (again, for bounded ) but
09— (P, O

Returning to Sobolev spaces, we see that the space W'P(Q) is continu-
ously imbedded into the space W%4(Q) when ¢ < p, and we write

Wh(Q) = WH(Q), g <p.

We are also interested in continuous imbeddings from Sobolev spaces into
the spaces of continuously differentiable functions. To obtain a relevant

example of an imbedding theorem let us consider the simple Sobolev space
W11(0,1), the norm of which is

IIJ“’(:C)IIl,l:/O (If @) + 1f'(@)]) dz. (4.103)

So W11(0,1) is the completion with respect to the norm (4.103) of the set
of all functions that are continuously differentiable on [0,1]. Let f(x) be
continuously differentiable on [0,1]. Then for any z,y € [0, 1] we have

@)~ 1) = | oy
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and so

i<+ | [ o <l o

Integrating this in y over [0, 1] we get
[ueras [swias [ [

mmu?|</Lf|@+/|f|ﬁ—Wﬂmu (4.104)

z€[0,1]

or

Now let F(z) be an equivalence class from W11(0,1). A representative of
F(z) is a Cauchy sequence { f,, ()} of continuously differentiable functions,
and we have

max | frpm(x) = fr(@)] <[ frpm(@) = fal@)ll 1

z€[0,1]

it follows that { f,(z)} is a Cauchy sequence in C(0, 1) as well, and thus has
a limit that is continuous on [0,1]. From (4.104) it also follows that this
limiting function does not depend on the choice of representative sequence
of the element of W1(0, 1). Hence we have a correspondence that is clearly
linear, under which to an element F(z) € W11(0,1) there corresponds a
unique element f(z) € C(0,1) such that

If @)l e,y < IEF@ ;-
We identify this limit element with F', and call F' by the name of this
limit element. (We can really regard F' as this element f if f is continu-

ously differentiable on [0, 1] so there is a stationary representative sequence
(f,f,f,...) from F.) In short, we have

wh1(0,1) = C(0,1). (4.105)

Similar results for WP(§), where € is a compact subset of R™, are called
Sobolev imbedding theorems. We shall state one such theorem next. We
assume that €2 satisfies the cone condition: there is a finite circular cone in
R™ that can touch any point of 92 with its vertex while lying fully inside
Q (i.e., translations and rotations of the cone are allowed, but not changes
in cone angle or height).

Theorem 4.163. Let €2, be an r-dimensional piecewise smooth hypersur-
face in Q. The imbedding

WmP(Q) < LIQ,)
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is continuous if one of the following conditions holds:
(Z) n>mp,r>n-—mp, qur/(n—mp),
(i) n = mp, q is finite with ¢ > 1.
It is compact if
(i) n>mp, r>n—mp, ¢ <pr/(n—mp) or
(i) n=mp and q is finite with ¢ > 1.
If n < mp then
WmP(Q) = C*(Q)
for integers k such that k < (mp — n)/p, and the imbedding is continuous.
It is compact if k < (mp —n)/p.

Although this theorem is appealing because of its generality, we shall
employ only special cases involving W12(Q2) and W22(Q2). The following
applies to equilibrium problems for membranes and two-dimensional elastic
bodies:

Theorem 4.164. Let v be a piecewise differentiable curve in a compact
set Q C R2. For any finite ¢ > 1, there are compact (hence continuous)
imbeddings

Wh2(Q) < LI(Q),  Wh(Q) < L(y).
For use with problems of equilibrium of plates and shells, we have

Theorem 4.165. Let Q be a compact subset of R2. Then there is a con-
tinuous imbedding

W22(Q) — C(Q).
For the first derivatives, the imbedding operators to LI(2) and Li(vy) are
compact for any finite g > 1.

The next result is used for problems of equilibrium of three-dimensional
elastic bodies and dynamic problems for membranes and two-dimensional
elastic bodies.

Theorem 4.166. Let v be a piecewise smooth surface in a compact set

Q C R3. The imbeddings
Wh2(Q) = LI(Q), 1<¢<6,
WH(Q) = LP(y),  1<p<4,

2



320 Advanced Engineering Analysis

are continuous. They are compact if 1 < q <6 or 1 <p <4, respectively.

4.19 Some Energy Spaces in Mechanics

One may use various norms to distinguish between different states of me-
chanical objects. To characterize force magnitudes, for example, norms
of the type (4.6) are appropriate. If the field is continuous, (4.4) is ap-
propriate. The same can be said for fields of displacements, strains, and
stresses. However, there is one important characteristic of a body: its en-
ergy due to deformation. It is sensible to try to use this quantity when
we characterize the state of a body. We would like to consider this possi-
bility in more detail. The most convenient fact is that the energy spaces
we shall introduce are subspaces of Sobolev spaces, and thus we can use
Sobolev’s imbedding theorem to characterize the parameters of correspond-
ing boundary value problems. Of course, it is possible to use Sobolev spaces
directly for this, but energy spaces have many advantages. First, they can
be closely customized to the nature of the problem, permitting a better use
of mechanical intuition. Second, the energy norms and corresponding inner
products permit a proper and direct use of such fundamental properties as
mutual orthogonality of eigensolutions; these properties form the basis for
solution by Fourier’s technique.

Rod under tension

We begin with a simple problem that could be solved by direct integra-
tion. It describes the equilibrium of a rod stretched by a distributed load
(Fig.4.1). The double strain energy of a rod of length [ is

— /s s

NONCN NN\

»
T >
X

o
~

Fig. 4.1 Rod under distributed longitudinal load f(x) and a point force F.
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l
28 (u) = /O ES(x)u” (z) da

where the constant F is Young’s modulus, S(z) is the area of the cross-
section with 0 < Sy < S(z) < S1, and wu(z) is the displacement of the
cross-section of the rod at point x in the longitudinal direction. Suppose
the end at z = 0 is fixed:

u(0) = 0. (4.106)

The strain energy generates a functional in two variables that can be con-
sidered as an energy inner product:

!
(u,v)R:/O ES(z)u (z)v' (z) dx. (4.107)

The inner product has a clear mechanical meaning: it is the work of in-
ternal forces corresponding to the state of the rod u(x) on the admissible
displacement field v(x). (Recall that the terms “admissible” and “virtual”
are synonymous.) Considering (4.107) on the set Cg. of all continuously
differentiable functions on [0, I] satisfying (4.106), the reader can verify that
it really is an inner product. (Here the subscript pattern “R¢” reminds us
we are dealing with a clamped rod: a rod fixed in space. Later, “Rf” will
denote a free rod.) Let us demonstrate that on Cg. the energy norm

! 1/2
ull g = (u,u)f* = </0 ES(x)u*(x) dz)

induced by (4.107) is equivalent to the norm of the Sobolev space W2(0, 1),

which is
1/2
[ully o = </Ol {“2(55) + Ua(ﬂﬁ)} dx) .

We must show that there are positive constants m, M such that for any
u(z) € Cre we have

mfullp < llully 5 < M ullg -

The left-hand inequality is a consequence of

l
(@)% = / ES(2)u () de

< ES /Ol (uQ(:c) + u'z(:c)) dx
= ES: |u(@)|l? .
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To prove the right-hand inequality we begin with the identity

Squaring and then integrating over [0,1] we get

/Ol u?(z) dr = /Ol (/0z u'(t) dt)2dm.

Applying the Holder inequality we have

/OZUQ(:c)d:c/Ol (/Oml.u’(t)dt)de
g/ol (/0Z12dt/ozu’2(t)dt) d

l
ng/ u'"(z) dz, (4.108)
0

from which the needed fact follows immediately.

Applying the completion procedure in the set Cr. with respect to the
norms |[|-||p and ||-[|; 5, we get spaces that contain the same elements and
have equivalent norms, so they are considered as the same space. Let us
denote this energy space by Er. and use the Sobolev imbedding theorem.
Now

(1) Ege is a subspace W12(0,1),
(2) W12(0,1) is continuously imbedded into W*1(0,1), and
(3) each element of W1(0,1) corresponds to a continuous function.
That is,
Wt2(0,1) — Wh(0,1) — C(0,1).

Hence to each element of £g. there corresponds a continuous function.
Clearly all these continuous functions satisfy (4.106). We shall identify
them with the corresponding elements of £r., and in this sense say that
the elements of £, are continuous functions.

Free rod

In the same manner we can consider the energy space for a rod having
both ends free of geometrical restriction. Since longitudinal motions are
unrestricted by boundary conditions, when we try to use the energy inner
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product (4.107), we find that there are nontrivial displacements for which
the induced energy norm is zero. One such state of the rod is u(z) = ¢. To
show that there are no other states with zero strain energy, we derive an
inequality to use in place of (4.108). We take the identity

xT
u(w) =uly) + [ (o)
y
integrate with respect to y over [0,1] to get

lu(x)/Olu(y)dwa/Ol/:u’(t)dtdy,

then take the absolute value of both sides and estimate the right side as in

§4.5:
! U ! 1
lu(z)| = ‘/0 u(y)dy—i—/o / u'(t) dt dy /0 u(y) dy +l/0 |u/(t)] dt.
(4.109)

Let Cry be the set of functions u(x) that are continuously differentiable on
[0,] and satisfy

<

/0 u(y) dy = 0. (4.110)

Note that by subtracting the right constant ¢ from a given function u(z),
corresponding to a free motion of the rod through the distance ¢, we can
make the new displacement field satisfy (4.110). From (4.109) we have

three consequences:
1
/ u(x) dx
0

/ (o) dr <
/Ol u(z) dx

I max |u(x)| <
! , !
l/o |u(z)|* de < 2 ‘/0 u(t) dt

z€(0,!]
(cf., Exercise 4.62). From (4.111) it follows that the right side can serve
as an equivalent norm in the space W11(0,7). Result (4.112) states that
on the subspace of W11(0,1) that is the completion of Cry with respect

l
+l/0 |u(z)| dx, (4.111)

l
+l/0 [u(z)] dex, (4.112)

and

2
l
+l3/ ()| dy b . (4.113)
0
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to the norm of W11(0,1), we get the continuous imbedding of its elements
into C(0,1) and, moreover, the corresponding continuous functions satisfy
(4.110). Finally, (4.113) implies that the completion of C'ry with respect to
the energy norm ||-|| 5 is a subspace of W*2(0,1), whose norm is equivalent
to ||||z- This is one way of using the energy norm to circumvent the
difficulty with free motions.

Another way is to introduce a factor space of continuously differentiable
functions with respect to all constant functions. This means we declare
that the union of all the constant functions is the zero element of the new
space. Between this factor set and Cry there is a one-to-one correspondence
preserving the energy distances between corresponding elements. So com-
pletion in both cases gives the same result from the standpoint of isometry,
and hence the two approaches are equivalent.

Cantilever beam
The equilibrium of a flexible elastic beam (Fig. 4.2) is governed by
(ELy"(x))" = f(x), =e€]0,], (4.114)

where F, I are given characteristics of the beam, y = y(x) is the transverse
displacement, and f = f(x) is the transverse load. If E and I are piecewise

F
l 60
8 / \
/| >
Y X
/
\ l wix)

Fig. 4.2 Beam under load f(z) and a point force F' acting at the end.

continuous functions of x, then it is natural to assume that
O0<c<FEIL c1, (4.115)
where ¢y and c¢; are constants. We consider a cantilever beam for which

y(0) =0=1y(0). (4.116)



Functional Analysis 325

So its left end is clamped and its right end is free from geometrical restric-
tions. In dimensionless variables, the strain energy is

1 l
Ep = 5/ EIy"(z)dz. (4.117)
0

On the subset Cp of those C(?)(0,1) functions satisfying (4.116), the energy
expression suggests the metric

. 1/2
d(y,z) = (/0 EIy(z) — 2"(2)] dw) (4.118)

(the reader should verify that all three metric axioms hold). This metric is
induced by the energy norm

. 1/2
lylls = (/ Ely"(x) d:c) : (4.119)
0

which is in turn induced by the energy inner product

!
(y,2)B = /0 EIy"(z)2" (z) dx. (4.120)

Completing Cp with respect to the norm |-|| 5, we obtain a Hilbert space
denoted £p.. By (4.115), the norm on £p. is equivalent to the auxiliary
norm

1/2

l
lyl, = ( / y" (2) dw> (4.121)

which we will use to study the properties of y € Ep.. First let us mention
that if y € C then ¢y € Cr. and y’ must satisfy (4.108):

l l
/ Yy (z)dx < 12/ y”z(:z:) dx.
0 0

l l
/ y*(x) dx < 12/ y/2(:17) dx,
0 0

and thus for any smooth representer of the space £g. we have

In addition we have

l l l l
/ y*(z) dx Jr/ ylz(:z:) dzx < c/ y”2(:c) dzr < CQ/ EI y"z(:z:) dx.
0 0 0

0
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Therefore on £p. the energy norm is equivalent to the norm

Iyl = / | V@) + v @) + (@) da

of the Sobolev space W%2(0,1). This means that on Ep. we can use
Sobolev’s imbedding theorem for W22(0,1). Each element of £p, is thereby
identified with a continuously differentiable function; in other words, g,
imbeds continuously into C1)(0,1).

Free beam

In the absence of geometric constraints on the ends of the beam, the same
functional ||y||; satisfies all the norm axioms except one: the equation
llyll 5 = 0 has a nonzero solution of the form y = a + bz where a and b are
constants. Mechanically, this function is a rigid-body displacement of the
beam. Recalling what we did with (4.108), we can use (4.113) to show that
any function from C()(0,1) satisfies

z/ol Y () de < 2 </Ol Y (2) dz>2 + 21 /Ol y"?(x) da
l/ol y*(x) dr < 2 </Oly(x)dx>2 +213/0ly'2(x)dx.

and

Hence

l
+ /0 y"*(x) dm] : (4.122)

which means that the expression

! 2 ! 2 !
lyll, = ( / y(w)dw> +< / y'(w)dx> + / EIy"(x) dx
(4.123)

is a norm equivalent to the norm of W?22(0,1). To construct the energy
space Epy for a free beam, we can use this fact in two ways, as was done

1/2
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for a stretched rod. First we can take a base set Cp¢ consisting of smooth
functions y for which

l !
/0 y(z)de =0= /0 y'(x) da. (4.124)

Indeed, to any smooth function y = y(x) there corresponds a unique func-
tion satisfying (4.124), obtained by proper choice of the constants a and b
in the expression y(z) — a — bx. This does not alter the stress distribution
in the beam; it merely fixes the beam in space. Then (4.123) implies that
on the set of functions from C?)(0,1) satisfying (4.124) the norm ||y| 5 is
equivalent to the norm of W22(0,1), and thus after completion we can use
the Sobolev imbedding theorem for W?22(0,1). Any representative sequence
of gy has a continuous function as its limit; moreover, the sequence of first
derivatives also converges to a continuous function. For the limit functions,
(4.124) holds as well.

Alternatively we can employ a factor space, declaring that the zero
element of the energy space is the set of all linear polynomials that are
infinitesimal rigid motions of the beam, a + bz. In this case among all the
representers of an element there is only one that satisfies (4.124), and thus
we get an isometric one-to-one correspondence between the elements of the
two versions of the energy space and can carry interpretations of results for
one version over to the other.

Remark 4.167. In order to construct the energy space for an elastic beam
subjected to normal and longitudinal loads, we can consider pairs of dis-
placements (u,w) and combine the energy functionals, norms, and inner
products for a rod and a beam. O

Membrane with clamped edge

The equilibrium of a clamped membrane (Fig.4.3) occupying a domain
Q) C R? is described by the equations

alAu=—f, U =0,
which together make up the Dirichlet problem for Laplace’s equation. Here

u = u(x,y) is the transverse displacement of the membrane and f = f(x,y)
is the external load. The parameter a relates to the tension in the mem-
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brane. The potential energy of the membrane is

5 LGy G e

By a proper choice of dimensionless variables in what follows, we will put
a = 1. A metric corresponding to this energy on the set of functions u(z, y)
from C1)(Q) that satisfy the boundary condition

u(:z:,y)‘(9Q =0 (4.125)

wr={ L[5+ (-5 o]

The resulting metric space is appropriate as a starting point for investigat-

is

ing the corresponding boundary value problem.

S (xy)

x@@)

Fig. 4.3 Membrane clamped along the edge.

The subset Cyz. of CV(Q) consisting of all functions satisfying (4.125)
with the metric (4.126) is an incomplete metric space. If we define an inner

product
Oudv  Oudv
(w,0)ar = // (8178:17 8y8)ddy

consistent with (4.126) we get an inner product space. Its completion in
the metric (4.126) is the energy space for the clamped membrane, denoted
Enre. This is a real Hilbert space.

What can we say about the elements of £y/.7 It is obvious that the
sequences of first derivatives {Ou,/0x}, {Ou,/0y}, of a representative se-
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quence {u,} are Cauchy sequences in the norm on L?(Q): i.e., if

2 9 1/2
(i, u // O _ Qun \" | (Om _ Qun \"|
mo tn) = Q Ox Ox Ay Ay Y

— 0 asm,n — oo,

(] (e ) )|

—0 asm,n — o0,

then
ou,, Oup,

ox Ox

L2(Q)

and similarly for {Ju,/dy}. It takes more work to say something about
{un} itself; we need the Friedrichs inequality.

The Friedrichs inequality states that if a continuously differentiable
function v = u(x,y) has compact support in 2, then there is a constant
C > 0, depending on 2 only, such that

//Q lu|? dQ < C//Q|Vu|2dQ. (4.127)

To prove this it is convenient to first suppose € is the square |z| < a,
ly| < a. Since

u(eg) = u(-a,)+ [ ) %@”ds

and u(—a,y) = 0, we have
/ Bu ou(é,y)

// |u(z,y) |2 dQ) = / /
Then

Jhpeoran=[ [ 1] a“iy)
<[P
SRR
foref ]
- [ [

dw dy.

dx dy

d€ dz dy

5U(€, y)|?
0/3

3u§y‘

d€ dx dy

d€ dy

dg dy,
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hence

// |u|2dQ§4a2/ /
Q —aJ—a

By the same reasoning, an analogous inequality holds with du/dy on the
right side. Adding these two inequalities we obtain
) 0

ou
ul2d < C / —
//sz' | Q(ax

where C' = 242, If Q is not square, we can enclose it in a square { and
extend the function u onto the set 2 by setting u = 0 on Q — ) to obtain
a new function u; in this case

~ 2
/ |u|2dQ<C//<au )dQ
Q Q

follows. (Note that the extension @ may have a discontinuous derivative on

2
Lﬁ(m, y) dz dy = 4a’
x

2 ou
dy

2 on
dy

0%); however, the presence of such a discontinuity does not invalidate any of
the steps above when 0f2 is sufficiently smooth.) The constant C' depends
only on a, hence only on 2 (which dictates the choice of a).

Above we observed that if {u,} is a representative of an element of £y,
then {Ju,,/dx} and {Ou,/0y} are Cauchy sequences in the norm of L?(Q).
The Friedrichs inequality applied to u = u,(z,y) shows that {u,} is also
a Cauchy sequence in the norm of L2(£2). Hence to each U(z,y) € Enre
having a representative sequence {u,, }, there correspond elements in L?({2)
having {u,}, {Oun/0z} and {Ou,/0y} as representatives. We denote these
elements of L?(Q) by U(z,y), OU(x,y)/dz, and dU (z,y)/dy, respectively.
The elements U /dx and OU /Dy are assigned interpretations as generalized
derivatives of the element U later on. However, we need a result for the
elements of the completed energy space. Passage to the limit in (4.127)

[l mase [[|(G) + (5)

for any U € &y, and a constant C' independent of U.

Inequality (4.128) also means that in Eys. the energy norm is equiva-
lent to the norm of W2(Q), and thus for the space . there holds an
imbedding result in the form of Theorem 4.164.

gives

dx dy (4.128)
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Free membrane

In the absence of geometrical constraints, a membrane is subject to uniform
“rigid-body” displacements. These differ from the motions of an actual rigid
body because the membrane model reflects only certain features of the real
object that we regard as a membrane. To characterize the state of a free
membrane, we choose the energy functional and hence the metric (4.126)
or, equivalently, the norm

lullag = {//g [(%) i (%)

This is not a norm on the function space C’(l)(Q), where (2 is compact, as
the equation ||u,, = 0 has a nonzero solution u = ¢ = constant. Physi-

/2
dQ} . (4.129)

cally, we cannot distinguish between two membrane states differing only in
position by the constant c. This constant displacement is the only type of
rigid motion permitted by the membrane model under consideration. Our
method of circumventing the existence of rigid motions is similar to that
used above for free rods and beams. It is based on Poincaré’s inequality.
This extends inequality (4.113) to a two-dimensional domain (in fact, to
any compact n-dimensional domain with piecewise smooth boundary):

[l e (ffmm) 1 |(3) - (5)

with a constant C' that does not depend on u. Although the proof for
a rectangular domain is similar to that for (4.113), it is lengthy — even
more so for a general compact domain with piecewise smooth boundary.
The interested reader can refer to [6]. Inequality (4.130) implies that on
functions from C™M(Q) satisfying

//Q w(z,y) dQ = 0 (4.131)

the energy norm ||ul|,, is equivalent to the norm of W*?(2). Thus, defining
the energy space £75 as the completion of functions from C W () satisfying
(4.131) with respect to the norm (4.129), we get a subspace of W12(2) and
can use the Sobolev imbedding theorem for the elements of this energy

dQ} , (4.130)

space. Alternatively, we can collect all the constants into a single element
and declare this as the zero element of the energy space. In this case the
energy space is a factor space of W12(Q) with respect to the set of all the
constant functions on 2. Since there is one-to-one isometry between these
two versions of the energy space, we can use either of them in what follows.
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Elastic body

The internal energy of an elastic body occupying a three-dimensional
bounded connected volume V' is given by

3
1 g
5/ Z c”klekleij dVv
1%

ijkl=1
where c/* are the components of the tensor of elastic moduli and e;; are the
components of the tensor of small strains. From now on we shall omit the
summation symbol when we meet a repeated index in an expression; this
is called Einstein’s rule for repeated indices. The components of the strain
tensor relate to the components of the displacement vector u = (uy, ug, us)
given in Cartesian coordinates according to

eij = eij(u) = 5 (uij +uj),

where the indices after a comma mean differentiation with respect to the
corresponding coordinates:

6’&1'

8wj '

Uiy =

We suppose that the elastic moduli have the usual properties of symmetry
established in the theory of elasticity, and in addition possess the property
providing positiveness of the functional of inner energy:
Cijklekleij > COEmnCmn

for any symmetric tensor with components e,,,. Here ¢y is a positive con-
stant.

By symmetry of the ¢
bilinear functional as a candidate for an inner product:

(u,v)p = ///V cMegi(w)ey;(v) dv.

Linearity in u and v is evident, as is the symmetry property

ikl we can introduce the following symmetric

(u,v)g = (v,u)g.

It remains to check the first inner product axiom. By the properties of the
elastic moduli we get

(w,u)p = ///V cMepg(u)es; () dV > 0.
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If (u,u) g = 0 and the components of u are continuously differentiable, then
ei;(u) = 0 for all ¢, 5. The theory of elasticity states that this u describes
an infinitesimal rigid-body motion:

u=a+bxr,

where a and b are constant vectors. If some part of the boundary of the
body is fixed, then this provides that u = 0. The needed demonstration is
complete.

We consider the case in which the entire boundary is clamped:

uf,, = 0. (4.132)

As a base space we take the set Cg, of all vector functions satisfying (4.132)
whose components belong to C'?) (V). Denote by Eg. the energy space of
an elastic body with clamped boundary: i.e., the completion of Cg. with
respect to the induced norm ||ul| ; = (u, u)}E/ ?. We will study the properties
of this Hilbert space.

Theorem 4.168. The space Ep. is a subspace of the space of three-
dimensional vector functions, each Cartesian component of which belongs
to WH2(Q) (the latter space we shall denote by (WH2(Q))3).

The proof is based on the Korn inequality, which in this case can be
written as

///V (Ju(x)]* + [Vu(x)[?) aV < m///v eij(u(x))eij(u(x))dv. (4.133)

We will prove (4.133) for the two-dimensional case in which the functions
possess all second continuous derivatives on a compact domain .S and vanish
on the boundary 0S. The space variables are x,y. The proof is shorter than
that for the three-dimensional case, but contains all the necessary ideas. We
rewrite (4.133) for the two-dimensional case in a modified form:

// (u2+v2+ui+u§+vi+v§)dxdy
S

1
< m//s (ui + Q(Uy +v,)? + ’Ui) dx dy. (4.134)
Here u, v are the components of vector function u that vanish on 95:
ulos =0,  vlas =0, (4.135)

and subscripts z, y mean partial derivatives with respect to the correspond-
ing variables. Note the difference between the terms with derivatives of the
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norm of (WLQ(S))2 and the right side of (4.134): the latter does not con-
tain the squared derivatives u, and v, but their sum.

Let us prove (4.134). By Friedrichs’ inequality it suffices to show that
there is a constant m; > 0 such that

1
//S (Ui+§(uy+vm)2+7)§) d;z:dyzml//s(ui—i—ui—i—vfc—i—vg)dxdy.

(4.136)
Let us transform the intermediate term in the left side of (4.136):

//S(uy +v,) dr dy = //S (up + 2uyv, +v3) de dy
= // (ui + 2ugvy + vi) dzx dy,
s

where we integrated by parts with regard for (4.132), so we have

1
// (ui+ —(uy+vx)2+v§> dx dy
1 1
u + u +2vw+v + ugvy | dx dy
// Uy, —i—lu + v +U 1(u2+v2) dx dy
2" 2V Y
25//S(u§+uj+v§+vj)dzdy.

This completes the proof of the Korn inequality.

We recommend that the reader tackle the proof for a three-dimensional
body. We will not prove Korn’s inequality for a body with free boundary
(i.e., when there are no boundary conditions for vector functions); the proof
is technically much more complex and reader is referred to specialized books
[20; 7]. We note that the form of this inequality is the same if we impose
the two conditions

JJ| wooav =0 [[[ xxucgav =0

on each element of the space. These are four scalar conditions in the two-
dimensional case and six conditions in the three-dimensional case, which
coincides with the number of degrees of freedom of a rigid body.
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F(x,y)

Fig. 4.4 A portion of a plate under a distributed load F(z,y). The plate is clamped
along AB.

Plate

The equilibrium of a linear plate (Fig.4.4) is described by

DA*w=F
where w = w(z,y) is the transverse displacement of the midsurface of
the plate, D is the plate rigidity, p is Poisson’s ratio, 0 < u < 1/2, and
F = F(x,y) is a transverse load. The elastic energy of the plate referred
to a compact domain 2 in R? is

D
b //Q (wm (Wag + pwyy) +2(1 — M)wiy + wyy (wyy + me)) df2

where subscripts 2 and y denote partial derivatives 9/0x and 9/0dy, respec-
tively. Using dimensionless variables, for the role of a norm we will try the
functional ||-|| , where

2
HU’HP = //Q (wmc (wm + .Uwyy) + 2(1 - M)wiy + wyy (wyy + .wax) ) ds.
(4.137)
The associated inner product is

(u,v)p = //Q (Uea (Voo + poyy) + 2(1 = p)tlayVay + tyy (Vyy + H022)) d€2.

Elementary calculations show that in C?(Q) the equation |Jw||, = 0 has
solutions only of the form w = a4+ bx + cy with constants a, b, c. If the edge
of the plate is hard-clamped, i.e.,

0

-2 (4.138)
o0 on

w

)
o0

then |lw| » is a norm on the set Cp of functions in C®(Q) that satisfy
(4.138). We will show that the completion Ep. of Cp with respect to |||/
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is a subspace of W22(Q) (in fact, this is still the case if the plate is fixed
only at three non-collinear points).
On Cp, the energy norm is equivalent to the norm

1/2
||wH2,2 = (//Q (w?ﬁm + 2w926y + wiy) dQ)

and so in the discussion we can use this norm. Next, if w € Cp then w,
and w, are continuously differentiable on €2, and (4.138) implies that on the
boundary w, = 0 = w,. Thus we can apply Friedrichs’ inequality, getting

//w dQ<c//w +w dQ
//w dQ<c//w er dQ.
Q Q

Combining this with Friedrichs’ inequality for w we obtain

//(w2+w§+w§)dﬂgcl// w +2w er )dQ
Q

<o // (wmc (wxx + ,uwyy) + 2(1 - ﬂ)wiy + wyy (wyy + ,LLU)II)) dsd.
Q

and

Together with a trivial inequality
// (wm (Waz + pwyy) +2(1 — M)wiy + wyy (wyy + /me)) d
Q
< 03// (w2+w§+w§+wim+2w§y+w§y)d9
Q

this proves that on Cp the energy norm is equivalent to the norm of
W?22(Q)). Hence Ep., which is the completion of Cp with respect to the
energy norm (4.137), is a subspace of W*2(Q). When dealing with £p,, we
can use Sobolev’s imbedding theorem for the elements of W?22((Q).

In the absence of geometrical constraints, rigid motions of the form
w = a + bx + cy are possible. To handle this we appeal to Poincaré’s
inequality for w, and wy,

flmse ([ f w20
e (L)' [ et )

and
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Together with Poincaré’s inequality for w these give
// (w2+wi+w§) dQ)
Q
2 2 2
< cs <//wdﬂ> +<//wxdﬂ> +<//wydﬂ>
Q Q Q
+ //Q (w?m + 2wgy + wiy) dQ}

<cot (ffw) s ([fmam) s ([fmem)

+ //Q (wm (Wag + pwyy) +2(1 — M)wiy + wyy (Wyy + uwm)) dﬂ} .

Any given function from C®)(Q) can be adjusted by subtracting a term
a + bx + cy to make

//wszO, // w, dQ) =0, // wy, dQY =0, (4.139)
Q Q Q

and for such functions we get the inequality

// (wQ—l—wi—i—w;) dQ
Q
Q

Hence the completion Ep; of the set of functions from C(?)(Q) satisfying
(4.139), with respect to the energy norm ||-||p, is a closed subspace of
W22(£2) whose norm is equivalent to ||-|| . Note that Epy is a Hilbert space.
Alternatively, Epf could be constructed as the factor space of W22(Q) with
respect to the set of all linear polynomials a + bz + cy. These two versions
of Epy are in one-to-one isometric correspondence, permitting the use of
Sobolev’s imbedding theorem for W?2:2(£2) in either case.

4.20 Introduction to Spectral Concepts

The equation
Ax = Ax (4.140)

plays an important role in the theory of an n x n matrix A. Any number A
that satisfies (4.140) for some nonzero vector x is an eigenvalue of A, and
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x is a corresponding eigenvector. Another form for (4.140) is, of course,
(A=X)x=0

where I is the n x n identity matrix. This equation is related to an inhomo-
geneous equation that corresponds to most mechanical problems involving
periodic forced oscillations of finitely many oscillators:

(A—A)x =b. (4.141)

If A is not an eigenvalue of A, this equation is solvable for any b. The
eigenvalues of A correspond to the frequencies of external forces that put
the system into the resonance state when the amplitude of vibrations grows
without bound.

But relations such as (4.141) also occur outside matrix theory. Equa-
tions of the form

(A= M)z =b, (4.142)

where A is a more general operator, arise naturally in continuum physics.
Usually we get an equation of this form when studying the oscillations of
a medium. Then A is a differential or integral operator acting on the set
of admissible functions that represent distributions of displacement, strain,
stress, heat, etc. This operator is linear. By properly defining the set of
admissible functions x and loading terms b (note that b may represent actual
mechanical loads in some problems, but may represent sources, say of heat,
in other problems) we get an operator equation. If b = 0 we then have the
problem of finding nontrivial solutions to the homogeneous equation. These
are called eigensolutions. The terminology of matrix theory is retained
in this case. These eigensolutions, as for a finite system of oscillators,
represent eigen-oscillations of elastic bodies or fields. Even when they do
not represent oscillations of the system, they still participate in the Fourier
method of separation of variables to solve the problem and, in any case,
provide an understanding of how the system functions. Note that unlike
the situation for a matrix equation, where we seek solutions in the space
R™ for which all norms are equivalent, the choice of admissible sets for
continuum problems creates a new situation: with a proper choice of the
solution space, we can gain or lose eigensolutions. A physical understanding
of the corresponding processes may indicate which spaces are “correct.”
The simple relation between the existence of solution for an inhomoge-
neous matrix equation and A being or not being an eigenvalue may fail for
continuum problems. There are situations in which A is not an eigenvalue
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of the corresponding operator equation, so there are no eigenvectors of the
operator A, but there is no solution to (4.142) that depends continuously on
changes in b. The collection of “trouble spots” for A in the complex plane
(including the eigenvalues) is known as the spectrum of the operator A. We
give a formal definition of this concept next, as well as a classification of
the points of the spectrum.

Definition 4.169. Let A be a linear operator having domain and range in
a complex normed space X . For a complex parameter \, denote by Ay the
operator

Ay=A—- )\ (4.143)

where [ is the identity operator on X. The resolvent set of A is the set
p(A) of all A € C for which the range of Ay is dense in X and for which
Ay has a bounded inverse. For any A € p(A), we call A}' the resolvent of
A at A and write

R\ A) =(A—- )1 (4.144)
The complement of p(A) in C is the spectrum of A, denoted o(A).

Any value A € p(A) is known as a regular value of A. Any A € o(A) is a
spectral value of A. The spectrum of any operator A is naturally partitioned
into three disjoint subsets:

(1) P,(A), the point spectrum of A, is the set of all spectral values for which
the resolvent R(\; A) does not exist. Its elements are the eigenvalues
of A.

(2) Cy(A), the continuous spectrum of A, is the set of all spectral values
for which R(\; A) exists on a dense subset of X but is not a bounded
operator.

(3) Ry(A), the residual spectrum of A, is the set of all spectral values for
which R(A; A) exists but with a domain that is not dense in X.

So
o(A) = P,(A)UC,(A)UR,(A) (4.145)

(we shall see that some of the sets on the right may be empty). The use
of the term “eigenvalue” for an element A € P,(A) may be justified as
follows. We have A € P,(A) if and only if the linear operator A — AI is not
one-to-one, which is true if and only if its null space does not consist only
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of the zero vector. In other words, we can have A € P,(A) if and only if
the equation

(A= Xz =0 (4.146)

has a nontrivial solution x. Such an element z would be, of course, an
eigenvector of A corresponding to the eigenvalue .

Example 4.170. Let X = ¢!, and let A from X to X be given by

Ax = <§—1§—2§—3 >
273"

for x = (51,52,53, . ) S 61. Find PJ(A)

Solution. We have

amste= (1) 5o (o)

A — A is not one-to-one if and only if A is such that % — A = 0 for some
k=1,2,3,.... Hence P,( {1,2,3,...}. O

Example 4.171. Show that if A is a bounded linear operator and A is an
eigenvalue of A, then |\ < ||A]].

Solution. For some nonzero vector v we have Av = Av, hence |A|||v| =
[ Av[| < [|A[}{|v]]- O

For a bounded operator we can display an important part of the resol-
vent set immediately.

Theorem 4.172. Let A be a bounded linear operator on a Banach space X .
All the A € C such that ||A|| < |A| are points of the resolvent set of operator
A, that is (A — XI)~! is a bounded linear operator on X. Moreover, there
holds

(A— )"t = ,\ZM : (4.147)

The series on the right is called the Neumann series for A.

Proof. Thus A is a bounded linear operator on a Banach space X. Let
us take a value A € C and consider solving

Az — Az =y (4.148)
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for x € X when y € X is given. We rewrite this as

1 1
x = nyqL XASC,

define the right member as the mapping F(r) = —A~ly+ A"t Ax, and check
whether F' can be a contraction. We have

1F (21) = F(x2)| = [\ [[Azy — Awo|| < ATV A] g — 2],

hence F is a contraction whenever |[A| > ||A]|. If this condition holds we
can use the iteration scheme

1 1 )
Tjy1 = —quL XAIJ', 7=0,1,2,...

to solve (4.148). Starting with g = —y/\, we may generate a sequence of
iterates:
1
To = _Xy
1 1 1 1
= ——y+-Axg=—~y— A
Z1 /\y+>\ Zo S ViR
1 1 1 1 1
= — Y+ —Ar = —cy— Ay — —A?
T2 T+ AT = =3y - 334y - 5 Ay
11
I
v )\;O)\k 4

These iterates converge to the unique solution
1« Ly
PO
k=0
So the operator given by the absolutely convergent series
I 1,
-5 2 A
k=0

is the inverse of the operator A — AI. We can also check this statement
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explicitly. To see that it is a right inverse, we write

(A=) (-%%%Aﬂ = (1— %A) <1+;%Ak>

Verification that it is a left inverse is similar. O
By this theorem the set
{AeCu Al > [|All}

does not contain any points of the spectrum of A, which is another solution
of Example 4.171.

Certain kinds of operators have simple and convenient spectral proper-
ties. We will need the following results.

Lemma 4.173. Let A be a self-adjoint continuous linear operator A acting
in a Hilbert space H. Then

(i) the functional (Ax,x) is real valued;
(ii) the eigenvalues of A are real;

(ii3) if x1,x2 are two eigenvectors corresponding to distinct eigenvalues
A1, A2, then (21,22) =0 and (Azy,22) = 0.

Proof. To prove item (i) we merely write

(Az,z) = (z, Ax) = (Ax, x).
If Az = Az then (Az,z) = (=, x), hence A is real. This proves (ii). Now
suppose Ar; = A\z1 and Axs = Aaxo where Ay # A;. Forming inner

products with x5 and x1 respectively, we obtain
A1(z1, 22) = (Azy, 22), A2 (1, 22) = (21, Az2) = (Az1,22);

subtracting these we find (A2 — A1)(21,22) = 0, hence (x1,22) = 0. Re-
turning to A1 (z1,z2) = (Awx1,z2), we have (Azq,22) = 0. This proves
(ii). O
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4.21 The Fredholm Theory in Hilbert Spaces

It is common to seek solutions x of the following algebraic problem in R™:
Ax — Ax = b, (4.149)

where A is an n X n matrix. When b = 0, this is an eigenvalue problem
for the matrix A. It is well known that if A is not an eigenvalue of A,
then (4.149) is solvable for any b. There are no more than n eigenvalues
of A. If X is an eigenvalue of A, then (4.149) is solvable only for some set
of values b that are orthogonal to all the eigenvectors of the conjugate-
transpose matrix A* that correspond to A, an eigenvalue of A*. So to an
eigenvalue \g of A there corresponds an eigenvalue \g of A*; moreover, the
dimensions of the subspaces of the corresponding eigenvectors of A and A*
are the same. Furthermore, the situation for the solvability of the dual
equation

A*x — Mx =b*

is symmetric to the problem involving the operator A.
This was extended by Ivar Fredholm to the theory of certain integral
equations, now known as Fredholm equations of the second kind:

Dau(x) - /Q K(x,y)uly) d2y = f(x).

If the operator is compact, this equation inherits nearly all the qualitative
features of (4.149) except the number of possible eigenvalues: it may be
countable, but the only possible accumulation point is zero. Fredholm’s
theory was later extended to Banach spaces [25; 26].

We present a particular case of this theory in a Hilbert space H, which
will suffice to treat the eigenfrequency problems for bounded elastic objects
like membranes, plates, shells, or elastic bodies. We recall that the Fred-
holm integral operator is compact in L2. Thus we consider the following
equation in H:

Axr — dx = b,

with given b € H. We suppose A is a compact linear operator in H. Let
us exhibit the required notation. A* is the adjoint to A, satisfying

(Az,y) = (z,A%y).
Correspondingly we introduce the equation

A*x — \x = b".
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We denote by N(X) the subspace of H spanned by the eigenvectors of A
corresponding to a given eigenvalue A\. With the exception of the zero
element, each member of this subspace is an eigenvector of A. Indeed any
finite linear combination of x1, ...,z € N(\) also belongs to N(\):

i=1 i=1 i=1 i=1

Note that N () contains all the eigenvectors corresponding to A, along with
the zero element of H.> We denote by M()) the orthogonal complement
of N(\) in H. The corresponding sets for A* are denoted by N*(\) and
M*(X). Let us state the facts of the Fredholm-Riesz—Schauder theory as

Theorem 4.174. Let A be a compact linear operator in a Hilbert space H.
Then

(1) the spectrum of A consists only of eigenvalues, and thus the remaining
points of the complex plane are all regular points of A;

(2) to any nonzero eigenvalue X of A there corresponds a finite number of
linearly independent eigenvectors (i.e., N(X) is finite dimensional);

(8) the only possible point of accumulation of the eigenvalues of A in the
complex plane is zero;

(4) if X is an eigenvalue of A then X is an eigenvalue of A* and vice versa,
and the equation

Ax —dx =0

is solvable if and only if b is orthogonal to the set N*(\);
(5) the dimensions of N()\) and N*(\) are equal;
(6) A* is a compact linear operator, and thus

(6a) its spectrum consists only of eigenvalues with zero as the only pos-
sible point of accumulation of the eigenvalues;

(6b) to each eigenvalue there corresponds a space of eigenvectors N*(\)
that is finite dimensional;

(6¢) the equation
A*z — Az =b"

is solvable if and only if b* is orthogonal to the subspace N ().

5An alternative definition of N()) is as the null space of the operator A — I, i.e., as
the set of all z € H that satisfy (A — AI)z = 0.
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The proof will be formulated as a collection of lemmas. We begin with
statement (2).

Lemma 4.175. If A is any nonzero eigenvalue of A, then N(X) is a closed,
finite dimensional subspace of H.

Proof. To see that N(A) is closed we use the continuity of A. Let z.
be a limit point of N(\). There is a sequence {z,} C N(X) such that
Ty, — x4 in H. For each n we have Ax,, = Ax,, and passage to the limit
as n — oo gives Az, = Ax,. Hence z, € N(\). We next show that N(\)
is finite dimensional. We recall Theorem 4.52 which states that any closed
and bounded set is compact only in a finite dimensional Hilbert space. So
let S be an arbitrary closed and bounded subset of N(\), and choose any
sequence {z}} C S. By compactness of A and the equality z; = A1 Axy,
we see that {x;} has a Cauchy subsequence. Hence S is precompact. But
S is also a closed subset of a complete space H, hence it contains the limits
of its Cauchy sequences. We conclude that S is compact, as desired. 0

Remark 4.176. Here we do not consider the eigenvalue A = 0, as it corre-
sponds to the infinite eigenfrequency of a body. Its properties differ from
those of the other eigenvalues. Take, for example, a one dimensional oper-
ator A of the form Ax = F(x)xg where x is fixed and F(z) is a continuous
linear functional. Then by the equation Az = Az, the eigenvalues cor-
responding to A = 0 are those elements z that satisfy F(x)zg = 0. By
Theorem 4.100 we can express F(z) = (z, f) for some fixed f € H, hence
any vector x that is orthogonal to f belongs to N(0). A stronger example
is afforded when A is the zero operator, which is of course compact. In this
case the equation Ax = Az becomes Ax = 0, and with A = 0 this holds for
any ¢ € H. In this case N(0) = H. So A = 0 was by necessity excluded
from statement (2). In statement (3) we see that A = 0 is the only possible
accumulation point for the set of all eigenvalues. 0

Statement (3) will be proved as Lemma 4.178. In preparation for this
we establish some notation along with an auxiliary result. Let Aq,..., A\g
be eigenvalues of A. We denote by

N+ +N(\)

the space spanned by the union of the eigenvectors that generate the in-
dividual eigenspaces N(A1),..., N(Ax). Use of the notation for direct sum
is justified by the next result which shows, in particular, that eigenspaces
corresponding to distinct eigenvalues can intersect only in the zero vector.
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Lemma 4.177. Assume S; = {:Cl ,x;), . ,xSfl)} 18 a linearly independent

system of elements in N(\;) for each i =1,..., k. Then the union U¥_,S;
is linearly independent. If S; is a basis of N(\;) for each i, then UF_,S; is
a basis of N(A\1)+ - +N(\g).

Proof. The proof is by induction. We want to show that under the hy-
pothesis of the lemma U%_, S; is linearly independent in N (\1)+ - -+ +N(\)

for each positive integer k. For k = 1 the statement holds trivially. Suppose
it holds for k = n. Let us take the eigenvalue-eigenvector pairings

Misal), p=1,...,n, i=1,...,n,

and renumber everything so that these same pairings are denoted as
(Aj,z;), 7 =1,...,7r. By assumption then,

kA
Zajszozajzoforjzl,...,r. (4.150)
j=1
We must show that the statement holds for k = n+ 1. Appending S,,4+1 to
U, S;, we assume that

> ey =0 (4.151)

and attempt to draw a conclusion regarding the ¢; (here s is new notation
for the number of elements in S,,11). An application of A to both sides
allows us to write

r+s

ch)\ z; =0

and upon subtraction from the previous equation we obtain

r+s r
ch(l_ )\j ),Tj:ZCj(l— )\j ),Tj:O.

n+1

=1 >\n+1 j=1 >\n+1
We have ¢; =0 for j =1,...,r by (4.150). Substitution into (4.151) gives
r+s
Z CiTj = 0;
j=r+1

but the eigenvectors participating in this sum are all associated with A, 11
and are linearly independent by assumption. Hence c; = 0 for j = r +
1,...,r+s.
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The second statement of the lemma follows from the fact that the di-
mension of the direct sum N(A;)+---+N(\g) is less than or equal to the
sum of the dimensions of the constituent eigenspaces N(\;). Since we do
have ni + - - - + ny linearly independent vectors in the direct sum, we have
found a basis. ]

Lemma 4.178. The only possible point of accumulation of the eigenvalues
of A in the complex plane is A = 0.

Proof. Suppose Ag is a limit point of the set of eigenvalues of A, and
[Ao| > 0. There is a sequence {A,} of distinct eigenvalues of A such that
An — Xg. For each A\, take an eigenvector x,, and denote by H, the
subspace spanned by {z1,...,2,}. Thus H,, C H,41 for each n. Let y; =
21/ ||z1||. Successively, we can construct another sequence {y,}, n > 1, as
follows. By Lemma 4.177 we have H,, # H,+1, so for each n there exists
Yn+1 € Hpt1 such that ||yn41]] = 1 and y,41 is orthogonal to H,,. Indeed,
we use the orthogonal decomposition theorem to decompose H,,;; into H,,
and another nonempty subspace orthogonal to H,,, from which we choose
a normalized element. Now consider the sequence {y,/A,}; because it is
bounded in H, its image {A(yn/An)} contains a Cauchy subsequence. We
begin to seek a contradiction to this last statement by writing

A (i:i:) - A (?;_Z) = Yn+m — (yn-i-m - Anim Ayn-i-m + /\_17114971)
(4.152)
for m > 1. On the right the first term y, ., belongs to H, 1 ,; the second
(parenthetical) term belongs to H,im,—1 because we can write ypim =

ZZIT ¢z, and have

1 n+m 1 n+m
Yn+m — mAyner = Z CpTp — \ A Z CrTk

k=1 ntm k=1
n+m—1 /\k
= E ce [ 1— \ Tk € Hypm—1
k=1 n+m

along with the fact that /\;1Ayn € H, C Hyyym—1. As the two terms on
the right side of (4.152) are orthogonal, the Pythagorean theorem yields

Yn+m Yn
A — Al =

2
T +]

2

2
>1

)

1 1
Yn+m — Ayn+m + _Ayn
>\n+m An
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for any n and m > 1. Therefore {A(y,/\,)} cannot contain a Cauchy
subsequence. (|

Let us proceed to

Lemma 4.179. Let \ be fizred. There are positive constants mi1 and mo
such that

ma 2]l < [ Az — Xl < ms ] (4.153)
for all x € M()).
Proof. We have

[Az — Azl < [|Az|| + M| < (JA] + [AD ]

thus establishing the inequality on the right. Suppose the inequality on the
left is false. Then there is a sequence {z,,} C M () such that ||z, | =1 and
|[Azy, — Azy|| — 0 as n — co. Because A is compact, { Az, } has a Cauchy
subsequence. By the equality

Ao, = Az, — (Axy — Axy,)

{z,} also has a Cauchy subsequence which we again denote as {z,}. By
completeness of M (X) we have z,, — xo for some zg € M (A). Continuity
of A gives Ax,, — Axo, and from

0= ILm |Azy — Azy || = ||Azo — Azo|

we get Azg = Azg. This means that 2o € N(\). Thus we have ||zo|| = 1,
xo € N(A), and o € M()\); this is impossible since the spaces N(A) and
M () intersect only in the zero element. O

Lemma 4.179 shows that on M (\) we can impose a norm
2]y = [[Az — Az]|

which is equivalent to the norm of H. The associated inner product is given
by

(z,9)1 = (Az — Az, Ay — My).
Similarly, on M*(A) the norm ||A*z — Az|| is equivalent to the norm of H.

Lemma 4.180. The equation
Az — Az =1b (4.154)
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is solvable if and only if b is orthogonal to each vector in N*(X); equiva-
lently,

R(A —\I) = M*(\). (4.155)
Similarly, the equation
A*x — = b* (4.156)

is solvable if and only if b* is orthogonal to each vector in N(\); equiva-
lently,

R(A* — \I) = M()\). (4.157)

Proof. Suppose (4.154) is solvable with solution zo. If y € N*()) is
arbitrary, then

(b,y) = (Ao — Azo,y) = (x0, A"y — Ay) = (0,0) = 0.

Conversely, suppose b € M*()\). The functional (z,b) is linear and contin-

uous on H (and so on M*(\)), hence by Theorem 4.100 can be represented

on M*(X) using (-,-); as
(z,b) = (,b); = (A*z — Az, A*b — \b)
for some b € M*()). This equality, being valid for 2 € M*()), holds for all

x € H too; indeed bearing x = x1 + 22, 1 € N*(\), 2 € M*()), we have
A*x — dx = A*xq — A1 + A¥zo — Mg = A* e — A2y
and so, for all z € H,
(A*z — Az, A*b — \b) = (A*zo — Axg, A*D — Ab) = (22,b)1 = (22,b) = (z,b)
since (z1,b) = 0. Denoting A*b — Ab by g we have
(A*x — Az, g) = (z, Ag — \g) = (x,b) for all x € H,

hence Ag — Ag = b and g satisfies (4.154). The rest of the lemma is proved
analogously. O

By this lemma we have partially addressed part (4) of Theorem 4.174.

Lemma 4.181. If N, is the null space of (A — A\I)", then

(i) N, is a finite dimensional subspace of H;
(1)) Np C Npyq foralln=1,2,...;
(iii) there exists k such that N,, = Ny, for all n > k.
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Proof.
(i) Writing (A — A)"z =0 as
(AT —nA"tA 4.z =0,
the sum of the terms beginning with the second is a compact operator
(—B) so denoting A™ = v we get an eigenvalue problem (B —~I)z =0
with compact B and so N, is finite dimensional.
(ii) If (A — AI)"x = 0, then (A — XI)"*lz = 0.
(iii) First we show that if N1 = Nj for some k then Nyi,, = N for
m = 1,2,3,.... Consider the case m = 2. By part (ii) we know that
Nj; C Ni4o. Conversely
20 € Njpo = 0= (A= X225 = (A — AD*((A — M)xo)
— (A — /\I):C() € Ni+1 = Ny
— (A= XD)flzy =0
— X € Nk—i—l = Nk,
S0 Niyo € Ni. Hence Niyo = Ni. Now we have N1 = Ni4o, and
so by the previous argument we get Niy1 = N3, hence Nii3 = Ny,
and so on.
Now suppose there is no k such that Ny = Niyi1. Then there is a
sequence {z,} such that x, € N,, ||z,]| = 1, and z,, is orthogonal

to N,—1. Since A is compact the sequence {Axz,} must contain a
convergent subsequence. But

Ay — Axp = MNopgm + (A%ngm — ANpgem — Axy)

where on the right the first term belongs to Ny, and the second
(parenthetical) term belongs to Ny4m—1. (To see the latter note that
Ax,, € N,, since

(A= A" Az, = A(A— A"z, =0,

and (A — A" Y Azyim — Mopym) = (A = X)) ™2, = 0.) By
orthogonality of these two terms we have

| AZpgm — Aanz = H/\szrmHz + [[AZnim — Apgm — Aan2 > AP

Since A # 0 we have a contradiction. 0

Lemma 4.182. We have R(A — A\I) = H if and only if N(\) = {0}.
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Proof. Let R(A— M) = H and suppose N(\) # {0}. Take a nonzero
2o € N(\). Since R(A — M) = H we can solve successively the equations
in the following infinite system:

(A=XDz1=x0; (A—A)za=x1; - (A= ADTpy1 = Tp;
The sequence of solutions {z,} has the property that
(A= XD)"xp =20 #0 but (A= M)""x, = (A~ \)xo = 0.

In the terminology of Lemma 4.181, these imply that x,, ¢ N, but z,, €
Ny41. So there is no finite k& such that Nii1 = Ng, and this contradicts
part (iii) of Lemma 4.181.

Conversely let N(A\) = {0}. Then M (\) = H hence by (4.157) we have

R(A* — X\I) = H. By the proof of the converse given above, N*()\) = {0}

and thus M*(\) = H. The proof is completed by reference to (4.155). O

We can now establish part (1) of Theorem 4.174:

Lemma 4.183. The spectrum of a compact linear operator A consists only
of eigenvalues.

Proof. Suppose )\ is not an eigenvalue of A. Then N()) contains only
the zero vector, hence M (\) = H and (4.153) applies for all x € H. This
means, in conjunction with Theorem 4.78, that the operator (A — )~ is
bounded on the range of A — AI, which is H by Lemma 4.182. Hence \ is
a regular point of the spectrum of A. O

We continue to part (4) of Theorem 4.174:
Lemma 4.184. If X is an eigenvalue of A, then X is an eigenvalue of A*.

Proof. Suppose \ is an eigenvalue of A but \ is not an eigenvalue of A*.
Then N*(\) = {0} and thus M*(\) = H. By equation (4.155) we have
R(A — M) = H hence N(A\) = {0} by Lemma 4.182. This is impossible

since an eigenvalue must correspond to at least one eigenvector. O

Finally, part (5) of Theorem 4.174 is established as

Lemma 4.185. The spaces N(\) and N*(X\) have the same dimension.

Proof. Let the dimensions of N(A) and N*(\) be n and m, respectively,
and suppose that n < m. Choose orthonormal bases {x1,...,x,} and
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{y1,--,Ym} of N(X\) and N*()\), respectively. Let us define an auxiliary
operator ) by

Qr=(A— )z Zz:z:kyk_cfk])z,

where C' is a compact linear operator as the sum of the compact operator
A and a finite dimensional operator.

First we show that the null space of () cannot contain nonzero elements.
Indeed if Qxp = 0 then

(A= M)z + Z(xo,xk)yk =0.
k=1

Because R(A— M) = M*(\) and M*()\) is orthogonal to N*()), the terms
(A= X)zg € M*(X) and > ,_, (z0, 2k )yx € N*(A) must separately equal
zero; furthermore, since {y; } is a basis we have (zg,2;) =0fork=1,...,n.
From (A — M)xo = 0 it follows that zo € N()); because zg is orthogonal
to all basis elements of N(\), we have 2y = 0.

By Lemma 4.182 we have R(Q) = H and thus the equation Qz = Y41
has a solution zg. But

1= (ynJrla ynJrl)
= (yn+1,Q$o)
= (Yn+1, (A = M)xo) + <yn+17 Z(Io, ’Ik)yk>

=1
= ((A* = M)yn41, 7o)
= 0,

a contradiction. Hence n > m. But A is adjoint to A* and by the proof
above we have m > n, so m = n. O

The proof of Theorem 4.174 is now complete.

4.22 Exercises

4.1 Show that a set in a metric space is closed if and only if it contains the limits
of all its convergent sequences. That is, S is closed in X if and only if for any
sequence {z,} C S such that z, — z in X, we have z € S.

4.2 Show that the following sets are closed in any metric space X: (a) any closed
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ball, (b) the empty set @, (¢) X itself, (d) the intersection of any number of closed
sets, (e) the union of any finite number of closed sets.

4.3 Suppose a complete metric space X contains a sequence of closed balls
{B(%n,rn)}nz1 such that B(xni1,7n+1) C B(xn,rn) for each n, and such that
the radii 7, — 0. Show that there is a unique point z € X such that x €
ﬂiozl B(:Cm Tn)'

4.4 Verify that if U is a closed linear subspace of a normed space X, then X/U
is a normed linear space under the norm ||-[|;; given by

llz+ U”X/U = ngfj z+ullx -

Prove that if U is a closed subspace of a Banach space X, then X/U is also a
Banach space.

4.5 Let M be a closed subspace of a separable normed space X. Show that X/M
is separable.

4.6 Show that on X x Y the norm

(@ 9)lly = =l x + [lylly

is equivalent to the norm (4.22). When X and Y are Hilbert spaces, the norm in
question defines an inner product on X x Y.

4.7 Let A be a continuous linear operator from X to Y, where X and Y are
Banach spaces. Let M be a closed subspace of X that lies within the kernel of A
(i.e., if £ € M then Az = 0). Show that A induces an operator from X/M to Y
that is also continuous.

4.8 Prove that a bounded set in a normed space is precompact if and only if it
is finite dimensional,

4.9 Let A be a compact linear operator acting in a Banach space X, and let M
be a closed subspace of X that lies within the kernel of A. Demonstrate that A
induces a compact linear operator from X/M to X.

4.10 Prove that in the space ¢ the norm of the space c¢ is not equivalent to the
norm of % for 1 < p < co.

4.11 (a) Show that £* is not finite dimensional. (b) The space £>° of uniformly
bounded sequences is the set of all x having ||x||,, < co where

%[l oc = sup |z
k>1

Show that we may regard ||-|| , as a limiting case of [|-||, as p — oc. (c) Show that
if p < g, then |[x[|, < |Ix||, for x € £7. Note that this constitutes an imbedding

theorem. (d) Show that £ C ¢7 C 7 C £°° whenever ¢ > p > 1. (e¢) Extend this
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string of inclusions to £ C P C ¢4 Cco Cec Ce>® for 1 <p<q. (f) Prove that
for any p € [1, 0], the normed space ¢? is a Banach space. (g) Show that the
spaces ¢F, 1 < p < oo, are separable. (h) Show that ¢°° is not separable. (i) Show
that co is separable.

4.12 The distance function d(z,y) = |z* — 3®| is imposed on the set of all real
numbers R to form a metric space. Verify the metric axioms for d(z,y). Show
that the resulting space is complete.

4.13 Show that if A is a bounded linear operator then || Al is given by the
following alternative expressions:

Al = sup [|Az| = sup .
llell=1 Jzllzo |zl

Note that we also have

[All = sup [[Az|| = sup [|Az].
el <1 el <1

4.14 For each energy space studied in this chapter, write out (a) the parallelo-
gram equality, and (b) the expression for the orthogonality of two elements.

4.15 Prove that a system of vectors in a Hilbert space is linearly independent if
and only if its Gram determinant does not vanish.

4.16 Show that convergence ||A, — A|| — 0 in operator norm, that is in L(X,Y")
where X is normed and Y is a Banach space, implies uniform convergence A,x —
Az on any bounded subset S C D(A).

4.17 Asin R", an operator acting in a space of infinite dimensional vectors can
be represented by a matrix A, but one having infinitely many elements (A;;)7—;.
Find the conditions for continuity of the operator acting in (a) the space ¢, and
(b) the space ¢P.

4.18 Let {gn} be an orthonormal sequence in a Hilbert space H, and let {c,} €
¢%. Show that the series Zf:’zo cngn converges in H.

4.19 Derive the differentiation formula
d _(du(t) do(t)
Stun.o0) = (248 00) + (uo, 412).

4.20 Show that if {z,} converges weakly to z in a Hilbert space H, then

|lz|| < liminf ||z.|| .
n— o0

4.21 An operator A from a normed space V to a normed space W is densely
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defined if D(A) is dense in V. Assume W is a Banach space, and show that if
A is bounded, linear, and densely defined, then A has a unique bounded linear
extension to V. Also show that ||Ac|| = ||A|| where A. is the extension of A.

4.22 Show that in a finite dimensional space weak convergence implies strong
convergence.

4.23 Suppose A and its inverse are both bounded linear operators defined on a
normed space X. The condition number of A is defined by cond(4) = || A [|A™*].
(a) Show that cond(A) > 1. (b) Consider the operator equation Az = y. Given
y, let £ be an approximate solution; denote the “error” by ¢ = x — & and the
“discrepancy” by r = y — AZ. Show that

L 7l

llell [l
0 < 4— < cond(A) 1.
cond(A) [lyll ~ =] lyll

4.24 Let T from X to X be a compact operator on an infinite dimensional
normed space X. Show that if 7" has an inverse defined on all of X, then this
inverse cannot be bounded.

4.25 (a) Show that every metric space isometry is continuous and one-to-one.
(b) Prove that a linear operator A: X — Y between normed spaces is an isometry
if and only if || Az|| = ||z|| for all z € X. (Notes: (1) We have ||A|| = 1if X # {0}.
(2) If A is also an isomorphism between the linear spaces X and Y, then A is
called an isometric isomorphism.)

4.26 Let {gr} be an orthonormal system in a Hilbert space H. Show that if
Parseval’s equality

o1 gl = IIf17
k=1
holds for all f € H, then {g} is a basis of H.
4.27 Show that the operator d/dz is bounded from C')(—c0, 00) to C'(—o0, c0).

4.28 Show that the set of all functions f(z) bounded on [0, 1] and equipped with
the norm

If(@)[| = sup [f(z)]

z€[0,1]
is not separable.

4.29 Show that if X is a normed space and Y is a Banach space then L(X,Y)
is a Banach space.

4.30 Assume that X and Y are Banach spaces, A € L(X,Y) is continuously
invertible, and B € L(X,Y) is such that ||B|| < ||[A™*||"'. Then A + B has an
inverse (A + B)™!' € L(Y, X) and

[(A+B) M <A™~ =Bl
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4.31 Verify the condition stated for equality to hold in (4.49).

4.32 Show that the functional HxH2 — Fz in a real normed space X is bounded
from below if F' is a linear continuous functional in X.

4.33 A subset S of a normed space X is said to be open if its complement X \ S
is a closed set. (a) Show that S is open if and only if every point of S is the center
of an open ball contained entirely within S. Hence this statement is an equivalent
definition of an open set. (b) Show that any open ball is an open set. (c¢) Show
that an operator f: X — Y is continuous if and only if the inverse image of every
open set in Y is open in X.

4.34 Give an example of a function that is discontinuous everywhere on its
domain of definition.

4.35 Show that under the condition

11 1/2
(/ / |k(s,t)]? dsdt) < 00
o Jo

the Fredholm integral operator A defined by

Au:/0 k(s,t)u(t) dt

is a continuous operator on L?(0,1).

4.36 Calculate the norm of the forward shift operator S on 2, defined by

Sx = S(z1,2z2,23,...) = (0,21, 22, .. .).
4.37 Consider the operator

(Agrz)(t):/O 2% (s) ds

acting in C(0,1). Find a closed ball, centered at the origin, on which A is a
contraction.

4.38 Consider the subspace S of ¢*° that consists of all sequences x = (&)
having at most finite numbers of nonzero components. Show that S is not a
Banach space.

4.39 Let A be a bounded linear operator on a Banach space X. Show that if
|A]] < 1 then
1

A-DY < ——.
Il( )l < T4
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4.40 Show that if X and Y are Banach spaces, then so is the product space
X x Y under the norm ||(z,y)|| = max{||z| ., |ylly}-

4.41 Show that if , — = then y, = ST — .

n

4.42 We have observed that equivalent norms have the same convergence prop-
erties. Prove the converse of this statement.

4.43 Show that if {z,} is a Cauchy sequence in a normed space, then the se-
quence of norms {||z,||} converges. (Note that this implies that every Cauchy
sequence is bounded.)

4.44 Show that if a metric space X has a dense subspace that is separable, then
X is also separable.

4.45 Show that a normed space is complete if and only if every absolutely con-
vergent series converges to an element of the space.

4.46 The operator A given by Ax = (27 1,27 222,27 %23, - -+ ) acts in £2. Show
that A is compact.

4.47 Show that the number A = 0 belongs to the residual spectrum of the
forward-shift operator Ax = A(z1,%2,...) = (0,21, 22,...) defined on £2.

4.48 A sequence of infinite dimensional vectors {x} is defined as follows:

xg=(1,...,1,0,0,...), k=1,23,....
——

first k
positions

Show that {x;} is not weakly convergent in £

4.49 Prove that the sequence {sin kx} is weakly convergent to zero in L?(0, ).
Then show that it contains no weakly convergent subsequence (and therefore is
not weakly compact) in W*2(0, 7).

4.50 Use the Holder inequality to place a bound on the norm of the imbedding
operator from LP(Q) into LI(Q2), p > g. Assume € is a compact domain in R"™.

4.51 Show that if A is a compact linear operator acting in a Hilbert space H,
and {z,} is an orthonormal sequence in H, then Az, — 0 as n — oo.

4.52 Let Q be a compact set in R™. Show that the imbedding C™(Q) < C(Q)
is continuous and compact for n > 1.

4.53 Suppose a and b are finite. Let P, be the space consisting of all polynomials
on [a,b] having order up to n, supplied with the norm of C(a,b). Describe the
space that results when we apply the completion theorem to P,.

4.54 Show that weak convergence is equivalent to strong convergence in a finite
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dimensional Hilbert space.

4.55 Use the orthogonal decomposition theorem to show that a closed subspace
of a Hilbert space is weakly closed.

4.56 Let a sequence {z,} in a Hilbert space have the following property: any
subsequence of {z,} contains a sub-subsequence that converges to zo (the same
zo for any subsequence). Prove that whole sequence {z,} converges to zo.

4.57 Let a sequence {z,} in a Hilbert space have the following property: any
subsequence of {z,} contains a sub-subsequence that converges weakly to zo (the
same zg for any subsequence). Prove that the whole sequence {z,} converges
weakly to xo.

4.58 Let S and T be subsets of a metric space. Show that (a) if S is closed and
T is open, then S\ T is closed, and (b) if S is open and T is closed, then S\ T
is open.

4.59 Show that if a system is complete in a set S that is dense in a Hilbert space
H, then it is complete in H.

4.60 A function f satisfies a Lipschitz condition with constant L if it satisfies
the inequality |f(x) — f(y)| < L|x —y|. Let S be a uniformly bounded collection
of functions given on a compact set 2 C R™ and satisfying a Lipschitz condition
on Q with the same constant L. Show that S is precompact in C'(£2).

4.61 Let A be a closed linear operator from a normed space X to a normed
space Y. Show that A maps compact sets into closed sets.

4.62 Derive inequality (4.113).

4.63 A beam is hinged at the point x = 0. Mechanically this means that the
beam can rotate about its end at z = 0. Using the expression for the norm related
to the free beam (4.123), write out the corresponding energy norm related to the
equilibrium problem for this restricted beam.



Chapter 5

Applications of Functional Analysis in
Mechanics

In Chapter 1 we studied the calculus of variations. As a rule each variational
problem was assumed to have a solution. But Perron’s paradox (page 17)
suggests a great deal of caution when assuming the existence of an object
while investigating its properties. The study of variational problems from
the viewpoint of solvability is difficult, even for those problems that seem
well posed. In the nonlinear elasticity of bodies under dead external load,
for example, the existence of a minimizer of total potential energy is in
general not shown. Fortunately, a class of variational problems corresponds
to linear boundary value problems for which the problem of existence is
solved completely. We shall use mechanical terminology for these problems;
in fact, however, some are quite general and can describe objects from fields
such as electrodynamics and biology.

5.1 Some Mechanics Problems from the Standpoint of the
Calculus of Variations; the Virtual Work Principle

We have considered the equilibrium problem for a membrane. Historically,
the membrane was investigated via Poisson’s equation

—Au(z,y) = f(z,y) (5.1)

on a two-dimensional bounded domain . If the edge 99 is fixed (Fig. 4.3)
in a form described by a given function a(s), then the boundary condition
u’aﬂ = a(s) (5.2)

and (5.1) constitute a boundary value problem. Using this, we can derive
the total potential energy functional whose minimum points are given by
(5.1)—(5.2). Let D be a set of test functions that are infinitely differentiable

359
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on 2 and zero in some neighborhood of 992. In what follows we consider
only simple domains (as typically encountered in applications), so let §2 be
bounded with 9 piecewise smooth. Multiply (5.1) by ¢(z,y) € D and
integrate over (:

- // Az, y)p(, y) de dy = / f@y)p(e,y)dedy.  (5.3)
Q Q

Integration by parts on the left gives

Oudp  Oudyp
//Q<6:vax ayay)dd /fzy (z,y) dx dy (5.4)

since ¢(z,y) = 0 for (z,y) € IN. If we wish to regard p(z,y) in (5.4) as a
variation of the solution u(x,y), then the left side is the first variation of

1 ou\” ou

= — dxd

L)+ () e
This is the strain energy of the membrane, aside from a constant factor
that characterizes the membrane and which may be regarded as absorbed
into the given load f as a type of normalization factor. The integral on the

right in (5.4) is linear in ¢ and can be considered as the first variation of
the functional

the integral

/Q [z, y)u(z,y) dz dy,

which is the work of external forces on the displacement field u(x, y). Hence
(5.4) states that the first variation of the functional

LG+ () e Lo

is zero. This functional, encountered in Chapter 1, expresses the total en-
ergy of the membrane: i.e., the sum of the internal energy and the potential
energy due to the work of external forces. An extremal describes the equi-
librium state of the membrane. Lagrange’s theorem in classical mechanics
states that the total potential energy of a particle system is minimized in a
stable equilibrium state of the system. Of course, the membrane does not
obey classical mechanics: it is an object of a different nature. However,
Lagrange’s theorem extends to this case.
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We may replace (5.2) by other boundary conditions known in membrane
theory, for example Neumann’s condition

Ju
on

=g(s). (5.5)
o0

This time, in repeating the steps that lead to (5.4), we need not take ¢ €
D. Equation (5.3) still holds if ¢ is only sufficiently smooth, but Green’s
formula yields an additional term:

Ou dp 8u8gp) / ou /
dxd —p(s)ds = T z,y)dzr dy,
//Q (a:ca:c dy Oy Y7 oo on ¢(s) Qf y)e(x,y) ( y)
5.6

where ¢(s) denotes the values of ¢(z,y) on 092. By (5.5) we have

au a(p 811,% _/

+ /(%2 g(s)p(s)ds. (5.7)

The last integral in (5.7) looks like the work of the force g(s) acting through
a displacement ¢ on the membrane edge, so Neumann’s condition actually
specifies a force distribution g(s) over the edge.

In this problem statement we neglect inertia; we regard the membrane
as a body having zero mass. If external forces that are not self-balanced
act on a body free from geometrical restrictions, mechanical considerations
show that the equilibrium problem is not solvable: the body should move
as a whole and, having zero mass, should undergo infinite acceleration. So
the self-balance condition is necessary for such problems. In the present
instance the only kind of free motion as a whole is u(x, y) = ¢, as the inner
energy is constant only for such displacements. By linearity we can put
u(xz,y) = 1. Therefore on this displacement the work of external forces
must be zero:

/ f(z,y)dedy + / g(s)ds =0. (5.8)
Q o0

If the external forces act only on the edge so that f(x,y) =0, then

/ g(s)ds = 0. (5.9)
o

This is the well-known solvability condition for the Neumann problem. Me-
chanically, the external forces must be self-balanced, which is expressed by
equation (5.8).
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In classical mechanics the self-balance condition consists of six equa-
tions: the three projections each of the resultant force and moment onto
the frame axes are all zero. The membrane model fails to satisfy all the
conditions, which is typical of the approximate particular models of con-
tinuum mechanics. In linear elasticity the self-balance condition appears
exactly as in classical mechanics.

Equation (5.7) can be taken as a formulation of the virtual work prin-
ciple. The left and right sides can be called the work of internal forces and
the work of external forces, respectively. Then (5.7) states a fundamental
physical law called the virtual work principle, which is

On any admissible displacements, the total work of internal and
external forces of the system in equilibrium is zero.

In this case, the equation can be obtained as the first variation of the
total potential energy functional. Hence we can start with the principle
of minimum potential energy. Although this principle cannot be used for
body-force systems where the potential of external forces does not exist,
the virtual work principle remains valid. Continuum mechanics treats the
virtual work principle as independent and relates it to the variational princi-
ples of mechanics. Thus the variational part of mechanics contains not only
problems of minimizing certain functionals, but also the theory encompass-
ing equations which, like (5.7), contain admissible fields of displacements,
strains, or stresses. The portion of continuum mechanics known as “the
variational problems of mechanics” is not completely a subset of the classi-
cal calculus of variations. A mechanicist may regard as variational anything
that involves integro-differential equations containing some virtual variables
and from which, using the main lemma of the calculus of variations, it is
possible to derive relations such as equilibrium or constitutive equations.

Finally, note that in deriving (5.7) we used a set of smooth admissible
variations ¢ of a solution; we do so even if we seek a solution with singu-
larities. If we begin with the principle of minimum potential energy, it is
reasonable to consider all the functions for which the terms of the principle
make sense; moreover, there is no reason why admissible variations should
be smoother than the solution. This remark will lead us to the generalized
setup of some boundary value problems in mechanics.

Many problems involving elastic objects (strings, beams, shells, two- and
three-dimensional elastic bodies, etc.) can be described by a total poten-
tial energy functional whose first variation yields the equilibrium equations
for the object. It has the structure & — V where £ is the strain energy
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and V is the work of external forces.! Minimization of the energy func-

tional entails setting its first variation to zero on all admissible variations
of the corresponding solutions. The resulting integral equations, express-
ing the equality of the sum of the work of internal and external forces on
admissible variations to zero, also express the virtual work principle for the
corresponding problems. It is more generally applicable than the minimum
potential energy principle.

We now list the total potential energy £ — V' and the equation of the
virtual work principle for some objects of interest.

1. Rod (Fig. 4.1):
/ ES(@)u*(z) de — / F@u@)de — Pull)  (5.10)

and the equation of the virtual work principle is

!
/ES(x)u' d:c—/ f(x)v(z)dz + Fo(l), (5.11)
0

where f(x) is a force tangential to the axis, F' is a stretching force at the
free end, and u is the tangential displacement of points on the neutral axis.

2. Beam (Fig. 4.2):
/EI w”( dx—/ Flz)w(z) dz — Fw(l) (5.12)

and the equation of the virtual work principle is

!
/ EI(z)w" (z)v"(z) dx —/ f(x)v(x)dz + Fo(l), (5.13)
0

where w is the transverse displacement of the neutral axis, f(z) is the
transverse distributed force, and F is the transverse force on the end.

3. Plate (Fig. 4.4):

E-V= g // (w2, + w2, + 2Vwegwyy + 2(1 — v)w2,)) dQ — // FwdQ
Q
(5.14)

n the case of potential forces V is the potential of the forces and, by analogy with
elementary physics terminology for gravitational forces, the expression —V can be called
the potential energy of the force field.
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and the equation of the virtual work principle is
D / (WazVpz + WyyUyy + V (WegUyy + WyyVsz) + 2(1 — 1) Wey gy ) dS2
Q

= / FodQ, (5.15)
Q

where D is the plate rigidity, v is Poisson’s ratio, and w = w(x,y) is the
deflection at point (z,y) of the domain S occupied by the mid-surface.

4. Three-dimensional linearly elastic body:

E-V = l/// ¢kl e (n)es; () dV—/// F-udV-— f-uds, (5.16)
2 % 1% vy

and the equation of the virtual work principle is

///V e ()ei;(v)dV = ///VF vdV + //a\/l f.vdS,  (5.17)

where F represents volume external forces and f forces acting over some
portion of the boundary 0V;.

Relations (5.10)—(5.17) will permit us to study generalized solutions of
these mechanics problems.

5.2 Generalized Solution of the Equilibrium Problem for a
Clamped Rod with Springs

To discuss generalized setups while avoiding too much repetition, we con-
sider an equilibrium problem for a rod with a longitudinal distributed load
f = f(z) (not shown in Fig.5.1) and n point forces Fj, acting at the points
ar. In addition, two identical springs having rigidity k are attached at the
point ¢ at angles ¢.

This problem is normally solved by splitting the rod into sections at the
points a; and c. We take the variational approach. The total potential
energy of the system is

1 - 1 ! i
S—V:§/O ES(x)u (x)dx+2.§kz2—/0 f(x)u(m)dm—;Fku(ak),

where %sz is the elastic energy of a spring suffering extension z. The
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Fig. 5.1 Coupled system of rod and springs under load.
compatibility condition for small deformation is z cos ¢ = u(c), hence

/2 -
E-V /ES ()dx+cosgp /f dm—;Fku(ak).
(5.18)

The left end of the rod is clamped:
u(0) = 0. (5.19)

The force conditions will follow from the variational setup as natural con-
ditions. Setting the first variation of £ — V to zero, we get

/Ol ES(z)u (z)v' (x) / f(z dw—zn: Frv(ay) =0,

k=1
(5.20)
where v is an admissible displacement satisfying v(0) = 0. To construct the
energy space for the system, we start with the energy inner product

(u,v)s = /0 ES(z)u/(z)v' (x) do + 2%1&(0)1}(0) (5.21)

defined on the subset of C?(0, 1) consisting of functions that vanish at z = 0.
Equilibrium equation (5.20) becomes

(u,v)s = W(v), (5.22)

where

1 n
:/0 f(x)v(x) de + ZFk’U(ak) (5.23)

k=1
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is the work of the load on an admissible displacement v. The completion
of this set with respect to the norm induced by the inner product (-,-)s
is the energy space £s. By (4.105) we have W11(0,1) — C(0,1). Since
W12(0,1) < C(0,1), the norms ||-||g and [lyy1.2(0,1) are equivalent on Es.
We define a generalized solution of the equilibrium problem as a function
u € &g satisfying (5.22) for all v € £g. This is meaningful provided each
term in (5.22) has meaning in €. Suppose f € L(0,1). Clearly W is a
linear functional in £g. It is also bounded, because

1 n
Wl = | [ S+ 3 Fotw)

k=1
1 n
< x)| dx + F max |v(z
([ 1+ 32171 ) s o)
<cllvllg

with a constant ¢ independent of v € £g. Applying Theorem 4.100 in Eg
to W (v), we ascertain the existence of a unique ug € Eg such that (5.22)
becomes

(u,v)s = (uo,v)s (5.24)

for all v € £s. The unique solution is u = ug € £s. We have proved exis-
tence and uniqueness of a generalized solution for the rod—spring system.

The reader may ask why such complicated analysis is warranted for a
problem that could be solved by splitting into subdomains. First, it is
advantageous to demonstrate the variational approach on an easy example.
Second, the form (5.22) of the equilibrium equation is precisely the form
used to introduce the finite element method for this system. Convergence
is established using (5.22) in the energy space Eg.

Finally, let us discuss one peculiar detail. If we try to solve the rod—
spring equilibrium problem as a boundary value problem for the equation
on the whole interval (0,1), we obtain the relatively simple equation

(ES(z)u'(x)) = f(z) + Z Fré(x — ay), (5.25)
k=1

where () is the Dirac delta. Clearly this equation cannot have a classical
solution with two continuous derivatives. Nonetheless, engineers have long
dealt with d-functions as point forces and have found practical ways to
overcome the difficulties inherent in their use.
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5.3 Equilibrium Problem for a Clamped Membrane and its
Generalized Solution

We saw that the equilibrium of a membrane with fixed edge can be formu-
lated as the problem of minimizing the functional

3L (5 e [ e

(5.26)
Suppose
uf o = 0. (5.27)
In §4.19 we constructed the Hilbert space £xs. with inner product
Ooudv Ouodv
= dx d 5.28
(u,0)ar = //(8:178:0 8y8) v (5:28)
The first term in (5.26) can be written as
1 1 9
i(U,U)M =3 llwlla - (5.29)
The second term,
= [ etz ded, (5.30)

is a linear functional in w. If f € LP(Q) for some p > 1, then Holder’s
inequality gives

ol =| [ et asal

([ )" (e )

with ¢ = p/(p—1). On the energy space, by equivalence of the norms |-||,,
and ||-||W1,2(Q) and Theorem 4.164, we have

1/q
([[ 1wt asay) < mal,

1/p
W ()| < m ( / [l do dy) lallyg = ma Jlully, -

SO
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Hence W (u) is also continuous. By Theorem 4.100 there is a unique ug €
Enme such that

W (u) = (u, uo)n- (5.31)

So the energy functional for a membrane with clamped edge can be repre-
sented in the energy space as

Baaw) = 5 Jull}y — ( wo)ar. (532

Let us consider the problem of minimizing Eps (u) in Epze.

Theorem 5.1. In the energy space Enre the functional Ep(u) attains its
mintmum at u = ug, and the minimizer is unique.

Proof. We have

2B (u) = |lully; — 2(u, uo)n
= (u, u)mr — 2(u, wo)nr + (wo, uo) m — (w0, uo) M
= (u — up,u — uo)pm — (Uo, Uo) M

2 2
= [lu = wollyy = llwollas

so that
. 1 2
min Eyy (u) = —3 llwoll 3y -
Uniqueness of the minimizer ug is evident. O

Let us return to (5.26). The equation for the minimizer coincides with
setting the first variation of Fj/(u) to zero:

Oug v 8u0 v
//Q<a$6 9z " By 0 )d dy*/ﬂfz yo(e,y)dedy.  (5.33)

It is usually said that (5.33) defines a generalized solution uy € Enre to
Poisson’s equation Au = — f with boundary condition (5.27) if ug satisfies
(5.33) for any v € Epse. This is often called the energy (or weak) solution.
Note that (5.33) expresses the virtual work principle for a membrane with
clamped edge.
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5.4 Equilibrium of a Free Membrane

For the Neumann problem, the equilibrium equation (virtual work princi-
ple) is (see (5.7))

//Q (gzgi gzg@)d dy / fl@y)e my)dxder/ g(s)w((z):;_

The corresponding total potential energy functional is evidently

=3 [ |(5) + (5) ] o

—/ flz,y)u(z,y) dx dy —/ g(s)u(s) ds. (5.35)
Q 99

Equation (5.34) is then the equality of the first variation of Epp (u) to zero,
as follows from general considerations in the calculus of variations. Again,
we put the equilibrium problem for a membrane with given edge forces g(s)
as a minimization problem for the energy functional Ejsq(u) on an energy
space. We have the option to use a factor space Eary (see §4.19), or its
isometric variant where we take the balanced elements satisfying

//Qu(z,y) da dy = 0. (5.36)

On the latter the problem of minimizing the energy is well defined if
fla,y) € LP(Q),  g(s) € LP*(09), (5.37)

for some p1,p2 > 1. But on the factor space the energy functional is not
well defined if the forces are not self-balanced with

/ f(z,y)dedy + / g(s)ds =0. (5.38)
Q o9

If (5.38) is not fulfilled, then for different representatives of zero, u(z,y) = ¢,
the energy functional Eq(u) takes different values, which is impossible
when we seek the minimum of the energy functional. This is a conse-
quence of the fact that in this model we neglect the inertia properties of the
membrane. Thus, considering the equilibrium problem on the factor space
En(u), we get an additional necessary condition (5.38) of self-balance for
the external forces. This condition does not arise when we adopt the second
variant of the energy space, because (5.36) is an artificial geometric con-
straint that was absent from the initial problem statement and has been
imposed as an auxiliary restriction. Although we do not need (5.38) when
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considering the problem in this way, we should nonetheless retain it since
it is required by the initial setup.

Under the restriction (5.38) we can consider the equilibrium problem
for a free membrane as the minimization problem for (5.35) on the space
Eny of “usual” functions satisfying (5.36). Condition (5.37) is sufficient
for Eari(u) to be well defined on Ear5. We need only show that the func-
tional representing the work of external forces is well defined in this space.
Holder’s inequality gives

W ()| = \ J[ e acay+ [ gsuas

[219]

< (/[ 15t dﬂ)l/m (/[ 1t dﬂ)”ql
([ ot as) " ([ 1utoyre as) o

< (1o + 191l oa o ) Ml (5.39)

where ¢1 =p1/(p1 — 1), @2 = p2/(p2 — 1), and ||-||,, is defined by (5.28). In
the last transformation we used imbedding Theorem 4.164. Thus W (u) is
well defined on Epr¢. Linearity of W(u) is evident, and (5.39) guarantees
continuity. Hence by Theorem 4.100

W (u) = (u,uo)m
where ug € Ep¢ is uniquely defined by the external forces f,g. Hence the

minimization problem for Ejsq(u) can be reformulated as the minimization
problem for

1
T2
There is formally no difference between the functionals (5.40) and (5.32),
so we merely reformulate the results of §5.3 for this problem as

Eni(u) = 2 lull3; — (u,uo)ar- (5.40)

Theorem 5.2. Let (5.37) and (5.38) hold. In the energy space Enry the
functional Epq(u) attains its minimum at uw = ug, and the minimizer is
unique.

The minimizer is a generalized solution of the equilibrium problem for a
membrane with free edge. All the linear equilibrium problems we consider
will reduce to minimization problems for quadratic functionals of the form

B(u) = 3 lul* ~ W () (5.41)
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where W (u) is a linear continuous functional. The proof of Theorem 5.1
does not depend on the nature of the space in which it is done, so we can
immediately formulate

Theorem 5.3. Let W (u) be a linear continuous functional acting in a
Hilbert space H. Then the minimization problem for (5.41) has a unique
solution ug € H defined by the Riesz representation theorem: W(u) =

(u, ugp).

Applications of this theorem appear in the next section.

5.5 Some Other Equilibrium Problems of Linear Mechanics

The mechanics problems for which we presented the energy functional and
the virtual work principle in §5.1 ((5.10)—(5.17)) all share the form (5.41)
where the linear functional W (u) is the potential of external forces (or,
what amounts to the same thing, the work of external forces) on the dis-
placement field u. Theorem 5.3 asserts the generalized solvability of a cor-
responding boundary value problem and the uniqueness of its generalized
solution if W (u) is continuous. To study continuity of W (u), we shall use
Sobolev’s imbedding theorem and the fact that the corresponding energy
space is a subspace of a Sobolev space W%?2(£). The results are analogous
to Theorem 5.2 and are left to the reader. We show only the restrictions
on external forces to provide continuity of the potential of external forces
as a functional in the energy space.

Rod
See (5.10) and (5.11). Here u(0) = 0 and

1
W(u) = / f(@)u(z) de + Fu(l). (5.42)
0
In this case u(z) is continuous on [0,[] (i.e., each representative Cauchy

sequence for an element of an energy space converges to a continuous func-
tion) and so if

f(z) € L(0,1) (5.43)
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then
u)| = x) dx + Fu(l)
(/ f@)]da + |F|> ma fu(a)
l
<m </0 |f ()] dz + |F|> l[ull
where
. 1/2
el = ( / ES(x)u” () d:c) :
Beam

See (5.12) and (5.13). Now we can consider various boundary conditions.
For clamped edges we formulate

w(0) =0 =w'(0), w(l) =0=w'(l), (5.44)

and the energy space for a bent beam with the norm

. 1/2
lwll y = ( /O El(@)w"(x) d:c) (5.45)

is a subspace of W22(0,1) in which functions and their derivatives are
continuous on [0,!] and the corresponding operator of imbedding into the
space of continuously differentiable functions is continuous. A sufficient
condition for the potential of external forces

/ f(@)w(x)dz + Fw(l)
is of the same type as for a stretched rod,
f(x) € L(0,1), (5.46)

and the proof is the same. However, in this case it is possible to include
in the potential expression, and hence in the setup, the point external
torques and transverse forces that are common in the strength of materials
(represented by J-functions). The proof is practically the same.

As to other variants of boundary conditions for a bent beam, the differ-
ence comes when the beam can move as a rigid whole. Then the situation
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is similar to that for a free membrane. A rigid motion of a free beam (i.e., a
function w for which ||w|| 5 = 0) has the form w = a+ bx. Different bound-
ary conditions can restrict the constants a and b (above they are zero). If
the beam can move as a rigid body, the self-balance condition on external
forces appears:

/lf(:c)(a—i—bx)d:c—i-F(a—i-bl):O (5.47)
0

for all admissible a, b. If the only geometrical boundary constraint is w(0) =
0, then

/l xf(x)dx +1F =0. (5.48)
0

Plate

It is possible to consider various boundary conditions. When the edge of
the plate is clamped,

ow

0= —| .
on | 5q

Wy, = (5.49)

The norm of the corresponding energy space £p., which is

1/2
ol = (// (w2, + w2, + Wy, +2(1 — v)ud,) dQ) (5.50)
Q

as shown in Chapter 4, is equivalent to the norm of W?22(Q) when  is
compact in R?. In this case Ep. imbeds continuously into C(2). When
both distributed and lumped forces are present, the potential of external
forces

N
W(w) = //Q F(z,y)w(z,y)dQ + ; Frw(zy, yk)

is a linear continuous functional in £p. provided that

F(z,y) € L(). (5.51)
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Indeed,
|_‘// (x,y)w xde—i—Zkawk,yk)
(/ P y>|dxdy+Z|Fk|> ma (. )

k=1

<m<// |F(, y)|d:cdy+;|Fk> [wll p

=my ||w]p.

In this case there is a unique generalized solution to the equilibrium problem
for the plate with clamped edge.

If the plate edge is free from geometrical constraints, there appear mo-
tions of the plate as a rigid whole that satisfy

[wl]p = 0. (5.52)
The corresponding rigid motions are
w=ax+by+c (5.53)

where a,b,c are constants. As in the theory of the free membrane, the
condition of self-balance of the external forces appears:

W(ax+by+c) = // (xz,y)(ax + by +c) dQ+ZFk axy, + by, +¢) = 0.
Q =1
(5.54)

This holds for all a,b,c, so it represents three equations for the external
forces that express equality to zero of the resultant force and resultant
moments with respect to the coordinate axes (the reader should write them
out and verify this). Condition (5.54) must be added to (5.51) as a necessary
condition for solvability of the problem.

If there are other geometrical constraints on a plate, then the appearance
of the self-balance condition depends on whether the constraints leave some
freedom of movement. Fixation at three noncollinear points will prevent
rigid motions. Rigid motions do arise if only a straight segment in the
mid-surface is fixed, since the plate can rotate about this axis. In this case
a self-balance condition appears.
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Elastic body

When the boundary of the body is clamped, the energy norm

e = [ e estwes w dv>1/2 (5.55)

is equivalent to the norm of the Sobolev space (W1’2(V))k provided V'
is compact in R¥, k = 2,3. In the two-dimensional case the imbedding
result is exactly as for the membrane, and thus a sufficient condition for
generalized solvability is that the Cartesian components of the vector of
external forces belong to some LP(S) with p > 1. Mathematical physicists
prefer “if and only if” conditions for solvability and have introduced the so-
called negative Sobolev spaces. In terms of these the forces are completely
characterized; but in a practical sense this condition gives us no more than
if we simply say “the corresponding functional must be continuous in the
space,” so sufficient conditions are preferable in practice.

For a three-dimensional elastic body, the imbedding of W12(V), when
V is compact, is a continuous operator to LP(V), 1 < p < 6, and to
L1(S), 1 < ¢ < 4, where S is a piecewise smooth surface in 2. Conditions
sufficient for generalized solvability of the equilibrium problem for a body
with clamped boundary are

Fe (LP(V)®, p>6/5,
fe(L1OV))?, q>4/3.
Indeed

|W(u)|:’///‘/F-udV—i—/avf-udS‘
<(Jff e (fff )™
c(ff ) (] oras)
(o I o)

where we have used Holder’s inequality and the equivalence of the energy
and Sobolev norms.

When we consider the equilibrium of a body free from geometrical con-
straints, rigid-body motions arise:

u=a+bxr (5.56)

<m
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(recall that these satisfy ||ul|z = 0), which imply that for a body free of
geometrical constraints the forces must be self-balanced with

///‘/F.(a+bxr)dv+//avf.(a+bxr)ds0_ (5.57)

This equation must hold for all a and b, giving six equations which are
precisely the conditions of self-balance in classical mechanics: the resultant
force and the resultant moments vanish.

In the case of mixed boundary conditions, if the body can move as a
rigid whole, we must retain a subset of the self-balance conditions for the
load. If the body can rotate about a fixed point, for example, the resultant
moment with respect to the fixed point must vanish.

The one-dimensional problems and the plate problem allow us to for-
mulate boundary conditions at a point, and the corresponding boundary
value problems in their generalized setups are well posed. Note that this is
not the case for the membrane or elastic body.

When the problem involves elastic support such as a Winkler founda-
tion, or some interaction of elements with different models as would be the
case with a three-dimensional elastic body coupled to a plate, the varia-
tional statement includes the sum of internal energies of all system ele-
ments. It is necessary to add some geometrical conditions of compatibility
between the displacement fields of the bodies involved. The energy norm
must contain all the internal energy functionals for the bodies (nonneg-
ative quadratic terms) and sometimes the energy space is quite strange
from the standpoint of classical Sobolev space theory. For such “coupled”
models, we impose explicit geometrical constraints on interaction of the
coupled elements, but not conditions for the stress terms: stress conditions
on the interface are derived somewhat like natural boundary conditions.
This prevents crude errors that commonly appear in the setup of similar
problems, i.e., when someone tries to write down force balance equations for
the interface elements in cases where the models approximate real stresses
differently.

Nonhomogeneous geometrical boundary conditions

Homogeneous boundary conditions of the form u|sq = 0 provide linearity
of the corresponding energy space. There are two ways to approach

u|(9Q = a(s) (5.58)
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where a(s) is given. One is to minimize over a closed cone of all elements
satisfying (5.58), as is done in variational inequalities. The other is tradi-
tional in mathematical physics: assume the existence of an element with
some differential properties that satisfies (5.58), and seek a solution as a
sum of this element and another element subject to homogeneous boundary
conditions. The treatment of the membrane is typical. First we suppose
there is an element u*(z,y) € W?(Q) (as usual we speak of functions with
the understanding that such elements actually belong to the completion
of the set of continuously differentiable functions) and seek the minimum
point u of the energy functional

-5/ l(%)+ (g—z)] dady~ [ fa.g)ute.g) dody

in the form

u(z,y) = u*(z,y) + v(z,y) (5.59)

where v(z,y) € Epe. So v satisfies the homogeneous condition v]pg = 0.
Redenoting v by u, we get the following variational problem in Epz.:

//QK Chall )2+<8(“T+ym>2]dzdy
- / Q [, y)u(z, y) + v (z,y)] dody — min.

Setting the first variation to zero, we get

oudp  Oudy
//Q<6x(9x ayay>d:cd / fla,y)o(x,y) dedy

ou* dp  Ou* dyp
//Q<ax% oy a)dmd'

(5.60)

A generalized solution of the equilibrium problem for a membrane with
given edge displacement is an element u(x,y) € Ey. that satisfies (5.60)
for any p(x,y) € Ene. The first term on the right appeared in the problem
with the homogeneous boundary condition. The second term is a bounded
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linear functional in ¢ because
LS55l 5], [
Or Ox ay dy ox L2(Q)
9
dy

L2(Q)

L2(Q)
=m ||U*HW1v2(Q) llollas -

By Theorem 5.3, there is a unique generalized solution. The following
question remains. Redenote the homogeneous part of the solution by wu;.
Suppose we choose another fixed function u** that takes the same boundary

L2(Q)

values, and find the homogeneous part of the solution denoted us. Do we
have uniqueness in the sense that u; +u* = us +u**? Denote uz; = us —u1
and subtract the equation for u; from the equation for us with the same
admissible variation . We have

(9’(1@1 &p 8u21 6@
/. ( oz 0z T By ay)dwy

(5 e

But the difference u** — u* belongs to £y (why?), and since ¢ is an arbi-

trary element of £y, we have us; = u** — u*. This completes the proof.

The general theory of Sobolev spaces is concerned with trace theorems.
These deal with the question of which conditions must be stipulated on the
boundary values in order to insure the existence of an element of a Sobolev
space taking them as boundary conditions. The theorems require some
smoothness of the domain boundary and are not convenient for practical
verification; however, they provide “if and only if” conditions for existence
of a continuation of the boundary functions as a function inside the domain,
in such a way that the corresponding operator of continuation is continuous.
Hence there arise Sobolev spaces W'P(Q) with fractional parameters [.

Finally, we note that the study of generalized solutions is usually the
first step in the study of the smoothness properties of solutions (see [27]).
The birth of functional analysis was signaled when in this way Hilbert jus-
tified the Dirichlet principle (i.e., the same principle of minimum potential
energy) for the solution of Laplace’s equation with given boundary data,
and showed that there exists an analytical solution of the latter under some
restrictions on the given boundary function and the boundary itself. How-
ever, there is an important case for which practitioners find precisely the
generalized solution. This is discussed in §5.6.



Applications of Functional Analysis in Mechanics 379

5.6 The Ritz and Bubnov—Galerkin Methods

All problems in the linear mechanics of solids that we wish to consider have
the form

E(u) = % ul® = W(u) — min (5.61)

where H is a Hilbert (energy) space and W (u) is a linear continuous func-
tional on H. By Theorem 4.100 this reduces to the problem

1 .
B(u) =5 lull* — (u, uo) = min (5.62)

with a given ug € H. At first glance (5.62) seems trivial: the solution is
ug. However, ug is determined only theoretically; the term (u,ug) stands
in place of a functional W, and the role of (5.62) is simply to clarify some
intermediate steps.

Ritz was the first to think, in practical terms, of the possibility of finding
a minimizer, not on the whole space H but on some of its subspaces. In
Ritz’s time all calculations were done manually, so it was essential to find
methods requiring as few steps as possible. Thus it was necessary (and
still is, despite the capabilities of computers) to find a subspace having
minimal dimension but capable of yielding a good approximation.2 The
finite dimensional subspace was constructed by the choice of basis elements
€1,€2,...,¢n. They should be linearly independent which, according to
linear algebra, means that the Gram determinant

(e1,e1) (er,e2) -+ (e1,en)
(62361) (62562) (6236 )
) (5.63)
(en,e1) (en,e2) -+ (en,en)
We also assume the set e, ea,..., €y, ... 1s complete in H; i.e., any element

of H can be approximated to within given accuracy by a finite linear com-
bination of elements from the set. Denote by H, the space spanned by

2The approximate models of mechanics, like the theories of shells and plates, aims to
reduce the full dimensionality of the problem. They reduce the dimensionality of the
space coordinates for thin-walled structures from three to two dimensions by introducing
some hypotheses on the form of deformation or the order of some strain components.
The Ritz method also does this, but more directly: it reduces the possible forms of
deformation of a body to forms expected to approximate the real ones more or less
accurately.



380 Advanced Engineering Analysis

e1,€2,...,e,. We call
1
E(u) = 5 [Jull®  (u,uo) — min (5.64)

the Ritz method for the solution of (5.62).
Let us denote the minimizer of the problem by

Uy = chek (5.65)
k=1

where the ¢ are constants. The equality to zero of the first variation of
this functional for all admissible variations v € H,, is

(tn,v) — (uo,v) = 0. (5.66)

Since eq, es, ..., e, is a basis of H,, the last equation is equivalent to the n
simultaneous equations

(Z ckek,em> = (uo, em), m=1,...,n. (5.67)

k=1
called the Ritz system of the nth approximation step. The system can be
rewritten as
(e1,e1)er + ez er)ea + -+ + (en, e1)cn = Wier),
(e1,e2)c1 + (€2,€2)ca + -+ + (en, €2)cn = W(ez),

(e1,en)cr + (ea,en)ca + -+ + (en, en)en = Wi(ep). (5.68)

On the right side of (5.67) we have some given numbers. It is necessary to
find the unknown cy.

Theorem 5.4. The system of simultaneous equations of the nth approrima-
tion has a unique solution u, =y ._, cxer. The sequence {uy,} converges
strongly to the solution of the problem (5.62).

Proof. The principal determinant of this system is the transposed Gram
determinant. Hence by (5.63) the system (5.68) has a unique solution. Let
us return to (5.66), which we rewrite as

(upn —ug,v) =0 forall ve Hy,.

This means u,, —ug is orthogonal to H,,, i.e., u,, is the orthogonal projection
of ug onto H,,. Besides, it is easily seen from (5.67) that if eq,..., e, is
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an orthonormal basis of H,, then (5.67) defines the Fourier coefficients
¢k = (ug, ex) of the solution ug. Hence by Bessel’s inequality

[[unl] < Jluoll -

Even if ey, ..., e, is not an orthonormal basis of H,, we can still construct
an equivalent orthonormal basis of H,, which consequently defines an or-
thonormal basis of H. Thus the Fourier expansion of ug lies in the space
spanned by this basis, and the Ritz approximation u, coincides with the
first n terms of that expansion. By the general Fourier theory, {u,} con-
verges strongly to ug in H. 0

We have noted that mechanics problems with free boundaries may be
treated theoretically in factor spaces and in spaces of balanced functions.
For numerical calculation by Ritz’s method, only the balanced function
spaces are appropriate. Were we to work in the corresponding factor
spaces, the solution would contain the same undetermined constants of
rigid motions, hence the corresponding determinant would be zero. Be-
cause of rounding errors and other numerical uncertainties, the system of
Ritz’s method (and any other numerical method) can lose the compatibility
present in the initial setup. These issues do not occur with the energy space
of balanced functions.

Ritz’s method is the basis for various versions of the finite element
methods. We should also note that the equations of Ritz method could
be obtained from (5.66), which are not so elementary for certain problems
where we cannot practically represent the work functional as an inner prod-
uct. In this case the n elements v that define the linear algebraic system
need not be e; they could be any other n linearly independent elements of
the space which, for all n, constitute a complete system. This constitutes
Galerkin’s method (or the Bubnov—Galerkin method; cf., §1.4).

5.7 The Hamilton—Ostrogradski Principle and Generalized
Setup of Dynamical Problems in Classical Mechanics

One of the main variational principles of classical dynamics, the Hamilton—
Ostrogradski principle, is not minimal. It asserts that the real motion of a
system of material points, described by generalized coordinates

a(t) = (1(t), -, gn(t))
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and under the influence of potential forces, occurs in such manner that
among all the motions from the initial position qg taken at time ¢g to the
final position q; taken at time ¢;, the real motion yields an extremal for
the action functional

t1

/ L(q,q,t)dt. (5.69)

to
Here an overdot denotes differentiation with respect to time ¢. The kinetic
potential L is given by

L=K-E (5.70)

where K and E are the kinetic and potential energies, respectively, of the
system. The first variation of (5.69) is

t t, n .
5[ Liqat)dt= / (aL L4t aL(g’,q’ D 541-) it (5.71)
to to ;= 1 qi

where all variations d¢; of the generalized coordinates are considered as
independent functions (cf., Chapter 1), and dg¢;(tg) = 0 = dg;(t1) for

i = 1,2,...,n. Setting the first variation to zero, we obtain Lagrange’s
equations of motion
d oL 0L
- = = (5.72)
dt 0¢;  Og;

which form the basis of Lagrangian mechanics. In general the action does
not attain a minimum or maximum. Normally for Lagrange’s equations
(if not in Hamiltonian form) a Cauchy problem is formulated in which
equations (5.72) are supplemented with initial data

a(to) = qo, q(to) = doz- (5.73)
If we regard (5.71) as a generalized setup for some problem for (5.72),
we see that (5.71) with the boundary conditions q(tp) = qo, q(t1) = qi,
dq(tp) = 0 = dq(t1) is formulated for a boundary value problem. How
do we reformulate (5.71) and requirements on ¢;(t) to get a generalized
setup for the Cauchy problem (5.72)—(5.73)? We would like to do this
because the same operation will be performed when we transition from
equilibrium problems to dynamical problems in solid mechanics. Let us take
a special class D7 of variations dq(t) that are continuously differentiable
with dq(t1) = 0. Take dq(t) € Dy, multiply (5.72) by d¢;(t), sum over 4,
and integrate over [tg, t1]:

b d 0L 0L
— 74
/to Zz:(dtaq aq)éqzdt 0. (5.74)
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Integration by parts (the operation inverse to the standard one done in the
calculus of variations) gives

O /OL .. OL " /OL
[ (gt ggron ) o= (700

=0. 5.75
- (5.75)

t=to

In the second sum, the terms given at to, there stand values (5.73) so they
do not contain ¢;; the integrand involves only ¢;(t) and ¢;(t) whereas (5.72)
contains second derivatives of ¢;(¢). Thus the requirements for ¢;(t) in
(5.75) are less than in (5.72), and it is sensible to formulate a generalized
setup of the Cauchy problem using (5.75) because in (5.75) we need not
appoint values for q and ¢ at the instant ¢; in advance. It is clear that
from (5.75), using the standard procedure of the calculus of variations, we
can obtain (5.72) if we require (5.75) to hold for any dq(t) € D;.

Next we must define a space in which to seek a solution. Usually the
norm of this space would involve time integration, and this means we cannot
stipulate on a generalized solution the point condition q(¢9) = q1, it comes
into the definition through the second sum term of (5.75). The first initial
condition q(tg) = qo could be stipulated separately. We do not formulate
exact statements here because, first of all, the form of the norm depends on
the form of L and the statements would depend on this. More importantly,
the generalized setup is avoided in classical mechanics. We have engaged
in these considerations only to prepare ourselves for the more complex
problems of continuum mechanics, for which all the pertinent details will
be repeated.

5.8 Generalized Setup of Dynamic Problem for Membrane

In continuum mechanics the Hamilton—-Ostrogradski principle can also be
put in the form (5.69)—(5.70):

ty
6/‘Lﬁ:Q L=K-E, (5.76)
to

where for each of the objects we have considered in equilibrium — beam,
membrane, plate, elastic body — E is the energy functional we used (the
difference between the elastic energy of an object and the potential of ex-
ternal forces acting on the object); here the state of the body at ty and ¢;
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must coincide with the real states of the body. The kinetic energy is

1
K= —/pu2ds (5.77)
2Js

where S is the domain taken by the object in a coordinate frame and
p is the specific density of the material. For example, in the case of a
three-dimensional elastic body the equation of the Hamilton—Ostrogradski
principle looks like

) {%///v putdy - B ///V e (w)ei; (w) dV
~(f[[Fuav [[ seuas)|ha-o

for any admissible variation of displacement vector du. Here u must satisfy
the geometrical boundary conditions of the problem, du = du(x,t) the
homogeneous geometrical boundary conditions and, besides,

du(x,tg) = 0 = du(x,t1).

So this formulation corresponds to a boundary value problem as if the values
of u(x,t) are given at ¢t = to and t = t;.

Now we would like to derive a generalized setup of the Cauchy problem
for the dynamic problems under consideration. It is clear that the cor-
responding energy spaces should include the terms with integrals for the
kinetic energy and, besides, if we would like to use Hilbert space tools, tem-
poral integration should appear in the norm. The form of the integrand
of the F term in the action remains the same, so we need only consider
the kinetic energy term. We begin with the universal equation that is the
virtual work principle in statics. To simplify the calculations we consider
a membrane; the remaining problems are treated similarly. We combine
the virtual work principle with d’Alembert’s principle, which asserts that
the system of external forces can be balanced by the inertia forces. For a
membrane the work of external forces complemented by the inertia forces
on a virtual displacement v(x,t) is

//Q [f(x,t) — pii(x, )] v(x, t) dS, dQ = dz dy.

Thus, for a membrane with clamped edge, the virtual work principle gives

//Q (?Z?Z gng 2 = / /Q Fx,t) = pii(x, )] v(x, 1) dQ.  (5.78)
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Of course we could begin with the differential equations of motion and
obtain the same result step by step, but we take a shorter route. We suppose
all functions are smooth enough to permit the required transformations and
that the virtual displacement v satisfies

v(x,T) =0. (5.79)

Let us integrate (5.78) over time and integrate by parts in the last term:

dudv  Oudv
/ //Q (6:6(’)96 6y(’)y)d9dt / /Qth v(x,t) dQ dt
/ // pu(x,t)0(x,t) detJr// pui (x)v(x,0)dQ.  (5.80)
Q 0

Here uf(x) is an initial condition for u(x, t):

ey, = w0 (x),  a(x )], =uix). (5.81)

We shall use (5.80) for the generalized setup of the dynamic problem for a
membrane. The first step is to define proper function spaces.

An energy space for a clamped membrane (dynamic case)

Without loss of generality we can set tg = 0 and denote ¢t; = T'. It is clear
that the expression for an inner product in this space should include some
terms from (5.80). Let it be given by

Ooudv  Oudv
(U, ) 0] = ///puxt Xtdﬂdt+///<8z8z ayay>dﬂdt

(5.82)
The energy space Eprc(a, b) is the completion of the set of twice continuously
differentiable functions that satisfy the boundary condition

ulog =0, (5.83)
with respect to the norm |ju|| = (u, u)[la/i] Denote Qg = N X [a, b].

Lemma 5.5. Epc(a,b) is a closed subspace of Wl’z(Qa,b). The norm of
Enela,b) is equivalent to the norm of W12(Qqup).

Proof. It suffices to prove the last statement of the lemma for twice
differentiable functions satisfying (5.83). The inequality

(u, w)[qp) < M ||UH?/VI’2(Qa,b)
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is evident. Let us show that the reverse inequality with a positive constant
m holds as well. From the Friedrichs inequality it follows that

/bn B di < /// u\", (duy’
a " W) =m a Q 8:1: ay

Adding to both sides the term

/ab//ﬂpﬁQ(x,t)det

after easy transformations, we get the needed inequality. O

dQ dt.

By Sobolev’s imbedding theorem, from Lemma 5.5 it follows that
Enme(a,b) imbeds continuously into L°(Q(a,b)) and at any fixed t € [a, ]
into L*(Q2), so we can pose an initial condition for u to satisfy in the sense
of L4(2). However we now demonstrate a general result that shows the
meaning in which we can state the initial condition.

Let H be a separable Hilbert space. Consider the set of functions of the
parameter t € [a, b] that take values in H. In what follows H = L?(Q2). The
theory of such functions is quite similar to the usual theory of functions
in one variable. In particular, we can define the space C(H;a,b) of all
functions continuous on [a, b] and taking values in H. Its properties are the
same as those of C(a,b): for separable H, it is a separable Banach space
with the norm of an element x(t) given by

x . = max ||x(t .
| HC(H,a,b) te[a,}IE]H ()HH

For functions with values in H we can introduce the notion of derivative as
x(t + At) — z(t)
"(t) = lim ——————=

(1) A?EO At

3

as well as derivatives of higher order. The definite Riemann integral

/cd w(t) dt

is the limit of Riemann sums that must not depend on the manner in
which [c, d] is partitioned. Analogous to the spaces C'*)(a, b), for functions
with values in H we can introduce spaces C*)(H;a,b) (we leave this to
the reader). Finally we can employ an analogue of L?(a,b), denoted by
L?(H;a,b). This is a Hilbert space with an inner product

b
(%, Y) L2 (Hia,b) :/ (z(t),y(t))y dt, (5.84)
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and is the completion of C(H;a,b) in the norm induced by (5.84). Note
that L?(L?(2); a,b) is L*(Qap). Quite similarly, we can introduce a Sobolev
space W12(H;a,b) as the completion of C)(H;a,b) with respect to the
norm induced by

b
(xvy)W1’2(H;a,b) = / {(m(t)ay(t))H + (‘rl(t)ay/(t))H} dt. (585)
Lemma 5.6. W12(H;a,b) is continuously imbedded into C(H;a,b).

The proof mimics that of the similar result for W2 (a, b), so we leave it
to the reader. Lemma 5.6 states that we can formulate the initial condition
for u(x,t) at a fixed ¢ in the sense of L?(f2) since the element of Eys.(a,b),
by the form of the norm, belongs to W12(L?(Q); a,b) as well. However, to
pose the initial boundary value problem we need a stronger result. This
is a particular imbedding theorem in a Sobolev space that is useful for
hyperbolic boundary value problems.

Lemma 5.7. If {u,} converges weakly to ug in Epre(a,d), then it also con-
verges to ug uniformly with respect to t in the norm of C(L?*(Q);a,b).

Proof. By equivalence on Epye(a, b) of the norm of Exsc(a,b) to the norm
of W12(Q,.p), and Sobolev’s imbedding theorem, we state that

[tnlljqp < m (5.86)
and that

[t — uoll2(q, ,) =0 asn— oo (5.87)

So u,, converges to ug strongly in L?(Q, ). Now we need a special bound for
an element of W12(L?(Q); a, b), into which W2(Q, ;) imbeds continuously.
We derive the estimate for elements that are smooth in time ¢, and then
extend to all the elements. Let ¢ € [a,b) and A > 0 be such that c+ A €
[a,b). Let t,s € [c,c+ A]. The simple identity

v(x,t) = v(x,s) +/ 81}(8);, %) do

gives
2

//91)2(X,t)dQ:// (v(x,s)+/‘:$d9) dQ
<2// (x, 3) dQ+2// (/ 6”9 d9)2dQ.
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Let us integrate this with respect to s over [¢, ¢+ A]. Dividing through by
A we get

//Q v?(x,1)dQ < E/CJFA // v?(x, s) dQds
L )

Applying Hoélder’s inequality to the last term on the r1ght we have

// v?(x,1)dQ < E/ v%(x, 5) dQ ds
Q A Qc,c+A
2 [ota t2 b ou(x,0) 2
2 //Q</Slde/s (260 i) o

Finally, direct integration in the last integral and simple estimates yield

v(x,0)\°
// xtdQ<—/ v2(x,0) dQdo + A dQydo,
Q Qc c+A Qc,c+A 89

(5.88)
which is the basis for the proof of Lemma 5.7. By the completion procedure

(5.88) extends to any element of &, ;. We write it out for u, — ug:
2
// (un(x, 1) — ug(x,1))*dQ < = (un(x,0) — up(x,0))* d2 do
Q A Qc c+A

0 (un(x,0) — ug(x,0))\>
+A QC,M( = 0 > dQde. (5.89)

Let € > 0 be an arbitrarily small positive number. To prove the lemma it
is enough to find a number N such that the right side of (5.89) is less than
¢ for any ¢ € [c,c+ A]. Let us put A = ¢/2m where m is the constant from
(5.86). Then the last integral is less than /2. By (5.87) we can find N
such that

2

— (un (%, 1) — uo(x, 1)) dQdt < =
A Qe A 2
independent of ¢ € [c,¢ + A]. Since this is independent of ¢ € [a,b] we

establish the result for all ¢ € [a, b]. O

Generalized setup

Without loss of generality we consider the initial problem on [0, T'] for fixed
but arbitrary T'. In this case we use the energy space Epr.(0,T). In addition,
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we must define a closed subspace DI which is the completion of the subset
of twice continuously differentiable functions satisfying (5.83) that vanish
att="1T.

Definition 5.8. u(x,t) € Erc(0,T) is a generalized solution of the dynam-
ical problem for a clamped membrane if it satisfies the equation

/ //Q (gigi 2222) dsvdt = / /Qfxt v(x, t) dQdt
+ /0 / /Q pi(x, )i (x, t) ddt + / /Q pui (x)u(x,0) 2 (5.90)

with any v(x,t) € DI and the first initial condition

),y = up(x) (5.91)

in the sense of L?(12), that is,

//Q (x,0) — ui(x))? dQ = 0. (5.92)

Let us suppose that

(i) uj(x) € WH2(Q) and satisfies (5.83),
(i) wi(x) € L?(Q), and
(iii) f(x,t) € L*(Qo1).

It is easy to show that under these restrictions all terms of (5.90) make
sense. The goal is to prove the following.

Theorem 5.9. Under restrictions (i)-(iii) there exists (in the sense of
Definition 5.8) a unique generalized solution to the dynamical problem for
a clamped membrane.

The proof splits into several lemmas. First we construct an approximate
method of solution for the problem under consideration, a variant of the
Bubnov—Galerkin method called the Faedo—Galerkin method. Then we
justify its convergence. Finally, we give an independent proof of uniqueness.

The Faedo—Galerkin method

Suppose there is a complete system of elements of £ys., any finite set of
which is a linearly independent system. In applications these are smooth
functions except in the finite element method where they are piecewise
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smooth. Take the first n elements of the system. We can always “orthonor-
malize” the latter system with respect to the L?(Q) inner product:

o (x)dO = 6o = A1 T
p//ﬂm ;) d2 = 63 {O, 7 (5.93)

This is done only to simplify calculations (and to get the final equations in
normal form); it is not necessary in principle. We seek the nth approxima-
tion to the solution in the form

)= crl(t)pr(x) (5.94)
h=1

where the ¢k (t) are time functions satisfying the following system of Faedo—
Galerkin equations, which are implied by (5.78) in which we put w,, instead
of u and consequently ¢; instead of v:

// (a;:z:n %iz 68@;” (?;21) dQ = //Q [f(x,t) — piin (x,1)] i(x) dQ

(5.95)

for e =1,...,n. These can be written as
p//Q Ui (X, 1) i () dQ = —(un, i) M +/Q F(x,t)pi(x)dQ, i=1,...,n.
Finally, using (5.94) and (5.93), let us rewrite this as
- ch(t)(@k, wi)Mm + //Q F(x, )i (x)dQ, i=1,...,n. (5.96)
k=1

This is a system of simultaneous ordinary differential equations for which
we must formulate initial conditions. The condition @(x, t)|;=¢ = u1(x) and

(5.93) imply
0)=p1/2 //Q ui(x)pi(x)d), i=1,...,n. (5.97)

From (5.91) we derive the following conditions for ¢;(0). Let us solve the
problem

n 2
- Zakgok — min . (5.98)
] M A1,...,0n
We know this is solvable; moreover, its solution di,...,d, gives us
> r_i depr, the orthogonal projection in Epe of ug onto the subspace
spanned by ¢1,...,¢,. Thus the second set of initial conditions is
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So the setup of the nth approximation of the Faedo—Galerkin method con-
sists of (5.96) supplemented with (5.97) and (5.99). We begin by establish-
ing the properties of this Cauchy problem.

Unique solvability of the Cauchy problem for the nth approximation
of the Faedo—Galerkin method

We would like to understand what we can say about the solution of the
Cauchy problem (5.96), (5.97), (5.99). The simultaneous equations (5.96)
are linear in the unknown ¢;(t). The load terms [[;, f(x,t)p;(x) dQ2 belong
to L2(0,T); indeed, by Schwarz’s inequality

/OT (/ o f(xt)pi(x) dQ)2 dt
S/OT (//Q f2(x,t)dﬂ) (//Q%z(x)dﬂ> "

2 2

= ||%'||L2(Q) Hf||L2(Q0,T) .
From general ODE theory the Cauchy problem (5.96), (5.97), (5.99) has a
unique solution on [0, 7] with arbitrary 7" such that

A (t) € L*(0,T) (5.100)

and ¢;(t) and ¢(t) are continuous on [0, T]. This can be shown by the tra-
ditional way of proving such results, in which a Cauchy problem is trans-
formed into a system of integral equations (by double integration of the
equations in time taking into account the initial conditions). For the inte-
gral equations the existence of a unique continuous solution can be shown
via Banach’s contraction principle, and then time differentiation yields the
remaining properties. Now we obtain the estimate of the solution that
we need to prove the above theorem. The estimate for the solution ¢;(¢),

t=1,...,n,is
n 9 n 2
max | > (¢.(1))" + || D er(t)pn < m.
te(0,7] 1 1 M
Indeed, let us multiply the ith equation in (5.96) by ¢(¢) and sum over i:
Zcz(t)cz( ZZ )k, Ci(t)pi) or
i=1 i=1 k=1

3

+Z// F(x,1)éi(t)pi(x) dS2. (5.101)

i=17 /%
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The term on the left is

1
=1 i=1
— 203 i) [[ et an
—2Pdt1j:1cl Cj QS‘%X‘PJX
d (1
4 (1 (%, )i (%, 1) d92
& (50 [ intxtintx.0a0)
Similarly
(6 (0)pks 5(1)01)as = 5 (un (%, ), un (3, 1))
i=1 k=1
and

i J[ reenateean = [[ o, s

So (5.101) can be presented as

( // w(x, )t (x,t dQ) (un(x 1), un (%, 1))
= / Qf(x,t)an(x,t) s,

or rewritten as

1d
337 (im0 + o 01) = [ 70yt t) a2

Integrating over time ¢ (renaming t by s) we have

1 [td
3 | 25 (PG oy + N 5)13) s

// F(x, 8)tin(x, 5) dQ ds

(1l . ) 2y + o ) )

= 5 (Pl )32 0y + 1un(,0)13)

// f(x, 8)tn(x,s)dQds.
Q

or

N =
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Taking into account the way in which we derived the initial conditions for
Un, We have

[ (%, 0)[ 2y < N1 (O L2y s Mun(30)l[ 5y < Mlug ()l ay -

We can then state that

1 . 2 2
5 (Pl (e D32y + lun(x.DII3,)

1 * 2 * 2
< B (P [t ()72 (o) + HUO(X)”M)

+/Ot/ﬂf(x, §)itn (%, ) A ds.

The elementary inequality

ab| < a? N eb?
abl < & 4+ 22
= 2 2
yields
1 t
f(x, 8)in(x,s)dQds S—/ // f2(x,5)dQ2ds
Q 2¢e
/ // (x,5)dQds
Q
< —/ / f2(x,5)dds
— max // (x, )
s€[0,T]
S0
1 , 2 2 1 (o (|2 () (|2
5 (Pl Dl e + e, D113, ) < 5 (pIui ()20 + 50 13,)

i/T/ F2(x,8)dQds
7521‘5“% // (. 9)
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Putting ¢ = p/(27) and taking the maximum of the left side of the last
inequality we get

1 . 2 2
a5 (o i (e 0)l0) + lun(x, D)

1 * 2 * 2
< 5 (Pt 91220 + N (01, )

T T
+—/ / f2(x,8)dQds
Q
— t)d
4tgloa}:% //Q (x,

1 . 2 2
Jmax 3 (oo )y + lunCx, D)

1 * 2 * 2
< 5 (P19 22 + N (0, )

+%/OT//Qf2(x,s)des.

This is the needed estimate, which can be written as

SO

. 2 2
e (2l o) + ot 013, ) < m

where the constant m does not depend on the number n. In particular,
from this follows the rougher estimate

T
2 2
| (plhua ety + a1, ) e <y
which can be written in terms of (5.82) as

(Uns un)jo, 1) < M1 (5.102)

Convergence of the Faedo—Galerkin method

Now we show that there is a subsequence of {u,(x,t)} that converges to a
generalized solution of the problem under consideration. By (5.102), {u,}
has a subsequence that converges weakly to an element ug(x,t). We shall
show that ug(x,t) is a generalized solution. By Lemma 5.6 we can consider
it as a function continuous in ¢ on [0,7] with values in L?(Q). Let us
renumber this subsequence, denoting it by {u,} (in fact, by the uniqueness
theorem proved later, the whole sequence converges weakly so renumbering
is not required; however, at this point we are not assured of uniqueness).
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So, now we know that u, (x,t) tends to ug(x,t) weakly in Epr.(0,T). First
we show that wug satisfies (5.91). Indeed, by the method of constructing
the Faedo—Galerkin approximations u,, we see that {u,(x,0)} converges
to the initial value u(x) strongly in W12(2) and thus in L?(2). On the
other hand, by Lemma 5.7, {u,(x,t)} converges to u(x,t) in the norm of
C(L?(2);0,T). Thus (5.91) holds for ug(x,t). Let us verify that (5.90)
with u = ug(x,t) holds for any v(x,t) € DE. First we reduce the set of
admissible v to a subset of DI  defined as follows. Let

n

ve(t,x) =Y de(t)er(x),  k<n (5.103)

k=1

where the dj(t) are continuously differentiable and di(T") = 0. Denote the
set of all such finite sums by Dgf. This set is dense in DI and thus, to
complete the proof of Theorem 5.9, it is enough to demonstrate the validity
of (5.90) for u = ug(x,t) when v € D{,. Let us return to (5.95) for wu,:

Ouy, 8% Ounp, Op; B ) |
//Q ( ox % By Oy > ) = //Q (f(x,t) = piin(x,1)) @i(x) dQ,

1=1

N

Multiplying the ith equation by d;(t) and summing from i = 1 to k we get

Ouy, Ovg Bun Ovy,
// ( ox 8:17 8y y ) // X t pun(x t)) Uk(X t) dQ)
for k < n. Let us integrate this with respect to t:
Uy, OV Bun v
dQ) dt
[ )
= / // (f(X7 t) - p'un(xa t)) Vg (X, t) dQ dt.
0 Q
Integrating by parts in the last term we get
8un a'Uk 8’un 8vk
dQdt = t) t) dQ2 dt
/ //Q<6:E 6:1: 6y By) / /Qfx Juk(x, 1)
0 Q Q
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Let us now fix vy (x,t) and let n — oo. By the properties of u,, we have
Odug Ovy, auo ovuy, / /
dQdt = t) t)dQ dt
///(8:17 8:1: 8y 8y> Fx o,
+/ // plio(x, )0k (%, t) det+// pui (x)x(x,0) dS,
0 Q Q

as required by Definition 5.8.

Uniqueness of the generalized solution

Theorem 5.10. A generalized solution of the dynamic problem for a mem-
brane with clamped edge is unique.

Proof. Suppose there are two generalized solutions v’ and u”. Subtract-
ing term by term the equations (5.90) for these solutions and introducing
u=u" —u, we get

Ooudv Oudv
)(x, t) dQ dt — dQdt =0
///Q”“ - ///Q<axaw ay@y)

(5.104)
for any v € DI, Also,
B,y =0

holds in the sense of L?(f2). Let us define an auxiliary function

¢
/u(x,ﬁ)dﬁ, t e 0,7],

w(x, t) =
0, t>T.
First we note that on [0, 7]
t
% = u(x, 1).

This and other similar relations between w and u are established by sim-
ple differentiation of the representative functions of corresponding Cauchy
sequences; then a limit passage justifies that they hold for the elements
themselves. It is seen that w(x,t) belongs to DI. Moreover, it has gen-
eralized derivatives 9%w/0tox = Ou/dx, O*w/Otdy = du/dy in L*(Qo.r)-
Next, 0%w/0t? = Ou/dt € L*(Qo ). Finally, as follows from Lemma 5.6, w
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and its first derivatives belong to C'(L?(£2);0,7) (the reader should verify
this). Let us put v = w in (5.104). This equality can be written as

8u (x, t %w dw 0w Ow
/ // ) Sy dt— / // <8$6t6$ 6y8t8y>dﬂdt0

and rewritten as

/// at{pu (e, t) = (?D <%>2}d9dfo.

Integrating over t we get

[ {ps- (22) - (22) } o

Using the initial condition for u and the definition of w we have

t=1
=0.
t=0

2
t) t
//pu X, 7 dQ+// <awx > +<M) |l =o.
Q Q oy t=0
Here all integrands are positive so
// pu(x,7)dQ = 0.
Q
Since 7 is an arbitrary point of [0,7] we have u = 0. O

Let us recall that because of uniqueness it can be shown (by way of
contradiction) that the whole Faedo—Galerkin sequence of approximations
{u,} converges weakly to the generalized solution of the problem under
consideration in the energy space.

5.9 Other Dynamic Problems of Linear Mechanics

Let us briefly consider the changes needed to treat various other dynamical
problems of mechanics.

We begin with a mixed problem for the membrane. If a portion of the
edge is free from clamping and loading, how must the approach change?
Only in the definition of the energy space. The removal of restrictions on
the free part of the boundary simply requires a wider energy space; then
everything carries through as before, and the same theorems are formally
established.



398 Advanced Engineering Analysis

When on some part I'y of the edge a load f(s,t) is given, the equation
for generalized solution appears as follows:

I G e yy) = [ f[ somomtsnanas
+/0 /F1<p(s,t)v(s,t)dsdt+/0 //Qpa(x,t)i)(x,t)dﬂdt
+ / /Q pus (x)v(x, 0) d2. (5.105)

For solvability we also need
o(s,t) € WH(L3(T1);0,T). (5.106)

Under this restriction it is possible to obtain an a priori estimate of the gen-
eralized solution, and thus to prove existence of a generalized solution. The
formulation and uniqueness proof remain practically unchanged (except for
the definition and notation for the energy space).

We shall not consider in detail all the other problems of dynamics for
the objects we studied in statics. The introduction of the main equation
of motion always repeats all the steps we performed for the membrane.
The corresponding energy space formulation, in which the inner product is
denoted by (-, )¢, yields

/ (u(t), o dt = / / (x,t) - v(x,t)dQdt
Q
/ / (s,t) stdsdt+/ /puxt v(x,t)dQdt
I'y

+ /Q puj(x) - v(x,0)dQ

which parallels (5.105) for the membrane. The reasoning leading to the
main theorems remains the same, the differences residing only in the defini-
tions of the appropriate energy spaces. The reader can formulate and prove
the existence and uniqueness of generalized solutions for initial-boundary
value problems in the theory of plates and for two- and three-dimensional
elastic bodies.
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5.10 The Fourier Method

A principal method of solving dynamics problems was developed by Fourier.
The method facilitates the description of transient processes. Normally the
class of loads considered analytically is not wide, and it is possible to find
a partial solution that “removes” the effect of the load; it then remains to
find how the behavior of a non-loaded object changes from some arbitrary
initial state. For solution of the latter problem, Fourier proposed a method
of separation of variables. As an example let us consider the dynamic
problem for a string, described by

0%u  0%u
with initial and boundary conditions
ou(z,0)

u(0,t) =0 =u(mt), wu(z,0)=ue(z), =wuy(z). (5.108)

ot
We seek a solution to (5.107) in the form u(x,t) = T(t)v(z). From (5.107)
we have

T X'@)

@) X(x)

The value X can only be constant since each fraction of the equality depends

on only one of the independent variables x or t. We seek nontrivial solutions
of this form. The equation

X"(x) + N2 X () =0 (5.109)
with the necessary boundary conditions
X(0)=0=X(n) (5.110)

has nontrivial solutions only when A = k with k a positive or negative
integer; that is, X;(x) = csinkz. There are no other nontrivial solutions
to (5.109)—(5.110), which is typical of eigenvalue problems for distributed
systems. Using this, we find an adjoint solution for the equation

T (t) 4+ E*T(t) = 0,
whose general solution is
Tk (t) = cro cos kt + g1 sin kt.

Hence Fourier obtained a general solution to (5.107) as
(cro cos kt + ¢ sin kt) sin kx. (5.111)
k=1
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Finally, we can look for coefficients that satisfy (5.108). So a central role in
Fourier theory is played by the eigenvalue problem, the problem of finding
nontrivial solutions to a boundary value problem with a parameter, (5.109)—
(5.110). A similar problem arises in all linear mechanical problems, and in a
similar fashion. In fact, we could begin at once to seek a class of particular
solutions of the form e*v(z) where v(0) = 0 = v(7). Now we have the
same eigenvalue problem for v(z):

v (x) + pPv(z) = 0.

Moreover, when we seek a general solution as a sum of particular real
solutions, we come to the same expression (5.111). This can be said for
any of the linear mechanical problems considered earlier. Thus in every
case we come to a particular eigenvalue boundary value problem, then to
the problem of finding the coefficients of the corresponding Fourier series
of the type (5.111), and finally to the problem of convergence. This will be
considered in detail in the next few sections.

5.11 An Eigenfrequency Boundary Value Problem Arising
in Linear Mechanics

For each problem considered earlier, the dynamic equations with use of the
D’Alembert principle have the form
0%u
(u,m)e = — vl dQ (5.112)
Q t

where (-, ) is a scalar product in the energy space and 7 is an admissible
virtual displacement. To formulate an eigenfrequency problem, we put
u = ey(x) in (5.112) and obtain

(v = i [ ona. (5.113)

For convenience let us take p = 1 (by choice of dimensional units). Since
we now consider complex-valued u, we let n be complex as well. In this
case (5.113) takes the form

(v,m)e :,LL2/QvﬁdQ. (5.114)

Equation (5.114) defines the general form of the eigenfrequency problems
for the elastic objects considered in this chapter.
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Definition 5.11. If (5.114) has a nonzero solution v for some y, then v is
an eigensolution (eigenvector) and u is the corresponding eigenfrequency.
The value A = 1/p is the eigenvalue of the object.

Remark 5.12. We could arrive at the same eigenvalue problem by consid-
ering heat transfer described by

aT
P _ AT
ot

with zero temperature 7' on the boundary of the domain. If we seek a
solution in the form T'(x,t) = e #*v(x) in a generalized statement, we get
the equation that coincides with (5.114) governing eigen-oscillations of a
membrane taking the same domain in the plane; the only discrepancy is
the form of the parameter in the equation: it is p for heat transfer and p?
for the membrane. Next, introducing A = 1/p in the heat problem we get
a parameter that is usually called the eigenvalue. However we will retain
our terminology since it makes more mechanical sense. Next there is a dis-
crepancy between our terminology and that which is common in textbooks
on mathematical physics: we call eigenfrequencies the quantities that are
called eigenvalues in mathematical physics; the reason is that in mathe-
matical physics they normally consider the equation in L?(Q2) so A = A is
considered as an unbounded operator in L?(€2) and the terminology is bor-
rowed from standard spectral theory. But in our approach this differential
operator corresponds to the identity operator in an energy space. (|

We formulated (5.114) in a complex energy space. The next lemma
permits a return to real spaces.

Lemma 5.13. All eigenfrequencies of the problem (5.114) are real.

Proof. The result follows from the fact that (v,v). and [, vTdQ) are
positive numbers for any v, hence so is p? = (v,v)¢/ [, V0 dSQ. O

Since (5.114) is linear in v, we can consider its real and imaginary parts
separately, and hence consider it only in a real energy space. Thus the
equation we shall study is formulated in a real energy space and the eigen-
frequency problem is as follows.

Eigenvalue Problem. Find a nonzero u belonging to a real energy space
£ that satisfies the equation

(u,v)s = ,u2/ uw dS2 (5.115)
Q
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for any v € £.

We require that £ is a Hilbert space and that there is a constant m > 0
such that

Hu”g > m||u||W1,2(Q) (5.116)

for any u € £. All the energy spaces we introduced had this property; in
the case of a three-dimensional elastic body, u is a vector function, and
in the integral on the right of (5.115) uv must mean a dot product of the
displacement vectors u and v.

Let us transform (5.115) into an operator form using Theorem 4.100. At
any fixed u € &, the integral fQ uv dS) is a functional linear in v. Schwarz’s
inequality, Sobolev’s imbedding theorem, and (5.116) give us

/ uvdﬂ\ < ullpagen el 2

<m HUHWL?(Q) HUHWm(m
< myJful, [lvfl, (5.117)

which means this functional is continuous for v € £. Thus it can be repre-
sented as an inner product in &:

/ wvdQ = (w,v)e, (5.118)
Q

where w € £ is uniquely defined by u. (The second position of v in the
inner product is unimportant by symmetry in the arguments.) Since to any
u € & there corresponds w € £, we have defined an operator A acting in &:

w = Au. (5.119)
With this notation (5.115) takes the form
(u,v)e = p?(Au,v)e. (5.120)
Since v € £ is arbitrary we get
u = p*Au. (5.121)

Although A has been introduced theoretically, we should be able to estab-
lish some of its properties through the defining equality

(Au,v)e = / uv dSQ. (5.122)
Q
Let us begin.

Lemma 5.14. The operator A is linear and continuous on .
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Proof. For linearity it suffices to establish that
A(alul + O[QUQ) = o Aug + asAug (5123)

for any real numbers «; and elements u; € £. By (5.122) we have

(A(aquy + agug),v), = / (1uy + aaug)v dQ
Q

:al/ulvdﬂ+a2/u20dﬂ.
Q Q

On the other hand
(Au;,v)e = / w;v dSQ, 1=1,2,
Q
and thus

(A(arur + agug),v), = a1 (Auy,v), + az (Aug,v), .

£

From this (5.123) follows by the arbitrariness of v. To prove continuity of
A let us use (5.117), from which

(o)) =| [ wwds] < maul, ol
Setting v = Au, we get for an arbitrary u
|(Au, Au)e| < ma [Jull, [[Aull, .
It follows that
[Aull, < mqull,,
and this completes the proof. O

Definition 5.15. An operator B is strictly positive in a Hilbert space H
if (Bx,z) > 0 for any « € H, and from the equality (Bz,z) = 0 it follows
that z = 0.

Lemma 5.16. The operator A is strictly positive in E.

Proof. Clearly
(Au,u), = / u?dQ > 0.
Q
If (Au,u)e = 0, then u = 0 in L?(Q) and thus in &. O

Lemma 5.17. The operator A is self-adjoint.
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Proof. We use the symmetry in the arguments w,v in the definition
(5.122) and continuity of A. Since

(Au,v)e = / uvdQ = / vudQ = (Av,u): = (u, Av),
Q Q
the proof is immediate. O
The last property we wish to establish is
Lemma 5.18. The operator A is compact.

Proof. 1Tt is enough to show that for any weakly Cauchy sequence {u,,}
the corresponding {Au,} is a strongly Cauchy sequence. Let {u,} be a
weakly Cauchy sequence in £. By (5.116) it is a weakly Cauchy sequence
in W12(Q) and thus, by Sobolev’s imbedding theorem, it is a strongly
Cauchy sequence in L?(Q). Let us use an inequality following from (5.117),

\ / ude] < ms Jull 2y ol

to write

|(Aun = um),v)| =

/(un — Uy )V dQ‘ < mgs |Ju, — umHLQ(Q) v, -
Q
Putting v = A(un — um) we get

[(A(un = um), Altn = um)),| < ms[lun — umHL2(Q) [A(un — um)|,

so that

[A(un — um)lls < ms|lun — umllpz) — 0 as n,m — oo.

This completes the proof. O

5.12 The Spectral Theorem

The results of this section are general despite their formulation in energy
spaces. They apply in any separable Hilbert space £, whether or not the
space pertains to a mechanical problem. We suppose A is a self-adjoint,
strictly positive, compact operator acting in a real Hilbert space £. The
inner product in £ is denoted (u,v).. Because A is self-adjoint and strictly
positive, the bilinear functional (Au,v), has all the properties of an inner
product. Let us denote this inner product by

(u,v)a = (Au,v)e (5.124)
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and its corresponding norm by |jul , = (u, u)114/2.

Since & is incomplete with respect to the new norm we can apply the
completion theorem. The completion of £ with respect to the norm |ul| 4
is denoted by £4 and is called the energy space of the operator A. But,
unlike the earlier energy spaces, this energy space for the problems under
consideration does not relate to the system energy. Looking at the form of
the inner product in £4 for A from the previous section, we see that it is
an inner product in L2(£2). Moreover, from the general theory of the LP
spaces it is known that infinitely differentiable functions whose support is
compact in § (so they are zero on the boundary of Q) are dense in L?(2).
Hence the resulting space £4 for the problems of the previous section is
L?(Q2) (more precisely, the elements stand in one-to-one distance preserving
correspondence). In what follows we need

Definition 5.19. A functional F'is weakly continuous at a point  if for any
sequence {u,} weakly convergent to u we have F(u,) — F(u) as n — oo.
A functional is weakly continuous on a domain M if it is weakly continuous
at each point u € M.

By definition a linear weakly continuous functional is continuous, and
vice versa.

Lemma 5.20. A functional F(u), weakly continuous on the unit ball
llull. < 1 of a Hilbert space &, takes its minimal and mazimal values on
this ball.

Proof. This is similar to a classical calculus theorem on the extremes of
a continuous function given on a compact set. We prove the statement for
maxima of F. The result for minima follows by consideration of —F. Let
{un} be a sequence in the unit ball, denoted by B, such that

F(up) = sup F(u) asn— .
llulle<1

Since {u,} lies in B it contains a weakly convergent subsequence {uy, }.
Since B is weakly closed in £ this subsequence has a weak limit u* belonging
to B. The value F(u*) is finite and since F' is weakly continuous we have

F(up,) — F(u*) = sup F(u),
[lull¢ <1

so u* is the needed point. O
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Lemma 5.21. Let A be a compact linear operator in a Hilbert space E.
Then F(u) = (Au,u)s is a weakly continuous functional in E.

Proof. Let {u,} be weakly convergent to u. Consider

[(Aun, un)e — (Au, u)e| = [(Aun, un)e — (At un)e + (Au, un)e — (Au, )|
S |(Aunaun)£ - (AU, un)E' + |(AU,Un)g - (AU, u)é‘l
< [[A(un — u)ll; lunll, + [(Au, un — )|

—0 asn— oo.

For the first term this happened since ||uy||, is bounded and A(u, —u) — 0
strongly in €. The second term tends to zero since it is a linear continuous
functional in u,, — u. O

For a strictly positive operator all the eigenvalues are nonnegative
(why?) so we will denote them as \2:

Az = Nz

This is done to preserve the terminology of mechanics, where the corre-
sponding value ;= 1/X is called an eigenfrequency of the object. Let us
formulate the main result of this section.

Theorem 5.22. Let A be a self-adjoint, strictly positive, compact operator
acting in a real separable Hilbert space. Then

(i) A has a countable set of eigenfrequencies with no finite limit point;

(i1) to each eigenfrequency of A there corresponds a finite dimensional set
of eigenvectors {pr}; we can choose eigenvectors constituting an or-
thonormal basis;

(iii) the union of all orthonormal bases {¢r} corresponding to the eigenfre-
quencies of A is orthonormal in £;

(iv) the same union {@} is an orthogonal basis in Ea;

(v) for any u € & there holds

Au = Z A2 (w, k) e Pk Ay = Moy (5.125)

k=1
We subdivide the proof into Lemmas 5.20 through 5.27. Statements
(i) and (ii) follow from the Fredholm-Riesz—Schauder theory for compact
operators. Statement (iii) follows from the self-adjointness of A. So we
know some properties of the eigenvalues of A, but it remains unknown
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whether the set of eigenvectors is nonempty. First we demonstrate the
existence of such an eigenvector.

Lemma 5.23. For a self-adjoint strictly positive compact linear operator
A acting in &,
M = sup (Au,u)e
llulle<1
is an eigenvalue of A. It is also the largest eigenvalue of A, and the lowest
eigenfrequency of A is up = 1/A1.

Proof. 1If A2 is an eigenvalue then Au = A?u and it follows that
(Au,u)e = A2 |luf?. So for |lu], < 1 we have (Au,u): < A3, and thus
all the eigenvalues are nonnegative and less than or equal to A? > 0. Let us
demonstrate that A\? is an eigenvalue of A. By Lemmas 5.20 and 5.21 we
know that sup(Au,u) is attained on some point ¢; of the ball ||ul|, < 1.
Since the form (Au,u), is homogeneous in u, we know that p; belongs to
the unit sphere [Juf, = 1:

AL = (Ap1, 01)e, lleall, = 1.

We show that ¢ is an eigenvector of A. It is clear that A\? can be defined
as the maximum of the form (Au,u)s on the unit sphere |lul|, = 1. By
homogeneity the same can be said about the functional

G(u) = (Au,v)e = (Av,v)¢, v 4

3 [olle = 1.
[[ulle

lulle”
Thus G(u) takes the same set of values as (Au,u)s on the unit sphere
|lul|. = 1 and, moreover, it attains its maximal value equal to Ay at the
same point ;. Consider G(¢1 + aw) for a fixed w € €. This is a func-
tion continuously differentiable in « in some neighborhood of oo = 0, and
attaining its maximum at o = 0. Thus

dG(p1 + aw)

=0.
do

a=0

Calculating this we get

Ao,
(Agr,w)e — %wl,w)g 0,
E

that is,
(Agpl — )\%gol,w)g =0

for any w € £. So 1 is an eigenvector and A? is an eigenvalue of A. 0
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Next we describe a procedure for finding other eigenvectors and eigen-
values of A, using the established property that the set of all eigenvectors of
A has an orthonormal basis. We know how to find the first eigenvector. For
the rest we shall use a procedure having ith step as follows. Let o1,..., ¢,
be mutually orthogonal eigenvectors determined by the procedure. Denote
by £,.1 the orthogonal complement in £ of the subspace of £ spanned by
©1,---,pn. Consider the operator A given on &,;. We can repeat the
reasoning of Lemma 5.23 and find an eigenvalue denoted by A2 11 and an
eigenvector .1 of the restriction of A to &,1. So

(ASﬁnJrl - >‘721+1<Pn+17w)g =0 (5.126)

holds for any w € &,,. We show that this holds for any w € £. By
the orthogonal decomposition theorem, it is enough to prove that (5.126)
holds when w is any of the previous eigenvectors @1, ..., @,. Since for any
1<n+1

(Pn+1,0i), =0 and (Apni1,9i), = (Pnt1, A0i), = A7 (Ont1,9i), =0,

it follows that (5.126) holds for any w € €. Hence we really did obtain the
next eigenpair.

Lemma 5.24. For an infinite dimensional space £, the eigenvalues of A
are countable. The corresponding eigenfrequencies p; = 1/X;, A > 0, are
such that p; < g1 — 400 as ¢ — oco.

Proof. The above procedure can terminate only when we get some sub-
space &, on the unit ball of which sup(Au, u), = 0. But then &, contains
only the zero element since A is strictly positive. So £ is finite dimensional,
a contradiction. The rest of the lemma follows from the method of con-
structing the eigenvalues. |

Lemma 5.25. The set of all the constructed eigenvectors 1, ..., ¢n, ... S
an orthonormal basis of €.

Proof. Take any u € £ and consider the remainder of the Fourier series

n

Un = — Y (U, Pk)c Pk
k=1
We see that (un,¢r), = 0 for k < n, and thus u, € &,1. From Fourier
expansion theory we know that {d>,_, (u, pr)epr} is convergent, hence so
is {u,}. Suppose, contrary to the lemma statement, that the strong limit
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of {u,} is ug # 0. By the procedure for finding eigenvalues and the fact
that u,, is in &£, , we have

(Aun’un)g AQ L
[P "

Passage to the limit in n implies

(AU‘O’ uo)g <

2
[[uolle

Hence ug = 0, which completes the proof. ]

Lemma 5.26. For any u € &, relation (5.125) holds:

Au = ZM u,r)evn,  Apr = Xk

Proof. The Fourier series

o0
Z u 901@ £Pk
k=1

is strongly convergent. Applying a compact (and hence continuous) opera-
tor A we get

Au =" (u,01)c Apr = Y AL (u, r)er,
k=1 k=1

as required. O

The last non-proven statement of the theorem follows from

Lemma 5.27. The set ¥y = o/ g, A >0,k =1,2,3,..., is an orthonor-
mal basis of E4.

Proof. Mutual orthogonality of the 1y in €4 follows from

1 N
() = (A0 = (400 2 ) = £ ()
T ]/ & 1717
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Hence the set is orthonormal as well. For the proof it is enough to demon-
strate that Parseval’s equality holds in £4 for any u € &:

(ua U)A = (Auv u)S = (Z (uv on)fA(Pka u) = Z(uv on)S(AQOka U)E

k=1 k=1

I
(]

o0 A o0
(Uv)\i%k) (Apr,u)e = > (u, Aby)e (Abg, u)e

k=1 k=1

(u, i)

M

=
ﬂ‘
U

5.13 The Fourier Method, Continued

We have obtained general results on the structure of the spectrum and the
properties of the eigenvalue problem for a strictly positive, self-adjoint, com-
pact linear operator A. This eigenvalue problem includes all the eigenvalue
problems of linear mechanics that we have considered.

In §5.10 we began to study the Fourier method for dynamical linear
problems. We sought a general solution of a general linear initial-boundary
value problem for a body free from external load. However, the fact that
the eigenvectors of A, satisfying

X (0, 0)e = A on(x)u(x) de,

constitute an orthogonal basis in £ and £4 simultaneously, allows us to
consider the problem for a loaded body as well. Here the Fourier method
appears to relate to the Faedo—Galerkin method for a special basis, namely
for the eigenvectors of the operator A which is now well defined by (5.118).
Let us recall that for the basis
L, i=y,
L 0i)e =015 =
(0i,¢5)e ij {O, i
Let us review the general notation of this section. In £(0,7T) an inner
product is defined as

T T
(u, v) (0,17 :/0 (u,v)e dt—l—/o /Qu(x,t)ij(x,t) dQ dt (5.128)

(changing the dimensions we put p = 1) and D} denotes the subspace
that is the completion of that subset of the base functions of £(0,7T) which

/QSDi(X)QDj(X) dQ = X35, (5.127)



Applications of Functional Analysis in Mechanics 411

vanish at ¢t = T. A generalized solution v € £(0,T) is defined by

/Ouv dt = //fxt xtdet+// (x,t)0(x,t) dQ dt
/Qul()(x 0) d2 (5.129)

for any v € DI". Note that the initial condition for the first time derivative,
that is uf, is taken into account in (5.129); we do not require it to hold
separately. Another initial condition

t)|t:O = uj(x) (5.130)
must be satisfied in the sense of L?(f2); see Definition 5.8. The boundary
conditions are hidden in the definition of £. We recall that we require
uf(x) € €, ui(x) € Ea, and f(x,t) € L*(Q x [0,T]). Now we return to the
Faedo—Galerkin method with the basis elements ¢y, £k = 1,2, ..., that are
eigenvectors of A with the properties studied earlier. Let us seek the nth
Faedo—Galerkin approximation

n

Un = Z Ck (t)gpk

k=1

to the generalized solution given by the equations

Cz(t)/ @?(X) dQ - (SO’L;SQZ EC’L / f X t <,01 Z: 17.. ., n
Q

or, because of (5.127),
G(t) +plei(t) = fi(t), pmi=1/N, di=1,...,n (5.132)

=it [ rextei a0

and eigenfrequencies p; = 1/A; — oco. We see that equations (5.132) are
mutually independent. Let us derive the initial conditions for these equa-

where

tions. Denoting ¢;(0) = doi, ¢(0) = di;, and remembering that dy; are
defined by

— min

n 2
= dopr
k=1 £

we get

doi (@i, Pi)e = (U37<Pi)s
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SO

ci(0) = doi = (ug, pi)e = (ug, piApi)e = g /Q uh(x)pi(x)dQ. (5.133)

Similarly, minimizing

n 2
ui‘ — Z dlksﬁk — min
k=1 A
we obtain
dii (@i, pi)a = (i, ul)a
or
0) = i = 1 (nui)a = i [ uix)eu() 09 (5.134)

so we see that the initial conditions are split as well. Because of the mutual
orthogonality and basis properties of {(;} in & and £4 we can rewrite the
corresponding Parseval equalities

> doi = llugl (5.135)
i=1
and
*112
Zd%i((pia(pi)x“ = Zd%i)‘g = [luilla - (5.136)
i=1 i=1

The solution of the problem (5.132), (5.133), (5.134) is

1 t
¢i(t) = doi cos(pit) + dy; sin(pt) + — / fi(7) sin p; (t — 7) dr.
Hi Jo

It is easily seen that ¢;(t) is continuously differentiable on [0, T]. Note that,
unlike the case of a general complete system of basis elements, the coeffi-
cients of the Faedo—Galerkin method do not depend on the step number.
Let us examine the behavior of the corresponding partial sums of the formal
series

o0

u(x,t) = Z (dol' cos(p;t) + dyg sin(u;t)
i=1
1

o) fi(r) sinpi(t —7) dT) i (%). (5.137)
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Let us note that the portion

u(x,t) = Z (do; cos(pt) + dyg sin(p;t)) pi(x)

is a formal solution for the dynamical problem for a load-free elastic body by
the Fourier method. From the above we know these partial sums converge
weakly to a generalized solution of the dynamical problem. So in a certain
way u(x,t) given formally by (5.137) is this solution. We will establish the
properties of the series (5.137) and hence those of the generalized solution.

Let us consider the convergence of series (5.137). Multiply the identity
(5.131) termwise by ¢;(¢) and sum over i

Zéi(t)cl( )/ dQ + Zcz Cz 901, 301)

or

x (2 &0 [ pteao+ ;cgw%%)g)
= Qf(Xv t) <Z éi(ﬂ%(X)) dQ

We used this procedure in obtaining the estimate of the Faedo—Galerkin
approximation. So redenoting ¢t by 7 and integrating the last equality in 7
over [0,t] we get

%(Z 0 [ dQ+Z %%)

=1

_%<Zlcf(0)/ dQ—i—Zc Vi, i) )

+/Ot/ﬂf(x,7’) <Zn: éi(T)gai(x)> dQ dr

=1
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and therefore

dQ+Z )(@is i) )

S%Z(d%l)\f+d§i)+T/ /f2(x,T)deT
0 JQ

N~
[
-
=N
o
Nt

:%é(di)\f +T//f x,7) dQ dr
Z </ x)dQ> dr.

Here we used the elementary 1nequahty
a? 9
b| < — +Tb

and mutual orthogonality of the ¢; in £4 = L?(Q2). Taking maximum values

on [0,7] in the last inequalities we get
1 "
P s t dQ 1y ¥
7 max (ch() +Z )(@is #3) )

1 " T
DN ( @A dB)+T / f2(x,7)dQdr
2 Z ! 0 Q

=1

+—T m%Z (/ )dQ)2

1 2
(5 CZ / dQ+ZC (Pza(Pz )

1
<3 D (AN +d5) + T/ F2(x,7) ddr. (5.138)
] 0

SO

The right side of (5.138), by (5.135) and (5.136), is bounded by some con-
stant M independent of n. By orthogonality of the basis elements and the
form of the norm of a partial sum for series (5.137), which is

un(x,t) = Zci(t)cp (x)

=1
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we know that {u,} converges in C(£;0,T) and {du,/dt} converges in
C(E4;0,T) = C(L*(Q);0,T). Thus the series (5.137), which is also a gen-
eralized solution to the problem under consideration, belongs to C(€;0,T),
whereas its time derivative Ou/dt belongs to C(£4;0,T). Simultaneously
we justified convergence of the Fourier method for a free-load dynamical
problem for an elastic body. Assuming existence of time derivatives of the
force term f, in the same way we can show that the solution has additional
time derivatives. Moreover, for the free-load case we can show that the
time derivative of any order of the solution is in C(€4;0,T).

5.14 Equilibrium of a von Karman Plate

So far we have considered only linear mechanical problems. Of course, these
represent only simple approximations to natural processes: although some
weakly nonlinear processes can be analyzed with sufficient accuracy via lin-
ear models, many important physical effects are inherently nonlinear. It is
fortunate that the speed of machine computation has increased to the point
where more realistic simulation has become possible. But the availability
of numerical methods has also underscored the importance of analytical
considerations. To work effectively we must know whether a solution ex-
ists and to which function space it belongs. We should also understand
the differences between various solution methods and be prepared to place
rigorous bounds on the error.

An important nonlinear problem, and one that can be regarded as a
touchstone for many numerical methods, is the equilibrium problem for a
thin elastic plate under transverse load ¢q. The plate is described by two
nonlinear equations,

DA*w = [f,w] +q, (5.139)

A?f = —[w,w], (5.140)

given over a two-dimensional region (2 representing the mid-surface of the
plate. Here w = w(x,y) is the transverse displacement of a point (x,y) of

the mid-surface, f = f(x,y) is the Airy stress function, D is the rigidity
coefficient of the plate, and the notation [u,v] is defined by

[t V] = UggVpg + UyyUyy — 2UgyVsy (5.141)

where the subscripts « and y denote the partial derivatives 9/9x and 9/dy,
respectively. With suitably chosen dimensionless variables we can get D =
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1. We shall consider the problem with the boundary conditions

ow
W), =0= ol (5.142)
and
_of
Floa = =,y (5.143)

Conditions (5.142) mean that the edge of the plate is fixed against trans-
verse displacement and rotation, and (5.143) means that the lateral bound-
ary is not subjected to tangential load. In mechanics, (5.143) is derived for
a simply connected domain. As usual we take €2 to be compact with a piece-
wise smooth boundary so that Sobolev’s imbedding theorem for W?2:2(Q)
applies. If we neglect the term [f, w] in (5.139), we get the linear equation of
equilibrium of a plate under transverse load as considered in Chapter 4. We
would like to apply the tools of generalized setup of mechanical problems.
Let us begin with the pair of integro-differential equations

a(w,¢) = B(f,w,() // q¢ dS, (5.144)

a(f,n) = —B(w,w,n), (5.145)

where
a(u,v) = //Q (Uza (Vaz + pvyy) + 2(1 = ) UayVay + tyy (Vyy + p022)) dQ,

u is Poisson’s ratio for the material (0 < p < 1/2), and

Blu0) = [ [ (s = ) s+ (ayve = 0,) 2,) 9

From a variational perspective, (5.144)—(5.145) would appear to constitute
the first variation of some functional; we could regard ¢ and 7 as arbi-
trary admissible smooth variations of w and f. Because such a viewpoint
would return us to (5.139)—(5.140), we could try (5.144)—(5.145) as equa-
tions appropriate for the generalized setup. Other forms of the bilinear
functional a(u,v) may also yield (5.139)—(5.140) as a consequence of the
variational technique; however, for types of boundary conditions that differ
from (5.142) this would lead to incorrect natural boundary conditions. If
we wish to consider boundary conditions for f including tangential load,
we must take a different form of the left side in (5.145) (see, for example,
[31]). But for conditions (5.143) we can forget about the physical meaning
of the Airy function and use the same form of a(u,v) in the generalized
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equation. Hence we shall use (5.144)—(5.145) for the generalized setup of
the equilibrium problem for von Karman’s plate. Experience with the linear
equilibrium problem for a plate suggests that we exploit the form a(u,v)
as an inner product in “energy” spaces for w and f. This means, by the
results for a linear plate, that the solution will be sought in the subspace
of W22(Q) consisting of the functions satisfying the boundary conditions
(5.142). We need to see whether the terms of (5.144)—(5.145) make sense
when the functions included therein reside in the energy spaces (note that
we now consider dimensionless versions of the equations). Of course, we
suppose that ¢ satisfies at least the same conditions as for the general-
ized setup of the corresponding linear plate problem. For definiteness, let
q € L(§2). We will check that the other terms in the equations make sense.
It is necessary to consider only the trilinear form B(u, v, w). Apply Holder’s
inequality for three functions to a typical term:

e« (ff eim) ™ (ff som) " (ff viam)

<mllullp vllpllwlp, (5.146)

where we have used the fact that in £p. the norm

1/2

lwllp = (a(w,w))"/

is equivalent to the norm of W22(Q) and elements of W?%2(Q) have the
first derivatives belonging to LP(Q2) with any finite p > 1, in particular for
p = 4, which is necessary in Holder’s inequality. So all terms make sense in
the energy space.

Definition 5.28. A generalized solution to the equilibrium problem is a
pair w, f belonging to Ep. x Ep. and satisfying (5.144)—(5.145) for any
ga ne ch-

Equation (5.145) is linear in f. Using this we will eliminate f from the
explicit statement of the problem. The right side of (5.145) is linear in #;
estimates of the type (5.146) give us

| B(w,w,n)| < m|w|p 0] p- (5.147)

This means B(w,w,n) is continuous in 7 so we can apply Theorem 4.100
and state that for any fixed w € Ep,

—B(w,w,n) = (C,n)p = a(C,n). (5.148)
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This C' € Epc, uniquely defined by w, is considered as the value of an
operator in Ep, at w: C' = C(w). Then (5.145) is rewritten as

a(f,n) = a(C(w),n) (5.149)

and thus f = C(w). We will make further use of this.
Let us call a nonlinear operator in a Hilbert space completely continuous
if it takes any weakly Cauchy sequence into a strongly Cauchy sequence.

Lemma 5.29. The operator C(w) is completely continuous in Epe.

The proof is based on the following symmetry property of the trilinear
form B(u,v,w).

Lemma 5.30. For any u,v,w € Epg,

B(u,v,w) = B(w,u,v) = B(v,w,u) = B(v,u,w)
= B(w,v,u) = B(u,w,v). (5.150)

Proof. We introduced the energy spaces as completions of the sets of
functions satisfying appropriate boundary conditions and having all the
continuous derivatives (in this case up to second order) that are included
in the energy expression for the body. However, the set of infinitely dif-
ferentiable functions is dense in subspaces of C*)(Q), and this means we
can use it as a base to get a corresponding energy space (in other words,
among representative Cauchy sequences of an element of an energy space
there are those which consist of infinitely differentiable functions only).
The validity of (5.150) is shown by direct integration by parts for functions
u,v,w having all the third continuous derivatives (they cancel mutually
after transformations). Taking then representative Cauchy sequences for
elements u,v,w € Ep. that have infinitely differentiable members we get
the needed property by the limit passage in the equalities (5.150) written
for the members. Equation (5.147) justifies the limit passage. O

Proof. [Proof of Lemma 5.29] By (5.150) and (5.148), for any n € Ep,
we have

(C(w),n)p = —B(w,w,n) = —B(n, w,w). (5.151)

Let {w,} be a weakly Cauchy sequence in Ep. and thus ||wy||p < co with
¢o independent of n. We must show that {C(wy)} is a strongly Cauchy
sequence. From (5.151) it follows that

[(C(wntm) = Clwn),n)p| = [B(N, Wntm, Wntm) — B0, wn, wy)|. (5.152)
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Consider a typical pair of corresponding terms of the right side:
‘//Q Nzx (wnerywnerz — wnywnx) dQ‘
B '//Q e (wnerywnerm ~ WntmyWng + WntmyWna — wnywnz) dQ'

Q Q

Applying Holder’s inequality to each term on the right as in (5.146), we
have

}//g nxm(wnerywnerz - wnywnz) dQ
2

(flm) Il )( [ ona o am)
() (i) ([ on)

< M |lnllp co (Hw%mx - ww”yﬂ(sz) + Hwn+my - wny”m«n)

with a constant M defined by the imbedding theorem for £p.. Doing this
for each corresponding pair on the right side of (5.152) we get

[(Clwnym) = Clwn),n)p|
<M ||77HP (Hwn-i-mm - w"f”HL‘i(Q) + ||wn+my - w"yHL‘l(Q))
Putting 7 = C(wp4+m) — C(wy) we get

(C(wntm) — C(wn), C(Wntm) — C(wy))pl
< M ||O(wn+m) - C(wn)”P :

([lwnsme = wnell oy + [Wntmy = wWnyllaey)

or
|C(wnm) — C(wn)HP
< My ([[wnsmy = wnel gy + [0nsmy =yl aey) - (5:153)

But by Sobolev’s imbedding theorem for W22(2), which also applies to its
subspace Ep.., we know that for a sequence {w,, } weakly convergent in Ep,.,

[wnsmg — wnrHL4(Q) +[[wntm, — w"?JHL‘l(Q) —0 asn—oo.
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This implies the needed statement of the lemma:

|C(wntm) — Clwy)||p =0 asn — oo. -

Now we return to the generalized setup and eliminate f = C'(w) from
the statement. Then (5.144)—(5.145) reduce to the single equation

(w,{)p = B(C(w),w, ) + //ﬂ q¢ dQ. (5.154)

Let us present (5.154) in operator form. Consider the right side of (5.154)
as a functional in ¢ at a fixed w. It is linear in {. Next we get

B(C(w), w, () + //Q quQ‘ <my [[C(w)]lp [[wllplIC]p

+ max ¢ / / gl d2

<ma[|Cllp

where we have used a consequence of inequality (5.146), the inequality
2
[C(w)]lp < M |lwllp (5.155)

that can be obtained in the same fashion as (5.153) with use of Sobolev’s
imbedding theorem in W%2()). This means the right side of (5.154) is a
continuous linear functional in { € £p.. Applying Theorem 4.100 we get

B(C(w), w, () + //Q 4CdQ = (G.0)p

where G € Ep, is uniquely defined by w € Ep.. Thus G can be considered
as the result of an operator G = G(w) acting in Ep.. Then (5.154) becomes

(w,Q)p = (G(w), ()P
and so, by the arbitrariness of ( € £p., we get an operator equation
w = G(w) (5.156)
where G is a nonlinear operator in Ep,.

Lemma 5.31. The operator G is completely continuous in Epc; that is, it
takes any weakly Cauchy sequence into a strongly Cauchy sequence.

The proof practically repeats all the steps of the proof of Lemma 5.29
(and in fact is easier since C is a completely continuous operator).
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To use the calculus of variations we should present (5.156) as the equal-
ity of the first variation of some functional to zero. The appropriate func-
tional is

F(w) = %a(w,w) + ia(C(w),C(w)) - //Q qw dSQ. (5.157)
Let us introduce

Definition 5.32. Suppose a functional ® at point = in a real Hilbert space
H can be represented as

Oz +y) — ®(x) = (K(), y)u + ollyll z) (5.158)

for any y, |ly||;; < e with some small € > 0. The correspondence from z to
K(x) is called the gradient of W and is denoted as grad ®(z) = K (z).

This is a way of representing the first variation of a functional in a real
Hilbert space, which was the central point of Chapter 1. The main term in
the representation can often be found by formal differentiation with respect
to a parameter t:

(K(x),y)u = %‘P(I + ty) (5.159)

t=0

For example, the gradient of the functional 3 H:CHE is the identity operator:

d 1(+t +ty)
7 (gl tiy,z+ty .

The reader can check this by direct calculation according to Definition 5.32.

t=0

As in Chapter 1, we have

Lemma 5.33. Suppose a functional ®(x) has at any point x of a real
Hilbert space H a continuous gradient K(z). If ®(x) attains a minimum
at xo, then K(xg) = 0.

Proof. For any fixed y and small ¢, by (5.158) we have
0 < @(xo + ty) — (o) = (K (20),y)m + o([t])-

From this inequality we conclude, as is standard reasoning in Chapter 1,
that (K (zo),y)n = 0. Hence K(x¢) = 0 by the arbitrariness of y. O

Note that we derived a version of the Euler equation for an abstract
functional. The points x at which K (z) = 0 are called critical points of .
Thus points of minimum of a smooth functional ® are its critical points.
Let us apply this to our equation.
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Theorem 5.34. Let ¢ € L(Q). There exists a generalized solution wy, fo €
Epe to the equilibrium problem for von Kdrmdn’s plate with boundary con-
ditions (5.142)—(5.143). The element wq is a point of minimum of the
functional F(w) defined by (5.157).

We present the proof as several lemmas.
Lemma 5.35. At any w € Ep. we have grad F(w) = w — G(w).

Proof. Let us consider F(w + t¢) at any fixed w,{ € Ep.. In ¢ this is a
simple polynomial so we can define grad F by (5.159). Consider

d d (1
EF(w +t¢) . == (—a(w +t¢, w + tC)
1
—|—4a( (w+1t¢), C(w + t¢)) // (w+1C¢) dQ)
:a(w,w)Jr%a <W’ ) //QQCdQ
(5.160)
From (5.151), using the symmetry of its right side in w, we have
dc d
a(%ﬂ?) ——EB(an‘f'tC,w‘f‘tC) :_23(77’111,0
t=0 t=0
So
o (U cw) | = -2pctw) w0,
t=0

Combining this with (5.160) we get

%F(w—i—t() . = a(w, () — B(C(w),w, () — //Q ¢ dQY = (w — G(w),{)p,
which completes the proof. O

From this and the above we get

Lemma 5.36. Any critical point w € Ep. of the functional F given by
(5.157) implies the pair w, f = C(w) is a generalized solution of the problem
under consideration.

Now we show that there is a point at which F'(w) attains its minimum.
First we note that this minimum point is in a ball centered at the origin
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and having radius defined only by the load g. This follows from

2F(w) > a(w, w) —2‘//qud9’

> ol ~ 2mxful [[ lala0
> lwlp — Mo [lwlp (5.161)

where the constant M is defined by the norm of ¢ in L(£2) and the norm
of the imbedding operator from Ep. to C(2). Since F(0) = 0 and outside
the sphere ||w||p, = My + 1, we have F(w) > My + 1 and thus

Lemma 5.37. If there is a minimum point of the functional F', then it
belongs to the ball |w||p < Mo + 1. Moreover, the functional F is growing
in Epe; i.e., F(w) = oo as ||w||p — oco.

The fact that F is a growing functional follows immediately from
(5.161). Now we must prove that F attains its limit point.

Lemma 5.38. The functional

B(w) = 3a(C(w),Clw) - | /Q quw d0

is weakly continuous in Ep., thus the functional F(w) is represented as
L, 2
F(w) = 5 ul’3 + 2(w)
with a weakly continuous functional ®.

Proof. Evident since fQ quw df) is a continuous linear functional and C' is
a completely continuous operator. O

The proof of Theorem 5.34 is completed by the following result due to
Tsitlanadze:

Theorem 5.39. Let f(x) be a growing functional in a Hilbert space H that
has the form

f(@) = |l=|7 + (=)
where o(x) is a weakly continuous functional in H. Then

(i) there is a point xo at which f(x) attains its absolute minimum, i.e.,
f(xo) < f(z) for any x € H;
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(i1) any sequence {x,} minimizing f, so that
lim f(z,) = f(zo),
n—o0
contains a subsequence strongly convergent to xg.

Proof. On any ball ¢(x) is bounded and thus f(z) is bounded as well.
Because f(z) is growing we state that a possible minimum point is inside a
closed ball B of a radius R. Let a be the infimum of values of f(x). Then

of f@) =t f@) =a

Take a minimizing sequence {z,} of f. We can consider it is inside B and
thus contains a weakly convergent subsequence that we redenote by {z,}
again. Without loss of generality, we can consider the sequence of norms
of z,, to converge to b, such that b < R. Since a closed ball centered at the
origin is weakly closed we know that {z,} converges weakly to an element
zo € B. Now it is enough to show that {z,} converges strongly to zo.
We know that if for a weak Cauchy sequence the sequence of norms of the
elements converges to the norm of the weak limit element, then it converges
strongly. Thus we must show only that ||zo||; = b. It is clear that

ol < b.
Indeed, because of weak convergence of {x,} to zo we have
2 . .
lwol% = lim (2, 20) < zollyy i [z = boll
Next, because of weak continuity of ¢ we have
Jim p(zn) = @(20)
and thus

a=1im f(w,) = lim (llzall}; + (o)) = 1 + (o).

n—oo

But

F(zo) = llzoll7; + ¢(x0) > a

SO ||1:0Hi1 > b? which means that ||zo| ; = b. All statements of the theorem
are proved. O

By this theorem the proof of Theorem 5.34 is also completed. Note that
Theorem 5.39 prepared everything to formulate the theorem on convergence
of the Ritz approximations to a generalized solution of the problem under
consideration. We leave this to the reader.
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5.15 A Unilateral Problem

Let us consider deformation of a membrane constrained by a surface be-
neath it. The membrane cannot penetrate the surface. Such a unilateral
problem can be formulated as a problem involving a so-called variational
inequality. By this approach we obtain problems with free boundaries; i.e.,
the boundary of the domain over which some equations are applicable is
determined during solution, not in advance. Our previous use of the term
“free” indicated a lack of geometrical constraints on the displacements.
Now there is an obstacle, and the border of contact between this obstacle
and the membrane is undetermined (free).

Consider a membrane under load f occupying a compact domain 2 with
clamped edge. Beneath the membrane there is an obstacle described by a
function ¢ = p(x,y). The obstacle is impenetrable so that

u(z,y) = oz, y) (5.162)
for all (z,y) € Q. Let the clamped edge of the membrane be described by
u|(9Q = a(s) (5.163)

where for the sake of compatibility between the boundary condition and
the obstacle

@]y < als). (5.164)

If the membrane lays against the obstacle ¢, it must take the form of the
obstacle over a domain called a coincidence set. Mechanically it is clear
that the membrane equation should not be applied over such a set (in fact
it does hold but contains an unknown force reaction of the obstacle). We
do not know beforehand how to determine a coincidence set, its border, or
the conditions for a solution on the border.

Classical setup of the problem

Let us attempt to apply the calculus of variations. As we would like to ob-
tain a classical statement of the problem, we suppose all the functions em-
ployed are sufficiently smooth. Since the mechanics of the problem ensures
applicability of the minimum total energy principle, a solution minimizes
the energy functional

S ACIR )

o — / FudQ
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over the set of functions satisfying (5.162)—(5.163). Supposing there is a
solution belonging to C®(Q), we will find equations for a minimizer over
the subset of C'?)(Q) consisting of functions satisfying (5.162)(5.163). We
denote this subset by C,. Note that we must assume ¢ € C?)(Q) as well.
Later we will “forget” this requirement. Hence we seek equations governing
a minimizer u € C, of F(u) over Cy,. It is clear that the set C,, is convex in
C®)(Q), which means that if u; and us belong to C,, then for any ¢ € [0, 1]
we have (1—t)ui +tus € Cy,. Let us take an arbitrary v € C,,. By convexity
we see that u + t(v — u) = (1 — t)u + tv belongs to C, for any t € [0,1] as
well. So by the principle of minimum total energy we have

F(u+t(v7u))2F(u)

for any v € C,, and ¢t € [0, 1]. Remembering the notation
Oudv  Oudv
— | dQ 5.165
=[] G+ 5a) (5:169
we have

%(qut(v—u),qut(vfu))M—%(u,u)Mft/Qf(v—u)dQZO

or
1
t[(um—u)M—/ f(v—u)dﬂ] +§t2(v—u,v—u)MZO (5.166)
Q
for any ¢ € [0,1]. For a fixed v, the coefficient of ¢ is nonnegative:

(u,v — u) //fv—u )dQY > 0. (5.167)

Otherwise, choosing sufficiently small ¢, we find that (5.166) is violated since
t2 tends to zero faster than ¢t as t — 0. Hence a minimizer v must satisfy
(5.167) for any v € C,. This is an example of a variational inequality.
Denote n = v — u. It is clear that on the boundary

Mg = 0. (5.168)

Then (5.167) takes the form

(u, n) s / fndQ2 > 0. (5.169)

The left side of (5.169) is the first variation of functional F' with virtual
displacement 7. In the calculus of variations, from (5.169) we stated that
the first variation is equal to zero for any 1. This was done because n was
sufficiently arbitrary; this time, however, we have n > 0 on the coincidence
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set for u, so we cannot use the trick involving a sign change on 7 to obtain
an equality in (5.169). Let us derive the differential equations from (5.169).
Traditional integration by parts with regard for (5.168) yields

//Q (—Au— f)ndQ > 0. (5.170)

If we restrict the support of 7 to the coincidence set of v denoted by 2,
all we obtain is

—Au—f>0

inside €2,. This means that on ), there is a reaction of the supporting
obstacle applied to the membrane. Recall that on the coincidence set we
have u = . We consider u to be of the class of C(?)(Q), and hence on the
boundary I', of Q) all the first derivatives of u and ¢ are equal:

V(u— 90)‘11, =0.

From this we can determine the position of I',. Let us consider what
happens outside the coincidence set €2,. Here the only restriction for 7 is
some smallness of its negative values. For sufficiently small n with compact
support lying in Q\Q, we have equality to zero in (5.170). Thus the usual
tools of the calculus of variations imply that in 2\, there holds the Poisson
equation

Au=—f (5.171)
as expected from mechanical considerations. Let us summarize the setup:
Au = —f on Q\Q,,
Au+ f<0,u=¢on Q,,
V(u—¢)=0o0nT,
u = a on 0.

The equation of equilibrium on 2 becomes

(Au+ f)(u— ) =0in Q.

Generalized setup

It is difficult to prove the existence of a classical solution to the above
problem. When the coincidence set is complicated or the load is non-
smooth, the energy approach to the solution is quite appropriate. For the
problem setup we shall use an energy space whose elements are sets of
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equivalent Cauchy sequences, so we must explain the meaning of (5.162).
We begin with the inequality u(z,y) > 0. We say that u(z,y) > 0, u €
W12(Q), if there is a representative Cauchy sequence of u(x,y) such that
each of its terms u,(z,y) > 0. We say that u(z,y) > o(x,y) if u(z,y) —
o(z,y) > 0. If p(x,y) € WH2(Q), then the set of functions u(z,y) > ¢(z,y)
is closed in W12(£2) and in any closed subspace of this space. Let us assume
that the obstacle function ¢(z,y) € W'?(Q2) and satisfies (5.164). Now we
seek a minimizer u = u(z,y) € W1H2(Q) of

LGy ()

over a subset W,, of elements of W12(Q) satisfying

o — / FudQ

ul,, =als),  uzy) > el,y).

This minimizer is called a generalized solution of the unilateral problem for
the clamped membrane. We suppose ¢ € W12(Q) and f € L?(f) for some
p > 1. In this case the problem of minimization of F'(u) over W, is well
defined. As before we find that a minimizer v € W, satisfies the variational
inequality (5.167) for all v € W,,. We would like to reduce the problem to
the case we have studied. Assume there is an element g = g(z,y) € W1H2(Q)
that satisfies the same boundary condition as a solution,

g(gc,y)|6Q = a(s), (5.172)
and define another unknown function w by the equality
u=w-+g.
From the properties of u it follows that

w(az,y)‘aQ =0.

We see that w € W12(Q) and thus w € Epre. To pose the setup in terms
of w, it is clear that w should satisfy

w(z,y) > ¢(x,y) — g(z,y). (5.173)

Let W, denote the subset of £/ consisting of elements satisfying (5.173).
The functional F'(u) reduces to the functional

() (e

dQ — / flw+g)d
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Since f and g are fixed, the problem of minimizing F(u) becomes the prob-
lem of minimizing the functional

o= (5 2) (52

over the set Wi,_,. Let us formulate the problem explicitly:

de/ fwdQ
Q

Given ¢,g € W12(Q) such that (5.172) and (5.164) hold, find a
minimizer of ®(w) over W, _,.

Using (5.165) we can write

O(w) =

1
§(w+g,w+g)M—// fwdQ.
Q

Let w* be a minimizer of ®(w) over W,_,. We repeat the reasoning that
led to (5.167). Fixing an arbitrary w € W,_4, we have

O(w* + t(w — w*)) > d(w*)

for any ¢ € [0,1]. For such ¢ it follows that

1
S+ tw = w') + g0 + 1w = w') + g

1
_§(W*+9aW*+Q)M—t/ flw—w")dt >0
Q

or

t{(W*aw —w)m + (g, w —w*)um —/ fw —W*)dQ}

Q

1
+ th(wfw*,wfw*)M > 0.

Since this holds for any ¢ € [0, 1] we conclude that the coefficient of ¢ must
be nonnegative:

@mw—wﬂMz/?fw—wﬂmrwgw—wﬂM
]

for all w € W,_g4. This is a necessary condition for w* to be a minimizer
of ®(w) over W_g.

Theorem 5.40. There exists a generalized solution to the unilateral prob-

lem for the membrane with clamped edge; it is the unique minimizer w* of
O(w) over Wy_g.
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Proof. Let us show uniqueness of the minimizer w*. Suppose to the
contrary that there are two minimizers wj and w3. Then

(wr,w—wrmz/ Flw —w?) d2 — (g,w — wh)ar.
Q

We put w = wj in the inequality for wj and w = wj in the inequality for
w;. Adding the results we get
(’LUT - w;,w; - wT)M Z 0)

which is possible only when wj = wj since w} € Epre.

Now let us show existence of a minimizer of ®(w). It is clear that ®(w)
is bounded from below on W,_, (why?). Let d = inf ®(w) over W,,_,4, and
let {w,} be a minimizing sequence for ®(w) in W,,_:

O(wy,) - d asn — oo.

Now we show that {w,} is a Cauchy sequence. Indeed, consider
(wn — Wm, Wn — wm)M = 2(wna wn)ﬂf + Q(wma wm)M

4 (%(wn—l—wm),%(wn—i—wm))M. (5.174)

An elementary transformation shows that

1 1
2(wn, W) M+ 2(Wi, W) — 4| = (Wi, + Wi )y = (Wi, + Wiy
2 2 y

1
= 4P (wy,) + 4P (wy,) — 8D <§(wn + wm)> . (5.175)
Next ®(w,) = d + &, where £, — 0 as n — co. Because W, _4 is convex
the element 1 (wy, + wy,) belongs to Wi_g, so ® (%(wn + wy,)) > d, hence
(5.174)—(5.175) imply

(wn — Wm, Wn — wm)ﬂf S 2(d + En) + 2(d + Em) —4d
=2

(en+éem)—0 asn,m— co.
This completes the proof. O

We have proved solvability of a unilateral problem for a clamped mem-
brane. Since all the problems we considered for plates, rods, and elastic
bodies have the same structure, and since in the reasoning for the membrane
we used only the structure of the energy functional, we can immediately re-
formulate unilateral problems for all the objects just mentioned (of course,
for a three-dimensional body we can stipulate the unilateral condition only



Applications of Functional Analysis in Mechanics 431

on the boundary). This work is left to the reader. The theory of unilateral
problems and variational inequalities contains harder questions than the
existence of an energy solution: it studies the problem of regularity of this
solution, which is how the smoothness of solutions depends on the smooth-
ness of the load. The interested reader may consult more advanced sources

(e.g., [8; 11]).

5.16 Exercises

5.1 For all the bodies discussed in §5.1 (except a stretched bar), write out the
functional of total potential energy and the virtual work principle in the case
when some part of the object (of its boundary for a three-dimensional body) is
supported by a foundation of Winkler’s type (i.e., when there is a contact force of
supports whose amplitude is proportional to the corresponding displacements).

5.2 By analogy with in §5.4, consider the generalized setup of the equilibrium
problem for a membrane with mixed boundary conditions. Assume that on some
part of the boundary v = 0, while on the rest there is a given force g(s). Formulate
the corresponding theorem on existence and uniqueness of solution in this setup.

5.3 Consider a beam under bending and stretching. Formulate the generalized
setup for this problem, combining the setups for a stretched rod and bent beam.
Formulate the corresponding existence-uniqueness theorem.

5.4 (a) Which terms are necessary to add to the equilibrium equation (5.13) to
include a finite number external point couples and forces acting on the beam into
the generalized setup? (b) Is it possible to the consider generalized setup when
there is a countable set of point couples and forces?

5.5 For the structures from Exercises 2.1-2.8, use the virtual work principle
and the results of solution of the Exercises to introduce the appropriate energy
spaces and investigate their properties. Then formulate the generalized setup of
the corresponding problems, and formulate and prove corresponding existence—
uniqueness theorems for the generalized solutions.

5.6 For a free plate, consider a case when forces are given on the plate edge.
Formulate the form of the potential and the conditions for solvability of the
corresponding problem.

5.7 Using § 5.8 as an example, reproduce the form of the Hamilton-Ostrogradski
principle for each type of object we considered.

5.8 Derive equations for solving the minimum problem (5.98).

5.9 Show that if £ is not finite dimensional, then the norm |u|| , of § 5.12 cannot
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be equivalent to the initial norm of the space £ because A is compact.

5.10 Show that the set {g sin kax}7 k =1,2,..., is an orthonormal basis of
L2[0, ).

5.11 Reformulate the statements of §5.12 for each of the mechanics problems.
5.12 Suppose that in the conditions of Theorem 5.39 the minimum point is

unique. Prove that any minimizing sequence strongly converges to the minimum
point.

5.13 Referring to §5.15, demonstrate uniqueness of solution to the problem
under consideration in W'2(Q), that w* 4 g does not depend on the choice of
g€ Wh3(Q).
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Hints for Selected Exercises

1.1.
(0 ,
Vo <¢1+y'y2<(x>)+ y%x)) —omeD
Y (@) —0 Y (@) _o
VIFyZ@) + 2@ o VI+y7@) +12@) e
(b)
(1+2%)y—y" =0 in (~1,1),
v _ =0, ¢| _, =0
(c)

2(1422°)y+v" =0 in (1,3),
y”z:l = 0’ y/|1:3 =0.

1+2*)y+7y" =0 in (a,b),
/ !
Y ’z:a:07 Yy ’z:b:O'

(e) Denote the functional by F(y). Suppose y is a minimizer and take an ad-
missible variation ¢. The function F(y + t¢) of the real variable ¢ takes its
minimum value at ¢t = 0, so dF(y + ty)/dt|t=0 = 0. This equation is

b
2/ [y ()¢ (2) + (1 + 2°) y(2)¢()] dz + 2y(a) p(a) = 0.
Canceling the factor of 2 and integrating by parts, we get
x=b

b
/ [—y"(x) + (1 +2°) y(@)]e(@) dz + 3 (x) p(z)|  +yla)p(a) =0.

433
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Taking the set of ¢ that vanish at the endpoints, we get the Euler equation
(1+2%y—y" =0 in (a,b)

and the integral vanishes for any admissible ¢. Taking ¢ equal to zero at
only one of the endpoints, and then the other, we get the natural conditions

(7yl + y)’z:a = 0’ y/‘z:b =0.

()
(z* =9y — (zy') =0 in (1,3),
(= +59)|,_, =0, By +y)|,_,=0
()
vz —ay—5y" =0 in (a,b),
(_5yl + y){m:a = 0’ yl|x:b =0.
(h)
2y —y" =0 in (1,2) U(2,4),
/ ! ’
y' w1 =0 Ylamg oY ’z:2+0 +y’zzz =0, y ‘1:4 =0.
@)
vy—y' =0 in (a,6)U(c,b),
yl r=a = O’ y/ z=c—0 y/‘x:c+0 + 1/2 = 0’ y/‘m:b =0.
()
4y* —3y" =0 in (0,7),
3|,y + wm) —y(0)] =0, 3y'| __ + [y(x) —y(0)] =0.
(k)
Yy +siny —2(yy') =0 in (0,7),
Wy)|,_,=0, (wy'+y)|,_. =0
() ,
y—2 [(y'Q — 1) y'] =0 in (0,1),
12 ’ /2 ’
y 1)y =0, (v —-1)y =0.
(v -1y =0 (-1)y]
1.2.
(a)
y"" +2y =0 in (0,1),
1’ "
Y le=01 = 0, y ’1:0,1 =0.
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Hints for Selected Exercises
y" =2y =0 in (0,1),
" ! nr
Y le=01 = 0, -y )|zc:0,1 =0.
v =y +y=01in(0,1),
y” ©=0,1 0, (y, - yl”)|x:0,1 =0.
—y© =y @ 4201 -2y =0 in (0,1),
Vo =00 @y, =0, 6P+, =0
v +y" +1=0in (a,b),
4 5 6 7
y( )‘z:a,b = 07 y( : r=a,b = 07 y( )‘z:a,b = 07 (y( ) + y,){z:a,b =0.
—Uge — 2Uyy +3u—1=0in S,
Ug z=a,b = 0’ uy‘y:c,d =0.
—Uzx *Uyy+u:0 in S,
Uz, =0, uy|,_, =0, (—uy + u)‘yzc =0.
Uge + Uyy +u =0 in S,
(uz + u)|x:b =0, us|,_, =0, uy|y:C’d =0.
—Ugz +Uyy +1 =0 in S,
ux‘z:a,b = 07 uy‘y:c,d =0.

d _ 0 _ .
%(ux)” '+ a—y(uy)" ''=0in S,

ux‘ 0, uy‘ 0.

z=a,b y=c,d

Uzg SIN Uy + Uyy siDuy = 0 in S,

cosue| _ =0, cosuy‘y_cd:O.
=a, =c,

a
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Uga COS Uz + Uyy COSUy =0 in S,

sin um‘ =0, sin uy|U:c’d =0.

r=a,b

Yo Yy =0 in S,
< 1+ (ug)? + (uy)2>x + ( 1+ (ug)? + (uy)2>y

Ug

=0,
L+ (ua)? + (uy)?

©=0,1 L+ (uz)? + (uy)?

P”(“w)uzz + q//(“y)uyy =0 in S,

p,(um”z:O,l = 07 q,(uy”y:o’l =0.

( (1+ (ua)® + (4y)?)" " u) + ((1 + () + (uy)?)" " uy)y =0 in S,

=0.

y=0,1

—0, (1 + () + (uy)2> T

(1 + (uz)® + (uy)2> niluz

x=0,1

1.4. We first show that the Euler equation for the simplest functional can be
rewritten in the equivalent form

Observe that if f(z,y,y’) does not depend explicitly on x, then one integration
can be performed to give
f— fy/y/ = constant.

Indeed, multiplying and dividing the left member of the Euler equation by 3/,
we have

1 , , d
v {fyy -y %fy’ =0
Adding and subtracting a couple of terms inside the brackets, we obtain

1 d
" {fz + foy' + fo = Fyy — y’%fy/ - fz] =0.

But the first three terms inside the brackets add to produce df /dx (total deriva-
tive), and the next two terms add to produce —d(f, y’)/dz (product rule).
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For the surface of revolution problem, the area functional is

b
/ 2ry\/1+ (y')2? dx.

Note that  does not appear explicitly; using the integrated version of Euler’s
equation, we get

!
2ryv/1+ (y')? — 27ry1y7(/)2y/ = constant = a.
+

Divide through by 27, then multiply through by /1 + (y’)? and simplify to get
y = B+y/1+ (y")? where 8 = a/2m. Now solve for y' to obtain the separable ODE

The solution, obtained by direct integration, is

Bcosh™! <%> =+,

hence
y(z) = B cosh (w;#)

is the general form of the curve sought. The constants 3,y must be determined
from the two endpoint conditions. We see that the minimal surface of revolution
is a catenoid.

1.5. We need to find a smooth curve connecting the points (a,yo) and (b,y1),
a < b. It is clear that for solvability of the problem it is necessary that yo > y1.
First show that if f takes the general form

f@,y,y") =py)V1+ ()3,

where p(y) depends explicitly on y only, then

d
/7y:l’+ﬂ
Pz(y)il
\ a2

where o and (8 are constants. The functional giving the time taken for the mo-
tion along a curve y(z) is obtained by putting p(y) = 1/v/2gy where g is the
acceleration due to gravity.
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Using the specific form of p given and introducing a new constant v = 1/2a%g,

we have
/ /—dy
T1
y

The substitution y = + sin? (%) reduces this to

=x+ 0.

N2

/(17cosﬁ)d0:x+,8
after the use of a couple of trig identities. Hence

rz+ [ =

N2

(6 —sin ).

The other equation of the cycloid is

y = ~y sin® <§> = %(1 — cos#).

Of course, the constants 5 and vy would be determined by given endpoint condi-
tions.

1.6. The Euler equation fy — fyro — fyry¥y’ — fyryry” = 0 reduces to fyry” = 0.
This holds if y” = 0 or f,/,, = 0. The equation y” = 0 is satisfied by any line
of the form y = ciz + c2. If the equation f,,» = 0 has a real root ' = v, then
y = vyx + c3; this, however, merely gives a family of particular straight lines (all
having the same slope 7). In any case, the extremals are all straight lines.

1.7. The average kinetic energy is given by

1 [T1
— — t) dt.
7/ gme

Since the integrand depends explicitly on x’ only, the extremal is of the general
form x(t) = cit + c2. Imposing the end conditions to find the constants ¢i and c2

we obtain
Tr1 — X0
t) = t .
(1) T t+o

The solution means the motion should be at constant speed. Any acceleration
would increase the energy of the motion.

1.9. (a) Vanishing of the first variation requires that equation (1.57) hold. Let us
review for a moment. We know that if we appoint a condition such as y(a) = co
then, since we need ¢(a) = 0 to keep the variations y(z) + ¢(z) admissible, we
need ¢(a) = 0 and equation (1.57) yields

fyr (b,y(b),y (b)) = 0.
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This natural condition makes reference purely to b. Now consider the mixed
condition given in the problem. To keep the variations y(z) + ¢(x) admissible we
need p(a) + ¢(b) = 0 or ¢(a) = —p(b). Equation (1.57) yields

Fyr (b, y(0), 4 (0) + fy(a,y(a), y'(a)) = 0.

This is the supplemental “natural” boundary condition. (b) To keep the variation
admissible this time we need

¥(y(a) +¢(a),y(b) + ¢(b)) = 0.

As before, we're looking for a relation between ¢(a) and ¢(b) that we can sub-
stitute into (1.57). Restricting ourselves to infinitesimal variations ¢(z), we use
Taylor’s formula in two variables to write, approximately,

P(y(a) + ¢(a), y(b) + ¢ (b)) = P(y(a),y(b))
+ (el + o) 2 ) vlans)

a=y(a)’
B=y(b)

The first term on the right side is zero by the condition given in the problem.
Therefore we need

o (a, 0Y(a,
#(a) %C; 2 ay(ay T PO 1/)(80; 2 a=y(a)
B=y(b) B=y(b)
or
0(a, B)
=5
= Ko(b), K=—-—o0=v®)
v(a) ©(b) 50(0.B)
Oa a=y(a)
B=y(b)

Equation (1.57) yields

Fy (b,y(6),y' (b)) = K fy(a,y(a),y'(a)) = 0

as the corresponding natural condition. In part (a) we had ¥ (o, 8) = a+ 8 — 1,
which gave us K = —1.

1.10. This is a mixed problem. However, the general solution of the Euler
equation is the same as for the brachistochrone problem:

erB:%(Gfsin@), y= —(1—cosb).

N2
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The condition at = a determines 5. The condition at * = b is the free-end
condition fy/‘z:b = 0. Here

fl@,y,y) =

(again, the same as for the brachistochrone problem) so that

!

fp=—-
V295 T+ (¥)?

Thus the condition at = b is y'(b) = 0; i.e., the required curve must “Hatten
out” at this endpoint.

1.11. Arc length on the cylinder is given by (ds)? = (ad¢)® + (dz)?. Parameter-
izing the desired curve as ¢ = ¢(t), z = z(t), we seek to minimize the functional

/ [02(6)? + ()2 dt.

Each equation of the system (1.63) involves only the derivative of the dependent
variable; hence the extremals are straight lines:

o(t) = cit + co, z(t) = cat + ca.

Eliminating ¢ we find z(¢) = a¢ + 8, a family of helices on the cylinder.

1.12. Repetition of the steps leading to (1.50) gives the system

/ fy <$,ZC@Q01 Zcz(pz ZCZQOZ > ( )dCC
b n
+/ fy’ <$,ZC;‘(,01 Zcz(pz chwz > ( )dCC
\ K2
+/ foyr <x, cipi(x ZC'LSDZ Zcz% ) ek (z)de =0

fork=1,...,n

i=

1.13. Recall how the functional f;ol f(z,y,y") dr was treated in §1.11. Assume
the endpoints xo,x1 change so we get arbitrary variations dxo and dx;. In §1.11
we used linear extrapolation for the function outside [z, x1]. The approach here
is similar, but we must take into account that the functional involves 3”; hence we
suppose that 3’ also has variations at the endpoints dy{, and &yj. The technique
of linear extrapolation outside [a, b] must also be applied to the derivative.
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As a result, the extended curve y = y(z) is determined by the endpoint
coordinates (zo + 0xo,yo + 0yo) and (z1 + dx1,y1 + dy1) and the values of the
first derivatives, which are y{ + dy, and y; + dy; respectively.

Our problem is to derive the linear part of the increment for (1.166) when ¢,
o', " b6x0, dyo, Oy, dx1, dy1, and dy; have the same order of smallness; that
is, to extract the part of the increment that is linear in each of these quantities.
Denote

€ = 1@llc@ (o a1y T 00| + [0y0] + [0yo| + 81| + [0ya| + [dyal-

The increment is

z1+dw 1
AF(y) =/ f(x7y+s07y'+<p'7y”+s0”)dw—/ f(@,y,y',y") da.
zo+dzg 0

The first integral can be decomposed as

z1+dzy T z1+0x] zg+dzg
/ ()dJ;:/ ()d:c+/ ()dl’—/ ()dm
zo+dxg xq x] zo

Recall that the functions y = y(z), ¥’ = y'(x), ¢ = ¢'(z), and ¢ = p(x) are all
linearly extrapolated outside [zo, 1], preserving continuity of the functions and
their first derivatives. Thus

1
AF(y) :/ lay+o v +¢ .y +¢") = fle,y,y,y")) de

zo

zl+6zl 1A / 1 1
+/ fl,y+o,9 +¢,y" +¢")dx

x1

x0+6x0 / / 1 1
7/ flx,y+ o,y +¢'y" +¢")dx.

zo

The integral over [zo, z1] can be transformed in the usual manner:

z1
/ f(@y+ey +¢ v +¢") = fl@,yy,y")]de

zo
2

z1 !/ 1" d !/ 1" d !/ 1"
:/9;0 [fy(:m%y,y )—%fyf(fmy,y,y )+@fy~(m7y7y7y )| pdx

@)y @)y @) @)
+ [fy (@,y(@), ¥ (), y" ()

o hy () @) @) o)

T=x(

rT=x1
+ o(e).

T=x(
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As earlier, ¢ at the endpoints using dyo and dy; is
p(e1) =0y — o/ (z1)0z1 +0(e),  @(wo) = dyo — ¥/ (w0)dxo +0(e). (A1)
For ¢ at the endpoints we should use dyj and dy;, obtaining
¢'(z1) = 0yt —y"(x1)dz1 +0(e),  ¢'(z0) = dyo — y"(z0)dzo + 0(e). (A.2)

Thus

@y
/ Sz, y+o,y +¢ 9" +") = fl@,y,y,y")] de

o

T d d2
- /zo [fy(x’y’yl’y”) B %fy/(:”’y’ylyy”) + ﬁfy“(x,y,y',y”)] pdx

+ @ @y 0oy
’ " d ’ ” e
+ |:fy’(x7y(x)7y (:E),y (:E)) - %fy”(xvy(x)vy (:E),y (l’)):| 52,/ B

r=x1
+ o(e).

r=xQ

_ [y//fy// =+ y,(fy’ — %fy”)] o

The two other terms for AF mimic the ones for the simplest functional:

x1+6m1 !/ / 1" 1"
/ fla,y+o,y +0,y" +¢")de

1

= flz1,y(z1),y (1), 4" (x1))0z1 + o(e)

and

zo+610 1A / 1 1
/ flz,y+o,9 +¢,y" +¢")dx

zo

= f(zo,y(20),y (x0),y" (x0))dx0 + ofe).

Collecting terms and selecting the first-order terms, we get the general form of
the first variation of the functional when the ends of the curve can move:

xq d d2
F = /ZO (fy — %fy’ —+ ny//) (pdx

r=xz1 d
+ |:fy/ — %fy”] 5y

T=x1

—+ fy// 6y,

T=x0

+ |:f7y"fy” +y,(fy/ - %fy”)]ém

T=x(
T=x]

(A.3)

T=x0
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1.14. Split the functional into two parts,

:/abfd:c:/acfdm—&—/cbfdm:Fl(y)—sz(y%

find the first derivative F = §F1 + § F», apply (A.3) to each Fj, and consider the
equation 6F = 0 using the continuity conditions, the arbitrariness of ¢, and the
endpoint variations. We have

2
6F1=/ <fy v +dd2f )godax

c d r=c—0
+ fy//5yl + [fy’ — %fy”] 5y

r=a

)
r=c—0

+ |:f7y/,fy” +y/(fy/ - %fy//)]&.ﬂ

where for brevity we denote ¢(a) = y|s=a and ¢'(a) = 0y'|z=¢. Introducing
similar notation at b, i.e., p(b) = dy|z=» and @' (b) = §y'|s=s, We get

2
mz/ (o= gt + gzt ) oo

b r=b
d
—+ fy//5yl |:fy f //:| 5y

x=c+0

_ [f — y"fy// + yl(fy/ — d;dmfy//):| o

x=c+0

Adding d F}, and setting 6 F' = 0, we should step-by-step choose subsets for ¢ and
the endpoint variations as was done to derive the Weierstrass conditions. In this
way we find that

d d?
Jy — %fy/ + @fy” =0

holds on (a,c) and (c¢,b). At the endpoints a and b we get the natural conditions

d
fyr =0, fyr— f//—O for x =a and z = 1.

Remembering that the variations at ¢ from the left and right must match, we
obtain
5l’| = &'E‘;c:chO = &'Ec’ 5y|x:070 = 6y‘zc:c+0 = 6y¢:7

r=c—0
and

5yl’z:¢:70 = 5yl‘z:c+0 = 5yé
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Hence we have

0= [fy” ‘x:cfo - fy” |x:c+0:| 52/2

d d
+ [(fy’ - %fv/’) o - (fy’ - %fW) !m:C+O:| 0Ye

(79t G = i)

r=c—0

] 0Zec.
x=c+0

Taking into account arbitrariness and independence of the variations at ¢, we get
conditions analogous to the Weierstrass—Erdmann conditions:

- (ffy”fy” +yl(fy’ - %fy”))

fy//

d
<(fy’ - %fy”)

(ffyufy” +y/(fy/ - %fy”))

x=c—0 fy”|x:c+07 (A4)

d
e = <fy’ — %fyu> |m:c+0’ (A5)

= (f *yllfy// +y/(fy, — %fy//))

x=c—0 x=c+0

(A.6)
In beam theory, f = EI(y")?/2, M = EIy”, and Q = —EIy"’. In terms of
moment M and shear force @, equations (A.4)—(A.6) are

M| = ]\4|zc:c+07 Q|m:c70 = Q‘m:chO’ (A7)

r=c—0

(f —y'M + y’Q) (A.8)

= (f —y'M+ y'Q)

r=c—0

z=c+0

Equation (A.7) expresses equality of the moments and shear forces, while (A.8)
can be related with the energy-release when the defect at x = ¢ moves; see [12].

Let us analyze the setup for finding an extremal. We have equations on
two intervals. Each equation is of fourth order in general, which means we get
eight independent constants in the solution if the equations are linear. The ninth
unknown constant is ¢. Now let us count the boundary conditions. At a and b we
have four equations for unknown constants; taken together with the three above
equations at ¢, the total number is seven. Two more conditions require continuity
of y and 3’ at ¢

yle=0)=y(c+0), y(c—0)=y'(c+0).

1.15. All the equations are the same except (A.6).
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1.16. The Euler equation is DA%w = F, and the natural boundary conditions
are

vAw 4 (1 — v)(waean? + wyyni + 2weynany)| =0,
as
Dl(wae + vwyy)yne + (Wyy + vWaz)yny + (1 = 1) (WayyNa + Waayny)]

d
+D(1 - V)E[(wyy — Wea)NaTly + wmy(ni - ”@2;)] = f.

as

1.17. The natural boundary conditions are

Di [vAw+ (1 - V) (Ween? + wyyni + 2Waynany)]

T

=Dy [vAw+ (1 —v) (Ween? + wyyni + 2Waynany)]

)
Ty

Dy {[(wzw + vwyy)yna + (Wyy + VW )yny + (1 = V) (Wayyna + Wazyny)]

U= )31y = wae)neny + w0~ )]

r_

= D> {[(wm +vwyy)yne + (Wyy + VWaa)yny + (1 = V) (Wayyna + Waayny)]

L= )31 0y — wae)neny + w0~ )]

Iy

Here (-)’Fi denote one-sided limits calculated as the argument tends to I' from
different sides (cf., Fig. 1.5).

1.18. Use the solution of Example 1.28 (page 47) and the identity

ou 00u 8%u
———ds=— —duds.
ag 0s 0O0s s a5 0s? was
The answer is )
ou 0“u
Au—l—f—O, <%—a@> BS—gA

1.19. Without loss of generality we may take S as the unit square S = {(z,y) €
[0,1] x [0,1]}. On three sides Q1 = ([0, 1] x {0}) U ({0} x [0,1]) U ({1} x [0,1]) of
S take a = 0 and on the fourth side let a < 0. Now

11 1
2E(u):/0 /(; (ui—&—ui) dacdy—i—a/o ui‘yzl dz.
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We show that E(u) is unbounded from below. Indeed, let ug, = y" sin wkx, where
n, k are integers. We get

(mk)? 1 1 n?
E(ugn) = - .
(wen) ===+ 507) Tamn -1

For o < 0 we find such an n* that

1

— < 0.
2n*+1<

a+

Then E(ugn+) — —o0 as k — oo.

2.1. With the spring at ¢ loaded with a point force —P, the energy functional
becomes

1 [ " e 1 1
e =3 [ BI6 do— [ avdo+ Py(a)+ 3hy) + 3oy

Point ¢ splits the beam into two parts that must be joined by the continuity
conditions y(c—0) = y(c+0) and y'(c—0) = 3’(c+0). Admissible ¢ should satisfy
the same condition: ¢(c—0) = p(c+0), ¢'(c—0) = ¢’(c+0). In the corresponding
equilibrium equation, we first select a subset of admissible functions ¢ that are
zero on [c, a]; in this way we find that E(Iy”)” —q = 0 on (0,c). Then, selecting
¢ equal to zero on [0,c|, we establish the same equilibrium equation on (c,a).
Finally, using the equations ¢(c— 0) = ¢(c+0) and ¢’'(c—0) = ¢'(c+0), we get
two additional conditions at point c. These form part of the natural conditions
supplementing the conditions at point ¢ in Example 2.1. So we have two linear
equations, the general solution of each containing four indefinite constants. Taken
together, the continuity conditions and boundary conditions at points 0, ¢, and a
provide eight conditions sufficient to determine the eight constants of the solution
uniquely.

2.2. The strain energy functional is

1 2a

W=_ Elw”z(x) dz + 1sz(a) + 1cw'2(2a).
2 J, 2 2

The work of external forces is
2a
A :/ q(x)w(z)dx.
0

The kinematic boundary conditions are w(0) = 0 = w’(0). The coupling condi-
tions of the springs with beams are taken into account in the energy equation. As
usual, &€ = W — A. When deriving the equations, we first take admissible virtual
displacements to be zero on the right portion of the beam [a, 2a], and then on the
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left portion. We get the equilibrium equation
Elwgl)(x) =gq(z) 1in (0,a)U (a,2a).

Next we derive the natural boundary conditions, taking into account the conti-
nuity of w and w’ at x = a, i.e., w(a — 0) = w(a + 0) and w'(a — 0) = w'(a + 0).

2.3. Denote the rod/beam displacements as follows: (u1,w1) for BD, (u2,w2) for
CD, and (us3,ws) for AD. Let BD have length a. The boundary conditions for
the rod system are u1(0) = u2(0) = u3(0) = 0 and w1(0) = w2(0) = w3(0) = 0.
For the beam problem these should be supplemented with wj(0) = w5(0) =
w5(0) = 0.

The total potential energy functional for the rod system is Eg = er — A where
the strain energy er is

1 1
erR == ESu, dx + = ESub’dz + = ESu}’ da.

2 J/Bp 2Jep 2 Jap
For the beam system it is £g = egp — A, where ep includes er and three terms
for bending energy as in the previous exercise. The work A of the external load
has the same form for both systems:

A= / (¢(z)us(z) cos a + g(z)ws(z) sin o) dx + F(x)uz(x) dx.
AD Ac

However, for the rod system we should note that rod CD is not flexible; in the
w-direction it rotates as a rigid body, and so we should express ws(x) in terms of
the value of ws|p at the extreme point. For the rod system this is

T sin «

ws(x) = ws|p.

To place kinematic restrictions at junction D for both systems, we should use
(2.1) where for the pair BD-C'D we should change (u,w) to (u1,w:) and (u1,w:)
in (2.1) to (u2,w2). The angle in (2.1) is changed to —(7/2 — «). For the other
coupled rod at D, the angle is /2 — a. For the beam system, these equations
for the displacements must be supplemented with the condition of equality of the
rotation angle of the beams at D: wi|p = wy|p = wj|p. The restrictions for
the real displacements also apply to the admissible virtual displacements. The
remainder of the solution is similar to that of the previous exercise.

2.4. Here we can neglect the beam elongations and use only the beam model for
each of the elements. This and the following beam problems present interesting
boundary conditions that may appear artificial to someone inexperienced in the
strength of materials.

We number the beams from beam AB as number 1 to C'D as number 3. We
number the normal displacements wy, similarly, describing the beams in clockwise
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fashion starting at point A. The total potential energy of the system is

&= Z / EIw;/2 dx — /:2 q(x)w2(z) dz — Pws(as).

The kinematic (geometric) boundary conditions are w1(0) = 0 and w}(0) = 0.
Since we neglect the beam elongations, we should regard the beams as unchange-
able along their length directions. This yields the following restrictions at the
junction points:
w2(0) =0, wi(a1) = wy(0),
and
wa(az) =0, w3 (0) = —wi(a1), wa(az) = ws(0).

The equilibrium equations for the beams are

Elw(z) =0, Elwé4) (z) = q(x), EIw§4) (z) =0.
The natural boundary conditions are the supplementary conditions of equilibrium
for the points B, C, and D.

2.5. Let A and D be the initial points for the length parameters of the beams.
Winkler’s foundation is a simple model of a junction when the elastic deformation
at each point does not depend on the deformation at other points: when the
foundation thickness changes by u(x), then its elastic reaction is ku(x). Denoting
the deflections of AB and DC' by w; and w2, respectively, we get u(xz) = wa(z) —
w1 (x). The total potential energy is

€= kzﬂ / Bl d:c+k/Oa(wz(:c)—wl(x))zdax—l—/oaq(x)wz(:c)d:c.

The kinematic boundary conditions are

Answer: The equilibrium equations are

ETw (z) — k(ws(z) — wi(x)) =0,
ETwy" (x) + k(ws(x) —wi(2)) = —q(z)-
The natural boundary conditions at B and C' mean that the shear stresses and

the moments are zero: wy, (a) = 0= w""(a).

2.6. This is a free system of four beams, none of which is clamped. For such
problems there are always additional conditions for the load under which the
problem has a solution. We number the beams starting with AB. The positive
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direction for the deflection w is “inward” for each beam. The total potential
energy functional is

Z/ E.ng2 ) — 2qx(z)wi(x)) dz + Pws (g)

The restrictions at the junction nodes are that the rotation angles of the beams
at a node are equal:

We should also relate the displacements at the nodes, considering the beams to
be rigid along their axial directions:

wi(a) = —wa(0), wi(a) = —ws(0),
wa(a) = —w4(0), ws(a) = —w1(0).

Finally, we should state that at the point where force P is applied, w and w’ are
continuous. This implies two more natural boundary equations.
The beam equilibrium equations are

Elw(” (z) = q(z),

which for k = 1,2,4 hold on (0, a) and for k = 3 holds on (0,a/2) and on (a/2, a).

To obtain solvability conditions for the minimization problem for the load,
note that the rigid displacements (i.e., when the structure moves as a rigid
body) occur through parallel displacements: wi(x) = —ws(z) = ¢1 and wa(z) =
—wa(x) = c2 with independent constants c,. If we denote the tangential dis-
placements of the beams by wu (they are constant for each beam), then for rigid
rotation we get the following displacements:

w; =cxr, u =0; W = CT, U = Ca;

w3 = —ca + cx, u3z = ca; wye = —ca + Ccx, Ug = 0.

These three displacements are admissible, since they satisfy the kinematics of
the structure and the conditions shown above. When we substitute these into the
energy, we see that the quadratic part of the energy is zero for each of them. Hence
the work functional must vanish on these; otherwise, by selecting appropriate
values for ¢, we can get any negative value for the energy functional and so the
minimum problem becomes senseless. Besides, the equilibrium equations (the
first variation set to zero) for these three displacements give us the following
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equations:

/QI(CE)dCE"‘P—/ gsdz =0,
0 0

/quac—/ ga(z)dx =0,
0 0

/Oa zq(x) dx + /Oa zg2(z) dx + /Oa(fa+x)q3(x) dx

fP%Jr/ (—a+z)qa(z)dz = 0.
0

It can be shown that there are no other linearly independent displacements of
the structure for which the elastic energy is zero. Hence the above equations are
necessary (and sufficient) for solvability of the equilibrium problem; they are the
self-balance conditions for the load.

The natural boundary conditions can be found using the usual procedure of
selecting special displacement fields.

2.7. See the solution to Example 2.2.
2.8. See the solution to Example 2.2.

2.9. (1) The first conservation law is the same as the answer to Example 2.14.
Indeed, our functional is a particular case of the functional from that example.
Considering the symmetry transformation

r— " =x+e¢, y—y =y,
which corresponds to £ = 1, ¢ = 0, we get the conservation law
P'=0, P=f—y'f,.
(2) Considering the symmetry transformation
x>z =2, y—y =y-+e,
which corresponds to £ = 0, ¢ = 1, we get the conservation law
P'=0, P=f,.

Answer:
f —y'f, = constant, f,, = constant.

2.10. The first two conservation laws were established in Exercise 2.10. One
more law can be obtained by considering the scaling transformation

* * 1
T —xr =+ ex, y—y :y+§5y,
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to which there correspond functions £ = z, ¢ = y/2. For this, the conservation
law is

—y/y” - Ey'z = constant
2 2

Answer:

!’

—y'2/2 = constant, y' = constant, y'y"/2— :cy'2/2 = constant.

2.11. Let us write out the infinitesimal invariance condition (2.63) for the func-
tional under consideration and find all the functions £(z,y) and ¢(z,y) that satisfy
the condition. We have

o 0  (dp ,dE\ 9  dE
{£—m+¢—+<%—y%>8—y,+%}f

_ @_ /d_f / lﬁ 12
_<dx ydm>y+2dxy

_d¢/ 1d‘£ 12 8¢ 8(]5, /71 % %1 2
_yiiﬂy *<—+—y>y 2( + Z/)y

Cdzx Or = Oy dr Oy
_ 00, (20 108N 2 108 5 _
78my +<8y 2 0x 28yy =0

The factors before the potentials of 3’ do not depend on y’. It follows that to
get the expressions to be zero for any y’, it is necessary that they be zero inde-
pendently of y'. Thus, to define £(z,y) and ¢(z,y), we have three simultaneous
equations:

% _, 0p 106 _ 10¢

Zr_ =5 _ZZ>

Ox ’ oy 20z 2 Oy
The first and third equations imply ¢ = ¢(y) and & = &(x). The second one
implies
& =20+ Ch, ¢ = Coy + Cs,

where C1, C2, and Cs are integration constants. These functions £(z,y) and
¢(x,y) define the most general case when variational symmetry is possible for the
functional. To the three constants there correspond three transformations and
the conservation laws found in Exercises 2.9 and 2.10.

2.12. Now F* has the form

b* k, *
* * * * d *
F (y ) :/ f (1’ Y 7dm€k) dz”.

A principal difficulty is the derivation of the formula for d*y* /dz**. We skip the
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details and present the formulas, omitting the second and higher orders of &:

dy” _ y +e <@ - y'ﬁ) + 0(e?),

dx* T dx
&y o nd€ d¢ , dé )
oz Y +el—y +dm v + 0(e%)

d? 1 d d2

dsy* —m ///dg d // d§ d¢ /d§ 2
=y e (v (e rn (@ vm))) o

dx=F dzk %w " dx \ dx dak- 1

_d (dEdy
dxk—1 \ dx dx
k k
W d®¢ d d¢ d° Py 9
“ee (3 d—(dxdw +O()

So for F™* we get

b
F*:F+s/ fub + fyd

dF¢ S dP [ de dF Py
fy00 [w -2 i (m P )

p=0

+ f dz + O(s2),

which implies the variational symmetry condition

—1
dP [ de d¥ Py é) | ,
dmk Zd_ <% dv—r )| oy® T d f=0

0 0
£%+¢8_y+

2.13. We use the solution of Exercise 2.11. Let us write out the infinitesimal
divergence invariance condition (2.94) for the functional under consideration and
find all the functions £(z,y), ¢(z,y), and K(z,y,y’) that satisfy the condition.
In this case, (2.94) takes the form

d d dp  ,d¢\ o  d¢ d
o (%) at B -
_ 99, (&;s 185) 2 106 ;3 0K 0K J 0K ,

= ¥ “30,Y " or oyY oy

Jdy 20z
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As y satisfies the Euler-Lagrange equation, the multiplier of " is zero. So the
new conservation law does not change whether K depends on 3’ or not. This
means we can take K independent of y': K = K(z,y). As in Exercise 2.11, the
coefficients of the potentials of ¥’ do not depend on y’. It follows that they must
vanish. Thus, £(z,y), ¢(z,y), and K(z,y,y’) are defined by the four simultaneous
equations

%—I; =0, (A.9)
ok _, o
Z_‘z - %% —0, (A.11)

‘%% —0. (A.12)

From (A.9) and (A.12) it follows that K = K(u) and £ = £(z), respectively.
Differentiate (A.10) with respect to y and (A.11) with respect to z, then
subtract the results to get

K 10%

oy? 2 0x2

As K depends only on y and £ depends only on x, this equation can hold only if
both terms are constant:

PK 1 0%
=Cy==-=.
0y? 2 0x?

This gives us

1
K = §C1y2+02y+007 §=C1$2+03+C4,

where the C}, are constants. We can put Cp = 0, as K is defined up to a constant.

Indeed, adding a constant to K does not change the conservation law. Next, from
(A.10) we find that

¢ = (Cry + C2)x + do(y)-
The function ¢o(y) is defined by (A.11), which reduces to

1
do(y) = 503
and yields ¢o(y) = Cay/2 + Cs. Therefore

1
¢:Clxy+0+2:v+503y+05.
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Finally, the conservation law is given by
’ 1,2
P—-—K=2¢y — §£y — K = constant.

Because we have five independent integration constants, we have obtained five
independent conservation laws. They are obtained, respectively, when we set one
of the constants to 1 and the rest to zero. Three of these conservation laws were
found in Exercise 2.11.

Exercise 2.11 showed that the functional has three variational symmetries
only, to which there correspond the three conservation laws. This exercise shows
that existence of divergence symmetry extends the number of conservation laws
to five. So we obtained five conservation laws.

3.2. The result follows from differentiation of the equality
U(t) - ¥ '(t) = E.

We have

!

(T(t)- &) =2 (t)- () +B(t)- (T (1) =E =0,
hence
T(t)- (TTH(1) = W) TT(2)

and can premultiply both sides by ¥~ (¢).

3.3. Use the linearity of the main part of the increment with respect to the
increment of the control function.

3.4. Introduce an additional component y,+1 of the vector y by the equations
Ynt1(t) = G(y(1)), Ynt1(0) = 0.

3.5. By Pontryagin’s maximum principle we get that F' take the values +1 or
—1 for optimal solution. Solve the problems with this F' and collect the whole
solution using these solutions.

4.1. Assume S is closed in X. Let {,} C S be convergent (in X) so that z, — «
for some z € X. We want to show that z € S. Let us suppose x ¢ S and seek a
contradiction. Given any e > 0 there exists zx (# x) such that d(zr, x) < e (by
the assumed convergence), so z is a limit point of S. Therefore S fails to contain
all its limit points, and by definition is not closed.

Conversely, assume S contains the limits of all its convergent sequences. Let
y be a limit point of S. By virtue of this, construct a convergent sequence y, C .S
as follows: for each n, take a point y, € S such that d(yn,y) < 1/n. Then
yn — y (in X). By hypothesis then, y € S. This shows that S contains all its
limit points, hence S is closed by definition.

4.2. (a) Let B(p,r) denote the closed ball centered at point p and having radius
r, and let g be a limit point of B(p,r). There is a sequence of points py, in B(p,r)
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such that d(px,q) — 0 as k — co. For each k we have

d(q,p) < d(q,pr) + d(pr,p) < d(q,p) + 7,

hence as kK — oo we get d(p,q) < r. This proves that ¢ € B(p,r). (b) True
vacuously. (c¢) Obvious. (d) Let S = N;c1S; be an intersection of closed sets S;.
If S = 0 then it is closed by part (b). Otherwise let ¢ be any limit point of S
and choose a sequence {px} C S such that px — gq. We have {pr} C S; for each
i, and each S; is closed so that we must have ¢ € S; for each 7. This means that
q € NierSi. (e) We communicate the general idea by outlining the proof for a
union of two sets. Let S = AU B where A, B are closed. Choose a convergent
sequence {z,} C S and call its limit z. There is a subsequence {z, } that consists
of points belonging to one of the given sets. Without loss of generality suppose
{xn,} C A. But &, — x, hence x € A since A is closed. Therefore z € S.

4.3. It is clear that the sequence of centers {z,} is a Cauchy sequence. By
completeness, &, — x for some x € X. For each n, the sequence {@n4p}peq lies
in B(zn,rs) and converges to x; since the ball is closed we have x € B(xn,7r).
This proves existence of a point in the intersection of all the balls. If y is any
other such point, then d(y,x) < d(y,zn) + d(zn,z) < 2, — 0 as n — oo. Hence
y = x and we have proved uniqueness.

4.4.  Let us verify the norm properties for |||y, Certainly we have
[z + Ullx/i; 2 0. Recalling that the zero element of X/U is U, we have

HOX/UHX/U =10x +Ullx,y = ul,lg[fj l0x + u|l, =0
since Ox € U. Conversely, if ||z + U||y,; = 0 then
Inf o +ullx =0,

hence for every € > 0 there exists u € U such that ||z 4+ ul|, < e. From this we
can infer the existence of a sequence {ur} C U such that

Jim 2+ uf = 0.

But this implies © + ux — 0, or ux — —x. Since U is closed we have —x € U,
hence x + U = U. Next,

1
T+ —u
«

la@ +D)llx/e = law + Ul = inf llaz +ull = o] inf i

= lal inf llo + ully = lal o+ Ullx,
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Finally

I +0) + (y+ Ulixjw = Iz + ) + Ullxyo = f [I(z+y) +ullx

ot e+ )+ e

infUH(:eru)Jr(eru')HX

w,u’ €

so that

I@+U)+ @+ Uy < inf (I +u)ly + (v +a) )
= inf
u,u’' €U

nf @ +u)llx + inf [y +u)]

@+ Ol x,0+ 1w+ Dllx0

I+l + it e+l

and the triangle inequality holds.

Now suppose X is complete. Choose a Cauchy sequence {yr +U} C X/U. A
“diagonal sequence” argument may be used to extract a subsequence {z, + U}
of {yx + U} such that

(@2 +U) = (@14 U)ll 0 < 1/2,
(s +U) = (@24 U)ll s < 1/2%,

i.e., such that
@es +U) = (2n+ Ul i = l@ess — o) + Ul < 1/2°

for each k. Then by definition of |||, we can assert the existence of an element

up € (Try1 — ox) + U having [Juk| y < 1/2". Choose a sequence {2z} C X such
that for each k

zr € x + U, Zk4+1 — Rk = Uk.

(We indicate how this is done; see [3] for a more formal argument. Choose
z1 € x1 + U. We now wish to choose z2 so that zo € 9 + U and 22 — 21 = u1.
Write

uL =22 —x1 +v for some v e U

and also

z1 =x1 +w for some w € U.
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Then u; + 1 = 2 + v; add w to both sides and let v +w = w’ € U to get
214U =x0 +w.
Hence define 22 = x2 + w’. Repeat this procedure to generate 23, 24, ....) Then
llzk1 — zxllx < 1/2%.
If m > n then

lzm = znllx < ll2m = 2m—1llx + -+ [lznt1 = 2nllx

1 1
oo <

<
2m71 on 2n71

so {zr} is Cauchy in X. Since X is complete, z — z for some z € X. By the
way the z, were defined we have xy + U = 2z + U. Then

[(@x +U) = (z+ Ul x0 = Iz + U) = (2 + U)llx 00
= [|(zk — 2) + Ullx ¢y

inf (= 2) +ull

<z — Z”X —0

so that z + U — z + U. We have therefore shown that some subsequence of the
Cauchy sequence {yx + U} has a limit.

4.5. Since X is separable it has a countable dense subset A. The set
S={[z]:z€ A} C X/M

is evidently countable; let us show that it is also dense in X/M. Because the
norm on X /M is given by

[l | = inf flz +m],
the distance between any two of its elements [z] and [y] can be expressed as
Il = [yl Il = Ilfe = y]ll = inf [I(z —y)+m].

So let [z] € X/M and € > 0 be given. We can find w € A such that ||z — w|| < €.
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Then the distance between [z] and [w] is given by

in

_ < i _
nt (= w)+ml < it (2 - w]+ |m])

=llz—wl + inf [m]|
meM

=z —wll

< e.

The element [w] belongs to S and lies within distance ¢ of [z] in the space X/M.

4.7. Let us propose a linear mapping 7" to each [z] € X/M there corresponds
the image element T'([z]) = Axo, where ¢ is that representative of [z] which has
minimum norm. (The existence of zo is guaranteed because M is closed.) We
have
lzollx = 1]l x /s »
S0
IT (=Dl = l1Azolly < ¢llzolly = cll (2] 1/ -

Therefore T is bounded.

4.9. Let T be defined by T'([z]) = AZ, where Z is the minimum-norm representa-
tive of [z]. Take a bounded sequence { [z] } from X/M so that || [z]n [|x /5 < R
for some finite R. For each n, choose from [z],, the minimum-norm representative
Zn. We have T([z]n) = AZ, for each n, and the sequence {Z,} is bounded (in
X) because ||Znl|x = || [z]n || x/a;- By compactness of A, there is a subsequence
{Zn, } such that {AZ,,} is a Cauchy sequence in X. Therefore {[z], } contains
a subsequence { [z]n, } whose image under T is a Cauchy sequence in X.

4.11. (a) Let e, denote the sequence with nth term 1 and remaining terms 0.
Each e, € £2, and any finite set {e1,...,en} is linearly independent. (b) For any
positive integer n we have

n 1/p
lim Z |z |P = max |zk| < sup |z
p—r0o0 Pt 1<k<n E>1

so that
n 1/p oo 1/p
. . P . P
s () o (Srer) sz

But for each k£ > 1

0o 1/p
< I p
i< (o)
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so that
o0 1/p
sup |z < lim xk|? .
@?' Bl < lim <kz_:1| kl)

Hence
oo 1/p
lim Z|xk|p = sup |zk|.
p—oo Pt E>1

(c) For x = 0 the inequality is obvious, hence we take [x||, # 0. Assume g > p.
Note that 0 < a < 1 implies a? < a?. If 0 < ar, < 1 for each k then, we have

Y (a)? <Y ()

k=1

Because
n 1/p
k] = (Jzx[")? < <Z Ixj|p> <l » (A.13)
j=1

we have |zx|/[|x]|, <1 for each k, and shall momentarily let |zx|/ [|x||, play the
role of ar above. Now

(R AFTARE S A

Ul)7 — 2= il ) = 2= Ul
Hence (|[x[[,)? < (|[x[|,)?, and the desired inequality follows. (d) To see that
¢ C ¢P, observe that

i k] < <§ vakl>P = (Ixl,)"

so [Ix|[, < [Ix|l,- Ifx € ¢' then |)x||, < oo, hence [x[|, < oo sox € ¢F. The
inclusion ¢? C ¢7 follows from the inequality of part (c). Finally, we may take
the supremum of (A.13) to obtain [|x||, < [[x][,. The inclusion £” C £ follows.
(e) Every summable sequence converges to zero, every sequence that converges
to zero converges, and every convergent sequence is bounded. (f) Let p < co and
let {x"} be a Cauchy sequence in ¢F. Each x™ = (z7,z%,...,2%,...). Let € >0
be given and choose N such that whenever m,n > N,

oo
(™ = x",)7 = > la — ak]” < . (A.14)
k=1

Suppose m > n and fix n > N. By (A.13) we have for each k

|z’ — 2k | < X" —x", <&
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hence, for each k the sequence {z}'} is a Cauchy sequence in R. By completeness
of R we have z' — x, say. Now let x = (z1,z2,...,%k,...). We will show that
x" — x. By (A.14) for any finite j we have

J
Z|m? —zp|” < &P
k=1

Hence

J
lim E lzy" — zp|P <ef

which gives us
J
Z |z — zi [P < €P.
k=1

As j — oo we therefore have

oo
Z |z — zp|? < €P.
k=1

On one hand, this means that x € ¢F. Indeed,
Iell,, < 1 = %™l + [l < e+ M, < oo
On the other hand, this can be reworded: ||x —x"[|, <& whenever n > N, hence
x" — x and so ¢ for 1 < p < oo is complete.
Now consider the case p = co. Let {x"} be a Cauchy sequence in £*°. Each

x" = (z})rz1- Fix € > 0 and choose N such that whenever m,n > N,

sup |z’ — zp| < €.
k

Suppose m > n and fix n > N. For each k

lzp —zr| < e, (A.15)
hence for each k the sequence {z}'} is a Cauchy sequence of real numbers. By
completeness of R we have xj" — zx, say. Now let x = (xx)s=; and show that
x" = x. As m — oo (A.15) gives

|z — 2| < e

for each k. Hence
sup |z — 7| < e
k



Hints for Selected Exercises 461

for n > N, proving that x™ — x. Since ||x —x"||_ <€ for n > N we have
¢l oo, < 3 =% oo + 1™ oo < & 16V o,

hence x € £*°. (g) Let x = (&1,&2,...) € £P. Since Y ;o || converges we can
choose n large enough to make Zzo:nH |€x|P as small as desired. Hence we can
approximate x arbitrarily closely by an element x,, having the form

Xn = (517527-~~,fn,0,0,0,...).

Furthermore each £ may be approximated by a rational number r;. The set S
consisting of all elements of the form

Yo = (r1,72,...,72,0,0,0,...)

is countable and dense in . More formally, let € > 0 be given. Choose n so that
> i [€k[P < €7/2, then choose the r; so that |¢ — ri| < £/(2n)"/? for each
i=1,...,n. We have

eP
[x —ynl” = Z|§k—rk|”+ Z |€k|p<n—+7=

k=n+1

as desired. (h) Fix any countable subset {x(™}22; of £>°. Denote the components
of x(™ by
x™ = (e, &M, 67,0,

We now construct z € £>° such that ||z — x(™||c > 1 for all n. Denoting

z = (<17<27C37 .- )

we let

- W1, g <,
- k
o, e > 1

for each k =1,2,3,.... Then

Iz — x| = Sup [Cm — & &> 16 — & > 1

as desired. (i) Let S be the set of all vectors whose components form rational
sequences that converge to 0. This set is evidently countable. We show that it is
dense in ¢o. Given x = (£1,&2,...) € co and € > 0, choose y = (r1,72,...) € S
such that [£; —ri| < e for all i =1,2,.... Then |[x —y|_, =sup; |& — i <e.
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4.12. Let {z,} be a Cauchy sequence in (R,d). We first show that {z,} is a
Cauchy sequence in (R, |- |). We have

|2 — a3,| = |20 — T |22 + Tnm 4+ 22| = 0 as m,n — co.
—_— e ———

factor 1 factor 2

This implies that either factor 1 or factor 2 approaches zero, or both. However,
if factor 2 approaches zero then x,, — 0 as n — oo, and this in turn implies that
factor 1 approaches zero. So factor 1 must approach zero in any case.

Next, by the known completeness of (R, |- |), we can name a limit element
z € R for {z,}.

Finally, we show that z, — x in (R, d). This follows from the equality

|25 — 2°| = |2n — 2| e], + znx + 27,
because the first factor on the right approaches zero and the second factor is
bounded (since {z,} is bounded).

Note that here we have no inequality |ar:3 — y3| < m|x — y| for all z,y in R,
but the notions of sequence convergence with both metrics are equivalent. This
distinguishes the notion of equivalence of metrics from that of equivalence of
norms.

4.13. Call

o = sup .
||| #£0 [l ||

By linearity of A, a is also equal to the other expression given in the exercise.
By definition of supremum we have two things:

(1) For every £ > 0 there exists some zo 7# 0 such that

[ Azol|
llzoll

o — €.

Equivalently, ||Azo|| > (a — ¢€) ||xol|. This implies, by the definition of || Al|,
that
a—e < |A]l.

So a < |A|| + €, and since € > 0 is arbitrary we have a < || AJ|.

(2) For every xz # 0 we have
| Az]|
[l

< a.

So ||Az|| < a||z|| for z # 05 in fact, this obviously holds when z = 0 as well
so it holds for all z. By definition of ||A|| we have ||A| < a.

Combining the inequalities from parts 1 and 2 we obtain ||A| = a.
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4.15. We can show that the f; are linearly dependent if and only if the Gram
determinant is zero. The proof can rest on the fact that a linear homogeneous
system Ax = 0 has a nontrivial solution if and only if det A = 0.

Assume linear dependence. Then ZZ‘L:1 a;fi = 0 for some «; not all zero.
Taking inner products of this equation with the f; in succession, we get

ai(fi, fi) + -+ an(f1, fn) =0,

: (A.16)
al(fn,fl) +ooet an(fn,fn) = 07
or
(f17f1) (fhfn) (65} 0
(fnyfl) (fnvfn) Qn 0
A nontrivial solution for the vector () implies that the Gram determinant van-

ishes. Conversely, assume the determinant vanishes so that (A.16) holds for some
nontrivial (a). Rewrite (A.16) as

n
(fi7zajfj>_o, i=1,...,n,
j=1
multiply by a; to get
n
<aifi7zajfj>:07 i=1,...,n,
=1
and then sum over ¢ to obtain

<Z aifi, Z%fj) =
i=1 j=1

2
=0.

n
D _aif
=1

Hence Z?Zl a; fi = 0 for some scalars «; that are not all zero.

4.16. The statement ||A, — A|| — 0 means that
(An — A)z|| < cn|lz|| where ¢, — 0
and each ¢, is independent of z. Since ||z|| < M for all z € S, we have
|Anz — Az|| < cn M.

But ¢, M — 0 together with ¢, — 0 when n — oo, thus A,z — Ax.
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4.18. We have
%) 2 %) %) oo
> oo = (Lo Tewn) =l <o
n=0 n=0 k=0 n=0

4.19. Assume u(t) and v(¢t) are each differentiable at ¢. Form the difference
quotient

(et 1, o2 1) = D 00) _ Ly 4y e 4 1) — - (u(e) o(0))

and on the right side subtract and add the term

(u(®),v(t + h))

> =

to write the difference quotient as

(w w(t + h)) + (u(t)7 M) _

Then let h — 0.

4.20. We can use the Cauchy—Schwarz inequality to write
lzall ]l 2 [(2n, z)|
for each n, hence
liminf ||z, ||z]| > liminf |(zn,2)| = Um |[(zn,2)| = |(z,2)] = Ha:||2
n— oo n— oo n—oo
So
. 2
||| im inf [[z,[| = [z~
n—oo

For z # 0 we can divide through by ||z|| to get the desired inequality. It holds
trivially when x = 0.

4.21. Because A is densely defined, for each x € V there is a sequence {z,} C
D(A) such that z, — z. Since this sequence converges it is a Cauchy sequence.
Because A is bounded, {Az,} is a Cauchy sequence in W, hence converges to
some w € W. Furthermore, w does not depend on the Cauchy sequence used.
(That is, if z, — = and =z, — x, and Az, — w, then Az;, — w. Indeed for each
n we have,

0< HA:vn — Al’%” = HAxn — Az + Ax — A.f/nH <Al (|lxn — x|l + Hx - :v/nH),
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as n — oo we have lim, 0 ||AZ, — Az,|| = 0 and by continuity of the norm we
have the conclusion.) Thus we can define an extension A. by

Aex = lim Ax, =w for any z € V.
n—r oo

Linearity is evident. Since

|Acz|| = H lim Az,
n— oo

= lim [[Az,[| < lm [[A]lflzn] = [[A]l [[<]],
n— oo n— o0

A is bounded with ||Ac|| < ||A]l. The reverse inequality follows by noting that
Az = A.x whenever z € D(A). Finally, we prove uniqueness: if A, is another
bounded (hence continuous) linear extension of A, then for any sequence {z,} C
D(A) with z,, — = we have

! . / .
Acx = lim A.z, = lim Ax, = Acx,
n—r oo n—r oo

which gives A, = A..

4.22. Suppose vy — v in V where the dimension of V' is n. Choose a basis {ey }

of V and write
n n
= aPe. v = aje;
k = j Al - J%7
j=1 j=1

For an arbitrary bounded linear functional f on V we have f(vy) — f(v) as
k — oo. Fori=1,...,n, put f equal to f; defined for any = >_7_, &xex by
fi(z) = &. Then f;(vy) = al(.k) — fi(v) = a; as k — oo, and we have

a® — o

. < 1 k) _ _
khﬁngo m Z|0€ ;] [le;l| = 0.

4.23. (a) From © = AA™'z we obtain |lz|| < ||A| [|[A7| ||lz|| and the result

follows. (b) Using 2 = A~ 'y we have Ac = 7, hence ¢ = A™'r. The four
inequalities

llzl < 1AM Il Il < 1Al llell,

Iyl < 1Al =[], llell < (A7 el

follow immediately and yield the desired result.

4.24. Let B be the unit ball in X. The image of the bounded set B under T
is precompact; T~! returns this image into B. But a continuous operator maps
precompact sets into precompact sets, hence if 77! were bounded then B would
be precompact. Since X is infinite dimensional, this is impossible.
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4.25. (a) Let F: X — Y be an isometry between metric spaces (X,dx) and
(Y,dy). Then, by the definition,

dy (F(z2), F(z1)) = dx(z2,21) for all z1,z2 € X.

Continuity is evident. To see that F is one-to-one, suppose F(z2) = F(z1).
Then dy (F(z2), F(z1)) = 0 = dx(x2,z1), so x2 = z1 by the metric axioms.
(b) First suppose ||Az| = ||z|| for all z € X. Replacing = by z2 — z1 we have
|Az2 — Az1|| = ||Jz2 — x1|| as required. Conversely suppose that ||Azs — Azi]| =

|[x2 — z1]| for any pair zi,z2 € X. Putting 21 = 0 and z2 = x we have the
desired conclusion.

4.26. Suppose Parseval’s equality holds for all f in H. We fix f and use the
equality, equation (4.89), and continuity to write

o
Il

Tim. <|f|l2 -2 I 9k)|2>
k=1

2

lim Hf = (f,9x)x
k=1

n— 00

2

Hf = (f,98)9
k=1

This shows that
f= Zakgk where ax = (f, gx).

k=1

4.27. The inequality

df

dx

<a Hf”c(l)(foo’oo) B
C(—o00,00)

ie.

)

obviously holds with o = 1.

4.28. We construct a subset M of the space whose elements cannot be approx-
imated by functions from a countable set. Let o be an arbitrary point of [0, 1].
Form M from functions defined as follows:

folo) = {1, x> a,

0, z<oa.
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The distance from fo(x) to fs(z) is

[[fa(z) = fa(x)ll = Sup]lfa(x) —fo(@)| =Tifa#p.

z€[0,1

Take a ball B, of radius 1/3 about fo(z). If o # 8 then B, N B is empty.

If a countable subset is dense in the space then each of the B, must contain
at least one element of this subset, but this contradicts Theorem 4.11 since the
set of balls B, is of equal power with the continuum.

4.29. Let {A,} be a Cauchy sequence in L(X,Y), i.e.,
|Antm —An|]] =0 asn— oo, m>0.

We must show that there is a continuous linear operator A such that A, — A.
For any z € X, {A,z} is also a Cauchy sequence because

HAn+m$ - Anl’H < ||An+m - An” HxH )

hence there is a y € Y such that A,z — y since Y is a Banach space. For every
x € X this defines a unique y € Y, i.e., defines an operator A such that y = Ax.
This operator is clearly linear. Since {A,} is a Cauchy sequence, the sequence of
norms {||A,||} is bounded:

[Az| = lim [|[Anz| < limsup||An]| |[=]|.
n—00 n— oo

That is, A is continuous.

4.30. We can see that the equation (A + B)x = y has a solution for any y € Y
by applying the contraction mapping theorem. Indeed, pre-multiplication by
A~1 allows us to rewrite this equation as x = Cx + xo where C = —A~'B and
xo = A™'y. Defining F(z) = Cx+ =0, we see that F(z) is a contraction mapping:

-1
[F(z) = F(y)ll = [Cx = Cyll < ICl[ Iz —yll, ICI <A B] < 1.
Since the equation z = F'(z) has a unique solution z* € X, so does the original

equation.
From x = A™' Az it follows that || < ||A™"|| ||Az||, hence
—1)-1
[Az|| = A7 [l -
So for any y € Y we can write

lyll = A+ B)zl|l > || Azl — || Bz|| > A7 [lll - 1B |zl

and therefore
el < (AT = 1BID "yl -

The desired inequality follows.
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4.31. First assume that y = Az for some scalar A\. Then
3 2
Iz, 9)| = (@, Az)| = M| (z, 2)| = [Al l=]” = [zl |Az]] = [[=] ly]l,

hence equality holds. Conversely, assume equality holds in (4.49). Squaring both
sides, we obtain the relation

(,9)(@,y) = ll2l* llyl* -
Using this it is easily verified that

[y, v)z — (2, 9)yl* = (y,)z — (@, 9)y, ,y)z — (z,9)y) =0,

hence (y,y)z — (z,y)y = 0.
4.32. As F is continuous, |Fz| < ||F|| ||z||. Next,

lz]|* = Fa > | = [|F |l |z ]| = ll=] (2]l = [|F1)-
It seen that if ||z|| > | F|| then ||z|* — Fz > 0 and if ||z|| < ||F|| then

|2l|* = Fz > —Fa > = ||F|| |z > - ||F|*.

4.33. (a) Let us denote X \ S by S°. First suppose that S is open. Let y be
an arbitrary point of S. Assume to the contrary that every open ball centered
at y contains a point of S°. In particular, each such ball having radius 1/n,
n =1,2,3,..., contains some point z, € S°. So there is a sequence {z,} C S°¢
such that x, — y. But S¢ is closed so we must have y € S¢, a contradiction.
Conversely, suppose that every point of S is the center of some open ball contained
entirely within S. Suppose to the contrary that S is not open. Then S is not
closed, and there is a convergent sequence {z»} C S¢ having a limit y € S. This
means there are points of {z,} that are arbitrarily close to y, so it is impossible
to find a ball centered at y that is contained entirely within S. This contradiction
completes the proof. (b) Take an open ball of radius r centered at x, and denote
by U the complement of this ball. Now take any sequence {z,} C U such that
Zn — x. Since ||z, — x| > r for each n, we have ||xo — x| > r by continuity of
the norm. This shows that zo € U, hence U is closed. So the original ball is open
by definition. (c) Let f be continuous and let S be open in Y. The set f~'(S)
is open if it is empty, so we suppose it to be nonempty. Choose any x € f~*(S5).
Then f(z) € S, and since S is open there is an open ball B(f(z),e) contained
entirely in S. By continuity there exists a ball B(x,d) whose image f(B(z,d))
is contained in B(f(x),e) and therefore in S. So B(x,6) is contained in f~'(S).
This shows that f~'(S) is open. Next let f~*(S) be open whenever S is open,
and pick an arbitrary x € X. The ball B(f(z),¢) is open so its inverse image
is open and contains x. Hence there is a ball B(z,d) contained in this inverse
image. We have f(B(z,d)) contained in B(f(x),¢), so f is continuous at x.
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4.34. The function
1, x rational,
flz) = {

0, « irrational,

can be defined on R. Now for any real number xo, whether rational or irrational,
there are sequences tending to x¢ that consist of purely rational or purely irra-
tional elements (i.e., both the rationals and the irrationals are dense in the reals).
For one type of sequence the limit is 1 and for the other type the limit is zero.
Thus at point xo there is no limit value and the function is not continuous by
definition.

4.35. We can write

2

1 1
Al = [ ([ Hsouoar) as

/0</ Ikstldt)</ 2(t)dt>ds
([ [ wsorads) [Cewa

=M HUHL2(0,1)

([ [ oot

||AU||L2(0,1) < MHUHL2(0,1)

where P

Therefore

and we have ||A|| < M.
4.36. Since ||Sx|| = ||x]|, we have ||S|| = 1.

4.37. We have
¢ ¢
/ 2*(s) ds f/ y>(s)ds
0 0

t

< max [ faz(s) +y(s)| - |z(s) —y(s)|ds

Az — Ay|| =
Az — Ayl max

tel0,1] /o

t
< t . )] - d
< (max 120+ max (0)]) - ma o(0) ~ y(0)] - s [ as

= (=l + Nyl - llz = wll -

On any ball of the form ||z|| < 2 —& where € > 0, we have ||Az — Ay| < q ||z — y||
where ¢ < 1.

4.38. All elements of the form

11 1
w=(1,=,=.....2,0,0,0,...
x ( 2'3 " )
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belong to S. The sequence {xy,} is a Cauchy sequence because for m > 1 we have

1 1
X — Xn|| = su —=———0 asn— oo.
l[Xn+m — Xall 1 S ey

However, the element lim, . x, does not belong to S.

4.39. The Neumann series for (A — I)™!

(A-D"t=-) 4"

So

IA-D7 < Z 1A% < Z 1A = IIAII

4.40. The reader should verify that the norm axioms are satisfied for the norm
in question. Then take a Cauchy sequence {(zr,yx)} C X X Y so that

1@ ym) = (@0, yn)ll x wy = 1(@m = Tn ym = Yol x v

= max{[|zm — Zallx , [[ym = ynlly }

— 0 as m,n — oo.
This implies that
|Tm — 2n|ly =0 and ||ym —ynly = 0 as m,n — oco.

So {zx} and {yx} are each Cauchy sequences in their respective spaces X,Y’; by
completeness of these spaces we have x, — = and yr — y for some x € X and
y € Y. Finally, we have (zx,yx) — (z,y) in the norm of X x Y:

(@, yx) = (2,9l = l(zx — 2z, 46 — )l
= max{[[zr — x|l x, lyx —ylly}

— 0 as k — oo.

4.41. We have

[y — x|l =

? (vi—x 1 —
H#‘Sﬁzm where r; = ||z; — x| .

=1
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Then for any m between 1 and n we can write

m 1 n
lym —all < =D mit— > mi
i=1 i=m+1
1 n—m
< —|m- max k; | + - max K;
n 1<i<m n m+1<i<n
1
< —|m- max kK; | + max k;.
n 1<i<m i>m—+1

Let € > 0 be given. Choose and fix m sufficiently large that the second term is
less than £/2. In the first term the quantity in parentheses is then fixed, and we
can therefore choose N > m so that the first term is less than £/2 for n > N.

4.42. Assume |-||, and |-||, have the property that ||z, — x|/, — 0 if and only if
lzrn — ||, — 0. Now suppose to the contrary that there is no positive constant
C such that ||z]|, < C'|jz|, for all € X. Then for each positive integer n there
exists xn, € X such that

l@ally > lleall,

Define
1 Tn

Yn = —= :

" Vel
Then

1
lynll, = N =0 asn— o

while

Vi llzall, = vn
This contradiction shows that the required constant C' does exist. Interchange
the norms to get the reverse inequality.

‘n=+/n—00 asn— oo.

4.43. We have |[|zm]| — |zn]l| < ||zm — 2]l — 0 as m,n — oo, hence the
sequence of norms is a Cauchy sequence in R.

4.44. Let U be a separable, dense subspace of X. We take a countable dense
subset A of U and show that A is also dense in X. Let x € X and £ > 0 be
given. Since U is dense in X there exists ' € U such that d(z,z’) < /2. Since
A is dense in U there exists 2" € A such that d(z’,2") < £/2. So d(z,2") < ¢ as
required.

4.45. Let X be a Banach space so that any Cauchy sequence in it has a limit.
Now let 377, xx be an absolutely convergent series of elements zx € X. Denote
by s; the ith partial sum of this series. Now {s;} is a Cauchy sequence in X
because for m > n we have

m oo
|$m — snll = z zi|| < z lzx] = 0 asm,n — co.
k=n+1 k=n+1
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Therefore s; — s for some s € X by completeness.

Conversely suppose every absolutely convergent series of elements taken from
X is convergent. Let {z;} be any Cauchy sequence in X. For every positive
integer k we can find N = N (k) such that ||z, — z.|| < 1/2* whenever m,n > N;
furthermore, we can choose each such N so that N(k) is a strictly increasing
function of k. The series > 7 | [T n(k+1) — Tn(k)] converges absolutely:

oo oo 1
>l —zxmwl <D =1
k=1 b1

Hence it converges and by definition its sequence of partial sums

J
Sj = Z[$N(k+1) - mN(k)] = TN@G+1) —TN(1)
k=1

converges. Let s be its limit. From the last equality we see that {xy(;} also
converges and its limit is * = s + zx(1). But if a subsequence of a Cauchy
sequence has a limit the entire sequence converges to it.

4.46. It suffices to show that the image of the unit ball, i.e., the set of all vectors
x € % having

(oo}

Ix[l* =D Jewl* < 1,

k=1

is precompact. We call this image S and show that it is totally bounded (cf.,
Definition 4.46). Let € > 0 be given. Note that if z = Ax is any element of S, we
have

oo oo oo
Z |Zn|2 — Z |27nxn|2 < 272(N+1) Z |'Tn|2 < 272(N+1)7
n=N+1 n=N+1 n=1

hence it is possible to choose N = N(g) such that

o)

> el < €22

n=N+1

for all z € S. Now consider the set M of all “reduced” elements of the form
(#1,...,2n,0,0,0,...) derivable from the elements of S. It is clear that M C S,
which is bounded. Besides, the N-tuples of z belong to a bounded set in the finite
dimensional space RY in which any bounded set is precompact. Hence there is
a finite €2 /2-net of N-tuples from which for an arbitrary z we select ((1, ..., ¢n)
so that

N
Z |z — Cal? < €%/2.
n=1
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Thus an element z° = (C1,...,(n,0,0,...) € £ is an element of a finite e-net of
S, since

N oo
lo=2 12 =Y len =GP+ 3 [P <fj24e2=c
n=1 n=N+1

4.47. For A = 0 the operator A — \I is the same as A, hence the corresponding
resolvent operator is simply A~'. This operator exists; it is the backward-shift
operator and its domain is R(A). But R(A) is not dense in £2 so the conclusion
follows.

4.48. The (?-norms of the sequence elements are given by

& 1/2
%kl = <Z 12) _ U2
i=1

We see that [|xx||,2 — 0o as k — co. But ¢? is a Hilbert space, and in a Hilbert
space every weakly convergent sequence is bounded.

4.49. It is clear that the sequence {sin kz} converges weakly if and only if the
2

normalized sequence {4/Z sinkz} converges weakly. The latter sequence is or-

thonormal in L?(0,7), and any orthonormal sequence converges weakly to zero.
Indeed Bessel’s inequality shows that for any orthonormal sequence {ex} and any
element x € H we have

oo
Z (z,er)|* < oo, hence lim (z,ex) = 0.
=1 k—oo

In the Sobolev space, on the other hand, we have
T 2 1/2
H\/zsinkx = (/ {g sin? kax—l—icos2 kx] d:c)
T W.2(0,7) o LT ™

=+v1+k%>—> 00 ask— co.
For any subsequence the norms tend to infinity as well. Since any weakly con-
vergent sequence in a Hilbert space is bounded, no subsequence can be weakly
convergent.

4.50. In the process of introducing Lebesgue integration we obtained the inequal-
ity

1_1
[F)l, < (mes@)a# [[F(x)]] 1<qg<p.

P

1 1
So a bound on the norm is (mes€Q)a ». Taking F' = 1 we see that it is not a
simple bound but the norm of the operator.
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4.51. Since {z,} is an orthonormal sequence, it converges weakly to zero. The
image sequence {Ax,} converges strongly to zero by compactness of A.

4.52. The subset inclusion C™ () C C() certainly holds, so the imbedding
operator [ exists. It is continuous because || f||oq) < Ifllcw) (q), as is seen from
the form of the norms on these spaces. We must still show that I is compact.
Take a bounded set S ¢ C"™(Q), n > 1. The image I(S) is uniformly
bounded (since it is bounded in the max norm of C(Q2)). Furthermore, S is a
bounded subset of C")(€). This latter fact, along with the mean value theorem

fly) = f(x) =Vf(z) (y —x)

implies equicontinuity of I(.S). (Here z is an intermediate point on a segment from
x toy.) So I(S) is compact by Arzeld’s theorem. Therefore I maps bounded sets
into precompact sets as required.

4.53. The space of polynomials P, is linear but not complete. Weierstrass’
theorem states that any function from C/(a,b) can be arbitrarily approximated
by polynomials with respect to the norm of C(a,b). So for f € C(a,b) there is
a sequence of polynomials that converges to f, and this is necessarily a Cauchy
sequence in C'(a,b). Clearly the norm of this sequence as a representer of an
element of the completion space is equal to the norm of f in C(a,b). This means
that the result of completing P, in the norm of C(a,b) is a space that stands in
one-to-one correspondence with C(a,b) and can be identified with C(a,b).

4.54. We already know that strong convergence implies weak convergence, and
this does not depend on the dimension of the space. Let H be an n-dimensional
Hilbert space having an orthonormal basis {ei,...,en}, and suppose {zx} is a
sequence of elements in H such that xx — . Then

n
e lem 2= 3 e = laf®  as koo,
i=1

and we have z, — = according to Theorem 4.117.

4.55. Let M be a closed subspace of a Hilbert space H. Suppose {z,} C M
converges weakly to € H. This means that (zn, f) — (z, f) for every f € H.
Decompose H as M @& M, . For every g € M| we have

(z,9) = lim (zn,9) =0,

so x L M, . This means that z € M.

4.56. Suppose to the contrary that {:cn} does not converge to xo. So for some
€0 > 0 we cannot find an integer N such that ||z, — xo|| < €0 whenever n > N.
Thus there is a subsequence {zn,} such that ||xn, — zo| > €o. But this means
{zn, } does not contain a sub-subsequence that converges to o, which contradicts
the condition of the exercise.
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4.57. Suppose to the contrary that {z,} does not converge weakly to zo. Then
there is a linear continuous functional F' such that Fxg is not the limit of { Fz,}.
So there is an €0 > 0 and a subsequence {zn, } such that |Fa,, — Fxo|l > eo.
Hence {xn, } does not contain a sub-subsequence that converges weakly to xo.

4.58. (a) Assume S is closed and T is open. Take a sequence {z,} C S\ T such
that n, — x. Since {zn} C S, we have z € S. We claim that « ¢ T. For if not,
then = belongs to the open set T and is therefore the center of some small open
ball that lies entirely in ' — a contradiction. (b) Assume S is open and T is
closed. Let x € S\ T. Since x € S we know that z is the center of an open ball
that lies entirely in S; we claim that the radius of this ball can be chosen so small
that no points of T' can belong to it. For if not, then for each n the ball B(z,1/n)
contains a point z, € T, and the sequence {z,} C T is convergent to . Since
T is closed we must have z € T. However, this contradicts the assumption that
ze S\T.

4.59. For any element f and any € > 0 we can find an element f* € S such
that ||f — f*|] < €/2. Next, we can approximate f* with a finite linear sum of
system elements up to accuracy €/2: Hf* > ckekH < /2. So the same sum
approximates f to within accuracy ¢.

4.60. We can take § = ¢/L in the definition of equicontinuity. Since uniform
boundedness is given in the problem statement, S satisfies the conditions of
Arzeld’s theorem.

4.61. Suppose S be a compact subset of X. Let {y,} be a convergent sequence in
A(S), with y, — y. We need to show that y € A(S). The inverse image of {yn}
under A is a sequence in S, and contains a convergent subsequence whose limit
belongs to S: xzp — = € S, say. Noting that {A(z)} is a subsequence of {yn},
we have A(xzy) — y. By definition of closed operator it follows that € D(A)
and y = Az. Since © € S we have y € A(S), as desired.

4.62. We begin with

lhuz)| < ‘/(fu(t) dt\ +1/Ol ' (3| dy,

square both sides and use the elementary inequality 2|ab| < a® 4 b* to get

/(fu(t)dt o2 (/ |u’<y>|dy)2,

2
Plu(x)]* <2

then integrate this over x:

12/; lu(z)|? do < 21{ /Olu(t)dt ) + 1 (/Ol |u'(y)|dy>2},
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z/ol lu(a)|* da < 2{ /Olu(t)dt 2 + 1 (/Ol |u'(y)|dy>2}.

Finally, because of
1 2 1 2
(/ IU'(y)\dy> =</ 1~Iu'(y)\dy>
0 0
l Lo
S/ lzdy/ [u"*(y)| dy
0 0

l
_y / [ ()] dy
0

/Olu(t)dt2+13/0l |u'2(y)dy}.

SO

we get

l/ol lu(x)|? dz < 2{

4.63.

lyll = ((/Ol y'(z) d:c>2 +/Ol EIy"(z) dm>1/2.

When treating the problem of solvability of the equilibrium problems for a struc-
ture that can move as a rigid body, we should exclude rigid motions. For the
beam under consideration, this is done with two conditions. One is the boundary
condition ylo = 0. The other is somewhat artificial; it fixes the free rotations:

fol y(z)dz = 0. On the set of smooth functions satisfying these conditions, the
energy norm takes the form

. 1/2
lyll = ( [ B dx) .
0

Note. In the following hints, k& (with subscripts) denotes Winkler’s coefficient,
Q1, V1 are subdomains, and + is a sufficiently smooth curve (may be a part of the
boundary).

5.1.

(1) Membrane. Total potential energy:

%// [(%) + (%” dmdg—k%/ﬂl k (ula,y))* du dy

T / b (u(a))* ds = [[ fa)ute.s) dody.
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Virtual work principle:

du dp  Ou g //
// <8x8x y8 )d dy + Qlkuxy) p(z,y) dx dy

+ / buta oo ds = [ fe e dedy+ /a o)e(s) ds.

Stretched rod. Here the notion of Winkler foundation makes no sense, because
only longitudinal displacements are taken into account. However, we can
suppose that at a point xo there is attached a linear spring with coefficient
k, acting along the rod (which is analogous to Winkler’s foundation). In that
case we have the following. Total potential energy:

/ ES(z)u'*(x )d:er (ku(zo)) / f(z)u(z) dz — Fu(l).
Virtual work principle:
1
/ ES(z)u' (x)v'(z) do + ku(zo)v(zo) / f(z)v(x)dz + Fo(l).
0

(Consider the case of several springs along the rod as well.)

Bent beam. Total potential energy:
2 b 1
/ El(zx)w""(z)dx + = / kw®(z) dz + Eklwz(:co) dz
/ f(z)w(z)dx — Fw(l).
Virtual work principle:
1
/ El(z)w"(z)v" (z)dz + / kw(x)v(x) dx + kiw(zo)v(zo)
0

/ f(z)v(x)dx + Fo(l).

Here the region of the foundation is [a,b], 0 < a < b < I. We added a spring
with coefficient k1 at point xo.

Plate. Total potential energy:
D 2 2 2
> (Wey + wyy + 2WWaawyy + 2(1 — v)wy,) d
Q

+1// kw2dﬂ+l/k1w2dsf/ FuwdS.
2 Q; 2 % Q
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Virtual work principle:

D // (WaaVez + WyyUyy + ¥V (WaaVyy + WyyVez) + 2(1 — V) Wayvay) d
Q

—|—/ kwde—l—/kuuvdsz/ FvdQ.
Q 0% Q

(5) 3D linearly elastic body. Total potential energy:

] et s [[ unas
_///Vp.udv_//w1f.uds,

where n is the unit outward normal to the boundary. Virtual work principle:

/// Meulues(v)dv + / ., Fum)(vom)ds
///F Vdv+//av1f vds.

5.2. For this case the equation of the virtual work principle takes the form

au&p Bu&p / /
// (830 or ' oy 8y>d dy [z, y)e(z,y) dedy + aﬂ2g(s)<p(s)ds-

It is valid for all functions p(z,y) € C*(Q) such that ¢(z,y)|aq, = 0, when
u = uo(z,y) is a sufficiently smooth solution of the problem under consideration
so it satisfies u(x,y)lan, = 0. If Q1 U 0Qs does not cover 912, this means that
on Q\ (021 U 9Q2) there is given zero load and so here du/dn = 0.

Now the energy inner product takes the same form as for the above considered
problems for a membrane (u,v)ar, but the energy space Enm is the completion
of the set of functions u € C*(Q) satisfying u(z, )]s, = 0. On Earm the norm
induced by the inner product is equivalent to the norm of W1’2(Q).

The generalized setup of the problem under consideration is defined by the
above equation of the VWP, so u € Eum is a generalized solution if this equation
is valid for all o(z,y) € Enm.

The minimum problem now takes on the form

1
Eatm(w) = 5 lull}y — @(w),

where

://ﬂ £, y)u(@,y) d:cdy—l—/{ng(s)u(s)ds.



Hints for Selected Exercises 479

If
flx,y) € LM (Q),  g(s) € LP2(092), (A.17)

then ®(u) is a linear continuous functional in €. The existence/uniqueness
theorem is as follows:

Let (A.17) be valid. In the energy space Enm the functional Enrm(u)
attains its minimum at u = uo and the minimizer satisfying the equation
of the VWP 1is unique.

5.3. The total potential energy is now

Esr(u) = % /0 ES(z)u’(z) d:c+% /0 EI(z)w"(z) dz
1 l
— /0 f(@)u(z)dx — Fu(l) — /0 q(z)w(z)dx — Quw(l), (A.18)

where ¢(z) is the distributed normal load and @ is the transverse force on the
end.
The equation of the VWP is

/ ES(x)u' (z)v'(x) dx + / El(z)w"(z)¢" (z) dz

0 0

l l
- / f(@yo(e) dx + Fo(l) + / 4(@) () dz + Qp(l). (A.19)

Now the energy inner product for pairs u; = (u;, w;) takes the form

l j
(ul,uz)BR:/O ES(x)u'l(x)u'Q(x)der/o EI(z)w! (z)ws (z) d.

With the boundary conditions u(0) = 0 and w(0) = 0, w'(0) = 0, construct
the energy space Egr. On Epr its induced norm is equivalent to the norm of
Wh2(0,1) x W%2(0,1). The total energy functional now takes the form

1
Epr(u) =5 lullfr — @Br(u)

with
1 l
Ppr(u) = /0 f(@)u(z)dz + Fu(l) + /0 q(x)w(z) dz + Qw(l).

If f(z) € L(0,1) and g(z) € L(0,1) the functional ®pr(u) is linear and continuous
in Epr and this is enough to state that the total energy functional Egpr(u) attains
its minimum up in g that is unique. This minimum is a generalized solution
to the combined problem under consideration.
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5.4. (a) The VWP takes the form

1 1
/0 El(z)w" (z)v (a:)da::/0 f(x)v(x)dx+;Fkv(xk)

+> M (z5) + Fo(l),

where point force Fj acts at point x; and point couple M; acts at point ;.
Remark: This is meaningful because the energy space imbeds continuously to
the space C’(l)(O, l). For membranes and three-dimensional elastic bodies in the
energy setup, point forces are impossible. For a plate we can consider a gen-
eralized setup with external point forces acting on the plate. (b) The gener-
alized setup for countable sets of external point forces and couples is possible
when the series Y, Fj and Zj M are absolutely convergent and the the beam
ends are clamped, since the corresponding part of the work of external forces
2ok Frv(ae) + 225 M;v'(z;) is a linear continuous functional in the energy space:

D7 Fro(an) 0 Mo/ ()| < max fo(e) | D7 1Ful + max v/ (2) 3 1|
k j ! k ! j

J

< mHUHB'

5.5. The energy spaces for the problems are some subspaces of corresponding
combinations of Sobolev spaces.

5.6. The functional ®(w) (the potential) takes the form

D(w) = //Q F(z,y)w(z,y)dQ + /{m Ff)w(z,y)ds + Zka(xk,yk).

k=1

The (self-balance) condition for solvability of the problem is

P(ax + by + ¢) ://Q F(z,y)(ax + by + ¢) dQ + " f(s)(ax +by+c)ds

N
+ z Fy(axk +byr +¢) =0 for all constants a, b, c.

k=1

5.7. Use the following forms of the kinetic energy functionals.

A
Kf/op<a) dx.

Rod:
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! ow\?
= [ (5)
, P\ at
ow\”
Kf//ﬂp<g) dx dy.

5.8. It is necessary to solve the following simultaneous algebraic equations with
respect to a1,...,an:

Beam:

Plate:

Zak(<pk7(pj)l\/1:(ug7(pj)l\/[7 j:17"'7n'

5.9. For an infinite dimensional space £ the inequality |ull, > m |lu|l; with
constant m > 0 independent of u is impossible. Indeed, take an orthonormal
sequence {en} in &, so |len|| = 1. This sequence converges to zero weakly and
thus, because A is compact, we get ||Aen||; — 0. Then |len]|} = (Aen,en)e — 0
as well.

5.10. This set is the set of eigenfunctions of the eigenvalue problem
u” 4+ Nu =0, u(0) = 0 = u(m).

What is the energy space for this problem where the set is an orthogonal basis?

5.11. We recall only that for each of our problems the operator A is defined by
the following equalities (and the Riesz representation theorem).

Beam:

(Aw,v)B :/(; pw(x)v(x) dx.

(aw,0)p = [[ puta.pyute.y) do.

Three-dimensional elastic body:

(Au,v)5 ///pu vav.

These operators have all the properties needed in Theorem 5.22, and so the
theorem can be formulated for each of the problems without change.

Plate:

5.12. Suppose there is a minimizing sequence {x,} that does not strongly con-
verge to xo. This means that there is € > 0 and a subsequence {zn, } such that
lzo — zn, ||z > €. But {zn,,} is a minimizing sequence as well, and so it con-
tains a subsequence that strongly converges to a minimizer (by the theorem). By
uniqueness this minimizer is zo, which contradicts the above inequality.
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5.13. Suppose that for g1 and g we get solutions wi + g1 and w3 + g2. Then
(g2 — g1)|aa = 0. Consider the “difference” of the corresponding equations. We
come to the same problem for w3 = w2 — w; with f = 0 and the function
(g1 — g2) taken as g. This problem, by the theorem, has a unique solution wj.
By the structure of the equation of the problem it is evident that w3z = g1 — g2,
and so wi + g1 = w5 + go.
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