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General Preface

In the early eighties, when Jacques-Louis Lions and I considered the idea of a Handbook
of Numerical Analysis, we carefully laid out specific objectives, outlined in the following
excerpts from the “General Preface” which has appeared at the beginning of each of the
volumes published so far:

During the past decades, giant needs for ever more sophisticated mathemat-
ical models and increasingly complex and extensive computer simulations
have arisen. In this fashion, two indissociable activities, mathematical mod-
eling and computer simulation, have gained a major status in all aspects of
science, technology and industry.

In order that these two sciences be established on the safest possible
grounds, mathematical rigor is indispensable. For this reason, two compan-
ion sciences, Numerical Analysis and Scientific Software, have emerged as
essential steps for validating the mathematical models and the computer
simulations that are based on them.

Numerical Analysis is here understood as the part of Mathematics that
describes and analyzes all the numerical schemes that are used on comput-
ers; its objective consists in obtaining a clear, precise, and faithful, represen-
tation of all the “information” contained in a mathematical model; as such,
it is the natural extension of more classical tools, such as analytic solutions,
special transforms, functional analysis, as well as stability and asymptotic
analysis.

The various volumes comprising the Handbook of Numerical Analy-
sis will thoroughly cover all the major aspects of Numerical Analysis, by
presenting accessible and in-depth surveys, which include the most recent
trends.

More precisely, the Handbook will cover the basic methods of Numerical
Analysis, gathered under the following general headings:

Solution of Equations in R",

— Finite Difference Methods,

Finite Element Methods,
Techniques of Scientific Computing.
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General Preface

It will also cover the numerical solution of actual problems of contempo-
rary interest in Applied Mathematics, gathered under the following general
headings:

— Numerical Methods for Fluids,
— Numerical Methods for Solids.

In retrospect, it can be safely asserted that Volumes I to IX, which were
edited by both of us, fulfilled most of these objectives, thanks to the emi-
nence of the authors and the quality of their contributions.

After Jacques-Louis Lions’ tragic loss in 2001, it became clear that
Volume IX would be the last one of the type published so far, i.e., edited
by both of us and devoted to some of the general headings defined above.
It was then decided, in consultation with the publisher, that each future vol-
ume will instead be devoted to a single “specific application” and called
for this reason a Special Volume. “Specific applications” will include math-
ematical finance, meteorology, celestial mechanics, computational chem-
istry, living systems, electromagnetism, computational mathematics, etc.
It is worth noting that the inclusion of such “specific applications™ in the
Handbook of Numerical Analysis was part of our initial project.

To ensure the continuity of this enterprise, I will continue to act as the
Editor of each Special Volume, whose conception will be jointly coordi-
nated and supervised by a Guest Editor.

P.G. CIARLET
July 2002
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“I learned that the stems are built up of several dozen smaller tubes, each containing a
magnetic slurry: iron powder in a viscous liquid.”

Jack Vance

The Killing Machine

Book Two of

The Demon Princes, Volume One

Tom Doherty Associates Inc., New York, 1997

“Il est, il est, en lieu d’écumes et d’eaux vertes, comme aux clairieres en feu de la

Mathématique, des vérités plus ombrageuses a notre approche que 1’encolure des bétes
*

fabuleuses.” ™)

Saint-John Perse
Amers
Editions Gallimard, Paris, 1957

(*) Approximate translation:

“There are, there are, in places of foams and green waters, as in the burning clearings of
Mathematics, some truths more prickly to our nearness than the neck of the fantastic beasts.”



Foreword

Few years ago, after the completion of Volume IX of the Handbook of Numerical Analysis,
one of the guest editors of the present volume wondered which topics deserve a dedicated
volume. Among the topics he considered, two in particular stood out: a methodology-
oriented topic, Operator-Splitting, and a thematic topic, Computational Non-Newtonian
Fluid Mechanics. As operator-splitting methods already had a strong presence in several
volumes of the Handbook of Numerical Analysis (starting with a 266-page article by GI.
Marchuk in Volume 1), he focused on the second topic. And, although the Handbook had
already covered some problems from non-Newtonian fluid mechanics, analytically and com-
putationally — problems from Viscoelasticity in FERNANDEZ-CARA, GUILLEN and ORTEGA
[2002] and from Viscoelasticity and Viscoplasticity in GLOWINSKI [2003] — more work
remained to be done. Given that the first of these two articles is essentially analytical and the
second is mostly dedicated to Newtonian flow, there is a strong rationale for a volume that
concentrates on the numerical simulation of a variety of non-Newtonian fluid flows.

There is no doubt that non-Newtonian flows and their numerical simulation have gener-
ated abundant literature, including the Journal of Non-Newtonian Fluid Mechanics (another
Elsevier publication) and books such as those by BINGHAM [1922], LOoDGE [1964], DuvAUT
and LioNs [1972a,b, 1976], JosepH [1990], HuiLGoL and PHANTIEN [1997], and OWENS
and PHILLIPS [2002], as well as additional publications, references to which can be found in
the articles of this volume. This abundance of publications can be explained by the fact that
non-Newtonian fluids occur in many real-life situations, such as the food industry, the oil
and gas industry, chemical, civil and mechanical engineering, and the biosciences, to name
just a few. Moreover, the mathematical and numerical analyses of non-Newtonian fluid flow
models provide very challenging problems to partial differential equations specialists and
applied and computational mathematicians alike.

Finite elements and finite volumes have been the methods of choice for the numerical
simulation of non-Newtonian fluid flows (see e.g., MARCHAL and CROCHET [1986, 1987],
ForTIN and ForTIN [1989], FOorTIN and PIERRE [1989], EL HADJ and PA TANGUY [1990],
GUENETTE and ForTIN [1995], ForTIN and EsseLaour [1987], SINGH and LEAL [1993],
BAADENS [1994, 1998], VAN KEMENADE [1994a]; VAN KEMENADE and DEVILLE [1994b],
FIETIER and DEVILLE [2003], XUE et al. [1998], SINGH, JoSEPH, HESLA, GLOWINSKI and
PAN [2000], PATANKAR et al. [2000], PiLLAPAKKAM and SINGH [2001], CHAUVIERES and
OWENS [2001], BEHR, ARORA, CORONADO and PASQUALI [2005], CORONADO, ARORA, BEHR
and PasqQuaLl [2007], DEAN, GLowiINskI and GUIDOBONI [2007]; see also the many refer-
ences within these articles as well as in the articles in this volume).

Xix
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Foreword

The purpose of this volume is twofold:

(1) Provide a review of well-known computational methods for the simulation of non-

Newtonian fluid flows, particularly of the viscoelastic and viscoplastic types.

(2) Discuss new numerical methods that have proven to be more efficient and more accu-

rate than traditional methods.

Even though the articles in this volume investigate a significant range of applications,
we strongly believe that the methods discussed herein will find applications in many more

areas.

This volume is divided into three parts, each of which presents one or more articles
relevant to a key problem inherent to non-Newtonian flows:

Part I is dedicated to the numerical analysis and simulation of grade-two fluids.
V. Girault and F. Hecht’s article addresses the mathematical and computational dif-
ficulties associated with the grade-two model, thereby providing a good introduction
to the analysis of flows with more complicated constitutive laws.

Part II has four articles dedicated to the modeling and mathematical and numer-
ical analysis of viscoelastic flows. The article by A. Lozinski, R.G. Owens and
T.N. Phillips follows the stochastic approach advocated by Laso and OTTINGER
[1993] for deriving constitutive laws for polymeric flows. The article takes these laws,
which connect microscopic stochastic models with macroscopic ones, as the basis
for its approach because they are expected to be more accurate than the more phe-
nomenological ones encountered in the classical literature. The article by A. Bonito,
Ph. Clement and M. Picasso addresses the modeling, numerical analysis, and simu-
lation of viscoelastic flows, using models obtained via a two-scale analysis operating
at mesoscopic and macroscopic levels. In addition, this article discusses the simula-
tion of viscoelastic flow with free surface, a highly nontrivial problem. The article by
YJ. Lee, J. Xu, and C.S. Zhang is mostly methodological and investigates the difficult
problem (at a large Weissenberg number) associated with the advection of the vis-
coelastic extra-stress tensor. This article also shows that multilevel and parallelization
methods can significantly speed up viscoelastic calculations. Part II concludes with
a article by T.W. Pan, J. Hao, and R. Glowinski, which investigates several methods
that can be used to guarantee the definite positiveness of the viscoelastic extra-stress
tensor. The article also discusses the numerical simulation of particulate flow for vis-
coelastic fluids.

Part III has two articles, both of which discuss the simulation of viscoplastic fluid
flows where the viscoplastic properties are possibly coupled with additional physi-
cal properties such as temperature dependence, compressibility, thixotropy, interac-
tion with solid particles, and an electric field. The first article, by R. Glowinski and
A. Wachs, investigates a variety of viscoplastic flows encountered in the oil and gas
industry, such as waxy crude oil flow in pipelines at low temperatures. The second
article, by R.H.W. Hoppe and W.G. Litvinov, is dedicated to the modeling and simu-
lation of electrorheological fluid flows and to the optimal design of devices that use
these fluids.

This volume offers investigations, results, and conclusions that will no doubt be useful
to engineers and computational and applied mathematicians who are concerned with the
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CHAPTER 1

Theoretical Results

1.0. Foreword

The numerical analysis of schemes and algorithms used in discretizing non-Newtonian fluid
models is a challenging task. To this date, there are only very few models for which a com-
plete numerical analysis, namely stability, error estimates, and convergence of algorithms, is
known. The two-dimensional grade-two fluid model with tangential Dirichlet boundary con-
ditions studied in this work is one of them. This is made possible by the fact that, owing to the
dimension, this model has a formulation that yields good discrete a priori estimates. In three
dimensions, discrete a priori estimates for the same formulation are not yet known. Tangen-
tial boundary conditions alone, i.e., with no inflow or outflow, are studied here because the
problem may be ill-posed if complete Dirichlet boundary conditions are prescribed.

The material in this work is fairly well self-contained and all prerequisite notions are
recalled. It is accessible to advanced graduate students and part of this work was taught
by the first author in an advanced graduate course at the Mathematics Department of the
University of Pittsburgh.

This work is divided into six chapters. In order to present clearly the main ideas, without
obscuring the discussion by too many technical details, the first four chapters are devoted
to the problem with homogeneous Dirichlet boundary conditions. The first chapter presents
a short survey of theoretical results with particular emphasis on the two-dimensional prob-
lem. Chapter 2 is devoted to the discretization of the steady-state problem, and Chapter 3 is
devoted to the discretization of the time-dependent problem. Chapter 4 presents an interest-
ing heuristic least-squares scheme and gradient algorithm for the steady and unsteady prob-
lems. The steady model with tangential Dirichlet boundary conditions is treated in Chapter
5. Numerical experiments are presented in Chapter 6.

1.1. Introduction and preliminaries

A grade-two fluid belongs to the class of non-Newtonian fluids of differential type. Non-
Newtonian fluid models are used to describe the behavior of liquids frequently encountered
in nature and industry, such as many polymeric liquids, biological fluids, foams, and slurries.
Unlike water, these liquids are characterized by the fact that they exhibit at least one behav-
ior such as shear-thinning or shear-thickenning, stress-relaxation, nonlinear creep, normal
stress differences or yielding. Grade-two fluids cannot exhibit stress-relaxation, but they can
develop normal stress differences and they can experience creep.
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In a fluid of differential type, be it Newtonian or non-Newtonian, the Cauchy stress ten-
sor is determined explicitly by the symmetric part of the velocity gradient and possibly its
various higher time derivatives. But in contrast to Newtonian fluid models where the consti-
tutive relation for the Cauchy stress tensor is a linear function of the symmetric part of the
velocity gradient, in a non-Newtonian fluid model, this constitutive relation is nonlinear.

A grade-two fluid is considered an appropriate model for the motion of a water solution
of polymers, cf. DUNN and RAaJAGOPAL [1995]. Interestingly, its equations can also be inter-
preted as a model of turbulence; we refer to the work of HoLm, MARSDEN and RATIU (cf. for
instance [1998a, 1998b]). In the simplest case, its equations of motion have the form

ad
E(u—aAu)—vAu—i—curl(u—ocAu)xu+Vp=f. (1.1.1)

As the fluid is incompressible, it satisfies the constraint
diva =0, (1.1.2)

and (1.1.1) and (1.1.2) are complemented by a Dirichlet boundary condition and an initial
condition.

In some sense, the theoretical results that have been proven up to date for this model
are fairly satisfactory, but there still remain important open questions such as the problem
posed by nonhomogeneous Dirichlet boundary conditions or that posed by a rough exterior
force, such as an L? force, to mention just these two “simple” questions. At least for the
steady two-dimensional problem, we can handle tangential Dirichlet boundary conditions,
i.e., with no ingoing or outgoing flow. But if there is an ingoing or outgoing flow, the problem
is ill-posed and we still do not know what additional boundary condition must be added to
make the problem well-posed.

In contrast, numerical results obtained so far are very scanty. We now know how to do
the numerical analysis of some carefully chosen schemes for the steady and time-dependent
problems in dimension d = 2. But up to now, the numerical analysis of schemes that approx-
imate this problem in dimension d = 3, be it steady or unsteady, is not resolved. The expla-
nation is simple: we lack some discrete a priori estimates, estimates that appear plausible,
but for which we have yet no proof, except perhaps for very crude schemes. These estimates
are a crucial ingredient in the numerical analysis of several models of non-Newtonian fluids,
and this analysis will remain an open question as long as such estimates are not established.

For this reason, the present work is dedicated only to numerical methods for the model
in two dimensions.

1.1.1. Notation

The following notation will be used in the sequel. We state them in dimension d = 3 because
the theoretical problem is, of course, three-dimensional, but the numerical study will be done
mainly in dimension d = 2. Unless otherwise specified, the domains of interest 2 will all be
bounded, connected, and have a boundary 9<2 that is at least Col e, Lipschitz-continuous
(cf. GrisvARD [1985]), and we shall call them Lipschitz-continuous domains. We denote by
D(L2) the subspace of functions of C*° () with compact supportin Q. Let k = (ki k, k3) be
a triple of non-negative integers and set |k| = k| + ky + k3; we define the partial derivative
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9% of order |k| by:

lkly,
aky = PN
0x) 0x,° 0x5

Recall the standard Sobolev spaces, for a non-negative integer m and a number r > 1
(cf. Apams [1975] or NECAS [1967])

W™ (Q) = {v e L'(R); o*v € L"(Q) V|k| < m},
equipped with the seminorm

1/r

Mwmry = | D / okvrdx |,

Ik|=m &,

and the norm (for which it is a Banach space)
1/r

Wlwnrey = D Wiyery |

0<k<m

with the usual modification when r = o0; we refer to GRISVARD [1985], LioNs and MAGENES
[1968] or ADAMS [1975] for extending this definition to fractional Sobolev spaces. When r =
2, this space is the Hilbert space H™ (€2). In particular, the scalar product of L%() is denoted
by (-, -). These definitions are extended straightforwardly to vector-valued functions, with
the same notation, except for non-Hilbert norms. In the case of a vector or tensor u, we set

1/r
el = / werds |
Q

where | - | denotes the Euclidian norm when u is a vector: |u|?> = u - u, or the Frobenius
norm when u is a tensor: |u|2 = u : u.
For imposing vanishing boundary values on 92, we define

Hy(Q) = (v € H'(Q); vlse = 0},
and more generally, for a number r > 1, we define
1,r _ 1,r . _
Wy (€2) = {v e WH(Q); vlse = 0},

We shall frequently use Sobolev imbeddings: for a real number p € R, p > 1 in dimension
d=2or1 <p < 6indimension d = 3, the space H 1() is imbedded into LP(2). In partic-
ular, there exists a constant S, (that depends only on p, the dimension and the domain) such
that

Vv e Hy(Q), IVliLr) < Splvlgiq)- (1.1.3)
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When p = 2, this is Poincaré’s inequality and S is Poincaré’s constant. In the case of the
maximum norm, the following imbedding holds:

Vr>d, W(Q) c L®(RQ). (1.1.4)
In particular, for each r > d, there exists a constant S, such that

Yv e Wh(Q) NHy(Q), IVl < SeorllV Vilzr@)- (1.1.5)
Owing to Poincaré’s inequality, the seminorm | - | is a norm on Hé (2), equivalent to the full

norm. As it is directly related to the gradient operator, we choose this seminorm as norm on
H(l) (f2), and in particular, we use it to define the dual norm on its dual space H “1(Q):

_ (f,v)
Vf e H ' Q. Iflg1@y = sup , (1.1.6)
v£0,veH (R) VI (@)
where (-, -) is the duality pairing between H~! () and H} ().
For imposing tangential boundary conditions, we define
H{(Q) = e H'(Q)} v-n=00n03Q}, (1.1.7)

where n = (n1, np, n3) is the unit normal vector to 92, directed outside €2, and v =
(v1, v2, v3). An easy application of Peetre—Tartar’s Theorem (cf. PEETRE [1966], and TARr-
TAR [1978], or GIRAULT and RAVIART [1986]) proves the analog of Sobolev’s imbeddings in
Hl(Q) for any real numberp > lifd=2o0or1 <p <6ifd =3:

W e HH(Q). WlLr@) < Splvlm q)- (1.1.8)

In particular, for p = 2, the mapping v = [v|g1 (g is anorm on H% (), equivalent to the H'
norm and S is the analog of Poincar¢’s constant. Moreover, the analog of (1.1.5) holds: for
each r > d, there exists a constant S, such that

W e WH(QP NHUQ), IPlie@) < Seorll Vi@, (1.1.9)

where Vv denotes the gradient tensor: (Vv); = dv;/dx;. We shall also use the classical
spaces for Navier—Stokes equations:

V={veH\(Q)? divi =0in Q}, (1.1.10)
where divy = Z?:l ov;/0x;,

Vi={veH\(Q)* vweV, (Vv,Vw) =0}, (1.1.11)
W= {v € H/(Q); divy = 0in Q}, (1.1.12)

L§(Q) = {g € L*(); /qu =0},
Q
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more generally,

0(R2) ={g € L'(Q); /qu =0},
Q
H(div, Q) = {v € L2(R)*; divv € L*(Q)},
Hy(div, Q) = {v € H(div, Q); v-n = 0 on 02},
H(curl, Q) = {v € L*(Q)*; curly € L*(2)°},

where

0 0 0 0 0 0
curly = (23 _ 92 v O3 92 9M ) (1.1.13)
dxp  dx3 0x3z  0x; OXx| dxo

These definitions carry over to d = 2 with one exception: when d = 2, the curl operator is
considered a scalar because it has only one component:

dvy  dvp
Yy = (v, »p), curly = — — — (1.1.14)
dx1 0xo
and we define
H(curl, Q) = {v € L*()%; curly € L*(Q)}. (1.1.15)

We also recall the following identity, valid in a Lipschitz domain of R, d=2,3:
Vv € H) ()4, |v|i,1(g) = ||divv||§2(m + ||cur1v||§2(m. (1.1.16)

As usual, for handling time-dependent problems, it is convenient to consider functions
defined on a time interval ]a, b[ with values in a functional space, say X (cf. Lions and
MAGENES [1968]). More precisely, let || - ||x denote the norm of X; then for any number r,
1 <r < oo, we define

b
L'(a, b; X) = { f measurable in ]a, b[; / lf@)]xdr < oo}

equipped with the norm

b 1/r
s = | [ If@15a)
a

with the usual modification if » = oo. It is a Banach space if X is a Banach space and, when
r =2, it is a Hilbert space if X is a Hilbert space. For example, L[*(a, b; H"(S)) is a Hilbert
space and, in particular, 12 (a, b; L2(§2)) coincides with Lz(Qx]a, b[). In addition, we shall
also use spaces with derivatives in time, such as

H'(a,b;X) = {f € L*(a, b[; X); g—’: € L*(la, b[; X))},
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equipped with the graph norm

5 f 5 1/2
”f”Hl(a,b;X) = <||f||L2(a,b;X) + ”&”Lz(a,b;X)) s

for which it is a Hilbert space.

1.1.2. Properties of the Laplace and Stokes operators

We close this introduction by recalling useful properties of the Laplace and Stokes equa-
tions in dimension d = 2 or d = 3. The presentation is restricted to homogeneous Dirichlet
boundary conditions.

Let us start with the Laplace equation with a homogeneous Dirichlet boundary condition
in a bounded Lipschitz domain: For f given in H~Y(), find u in Hé (£2) such that

—Au=f inQ. (1.1.17)
It can be set into the following equivalent variational formulation: Find u in Hé (£2) solving
Vv e HY(Q), (Vu, Vv) = (f,v).

By Lax—Milgram’s Lemma (cf. LAX and MILGRAM [1954]), this problem has one and only
one solution that depends continuously on f. Furthermore, increasing the regularity of f,
increases up to a certain extent, the regularity of u. This is stated in the following theorems;
the first one is proved by GRISVARD [1985] and the second one by DAUGE [1992].

THEOREM 1.1.1. Let Q be a polygon in R%. If f belongs to L' (S2) for some r with 1 < r <
4/3, then the solution u of (1.1.17) belongs to W2T(Q) with continuous dependence on f.

THEOREM 1.1.2. Let Q be a polyhedron in R® with a Lipschitz-continuous boundary. If f
belongs to H*~V(Q) for some s with 0 < s < 1/2, then the solution u of (1.1.17) belongs
to HY1(Q) with continuous dependence on f. If f belongs to L3/*(S2), then u belongs to
H3/2(Q) with continuous dependence on f.

When f is smoother than in the above statements, the solution is also smoother provided
the inner angles of 02 are suitably restricted. For instance, it is well known that the next
regularity holds in a convex domain (cf. GRISVARD [1985]).

THEOREM 1.1.3. Iff belongs to L*(Q) and the domain is a convex polygon or polyhedron,
then the solution u of (1.1.17) belongs to H?(2), with continuous dependence on f.

None of the results listed above address the major question: When is the solution in
W29 This property has no clear-cut answer (cf. DAUGE [1992], KozLov, MAZ’ YA and
RossmaNN [2000]), but a sufficient condition can be given in view of the Sobolev imbedding
(1.1.4) applied to gradients: for each r > d, there exists a constant Cxo - such that

Yo e W2(Q), [V vlize(@) < Coor IVlIwaray- (1.1.18)
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Thus, the question can be reformulated as follows : When does a right-hand side f in L"(£2)
for some real number r > d imply that u belongs to W27 (2)? The answer is given by
GRISVARD [1985] when d = 2 and by DAUGE [1992] when d = 3.

THEOREM 1.1.4. (1) Let Q be a convex polygon in IR%. Then there exists a real number
rq > 2 depending on the largest inner angle of 02 such that for all r with2 <r <rgq, f in
L7(Q) implies that the solution u of (1.1.17) belongs to W7 (2) with continuous dependence

onf.

(2) In R3, let 2 be a polyhedron with its largest inner dihedral angle strictly smaller than
21 /3. Then there exists a real number rq > 3 depending on the largest inner dihedral angle
of 02 such that for all r with 2 < r < rq, f in L" () implies that the solution u of (1.1.17)
belongs to W>" () with continuous dependence on f.

Now, we turn to the Stokes problem with homogeneous Dirichlet boundary conditions
in a bounded, connected Lipschitz domain. It reads: For f given in H~1(£)? and constant
v > 0, find u in H(l)(Q)d and p in L(z)(Q), solution of

—VvAu+Vp=f inQ, (1.1.19)
divu =0 in Q. (1.1.20)

It is well known (see for instance GIRAULT and RAVIART [1986]) that this problem has the
two equivalent variational formulations:
1. Find (u, p) € H} () x L(Q), such that

Yy € HY ()Y, v(Vu, Vv) — (p, dive) = (f,v), (1.1.21)
Vg € LA(R), (¢, divu) = 0. (1.1.22)

2. Find u € V such that
WweV,v(Vu,Vv) = (f,v). (1.1.23)

Problem (1.1.19)—(1.1.20) has a unique solution (u, p) that depends continuously on f:
1 1
|1 () < ;”f”H*l(Q)’ IPllz2@) < B”f”H*I(Q)’ (1.1.24)
where % > 0 is the constant of the divergence isomorphism of V+ onto L(%(Q):

1
e VEh lyig) < E||d1vv||Lz(Q). (1.1.25)

This is equivalent to the inf-sup condition (cf. BABUSKA [1973], BRENNER and ScoTT [1994],
BRrEzz1 [1974], BREzzI and FORTIN [1991], DURAN and MUSCHIETTI [2001], and GIRAULT
and RAVIART [1986], or ERN and GUERMOND [2004]):

Vg € L3(R), sup

/qdivvdx > Blall2q)- (1.1.26)
very @ Pl @)

Q
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The regularity properties of the solution of the Stokes problem are fairly similar to those
of the Laplace equation. The following result is now well known (cf. KELLOG and OSBORN
[1976], or GRISVARD [1985], if d = 2, and DAUGE [1989], if d = 3).

THEOREM 1.1.5. Iff belongs to L*(2)? and the domain is a convex polygon or polyhedron,
then the solution (w, p) of (1.1.19)—(1.1.20) belongs to H*()? x H'(Q), with continuous
dependence on f.

Of course when €2 is convex, we obtain by interpolation for 0 < s < 1, that (u, p) belongs
to HST1(Q)? x H*(S2), with continuous dependence on f, whenever f belongs to H=1(Q)4.
But for small s, the restrictions on the angles of the domain can be substantially relaxed.
Indeed, without restriction on the angles of d€2, the following theorems hold, analogous to
Theorems 1.1.1 and 1.1.2; the first one can be found in GRISVARD [1985] and the second one
in DAUGE [1989].

THEOREM 1.1.6. Let Q be a polygon in R%. If f belongs to L' (Q2)?* for some r with 1 <
r < 4/3, then the solution (u, p) of (1.1.19)—(1.1.20) belongs to W2" ()% x W7 () with
continuous dependence on f.

THEOREM 1.1.7. Let 2 be a polyhedron in R with a Lipschitz-continuous boundary. If
f belongs to H*~1(2)? for some s with 0 < s < 1/2, then the solution (u, p) of (1.1.19)—
(1.1.20) belongs to HTH(Q)3 x HY(Q) with continuous dependence on f.

The result for the borderline case s = 1/2, which extends a result of FABEs, KENIG and
VERCHOTTA [1988], is due to DAUGE and CosTABEL [2000] and can be found in GIRAULT
and Lions [2001a]:

THEOREM 1.1.8. Let Q be a polyhedron in R® with a Lipschitz-continuous boundary. If f
belongs to L32(Q)3, then the solution (u,p) of (1.1.19)—(1.1.20) belongs to H32(Q)3 x
H'2(Q) with continuous dependence on f.

The case when the velocity is in W will play an important part in the sequel.
Again, we formulate it as follows: When does a right-hand side f in L’"($2)¢ for some
real number r > d imply that u belongs to W27 (2)4? The answer is given by GRISVARD
[1985] when d = 2 and by DAUGE [1989], KozLov, MAZ’YA and RossMANN [2000] when
d=3.

THEOREM 1.1.9. (1) Let Q be a convex polygon in IR*. Then there exists a real number
ro > 2 depending on the largest inner angle of 02 such that for all r with2 <r < rq, f in
L7(2)? implies that the solution (u, p) of (1.1.19)—(1.1.20) belongs to W>"(2)? x W7 (Q)
with continuous dependence on f.

(2) In R3, let Q be a polyhedron with its largest inner dihedral angle strictly smaller than
27 /3. Then there exists a real number rq > 3 depending on the largest inner dihedral angle
of 02 such that for all r with2 <r <rq, f in L7(2)3 implies that the solution (u, p) of
(1.1.19)~(1.1.20) belongs to W' ($2)? x W' (Q) with continuous dependence on f.
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1.2. Constitutive and momentum equations

There are several references on the mechanics of grade-two fluid models; for example,
the reader can refer to TRUESDELL and RajaGcopaL [2000], DunNN and Fospick [1974], or
TRUESDELL and NoLL [1975]. Before writing the constitutive equation of a grade-two fluid,
let us recall the Rivlin—Ericksen tensors. They are defined recursively by (cf. RivLIN and
ERICKSEN [1955]):

A =L+L",
and for n > 2:
d T
An = aAnfl +An71L+L Anfl, (121)

where L = L(u) denotes the velocity gradient

L=Lu)=Vu, (1.2.2)

i.e., denoting the symmetric part of the velocity gradient by D, we have
A =2D.
As usual % denotes the material time derivative: for any tensor A,

da 8A+ VA (1.2.3)
— =—4u- , 2.
dr ot

where u - V A denotes the product:

d

0A
u-VA = Zu,a—
X

i=1 !
Note that all Rivlin—Ericksen tensors of order n, defined by the recursive relation (1.2.1) are
frame-indifferent.

The constitutive equation for the Cauchy stress tensor of a grade-two fluid is given by

T="Twu,n)=—nl+ pA; + a1A; + A3, (1.2.4)

where 7 denotes the pressure and [ is the identity tensor. The parameter u is the viscosity of
the fluid and the parameters «; and «p are normal stress moduli. Formula (1.2.4) is indeed
the equation of a differential fluid because T is defined explicitly in terms of A and A».
Furthermore, the presence of A% and of the products in the definition of A, makes this rela-
tion nonlinear. To compare, the constitutive relation for the Navier—Stokes fluid model is the
linear relation

T=Tu,n)=—nl+ uAy. (1.2.5)

We observe that when the normal stress moduli vanish, (1.2.4) and (1.2.5) coincide.
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When substituting (1.2.4) into the balance of linear momentum:

du

divI(u,m)+of =0 T

(1.2.6)

where f is the specific body force, ¢ is the density, and (divT); = div(T;), we obtain the
equation of motion of a grade-two fluid. Dividing by the density o, setting

V= —,
0

and without changing the symbols for the normal stress moduli and the pressure divided by
the density, the equation of motion reads:

%(u —a1Au)—vAu+curl @ — Qo +a2)Au) xu
— (a1 +a)A@-Vu)+2(a; +oa2) (- V(Au))

1 1
+V (71 — Qay + @) (u CAu+ Z|A1|2> + 5|u|2> =f. (127

It is shown by Fospick and RAjAGoOPAL [1978a,b] that in order for the fluid to be thermody-
namically compatible, the parameters must satisty

nw=>0, a1 >0, ar +a2 =0. (1.2.8)
In this case, setting ¢ = o] = —a2, (1.2.7) simplifies to
d
5(u—aAu)—vAu+curl(u—aAu)><u
1 2 L.
+V| 7 -« u-Au+Z|A1| +§|u| =f.

Finally, denoting by p the term involving the gradient in the second line:

p_Jl—Ol uAu‘i‘*A +7u 5
4 : 2

the equation of motion of a grade-two fluid becomes
0
E(u —aAu)—vAu—+curl(lyu —aAu) xu+Vp=f.

As the fluid is incompressible, it must satisfy the constraint
divu = 0.

To close the system, we complement these two equations with adequate boundary conditions
and an initial condition.
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REMARK 1.2.1. The condition o > 0 has been (and is still) a source of rough controversy;
we refer to DUNN and RAJAGOPAL [1995] for an interesting discussion on this subject. Apart
from mechanical considerations, mathematically speaking, the term —%(xAu in the left-
hand side of the momentum equation makes the model unstable when « is negative (see
Remark 1.3.3), and therefore, we shall not study this case here. O

1.3. A brief survey of theoretical results

The results presented here are for homogeneous boundary conditions. The theory of
the steady two-dimensional problem with tangential boundary conditions is discussed in
Chapter 5.

1.3.1. The no-slip three-dimensional problem

Let [0, T'] be an interval of time, with T > 0, and let  be a bounded, connected domain of
R3, with a Lipschitz-continuous boundary d2. Consider the problem: Find a velocity vector
u and a scalar pressure p, solution of

0
a(u —aAu) —vAu+curllu —aAu) xu+Vp=f inQx]0,T|, (1.3.1)

with the incompressibility condition:
divu =0 in Qx]0, TT; (1.3.2)

to simplify, we only impose here a homogeneous Dirichlet boundary condition, i.e., a no-slip
condition:

u=0 ondQx]0,TJ, (1.3.3)
and the initial condition:
u(0) =upin Q withdivug = 0in Q2 and up = 0 on 9<2. (1.3.4)

REMARK 1.3.1. Considering that (1.3.1) involves a third derivative, we can ask the ques-
tion: does (1.3.3) impose enough boundary conditions to determine the solution of (1.3.1)—
(1.3.4)? We shall see further on that the answer is “yes.” More generally, GIRAULT and SCOTT
[1999] prove that in dimension d = 2, the answer is also “yes” for the steady-state problem
in the case when (1.3.3) is replaced by a tangential Dirichlet condition:

u=g ondQx]J0,7[ with g-n=0, (1.3.5)

see Section 5.1.2. It is likely that, with adequate conditions on g, this result extends to
the evolution equation (1.3.1)—(1.3.4). But when the boundary values are not tangential,
there are examples where the problem is ill-posed, cf. RAJAGOPAL [1995], RAjAGOPAL and
KarLoni1 [1989], and Remarks 1.3.4, 6.2.1, parts (2) and (3). O
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Problem (1.3.1)—(1.3.4) is difficult because its nonlinear term involves a third-order
derivative, whereas its elliptic part only comes from a Laplace operator; for this reason,
it behaves mostly as a hyperbolic problem. From 1993 onward, many publications have
been devoted to this problem, but by far the best proof of existence, due to Cioranescu and
Ouazar, goes back to more than 25 years ago (1981) and is found in the thesis of OUAZAR
[1981]; it was published later by CIORANESCU and OUAZAR [1984a, 1984b]. The reader can
also refer to CIORANESCU, GIRAULT, GLOWINSKI and ScoTT [1999] and to CIORANESCU and
GIRAULT [1997].

Here is a brief description of the construction of solutions by Cioranescu and Ouazar.
Some of its ideas will be very helpful for discretizing the problem. First, we make precise
assumptions on the data and the domain: € simply-connected with boundary of class €31, f
in L2(0, T; H'(22)3) and ug in H3()°. Formally, observe first that (1.3.1) yields the energy
equality:

1d

d
53 Ol g) + %aw(oﬁ,l(m SR OIAPSETIORTO (13.6)

This equality shows in particular that, if a solution u exists, then it is unconditionally
bounded in L>(0, T; H'(£2)?) by the data f. Now, set

z=curl(u — o Au). (1.3.7)

This choice is crucial because Cioranescu and Ouazar prove that if a function u € V satis-
fies curl(u — o Au) € L?(Q2)3 and  is simply connected, then u € H>(2)3 N V and there
exists a constant C such that

leell 32y < C lleurl(@ — o Aw)ll 12y (1.3.8)

Next, take formally the curl of (1.3.1); this gives a transport equation, (that we multiply here
by «):

]
a&z—i— vz+au-Vz—az-Vu=veurlu +acurlf inQx]0, T, (1.3.9)

and formally multiply (1.3.9) by z. Asu € V, the following Green’s formula holds formally:

/(u«Vz)~zdx=O, (1.3.10)
Q

and yields the inequality:

ad
Ea”z(t)”iZ(Q) + (U—O[”vu([)”LOO(Q))”Z(Z)||i2(g) < (U ”curlu(l)“Lz(Q)
+ o ||Curlf(f)||L2(Q))||Z(f)||L2(Q)~ (1.3.11)

By applying the Sobolev bound (1.1.18) to ||V u(f)||z~ () and by using (1.3.8) and (1.3.7),
we obtain with another constant C

IVu®llir=@) = Cllz®ll2q)-
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Then by substituting this bound into the left-hand side of (1.3.11), and by substituting the
estimate deduced from (1.3.6) to bound [[curlu(?) |2 (g in its right-hand side, we find that
Iz (£) ||i2 @ is bounded by the solution of a Riccati differential equation on the time interval
[0, T*], for some T* > 0, T* < T. This shows that, if a solution u exists, then it is bounded
in L*°(0, T*; H 3 (9)3), see CODDINGTON and LEVINSON [1955]. Finally, on multiplying for-
mally (1.3.1) by du/9d¢ and using the previous bound for u, we infer that du/dt is also
bounded in L2(0, T*; H'(Q)).

These bounds only hold provided a solution exists, but constructing a solution by making
use of (1.3.1), (1.3.7), and (1.3.9) is very difficult because these three equations are redun-
dant and no fixed-point can use all three at the same time. The originality and power of
construction by Cioranescu and Ouazar lie in that they did use all three equations. Their
idea consists in discretizing (1.3.1) by a Galerkin method with the basis of eigenfunctions
of the operator curl curl(z — o A u). This special basis has the effect that, on multiplying
the ith equation that discretizes (1.3.1) by the eigenvalue A; and on summing over i, we
derive a discrete version of the transport equation (1.3.9). This allows to recover (1.3.11)
in the discrete case. Thus, we construct a discrete solution u,, that is bounded uniformly in
L%°(0, T*; H3($2)?), with du,,/d¢ also bounded uniformly in L2(0, T*; H'($2)?). Note that
all the above steps (which were hitherto formal), and in particular the delicate Green’s for-
mula (1.3.10), are justified because the basis functions are sufficiently smooth. Furthermore,
passing to the limit is standard because this limit is only taken in the discrete version of
(1.3.1). The above bounds allow us to pass to the limit in the discrete equations and prove
local existence in time of a solution. Global existence in time for suitably restricted data
can also be established, by taking better advantage of the small damping effect of the vis-
cous term —v A u. The precise conditions are somewhat technical, and we refer the reader to
Ci1orRANESCU and GIRAULT [1997]. The next theorem summarizes the local existence result
that was obtained by CIORANESCU and OUAZAR [1984a, 1984b].

THEOREM 1.3.2. Let Q be simply connected with boundary of class C>'. Then, for any
forcef in L*(0, T; H'(Q2)3), any initial velocity uy in H*(2) and any parameters v > 0 and
a > 0, there exists a time T* > 0, such that problem (1.3.1)—(1.3.4) has a unique solution
(w, p) in L0, T*; H3(Q)3) x L*(0, T*; L3(Q)) with du/dt in L*(0, T*; H' (Q)3).

Regarding the regularity hypotheses on the data, it follows from (1.3.11) that curlf €
L%(Q)3 is sufficient (instead of f in H 1(€)3). Furthermore, finding u in H? (Q)3 is not nec-
essary; if we accept solutions that are less smooth, we can lower the regularity of 2. Indeed,
(1.3.11) only requires z in W'-°°(€2)3. Thus applying Sobolev’s imbedding (1.1.18), it suf-
fices that u € W27 (§2)? for some r > 3. This is also sufficient for estimating |0u/0t|| 2 (q)-
As (1.3.8) is based on the regularity of a Stokes problem with data in H'()3, it can
be replaced by a weaker statement with data in L’(€2)3, and Theorem 1.1.9 in the case
d = 3 implies that it suffices that the largest inner dihedral angle of 92 be strictly smaller
than 27 /3. Finally, BERNARD [1998] and BERNARD [1999] prove that 2 can be multiply-
connected, if 92 is of class CZ!. This makes use of the material in AMROUCHE, BERNARDI,
DAUGE and GIRAULT [1998].

REMARK 1.3.3. The importance of the positivity of « is made clear by the energy
equality (1.3.6). O
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REMARK 1.3.4. The derivation of (1.3.11) requires eliminating the term a(u - Vz,7). In
view of (1.3.2), and assuming that Green’s formula is valid, we have:

a/(u - Vz)zdx = %‘/(u -m)|z|2ds. (13.12)

Q 082

Hence this term vanishes either if u - n = 0, that is the case of a tangential boundary con-
dition, or if z = 0 where u - n # 0. In the second case, what is the physical meaning of this
condition on z ? And what is the mathematical meaning of this condition on z, when z is only
in L2(Q)3, as it is here? O

REMARK 1.3.5. At first sight, the energy equality (1.3.6) seems minor because it gives a
bound in Hl(Q)3, whereas (1.3.8) gives a bound in H3()3. But in fact, (1.3.6) is crucial
in estimating the term |lcurlu(?)|/;2(q) in the right-hand side of (1.3.9) in terms of the data
f. If we replace it by (1.3.8), then f is replaced by z, and the resulting loss of optimality is
devastating. This loss of optimality will be clearly apparent when studying the problem in
two dimensions. O

REMARK 1.3.6. The above construction does not apply when the curl of f is not in L?(£2)3.
This case is rarely met in practice because f is usually the gravitational force and is very
smooth. Nonetheless, the case of rough data is interesting from the mathematical point of
view. We refer to the work of BREscH and LEMOINE in [1998], where f belongs to L'(Q)3
with r > 3. This work complements the results presented in this text, but does not extend
them because Bresch and Lemoine lose (1.3.6) and thus cannot recover our results even
when curl f € L2(Q)3. Finally, existence of solutions when f € L” (Q)? with r < 3 (for
instance, r = 2) is an open problem. O

1.3.2. The two-dimensional problem

In two dimensions, the analysis of problem (1.3.1)—(1.3.4) simplifies substantially by virtue
of the following identity, valid for all vectors z = (0, 0, z) and u = (uy, uz, 0) in two vari-
ables x = (x1, x2, 0):

curlz xu) =u-Vz (1.3.13)

As a consequence, assuming that f belongs to H(curl, ) defined in (1.1.15), the energy
inequality (1.3.11) reduces to:

o d 2 2
2 IO g+ V 1202 0, = (v lleurl u®lp2(,

+a lleurl £l 20) 12022 (1.3.14)

an inequality that no longer involves the gradient of u in L>°(2)?*2. This fact enabled
Ouazar to prove in OUAZAR [1981] that problem (1.3.1)—(1.3.4) has always at least one
global in time solution, in a simply-connected plane domain with sufficiently smooth bound-
ary, for all positive parameters v and o and all forces f in H'($2)?. Published in 1981, this
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result is remarkable considering that none of the many publications devoted to grade-two
fluids that appeared from 1993 onward and used other techniques, are able to prove exis-
tence of solutions without heavy restrictions on the size of the data and parameters, see for
instance VIDEMANN [1997] and references therein.

The fact that the gradient of u does not need to be in L (§2)2*2 will enable us to perform
the numerical analysis of discrete schemes that solve (1.3.1)—(1.3.4) in two dimensions,
and in particular these discrete schemes will not require a CFL condition (cf. COURANT,
FriEDRICHS and LEwy [1928]). However, discretizing the special basis of eigenfunctions
of the operator curl curl(z — o« A u) does not appear realistic, and hence we shall use a
less sophisticated approach. It consists in splitting the grade-two problem into a Stokes-like
system and a transport equation. This transport equation is discussed in the next subsection.

1.3.3. The steady transport equation in arbitrary dimension

The analysis of the two-dimensional problem (1.3.1)-(1.3.4), essentially relies on the well-
posedness of a steady scalar transport equation in a Lipschitz domain 2. Transport equa-
tions, steady or transient, have been addressed by a large number of mathematicians, and
we can only quote a small number of them: AMBROSsIO [2004], BArRDOs [1970], BEIRAO
DA VEIGA [1987], CoLoMBINI and LERNER [2002], DESJARDINS [1996], DIPERNA and LIONS
[1989], FERNANDEZ CARA, GUILLEN GONZALEZ and ROBLES ORTEGA [2002], GIRAULT and
Scott [1999], HORMANDER [1983], PUEL and RoPTIN [1967], WALKINGTON [2005]. Here
we present the work of GIRAULT and ScotT [1999] because it is adapted to the situation of
grade-two fluids.

The analysis of the equation studied here is independent of the dimension and therefore,
we consider 2 in IR?. This problem reads: For f given in L?(2) and u given in W (see
(1.1.12)), find z in L2() satisfying

vz+yu-Vz=finQ, (1.3.15)
where v > 0 and y # 0 are given parameters and d > 2 is an arbitrary integer. Albeit linear,
this problem is difficult because of the poor regularity of the domain and the driving velocity
u. Note that, for u € W, the product u - V z is well-defined in the sense of distributions, by
virtue of the following identity that holds for all divergence-free vectors u and scalars z:

u-Vz=div(zu).

Furthermore, as z and f belong to L?(£2), (1.3.15) implies that z is slightly more regular and
belongs to:

Xy ={ze€L’(Q); u-Vzel*>(Q)}; (1.3.16)
Xy, is a Hilbert space for the norm
2 2 1/2
et = (222 gy + 1u - V2lag) (13.17)

Constructing a solution of (1.3.15) by Galerkin’s method is an easy exercise.
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PROPOSITION 1.3.7.  Ler  C IR? be bounded and Lipschitz-continuous. For allu in W, all
£ in L*() and all real numbers y # 0 and v > 0, the transport equation (1.3.15) has at
least one solution 7 in X, and z satisfies

1 1
||Z||L2(Q) = ;”f”LZ(Q)a llu - VZ”LZ(Q) = m||f||L2(Q)- (1.3.18)

But proving uniqueness of the solution is hard because u is not smooth, it does not vanish
on the boundary and this boundary is not smooth. Ideally, uniqueness relies on the validity
of the following Green’s formula:

d
9
Ve W, Vze Xy, ) /uia—zzdxzo. (13.19)
‘ Xi
1=IQ

This formula holds for z in H'(€), and if it were known that H!(€2) is dense in Xy, then
(1.3.19) would stem trivially by density. Unfortunately, when u has only H' regularity, this
density must be established, and this is just as difficult as Green’s formula itself; in fact, it is
shown in GIRAULT and ScoTt [1999] that these two properties are equivalent. This density
is established by proving the following results. The first one is based on regularization by
convolution with a special mollifier (a variant of an idea of PUEL and RopTIN [1967]), and
the second one relies on the renormalization technique of DIPERNA and Lions [1989]. The
details can be found in GIRAULT and ScoTT [1999].

THEOREM 1.3.8. Let 2 be a bounded Lipschitz-continuous domain of R? and let u be given
in HY()9. Then for each z in L2(2) such that u - Zz belongs to L) (e.g., if z € Xu),
there exists a sequence (zx)k>1 of functions zx € C*°(S2) such that

lim zx =z inL*(Q), limu-Vg=u-VzinL(Q).
k— 00 k—o00

PROPOSITION 1.3.9.  Let Q C IR? be bounded and Lipschitz-continuous. For all w in W, all
£ in L2(Q2) and all real numbers y # 0 and v > 0, the transport equation (1.3.15) has one
and only one solution 7 in X,,.

These two results have important consequences.

PROPOSITION 1.3.10. Let Q@ C R? be bounded and Lipschitz-continuous and let u be given
in W. Then (1.3.19) holds for all z in Xy,.

COROLLARY 1.3.11. Let Q@ C RY be bounded and Lipschitz-continuous and let u be given
in W. Then

Vv e Xy, Vw € X, /(u-Vv)wdx—i—/(u -Vwyvdx =0. (1.3.20)
Q Q
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COROLLARY 1.3.12.  Let @ C R? be bounded and Lipschitz-continuous and let u be given
in W. Then any h in L*(2) has the orthogonal decomposition:

h=z+u-Vz inQ,
where z belongs to Xy, and

lzlla = 12l z2(q)- (1.3.21)

THEOREM 1.3.13. Let Q C R? be Lipschitz-continuous and let u be given in W. Then D(S2)
is dense in Xy,.

REMARK 1.3.14. The density statement of Theorem 1.3.8 holds without restriction on u.
But what do we know of the density of D(RQ) in X,, when u is arbitrary in H L€)4 2 If this
density were true, we could give meaning to the left-hand side of (1.3.12), and we could
solve the steady grade-two problem with any Dirichlet boundary condition, by prescribing z
where u - n # 0. O

The unique solvability of (1.3.15) in L?(2) extends immediately to the equation
cz+yu-Vz=finQ,
where ¢ € L*(2) is uniformly bounded below: There exists ¢o > 0 such that

c(x) > cpa.e x € Q.

More generally, it extends straightforwardly to the following transport system: Find z €
L2(£)? solution of

Cz+yu-Vz=fing, (1.3.22)

where f is given in L>(Q)¢, y # 0in R, u in W, and C € L>®(2)?*? is a uniformly positive
definite matrix, i.e., satisfying: There exists a constant cp > 0 such that

Vx € RY, (Cx)x, x) > colx>ae. x € Q. (1.3.23)

ProOPOSITION 1.3.15.  Let Q@ C RY be bounded and Lipschitz-continuous. For all u in W,
all f in L*()?, all matrix-valued functions C € L®(Q)4*4 satisfying (1.3.23), and all real
numbers y # 0, the transport system (1.3.22) has one and only one solution z in L*(2)¢,
and z satisfies the bound

1
lzllr2@) = 5||f||L2(Q)~ (1.3.24)

There are several generalizations of Proposition 1.3.9to L”, p > 2, cf. FERNANDEZ CARA,
GUILLEN GONZALEZ and ROBLES ORTEGA [2002], ROBLES ORTEGA [1995], or GIRAULT and
Scotrt [2002a]. The first two references construct the solution by a characteristic method on
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a smooth domain with driving velocity in W27 for r > d. The third reference adapts this
proof to a Lipschitz domain and a driving velocity # in W by extension to a smooth ball and
regularization of u. It yields the following result.

PROPOSITION 1.3.16. Let p > 2 be a real number, Q a bounded Lipschitz domain in R¢,
fellP(Q), y+#0,v>0in R, and u in W. Then the unique solution z of the transport
equation (1.3.15) belongs to LP (2) and

1
lzllzr@) < ;||f||LP(sz)- (1.3.25)

Unfortunately, the approach in FERNANDEZ CARA, GUILLEN GONZALEZ and ROBLES
ORTEGA [2002] does not seem to extend to the system (1.3.22). Nevertheless, L” results
are derived for (1.3.22) by GIRAULT and TARTAR [2010] when d < 4. The proof is based on
an elliptic regularization of (1.3.22), whence the restriction on the dimension, and a Yosida
approximation of the elliptic regularization. Thus, we have the next result.

THEOREM 1.3.17. Let p > 2 be a real number, 2 a bounded Lipschitz domain in RY, d =
23,4, felP(Q% y#0inR uin W, and C € L®°(Q)%*? satisfying (1.3.23). Then, the
unique solution 7 of (1.3.22) belongs to LP ()% and

1
lzllLr() < a”f”u’(sz). (1.3.26)

It dz—_fz <p<2ford=3,40r1 < p < 2whend = 2, a proof by duality and transposition
(cf. LioNs and MAGENES [1968]), shows that the transposed formulation of the transport
system (1.3.22) has one and only one solution z € IP(Q)9 that satisfies (1.3.25) and that
solves (1.3.22).

Regarding the H' regularity of the solution of (1.3.15), several authors (cf. for
instance BEIRAO DA VEIGA [1987] and references therein) have established in a smooth
domain that if f € H'(Q) and if u is in W1 (Q)¢ N W small enough, then z belongs to
H'(Q) and is suitably bounded by the data. There are several proofs of this result, but
all either require a smooth boundary or rely on the H? regularity of the Laplace equa-
tion with homogeneous Dirichlet or Neumann boundary conditions. This regularity holds
either if the boundary is smooth or if the domain is a convex polygon or polyhedron. For
instance, BEIRAO DA VEIGA [1987] discretizes (1.3.15) in the basis of eigenfunctions of the
Laplace operator, with a Neumann boundary condition:

d
—Ave = Ay in Q, % =0 on dg, /vkdx =0.
n
Q
The convexity of €2, or the regularity of its boundary, guarantees that v; belongs to

H?(Q) because Theorem 1.1.3 applies also to homogeneous Neumann boundary conditions,
cf. GRISVARD [1985]. This approach leads to the following result.

THEOREM 1.3.18. Let Q be convex or have a boundary of class C1'; assume that f belongs
to HY(Q) and u belongs to W ()4 N W with

4
T”Vu”LDC(Q) =48 < 1. (1.3.27)
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Then the solution 7 of the transport equation (1.3.15) belongs to H'(2) and is bounded as
follows:

1
@) = 75 l@- (1.3.28)

The 17 estimates of Theorem 1.3.17 can be used to derive the W!? regularity of the
solution of (1.3.15). Indeed, under the assumptions of Theorem 1.3.18, since z belongs to
H'(), the gradient of each term in (1.3.15) is well defined in the sense of distributions and
V z solves: Find w in L2(2)¢ such that

vwtyu-Vwt+y Vu) w=Vf. (1.3.29)

It is a particular case of (1.3.22) with C=vI+y (V u)”. The fact that u belongs to
Wwh2°(Q)? implies that C is uniformly bounded in € and owing to (1.3.27), C satisfies
(1.3.23) with co = v — |y | [uly1.(g)- Hence Theorem 1.3.17 implies immediately the next
result.

THEOREM 1.3.19. Let p > 2 be a real number. Let Q2 be a bounded convex or C"! domain
in R, d=2,3,4, fe W'P(Q), v>0 5% #0in R and u € W-*(Q)¢NW satisfying
(1.3.27). Then the unique solution z of (1.3.15) belongs to WP (Q) and

1
lzlwir@) = fs|f|wlv1’(ﬂ)' (1.3.30)

REMARK 1.3.20. Finally, as observed in GIRAULT and TARTAR [2010], the statement of
Theorem 1.3.19 is valid in a bounded Lipschitz domain in the case when the full trace of u
vanishes on 0%2. O

Analogous results for a time-dependent transport equation are derived in Section 3.1.

1.4. Splitting the two-dimensional problem

In this section, we propose to extend the two-dimensional results of Ouazar [1981] to
domains with rough boundaries. More precisely, we solve the two-dimensional problem
(1.3.1)=(1.3.4) in an arbitrary bounded, connected domain €2 with a Lipschitz-continuous
boundary 9€2, by putting it into what is known to numerical analysts as a mixed formu-
lation. The reader can refer to BREZz1 and FORTIN [1991], GIRAULT and RAVIART [1986],
or ERN and GUERMOND [2004] for current examples of mixed formulations. We follow the
approach of GIRAULT and ScoTT [1999], but we treat here the simpler case of a steady fluid
with a no-slip boundary condition. The transient problem is postponed to Chapter 3, and the
case of nonhomogeneous boundary conditions to Chapter 5.

1.4.1. The steady no-slip two-dimensional problem

Considering the material of Section 1.3.1, we assume that €2 is a bounded, connected domain
in R?, with a Lipschitz-continuous boundary €2, f is a given function in H(curl, 2) and
v > 0 and o > 0 are two given real constants. Following OUuAZAR [1981] and GIRAULT and
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Scott [1999], we shall look for the pressure p in LS(Q) and the velocity u in the space of
functions v in V such that curl(v — ¢ A v) is in L2(2); this may be written more concisely as
u € V%, where

VE={eV;acul Av € L*(Q)}. (1.4.1)

It is a Hilbert space equipped with the norm

2 2 1/2
vlve = (|v|H1(Q) n ||acurlAv||L2(Q)) . (1.4.2)

Of course, when o = 0, V* reduces to V. Then, the steady version of problem (1.3.1)—(1.3.4)
reads: Find a pair (u, p) € V* x L(Z)(Q), solution of

—vAu+curllu —aAu) xu+Vp=f inQ. (1.4.3)
Strictly speaking, the sign of o does not influence the mathematical analysis of this problem,
but we choose it positive to be consistent with thermodynamics.

Now, let (u = (uy, u2),p) € V¢ x L%(Q) be a solution of (1.4.3), and introduce the aux-
iliary variable

z=curllu —aAu), z=1(0,0,72). (1.4.4)
Note that z € L%(), z € L3(Q)3,

divz =0, z x u = (—zup, zuy). (1.4.5)
Then (1.4.3) becomes a generalized Stokes equation

—vAu+zxu+Vp=f inQ. (1.4.6)
Next, let us take the curl of (1.4.6) in the sense of distributions and apply (1.3.13); we obtain

—vA(curlu) +u - Vz=curl f. (1.4.7)
Then, we can write

—va A(curlu) = v (curl(u — o Au) — curlu) = v(z — curlu),
and, passing v curl u to the right-hand side, we see that z satisfies the transport equation

vz+au-Vz=vcurlu + «acurl f. (1.4.8)
Finally, we observe that the only regularity that is explicitly used by (1.4.6), (1.4.8)is:u € V,
p € L3(Q) and z € L*(Q).

Conversely, let u e V, p € L%(Q) and z = (0, 0, z) with z € L2(2) be a solution of

(1.4.6), (1.4.8). Then z satisfies (1.4.5) and taking the curl of (1.4.6) in the sense of
distributions yields again (1.4.7). Next multiplying by « and comparing with (1.4.8), we
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obtain
—voa A(curlu) =vz—vcurlu,

i.e., z = curl(® — a A u). Therefore, u belongs to V¢ and substituting the expression of z into
(1.4.6) shows that (u, p) is a solution of the original equation (1.4.3). This is summarized in
the following lemma.

LEMMA 1.4.1. Problem (1.4.3) with (u, p) in V* x L%(Q) is equivalent to: Find (u,p, z)
inV x L(z)(Q) x L*(2) solution of the generalized Stokes problem (1.4.6) and the transport
equation (1.4.8), namely

—VvAu+zxu+Vp=f inQ,
divu =0 in S,
u=0 onoQ,

vz+au-Vz=vcurlu+ acurl f.

(1.4.9)

REMARK 1.4.2. When @ = 0, equation (1.4.6) is unchanged and equation (1.4.8) reduces to
z = curlu. In this case, z is simply the vorticity of # and problem (1.4.9) can be interpreted
as a velocity-vorticity-pressure formulation of the Navier—Stokes equations. O

REMARK 1.4.3. As mentioned in Section 1.3.1, (1.4.4), (1.4.6), and (1.4.8) are redundant.
For a standard discretization, one of them must be discarded because discretizing the special
basis of eigenfunctions of the operator curl curl(® — o Au) appears unrealistic. In view
of the importance of (1.4.6) and (1.4.8), we choose to discard the relation (1.4.4) between
z and u. The price to pay is that the regularity of a solution (u, p) of (1.4.9) can only be
deduced from (1.4.6). O

Existence of a solution of (1.4.9) is easily derived by Galerkin’s method. We sketch the
construction and refer to GIRAULT and ScoTT [1999] for details and proofs. First, we note
that for a given z in L%(Q), with the notation of (1.4.5), the generalized Stokes problem: Find
(¥(2), 9(2)) in V x L}(K), such that

—VAv+zxv+Vg=f inQ, (1.4.10)

has a unique solution. Indeed, this problem has the following equivalent variational formu-
lation: Find (v(2), ¢(2)) in H}(Q)? x L3(2), such that

Yw € H)(Q)?, a;(v(2), w) +bw, q(2)) = (f, w), (1.4.11)
Vre L3(Q), b(v(2),r) =0, (1.4.12)
where

a;v,w) =v(Vy,Vw)+ (z xv,w),
b(w,r) = —(r,divw).
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The following proposition states that it is well posed.

ProPOSITION 1.4.4. Let Q be bounded, connected, and Lipschitz-continuous, v > 0 and
f € LA(Q)2. For any z in L*(Q), the generalized Stokes problem (1.4.11)~(1.4.12) has a
unique solution (v(z), q(z)) in V x L%(Q). This solution satisfies the following bounds in
H'Y ()% x L*(Q):

hY)
V(@) = 7||f||L2(gz)7 (1.4.13)

1
||5](Z)||L2(Q) = E (Sz||f||L2(Q) +542;|V(Z)|1-11(Q) ”Z”L2(Q))v (1.4.14)

where 8 > 0 is the constant of the inf-sup condition (1.1.26) and S, the constant of Sobolev’s
imbedding (1.1.3).

Observe that the bound (1.4.13) is independent of z.
Next, let ¢ be the standard trilinear form associated with the Navier—Stokes equations

2
9
c(u; z,0) = Z/u, (ﬁ) 6 dx. (1.4.15)
i=1 & !

It stems from the results of Section 1.3.3, that c satisfies (1.3.19); but for existence, we only
require the much simpler statement:

Yue W, Vze H(Q), c(u;z,2) =0. (1.4.16)

Let {w;};>1 be a basis of H%(Q), let Z,, be the vector space spanned by (w; :"z {» and let us
discretize z by Galerkin’s method in this basis. For each z,, in Z,, we set z,, = (0, 0, z»),
we denote by u(z;,,) the unique solution of the generalized Stokes problem (1.4.11)—(1.4.12),
and we discretize the transport equation (1.4.8) by: Find z,, in Z,, such that, for 1 <i < m,

V(Zm, i) + ac@(zm); Zm, wi) = v(curlu(zy,), w;) + a(curlf, w;). 1.4.17)

As u(z;) is determined by z,, the only unknown in (1.4.17) is z,,, and thus (1.4.17) is a
system of m nonlinear equations in m unknowns, the components of z,, in Z,,. Hence, it can
be solved by Brouwer’s fixed point theorem, see for instance GIRAULT and RAVIART [1986].
The result is stated in the next proposition.

PropoSITION 1.4.5. Let Q be bounded, connected, and Lipschitz-continuous. For all inte-
gersm > 1,allv > 0,alla > 0, and allf € H(curl, ), the discrete problem (1.4.17) has at

least one solution z,, in Zy, and each solution z,, satisfies the uniform estimate with respect
to m:

S» o
lzmll2@) = 7||f||L2(Q) + ;chr]f”Lz(Qy (1.4.18)

The last estimate is derived by using (1.1.16).
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The uniform estimate (1.4.18) allows to pass to the limit in (1.4.17) and leads to the
following existence result.

THEOREM 1.4.6. Let Q2 be bounded, connected, and Lipschitz-continuous. For all v > 0, all
o >0, and all f € H(curl, Q), problem (1.4.9) has at least one solution (u, p, z7) and each
solution (u, p, 7) of (1.4.9) satisfies the following estimates:

S» o

lzllz2(q) < 7||f||L2(Q) + ;”Cllflf“LZ(Q), (1.4.19)
S

| @) = THfHLZ(Q)» (1.4.20)
1

||P||L2(Q) = E <S2||f||L2(Q) + SZ|"|H‘(Q)||Z||L2(Q)) s (1.4.21)

where B is the constant of the inf-sup condition (1.1.26) and S, the constant of Sobolev’s
imbedding (1.1.3).

REMARK 1.4.7. The estimates (1.4.19)—(1.4.21) hold on a bounded, connected, Lipschitz-
continuous domain, without restriction on the size of the data. But their derivation, and in
particular deriving an unconditional estimate for z depends drastically on the choice of this
auxiliary variable and the space to which it should belong. With our choice, that dates back
to OUAZAR [1981], the transport equation (1.4.8) for z has only one nonlinear term and the
regularity of the Galerkin solution is such that ||z [l ;2 (¢ can be bounded unconditionally by
curlu, (hence by f) and curl f. There are, of course, several possibilities for splitting the
original equation, but no other choice seems to produce this happy result. In this respect, the
splitting achieved by problem (1.4.9) is optimal. O

Additional regularity and uniqueness

The material of this paragraph can be found in GIRAULT and ScoTT [1999]. When Q is a
polygon, any solution (u, p) of (1.4.9) has additional regularity because, for f sufficiently
smooth, the homogeneous generalized Stokes operator in (1.4.10) has a regularizing effect.
In contrast, the transport operator in (1.4.8) brings no regularization. Therefore, Theorem
1.1.6 has the following consequence.

THEOREM 1.4.8. Let Q be a connected polygon and assume that all the inner angles of 92
belong t0 10, 2x[. Letv > 0, o > 0, and f € L*3(9)? be given. Then all solutions (u, p, z)
of the first three equations of problem (1.4.9) satisfy

ue W3 (@2, pew (@),

with continuous dependence on the data

S2
lullw2430) + IPNwian@ < Cillfllas g <1 + ]j”Z”LZ(Q))’ (1.4.22)

where Cy is the continuity constant of Theorem 1.1.6. For f € H(curl, Q2), the regularity of z
is unchanged.
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ProoOF. This is a very simple bootstrap argument. Sobolev’s imbedding gives immediately
the following analog of (1.4.13):

S4
el @) = - If e @)-
Then z x u belongs to L*3(©)?, with

lz x ullpa3Q) < Sallzll2io)lelgr (@)
and (1.4.22) follows by applying Theorem 1.1.6 to the Stokes problem (1.1.19)-(1.1.20)
with right-hand side f — z x u. O
To simplify, we introduce the notation for any z in L2(2):

SZ
Ki@) =1+ izl g)- (1.4.23)

For f € L?>(2)?, higher regularity can be derived by restricting adequately the inner
angles of 0€2, the best result being achieved when 2 is convex. We skip the proof, which is
also based on a bootstrap argument.

THEOREM 1.4.9. Let Q be a convex polygon. Let v > 0, o > 0, and f € L*(2)? be given.
Then all solutions (u, p, z) of the first three equations in problem (1.4.9) satisfy

ueH Q. peH(Q,
with continuous dependence on the data

el + 1Pl @) < C2 (||f||L2(Q) + CcC1K1(2) ||Z||L2(Q)”f||L4/3(Q))v (1.4.24)

where Cy and Cy are respectively the continuity constants of Theorems 1.1.6 and 1.1.5, and
Cwo is the constant of the imbedding:

vv e WH3(Q), Vi) < CoollVilwaass q)- (1.4.25)
For f € H(curl, Q), the regularity of z is unchanged.

These two regularity theorems are not sufficient for establishing uniqueness because the
proof requires that the solution # belong to W% (). By Sobolev’s imbedding theorem,
this holds if u is in W2"(£2)? for some r > 2. But if the regularity of z is restricted to L>(2),
we cannot expect the solution v of the generalized Stokes problem (1.4.10) to have higher
regularity than H>(2)%. And, if f belongs only to H(curl, 2), the solution z of the trans-
port equation (1.4.8) has no higher regularity than L*($2). However, problems (1.4.9) and
(1.4.3) are equivalent and by using (1.4.4), which we have not used so far, we can improve
somewhat the statement of Theorem 1.4.9, without additional assumption on €2 and f. More
precisely, we have the following results.

LEMMA 1.4.10. Let Q be a convex polygon; letv € V and y € L*(2) be related by

y=curl Av.
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Then there exists ro > 2 depending on the inner angles of 02, such that for all r € [2, ro],
v € W2'(Q)?, and there exists a constant C, depending only on r and , such that

vllwzr@) = Cliyllzz)- (1.4.26)
ProposSITION 1.4.11.  Under the assumptions of Theorem 1.4.9, there exists a real num-
ber ry > 2, depending on the inner angles of 0K2, such that for all r € [2, rol, any solu-

tionu € V¥ of (1.4.3) belongs to W>" ()%, and there exists a constant C,, depending only
on r and 2, such that

1 1
||u||W2r(Q) < Cr <&||curlu||L2(Q) + ;||Curlf||L2(Q)> (1427)

This proposition implies uniqueness.
THEOREM 1.4.12.  With the assumptions of Theorem 1.4.9 and notation of Proposi-

tion 1.4.11, the solution of problem (1.4.3) is unique if the data satisfies, for some r with
2 <r<ry,

C
V=S, (Sﬁ + Cm,ri) 1f 12 + CoorCrlicutl fll 2. (1.4.28)

where S, is the constant of (1.1.3), C; is the constant of (1.4.27), and C , is the constant of
(1.1.18).

We shall see in the next chapter another sufficient condition for uniqueness, less sharp, but
better adapted to the discrete form of problem (1.4.9).
Regarding the regularity of z, by applying to (1.4.8) the material of Section 1.3.3, we

immediately derive the next result from (1.3.25):

ProposiTiON 1.4.13.  Let (u, p, z) be a solution of Problem (1.4.9), let 2 < r < co and
curl f € L"(2). Assume that curlu € L' (R2). Then z € L"(2) and

o
lzllre) < lleurlullr ) + llcurl fllr@).- (1.4.29)

Likewise, we deduce the next theorem from Proposition 1.4.11, Theorems 1.3.18 and 1.3.19,
and Remark 1.3.20.

THEOREM 1.4.14. Let (u, p, 7) be a solution of Problem (1.4.9), such that u € W ()2
satisfies (1.3.27) with |y| = «:

o
;”VMHLOO(Q) =46 < 1. (1.4.30)

If for some r > 2, curl f belongs to W' () and curlu belongs to W' (), then z belongs
to WhT(Q) and is bounded by

1 o
|lel.r(Q) < m (Icurlu|W1.r(Q) + ;lcurlflwu(m). (1431)
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CHAPTER 2

Discretizing the Steady Split
No-Slip Problem

In this chapter, we present several simple finite-element schemes for discretizing Problem
(1.4.9) in a bounded, connected, polygonal domain Q of R?: Find (u, p, z) in H'(Q)? x
L3(Q) x L*(R) solution of

—vAu+zxu+Vp=f inQ,
divu =0 1in €,
u=0 ono<,

vz+au-Vz=vcurlu+acurl f in Q.

A large choice of finite elements are available for discretizing this problem, and we shall
first present their numerical analysis in general finite-element spaces. But considering its
complexity, only examples of finite-elements of order one or two will be proposed. Never-
theless, even within this narrow range, there are several possibilities. Indeed, approximating
the generalized Stokes problem (1.4.6) by means of a good Stokes solver is fairly straight-
forward, but devising a good scheme for approximating the transport equation (1.4.8) is
more delicate. Here, we shall present centered and upwind schemes for (1.4.8). As all these
schemes are nonlinear, they must be implemented with suitable numerical algorithms, and
we shall discuss a simple successive approximations algorithm. For the sake of brevity, it
is presented for centered schemes, but it adapts easily to upwind schemes. Again, first, we
study the problem with a no-slip boundary condition, because its numerical analysis is much
simpler, and postpone the case of nonhomogeneous boundary conditions to Chapter 5.

2.1. General centered schemes
The material presented in this section is mainly taken from GIRAULT and Scott [2002a].

Let ©2 be a bounded connected polygon. We discretize the auxiliary variable z in a finite-
dimensional space Z, C H' () and the velocity and pressure in a pair of finite-dimensional

31
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spaces, X C Htl) ()% and M), C L%(Q), satisfying a uniform discrete inf-sup condition:
There exists a constant 8* > 0, independent of A, such that

divv, dx
Vg, € My, sup M

> ﬂ*”qh”LZ(Q)- (2.1.1)
vieXp hlm (Q)

Then we define the discrete analogs of V and V+ by

Vi = vy € Xp; Yaqn € My, /qh divy,dx=0;, (2.1.2)
Q
Vit = vy € Xp; Ywp, € Vi, (Vvp, Vwy) =0} (2.1.3)

For the transport term u - V z, we propose the consistent trilinear form:

Vv e H' ()%, Vo, 0 e H(Q), ¢ 0,0) = (v-V 9,0) + % (divi)g,0).  (2.1.4)
It is consistent with c¢(-; -, -) in the sense that

Vv e W, Vo,0 € H(Q), E(v; ¢, 0) = c(v; ¢, 6).
Furthermore, ¢ is antisymmetric because by Green’s formula

W e H(Q), V.0 € H(Q), ¢(v; ¢,0) = —¢(v; 0, ¢). (2.1.5)
With these spaces and trilinear form, we choose the following general centered scheme for

approximating problem (1.4.9): Find (uy, py) in X, x M), and z;, = (0, 0, z;,) with zj, in Zy,,
such that

Yp € Xp, v(Vup, Vvp) + @ X up, vi) — (pr, divey) = (f, va), (2.1.6)
Yan € My, (qn, divuy) =0, 2.1.7)
Vo, € Zp, v (zn, On) + a c(up; zn, O) = v (curluy, 6y) + o (curl f, 6). (2.1.8)

The system (2.1.6), (2.1.7) is a generalized version of the discrete Stokes problem: For v > 0
and f given in L%(Q)?, find (vy, qn) in Xj, x Mp, solution of

Ywy, € Xp, v(Vvp, Vwp) — (qn, divwy) = (f, wp), (2.1.9)
Vry, € My, (rp,divvy) = 0. (2.1.10)

The next two lemmas recall the properties of (2.1.9)—(2.1.10). The proofs are an easy conse-
quence of (2.1.1) and the Babugka—Brezzi theory (cf. for instance BABUSKA [1973], BREN-
NER and ScoTT [1994], BREZz1 [1974], BREZZI and FORTIN [1991], GIRAULT and RAVIART
[1986], or ERN and GUERMOND [2004]).
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LEMMA 2.1.1. Assume that (2.1.1) holds. Then for each qn € My, there exists a unique
v, € th‘ such that:

. 1
Vsn € My, (sp, divvy) = (qn, sn),  Walpiq) < E”qh”LZ(Q)- (2.1.11)

LEMMA 2.1.2. Assume that (2.1.1) holds. Then the discrete Stokes problem (2.1.9)—(2.1.10)
has a unique solution (vj,, q) € Xp X My, and this solution satisfies the uniform bound:

S

B (FAVERSY (2.1.12)

$2
|vh|H1(Q) =< TIIfIILz(g), ||CIh||L2(Q) =
where B* and Sy are the constants of respectively (2.1.1) and (1.1.3).

Hence the discrete generalized Stokes problem: For a given zj, in Zj, find (v;,(z3), gn(z3)) in
Vi x My, solution of

VYwp € Xp, v(V Vi, Vwp) + @n X vp, wi) — (qn, divvn) = (f, vi), (2.1.13)

has a unique solution with uniform a priori estimates given in the following proposition. The
proof is skipped because it is trivial.

PROPOSITION 2.1.3.  Assume that (2.1.1) holds. Let v > 0 and f € L2(Q)2. For any zj in
Zp, the generalized Stokes problem (2.1.13) has a unique solution (vi(zp), qn(zn)) in Vi X
My,. This solution satisfies the following bounds in H' (2)? x L*(2):

S

|Vh(Zh)|Hl(Q) =< TIIfIILz(Q), (2.1.14)
1

ol = 5 (2112 + Sl @ Il o). (2.1.15)

The next theorem gives existence of at least one solution of (2.1.6)—(2.1.8).

THEOREM 2.1.4. Assume that (2.1.1) holds. Then for all v > 0, « > 0, and for all f in
H(curl, Q), the discrete problem (2.1.6)—(2.1.8) has at least one solution (up, pn, zn) € Vi X
My, x Zp, and each solution satisfies the a priori estimates (2.1.14), (2.1.15) and

S2 o
||Zh||L2(gz) =< 7||f||L2(Q) + ;||Curlf||Lz(Q). (2.1.16)

Proor. It follows from Proposition 2.1.3 that problem (2.1.6)—(2.1.8) is equivalent to: Find
zp in Zy such that

Vo, € Zp, v (zh, Op) + o Ep(zn); zn, Op) = v (curluy(zp), Op) + o (curl £, 6y),
(2.1.17)



34 V. Girault and F. Hecht CHAPTER 2

where (up(zn), pr(zn)) € Vi X M), is the solution of (2.1.13). Let us solve (2.1.17) by
Brouwer’s Fixed Point Theorem. To this end, for fixed Aj, in Zj, we define H(Aj) in Z, by

Vup € Zp, (H(Ap), n) = v(kp, wp) + o c@p(An); A, p1n)
—v(curlup(Ap), pun) — o (curl f, pup).

This finite-dimensional, square system of linear equations defines a continuous mapping
H : Z, = Zj. Moreover, the H' regularity of X, the antisymmetry (2.1.5) of ¢(+; -, -), and
(2.1.14) imply that, for all A, € Zj,

(H), ) = v 12l 72 ) — v(curlun(hn), i) — o (curl £, An)

v

v ||)¥h||12‘2(9) - (V [wnAp) (o) + ||Cul‘1f||L2(Q)) 1Al 20

A%

v IRk g — (SN2 + @ lleurl fll2.)) 134l 2(0)-
12(Q)

Hence (H(Ap), Ap) > 0 for all Ay in Zj, satisfying

S» o
ARl = j”f”LZ(Q) + ;”CUTIfHLZ(Q)-
By Brouwer’s Fixed Point Theorem, this proves existence of at least one solution z; in Zj, of
(2.1.17).
Finally, by choosing v;, = uj, in (2.1.6) and 6;, = zj, in (2.1.8), we immediately derive that

every solution of (2.1.6)—(2.1.8) satisfies (2.1.14) and (2.1.16). Then the estimate (2.1.15)
for pj, follows from (2.1.1). O

2.1.1. Convergence

It stems from the uniform bounds (2.1.14)—(2.1.16), that there exists a subsequence of £ (still
denoted by /1) and functions u € H}(Q)%, p € L*(Q), z € L*() such that

lim u;, = u weakly in H} ()%,

h—0

lim pj, = p weakly in L*(<), (2.1.18)
h—0

lim z;, = z weakly in L*(2).
h—0

The compactness of the imbedding of H! () into L”(S2) for any real number p > 2 implies
also

Vp € [2, 00, lim u, = u strongly in I”(£2).
h—0

Now, for passing to the limit in (2.1.6)—(2.1.8), we need the following approximation prop-
erties of the discrete spaces.
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HypoTHESIS 2.1.5. (1) There exists an operator Pj, € E(H(l) ()% X3) that preserves the dis-
crete divergence:

Yy € HY(Q)?, Vg, € My, /qhdiVPh(v) dx = /qhdivvdx, (2.1.19)
Q Q

and such that

Yv € Hy(Q)%, lim [[Ph(v) — v]l gy = 0.
h—0
(2) There exists an operator ry € £(L%(Q); My,) such that
Vg € L§(Q), lim |Irn(q) — gqllz2(q) = 0.
h—0

(3) There exists an operator Ry, € L(L*(); Zy) such that
Vo € L*(), lim |Ry(0) — 0|20, = O,
h—0

Vp € [2,00], V0 € WP (), 1im IRy(©) — Olly1iq) = O.
h—0

These assumptions will be sharpened in the next sections, but for the moment, this is all
we require.
Let us first pass to the limit in (2.1.6) and (2.1.7).

PRrROPOSITION 2.1.6.  Under the first two assumptions of Hypothesis 2.1.5, the limit func-
tions (u, p) in (2.1.18) belong to V x L%(SZ) and the triple (u, p, z) satisfies the first two
equations of (1.4.9).

Proor. (1) First we prove that (u, p) isin V x L%(Q). Let g be any function in L%(Q) and
choose g, = rp(q) € My, in (2.1.7). The weak convergence of divuy and the strong conver-
gence of r,(g) imply that (g, dive) = 0; then the fact that divu is in L%(Q) shows that u
belongs to V. Similarly, the fact that pj, belongs to L%(Q) and its weak convergence show
that p is in L2(<Q).

(2) Next, we pass to the limit in (2.1.6). Let v be any function in Hé (£2)? and choose
vy, = Py(v) € X}, in (2.1.6). The convergence of the bilinear and linear terms stem from the
weak convergence of u; and the strong convergence of Pp(v), both in H 1(€)2. For the
nonlinear term (z, X uy, Py(v)), we use the weak convergence of z;, in L2(€2) and the strong
convergence of uj, and Py (v), both in L*(2)2. Thus (u, p) satisfies

Vv € HY(Q)?, v(Vu, Vv) + @ x u,v) — (p,divy) = (f,v), (2.1.20)
that is equivalent to the first equation of (1.4.9). O

At first sight, one can think that passing to the limit in (2.1.8) follows the same lines by
choosing 6, = Ry(), for a sufficiently smooth function 6. But this process is not conclusive
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because the stabilizing term ((divup)zn, Ry(6)) in the trilinear form involves the product
of two weakly convergent sequences. As was pointed out by Chacén-Rebollo in CHACON-
REBOLLO [2001], this difficulty can be bypassed by establishing first the strong convergence
of uj, in H (Q)2.

ProPOSITION 2.1.7.  Under the first two assumptions of Hypothesis 2.1.5, the first conver-
gence in (2.1.18) holds strongly:
ProoF. By taking the difference between (2.1.6) and (2.1.20) with test function v, in V), and
by inserting Py (u), we derive the preliminary error equation, for any g, € Mp:

v(V@up — Pp)), Vvp) =v (V@ — Pr), V) + @ X0 —zp X Up, Vh)

— (p — qn. divwp).

Let us choose g;, = r,(p) and v, =uj, — Pj,(u) that belongs to V), by virtue of (2.1.19). Thus,

vl — Pa@)3 g = v (V@ = Py@), Vi, — Py@))

+ @ xu—zp Xup,up — Py@)) — (p — rp(p), div(up, — Pr(n))). (2.1.22)

Owing to the weak convergence of u;, and the strong convergence of Pp(u), both in H 1 (Q)z,
the first term in the right-hand side of (2.1.22) tends to zero. Similarly, the strong conver-
gence of r,(p) and the weak convergence of div uy, both in L2(£2), imply that the last term
in the right-hand side of (2.1.22) tends to zero. Finally, the weak convergence of zj, in L2(Q)
and the strong convergence of uj, and Py (u), both in L*(2)? show that the nonlinear term in
the right-hand side of (2.1.22) also tends to zero. Consequently,

. 2 .
hlirz)v |uh - Ph(”)'[.[l(g) - 07
thus yielding the strong convergence of u, to u in H(]) (Q)2. O

Now, we are in a position to pass to the limit in (2.1.8).

PrOPOSITION 2.1.8.  Assume that Hypothesis 2.1.5 holds. Then the limit functions (u, z) in
(2.1.18) satisfy (1.4.8).

PrROOF. Let 6 be any function in Wh4(Q2) and take 6, = R,(9) in (2.1.8). Passing to the
limit in the bilinear and linear forms of (2.1.8) is routine and there remains the limit of the
transport term. As all functions here are sufficiently smooth, we can apply (2.1.5):

c(up; zn, Rp(0)) = —c(up; Ry(0), z1).

On one hand, divuy, converges strongly in L2(€2) and R,(0) converges strongly in L*(£2).
On the other hand, uj, and V R;,(6) both converge strongly in L*(Q)2. Therefore,

lim ¢(up; zp, Rp(0)) = —c(u; 0, 2)
h—0



SECTION 2.1 Discretizing the Steady Split No-Slip Problem 37
because divu = 0. Hence, for all 6 in W1*4(S2), we obtain
v(z,0) —acu;6,z) = v(curlu, 6) + a (curl f, 0).

In the sense of distributions, this is equivalent to (1.4.8). O

It remains to establish the strong convergence of z; and pj, and derive the main conver-
gence result of this section.

THEOREM 2.1.9. Under Hypothesis 2.1.5, there exists a subsequence of h (still denoted by
h) and a solution (u, p,z) € V x L3(Q) x L*(Q) of problem (1.4.9) such that

lim |up, —u =0,

h 0| h [ )

lim -z =0,

A 0||Zh zl2 ) (2.1.23)

lim — =0.
Jim lpr — Pl

PrOOF. It remains to prove the last two strong convergences.
(1) First, we consider the limit of zj,: we write

2
”Z/’l - Z”LZ(Q) = (Zh - Zh) - (Zh — 3 Z)»

and it suffices to study the first term. By taking the difference between (2.1.8) and (1.4.8)
multiplied by the test function z;, we obtain the following equation:

V(zh — 2, 2h) + oCp; zhy zn) — oc(; 2, zp) = v(curl(uy — u), zp).
Applying (2.1.5), this reduces to

o
(zn — 2z 20) = ;C(u; z, zp) + (curl(u, —u), zp).

On one hand, the fact that z belongs to X, the weak convergence of z; in Lz(Q), and
Corollary 1.3.11 imply that

lim c(u; z, zp) = c(u; z,7) = 0.
h—0

On the other hand, the strong convergence of curl u; in L%(Q) and the weak convergence of
zp, imply that

Ain%)(curl(uh —u),zp) =0.

Hence

hm (Zh —Z Zh) = 07
h—0

thus proving the strong convergence of z;,.
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(2) Now, we turn to pj. By subtracting (2.1.20) from (2.1.6) with test function v, € Xj
and by inserting r,(p), we obtain

VYvi € Xn, (pn — rn(p), divvy) = (p — rp(p), divvg) +v(V @y —u), Vy)

+ @p Xup—2z X u,vy).

Let us choose the function vj, associated by Lemma 2.1.1 with the function g5, = p, — ri(p);
as vy, belongs to Vib, this gives

1n = (D)) = (P = (), divwn) + v(V(Pa(@) — ), Vv))

+ (zn X up —z X u,vy), (2.1.24)
and (2.1.11) yields

1
|vh|H1(Q) =< E”Ph - "h(P)”LZ(Q)'

This last relation implies the weak convergence of v in H(l) (2)2. Then the strong conver-
gence of py, follows by taking the limit of the right-hand side of (2.1.24) and using the weak
convergence of v, and the strong convergence of uj, and z;,. O

2.1.2. Further estimates for the discrete velocity

Here, we need to sharpen the approximation properties in the statement of Hypothesis 2.1.5.
As € is assumed to be a polygon, it can be entirely triangulated. For an arbitrary triangle 7,
we denote by A7 the diameter of 7 and by pr the radius of the ball inscribed in 7. Let & > 0
be a discretization parameter and let T}, be a family of triangulations of €2, consisting of
triangles with maximum mesh size h

h := max hr,
TeTy

that is regular (also called nondegenerate):

max h—T < o0y, (2.1.25)
TeT, pr

with the constant o independent of 4 (cf. CIARLET [1991], and BRENNER and ScoTT [1994]).
Here we assume that the triangulation is conforming, i.e., it is such that any two triangles
are either disjoint or share a vertex or a complete side. Moreover, we suppose that in each
triangle 7, the finite-element functions of X, M), and Z; are all polynomials, but for the
moment, the degrees of these polynomials are not specified. Then, we complement 2.1.5 by
the following assumptions:

HypoTHESIS 2.1.10. The operators Py, and ry, satisfy, for each real number s € [0, 1] and for
each number r > 2:
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(1) There exists a constant C, independent of h, such that
2
we (W@ NHY®) L 1PL0) = Vi) = CH Py (2.1.26)
(2) There exists a constant C, independent of h, such that

Vg € W(Q) NL5(Q), lInn(g) — gl < Chlglwsr@)- (2.1.27)

Now, observe that for fixed zj, the pair (uy, pj,) approximates the solution of a generalized
Stokes problem of the form (1.4.10) with z;, instead of z: Find (v(z3), g(z3)) € Htl) (Q)2 X
L%(Q) solution of

—VAV(zp) +zn xv(zp) +Vqzy) =f inQ, (2.1.28)
divv(zz) =0 in Q. (2.1.29)

It is interesting to compare uy, and v(z;), when (v(z5,), q(z,)) has sufficient regularity. This
regularity is a direct consequence of (1.4.22) and (1.4.24): Without restriction on the angles
of 32, (v(z1), q(z1)) belong to W>4/3(Q)2 x W#/3(Q) and satisfy

Iv@) w24 @) + llg@) w4y < CiKi@n) I1f 1125 ) (2.1.30)

where K (z) is defined by (1.4.23). If Q is a convex polygon, (v(z1), q(z;)) belong to
H%(©)? x H' () and are bounded by

V@2 @) + 9@l )

(2.1.31)
< G (If 2@ + CooC1K1@m znll 2 () 1f 12473 @)-

Furthermore, the following lemma compares (u, p) and (v(zy), ¢(z5)). Note that its statement
is independent of the particular functions z and zj,. It is valid for any pair of solutions of the
generalized Stokes problem (2.1.28)—(2.1.29) associated with any pair of functions z and z;,
in L*(Q).

LEMMA 2.1.11. Let Q2 be a connected polygon with all inner angles in 10, 27 [; then

e — v w24 + P — @) llwian gy < CIK1@IvEn)lla@)llz — znll2@)

llee — V(Zh)||L°°(Q) < CxxCiK| (Z)||V(Zh)||L4(Q) lz — Zh”LZ(Q)« (2.1.32)

If in addition, Q is convex, we have

lw —v@) g2 + 1P — a@)llg @) < Caollz — znll2 )

% (W) @) + CooCIKI @I @ sy el 2e)- (21.33)

PrOOF. Subtracting (2.1.28) from the first equation in (1.4.9), we find that (u — v(z), p —
q(zn)) € H(l) (Q2)? x L%(Q) solve the first three equations of problem (1.4.9) with right-hand
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side —(z —zp) X v(zp):

—VA@ —v(zp) +z x (w—v(zn) + V(p — qzp) = —@ —zn) X v(zn),
diviu —v(z;)) =0 in Q.
Therefore (2.1.32) and (2.1.33) follow from (1.4.22), (1.4.25), and (1.4.24). O
The next lemma presents a bound for uy, — P, (v(z3)).

LEMMA 2.1.12. Let Q be a polygon with all inner angles in 10, 2r [; then, under Hypothe-
ses 2.1.5 and 2.1.10, there exists a constant C > 0, independent of h, such that

1
lup — Pr(v(@n) |1 ) < Ch'? (Kl @) @) ) + ;|Q(Zh)|yl/2(g))- (2.1.34)

If, in addition, Q2 is convex, then there exists another constant C > 0 independent of h, such
that

1
lup — Ph(V(Zh))|H1(Q) <Ch <K1 (Zh)|V(Zh)|H2(Q) + ;|Q(Zh)|1-11(g)>~ (2.1.35)

ProoF. To shorten the text, we momentarily drop the dependence of v and g on zj. As in
the proof of Proposition 2.1.7, we derive from (2.1.6) and (2.1.28), for all w, € V},,

v(V(up — Pp(),Vwy) + (zn x (wp — Pp(v)), wy) — (rp(q) — gq, divwy)
=v(VE — Pr(»), Vwp) + (zp x (v — Pp(v)), wp).

Then, choosing wj, = u;, — Py(v) € V;,, we obtain

1
lun — Pr()g1 @) < Ki@@)lv — Pr(W) g @) + ;“”h(CI) —4qllr2@) (2.1.36)

and (2.1.34) follows from Theorem 1.1.6, the imbedding of W>4/3(Q) into H3/2($2), and
Hypothesis 2.1.10 with s = 1/2 and r = 2.

Similarly, we derive (2.1.35) from (2.1.36) by applying Theorem 1.1.5 and Hypothe-
sis 2.1.10 with s = 1. O

At this stage, we can derive a variety of bounds for u;, — Pj(v(z3)), depending on differ-
ent assumptions on the domain and triangulation. They are based on the inverse inequality
of the next lemma (cf. CIARLET [1991]), which is valid in arbitrary dimensions d, and gener-
ally rely on the following assumption on the triangulation: the family of triangulations 7}, is
uniformly regular (also called quasi-uniform) if there exist two constants T > 0 and op > 0,
independent of 4, such that

VYT € Ty, th < hy < oppr. (2.1.37)

LEMMA 2.1.13. Let the triangulation Ty, satisfy (2.1.25). For any finite-element space ®y,
constructed on Ty, and for any number r > 2, there exists a constant C, independent of h,
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such that
1
Vv, € Op, il < CTI)”Vh”LZ(Q)’ (2.1.38)
277
min
where

Omin = 7}2% PT-
If in addition, T, satisfies (2.1.37), then there exists a constant C, independent of h, such that
d(;—3)
Yo € Op, |vallr@) < ChYr =2 vl p2q)- (2.1.39)

With this material, we can establish W!" bounds for u;, — P;(v(z1,)); they stem directly
from Lemma 2.1.12 and (2.1.39).

THEOREM 2.1.14. Let Q2 be a connected polygon with all inner angles in 10, 27, and let
Hypotheses 2.1.5 and 2.1.10 hold. If T), satisfies (2.1.37), then for any real number r € [2, 4],
there exists a constant C, depending on r but not on h, such that

_ 1
lun — Ph(v(zn)lwiriqy < CH/1/2 <K1 @) ) + ;|q<z;,)|Huz(m).
(2.1.40)

If in addition, Q is a convex polygon, then for any number r in [2, 00], there exists another
constant C, depending on r but not on h, such that

1
lun — Phv(@n) gy < CH" (m @) @)y + ;|q<Zh>|H1<Q)). (2.141)

Considering the stability of Pj given by (2.1.26) with s = 0, the bounds for v(z;) and
q(zp) given by (2.1.30) and (2.1.31), and the uniform bound for z; given by (2.1.16), we
have the following corollary.

COROLLARY 2.1.15.  Under the assumptions of the first part of Theorem 2.1.14, there exists
a constant C, independent of h, such that any velocity solution uy, of (2.1.6)—(2.1.8) satisfies
the uniform bound:

Moreover under the assumptions of the second part of Theorem 2.1.14, for each real number
r > 2, there exists another constant C, depending on r but not on h, such that

[unlwrr g =< C. (2.1.43)

REMARK 2.1.16. We cannot extend (2.1.43) to r = oo because we have no bound for v(z;)
in W*°(Q)2. Such a bound would require a uniform estimate for z, in LY(€2) for some
q > 2, and so far, this appears to be an open problem. O
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REMARK 2.1.17. The bound (2.1.42) implies that u; is uniformly bounded in maximum
norm:

lleepllLoo(@) < C. (2.1.44)

This property will be used in a convex domain in Section 2.4. But in this case, the restriction
(2.1.37) on the mesh can be substantially relaxed. Indeed, for proving (2.1.44), we only need
that u;, be bounded in W' for some r > 2. Owing to the stability of P, and to (2.1.30), we
write

|uh|W1-r(Q) < |up— Ph("(Zh))'WlJ‘(Q) + ¢y |V(Z/1)|W1~"(Q)

< lup — Pa(v(@n) lwrrqy + c2Ki @l fllz43 ) »

where all constants c; are independent of /4. Then applying (2.1.38), (2.1.35), and (2.1.31) to
the first term in the right-hand side, we obtain

Cc3
ey, — Ph(V(Zh))|W1<r(Q) < Tz/,luh - Ph(V(Zh))|H1(Q)
min
cah 1 csh
< T2 Ki@n) vz g + ;|Q(Zh)|H1(Q) < T
min min
Thus, the condition on the mesh is
h=Comn"s (2.1.45)

for some r > 2. For example, if we choose r = 2.1, then the exponent of gn, is 1/21, and
(2.1.45) hardly restricts the mesh. O
2.1.3. Another view on uniqueness

The statement of the uniqueness Theorem 1.4.12 does not extend to the discrete problem
because a discrete analog of (1.4.4) is not available. Hence, it is useful to derive a sufficient
condition for uniqueness (albeit less sharp), directly from the equations of Problem (1.4.9).
To this end, let (u1, z1) and (u3, z2) be any two solutions of (1.4.9) (we eliminate the pressure
because it is determined by the other variables). Then arguing as in Lemma 2.1.11, under its
assumptions, we easily derive

Sa
luy — w2l ) < 7||u2||L4(Q)”Z1 — 22120 (2.1.46)
lluy —uzliLe(@) < CooCIKl(Zl)||"2||L4(Q) llz1 — ZZ||L2(Q)- (2.1.47)
Similarly, by writing

v(z1 —22) +auy - V(z1 — 22) = veurl(uy —uz) —a(uy —uz) - Vzy,
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we infer, assuming that z; belongs to H L),
lz1 — z2llp2(q) < lleurl(@y —u2)ll2) + — ||u1 — wallLe @) |21 g (@) -

By substituting (2.1.46) and (2.1.47) into this inequality, we obtain

1
lz1 — z2llp2@) < ;||u2||L4(Q) (S4 + aCoC1K1(21)21 |H1(Q)) lz1 — 2202 (@)

whence the following variant of Theorem 1.4.12. The proof stems directly from this inequal-
ity and estimate (1.4.20).

ProposITION 2.1.18.  In addition to the assumptions of Lemma 2.1.11 Part 1, suppose that
Problem (1.4.9) has a solution (u, p, z) in V x L(%(Q) x L2(Q) such that z € H' () and

S4Sz
||f||L2(Q) (S4 + OlCooC1 K] (Z)|Z|H1(Q)) < 1. (2148)

Then Problem (1.4.9) has no other solution in V x Lg(Q) X LZ(Q).

Note that (2.1.48) holds, for instance, when the force f is small or the viscosity is large.

2.1.4. A priori error bounds

From the exact Problem (1.4.9) and the discrete problem (2.1.6)—(2.1.8), we readily obtain,
for all v, in Vj, all g, in My, and all 6, in Z;;:

v(V(u, —u), Vvp) + ((zn —2) x u,vp) + @ x (W —u),vy) — (gn — p, divey) =0,
(2.1.49)

V(zh — 2, Op) + ac(up — u; zp, Op) + ac(u; zp — z, 0p) = v(curl(uy —u), Op).
(2.1.50)

Then (2.1.49), Lemma 2.1.1, and (2.1.24), imply the following lemma.

LEmMA 2.1.19. Let (uy, pp, z1) be a solution of (2.1.6)—(2.1.8) and let (u, p, z) be a solution
of Problem (1.4.9). Under the first two assumptions of Hypothesis 2.1.5, we have:

Sy
e — uplgq) < 20u — Pr@) g (@) + 7”“”L4(Q)”Z - Zh||L2(Q)
Sa 1
+ *”Zh“LZ(Q) llu — Ph(”)||L4(Q) + *”P = (P2 (2.1.51)

lp —prlpzg < ( ’3*> lp — ra(Pll2) + 25 B* (V lu — Pr()|p (o)
+ 84 (||u”L4(Q) iz — znll 2y + Nzl 2 ) lle — uh||L4(Q)))v (2.1.52)

where B* is the constant of (2.1.1).
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Now, let us examine (2.1.50).

LEMMA 2.1.20. Let (uy, ppn, zn) be a solution of (2.1.6)—(2.1.8) and let (u, p, z) be a solution
of Problem (1.4.9). For any A, in Zy, we have

lz = znllz2(@) < 211z = Anllz2(e) + lcurl@ — up)lir2(q)

o
+5 (I —up) - V anll 2oy + - Vi = )l (2.1.53)

1 .
4 3 IA div(e — uh)||L2(Q))'

ProOF. Inserting any A, € Zj, into (2.1.50), we derive for all 8, € Z;,

v(zp — Ap, Op) + ac(up; zp — Ap, Op) = v(curl(uy, — u), 0p)

+ vz — Ap, On) + ac; 2 — Ap, Op) + ac(@ — up; Ap, 6).

Then (2.1.53) follows by choosing 6, = z; — Aj, and applying (2.1.5). O

Note that the statement of this lemma requires no particular regularity assumption on the
data and the domain. However, if we want to deduce from it a useful error inequality, we
must assume that z belongs to W'/ (), for some r > 2. This is caused by the hyperbolic
character of the transport equation. Then we obtain the following corollary.

COROLLARY 2.1.21. Let Q2 be convex, (u, p, z) a solution of Problem (1.4.9), ro the number
of Proposition 1.4.11, and let the assumptions of Theorem 1.4.14 hold, so that z € W' (),
for some real number r in 12, ro[. Let (up, pn, zn) be a solution of (2.1.6)—(2.1.8) and let Ry,
be the operator of Hypothesis 2.1.5; we have

lz = znll2e) <2012 — Re@ll2q) + 1w — unlg o)
o
+ " (”" - uh||Lr*(Q)|Rh(Z)|W1-r(Q) + llellzo @)1z — Ru(@ g (@)
1
+ Elu —unlg ) IRk @) |, (2.1.54)

L _1_1
wherer—*—2 e

By substituting (2.1.51) into (2.1.54), we immediately derive the next theorem. Its statement
makes use of the following notation and bounds:

IRy < Erlallyirays IR @) < CoorErlizlyirg)s

1
Kr(r,2) = (Sr* + ECOOJ> Er”Z”WlJ‘(Q)» (2.1.55)

where C, /1S the constant of (1.1.18).
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THEOREM 2.1.22. We retain the assumptions of Corollary 2.1.21. Assume that T}, satisfies
(2.1.25) and that Hypothesis 2.1.5 holds. Then, if the data are small enough so that

o v
(1 + 2K, z)) Sallull sy < 3. (2.1.56)
we have the following error estimate:
o
Iz = znll2(@) = 4llz = Ra@ll20) + 27 lullx @z = Ra@)la @)
o Sy
+2 (1 + ;Kz(h Z)) 7||Zh||L2(Q) lluw — Pr(@) 4
1
+2|u — Pr(w) |y o) + ;HP —m(Plrg |- (2.1.57)

The above statement calls for the following comments.

1. In order to recover an error estimate of the same order for the three unknowns, the
auxiliary variable z must have more regularity than expected, compared with that of
the velocity and pressure. This well known imbalance results from the hyperbolic
nature of the transport equation. It can be partially remedied by the use of suitable
upwind schemes, see Section 2.4.

2. The assumptions of Theorem 2.1.22 can all be checked on the data and the domain.
The factors in (2.1.56) are bounded independently of # and can be expressed in terms
of the data.

3. The left-hand sides of (2.1.56) and (2.1.48) have related structures.
4. The statement of Theorem 2.1.22 remains valid when « tends to zero.

2.1.5. Remarks on uniqueness of the discrete solution

The proof of uniqueness of the discrete solution is still an open problem (even assuming
uniqueness of the exact solution), if we want to keep the regularity of the exact solution
compatible with a polygonal domain. Indeed, any pair of solutions (ws, pp, zn), (U}, ), 2),)
of (2.1.6)~(2.1.8) in V}, x My, x Z, satisfies: u, —uj, € Vi, pp — pj, € My 21 — 2, € Zp,

Wi € Vi, v(V(up —up), Vvp) + @, X (W —u), vy)

= —(@n —23) X up, vp), (2.1.58)
VO € Zp, v(zn — ), O) + «C(un; zn — 2),, 6h)
+ al(up — uy; 25, On) = vicurl(uy, — uy), Oy). (2.1.59)

Therefore,

o 1 .
llzn — Z;,”LZ(Q) = ; (”(uh - u;,) . VZ;,”LZ(Q) + E”Z;z div(u, — u;l)”LZ(Q))

—+ |uh — u;,|H1(Q)
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The difficulty comes from the first two terms in the right-hand side of this inequality: for
instance, we can derive a bound for |ju; — u}l||Loo(g) and |uy, — u}llwl.r(m, but we have no
bound for |z;l| H1 () unless we assume that z € H?(). Indeed, the only way in which we
can estimate this term is by writing that

A

|Z;,|[-11(Q) = |Z;, - Rh(Z)|H1(Q) + |Rh(Z)|H1(Q)

IA

C
EIIZL - Rh(Z)||L2(SZ) + |Rh(Z)|H1(Q)-

In view of (2.1.57), this gives a bound for |z}, |;1(q) in the best of cases when Ry, is suitably

accurate, if we assume that z € H?(£2), but we cannot check this assumption on a polygonal
domain.

2.2. Centered schemes: Examples

Recall that Q is a connected polygon. The three examples described here are chosen in
order to satisfy the uniform inf-sup condition (2.1.1). They are presented for the homoge-
neous problem, but they will be easily adapted to nonhomogeneous boundary conditions in
Chapter 5. Their study can be found in several texts (for instance BREZz1 and FORTIN [1991],
GIRAULT and RAVIART [1986], and ERN and GUERMOND [2004]), but we shall mostly use
the material in GIRAULT and ScotT [2003], because this reference emphasizes the local
character of the approximation operator Py, which is crucial in the numerical analysis of
nonhomogeneous boundary conditions. The simplest examples are the “mini-element” and
the Bernardi—Raugel element; both are of order one, and the Bernardi—-Raugel element has
the advantage of being locally mass-conservative. The Taylor—-Hood element is of order
two. The Crouzeix—Raviart element of order one (cf. CROUZEIX and RAVIART [1973]), also
locally mass-conservative, is a simple interesting variant, but it is nonconforming and its
theory requires a slightly different treatment. The same applies to the second order non-
conforming Crouzeix—Raviart element (cf. FORTIN and SouLIE [1983]) or the third-order
nonconforming Crouzeix—Raviart element (cf. CROUZEIX and FALK [1989]). As written at
the beginning of this chapter, we have concentrated on elements of low degree, but of course,
we could have used higher degree elements.

2.2.1. The mini-element

The mini-element, introduced by ARNOLD, BREZZ1 and FORTIN [1984], is of order one for
the velocity and order two for the pressure. Let /Py denote the space of polynomials in two
variables with total degree less than or equal to k. In each triangle 7, the pressure p is a
polynomial of /P; and each component of the velocity is the sum of a polynomial of IP;
and a “bubble” function. Denoting the vertices of T by a;, 1 <i < 3, and its correspond-
ing barycentric coordinate by 1;, the basic bubble function br is the polynomial of degree
three

br(x) = A1 (x)A2(x)A3(x),
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that vanishes on the boundary of 7. Thus, we take

Xi = v € Hy(@)% VT € Ty, wilr € Py @ Veet(bp)?). 2.2.1)

M, = [qh e H'(Q) N L2(Q): VT € Th. qulr € Pl}. (2.2.2)

Considering the velocity’s approximation order, it is reasonable to choose also an approxi-
mation of order one for z:

Zn = {6, € H(Q); VT € Ty, Ol € IP1). (2.2.3)

Observe that M, = Z; N L%(Q). The next lemma constructs Py, for the mini-element. It uses
the following notation: a macroelement At is the union of elements of Jj sharing at least
a vertex with 7. When the family of triangulations 7}, satisfies (2.1.25), the number of ele-
ments of Ar is bounded by a constant, say L, independent of 4 and T'; and a given element
T can belong to at most a fixed number of macroelements Ag, say L, also independent of &
and 7.

LEMMA 2.2.1. If the family of triangulations Ty, satisfies (2.1.25), there exists an operator
Py € L(HY(Q)?; Xp) satisfying (2.1.19):

\VRS Hé(Q)z, Yqn € My, /qhdiVPh(v) dx = /qhdivvdx,
Q Q

and the following approximation properties

Wy € WST(Q)2, VT € Th,
s—m+2($—%) (2’2'4)

[Pp(v) — vIwmacr) < Cihy [vIwsrap)

forintegers m = 0 or 1, for all real numbers 1 < s <2, and all numbers 1 < r, g < 00, such
that

WE(Q) ¢ W™9(Q),

with a constant C| independent of h and T.

PrOOF. Take v in H(]) (€)% and let I1}, be a regularization operator, such as the ScorTt and
ZHANG [1990] operator that is a polynomial of /P; in each triangle, is globally continuous,
and preserves the polynomials of P, so that it preserves in particular the zero boundary
value. We choose

Py(v) = TH(») = Y erbr, (2.2.5)
TeTy

where the constant vectors ¢ are adjusted so that P satisfies (2.1.19). But g, belongs
to Mj, and by construction, P,(v) — v vanishes on the boundary of €2, therefore, (2.1.19)
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amounts to

Yqn € My, /(Ph(v) —v)-Vgpdx =0. (2.2.6)
Q

Now, Vg, is a constant vector in each triangle 7. Therefore, (2.2.6) holds provided that
VT € Ty, /(Ph(v) —v)dx = 0.
T

From the definition (2.2.5) of P, and the disjoint supports of the bubble functions, this last
equation determines the constant vectors cr:

1

VT € Ty, e = ———
BT T brdx

/(Hh(v) —v)dx. (2.2.7)
T

Let us estimate first |cr| and next [|br|l;2(q) and |br|yiecr)- Let T be the reference unit

triangle and Br the matrix of the affine transformation that maps T onto 7. On one hand, for
any q > 2,

ler| < eITI7 Y9 T14(») — vliacr),

where ¢ denote various constants that depend only on T and the exponent g. On the other
hand,

b7l 2y < EITIM2, Wb lwrary < SITIV4BZ.
Therefore,
lerllbrll 2y < SNTRG) = Vilig2(r)
lerllbrlwracry < B L) = VLo
From the disjoint support of the bubble functions b, we infer that
1Pr() =¥l 2y < 1+ OINTR®) = vli2(r),
[Ph(v) — VIwrery < ITTh(¥) — vlyrgry + ¢IBF TR (™) — vlizacr).- (2.2.8)

Then (2.2.4) follows from (2.2.8), the regularity (2.1.25) of the triangulation and the local
approximation properties of I, see SCOTT and ZHANG [1990]. O

It can be easily checked that (2.1.19) and (2.2.4) withr = ¢ = 2 and m = s = 1 imply the
uniform inf-sup condition (2.1.1) between Xj;, and Mj,. As far as M, and Z;, are concerned,
either the variant of the Scott & Zhang regularization operator defined by GIRAULT and
Lions [2001b], or the regularization operators defined by CLEMENT [1975] or BERNARDI



SECTION 2.2 Discretizing the Steady Split No-Slip Problem 49

and GIRAULT [1998] (still denoted by I1j) are good candidates for r, and Rj;. Then, R,
satisfies the analog of (2.2.4) with the same notation

+2(L

_ _1
Vz € W (Q), VT € Th IRi(@) — zlwmary < Cohy ")|z|ws,r(AT), (2.2.9)

with another constant C; independent of &, T, and Ar. Moreover, I1; can be easily adjusted
to the zero mean-value for r;, by setting

1
Vg € H(Q), ri(q) = TTx(g) — il / (Mr(g) — q) dx. (2.2.10)
Q

Considering this global zero mean-value constraint, instead of the local estimate (2.2.9), rp,
satisfies (2.1.27):

Vg € W(Q) NL{(Q), lr(g) — qllr@) < C3h'lglwsr ),

for all numbers r > 2 and all real numbers s € [0, 2], with a constant C3 independent of /.
Hence all assumptions of Hypotheses 2.1.5 and 2.1.10 are satisfied by the spaces Xj,

My, and Zj,. As (2.2.4) only yields an error of order 4 for the velocity, the error estimate of

Theorem 2.1.22 gives the same order. More precisely, we have the following theorem:

THEOREM 2.2.2. Let the family of triangulations Ty, satisfy (2.1.25), let (u, p, z) be a solu-
tion of Problem (1.4.9), with z € H*(Q), u € H*(Q)? and p € H(Q), satisfying (2.1.56),
and let (up, pn, z) be a solution of (2.1.6)—(2.1.8) with the finite-element spaces (2.2.1)—
(2.2.3). Then, there exists a constant C, independent of h, such that

lz = znll2@) + 1w — wnlg @) + Ilp — Pall2) < Ch.

2.2.2. The Bernardi—Raugel element

Now we turn to the Bernardi—Raugel finite-element cf. BERNARDI and RAUGEL [1985]. Let
f; denote the side of T opposite a; and let r; be the unit normal vector to f; pointing outside
T. We define the three edge “bubble functions”

Pi.T = R1A2A3, Py 7 = M2A(A3, P37 = H3A1A2,

and we set

PI(T) = P} & Vect{p, . ps.7.P3.7}

The finite-element spaces for the Bernardi—-Raugel element are
Xy = vy € HY(Q)% VT € Ti, vilr € Pi(T)}, (2.2.11)
My, = {qn € L§(Q); VT € Ty, gilr € IPo) 22.12)

The local mass conservativity of this pair of spaces (i.e., in each element T') follows from the
fact that we can now choose a test pressure that takes the value one in 7" and zero elsewhere.
As the approximation error of these two spaces are of order one, we take for Z; the space
defined by (2.2.3), i.e., the same as for the mini-element. Because the discrete pressures
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have no continuity requirements across elements, we can take for r; the L? projection on
the constant functions in each 7', corrected so that it globally has a mean-value of zero. The
following lemma constructs a suitable operator Pj.

LeEmMA 2.2.3. If the family of triangulations Ty, verifies (2.1.25), there exists an operator
P e ﬁ(Hé ()% X3) satisfying (2.1.19) and (2.2.4) with the same values of s, m, r, and q as
in Lemma 2.2.1.

PrOOF. We only sketch the proof; it is similar to that of Lemma 2.2.1. For v in H& (Q)z, we
choose

3
Ph) =TL) = Y Y aitpir (2.2.13)

TeTy i=1

It can be easily checked that, for satisfying (2.1.19), it suffices to take

1
o T = W /(Hh(v) —v)-nds, jEkFIL
' fi

On one hand, passing to T, applying a trace theorem on 9T and reverting to 7, we find
.| < &IT17 Y9 (1T @) = vlizacry + IBrIITIL0) = Viwacr)-
On the other hand,
i rlwiaer < eITIV4BF'.
Therefore,
leti 71 Ip; 7l 120y < € (1T ) = vl 27y + BT M) = Vg ),
s rlwracry = & (IM0) = Vo + B7 1ITL0) = Vliacn)-

The proof finishes as in Lemma 2.2.1. O

The conclusion is the same: all assumptions of Hypotheses 2.1.5 and 2.1.10 are satisfied
by the spaces Xj,, M}, and Zj, and the resulting scheme has order one.

THEOREM 2.2.4. Let the family of triangulations Ty, satisfy (2.1.25), let (u, p, z) be a solu-
tion of Problem (1.4.9), with z € H*(Q), u € H*(2)? and p € H(Q), satisfying (2.1.56),
and let (up, pn, zn) be a solution of (2.1.6)—(2.1.8) with the finite-element spaces (2.2.11),
(2.2.12), and (2.2.3). Then, there exists a constant C, independent of h, such that

lz = znll2(q) + lu — unlgiq) + IIp — Pall2) < Ch
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2.2.3. The Taylor-Hood element

Finally, consider the classical conforming Taylor—Hood element of degree two with contin-
uous pressures (cf. Hoobp and TAYLOR [1973]):

Xy = vy € HY{(Q)%; VT € Ti, wilr € IP3), (2.2.14)

My, = {qn € H'(2) N L3(Q); VT € Ty, qulr € IP1). (2.2.15)

Note that M}, is the pressure space of the mini-element. Because the approximation error of
these spaces is of the order of 42, we choose

Zp = {6 € HY(); YT € Ty, Oulr € IP2). (2.2.16)

The inf-sup condition for this element was established by BERCOVIER and PIRONNEAU
[1979], then by VERFURTH [1984], and by GIRAULT and RAVIART [1986]; this last reference
gives a proof with a semilocal argument based on the approach of BOLAND and NICOLAIDES
[1983] and STENBERG [1984], under the assumption that the family 7 is nondegenerate
and each triangle 7 has at most one edge on 9$2. But none of these references propose
an approximation operator satisfying (2.1.19) and (2.2.4). For a long time, it was an open
problem, the only remedy being the introduction of additional degrees of freedom as in the
work of DURAN, NocHETTO and WANG [1988]. The construction presented here fills this
gap. It is due to GIRAULT and ScotT [2003], and it proceeds along the following lines:

1. Define a preliminary operator I1, that preserves the mean-value of the divergence in
each T;

2. Decompose the domain into a union of suitable macroelements;
3. Correct ITj, in each macroelement, so that a local inf-sup condition is satisfied there.

If this is adequately done, the corrected operator satisfies a global inf-sup condition, and its
support is a neighborhood of the support of the function to which it is applied.
First, let us construct a preliminary operator ITj, € ﬁ(Hé (£)2; X;,) that satisfies

Vv € H)(Q)?, VT € T, /div(l'[h(v) —y)dx =0, (2.2.17)
T

and the approximation property analogous to (2.2.4):

Wy € W (Q)2, VT € T,
mia(1-1) (2.2.18)
[T1p(v) — vlwmar) < C3 hy [vIwsrar),

for integers m = 0 or 1, for all real numbers 1 < s < 3, and all numbers 1 < r, g < oo, such
that

W(Q) ¢ W™(Q),
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with a constant C3 independent of 4 and 7. This operator can be derived from the reference
ScoTt and ZHANG [1990] as follows. Let T be a triangle with vertices a;, and opposite
sides f;, 1 <i < 3. A polynomial p of degree two is uniquely determined in T by the six
values:

p(a;), /p(S) ds,1 <i<3.
fi

For 1 <i <3, let ¢, € IP; and ¢, € IP; be the Lagrange basis functions associated with
these values, i.e.,

vu(@)) = 51, f Gay(s)ds = 0,1 < j, k <3,
Jie

¢f;(ax) =0, /‘Pf,-(s) ds =6;j,1 <j,k=<3.
i

For defining IT;, on H' (), we regularize the above point values as follows. With each vertex
a;, we choose once and for all a segment «; of Jj, with end point ;. This choice is arbitrary,
with one exception: for preserving vanishing boundary values, we impose in addition that «;
be contained in 02, whenever a; lies on Q2. Let ¥, € IP>(k;) be the dual basis function on
Ki, 1.€.,

f Va,; ($)@p(s) ds = 84,5, (2.2.19)

where b denotes the segment «; itself or its two end points. Then, we replace the point-value
p(a;) by the degree of freedom

/ P($)Va;(s) ds.

Ki
Thus, we define ITj, by
moe = 3 | [v0vu0s |+ T | [roa|go. @220
a;eSy ki fery f
where Sy, denotes the set of all vertices a; of T, and I', denotes the set of all segments

f of Ty. It stems from the above choice of degrees of freedom on the segments f and the
corresponding choice of basis functions that

Vf € Th, /(Hh(v) —v)ds = 0. (2.2.21)
7
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Of course, this implies (2.2.17). Furthermore, it is easy to check that [T is a projection, by
virtue of (2.2.19); i.e., if v, is globally continuous in €2 and a polynomial of /P, in each
triangle 7', then

Iy (vp) = v

This property allows one to apply the argument of ScOTT and ZHANG [1990] and show that
[T, satisfies the optimal approximation property (2.2.18) for s € [1, 3].
Next, let us define the following spaces: for each function g in M} we define in each 7,

1
an = qp — — dx,
qh = qn IT] / qn

My = {Gn; qn € My},

5(;1 ={vy, € Xp; VT € T}, /divvhdx =0}.
T

Note that, in contrast to the functions of My, the functions of Mh are not continuous. On
the other hand, they have zero mean-value in each 7. This will enable us to eliminate the
piecewise constant pressures. And to begin with, let us state a variant of the inf-sup condition
on a triangle 7. On each side f; of T, we choose once and for all a tangent vector ¢; with length
[fil, we denote by n; the unit normal to f; exterior to 7', and we denote by b; the midpoint
of this side. Let g5 € IP1 N L(Z)(T); following BERCOVIER and PIRONNEAU [1979], we define
v, € P% as follows:

vp(a) =0, 1 =i <3,
and on any side f; of T that is not on 9€2:

n 1) i) = —=(Vgp - ) (bi), v, -ny) (bi) =0; (22.22)
if f; lies on 92, we set vj,(b;) = 0.
LEMMA 2.2.5. Assume that the family Ty, satisfies (2.1.25) and each triangle T has at most

one edge on 0S2. Then for any triangle T and for all g5, € IP1 N Lé (T), the function vy, defined
above satisfies:

. N 1 1
Vr > 2, /C]hleVh dx = clignllzallgnll o7y - + o= 1, (2.2.23)
T
a2
Vr =2, Wil < ek lanll e (2.2.24)
Vr>2, |Vh|Wl-r(T) < clgnllr . (2.2.25)

where ¢ denote several constants, depending possibly on r, but independent of h, T, qy,, and
vy In these three inequalities, the exponents r are independent of each other and can be
infinite.
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We skip the proof because it is based on a straightforward extension of the arguments of
Theorem 11.4.2, pp. 178,179 in GIRAULT and RAVIART [1986].

Let gj, be an arbitrary element of M), and let §;, be its associated function in M. The
function v;, defined earlier, associated with the restriction of gy in each T belongs globally
to X;, because, on one hand, V §;, -t = V gy, - t is continuous at the interfaces f between
adjacent elements, and on the other hand, by construction, vy, = 0 on f if f C 92. A global
inf-sup condition can be derived by summing (2.2.23) over all triangles of 7T}, but this does
not serve our purpose because this process yields a global approximation operator. However,
if this is performed on a suitable macroelement, then the inf-sup condition is local and its
corresponding approximation operator is quasi-local. Whence the idea of proceeding by
macroelements.

To this end, Q is decomposed into a finite union of macroelements {Oi}f: 1» mutually
distinct, but with possible overlaps:

Q=u~, 0. (2.2.26)

They are obtained by choosing an adequate set of internal vertices {a,-}f:1 of T, and by
taking for O; the union of all triangles of 7}, that share the vertex a;. For instance, (2.2.26)
is satisfied by choosing the set of all internal vertices of Tj. Of course, this choice is not
unique and (2.2.26) still holds while many vertices are deleted. The important features of
this decomposition are as follows:

1. The choice of internal vertices implies that each triangle 7" of O; has at most one side
on 00;;
2. Each O; is connected because €2 is a connected polygon;

3. The regularity of the family 7} implies that the maximum number of triangles 7 in
O, is bounded by a constant L, independent of 7;

4. Each triangle T belongs to at most three macroelements; therefore, the maximum
number of macroelements intersecting a given macroelement is bounded by another
constant Ly, independent of 4.

In order to derive an inf-sup condition on each macroelement, we define spaces analogous
to My, and X, as follows:

My(O) = {Gnlo; Gn € My},
Xn(0)) = {vy € Xu; supp(vy) C Oy},

and spaces analogous to V, and Vj,
Vi(O) = (v, € Xn(0)); Vi € Mu(0y), / gndivvydx = 0},
Oi

VOt = {vy € Xu(Op); Ywy, € Vi(O)), / Vvp, - Vwy dx = 0},
O;

Then the statement of Lemma 2.2.5 is easily extended to a macroelement.
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LEMMA 2.2.6. Assume that the family T}, satisfies (2.1.25) and each triangle T has at most
one edge on 92. Let a; be an interior vertex of Th, L the number of triangles in O;, and let
2 < r < 00 be a number. For each q, € My (O;), there exists vy, € Xp(O;) such that

. N 1 1
/thlVVhdx > C(r, L)||Qh||Lf((:),-)||%||Lr’(o[), ; + ? =1, (2227)
O;
alwiron < llgnlir oy, (2.2.28)

where the constant ¢(r, L) depends on r and L, but is independent of h, i, qn, or vj,.

The choice r = 2 in (2.2.27) and (2.2.28), and the fact that L < L; imply the following local
inf-sup condition, with a constant A* independent of 4 and i

- f(’)' gndivv, dx
Van € Mp(Op), sup ————

> A llgn 20, (2.2.29)
vieXn(O)) Vhla o))

Owing to (2.2.29), we can construct an approximation operator Pj, by correcting I in each
O;. Roughly speaking, Pj, is defined through
Pp(v) = TIp(v) +cn(v), (2.2.30)
where ¢, (v) € X, is constructed so that
Yqn € My, / gndivep(v)dx = / gndiv(v — I, (v)) dx. (2.2.31)
Q Q

We shall see below that because (2.2.17) holds, then (2.2.31) and the constraint on X}, imply
that Py, satisfies (2.1.19). More precisely, we can prove the main result of this paragraph.

THEOREM 2.2.7. Assume that the family Ty, satisfies (2.1.25) and each triangle T has at most
one edge on 0K2. Then there exists an operator Pj € £(H(1) (9)2; Xp) of the form (2.2.30)
satisfying (2.1.19) and

Wy e WS(Q)%, V1 <i <R,

2L (2.2.32)

|Ph(¥) — vlwnao, < Cih; Wiy

for all real numbers 1 < s <3, 1 <r,q < oo, and integers m = 0 or 1, such that
wH(Q) € Wh9(Q),

where Ai is a suitable macroelement with

diam(A;) < Caly; (2.2.33)

the constants Cy and C, are independent of h and R and h; = maxrco,ht.
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ProoF. (1) In order to deal with possible macroelements overlaps, we associate a partition
of  to the set {O;}. To this end, we define A; = Oy, then we take for A, the union of
all elements T that belong to O, but not to A; and by induction, we choose for A; the set
(possibly empty) of all T that belong to O; but not to U};%Aj. By construction, the A; are
mutually disjoint,

Q=U AL AiC O, 1 <i<R

The uniform local inf-sup condition (2.2.29) implies that, for each i, there exists a unique
function ¢y, ; € V(01 solution of

Vi € M, (0, / gndiven dx = / gndivy — T, () dx. (2.2.34)
O; Aj

(Note that ¢j,; = 0 when A; is empty). Then we extend each c¢j,; by zero outside O;, and
we set

R
ch®) = chi.
i=1

By construction, ¢;,(v) € Xp; moreover, the support of ¢j,; and the partitioning of €2 into
{A,-}f:1 imply that ¢, (v) satisfies (2.2.31). Indeed, we have

R R
/ gndive(v) dx = / gn div (Zch,l) dx=Y)" / qndivey,; dx

o o i=1 i=1 g
R R
= Zf% divey,;dx = Z/qh diviv — I (v)) dx
=10, i=1 A,
= /qh div(v — Iy (v)) dx.
Q

(2) The local inf-sup condition (2.2.29) implies that
|
len.ilm o < EHdIV(V —rW)ll2(a))- (2.2.35)

Let 7 denote the unit reference element and ¢; the composition of ¢y ;|7 with the affine
transformation that maps T onto T. Because each &; belongs to a finite-dimensional space,
of dimension bounded by a fixed constant, on which all norms are equivalent, we can write
for any g > 2:

1/q 1/q

~ ~ ~ .2 ~
lenillzooy < €| 32 ITIE g | < T D iy,

TCO; TCO;
1/2
b )L
<CrM Yo el | < €= —lenillop. (2.2.36)
1

TCO;
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where p; = minrco,pr and C denotes contants that are independent of & and i. The third
inequality follows from Jensen’s inequality. If 1 < g < 2, Holder’s inequality and the fact
that O; contains at most L elements give directly

2, 2(1/g—1/2
lenillzaoy < CHY TPl il 2 0,- (2.2.37)

Because ¢p,,; € Hé (0))?2, Poincaré’s inequality (1.1.3) gives
llenill 2, < Cdiam(O)lenilg o) < Chilenilgo;)- (2.2.38)

When substituting (2.2.38) and (2.2.35) into (2.2.36), we derive for any ¢ > 2:

142/ & 1 142/g
len.illao) < C l,o leniluton = 5% lp [div(y — T W) [l 2(a,)» (2.2.39)

1
andif 1 < g < 2,
¢ 2/q 3
lenillaoy < )T*hi ldiv(v — )l z2 (A -

A similar argument, somewhat simpler because there is no need for Poincaré’s inequality,
yields for ¢ > 2:

2/q
len,ilwraop) < I ,lOi Idiv(y — )l 2(a (2.2.40)
and for 1 < ¢ < 2,
: < Chp g n 2241
len,ilwrao;) < P ldiv(v — IIhO) 2 (ap- (2.2.41)

(3) The expression of ¢j, gives
1/q
R
lenlisiop = | [ 13- ensitdx
Oi j=1

But because ¢y, j vanishes outside Oj, the above sum runs over all indices j, such that O;
intersects O;. Let us number these indices from 1 to R; < L3. Thus, the sum on j has at most
L3 terms. Hence,

lq _ 1/g

R;
q
lenllzacon < LS / Yolenjldx | <L Y lleniloonon |
O; i=1 =1

wherea = 1/2if1 <g<2ando =1—1/q, if ¢ > 2. Hence (2.2.39) implies, if g > 2
~ R; hq+2 1/q

C j .
lenlinon = 55 | 2 = g IO — 0Dl ) |
j=1 J
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where the index j is such that O; intersects O;. If 1 < g < 2, we have instead

1/q

~

R.
C : .
lenllzaon < - | DA Idive — TN )
j=1

Therefore, the local quasi-uniformity of 7}, (cf. for instance BERNARDI [1989]) and Jensen’s
inequality if ¢ > 2 or Holder’s inequality if ¢ < 2 yield the following bound:

D .
lenllzaoy < Chi?|divey — RGO TEIRE (2.2.42)

where D; is the union of A; for all j such that O; intersect O;. Similarly, we derive from
(2.2.40):

~2/q—1 4-
lenlwrao, < CHT Idive — L) 2, - (2.2.43)

Then (2.2.32) follows from (2.2.42) or (2.2.43) and (2.2.18) withm = 1 and ¢ = 2.
Of course, if we integrate over 2 instead of O;, we obtain form = 0orm = 1:

lenlwmay < Ch'=m 02470 1div(y — T1,0)) || 2(q) - O

REMARK 2.2.8. Observe that (2.2.18) implies that
dist (supp(I1,(»)), supp(v)) < C3h, (2.2.44)

with a constant C3 that is independent of 4. O

REMARK 2.2.9. Furthermore,
dist (supp(Py(»)), supp(»)) < Cah, (2.2.45)

where the constant C4 is independent of 4. Indeed, if A; U---U A; is the union of all
sets where div(v — I1;(v)) is not identically zero, then the support of cj is contained in
A U---UA,,. Because each macroelement in this union contains at least one element
where div(v — I1;(v)) does not vanish, the distance between the supports of ¢, and div(v —
[T, (v)) is smaller than the largest diameter of the macroelements. Then (2.2.44) and the
assumptions on the macroelements imply (2.2.45). O

The conclusion of this section is analogous to that of the preceding ones: all assumptions
of Hypotheses 2.1.5 and 2.1.10 are satisfied by the spaces Xj,, M}, and Z;, and the resulting
scheme has order two.

THEOREM 2.2.10. Let the family of triangulations Ty, satisfy (2.1.25) and be such that each
triangle T has at most one edge on 0S2. Let (u, p, z) be a solution of Problem (1.4.9), with z €
H3(Q), u € H3(Q)? and p € HX(), satisfying (2.1.56), and let (uy,, pn, z1) be a solution of
(2.1.6)—(2.1.8) with the finite-element spaces (2.2.14)—(2.2.16). Then, there exists a constant
C, independent of h, such that

lz = znll2@) + 1w — wnlgr @) + P — Pall2g) < Ch.
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2.3. Centered schemes: Successive approximations

Let us revert to the general situation of Section 2.1, with the same assumptions. The nonlin-
ear discrete scheme (2.1.6)—(2.1.8) cannot be implemented as such, but is easily linearized
by successive approximations. In this section, we present one of these algorithms studied
in GIRAULT and ScotT [2002a]. Starting from an arbitrary z2 in Zj, we define the sequence

(u}y, Py 23) € Xn X My x Zj for n > 1, knowing z;l’_l, by

Yvi € Xn, v(Vul, Vo) + @' <, vi) = (ph, diven) = (f.va), (2.3.1)
Yan € My, (qn, divuy) =0, (2.3.2)
YOy, € Zp, v(z},, 0n) + o E(uj; 23y, 0p) = v(curluy, 6) + o (curl f, 6;). (2.3.3)

Clearly, given zZ_l , (2.3.1)~(2.3.2) has a unique solution (u}, p}); in fact, with the notation
of Proposition 2.1.3, uj, = vh(zzfl) and pj = qn (zZil). Similarly, knowing u}, (2.3.3) has a
unique solution ZZ~ In both cases, this is valid without restriction on the data. The next lemma
shows that this sequence satisfies the same bounds as each solution of (2.1.6)—(2.1.8). The

proof is the same as that of Proposition 2.1.3 and the beginning of Theorem 2.1.4.

LemMmaA 2.3.1. Assume that (2.1.1) holds. Then for all v >0 and o > 0, for all f €
H(curl, Q) and all starting functions zg € Zy, the solution (uj, py, z;,) of (2.3.1)~(2.3.3) is
bounded as follows:

$2

|u2|1-11(g) =< TIIfIILz(g), (2.3.4)
S» o

”ZZ”LZ(Q) = 7||f||L2(Q) + ;||Cur1f||L2(Q), (2.3.5)
1

Pl = 55 (S0l + Sl @l14le@) (2.3.6)

Without restriction on the data, these bounds imply convergence, but only up to subse-
quences, and hence not necessarily to a solution of (2.1.6)—(2.1.8). Convergence to a solution
can be obtained by restricting the data and the solution, so that problem (1.4.9) has a unique
solution, but it is more easily derived by introducing the “fixed point algorithm” of the next
subsection.

2.3.1. A “fixed point algorithm”

Let us adapt (2.3.1)—(2.3.3) to Problem (1.4.9): Starting from an arbitrary smooth enough 20
and knowing 21 find @, p", 7)) in V x L%(Q) x L2(2) for n > 1, solution of

VAU + 7 xu"+ VP =f inQ,
dive" =0 inQ,
u"=0 ond<,

v'+au -V =vcurlu" +acurl f inQ.

(2.3.7)
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Clearly, (1", p", 7*) satisfies the same uniform bounds as any solution (u, p, z) of Problem
(1.4.9):

AY)
" |1 @) < 7||f||L2(sz),
" So o
12l 200) < 7||f||L2(Q) + ;llcurlflle(Q), (2.3.8)

1
17" i2) = 5 (21 ) + Sl )1 2@ )

Moreover, by assuming that the solution of (1.4.9) is sufficiently smooth and the data suffi-
ciently small, so that condition (2.1.48) that guarantees uniqueness holds, we can prove that
the fixed point algorithm (2.3.7) is contracting.

THEOREM 2.3.2. We retain the assumptions and notation of Theorem 1.4.14, and we sup-

pose in addition that the data are sufficiently small so that the following variant of (2.1.48)
holds:

1
0:=—|u
vll 4@

S2
X (S4 + O[COOC1|Z|H](Q) (1 + ])7‘; (SZH-f”LZ(Q) +a||cur1f||L2(Q))>) < 1,

(2.3.9)

where C| is the continuity constant of Theorem 1.1.6 and Co, the constant of (1.4.25). Then,
foranyn > 1,

2" = zll 2@ < ol - zllr2 - (2.3.10)

PrOOF. By observing that (" —u, p" — p) = (2" 1), g(z"~")) with f = — ("1 —2) x
u,li.e.,

VAV Y+ xv@ Y+ V@ = - —2) xu, (2.3.11)
we obtain first
n S4 n—1
" — u|H1(Q) =< 7||"||L4(Q) Iz —Z“LZ(Q)s (2.3.12)
and next, by applying (2.1.30):
" — ullz(@) < CooC1K1 & Dllull sl ™" = zll2(0- (2.3.13)
Let ¢" = 7" — z; then ¢" solves the transport equation:

v"+toau" V" =veurlv@ ) —av@ ) Vg, (2.3.14)
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and the above assumptions are such that v(z"~!) - V z belongs to L2(£2). Therefore,
n n—1 a n—1
182 = @ @) + ;”V(Z )||L°O(Q)|Z|H1(Q)s
and (2.3.10) follows by substituting (2.3.12), (2.3.13), (1.4.23), and (2.3.8) into this
inequality. O

As far as the pressure is concerned, p” — p satisfies

S _ -
Ip" = P2y < F(”Zn 2oy 8" = sy + 17" = 2l 200y Il oy )
(2.3.15)

Therefore, Theorem 2.3.2 yields the following strong convergences for the whole sequences
to the unique solution (u, p, z) of (1.4.9):

lim u" = u strongly in H(% Q)2
n—o00

lim p" = p strongly in L*(R2), (2.3.16)

n—oo
lim " = z strongly in L*(S2).
n— o0
It also leads to the next two corollaries.

COROLLARY 2.3.3.  Under the assumptions of Theorem 2.3.2, the whole sequences (u", p™)
converge strongly to (u, p) in H2(Q)? x H(Q).

We skip the proof because it is a straightforward application of (2.3.11), (2.1.30), and
(2.1.31).

COROLLARY 2.3.4. In addition to the hypotheses of Theorem 2.3.2, we suppose that 7°
is chosen in H'(Q) and Z2 = Ry (2%). Then for each n > 1, the whole sequences in h,
(uy, py, z;) converge strongly to ", p", 7"):
%im u; =u" strongly in Hé(Q)z,
—0
;}irr%)pz =p" strongly in L*(R),

lim z; = 2" strongly in LX().
h—0

ProoOF. We argue by induction. Assume that for some n > 1, the whole sequence in 4, zZ_l

satisfies

girrz)z;'l_l =""! strongly in L*().
-,

By assumption, this is true for n = 1. Proceeding as in Section 2.1.1, the uniform esti-
mates (2.3.8) imply that there exist functions u" € V, p" € L%(Q), and 7" € L*(Q) such
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that, up to subsequences, as h tends to zero, (uy,p},z;) tend to (u",p",7") weakly in
HY(Q)? x L2(Q) x L*(). Passing to the limit in (2.3.1)—(2.3.2), and using the induction
hypothesis, we see that the limit functions (", p”, z*~!) solve the first two equations in
(2.3.7). Moreover, the convergence of uj, is strong in H 1()?, and that of pj, is strong in
L%(2). The strong convergence of uy, permits to pass to the limit in (2.3.3) and show that
(u", Z") solve the last row of (2.3.7). In addition, the convergence of zj is strong in 12(Q).
As (2.3.7) has a unique solution (given 7', the whole sequences (uj, pf, z;) converge.
Hence, zj; satisfies the induction hypothesis. O

Corollary 2.3.4 neither addresses uniformity of the convergence with respect to n, nor
gives a rate of convergence. Therefore, when combined with Theorem 2.3.2, it implies con-
vergence for & depending on n. For instance, it guarantees that for each ¢ > 0, there exists
an integer no > 1 and a positive number /g depending on ng, such that for all 7 < hg

|"20 —ulgq + ||PZO =Dl + ||ZZ0 =zl <&
A rate of convergence can be derived, but requires additional uniform bounds. They are
obtained when the solution of (1.4.9) is sufficiently smooth, by applying to v(z"~!) and ¢",
(2.1.30)—(2.1.31), and the results of Proposition 1.4.13, and Theorem 1.4.14. However, the
assumptions below on z cannot be checked on the data in a domain with corners.

COROLLARY 2.3.5. Let Q2 be a convex polygon, let ry be the constant of Proposition 1.4.11,
let r belong to 12, ro], and let 20 e W2(Q), z € WE'(Q), and suppose that u satisfies
(1.4.30). Then, under the assumptions of Theorem 2.3.2, there exists an integer ng > 2 such
that for all n > ng, the function " = 7" — z belongs to W' () and there exists a constant
C, independent of n, such that

Vi = no, [¢"lyirg) < C (n:"*znwm + ||¢"*1||Lz(g>). (2.3.17)

ProOF. Recall that u" — u = v(z"!) defined by (2.3.11). First, let us derive a bound for
v(Z* 1) in W27 (Q)? for some r > 2. This requires an L” bound for both 7 x oy h
and ¢"~! x u. As we are only interested in r slightly larger than two, we can assume that
2 <ryg<4.For2 <r <rp, (2.1.30) and (2.3.8) imply the following bound for vz :

W@ Dlwirg < Ki@ Dllulpolle™ iz < el iz (2.3.18)

where all constants ¢; are independent of n. Then owing to (2.3.18) and (2.3.13), the right-
hand side of (2.3.14) is bounded in L":

lveurlv@™h —av@™h - Vil < veld" ee
+acslzlyrro 8" iz < calld" iz
As a consequence, (1.3.25) yields that ¢” belongs to L"(€2) and

C4 _
1" @) = 12" 2 (2.3.19)
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We also have

12"l @) < cs.

n—1

This implies that "' xuandz x ("1 are bounded in L':

1 C4 -2 -2
Ie" ! xullr@ < @l 2lag < cle" g,

n—1

127! x v@ D@ < eslv@ Dl < alle" izg-

Therefore, the convexity of Q and Theorem 1.1.9 imply that v(z*~') belongs to W>"(2)2,
gz 1) = p" — p belongs to W7 (), and

P Dy + 1@ D@ = e (18l + 18 ). 2320
Next, (2.3.18) and (2.3.20) imply
lveurlv(@"™ ) —avh) - Vilyirg) < (||§”72||L2(Q) + et IILz(Q))

x (veg + coll V zllwirg))- (2321

Finally, since the assumptions of Theorem 2.3.2 are satisfied, the right-hand side of (2.3.20)
tends to zero and hence, for each ¢ > 0, there exists an integer ng > 2 such that for all
n = no,

v <e
» Z Wl.r(Q) < €.

The desired result follows by choosing ¢ = %, where § is the constant of (1.4.30), and by
applying Theorem 1.4.14 to (2.3.14). O

2.3.2. Successive approximations: Rate of convergence

For fixed n, (2.3.1)—(2.3.3) is a straightforward discretization of (2.3.7), and by virtue of
Theorem 2.3.2, it suffices to estimate u}, — u", p; — p" and zj, — z". This is derived through
the approach of Section 2.1.4. First, we have the analogs of (2.1.51) and (2.1.52):

Sy - -1
" —u gy < 206" — P q) + jllu” el =2 iz

Sq 1
+ g ey I = Pa@ sy + 1" = mn(P ). (23.22)
1 1
Ip" —PZ”H(Q) = <1 + E) Ip" — rh(p")||Lz(Q) + ? (V |u" — Ph(un)|H|(Q)

_ —1 _
84 (Il 12" = 2 gy + 12 N2 0" = #lsg) ). 23.23)
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Next, we have the analog of (2.1.54)
" — ZZ“LZ(Q) <2|" - Rh(Zn)||L2(Q) + |u" — uZ|H1(Q)

ﬁ no_gn n o n__ n
+v<”” o Ry + 1 @)l = Ri@lney (530

1
+§|un - uZ|1—11(Q)||Rh(Z")||L°°(Q)>,

where ri* = % — % Then, we have the following error theorem.

THEOREM 2.3.6. We retain the assumptions and notation of Corollary 2.3.5 and we suppose
that n > ng, with ng defined in Corollary 2.3.5. If the data are restricted so that

S4 o " 1 n
s (145 (SRt + 5 IR ) ) <5, (2.3.25)

where 0 < § < 1 is independent of h and n, then for all integer k > 0,

no+k _

+h
llz ' e

< C1 (llz = Ra@) g () + 1 = Pa@)| g1 @) + IP = ra(P)llr2(g)) (2.3.26)

+ 852071 — 07N ) + C20™ 2 max (65, 89)12° — zll 2 ().
with constants C1 and C; independent of h and k, and where 0 is defined by (2.3.9).
PRrROOF. By substituting (2.3.22) into (2.3.24) and using (2.3.25), we easily derive
12" = 2l 2@y < 811" = 7 ) + 212" = Ra@)l 2
o
+ ;||un||L°°(Q)|Zn = Rin(@) g1
o n 1 n
+ 1+ > Sre | Rn(Z) lwir @y + 5||Rh(Z Mz ()

S -
S (2 lu" — Ph(u")|H1(Q) + THZ" 1||L2(Q)||"n - Ph(un)||L4(Q)

1
+;||P" - rh(Pn)||L2(Q)>'
First, we have

|Rh(Zn)|W1,r(Q) < C1|Zn|ler(Q)» ||Rh(Z”)||L°°(Q) < Cz||Zn||W1-r(Q),

where all constants ¢; are independent of n. Next,

-1
lu" o) < c3, 12" N2 < ca-
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Therefore,
1=zl < 812" =24 2
+es5 (1" — Ruy(Z)l g1 ) + 4" — Pr@™) g1y + IP" — ”h(Pn)||L2(Q))
<8127 = 4 2
+cs5(llz — Ri@ g (o) + lu — Pr@)| g o) + lIp — ’”h(P)”LZ(Q))
+ cslz — (g + crh (I — w20y + 1P — Pl (q))-
With (2.3.10), (2.3.17), and (2.3.20), this becomes for all n > nq:
1" =zl 2@y < 812" = 24 Mz
+¢5 (llz = Ru@ g1 ) + 1 — Pr@) g1 q) + lp — ra(p)llz2 o)) (2.3.27)
+ 80" 2Nz — 2l 2y
An easy induction yields for all integers k > 0:

k no+k
[lz"0F —Zho ||L2(gz)

k
<cs (Z 8') (Il = Ru (@l 71 ey + 12t = Pa@ g1y + 0 = ri (Pl 2(0)
i=0

k
+ 6k+1 ”Zno_1 - ZZO_I ”LZ(Q) + CS@”O_Z <Z 8i9k_i> ”ZO - Z”LZ(Q).
i=0
Considering that both 6 and § belong to ]0, 1[, this implies (2.3.26). O

REMARK 2.3.7. Owing to the stability of R, and Corollary 2.3.5, the left-hand side of
(2.3.25) is bounded uniformly with respect to z and n:

S4 o n 1 n
7”" iz | 1+ ” SR (Z) lwir @ + EHRh(Z Mz )

2

AYRY) o 1

4

< UT”f”LZ(Q) (1 +5 <Sr*Cl|Zn|W1v’(Q) + 502||Z"||W11r(9)>>
525, o 1 20

= 7‘)2 ||f||L2(Q) 1+ ; Sr*CI|Z|W1,r(Q) + 502||Z||W1.r(g) + 30"z — Z”LZ(Q) ,

with constants independent of 4 and n. All quantities appearing in the right-hand side of this
last relation are bounded in terms of the data. O

REMARK 2.3.8. Because ny is fixed and ZZ is bounded in L2, the terms in the right-hand side
of (2.3.26), second row, tend uniformly and geometrically to zero as k tends to infinity. The
terms in the first row represent the standard approximation error of the discrete spaces of
(2.1.6)—(2.1.8). O
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2.4. Upwind schemes

Knowing zj;, computing the solution of (2.1.6)—(2.1.7) is time consuming, because it is a
system coupled by a constraint, and its matrix is not definite. Many techniques have been
devised to deal with this difficulty, which is inherent to the Stokes problem, and is now well-
documented. There is no space here to list all the references on the subject; for instance,
the reader can refer to BREZZI and FORTIN [1991], ERN and GUERMOND [2004], GIRAULT
and RAVIART [1986], or the very complete work of GLowiNskI [2003]. As it involves no
constraint, computing the solution of (2.1.8) is comparatively faster, but experiments show
that the accuracy of this solution may be disappointing. This is because of the hyperbolic
character of the transport equation (1.4.8); we have already pointed out the great imbal-
ance between the regularity assumption for z and that for u#, when deriving error estimates.
Upwinding techniques have been introduced many years ago in order to reduce this imbal-
ance and enhance convergence in approximating transport equations. There are several
upwinding methods; we cannot describe them all and we present two methods: upwinding
by streamline diffusion and upwinding by Lesaint—Raviart’s discontinuous Galerkin method.

2.4.1. Upwinding by streamline diffusion

The technique of streamline diffusion was first introduced by HUGUES [1978] and studied
by JOHNSON, NAVERT, and PITKARANTA [1985] (cf. also JoHNSON [1987], and PIRONNEAU
[1989]). It consists in adding a suitable transport term to the test function. On one hand,
it allows to derive an estimate for ~/uy, - V zj,, which cannot be obtained with a centered
scheme, and on the other hand, it enhances convergence. As (2.1.6)—(2.1.7) are unchanged,
the analysis of this upwind scheme uses several results established in the preceding sections,
and therefore, we shall only sketch most of the proofs. Details can be found in GIRAULT and
Scott [2002a].

As previously, 2 is a connected polygon. We retain the notation and assumptions of
Section 2.1, and we discretize Problem (1.4.9) by: Find (up, py, z) in X x My, x Zj, solu-
tion of

Yy, € Xp, vV up, Vvp) + @n X up, vi) — (pr, divey) = (f, vp),
Van € My, (qn, divuy) =0,
YO, € Zp, v(zp, Oh +hup - Vo) + o (up -V, 0+ huy - Vo)

1
Tt hv) ((divup)zp, Op) (2.4.1)
= v(curluy, Oy + huy - V6p) 4+ a (curl f, 6, + huy, - V 6y),

where z;, = (0, 0, z,). The first two equations coincide with (2.1.6)—(2.1.7) and the last equa-
tion is obtained by testing a discrete version of (1.4.8) with 6, 4+ huy, - V 6), and stabilizing
it with the consistent term in the second row. The factor 4 multiplying uj, - V ), can first be
chosen arbitrarily (positive), but the value # is required to establish satisfactory error bounds.

Streamline diffusion: Convergence
The discrete problem (2.1.6), (2.1.7), (2.4.1) satisfies Proposition 2.1.3 and the analog of
Theorem 2.1.4. More precisely, we have the following result.
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THEOREM 2.4.1. Assume that (2.1.1) holds. Then for all v > 0, a > 0, and for all f in
H(curl, Q), the discrete problem (2.1.6), (2.1.7), (2.4.1) has at least one solution (uy, py) €
Vi X My, zi, € Zy, and each solution satisfies the a priori estimates (2.1.14), (2.1.15):

Ay
nl g < 7||f||L2(Q),
1
Pl < 5 (82171202 + Shealir o N2l

and
2
2 h 2 25 (22712 2 flcurl £12 242
% ”Zh”LZ(Q) +o ”uh : Vzh”LZ(Q) =< h Qv ”f”LZ(Q) + v ||cur f”LZ(Q) B ( Bt )

where Sy, = a + v h.

ProoF. The a priori estimates (2.1.14)—(2.1.15) are the same as in Proposition 2.1.3. The
estimate (2.4.2) is an easy consequence of (2.1.4)—(2.1.5), and repeated applications of
Young’s inequality. Existence of a solution then follows from Brouwer’s Fixed Point Theo-
rem as in the proof of Theorem 2.1.4. O

REMARK 2.4.2. Note that, in contrast to (2.1.16), (2.4.2) does not allow « to tend to zero.
O
Then, we have the following analog of Theorem 2.1.9.

THEOREM 2.4.3. Under the assumptions of Theorem 2.1.9, there exists a subsequence of h
(still denoted by h) and a solution (u,p,z) € V x L%(Q) x L2(RQ) of Problem (1.4.9) such
that

lim ||z — zll;2(q) = 0.
1'1,”0” | . 2.4.3)
hl_f)% Ph —Plirzi) =Y

lim vVh|uy - V =0.
Jim lwn -V znll 12

ProoF. The uniform bounds of Theorem 2.4.1 allow us to prove that (a subsequence of) the
sequences Uy, pn, Zn, and «/ﬁuh - V zj, converge weakly tou in V, top in Lg(Q), to zin LZ(Q),
and to some function w in L?(£2), respectively, as 4 tends to zero. As in Proposition 2.1.6,
the triple (u, p, z) satisfies (1.4.6). Similarly, as in Proposition 2.1.7, the convergence of uy,
holds strongly:

Furthermore, (2.4.2) shows that

lim A |juy, - Vz =0.
Jim, llun nllz2@)
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With these two strong convergences, the argument of Proposition 2.1.8 allows us to pass to
the limit in (2.4.1) and prove that (u, p, z) is indeed a solution of Problem (1.4.9).

To establish the strong convergence of z; and v/h(uy, - V z;), we take the difference
between (2.4.1) with test function z; and (1.4.8) tested against z;, + huy - V zj:

vliznllFa i + @ hllun -V znlf g, = v 2+ huy -V z)
+oa-Vz,zp+huy- V) +vicurtl(uy, —u), zp + hup - Vzp).

By passing to the limit, this gives

. 2 2 _ 2
lim (vizalZ2 g + el V2l g, ) = vizlg)-

2

129 thus implying first that

Hence limy,— VIIZhIIiz(Q) = vzl

lim ||zall ;2 = lzll2¢q)
P, llznll () llzllz ()
owing to the lower semicontinuity of the norm for the weak topology, and next

lim o Al - V z4ll 2y = 0.
h—0

Finally, the strong convergence of pj, is established as in Theorem 2.1.9. O

Streamline diffusion: Error estimates
As far as uj, and pj, are concerned, all results of Sections 2.1.1 and 2.1.2, carry over here, as
well as the statement of Lemma 2.1.19, namely (2.1.51) and (2.1.52)

Sa
lu — uplpq) < 2u — Ph(")|H1(Q) + 7””||L4(Q)”Z = znll2(@)
Sq 1
+ Izl e = Ph@)lisg) + Sl = (P2 g

1 1
lp = prll2g < (1 =+ E) lp = (P2 + ﬁ (V lu — Pr@) | )
+84 (||"||L4(Q) lz— Zh”LZ(Q) + ||Zh||L2(§z) flu — uh”ﬁ(g))),

where B8* is the constant of (2.1.1).

Of course, the treatment of z — z; differs, but an error inequality is more easily derived
from the upwinded transport equation (2.4.1) than from (2.1.8), because its structure yields
directly an upper bound for v/ huy, - V(zj, — Ay), with any choice of A;,. Furthermore, the
factor h is chosen so as to enhance convergence. The next result is established under the
hypotheses of Corollary 2.1.21.

THEOREM 2.4.4. Let Q2 be convex, (u, p, z) a solution of Problem (1.4.9), ro the number of
Proposition 1.4.11, and let the assumptions of Theorem 1.4.14 hold, so that 7 € W'"(),
Sfor some real number r in 12, ro[. Let (up, pn, zn) be any solution of (2.1.6), (2.1.7), (2.4.1).



SECTION 2.4 Discretizing the Steady Split No-Slip Problem 69

Then, we have the following estimate for z, — Ap, for any Ay, in Z:

2 an — Anl2 +°‘—h||u V(zn = )Py < 200k Ul oo |z — Anl?
2 Zh h L2(Q) 2 h Zh h L2(Q) = o h L>®(R2) < hHl(Q)

V2 o 2 o 2
+2(3v 20—+ ) I Ml g + @ (3; +20) @ =) - Vit
3 0(2 2 . 2 O[2 . 2
+ Z (7 +v h ) ||le(u - uh))"h”LZ(Q) + 6 THle(u - uh)(}"h - Z)”LZ(Q)
v v 2
+3 (3 +8h 5) =l (2.4.4)

ProoF. By taking the difference between (2.4.1) and (1.4.8) tested against 6, + huy, - V 6,
inserting Aj, and choosing 6, = z; — Aj, we obtain

vlizh = Anlla g + @l llug - V@n = )2 g,
=—v(Ap—2,2n — A+ hup - V(zp — Ap))
—ap -V —2), 20 — Ap+ hup - V(zg — Ap))
— o((@h —w) - V2,25 — ki + hu - V@ — Ay)) 24.5)

1
- E(a + v h)(div@, — w)rp, zn — M)
+ v(curl(up, —u), z, — Ap + huy - V(zi, — Ap)).

The estimates for all terms in the right-hand side of (2.4.5) are standard except for the second
term because it involves the gradient of A;, — z, whose upper bound requires more regularity.
Applying Green’s formula, we have

—a(p - V(i —2), 20 — Ap) = a@p - V(zp — Ap), Ay — 2)
+ a(divu, —u)(zp — rp), Ay — 2).

Thus, forany y > O and ¢ > 0,
vir wl < 2| h Yz — a2 L ian =22
|a(uh : ( h — Z)7 h — h)' = E V”"h : (Zh - h)”LZ(Q) + W” h — Z”LZ(Q)
1 2 Olz . 2
+ 5 V5||Zh - )"/1”L2(Q) + ;”dlv(uh - u)()"h - Z)“LZ(Q) .

Therefore, for any ¢ > 0,y > 0,and ¢ > O,
loe(p-V(An — 2), 20 — M+ By - V(2p — Ap))|

o 2 1 2
<= hy””h . V(Zh - kh)”l}(ﬂ) + E”)‘h - Z”LZ(Q)

| , o ) (2.4.6)
+ E v ‘9||Zh - )"h”LZ(Q) + TEHdIV("h - u)()"h - Z)”LZ(Q)

ha 2 1 2 2
+ 7 {”llh : V(Zh - )‘h)”LZ(Q) + E”uh”LOO(Q)p‘h - Z|H1(Q) .
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Then (2.4.4) follows readily by substituting (2.4.6) into (2.4.5), and by repeated applications
of Young’s inequality. O

The choice A, = Ry(z) in (2.4.4), Holder’s inequality in the nonlinear products, and the
stability properties of R;, give the next result.

COROLLARY 2.4.5. With the assumptions and notation of Theorem 2.4.4, and if Hypothe-
ses 2.1.5 hold, zj, satisfies the following error estimate

2 llzn — 212 +"‘h|| V(2 — Ri@) 12, < 20 h lupllooolz — Ru@)I2
7 It = 22y ™ 5 M- VA = Bal)lp2 gy = <@ iRl @) 12 = KnDlg )

5 13 2h”2 a R (2
+ (Zv‘i_ ;"—E)“Z_ h(Z)”LZ(Q)

3a
+ |u — uh|?_11(Q) <|Z|%’Vl”(ﬂ) (O[ S%* <T + 2h>
23 (Xz 2 v )
H A+ C)T 9 vk +*(3+8hf) : (2.4.7)
4 v 2 o
where C, is the stability constant of Ry, in W' ().

Because €2 is convex, by slightly restricting the mesh as in Remark 2.1.17, (see (2.1.45)),
we have uj, uniformly bounded in L°°. Then by substituting (2.1.51):

S4
lu —unlg @) < 2lu — Pr@)lg (g + 7””“L4(Q)”Z = Znll2 )
S4 1
+ el e = Pl ) + S lp = m(P)l2@)

into (2.4.7), we derive the following error bound for small enough data and smooth enough
solutions, if the hypotheses of Theorem 2.4.4 and (2.1.45) hold (for simplicity, we do not
detail the constants):

1

v”Zh_Z”iZ(Q) +ah ”uh : V(Zh - Z)”i2(9) <C (h

Iz = Ri@72
(2.4.8)

+ Iz = Ru@ I ) + 1 = Pr@f g, + P — rh(p)niz(m).

This upwind scheme can be used with the three examples of Section 2.2. It has the same
order as the centered scheme of Section 2.1, but its error estimates are of particular inter-
est when the regularity of z is small. For example, if z € W!"(£2), then the mini-element
produces an error of the order of \/E, whereas we cannot establish any order of conver-
gence for the centered scheme. Finally, the discrete solution can also be computed with the
successive approximation algorithm discussed in Section 2.3.

2.4.2. Upwinding by Lesaint—Raviart’s Discontinuous Galerkin

The upwind Discontinuous Galerkin scheme analyzed in this section works in each element
with polynomial functions for z; that are totally discontinuous across element interfaces.
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The upwinding in the term uj, - V 7, is achieved by using in each element only the values of
uy, entering the element. This scheme was first introduced in a 1973 Los Alamos Report on
neutron transport by REED and HiLL (cf. [1973]) and it was first analyzed in this context by
LesaINT and RaviART [1974]. Since then, it has been widely used, adapted to a variety of
situations, and generalized. The relevant list of references is far too long to be included here.
As a few examples, the reader can refer to GIRAULT and RAVIART [1982, 1986], PIRONNEAU
[1989], or GIRAULT, RIVIERE and WHEELER [2004] for an application of this scheme to
steady, incompressible Navier—Stokes equations, to DAWSON, SUN and WHEELER [2004]
for applying it to coupled flow and transport, or to BREzz1, MARINI and SULI [2004] for
an interesting generalization of this scheme. The material presented here is taken from the
work of GIRAULT and ScoTT [2002c]; see also the reference by AMARA, BERNARDI, GIRAULT
and HecHT [2005], where a variant of this Discontinuous Galerkin method is applied to a
regularized version of (2.1.6)—(2.4.13) below.

The consequence of the above-mentioned discontinuity is that the discrete space Z, must
consist of globally L? functions, whereas the discrete spaces for the velocity and pressure,
X, and My, can be chosen as in the previous sections. Thus, we discretize z in a finite-
dimensional space Z;, C L2(€), such as

Zp = {6 € LX(Q); YT € Th, Ohlr € Py}, (2.4.9)

where k > 1 is an integer. Although the functions of Z; are discontinuous, we shall use
(except in one instance) a continuous approximation operator of z. Then, the third assump-
tion of Hypothesis 2.1.5 is satisfied if we choose for R;, the GIRAULT and LioNs [2001b]
variant of the SCOTT and ZHANG [1990] regularization operator, the CLEMENT [1975] oper-
ator, or the BERNARDI and GIRAULT [1998] operator. This choice of R satisfies for any
numberr > 1,form=0,1,and 0 < s <k,

Vo € WHL(Q), [Ru(©) — Olwmrie) < CHT0] s - (2.4.10)

First, let us recall how upwinding can be achieved by this Discontinuous Galerkin
approximation. Let u;, be a discrete velocity in H(]) (2)2, and for each triangle 7', let

oT_ = {x € 0T; up(x) -nr(x) < 0}, (24.11)

where n7 denotes the unit normal to 97, exterior to 7. This is the portion of a7, where
the flux driven by uy, enters 7. Note that, when running over all triangles T of Tj, 07—
only involves interior segments of J), because uj, - nT = 0 on 2. Then, we approximate the
nonlinear term (u - V z, 8) by

CTENDEDS / - V 23)6p dx + / jun -zl (@ — 256" ds
TeTy T

aT_

1
+ 3 / (div uy)zp6p dx, (2.4.12)
Q
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where the superscript int (resp. ext) refers to the trace on the segments of 97 of the function
taken inside (resp. outside) 7. When uy, is replacedbyu € Vand z, by z € H (), this form
is a consistent approximation of (u - V z, 6). Note also that when summing over all trian-
gles, 07— is counted exactly once because u;, - ny changes sign across adjacent elements.
Rather, in the above sum, the boundary integrations are taken once over complete interior
segments. With this form, the upwind scheme reads: Find uj, in X}, pj, in M}, and zj, in Z,
satisfying (2.1.6)—(2.1.7):

Yvy € Xp, v(Vup, Vvp) + @n X up, vi) — (pr, divey) = (f, vp),
Yan € My, (qn, divuy) =0,

and
Yoy, € Zy, v(zn, 6p) + aEDG(uh; Zn, Op) = v(curluy, 6p) + o (curl £, 6;). (2.4.13)

REMARK 2.4.6. The possibility that z; be constant in each element of the triangulation is
not considered here, but the subsequent analysis can readily be adapted to this space coupled
with the mini-element or the Bernardi—-Raugel element. The error of the resulting scheme is
of the order of h!/2. O

Some properties of form ¢°8

The upwinding effect of @0 is made clearer by expressing it in the following form. Let FZ
denote the set of interior segments of J. A unit normal vector n, can be assigned to each
segment e of FZ by numbering the triangles of T, say from 1 to Ny, and by setting n, = nr,
the unit normal to e directed outside T if e is adjacent to Ty and T, with k < £. Then, we
define formally the jump of a function ¢ through e in the direction of n, by

[(p]e = (§0|Tk - (p|T[) |e~ (2414)
Next, let
e_ ={xece;upx) -n.(x) <0}, ex ={x €e; upx) - -n.(x) > 0},

and note that by reversing the orientation of the normal, e is changed into e_. Then, with
the above notation,

> f i - 7l — 256, ds
TeTny_

= - Z /(uh ne)[zp)0hlT, ds + /(uh - ne)[zp]0h| T, ds
et

eel"fl e_
Set

Ona = Onlt, ifup -n, <0, Opqg=0ifu,-n, =0, Opqg=064l7, ifu,-n, > 0.
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Then

Z lup - nr|(Z™ — 2o ds = — Z /(uh - 1¢)[zn]eOn,qds. (2.4.15)
TeTnyr eell ¢

In spite of its representation, form 7O defined by (2.4.12) is not trilinear because its
dependence on the first argument uy, is highly nonlinear. Nevertheless, it satisfies the follow-
ing valuable identity established by LESAINT and RAVIART [1974]. We reproduce its proof
for the reader’s convenience.

LEMMA 2.4.7. For all uy, in Xy, for all zj and 0y, in Zj,, we have

DS s 7, 6n) = Z — /(uh -V Op)zpdx
TeTy T

‘ 1
+ / lup - nr| (65X — 6,/ ds -3 / (div up)6pzn dx.
Q

AT
(2.4.16)
PrOOF. An application of Green’s formula in each T gives the following equation:
> /(uh -V ap)opdx = — ) / (- V Op) + (divuy)6y) 7 dx
TeTh T TeTy
+y f (wp - nr) @u0n) |7 ds.
TE‘J';,BT
When substituted into (2.4.12), we obtain
~] .
PC w2, 0p) = — Z / <uh -V o+ E(le uh)9h> zpdx
TeTy T
- Z / (un 'nT)(Zihm — Z;Xt)elilm ds (2.4.17)

TE‘Th(aT),

+ Y | @n - nr) @)l ds.
TEﬂThaT

Let e belong to F,’;, let 71 and T, denote the two elements of Jj adjacent to e, and set

n, = n,. The last term in (2.4.17) reads

> /(uh ) @o)lrds =) f(uh - ne)[znBh]eds,

TG‘J’/,aT eEF;., e
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and by substituting into (2.4.17), we derive

DS @y zn, 0p) = Z/(uh Voh+ = (dlvuh)9h> zpdx

TeTy
r (2.4.18)

-> / (wp - nr) (@t — 2796, ds + Z/(uh-ne)[ZhGh]ed&

TeThoTy_ eell e

Let us compare the two terms in the second row of (2.4.18). With the above notation, the
contribution of e to the first term of this row is

_/(uh -ne)[znleOnl T ds — /(uh -ne)[zn)eOnlT, ds.

The contribution of e to the second term is

= /(uh “ne) ((znbn)|r, — (2101, )ds + /("h “ne) ((znbn)r, — (zn0n)|1, )ds

Thus A + B has the expression

A+B= /(uh 1) [0n]eznlT,ds + f(uh 1) [OnleznlT, ds.

e_ ey
Butn, = n7, = —n7, and by reversing the orientation of the normal, e is changed into e_.
Hence,
-y / (wp - )@t — 96" ds+ ) / (@ - 1) [znOn]eds
TGTh(a]")f eEFh e
(2.4.19)
— Z (uh nT)(th QCX[)ZBXt
TE{I”(E)T),
Then, (2.4.16) follows by substituting (2.4.19) into (2.4.18). O
Note that when 6, is in H! (), (2.4.16) reduces to
~ 1 .
S sz, 6) = — / (n - V )z dx — - / (div up)Opzy, dx. (2.4.20)

By summing (2.4.12) and (2.4.16) with 6, = z, € Zj, we derive the positivity of ZPC for
all u, € Xy, and all z;, € Zj,:

DG w2, ) = / lup - nr| (N — ZiM)2ds. (2.4.21)
TGTth
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Existence of solutions and convergence

Again, as (2.1.6) and (2.1.7) are unchanged, problems (2.1.6), (2.1.7), (2.4.13) satisfy Propo-
sition 2.1.3 and the analog of Theorem 2.1.4. The proof is skipped because it is a straight-
forward consequence of (2.4.21) and Brouwer’s Fixed Point Theorem.

PRrROPOSITION 2.4.8.  Assume that (2.1.1) holds. Then for all v > 0, o > 0, and for all f in
H(curl, 2), the discrete problem (2.1.6), (2.1.7), (2.4.13) has at least one solution (uy, py) €
Vi x My, zi, € Zp, and each solution satisfies the a priori estimates (2.1.14)—(2.1.15):

S>
lunl g (o) < 7||f||L2(Q),

1
il = 5z (S0 e + Sunlmn Inlze)

and

2 int2
v||Zh||L2(Q)+O{JZI: / -l — 22
o (2.4.22)

2
< = (SBUS122 gy + Pleu £l g, ).

REMARK 2.4.9. By comparing with Remark 2.4.2, we see that the upwinding in (2.4.13)
does not have the drawback of (2.4.1), in the sense that (2.4.22) allows « to tend to zero. On
the other hand, discontinuous functions involve more degrees of freedom. O

Extracting subsequences (that we still denote by the index #), the uniform a priori
estimates of Proposition 2.4.8 show that, on one hand, (uy, pj, zn) converge weakly to
functions (u, p,z) in V x L%(Q) x L?(£2), and on the other hand, the quantity defined by
Y oreq, Jor lun-nr|(Z* — zZi")2ds converges to a non-negative number, say S. The next
theorem proves that this convergence is strong and the limit functions solve Problem (1.4.9).

THEOREM 2.4.10. Under the assumptions of Theorem 2.1.9, there exists a subsequence of
h (still denoted by h) and a solution (u,p,z) € V x L%(Q) x L2(RQ) of Problem (1.4.9) such
that

lim |up —u =0,

A 0| h |H1(Q)

lim — =0,

A 0||Zh Z||L2(sz)

lim — =0, 2.4.23
hl 0||Ph P||L2(Q) ( )

lim / lup - nr| @ — ZM)%ds = 0 in R.
h—0
TG(IhaT,

PRrROOF. As the discontinuity of z; plays no part in (2.1.6), the argument used for the cen-
tered schemes shows that (u, p, z) solves (1.4.6) and the convergence of uj to u in H 1(Q)2
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is strong

lim |lwp — w1y = 0.
h0 llun | Q)

In order to pass to the limit in (2.4.13), we take an arbitrary function 6 € H?(Q) and we
choose 6, = R(0) € H' (). Then, in view of (2.4.20),

S (s 2, Ru(9)) = — / (wp - V Rp(0))zp dx — % / (divay) Ry (0)z, dx.
Q Q

Hence, we are back to the situation of Proposition 2.1.8, and with the above strong conver-
gence, its argument allows us to pass to the limit in (2.4.13) and prove that (u, p, z) is indeed
a solution of Problem (1.4.9).

To establish the strong convergence of z;,, we take 6, = z; in (2.4.13), apply (2.4.21), and
compare with (1.4.8) tested against zj,:

2 I t_inty2
Vel + 5 3 / - I — 25 = vz, )
Te€ThyT_

+a(-Vaz, z) + vicurlm, —u), z;).

By passing to the limit, the strong convergence of u, gives

lim (vllz 112 ) + gS =v||z||?
0 hll2(@) = Q)"

2
Hence limp_,¢ IIZhIIiQ(Q) < IIZIII%Z(Q). This yields, on one hand, the strong convergence of z,
and, on the other hand, the fact that S = 0. Finally, the strong convergence of pj, is estab-
lished as in Theorem 2.1.9. O

Discontinuous Galerkin: Error estimates
Here also, all the results of Sections 2.1.1 and 2.1.2 concerning uj, and pj, carry over here,
as well as the statement of Lemma 2.1.19, namely (2.1.51) and (2.1.52):

S4
lu —unlg ) < 2lu— Pr@)lg (g + jllullﬁ(g)llz = znll2 )
Sy 1
+ 7||Zh||L2(Q) llw — Pp)llp4q) + ;”P — (P2

1 1
lp —pulli2@) < (1 + E) lp — (P2 + E (V lu — Pp(u) |y (@)
+ Sa (el s @yllz = znll 20y + lznll2) lle — uh||L4(Q))),

where B* is the constant of (2.1.1).

Clearly, the treatment of z — z;, differs, both from that of the centered scheme and that
of the upwind scheme by streamline diffusion. First, assuming that z belongs to H'(2), by
taking the difference between (2.4.13) and (1.4.8) tested against 6y, inserting any function
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An € Zy, choosing 6, = z5 — Ap, and applying (2.4.16) and (2.4.21), we obtain the error
equality:

1 .
vl = Anllfg) +@ ) 5 / Jun - mr| (G — )™ — (o — )™ 2ds
T€Th 57_

+a Z —/uh~V(zh = M) (hp —2) dx
TeTy T

+ « / lwp - 7| ((zn — )™ = (25 — )™ Oy — s (2.4.24)
T

— % fdiv(uh —u)(Ap — 2)(zp — Ap) dx
Q

o
+ > / div(up, — w)z(zp — Ap)dx + o /(uh —u) - Vz(zp — Ap)dx
Q Q
=v(z — Ap, 2p — Ap) +v(curl(uy, — uw), zp — Ap).

Let us look more closely at the third and fourth terms in the left-hand side of (2.4.24). They
require a special treatment because they mean that the unknown z;, — Aj, should be measured
in a norm that is finer than the L? norm. In each element 7, the third term can be split into:

/uh “V(zp — Ap)(Ap — 2) dx = /(uh —u)-V(zp —rp)(Ap —2)dx
T T
+ /u -V(zn — M) (0 — 2) dx. (2.4.25)
T
If we choose Aj = Rj(z), all benefit from using (2.4.16) is lost because the error of A, — 2
in the L? norm must balance the gradient of zj, — Aj. Instead, let us take advantage of the

discontinuity of the space Z, and choose A, = 0;,(2), the I? projection of z on /Py in each
triangle 7" o,(z) € IPy is defined by

Vg € Py, /(Qh(z) —2)gdx =0.
T

This operator has locally the same accuracy as R;. Moreover, we have for any constant
vector c¢:

fu - V(zp — on(@)(on(2) — z)dx = /(u —¢) - V(zn — on(2))(0n(2) — 2) dx,
T T
(2.4.26)

because the components of V(z;, — 05,(z)) belong to IPy_;. With this choice, we have the
following error inequality.



78 V. Girault and F. Hecht CHAPTER 2

THEOREM 2.4.11. Let Q2 be convex, (u, p, z) a solution of Problem (1.4.9), ry the number
of Proposition 1.4.11, and let the assumptions of Theorem 1.4.14 hold, so that z € W' (),
for some real number r in 12, ro[. Let the family of triangulations satisfy (2.1.25) and let
(un, pn, zn) be any solution of (2.1.6), (2.1.7), (2.4.13). Then, we have the following inequal-

ity for z, — on(2):

2 7 2 2 2
iz = e @29y = 5 (v (12— @n@ 20 + ltn —uln o))

2.2 2 2 2 2 2
+ @203 C1 (Il g 12 = 1D g + S22 1 g 1 = U1 g )

2
o . .
+ (Ndiveun — )z = 0n(@) g + Idivawn — w2l g,

+ 4@ —w) -Vl ) + o Cooglunlliz Y hrlz = on@ g,
TeTy,
(2.4.27)

where oy is the constant of (2.1.25), C1 and C, are constants independent of h, and

Proor. We bound the terms in the left-hand side of (2.4.24), starting with the third term.
In view of (2.4.25), we begin with (2.4.26). In each T, a local inverse inequality, a suitable
choice for ¢, such as the mean value of # in 7', and (2.1.25) yield:

‘ /(u —¢) - V(zp — on(@)(on(z) — 2) dx
T

Cl (2.4.28)
< Ellu = clirenllon(@ — zll 2y llzn — er@ 2y

< ca00lu| ooy llon(z) — zll 2y llzn — @n @ 27y s

where c¢; denote various constants independent of 4 and T'. Similarly, by applying the same
local inverse inequality and the approximation property of o, we obtain in each T

‘ /(uh —u) - V(zp — on(2))(or(z) —2) dx
T (2.4.29)

= c3o0lzlwrr ey lwn — ull iy lzn — en (Dl 2 (7)-

The fourth term in (2.4.24) can be split into

S lunnrl(@n = en@)™ = G — 0r(@) ™) (en () — 2)ds
TeTnyT_
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=

N =

> f lun - nrl((zn — 0n(2)™ — (21 — n(2))™)ds
TeTn o7_

1 2
+5 2 | e nrl (@) = 9%) as.
T€Tn oT_

The first term cancels with the first boundary term in the left-hand side of (2.4.24), but the
second term requires more work. Let e € F;l denote a side of T (recall that the above sum
only involves interior segments of T%), and let 7" be the other element sharing e. Then by
passing to the reference segment ¢, and by denoting with a hat the composition with the
affine transformation that maps ¢ onto e, we can write

2
/ jun - nrl ((n(2) — ) ds < lunllco)l (@n(2) — ™12,
e

A N A Avext2

< lelllunllzo@ 1@n(2) = 2772

For the second factor, we use a trace theorem on 7', the reference element corresponding to
T, and for @, we use an equivalence of norms on 7. This gives

2 - A A
/ luy, - n7| ((0n(2) — ™) ds < calelllnll oo 310 (2) — Z“i]l(f)'
e

But by definition of the L? projection (that is invariant under affine transformations),

/ 6n () — Hdi =0,
7

and therefore there exists a constant c¢s5 independent of £, such that

2

iy < slon@ =23, -

llon(z) —ZIIHI@) <

Collecting these two inequalities, reverting to T, and using the regularity of T7,, we derive

2 le]
/ lup - nr| ((0n(2) — ') ds < %ﬁhgrlluhllpo(f)lgh(z) - Z|i]1(7”~)
i (2.4.30)

2 2
< c10¢hz lunl oo iy l0n(@) = 2 7,

All the other terms are easily bounded and (2.4.27) follows by summing the above inequali-
ties over all 7 in T}, and applying Young’s inequality. O

As in Section 2.4.1, because 2 is convex, by slightly restricting the mesh as in
Remark 2.1.17, we have u;, uniformly bounded in L°°. Then by substituting (2.1.51) into
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(2.4.27), we derive the following error bound for small enough data and smooth enough
solutions, if the hypotheses of Theorem 2.4.4 and (2.1.45) hold (again, for simplicity we do
not detail the constants):

Vlizn = 2l g = € (108 @ = 2lidagg, + 11 = Pa@ 2 g + 1P = ru(PI2s g

TeTy,

Of course, by suitably changing the constants, the boundary term

1 .
) B (G e O R R
TeTh H7_

is also bounded by the right-hand side of (2.4.31). When the mini-element or the Bernardi—
Raugel element are used in this scheme, the choice £ = 1 in the definition of Z; yields an
error of order A if z is in H>/2 (£2), in which case it belongs automatically to W7 (Q) because
r is supposed to be close to 2. Of course, the convexity assumption on the domain implies
that u is in H>(2)? and p in H' (). Finally, we infer from (2.4.31) that approximating z by
piecewise constant functions (i.e., k = 0) yields an error of the order of z!/2 when z belongs
to W7 ().



CHAPTER 3

Discretizing the Time-Dependent
No-Slip Problem

3.1. Introduction

In this chapter, we first split the time-dependent problem (1.1.1)—(1.1.2) in a bounded, con-
nected Lipschitz domain € of R?, with a homogeneous Dirichlet boundary condition on 3.
Considering the a priori estimates of Section 1.3.1, we formulate the problem as follows. For
given real numbers 7 > 0, v > 0, and @ > 0, f given in 1? (0, T; H(curl, 2)), and uq given
in V*, findu € L>(0, T; V*) NH'(0, T; V) and p € L*(0, T, L3(<)), solution of

0]
&(u—aAu) —vAu+curlu —acAu) xu+Vp=f inQx]0,T[, G.1.1)

u0) =ug in £,

the divergence-free condition and the homogeneous Dirichlet boundary condition on 92
being prescribed on the functions of V*. Recall that H(curl, €2) is defined in (1.1.15):

H(curl, Q) = {v € L*(Q)?; curlv € L*(Q)},
and V¥ is defined in (1.4.1):

V¥ ={eV;acurl Av e L*(Q)},
where, in this case,

V = {v e H(Q)? divy = 0in Q}

This problem is split into a linearized time-dependent system and a time-dependent trans-
port equation, equivalent to (3.1.1). Next, we semi-discretize these two problems in time
with a backward Euler scheme. This scheme is used in SAADOUNI [2007] and in GIRAULT
and SAADOUNI [2007] to establish global existence in time of a solution of the split prob-
lem, for all data, in a Lipschitz domain. Finally, we discretize in space this semi-discrete
scheme with the finite elements methods studied in Chapter II and establish convergence
and error estimates under no CFL condition. We discretize the transport equation with cen-
tered schemes, but to save space we only discuss Discontinuous Galerkin upwind schemes.

81
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Part of the material presented in this chapter is taken from SAapoun1 [2007] and ABBOUD
and SAvYaH [2009].

The theoretical and numerical analysis of time-dependent problems usually rely on the
following Gronwall’s Lemma and its discrete counterparts.

LeEmMA 3.1.1. Let T > 0 and let k be a non-negative function in L! 0, T). Let C>0bea
constant and ¢ € CY([0, T1) a function satisfying

t
Vie[0,T], 0 <o(f) < C—i—/lc(s)go(s) ds. (3.1.2)
0

Then ¢ verifies the bound

t
vVt € [0, T], () < Cexp /K(S) ds|. 3.1.3)
0

LemMA 3.1.2.  Let (an)n>0, (bn)n>0, and (cp)n=0 be three sequences of non-negative real
numbers, such that (c,),>0 Is monotonic increasing,

ap + by < co,

and there exists a real number A > 0 such that

n—1
Vn > 1, an—l—b,,fc,,—i-kZam. (3.1.4)

m=0

Then these sequences are bounded by
Vn >0, ay+ by < cpe™. (3.1.5)

LemMA 3.1.3. Let A > 0and let (§,)n>0 and (bp)u>1 be two sequences of non-negative real
numbers satisfying

Vn>1, { < (1 +A)u—1 + by (3.1.6)
Then for all n > 1, ¢, satisfies the bound
G < (L+A) Q0+ Y bi(1+A)"" (3.1.7)
i=1

Because we are dealing with a nonlinear time-dependent problem, we require compact-
ness in time in order to pass to the limit in the semi-discrete problem. For this, we shall use
the following theorem established by SiMoN [1990]. It generalizes the Aubin-Lions Lemma,
see LIONS [1969] or SHOWALTER [1997].
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THEOREM 3.1.4. Let X, E, Y be three Banach spaces with continuous imbeddings: X C E C
Y, the imbedding of X into E being compact. Then for any number q € [1, 00], the space

av 1
{ve L0, T; X); m eL (0, T;7)} (3.1.8)
is compactly imbedded into L1(0, T; E).
It will also be convenient to use the norm || - ||, defined by

2 5 1/2
Wl = (VB2 gy + @ nggy) - (3.1.9)

and the space
00 a 2 2 av 2
W ={,q € L™, T; V*) x L“(0, T; L5(2)); EEL 0, T; V)}. (3.1.10)

3.1.1. The transient tranport equation in arbitrary dimension

By analogy with the steady case, the subsequent analysis relies on sharp estimates for the
solution of a time-dependent transport equation: Find z € L®(0, T; L>(Q2)) satisfying

0
a.e.in 2x]0, T, a—j—kyu-Vz:f, (3.1.11)
a.e.in 2, z(0) = zo, (3.1.12)
where
0z 0z
V7= — -
wovr=m dx; +u23x2’

with the data: y # 0, f given in L2(2x]0, TD), zo given in L[*(Q). Because any solution
7€ L%®(0, T; L*(R)) of (3.1.11)—(3.1.12) belongs to H' (0, T; W~14(R)), where

= ifd>3, g<2ifd=2,
q=-—ifd=3,q

the initial condition (3.1.12) makes sense. Establishing existence of a solution of (3.1.11)—
(3.1.12) is straightforward. For instance, semi-discretization in time (which regularizes the

effect of the time derivative) gives readily the following result.

PROPOSITION 3.1.5.  Let Q C R? be bounded and Lipschitz-continuous. For any real num-
bers T > 0, y # 0 and any functions u in L*>(0, T; W), f in L*(2x]0, T[), and zg in L*(2),
problem (3.1.11)—(3.1.12) has at least one solution 7 in L*°(0, T; L2(2)), and this solution
satisfies the bound

”Z”IZ‘DC(O’T;LZ(Q)) =< (”10”1242(9) + ”f”iz(QX]O,TD) eXP(T) (3113)
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But again, proving uniqueness is not straightforward, considering the low regularity of
the domain and of the driving velocity. By adapting the regularization technique of
Theorem 1.3.8, GIRAULT and ScoTt [2010] establish the following uniqueness result.

THEOREM 3.1.6. Let Q@ C R be bounded and Lipschitz-continuous. For any real numbers
T >0, y # 0 and any functions u in L2(0,T: W), fin L2(Qx]0, T]), and zo in L2(S),
problem (3.1.11)~(3.1.12) has exactly one solution z in L® (0, T; L*(2)).

When (3.1.11) has the additional term v z in the left-hand side, as is the case subsequently:
. 0z
a.e.in 2x]0, T, E+vz+yu~Vz:f, (3.1.14)

an easy variant of Theorem 3.1.6 gives:

PROPOSITION 3.1.7. Let Q C IR? be bounded and Lipschitz-continuous. For any real num-
bersT >0,y #0, and v > 0, and any functions w in L*(0, T; W), f in L*(Q2x10, T), and
20 in L*(2), problem (3.1.14), (3.1.12) has exactly one solution z in L°(0, T; L*(Q2)) and
this solution is bounded as follows

2 2 2
||Z||LOO(O,T;L2(Q)) 5 ”ZO”LZ(Q) + EHJC”LZ(QX]O,T[)’
(3.1.15)

el < Lol + I
2oy = 19002 T 21 2@x0, 1
For adequate data, the unique solution of (3.1.14), (3.1.12) belongs to L or wlr in space.

This can be derived from a semi-discrete approximation of (3.1.14), (3.1.12) and is post-
poned to the end of Section 3.2.2.

3.2. Splitting the problem

In this section, we consider again a bounded, connected, Lipschitz domain in IR?, and we
retain the above assumptions on the data: 7 > 0, ¢ > 0, and v > 0 are given real numbers,
fis given in L?(0, T; H(curl, 2)) and u is given in V2.

Let us revert to Section 1.4.1. Recall (1.4.4) and (1.4.5) defining the auxiliary variable z
and its vector product with u:

z=curllu —aAu), z=1(0,0,2),
divz =0, z x u = (—zup, zu1).
Then by substituting the expression for z into the first row of (3.1.1), we obtain the following
linearized system: Find u € H'(0,T; V) and p € L*(0, T, L%(Q)) such that
] .
g(u —aAu)—vAu+zxu+Vp=f ae. in 2x]0, T|,
u(0) =ug a.e.in Q2. (3.2.1)
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As for the steady problem, we note that the variational formulation of (3.2.1) only requires
that u take its values in V. Then, we take formally the curl of both sides of this equation, and
taking advantage of (1.3.13),

curlg xu) =u-Vz,

we obtain a transport equation, after multiplying both sides by «: Find z € L>(0, T; L*(R2)),
such that

0
a—z+vz+au~Vz=vcurlu+acur1f a.e.in Qx]0, TT,
o1 (3.2.2)

z(0) = zo = curl(ug — aAug) ae.in Q.

It is established in GIRAULT and Saapount [2007] that the coupled problem (3.2.1)—(3.2.2)
is equivalent to the original system (3.1.1). More precisely, we have:

ProposiTION 3.2.1.  For all real numbers T >0, o > 0, and v > 0, all functions f €
L2(0, T; H(curl, Q) and ug € Ve, problems (3.1.1) and (3.2.1)—(3.2.2) are equivalent.

Moreover, all solutions of (3.2.1)—(3.2.2) satisfy the following unconditional a priori esti-
mates. The estimates for u are straightforward and those for z follow from Proposition 3.1.7.

ProprosITION 3.2.2.  For all real numbers T >0, a > 0, and v > 0, all functions f €
L2(0, T; H(curl, Q)) and ug € V*, any solution (u,p,z) in W x L*(Q) of (3.2.1)«(3.2.2)
satisfies almost everywhere in 10, T|:

52
2 2 2 2
”u(t)”a S “uO”a + 2\) ||f||L2(Q><]O.t[)’

2 2 S% 2
U”vu”Lz(QX]O,t[) = ”uO”a + TH‘f‘”LZ(QX]O,t[)’ (323)
1
l2012) = — luollz + 120072 g
53 12 o 2
+ EHfHLZ(QX]O,t[) + ;l'cuﬂf”LZ(QX]oJ[)v (324)

2 2 2, ¢ 2
||Z||L2(Q><]O,t[) 5 ;”u()”a + ;”ZOHLZ(Q)

2 2 2 2 2
+5 (1122 gy + 21Ul 2 g 10.): (3.2.5)

2

2 2
dr < v|u0|H1(Q) + ”f”LZ(QX]O’[[)
o

t
/ u
ot
0
Si 2 2 52° 2
+ JHZ”LOO(]O,I[;LZ(Q)) ”uO”a + T”f"Lz(QX]O,I[) ) (326)
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3
2 2 2 2
||P||L2(QX]OV,D =< E (SZ <v|u0|H1(Q) + 2||f||L2(Q><]O,t[))
Si 2 2 S% 2 $2°
+ THZ”L"O(]O,Z[;LZ(Q)) ”uO”a + THfHLZ(QX]O,ID (1 + 7) .
(3.2.7)

3.2.1. Further a priori estimates for the velocity and pressure

When €2 is a polygon, we can sharpen the a priori estimates of the velocity and pressure part
of the solutions of (3.2.1)—(3.2.2).

THEOREM 3.2.3. Let Q be a connected polygon. For all real numbers T > 0, « > 0 and
v > 0, all functions f € L*(0, T; H(curl, )) and ug € V%, the velocity and pressure part of
any solution (u, p, z) in W x L2(Q) of (3.2.1)—(3.2.2) has the following regularity

u e HY0,T; W>*3 (@)%, p e L*0, T; W43 (Q)), (3.2.8)

and satisfies the following a priori estimates a.e. in 10, T[ (for simplicity, we do not detail
the constants):

ou
Nl w243y < luwollwaenq) + C ‘ v
0t || 2(@x10.10)
+ 1zl oo o222 1l oo 0,11 (2)2) + ”f“Lz(Qx]O,t[))’ (3.2.9)
ou
IPllz20, w143y < C 5
tll2@x10,0
+ 1zl oo o, 2220 1 220,11 (2)2) + ”f”Lz(QxJO,t[))’ (3.2.10)
ou ou

at

<C ‘
L2(0,, W24/3(Q))

+ A ull 20,5243 @)2) + 12l 220, 1200 1211 22(0,1,11 (202) + ||f||L2<szx]0,r[))~

ot 12(2x]0,1D

(3.2.11)
If in addition, Q2 is convex, then
ueH (0, T; H(Q)?), p e L*0,T; H(Q)), (3.2.12)
and
ou
le®llpe <C ||+ + llzll oo o,z 222)) + 11 2c@x 0.0
Ot || 12(x10.10)

+ ol g2 () (3.2.13)
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ou
IPlz20,m1 ) < € ’ TS + llzllpe o2y + 1 lzc@xo.m |
tl2@x10,60)
(3.2.14)
ou ‘ ou
Ot | 20,7:H2(2)2) Ot || 22(@x10,10)
1A uli20nz@p) + 12l gon @) + ||f||L2<sszo,tl>>~ (3.2.15)

PROOF. A detailed proof can be found in SAADoUNI [2007], but it is sketched here for the
reader’s convenience because its argument will be used in the sequel. We set
ou

8u+ f
w=a—+vu, g=f—— —zxu.
ot £ a ¢

Then the pair (w, p) is the solution of the steady Stokes system, almost everywhere in ]0, T[:
—Aw+Vp=g, divw=0inQ, w =00n 9. (3.2.16)

But g € L%(0, T; L*3(Q)?), as f € L*(2x]0,TD?, z € L0, T; L*()), and (u,p) €
W. Hence Theorem 1.1.6 implies that w is in L20, T; W243(Q)?) and p in
L2(0, T; W-43(Q)). In turn, because Aw is in L2(0, T; L*/3(2)?), recalling the definition
of w, we infer that

d v
a(ea’A u) € L*0, T; L*3(Q)?). (3.2.17)

Assuming for the moment that u( belongs to w2432, (3.2.17) implies that A u belongs
to L®(0, T; L*/3(2)?). Then (3.2.8) follows from Theorem 1.1.1 and the definition of w.
It remains to prove that ug is in W>%/3()2. This is established by an easy variant of
Lemma 1.4.10. Indeed, for proving this regularity, convexity of the domain is not neces-
sary and it can be shown that in any polygon, ug € V* implies ug € W>*/3(2)2. In fact, this
last argument proves directly that # belongs to L= (0, T; W>#/3(2)?), but it does not yield
the regularity of p. Moreover, the above proof will be used further on because it only relies
on (3.2.1) but not on (1.4.4).

Finally (3.2.12) follows easily by the same argument, because (3.2.8) implies that z x u
belongs to L0, T; L2(£2)?). All estimates are straightforward consequences of the above
arguments and the continuous dependence of the solution of the Laplace and Stokes equa-
tions on their data. O

We can also establish improved a priori estimates first for z and next for u, but these will
be more conveniently derived from the semi-discrete scheme below.

3.2.2. A semi-discrete scheme

A solution of (3.2.1)—(3.2.2) can be constructed as the limit of the solutions of the following
semi-discrete scheme. Let N > 1 be an integer, define the time step k by

k=,
N
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and the subdivision points by #, = nk. For each n > 1, we approximate f(f,) by its average
defined almost everywhere in 2:

In

1
) = p /f(x, s) ds. (3.2.18)
th—1
We set
u = up, L= 70 = curl(ug — a A uyg). (3.2.19)

Clearly, for each n, f belongs to H(curl, ) and by assumption, z° is in L*($2). Let us
solve (3.2.1)—(3.2.2) by semi-discretization in time (i.e., exact in space and discrete in time):
Knowing #® € V* and z° € L*(), find sequences (@"),>1, (z")n>1, and (p"),>1 such that
u' eV, € LX), and p" € LS(Q) solvefor1 <n <N,

1 1
E(u" —u" - a%A(u” — " VAW + T x W+ VP =" inQ,
(3.2.20)

1
ot%(z” — " H4v+au VS =veurlu” +acurll ff in Q. (3.2.21)

Given z/~! and u"~!, (3.2.20) is essentially a steady Stokes problem, and it is easy to check
that it has a unique solution (", p"). In turn, given &” and z"~', (3.2.21) is a steady transport
equation, and owing to Proposition 1.3.9, it has a unique solution because curl f” belongs to
12(Q).

A priori estimates and convergence
The following proposition gives basic uniform a priori estimates for (u"),>1 and (Z"*),>1. Its
proof is a straightforward variant of that of (1.4.13) and (1.4.18).

PROPOSITION 3.2.4.  The sequences (u"),> and (z")y>1 satisfy the following uniform a
priori estimates for | <n < N:

A2 g0, + 10115 (32.22)

n 2
I3 + >l — a2 < 5
— 2v
1=

n 2
. . S a
n2 i i—1)2 2 2 2
12" W2y + D1 =2 2y = 2 @0 + 5 10 122 0.0
i=1

1
+ 180l + 121 g (3.2.23)

As is usual for transient incompressible flow problems, an estimate for the pressure can
only be obtained by deriving first an estimate for the derivative of the velocity; here this cor-
responds to the difference quotient of the velocity. This is the object of the next proposition.
We skip the proof, which is straightforward.
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ProposiTION 3.2.5. Let

C.= sup |[Z"l2)-
0<n<N-1

The sequences (" — u" 1) /k)y=1 and (p"),>1 satisfy the following uniform a priori esti-
mates for 1 <n < N:

n

i i—12 0,2 2
Z %”ul - ul ”a = U|u |H1(Q) + ”f”Lz(QX]O,In[)

i=1
1 2 0,2 522 2
+——5C (uu e + =1 W20 ) (3.2.24)

n
: 3

D o KIP I < i (83 (v gy + 2012 )

i=1

S4 Sz S22

For passing to the limit in (3.2.20)—(3.2.21), it is convenient to transform the sequences
@™, (p"), and (7") into functions. Because both (") and (z") need to be “differentiated,”
we define the piecewise linear functions in time as follows:

n, T= I atd n
Vi € [ty, tur1], uk(t) = u +T(u —u"),0<n<N-1,

t—t
Yt € [ty, g1, () =" + T"(z”*‘ -7, 0<n<N-1.

Next, in view of the other terms in (3.2.20)—(3.2.21), we define the step functions:
Vt €lty, tapr ], fr ) = 0<n <N -1,
Vt €ty tas1], W) =u", 0<n <N -1,
Vt €ltn, tugr ], pe® =p" 0<n <N -1,
Ve €ltn, tugr ] G(t) =", 0<n <N -1,
Vi€ [ty, i1, () =2", 0 <n<N-—1.
With this notation, (3.2.20)—(3.2.21) read

ouy OA uy
— —a
ot ot

— VAW + A X Wi+ Vpr=f, ae.in 2x]0, T,

a
a% +vs+aw- Vg =veurlwy +acurl fi  ae. in Qx]0, TT.

The uniform bounds of Propositions 3.2.4 and 3.2.5 imply that uniformly u; and wy are
bounded in L®(0, T; H'(2)?), px is bounded in L2(Q2x]0, T[), and zx, &, and A are
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bounded in L*(0, T; LZ(Q)). Moreover, an easy calculation shows that on one hand

]}ir%(fk —f) = 0 strongly in L*(Qx]0, T[)?,

and on the other hand,

N
1
2 § : —-12
”wk - uk”LZ(O,T;Hl(Q)Z) = gk |u” - un |HI(Q)7

n=1
1 N

2 2 : —12

”{k - Zk”LQ(QX]O,T[) E gk ”Zn - Zn ”Lz(Q)’ (3226)

n=1
1 N

”)"k - Zk”?ﬂ(ﬂx]O,T[) = ng ”Zn - Zn_l ”12‘2(9)
n=1

The following convergence results are established in GIRAULT and SAADOUNI [2007].

PROPOSITION 3.2.6.  There exist functions u € HY(0,T; V), pe L*0,T; L(z)(Q)) and z €
L%°(0, T; L*(2)) such that a subsequence of k, still denoted by k, satisfies:

lim u; = lim wy = u weakly * in L°°(0, T; V),

k—0 k—0

lim zx = lim ¢ = lim Ay = z weakly *in L*°(0, T; LZ(Q)),
k—0 k—0 k—0

lim pg = p weakly in L2(0, T; L3(S2)),

ad d
lim —uy = — kly in L*(0,T; V).
kgl}) Btuk 8tu weakly in L“(0, T; V)

Furthermore,
I}ir%(wk —uy) = 0 strongly in LZ(O, T; H' (9)2),
-
lim (& — zx) = lim (A — zx) = 0 strongly in Lz(Qx]O, TD,
k—0 k—0

lim wy, = u strongly in L0, T; LY(Q)%). (3.2.27)

Again, we skip the proof, which is straightforward. In particular, the strong convergence
of uy in (3.2.27) follows from the fact that (u) is bounded uniformly in H'(0, T; H}()?)
and because the imbedding of H' () into L*($2) is compact, Theorem 3.1.4 implies that
converges strongly to u in L2(0, T: L*(2)?).

Proposition 3.2.6 is sufficient to establish existence of a solution of problem (3.1.1), but
beforehand we prove sharper estimates for the semi-discrete solution.

Further a priori estimates for the semi-discrete solution
First, we show that the solution (u", p™) of (3.2.20) satisfies the analogs of (3.2.9)—(3.2.11),
and (3.2.13)—(3.2.15).
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THEOREM 3.2.7. If Q is a connected polygon, then all u” belong to W>*/3(Q)?2, all p"
belong to WH43(Q), and there exists a constant Cy, independent of n and k, such that

N 12
sup ||un||W2-4/3(Q) + (Z k|Pn|%V1,4/3(Q)>

1<n<N n=1

N 1/2
1 _
+ (Z %”un —u" 1”%}‘/2_4/3(9)) < (. (3.2.28)

n=1
Hence the following weak limits hold up to subsequences:
lim uy = u weakly in H' (0, T; W>*3(Q)?),
k—0

lim pg = p weakly in L*(0, T; Wh43()).

If in addition, 2 is convex, then all u" belong to H*(2)?, all p" belong H' (), and there
exists a constant Cy, independent of n and k, such that

N 12 N 1/2
2 —12
sup Iz + D ey | (2 - ) =G
=n=N n=1 n=1
(3.2.29)
Thus, up to subsequences,
lim uy = u weakly in H' (0, T; H*(R)?),
k—0
lim py = p weakly in L*(0, T; H' ().
k—0
PrOOF. The proof is a semi-discrete analog of that of Theorem 3.2.3. For 1 <n <N, set
¢n — %(un _ un—l) +vu”
By (3.2.20), for each n the pair (¢”", p") solves a Stokes problem with data g" defined by
n__l n_ n—1y__ _n—1 n n
g'= k(u w7 xu" +f",
to be specific, the pair (", p") € V x L%(Q) satisfies
—A@"+Vp'=g" inQ. (3.2.30)
But for each n, g" belongs to L3 ()2

1 _
Ig" sy < 1920 2l —u" gy + SaCeltlr @) + 1211 20 -
(3.2.31)
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Hence Theorem 1.1.6 implies that ¢” is in Ww2.4/3 (Q)z, and there exists a constant ¢, such
that

||‘Pn||w2~4/3(9) + |Pn|wlw4/3(g) <ci ||gn||L4/3(Q)s (3.2.32)

where all constants ¢; below are independent of n and k. Therefore, combining the expression
of ¢" with (3.2.31) substituted into (3.2.32), we obtain

(%+»MWWWMMD§%WWWWmmyﬂnQmwﬁw"—W”mmD

+ SaColt iy + 1211 20 )-

By summing over n and multiplying by £, this yields for 1 <n < N,
‘ "y ' 1/2
WWWWmswwmm@+av?|mm<2&wuw*@@>

i=1

+ VTS4C. sup |uf“ﬂ(9)-+|szﬂ/4uij2“2X]QbJ)). (3.2.33)

1<i<n

Then the first part of (3.2.28) follows by substituting (3.2.22) and (3.2.24) into (3.2.33).
Similarly, we easily derive for 1 <n <N,

n n
A 1.
Zk'lﬂlﬁvl,m(g) <3¢ <|Q|1/2 Z E”ul —u 1”§2(Q)

i=1 i=1

; (3.2.34)
22 12 1/2) £112
+ S4CZ Zklul|Hl(Q) + |Q| / ”f”LZ(QX]O,I,,[))'
i=1
The bound for the difference quotient stems from (3.2.32)—(3.2.34):
n n
L i—12 4 5 1/2 L i—12
Dol = s gy = et (1917230 Ll =g g
i=1 i=1
M + Y K + 11U )
i=1 i=1
Next, (3.2.28) implies that #” is bounded in L>, for | <n <N,
" l|Lo@) < Cu- (3.2.35)

Hence for each n, g" belongs to L2(£2)2:

1 _
Ig" 2y < %”un —u" l||L2(Q) + CuCo + 1"l 2(0)»
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and if € is convex, Theorem 1.1.5 implies that " belongs to H2($2)2, and there exists a
constant c¢», such that

lo" w2 + 12" n1() < c2lg"ll2@)- (3.2.36)
Thus, we conclude as above, for 1 <n <N,

n

1,2
c | i
"l 20 < ;ﬁ (Z ' — l||12,2(sz)> + CuCNT + If 2 @xi00

i=1
+ lluoll g2 (q)-
Likewise, we have for1 <n < N,

n n
E:kquug)§3cg(§:iﬂui—lﬂwﬁygy+C%C§T4‘Wﬂ&qumw@>-
i=1 i=1

Finally,
n n

| 4 1.
Dl —u g = 6 (Z =i )

i=1 i=1

n
2 i2 2 ~2 2
+ 02 Y kAW g + CGOT+IIf Ilemx]o,zn[))

i=1
Then (3.2.29) follows from these three bounds. O

Without further information on z", (3.2.29) cannot be improved, because it reduces to
a Stokes system with data in L%. Therefore, we now prove that 7" satisfies the analog of
(1.3.25).

ProPOSITION 3.2.8.  Let Q2 be a connected polygon and r € [2,4]. If z0 € L' () and
curl f € L2(0, T; L"(2)), then the solution 7" of (3.2.21) belongs to L' () and there exists a
constant C3, independent of n and k, such that

sup (12"l < Cs. (3.2.37)

1<n<N
Therefore,

lim zx = z weakly * in L*(0, T; L' ().
k—0

ProOF. The proof is a simpler version of that of the preceding theorem. Let n > 1; with the
notation

o
0= 7 vcudu” + o curl ",

=
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(3.2.21) reduces to the transport equation

(% +u) S faut V=0, (3.2.38)

Now, we proceed by induction. Assuming that 21 is in L"(§2), which is true for Z°, it
follows from (3.2.28) and the imbedding of W24/3 into Wh4, that ¢" is in L7 (), and

1€ I < %llzn_1 lzre@) + v2v " |y1r(q) + o llcurl £ (). (3.2.39)
Therefore, (1.3.25) yields in particular

all?" @) < all?" Mg + ﬁvk|u"|W1.r(9) + akllcurl f"|| ().
Then summing over n, we obtain, for 1 <n <N,

v .
12"l < 120 e) + ﬁ;T sup (' ly1.r(qy + VT lleurl fll 20,1507 (2)-
1<i<n

(3.2.40)
whence (3.2.37). O

This result permits to improve the statement of Theorem 3.2.7 and derive in particular a
bound for u” in W',

COROLLARY 3.2.9. Let Q2 be a convex polygon, and let rq > 2 be the number defined in
Theorem 1.1.9. If. for some r € [2, rql, f € L*(0, T; L'(2)?), curl f € L*(0, T; L’ ()), and
20 e L'(Q), then all pairs (u", p") belong to W2 ()2 x WL (Q) for 1 < n <N, and there
exists a constant Cy, independent of n and k, such that

N 1/2 N 1/2
sup " i) + | QK By )+ | 20 710 =2 gy ) = Ca
1<i<N =1 n=1
(3.2.41)
Thus,
lim uy = u weakly in H' (0, T; W>"(Q)?),
k—0

lim py = p weakly in L*(0, T; W' ().
k—0

PRrOOF. The proof follows the lines of Theorem 3.2.7. With the same notation, we have g"
inL"(Q)2 forl <n <N:

S -1 -1
Ig"lzr@) < flu” —u" ) 12 @ lu e @) + 1 e @)-
Thus, Theorem 1.1.9 implies that there exists a constant ¢, such that

—1
e lwar@) < 18" lw2r (g

k(S _ _
+eo (;ﬂu" —u" Mg + Cull e + ||f"||Lr(Q)>,
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where C, is the constant of (3.2.35). By summing, we readily obtain for 1 <n < N,

n

1/2
c 1 . .
" ey < lelwarg + VT | S (Z ' = ‘|§,,(m>
=l (3.2.42)

+ Cuﬁ< sup ||Zi||L"(Q)> + ||f||L2(0,t,,;Lr(Q)2)>-

0<i<n—1

Similarly, we easily derive that

n n
. 1 . .
2 2 2 —1,2
E k|pl|W1,r(Q) < 3¢ (Sr E %|ul —ut |H1(Q)
=1 i=1

(3.2.43)

+cir( s ”Zi”i’(m>+||f”i2(o,tn;u<sz)2))'

0<i<n—1
Finally,
n

1 i i—1)12 4 2 2 - 1 i—12 2 . i2
E Z”ul —u' ||W2.r(Q) = ;C Sy § E|ul —u' |H1(Q) +v E k”Aul”Lr(Q)
i=1 i=1 i=1

+ CﬁT( sup ||z"||%r(g)) + 11720, .m)z)) (3.2.44)
0<i<n—1 o
Then (3.2.41) follows from (3.2.42)—(3.2.44), (3.2.37), and (3.2.24). O

As a consequence, there exists a constant Cv,,, independent of n and k, such that

sup |[Vu"|po@) < Cva. (3.2.45)

1<n<N

For sufficiently smooth data, this uniform bound enables to derive bounds for V z* and the
difference quotient of z".

THEOREM 3.2.10. In addition to the assumptions of Corollary 3.2.9, suppose that 7° is in
HY(Q) and curl f is in L2(0, T; H ().

(1) Then there exists a real number ko > 0 such that for allk < ko and allnwith1 <n <N,
7" belongs to H' (Q2) and

N 1/2
1 _
sup |y + (Do 717" =2 Mg | =G, (3.2.46)
1<n<N =1 k

with a constant Cs, independent of n and k. Therefore,

lim 7 = z weakly in H'(0, T; L*(Q)) and weakly * in L*(0, T; H' ().
0



96 V. Girault and F. Hecht CHAPTER 3
(2) If in addition, 20 e Wh(Q) and curlf € W”(Q)for some r €]2, rol, then for all k <
ko, we have 7" € W”(Q)for 1 <n<Nand
N 1/2
sup |Zn|W1,r(Q) + (Z %”Zn - anl ”%r(Q)) < Cﬁ, (3247)
N

l=n= n=1

with a constant Ce, independent of n and k. Similarly,

]}in})zk = zweakly in H'(0, T; L' (Q)) and weakly * in L™ (0, T: W""()).
>

PrOOF. (1) We argue by induction. For n > 1, assume that 7'~! € H!(), which is true
for 0. Then, in view of (3.2.38) and Theorem 1.3.18, it follows from the regularity of f",
(3.2.45), and the positivity of v that 7" € H' () provided

1

k< oo (3.2.48)
u

Let us make this assumption for the moment. As (3.2.48) is independent of n, it follows
by induction that indeed 7" € H 1(Q) for0 <n < N and V7" is the unique solution of the
transport equation

(% + o)W b VW e (Vi)W = e, (3.2.49)
where
0= %Vz"_l +V (curlwa + af). (3.2.50)

Then taking the scalar product of (3.2.49) with w”, and applying Young’s inequality, we
derive

2 —1,2 —1,2 2
|Zn|H1(Q) - |Zn |H1(Q) + |Zn - Zn |H1(Q) =< 2k||vun||L°°(Q)|Zn|Hl(Q)

v a
+ &k|cur1 u”|z,(g) + ;klcurl f”|i,,(g).

Now, we write
2 —1,2 —1,2
|Zn|Hl(Q) = 2|Zi'l - Zn |H](Q) + 2|Zn |H](Q)’

and we sharpen (3.2.48) by assuming that

1
4Cvy

k<

(3.2.51)

By summing over n, this yields

n—1 n—1
2 i i—1,2 2 i2
|Zn|H1(Q) + Z |Zl - Zl |H1(Q) = |ZO|H1(Q) + 4CVM Zk|Zl|H1(Q)
i=1 i=0

20 i o 2
+ E Zk|u |H2(Q) + ;||Cur]f||L2(O,t,1;Hl(Q))'

i=1
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Hence the discrete Gronwall’s Lemma 3.1.2 gives for 1 <n <N

: 21— : o
i2 0,2 i2 2
sup |Z |HI(Q) = ('Z |H1(Q) + Z Zk'u |H2(Q) + U||Clll’]f||L2(O’tn;Hl(Q))> (3 2 52)
i=1 e

1<i<n

x exp(4Cvyuty).

In turn, this uniform bound for V z” yields a bound for the difference quotient:

n 2 n
1 . . v v .
§ : i i—1)2 02 § i2
%”Z -z ||L2(Q) =< &”Z ||L2(Q) + 3 <a2 k|u |H1(Q)
i=1

i=1

n
+Ca Y Kl + ||cur1f||§zmx]o,tn[)>.

i=1
(2) Similarly, we infer by induction from Theorem 1.3.19, Corollary 3.2.9, and (3.2.48)
that 7" belongs to whr (R2) for 1 < n < N. Hence with the above notation, the function
|w"|"~2w" belongs to L" "(Q) where 1 /r+ 1/ = 1. Therefore, by taking the scalar product
of (3.2.49) and (3.2.50) with this function, and applying (3.2.45), we derive
v _ v
(1 — kCva + &k) Wl < W@ + k(& leurl " y1.r () + |Cur1f"|W1_r(Q)).
Now, assuming (3.2.51), we have
3
1 —kCvyy > T
and the above inequality reduces to
n < 1 4kC n—1 4k v 1 n 1 T
W llr ) < + 3 vu | W' @) + 3 ;|cur u|yir(q *+ |cur f lwir) )-
Then, it suffices to apply Lemma 3.1.3 with

4 4 /v
A= SkCyu, by = 3k (;Ieuﬂ "Iy + lourl £y )-

More precisely, we easily derive that

n
. 4 v ,
bi(1+A)""' <ex <7C t, ) sup |curlu'|y1.r
; ' P 3 Ve aCyy 151’211' @)

2
+ \/ﬁ ||Curlf”LZ(O’tn;W],r(Q))),
and Lemma 3.1.3 yields for 1 <n <N,

4 2
|Zn|W1"‘(Q) < exp (gCVu[n> <|ZO|W1J(Q) + JTTV||Curlf||L2(0’tn;Wl,r(Q))
u

+ sup |curl u"|W1.,(Q)) . (3.2.53)

aCyy 1<i<n
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This gives a bound for the difference quotient in L":

n 2 n n
Lo e v ) 2 i |2
DI = ey =4 ( D K gy + Ca Dkl g,
i=1 i=1 =1
\)2 n
ta Kljeurl w17, g, + ”Curlf”i%o,zn:y(m)).

i=1

Another a priori estimate from an application to the transport equation

Let us revert to the time-dependent transport equations (3.1.14) and (3.1.12). In the statement
of Proposition 3.2.8, the value of the exponent r is restricted in order to guarantee that the
right-hand side of (3.2.21) is in L"(£2). But when the data f of (3.1.14) belongs to L"(€2),
this restriction is no longer necessary. Then, applying the above argument to a semi-discrete
scheme for (3.1.14) and (3.1.12), and passing to the limit, the next result follows easily from
Proposition 3.2.8 and Theorem 3.1.6.

PROPOSITION 3.2.11. Let Q@ C RY be bounded and Lipschitz-continuous and let 2 < r <
oo. For any real numbers y #0 and v > 0, and any functions u in L*(0, T; W), f in
[%2(0,T: L"(Q)), and zo in L' (), the solution 7 of problems (3.1.14), (3.1.12) belongs to
L*®(0, T; L" (X)) and it satisfies

lzllzoe0,7:Lr@) < Nzollzr) + VT l20.7:172)- (3.2.54)
Similarly, Theorems 3.2.10 and 3.1.6 yield the following proposition.

PROPOSITION 3.2.12.  Let d =2,3 and let Q@ C RY be a bounded convex polygon or
polyhedron. For any real numbers T >0, y #0, and v > 0, and any functions u €
L20, T; WN Whoo(@)d), £ e L2(0, T; HY()), and zo € HY(), the unique solution z of
(3.1.14)~(3.1.12) belongs to L (0, T; H'(2)) N H' (0, T; L*()) and

1 12
izl oo 0,711 () = (|ZO|?_1](Q) + 27v||f”12‘2(0’T3H](Q))) exp(c1ly|T),

9z

> < (vlz0ll7a ) + 2071 + 2y c3lell; 1/2
a = Vol () rz@xjorp T2V 2l a1 @))

L2(2x10,T])
(3.2.55)

where
1 = ||Vu||L°°(Qx]O,T[), = ||"||L2(0,T;L00(Q)d)-

Let2 < r < oo. Ifin addition, f € L20, T; W' (), and zg € W (Q), the unique solution
z0f (3.1.14), (3.1.12) belongs to L>(0, T; Wh"(Q)) N H'(0, T; L () and

1
lzll oo 0, 7wy = (|ZO|W1J(Q) + ;”f“L’(O,T;W“(Q))) exp (c1ly|T), (3.2.56)
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When the first part of Theorem 3.2.7 is applied to (3.2.1) and Proposition 3.2.11 is applied
to (3.2.2), we obtain immediately the following a priori bound for the solution of (3.2.1)—
(3.2.2).

0z
ot

2 2 2,,2 2
E \/5(1) ”Z”LZ(O,T;L’(Q)) + Cz)/ ”Z”LOO(O’T;WI.V(Q))
L2(0,T;L7 ()

e v (32.57)
L2(0,T;L7(2)) : o

ProposITION 3.2.13.  Let r € [2,4], and let Q2 be a connected polygon. If 7o € L"(2)
and curl f € L*(0, T; L' (), then all solutions (w,p,z) of (3.2.1)~(3.2.2) satisfy z €
L°°(0,T; L'(2)) and a.e. in 10, [,

%
lzOllzr ) < llzollLr@) + ﬁ;tllullm(o,,;wl.r(gp) +illeur fll 20,0000y (3:2.58)

With Proposition 3.2.13, we can prove that V u is bounded if €2 is a convex polygon or a
smooth domain. However, we shall see in the next section that convexity or regularity of
imply uniqueness of the solution. Therefore, the boundedness of V u and its consequences
will easily be deduced from the convergence of the semi-discrete solution.

3.2.3. Existence, regularity, and uniqueness

The convergences of Proposition 3.2.6 allow us to pass to the limit in (3.2.20)—(3.2.21) and
hence show unconditional existence of a solution of the coupled problem (3.2.1)—(3.2.2). As
this problem is equivalent to the original system (3.1.1), it also yields existence of a solution
to (3.1.1). The following theorem collects the results established so far.

THEOREM 3.2.14. Let Q be a bounded connected Lipschitz-continuous domain in two
dimensions.

(1) Forany a >0, v > 0, f in L*(0, T; H(curl; ), and ug € V*, problem (3.1.1) has at
least one solution (u, p) in W. All solutions satisfy (3.2.3)—(3.2.7).

(2) Ifin addition, Q2 is a polygon, all solutions satisfy also (3.2.9)—(3.2.11).

(3) If moreover Q2 is a convex polygon or has a smooth boundary, all solutions satisfy also
(3.2.13)—(3.2.15).

(4) Finally, if Q is a connected polygon, if re[2,4], z0 € L'(2), and curl f €
L%(0, T: L' (), then all solutions satisfy (3.2.58).

The arguments of the proof are standard, see GIRAULT and SaapouUNI [2007]. The regular-
ity of the solution follows from Theorem 3.2.3. Additional regularity stems from Proposi-
tion 3.2.8, Corollary 3.2.9, Theorem 3.2.10, and Proposition 3.2.13.

Now, we can sharpen (3.2.27) and establish the strong convergence of uj; in
€20, T; H/(2)?).

THEOREM 3.2.15. Under the assumptions of Part I of Theorem 3.2.14, we have, up to sub-
sequences,

lim sup |lu(f) —ur(®)|le = 0. (3.2.59)
k—0e[0,77]
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Proor. We can write for a.e. rin [0, T]:
20— g I+ VIV~ 1) B, = A~ B~ C. (32.60)
where
A= < %(u —uy), u> +a <%V(u — ug), Vu) +v(V(u —uy), Vu)) ds
-/

m

(2(14 —up), u; — wk) + (EV(u —uy), V(ug — wk)>)ds
as as

+ V/ (V(u —up), V(ug —wi))ds,
0

+ v/ (V@ —ug), Vwy))ds
0

The weak convergences of Proposition 3.2.6 and strong convergences of (3.2.26) imply that
both A and B tend to zero with k. To establish the convergence of C, we subtract the semi-
discrete equation (3.2.20) from the exact equation (3.2.1), both tested against w; and we
compare with C. This gives

t

C= / (=v (V@ —wp), Vwp) — @ x u, wi) + (f —fr. wi))ds

0

Then C tends to zero, owing to the weak convergences of Proposition 3.2.6, strong conver-
gences of (3.2.26), and the strong convergence of f — f;. O

Next we investigate uniqueness. But, whereas existence holds without restriction, we
shall see that we can only prove uniqueness in a convex polygon. This is due to the possible
lack of regularity of the solutions, as will be made clear in the proposition below. Exception-
ally, let ¢(-; -, -) denote the extension to vectors of the trilinear form ¢ defined in (1.4.15):

cu;v,w) = ZZ/M —Zwjdx. (3.2.61)

i=1j=1 g
It satisfies the analog of (1.4.16):

Yu eV, WweH\(Q)?, cu;v,v) =0. (3.2.62)
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With this notation, we have the following proposition. Its proof is a straightforward adap-
tation of that of a similar result established in GIRAULT and Scott [1999] for the steady
problem. See also OUAZAR [1981].

PROPOSITION 3.2.16.  Assume that Q2 is a connected polygon and ugy belongs to V*. Let
@', p") and W?, p*) be two solutions of (3.1.1) in W and let w = u' —u?, q =p' — p*.
Then (w, q) satisfies almost everywhere in 10, T,

—— ||w||§ + v|w|f1l + c(w; u', w) +ac(w; curlu!, curlw)

2dt )

(3.2.63)
- 2a/cur1w(w} -Vwy —Vau - Vw)dx =0.

Q

All terms in (3.2.63) make sense, but unfortunately, without additional regularity, (3.2.63)
does not seem to imply that w = 0. Indeed, the last two terms in (3.2.63) have no particular
sign and in order to be controlled by the first two terms, they must be bounded in terms
of the H' norm of w. This is the case if we assume that u' belongs to W>"(2)? for some
r > 2. Since by Sobolev’s imbedding, w belongs to LI(£2)? for any finite g > 2, then we
can choose ¢ so that the product (curl w)w belongs to L ()2, the dual exponent of r, i.e.,
q = 2r/(r — 2). Hence, with the notation of (1.1.3),

. 1 2 1
c(w;curlu, curlw)| < Sr% |w|H1(Q) A u |1 ), (3.2.64)

/curlw(V ul - Vwy = Vid - V) dx| < iy g Ju| (3.2.65)

Q

whoQ)'

With these remarks, it is easy to see that if problem (3.1.1) has one solution u € W27 (2)?
for some r > 2, then it has no other solution (#, p) € W. More precisely, we have the fol-
lowing theorem. Existence stems from Corollary 3.2.9, and uniqueness follows readily by
applying the regularity result of Lemma 1.4.10, because €2 is convex, substituting (3.2.64)
and (3.2.65) into (3.2.63) and concluding that w = 0 by Gronwall’s Lemma 3.1.1.

THEOREM 3.2.17. Assume that 2 is a convex polygon. Then for any a > 0, v > 0, 70 €
L'(), and f in L2(0, T; L' (Q)?) with curl f in L2(0, T; L"(Q)), for some r > 2, problem
(3.1.1) has exactly one solution (u, p) € W.

Finally, Theorems 3.2.17 and 3.2.10 imply the next result.
COROLLARY 3.2.18.  If the assumptions of the first part of Theorem 3.2.10 hold, then z €
L0, T: HY(Q)) N H' (0, T; L*()), and if the assumptions of the second part hold, then
7€ L0, T; W (Q) N HY(0, T; L(2)).

This corollary yields the strong convergence of 7" in 00, T: L2()).
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COROLLARY 3.2.19.  Under the assumptions of Corollary 3.2.18, we have, up to subse-
quences,

lim sup 2() — 2(0) 20 = 0. (32.66)
k=0 ¢c10,T]

ProoOF. The proof follows the lines of that of Theorem 3.2.15. We have for a.e. ¢ in [0, T]:

120 = 202y + V120 = 202 = A~ B—C. (3.2.67)
where
t
A:/(a <%(z—zk),z)—i—V(z—Zk,Z))dS,
0
t
B=/<a (%(Z—Zk)vzk—§k>+V(Z—Zkvzk—§k)>d5,
0
t
C:/(a (%(Z—Zk%é’k)+V(Z—Zka§k)>d5~
0

The weak convergence of z; and its derivatives, and the strong convergences of (3.2.26)
imply that both A and B tend to zero with k. Also C tends to zero considering that it can be
written as

t

C= / v Gk — 2k G) —a (u-Vz, §) + v (curl(@ — wy), 4i))ds

0
t

+a/ (curl(f = f, ¢k) ds.
0 O

In turn, this result gives the strong convergences of uy in H'(0, T; H'(2)?) and of py in
L*(2x]0, T[).

COROLLARY 3.2.20.  Under the assumptions of Corollary 3.2.18, we have, up to subse-
quences,

. bl .
]11% ||a(uk - u)”LZ(o,T;Hl Q)2 = 0, 111_% llpx — P||L2(QXJ(),T[) =0. (3.2.68)

Proor. We write for a.e. rin [0, T]:

t
3 2 v 2
/‘”a(uk_u)”ads—'_ Eluk_l”Hl(Q) =A-B-— Cv
0
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where

!
A / 8( ) ou n v 8( ) Vau d
= — W —uy), — —Wu—u —
s K s “\Vos K- as s
0
t
ou
—|—v/ (V(u—uk),V—>ds,
as
0
‘ ad 0 0 d
175 uy
B= —(u—up), — —(u— —
f((as(u uy), P > + o (Vas(u up), vV a5 >>ds
0
‘ 0
+ v/ (V(u — W), Vﬂ>ds,
as

0

auk
C=v Vwr —uy), V— |ds.
as
0

Then we observe that B has the form

!
0 Rl 0
BZ/ f—fk,ﬂ — Z><u,ﬂ + Akxwkaﬂ ds,
as as as
0

and the strong convergence of the derivative of uy follows from the previous results.

Finally, we write

t t
/(pk—p,divv)ds:/<<i(uk—u),v>+04<Vi(uk—u),Vv>> ds
as as
0 0

t
+ / W (Vg —u), Vv) + (Mg X wy —z X u,v))ds
0

t

_/(fk —f.v)ds,

0

103

and we choose the function v associated by (1.1.25) to px — p; whence the strong conver-

gence of py.

3.3. Fully discrete centered schemes

O

Let us revert to the material of Section 2.1, namely, we discretize the auxiliary variable z
in a finite-dimensional space Z, C H'(2) and the velocity and pressure in a pair of finite-
dimensional spaces, X, C Hé (2% and M, C L%(Q), satisfying the uniform discrete inf-sup
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condition (2.1.1): There exists a constant 8* > 0, independent of A, such that

divv, dx
Ygn € My, sup 7&2 h h

> ﬂ*||61h||L2 Q)-
veXy  Vhla @) “@

Moreover, we make the assumptions of Hypothesis 2.1.5. The transport term, u - V z, is
discretized by the consistent antisymmetric form defined in (2.1.4):

1
W e HY(Q)%, Vg, 0 e H'(Q), ¢(v; 9,0) = (v- V ¢,0) + 3 (divv)g, 6).

The interval [0, 7] is divided into N equal segments of length k, with end points #; = ik,
0 <i < N. Then, by discretizing in space the semi-discrete scheme (3.2.20)-(3.2.21), we
approximate problem (3.2.1)—(3.2.2) with the following backward Euler, fully discrete
scheme:

o Set
u) = Py(uo), 7) = Ri(z0), 20 = (0,0,2)), (3.3.1)

where Pj, and Ry, satisfy parts 1 and 3 of Hypothesis 2.1.5.
e Knowing u2 € X;, and z2 € Zp, find sequences (u})n>1, (z,)n=1, and ( pj)n>1 such that
uy € X,z € Zp, and pj € My solvefor1 <n <N,

1 o
Vv, € X, E(uz — uz_l, vp) + E(V(uz - u;’l_l), Vvp) +v(Vul, V)

+ @l v) — (pf divey) = (7, v, (33.2)
Yan € My, (qn, divuy) =0, (3.3.3)
a ~
VOn € Zn, + (@ — 2100 + v, O) + ol 2, On)

= v(curluy, 6y) + a(curl £, 6y), (3.3.4)

where f" is defined by (3.2.18):
th
1
[l = p /f(x, 5) ds.
In—1

At each step n, the system (3.3.2)—(3.3.3) is a linear discrete problem of Stokes type, and
owing to the discrete inf-sup condition (2.1.1), it has a unique solution. Likewise, (3.3.4) is
a discrete transport equation and owing to the antisymmetry of ¢, it also has a unique solu-
tion. Thus, with the starting values (3.3.1), the equations (3.3.2)—(3.3.4) determine unique
sequences (#})n>1, (z;)n>1, and (p})u>1. These sequences satisfy the following a priori
estimates, for 1 < n < N (compare with Propositions 3.2.4 and 3.2.5):

n 2
: : S
—1
A I e el W PN o LA (33.5)
i=1
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% Zk|uh|H1(Q) ||f||L2(Q><]O D) + ”uh”av (336)
2 i o 2
123022+ D12 = 20 ) = ||f||L2(QX]Ol o = leurd Fl g, 0,00
1
+ N1 + 12312 ) (33.7)

n

1 1
Z %”uh u;l ”Ot = v|uh|H1(Q) + ”f”Lz(QX]Ot D
i=1

1 2 02 522 2
+ ——55C (nuhna + 1121000 ) (33.8)

n

j 3
YKl = 53 <S§ (V2 0y + 2010122 g000)
i=1

S4 2 S22
+ Gt (nuhn 2||f||i2(9><]0’,n[)) <1+a . (339

Ch:= sup lzplli2q)- (3.3.10)

0<n<N-1

where

An L™ estimate

Let us prove that the sequence (u}) is also uniformly bounded in > in space and time. This
property will be useful for deriving error estimates further on. As in the steady problem, an
L bound for (u}) is conveniently derived by comparing it with the solution of a similar
exact system, where 7" is replaced by z;. More precisely, starting with v = ug, we consider
for each 1 < n < N, the solution (v", ¢") in V x L%(Q) of

1 1
%(v" —yh = a%A(V” —vh—vAy' + zZﬁl xvV'+Vq' =f" inQ. (3.3.11)

The initial data and the sequence (z;,) determine uniquely the sequences (v") and (¢"). Note
that (u}) and (p}) are a standard finite-element approximation of (") and (¢"). Clearly, (v")

and (¢") satisfy the same uniform bounds as («") and (p") with z;~ ! instead of z/~!. In
addition, we have the following result for the difference uj — P, (v").

ProposiTiON 3.3.1.  Under the first two assumptions of Hypothesis 2.1.5, we have for each
n1<n<N,

n

2 i i—1 i i—1y)12

ly = Pu™15 + D llujy — ' = Pa =¥ H]G
i=1

2 "1 A —_—
= S(G+w Y L IP —yTh = 0 