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Econometrics is the branch of economics that draws heavily on statistics for 
testing and analyzing economic relationships. Within econometrics, there 

are theoretical econometricians who analyze statistical properties of estima­
tors of models. Several recipients of the Nobel Prize in Economic Sciences 
received the award as a result of their lifetime contribution to this branch of 
economics. To appreciate the importance of econometrics to the discipline of 
economics, when the first Nobel Prize in Economic Sciences was awarded in 
1969, the co­recipients were two econometricians, Jan Tinbergen and Ragnar 
Frisch (the latter credited for first using the term econometrics in the sense 
that it is known today). The co­recipient of the 2013 Nobel Prize was Lars 
Peter Hansen who had made major contributions to the field of econometrics.

Further specialization within econometrics, and the area that directly 
relates to this book, is financial econometrics. As Jianqing Fan writes, the 
field of financial econometrics

uses statistical techniques and economic theory to address a variety 
of problems from finance. These include building financial models, 
estimation and inferences of financial models, volatility estimation, 
risk management, testing financial economics theory, capital asset 
pricing, derivative pricing, portfolio allocation, risk-adjusted returns, 
simulating financial systems, hedging strategies, among others.1

Robert Engle and Clive Granger, two econometricians who shared the 2003 
Nobel Prize in Economics Sciences, have contributed greatly to the field of 
financial econometrics. 

Why this book? There is growing demand for learning and teaching 
implementation issues related to the deployment of financial econometrics 
in finance. The unique feature of this book is the focus on applications and 
implementation issues of financial econometrics to the testing of theories 
and development of investment strategies in asset management. The key 
mes sages expressed in this book come from our years of experience in 

Preface

1 “An Introduction to Financial Econometrics,” Unpublished paper, Department of 
Operations Research and Financial Engineering, Princeton University, 2004.
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designing, developing, testing, and operating financial econometric applica­
tions in asset management. 

In this book we explain and illustrate the basic tools that are needed 
to implement financial econometric models. While many books describe the 
abstract mathematics of asset management, the unique feature of this book is 
to address the question of how to construct asset management strategies using 
financial econometric tools. We discuss all aspects of this process, including 
model risk, limits to the applicability of models, and the economic intuition 
behind models. We describe the critical issues using real life examples.

We start by discussing the process of applying financial econometrics 
to asset management. The three basic steps of model selection, estimation, 
and testing are discussed at length. We emphasize how in this phase eco­
nomic intuition plays an important role. Before designing models we have to 
decide what phenomena we want to exploit in managing assets.

We then discuss the most fundamental financial econometric technique: 
regression analysis. Despite its apparent simplicity, regression analysis is a 
powerful tool the application of which requires careful consideration. We 
describe different types of regression analysis, including quantile regressions 
and regressions with categorical variables, their applicability, and the condi­
tions under which regression fails. We discuss the robustness of regression 
analy sis, introducing the concept and technique of robust regression. All 
concepts are illustrated with real­life examples.

Next, we analyze the dynamic behavior of time series, introducing vec tor 
and scalar autoregressive models. We formalize mean­reversion, intro ducing 
the concept of cointegration, and describe the heteroscedastic behav ior of 
financial time series. We discuss the economic intuition behind each model, 
their estimation, and methods for parameter testing. We also analyze the 
limits of the applicability of autoregressive techniques, the advantage of 
exploiting mean reversion when feasible, and the model risk associated with 
autoregressive models. We again use real­life examples to illustrate.

Subsequently, we move to consider large portfolios and discuss the tech­
niques used to model large numbers of simultaneous time series, in particu­
lar factor models and principal components analysis. The issues associated 
with the estimation and testing of large models and techniques to separate 
information from noise in large sets of mutually interacting time series are 
discussed. 

Finally, we discuss the specific process of implementing a financial 
econometric model for asset management. We describe the various steps of 
this process and the techniques involved in making modeling decisions.

One important characteristic of model development today is the avail­
ability of good econometric software. Many building blocks of the pro­
cess of implementing a financial econometric application are available 
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as off­the­shelf software. Most technical tasks, from optimization to the 
estima tion of regression and autoregressive models, are performed are per­
formed by econometric software. Using these software tools has become 
common practice among those who develop financial applications. For this 
reason we do spend much time discussing computational issues. These are 
highly technical subjects that are handled by specialists. The general user 
and/or developer of econometric applications do not spend time in rewriting 
appli cations that are commercially available. For this reason we focus on 
the process of designing financial econometric models and we do not handle 
the computational aspects behind basic techniques.

 Frank J. Fabozzi
 Sergio M. Focardi
 Svetlozar T. Rachev
 Bala G. Arshanapalli
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Chapter 1
Introduction

a fter reading this chapter you will understand:

 ■ What the field of financial econometrics covers.
 ■ The three steps in applying financial econometrics: model selection, 
model estimation, and model testing.

 ■ What is meant by the data generating process.
 ■ How financial econometrics is used in the various phases of investment 
management.

Financial econometrics is the science of modeling and forecasting finan-
cial data such as asset prices, asset returns, interest rates, financial ratios, 
defaults and recovery rates on debt obligations, and risk exposure. Some 
have described financial econometrics as the econometrics of financial mar-
kets. The development of financial econometrics was made possible by three 
fundamental enabling factors: (1) the availability of data at any desired 
frequency, including at the transaction level; (2) the availability of pow-
erful desktop computers at an affordable cost; and (3) the availability of 
off-the-shelf econometric software. The combination of these three factors 
put advanced econometrics within the reach of most financial firms such as 
banks and asset management firms.

In this chapter, we describe the process and the application of financial 
econometrics. Financial econometrics is applied to either time series data, 
such as the returns of a stock, or cross-sectional data such as the market 
capitalization1 of all stocks in a given universe at a given moment. With 
the progressive diffusion of high-frequency financial data and ultra high-
frequency financial data, financial econometrics can now be applied to 

1 A firm’s market capitalization, popularly referred to as “market cap,” is a measure 
of the firm’s size in terms of the total market value of its common stock. This is found 
by multiplying the number of common stock shares outstanding by the price per 
share of common stock.
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larger databases making statistical analysis more accurate as well as provid-
ing the opportunity to investigate a wider range of issues regarding financial 
markets and investment strategies.2

FINaNCIaL eCONOMetrICS at WOrK

Applying financial econometrics involves three key steps:

Step 1. Model selection

Step 2. Model estimation

Step 3. Model testing

For asset managers, traders, and analysts, the above three steps should lead 
to results that can be used in formulating investment strategies. Formulating 
and implementing strategies using financial econometrics is the subject of 
the final chapter of this book, Chapter 15.

Below we provide a brief description of these three steps. More details 
are provided in later chapters. Model selection is the subject of Chapter 14 
and model estimation is covered in Chapter 13. 

Step 1: Model Selection

In the first step, model selection, the modeler chooses a family of models 
with given statistical properties. This entails the mathematical analysis of the 
model properties as well as financial economic theory to justify the model 
choice. It is in this step that the modeler decides to use, for example, an 
econometric tool such as regression analysis to forecast stock returns based 
on fundamental corporate financial data and macroeconomic variables. 

In general, it is believed that one needs a strong economic intuition to 
choose models. For example, it is economic intuition that might suggest 
what factors are likely to produce good forecasting results, or under what 
conditions we can expect to find processes that tend to revert to some long-
run mean. We can think of model selection as an adaptive process where 

2 Engle provides the following distinction between high-frequency financial data and 
ultra high-frequency data. Observations on financial variables such as prices that are 
taken daily or at a finer time scale are referred to as high-frequency financial data. 
Typically, such observations are regularly spaced over time. Ultra high-frequency 
financial data refers to time stamped transaction-by-transaction or tick-by-tick data 
which are irregularly spaced. See Robert F. Engle, “The Econometrics of Ultra-High 
Frequency Data,” Econometrica 69, no. 1 (2000), 1–22.
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economic intuition suggests some family of models which need, however, to 
pass rigorous statistical testing.

On the other hand, financial econometrics might also use an approach 
purely based on data. “Let the data speak” is the mantra of this approach. 
An approach purely based on data is called data mining. This approach 
might be useful but must be used with great care. Data mining is based on 
using very flexible models that adapt to any type of data and letting statistics 
make the selection. The risk is that one might capture special characteristics 
of the sample which will not repeat in the future. Stated differently, the risk 
is that one is merely “fitting noise.” The usual approach to data mining is to 
constrain models to be simple, forcing models to capture the most general 
characteristics of the sample. 

Hence, data mining has to be considered a medicine which is useful but 
which has many side effects and which should be administered only under 
strict supervision by highly skilled doctors. Imprudent use of data mining 
might lead to serious misrepresentations of risk and opportunities. On the 
other hand, a judicious use of data mining might suggest true relationships 
that might be buried in the data. 

Step 2: Model estimation

In general, models are embodied in mathematical expressions that include 
a number of parameters that have to be estimated from sample data, the 
second step in applying financial econometrics. Suppose that we have 
decided to model returns on a major stock market index such as the Stan-
dard & Poor’s 500 (S&P 500) with a regression model, a technique that 
we discuss in later chapters. This requires the estimation of the regres-
sion coefficients, performed using historical data. Estimation provides 
the link between reality and models. We choose a family of models in 
the model selection phase and then determine the optimal model in the 
estimation phase.

There are two main aspects in estimation: finding estimators and 
understanding the behavior of estimators. Let’s explain. In many situ-
ations we simply directly observe the magnitude of some quantity. For 
example, the market capitalization of firms is easily observed. Of course 
there are computations involved, such as multiplying the value of a stock 
by the number of outstanding stocks, but the process of computing market 
capitalization is essentially a process of direct observation.

When we model data, however, we cannot directly observe the param-
eters that appear in the model. For example, consider a very simple model 
of trying to estimate a linear relationship between the weekly return on 
General Electric (GE) stock and the return on the S&P 500. When we 
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discuss the econometric technique known as simple linear regression anal-
ysis in Chapter 2, we will see the relationship of interest to use would be3 

Return on GE stock = α + β (Return on S&P 500) + Error term

The two parameters in the above relationship are α and β and are 
referred to as regression coefficients. We can directly observe from trading 
data the information necessary to compute the return on both the GE stock 
and the S&P 500. However, we cannot directly observe the two param-
eters. Moreover, we cannot observe the error term for each week. The 
process of estimation involves finding estimators. Estimators are numbers 
computed from the data that approximate the parameter to be estimated. 

Estimators are never really equal to the theoretical values of the 
parameters whose estimate we seek. Estimators depend on the sample 
and only approximate the theoretical values. The key problem in financial 
econometrics is that samples are generally small and estimators change 
significantly from sample to sample. This is a major characteristic of finan-
cial econometrics: samples are small, noise is very large, and estimates are 
therefore very uncertain. Financial econometricians are always confronted 
with the problem of extracting a small amount of information from a large 
amount of noise. This is one of the reasons why it is important to support 
econometric estimates with financial economic theory. 

Step 3: Model testing

As mentioned earlier, model selection and model estimation are performed 
on historical data. As models are adapted (or fitted) to historical data there 
is always the risk that the fitting process captures characteristics that are 
specific to the sample data but are not general and will not reappear in 
future samples. For example, a model estimated in a period of particularly 
high returns for stocks might give erroneous indications about the true 
average returns. Thus there is the need to test models on data different 
from the data on which the model was estimated. This is the third step in 
applying financial econometrics, model testing. We assess the performance 
of models on fresh data. This is popularly referred to as “backtesting.”

A popular way of backtesting models is the use of moving windows. 
Suppose we have 30 years of past weekly return data for some stock and 
we want to test a model that forecasts one week ahead. We could estimate 
the model on the past 30 years minus one week and test its forecasting 

3 As explained in Chapter 2, this relationship for a stock is referred to as its charac-
teristic line.
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abilities on the last week. This method would have two major drawbacks. 
First, we would have only one forecast as a test; second, the model would 
be estimated on data that do not reflect the market situation today. 

A sensible way to solve the problem of backtesting is to use samples 
formed from a shorter series of data (say, three or four years), estimate the 
model on the sample data, and then test the forecast on the week immedi-
ately following the sample data. We then move the window forward one 
week and we repeat the process. In this way, we can form a long series of 
test forecasts. Note two things about this procedure. First, for each win-
dow there is a strict separation of sample and testing data. Second, we do 
not test a single model, but a family of models that are reestimated in each 
window.

The choice of the length of the estimation window is a critical step. 
One must choose a window sufficiently long to ensure a reasonable esti-
mation of the model. At the same time, the window must be sufficiently 
short so that the parameters don’t change too much within the window. 

the Data GeNeratING prOCeSS

The basic principles for formulating quantitative laws in financial econo-
metrics are the same as those that have characterized the development of 
quantitative science over the last four centuries. We write mathematical 
models—relationships between different variables and/or variables in dif-
ferent moments and different places. The basic tenet of quantitative science 
is that there are relationships that do not change regardless of the moment 
or the place under consideration. For example, while sea waves might look 
like an almost random movement, in every moment and location the basic 
laws of hydrodynamics hold without change. Similarly, in financial markets, 
asset price behavior might appear to be random, but financial econometric 
laws should hold in every moment and for every asset class.4 

There are similarities between financial econometric models and models 
of the physical sciences but there are also important differences. The physical 
sciences aim at finding immutable laws of nature; financial econometric 

4 In most developed countries, the four major asset classes are (1) common stocks, 
(2) bonds, (3) cash equivalents, and (4) real estate. Typically, an asset class is defined 
in terms of the following three investment characteristics that the members of an 
asset class have in common: (1) the major economic factors that influence the value 
of the asset class and, as a result, correlate highly with the returns of each member 
included in the asset class, (2) a similar risk and return characteristic, and (3) a com-
mon legal or regulatory structure. Based on this way of defining an asset class, the 
correlation between the returns of different asset classes would be low.
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models model the economy or financial markets—artifacts subject to 
change. For example, U.S. financial markets in the form of stock exchanges 
have been in operation since May 1792 (the origin of the New York Stock 
Exchange). Since that time, stock exchanges in the United States—as well 
as throughout the world—have changed significantly both in the number of 
stocks listed and the type of trading. And the information available on trans-
actions has also changed. Consider that in the 1950s, market participants 
had access only to daily closing prices and this typically was available the 
next day rather than at the close of the trading day; now we have instan-
taneous information on every single transaction. Because the economy and 
financial markets are artifacts subject to change, financial econometric mod-
els are not unique representations valid throughout time; they must adapt to 
the changing environment.

We refer to the mathematical model that represents future data in func-
tion of past and present data as the data generating process (DGP). If we 
know the DGP, we can generate data with the same statistical characteristics 
as our empirical data. If we know a DGP as a mathematical expression, we 
can implement computer programs that simulate data. These simulated data 
can be used to compute statistical quantities that would be difficult or even 
impossible to compute mathematically. Methods based on simulation tech-
niques are generally called Monte Carlo methods. 

appLICatIONS OF FINaNCIaL eCONOMetrICS  
tO INVeStMeNt MaNaGeMeNt

Researchers investigating important issues in finance employ financial 
econometrics in their empirical analysis. The issues that they have tackled 
in finance cover critical issues in the fields of financial markets, corporate 
finance, and investment management. Many of the studies on financial mar-
kets have helped either formulate or discredit policies used by investors and 
regulators. Empirical studies of the impact of capital structure (i.e., the mix 
of debt and equity in the financing of a firm) decision, the dividend decision, 
and the stock-buyback decision using financial econometrics have provided 
a useful guide to senior corporate management and boards of directors in 
formulating corporate financial policy. 

The most significant use of financial econometrics since the early 
1990s has been in the field of investment management. It is an impor-
tant part of the arsenal of tools used by quantitative asset management 
firms. Within the real world of investment management, financial econo-
metrics has been used in the following tasks: asset allocation, portfolio 
construction, and portfolio risk management. Since the key real-world use 
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of financial econometrics has been in investment management and many 
of the illustrations in this book are from this field, we conclude this chap-
ter with a brief explanation of asset allocation, portfolio construction, and 
portfolio risk management. 

asset allocation

A major activity in the investment management process is establishing policy 
guidelines to satisfy a client’s investment objectives. Setting policy begins with 
the asset allocation decision. That is, a decision must be made as to how the 
funds to be invested should be distributed among the major asset classes.

The term “asset allocation” means different things to different people in 
different contexts. One can divide asset allocation into three types: (1) policy 
asset allocation, (2) dynamic asset allocation, and (3) tactical asset alloca-
tion.5 The policy asset allocation decision can loosely be characterized as a 
long-term asset allocation decision, in which the investor seeks to assess an 
appropriate long-term “normal” asset mix that represents an ideal blend of 
controlled risk and enhanced return. In dynamic asset allocation, the asset 
mix is mechanistically shifted in response to changing market conditions. 
Once the policy asset allocation has been established, the investor can turn 
attention to the possibility of active departures from the normal asset mix 
established by policy. That is, suppose that the long-run asset mix is estab-
lished as 40% stocks and 60% bonds. A departure from this mix under 
certain circumstances may be permitted. If a decision to deviate from this 
mix is based upon rigorous objective measures of value, it is often called 
tactical asset allocation. Tactical asset allocation broadly refers to active 
strategies that seek to enhance performance by opportunistically shifting 
the asset mix of a portfolio in response to the changing patterns of reward 
available in the capital markets. Notably, tactical asset allocation tends to 
refer to disciplined processes for evaluating prospective rates of return on 
various asset classes and establishing an asset allocation response intended 
to capture higher rewards.

Models used in each type of asset allocation described above rely on 
the forecasting of returns for the major asset classes and the expected future 
relationship among the asset classes. Broad-based market indexes are used 
to represent major asset classes. For U.S. common stock, this would typi-
cally mean forecasting returns for the S&P 500 index, and for bonds, the 
returns for the Barclays U.S. Aggregate Bond index. 

5 Robert D. Arnott and Frank J. Fabozzi, “The Many Dimensions of the Asset Alloca-
tion Decision,” in Active Asset Allocation, ed. Robert D. Arnott and Frank J. Fabozzi 
(Chicago: Probus Publishing, 1992).



8 The Basics of financial economeTrics

Forecasting for asset allocation goes beyond just forecasting returns. A 
fundamental principle of finance is that investors must accept a trade-off 
between risk and returns. Hence in asset allocation modeling, one must fore-
cast risk and not only returns. The most fundamental ingredient to forecast 
risk is the covariance matrix. Hence, a fundamental component of portfolio 
formation is the estimation of the covariance matrix between the major 
asset classes.

portfolio Construction 

Selecting a portfolio strategy that is consistent with the investment objec-
tives and investment policy guidelines of a client or an institution is a major 
activity in the investment management process. Portfolio strategies can be 
classified as either active or passive.

An active portfolio strategy uses available information and forecasting 
techniques to seek a better performance than a portfolio that is simply diver-
sified broadly. Essential to all active strategies are expectations about the fac-
tors that have been found to influence the performance of an asset class. For 
example, with active common stock strategies this may include forecasts of 
future earnings, dividends, or price-earnings ratios. With bond portfolios that 
are actively managed, expectations may involve forecasts of future interest 
rates and sector spreads. Active portfolio strategies involving foreign securi-
ties may require forecasts of local interest rates and exchange rates.

Portfolio construction and optimization in active portfolio strategies 
require models for forecasting returns: There is no way to escape the need 
to predict future returns. In stock portfolios, we would need a forecast of the 
return for every candidate stock that a portfolio manager wants to consider 
for inclusion into the portfolio. Moreover, as explained in our discussion 
of asset allocation, risk must be forecasted in constructing a portfolio. The 
covariance matrix for the candidate assets must therefore be estimated. 

A passive portfolio strategy involves minimal expectational input, and 
instead relies on diversification to match the performance of some market 
index. In effect, a passive strategy assumes that the marketplace will effi-
ciently reflect all available information in the price paid for all assets.6 Pas-
sive strategies eschew the need to forecast future returns of individual asset 
classes by investing in broad indexes. These strategies effectively shift the need 
to forecast to a higher level of analysis and to longer time horizons. Active 
strategies, however, form portfolios based on forecasts of future returns. 

6 Between these extremes of active and passive strategies, several strategies have 
sprung up that have elements of both. For example, the core of a portfolio may be 
passively managed while the balance is actively managed.
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The most sophisticated models used in portfolio construction are factor 
risk models (or simply factor models) using the financial econometric tools of 
factor analysis and principal components analysis described in Chapter 12.

portfolio risk Management 

Portfolio risk management can be broadly defined as a set of methods and 
techniques to set portfolio risk objectives, estimate the risk of a portfolio 
strategy, and take appropriate corrective measures if necessary. Portfolio 
risk itself can be defined in many different ways but essentially is a measure-
ment of the uncertainty related to future returns. There is risk when there is 
the possibility that future returns, and therefore the value of future wealth, 
will deviate from expectations. 

Portfolio management is essentially the management of the trade-off 
between risk and return. There are various analytical measures that can be 
used to identify the various risks of a portfolio such as standard deviation, 
value-at-risk, or conditional value-at-risk, tracking error, to name just a few. 
(These measures are described later in this book.) Often these measures 
must be estimated using the financial econometrics tools described in the 
chapters to follow. The larger asset management firms have an in-house risk 
group that monitors portfolio risk and provides at least daily the portfolio’s 
risk exposure. 

In portfolio management, the key risk is that the performance of the 
portfolio manager is below the return earned on a client-approved bench-
mark after adjusting for management fees. The benchmark could be any 
index such as the S&P 500 index or the Barclays Capital U.S. Aggregate 
Bond index. The key measure used in controlling a portfolio’s risk is track-
ing error. Tracking error measures the dispersion of a portfolio’s returns rel-
ative to the returns of its benchmark. That is, tracking error is the standard 
deviation of the portfolio’s active return, where active return is defined as: 

Active return = Portfolio’s actual return – Benchmark’s actual return

A portfolio created to match the benchmark (referred to as an index 
fund) that regularly has zero active returns (i.e., always matches its bench-
mark’s actual return) would have a tracking error of zero. But an actively 
managed portfolio that takes positions substantially different from the 
benchmark would likely have large active returns, both positive and nega-
tive, and thus would have an annual tracking error of, say, 5% to 10%. By 
taking positions that differ from the benchmark is where the portfolio man-
ager is making bets. For example, in common stock portfolio management 
this could involve one or more of the following factors: portfolio sensitivity 
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to the benchmark (referred to as the portfolio beta), sector allocations that 
differ from the benchmark, style tilt (i.e., value versus growth stocks) that 
differs from the benchmark, and individual stock selections whose weight in 
the portfolio differs from that of the benchmark.

There are two types of tracking error: backward-looking tracking error 
and forward-looking tracking error. The former is obtained from a straight-
forward calculation based on the historical returns of a portfolio over some 
period of time. For example, suppose 52 weeks are computed for a portfolio 
return and the benchmark. An active return can then be calculated for each 
week and the annualized standard deviation can be calculated. The result is 
the backwark-looking tracking error. This tracking error, also referred to as 
an ex-post tracking error, is the result of the portfolio manager’s decisions 
during those 52 weeks with respect to portfolio positioning issues. 

One problem with a backward-looking tracking error is that it does not 
reflect the effect of current decisions by the portfolio manager on the future 
active returns and hence the future tracking error that may be realized. If, 
for example, the portfolio manager significantly changes the portfolio beta 
or sector allocations today, then the backward-looking tracking error that 
is calculated using data from prior periods would not accurately reflect the 
current portfolio risks going forward. That is, the backward-looking track-
ing error will have little predictive value and can be misleading regarding the 
portfolio’s risks going forward. 

The portfolio manager needs a forward-looking estimate of tracking 
error to more accurately reflect the portfolio risk going forward. The way 
this is done in practice is by using factor risk models, discussed in Chap-
ter 12, that have defined the risks associated with a benchmark. Financial 
econometric tools analyzing the historical return data of the stocks in the 
benchmark index are used to obtain the factors and quantify their risks. 
Using the portfolio manager’s current portfolio holdings, the portfolio’s cur-
rent exposure to the various factors can be calculated and compared to 
the benchmark’s exposures to the same factors. Using the differential factor 
exposures and the risks of the factors, a forward-looking tracking error for 
the portfolio can be computed. This tracking error is also referred to as the 
predicted tracking error or ex-ante tracking error.

Key pOINtS

 ■ Financial econometrics is the science of modeling and forecasting finan-
cial data.

 ■ The three steps in applying financial econometrics are model selection, 
model estimation, and model testing.
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 ■ In model selection, the modeler chooses a family of models with given 
statistical properties. Financial economic theory is used to justify 
the model choice. The financial econometric tool used is determined in 
this step.

 ■ Data mining is an approach to model selection based solely on the data 
and, although useful, must be used with great care because the risk is 
that the model selected might capture special characteristics of the sam-
ple which will not repeat in the future.

 ■ In general, models are embodied in mathematical expressions that 
include a number of parameters that have to be estimated from sample 
data. Model estimation involves finding estimators and understanding 
the behavior of estimators.

 ■ Model testing is needed because model selection and model estimation 
are performed on historical data and, as a result, there is the risk that 
the estimation process captures characteristics that are specific to the 
sample data used but are not general and will not necessarily reappear 
in future samples. 

 ■ Model testing involves assessing the model’s performance using fresh 
data. The procedure for doing so is called backtesting and the most 
popular way of doing so is using a moving window.

 ■ The data generating process refers to the mathematical model that 
represents future data in function of past and present data. By know-
ing the data generating process as a mathematical expression, computer 
programs that simulate data using Monte Carlo methods can be imple-
mented and the data generated can be used to compute statistical quanti-
ties that would be difficult or even impossible to compute mathematically. 

 ■ Financial econometric techniques have been used in the investment 
management process for making decisions regarding asset allocation 
(i.e., allocation of funds among the major asset classes) and portfolio 
construction (i.e., selection of individual assets within an asset class). In 
addition, the measurement of portfolio risk with respect to risk factors 
that are expected to impact the performance of a portfolio relative to a 
benchmark are estimated using financial econometric techniques.
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Chapter 2
Simple Linear regression

a fter reading this chapter you will understand:

 ■ How to estimate a simple linear regression.
 ■ What is meant by the residual or error of a regression model.
 ■ The distributional assumptions of a regression model.
 ■ The assumptions about mean and variance of the error term in a regres-
sion model.

 ■ How to measure the goodness-of-fit of a regression model.
 ■ How to estimate a linear regression for a nonlinear relationship.

In this chapter, we introduce methods to express joint behavior of two vari-
ables. It is assumed that, at least to some extent, the behavior of one vari-
able is the result of a functional relationship between the two variables. In 
this chapter, we introduce the linear regression model including its ordinary 
least squares estimation, and the goodness-of-fit measure for a regression. 
Although in future chapters covering econometric tools we will not focus 
on estimating parameters, we will do so here in order to see how some of 
the basic measures are calculated. We devote Chapter 13 to explaining the 
various methods for estimating parameters.

Before advancing into the theory of regression, we note the basic idea 
behind a regression. The essential relationship between the variables is 
expressed by the measure of scaled linear dependence, that is, correlation.

the rOLe OF COrreLatION

In many applications, how two entities behave together is of interest. Hence, 
we need to analyze their joint distribution. In particular, we are interested in 
the joint behavior of those two entities, say x and y, linearly. The appropri-
ate tool is given by the covariance of x and y. More exactly, we are inter-
ested in their correlation expressed by the correlation coefficient explained 
in Appendix A. Generally, we know that correlation assumes values between 
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−1 and 1 where the sign indicates the direction of the linear dependence. 
So, for example, a correlation coefficient of −1 implies that all pairs (x,y) 
are located perfectly on a line with negative slope. This is important for 
modeling the regression of one variable on the other. The strength of the 
intensity of dependence, however, is unaffected by the sign. For a general 
consideration, only the absolute value of the correlation is of importance. 
This is essential in assessing the extent of usefulness of assuming a linear 
relationship between the two variables.

When dealing with regression analysis, a problem may arise from data 
that seemingly are correlated, but actually are not. This is expressed by 
accidental comovements of components of the observations. This effect is 
referred to as a spurious regression and is discussed further in Chapter 10.

Stock return example

As an example, we consider monthly returns of the S&P 500 stock index 
for the period January 31, 1996, through December 31, 2003. The data are 
provided in Table 2.1. This time span includes 96 observations. To illustrate 
the linear dependence between the index and individual stocks, we take the 
monthly stock returns of an individual stock, General Electric (GE), cover-
ing the same period. The data are also given in Table 2.1. The correlation 
coefficient of the two series is rS P GE

monthly
& ,500 = 0.7125 using the formula shown in 

Appendix A. This indicates a fairly strong correlation in the same direction 
between the stock index and GE. So, we can expect with some certainty that 
GE’s stock moves in the same direction as the index. Typically, there is a 
positive correlation between stock price movement and a stock index.

For comparison, we also compute the correlation between these two 
series using weekly as well as daily returns from the same period. (The data 
are not shown here.) In the first case, we have rS P GE

weekly
& ,500 = 0.7616 while in the 

latter, we have rS P GE
daily
& ,500 = 0.7660. This difference in value is due to the fact 

that while the true correlation is some value unknown to us, the correlation 
coefficient as a statistic depends on the sample data. 

reGreSSION MODeL: LINear FUNCtIONaL reLatIONShIp  
BetWeeN tWO VarIaBLeS

So far, we have dealt with cross-sectional bivariate data understood as being 
coequal variables, x and y. Now we will present the idea of treating one vari-
able as a reaction to the other where the other variable is considered to be 
exogenously given. That is, y as the dependent variable depends on the real-
ization of the explanatory variable, x, also referred to as the independent 
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taBLe 2.1 Monthly Returns of the S&P 500 Stock Index and General Electric  
during the Period January 31, 1996, through December 31, 2003

S&P 500 GE S&P 500 GE S&P 500 GE

Jan 31, ’96 0.0321 0.0656 Sep 30, ’98 0.0605 0.0077 May 31, ’01 0.0050 0.0124

Feb 29, ’96 0.0069 –0.015 Oct 30, ’98 0.0772 0.1019 Jun 29, ’01 –0.025 –0.002

Mar 29, ’96 0.0078 0.0391 Nov 30, ’98 0.0574 0.0343 Jul 31, ’01 –0.010 –0.105

Apr 30, ’96 0.0133 –0.006 Dec 31, ’98 0.0548 0.1296 Aug 31, ’01 –0.066 –0.056

May 31, ’96 0.0225 0.0709 Jan 29, ’99 0.0401 0.0307 Sep 28, ’01 –0.085 –0.073

Jun 28, ’96 0.0022 0.0480 Feb 26, ’99 –0.032 –0.041 Oct 31, ’01 0.0179 –0.017

Jul 31, ’96 –0.046 –0.045 Mar 31, ’99 0.0380 0.1050 Nov 30, ’01 0.0724 0.0603

Aug 30, ’96 0.0186 0.0121 Apr 30, ’99 0.0372 –0.042 Dec 31, ’01 0.0075 0.0474

Sep 30, ’96 0.0527 0.0968 May 28, ’99 –0.025 –0.032 Jan 31, ’02 –0.015 –0.072

Oct 31, ’96 0.0257 0.0622 Jun 30, ’99 0.0530 0.1084 Feb 28, ’02 –0.020 0.0443

Nov 29, ’96 0.0708 0.0738 Jul 30, ’99 –0.032 –0.030 Mar 28, ’02 0.0360 –0.024

Dec 31, ’96 –0.021 –0.042 Aug 31, ’99 –0.006 0.0330 Apr 30, ’02 –0.063 –0.163

Jan 31, ’97 0.0595 0.0489 Sep 30, ’99 –0.028 0.0597 May 31, ’02 –0.009 –0.005

Feb 28, ’97 0.0059 –0.004 Oct 29, ’99 0.0606 0.1373 Jun 28, ’02 –0.075 –0.058

Mar 31, ’97 –0.043 –0.028 Nov 30, ’99 0.0188 –0.037 Jul 31, ’02 –0.082 0.1194

Apr 30, ’97 0.0567 0.1154 Dec 31, ’99 0.0562 0.1786 Aug 30, ’02 0.0048 –0.056

May 30, ’97 0.0569 0.0867 Jan 31, ’00 –0.052 –0.141 Sep 30, ’02 –0.116 –0.185

Jun 30, ’97 0.0425 0.0757 Feb 29, ’00 –0.020 –0.003 Oct 31, ’02 0.0829 0.0390

Jul 31, ’97 0.0752 0.0822 Mar 31, ’00 0.0923 0.1754 Nov 29, ’02 0.0555 0.0791

Aug 29, ’97 –0.059 –0.109 Apr 28, ’00 –0.031 0.0160 Dec 31, ’02 –0.062 –0.097

Sep 30, ’97 0.0517 0.0918 May 31, ’00 –0.022 0.0099 Jan 31, ’03 –0.027 –0.046

Oct 31, ’97 –0.035 –0.044 Jun 30, ’00 0.0236 0.0108 Feb 28, ’03 –0.017 0.0488

Nov 28, ’97 0.0436 0.1373 Jul 31, ’00 –0.016 –0.023 Mar 31, ’03 0.0083 0.0645

Dec 31, ’97 0.0156 0.0002 Aug 31, ’00 0.0589 0.1354 Apr 30, ’03 0.0779 0.1469

Jan 30, ’98 0.0100 0.0569 Sep 29, ’00 –0.054 –0.012 May 30, ’03 0.0496 –0.024

Feb 27, ’98 0.0680 0.0038 Oct 31, ’00 –0.004 –0.041 Jun 30, ’03 0.0112 0.0077

Mar 31, ’98 0.0487 0.1087 Nov 30, ’00 –0.083 –0.096 Jul 31, ’03 0.0160 –0.006

Apr 30, ’98 0.0090 –0.010 Dec 29, ’00 0.0040 –0.023 Aug 29, ’03 0.0177 0.0407

May 29, ’98 –0.019 –0.019 Jan 31, ’01 0.0340 –0.028 Sep 30, ’03 –0.012 0.0164

Jun 30, ’98 0.0386 0.0881 Feb 28, ’01 –0.096 0.0159 Oct 31, ’03 0.0535 –0.025

Jul 31, ’98 –0.011 –0.010 Mar 30, ’01 –0.066 –0.087 Nov 28, ’03 0.0071 –0.010

Aug 31, ’98 –0.157 –0.105 Apr 30, ’01 0.0740 0.1569 Dec 31, ’03 0.0495 0.0848

variable or the regressor. In this context, the joint behavior described in the 
previous section is now thought of as y being some function of x and possibly 
some additional quantity. In other words, we assume a functional relationship 
between the two variables given by the equation 

 y f x= ( )  (2.1)

which is an exact deterministic relationship. 
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However, we admit that the variation of y will be influenced by other 
quantities. Thus, we allow for some additional quantity representing a resid-
ual term that is uncorrelated with x, which is assumed to account for any 
movement of y unexplained by equation (2.1). Since it is commonly assumed 
that these residuals are normally distributed, and that x and the residuals 
are jointly normally distributed, assuming that residuals are uncorrelated is 
equivalent to assuming that the residuals are independent of x. (Note that x 
and the residuals are defined as joint normal when any linear combination 
of x and residuals has a normal distribution.) Hence, we obtain a relation-
ship as modeled by the following equation 

 y f x= +( ) ε  (2.2)

where the residual or error is given by ε. 
In addition to being independent of anything else, the residual is mod-

eled as having zero mean and some constant variance denoted by σe
2. A 

disturbance of this sort is considered to be some unforeseen information or 
shock. Assume a linear functional relationship, 

 f x x( ) = +α β  (2.3)

where the population parameters α and β are the vertical axis intercept and 
slope, respectively. With this assumption, equation (2.2) is called a simple 
linear regression or a univariate regression. We refer to the simple linear 
regression as a univariate regression because there is only one independent 
variable whereas a multiple linear regression (the subject of later chapters) 
is a regression with more than one independent variable. In the regression 
literature, however, a simple linear regression is sometimes referred to as a 
bivariate regression because there are two variables, one dependent and one 
independent.

The parameter β determines how much y changes with each unit change 
in x. It is the average change in y dependent on the average change in x one 
can expect. This is not the case when the relationship between x and y is 
not linear. 

DIStrIBUtIONaL aSSUMptIONS OF  
the reGreSSION MODeL

The independent variable can be a deterministic quantity or a random vari-
able. The first case is typical of an experimental setting where variables are 
controlled. The second case is typical in finance where we regress quantities 
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over which we do not have any direct control, for example the returns of an 
individual stock or of some stock index.

The error terms (or residuals) in equation (2.2) are assumed to be inde-
pendently and identically distributed (denoted by i.i.d.). The concept of 
independent and identical distribution means the following: First, indepen-
dence guarantees that each error assumes a value that is unaffected by any 
of the other errors. So, each error is absolutely unpredictable from knowl-
edge of the other errors. Second, the distributions of all errors are the same. 
Consequently, for each pair (x,y), an error or residual term assumes some 
value independently of the other residuals in a fashion common to all the 
other errors, under equivalent circumstances. The i.i.d. assumption is impor-
tant if we want to claim that all information is contained in equation (2.1) 
and deviations from equation (2.1) are purely random. In other words, the 
residuals are statistical noise such that they cannot be predicted from other 
quantities. If the errors do not seem to comply with the i.i.d. requirement, 
then something would appear to be wrong with the model. Moreover, in 
that case, a lot of estimation results would be faulty.

The distribution identical to all residuals is assumed to have zero mean 
and constant variance, such that the mean and variance of y conditional on 
x are, respectively,

µ α βy x f x x| ( )= = +
 (2.4)

σ σy x e|
2 2=

 

In words, once a value of x is given, we assume that, on average, y 
will be exactly equal to the functional relationship. The only variation 
in equation (2.4) stems from the residual term. This is demonstrated in 
Figure 2.1. We can see the ideal line given by the linear function. Addition-
ally, the disturbance terms are shown taking on values along the dash-
dotted lines for each pair x and y. For each value of x, ε has the mean of 
its distribution located on the line α + β ∙ x above x. This means that, on 
average, the error term will have no influence on the value of y, y f x= ( )  
where the bar above a term denotes the average. The x is either exogenous 
and, hence, known such that f x f x( ) ( )=  or x is some endogenous variable 
and thus f x( )  is the expected value of f(x).1

1 Exogenous and endogenous variables are classified relative to a specific causal 
model. In regression analysis, a variable is said to be endogenous when it is corre-
lated with the error term. An exogenous variable is a variable whose value is deter-
mined by states of other variables.
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The distributions of all ε are identical. Typically, these distributions 
are assumed to follow normal distributions.2 Consequently, the error 
terms are continuous variables that are normally distributed with zero 
mean and constant variance.3 

eStIMatING the reGreSSION MODeL

Even if we assume that the linear assumption in equation (2.2) is plausible, 
in most cases we will not know the population parameters. We have to 
estimate the population parameters to obtain the sample regression param-
eters. An initial approach might be to look at the scatter plot of x and y and 
iteratively draw a line through the points until one believes the best line has 
been found. This approach is demonstrated in Figure 2.2. We have five pairs 
of bivariate data. While at first glance both lines appear reasonable, we do 
not know which one is optimal. 

There might very well exist many additional lines that will look equally 
suited if not better. The intuition behind retrieving the best line is to balance 

2 See Appendix B for a discussion of the normal distribution.
3 Formally, this is indicated by 

ε σ∼
iid

N( , )0 2

FIGUre 2.1 Linear Functional Relationship between x and y with Distribution of 
Disturbance Term
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it such that the sum of the vertical distances of the y-values from the line is 
minimized. However, the problem is that in the scatter plot, positive errors 
will cancel out negative errors. To address this, one could just look at the 
absolute value of the error terms (i.e., ignore the negative sign). An alterna-
tive, and the method used here, is to square the error terms to avoid positive 
and negative values from canceling out.

What we need is a formal criterion that determines optimality of 
some linear fit. Measuring the errors in terms of the squared errors, we 
want to minimize the total sum of the squared errors. Mathematically, 
we have to solve

 min
,a b i i

i

n

y a bx− −( )
=
∑ 2

1

  (2.5)

That is, we need to find the estimates a and b of the parameters α and β, 
respectively, that minimize the total of the squared errors. Here, the error 
is given by the disturbance between the line and the true observation y. By 
taking the square, not only do we avoid having positive and negative errors 
from canceling out, but we also penalize larger disturbances more strongly 
than smaller ones. 

The estimation approach given by equation (2.5) is the ordinary least 
squares (OLS) methodology, which we describe in more detail in Chapter 13. 

FIGUre 2.2 Scatter Plot of Data with Two Different Lines as Linear Fits
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Here, the minimum is obtained analytically by using differential calculus 
(the first derivative to be more specific) with respect to α and β, respectively. 
The resulting estimates are then given by 
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  (2.6)

and 

 a y bx= −   (2.7)

The OLS methodology provides the best linear unbiased estimate 
approach in the sense that no other linear estimate has a smaller sum of 
squared deviations. (See Appendix C for an explanation of best linear unbi-
ased estimate.) The line is leveled, meaning that

ei
i

n

=
∑ =

1

0

That is, the disturbances cancel each other out. The line is balanced on a 
pivot point x y,( )  like a scale. 

If x and y were uncorrelated, b would be zero. Since there is no correla-
tion between the dependent variable, y, and the independent variable, x, all 
variations in y would be purely random, that is, driven by the residuals, ε. 
The corresponding scatter plot would then look something like Figure 2.3 
with the regression line extending horizontally. This is in agreement with a 
regression coefficient β = 0. 

application to Stock returns

As an example, consider again the monthly returns from the S&P 500 index 
(indicated by x) and the GE stock (indicated by y) from the period between 
January 31, 1996, and December 31, 2003. We list the intermediate results 
of regressing the index returns on the stock returns as follows: 

x = 0.0062

y = 0.0159

1
96 1

96

x yi i
i=
∑ = 0.0027
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1
96

2

1

96

xi
i=
∑ = 0.0025

x2 = 0.00004

(Here, we chose to present x2 with the more precise five digits since the 
rounded number of 0.0000 would lead to quite different results in the sub-
sequent calculations.) Putting this into equations (2.6) and (2.7), we obtain

b = −
−

=⋅0 0027 0 0062 0 0159
0 0025 0 00004

1 0575
. . .

. .
.

aa = − =⋅0 0159 1 0575 0 0062 0 0093. . . .

The estimated regression equation is then

ˆ . .y x= +0 0093 1 0575

The scatter plot of the observation pairs and the resulting least squares 
regression line are shown in Figure 2.4.  

FIGUre 2.3 Regression of Uncorrelated Variables x and y 
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From both the regression parameter b as well as the graphic, we see 
that the two variables tend to move in the same direction. This supports 
the previous finding of a positive correlation coefficient. This can be inter-
preted as follows. For each unit return in the S&P 500 index value, one can 
expect to encounter about 1.06 times per unit return in the GE stock return. 
The equivalent values for the parameters using weekly and daily returns are 
b = 1.2421 and a = 0.0003 and b = 1.2482 and a = 0.0004, respectively. 

GOODNeSS-OF-FIt OF the MODeL

As explained in Appendix A, the correlation coefficient, denoted by rx,y , is a 
measure of the linear association between x and y. We need to find a related 
measure to evaluate the suitability of the regression line that has been 
derived from the OLS estimation. For this task, the coefficient of determina-
tion, commonly denoted by R2, is introduced. This goodness-of-fit measure 
calculates how much of the variation in y is caused or explained by the vari-
ation in x. If the percentage explained by the coefficient of determination is 

FIGUre 2.4 Scatter Plot of Observations and Resulting Least Squares Regression Line
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small, the fit might not be a too overwhelming one. Before introducing this 
measure formally, we present some initial considerations. 

Consider the variance of the observations y by analyzing the total sum 
of squares of y around its means as given by

 SST = −( )
=
∑ y yi
i

n
2

1

 (2.8)

The total sum of squares (denoted by SST) can be decomposed into the sum 
of squares explained by the regression (denoted by SSR) and the sum of 
squared errors (denoted by SSE). That is,4

 SST SSR SSE= +  (2.9)

with 

 SSR = −( )
=
∑ ŷ yi
i

n
2

1

 (2.10)

and

 SSE = −( ) = = −
= = =
∑∑ ∑ ∑y y e y a yi i i
i

n

i

n

i
i

n

i
i

n

ˆ
2 2

1

2

1 1

−−
=
∑b x yi i
i

n

1

where ŷ is the estimated value for y from the regression. 
The SSR is that part of the total sum of squares that is explained by the 

regression term f(x). The SSE is the part of the total sum of squares that is 
unexplained or equivalently the sum of squares of the errors. Now, the coef-
ficient of determination is defined by5 
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SSR
SST

SST SSE
SST

11− SSE
SST

4 The notation explaining the R2 differs. In some books, SSR denotes sum of squares 
of the residuals (where R represents residuals, i.e., the errors) and SSE denotes sum 
of squares explained by the regression (where E stands for explained). Notice that 
the notation is just the opposite of what we used.
5 Note that the average means of y and ŷ  are the same (i.e., they are both equal to y ).
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R2 takes on values in the interval [0,1]. The meaning of R2 = 0 is that 
there is no discernable linear relationship between x and y. No variation 
in y is explained by the variation in x. Thus, the linear regression makes 
little sense. If R2 = 1, the fit of the line is perfect. All of the variation in y 
is explained by the variation in x. In this case, the line can have either a 
positive or negative slope and, in either instance, expresses the linear rela-
tionship between x and y equally well.6 Then, all points (xi,yi) are located 
exactly on the line.7

As an example, we use the monthly return data from the previous exam-
ple. Employing the parameters b = 1.0575 and a = 0.0093 for the regression
ŷt estimates, we obtain SST = 0.5259, SSR = 0.2670, and SSE = 0.2590. The 
R2 = 0.5076 (0.2670/0.5259). For the weekly fit, we obtain, SST = 0.7620, 
SSR = 0.4420, and SSE = 0.3200 while got daily fit we have SST= 0.8305, 
SSR = 0.4873, and SSE = 0.3432. The coefficient of determination is R2 = 
0.5800 for weekly and R2 = 0.5867 for daily. 

relationship between Coefficient of Determination  
and Correlation Coefficient

Further analysis of the R2 reveals that the coefficient of determination is just 
the squared correlation coefficient, rx,y, of x and y. The consequence of this 
equality is that the correlation between x and y is reflected by the goodness-
of-fit of the linear regression. Since any positive real number has a positive 
and a negative root with the same absolute value, so does R2. Hence, the 
extreme case of R2 = 1 is the result of either rx,y = –1 or rx,y = 1. This is 
repeating the fact mentioned earlier that the linear model can be increasing 
or decreasing in x. The extent of the dependence of y on x is not influenced 
by the sign. As stated earlier, the examination of the absolute value of rx,y is 
important to assess the usefulness of a linear model. 

With our previous example, we would have a perfect linear relationship 
between the monthly S&P 500 (i.e., x) and the monthly GE stock returns 
(i.e., y), if say, the GE returns were y = 0.0085 + 1.1567x. Then R2 = 1 since 
all residuals would be zero and, hence, the variation in them (i.e., SSE would 
be zero, as well). 

6 The slope has to be different from zero, however, since in that case, there would be 
no variation in the y-values. As a consequence, any change in value in x would have 
no implication on y.
7 In the next chapter we introduce another measure of goodness-of-fit called the 
adjusted R2. This measure takes into account not only the number of observations 
used to estimate the regression but also the number of independent variables.
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tWO appLICatIONS IN FINaNCe

In this section, we provide two applications of simple linear regression anal-
ysis to finance. 

estimating the Characteristic Line of a Mutual Fund

We discuss now a model for security returns. This model suggests that secu-
rity returns are decomposable into three parts. The first part is the return of 
a risk-free asset. The second is a security-specific component. And finally, the 
third is the return of the market in excess of the risk-free asset (i.e., excess 
return) which is then weighted by the individual security’s covariance with 
the market relative to the market’s variance. Formally, this is

 R R R RS f S S M M f= + + −( )α β ,   (2.11)

where RS  = the individual security’s return
 Rf  = the risk-free return
 αS  = the security-specific term
 βS M S M MR R R, ( , ) / ( )= cov var  = the so-called beta factor

The beta factor measures the sensitivity of the security’s return to the 
market. Subtracting the risk-free interest rate Rf from both sides of equation 
(2.11) we obtain the expression for excess returns:

R R R RS f S S M M f− = + −( )α β ,

or equivalently

 r rS S S M M= +α β ,   (2.12)

which is called the characteristic line where rS = RS – Rf and rM = RM – Rf 
denote the respective excess returns of the security and the market. 

This form provides for a version similar to equation (2.3). The model 
given by equation (2.12) implies that at each time t, the observed excess 
return of some security rS,t is the result of the functional relationship

 r rS t S S M M t S t, , , ,= + +α β ε  (2.13)

So, equation (2.13) states that the actual excess return of some security S is com-
posed of its specific return and the relationship with the market excess return, 
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that is, α βS S M M tr+ , , , and some error εS,t from the exact model at time t. The 
term αS is commonly interpreted as a measure of performance of the security 
above or below its performance that is attributed to the market performance. It 
is often referred to as the average abnormal performance of the stock.

While we have described the characteristic line for a stock, it also applies 
to any portfolio or funds. To illustrate, we use the monthly returns between 
January 1995 and December 2004, shown in Table 2.2, for two actual mutual 
funds which we refer to as fund A and fund B. Both are large capitalization 
stock funds. As a proxy for the market, we use the S&P 500 stock index.8 
For the estimation of the characteristic line in excess return form given by 
equation (2.12), we use the excess return data in Table 2.2. We employ the 
estimators in equations (2.6) and (2.7). For fund A, the estimated regression 
coefficients are aA = –0.21 and bA,S&P500 = 0.84, and therefore rA = –0.21 + 
0.84 ⋅ rS&P500. For fund B we have aB = 0.01 and bB,S&P500 = 0.82, and there-
fore rB = 0.01 + 0.82 ⋅ rS&P500.

Interpreting the results of the performance measure estimates of a, we 
see that for fund A there is a negative performance relative to the market 
while it appears that fund B outperformed the market. For the estimated 
betas (i.e., b) for fund A, we determine that with each expected unit return of 
the S&P 500 index, fund A yields, on average, a return of 84% of that unit. 
This is roughly equal for fund B where for each unit return to be expected 
for the index, fund B earns a return of 82% that of the index. So, both funds 
are, as expected, positively related to the performance of the market. 

The goodness-of-fit measure (R2) is 0.92 for the characteristic line for 
fund A and 0.86 for fund B. So, we see that the characteristic lines for both 
mutual funds provide good fits. 

Controlling the risk of a Stock portfolio

An asset manager who wishes to alter exposure to the market can do so by 
revising the portfolio’s beta. This can be done by rebalancing the portfolio 
with stocks that will produce the target beta, but there are transaction costs 
associated with rebalancing a portfolio. Because of the leverage inherent 
in futures contracts, asset managers can use stock index futures to achieve 
a target beta at a considerably lower cost. Buying stock index futures will 
increase a portfolio’s beta, and selling will reduce it.

The major economic function of futures markets is to transfer price risk 
from hedgers to speculators. Hedging is the employment of futures contracts 
as a substitute for a transaction to be made in the cash market. If the cash 

8 The data were provided by Raman Vardharaj. The true fund names cannot be 
revealed.
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taBLe 2.2 Data to Estimate the Characteristic Line of Two Large-Cap Mutual Funds

Month Market Excess Return Excess Return for Fund A Excess Return for Fund B

01/31/1995 2.18 0.23 0.86

02/28/1995 3.48 3.04 2.76

03/31/1995 2.50 2.43 2.12

04/30/1995 2.47 1.21 1.37

05/31/1995 3.41 2.12 2.42

06/30/1995 1.88 1.65 1.71

07/31/1995 2.88 3.19 2.83

08/31/1995 –0.20 –0.87 0.51

09/30/1995 3.76 2.63 3.04

10/31/1995 –0.82 –2.24 –1.10

11/30/1995 3.98 3.59 3.50

12/31/1995 1.36 0.80 1.24

01/31/1996 3.01 2.93 1.71

02/29/1996 0.57 1.14 1.49

03/31/1996 0.57 0.20 1.26

04/30/1996 1.01 1.00 1.37

05/31/1996 2.16 1.75 1.78

06/30/1996 0.01 –1.03 –0.40

07/31/1996 –4.90 –4.75 –4.18

08/31/1996 1.71 2.32 1.83

09/30/1996 5.18 4.87 4.05

10/31/1996 2.32 1.00 0.92

11/30/1996 7.18 5.68 4.89

12/31/1996 –2.42 –1.84 –1.36

01/31/1997 5.76 3.70 5.28

02/28/1997 0.42 1.26 –1.75

03/31/1997 –4.59 –4.99 –4.18

04/30/1997 5.54 4.20 2.95

05/31/1997 5.65 4.76 5.56

06/30/1997 4.09 2.61 2.53

07/31/1997 7.51 5.57 7.49

08/31/1997 –5.97 –4.81 –3.70

09/30/1997 5.04 5.26 4.53

10/31/1997 –3.76 –3.18 –3.00

11/30/1997 4.24 2.81 2.52

12/31/1997 1.24 1.23 1.93

01/31/1998 0.68 –0.44 –0.70

02/28/1998 6.82 5.11 6.45

03/31/1998 4.73 5.06 3.45

04/30/1998 0.58 –0.95 0.64

(continued)
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taBLe 2.2 (continued)

Month Market Excess Return Excess Return for Fund A Excess Return for Fund B

05/31/1998 –2.12 –1.65 –1.70

06/30/1998 3.65 2.96 3.65

07/31/1998 –1.46 –0.30 –2.15

08/31/1998 –14.89 –16.22 –13.87

09/30/1998 5.95 4.54 4.40

10/31/1998 7.81 5.09 4.24

11/30/1998 5.75 4.88 5.25

12/31/1998 5.38 7.21 6.80

01/31/1999 3.83 2.25 2.76

02/28/1999 –3.46 –4.48 –3.36

03/31/1999 3.57 2.66 2.84

04/30/1999 3.50 1.89 1.85

05/31/1999 –2.70 –2.46 –1.66

06/30/1999 5.15 4.03 4.96

07/31/1999 –3.50 –3.53 –2.10

08/31/1999 –0.89 –1.44 –2.45

09/30/1999 –3.13 –3.25 –1.72

10/31/1999 5.94 5.16 1.90

11/30/1999 1.67 2.87 3.27

12/31/1999 5.45 8.04 6.65

01/31/2000 –5.43 –4.50 –1.24

02/29/2000 –2.32 1.00 2.54

03/31/2000 9.31 6.37 5.39

04/30/2000 –3.47 –4.50 –5.01

05/31/2000 –2.55 –3.37 –4.97

06/30/2000 2.06 0.14 5.66

07/31/2000 –2.04 –1.41 1.41

08/31/2000 5.71 6.80 5.51

09/30/2000 –5.79 –5.24 –5.32

10/31/2000 –0.98 –2.48 –5.40

11/30/2000 –8.39 –7.24 –11.51

12/31/2000 –0.01 2.11 3.19

01/31/2001 3.01 –0.18 4.47

02/28/2001 –9.50 –5.79 –8.54

03/31/2001 –6.75 –5.56 –6.23

04/30/2001 7.38 4.86 4.28

05/31/2001 0.35 0.15 0.13

06/30/2001 –2.71 –3.76 –1.61

07/31/2001 –1.28 –2.54 –2.10

08/31/2001 –6.57 –5.09 –5.72
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taBLe 2.2 (continued)

Month Market Excess Return Excess Return for Fund A Excess Return for Fund B

09/30/2001 –8.36 –6.74 –7.55

10/31/2001 1.69 0.79 2.08

11/30/2001 7.50 4.32 5.45

12/31/2001 0.73 1.78 1.99

01/31/2002 –1.60 –1.13 –3.41

02/28/2002 –2.06 –0.97 –2.81

03/31/2002 3.63 3.25 4.57

04/30/2002 –6.21 –4.53 –3.47

05/31/2002 –0.88 –1.92 –0.95

06/30/2002 –7.25 –6.05 –5.42

07/31/2002 –7.95 –6.52 –7.67

08/31/2002 0.52 –0.20 1.72

09/30/2002 –11.01 –9.52 –6.18

10/31/2002 8.66 3.32 4.96

11/30/2002 5.77 3.69 1.61

12/31/2002 –5.99 –4.88 –3.07

01/31/2003 –2.72 –1.73 –2.44

02/28/2003 –1.59 –0.57 –2.37

03/31/2003 0.87 1.01 1.50

04/30/2003 8.14 6.57 5.34

05/31/2003 5.18 4.87 6.56

06/30/2003 1.18 0.59 1.08

07/31/2003 1.69 1.64 3.54

08/31/2003 1.88 1.25 1.06

09/30/2003 –1.14 –1.42 –1.20

10/31/2003 5.59 5.23 4.14

11/30/2003 0.81 0.67 1.11

12/31/2003 5.16 4.79 4.69

01/31/2004 1.77 0.80 2.44

02/29/2004 1.33 0.91 1.12

03/31/2004 –1.60 –0.98 –1.88

04/30/2004 –1.65 –2.67 –1.81

05/31/2004 1.31 0.60 0.77

06/30/2004 1.86 1.58 1.48

07/31/2004 –3.41 –2.92 –4.36

08/31/2004 0.29 –0.44 –0.11

09/30/2004 0.97 1.09 1.88

10/31/2004 1.42 0.22 1.10

11/30/2004 3.90 4.72 5.53

12/31/2004 3.24 2.46 3.27
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and futures markets move together, any loss realized by the hedger on one 
position (whether cash or futures) will be offset by a profit on the other posi-
tion. When the profit and loss are equal, the hedge is called a perfect hedge.

A short hedge is used to protect against a decline in the future cash price 
of the underlying. To execute a short hedge, the hedger sells a futures contract. 
Consequently, a short hedge is also referred to as a sell hedge. By establishing  
a short hedge, the hedger has fixed the future cash price and transferred the 
price risk of ownership to the buyer of the contract.

As an example of an asset manager who would use a short hedge, con-
sider a pension fund manager who knows that the beneficiaries of the fund 
must be paid a total of $30 million four months from now. This will necessi-
tate liquidating a portion of the fund’s common stock portfolio. If the value of 
the shares that she intends to liquidate in order to satisfy the payments to be 
made decline in value four months from now, a larger portion of the portfolio 
will have to be liquidated. The easiest way to handle this situation is for the 
asset manager to sell the needed amount of stocks and invest the proceeds in 
a Treasury bill that matures in four months. However, suppose that for some 
reason, the asset manager is constrained from making the sale today. She can 
use a short hedge to lock in the value of the stocks that will be liquidated.

A long hedge is undertaken to protect against rising prices of future 
intended purchases. In a long hedge, the hedger buys a futures contract, so 
this hedge is also referred to as a buy hedge. As an example, consider once 
again a pension fund manager. This time, suppose that the manager expects 
a substantial contribution from the plan sponsor four months from now, 
and that the contributions will be invested in the common stock of vari-
ous companies. The pension fund manager expects the market price of the 
stocks in which she will invest the contributions to be higher in four months 
and, therefore, takes the risk that she will have to pay a higher price for the 
stocks. The manager can use a long hedge to effectively lock in a futwure 
price for these stocks now.

Hedging is a special case of controlling a stock portfolio’s exposure to 
adverse price changes. In a hedge, the objective is to alter a current or antici-
pated stock portfolio position so that its beta is zero. A portfolio with a beta 
of zero should generate a risk-free interest rate. Thus, in a perfect hedge, the 
return will be equal to the risk-free interest rate. More specifically, it will be 
the risk-free interest rate corresponding to a maturity equal to the number 
of days until settlement of the futures contract.

Therefore, a portfolio that is identical to the S&P 500 (i.e., an S&P 
500 index fund) is fully hedged by selling an S&P 500 futures contract with 
60 days to settlement that is priced at its theoretical futures price. The return 
on this hedged position will be the 60-day, risk-free return. Notice what 
has been done. If a portfolio manager wanted to temporarily eliminate all 
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exposure to the S&P 500, she could sell all the stocks and, with the funds 
received, invest in a Treasury bill. By using a stock index futures contract, 
the manager can eliminate exposure to the S&P 500 by hedging, and the 
hedged position will earn the same return as that on a Treasury bill. The 
manager thereby saves on the transaction costs associated with selling a 
stock portfolio. Moreover, when the manager wants to get back into the 
stock market, rather than having to incur the transaction costs associated 
with buying stocks, she simply removes the hedge by buying an identical 
number of stock index futures contracts.

In practice, hedging is not a simple exercise. When hedging with stock 
index futures, a perfect hedge can be obtained only if the return on the port-
folio being hedged is identical to the return on the futures contract.

The effectiveness of a hedged stock portfolio is determined by:

 ■ The relationship between the cash portfolio and the index underlying 
the futures contract.

 ■ The relationship between the cash price and futures price when a hedge 
is placed and when it is lifted (liquidated).

The difference between the cash price and the futures price is called the 
basis. It is only at the settlement date that the basis is known with certainty. 
At the settlement date, the basis is zero. If a hedge is lifted at the settlement 
date, the basis is therefore known. However, if the hedge is lifted at any other 
time, the basis is not known in advance. The uncertainty about the basis 
at the time a hedge is to be lifted is called basis risk. Consequently, hedging 
involves the substitution of basis risk for price risk.

A stock index futures contract has a stock index as its underlying. Since 
the portfolio that an asset manager seeks to hedge will typically have differ-
ent characteristics from the underlying stock index, there will be a difference 
in return pattern of the portfolio being hedged and the futures contract. This 
practice—hedging with a futures contract that is different from the underly-
ing being hedged—is called cross hedging. In the commodity futures mar-
kets, this occurs, for example, when a farmer who grows okra hedges that 
crop by using corn futures contracts, because there are no exchange-traded 
futures contracts in which okra is the underlying. In the stock market, an 
asset manager who wishes to hedge a stock portfolio must choose the stock 
index, or combination of stock indexes, that best (but imperfectly) tracks 
the portfolio.

Consequently, cross hedging adds another dimension to basis risk, 
because the portfolio does not track the return on the stock index perfectly. 
Mispricing of a stock index futures contract is a major portion of basis risk 
and is largely random. 
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The foregoing points about hedging will be made clearer in the next 
illustrations.

hedge ratio To implement a hedging strategy, it is necessary to determine 
not only which stock index futures contract to use, but also how many of 
the contracts to take a position in (i.e., how many to sell in a short hedge 
and buy in a long hedge). The number of contracts depends on the relative 
return volatility of the portfolio to be hedged and the return volatility of the 
futures contract. The hedge ratio is the ratio of volatility of the portfolio to 
be hedged and the return volatility of the futures contract.

It is tempting to use the portfolio’s beta as a hedge ratio because it is an 
indicator of the sensitivity of a portfolio’s return to the stock index return. It 
appears, then, to be an ideal way to adjust for the sensitivity of the return of 
the portfolio to be hedged. However, applying beta relative to a stock index 
as a sensitivity adjustment to a stock index futures contract assumes that 
the index and the futures contract have the same volatility. If futures were 
always to sell at their theoretical price, this would be a reasonable assump-
tion. However, mispricing is an extra element of volatility in a stock index 
futures contract. Since the futures contract is more volatile than the underly-
ing index, using a portfolio beta as a sensitivity adjustment would result in 
a portfolio being overhedged. 

The most accurate sensitivity adjustment would be the beta of a portfo-
lio relative to the futures contract. It can be shown that the beta of a portfo-
lio relative to a futures contract is equivalent to the product of the portfolio 
relative to the underlying index and the beta of the index relative to the 
futures contract.9 The beta in each case is estimated using regression analy-
sis in which the data are historical returns for the portfolio to be hedged, the 
stock index, and the stock index futures contract.

The regression to be estimated is

rP = aP + BPIrI + eP

where rP = the return on the portfolio to be hedged
rI = the return on the stock index

BPI = the beta of the portfolio relative to the stock index
aP = the intercept of the relationship
eP = the error term

9 See Edgar E. Peters, “Hedged Equity Portfolios: Components of Risk and Return,” 
Advances in Futures and Options Research 1, part B (1987): 75–92.
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and

rI = aI + BIF rF + eI

where rF = the return on the stock index futures contract
BIF = the beta of the stock index relative to the stock index futures  

contract
aI = the intercept of the relationship
eI = the error term

Given BPI and BIF , the minimum risk hedge ratio can then be expressed as

Hedge ratio = BPI × BIF

The R2 of the regression will indicate how good the estimated relationship 
is, and thereby allow the asset manager to assess the likelihood of success of 
the proposed hedge.

The number of contracts needed can be calculated using the following 
three steps after BPI and BIF are estimated:

Step 1. Determine the equivalent market index units of the market by 
dividing the market value of the portfolio to be hedged by the cur-
rent index price of the futures contract:

 Equivalent market index units
Market value= oof the protfolio to be hedged
Current index value of the futures contract

Step 2. Multiply the equivalent market index units by the hedge ratio to 
obtain the beta-adjusted equivalent market index units:

Beta-adjusted equivalent market index units
= Hedge ratio × Equivalent market index units

or

Beta-adjusted equivalent market index units
= BPI × BIF × Equiv5alent market index units

Step 3. Divide the beta-adjusted equivalent units by the multiple speci-
fied by the stock index futures contract:

Number of contracts
Beta-adjusted equivale= nnt market index units

Multiple of the contraact

We will use two examples to illustrate the implementation of a hedge 
and the risks associated with hedging.
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Illustration 1 Consider a portfolio manager on January 30, 2009, who is 
managing a $100 million portfolio that is identical to the S&P 500. The 
manager wants to hedge against a possible market decline. More specifically, 
the manager wants to hedge the portfolio until February 27, 2009. To hedge 
against an adverse market move during the period January 30, 2009, to 
February 27, 2009, the portfolio manager decides to enter into a short hedge 
by selling the S&P 500 futures contracts that settled in March 2009. On 
January 30, 2009, the March 2009 futures contract was selling for 822.5.

Since the portfolio to be hedged is identical to the S&P 500, the beta 
of the portfolio relative to the index (BPI) is, of course, 1. The beta relative 
to the futures contract (BIF) was estimated to be 0.745. Therefore, the num-
ber of contracts needed to hedge the $100 million portfolio is computed as 
follows:

Step 1.

Equivalent market index units = $ , ,100 000 000
8222 5

121 581
.

$ ,=

Step 2. 

Beta-adjusted equivalent market index units  = 1 × 0.745 × $121,581  
= $90,578

Step 3. The multiple for the S&P 500 contract is 250. Therefore,

Number of contracts to be sold = =$ ,
$
90 578
250

3362

This means that the futures position was equal to $74,500,000 (362 × 
$250 × 822.5). On February 27, 2009, the hedge was removed. The portfo-
lio that mirrored the S&P 500 had lost $10,993,122. At the time the hedge 
was lifted, the March 2009 S&P 500 contract was selling at 734.2. Since the 
contract was sold on January 30, 2009, for 822.5 and bought back on Febru-
ary 27, 2009, for 734.2, there was a gain of 88.3 index units per contract. For 
the 362 contracts, the gain was $7,997,994 (88.3 × $250 × 362). This results 
in a smaller loss of $2,995,129 ($7,997,994 gain on the futures position and 
$10,993,122 loss on the portfolio). The total transaction costs for the futures 
position would have been less than $8,000. Remember, had the asset man-
ager not hedged the position, the loss would have been $10,993,122.

Let’s analyze this hedge to see not only why it was successful, but also 
why it was not a perfect hedge. As explained earlier, in hedging, basis risk is 
substituted for price risk. Consider the basis risk in this hedge. At the time 
the hedge was placed, the cash index was at 825.88, and the futures contract 
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was selling at 822.5. The basis was equal to 3.38 index units (the cash index 
of 825.88 minus the futures price of 822.5). At the same time, it was calcu-
lated that, based on the cost of carry, the theoretical basis was 1.45 index 
units. That is, the theoretical futures price at the time the hedge was placed 
should have been 824.42. Thus, according to the pricing model, the futures 
contract was mispriced by 1.92 index units.

When the hedge was removed at the close of February 27, 2009, the 
cash index stood at 735.09, and the futures contract at 734.2. Thus, the 
basis changed from 3.38 index units at the time the hedge was initiated 
to 0.89 index units (735.09 – 734.2) when the hedge was lifted. The basis 
had changed by 2.49 index units (3.38 – 0.89) alone, or $622.5 per con-
tract (2.49 times the multiple of $250). This means that the basis alone 
cost $225,538 for the 362 contracts ($622.5 × 362). The index dropped 
90.79 index units, for a gain of $22,698 per contract, or $8,223,532. Thus, 
the futures position cost $225,538 due to the change in the basis risk, and 
$8,223,532 due to the change in the index. Combined, this comes out to be 
the $7,997,994 gain in the futures position.

Illustration 2 We examined basis risk in the first illustration. Because we 
were hedging a portfolio that was constructed to replicate the S&P 500 
index using the S&P 500 futures contract, there was no cross-hedging risk. 
However, most portfolios are not matched to the S&P 500. Consequently, 
cross-hedging risk results because the estimated beta for the price behav-
ior of the portfolio may not behave as predicted by BPI. To illustrate this 
situation, suppose that an asset manager owned all the stocks in the Dow 
Jones Industrial Average (DJIA) on January 30, 2009. The market value of 
the portfolio held was $100 million. Also assume that the portfolio man-
ager wanted to hedge the position against a decline in stock prices from 
January 30, 2009, to February 27, 2009, using the March 2009 S&P 500 
futures contract. Since the S&P 500 futures September contract is used here 
to hedge a portfolio of DJIA to February 27, 2009, this is a cross hedge.

Information about the S&P 500 cash index and futures contract when 
the hedge was placed on January 30, 2009, and when it was removed on 
February 27, 2009, was given in the previous illustration. The beta of the 
index relative to the futures contract (BIF) was 0.745. The DJIA in a regres-
sion analysis was found to have a beta relative to the S&P 500 of 1.05 
(with an R-squared of 93%). We follow the three steps enumerated above 
to obtain the number of contracts to sell:

Step 1.

Equivalent market index units = $ , ,100 000 000
8222 5

121 581
.

$ ,=
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Step 2. 

Beta-adjusted equivalent market index units  = 1.05 × 0.745 × $121,581  
= $95,106

Step 3. The multiple for the S&P 500 contract is 250. Therefore,

Number of contracts to be sold = =$ ,95 106
250

3880

During the period of the hedge, the DJIA actually lost $11,720,000. 
This meant a loss of 11.72% on the portfolio consisting of the compo-
nent stocks of the DJIA. Since 380 S&P 500 futures contracts were sold 
and the gain per contract was 88.3 points, the gain from the futures posi-
tion was $8,388,500 ($88.3 × 380 × 250). This means that the hedged 
position resulted in a loss of $3,331,500, or equivalently, a return of 
–3.31%. 

We already analyzed why this was not a perfect hedge. In the previous 
illustration, we explained how changes in the basis affected the outcome. 
Let’s look at how the relationship between the DJIA and the S&P 500 Index 
affected the outcome. As stated in the previous illustration, the S&P 500 
over this same period declined in value by 10.99%. With the beta of the 
portfolio relative to the S&P 500 Index (1.05), the expected decline in the 
value of the portfolio based on the movement in the S&P 500 was 11.54% 
(1.05 × 10.99%). Had this actually occurred, the DJIA portfolio would have 
lost only $10,990,000 rather than $11,720,000, and the net loss from the 
hedge would have been $2,601,500, or –2.6%. Thus, there is a difference 
of a $730,000 loss due to the DJIA performing differently than predicted 
by beta.

LINear reGreSSION OF a NONLINear reLatIONShIp

Sometimes, the original variables do not allow for the concept of a linear 
relationship. However, the assumed functional relationship is such that a 
transformation h(y) of the dependent variable y might lead to a linear func-
tion between x and the transform, h. This is demonstrated by hypotheti-
cal data in Figure 2.5, where the y-values appear to be the result of some 
exponential function of the x-values. The original data pairs in Table 2.3 are 
indicated by the  symbols in Figure 2.5.

We assume that the functional relationship is of the form

 y e x= α β   (2.14)
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x

y

FIGUre 2.5 Least Squares Regression Fit for Exponential Functional Relationship

taBLe 2.3 Values of Exponential Relationship between x and y Including Least 
Squares Regression Fit, ŷ

x y ŷ

0.3577 1.5256 1.4900

1.0211 2.8585 2.8792

3.8935 49.1511 49.8755

4.3369 76.5314 77.4574

4.6251 102.0694 103.1211

5.7976 329.5516 330.3149

5.9306 376.3908 376.9731

7.1745 1305.7005 1296.2346

7.1917 1328.3200 1318.5152

7.5089 1824.2675 1806.7285
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To linearize equation (2.14), we have the following natural logarithm 
transformation of the y-values to perform:

 ln lny x= +α β   (2.15)

Linear regression of exponential Data 

We estimate using OLS the ln y on the x-values to obtain ln a = 0.044 and 
b = 0.993. Retransformation yields the following functional equation: 

 ˆ .y a e eb x x= =⋅ ⋅⋅ ⋅1 045 0.993  (2.16)

The estimated ŷ -values from equation (2.16) are represented by the + 
symbol in Figure 2.5 and in most cases lie exactly on top of the original data 
points. The coefficient of determination of the linearized regression is given 
by approximately R2 = 1 which indicates a perfect fit. Note that this is the 
least squares solution to the linearized problem in equation (2.15) and not 
the originally assumed functional relationship. The regression parameters 
for the original problem obtained in some fashion other than via lineariza-
tion may provide an even tighter fit with an R2 even closer to one.10 

Key pOINtS

 ■ Correlation or covariance is used to measure the association  between 
two variables.

 ■ A regression model is employed to model the dependence of a variable 
(called the dependent variable) on one (or more) explanatory variables. 

 ■ In the basic regression, the functional relationship between the depen-
dent variable and the explanatory variables is expressed as a linear 
equation and hence is referred to as a linear regression model.

 ■ When the linear regression model includes only one explanatory vari-
able, the model is said to be a simple linear regression.

 ■ The error term, or the residual, in a simple linear regression model mea-
sures the error that is due to the variation in the dependent variable that 
is not due to the explanatory variable.

 ■ The error term is assumed to be normally distributed with zero mean 
and constant variance.

10 As noted earlier, for functional relationships higher than of linear order, there is 
often no analytical solution, the optima having to be determined numerically or by 
some trial-and-error algorithms.
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 ■ The parameters of a simple linear regression model are estimated using 
the method of ordinary least squares and provides a best linear unbi-
ased estimate of the parameter.

 ■ The coefficient of determination, denoted by R2, is a measure of the 
goodness-of-fit of the regression line. This measure, which has a value 
that ranges from 0 to 1, indicates the percentage of the total sum of 
squares explained by the explanatory variable in a simple linear 
regression.
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CHAPTER 3
Multiple Linear Regression

A fter reading this chapter you will understand:

 ■ What a multiple linear regression model is.
 ■ The assumptions about the error terms in a multiple linear regression 
model.

 ■ How the regression coefficients of the model are estimated.
 ■ The three steps necessary in designing a regression model: specification, 
fitting/estimating, and diagnosis.

 ■ The tests used for determining the significance of the model and each 
independent variable.

It is often the case in finance that it is necessary to analyze more than 
one variable simultaneously. In Chapter 2, we explained how to estimate a 
linear dependence between two variables using the linear regression method. 
When there is only one independent variable, the regression model is said to 
be a simple linear regression or a univariate regression.

Univariate modeling in many cases is not sufficient to deal with real 
problems in finance. The behavior of a certain variable of interest sometimes 
needs to be explained by two or more variables. For example, suppose that 
we want to determine the financial or macroeconomic variables that affect 
the monthly return on the Standard & Poor’s 500 (S&P 500) index. Let’s 
suppose that economic and financial theory suggest that there are 10 such 
explanatory variables. Thus we have a setting of 11 dimensions—the return 
on the S&P 500 and the 10 explanatory variables.

In this chapter and in the next, we explain the multiple linear regres-
sion model to explain the linear relationship between several independent 
variables and some dependent variable we observe. As in the univariate 
case (i.e., simple linear regression) discussed in Chapter 2, the relationship 
between the variables of interest may not be linear. However, that can be 
handled by a suitable transformation of the variables. 



42 The Basics of financial economeTrics

THE MuLTiPLE LiNEAR REGRESSiON MODEL 

The multiple linear regression model for the population is of the form

 y = β0 + β1x1 + β2x2 +  .  .  .  + βkxk + ε (3.1)

where we have β0 = constant intercept
β1,  .  .  .  , βk = regression coefficients of k explanatory or 

independent variables
β = model error

In vector notation, given samples of dependent and explanatory or inde-
pendent variables, we can represent equation (3.1) as 

 y = Xβ + ε (3.2)

where y is an n × 1 column vector consisting of the n observations of the 
dependent variable, that is,

 �=

















y
y

yn

1

 (3.3)

where X is a n × (k + 1) matrix consisting of n observations of each of the 
k independent variables and a column of ones to account for the vertical 
intercepts β0 such that 
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  (3.4)

The (k + 1) regression coefficients including intercept are given by the k + 1  
column vector:

 �β =
β

β














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

k

0

  (3.5)

Each observation’s residual is represented in the column vector ε:

 �ε =
ε

ε

















n

1

  (3.6)
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The regression coefficient of each independent variable given in equa-
tion (3.5) represents the average change in the dependent variable per unit 
change in the independent variable with the other independent variables 
held constant. 

ASSuMPTiONS OF THE MuLTiPLE LiNEAR 
REGRESSiON MODEL

For the multiple linear regression model, we make the following three 
assumptions about the error terms:

Assumption 1. The regression errors are normally distributed with zero 
mean.

Assumption 2. The variance of the regression errors (σε
2) is constant. 

Assumption 3. The error terms from different points in time are inde-
pendent such that εt ≠ εt+d for any d ≠ 0 are independent for all t.

Formally, we can restate the above assumptions in a concise way as 

 ( )ε σN~ 0,i

i i d. . .
2  

Furthermore, the residuals are assumed to be uncorrelated with the indepen-
dent variables. In the next chapter, we describe how to deal with situations 
when these assumptions are violated.

ESTiMATiON OF THE MODEL PARAMETERS

Since the model is not generally known for the population, we need to esti-
mate it from some sample. Thus, the estimated regression is 

 �= + + + +y b b x b x b xˆ k k0 1 1 2 2   (3.7)

The matrix notation analogue of equation (3.7) is 

 = + = +y y e Xb eˆ   (3.8)

which is similar to equation (3.2) except the model’s parameters and error 
terms are replaced by their corresponding estimates, b and e. 

The independent variables x1,  .  .  .  , xk are thought to form a space of 
dimension k. Then, with the y-values, we have an additional dimension such 
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that our total dimensionality is k + 1. The estimated model generates values 
on a k-multidimensional hyperplane, which expresses the functional linear 
relationship between the dependent and independent variables. The esti-
mated hyperplane is called a regression hyperplane. In the univariate case, 
this is simply the regression line of the ŷ estimates stemming from the one 
single independent variable x.1 

Each of the k coefficients determines the slope in the direction of the cor-
responding independent variable. In the direction of the k + 1st dimension of 
the y-values, we extend the estimated errors, = −e y ŷ. At each y-value, these 
errors denote the distance between the hyperplane and the observation of 
the corresponding y-value.

To demonstrate this, we consider some variable y. Suppose, we also have 
a two-dimensional variable x with independent components x1 and x2. Hence, 
we have a three-dimensional space as shown in Figure 3.1. For y, we have 
three observations, y1, y2, and y3. The hyperplane for equation (3.7) formed 

1 In general, the hyperplane formed by the linear combination of the x-values is 
always one dimension less than the overall dimensionality.

FiGuRE 3.1 Vector Hyperplane and Residuals

6

4

2

0

–2

–4

–6
10

5

0

–5

–10 –10
–5

0
5

10

y

x2 x1

y3

b1

y1

e1

b2

y2

e2

e3

b0



Multiple Linear Regression 45

by the regression is indicated by the gray plane. The intercept b0 is indicated 
by the dashed arrow while the slopes in the directions of x1

 and x2 are indi-
cated by the arrows b1 and b2, respectively.2 Now, we extend vertical lines 
between the hyperplane and the observations, e1, e2, and e3, to show by how 
much we have missed approximating the observations with the hyperplane.

Generally, with the ordinary least squares regression method described 
in Chapter 2, the estimates are, again, such that Σ −y y( ˆ)2 is minimized with 
respect to the regression coefficients. For the computation of the regres-
sion estimates, we need to indulge somewhat in matrix computation. If we 
write the minimization problem in matrix notation, finding the vector β 
that minimizes the squared errors looks like3

 ∑ − = − β − β
=

y y y X y X( ˆ) ( ) ( )i
i

n
T2

1

  (3.9)

Differential calculus and matrix algebra lead to the optimal regression 
coefficient estimates and estimated residuals given by 

 ( )=
−

b X X X yT T1
  (3.10)

and 

 = − = −e y X b y ŷT   (3.11)

where b in equation (3.10) and e in equation (3.11) are (k + 1) × 1 and n × 1 
column vectors, respectively. One should not worry however if this appears 
rather complicated and very theoretical. Most statistical software have these 
computations implemented and one has to just insert the data for the vari-
ables and select some least squares regression routine to produce the desired 
estimates according to equation (3.10). 

DESiGNiNG THE MODEL 

Although in the previous chapter we introduced the simple linear regres-
sion model, we did not detail the general steps necessary for the design of 

2 The arrow b0 is dashed to indicate that it extends from our point of view vertically 
from the point (0,0,0) behind the hyperplane. 
3 The transpose and matrix inverse are explained in Appendix D. When we use the 
matrix inverse, we implicitly assume the matrix of interest to be full rank, a require-
ment for the inversion of a matrix.
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the regression and its evaluation. This building process consists of three 
steps: 

 1. Specification
 2. Fitting/estimating
 3. Diagnosis

In the specification step, we need to determine the dependent and inde-
pendent variables. We have to make sure that we do not include independent 
variables that seem to have nothing to do with the dependent variable. More 
than likely, in dealing with a dependent variable that is a financial variable, 
financial and economic theory will provide a guide to what the relevant 
independent variables might be. Then, after the variables have been identi-
fied, we have to gather data for all the variables. Thus, we obtain the vector 
y and the matrix X. Without defending it theoretically here, it is true that the 
larger the sample, the better the quality of the estimation. Theoretically, the 
sample size n should at least be one larger than the number of independent 
variables k. A rule of thumb is, at least, four times k. 

The fitting or estimation step consists of constructing the functional linear 
relationship expressed by the model. That is, we need to compute the correla-
tion coefficients for the regression coefficients. We perform this even for the 
independent variables to test for possible interaction between them as explained 
in the next chapter. The estimation, then, yields so-called point estimates of the 
dependent variable for given values of the independent variables.4 

Once we have obtained the estimates for equation (3.10), we can move 
on to evaluating the quality of the regression with respect to the given data. 
This is the diagnosis step.

DiAGNOSTiC CHECK AND MODEL SiGNiFiCANCE

As just explained, diagnosing the quality of some model is essential in the 
building process. Thus we need to set forth criteria for determining model 
quality. If, according to some criteria, the fit is determined to be insufficient, we 
might have to redesign the model by including different independent variables. 

We know from the previous chapter the goodness-of-fit measure is the 
coefficient of determination (denoted by R2). We will use that measure here 
as well. As with the univariate regression, the coefficient of determination 
measures the percentage of variation in the dependent variable explained by 
all of the independent variables employed in the regression. The R2 of the 

4 This is in contrast to a range or interval of values as given by a confidence interval. 
Appendix C explains what a confidence interval is. 
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multiple linear regression is referred to as the multiple coefficient of deter-
mination. We reproduce its definition from Chapter 2 here: 

 =R
SSR
SST

2
  (3.12)

where SSR = sum of squares explained by the regression model 
SST = total sum of squares

Following the initial assessment, one needs to verify the model by 
determining its statistical significance. To do so, we compute the over-
all model’s significance and also the significance of the individual regres-
sion coefficients. The estimated regression errors play an important role as 
well. If the standard deviation of the regression errors is found to be too 
large, the fit could be improved by an alternative. The reason is that too 
much of the variance of the dependent y is put into the residual variance 
s2. Some of this residual variance may, in fact, be the result of variation in 
some independent variable not considered in the model so far. And a final 
aspect is testing for the interaction of the independent variables that we 
discuss in the next chapter.

Testing for the Significance of the Model 

To test whether the entire model is significant, we consider two alternative 
hypotheses. The first, our null hypothesis H0, states that all regression coeffi-
cients are equal to zero, which means that none of the independent variables 
play any role. The alternative hypothesis H1, states that at least one coef-
ficient is different from zero. More formally,

 …β = β = = β =H : 0k0 0 1  
 β ≠H : 0j1  for at least one …{ }∈j k1,2, ,

In the case of a true null hypothesis, the linear model with the inde-
pendent variables we have chosen does not describe the behavior of the 
dependent variable. To perform the test, we carry out an analysis of variance 
(ANOVA) test. In this context, we compute the F-statistic defined by

 =

− −

=F k

n k

SSR

SSE
1

MSR
MSE

  (3.13)

where SSE = unexplained sum of squares
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SSE was defined in the previous chapter but in the multiple linear 
regression case ŷ  is given by equation (3.7) and the error terms by 
equation (3.11). 

The degrees of freedom of the SSR equal the number of independent 
variables, dn = k, while the degrees of freedom of the SSE are dd = n − k − 1.5 
The MSR and MSE are the mean squares of regression and mean squared 
errors, respectively, obtained by dividing the sum of squared deviations by 
their respective degrees of freedom. All results necessary for the ANOVA are 
shown in Table 3.1. 

If the statistic is found significant at some predetermined level  
(i.e., pF < α), the model does explain some variation of the dependent 
variable y.6 

We ought to be careful not to overdo it; that is, we should not create a 
model more complicated than necessary. A good guideline is to use the sim-
plest model suitable. Complicated and refined models tend to be inflexible 
and fail to work with different samples. In most cases, they are poor models 
for forecasting purposes. So, the best R2 is not necessarily an indicator of 
the most useful model. The reason is that one can artificially increase R2 
by including additional independent variables into the regression. But the 
resulting seemingly better fit may be misleading. One will not know the true 
quality of the model if one evaluates it by applying it to the same data used 
for the fit. However, often if one uses the fitted model for a different set of 
data, the weakness of the overfitted model becomes obvious. 

TAbLE 3.1 ANOVA Component Pattern

df SS MS F p-Value of F

Regression k SSR
=

k
MSR

SSR

MSR
MSEResidual n − k − 1 SSE

=
− −n k

MSE
SSE

1

Total n – 1 SST

5 In total, the SST is chi-square distributed with n − 1 degrees of freedom. See Appen-
dix B for an explanation of the chi-square test.
6 Alternatively, one can check whether the test statistic is greater than the critical 
value, that is, F > Fα.
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It is for this reason that a redefined version of the coefficient of deter-
mination is needed and is called the adjusted R-squared (or adjusted R2) 
given by

 ( )= − − −
− −







R R

n
n k

1 1
1
1adj

2 2   (3.14)

This adjusted goodness-of-fit measure incorporates the number of 
observations, n, as well as the number of independent variables, k, plus the 
constant term in the denominator (n − k − 1). For as long as the number of 
observations is very large compared to k, R2 and Radj

2  are approximately 
the same.7 However, if the number k of independent variables included 
increases, the Radj

2  drops noticeably compared to the original R2. One can 
interpret this new measure of fit as penalizing excessive use of independent 
variables. Instead, one should set up the model as parsimoniously as pos-
sible. To take most advantage of the set of possible independent variables, 
one should consider those that contribute a maximum of explanatory varia-
tion to the regression. That is, one has to balance the cost of additional 
independent variables and reduction in the adjusted R2. 

Testing for the Significance of the independent Variables

Suppose we have found that the model is significant. Now, we turn to the 
test of significance for individual independent variables. Formally, for each 
of the k independent variables, we test

β =H : 0j0   β ≠H : 0j1

conditional on the other independent variables already included in the 
regression model. 

The appropriate test would be the t-test, given by 

 =
−

t
b

s

0
j

j

bj

  (3.15)

7 For instance, inserting k = 1 into equation (3.14) we obtain 

 
R

n R R
n

R
R

nadj
2

2 2
2

22 1
2

1
2

= − + −
−

= − −
−

( )

 which, for large n, is only slightly less than R2.
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with n − k − 1 degrees of freedom. The value bj is the sample estimate of the jth 
regression coefficient and sbj

 is the standard error of the coefficient estimate.
The standard error of each coefficient is determined by the estimate of 

the variance matrix of the entire vector β, given by

 ( )−
s X XT2 1

  (3.16)

which is a matrix multiplied by the univariate standard error of the regres-
sion, s2. The latter is given by 

 =
− −

=
− −

s
e e

n k n k1
SSE

1

T
2   (3.17)

SSE was previously defined and the degrees of freedom are determined 
by the number of observations, n, minus the number of independent param-
eters, k, and minus one degree of freedom lost on the constant term. Hence, 
we obtain n − k − 1 degrees of freedom. The jth diagonal element of equa-
tion (3.16), then, is the standard error of the jth regression coefficient used 
in equation (3.15).8 This test statistic in equation (3.15) needs to be com-
pared to the critical values of the tabulated t-distribution with n − k − 1 
degrees of freedom at some particular significance level α, say 0.05. So, if the 
test statistic should exceed the critical value then the independent variable 
is said to be statistically significant. Equivalently, the p-value of equation 
(3.15) would then be less than α. 

The F-Test for inclusion of Additional Variables

Suppose we have k − 1 independent variables in the regression. The 
goodness-of-fit is given by R1

2 . If we want to check whether it is appropri-
ate to add another independent variable to the regression model, we need 
a test statistic measuring the improvement in the goodness-of-fit due to the 
additional variable. Let R2 denote the goodness-of-fit of the regression after 
the additional independent variable has been included into the regression. 
Then the improvement in the explanatory power is given by −R R2

1
2 , which 

is chi-square distributed with one degree of freedom. Because 1 − R2 is chi-
square distributed with n − k − 1 degrees of freedom, the statistic

  = −
−
− −

F
R R

R
n k
1

1

1

2
1
2

2  (3.18)

8 Typically one does not have to worry about all these rather mathematical steps 
because statistical software performs these calculations. The interpretation of that 
output must be understood.
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is F-distributed with 1 and n − k − 1 degrees of freedom under the null  
hypothesis that the true model consists of k − 1 independent variables only.9

APPLiCATiONS TO FiNANCE

We conclude this chapter with several applications of multiple linear regres-
sion analysis to various areas in finance.

Estimation of Empirical Duration

A commonly used measure of the interest-rate sensitivity of a financial asset’s 
value is its duration. For example, if a financial asset has a duration of 5, this 
means that the financial asset’s value or price will change by roughly 5% 
for a 100 basis point change in interest rates. The direction of the change is 
determined by the sign of the duration. Specifically, if the duration is posi-
tive, the price will decline when the relevant interest rate increases but will 
increase if the relevant interest rate declines. If the duration is negative, the 
price will increase if the relevant interest rate increases and fall if the rel-
evant interest rate decreases.

So suppose that a common stock selling at a price of $80 has a duration 
of +5 and that the relevant interest rate that affects the value of the common 
stock is currently 6%. This means that if that relevant interest rate increases 
by 100 basis points (from 6% to 7%), the price of the financial asset will 
decrease by 5%. Since the current price is $80, the price will decline by about 
$4. On the other hand, if the relevant interest rate decreases from 6% to 5% 
(a decline of 100 basis points), the price will increase by roughly 5% to $84. 

Duration can be estimated by using a valuation model or empirically 
by estimating from historical returns the sensitivity of the asset’s value to 
changes in interest rates. When duration is measured in the latter way, it 
is referred to as empirical duration. Since it is estimated using regression 
analysis, it is sometimes referred to as regression-based duration.

The dependent variable in the regression model is the percentage change 
in the value of the asset. We will not use individual assets in our illustration. 
Rather we will use sectors of the financial market and refer to them as assets. 
Effectively, these sectors can be viewed as portfolios that are comprised of 
the components of the index representing the sector. The assets we will esti-
mate the duration for are (1) the electric utility sector of the S&P 500 index, 
(2) the commercial bank sector of the S&P 500 index, and (3) Lehman U.S. 

9 The chi-square and the F-distribution are covered in Appendix A and Appendix B, 
respectively.
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Aggregate Bond Index.10 For each of these indexes the dependent variable 
is the monthly return in the value of the index. The time period covered is 
from October 1989 to November 2003 (170 observations) and the monthly 
return observations are given in the last three columns of Table 3.2.11 

Let’s begin with just one independent variable, an interest rate index. 
We will use the monthly change in the U.S. Treasury yield index as measured 
by the Lehman Treasury Index as the relevant interest rate variable. The 
monthly values are given in the second column of Table 3.2. Notice that 
the data are reported as the percentage difference between two months. So, 
if in one month the value of the Treasury yield index is 7.20% and in the 
next month it is 7.70%, the value for the observation is 0.50%. In finance, a 
basis point is equal to 0.0001 or 0.01% so that 0.50% is equal to 50 basis 
points. A 100 basis point change in interest rates is 1% or 1.00. We’ll need 
to understand this in order to interpret the regression results.

The simple linear regression model (i.e., the univariate case) is 

 y = b0 + b1x1 + e 

where y = the monthly return of an index
x1 = the monthly change in the Treasury yield

The estimated regression coefficient b1 is the empirical duration. To 
understand why, if we substitute 100 basis points in the above equation 
for the monthly change in the Treasury yield, the regression coefficient b1 
tells us that the estimated change in the monthly return of an index will 
be b1. This is precisely the definition of empirical duration: the approx-
imate change in the value of an asset for a 100 basis point change in 
interest rates.

The estimated regression coefficient and other diagnostic values are 
reported in Table 3.3. Notice that negative values for the estimated empiri-
cal duration are reported. In practice, however, the duration is quoted as a 
positive value. Let’s look at the results for all three assets.

For the electric utility sector, the estimated regression coefficient for b1 
is –4.5329, suggesting that for a 100 basis point change in Treasury yields, 
the percentage change in the value of the stocks comprising this sector will 

10 The Lehman U.S. Aggregate Bond Index is now the Barclays Capital U.S. Aggre-
gate Bond Index. 
11 The data for this illustration were supplied by David Wright of Northern Illinois 
University.
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TAbLE 3.2 Data for Empirical Duration Illustration

Month

Change in
Lehman Bros
Treasury Yield

S&P 500
Return

Monthly Returns for
Electric

Utility Sector
Commercial
Bank Sector

Lehman U.S.
Aggregate Bond Index

Oct-1989 −0.46 −2.33 2.350 −11.043 2.4600

Nov-1989 −0.10 2.08 2.236 −3.187 0.9500

Dec-1989 0.12 2.36 3.794 −1.887 0.2700

Jan-1990 0.43 −6.71 −4.641 −10.795 −1.1900

Feb-1990 0.09 1.29 0.193 4.782 0.3200

Mar-1990 0.20 2.63 −1.406 −4.419 0.0700

Apr-1990 0.34 −2.47 −5.175 −4.265 −0.9200

May-1990 −0.46 9.75 5.455 12.209 2.9600

Jun-1990 −0.20 −0.70 0.966 −5.399 1.6100

Jul-1990 −0.21 −0.32 1.351 −8.328 1.3800

Aug-1990 0.37 −9.03 −7.644 −10.943 −1.3400

Sep-1990 −0.06 −4.92 0.435 −15.039 0.8300

Oct-1990 −0.23 −0.37 10.704 −10.666 1.2700

Nov-1990 −0.28 6.44 2.006 18.892 2.1500

Dec-1990 −0.23 2.74 1.643 6.620 1.5600

Jan-1991 −0.13 4.42 −1.401 8.018 1.2400

Feb-1991 0.01 7.16 4.468 12.568 0.8500

Mar-1991 0.03 2.38 2.445 5.004 0.6900

Apr-1991 −0.15 0.28 −0.140 7.226 1.0800

May-1991 0.06 4.28 −0.609 7.501 0.5800

Jun-1991 0.15 −4.57 −0.615 −7.865 −0.0500

Jul-1991 −0.13 4.68 4.743 7.983 1.3900

Aug-1991 −0.37 2.35 3.226 9.058 2.1600

Sep-1991 −0.33 −1.64 4.736 −2.033 2.0300

Oct-1991 −0.17 1.34 1.455 0.638 1.1100

Nov-1991 −0.15 −4.04 2.960 −9.814 0.9200

Dec-1991 −0.59 11.43 5.821 14.773 2.9700

Jan-1992 0.42 −1.86 −5.515 2.843 −1.3600

Feb-1992 0.10 1.28 −1.684 8.834 0.6506

Mar-1992 0.27 −1.96 −0.296 −3.244 −0.5634

Apr-1992 −0.10 2.91 3.058 4.273 0.7215

May-1992 −0.23 0.54 2.405 2.483 1.8871

Jun-1992 −0.26 −1.45 0.492 1.221 1.3760

Jul-1992 −0.41 4.03 6.394 −0.540 2.0411

Aug-1992 −0.13 −2.02 −1.746 −5.407 1.0122

Sep-1992 −0.26 1.15 0.718 1.960 1.1864

Oct-1992 0.49 0.36 −0.778 2.631 −1.3266

Nov-1992 0.26 3.37 −0.025 7.539 0.0228

Dec-1992 −0.24 1.31 3.247 5.010 1.5903

Jan-1993 −0.36 0.73 3.096 4.203 1.9177

Feb-1993 −0.29 1.35 6.000 3.406 1.7492

Mar-1993 0.02 2.15 0.622 3.586 0.4183

Apr-1993 −0.10 −2.45 −0.026 −5.441 0.6955

(continued)
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TAbLE 3.2 (continued)

Month

Change in
Lehman Bros
Treasury Yield

S&P 500
Return

Monthly Returns for

Electric
Utility Sector

Commercial
Bank Sector

Lehman U.S.
Aggregate Bond Index

May-1993 0.25 2.70 −0.607 −0.647 0.1268

Jun-1993 −0.30 0.33 2.708 4.991 1.8121

Jul-1993 0.05 −0.47 2.921 0.741 0.5655

Aug-1993 −0.31 3.81 3.354 0.851 1.7539

Sep-1993 0.00 −0.74 −1.099 3.790 0.2746

Oct-1993 0.05 2.03 −1.499 −7.411 0.3732

Nov-1993 0.26 −0.94 −5.091 −1.396 −0.8502

Dec-1993 0.01 1.23 2.073 3.828 0.5420

Jan-1994 −0.17 3.35 −2.577 4.376 1.3502

Feb-1994 0.55 −2.70 −5.683 −4.369 −1.7374

Mar-1994 0.55 −4.35 −4.656 −3.031 −2.4657

Apr-1994 0.37 1.30 0.890 3.970 −0.7985

May-1994 0.18 1.63 −5.675 6.419 −0.0138

Jun-1994 0.16 −2.47 −3.989 −2.662 −0.2213

Jul-1994 −0.23 3.31 5.555 2.010 1.9868

Aug-1994 0.12 4.07 0.851 3.783 0.1234

Sep-1994 0.43 −2.41 −2.388 −7.625 −1.4717

Oct-1994 0.18 2.29 1.753 1.235 −0.0896

Nov-1994 0.37 −3.67 2.454 −7.595 −0.2217

Dec-1994 0.11 1.46 0.209 −0.866 0.6915

Jan-1995 −0.33 2.60 7.749 6.861 1.9791

Feb-1995 −0.41 3.88 −0.750 6.814 2.3773

Mar-1995 0.01 2.96 −2.556 −1.434 0.6131

Apr-1995 −0.18 2.91 3.038 4.485 1.3974

May-1995 −0.72 3.95 7.590 9.981 3.8697

Jun-1995 −0.05 2.35 −0.707 0.258 0.7329

Jul-1995 0.14 3.33 −0.395 4.129 −0.2231

Aug-1995 −0.10 0.27 −0.632 5.731 1.2056

Sep-1995 −0.05 4.19 6.987 5.491 0.9735

Oct-1995 −0.21 −0.35 2.215 −1.906 1.3002

Nov-1995 −0.23 4.40 −0.627 7.664 1.4982

Dec-1995 −0.18 1.85 6.333 0.387 1.4040

Jan-1996 −0.13 3.44 2.420 3.361 0.6633

Feb-1996 0.49 0.96 −3.590 4.673 −1.7378

Mar-1996 0.31 0.96 −1.697 2.346 −0.6954

Apr-1996 0.25 1.47 −4.304 −1.292 −0.5621

May-1996 0.18 2.58 1.864 2.529 −0.2025

Jun-1996 −0.14 0.41 5.991 −0.859 1.3433

Jul-1996 0.08 −4.45 −7.150 0.466 0.2736

Aug-1996 0.15 2.12 1.154 4.880 −0.1675

Sep-1996 −0.23 5.62 0.682 6.415 1.7414

Oct-1996 −0.35 2.74 4.356 8.004 2.2162

Nov-1996 −0.21 7.59 1.196 10.097 1.7129
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TAbLE 3.2 (continued)

Month

Change in
Lehman Bros
Treasury Yield

S&P 500
Return

Monthly Returns for

Electric
Utility Sector

Commercial
Bank Sector

Lehman U.S.
Aggregate Bond Index

Dec-1996 0.30 −1.96 −0.323 −4.887 −0.9299
Jan-1997 0.06 6.21 0.443 8.392 0.3058
Feb-1997 0.11 0.81 0.235 5.151 0.2485
Mar-1997 0.36 −4.16 −4.216 −7.291 −1.1083
Apr-1997 −0.18 5.97 −2.698 5.477 1.4980
May-1997 −0.07 6.14 4.240 3.067 0.9451
Jun-1997 −0.11 4.46 3.795 4.834 1.1873
Jul-1997 −0.43 7.94 2.627 12.946 2.6954
Aug-1997 0.30 −5.56 −2.423 −6.205 −0.8521
Sep-1997 −0.19 5.48 5.010 7.956 1.4752
Oct-1997 −0.21 −3.34 1.244 −2.105 1.4506
Nov-1997 0.06 4.63 8.323 3.580 0.4603
Dec-1997 −0.11 1.72 7.902 3.991 1.0063
Jan-1998 −0.25 1.11 −4.273 −4.404 1.2837
Feb-1998 0.17 7.21 2.338 9.763 −0.0753
Mar-1998 0.05 5.12 7.850 7.205 0.3441
Apr-1998 0.00 1.01 −3.234 2.135 0.5223
May-1998 −0.08 −1.72 −0.442 −3.200 0.9481
Jun-1998 −0.09 4.06 3.717 2.444 0.8483
Jul-1998 0.03 −1.06 −4.566 0.918 0.2122
Aug-1998 −0.46 −14.46 7.149 −24.907 1.6277
Sep-1998 −0.53 6.41 5.613 2.718 2.3412
Oct-1998 0.05 8.13 −2.061 9.999 −0.5276
Nov-1998 0.17 6.06 1.631 5.981 0.5664
Dec-1998 0.02 5.76 2.608 2.567 0.3007
Jan-1999 −0.01 4.18 −6.072 −0.798 0.7143
Feb-1999 0.55 −3.11 −5.263 0.524 −1.7460
Mar-1999 −0.05 4.00 −2.183 1.370 0.5548
Apr-1999 0.05 3.87 6.668 7.407 0.3170
May-1999 0.31 −2.36 7.613 −6.782 −0.8763
Jun-1999 0.11 5.55 −4.911 5.544 −0.3194
Jul-1999 0.11 −3.12 −2.061 −7.351 −0.4248
Aug-1999 0.10 −0.50 1.508 −4.507 −0.0508
Sep-1999 −0.08 −2.74 −5.267 −6.093 1.1604
Oct-1999 0.11 6.33 1.800 15.752 0.3689
Nov-1999 0.16 2.03 −8.050 −7.634 −0.0069
Dec-1999 0.24 5.89 −0.187 −9.158 −0.4822
Jan-2000 0.19 −5.02 5.112 −2.293 −0.3272
Feb-2000 −0.13 −1.89 −10.030 −12.114 1.2092
Mar-2000 −0.20 9.78 1.671 18.770 1.3166
Apr-2000 0.17 −3.01 14.456 −5.885 −0.2854
May-2000 0.07 −2.05 2.985 11.064 −0.0459
Jun-2000 −0.26 2.47 −5.594 −14.389 2.0803
Jul-2000 −0.08 −1.56 6.937 6.953 0.9077

(continued)
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TAbLE 3.2 (continued)

Month

Change in
Lehman Bros
Treasury Yield

S&P 500
Return

Monthly Returns for
Electric

Utility Sector
Commercial
Bank Sector

Lehman U.S.
Aggregate Bond Index

Aug-2000 −0.17 6.21 13.842 12.309 1.4497

Sep-2000 −0.03 −5.28 12.413 1.812 0.6286

Oct-2000 −0.06 −0.42 −3.386 −1.380 0.6608

Nov-2000 −0.31 −7.88 3.957 −3.582 1.6355

Dec-2000 −0.33 0.49 4.607 12.182 1.8554

Jan-2001 −0.22 3.55 −11.234 3.169 1.6346

Feb-2001 −0.16 −9.12 6.747 −3.740 0.8713

Mar-2001 −0.08 −6.33 1.769 0.017 0.5018

Apr-2001 0.22 7.77 5.025 −1.538 −0.4151

May-2001 0.00 0.67 0.205 5.934 0.6041

Jun-2001 0.01 −2.43 −7.248 0.004 0.3773

Jul-2001 −0.40 −0.98 −5.092 2.065 2.2357

Aug-2001 −0.14 −6.26 −0.149 −3.940 1.1458

Sep-2001 −0.41 −8.08 −10.275 −4.425 1.1647

Oct-2001 −0.39 1.91 1.479 −7.773 2.0930

Nov-2001 0.41 7.67 −0.833 7.946 −1.3789

Dec-2001 0.21 0.88 3.328 3.483 −0.6357

Jan-2002 0.00 −1.46 −3.673 1.407 0.8096

Feb-2002 −0.08 −1.93 −2.214 −0.096 0.9690

Mar-2002 0.56 3.76 10.623 7.374 −1.6632

Apr-2002 −0.44 −6.06 1.652 2.035 1.9393

May-2002 −0.06 −0.74 −3.988 1.247 0.8495

Jun-2002 −0.23 −7.12 −4.194 −3.767 0.8651

Jul-2002 −0.50 −7.80 −10.827 −4.957 1.2062

Aug-2002 −0.17 0.66 2.792 3.628 1.6882

Sep-2002 −0.45 −10.87 −8.677 −10.142 1.6199

Oct-2002 0.11 8.80 −2.802 5.143 −0.4559

Nov-2002 0.34 5.89 1.620 0.827 −0.0264

Dec-2002 −0.45 −5.88 5.434 −2.454 2.0654

Jan-2003 0.11 −2.62 −3.395 −0.111 0.0855

Feb-2003 −0.21 −1.50 −2.712 −1.514 1.3843

Mar-2003 0.05 0.97 4.150 −3.296 −0.0773

Apr-2003 −0.03 8.24 5.438 9.806 0.8254

May-2003 −0.33 5.27 10.519 5.271 1.8645

Jun-2003 0.08 1.28 1.470 1.988 −0.1986

Jul-2003 0.66 1.76 −5.649 3.331 −3.3620

Aug-2003 0.05 1.95 1.342 −1.218 0.6637

Sep-2003 −0.46 −1.06 4.993 −0.567 2.6469

Oct-2003 0.33 5.66 0.620 8.717 −0.9320

Nov-2003 0.13 0.88 0.136 1.428 0.2391
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be roughly 4.53%. Moreover, as expected, the change will be in the oppo-
site direction to the change in interest rates—when interest rates increase 
(decrease) the value of this sector decreases (increases). The regression coef-
ficient is statistically significant at the 1% level as can be seen from the 
t-statistic and p-value. The R2 for this regression is 6.5%. Thus although 
statistically significant, this regression only explains 6.5% of the variation 
is the movement of the electric utility sector, suggesting that there are other 
variables that have not been considered.

Moving on to the commercial bank sector, the estimated regression 
coefficient is not statistically significant at any reasonable level of signifi-
cance. The regression explains only 1% of the variation in the movement of 
the stocks in this sector.

Finally, the Lehman U.S. Aggregate Bond Index is, not unexpectedly, 
highly statistically significant, explaining almost 92% of the movement in 
this index. The reason is obvious. This is a bond index that includes all 
bonds including Treasury securities. 

Now let’s move on to add another independent variable that moves 
us from the univariate case to the multiple linear regression case. The 
new independent variable we shall add is the return on the Standard & 
Poor’s 500 (S&P 500 hereafter). The observations are given in Table 3.2. 

TAbLE 3.3 Estimation of Regression Parameters for Empirical Duration—Simple 
Linear Regression

Electric
Utility Sector

Commercial
Bank Sector

Lehman U.S. Aggregate
Bond Index

Intercept

b0 0.6376 1.1925 0.5308

t-statistic 1.8251 2.3347 21.1592

p-value 0.0698 0.0207 0.0000

Change in the Treasury Yield

b1 –4.5329 –2.5269 –4.1062

t-statistic –3.4310 –1.3083 –43.2873

p-value 0.0008 0.1926 0.0000

Goodness-of-Fit

R2 0.0655 0.0101 0.9177

F-value 11.7717 1.7116 1873.8000

p-value 0.0007 0.1926 0.0000
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So, in this instance we have k = 2. The multiple linear regression to be 
estimated is 

 y = b0 + b1x1 + b2x2 + e 

where y = the monthly return of an index 
x1 = the monthly change in the Treasury yield 
x2 = the monthly return on the S&P 500

In a simple linear regression involving only x2 and y, the estimated 
regression coefficient b2 would be the beta of the asset. In the multiple linear 
regression model above, b2 is the asset beta taking into account changes in 
the Treasury yield.

The regression results including the diagnostic statistics are shown in 
Table 3.4. Looking first at the independent variable x1, we reach the same 
conclusion as to its significance for all three assets as in the univariate 

TAbLE 3.4 Estimation of Regression Parameters for Empirical Duration—Multiple 
Linear Regression

Electric
Utility Sector

Commercial
Bank Sector

Lehman U.S. Aggregate
Bond Index

Intercept

b0 0.3937 0.2199 0.5029

t-statistic 1.1365 0.5835 21.3885

p-value 0.2574 0.5604 0.0000

Change in the Treasury Yield

b1 –4.3780 –1.9096 –4.0885

t-statistic –3.4143  –1.3686 –46.9711

p-value 0.0008 0.1730 0.0000

Return on the S&P 500

b2 0.2664 1.0620 0.0304

t-statistic 3.4020 12.4631 5.7252

p-value 0.0008 0.0000 0.0000

Goodness-of-Fit

R2 0.1260 0.4871 0.9312

F-value 12.0430 79.3060 1130.5000

p-value 0.00001 0.00000 0.00000
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case. Note also that the estimated value of the regression coefficients are 
not much different than in the univariate case. As for our new indepen-
dent variable, x2, we see that it is statistically significant at the 1% level 
of significance for all three asset indexes. While we can perform statistical 
tests discussed earlier for the contribution of adding the new indepen-
dent variable, the contribution of the two stock sectors to explaining the 
movement in the return in the sector indexes is clearly significant. The R2 
for the electric utility sector increased from around 7% in the univariate 
case to 13% in the multiple linear regression case. The increase was obvi-
ously more dramatic for the commercial bank sector, the R2 increasing 
from 1% to 49%. 

Next we analyze the regression of the Lehman U.S. Aggregate Bond 
Index. Using only one independent variable, we have R1

2  = 91.77%. If we 
include the additional independent variable, we obtain the improved R2 = 
93.12%. For the augmented regression, we compute with n = 170 and k = 
2 the adjusted R2 as

  

( )

( )

= − − −
− −









= − − −
− −









=

R R
n

n k
1 1

1
1

1 1 0.9312
170 1

170 2 1
0.9304

adj
2 2

  

Let’s apply the F-test to the Lehman U.S. Aggregate Bond Index to 
see if the addition of the new independent variable increasing the R2 from 
91.77% to 93.12% is statistically significant.

From equation (3.18), we have

  
= −

−
− −

= −
−

− −

=F
R R

R
n k
1

1

0.9312 0.9177
1 0.9312
170 2 1

32.76891

2
1
2

2
  

This value is highly significant with a p-value of virtually zero. Hence, 
the inclusion of the additional variable is statistically reasonable. 

Predicting the 10-Year Treasury Yield12

The U.S. Treasury securities market is the world’s most liquid bond mar-
ket. The U.S. Department of the Treasury issues two types of securities: 

12 We are grateful to Robert Scott of the Bank for International Settlements for sug-
gesting this example and for providing the data.
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zero-coupon securities and coupon securities. Securities issued with one year 
or less to maturity are called Treasury bills; they are issued as zero-coupon 
instruments. Treasury securities with more than one year to maturity are 
issued as coupon-bearing securities. Treasury securities from more than one 
year up to 10 years of maturity are called Treasury notes; Treasury securities 
with a maturity in excess of 10 years are called Treasury bonds. The U.S. 
Treasury auctions securities of specified maturities on a regular calendar 
basis. The Treasury currently issues 30-year Treasury bonds but had stopped 
issuance of them from October 2001 to January 2006.

An important Treasury note is the 10-year Treasury note. In this illus-
tration, we try to forecast this rate based on two independent variables sug-
gested by economic theory. A well-known theory of interest rates, known as 
the Fisher equation, is that the interest rate in any economy consists of two 
components. The first is the expected rate of inflation. The second is the real 
rate of interest. We use regression analysis to produce a model to forecast 
the yield on the 10-year Treasury note (simply, the 10-year Treasury yield)—
the dependent variable—and the expected rate of inflation (simply, expected 
inflation) and the real rate of interest (simply, real rate).

The 10-year Treasury yield is observable, but we need a proxy for the 
two independent variables (i.e., the expected rate of inflation and the real 
rate of interest) because they are not observable at the time of the forecast. 
Keep in mind that since we are forecasting, we do not use as our indepen-
dent variable information that is unavailable at the time of the forecast. 
Consequently, we need a proxy available at the time of the forecast.

The inflation rate is available from the U.S. Department of Commerce. 
However, we need a proxy for expected inflation. We can use some type 
of average of past inflation as a proxy. In our model, we use a five-year 
moving average. There are more sophisticated methodologies for calculat-
ing expected inflation, but the five-year moving average is sufficient for our 
illustration.13 For the real rate, we use the rate on three-month certificates 
of deposit (CDs). Again, we use a five-year moving average.

The monthly data for the three variables from November 1965 to 
December 2005 (482 observations) are provided in Table 3.5. The regres-
sion results are reported in Table 3.6. As can be seen, the regression coef-
ficients of both independent variables are positive (as would be predicted by 
economic theory) and highly significant. The R2 and adjusted R2 are 0.90 
and 0.83, respectively. The ANOVA table is also shown as part of Table 3.6. 
The results suggest a good fit for forecasting the 10-year rate.

13 For example, one can use an exponential smoothing of actual inflation, a meth-
odology used by the Organisation for Economic Co-operation and Development 
(OECD). 
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TAbLE 3.5 Monthly Data for 10-Year Treasury Yield, Expected Inflation (%), and 
Real Rate (%), November 1965–December 2005

Date

10-Yr.
Treas.
Yield

Exp.
Infl.

Real
Rate Date

10-Yr.
Treas.
Yield

Exp.
Infl.

Real
Rate Date

10-Yr.
Treas.
Yield

Exp.
Infl.

Real
Rate

1965

Nov
Dec

4.45
4.62

1.326
1.330

2.739
2.757

1966 1969 1972

Jan

Feb

Mar

Apr

May

June

July

Aug

Sept

Oct

Nov

Dec

4.61

4.83

4.87

4.75

4.78

4.81

5.02

5.22

5.18

5.01

5.16

4.84

1.334

1.348

1.358

1.372

1.391

1.416

1.440

1.464

1.487

1.532

1.566

1.594

2.780

2.794

2.820

2.842

2.861

2.883

2.910

2.945

2.982

2.997

3.022

3.050

Jan

Feb

Mar

Apr

May

June

July

Aug

Sept

Oct

Nov

Dec

6.04

6.19

6.3

6.17

6.32

6.57

6.72

6.69

7.16

7.1

7.14

7.65

2.745

2.802

2.869

2.945

3.016

3.086

3.156

3.236

3.315

3.393

3.461

3.539

2.811

2.826

2.830

2.827

2.862

2.895

2.929

2.967

3.001

3.014

3.045

3.059

Jan

Feb

Mar

Apr

May

June

July

Aug

Sept

Oct

Nov

Dec

5.95

6.08

6.07

6.19

6.13

6.11

6.11

6.21

6.55

6.48

6.28

6.36

4.959

4.959

4.953

4.953

4.949

4.941

4.933

4.924

4.916

4.912

4.899

4.886

2.401

2.389

2.397

2.403

2.398

2.405

2.422

2.439

2.450

2.458

2.461

2.468

1967 1970 1973

Jan

Feb

Mar

Apr

May

June

July

Aug

Sept

Oct

Nov

Dec

4.58

4.63

4.54

4.59

4.85

5.02

5.16

5.28

5.3

5.48

5.75

5.7

1.633

1.667

1.706

1.739

1.767

1.801

1.834

1.871

1.909

1.942

1.985

2.027

3.047

3.050

3.039

3.027

3.021

3.015

3.004

2.987

2.980

2.975

2.974

2.972

Jan

Feb

Mar

Apr

May

June

July

Aug

Sept

Oct

Nov

Dec

7.80

7.24

7.07

7.39

7.91

7.84

7.46

7.53

7.39

7.33

6.84

6.39

3.621

3.698

3.779

3.854

3.933

4.021

4.104

4.187

4.264

4.345

4.436

4.520

3.061

3.064

3.046

3.035

3.021

3.001

2.981

2.956

2.938

2.901

2.843

2.780

Jan

Feb

Mar

Apr

May

June

July

Aug

Sept

Oct

Nov

Dec

6.46

6.64

6.71

6.67

6.85

6.90

7.13

7.40

7.09

6.79

6.73

6.74

4.865

4.838

4.818

4.795

4.776

4.752

4.723

4.699

4.682

4.668

4.657

4.651

2.509

2.583

2.641

2.690

2.734

2.795

2.909

3.023

3.110

3.185

3.254

3.312

1968 1971 1974

Jan

Feb

Mar

Apr

May

June

July

Aug

Sept

Oct

Nov

Dec

5.53

5.56

5.74

5.64

5.87

5.72

5.5

5.42

5.46

5.58

5.7

6.03

2.074

2.126

2.177

2.229

2.285

2.341

2.402

2.457

2.517

2.576

2.639

2.697

2.959

2.943

2.937

2.935

2.934

2.928

2.906

2.887

2.862

2.827

2.808

2.798

Jan

Feb

Mar

Apr

May

June

July

Aug

Sept

Oct

Nov

Dec

6.24

6.11

5.70

5.83

6.39

6.52

6.73

6.58

6.14

5.93

5.81

5.93

4.605

4.680

4.741

4.793

4.844

4.885

4.921

4.947

4.964

4.968

4.968

4.964

2.703

2.627

2.565

2.522

2.501

2.467

2.436

2.450

2.442

2.422

2.411

2.404

Jan

Feb

Mar

Apr

May

June

July

Aug

Sept

Oct

Nov

Dec

6.99

6.96

7.21

7.51

7.58

7.54

7.81

8.04

8.04

7.9

7.68

7.43

4.652

4.653

4.656

4.657

4.678

4.713

4.763

4.827

4.898

4.975

5.063

5.154

3.330

3.332

3.353

3.404

3.405

3.419

3.421

3.401

3.346

3.271

3.176

3.086

(continued)
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TAbLE 3.5 (continued)

Date

10-Yr.
Treas.
Yield

Exp.
Infl.

Real
Rate Date

10-Yr.
Treas.
Yield

Exp.
Infl.

Real
Rate Date

10-Yr.
Treas.
Yield

Exp.
Infl.

Real
Rate

1975 1978 1981

Jan

Feb

Mar

Apr

May

June

July

Aug

Sept

Oct

Nov

Dec

7.5

7.39

7.73

8.23

8.06

7.86

8.06

8.4

8.43

8.15

8.05

8

5.243

5.343

5.431

5.518

5.585

5.639

5.687

5.716

5.738

5.753

5.759

5.761

2.962

2.827

2.710

2.595

2.477

2.384

2.311

2.271

2.241

2.210

2.200

2.186

Jan

Feb

Mar

Apr

May

June

July

Aug

Sept

Oct

Nov

Dec

7.96

8.03

8.04

8.15

8.35

8.46

8.64

8.41

8.42

8.64

8.81

9.01

6.832

6.890

6.942

7.003

7.063

7.124

7.191

7.263

7.331

7.400

7.463

7.525

1.068

0.995

0.923

0.854

0.784

0.716

0.598

0.482

0.397

0.365

0.322

0.284

Jan

Feb

Mar

Apr

May

June

July

Aug

Sept

Oct

Nov

Dec

12.57

13.19

13.12

13.68

14.1

13.47

14.28

14.94

15.32

15.15

13.39

13.72

8.520

8.594

8.649

8.700

8.751

8.802

8.877

8.956

9.039

9.110

9.175

9.232

1.132

1.242

1.336

1.477

1.619

1.755

1.897

2.037

2.155

2.256

2.305

2.392

1976 1979 1982

Jan

Feb

Mar

Apr

May

June

July

Aug

Sept

Oct

Nov

Dec

7.74

7.79

7.73

7.56

7.9

7.86

7.83

7.77

7.59

7.41

7.29

6.87

5.771

5.777

5.800

5.824

5.847

5.870

5.900

5.937

5.981

6.029

6.079

6.130

2.166

2.164

2.138

2.101

2.060

2.034

1.988

1.889

1.813

1.753

1.681

1.615

Jan

Feb

Mar

Apr

May

June

July

Aug

Sept

Oct

Nov

Dec

9.1

9.1

9.12

9.18

9.25

8.91

8.95

9.03

9.33

10.3

10.65

10.39

7.582

7.645

7.706

7.758

7.797

7.821

7.834

7.837

7.831

7.823

7.818

7.818

0.254

0.224

0.174

0.108

0.047

−0.025

−0.075

−0.101

−0.085

0.011

0.079

0.154

Jan

Feb

Mar

Apr

May

June

July

Aug

Sept

Oct

Nov

Dec

14.59

14.43

13.86

13.87

13.62

14.3

13.95

13.06

12.34

10.91

10.55

10.54

9.285

9.334

9.375

9.417

9.456

9.487

9.510

9.524

9.519

9.517

9.502

9.469

2.497

2.612

2.741

2.860

2.958

3.095

3.183

3.259

3.321

3.363

3.427

3.492

1977 1980 1983

Jan

Feb

Mar

Apr

May

June

July

Aug

Sept

Oct

Nov

Dec

7.21

7.39

7.46

7.37

7.46

7.28

7.33

7.4

7.34

7.52

7.58

7.69

6.176

6.224

6.272

6.323

6.377

6.441

6.499

6.552

6.605

6.654

6.710

6.768

1.573

1.527

1.474

1.427

1.397

1.340

1.293

1.252

1.217

1.193

1.154

1.119

Jan

Feb

Mar

Apr

May

June

July

Aug

Sept

Oct

Nov

Dec

10.8

12.41

12.75

11.47

10.18

9.78

10.25

11.1

11.51

11.75

12.68

12.84

7.825

7.828

7.849

7.879

7.926

7.989

8.044

8.109

8.184

8.269

8.356

8.446

0.261

0.418

0.615

0.701

0.716

0.702

0.695

0.716

0.740

0.795

0.895

1.004

Jan

Feb

Mar

Apr

May

June

July

Aug

Sept

Oct

Nov

Dec

10.46

10.72

10.51

10.4

10.38

10.85

11.38

11.85

11.65

11.54

11.69

11.83

9.439

9.411

9.381

9.340

9.288

9.227

9.161

9.087

9.012

8.932

8.862

8.800

3.553

3.604

3.670

3.730

3.806

3.883

3.981

4.076

4.152

4.204

4.243

4.276
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TAbLE 3.5 (continued)

Date

10-Yr.
Treas.
Yield

Exp.
Infl.

Real
Rate Date

10-Yr.
Treas.
Yield

Exp.
Infl.

Real
Rate Date

10-Yr.
Treas.
Yield

Exp.
Infl.

Real
Rate

1984 1987 1990

Jan

Feb

Mar

Apr

May

June

July

Aug

Sept

Oct

Nov

Dec

11.67

11.84

12.32

12.63

13.41

13.56

13.36

12.72

12.52

12.16

11.57

12.5

8.741

8.670

8.598

8.529

8.460

8.393

8.319

8.241

8.164

8.081

7.984

7.877

4.324

4.386

4.459

4.530

4.620

4.713

4.793

4.862

4.915

4.908

4.919

4.928

Jan

Feb

Mar

Apr

May

June

July

Aug

Sept

Oct

Nov

Dec

7.08

7.25

7.25

8.02

8.61

8.4

8.45

8.76

9.42

9.52

8.86

8.99

4.887

4.793

4.710

4.627

4.551

4.476

4.413

4.361

4.330

4.302

4.285

4.279

4.607

4.558

4.493

4.445

4.404

4.335

4.296

4.273

4.269

4.259

4.243

4.218

Jan

Feb

Mar

Apr

May

June

July

Aug

Sept

Oct

Nov

Dec

8.418

8.515

8.628

9.022

8.599

8.412

8.341

8.846

8.795

8.617

8.252

8.067

4.257

4.254

4.254

4.260

4.264

4.272

4.287

4.309

4.335

4.357

4.371

4.388

3.610

3.595

3.585

3.580

3.586

3.589

3.568

3.546

3.523

3.503

3.493

3.471

1985 1988 1991

Jan

Feb

Mar

Apr

May

June

July

Aug

Sept

Oct

Nov

Dec

11.38

11.51

11.86

11.43

10.85

10.16

10.31

10.33

10.37

10.24

9.78

9.26

7.753

7.632

7.501

7.359

7.215

7.062

6.925

6.798

6.664

6.528

6.399

6.269

4.955

4.950

4.900

4.954

5.063

5.183

5.293

5.346

5.383

5.399

5.360

5.326

Jan

Feb

Mar

Apr

May

June

July

Aug

Sept

Oct

Nov

Dec

8.67

8.21

8.37

8.72

9.09

8.92

9.06

9.26

8.98

8.8

8.96

9.11

4.274

4.271

4.268

4.270

4.280

4.301

4.322

4.345

4.365

4.381

4.385

4.384

4.180

4.149

4.104

4.075

4.036

3.985

3.931

3.879

3.844

3.810

3.797

3.787

Jan

Feb

Mar

Apr

May

June

July

Aug

Sept

Oct

Nov

Dec

8.007

8.033

8.061

8.013

8.059

8.227

8.147

7.816

7.445

7.46

7.376

6.699

4.407

4.431

4.451

4.467

4.487

4.504

4.517

4.527

4.534

4.540

4.552

4.562

3.436

3.396

3.360

3.331

3.294

3.267

3.247

3.237

3.223

3.207

3.177

3.133

1986 1989 1992

Jan

Feb

Mar

Apr

May

June

July

Aug

Sept

Oct

Nov

Dec

9.19

8.7

7.78

7.3

7.71

7.8

7.3

7.17

7.45

7.43

7.25

7.11

6.154

6.043

5.946

5.858

5.763

5.673

5.554

5.428

5.301

5.186

5.078

4.982

5.284

5.249

5.225

5.143

5.055

4.965

4.878

4.789

4.719

4.671

4.680

4.655

Jan

Feb

Mar

Apr

May

June

July

Aug

Sept

Oct

Nov

Dec

9.09

9.17

9.36

9.18

8.86

8.28

8.02

8.11

8.19

8.01

7.87

7.84

4.377

4.374

4.367

4.356

4.344

4.331

4.320

4.306

4.287

4.273

4.266

4.258

3.786

3.792

3.791

3.784

3.758

3.723

3.679

3.644

3.623

3.614

3.609

3.611

Jan

Feb

Mar

Apr

May

June

July

Aug

Sept

Oct

Nov

Dec

7.274

7.25

7.528

7.583

7.318

7.121

6.709

6.604

6.354

6.789

6.937

6.686

4.569

4.572

4.575

4.574

4.571

4.567

4.563

4.556

4.544

4.533

4.522

4.509

3.092

3.054

3.014

2.965

2.913

2.864

2.810

2.757

2.682

2.624

2.571

2.518

(continued)
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TAbLE 3.5 (continued)

Date

10-Yr.
Treas.
Yield

Exp.
Infl.

Real
Rate Date

10-Yr.
Treas.
Yield

Exp.
Infl.

Real
Rate Date

10-Yr.
Treas.
Yield

Exp.
Infl.

Real
Rate

1993 1996 1999

Jan

Feb

Mar

Apr

May

June

July

Aug

Sept

Oct

Nov

Dec

6.359

6.02

6.024

6.009

6.149

5.776

5.807

5.448

5.382

5.427

5.819

5.794

4.495

4.482

4.466

4.453

4.439

4.420

4.399

4.380

4.357

4.333

4.309

4.284

2.474

2.427

2.385

2.330

2.272

2.214

2.152

2.084

2.020

1.958

1.885

1.812

Jan

Feb

Mar

Apr

May

June

July

Aug

Sept

Oct

Nov

Dec

5.58

6.098

6.327

6.67

6.852

6.711

6.794

6.943

6.703

6.339

6.044

6.418

3.505

3.458

3.418

3.376

3.335

3.297

3.261

3.228

3.195

3.163

3.131

3.102

1.250

1.270

1.295

1.328

1.359

1.387

1.417

1.449

1.481

1.516

1.558

1.608

Jan

Feb

Mar

Apr

May

June

July

Aug

Sept

Oct

Nov

Dec

4.651

5.287

5.242

5.348

5.622

5.78

5.903

5.97

5.877

6.024

6.191

6.442

2.631

2.621

2.605

2.596

2.586

2.572

2.558

2.543

2.527

2.515

2.502

2.490

2.933 

2.964 

2.998 

3.018 

3.035 

3.058 

3.079 

3.103 

3.129 

3.150 

3.161 

3.165 

1994 1997 2000

Jan

Feb

Mar

Apr

May

June

July

Aug

Sept

Oct

Nov

Dec

5.642

6.129

6.738

7.042

7.147

7.32

7.111

7.173

7.603

7.807

7.906

7.822

4.256

4.224

4.195

4.166

4.135

4.106

4.079

4.052

4.032

4.008

3.982

3.951

1.739

1.663

1.586

1.523

1.473

1.427

1.394

1.356

1.315

1.289

1.278

1.278

Jan

Feb

Mar

Apr

May

June

July

Aug

Sept

Oct

Nov

Dec

6.494

6.552

6.903

6.718

6.659

6.5

6.011

6.339

6.103

5.831

5.874

5.742

3.077

3.057

3.033

3.013

2.990

2.968

2.947

2.926

2.909

2.888

2.866

2.847

1.656

1.698

1.746

1.795

1.847

1.899

1.959

2.016

2.078

2.136

2.189

2.247

Jan

Feb

Mar

Apr

May

June

July

Aug

Sept

Oct

Nov

Dec

6.665

6.409

6.004

6.212

6.272

6.031

6.031

5.725

5.802

5.751

5.468

5.112

2.477

2.464

2.455

2.440

2.429

2.421

2.412

2.406

2.398

2.389

2.382

2.374

3.175 

3.186 

3.195 

3.215 

3.240 

3.259 

3.282 

3.302 

3.324 

3.347 

3.368 

3.388 

1995 1998 2001

Jan

Feb

Mar

Apr

May

June

July

Aug

Sept

Oct

Nov

Dec

7.581

7.201

7.196

7.055

6.284

6.203

6.426

6.284

6.182

6.02

5.741

5.572

3.926

3.899

3.869

3.840

3.812

3.781

3.746

3.704

3.662

3.624

3.587

3.549

1.269

1.261

1.253

1.240

1.230

1.222

1.223

1.228

1.232

1.234

1.229

1.234

Jan

Feb

Mar

Apr

May

June

July

Aug

Sept

Oct

Nov

Dec

5.505

5.622

5.654

5.671

5.552

5.446

5.494

4.976

4.42

4.605

4.714

4.648

2.828

2.806

2.787

2.765

2.744

2.725

2.709

2.695

2.680

2.666

2.653

2.641

2.306 

2.369 

2.428 

2.493 

2.552 

2.611 

2.666 

2.720 

2.767 

2.811 

2.854 

2.894 

Jan

Feb

Mar

Apr

May

June

July

Aug

Sept

Oct

Nov

Dec

5.114

4.896

4.917

5.338

5.381

5.412

5.054

4.832

4.588

4.232

4.752

5.051

2.368

2.366

2.364

2.364

2.362

2.363

2.363

2.365

2.365

2.366

2.368

2.370

3.396 

3.393 

3.386 

3.366 

3.343 

3.313 

3.279 

3.242 

3.192 

3.136 

3.076 

3.013 
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TAbLE 3.5 (continued)

Date

10-Yr.
Treas.
Yield

Exp.
Infl.

Real
Rate Date

10-Yr.
Treas.
Yield

Exp.
Infl.

Real
Rate

2002 2004

Jan

Feb

Mar

Apr

May

June

July

Aug

Sept

Oct

Nov

Dec

5.033

4.877

5.396

5.087

5.045

4.799

4.461

4.143

3.596

3.894

4.207

3.816

2.372

2.372

2.371

2.369

2.369

2.367

2.363

2.364

2.365

2.365

2.362

2.357

2.950

2.888

2.827

2.764

2.699

2.636

2.575

2.509

2.441

2.374

2.302

2.234

Jan

Feb

Mar

Apr

May

June

July

Aug

Sept

Oct

Nov

Dec

4.134

3.973

3.837

4.507

4.649

4.583

4.477

4.119

4.121

4.025

4.351

4.22

2.172

2.157

2.149

2.142

2.136

2.134

2.129

2.126

2.124

2.122

2.124

2.129

1.492

1.442

1.385

1.329

1.273

1.212

1.156

1.097

1.031

0.966

0.903

0.840

2003 2005

Jan

Feb

Mar

Apr

May

June

July

Aug

Sept

Oct

Nov

Dec

3.964

3.692

3.798

3.838

3.372

3.515

4.408

4.466

3.939

4.295

4.334

4.248

2.351

2.343

2.334

2.323

2.312

2.300

2.288

2.267

2.248

2.233

2.213

2.191

2.168

2.104

2.038

1.976

1.913

1.850

1.786

1.731

1.681

1.629

1.581

1.537

Jan

Feb

Mar

Apr

May

June

July

Aug

Sept

Oct

Nov

Dec

4.13

4.379

4.483

4.2

3.983

3.915

4.278

4.016

4.326

4.553

4.486

4.393

2.131

2.133

2.132

2.131

2.127

2.120

2.114

2.107

2.098

2.089

2.081

2.075

0.783

0.727

0.676

0.622

0.567

0.520

0.476

0.436

0.399

0.366

0.336

0.311

Note:
Exp. Infl. (%) = Expected rate of inflation as proxied by the five-year moving average 
of the actual inflation rate.
Real Rate (%) = Real rate of interest as proxied by the five-year moving average of 
the interest rate on three-month certificates of deposit.

benchmark Selection: Sharpe benchmarks 

Because of the difficulty of classifying an asset manager into any one of the 
generic investment styles used in the investment industry in order to evalu-
ate performance, William Sharpe suggested that a benchmark can be con-
structed using multiple regression analysis from various specialized market 
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indexes.14 The rationale is that potential clients can buy a combination of 
specialized index funds to replicate a style of investing. A benchmark can 
be created using regression analysis that adjusts for a manager’s index-like 
tendencies. Such a benchmark is called a Sharpe benchmark.

The 10 mutually exclusive indexes suggested by Sharpe to provide 
asset class diversification are (1) the Russell Price-Drive Stock Index (an 
index of large value stocks), (2) the Russell Earnings-Growth Stock Index 
(an index of large growth stocks), (3) the Russell 2000 Small Stock Index, 
(4) a 90-Day Bill Index, (5) the Lehman Intermediate Government Bond 
Index, (6) the Lehman Long-Term Government Bond Index, (7) the Lehman 
Corporate Bond Index, (8) the Lehman Mortgage-Backed Securities Index, 
(9) the Salomon Smith Barney Non-U.S. Government Bond Index, and 
(10) the Financial Times Actuaries Euro-Pacific Index.15

TAbLE 3.6 Results of Regression for Forecasting 10-Year Treasury Yield

Regression Statistics

Multiple R2 0.9083

R2 0.8250

Adjusted R2 0.8243

Standard Error 1.033764

Observations 482

Analysis of Variance

df SS MS F Significance F

Regression 2 2413.914 1206.957 1129.404 4.8E-182

Residual 479 511.8918 1.068668

Total 481 2925.806

Coefficients
Standard

Error t
Statistics
p-value

Intercept 1.89674 0.147593 12.85 1.1E-32

Expected Inflation 0.996937 0.021558 46.24 9.1E-179

Real Rate 0.352416 0.039058 9.02 4.45E-18

14 William F. Sharpe, “Determining a Fund’s Effective Asset Mix,” Investment Man-
agement Review 9 (September–October 1988): 16–29.
15 At the time that Sharpe introduced his model, the bond indexes were published by 
the investment banking firms of Shearson-Lehman and Salomon Brothers.
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Sharpe benchmarks are determined by regressing periodic returns (e.g., 
monthly returns) on various market indexes. The Sharpe benchmark was 
reported for one portfolio management firm based on performance from the 
period January 1981 through July 1988 using monthly returns.16 The result-
ing Sharpe benchmark based on monthly observations was 

Sharpe benchmark = 0.43 × (FRC Price-Driven Index)
+ 0.13 × (FRC Earnings-Growth Index)
+ 0.44 × (FRC 2000 Index)

where FRC is an index produced by the Frank Russell Company.
The three indexes were selected because they were the only indexes of 

the 10 that were statistically significant. Notice that the sum of the three 
coefficients is equal to one. This is done by estimating a constrained regres-
sion, a topic we do not cover in this book. The R2 for this regression is 
97.6%. The intercept term for this regression is 0.365%, which represents 
the average excess monthly return. 

By subtracting the style benchmark’s monthly return from the manag-
er’s monthly portfolio return, performance can be measured. This difference, 
which we refer to as “added value residuals,” is what the manager added 
over the return from three “index funds” in the appropriate proportions. 
For example, suppose that in some month the return realized by this man-
ager is 1.75%. In the same month, the return for the three indexes were as 
follows: 0.7% for the FRC Price-Driven Index, 1.4% for the FRC Earnings-
Growth Index, and 2.2% for the FRC 2000 Index. The added value residual 
for this month would be calculated as follows. First, calculate the value of 
the Sharpe benchmark:

Sharpe benchmark = 0.43 × (0.7%) + 0.13 × (1.4%) + 0.44 × (2.2%)
= 1.45%

The added value residual is then:

 Added value residual = Actual return − Sharpe benchmark return 

Since the actual return for the month is 1.75%, 

 Added value residual = 1.75% − 1.45% = 0.3% 

Notice that if this manager had been benchmarked against a single 
investment style index such as the FRC Price-Driven Index, the manager 

16 See H. Russell Fogler, “Normal Style Indexes—An Alternative to Manager Uni-
verses?” in Performance Measurement: Setting the Standards, Interpreting the Num-
bers (ICFA, 1989), 102.
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would have outperformed the benchmark by a wide margin (1.05%). In 
contrast, if the FRC 2000 Index is used as the benchmark, the manager 
would have underperformed by 0.45%.

One interpretation of the results of a Sharpe benchmark that has arisen 
in practice is that if the R2 is low, this is an indication that the portfolio 
is actively managed because it is not associated with any particular style. 
However, this need not be the case as pointed out by Dor and Jaganna-
than.17 One of the reasons could be due to inadequate asset class indexes. 
Dor and Jagannathan illustrate the importance of including adequate asset 
class indexes using the Putnam Utilities Growth and Income, a mutual fund. 
Table 3.7 reports the Sharpe benchmark based on regression analysis of 
returns from January 1992 through August 2001.

17 Arik Ben Dor and Ravi Jagannathan, “Style Analysis: Asset Allocation and Per-
formance Evaluation,” in The Handbook of Equity Style Management, 3rd ed., ed. 
T. Daniel Coggin and Frank J. Fabozzi (Hoboken, NJ: John Wiley & Sons, 2003).

TAbLE 3.7 Sharpe Benchmark for Putnam Utilities Growth and Income, January 
1992 through August 2001

Asset Class Basic Model Extended Model

Bills 0 3.4%

Treasury 1–10 yrs 11.9% 0

Treasury 10+ yrs 20.5% 0

Corporate Bonds 0 0

Large-Cap Value 56.8% 14.7%

Large-Cap Growth 0 0

Small-Cap Value 0 4.4%

Small-Cap Growth 0 0

Developed Countries 0 0

Japan 0 0

Emerging Markets 0 0

Foreign Bonds 10.8% 10.6%

Dow Jones Utilities — 44.6%

Dow Jones Communications — 16.5%

Dow Jones Energy — 5.9%

R2 0.669 0.929

Source: Exhibit 1.10 in Arik Ben Dor and Ravi Jagannathan, “Style Analysis: Asset 
Allocation and Performance Evaluation,” in The Handbook of Equity Style Manage-
ment, 3rd ed., ed. T. Daniel Coggin and Frank J. Fabozzi (Hoboken, NJ: John Wiley 
& Sons, 2003).
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There are two models reported. The first, denoted “Basic Model,” uses 12 
asset class indexes selected by Dor and Jagannathan. As can be seen, the R2 
is 66.9%. However, Putnam Utilities Growth and Income is a sector-oriented 
fund. In creating a Sharpe benchmark for sector-oriented funds, it is impor-
tant to use relevant sector indexes. The “Extended Model” reported in Table 
3.7 includes three sector indexes: Dow Jones Utilities, Dow Jones Commu-
nications, and Dow Jones Energy. Notice that not only does the R2 increase 
from 66.9%, the weights (regression coefficients) change dramatically. For 
example, a 56.8% weight in the basic model is assigned to Large-Cap Value 
but only 14.7% in the extended model. Look also at the Treasury 10+-year 
asset class index. This is the second largest weight in the basic model; how-
ever, in the extended model it has no weight assigned to it.

Return-based Style Analysis for Hedge Funds

The use of the Sharpe benchmark is typical for evaluating non-hedge fund 
managers. The difficulty with employing the Sharpe benchmark for hedge 
funds is attributable to the wide range of assets in which they are free to 
invest and the dynamic nature of their trading strategy (i.e., flexibility of 
shifting among asset classes, the higher leverage permitted, and the ability 
to short sell). 

Dor and Jagannathan illustrate this difficulty using four hedge funds.18 
Two of the hedge funds are directional funds and two are nondirectional 
funds. The former employ strategies seeking to benefit from broad market 
movements and the latter employ strategies seeking to exploit short-term 
pricing discrepancies between related securities but at the same time main-
tain market exposure to a minimum. Nondirectional funds are referred to 
as market-neutral funds. The directional funds are Hillsdale U.S. Market 
Neutral Fund (Hillside fund) and The Nippon Performance Fund (Nippon 
fund); the nondirectional funds are Axiom Balanced Growth Fund (Axiom 
fund) and John W. Henry & Company—Financial and Metals Portfolio 
(CTA fund).

Table 3.8 reports two regression results for the four hedge funds. The 
first regression (referred to as the “Basic Model” in the table) uses 12 asset 
classes. The R2 is lower for these hedge funds than for mutual funds for the 
reason cited earlier regarding the wide range of strategies available to hedge 
funds. Note, however, that the R2 of the nondirectional funds (i.e., market-
neutral funds) is higher than that of the directional funds. 

Theory and empirical evidence can help us identify factors to improve 
upon the explanatory power of hedge fund returns. Several researchers 

18 Dor and Jagannathan, “Style Analysis: Asset Allocation and Performance Evaluation.”
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have argued that hedge funds pursue strategies that have option-like (non-
linear) payoffs and this occurs even if an option strategy is not pursued.19 
Consequently, Dor and Jagannathan add four S&P 500 index strategies to 
the 12 asset classes. This second regression, referred to as the “Basic Model 
+ Options Strategy,” shows that by adding the four option indexes, the R2 
increases significantly for each hedge fund. 

Rich/Cheap Analysis for the Mortgage Market

Regression analysis has long been used to attempt to identify rich and cheap 
sectors of the bond market. Here we will use a relative value regression 
model developed by the Mortgage Strategy Group of UBS. The depen-
dent variable is the mortgage spread, a variable measured as the difference 
between the current coupon mortgage20 and the average swap rate. The 
average swap rate is measured by the average of the 5-year swap rate and 
10-year swap rate.

There are three explanatory variables in the model that have historically 
been found to affect mortgage pricing: 

 1. The level of interest rates
 2. The shape of the yield curve
 3. The volatility of interest rates

The level of interest rates is measured by the average of the 5-year swap 
rate and 10-year swap rate. The shape of the yield curve is measured by the 
spread between the 10-year swap rate and 2-year swap rate. The volatility 
measure is obtained from swaption prices. 

19 See Lawrence A. Glosten and Ravi Jagannathan, “A Contingent Claim Approach 
to Performance Evaluation,” Journal of Empirical Finance 1 (1994): 133–160; Mark 
Mitchell and Todd Pulvino, “Characteristics of Risk in Risk Arbitrage,” Journal of 
Finance 56 (December 2001): 2135–2175; and William Fung and David A. Hsieh, 
“The Risks in Hedge Fund Strategies: Theory and Evidence from Trend Followers,” 
Review of Financial Studies 14 (2001): 313–341; Philip H. Dybvig and Stephen 
A. Ross, “Differential Information and Performance Measurement using a Security 
Market Line,” Journal of Finance 40 (1985): 383–399; and Robert C. Merton, “On 
Market Timing and Investment Performance I: An Equilibrium Theory of Values for 
Markets Forecasts,” Journal of Business 54 (1981): 363–406.
20 More specifically, it is what UBS calls the “perfect current coupon mortgage,” 
which is a proxy for the current coupon mortgage.
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The multiple regression model is21

 

= α +β
β
β
β + e

Mortgage spread (Average swap rate)
+ (10-year/2-year swap spread)
+ (10-year/2-year swap spread)
+ (Swaption volatility)

1

2

3
2

4

Two years of data were used to estimate the regression model. While the 
R2 for the estimated model is not reported, Figure 3.2 shows the actual 
mortgage spread versus the spread projected by the regression model for the 
Fannie Mae 30-year mortgage passthrough security, one type of mortgage-
backed security (MBS).

Let’s see how the model is used. The analysis was performed 
in early March 2004 to assess the relative value of the MBS market. 

21 See “Mortgages—Hold Your Nose and Buy,” UBS Mortgage Strategist, 9 (March 
2004): 15–26. UBS has argued in other issues of its publication that with this par-
ticular regression model the richness of mortgages may be overstated because the 
model does not recognize the reshaping of the mortgage market. Alternative regres-
sion models that do take this into account are analyzed by UBS but the results are 
not reported here.
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If the spread predicted by the model (i.e., model spread) exceeds the 
actual spread, the market is viewed as rich; it is viewed as cheap if 
the model spread is less than actual spread. The market is fairly priced if 
the two spreads are equal. The predicted and actual spreads for March 
2004 are the last ones shown in Figure 3.2. While the model suggests that 
the market is rich, it is less rich in comparison to the prior months. In 
fact, at the close of March 9, 2004, when the article was written, it was 
only 5 basis points.

Testing for Strong-Form Pricing Efficiency

At the heart of the debate as to whether investors should pursue an active 
or passive equity strategy is the pricing efficiency of the market. The pric-
ing efficiency of a market can be classified into three forms: (1) weak form, 
(2) semistrong form, and (3) strong form. The distinction among these 
forms lies in the relevant information that is hypothesized to be locked 
into the price of the security. Weak efficiency means that the price of the 
security reflects the past price and trading history of the security. Semis-
trong efficiency means that the price of the security fully reflects all public 
information (which, of course, includes but is not limited to historical 
price and trading patterns). Strong efficiency exists in a market where the 
price of a security reflects all information, whether or not it is publicly 
available.

Multiple linear regression analysis is used in most tests of the pricing 
efficiency of the market. These tests examine whether it is possible to gener-
ate abnormal returns from an investment strategy. An abnormal return is 
defined as the difference between the actual return and the expected return 
from an investment strategy. The expected return used in empirical tests is 
the return predicted from a pricing model. The pricing model itself adjusts 
for risk. Because the testing relies on the pricing model used, tests of market 
pricing efficiency are joint tests of both the efficiency of the market and the 
validity of the pricing model employed in the study.

Let’s illustrate a test for strong-form pricing efficiency using multiple 
linear regression analysis. This will be done by comparing the performance 
of equity mutual fund managers against a suitable stock market index to 
assess the performance of fund managers in general. For example, it is 
common to compare the average large-cap mutual fund’s performance to 
that of the S&P 500 Index. But this is not a fair comparison because it 
ignores risk. Specifically, the risk parameters of the average mutual fund 
may be different than that of the benchmark, making a simple direct com-
parison of the mutual fund’s performance and that of the benchmark inap-
propriate. 



74 The Basics of financial economeTrics

Robert Jones analyzed the performance of the average large-cap mutual 
fund adjusted for risk.22 As noted earlier, tests of market efficiency are joint 
tests of the assumed asset pricing model. Jones used a model similar to the 
three-factor model proposed by Eugene Fama and Kenneth French that we 
will describe later in this chapter. The variables in his regression model are

Yt = the difference between the returns on a composite mutual fund 
index and the S&P 500 in month t

X1,t = the difference between the S&P 500 return and the 90-day Trea-
sury rate for month t

X2,t = the difference between the returns on the Russell 3000 Value 
Index and the Russell 3000 Growth Index for month t

X3,t = the difference between the returns on the Russell 1000 Index 
(large-cap stocks) and the Russell 2000 Index (small-cap stocks) 
for month t

The dependent variable, (Yt), is obtained from indexes published by 
Lipper, a firm that constructs performance indexes for mutual funds classi-
fied by investment category. Specifically, the dependent variable in the study 
was the average of the return on the Lipper Growth Index and the Lipper 
Growth and Income Index each month minus the return on the S&P 500. 
Yt is the active return.

The first independent variable (X1,t) is a measure of the return of the 
market over the risk-free rate and is therefore the excess return on the mar-
ket in general. The second independent variable (X2,t) is a proxy for the dif-
ference in performance of two “styles” that have been found to be important 
in explaining stock returns: value and growth. (We describe this further later 
in this chapter.) In the regression, the independent variable X2,t is the excess 
return of value style over growth style. Market capitalization is another style 
factor. The last independent variable (X3,t) is the difference in size between 
large-cap and small-cap stocks and therefore reflects size. 

The regression was run over 219 months from January 1979 through 
March 1997. The results are reported below with the t-statistic for each 
parameter shown in parentheses:

Ŷt = –0.007 – 0.083X1,t – 0.071X2,t – 0.244X3,t

(–0.192) (–8.771) (–3.628) (–17.380)

22 Robert C. Jones, “The Active versus Passive Debate: Perspectives of an Active 
Quant,” in Active Equity Portfolio Management, ed. Frank J. Fabozzi (New York: 
John Wiley & Sons, 1998).
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Let’s interpret the results. The t-statistics of the betas are statistically 
significant for all levels of significance. The regression results suggest that 
relative to the S&P 500, the average large-cap mutual fund makes statisti-
cally significant bets against the market, against value, and against size. The 
adjusted R2 is 0.63. This means that 63% of the variation in the average 
large-cap mutual fund’s returns is explained by the regression model. The 
intercept term, a, is –0.007 (–7 basis points) and is interpreted as the aver-
age active return after controlling for risk (i.e., net of market, value, and 
size). Statistically, the intercept term is not significant. So, the average active 
return is indistinguishable from zero. Given that the return indexes con-
structed by Lipper are net of fees and expenses, the conclusion of this simple 
regression model is that the average large-cap mutual funds covers its costs 
on a risk-adjusted basis. 

Tests of the Capital Asset Pricing Model

The Capital Asset Pricing Model (CAPM) is an equilibrium model of asset 
pricing. While portfolio managers do not devote time to testing the validity 
of this model since few have to be convinced of its limitation, there has been 
more than 40 years of empirical testing of the validity of this model and the 
primary tool that has been used is regression analysis. While there have been 
extensions of the CAPM first developed by William Sharpe in 1964, we will 
only discuss the tests of the original model.

Based on the above assumptions, the CAPM is 

 E(Ri) − Rf = βi[E(RM) − Rf] (3.19)

where E(Ri) = expected return for asset i
Rf = risk-free rate

E(RM) = expected return for the market portfolio
βi = the index of systematic risk of asset i

The index of systematic risk of asset i, βi, popularly referred to as beta, 
is the degree to which an asset covaries with the market portfolio and for 
this reason is referred to as the asset’s systematic risk. More specifically, sys-
tematic risk is the portion of an asset’s variability that can be attributed to a 
common factor. Systematic risk is the risk that results from general market 
and economic conditions that cannot be diversified away. The portion of an 
asset’s variability that can be diversified away is the risk that is unique to an 
asset. This risk is called nonsystematic risk, diversifiable risk, unique risk, 
residual risk, or company-specific risk. We calculated the beta for individual 
securities in the previous chapter.
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The CAPM states that, given the assumptions, the expected return on 
asset is a positive linear function of its index of systematic risk as measured 
by beta. The higher the βi or beta is, the higher the expected return. There 
are no other factors that should significantly affect an asset’s expected 
return other than the index of systematic risk. A stock’s beta is estimated 
from the characteristic line that we described and illustrated in the previ-
ous chapter. 

The beta for an asset can be estimated using the following simple linear 
regression:

 rit − rft = αi + βi[rMt − rft] + εit 

where rit = observed return on asset i for time t
rft = observed return on the risk-free asset for time t

rMt = observed return on the market portfolio for time t
εit = error term for time t

The above regression equation is called the characteristic line. Since there is 
only one independent variable, rMt − rft, there is a simple linear regression.

If 

 xt = rMt − rft 

and

 yt = rit − rft 

then the characteristic line can be rewritten as 

 yt = αi + βixt + εit 

The parameters to be estimated are the coefficients αi and βi and the stan-
dard deviation of the error term, εi. The parameter βi is the focus of interest 
in this section. Later in this chapter, when we provide an illustration of how 
regression analysis is used in performance measurement, we will see the 
economic meaning of the intercept term, αi.

To estimate the characteristic line for an asset using regression analysis, 
we consider three time series of returns for (1) the asset, (2) the market index, 
and (3) the risk-free rate. The beta estimates will vary with the particular 
market index selected as well as with the sample period and frequency used.

Typically, a methodology referred to as a two-pass regression is used 
to test the CAPM. The first pass involves the estimation of beta for each 
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security from its characteristic line. The betas from the first-pass regression 
are then used to form portfolios of securities ranked by portfolio beta. 

The portfolio returns, the return on the risk-free asset, and the portfolio 
betas (denoted by βp) are then used to estimate the second-pass regression. 
Then the following second-pass regression which is the empirical analogue 
of the CAPM is estimated: 

 Rp − RF = b0 + b1βp + εp (3.20)

where the parameters to be estimated are b0 and b1, and εp is the error term 
for the regression. 

Unlike the estimation of the characteristic line which uses time series 
data, the second-pass regression is a cross-sectional regression. The return 
data are frequently aggregated into five-year periods for this regression.

According to the CAPM, the following should be found:

 1. b0 should not be significantly different from zero. This can be seen by 
comparing equations (3.19) and (3.20).

 2. b1 should equal the observed risk premium (RM − RF) over which the 
second-pass regression is estimated. Once again, this can be seen by 
comparing equations (3.19) and (3.20).

 3. The relationship between beta and return should be linear. That is, if, 
for example, the following multiple regression is estimated, 

 Rp − RF = b0 + b1βp + b2(βp)2 + εp 

the parameters b0 and b2 should not be significantly different from zero.
 4. Beta should be the only factor that is priced by the market. That is, 

other factors such as the variance or standard deviation of the returns, 
and variables such as the price-earnings ratio, dividend yield, and firm 
size, should not add any significant explanatory power to the equation.

The general results of the empirical tests of the CAPM are as follows:

 1. The estimated intercept term b0, is significantly different from zero and 
consequently different from what is hypothesized for this value.

 2. The estimated coefficient for beta, b1, has been found to be less than 
the observed risk premium (RM − RF). The combination of this and the 
previous finding suggests that low-beta stocks have higher returns than 
the CAPM predicts and high-beta stocks have lower returns than the 
CAPM predicts.

 3. The relationship between beta and return appears to be linear; hence 
the functional form of the CAPM is supported.
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 4. Beta is not the only factor priced by the market. Several studies have dis-
covered other factors that explain stock returns. These include a price-
earnings factor, a dividend factor, a firm-size factor, and both a firm-size 
factor and a book-market factor. 

It is the last of these findings that has fostered the empirical search for other 
factors using the financial econometric models.23 

Evidence for Multifactor Models

Regression-based tests seeking to dispute the CAPM have helped iden-
tify factors that have been found to be statistically significant in explain-
ing the variation in asset returns. Employing regression analysis, Robert 
Jones of Goldman Sachs Asset Management at the time reported fac-
tors he found in the U.S. stock market.24 For the period 1979 through 
1996, he regressed monthly stock returns against the following factors: 
“value” factors, “momentum” factors, and risk factors. The value factors 
included four ratios: book/market ratio, earnings/price ratio, sales/price 
ratio, and cash flow/price ratio. The three momentum factors included 
estimate revisions for earnings, revisions ratio, and price momentum. 
Three risk factors were used. The first is the systematic risk or beta from 
the CAPM.25 The second is the residual risk from the CAPM; this is the 
risk not explained by the CAPM. The third risk is an uncertainty estimate 
measure. The factors are beginning-of-month values that are properly 
lagged where necessary.26 

Jones calculated the average monthly regression coefficient and t-statistic 
for the series. Table 3.9 shows the estimated coefficient for each factor and 
the t-statistic. All of the factors are highly significant. The lowest t-statistic is 

23 It should be noted that in 1977 Richard Roll criticized the published tests of the 
CAPM. He argued that while the CAPM is testable in principle, no correct test of 
the theory had yet been presented. He also argued that there was practically no pos-
sibility that a correct empirical test would ever be accomplished in the future. See 
Richard R. Roll, “A Critique of the Asset Pricing Theory: Part I. On the Past and 
Potential Testability of the Theory,” Journal of Financial Economics 5 (March 1977): 
129–176.
24 Jones, “The Active versus Passive Debate: Perspectives on an Active Quant.”
25 In the calculation of the CAPM a proxy for the market portfolio is needed. Jones 
used the Russell 1000 Index. This index includes large-cap stocks.
26 Lagging is required because certain financial information is reported with lag. For 
example, year-end income and balance sheet information for a given year is not 
reported until three months after the corporation’s year-end.
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that of the CAPM beta. The conclusion from the regression results reported 
in Table 3.9 is that there are factors other than the CAPM beta that explain 
returns. 

KEY POiNTS

 ■ A multiple linear regression is a linear regression that has more than one 
independent or explanatory variable.

 ■ There are three assumptions regarding the error terms in a multiple 
linear regression: (1) they are normally distributed with zero mean, 
(2) the variance is constant, and (3) they are independent.

 ■ The ordinary least squares method is used to estimate the parameters of 
a multiple linear regression model.

 ■ The three steps involved in designing a multiple linear regression model 
are (1) specification of the dependent and independent variables to be 
included in the model, (2) fitting/estimating the model, and (3) evaluating 

TAbLE 3.9 Factors Found for U.S. Equity Market: Regression Results 

U.S. Results (1979–1996)

Coefficient t-Statistic

Value Factors

  Book/market   0.24   2.96

  Earnings/price   0.40   5.46

  Sales/price   0.28   4.25

  Cash flow/price   0.38   5.28

Momentum Factors

  Estimate revisions   0.56 13.22

  Revisions ratio   0.55 14.72

  Price momentum   0.61 7.17

Risk Factors

  CAPM beta –0.17 –1.83

  Residual risk –0.42 –4.05

  Estimate uncertainty –0.33 –6.39

Source: Adapted from Exhibit 5 in Robert C. Jones, “The Active versus Passive 
Debate: Perspectives on an Active Quant,” in Active Equity Portfolio Management, 
ed. Frank J. Fabozzi (Hoboken, NJ: John Wiley & Sons, 1998), Chapter 3.
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the quality of the model with respect to the given data (diagnosis of the 
model).

 ■ There are criteria for diagnosing the quality of a model. The tests used 
involve statistical tools from inferential statistics. The estimated regres-
sion errors play an important role in these tests and the tests accord-
ingly are based on the three assumptions about the error terms.

 ■ The first test is for the statistical significance of the multiple coefficient 
of determination, which is the ratio of the sum of squares explained by 
the regression and the total sum of squares.

 ■ If the standard deviation of the regression errors from a proposed model 
is found to be too large, the fit could be improved by an alternative 
specification. Some of the variance of the errors may be attributable to 
the variation in some independent variable not considered in the model. 

 ■ An analysis of variance test is used to test for the statistical significance 
of the entire model.

 ■ Because one can artificially increase the original R2 by including addi-
tional independent variables into the regression, one will not know 
the true quality of the model by evaluating the model using the same 
data. To deal with this problem, the adjusted goodness-of-fit measure 
or adjusted R2 is used. This measure takes into account the number of 
observations as well as the number of independent variables.

 ■ To test for the statistical significance of individual independent vari-
ables, a t-test is used. 

 ■ To test for the statistical significance of a set or group of independent 
variables, an F-test is used.
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A fter reading this chapter you will understand:

 ■ What is meant by multicollinearity in a multiple linear regression model.
 ■ How to detect multicollinearity and mitigate the problem caused by it.
 ■ The model building process in the sense of ascertaining the independent 
variables that best explain the variable of interest. 

 ■ How stepwise regression analysis is used in model building and the dif-
ferent stepwise regression methods.

 ■ How to test for the various assumptions of the multiple linear regres-
sion model and correct the model when violations are found.

In this chapter we continue with our coverage of multiple linear regres-
sion analysis. The topics covered in this chapter are the problem of multicol-
linearity, model building techniques using stepwise regression analysis, and 
testing the assumptions of the models that were described in Chapter 3.

THE PROBLEM OF MULTICOLLINEARITY 

When discussing the suitability of a model, an important issue is the struc-
ture or interaction of the independent variables. The statistical term used for 
the problem that arises from the high correlations among the independent 
variables used in a multiple regression model is multicollinearity or, simply, 
collinearity. Tests for the presence of multicollinearity must be performed 
after the model’s significance has been determined and all significant inde-
pendent variables to be used in the final regression have been determined. 

A good deal of intuition is helpful in assessing if the regression coef-
ficients make any sense. For example, one by one, select each independent 

CHAPTER 4
Building and Testing a 

Multiple Linear 
Regression Model
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variable and let all other independent variables be equal to zero. Now, esti-
mate a regression merely with this particular independent variable and see 
if the regression coefficient of this variable seems unreasonable because if its 
sign is counterintuitive or its value appears too small or large, one may want 
to consider removing that independent variable from the regression. The 
reason may very well be attributable to multicollinearity. Technically, multi-
collinearity is caused by independent variables in the regression model that 
contain common information. The independent variables are highly intercor-
related; that is, they have too much linear dependence. Hence the presence 
of multicollinear independent variables prevents us from obtaining insight 
into the true contribution to the regression from each independent variable. 

Formally, the notion of perfect collinearity, which means that one or 
more independent variables are a linear combination of the other indepen-
dent variables, can be expressed by the following relationship:

 rank of (XTX) < k + 1 (4.1)

where the matrix X was defined in equation (3.4) in Chapter 3. Equation 
(4.1) can be interpreted as X now consisting of vectors Xi, i = 1,  .  .  .  , k + 1. 

In a very extreme case, two or more variables may be perfectly corre-
lated (i.e., their pairwise correlations are equal to one), which would imply 
that some vectors of observations of these variables are merely linear com-
binations of others. The result of this would be that some variables are fully 
explained by others and, thus, provide no additional information. This is 
a very extreme case, however. In most problems in finance, the indepen-
dent data vectors are not perfectly correlated but may be correlated to a 
high degree. In any case, the result is that, roughly speaking, the regres-
sion estimation procedure is confused by this ambiguity of data information 
such that it cannot produce distinct regression coefficients for the variables 
involved. The βi, i = 1,  .  .  .  , k cannot be identified; hence, an infinite number 
of possible values for the regression coefficients can serve as a solution. This 
can be very frustrating in building a reliable regression model. 

We can demonstrate the problem with an example. Consider a regres-
sion model with three independent variables—X1, X2, and X3. Also assume 
the following regarding these three independent variables:

X X X1 2 32 4= =

such that there is, effectively, just one independent variable, either X1, X2, 
or X3. Now, suppose all three independent variables are erroneously used to 
model the following regression

 
y X X X

X X X

= + +
= + +

β β β
β β β
1 1 2 2 3 3

1 3 2 3 3 34 2
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Just to pick one possibility of ambiguity, the same effect is achieved by 
either increasing β1 by, for example, 0.25 or by increasing β3 by 1, and so 
forth. In this example, the rank would just be 1. This is also intuitive since, 
generally, the rank of (XTX)–1 indicates the number of truly independent 
sources.1

Procedures for Mitigating Multicollinearity

While it is quite impossible to provide a general rule to eliminate the prob-
lem of multicollinearity, there are some techniques that can be employed to 
mitigate the problem.

Multicollinearity might be present if there appears to be a mismatch 
between the sign of the correlation coefficient and the regression coefficient 
of that particular independent variable. So, the first place to always check is 
the correlation coefficient for each independent variable and the dependent 
variable.

Three other indicators of multicollinearity are: 

 1. The sensitivity of regression coefficients to the inclusion of additional 
independent variables.

 2. Changes from significance to insignificance of already included inde-
pendent variables after new ones have been added.

 3. An increase in the model’s standard error of the regression. 

A consequence of the above is that the regression coefficient estimates vary 
dramatically as a result of only minor changes in the data X. 

A remedy most commonly suggested is to try to single out independent 
variables that are likely to cause the problems. This can be done by exclud-
ing those independent variables so identified from the regression model. It 
may be possible to include other independent variables, instead, that pro-
vide additional information. 

In general, due to multicollinearity, the standard error of the regression 
increases, rendering the t-ratios of many independent variables too small 
to indicate significance despite the fact that the regression model, itself is 
highly significant. 

To find out whether the variance error of the regession is too large, we 
present a commonly employed tool. We measure multicollinearity by comput-
ing the impact of the correlation between some independent variables and the 

1 One speaks of “near collinearity” when the determinant of XTX is very small so 
that matrix inversion is unstable and the estimation of the regression parameters is 
unstable.
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jth independent variable. Therefore, we need to regress the jth variable on the 
remaining k − 1 variables. The resulting regression would look like 

 x c b x b x b xj
j

j
j

j j
j

j= + + + + +− − + +1 1 1 1 1 1
( ) ( ) ( ). . . . . ..      , , . . . ,( )+ =b x j kk

j
k 1 2  

Then we obtain the coefficient of determination of this regression, Rj
2.  

This, again, is used to divide the original variance of the jth regression coef-
ficient estimate by a correction term. This correction term is called the vari-
ance inflation factor (VIF) and is expressed as 

 VIF =
−
1

1 2( )Rj

 (4.2)

So, if there is no correlation present between independent variable j and 
the other independent variables, the variance of bj will remain the same and 
the t-test results will be unchanged. On the contrary, in the case of more 
intense correlation, the variance will increase and most likely reject variable 
xj as significant for the overall regression. 

Consequently, prediction for the jth regression coefficient becomes less 
precise since its confidence interval increases due to equation (4.2).2 The 
confidence interval for the regression coefficient at the level α is given by 

 b t s b t sj b j bj j
− +



⋅ ⋅α α/ /,2 2

 (4.3)

where tα/2 is the critical value at level α of the t-distribution with n − k 
degrees of freedom. This means that with probability 1−α, the true coeffi-
cient is inside of this interval.3 Naturally, the result of some VIF > 1 leads to 
a widening of the confidence interval given by equation (4.3). 

As a rule of thumb, a benchmark for the VIF is often given as 10. A VIF 
that exceeds 10 indicates a severe impact due to multicollinearity and the 
independent variable is best removed from the regression. 

MODEL BUILDING TECHNIQUES

We now turn our attention to the model building process in the sense that 
we attempt to find the independent variables that best explain the variation 
in the dependent variable y. At the outset, we do not know how many and 

2 The confidence level is often chosen as 1 – α = 0.99 or 1 – α = 0.95 such that the 
parameter is inside of the interval with 0.95 or 0.99 probability, respectively.
3 This is based on the assumptions stated in the context of estimation.
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which independent variables to use. Increasing the number of independent 
variables does not always improve regressions. The econometric theorem 
known as Pyrrho’s lemma relates to the number of independent variables.4 
Pyrrho’s lemma states that by adding one special independent variable to 
a linear regression, it is possible to arbitrarily change the size and sign of 
regression coefficients as well as to obtain an arbitrary goodness-of-fit. This 
tells us that if we add independent variables without a proper design and 
testing methodology, we risk obtaining spurious results.

The implications are especially important for those financial models 
that seek to forecast prices, returns, or rates based on regressions over eco-
nomic or fundamental variables. With modern computers, by trial and error, 
one might find a complex structure of regressions that give very good results 
in-sample but have no real forecasting power.

There are three methods that are used for the purpose of determining 
the suitable independent variables to be included in a final regression model. 
They are:

 1. Stepwise inclusion regression method
 2. Stepwise exclusion regression method 
 3. Standard stepwise regression method 

We explain each next.

Stepwise Inclusion Regression Method
In the stepwise inclusion regression method we begin by selecting a single 
independent variable. It should be the one most highly correlated (positive 
or negative) with the dependent variable.5 After inclusion of this indepen-
dent variable, we perform an F-test to determine whether this independent 
variable is significant for the regression. If not, then there will be no indepen-
dent variable from the set of possible choices that will significantly explain 
the variation in the dependent variable y. Thus, we will have to look for a 
different set of variables. 

If, on the other hand, this independent variable, say x1, is significant, 
we retain x1 and consider the next independent variable that best explains 
the remaining variation in y. We require that this additional independent 
variable, say x2, be the one with the highest coefficient of partial determina-
tion. This is a measure of the goodness-of-fit given that the first x1 is already 
in the regression. It is defined to be the ratio of the remaining variation 

4 T. K. Dijkstra, “Pyrrho’s Lemma, or Have it Your Way,” Metrica 42 (1995): 119–225.
5 The absolute value of the correlation coefficient should be used since we are only 
interested in the extent of linear dependence, not the direction.
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explained by the second independent variable to the total of unexplained 
variation before x2 was included. Formally, we have

 SSE SSE
SSE
1 2

1

−  (4.4)

where SSE1 = the variation left unexplained by x1 
 SSE2 =  the variation left unexplained after both x1 and x2 have been 

included

This is equivalent to requiring that the additional variable is to be the 
one that provides the largest coefficient of determination once included in 
the regression. After the inclusion, an F-test with 

 F

n

=
−

−

SSE SSE
SSE
1 2

1

2

 (4.5)

is conducted to determine the significance of the additional variable. 
The addition of independent variables included in some set of candidate 

independent variables is continued until either all independent variables are 
in the regression or the additional contribution to explain the remaining 
variation in y is not significant anymore. Hence, as a generalization to equa-
tion (4.5), we compute 

 F n ii i i= −( ) ( ) × − −( )+SSE SSE SSE1 1/  

after the inclusion of the i + 1st variable and keep it included only if F is 
found to be significant. Accordingly, SSEi denotes the sum of square residu-
als with i variables included while SSEi+1 is the corresponding quantity for 
i + 1 included variables.

Stepwise Exclusion Regression Method

The stepwise exclusion regression method mechanically is basically 
the opposite of the stepwise inclusion method. That is, one includes 
all independent variables at the beginning. One after another of the 
insignificant variables are eliminated until all insignificant independent 
variables have been removed. The result constitutes the final regression 
model. In other words, we include all k independent variables into the 
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regression at first. Then we consider all variables for exclusion on a step-
wise removal basis. 

For each independent variable, we compute 

  F n kk k k= −( ) ( ) × −( )− −SSE SSE SSE1 1/  (4.6)

to find the ones where F is insignificant. The one that yields the least signifi-
cant value F is discarded. We proceed stepwise by alternatively considering all 
remaining variables for exclusion and, likewise, compute the F-test statistic given 
by equation (4.7) for the new change in the coefficient of partial determination. 

In general, at each step i, we compute 

  F n k ik i k i k i= −( ) ( ) × − + −( )− − + −SSE SSE SSE1 1/  (4.7)

to evaluate the coefficient of partial determination lost due to discarding the 
ith independent variable.6 If no variable with an insignificant F-test statistic 
can be found, we terminate the elimination process.

Standard Stepwise Regression Method

The standard stepwise regression method involves introducing indepen-
dent variables based on significance and explanatory power and possibly 
eliminating some that have been included at previous steps. The reason for 
elimination of any such independent variables is that they have now become 
insignificant after the new independent variables have entered the model. 
Therefore, we check the significance of all coefficient statistics according to 
equation (3.16) in Chapter 3. This methodology provides a good means for 
eliminating the influence from possible multicollinearity discussed earlier.

Application of the Stepwise Regression Method In the previous chapter, we 
used an illustration to show how multiple linear regression analysis can 
be used for hedge fund style analysis. We first explained the use of the 
Sharpe benchmark for this purpose and then explained using an illustra-
tion by Dor and Jagannathan the issues with using the Sharpe benchmark 
for hedge fund style analysis.7 We will continue with that illustration here 

6 The SSEk−i+1 is the sum of square residuals before independent variable i is dis-
carded. After the ith independent variable has been removed, the sum of square 
residuals of the regression with the remaining k − i variables is given by SSEk−i.
7 Arik Ben Dor and Ravi Jagannathan, “Style Analysis: Asset Allocation and Perfor-
mance Evaluation,” in The Handbook of Equity Style Management, 3rd ed., ed. T. 
Daniel Coggin and Frank J. Fabozzi (Hoboken, NJ: John Wiley & Sons, 2003).
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because Dor and Jagannathan use a stepwise regression to further illustrate 
their point.

Dor and Jagannathan show how the style analysis can be further 
improved by including peer-group performance as measured by hedge fund 
indexes created by several organizations. Three examples of such organiza-
tions are Hedge Fund Research Company (HFR), CSFB/Tremont (TRE), 
and MAR Futures (MAR). The five hedge fund indexes that are used by Dor 
and Jagannathan in their illustration are (1) Market Neutral, (2) Emerging 
Markets, (3) Managed Futures, (4) Fixed Income, and (5) Event Driven. 
A total of 21 explanatory variables then can be used in the style analysis: 
twelve asset classes, five hedge fund indexes, and four of the S&P 500 
option strategies. Because of the large number of variables and their high 
correlations, Dor and Jagannathan employ stepwise regression analysis. The 
results are shown in Table 4.1. In implementing the stepwise regression, Dor 
and Jagannathan specify a 10% significance level for deleting or adding an 
explanatory variable in the stepwise regression procedure. The results of the 
stepwise regression results show a higher ability to track the returns of the 
two directional funds relative to the two nondirectional funds by including 
the five hedge fund indexes (i.e., peer groups).

TESTING THE ASSUMPTIONS OF THE  
MULTIPLE LINEAR REGRESSION MODEL

After we have come up with some regression model, we have to perform 
a diagnosis check. The question that must be asked is: How well does the 
model fit the data? This is addressed using diagnosis checks that include the 
coefficient of determination, R2 as well as Radj

2 , and the standard error or 
square root of the mean squared error (MSE) of the regression. In particu-
lar, the diagnosis checks analyze whether the linear relationship between 
the dependent and independent variables is justifiable from a statistical 
perspective. 

As we also explained in the previous chapter, there are several assump-
tions that are made when using the general multiple linear regression model. 
The first assumption is the independence of the independent variables used 
in the regression model. This is the problem of multicollinearity that we 
discussed earlier where we briefly described how to test and correct for this 
problem. The second assumption is that the model is in fact linear. The third 
assumption has to do with assumptions about the statistical properties of 
the error term for the general multiple linear regression model. Furthermore, 
we assumed that the residuals are uncorrelated with the independent vari-
ables. Here we look at the assumptions regarding the linearity of the model 
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and the assumptions about the error term. We discuss the implications of the 
violation of these assumptions, some tests used to detect violations, and pro-
vide a brief explanation of how to deal with any violations. In some cases, 
we discuss these violations in more detail in later chapters. 

Tests for Linearity

To test for linearity, a common approach is to plot the regression residuals 
on the vertical axis and values of the independent variable on the horizontal 
axis. This graphical analysis is performed for each independent variable. 
What we are looking for is a random scattering of the residuals around zero. 
If this should be the case, the model assumption with respect to the residu-
als is correct. If not, however, there seems to be some systematic behavior in 
the residuals that depends on the values of the independent variables. The 
explanation is that the relationship between the independent and dependent 
variables is not linear. 

The problem of a nonlinear functional form can be dealt with by trans-
forming the independent variables or making some other adjustment to the 
variables. For example, suppose that we are trying to estimate the relation-
ship between a stock’s return as a function of the return on a broad-based 
stock market index such as the S&P 500. Letting y denote the return on 
the stock and x the return on the S&P 500 we might assume the following 
bivariate regression model: 

 y = b0 + b1 x + ε (4.8)

where ε is the error term. 
We have made the assumption that the functional form of the relation-

ship is linear. Suppose that we find that a better fit appears to be that the 
return on the stock is related to the return on the broad-based market index as

 y = b0 + b1x + b2x2 + ε (4.9)

If we let x = x1 and x2 = x2 and we adjust our table of observations accord-
ingly, then we can rewrite equation (4.9) as

 y = b0 + b1x1 + b2x2 + ε (4.10)

The model given by equation (4.10) is now a linear regression model despite 
the fact that the functional form of the relationship between y and x is non-
linear. That is, we are able to modify the functional form to create a linear 
regression model. 
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Let’s see how a simple transformation can work as explained in Chap-
ter 2. Suppose that the true relationship of interest is exponential, that is,

 y x= βεα  (4.11)

Taking the natural logarithms of both sides of equation (4.11) will result in

 ln lny x= +β α  (4.12)

which is again linear. 
Now consider that the fit in equation (4.12) is not exact; that is, there is 

some random deviation by some residual. Then we obtain 

 ln lny x= + +β α ε  (4.13)

If we let z = ln y and adjust the table of observations for y accordingly and 
let λ = ln β, we can then rewrite equation (4.13) as 

 z = λ + αx + ε (4.14)

This regression model is now linear with the parameters to be estimated 
being λ and α.

Now we transform equation (4.14) back into the shape of equation 
(4.11) ending up with

 y x x= =⋅ ⋅βε ε βε ξα ε α  (4.15)

where in equation (4.15) the deviation is multiplicative rather than additive 
as would be the case in a linear model. This would be a possible explanation 
of the nonlinear function relationship observed for the residuals. 

However, not every functional form that one might be interested in esti-
mating can be transformed or modified so as to create a linear regression. 
For example, consider the following relationship:

 y = (b1x)/(b2 + x) + ε (4.16)

Admittedly, this is an odd looking functional form. What is important 
here is that the regression parameters to be estimated (b1 and b2) cannot 
be transformed to create a linear regression model. A regression such as 
equation (4.16) is referred to as a nonlinear regression and the estimation 
of nonlinear regressions is far more complex than that of a linear regres-
sion because they have no closed-form formulas for the parameters to be 
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estimated. Instead, nonlinear regression estimation techniques require the 
use of optimization techniques to identify the parameters that best fit the 
model. Researchers in disciplines such as biology and physics often have to 
deal with nonlinear regressions.

Assumed Statistical Properties about the Error Term

The third assumption about the general linear model concerns the three 
assumptions about the error term that we listed in Chapter 3 and repeat 
below:

Assumption 1. The regression errors are normally distributed with zero 
mean.

Assumption 2. The variance of the regression errors ( )σε
2  is constant. 

Assumption 3. The error terms from different points in time are inde-
pendent such that εt are independent variables for all t.

Assumption 1 states that the probability distribution for the error term 
is that it is normally distributed. Assumption 2 says that the variance of the 
probability distribution for the error term does not depend on the level of 
any of the independent variables. That is, the variance of the error term is 
constant regardless of the level of the independent variable. If this assump-
tion holds, the error terms are said to be homoscedastic (also spelled homo-
skedastic). If this assumption is violated, the variance of the error term is said 
to be heteroscedastic (also spelled heteroskedastic). Assumption 3 says that 
there should not be any statistically significant correlation between adjacent 
residuals. The correlation between error terms is referred to as autocorrela-
tion. Recall that we also assume that the residuals are uncorrelated with the 
independent variables.

Tests for the Residuals Being Normally Distributed

An assumption of the general linear regression model is that the residuals 
are normally distributed. The implications of the violation of this assump-
tion are: 

 ■ The regression model is misspecified.
 ■ The estimates of the regression coefficients are also not normally dis-
tributed.

 ■ The estimates of the regression coefficients, although still the best linear 
unbiased estimators, are no longer efficient estimators.
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From the second implication above we can see that violation of the 
normality assumption makes hypothesis testing suspect. More specifically, 
if the assumption is violated, the t-tests explained in Chapter 3 will not be 
applicable. 

Typically the following three methodologies are used to test for normal-
ity of the error terms (1) chi-square statistic, (2) Jarque-Bera test statistic, and 
(3) analysis of standardized residuals.

Chi-Square Statistic The chi-square statistic is defined as

 χ2

2

1

=
−( )⋅
⋅=

∑ n n p

n p
i i

ii

k

 (4.17)

where some interval along the real numbers is divided into k segments of 
possibly equal size. The pi indicate which percentage of all n values of the 
sample should fall into the ith segment if the data were truly normally dis-
tributed. Hence, the theoretical number of values that should be inside of 
segment i is n · pi. The ni are the values of the sample that actually fall into 
that segment i. The test statistic given by equation (4.17) is approximately 
chi-square distributed with k – 1 degrees of freedom. As such, it can be 
compared to the critical values of the chi-square distribution at arbitrary 
α-levels. If the critical values are surpassed or, equivalently, the p-value of 
the statistic is less than α, then the normal distribution has to be rejected for 
the residuals. 

Jarque-Bera Test Statistic The Jarque-Bera test statistic is not simple to cal-
culate manually, but most computer software packages have it installed. 
Formally, it is
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for a sample of size n. 
The expression in equation (4.19) is the skewness statistic of some dis-

tribution, and equation (4.20) is the kurtosis. Kurtosis measures the peak-
edness of the probability density function of some distribution around the 
median compared to the normal distribution. Also, kurtosis estimates, rela-
tive to the normal distribution, the behavior in the extreme parts of the dis-
tribution (i.e., the tails of the distribution). For a normal distribution, K = 3. 
A value for K that is less than 3 indicates a so-called light-tailed distribution 
in that it assigns less weight to the tails. The opposite is a value for K that 
exceeds 3 and is referred to as a heavy-tailed distribution. The test statistics 
given by equation (4.18) are approximately distributed chi-square with two 
degrees of freedom. 

Analysis of Standardized Residuals Another means of determining the appro-
priateness of the normal distribution are the standardized residuals. Once 
computed, they can be graphically analyzed in histograms. Formally, each 
standardized residual at the ith observation is computed according to
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where se is the estimated standard error (as defined in Chapter 3) and n is 
the sample size. This can be done with most statistical software. 

If the histogram appears skewed or simply not similar to a normal 
distribution, the linearity assumption is very likely to be incorrect. Addi-
tionally, one might compare these standardized residuals with the normal 
distribution by plotting them against their theoretical normal counterparts 
in a normal probability plot. There is a standard routine in most statistical 
software that performs this analysis. If the pairs lie along the line running 
through the sample quartiles, the regression residuals seem to follow a nor-
mal distribution and, thus, the assumptions of the regression model stated 
in Chapter 3 are met. 
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Tests For Constant Variance of the Error Term 
(Homoscedasticity)

The second test regarding the residuals in a linear regression analysis is that 
the variance of all squared error terms is the same. As we noted earlier, this 
assumption of constant variance is referred to as homoscedasticity. How-
ever, many time series data exhibit heteroscedasticity, where the error terms 
may be expected to be larger for some observations or periods of the data 
than for others. 

There are several tests that have been used to detect the presence of 
heteroscedasticity. These include the

 ■ White’s generalized heteroscedasticity test
 ■ Park test
 ■ Glejser Test
 ■ Goldfeld-Quandt test
 ■ Breusch-Pagan-Godfrey Test (Lagrangian multiplier test)

These tests will not be described here. 
If heteroscedasticity is detected, the issue then is how to construct mod-

els that accommodate this feature of the residual variance so that valid 
regression coefficient estimates and models are obtained for the variance of 
the error term. There are two methodologies used for dealing with hetero-
scedasticity: weighted least squares estimation technique and autoregressive 
conditional heteroscedastic (ARCH) models. We describe the first method 
here. We devote an entire chapter, Chapter 11, to the second methodology 
because of its importance for not just testing for heteroscedasticity but in 
forecasting volatility.

Weighted Least Squares Estimation Technique A potential solution for correcting 
the problem of heteroscedasticity is to give less weight to the observations 
coming from the population with larger variances and more weight to the 
observations coming from observations with higher variance. This is the 
basic notion of the weighted least squares (WLS) technique.

To see how the WLS technique can be used, let’s consider the case of the 
bivariate regression given by

 yt = β0 + β1xt + εt (4.22)

Let’s now make the somewhat bold assumption that the variance of 
the error term for each time period is known. Denoting this variance by σt

2 
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(dropping the subscript ε for the error term), we can then deflate the terms 
in the bivariate linear regression given by equation (4.22) by the assumed 
known standard deviation of the error term as follows:
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We have transformed all the variables in the bivariate regression, includ-
ing the original error term. It can be demonstrated that the regression with 
the transformed variables as shown in equation (4.23) no longer has hetero-
scedasticity. That is, the variance of the error term in equation (4.23), εt/σt, 
is homoscedastic.

Equation (4.23) can be estimated using ordinary least squares by simply 
adjusting the table of observations so that the variables are deflated by the 
known σt. When this is done, the estimates are referred to as weighted least 
squares estimators.

We simplified the illustration by assuming that the variance of the error 
term is known. Obviously, this is an extremely aggressive assumption. In 
practice, the true value for the variance of the error term is unknown. Other 
less aggressive assumptions are made but nonetheless are still assumptions. 
For example, the variance of the error term can be assumed to be propor-
tional to one of the values of the independent variables. In any case, the 
WLS estimator requires that we make some assumption about the variance 
of the error term and then transform the value of the variables accordingly 
in order to apply the WLS technique. 

Absence of Autocorrelation of the Residuals

Assumption 3 is that there is no correlation between the residual terms. 
Simply put, this means that there should not be any statistically significant 
correlation between adjacent residuals. In time series analysis, this means no 
significant correlation between two consecutive time periods. 

The correlation of the residuals is critical from the point of view of 
estimation. Autocorrelation of residuals is quite common in financial data 
where there are quantities that are time series. A time series is said to be 
autocorrelated if each term is correlated with its predecessor so that the 
variance of each term is partially explained by regressing each term on its 
predecessor. 

Autocorrelation, which is also referred to as serial correlation and 
lagged correlation in time series analysis, like any correlation, can range 
from −1 to +1. Its computation is straightforward since it is simply a 
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correlation using the residual pairs et and et−1 as the observations. The 
formula is

 ρauto

t t
t

n

t
t

n

e e

e
=

−
=

=

∑

∑

1
2

2

1

 (4.24)

where ρauto means the estimated autocorrelation and et is the computed 
residual or error term for the tth observation.

A positive autocorrelation means that if a residual t is positive (nega-
tive), then the residual that follows, t + 1, tends to be positive (negative). 
Positive autocorrelation is said to exhibit persistence. A negative autocor-
relation means that a positive (negative) residual t tends to be followed by a 
negative (positive) residual t + 1. 

The presence of significant autocorrelation in a time series means that, in a 
probabilistic sense, the series is predictable because future values are correlated 
with current and past values. From an estimation perspective, the existence of 
autocorrelation complicates hypothesis testing of the regression coefficients. 
This is because although the regression coefficient estimates are unbiased, they 
are not best linear unbiased estimates. Hence, the variances may be signifi-
cantly underestimated and the resulting hypothesis test questionable. 

Detecting Autocorrelation How do we detect the autocorrelation of residu-
als? Suppose that we believe that there is a reasonable linear relationship 
between two variables, for instance stock returns and some fundamental 
variable. We then perform a linear regression between the two variables and 
estimate regression parameters using the OLS method. After estimating the 
regression parameters, we can compute the sequence of residuals. At this 
point, we can apply statistical tests. There are several tests for autocorrela-
tion of residuals that can be used. Two such tests are the Durbin-Watson test 
and the Dickey-Fuller test. We discuss only the first below.

The most popular test is the Durbin-Watson test, or more specifically, 
the Durbin-Watson d-statistic, computed as
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The denominator of the test is simply the sum of the squares of the error 
terms; the numerator is the squared difference of the successive residuals. 

It can be shown that if the sample size is large, then the Durbin-Watson 
d test statistic given by equation (4.25) is approximately related to the auto-
correlation given by equation (4.24) as

 d ≈ 2 (1 − ρauto) (4.26)

Since ρauto can vary between −1 and 1, this means that d can vary from 0 to 
4 as shown:

Value of ρauto Interpretation of ρauto Approximate Value of d

−1 Perfect negative autocorrelation 4

  0 No autocorrelation 2

  1 Perfect positive autocorrelation 0

From the above table we see that if d is close to 2 there is no autocorrela-
tion. A d value less than 2 means there is potentially positive autocorrelation; 
the closer the value to 0 the greater the likelihood of positive autocorre-
lation. There is potentially negative autocorrelation if the computed d 
exceeds 2 and the closer the value is to 4, the greater the likelihood of nega-
tive autocorrelation.

In previous hypothesis tests discussed in this book, we stated that there 
is a critical value that a test statistic had to exceed in order to reject the 
null hypothesis. In the case of the Durbin-Watson d statistic, there is not 
a single critical value but two critical values, which are denoted by dL and 
dU. Moreover, there are ranges for the value of d where no decision can be 
made about the presence of autocorrelation. The general decision rule given 
the null hypothesis and the computed value for d is summarized in the fol-
lowing table:

Null Hypothesis Range for Computed d Decision Rule

No positive autocorrelation 0 < d < dL Reject the null hypothesis

No positive autocorrelation dL ≤ d ≤ dU No decision 

No negative autocorrelation 4 − dL < d < 4 Reject the null hypothesis

No negative autocorrelation 4 – dU ≤ d ≤ 4 – dL No decision

No autocorrelation dU < d < 4 – dU Accept the null hypothesis

Where does one obtain the critical values dL and dU? There are tables 
that report those values for the 5% and 1% levels of significance. The critical 
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values also depend on the sample size and the number of independent vari-
ables in the multiple regression.8 

For example, suppose that there are 12 independent variables in a regres-
sion, there are 200 observations, and that the significance level selected is 
5%. Then according to the Durbin-Watson critical value table, the critical 
values are

 dL = 1.643 and dU = 1.896 

Then the tests in the previous table can be written as:

Null Hypothesis Range for Computed d Decision Rule

No positive autocorrelation 0 < d < 1.643 Reject the null hypothesis

No positive autocorrelation 1.643 ≤ d ≤ 1.896 No decision 

No negative autocorrelation 2.357 < d < 4 Reject the null hypothesis

No negative autocorrelation 2.104 ≤ d ≤ 2.357 No decision

No autocorrelation 1.896 < d < 2.104 Accept the null hypothesis

Modeling in the Presence of Autocorrelation If residuals are autocorrelated, the 
regression coefficient can still be estimated without bias using the formula 
given by equation (3.10) in Chapter 3. However, this estimate will not be 
optimal in the sense that there are other estimators with lower variance of 
the sampling distribution. Fortunately, there is a way to deal with this prob-
lem. An optimal linear unbiased estimator called the Aitken’s generalized 
least squares (GLS) estimator can be used. The discussion about this estima-
tor is beyond the scope of this chapter. 

The principle underlying the use of such estimators is that in the pres-
ence of correlation of residuals, it is common practice to replace the stan-
dard regression models with models that explicitly capture autocorrelations 
and produce uncorrelated residuals. The key idea here is that autocorrelated 
residuals signal that the modeling exercise has not been completed. That is, 
if residuals are autocorrelated, this signifies that the residuals at a generic 
time t can be predicted from residuals at an earlier time. 

Autoregressive Moving Average Models There are models for dealing with 
the problem of autocorrelation in time series data. These models are called 
autoregressive moving average (ARMA) models. Although financial time 

8 See N. Eugene Savin and Kenneth J. White, “The Durbin-Watson Test for Serial 
Correlation with Extreme Sample Sizes or Many Regressors,” Econometrica 45 
(1977): 1989–1996.
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series typically exhibit structures that are more complex than those pro-
vided by ARMA models, these models are a starting point and often serve as 
a benchmark to compare more complex approaches. There are two compo-
nents to an ARMA model: (1) autoregressive process and (2) moving aver-
age process. We discuss these in Chapter 9.

KEY POINTS

 ■ The structure or interaction of the independent variables is an impor-
tant issue in a multiple linear regression model and is referred to as the 
multicollinearity problem. Investigation for the presence of multicol-
linearity involves the correlation between the independent variables and 
the dependent variable.

 ■ Tests for the presence of multicollinearity must be performed after the 
model’s significance has been determined and all significant independent 
variables to be used in the final regression have been determined.

 ■ The process of building a multiple linear regression model involves 
identifying the independent variables that best explain the variation in 
the dependent variable. 

 ■ In the initial development of a model, how many and which indepen-
dent variables to include in the model are unknown. Increasing the 
number of independent variables does not always improve regressions. 

 ■ Pyrrho’s lemma states that by adding one special independent variable 
to a linear regression model, it is possible to arbitrarily change the sign 
and magnitude of the regression coefficients as well as to obtain an 
arbitrary goodness-of-fit. 

 ■ Without a proper design and testing methodology, the adding of inde-
pendent variables to a regression model runs the risk of obtaining spuri-
ous results.

 ■ Stepwise regression analysis is a statistical tool employed for determin-
ing the suitable independent variables to be included in a final regression 
model. The three stepwise regression methodologies are the stepwise 
inclusion method, the stepwise exclusion method, and the standard 
stepwise regression method.

 ■ The process of building a model also calls for testing the assumptions of 
the multiple linear regression model (i.e., performing diagnosis checks). 

 ■ The diagnosis checks analyze whether the linear relationship between 
the dependent and independent variables is justifiable from a statistical 
perspective.

 ■ These tests also involve testing for the several assumptions that are made 
when using the general multiple linear regression model: (1) independence 



Building and Testing a Multiple Linear Regression Model 101

of the independent variables used in the regression model (e.g., the prob-
lem of multicollinearity), (2) the linearity of the model, and (3) whether 
the assumptions about the statistical properties of the error term are 
warranted. 

 ■ Visual inspection of a scatter diagram of each independent variable and 
the regression residuals is a common approach for checking for linearity. 
The presence of some systematic behavior in the residuals that depends 
on the values of the independent variables might suggest that the rela-
tionship between the independent variable investigated and dependent 
variable is not linear. 

 ■ The problem of a nonlinear functional form can be dealt with by trans-
forming the independent variables or making some other adjustment to 
the variables. 

 ■ Testing for the assumptions about the error terms involves testing if 
(1) they are normally distribution with zero mean, (2) the variance is 
constant, and (3) they are independent.

 ■ The implications of the violation of the normality assumption of the 
error terms are threefold: (1) the regression model is misspecified, (2) the 
estimates of the regression coefficients are not normally distributed, and 
(3) although still best linear unbiased estimators, the estimates of the 
regression coefficients are no longer efficient estimators.

 ■ Three methodologies used to test for normality of the error terms are 
the chi-square statistic, the Jarque-Bera test statistic, and analysis of 
standardized residuals.

 ■ In a linear regression model the variance of all squared error terms is 
assumed to be constant, an assumption referred to as homoscedasticity. 

 ■ When the homoscedasticity assumption is violated, the variance of the 
error terms is said to exhibit heteroscedasticity. Many time series data 
exhibit heteroscedasticity, where the error terms may be expected to be 
larger for some observations or periods of the data than for others. 

 ■ There are several tests that have been used to detect for the presence of 
heteroscedasticity and there are several methodologies for constructing 
models to accommodate this feature. Two of the most common meth-
odologies are the weighted least squares estimation technique and the 
autoregressive conditional heteroscedasticity model (ARCH).

 ■ The multiple linear regression model assumes that there is no statistically 
significant correlation between adjacent residuals. This means that there 
is no statistically significant autocorrelation between residuals.

 ■ A time series is said to be autocorrelated if each term is correlated with 
its predecessor so that the variance of each term is partially explained by 
regressing each term on its predecessor. In time series analysis, this means 
no significant autocorrelation between two consecutive time periods. 
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 ■ Autocorrelation of residuals is quite common in time series financial 
data. In time series analysis, autocorrelation is also referred to as serial 
correlation and lagged correlation.

 ■ If a residual t is positive (negative) and the residual that follows, t + 1, 
tends to be positive (negative), this behavior is said to be persistent and 
is referred to as positive autocorrelation. If, instead, a positive (negative)  
residual t tends to be followed by a negative (positive) residual t + 1, this 
is referred to as negative autocorrelation.

 ■ Significant autocorrelation in a time series means that, in a probabilistic 
sense, the series is predictable because future values are correlated with 
current and past values. 

 ■ The presence of autocorrelation complicates hypothesis testing of the 
regression coefficients. This is because although the regression coeffi-
cient estimates are unbiased, they are not best linear unbiased estimates 
so that the variances may be significantly underestimated and the result-
ing hypothesis tests questionable. When significant autocorrelation is 
present, the Aitken’s generalized least squares (GLS) estimator, which is 
an optimal linear unbiased estimated, can be employed.

 ■ The most popular test for the presence of autocorrelation of the residu-
als is the Durbin-Watson test, or more specifically, the Durbin-Watson 
d-statistic. 

 ■ Autoregressive moving average (ARMA) models are used for dealing 
with the problem of autocorrelation in time series data. 
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CHAPTER 5
Introduction to  

Time Series Analysis

A fter reading this chapter you will understand:

 ■ What is meant by time series data. 
 ■ What is meant by trend and seasonal terms in a time series. 
 ■ What is meant by autoregressive of order one and autocorrelation. 
 ■ The moving average method for estimating a time series model. 
 ■ How time series can be represented with difference equations. 
 ■ What is meant by a random walk and error corrections price processes.

In this chapter, we introduce the element of time as an index of a series of 
univariate observations. Thus, we treat observations as being obtained suc-
cessively rather than simultaneously. We present a simple time series model 
and its components. In particular, we focus on the trend, the cyclical, and 
seasonal terms, as well as the error or disturbance of the model. Furthermore, 
we introduce the random walk and error correction models as candidates for 
modeling security price movements. Here the notion of innovation appears. 
Time series are significant in modeling price processes as well as the dynamics 
of economic quantities. In this chapter, we assume that trends are determinis-
tic. In Chapter 10, we take a closer look at stochastic components of trends.

WHAT IS A TImE SERIES?

So far, we have either considered two-component variables cross-sectionally 
coequal, which was the case in correlation analysis, or we have considered one 
variable to be, at least partially, the functional result of some other  quantity. 
The intent of this section is to analyze variables that change in time, in other 
words, the objects of the analysis are time series. The  observations are  conceived 
as compositions of functions of time and other exogenous and endogenous 
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 variables as well as lagged values of the series itself or other quantities. These 
latter quantities may be given exogenously or also depend on time.

To visualize this, we plot the graph of 20 daily closing values of the 
 German stock market index, the DAX (Deutscher Aktien IndeX), in 
 Figure 5.1. The values are listed in Table 5.1. The time points of observation 
t with equidistant increments are represented by the horizontal axis while 
the DAX index values are represented by the vertical axis. 

DECOmPOSITION OF TImE SERIES

Each point in Figure 5.1 is a pair of the components, time and value. In this 
section, the focus is on the dynamics of the observations; that is, one wants 
to know what the values are decomposable into at each point in time. A time 
series with observations xt, t = 1, 2,  .  .  .  , n is usually denoted by {x}t.1 In the 
context of time series analysis, for any value xt, the series is thought of as a 
composition of several quantities. The most traditional decomposition is of 
the form

FIguRE 5.1 DAX Index Values: May 3 to May 31, 2007
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 x T Z S Ut t t t t= + + +  (5.1)

where Tt = trend
 Zt = cyclical term
 St = seasonal term
Ut = disturbance (or error)

While the trend and seasonal terms are assumed to be deterministic 
functions of time (i.e., their respective values at some future time t are known 
at any lagged time t – d, which is d units of time prior to t), the cyclical and 
disturbance terms are random. One also says that the last two terms are 

1 The number of dates n may theoretically be infinite. We will restrict ourselves to 
finite lengths.

TAblE 5.1 DAX Values of the Period May 3 to 
May 31, 2007

Date t Level

5/3/2007 1 7883.04

5/4/2007 2 7764.97

5/7/2007 3 7781.04

5/8/2007 4 7739.20

5/9/2007 5 7697.38

5/10/2007 6 7735.88

5/11/2007 7 7659.39

5/14/2007 8 7619.31

5/15/2007 9 7607.54

5/16/2007 10 7499.50

5/17/2007 11 7481.25

5/18/2007 12 7505.35

5/21/2007 13 7459.61

5/22/2007 14 7479.34

5/23/2007 15 7415.33

5/24/2007 16 7475.99

5/25/2007 17 7442.20

5/29/2007 18 7525.69

5/30/2007 19 7516.76

5/31/2007 20 7476.69

Source: Deutsche Börse, http://deutsche-boerse.com/.

http://deutsche-boerse.com/
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stochastic.2 Instead of the cyclical term Zt and the disturbance Ut, one some-
times incorporates the so-called irregular term of the form I I Ut t t= +⋅ −φ 1

 
with 0 1< ≤φ . That is, instead of equation (5.1), we now have

 x T S It t t t= + +  (5.2)

With the coefficient ϕ, we control how much of the previous time’s irregular 
value is lingering in the present. If ϕ is close to zero, the prior value is less 
significant than if ϕ were close to one or even equal to one. 

Note that Ut and It–1 are independent. Since It depends on the prior 
value It−1 scaled by ϕ and disturbed only by Ut, this evolution of It is referred 
to as autoregressive of order one.3 As a consequence, there is some relation 
between the present and the previous level of I. Thus, these two are correlated 
to an extent depending on ϕ. This type of correlation between levels at time 
t and different times from the same variable is referred to as autocorrelation.

In Figure 5.2, we present the decomposition of some hypothetical time 
series. The straight solid line T is the linear trend. The irregular component I 
is represented by the dashed line and the seasonal component S are the two 
dash-dotted lines at the bottom of the figure. The resulting thick dash-dotted 
line is the time series {x}t obtained by adding all components.

Application to S&P 500 Index Returns

As an example, we use the daily S&P 500 returns from January 2, 1996, 
to December 31, 2003. To obtain an initial impression of the data, we plot 
them in the scatter plot in Figure 5.3. At first glance, it is kind of difficult 
to detect any structure within the data. However, we will decompose the 
returns according to equation (5.2). A possible question might be, is there 
a difference in the price changes depending on the day of the week? For the 
seasonality, we consider a period of length five since there are five trading 
days within a week. The seasonal components, St(weekday), for each week-
day (i.e., Monday through Friday) are given below: 

Monday –0.4555
Tuesday 0.3814
Wednesday 0.3356
Thursday –0.4723
Friday 0.1759

2 The case where all four components of the time series are modeled as stochastic 
quantities is not considered here.
3 Order one indicates that the value of the immediately prior period is incorporated 
into the present period’s value.
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FIguRE 5.2 Decomposition of Time Series into Trend T, Seasonal Component S, and 
Irregular Component I
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The coefficient of the irregular term is ϕ = 0.2850 indicating that the 
previous period’s value is weighted by about one third in the computation of 
this period’s value. The overall model of the returns, then, looks like 

y T S I T S weekday I Ut t t t t t t t= + + = + ( ) − +−0 2850 1.

The technique used to estimate the times series model is the moving 
average method. Since it is beyond the scope of this chapter, we will not 
discuss it here.

As can be seen by Figure 5.4, it might appear difficult to detect a linear 
trend, at least when one does not exclude the first 15 observations. If there really 
is no trend, most of the price is contained in the other components rather than 
any deterministic term. Efficient market theory that is central in financial theory 
does not permit any price trend since this would indicate that today’s price does 
not contain all information available. By knowing that the price grows deter-
ministically, this would have to be already embodied into today’s price. 

REPRESENTATION OF TImE SERIES  
WITH DIFFERENCE EQuATIONS

Rather than representing {x}t by equation (5.1) or (5.2), often the dynamics of 
the components of the series are given. So far, the components are considered 

FIguRE 5.4 Daily S&P 500 Stock Index Prices with Daily Changes Extending Vertically
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as quantities at certain points in time. However, it may sometimes be more 
convenient to represent the evolution of {x}t by difference equations of its 
components. The four components in difference equation form could be 
thought of as 

 ∆ ∆ ∆ ∆x x x T I St t t t t t= − = + +−1
  (5.3)

with the change in the linear trend ΔTt = c where c is a constant, and 

∆I I It t t t= −( ) +− −φ ξ1 2

where ξ are disturbances themselves, and

 ∆ ∆T S h tt t+ = ( )  (5.4)

where h(t) is some deterministic function of time. The symbol Δ indicates 
change in value from one period to the next. 

The concept that the disturbance terms are i.i.d. means that the ξ behave 
in a manner common to all ξ (i.e., identically distributed) though indepen-
dently of each other. The concept of statistical independence is explained in 
Appendix A while for random variables, this is done in Appendix B.

In general, difference equations are some functions of lagged values, 
time, and other stochastic variables. In time series analysis, one most often 
encounters the task of estimating difference equations such as equation (5.4). 
The original intent of time series analysis was to provide some reliable tools 
for forecasting.4

By forecasting, we assume that the change in value of some quantity, say 
x, from time t to time t + 1 occurs according to the difference equation (5.3). 
However, since we do not know the value of the disturbance in t + 1, ξt+1, at 
time t, we incorporate its expected value, that is, zero. All other quantities in 
equation (5.3) are deterministic and, thus, known in t. Hence, the forecast 
really is the expected value in t + 1 given the information in t. 

APPlICATION: THE PRICE PROCESS

Time series analysis has grown more and more important for verifying 
financial models. Price processes assume a significant role among these mod-
els. In the next two subsections, we discuss two commonly encountered 
models for price processes given in a general setting: random walk and error 

4 See, for example, Walter Enders, Applied Econometrics Time Series (New York: 
John Wiley & Sons, 1995).
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 correction.5 The theory behind them is not trivial. In particular, the error 
correction model applies expected values computed conditional on events 
(or information).6

Random Walk 

Let us consider some price process given by the series {S}t.7 The dynamics of 
the process are given by 

 S St t t= +−1 ε   (5.5)

or, equivalently, ∆St t= ε .
In words, tomorrow’s price, St+1, is thought of as today’s price plus some 

random shock that is independent of the price. As a consequence, in this 
model, known as the random walk, the increments St − St−1 from t − 1 to 
t are thought of as completely undeterministic. Since the εt’s have a mean 
of zero, the increments are considered fair.8 An increase in price is as likely 
as a downside movement. At time t, the price is considered to contain all 
information available. So at any point in time, next period’s price is exposed 
to a random shock. 

Consequently, the best estimate for the following period’s price is this 
period’s price. Such price processes are called efficient due to their immedi-
ate information processing.
A more general model, for example, AR(p), of the form 

S S St t p t p t= + + + +− −α α α ε0 1 1 …  

with several lagged prices could be considered as well. This price process 
would permit some slower incorporation of lagged prices into current prices. 
Now for the price to be a random walk process, the estimation would have 
to produce a0 = 0, a1 = 1, a2 = … = ap = 0. 

5 Later in this book we will introduce an additional price process using logarithmic 
returns.
6 Enders, Applied Econometrics Time Series.
7 Here the price of some security at time t, St, ought not be confused with the seasonal 
component in equation (5.1).
8 Note that since the ε assumes values on the entire real number line, the stock price 
could potentially become negative. To avoid this problem, logarithmic returns are 
modeled according to equation (5.4) rather than stock prices.
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Application to S&P 500 Index Returns As an example to illustrate equation 
(5.4), consider the daily S&P 500 stock index prices between November 3, 
2003, and December 31, 2003. The values are given in Table 5.2 along with 
the daily price changes. The resulting plot is given in Figure 5.4. The intu-
ition given by the plot is roughly that, on each day, the information influenc-
ing the following day’s price is unpredictable and, hence, the price change 
seems completely arbitrary. Hence, at first glance much in this figure seems 
to support the concept of a random walk. Concerning the evolution of the 
underlying price process, it looks reasonable to assume that the next day’s 
price is determined by the previous day’s price plus some random change. 
From Figure 5.4, it looks as if the changes occur independently of each other 
and in a manner common to all changes (i.e., with identical distribution). 

Error Correction

We next present a price model that builds on the relationship between spot 
and forward markets. Suppose we extend the random walk model slightly 
by introducing some forward price for the same underlying stock S. That is, 
at time t, we agree by contract to purchase the stock at t + 1 for some price 
determined at t. We denote this price by F(t). At time t + 1, we purchase the 
stock for F(t). The stock, however, is worth St+1 at that time and need not—
and most likely will not—be equal to F(t). It is different from the agreed 
forward price by some random quantity εt+1. If this disturbance has zero 
mean, as defined in the random walk model, then the price is fair. Based on 
this assumption, the reasonable forward price would equal9

F t E S t E S t St t t t( ) [ | ] [ | ]= = + =+1 ε  

So, on average, the difference between S and F should fulfill the following 
condition:

∆ ≡ − ( ) ≈+S F tt 1 0

If, however, the price process permits some constant terms such as some 
upward trend, for example, the following period’s price will no longer be 
equal to this period’s price plus some random shock. The trend will spoil 
the fair price, and the forward price designed as the expected value of the 

9 Note that we employ expected values conditional on time t to express that we base 
our forecast on all information available at time t.
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TAblE 5.2 Daily S&P 500 Stock Index Values 
and Daily Changes between  November 3, 2003, 
and December 31, 2003

Date Pt Δt

12/31/2003 1111.92 2.28
12/30/2003 1109.64 0.16
12/29/2003 1109.48 13.59
12/26/2003 1095.89 1.85
12/24/2003 1094.04 –1.98
12/23/2003 1096.02 3.08
12/22/2003 1092.94 4.28
12/19/2003 1088.66 –0.52
12/18/2003 1089.18 12.70
12/17/2003 1076.48 1.35
12/16/2003 1075.13 7.09
12/15/2003 1068.04 –6.10
12/12/2003 1074.14 2.93
12/11/2003 1071.21 12.16
12/10/2003 1059.05 –1.13
12/09/2003 1060.18 –9.12
12/08/2003 1069.30 7.80
12/05/2003 1061.50 –8.22
12/04/2003 1069.72 4.99
12/03/2003 1064.73 –1.89
12/02/2003 1066.62 –3.50
12/01/2003 1070.12 11.92
11/28/2003 1058.20 –0.25
11/26/2003 1058.45 4.56
11/25/2003 1053.89 1.81
11/24/2003 1052.08 16.80
11/21/2003 1035.28 1.63
11/20/2003 1033.65 –8.79
11/19/2003 1042.44 8.29
11/18/2003 1034.15 –9.48
11/17/2003 1043.63 –6.72
11/14/2003 1050.35 –8.06
11/13/2003 1058.41 –0.12
11/12/2003 1058.53 11.96
11/11/2003 1046.57 –0.54
11/10/2003 1047.11 –6.10
11/07/2003 1053.21 –4.84
11/06/2003 1058.05 6.24
11/05/2003 1051.81 –1.44
11/04/2003 1053.25 –5.77
11/03/2003 1059.02
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following period’s stock price conditional on this period’s information will 
contain a systematic error. The model to be tested is, then, 

S F tt t+ = + +1 0 1α α ε( )

with a potential nonzero linear trend captured by α0. A fair price would be if 
the estimates are a0 = 0 and a1 = 1. Then, the markets would be in approxi-
mate equilibrium. If not, the forward prices have to be adjusted accordingly 
to prohibit predictable gains from the differences in prices. 

The methodology to do so is the so-called error correction model in the 
sense that today’s (i.e., this period’s) deviations from the equilibrium price 
have to be incorporated into tomorrow’s (i.e., the following period’s) price 
to return to some long-term equilibrium. The model is given by the equa-
tions system 

S S S F t

F t F t
t t t t+ + + += − −( ) + >

+ =
2 1 1 2 0

1

α ε α( ) ,

( ) ( )) ( ) ,+ −( ) + >+ +β ξ βS F tt t1 1 0

with 

E t

E t
t

t

[ | ]

[ | ]

ε
ξ

+

+

+ =
=

2

1

1 0

0

At time t + 2, the term α S F tt+ −( )1 ( )  in the price of St+2 corrects for devia-
tions from the equilibrium S F tt+ −( )1 ( )  stemming from time t + 1. Also, we 
adjust our forward price F(t + 1) by the same deviation scaled by β. Note that, 
now, the forward price, too, is affected by some innovation, ξt+1, unknown 
at time t. In contrast to some disturbance or error term ε, which simply rep-
resents some deviation from an exact functional relationship, the concept 
of innovation such as in connection with the ξt+1

 is that of an independent 
quantity with a meaning such as, for example, new information or shock. 

In general, the random walk and error correction models can be esti-
mated using least squares regression introduced in Chapter 2. However, this 
is only legitimate if the regressors (i.e., independent variables) and distur-
bances are uncorrelated.

KEY POINTS 

 ■ A sequence of observations which are ordered in time is called a time series. 
 ■ Time series are significant in modeling price, return, or interest rate pro-
cesses as well as the dynamics of economic quantities. 
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 ■ Each observation comprising a time series is a pair of the components, 
time and value. 

 ■ Time series analysis comprises methods for analyzing time series data. 
 ■ The most traditional decomposition in time series analysis is trend, 
cyclical, seasonal, and disturbance (error). 

 ■ An autoregressive structure assumes that the next period’s value depends 
on the value of prior periods. 

 ■ An autoregressive of order one structure assumes that the next period’s 
value depends on the last prior value.

 ■ The correlation of a time series with its own past and future values is 
referred to as autocorrelation. 

 ■ The random walk and error correction models are candidates for mod-
eling security price movements.
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A fter reading this chapter you will understand:

 ■ What a categorical variable is.
 ■ How to handle the inclusion of one or more categorical variables in a 
regression when they are explanatory variables.

 ■ How to test for the statistical significance of  individual dummy vari-
ables in a regression and how to employ the Chow test.

 ■ Models that can be used when the dependent variable is a categorical 
variable: the linear probability model, the logit regression model, and 
the probit regression model.

 ■ The advantages and disadvantages of each type of model for dealing 
with situations where the dependent variable is a categorical variable.

Categorical variables are variables that represent group membership. For 
example, given a set of bonds, the credit rating is a categorical variable that 
indicates to what category—AAA, AA, A, BBB, BB, and so on—each bond 
belongs. A categorical variable does not have a numerical value or a numeri-
cal interpretation in itself. Thus the fact that a bond is in category AAA or 
BBB does not, in itself, measure any quantitative characteristic of the bond; 
though quantitative attributes such as a bond’s yield spread can be associ-
ated with each category. 

Performing a regression on categorical variables does not make sense 
per se. For example, it does not make sense to multiply a coefficient times 
AAA or times BBB. However, in a number of cases the standard tools of 
regression analysis can be applied to categorical variables after appropriate 
transformations. In this chapter, we first discuss the case when categorical 
variables are explanatory (independent) variables and then proceed to dis-
cuss models where categorical variables are dependent variables.

chApter 6
regression Models with 

categorical Variables 
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Independent cAtegorIcAl VArIAbles

Categorical input variables are used to cluster input data into different 
groups.1 That is, suppose we are given a set of input-output data and a parti-
tion of the data set in a number of subsets Ai so that each data point belongs 
to one and only one set. The Ai represent a categorical input variable. In finan-
cial econometrics, categories might represent, for example, different market 
regimes, economic states, credit ratings, countries, industries, or sectors. 

We cannot, per se, mix quantitative input variables and categorical vari-
ables. For example, we cannot sum yield spreads and their credit ratings. 
However, we can perform a transformation that allows the mixing of cat-
egorical and quantitative variables. Let’s see how. Suppose first that there is 
only one categorical input variable that we denote by D, one quantitative 
input variable X, and one quantitative output variable Y. Consider our set 
of quantitative data, that is quantitative observations. We organize data, 
residuals, and parameters in matrix form as usual:
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Suppose data belong to two categories. An explanatory variable that 
distinguishes only two categories is called a dichotomous variable. The key 
is to represent a dichotomous categorical variable as a numerical variable D, 
called a dummy variable, that can assume the two values 0,1. We can now 
add the variable D to the input variables to represent membership in one or 
the other group:
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1 We can also say that categorical input variables represent qualitative inputs. This 
last expression, however, can be misleading, insofar as categorical variables repre-
sent only the final coding of qualitative inputs in different categories. For example, 
suppose we want to represent some aspect of market psychology, say confidence 
level. We can categorize confidence in a number of categories, for example euphoria, 
optimism, neutrality, fear, or panic. The crucial question is how we can operationally 
determine the applicable category and whether this categorization makes sense. A 
categorical variable entails the ability to categorize, that is, to determine member-
ship in different categories. If and how categorization is useful is a crucial problem 
in many sciences, especially economics and the social sciences.
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If Di = 0, the data Xi1 belong to the first category; if Di = 1, the data Xi1 
belong to the second category. 

Consider now the regression equation in matrix form Y = XB

 
�

= +
= β +β +ε

= β +β +ε

Y XB E

Y X

Y XT T T

1 0 1 11 1

0 1 1

 (6.1)

In financial econometric applications, the index i will be time or a variable 
that identifies a cross section of assets, such as bond issues. Consider that we 
can write three separate regression equations, one for those data that corre-
spond to D = 1, one for those data that correspond to D = 0, and one for the 
fully pooled data. Suppose now that the three equations differ by the intercept 
term but have the same slope. Let’s explicitly write the two equations for those 
data that correspond to D = 1 and for those data that correspond to D = 0:

 y
X D

Xi
i i

i

=
+ + =
+ +

β β ε
β β ε

00 1 1 1

01 1 1 1

0,

,

if

ifDi =


 1

 (6.2)

where β00 and β01 are the two intercepts and i defines the observations that 
belong to the first category when the dummy variable D assumes value 0 and 
also defines the observations that belong to the second category when the 
dummy variable D assumes value 1. If the two categories are recession and 
expansion, the first equation might hold in periods of expansion and the sec-
ond in periods of recession. If the two categories are investment-grade bonds 
and noninvestment-grade bonds, the two equations apply to different cross 
sections of bonds, as will be illustrated in an example later in this chapter. 

Observe now that, under the assumption that only the intercept term 
differs in the two equations, the two equations can be combined into a 
single equation in the following way:

 Y D i Xi i i= + + +β γ β ε00 1( )  (6.3)

where γ = β01 – β00 represents the difference of the intercept for the two 
categories. In this way we have defined a single regression equation with 
two independent quantitative variables, X, D, to which we can apply all the 
usual tools of regression analysis, including the ordinary least squares (OLS) 
estimation method and all the tests. By estimating the coefficients of this 
regression, we obtain the common slope and two intercepts. Observe that 
we would obtain the same result if the categories were inverted. 
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Thus far we have assumed that there is no interaction between the cat-
egorical and the quantitative variable, that is, the slope of the regression is the 
same for the two categories. This means that the effects of variables are addi-
tive; that is, the effect of one variable is added regardless of the value taken 
by the other variable. In many applications, this is an unrealistic assumption. 

Using dummy variables, the treatment is the same as that applied to inter-
cepts. Consider the regression equation (6.1) and write two regression equa-
tions for the two categories as we did above where β10, β11 are the slopes

 y
X D

X Di
i i

i i

=
+ + =
+ +

β β ε
β β ε
0 10 1 1

0 11 1 1

0if

if ==


 1

 (6.4)

We can couple these two equations in a single equation as follows:

 Y X DXi i i i i= + + +β β δ ε0 10 ( )  (6.5)

where δ = β11 – β10. In fact, equation (6.5) is identical to the first of two 
equations in equation (6.4) for Di = 0 and to the second for Di = 1. This 
regression can be estimated with the usual OLS methods. 

In practice, it is rarely appropriate to consider only interactions and not 
the intercept, which is the main effect. We refer to the fact that the interac-
tion effect is marginal with respect to the main effect as marginalization. 
However, we can easily construct a model that combines both effects. In fact 
we can write the following regression adding two variables, the dummy D 
and the interaction DX:

 Y D X DXi i i i i i= + + + +β γ β δ ε0 1 ( )  (6.6)

This regression equation, which now includes three regressors, combines 
both effects.

The above process of introducing dummy variables can be generalized 
to regressions with multiple variables. Consider the following regression:

 Y X i Ti j ij i
j

N

= + + =
=

∑β β ε0
1

1, . . . ,  (6.7)

where data can be partitioned in two categories with the use of a dummy 
variable:
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We can introduce the dummy D as well as its interaction with the N quan-
titative variable and thus write the following equation:

 Y D X DXi i i j ij
j

N

ij i ij
j

N

i= + + + +
= =
∑ ∑β γ β δ ε0

1 1

( )  (6.8)

The above discussion depends critically on the fact that there are only 
two categories, a fact that allows one to use the numerical variable 0,1 to 
identify the two categories. However, the process can be easily extended to 
multiple categories by adding dummy variables. Suppose there are K > 2 
categories. An explanatory variable that distinguishes between more than 
two categories is called a polytomous variable. 

Suppose there are three categories, A, B, and C. Consider a dummy variable 
D1 that assumes a value one on the elements of A and zero on all the others. 
Let’s now add a second dummy variable D2 that assumes the value one on the 
elements of the category B and zero on all the others. The three categories are 
now completely identified: A is identified by the values 1,0 of the two dummy 
variables, B by the values 0,1, and C by the values 0,0. Note that the values 1,1 
do not identify any category. This process can be extended to any number of 
categories. If there are K categories, we need K – 1 dummy variables.

statistical tests

How can we determine if a given categorization is useful? It is quite obvi-
ous that many categorizations will be totally useless for the purpose of 
any econometric regression. If we categorize bonds in function of the 
color of the logo of the issuer, it is quite obvious that we obtain meaning-
less results. In other cases, however, distinctions can be subtle and impor-
tant. Consider the question of market regime shifts or structural breaks. 
These are delicate questions that can be addressed only with appropriate 
statistical tests.

A word of caution about statistical tests is in order. As observed in Chap-
ter 2, statistical tests typically work under the assumptions of the model and 
might be misleading if these assumptions are violated. If we try to fit a linear 
model to a process that is inherently nonlinear, tests might be misleading. It 
is good practice to use several tests and to be particularly attentive to incon-
sistencies between test results. Inconsistencies signal potential problems in 
applying tests, typically model misspecification.

The t-statistic applied to the regression coefficients of dummy vari-
ables offer a set of important tests to judge which regressors are significant. 
Recall from Chapter 2 that the t-statistics are the coefficients divided by 
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their respective squared errors. The p-values associated with each coefficient 
estimate is the probability of the hypothesis that the corresponding coeffi-
cient is zero, that is, that the corresponding variable is irrelevant. 

We can also use the F-test to test the significance of each specific dummy 
variable. To do so we can run the regression with and without that variable 
and form the corresponding F-test. The Chow test2 is the F-test to gauge 
if all the dummy variables are collectively irrelevant. The Chow test is an 
F-test of mutual exclusion, written as follows:

 F
n k

k
=

− +[ ] −
+( )

SSR SSR SSR

SSR SSR

( ) ( )1 2

1 2

2
 (6.9)

where SSR1 = the squared sum of residuals of the regression run with data 
in the first category without dummy variables

SSR2 = the squared sum of residuals of the regression run with data 
in the second category without dummy variables

SSR = the squared sum of residuals of the regression run with 
fully pooled data without dummy variables

The test statistic F follows an F distribution with k and n – 2k degrees of 
freedom. Observe that SSR1 + SSR2 is equal to the squared sum of residuals 
of the regression run on fully pooled data but with dummy variables. Thus 
the Chow test is the F-test of the unrestricted regressions with and without 
dummy variables.

Illustration: predicting corporate bond Yield spreads To illustrate the use of 
dummy variables, we will estimate a model to predict corporate bond 
spreads.3 The regression is relative to a cross section of bonds. The regres-
sion equation is the following:

 Spreadi = β0 + β1Couponi + β2CoverageRatioi + β3LoggedEBITi + εi 

2 Gregory C. Chow, “Tests of Equality between Sets of Coefficients in Two Linear 
Regressions,” Econometrica 28 (1960): 591–605.
3 The model presented in this illustration was developed by FridsonVision and is 
described in “Focus Issues Methodology,” Leverage World (May 30, 2003). The data 
for this illustration were provided by Greg Braylovskiy of FridsonVision. The firm 
uses about 650 companies in its analysis. Only 100 observations were used in this 
illustration.
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where Spreadi = option-adjusted spread (in basis points) for the 
bond issue of company i

Couponi = coupon rate for the bond of company i, 
expressed without considering percentage sign 
(i.e., 7.5% = 7.5)

CoverageRatioi = earnings before interest, taxes, depreciation 
and amortization (EBITDA) divided by interest 
expense for company i

LoggedEBITi = logarithm of earnings (earnings before inter-
est and taxes, EBIT, in millions of dollars) for 
company i

The dependent variable, Spread, is not measured by the typically nomi-
nal spread but by the option-adjusted spread. This spread measure adjusts 
for any embedded options in a bond.4

Theory would suggest the following properties for the estimated coef-
ficients:

 ■ The higher the coupon rate, the greater the issuer’s default risk and 
hence the larger the spread. Therefore, a positive coefficient for the cou-
pon rate is expected.

 ■ A coverage ratio is a measure of a company’s ability to satisfy fixed 
obligations, such as interest, principal repayment, or lease payments. 
There are various coverage ratios. The one used in this illustration is the 
ratio of the earnings before interest, taxes, depreciation, and amortiza-
tion (EBITDA) divided by interest expense. Since the higher the cover-
age ratio the lower the default risk, an inverse relationship is expected 
between the spread and the coverage ratio; that is, the estimated coef-
ficient for the coverage ratio is expected to be negative. 

 ■ There are various measures of earnings reported in financial statements. 
Earnings in this illustration is defined as the trailing 12-months earnings 
before interest and taxes (EBIT). Holding other factors constant, it is 
expected that the larger the EBIT, the lower the default risk and there-
fore an inverse relationship (negative coefficient) is expected.

We used 100 observations at two different dates, June 6, 2005, 
and November 28, 2005; thus there are 200 observations in total. This 
will allow us to test if there is a difference in the spread regression for 

4 See Chapter 18 in Frank J. Fabozzi, Bond Markets, Analysis, and Strategies, 8th ed. 
(Upper Saddle River, NJ: Prentice-Hall, 2013).
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investment-grade and noninvestment grade bonds using all observations. 
We will then test to see if there is any structural break between the two 
dates. We organize the data in matrix form as usual. Data are shown in 
Table 6.1. The columns labeled “CCC+ and Below” indicate that data 
belong to two categories and suggests the use of one dummy variable. 
Another dummy variable is used later to distinguish between the two dates. 
Let’s first estimate the regression equation for the fully pooled data, that 
is, all data without any distinction in categories. The estimated coefficients 
for the model and their corresponding t-statistics are shown as follows:

Coefficient
Estimated 
Coefficient

Standard 
Error t-Statistic p-Value

β0 157.01 89.56 1.753 0.081

β1 61.27 8.03 7.630 9.98E-13

β2 –13.20 2.27 –5.800 2.61E-08

β3 –90.88 16.32 –5.568 8.41E-08

tAble 6.1 Regression Data for the Bond Spread Application, November 28, 2005, 
and June 6, 2005

Issue #
Spread,

11/28/05

CCC+
and

Below Coupon
Coverage

Ratio
Logged
EBIT

Spread,
6/6/05

CCC+
and 

Below Coupon
Coverage

Ratio
Logged
EBIT

 1 509 0 7.400 2.085 2.121 473 0 7.400 2.087 2.111

 2 584 0 8.500 2.085 2.121 529 0 8.500 2.087 2.111

 3 247 0 8.375 9.603 2.507 377 0 8.375 5.424 2.234

 4 73 0 6.650 11.507 3.326 130 0 6.650 9.804 3.263

 5 156 0 7.125 11.507 3.326 181 0 7.125 9.804 3.263

 6 240 0 7.250 2.819 2.149 312 0 7.250 2.757 2.227

 7 866 1 9.000 1.530 2.297 852 1 9.000 1.409 1.716

 8 275 0 5.950 8.761 2.250 227 0 5.950 11.031 2.166

 9 515 0 8.000 2.694 2.210 480 0 8.000 2.651 2.163

10 251 0 7.875 8.289 1.698 339 0 7.875 8.231 1.951

11 507 0 9.375 2.131 2.113 452 0 9.375 2.039 2.042

12 223 0 7.750 4.040 2.618 237 0 7.750 3.715 2.557

13 71 0 7.250 7.064 2.348 90 0 7.250 7.083 2.296

14 507 0 8.000 2.656 1.753 556 0 8.000 2.681 1.797

15 566 1 9.875 1.030 1.685 634 1 9.875 1.316 1.677

16 213 0 7.500 11.219 3.116 216 0 7.500 10.298 2.996

17 226 0 6.875 11.219 3.116 204 0 6.875 10.298 2.996

18 192 0 7.750 11.219 3.116 201 0 7.750 10.298 2.996
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tAble 6.1 (continued)

Issue #
Spread,

11/28/05

CCC+
and

Below Coupon
Coverage

Ratio
Logged
EBIT

Spread,
6/6/05

CCC+
and 

Below Coupon
Coverage

Ratio
Logged
EBIT

19 266 0 6.250 3.276 2.744 298 0 6.250 3.107 2.653

20 308 0 9.250 3.276 2.744 299 0 9.250 3.107 2.653

21 263 0 7.750 2.096 1.756 266 0 7.750 2.006 3.038

22 215 0 7.190 7.096 3.469 259 0 7.190 6.552 3.453

23 291 0 7.690 7.096 3.469 315 0 7.690 6.552 3.453

24 324 0 8.360 7.096 3.469 331 0 8.360 6.552 3.453

25 272 0 6.875 8.612 1.865 318 0 6.875 9.093 2.074

26 189 0 8.000 4.444 2.790 209 0 8.000 5.002 2.756

27 383 0 7.375 2.366 2.733 417 0 7.375 2.375 2.727

28 207 0 7.000 2.366 2.733 200 0 7.000 2.375 2.727

29 212 0 6.900 4.751 2.847 235 0 6.900 4.528 2.822

30 246 0 7.500 19.454 2.332 307 0 7.500 16.656 2.181

31 327 0 6.625 3.266 2.475 365 0 6.625 2.595 2.510

32 160 0 7.150 3.266 2.475 237 0 7.150 2.595 2.510

33 148 0 6.300 3.266 2.475 253 0 6.300 2.595 2.510

34 231 0 6.625 3.266 2.475 281 0 6.625 2.595 2.510

35 213 0 6.690 3.266 2.475 185 0 6.690 2.595 2.510

36 350 0 7.130 3.266 2.475 379 0 7.130 2.595 2.510

37 334 0 6.875 4.310 2.203 254 0 6.875 5.036 2.155

38 817 1 8.625 1.780 1.965 635 0 8.625 1.851 1.935

39 359 0 7.550 2.951 3.078 410 0 7.550 2.035 3.008

40 189 0 6.500 8.518 2.582 213 0 6.500 13.077 2.479

41 138 0 6.950 25.313 2.520 161 0 6.950 24.388 2.488

42 351 0 9.500 3.242 1.935 424 0 9.500 2.787 1.876

43 439 0 8.250 2.502 1.670 483 0 8.250 2.494 1.697

44 347 0 7.700 4.327 3.165 214 0 7.700 4.276 3.226

45 390 0 7.750 4.327 3.165 260 0 7.750 4.276 3.226

46 149 0 8.000 4.327 3.165 189 0 8.000 4.276 3.226

47 194 0 6.625 4.430 3.077 257 0 6.625 4.285 2.972

48 244 0 8.500 4.430 3.077 263 0 8.500 4.285 2.972

49 566 1 10.375 2.036 1.081 839 1 10.375 2.032 1.014

50 185 0 6.300 7.096 3.469 236 0 6.300 6.552 3.453

51 196 0 6.375 7.096 3.469 221 0 6.375 6.552 3.453

52 317 0 6.625 3.075 2.587 389 0 6.625 2.785 2.551

53 330 0 8.250 3.075 2.587 331 0 8.250 2.785 2.551

54 159 0 6.875 8.286 3.146 216 0 6.875 7.210 3.098

55 191 0 7.125 8.286 3.146 257 0 7.125 7.210 3.098

56 148 0 7.375 8.286 3.146 117 0 7.375 7.210 3.098

57 112 0 7.600 8.286 3.146 151 0 7.600 7.210 3.098

(continued)
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tAble 6.1 (continued)

Issue #
Spread,

11/28/05

CCC+
and

Below Coupon
Coverage

Ratio
Logged
EBIT

Spread,
6/6/05

CCC+
and 

Below Coupon
Coverage

Ratio
Logged
EBIT

58 171 0 7.650 8.286 3.146 221 0 7.650 7.210 3.098

59 319 0 7.375 3.847 1.869 273 0 7.375 4.299 1.860

60 250 0 7.375 12.656 2.286 289 0 7.375 8.713 2.364

61 146 0 5.500 5.365 3.175 226 0 5.500 5.147 3.190

62 332 0 6.450 5.365 3.175 345 0 6.450 5.147 3.190

63 354 0 6.500 5.365 3.175 348 0 6.500 5.147 3.190

64 206 0 6.625 7.140 2.266 261 0 6.625 5.596 2.091

65 558 0 7.875 2.050 2.290 455 0 7.875 2.120 2.333

66 190 0 6.000 2.925 3.085 204 0 6.000 3.380 2.986

67 232 0 6.750 2.925 3.085 244 0 6.750 3.380 2.986

68 913 1 11.250 2.174 1.256 733 0 11.250 2.262 1.313

69 380 0 9.750 4.216 1.465 340 0 9.750 4.388 1.554

70 174 0 6.500 4.281 2.566 208 0 6.500 4.122 2.563

71 190 0 7.450 10.547 2.725 173 0 7.450 8.607 2.775

72 208 0 7.125 2.835 3.109 259 0 7.125 2.813 3.122

73 272 0 6.500 5.885 2.695 282 0 6.500 5.927 2.644

74 249 0 6.125 5.133 2.682 235 0 6.125 6.619 2.645

75 278 0 8.750 6.562 2.802 274 0 8.750 7.433 2.785

76 252 0 7.750 2.822 2.905 197 0 7.750 2.691 2.908

77 321 0 7.500 2.822 2.905 226 0 7.500 2.691 2.908

78 379 0 7.750 4.093 2.068 362 0 7.750 4.296 2.030

79 185 0 6.875 6.074 2.657 181 0 6.875 5.294 2.469

80 307 0 7.250 5.996 2.247 272 0 7.250 3.610 2.119

81 533 0 10.625 1.487 1.950 419 0 10.625 1.717 2.081

82 627 0 8.875 1.487 1.950 446 0 8.875 1.717 2.081

83 239 0 8.875 2.994 2.186 241 0 8.875 3.858 2.161

84 240 0 7.375 8.160 2.225 274 0 7.375 8.187 2.075

85 634 0 8.500 2.663 2.337 371 0 8.500 2.674 2.253

86 631 1 7.700 2.389 2.577 654 1 7.700 2.364 2.632

87 679 1 9.250 2.389 2.577 630 1 9.250 2.364 2.632

88 556 1 9.750 1.339 1.850 883 1 9.750 1.422 1.945

89 564 1 9.750 1.861 2.176 775 1 9.750 1.630 1.979

90 209 0 6.750 8.048 2.220 223 0 6.750 7.505 2.092

91 190 0 6.500 4.932 2.524 232 0 6.500 4.626 2.468

92 390 0 6.875 6.366 1.413 403 0 6.875 5.033 1.790

93 377 0 10.250 2.157 2.292 386 0 10.250 2.057 2.262

94 143 0 5.750 11.306 2.580 110 0 5.750 9.777 2.473

95 207 0 7.250 2.835 3.109 250 0 7.250 2.813 3.122

96 253 0 6.500 4.918 2.142 317 0 6.500 2.884 1.733

97 530 1 8.500 0.527 2.807 654 1 8.500 1.327 2.904
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tAble 6.1 (continued)

Issue #
Spread,

11/28/05

CCC+
and

Below Coupon
Coverage

Ratio
Logged
EBIT

Spread,
6/6/05

CCC+
and 

Below Coupon
Coverage

Ratio
Logged
EBIT

98 481 0 6.750 2.677 1.858 439 0 6.750 3.106 1.991

99 270 0 7.625 2.835 3.109 242 0 7.625 2.813 3.122

100 190 0 7.125 9.244 3.021 178 0 7.125 7.583 3.138

Notes:
Spread = option-adjusted spread (in basis points).
Coupon = coupon rate, expressed without considering percentage sign (i.e., 7.5% = 7.5).
Coverage Ratio = EBITDA divided by interest expense for company.
Logged EBIT = logarithm of earnings (EBIT in millions of dollars).

Other regression results are:

SSR: 2.3666e+006
F-statistic: 89.38
p-value: 0
R2: 0.57

Given the high value of the F-statistic and the p-value close to zero, the 
regression is significant. The coefficient for the three regressors is statisti-
cally significant and has the expected sign. However, the intercept term is 
not statistically significant. The residuals are given in the second column of 
Table 6.2. 

tAble 6.2 Illustration of Residuals and Leverage for Corporate Bond Spread

Issue # Residuals Residuals Dummy 1 Residuals Dummy 2

  1   118.79930   148.931400   162.198700
  2   126.39350   183.097400   200.622000
  3   –68.57770   –39.278100   –26.716500
  4   –37.26080   –60.947500   –71.034400
  5     16.63214       4.419645     –3.828890
  6 –128.76600 –104.569000   –92.122000
  7   386.42330   191.377200   217.840000
  8     73.53972     48.516800       56.58778
  9   104.15990   146.400600   160.438900
10 –124.78700   –98.020100   –71.374300
11     –4.28874     73.473220     94.555400
12 –117.58200   –88.168700   –82.883100
13 –223.61800 –213.055000 –202.748000

(continued)
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tAble 6.2 (continued)

Issue # Residuals Residuals Dummy 1 Residuals Dummy 2

14     54.13075     99.735710   123.153000
15   –29.42160 –132.755000 –179.955000
16     27.74192     26.913670     24.308960
17     79.04072     63.114850     58.091160
18     –8.57759     –3.366800     –5.003930
19     18.62462     13.109110       9.664499
20 –123.21000   –56.256500   –48.090100
21 –181.64800 –140.494000 –118.369000
22     26.43157     27.457990     14.487850
23     71.79254     84.897050     73.862080
24     63.73623     93.025400     84.583560
25   –23.09740   –22.603200     –3.106990
26 –146.00700 –112.938000 –110.018000
27     53.72288     78.075810     78.781050
28   –99.29780   –84.003500   –84.749600
29   –46.31030   –41.105600   –43.489200
30     98.22006     79.285040     96.588250
31     32.05062     37.541930     41.075430
32 –167.12000 –148.947000 –143.382000
33 –127.03400 –129.393000 –127.118000
34   –63.94940   –58.458100   –54.924600
35   –85.93250   –78.871000   –75.085900
36     24.10520     41.795380     47.283410
37     12.86740     23.326060     33.884440
38   333.53890   101.376800   173.584400
39     58.02881     82.472150     77.040360
40   –19.14100   –32.550700   –29.298900
41   118.41190     67.990200     81.986050
42 –169.48100   –90.625700   –64.883800
43   –38.74030     13.936980     39.950520
44     62.91014     86.397490     80.392250
45   102.84620   127.541400   121.729700
46 –153.47300 –122.739000 –127.583000
47   –30.81510   –32.968700   –41.285200
48   –95.711400   –52.572300   –53.631800
49 –101.678000 –219.347000 –237.977000
50     50.969050     30.496460     14.081700
51     57.373200     38.712320     22.587840
52     29.717770     34.958870     36.101100
53   –56.859100   –12.364200     –4.932630
54   –23.959100   –31.659900   –38.650000
55     –7.278620     –8.940330   –14.962800
56   –65.598100   –61.220800   –66.275700
57 –115.386000 –105.573000 –109.757000
58   –59.449600   –48.429300   –52.419900
59   –69.299000   –43.044000   –23.885700
60     15.946800     13.880220     28.513500
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tAble 6.2 (continued)

Issue # Residuals Residuals Dummy 1 Residuals Dummy 2

  61     11.362190   –21.353800   –35.607900

  62   139.148000   129.380400   118.803100

  63   158.084100   149.524300   139.140600

  64   –56.785300   –60.952000   –51.339900

  65   153.651800   194.149900   205.750200

  66   –15.653600   –28.630900   –40.227500

  67   –19.612200   –14.472300   –23.166100

  68   209.488200   144.261600     67.891100

  69 –185.659000 –100.217000   –63.396000

  70   –91.541800   –92.646100   –91.015000

  71   –36.623800   –33.937000   –29.003400

  72   –65.586300   –51.301800   –59.080100

  73     39.294110     32.661770     32.391920

  74     28.197460     14.759650     12.952710

  75   –73.910000   –28.902200   –22.353300

  76   –78.608000   –47.733800   –48.902600

  77       5.711553     30.546620     28.410290

  78   –10.926100     22.258560     38.888810

  79   –71.611400   –69.462200   –67.416900

  80   –10.848000       3.505179     15.383910

  81   –78.195700     32.775440     61.748590

  82   123.041000   191.738700   213.938800

  83 –223.662000 –160.978000 –142.925000

  84   –58.977600   –47.671100   –33.850800

  85   203.727300   257.223800   270.556600

  86   267.904600   –65.208100     89.636310

  87   220.923600     –4.162260     42.473790

  88   –12.621600 –142.213000 –168.474000

  89     31.862060 –127.616000 –134.267000

  90   –53.593800   –57.028600   –45.579800

  91   –70.794900   –73.470000   –70.669700

  92     24.164780     34.342730     62.098550

  93 –171.291000   –73.744300   –52.943000

  94     17.439710   –22.092800   –20.420000

  95   –74.246100   –56.942100   –64.236600

  96   –42.690600   –42.602900   –31.958300

  97   114.168900   –66.109500   –66.049500

  98   114.578500   129.177300   145.600600

  99   –34.225400     –7.862790   –13.705900

100     –6.958960   –10.488100   –13.508000

101     81.920940   112.117900   101.420600

102     70.515070   127.283800   120.844000

103   –18.587600     24.683610     20.132390

104     –8.443100   –26.784100   –28.884400

105     13.449820       6.582981       6.321103

(continued)
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tAble 6.2 (continued)

Issue # Residuals Residuals Dummy 1 Residuals Dummy 2

106   –50.430600   –26.617000   –36.781100
107   318.056000   133.403000   130.828300
108     47.876010     16.919350       5.068270
109     64.341610   107.038200     99.281600
110   –14.573200     10.557760       3.393970
111   –66.995600     11.539420       7.987728
112 –113.425000   –82.640800   –88.147800
113 –209.054000 –198.177000 –205.892000
114   107.522000   152.737700   142.464600
115     41.638860   –76.825800 –145.458000
116       7.647833     10.327540       9.887700
117     33.946630     21.528710     18.669900
118   –22.671700   –13.952900   –13.425200
119     40.107630     35.729610     24.798540
120 –142.727000   –74.636000   –73.956000
121   –63.286100   –31.013100   –33.970100
122     61.774140     64.481450     64.302480
123     87.135110   101.920500   103.676700
124     62.078800     93.048860     97.398200
125     48.320900     45.935300     36.150130
126 –121.736000   –90.029000   –92.609500
127     87.253680   111.626800   105.229900
128 –106.767000   –91.452500   –99.300700
129   –28.566900   –22.540100   –29.135400
130   108.560100     98.752280     95.570570
131     64.418690     71.586810     60.886980
132   –95.752300   –75.902200   –84.570100
133   –27.665900   –28.348600   –40.306300
134   –19.581300   –12.413200   –23.113000
135 –119.564000 –110.826000 –121.274000
136     47.473260     66.840260     58.094960
137   –61.953700   –53.237800   –64.316600
138   149.786400   211.505100   204.226300
139     90.609530   118.184700   114.258300
140     55.650810     29.860840     23.239180
141   126.240500     78.712630     79.050720
142 –107.826000   –27.243600   –31.116800
143       7.614932     60.121850     50.036220
144   –65.174500   –41.979400   –42.794500
145   –22.238400       2.164489       1.542950
146 –108.558000   –78.116000   –77.769900
147     20.679750     19.696850     12.963030
148   –88.216600   –43.906700   –43.383600
149   165.253100     48.262590   –23.500200
150     93.311620     74.519920     70.896340
151     73.715770     56.735780     53.402470

152     94.629570   100.961000     90.629950
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tAble 6.2 (continued)

Issue # Residuals Residuals Dummy 1 Residuals Dummy 2

153   –62.947300   –17.362000   –21.403800

154     14.480140     10.216950       6.659433

155     40.160620     41.936480     39.346550

156 –115.159000 –107.344000 –108.966000

157   –94.946500   –81.696400   –82.447900

158   –28.010400   –13.552500   –14.110500

159 –110.127000   –85.111400   –96.632900

160       9.959282     18.682370     12.662020

161     89.889700     57.689740     48.509480

162   150.675500   141.424000   135.920500

163   150.611600   142.567900   137.258000

164   –38.040900   –36.521000   –48.754100

165     55.443990     95.437610     88.132530

166     –4.652580   –18.233400   –27.698600

167   –10.611100     –6.074840   –12.637200

168     35.778970   164.163000   162.921500

169 –215.328000 –131.013000 –135.422000

170   –59.986400   –60.605400   –70.729300

171   –74.693600   –66.782400   –69.716200

172   –13.734800       0.523639     –3.905600

173     45.295840     38.898770     30.164940

174     30.476800     13.024800       3.159872

175   –67.888500   –25.271900   –23.635500

176 –135.061000 –103.830000 –107.375000

177   –90.741200   –65.550000   –70.062300

178   –28.683300       4.187387     –4.706060

179 –103.027000   –97.290000 –106.078000

180   –88.975000   –66.845700   –77.367900

181 –177.281000   –67.904100   –66.493200

182   –43.044700     24.059160     18.696920

183 –212.505000 –152.131000 –155.963000

184   –38.210800   –25.916400   –34.173800

185   –66.764700   –12.702000   –17.886300

186   295.611300   –36.578800   106.036400

187   176.630300   –47.533000   –13.126100

188   324.060100 189.413000 136.666400

189   221.951100   76.029960   34.046210

190   –58.422000 –59.380500 –70.254000

191   –37.907200 –39.303500 –49.850800

192     53.841660   65.166450   51.559780

193 –166.323000 –68.275700 –66.904900

194   –45.521100 –79.888400 –90.959200

195   –30.394500 –13.116600 –17.062000

(continued)
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tAble 6.2 (continued)

Issue # Residuals Residuals Dummy 1 Residuals Dummy 2

196   –42.709500 –33.855500 –50.285700

197   257.550200   34.224540   70.337910

198     90.307160 102.727000   89.148700

199   –61.373800 –35.037300 –37.531400

200   –30.310400 –29.889500 –32.034600

Notes: 
Residuals: residuals from the pooled regression without dummy variables for 
investment grade.
Residuals Dummy 1: inclusion of dummy variable for investment grade.
Residuals Dummy 2: inclusion of dummy variable to test for regime shift.

Let’s now analyze whether we obtain a better fit if we consider the two 
categories of investment-grade and below-investment-grade bonds. It should 
be emphasized that this is only an exercise to show the application of regres-
sion analysis. The conclusions we reach are not meaningful from an econo-
metric point of view given the small size of the database. The new equation 
is written as follows:

Spreadi = β0 + β1D1i + β2Couponi + β3D1iCouponi + β4CoverageRatioi 
+ β5D1iCoverageRatioi + β6LoggedEBITi 
+ β7D1iLoggedEBITi + εi

There are now seven variables and eight parameters to estimate. The 
estimated model coefficients and the t-statistics are shown as follows:

Coefficient
Estimated
Coefficient

Standard
Error t-Statistic p-Value

β0 284.52 73.63 3.86 0.00

β1 597.88 478.74 1.25 0.21

β2 37.12 7.07 5.25 3.96E-07

β3 –45.54 38.77 –1.17 0.24

β4 –10.33 1.84 –5.60 7.24E-08

β5 50.13 40.42 1.24 0.22

β6 –83.76 13.63 –6.15 4.52E-09

β7 –0.24 62.50 –0.00 1.00
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Other regression results are:

SSR: 1.4744e + 006
F-statistic: 76.83
p-value: 0
R2 = 0.73

The Chow test has the value 16.60. The F-statistic and the Chow test sug-
gest that the use of dummy variables has greatly improved the goodness-of-fit 
of the regression, even after compensating for the increase in the number of 
parameters. The residuals of the model without and with dummy variable D1 
are shown, respectively, in the second and third columns of Table 6.2.

Now let’s use dummy variables to test if there is a regime shift between 
the two dates. This is a common use for dummy variables in practice. To this 
end, we create a new dummy variable that has the value 0 for the first date 
November 28, 2005, and 1 for the second date June 6, 2005. The new equation 
is written as in the previous case but with a different dummy variable:

Spreadi = β0 + β1D2i + β2Couponi + β3D2iCouponi + β4CoverageRatioi 
+ β5D2iCoverageRatioi + β6LoggedEBITi 
+ β7D2iLoggedEBITi + εi

There are seven explanatory variables and eight parameters to estimate. The 
estimated model coefficients and t-statistics are shown as follows:

Coefficient
Estimated 
Coefficient

Standard 
Error t-Statistic p-Value

β0 257.26 79.71 3.28 0.00

β1 82.17 61.63 1.33 0.18
β2 33.25 7.11 4.67 5.53E-06
β3 28.14 2.78 10.12 1.45E-19
β4 –10.79 2.50 –4.32 2.49E-05
β5 0.00 3.58 0.00 1.00
β6 –63.20 18.04 –3.50 0.00
β7 –27.48 24.34 –1.13 0.26

Other regression statistics are:

SSR: 1.5399e + 006
F-statistic: 72.39
p-value: 0
R2: 0.71
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The Chow test has the value 14.73. The F-statistics and the Chow test suggest 
that there is indeed a regime shift and that the spread regressions at the two 
different dates are different. Again, the use of dummy variables has greatly 
improved the goodness-of-fit of the regression, even after compensating for 
the increase in the number of parameters. The residuals of the model with 
dummy variable D2 are shown in the last column of Table 6.2. 

Illustration: testing the Mutual Fund characteristic lines in different Market 
environments In the previous chapter, we calculated the characteristic line of 
two large-cap mutual funds. Let’s now perform a simple application of the 
use of dummy variables by determining if the slope (beta) of the two mutual 
funds is different in a rising stock market (“up market”) and a declining 
stock market (“down market”). To test this, we can write the following 
multiple regression model:

 yit = αi + β1ixt + β2i(Dtxt) + eit 

where Dt is the dummy variable that can take on a value of 1 or 0. We will let

Dt = 1 if period t is classified as an up market
Dt = 0 if period t is classified as a down market

The coefficient for the dummy variable is β2i. If that coefficient is statis-
tically significant, then for the mutual fund: 

In an up market: βi = β1i + β2i
In a down market: βi = β1i

If β2i is not statistically significant, then there is no difference in βi for up 
and down markets.

In our illustration, we have to define what we mean by an up and a 
down market. We will define an up market precisely as one where the aver-
age excess return (market return over the risk-free rate or (rM – rft)) for the 
prior three months is greater than zero. Then

Dt = 1 if the average (rMt – rft) for the prior three months > 0
Dt = 0 otherwise

The regressor will then be

Dtxt = xt if (rM – rft) for the prior three months > 0
Dtxt = 0 otherwise
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We use the S&P 500 as a proxy for the market returns and the 90-day 
Treasury rate as a proxy for the risk-free rate. The data are presented in 
Table 6.3, which shows each observation for the variable Dtxt. The regres-
sion results for the two mutual funds are as follows:

Coefficient 
Coefficient 
Estimate

Standard 
Error t-Statistic p-Value

Fund A

α –0.23 0.10 –2.36 0.0198

β1   0.75 0.03 25.83 4E-50

β2   0.18 0.04   4.29 4E-05

Fund B

α   0.00 0.14 –0.03 0.9762

β1   0.75 0.04 18.02 2E-35

β2   0.13 0.06   2.14 0.0344

tAble 6.3 Data for Estimating Mutual Fund Characteristic Line with a 
Dummy Variable

Mutual Fund

Month
Ended rM rft

Dummy
Dt

rM – rft =
xt Dtxt

A
rt

B
rt

A
yt

B
yt

01/31/1995 2.60 0.42 0 2.18 0 0.65 1.28 0.23 0.86

02/28/1995 3.88 0.40 0 3.48 0 3.44 3.16 3.04 2.76

03/31/1995 2.96 0.46 1 2.50 2.5 2.89 2.58 2.43 2.12

04/30/1995 2.91 0.44 1 2.47 2.47 1.65 1.81 1.21 1.37

05/31/1995 3.95 0.54 1 3.41 3.41 2.66 2.96 2.12 2.42

06/30/1995 2.35 0.47 1 1.88 1.88 2.12 2.18 1.65 1.71

07/31/1995 3.33 0.45 1 2.88 2.88 3.64 3.28 3.19 2.83

08/31/1995 0.27 0.47 1 –0.20 –0.2 –0.40 0.98 –0.87 0.51

09/30/1995 4.19 0.43 1 3.76 3.76 3.06 3.47 2.63 3.04

10/31/1995 –0.35 0.47 1 –0.82 –0.82 –1.77 –0.63 –2.24 –1.10

11/30/1995 4.40 0.42 1 3.98 3.98 4.01 3.92 3.59 3.50

12/31/1995 1.85 0.49 1 1.36 1.36 1.29 1.73 0.80 1.24

01/31/1996 3.44 0.43 1 3.01 3.01 3.36 2.14 2.93 1.71

02/29/1996 0.96 0.39 1 0.57 0.57 1.53 1.88 1.14 1.49

03/31/1996 0.96 0.39 1 0.57 0.57 0.59 1.65 0.20 1.26

04/30/1996 1.47 0.46 1 1.01 1.01 1.46 1.83 1.00 1.37

05/31/1996 2.58 0.42 1 2.16 2.16 2.17 2.20 1.75 1.78

06/30/1996 0.41 0.40 1 0.01 0.01 –0.63 0.00 –1.03 –0.40

(continued)

The adjusted R2 is 0.93 and 0.83 for mutual funds A and B, respectively.
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tAble 6.3 (continued)

Mutual Fund

Month
Ended rM rft

Dummy
Dt

rM – rft =
xt Dtxt

A
rt

B
rt

A
yt

B
yt

07/31/1996 –4.45 0.45 1 –4.90 –4.9 –4.30 –3.73 –4.75 –4.18

08/31/1996 2.12 0.41 0 1.71 0 2.73 2.24 2.32 1.83

09/30/1996 5.62 0.44 0 5.18 0 5.31 4.49 4.87 4.05

10/31/1996 2.74 0.42 1 2.32 2.32 1.42 1.34 1.00 0.92

11/30/1996 7.59 0.41 1 7.18 7.18 6.09 5.30 5.68 4.89

12/31/1996 –1.96 0.46 1 –2.42 –2.42 –1.38 –0.90 –1.84 –1.36

01/31/1997 6.21 0.45 1 5.76 5.76 4.15 5.73 3.70 5.28

02/28/1997 0.81 0.39 1 0.42 0.42 1.65 –1.36 1.26 –1.75

03/31/1997 –4.16 0.43 1 –4.59 –4.59 –4.56 –3.75 –4.99 –4.18

04/30/1997 5.97 0.43 1 5.54 5.54 4.63 3.38 4.20 2.95

05/31/1997 6.14 0.49 1 5.65 5.65 5.25 6.05 4.76 5.56

06/30/1997 4.46 0.37 1 4.09 4.09 2.98 2.90 2.61 2.53

07/31/1997 7.94 0.43 1 7.51 7.51 6.00 7.92 5.57 7.49

08/31/1997 –5.56 0.41 1 –5.97 –5.97 –4.40 –3.29 –4.81 –3.70

09/30/1997 5.48 0.44 1 5.04 5.04 5.70 4.97 5.26 4.53

10/31/1997 –3.34 0.42 1 –3.76 –3.76 –2.76 –2.58 –3.18 –3.00

11/30/1997 4.63 0.39 0 4.24 0 3.20 2.91 2.81 2.52

12/31/1997 1.72 0.48 1 1.24 1.24 1.71 2.41 1.23 1.93

01/31/1998 1.11 0.43 1 0.68 0.68 –0.01 –0.27 –0.44 –0.70

02/28/1998 7.21 0.39 1 6.82 6.82 5.50 6.84 5.11 6.45

03/31/1998 5.12 0.39 1 4.73 4.73 5.45 3.84 5.06 3.45

04/30/1998 1.01 0.43 1 0.58 0.58 –0.52 1.07 –0.95 0.64

05/31/1998 –1.72 0.40 1 –2.12 –2.12 –1.25 –1.30 –1.65 –1.70

06/30/1998 4.06 0.41 1 3.65 3.65 3.37 4.06 2.96 3.65

07/31/1998 –1.06 0.40 1 –1.46 –1.46 0.10 –1.75 –0.30 –2.15

08/31/1998 –14.46 0.43 1 –14.89 –14.89 –15.79 –13.44 –16.22 –13.87

09/30/1998 6.41 0.46 0 5.95 0 5.00 4.86 4.54 4.40

10/31/1998 8.13 0.32 0 7.81 0 5.41 4.56 5.09 4.24

11/30/1998 6.06 0.31 0 5.75 0 5.19 5.56 4.88 5.25

12/31/1998 5.76 0.38 1 5.38 5.38 7.59 7.18 7.21 6.80

01/31/1999 4.18 0.35 1 3.83 3.83 2.60 3.11 2.25 2.76

02/28/1999 –3.11 0.35 1 –3.46 –3.46 –4.13 –3.01 –4.48 –3.36

03/31/1999 4.00 0.43 1 3.57 3.57 3.09 3.27 2.66 2.84

04/30/1999 3.87 0.37 1 3.50 3.5 2.26 2.22 1.89 1.85

05/31/1999 –2.36 0.34 1 –2.70 –2.7 –2.12 –1.32 –2.46 –1.66

06/30/1999 5.55 0.40 1 5.15 5.15 4.43 5.36 4.03 4.96

07/31/1999 –3.12 0.38 1 –3.50 –3.5 –3.15 –1.72 –3.53 –2.10

08/31/1999 –0.50 0.39 0 –0.89 0 –1.05 –2.06 –1.44 –2.45

09/30/1999 –2.74 0.39 1 –3.13 –3.13 –2.86 –1.33 –3.25 –1.72

10/31/1999 6.33 0.39 0 5.94 0 5.55 2.29 5.16 1.90

11/30/1999 2.03 0.36 1 1.67 1.67 3.23 3.63 2.87 3.27

12/31/1999 5.89 0.44 1 5.45 5.45 8.48 7.09 8.04 6.65

01/31/2000 –5.02 0.41 1 –5.43 –5.43 –4.09 –0.83 –4.50 –1.24

02/29/2000 –1.89 0.43 1 –2.32 –2.32 1.43 2.97 1.00 2.54

03/31/2000 9.78 0.47 0 9.31 0 6.84 5.86 6.37 5.39

04/30/2000 –3.01 0.46 1 –3.47 –3.47 –4.04 –4.55 –4.50 –5.01
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tAble 6.3 (continued)

Mutual Fund

Month
Ended rM rft

Dummy
Dt

rM – rft =
xt Dtxt

A
rt

B
rt

A
yt

B
yt

05/31/2000 –2.05 0.50 1 –2.55 –2.55 –2.87 –4.47 –3.37 –4.97

06/30/2000 2.46 0.40 1 2.06 2.06 0.54 6.06 0.14 5.66

07/31/2000 –1.56 0.48 0 –2.04 0 –0.93 1.89 –1.41 1.41

08/31/2000 6.21 0.50 0 5.71 0 7.30 6.01 6.80 5.51

09/30/2000 –5.28 0.51 1 –5.79 –5.79 –4.73 –4.81 –5.24 –5.32

10/31/2000 –0.42 0.56 0 –0.98 0 –1.92 –4.84 –2.48 –5.40

11/30/2000 –7.88 0.51 0 –8.39 0 –6.73 –11.00 –7.24 –11.51

12/31/2000 0.49 0.50 0 –0.01 0 2.61 3.69 2.11 3.19

01/31/2001 3.55 0.54 0 3.01 0 0.36 5.01 –0.18 4.47

02/28/2001 –9.12 0.38 0 –9.50 0 –5.41 –8.16 –5.79 –8.54

03/31/2001 –6.33 0.42 0 –6.75 0 –5.14 –5.81 –5.56 –6.23

04/30/2001 7.77 0.39 0 7.38 0 5.25 4.67 4.86 4.28

05/31/2001 0.67 0.32 0 0.35 0 0.47 0.45 0.15 0.13

06/30/2001 –2.43 0.28 1 –2.71 –2.71 –3.48 –1.33 –3.76 –1.61

07/31/2001 –0.98 0.30 1 –1.28 –1.28 –2.24 –1.80 –2.54 –2.10

08/31/2001 –6.26 0.31 0 –6.57 0 –4.78 –5.41 –5.09 –5.72

09/30/2001 –8.08 0.28 0 –8.36 0 –6.46 –7.27 –6.74 –7.55

10/31/2001 1.91 0.22 0 1.69 0 1.01 2.30 0.79 2.08

11/30/2001 7.67 0.17 0 7.50 0 4.49 5.62 4.32 5.45

12/31/2001 0.88 0.15 1 0.73 0.73 1.93 2.14 1.78 1.99

01/31/2002 –1.46 0.14 1 –1.60 –1.6 –0.99 –3.27 –1.13 –3.41

02/28/2002 –1.93 0.13 1 –2.06 –2.06 –0.84 –2.68 –0.97 –2.81

03/31/2002 3.76 0.13 0 3.63 0 3.38 4.70 3.25 4.57

04/30/2002 –6.06 0.15 0 –6.21 0 –4.38 –3.32 –4.53 –3.47

05/31/2002 –0.74 0.14 0 –0.88 0 –1.78 –0.81 –1.92 –0.95

06/30/2002 –7.12 0.13 0 –7.25 0 –5.92 –5.29 –6.05 –5.42

07/31/2002 –7.80 0.15 0 –7.95 0 –6.37 –7.52 –6.52 –7.67

08/31/2002 0.66 0.14 0 0.52 0 –0.06 1.86 –0.20 1.72

09/30/2002 –10.87 0.14 0 –11.01 0 –9.38 –6.04 –9.52 –6.18

10/31/2002 8.80 0.14 0 8.66 0 3.46 5.10 3.32 4.96

11/30/2002 5.89 0.12 0 5.77 0 3.81 1.73 3.69 1.61

12/31/2002 –5.88 0.11 1 –5.99 –5.99 –4.77 –2.96 –4.88 –3.07

01/31/2003 –2.62 0.10 1 –2.72 –2.72 –1.63 –2.34 –1.73 –2.44

02/28/2003 –1.50 0.09 0 –1.59 0 –0.48 –2.28 –0.57 –2.37

03/31/2003 0.97 0.10 0 0.87 0 1.11 1.60 1.01 1.50

04/30/2003 8.24 0.10 0 8.14 0 6.67 5.44 6.57 5.34

05/31/2003 5.27 0.09 1 5.18 5.18 4.96 6.65 4.87 6.56

06/30/2003 1.28 0.10 1 1.18 1.18 0.69 1.18 0.59 1.08

07/31/2003 1.76 0.07 1 1.69 1.69 1.71 3.61 1.64 3.54

08/31/2003 1.95 0.07 1 1.88 1.88 1.32 1.13 1.25 1.06

09/30/2003 –1.06 0.08 1 –1.14 –1.14 –1.34 –1.12 –1.42 –1.20

10/31/2003 5.66 0.07 1 5.59 5.59 5.30 4.21 5.23 4.14

11/30/2003 0.88 0.07 1 0.81 0.81 0.74 1.18 0.67 1.11

(continued)
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tAble 6.3 (continued)

Mutual Fund

Month
Ended rM rft

Dummy
Dt

rM – rft =
xt Dtxt

A
rt

B
rt

A
yt

B
yt

12/31/2003 5.24 0.08 1 5.16 5.16 4.87 4.77 4.79 4.69

01/31/2004 1.84 0.07 1 1.77 1.77 0.87 2.51 0.80 2.44

02/29/2004 1.39 0.06 1 1.33 1.33 0.97 1.18 0.91 1.12

03/31/2004 –1.51 0.09 1 –1.60 –1.6 –0.89 –1.79 –0.98 –1.88

04/30/2004 –1.57 0.08 1 –1.65 –1.65 –2.59 –1.73 –2.67 –1.81

05/31/2004 1.37 0.06 0 1.31 0 0.66 0.83 0.60 0.77

06/30/2004 1.94 0.08 0 1.86 0 1.66 1.56 1.58 1.48

07/31/2004 –3.31 0.10 1 –3.41 –3.41 –2.82 –4.26 –2.92 –4.36

08/31/2004 0.40 0.11 0 0.29 0 –0.33 0.00 –0.44 –0.11

09/30/2004 1.08 0.11 0 0.97 0 1.20 1.99 1.09 1.88

10/31/2004 1.53 0.11 0 1.42 0 0.33 1.21 0.22 1.10

11/30/2004 4.05 0.15 1 3.90 3.9 4.87 5.68 4.72 5.53

12/31/2004 3.40 0.16 1 3.24 3.24 2.62 3.43 2.46 3.27

Notes:
1. The following information is used for determining the value of the dummy variable for the first three months: 

rm rf rm – rf

Sep–1994 –2.41 0.37 –2.78
Oct-1994   2.29 0.38   1.91
Nov-1994 –3.67 0.37 –4.04
Dec-1994   1.46 0.44   1.02

2. The dummy variable is defined as follows:
Dt xt = xt if (rM – rft) for the prior three months > 0
Dt xt = 0 otherwise

For both funds, β2i is statistically significantly different from zero. 
Hence, for these two mutual funds, there is a difference in the βi for up and 
down markets.5 From the results reported above, we would find that:

Mutual Fund A Mutual Fund B

Down market βi (= β1i) 0.75 0.75

Up market βi (= β1i + β2i) 0.93 (= 0.75 + 0.18) 0.88 (= 0.75 + 0.13)

5 We specifically selected funds that had this characteristic so one should not infer 
that all mutual funds exhibit this characteristic.
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dependent cAtegorIcAl VArIAbles

Thus far we have discussed models where the explanatory variables can be 
either quantitative or categorical while the dependent variable is quantita-
tive. Let’s now discuss models where the dependent variable is categorical. 

Recall that a regression model can be interpreted as a conditional prob-
ability distribution. Suppose that the dependent variable is a categorical 
variable Y that can assume two values, which we represent conventionally 
as 0 and 1. The probability distribution of the dependent variable is then a 
discrete function:

 
P

P

( )

( )

Y p

Y q p

= =
= = = −





1

0 1
 

A regression model where the dependent variable is a categorical vari-
able is therefore a probability model; that is, it is a model of the probability 
p given the values of the explanatory variables X:

 P X X( ) ( )Y f= =1  

In the following sections we will discuss three probability models: the lin-
ear probability model, the probit regression model, and the logit regression 
model.

linear probability Model

The linear probability model assumes that the function f(X) is linear. For 
example, a linear probability model of default assumes that there is a linear 
relationship between the probability of default and the factors that deter-
mine default:

 P X X( ) ( )Y f= =1  

The parameters of the model can be obtained by using ordinary least 
squares applying the estimation methods of multiple regression models dis-
cussed in the previous chapter. Once the parameters of the model are esti-
mated, the predicted value for P(Y) can be interpreted as the event probability 
such as the probability of default in our previous example. Note, however, 
that when using a linear probability model, the R2 is used as described in the 
previous chapter only if all the explanatory variables are also binary variables. 
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A major drawback of the linear probability model is that the predicted 
value may be negative. In the probit regression and logit regression models 
described below, the predicted probability is forced to be between 0 and 1.

probit regression Model

The probit regression model is a nonlinear regression model where the 
dependent variable is a binary variable. Due to its nonlinearity, one cannot 
estimate this model with least squares methods. Instead, it is necessary to 
use the maximum likelihood (ML) method described in Chapter 13. Because 
what is being predicted is the standard normal cumulative probability distri-
bution, the predicted values are between 0 and 1.

The general form for the probit regression model is

 P(Y = 1⎮X1, X2,  .  .  .  , XK) = N(a + b1X1 + b2X2 +  .  .  .  + bKXK) 

where N is the cumulative standard normal distribution function. 
Suppose that the following parameters are estimated as follows:

	 β = –2.1     β1 = 1.9     β2 = 0.3     β3 = 0.8 

Then

 N(a + b1X1 + b2X2 + b3X3) = N(–2.1 + 1.9X1 + 0.3X2 + 0.8X3) 

Now suppose that the probability of default of a company with the fol-
lowing values for the explanatory variables is sought:

 X1 = 0.2     X2 = 0.9     X3 = 1.0 

Substituting these values, we get

 N(–2.1 + 1.9(0.2) + 0.3(0.9) + 0.8(1.0)) = N(–0.65) 

The standard normal cumulative probability for N(–0.65) is 25.8%. There-
fore, the probability of default for a company with this characteristic is 25.8%.

Illustration: hedge Fund survival An illustration of probit regression is pro-
vided by Malkiel and Saha who use it to calculate the probability of the 
demise of a hedge fund.6 The dependent variable in the regression is 1 if a 

6 Burton G. Malkiel and Atanu Saha, “Hedge Funds: Risk and Return,” Financial 
Analysts Journal 22 (November–December 2005): 80–88.
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fund is defunct (did not survive) and 0 if it survived. The explanatory vari-
ables, their estimated coefficient, and the standard error of the coefficient 
using hedge fund data from 1994 to 2003 are given as follows:

Explanatory Variable Coefficient
Standard
Deviation

1. Return for the first quarter before the end of fund 
performance. –1.47 0.36

2. Return for the second quarter before the end of fund 
performance. –4.93 0.32

3. Return for the third quarter before the end of fund 
performance. –2.74 0.33

4. Return for the fourth quarter before the end of fund 
performance. –3.71 0.35

5. Standard deviation for the year prior to the end of 
fund performance. 17.76 0.92

6. Number of times in the final three months the fund’s 
monthly return fell below the monthly median of all 
funds in the same primary category. 0.00 0.33

7. Assets of the fund (in billions of dollars) estimated at 
the end of performance. –1.30 –7.76

Constant term –0.37 0.07

For only one explanatory variable, the sixth one, the coefficient is not 
statistically significant from zero. That explanatory variable is a proxy for 
peer comparison of the hedge fund versus similar hedge funds. The results 
suggest that there is a lower probability of the demise of a hedge fund if 
there is good recent performance (the negative coefficient of the first four 
variables above) and the more assets under management (the negative coef-
ficient for the last variable above). The greater the hedge fund performance 
return variability, the higher the probability of demise (the positive coeffi-
cient for the fifth variable above).

logit regression Model

As with the probit regression model, the logit regression model is a non-
linear regression model where the dependent variable is a binary variable 
and the predicted values are between 0 and 1. The predicted value is also a 
cumulative probability distribution. However, rather than being a standard 
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normal cumulative probability distribution, it is standard cumulative prob-
ability distribution of a distribution called the logistic distribution. 

The general formula for the logit regression model is 

 
…= = + + + +

= + −

Y X X X F a b X b X b X

e

P( 1 , , , ) ( ... )

                                     1 / [1 ]

N N N1 2 1 1 2 2

W
 

where W = a + b1X1 + b2X2 +  .  .  .  + bNXN. 
As with the probit regression model, the logit regression model is esti-

mated with ML methods. 
Using our previous illustration, W = –0.65. Therefore

 1/[1 + e–W] = 1/[1 + e–(–0.65)] = 34.3% 

The probability of default for the company with these characteristics is 
34.3%.

KeY poInts

 ■ Categorical variables are variables that represent group membership 
and are used to cluster input data into groups.

 ■ An explanatory variable that distinguishes only two categories is called 
a dichotomous variable. The key is to represent a dichotomous categori-
cal variable as a numerical variable called a dummy variable that can 
assume the value of either 0 or 1.

 ■ An explanatory variable that distinguishes between more than two cat-
egories is called a polytomous variable.

 ■ In a regression where there are dummy variables, the t-statistic applied 
to the regression coefficients of dummy variables offer a set of impor-
tant tests to judge which explanatory variables are significant. The 
p-value associated with each coefficient estimate is the probability of 
the hypothesis that the corresponding coefficient is zero, that is, that the 
corresponding dummy variable is irrelevant.

 ■ The Chow test is an F-test that is used to gauge if all the dummy vari-
ables are collectively irrelevant. The Chow test is the F-test of the unre-
stricted regressions with and without dummy variables.

 ■ A regression model can be interpreted as a conditional probability 
distribution. A regression model where the dependent variable is a cat-
egorical variable is therefore a probability model.

 ■ Three probability models most commonly used are the linear probabil-
ity model, the probit regression model, and the logit regression model.
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 ■ A linear probability model assumes that the function to be estimated 
is linear and, as a result, it is possible to obtain negative probabilities.

 ■ Unlike the linear probability model, the predicted probability of the 
probit regression and logit regression models is forced to be between 0 
and 1.

 ■ The probit regression model and logit regression model are nonlinear 
regression models where the dependent variable is a binary variable and 
the predicted value is a cumulative probability distribution.

 ■ The logit regression model differs from the probit model because rather 
than the predicted value being a standard normal cumulative probabil-
ity distribution, it is a standard cumulative probability distribution of a 
distribution called the logistic distribution.
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Chapter 7
Quantile regressions

a fter reading this chapter you will understand:

 ■ How simple and multiple regressions show that the mean of the depen-
dent variable changes with independent variables.

 ■ How conclusions drawn at the mean may not completely describe the 
data if the data contain outliers or exhibit a skewed distribution.

 ■ The concept of a quantile regression.
 ■ How to model time series data using quantile regressions.
 ■ How to model cross-sectional data using quantile regressions.
 ■ How to statistically verify if the coefficients across the quantiles in a 
quantile regression are different.

Many empirical studies have identified that financial time series data 
exhibit asymmetry (skewness) and fat-tail phenomena (presence of outliers). 
These observed statistical properties may result in an incomplete picture of the 
relationship between the dependent and independent variable(s) when classical 
regression analysis is employed. In addition, events such as global financial crises 
make understanding, modeling, and managing left-tail return distributions (i.e., 
unfavorable returns) all the more important. A tool that would allow research-
ers to explore the entire distribution of the data is the quantile regression. Intro-
duced by Koenker and Bassett,1 a quantile regression involves estimating the 
functional relations between variables for all portions of the probability dis-
tribution. For example, if we want to examine the relationship between the 
dependent and independent variable at the 5th, the median, or at the 95th per-
centile, we will be able to test this relationship with quantile regressions. Thus, 
one can establish the relationship between the dependent and independent vari-
ables for a particular quantile or for each quantile using the quantile regression, 
and thereby allow risk managers to manage the tail risk better.

1 Roger Koenker and Gilbert Bassett, “Regression Quantiles,” Econometrica 46 
(1978): 33−50.
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LIMItatIONS OF CLaSSICaL reGreSSION aNaLYSIS 

Before discussing quantile regressions, let’s first illustrate the limitations of 
regression analysis introduced in Chapters 2 and 3, which we will refer to as 
classical regression analysis. 

Classical regression analysis is concerned with predicting the mean 
value of the dependent variables on the basis of given values of the inde-
pendent variable. For example, a simple regression between the moving 
monthly S&P 500 stock index returns over the prior 12 months and its 
dividend yield from January of 1926 through December of 2012 (1,030 
observations) would show that the regression slope coefficient for the divi-
dend yield is 16.03 with a t-statistic of 5.31. This slope coefficient, which 
is statistically and economically significant, implies that a percentage point 
increase in expected dividend yield on average leads to a 16.03% increase 
in the index returns over the next 12 months. As long as the regression 
errors are normally distributed, the inferences made about the regression 
coefficients are all valid. However, when outliers are present in the data, the 
assumption of normal distribution is violated, leading to a fat-tailed residual 
error distribution.2 In the presence of outliers and fat tails, the inferences 
made at the average may not apply to the entire distribution of returns. In 
these instances quantile regression is a robust estimation to study the entire 
distribution of returns. 

paraMeter eStIMatION

The aim of simple classical regression analysis is to minimize the sum of 
squared errors, given by

 min ( )
,α β

α β= − −
=
∑ y Xi i
i

t
2

1

 (7.1)

where yi is the dependent variable, Xi is the independent variable, and α and 
β are the estimated intercept and slope parameters, respectively. 

2 When the observed returns are five standard deviations away from the mean, the 
distribution will have fat tails. For example, the monthly mean and standard devia-
tion of the S&P 500 returns are 0.31% and 4.58%, respectively. In the data set there 
is a month in which the S&P index had a return of 51.4% (the maximum return) 
and a month with a return of −26.47% (the minimum return). These two observed 
returns are more than five standard deviations away from the mean, causing the 
return distribution to have fat tails.
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The objective is to find values of β that would minimize the error. While 
the idea of quantile regression is similar, it aims at minimizing absolute devi-
ations from τ th conditional quantile and it is given as:

 min ( ( , ))
β τρ ξ β

∈
=

= −∑
R i i

i

T

p

y X
1

 (7.2)

where ξ is the conditional quantile and ρτ is the so-called check function, 
which weights positive and negative values asymmetrically (giving varying 
weights to positive and negative residuals).

For example, to obtain conditional median parameter estimates, τ 
should be set at 0.5 (since τ ranges between 0 and 1, 0.5 represents the 
median quantile) and an optimization model is employed to find values of β 
that minimize the weighted sum of absolute deviations between the depen-
dent variable and the independent variables. However, unlike in a  simple 
regression where calculus can be used to obtain the formula for β, the 
 constraints imposed requires that linear programming, a type of mathemati-
cal programming optimization model, must be used.

In a regression format, the relationship between the dependent and 
independent variable can be summarized as follows:

 min
'

α β

τ τ
τ τ

α βy Xi i
i

T

− −
=
∑

1

 (7.3)

where ατ is the intercept for a specified quantile and βτ is the corresponding 
slope coefficient.

βτ shows the relationship between Xi and yi for a specified quantile. A 
linear program is used where different values of α and β are plugged into 
the above equation until the weighted sum of the absolute deviations are 
minimized.

For illustrative purposes, a median regression (τ = 0.5) between the S&P 
500 returns over the prior 12 months and the dividend yield would result in 
estimated values for α and β of −0.64 and 12.24, respectively, and with cor-
responding t values of −0.64 and 4.05. The slope coefficient of 12.24 implies 
that the median return will go up by 12.24% for a percentage point increase 
in the expected dividend yield. Comparing the results provided in a simple 
regression described earlier in the chapter, the median response of index 
returns to changes in the dividend yield is about 4 percentage points below 
that of the mean response presented in a simple regression. The reason for 
this difference is that the simple regression, in an attempt to accommodate 
outliers, fits a line that overestimates the regression coefficients. This find-
ing clearly demonstrates that inferences made at the mean may not describe 
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the entire distribution of the data. Hence, it might be useful to estimate the 
relationship over the entire return distribution. 

QuaNtILe reGreSSION prOCeSS

The advantage of a quantile regression is that we can see how the returns 
respond to the expected dividend yield over different return quantiles. The 
process of estimating more than a quantile at a time is defined as a quantile 
process. The results of the quantile process between the S&P 500 index 
returns over the prior 12 months and the expected dividend yield are pre-
sented in Table 7.1. 

tabLe 7.1 Quantile Regressions, Sample from January 1926 through December 2012

Quantile Coefficient Std. Error t-Statistic

Constant 0.100 −23.04 2.26 −10.1

0.200 −19.84 2.81 −7.05

0.300 −12.20 3.34 −3.65

0.400 −5.22 2.35 −2.21

0.500 −0.93 1.74 −0.53

0.600 1.28 1.61 0.79

0.700 4.31 1.99 2.15

0.800 6.19 1.84 3.35

0.900 10.62 2.19 4.84

Dividend Yield 0.100 3.94 4.83 0.81

0.200 17.35 6.12 2.83

0.300 14.47 6.53 2.21

0.400 12.69 4.73 2.68

0.500 14.38 3.60 3.99

0.600 16.98 3.49 4.85

0.700 22.64 4.80 4.71

0.800 32.02 4.19 7.63

0.900 37.14 4.91 7.55

Note: α is the constant for each quantile, β is the slope coefficient of the dividend yield 
for each quantile, yi is the S&P 500 stock index returns over the prior 12 months, 
and Xi is the expected dividend yield.
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The results for nine quantiles are presented in Table 7.1. The intercept 
term reflects returns received on the S&P 500 index if there are no dividends. 
Not surprisingly, it is monotone upwards and it is positive and statistically 
significant at and above the 70th return percentile. But our main interest is 
in how expected dividend yield influences returns. For example, the effect 
of expected dividend yield at the 10th return percentile is statistically not 
different from zero. The effect of the dividend yield sharply increases at the 
20th return percentile. A 1% increase in expected dividend yield will cause a 
17.35% increase in the annualized S&P 500 returns. However, in spite of its 
statistical significance, the effect of dividend yield drops off at the 30th and 
40th return quantiles. The coefficient of dividend yield grows monotonically 
from 14.38 at the 50th return percentile to 37.14 at the 90th return percentile. 

Table 7.1 shows that coefficients of the dividend yield change across dif-
ferent quantiles. Now the question is are they statistically different. Koenker 
and Bassett proposed a Wald test to verify this across the quantiles.3 The 
null hypothesis that the slope coefficients are all the same is given by

H k0 1 1 1 2 1: β τ β τ β τ= = =. . .

where β are slope coefficients and τ are quantiles. The null hypothesis imposes 
k restrictions on the coefficients and a Wald statistic4 is calculated which is 
distributed as χ2 with degrees of freedom equal to number of restrictions. 

In our example, we have a total of eight restrictions (β1τ1 = β1τ2, β1τ2 =  
β1τ3,  .  .  .  , β1τ9 = β1τ10). The calculated Wald test statistic is 42.40 and the 
critical χ2 with eight degrees of freedom is 15.51. Since the test statistic is 
greater than the critical value, we reject the null hypothesis that the slope 
coefficients are the same across the quantiles. 

Therefore, it is important to understand that to use quantile regressions, 
we have to first empirically verify that the data are skewed with fat tails. 
Second, using the quantile process, we have to examine the relationship 
between the dependent and independent variables at each quantile. Finally, 
it is important to statistically verify if the coefficients across the quantiles 
are different. 

3 Roger Koenker and Gilbert Bassett, “Tests of Linear Hypotheses and L1 Estima-
tion,” Econometrica 50 (1982): 1577−1584.
4 This statistic is provided by software packages such as SAS, R, and Eviews. To calcu-
late the Wald statistic, a restricted regression model with same βs across the quantiles is 
estimated to obtain sum of squared errors. This sum of squared errors statistic would 
then be compared to the statistic of sum of squared errors of regressions where the βs 
are allowed to vary across the quantiles. If the difference in the two sum of squared 
statistics is not different from zero then we will be unable to reject the null hypothesis.
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appLICatIONS OF QuaNtILe reGreSSIONS IN FINaNCe

One of the first applications of quantile regressions was in the area of risk 
management, especially in the context of the popular risk measure value at 
risk (VaR). VaR is a statistical measure that indicates under a certain set of 
assumptions the most that a portfolio manager can lose within a reasonable 
bound. For example, if the one-month VaR (0.05) of a portfolio is $55 million, 
one can infer with 95% confidence that there is only a 5% chance that the 
portfolio’s value will decrease more than $55 million in one month. Several 
approaches have been proposed for measuring VaR. A quantile regression is 
a natural tool to handle VaR problems because this type of regression can be 
used to examine the relationship between portfolio returns and its determi-
nants over the entire return distribution. Engle and Manganelli were among 
the first to consider the quantile regression for the VaR model.5 Using daily 
stock return data for General Motors, IBM, and the S&P 500, they show that 
the tails follow a different behavior than the middle of the distribution. They 
conclude that VaR calculations using a quantile regression outperform the 
alternate approaches that have been proposed.

There are studies that suggest how quantile regressions can be used to 
create portfolios that outperform traditional portfolio construction meth-
odologies. For instance, Ma and Pohlman employ a quantile regression to 
forecast returns and construct portfolios.6 Using time series data on 1,100 
individual stock returns, they showed that portfolios constructed based on 
return forecasts generated by a quantile regression outperformed the portfo-
lios created based on traditional approaches. Quantile regressions can also 
be used to test the performance of a portfolio between higher and lower 
return quantiles. For example, Gowland, Xiao, and Zeng, using a sample 
of small cap stocks, showed that the performance of a 90th return quantile 
differs from that of a 10th return quantile of a portfolio created on the basis 
of book-to-market.7

Below we provide two illustrations of applications to finance in more 
detail. In the first, we look at how a quantile regression can be used to 

5 Robert Engle and Simone Manganelli, “CAViaR: Conditional Autoregressive Value 
at Risk by Regression Quantiles,” Journal of Business and Economic Statistics 22 
(2004): 367−387.
6 Lingjie Ma and Larry Pohlman, “Return Forecasts and Optimal Portfolio Construc-
tion: A Quantile Regression Approach,” European Journal of Finance 14 (2008): 
409−425.
7 Chris Gowland, Zhijie Xiao, and Qi Zeng, “Beyond the Central Tendency: Quantile 
Regression as a Tool in Quantitative Investing,” Journal of Portfolio Management 
35, no. 3 (2009): 106−119.
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 determine a portfolio manager’s style. The data used in this application 
are times series data. In our second illustration, we look at how a quantile 
regression can be used to empirically investigate the determinants of a cor-
poration’s capital structure. In this application, cross-sectional data are used.

Determining a portfolio Manager’s Style

A quantile regression can be applied to identify a portfolio manager’s 
investment style. The manager’s performance is compared to a benchmark. 
The benchmark selected should be consistent with a portfolio manager’s 
investment style. For example, a portfolio of stocks categorized as value 
stocks may appear to have an unsatisfactory performance relative to a 
broad stock  index, but its performance could be outstanding relative to 
a value stock benchmark. Such performance is attributed to the portfolio 
manager’s stock selection skill. 

To classify the investment style of a manager, a regression-based 
approach has been proposed by Sharpe and is discussed in Chapter 3.8 This 
approach regresses a fund’s time series return on the returns to a variety of 
equity indexes. The statistical significance and the magnitude of the esti-
mated coefficients represent the fund’s style. However, as noted earlier, in the 
presence of outliers, the inferences made about the style of the manager at 
the average may not apply to the entire distribution of returns. 

As an illustration, quantile regressions are applied to Fidelity Mid Cap 
Value mutual fund returns to identify the investment style of the manager 
across the distribution of returns. As the name suggests, the proclaimed 
investment style of the fund is to invest in a portfolio of mid cap stocks. 
The monthly returns of the fund from December 2001 through March 2013 
(136 observations) are regressed against the equity index returns of large 
cap value, large cap growth, small cap value, small cap growth, and the 
Russell’s Mid Cap Value Index. The data for all these variables are obtained 
from Morningstar EnCorr database.

The results are presented in Table 7.2. The slope coefficients of the 
regression show, other things being equal, the impact of a change in the index 
returns on the fund’s return. If a mutual fund manager sticks to the fund’s 
stated style, the index that represents the stated style should be the only 
factor that would influence the fund’s return. The regression results show 
that only the mid cap value index has a statistical and positive effect on the 
returns of Fidelity Mid Cap Value Fund. A 1% increase in the index will 

8 William F. Sharpe, “Asset Allocation: Management Style and Performance Measure-
ment,” Journal of Portfolio Management 16, no. 2 (1992): 7−19.
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cause an average increase of 1.04% in the fund’s return. Since the  classical 
multivariate regression only captures the mean change in returns, the above 
results may not capture the investment style of the manager across the distri-
bution of returns. Furthermore, the Jarque-Bera (JB) normality test9 shows 
that regression errors are not normally distributed. 

Quantile regressions provide a complete view of investment style of the 
fund. The following quantile regression model is estimated:

Qτ(Fidelity Mid Cap Value Fund return) =  Large value index returns  
+ Large growth index returns 
+ Small value index returns  
+ Small growth index returns 
+ Mid cap value index returns

where Q is the quantile and τ represents the quantile levels. For the purpose 
of this illustration, the selected quantile levels are 0.10, 0.30, 0.50, 0.70, 
and 0.90. 

tabLe 7.2 Multivariate and Quantile Regressions, Sample from December 2001 
through March 2013

Multivariate
Regression Q(0.1) Q(0.3) Q(0.5) Q(0.7) Q(0.9)

Constant −0.077 −1.022 −0.393 −0.092 0.261 0.986
−0.987 −7.094 −4.338 −1.014 2.505 5.501

Large Value −0.053 0.058 0.016 −0.039 −0.086 −0.100
−1.026 2.122 0.369 −0.829 −2.447 −4.128

Large Growth −0.014 −0.054 −0.055 0.002 −0.042 −0.035
−0.386 −1.580 −1.074 0.028 −0.847 −1.068

Small Value 0.037 −0.154 −0.125 −0.091 −0.024 −0.028
0.974 −4.770 −2.573 −1.696 −0.356 −0.634

Small Growth −0.084 0.051 0.013 0.017 0.069 0.056
−2.384 1.758 0.324 0.405 1.456 1.799

Mid Cap 1.040 0.928 1.009 1.028 1.078 1.114
18.395 19.112 15.624 14.925 14.497 22.085

Fidelity Mid Cap Value return =  Large value index returns  
+ Large growth index returns  
+ Small value index returns  
+ Small growth index returns  
+ Mid cap value index returns

These data are obtained from Morningstar EnCorr. 

9 The Jarque-Bera normality test is explained in Chapter 4.
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The results of this quantile process are shown in Table 7.2. The results 
show that the mid cap value index is statistically significant across the quan-
tiles reported in the table. Other indexes are small in magnitude and statisti-
cally insignificant. If the intercept is a measure of manager’s talent, it is large 
in magnitude and statistically significant only in higher return quantiles. 
Since Russell’s Mid Cap Value Index influences the entire return distribu-
tion, it is safe to assume that the Fidelity Mid Cap Value Fund did not 
deviate from its stated style. 

To ensure that inferences made across quantiles are meaningful, a Wald 
test is implemented. There are four restrictions10 for each coefficient and five 
estimated coefficients for a total of 20 restrictions. The estimated test statis-
tic is 23.93 and the critical χ2 value with 20 degrees of freedom at the 5% 
significance level is 31.41. Thus, the null hypothesis that the coefficients are 
the same cannot be rejected. This is an additional evidence that the Fidelity 
Mid Cap Value Fund did not deviate from its stated style across the distribu-
tion of returns. 

Determining the Factors that Impact Capital Structure

A key issue in corporate finance theory is how management determines the 
firm’s capital structure (i.e., the mixture of debt and equity). Empirical evi-
dence suggests that a firm’s size, profitability, asset utilization, liquidity, and 
growth prospects have a significant effect on the capital structure decision. 
Furthermore, it has been found that leverage or debt structure (debt to assets) 
varies across industries, indicating that specific industry factors are at work. 

To see how quantile regressions can be used to assess the factors that 
impact a firm’s capital structure, we use company-specific fundamental 
data as reported each year by Bloomberg Financial.11 We will focus on the 
petroleum industry for the year 2010. Our sample in this illustration is 
189 firms in the petroleum industry. Since we are looking at information 
about firms in a given year, this is an illustration of an application using 
cross-sectional data. 

We need firm-level data on debt and total assets. For the purpose of 
this illustration, we used the book value of total debt (short- and long-term 
debt) and divided it by the total assets. This is defined as the leverage ratio. 
The mean leverage ratio for the petroleum industry in 2010 was 31.1% with 
a standard deviation of 31% and the median was 22%. The range for the 

10 The restrictions are (β1Q0.1 − β1Q0.3, β1Q0.3 − β1Q0.5, β1Q0.5 − β1Q0.7, β1Q0.7 − 
β1βQ0.9 ).
11 www.bloomberg.com/markets.

http://www.bloomberg.com/markets
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leverage ratio for the 189 firms was zero (i.e., no leverage) to 99%. The data 
also reveal that the leverage ratio is positively skewed (skewness of 83%) 
and with a kurtosis of 252%. These statistical features of the data reveal 
that the leverage ratio data are not normally distributed. As explained in 
Chapter 4, a formal way of testing normality of data is proposed by Jarque 
and Bera,12

 appropriately referred to as the Jarque-Bera (JB) test. In simple 
terms, this test verifies whether the sample data have values of skewness and 
kurtosis matching a normal distribution. If the distribution is normal, the 
skewness and the excess kurtosis (or kurtosis of 3) should jointly be zero. 
The calculated JB statistic13

 has a χ2 distribution with 2 degrees of free-
dom (skewness being zero and excess kurtosis being zero). The calculated 
JB statistic is 23.50 and the critical χ2 with 2 degrees of freedom at a 5% 
significance level is 5.99. Thus, the null hypothesis that the leverage ratio 
data came from a normal distribution is resoundingly rejected. 

Since the leverage data did not come from a normal distribution, the 
use of classical regression analysis to explain the leverage ratio may not 
fully describe important determinants of capital structure. In other words, 
classical regression analysis may determine the leverage ratio at the mean, 
but the analysis may not be useful in explaining the debt structure at the 
top or the bottom quantiles of the leverage ratio. If an investment analyst 
or chief financial officer is interested in understanding the determinants of 
leverage across the entire distribution, then a quantile regression might be 
an appropriate tool.

Capital structure studies show that companies with higher free cash flow14 
tend to have higher debt in their capital structure. The explanation offered for 
such a relationship is that the owners by using debt are effectively reducing 
the availability of cash for discretionary spending by the firm’s managers. It 
is also argued that firms with a higher percentage of fixed assets tend to have 
higher debt in their capital structure. The presence of fixed assets makes it 
easier for the firms to borrow at a lower interest cost because these fixed 
assets can be used as collateral. Thus, a priori one might expect a positive 
relationship between a firm’s fixed asset ratio15 and its leverage ratio. Finally, 
it is also argued that capital structure depends on the size of the firm. Since 

12 Carlos Jarque and Anil Bera, “Efficient Tests of Normality, Homoscedasticity and 
Serial Independence of Regression Residuals,” Economics Letters 3 (1980): 255−259.
13 Standard statistical packages routinely provide the Jarque-Bera test statistic.
14 Free cash flow is the money available to shareholders after expenses are taken out 
to maintain or expand the firm’s asset base. The formula is Free cash flow = Earn-
ings before interest and taxes − Change in networking capital − Change in capital 
expenditure + Depreciation and amortization.
15 Fixed asset ratio is defined as fixed assets divided by total assets.
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larger firms tend to have diversified investments and easier access to capital, it 
would be easier for these firms to borrow at a favorable interest rate. Hence 
one expects a positive relationship between large capitalized firms and debt. 
Here we define the size of the firm by its market cap and since market cap is 
given in millions of dollars, it is normalized by taking its logged values. The 
source of firm-specific data on free cash flows, fixed asset ratio, and market 
capitalization for 2010 was obtained from Bloomberg Financial.16

The first task is to run a multivariate regression to determine the factors 
that influence the debt ratio. The result of this classical regression analysis was

Leverage Ratio = 0.23 + 0.00006 Free cash flow 
+ 0.57 (Fixed Assets/Total Assets) − 0.05 log(Market Cap)

The free cash flow term is not statistically significant. The t-value for the 
market cap factor is −8.7. The relationship between between the firm’s size 
and leverage ratio, instead of being positive, is negative and different from 
what is hypothesized. It shows that large cap firms in the petroleum industry 
have lower debt ratio than small cap firms. This finding could be unique to 
this industry. Finally, the results show that the fixed asset ratio is statistically 
significant with a t-value of 6.92. This shows that the firms with a higher 
ratio of fixed assets tend to have a higher leverage ratio. 

Since a classical multivariate regression only captures the mean change, 
the above results may not be informative and may not provide a complete 
view of how capital structure is determined. Quantile regressions provide a 
complete view of the factors that determine the capital structure. The fol-
lowing quantile regression model is estimated:

Qτ(Leverage Ratio) = Free cash flow + Fixed Assets/Total Assets 
+ log(Market Cap)

where Q is the quantile and τ represents the quantile levels. The selected 
quantile levels are 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, and 0.90. 

The results of this quantile process, presented in Table 7.3, show the 
leverage ratio for different quantiles. The results indicate that free cash flow 
has very little effect on the leverage ratio across all quantiles. The results also 
show that the fixed asset ratio is statistically significant across all quantiles 
and the coefficient is monotonically increasing. This finding indicates that 
firms with a higher ratio of fixed assets tend to have a higher leverage ratio. 
Instead of a positive relationship between the market cap and the lever-
age ratio, the relationship is negative across all quantiles  implying that as 

16 www.bloomberg.com/markets.

http://www.bloomberg.com/markets
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market cap increases the debt in the capital structure declines. This finding 
may be unique to the petroleum industry. These findings across the distribu-
tion could not have been observed with a classical multivariate regression 
analysis. 

As explained earlier, in order to make meaningful inferences across 
quantiles, it is important to verify that coefficients estimated at each quan-
tile are statistically different. The null hypothesis that the slope coefficients 
are all the same is given by

β1τ1 = β1τ2 = β1τ10
Ho: β2τ1 = β2τ2 = β2τ10

β3τ1 = β3τ2 = β3τ10

where β1, β2, and β3 are coefficients associated with free cash flow, fixed 
asset ratio, and the market cap. There are eight restrictions for each coef-
ficient and with three coefficients there are a total of 24 (3 × 8) restrictions. 
The calculated Wald test statistic is 60.49. The critical χ2 value with 24 
degrees of freedom at a 5% significance level is 36.41. Since the test statistic 
is greater than the critical value, we reject the null hypothesis that the slope 
coefficients are the same across the quantiles. Thus, conclusions drawn for 
each quantile are statistically valid. 

KeY pOINtS

 ■ In the presence of outliers and a skewed distribution, inferences made 
with classical regression analysis may not fully describe the data.

 ■ The regression tool applied in the presence of non-normal distributions 
is the quantile regression. 

 ■ Quantile regressions find parameters that would minimize the weighted 
sum of absolute deviations between the dependent and the independent 
variables at each quantile.

 ■ Quantile regressions describe relationships between dependent and 
independent variables within the context of time series and cross-
sectional data.

 ■ In order to make meaningful inferences across quantiles, it is important 
to verify that coefficients are different across the quantiles. 

 ■ Quantile regressions are useful tools for risk managers to manage the 
tail risk.

 ■ Applications of quantile regressions to asset management include gener-
ating forecasted returns that can be used in constructing portfolios and 
determining the investment style of a portfolio manager.
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CHAPTER 8
Robust Regressions 

A fter reading this chapter you will understand:

 ■ Under what conditions standard regression parameter estimates are 
sensitive to small changes in the data.

 ■ The concept of robust estimates of regression parameters.
 ■ How to construct robust regression estimators.
 ■ How to apply robust regressions to problems in finance.

Broadly speaking, statistics is the science of describing and analyzing data 
and making inferences on a population based on a sample extracted from 
the same population. An important aspect of statistics is the compression of 
the data into numbers that are descriptive of some feature of the distribu-
tion. Classical statistics identifies several single-number descriptors such as 
mean, variance, skewness, kurtosis, and higher moments. These numbers 
give a quantitative description of different properties of the population.

Classical statistics chooses single-number descriptors that have nice 
mathematical properties. For example, if we know all the moments of a 
probability distribution, we can reconstruct the same distribution. In a num-
ber of cases (but not always), the parameters that identify a closed-form rep-
resentation of a distribution correspond to these descriptive concepts. For 
example, the parameters that identify a normal distribution correspond to 
the mean and to the variance. However, in classical statistics, most of these 
descriptive parameters are not “robust.” Intuitively, robustness means that 
small changes in the sample or small mistakes in identifying the distribution 
do not affect the descriptive parameters. 

Robust statistics entails a rethinking of statistical descriptive concepts; 
the objective is to find descriptive concepts that are little affected by the 
choice of the sample or by mistakes in distributional assumptions. Robust 
statistics is not a technical adjustment of classical concepts but a profound 
rethinking of how to describe data. For example, robust statistics identifies 
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parameters that represent the center or the spread of a distribution and that 
are robust with respect to outliers and to small changes in the distributions. 
Robust statistics seeks descriptive concepts that are optimal from the point 
of view of being insensitive to small errors in the data or assumptions. 

The notion of robust statistics carries over to statistical modeling. Sta-
tistical models such as regression models are theoretically elegant but not 
robust. That is, small errors in distributional assumptions or small data 
contamination might have unbounded effects on the overall model. Robust 
statistics is a technique to find models that are robust (i.e., to find models 
that yield approximately the same results even if samples change or the 
assumptions are not correct). For example, robust regressions are not very 
sensitive to outliers.

In Appendix F we provide a more detailed explanation of robust sta-
tistics, providing the basic concepts used in this chapter. In this chapter, we 
cover robust regression estimators and robust regression diagnostics.

ROBUST ESTIMATORS OF REGRESSIONS

Let’s begin by applying the concept of robust statistics described in Appendix 
F to the estimation of regression coefficients that are insensitive to outliers.

Identifying robust estimators of regressions is a rather difficult problem. 
In fact, different choices of estimators, robust or not, might lead to radically 
different estimates of slopes and intercepts. Consider the following linear 
regression model:
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then the regression equation takes the form,

 Y = Xβ + ε (8.1)

The standard nonrobust least squares (LS) estimation of regression param-
eters minimizes the sum of squared residuals,
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or, equivalently, equating to zero their derivatives which imply solving the 
system of N + 1 equations,
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or, in matrix notation, X′Xβ = X′Y. The solution of this system is

 ˆ ( )ββ = ′ ′−X X X Y1  (8.4)

From equation (8.1), the fitted values (i.e., the LS estimates of the expec-
tations) of the Y are

 ˆ ( )Y X X X X Y HY= ′ ′ =−1  (8.5)

The H matrix is called the hat matrix because it puts a hat on; that is, it 
computes the expectation Ŷ of the Y. The hat matrix H is a symmetric T × T  
projection matrix; that is, the following relationship holds: HH = H. The 
matrix H has N eigenvalues equal to 1 and T − N eigenvalues equal to 0. Its 
diagonal elements, hi ≡ hii satisfy:

0 ≤ hi ≤ 1

and its trace (i.e., the sum of its diagonal elements)1 is equal to N:

tr(H) = N

Under the assumption that the errors are independent and identically 
distributed with mean zero and variance σ2, it can be demonstrated that the 
Ŷ  are consistent, that is, ˆ ( )Y Y→ E  in probability when the sample becomes 
infinite if and only if h = max(hi) → 0. Points where the hi have large values 
are called leverage points. It can be demonstrated that the presence of lever-
age points signals that there are observations that might have a decisive 
influence on the estimation of the regression parameters. A rule of thumb, 
reported in Huber,2 suggests that values hi ≤ 0.2 are safe, values 0.2 ≤ hi ≤ 
0.5 require careful attention, and higher values are to be avoided.

1 See Appendix D.
2 Peter J. Huber, Robust Statistics (New York: John Wiley & Sons, 1981).
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Thus far we have discussed methods to ascertain regression robustness. 
Let’s now discuss methods to “robustify” the regression estimates, namely, 
methods based on M-estimators and W-estimators.

Robust Regressions Based on M-Estimators

Let’s first discuss how to make robust regressions with Huber M-estimators. 
The LS estimators are M-estimators because they are obtained by minimiz-
ing the sum of the squared residuals. However they are not robust. We can 
generalize equation (8.3) by introducing the weighting function:

 ρ ρ β= −





=
∑Y Xt j tj
j

N

1

 (8.6)

We rewrite the M-estimator as follows:
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And we generalize the LS by minimizing the M-estimator with respect to 
the coefficients β. To determine the minimum, we equate to zero the partial 
derivatives of the M-estimator. If we define the functions:
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or, in matrix form

X′WXβ = X′WY

where W is a diagonal matrix.
The above is not a linear system because the weighting function is in 

general a nonlinear function of the data. A typical approach is to determine 
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iteratively the weights through an iterative reweighted least squares (RLS) 
procedure. Clearly the iterative procedure depends numerically on the 
choice of the weighting functions. Two commonly used choices are the 
Huber weighting function, wH(e), defined as

w e
e k

k e e kH ( ) /
=

≤
>





1 for

for

and the Tukey bisquare weighting function, wT(e), also referred to as biweight 
function, defined as

w e
e k e k

e kT ( )
( ( / ) )

=
− ≤

>






1

0

2 2 for

for

where k is a tuning constant often set at 1.345 × (standard deviation of 
errors) for the Huber function, and at 4.685 × (standard deviation of errors) 
for the Tukey function. (Note that w = 1 [constant function] recovers the 
case of ordinary least squares.)

ILLUSTRATION: ROBUSTNESS OF THE  
CORPORATE BOND YIELD SPREAD MODEL

To illustrate robust regressions, let’s continue with our illustration of the 
spread regression used in Chapter 6 to show how to incorporate dummy 
variables into a regression model. Recall that there are 200 issues in the 
sample studied. Table 8.1 shows the diagonal elements of the hat matrix 
called leverage points. These elements are all very small, much smaller than 
the safety threshold 0.2. We therefore expect that the robust regression does 
not differ much from the standard regression.

We ran two robust regressions with the Huber and Tukey weighting 
functions. The tuning parameter k is set as suggested earlier. The estimated 
coefficients of both robust regressions were identical to the coefficients of 
the standard regression. In fact, with the Huber weighting function, we 
obtained the parameters estimates shown in the second column of Table 8.2. 
The tuning parameter was set at 160, that is, 1.345 the standard deviation 
of errors. The algorithm converged at the first iteration.

With the Tukey weighting function, we obtained the beta parameters 
shown in the third column of Table 8.2, with the tuning parameter set at 
550, that is, 4.685 the standard deviation of errors. The algorithm con-
verged at the second iteration.
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TABLE 8.1 Leverage for Corporate Bond Spread Illustration

Issue
#

Leverage
Point

Issue
 #

Leverage
Point

Issue
 #

Leverage
Point

Issue
 #

Leverage
Point

 1 0.013702 31 0.013795 61 0.025113 91 0.011934

 2 0.010794 32 0.008615 62 0.014047 92 0.044409

 3 0.019632 33 0.018478 63 0.013732 93 0.034539

 4 0.025846 34 0.013795 64 0.014753 94 0.029392

 5 0.028057 35 0.012994 65 0.009094 95 0.014565

 6 0.012836 36 0.008759 66 0.023258 96 0.019263

 7 0.014437 37 0.013293 67 0.015577 97 0.019100

 8 0.027183 38 0.013522 68 0.063569 98 0.027901

 9 0.008394 39 0.013767 69 0.033131 99 0.015033

10 0.026077 40 0.012888 70 0.012423 100 0.013543

11 0.017687 41 0.171633 71 0.016903 101 0.013887

12 0.005725 42 0.020050 72 0.014743 102 0.010884

13 0.008469 43 0.019344 73 0.010000 103 0.008541

14 0.017604 44 0.014446 74 0.015290 104 0.018612

15 0.028824 45 0.014750 75 0.018074 105 0.019873

16 0.024891 46 0.016669 76 0.010866 106 0.011579

17 0.021291 47 0.012692 77 0.010507 107 0.020055

18 0.027499 48 0.019541 78 0.009622 108 0.036536

19 0.017078 49 0.051719 79 0.007122 109 0.008974

20 0.022274 50 0.020500 80 0.008845 110 0.017905

21 0.020021 51 0.020222 81 0.040731 111 0.017995

22 0.021077 52 0.013348 82 0.015223 112 0.005809

23 0.025114 53 0.008207 83 0.011651 113 0.009238

24 0.034711 54 0.013002 84 0.012244 114 0.016268

25 0.027129 55 0.013384 85 0.009014 115 0.028688

26 0.008034 56 0.014434 86 0.008117 116 0.018651

27 0.009757 57 0.015949 87 0.019357 117 0.016205

28 0.011686 58 0.016360 88 0.024764 118 0.020799

29 0.008090 59 0.017263 89 0.023501 119 0.017949

30 0.095189 60 0.031493 90 0.015906 120 0.020301
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TABLE 8.1 (Continued)

Issue
 #

Leverage
Point

Issue
 #

Leverage
Point

Issue
 #

Leverage
Point

Issue
 #

Leverage
Point

121 0.015754 141 0.157105 161 0.025706 181 0.041400

122 0.020207 142 0.020563 162 0.014594 182 0.013532

123 0.023941 143 0.018518 163 0.014276 183 0.011638

124 0.033133 144 0.016334 164 0.018527 184 0.015537

125 0.021344 145 0.016663 165 0.008675 185 0.009148

126 0.007491 146 0.018707 166 0.020882 186 0.008451

127 0.009683 147 0.011602 167 0.012834 187 0.020417

128 0.011631 148 0.016474 168 0.062460 188 0.023978

129 0.008184 149 0.054354 169 0.031092 189 0.023629

130 0.067155 150 0.020168 170 0.012731 190 0.018335

131 0.015243 151 0.019845 171 0.010213 191 0.012962

132 0.009928 152 0.014368 172 0.015083 192 0.025442

133 0.020009 153 0.008312 173 0.010233 193 0.034161

134 0.015243 154 0.010802 174 0.014593 194 0.026897

135 0.014425 155 0.010850 175 0.019872 195 0.014917

136 0.010076 156 0.011566 176 0.011204 196 0.037224

137 0.013824 157 0.012781 177 0.010866 197 0.019013

138 0.013863 158 0.013124 178 0.010313 198 0.022461

139 0.014560 159 0.017243 179 0.008397 199 0.015419

140 0.032351 160 0.011670 180 0.012101 200 0.012067

Leverage Point: In robust regressions, signals that the corresponding observations 
might have a decisive influence on the estimation of the regression parameters.

TABLE 8.2 Robust Estimates of Parameters Using 
Huber and Tukey Weighting Functions

Coefficient Huber Tukey

β0 157.0116 157.0138

β1 61.2781 61.2776

β2 –13.2054 –13.2052

β3 –90.8871 –90.8871
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Let’s illustrate the robustness of regression through another example. 
Let’s create an equally weighted index with the daily returns of 234 Japanese 
firms. Note that this index is created only for the sake of this illustration; 
no econometric meaning is attached to this index. The daily returns for the 
index for period 1986 to 2005 are shown in Figure 8.1.

Now suppose that we want to estimate the regression of Nippon Oil on 
this index; that is, we want to estimate the following regression:

RNO = β0 + β1RIndex + Errors

Estimation with the standard least squares method yields the following 
regression parameters:

R2: 0.1349
Adjusted R2: 0.1346
Standard deviation of errors: 0.0213

Beta t-Statistic p-Value

β0 0.0000   0.1252 0.9003

β1 0.4533 27.6487 0.0000
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FIGURE 8.1 Daily Returns of the Japan Index: 1986–2005
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When we examined the diagonal of the hat matrix, we found the fol-
lowing results:

Maximum leverage = 0.0189
Mean leverage = 4.0783e–004

suggesting that there is no dangerous point. Robust regression can be 
applied; that is, there is no need to change the regression design. We applied 
robust regression using the Huber and Tukey weighting functions with the 
following parameters:

Huber (k = 1.345 × standard deviation)

and

Tukey (k = 4.685 × standard deviation)

The robust regression estimate with Huber weighting functions yields the 
following results:

R2  = 0.1324
Adjusted R2  = 0.1322
Weight parameter  = 0.0287
Number of iterations  = 39

Beta t-Statistic Change in p-Value

β0 –0.000706 –0.767860 0.442607

β1   0.405633   7.128768 0.000000

The robust regression estimate with Tukey weighting functions yields 
the following results:

R2  = 0.1315
Adjusted R2  = 0.1313
Weight parameter  = 0.0998
Number of iterations  = 88

Beta t-Statistic Change in p-Value

β0 –0.000879 –0.632619 0.527012

β1   0.400825   4.852742 0.000001
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We can conclude that all regression slope estimates are highly significant; the 
intercept estimates are insignificant in all cases. There is a considerable differ-
ence between the robust (0.40) and the nonrobust (0.45) regression coefficient.

Robust Estimation of  
CovaRianCE and CoRRElation matRiCEs

Variance-covariance matrices are central to financial modeling. In fact, the 
estimation of the variance-covariance matrices is critical for portfolio man-
agement and asset allocation. Suppose the logarithm of returns is a multi-
variate random vector written as

rt = μ + εt

The random disturbances εt is characterized by a covariance matrix Ω.
The correlation coefficient between two variables X and Y is defined as:
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The correlation coefficient fully represents the dependence structure of 
multivariate normal distribution. More in general, the correlation coeffi-
cient is a valid measure of dependence for elliptical distributions (i.e., distri-
butions that are constants on ellipsoids). In other cases, different measures 
of dependence are needed (e.g., copula functions).3

The empirical covariance between two variables, X and Y, is defined as
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are the empirical means of the variables.

3 Paul Embrechts, Filip Lindskog, and Alexander McNeil, “Modelling Dependence 
with Copulas and Applications to Risk Management,” in Handbook of Heavy 
Tailed Distributions in Finance, ed. S. T. Rachev (Amsterdam: Elsevier/North- 
Holland, 2003).
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The empirical correlation coefficient is the empirical covariance nor-
malized with the product of the respective empirical standard deviations:
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Empirical covariances and correlations are not robust as they are highly 
sensitive to tails or outliers. Robust estimators of covariances and/or cor-
relations are insensitive to the tails. However, it does not make sense to 
robustify correlations if dependence is not linear.

Different strategies for robust estimation of covariances exist; among 
them are:

 ■ Robust estimation of pairwise covariances
 ■ Robust estimation of elliptic distributions

Here we discuss only the robust estimation of pairwise covariances. As 
detailed in Huber,4 the following identity holds:

c var varov( , ) [ ( ) ( )]X Y
ab

aX bY aX bY= + − −1
4

Assume S is a robust scale functional:

S aX b a S X( ) ( )+ =

A robust covariance is defined as

C X Y
ab
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4 Huber, Robust Statistics.
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A robust correlation coefficient is defined as

c S aX bY S aX bY= + − −1
4

2 2[ ( ) ( ) ]

The robust correlation coefficient thus defined is not confined to stay in the inter-
val [–1,+1]. For this reason, the following alternative definition is often used:

r
S aX bY S aX bY
S aX bY S aX bY
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2 2
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APPLICATIONS

As explained in Chapter 3, regression analysis has been used to estimate the 
market risk of a stock (beta) and to estimate the factor loadings in a factor 
model. Robust regressions have been used to improve estimates in these 
two areas.

Martin and Simin provide the first comprehensive analysis of the impact 
of outliers on the estimation of beta.5 Moreover, they propose a weighted 
least squares estimator with data-dependent weights for estimating beta, 
referring to this estimate as “resistant beta,” and report that this beta is a 
superior predictor of future risk and return characteristics than the beta 
calculated using the method of least squares described in Chapter 13. To 
demonstrate the potential dramatic difference between the ordinary least 
squares (OLS) beta and the resistant beta, the estimates of beta and the 
standard error of the estimate for four companies reported by Martin and 
Simin are shown as follows:6

OLS Estimate Resistant Estimate

Beta Standard Error Beta Standard Error

AW Computer Systems 2.33 1.13 1.10 0.33

Chief Consolidated Mining Co. 1.12 0.80 0.50 0.26

Oil City Petroleum 3.27 0.90 0.86 0.47

Metallurgical Industries Co. 2.05 1.62 1.14 0.22

5 R. Douglas Martin and Timothy T. Simin, “Outlier Resistant Estimates of Beta,” 
Financial Analysts Journal 59 (September–October 2003): 56–69.
6 Reported in Table 1 of the Martin-Simin study. Various time periods were used 
from January 1962 to December 1996.
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Martin and Simin provide a feeling for the magnitude of the absolute 
difference between the OLS beta and the resistant beta using weekly returns 
for 8,314 companies over the period January 1992 to December 1996. A 
summary of the distribution follows:

Absolute Difference in Beta No. of Companies Percent

0.0 + to 0.3 5,043 60.7

0.3 + to 0.5 2,206 26.5

0.5 + to 1.0 800 9.6

Greater than 1.0+ 265 3.2

Studies by Fama and French find that market capitalization (size) 
and book-to-market are important factors in explaining cross-sectional 
returns.7 These results are purely empirically based since there is no equi-
librium asset pricing model that would suggest either factor as being 
related to expected return. The empirical evidence that size may be a 
factor that earns a risk premia (popularly referred to as the “small-firm 
effect” or “size effect”) was first reported by Banz.8 Knez and Ready 
reexamined the empirical evidence using robust regressions, more spe-
cifically the least-trimmed squares regression discussed earlier.9 Their 
results are twofold. First, they find that when 1% of the most extreme 
observations are trimmed each month, the risk premia found by Fama 
and French for the size factor disappears. Second, the inverse relation 
between size and the risk premia reported by Banz and Fama and French 
(i.e., the larger the capitalization, the smaller the risk premia) no longer 
holds when the sample is trimmed. For example, the average monthly 
risk premia estimated using OLS is –12 basis points. However, when 5% 
of the sample is trimmed, the average monthly risk premia is estimated 
to be +33 basis points; when 1% of the sample is trimmed, the estimated 
average risk premia is +14 basis points.

7 Eugene F. Fama and Kenneth R. French, “The Cross-Section of Expected Stock 
Returns,” Journal of Finance 47 (1992): 427–466, and Eugene F. Fama and Kenneth 
R. French, “Common Risk Factors in the Returns on Stocks and Bonds,” Journal of 
Financial Economics 33 (1993): 3–56.
8 Rolf W. Banz, “The Relationship between Return and Market Value of Common 
Stocks,” Journal of Financial Economics 9 (1981): 3–18.
9 Peter J. Knez and Mark J. Ready, “On the Robustness of Size and Book-to-Market 
in Cross-Sectional Regressions,” Journal of Finance 52 (1997): 1355–1382.
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KEY POINTS

 ■ Robust statistics addresses the problem of obtaining estimates that are 
less sensitive to small changes in the basic assumptions of the statistical 
models used. It is also useful for separating the contribution of the tails 
from the contribution of the body of the data.

 ■ Identifying robust estimators of regressions is a rather difficult problem. 
Different choices of estimators, robust or not, might lead to radically 
different estimates of a model’s parameters.

 ■ The expected values of the regression’s dependent variables are obtained 
by multiplying the data and the hat matrix.

 ■ Leverage points are large values of the hat matrix such that small 
changes in the data lead to large changes in expectations.

 ■ To make a regression robust, the least squares method can be general-
ized by using weighting functions that trim residuals.
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Chapter 9
autoregressive Moving  

average Models

a fter reading this chapter you will understand:

 ■ The concept of autoregression and autoregressive models.
 ■ How to identify autoregressive models.
 ■ The concept of moving average process and moving average models.
 ■ How to identify moving average models.
 ■ How to model autoregressive moving average (ARMA) models.
 ■ How to use information criteria for ARMA model selection.
 ■ How to apply ARMA in modeling stock returns.
 ■ How to use autoregressive models, moving average models, and ARMA 
models to forecast stock returns and how to evaluate the forecasting 
performance of these models.

 ■ The concept of vector autoregression.

In Chapter 5 we introduced time series analysis where variables change 
over time. As discussed in that chapter, the foundation of time series models 
is based on the assumption that the disturbance term is a white noise pro-
cess. The implication of this assumption is that the last period’s disturbance 
term cannot be used to predict the current disturbance term and that the 
disturbance term has constant variance. In other words, the implication of 
this assumption is the absence of serial correlation (or predictability) and 
homoscedasticity (or conditional constant variance).

However, in empirical applications the white noise assumption is often 
violated. That is, successive observations show serial dependence. Under 
these circumstances, forecasting tools such as exponential smoothing1 may 

1 See, for example, Svetlozar T. Rachev, Stefan Mittnik, Frank J. Fabozzi, Sergio M. 
Focardi, and Teo Jasic, Financial Econometrics (Hoboken, NJ: John Wiley & Sons, 
2007).
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be inefficient and sometimes inappropriate because they may not take advan-
tage of the serial dependence in the most effective way. In this  chapter, we 
will introduce autoregressive moving average (ARMA) models that allow 
for serial dependence in the observations. 

autoregressive Models

In finance, some asset returns show serial dependence. Such dependence can 
be modeled as an autoregressive process. For example, a first-order autore-
gressive model can be represented as

 yt = c + ρyt−1 + εt  (9.1)

where yt is the asset return c and ρ are parameters εt is assumed to be inde-
pendent and identically distributed (i.i.d). The i.i.d process is a white noise 
process with mean zero and variance σε

2 .
In words, equation (9.1) says that this period’s return depends on the prior 
period’s return scaled by the value of ρ.

For example, an estimation of equation (9.1) using CRSP value-weighted 
weekly index returns2 for the period from January 1998 through October 
2012 (774 observations) yields

yt  = 0.15 − 0.07yt−1 
t-statistic (1.65) (1.97)

The fact that last week’s return has a statistically significant coefficient shows 
that lagged weekly returns might be useful in predicting weekly returns. In 
other words, next period’s forecast is a weighted average of the mean of the 
weekly return series and the current value of the return. 

The first-order autoregressive model can be generalized to an nth order 
autoregressive model and can be written as

 yt = c + ρ1yt−1 + ρ2yt−2 +  .  .  .  + ρnyt−n + εt  (9.2)

2 The CRSP value-weighted index, created by the Center for Research in Security 
Prices, is a value-weighted index composed of all New York Stock Exchange (NYSE), 
American Stock Exchange (AMEX), and NASDAQ stocks. By “value-weighted” it is 
meant each stock in the index is weighted by its market capitalization (i.e., number 
of common stock shares outstanding multiplied by the stock price).
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The order n for an autoregressive model is unknown and must be deter-
mined. Two approaches are available for determining the value of n: 

 1. Partial autocorrelation function 
 2. The use of some information criterion 

partial autocorrelation

The partial autocorrelation (PAC) measures the correlation between yt and 
yt−n after controlling for correlations at intermediate lags. In other words, 
the PAC at lag n is the regression coefficient on yt−n when yt is regressed on 
a constant and yt−1,  .  .  .  ,yt−n. 

How does one test for the statistical significance of the PAC for each 
lag? This is done by using the Ljung-Box Q-statistic, or simply Q-statistic. 
The Q-statistic tests whether the joint statistical significance of accumulated 
sample autocorrelations up to any specified lags are all zero. For example, 
the Q-statistic for lag 3 is measured as:

Q-statistics(3) = +
−

+
−

+T T
y

T
y

T
y

( )
( ) ( )

2
1 2

1
2

2
2

3
2

(( )T −




3

where T is the sample size. The statistic is asymptotically distributed as a 
chi-square (χ2) with degrees of freedom equal to the number of lags. 

If the computed Q-statistic exceeds the critical value from the χ2 distri-
bution, the null hypothesis of no autocorrelation at the specified lag length 
is rejected. Thus, the Q-statistic at lag n is a test statistic for the null hypoth-
esis that there is no autocorrelation up to order n.

The PAC for 24 lags for our earlier illustration using the CRSP value-
weighted weekly index returns are presented in Table 9.1 along with the 
results of the Q-statistic. The computed Q-statistic for lags 1 and 2 are 3.67 
and 5.85, respectively. The critical values from the χ2 distribution with 1 
and 2 degrees of freedom at the 5% level of significance is 3.84 and 5.99, 
respectively. The null hypothesis of no autocorrelation at lags 1 and 2 is 
therefore rejected. While the null hypothesis is not rejected at lag 3, it is 
again rejected at lags 4 and 5. Given that the results are yielding mixed lag 
lengths for an autoregressive model, more formal approaches may provide 
us with a better model.

information Criterion

Another approach of selecting an autoregressive model is the use of some 
information criterion such as the Akaike information criterion (AIC) or 
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table 9.1 Partial Autocorrelations (PAC) for the Weekly Sample Returns of CRSP 
Value-Weighted Index from January 1998 through October 2012

Lags PAC Q-Statistic ρ-Value

 1 −0.069 3.667 0.055

 2 0.048 5.851 0.054

 3 −0.046 7.971 0.047

 4 −0.051 9.324 0.053

 5 0.046 11.033 0.051

 6 0.076 14.520 0.024

 7 −0.086 20.094 0.005

 8 0.009 20.566 0.008

 9 −0.034 23.042 0.006

10 0.010 23.399 0.009

11 0.022 23.997 0.013

12 −0.046 25.739 0.012

13 −0.002 25.739 0.018

14 0.015 25.818 0.027

15 0.095 31.608 0.007

16 0.008 31.810 0.011

17 0.010 31.931 0.015

18 −0.004 32.319 0.020

19 0.005 32.341 0.029

20 0.018 32.647 0.037

21 0.012 33.218 0.044

22 0.019 33.259 0.058

23 0.003 33.260 0.077

24 −0.033 34.742 0.072

Bayesian (or Schwarz) information criterion (BIC). By selecting an autore-
gressive model, we mean determining number of lags. The AIC and BIC are 
described in Appendix E, where we discuss model selection. Both informa-
tion criteria involve finding the minimum value of a measure. 

Table 9.2 shows the results when the calculations for the AIC and BIC 
are applied to the CRSP value-weighted weekly index returns. The second 
and third columns show the AIC and BIC, respectively, at different lags. The 
AIC shows that the model is optimal (i.e., the n that provides the minimum 
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AIC) when there are seven lags—denoted by AR(7). For the BIC, however, 
the model is optimal is when n is one (i.e., AR(1)). 

In practice it is important to check for the adequacy of the selected 
model. If the model is adequate, the residual series of the model should 
behave as white noise or should have no autocorrelation. For this purpose, 
the Q-statistic can be employed. The Q-statistic tests whether the joint 

table 9.2 Autoregressive Model: Akaike Information Criterion (AIC) and 
Bayesian Information Criterion (BIC) for the Weekly Sample Returns of CRSP 
Value-Weighted Index (yt) from January 1998 through October 2012

Lags AIC BIC

 1 2.032 2.044*

 2 2.030 2.048

 3 2.030 2.054

 4 2.031 2.061

 5 2.033 2.069

 6 2.029 2.071

 7 2.025* 2.074

 8 2.029 2.083

 9 2.031 2.092

10 2.035 2.102

11 2.038 2.111

12 2.039 2.118

13 2.043 2.128

14 2.046 2.137

15 2.041 2.138

16 2.045 2.148

17 2.048 2.158

18 2.052 2.169

19 2.056 2.179

20 2.060 2.189

21 2.064 2.199

22 2.066 2.208

23 2.070 2.218

24 2.073 2.227

A model is selected based on the calculated minimum of either AIC or BIC. 
* Denotes minimum values. 
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 statistical significance of accumulated sample autocorrelations up to any 
specified lags are all zero.

We can test the residual series from the AR(1) and AR(7) models to 
see if there is serial correlation in the residuals using the Q-statistic. For 
 illustrative purposes, the test statistic for 12 lags is presented. The com-
puted Q-statistic of the residuals for the AR(1) and AR(7) models are 
Q-statistic(12) = 19.83 and Q-statistic(12) = 3.29, respectively. The criti-
cal value at the 5% significance level from the χ2 distribution is 18.54. 
Based on these values, the null hypothesis of no autocorrelation at the 
5% significance level is rejected for the AR(1) model but not for the 
AR(7) model. Although the autoregressive model AR(7) is adequate in 
explaining the behavior of the weekly index returns series, we do not 
know if this model does a good job of explaining the dynamic structure 
of the data. 

MoviNg average Models

The autoregressive models just described for modeling the weekly CRSP 
value-weighted index return series may not be the only process that  generates 
the return series. Suppose we model weekly returns, y, as: 

 yt = μ + εt + δ1εt−1 (9.3)

where 	 μ = the mean of the series
	 δ1 = the parameter of the model 
	 εt, εt−1 = the white noise error terms

In the model given by equation (9.3), y at time t is equal to a constant 
plus a moving average of the current and past error terms. In this case, yt 
follows a first-order moving average (denoted by MA(1)) process. The mov-
ing average (MA) models are treated as simple extensions of a white noise 
series. In other words, an MA model is a linear regression model of the cur-
rent value of the series against the unobserved white noise error terms or 
shocks. A qth order moving average model is represented as

 yt = μ + εt + δ1εt−1 +  .  .  .  + δqεt−q  (9.4)

Since the error terms in equation (9.4) are not observable, MA models 
are usually estimated using the maximum likelihood estimation method 
described in Chapter 13. The initial values needed for the shocks in the 
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likelihood function are obtained recursively from the model, starting with  
ε1 = y1 − μ and ε2 = y2 − μ − δ1ε1 and so on. 

For example, an estimation of a MA(1) model for CRSP value-weighted 
weekly index returns for the period from January 1998 through October 
2012 yields

yt = 0.14 + εt − 0.063 εt−1
t-statistics   (1.48)   (−1.76)

The results show that the first-order moving average term is not statisti-
cally significant. Thus, the MA(1) model in this case is not adequate. Con-
sequently, different lag lengths for the moving average term must be tried.

As with autoregressive models, either the AIC or BIC can be employed 
to select the optimal lag length. For the CRSP value-weighted weekly index 
returns, Table 9.3 shows that the AIC identifies MA(7) as the optimal model 
while the BIC identifies MA(1) as optimal. Since the MA(1) model is not ade-
quate for the return series that we are studying, we tested the residuals of the 
MA(7) model for serial correlation. With a computed Q-statistic(12) of 5.97 
and with a critical value of 18.54 from the χ2 distribution, we are unable to 
reject the null hypothesis of no autocorrelation. Hence, the MA(7) model 
appears to be adequate in modeling the weekly stock index return series. 

table 9.3 Moving Average Model: Akaike 
Information Criterion (AIC) and Bayesian 
Information Criterion (BIC) for the Weekly 
Sample Returns of CRSP Value-Weighted Index 
(yt) from January 1998 through October 2012

Lags AIC BIC

 1 2.033 2.045*

 2 2.033 2.051

 3 2.034 2.058

 4 2.034 2.064

 5 2.034 2.070

 6 2.031 2.073

 7 2.026* 2.074

 8 2.029 2.083

 9 2.030 2.090

10 2.033 2.099

(continued)



178 The Basics of financial economeTrics

autoregressive MoviNg average Models

Because in practical applications higher-order models may be required 
to describe the dynamic structure of the data, AR and MA models may 
require estimation of a large number of parameters. In 1938, Herman Wold 
showed that a combined AR and MA process, referred to as an autore-
gressive moving average (ARMA) process, can effectively describe the time 
series structure of the data as long as the appropriate number of AR and 
MA terms are specified.3 This means that any time series yt can be modeled 
as a combination of past yt values and/or past εt errors. More formally, an 
ARMA model can be expressed as

 yt = c + ρ1yt−1 + ρ2yt−2 +  .  .  .  + ρnyt−n + εt + δ1εt−1 +  .  .  .  + δqεt−q (9.5)

where n and q are the number of AR and MA terms, respectively. 

Lags AIC BIC

11 2.035 2.107

12 2.035 2.113

13 2.038 2.122

14 2.041 2.130

15 2.034 2.131

16 2.036 2.138

17 2.039 2.147

18 2.041 2.155

19 2.044 2.164

20 2.046 2.172

21 2.049 2.181

22 2.051 2.189

23 2.053 2.198

24 2.055 2.205

A model is selected based on the calculated 
minimum of either AIC or BIC. 
*Denotes minimum values. 

table 9.3 (continued)

3 Herman Wold, A Study in the Analysis of Stationary Time Series (Stockholm, 
 Sweden: Almgrist & Wiksell, 1938).
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The benefit of ARMA models is a higher-order AR or MA model may 
have a parsimonious ARMA representation that is much easier to identify and 
estimate. In other words, ARMA models represent observed data with fewer 
parameters than suggested by AR or MA models. In the 1970s, George Box 
and Gwilym Jenkins popularized the estimation of the ARMA process given 
by equation (9.5).4 Their methodology for estimating ARMA models, referred 
to as the Box-Jenkins estimation model, requires the following three steps:

Step 1. Test the series for stationarity. 

Step 2. Identify the appropriate order of AR and MA terms.

Step 3. Once an appropriate lag order is identified, determine whether 
the model is adequate or not. If the model is adequate, the residuals 
(εt) of the model are expected to be white noise. 

Let’s look at these three steps and use our return time series that we have 
studied earlier in this chapter to illustrate them.

The first step is to check for stationarity. There are several methodolo-
gies for doing so and these are discussed in Chapter 10 where we describe the 
econometric tool of cointegration. For our discussion here, if fluctuations in the 
variable exhibit no pattern over time, then we temporarily consider the vari-
able to be stationary. As an example, Figure 9.1 shows the plot of the weekly 
CRSP value-weighted index returns. Although the return series shown in the 
figure indicate considerable fluctuations over time, the returns meander around 
a constant level close to zero. Thus, the returns exhibit no pattern over time, 
and for the purpose of this chapter, we regard this as stationary and proceed to 
Step 2 in the methodology for estimating an ARMA process. 

The second step involves identifying the order of AR and MA terms. 
For illustrative purposes, we start out with AR(1) and MA(1) model which 
is referred to as a first-order ARMA(1, 1) model and expressed as 

 yt = c + ρ1yt−1 + εt + δ1εt−1 (9.6)

Our estimated results of the above model using the weekly index returns 
for the period from January 1998 through October 2012 are:

yt = 0.13 − 0.79 yt−1 + εt + 0.65 εt−1
t-statistics (1.40)  (−4.17)     (3.54)

These results clearly show that the first-order autoregressive term for the 
index weekly returns is statistically significant and inversely related to the 

4 George Box and Gwilym Jenkins, Time Series Analysis: Forecasting and Control 
(San Francisco: Holden-Day, 1970).
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current weekly return. The moving average is positively related to this week’s 
returns and the coefficient is statistically significant. Hence, both AR(1) and 
MA(1) are statistically significant. 

Now the issue is the identification of optimal lags. To identify the opti-
mal lag, a combination of ARMA models up to a specified number of lags is 
calculated and then one of the information criteria is calculated for each of 
these models. For our weekly return series, we tried up to 12 lags and then 
used the AIC. The results are presented in Table 9.4. For the weekly return 
series, the AIC is at its minimum when the model has five autoregressive 
terms and four moving average terms. 

The third and final step in ARMA modeling involves using the AR and 
MA terms found in Step 2 and then testing the residuals. If the model is 
adequate, the residuals should not exhibit serial correlation. This is done 
by testing whether the residuals can be characterized as being white noise. 
In our illustration, in Step 2 we have identified five AR terms and four MA 
terms as optimal lags. Table 9.5 shows the results when we fit an ARMA(5,4) 
to the time series of weekly returns. As can be seen, the first and the second 
AR terms are statistically significant and the first three MA terms are statis-
tical significant. 

To ensure that the model is describing the data adequately, we checked 
to see if the residuals of the model are white noise. With a Q-statistic(12)
of 8.93, we are unable to reject the null hypothesis of no autocorrelation. 
Hence, the ARMA(5,4) model appears to be adequate in modeling the 
weekly stock index return series. 

arMa ModeliNg to ForeCast  
s&p 500 WeeKlY iNdeX returNs

As long as asset returns exhibit trends,5 ARMA modeling can be employed 
to predict these trends. There are investors who believe that stock returns, 
commodity returns, and currency returns exhibit trends and these trends can 
be forecasted and then used to design highly profitable trading  strategies. 
Those investors who seek to capitalize on trends are said to be technical 
traders and follow an investment approach known as technical analysis. 
For illustrative purposes, we will use an ARMA6 model to forecast weekly 
S&P 500 stock index returns. The weekly S&P 500 returns from January 

5 See Chapter 5 for the definition of trends.
6 ARMA modeling is only one of the ways trends can be predicted and technical trad-
ers may or may not use ARMA to extract trends.
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of 1998 through December 2012 (783 observations) used in our illustration 
are obtained from DataStream.7

The first step is to check for stationarity in the S&P 500 index returns. 
The plotted weekly S&P 500 index returns are presented in Figure 9.2. The 
returns fluctuate considerably but always around a constant level close to 
zero and exhibit no pattern over time. As stated earlier, for the purpose of 
this chapter, we regard this as stationary and proceed to Step 2 in the meth-
odology of estimating an ARMA process. 

The next step is to identify a possible model that best fits the data. We 
tried a combination of 12 AR and MA models and used the AIC to select the 
model that describes the data optimally. The results are presented in Table 9.6. 
For the weekly S&P 500 return series, the AIC is at its minimum when the 
model has three autoregressive terms and two moving average terms. 

The final step involves estimating the model identified in Step 2 and 
testing the residuals for the presence of autocorrelation. Table 9.7 shows 
the results when we fit an ARMA(3,2) to the weekly S&P 500 index return 
series. As can be seen, the first and second AR terms and both MA terms 
are statistically significant. To ensure that the model is describing the data 
adequately, we checked to see if the residuals of the model are white noise. 
With a computed Q-statistic(12) of 3.75 and with a critical value of 18.54 

table 9.5 Autoregressive Moving Average Model, Weekly Sample Returns of 
CRSP Value-Weighted Index from January 1998 through October 2012

Variable Coefficient t-Statistic p-Value

c 0.12 1.23 0.22

ρ1 0.94 3.60 0.00

ρ2 −0.72 −2.30 0.02

ρ3 0.34 1.51 0.13

ρ4 0.19 1.03 0.30

ρ5 0.02 0.34 0.73

δ1 −1.00 −3.81 0.00

δ2 0.84 2.52 0.01

δ3 −0.51 −1.97 0.05

δ4 −0.10 −0.48 0.63

7 DataStream is a comprehensive time series database available from Thomson 
Reuters.
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table 9.7 Autoregressive Moving Average Model, Weekly Sample Returns of S&P 
500 Index from January 1998 through December 2012

Variable Coefficient t-Statistic p-Value

c 0.00 1.25 0.21

ρ1 −1.10 −7.44 0.00

ρ2 −0.83 −5.44 0.00

ρ3 −0.03 −0.68 0.50

δ1 0.97 6.79 0.00

δ2 0.72 5.72 0.00

from the χ2 distribution, we are unable to reject the null hypothesis that 
there is no autocorrelation. Hence, the ARMA(3,2) model appears to be 
adequate in modeling the weekly S&P 500 index return series. 

While the model seems adequate, we don’t yet know if it does a good 
job of forecasting the data. In order to judge the forecasting performance of 
the ARMA(3,2) model, we need a set of competing models. For the purpose 
of illustration, we used an AR(1) and an MA(1) model and compared the 
forecasting performance of ARMA(3,2) against these two models. A good 
approach of model evaluation is to divide the sample into an in-sample 
estimation period and a holdout sample. The in-sample period is used to 
estimate the model parameters and the holdout sample will be used to con-
struct out-of-sample forecasts. For our illustration, we use an estimation 
period for the three models from January 1998 through December 2011 
(730 observations), holding back the last 52 observations to construct out-
of-sample forecasts. 

It is possible to forecast 52 weeks forward, but long-term time series 
forecasts tend to be less reliable than short-term forecasts. One way to get 
around this problem is to compute long-term forecasts by iterating forward 
by one-step forecasts. This involves estimating the models from January 
1998 through December 2011 and forecasting the S&P 500 returns for the 
first week of January 2012. Then we add the first week’s realized return 
to the estimation period and then forecast the second week’s return. This 
iterative process continues until we use up the entire holdout sample. This 
exercise will yield 52 forecasts with 52 realizations (i.e., observed values). 
The results of these forecasts and the S&P weekly returns are presented 
in Figure 9.3. The FORECAST_AR1 shown in the figure denotes the fore-
casts generated by the AR(1) model. The FORECAST_MA1 indicates the 
forecasts generated by the MA(1) model, while the FORECAST_AR3MA2 
denotes the forecasts generated by the ARMA(3,2) model. In 2012, the S&P 
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500 returns fluctuated considerably more than the prediction made by the 
models. However, all three models seem to have predicted the direction of 
the change fairly well.

A formal way of testing the accuracy of the forecasts is to compare the 
forecast errors (the difference between the realized values and the forecasted 
values of the holdout sample) and select a model that generates the lowest 
aggregate forecast error. One cannot just add the forecast errors of the hold-
out sample because such aggregation leads to positive differences offsetting 
negative differences, leaving a small forecast error. One way to overcome 
this problem is to either square the errors or to take the absolute value 
of the errors and then aggregate them. For illustrative purposes, we squared 
the errors and then divided the aggregated value by the number of forecast 
errors. The resulting metric is called the mean squared error (MSE). The 
MSE of the three models are then compared and the model with the smallest 
MSE would be the most accurate model. In the case of the weekly S&P 500 
returns, the MSE of the AR(1) model is 0.000231. The MSE of the MA(1) is 
0.000237 while that of the ARMA(3,2) model is 0.000247. The MSE of the 
AR(1) is slightly better than the other two models, but the differences are 
very small. Overall, the MSE measures suggest that the three models should 
provide adequate forecasts.

veCtor autoregressive Models

So far in the chapter we examined how to model and forecast one single time 
series variable. A natural extension would be to model and forecast multiple 
time series variables jointly. In 1980, Christopher Sims introduced vector 
autoregression (VAR) modeling or vector autoregressive models to analyze 
multiple time series.8 A first-order two-variable VAR model takes the form

 
y b b y b z

z c c y c z
t t t yt

t t t

= + + +

= + + +
− −

− −

1 2 1 3 1

1 2 1 3 1

ε

εεzt
 (9.7)

where yt and zt are two variables of interest. The parameter estimates are 
shown by the letters b and c, and ε shows white noise errors that are assumed 
to be uncorrelated with each other. 

Notice that yt and zt influence each other. For example, b3 shows the 
effect of a unit change in zt−1 on yt while c2 shows the influence of yt−1 on 
zt. For example, yt could be daily returns on some U.S. stock index while zt 

8 Christopher Sims, “Macroeconomics and Reality,” Econometrica 48 (1980): 1−48.
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could be some Japanese daily stock index returns. These returns are not only 
affected by their own past values but will also influence each other. Thus, 
the advantage of VAR modeling is not only that one can estimate multiple 
time series variables simultaneously but one can also study interrelation-
ships among variables. 

The main drawback of VAR is that as the number of variables/lags 
increases, the number of parameters to be estimated will increase signifi-
cantly. For example, to estimate a system of three variables with three lags, 
we need to estimate a total of 30 parameters.9 This may lead to having many 
lags with statistically insignificant coefficients. In addition, the signs of the 
coefficients may change across the lags making it difficult to interpret the 
coefficient. 

Thus, to study the interrelationship among variables, the estimated VAR 
could be used to check for block significance tests, impulse responses, and 
variance decompositions.10 However, one significant benefit of VAR was 
discovered by Granger and Engle when they introduced the concept of coin-
tegration, which is the subject of the next chapter. 

KeY poiNts

 ■ Often financial time series exhibit trends where the current values are 
related to the past or lagged values.

 ■ The models that use past observations to predict the current value are 
the autoregressive (AR) and moving average (MA) models. 

 ■ An AR model is appropriate when the current value is determined by 
the values of variables in the recent past.

 ■ An MA model is appropriate when the current value is influenced by a 
recent shock and shocks in the recent past.

 ■ Sometimes AR and MA models may require estimation of a large num-
ber of parameters to describe the data. In such circumstances, an autore-
gressive moving average (a mixture of AR and MA terms, or ARMA) 
model is recommended.

 ■ The ARMA model has the advantage of requiring fewer estimated 
parameters. 

 ■ Regardless if it is an AR, MA, or ARMA model, it is important to select 
the correct number of lags to describe the data. 

9 The number of parameters to be estimated is determined by k + nk2 where k is 
number of variables and n is number of lags.
10 For a further discussion of these topics, see Rachev et al., Financial Econometrics.
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 ■ The appropriate number of lags can be selected either by using a partial 
autocorrelation function or by using some information criterion. This 
often requires considerable experimentation.

 ■ A model is selected if the residuals of the model are white noise.
 ■ It is important to evaluate models based on the accuracy of forecasts. 
 ■ A model’s forecast performance is judged adequate when its mean 
squared error is small relative to competing models. 

 ■ Using vector autoregressions it is possible to model multiple time series 
variables.
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Chapter 10
Cointegration

a fter reading this chapter you will understand:

 ■ The concept of cointegration.
 ■ The concept of spurious regressions.
 ■ How to test for stationarity.
 ■ How to test for cointegration using the Engle-Granger cointegration test.
 ■ How to test for cointegration using the Johansen-Juselius cointegration 
test.

 ■ How to identify multiple cointegration relations.

Financial time series data tend to exhibit trends. Trends can be deterministic 
or stochastic. In Chapter 5 we introduced the concept of a deterministic 
trend. To uncover a relationship among financial variables it is important 
to model changes in stochastic trends over time. Cointegration can be used 
to identify common stochastic trends among different financial variables. If 
financial variables are cointegrated, it can also be shown that the variables 
exhibit a long-run relationship. If this long-run relationship is severed, this 
may indicate the presence of a financial bubble.1

The long-term relationships among financial variables, such as short-
term versus long-term interest rates and stock prices versus dividends, have 
long interested finance practitioners. For certain types of trends, multiple 
regression analysis needs modification to uncover these relationships. A 
trend represents a long-term movement in the variable. One type of trend, 
a deterministic trend, has a straightforward solution. Since a deterministic 
trend is a function of time, we need merely include this time function in 
the regression. For example, if the variables are increasing or decreasing as 
a linear function of time, we may simply include time as a variable in the 

1 A financial bubble is defined as a situation where asset price increases are sharper 
than justified by the fundamental investment attributes of the asset.
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 regression equation. The issue becomes more complex when the trend is sto-
chastic. As defined in Chapter 5, a stochastic trend is a persistent but random 
long-term movement. Thus a variable with a stochastic trend may exhibit 
prolonged long-run increases followed by prolonged long-run declines and 
perhaps another period of long-term increases.

Most financial theorists believe stochastic trends better describe the 
behavior of financial variables than deterministic trends. For example, if 
stock prices are rising, there is no reason to believe they will continue to 
do so in the future. Or, even if they continue to increase in the future, that 
they may not do so at the same growth rate as in the past. This is because 
stock prices are driven by a variety of economic factors and the impact of 
these factors may change over time. One way of capturing these common 
stochastic trends is by using an econometric technique usually referred to as 
cointegration. 

In this chapter, we explain the concept of cointegration. There are two 
major ways of testing for cointegration. We outline both econometric meth-
ods and the underlying theory for each method. We illustrate the first tech-
nique with an example of the first type of cointegration problem, testing 
market price efficiency. Specifically, we examine the present value model of 
stock prices. We illustrate the second technique with an example of the sec-
ond type of cointegration problem, examining market linkages. In particu-
lar, we test the linkage and the dynamic interactions among stock market 
indices of three European countries. 

Stationary and nonStationary VariableS  
and Cointegration

The presence of stochastic trends may lead a researcher to conclude 
that two economic variables are related over time when in fact they are 
not. This problem is referred to as spurious regression. For example, 
during the 1980s the U.S. stock market and the Japanese stock market 
were both  rising. An ordinary least squares (OLS) regression of the U.S. 
 Morgan  Stanley Stock Index on the Japanese Morgan Stanley Stock Index 
( measured in U.S. dollars) for the time period 1980−1990 using monthly 
data yields

Japanese Stock index = 76.74 + 19 U.S. Stock Index 
t-statistic (−13.95) (26.51) R2 = 0.86

The t-statistic on the slope coefficient (26.51) is quite large, indicating a 
strong positive relationship between the two stock markets. This strong 
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relationship is reinforced with a very high R2 value. However estimating the 
same regression over a different time period, 1990−2007, reveals

Japanese Stock index = 2905.67 − 0.29 U.S. Stock Index 
t-statistic (30.54) (2.80) R2 = 0.04

This regression equation suggests there is a strong negative relationship between 
the two stock market indices. Although the t-statistic on the slope coefficient 
(2.80) is large, the low R2 value suggests that the relationship is very weak. 

The reason behind these contradictory results is the presence of stochas-
tic trends in both series. During the first time span, these stochastic trends 
were aligned, but not during the second time period. Since different economic 
forces influence the stochastic trends and these forces change over time, dur-
ing some periods they will line up and in some periods they will not. In 
summary, when the variables have stochastic trends, the OLS technique may 
provide misleading results. This is the spurious regression problem.

Recall that the OLS method requires that the observations are inde-
pendent and identically distributed, and because the monthly values of 
the Japanese stock index (as well as those of the U.S. stock index) are not 
independent and identically distributed, the use of OLS regression for such 
monthly series is meaningless.

Another problem is that when the variables contain a stochastic trend, 
the t-values of the regressors no longer follow a normal distribution, even 
for large samples. Standard hypothesis tests are no longer valid for these 
nonnormal distributions.

At first, researchers attempted to deal with these problems by removing 
the trend through differencing these variables. That is, they focused on the 
change in these variables, Xt − Xt−1, rather than the level of these variables, 
Xt. Although this technique was successful for univariate Box-Jenkins analy-
sis, there are two problems with this approach in a multivariate scenario. 
First, we can only make statements about the changes in the variables rather 
than the level of the variables. This will be particularly troubling if our 
major interest is the level of the variable. Second, if the variables are subject 
to a stochastic trend, then focusing on the changes in the variables will lead 
to a specification error in our regressions.

The cointegration technique allows researchers to investigate variables 
that share the same stochastic trend and at the same time avoid the spurious 
regression problem. Cointegration analysis uses regression analysis to study 
the long-run linkages among economic variables and allows us to consider 
the short-run adjustments to deviations from the long-run equilibrium. 

The use of cointegration in finance has grown significantly.  Surveying 
this vast literature would take us beyond the scope of this chapter. To  narrow 
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our focus, we note that cointegration analysis has been used for mainly two 
types of problems in finance. First, it has been used to evaluate the price 
efficiency of financial markets in a wide variety of contexts. For example, 
Enders used cointegration to evaluate the validity of Purchasing Power Par-
ity Theory.2 As another example, Campbell and Shiller used cointegration 
to test both the rational expectations theory of the term structure of interest 
rates and the present value model of stock prices.3 The second type of coin-
tegration study investigates market linkages. For example, there have been 
a good number of studies that have looked at the linkage between equity 
markets of different countries and regions.4

Before explaining cointegration it is first necessary to distinguish 
between stationary and nonstationary variables. A variable X is said to be 
stationary (more formally, weakly stationary) if its mean and variance are 
constant and its autocorrelation depends on the lag length, that is,

Constant mean: E(Xt) = μ
Constant variance: var(Xt) = σ2

Autocorrelation depends on the lag length: cov(Xt, Xt−l) = γ(l)

Stationary means that the variable X fluctuates about its mean with con-
stant variation. Another way to put this is that the variable exhibits mean 
reversion and so displays no stochastic trend. In contrast, nonstationary 
variables may wander arbitrarily far from the mean. Thus, only nonstation-
ary variables exhibit a stochastic trend.

2 Walter Enders, “ARIMA and Cointegration Tests of Purchasing Power Parity,” 
Review of Economics and Statistics 70 (1988): 504−508.
3 John Campbell and Robert Shiller, “Stock Prices, Earnings and Expected Divi-
dends,” Journal of Finance 43 (1988): 661−676.
4 See, for example, Theodore Syriopoulos, “International Portfolio Diversification 
to Central European Stock Markets,” Applied Financial Economics 14 (2004): 
1253−1268; Paresh K. Narayan and Russell Smyth, “Modeling the Linkages 
between the Australian and G7 Stock Markets: Common Stochastic Trends and 
Regime Shifts,” Applied Financial Economics 14 (2004): 991−1004; Eduardo D. 
Roca, “Short-Term and Long-Term Price Linkages between the Equity Markets of 
Australia and Its Major Trading Partners,” Applied Financial Economics 9 (1999): 
501−511; Angelos Kanas, “Linkages between the US and European Equity Mar-
kets: Further Evidence From Cointegration Tests,” Applied Financial Economics 8 
(1999): 607−614; Kenneth Kasa, “Common Stochastic Trends in International Stock 
Markets,” Journal of Monetary Economics 29 (1992): 95−124; and, Mark P. Taylor 
and Ian Tonks, “The Internationalization of Stock Markets and Abolition of UK 
Exchange Control,” Review of Economics and Statistics 71 (1989): 332−336.
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The simplest example of a nonstationary variable is a random walk. A 
variable is a random walk if 

Xt = LXt + et

where et is a random error term with mean 0 and standard deviation σ. L is 
defined as a lag operator, so that LXt is Xt−1.5

It can be shown that the standard deviation σ(Xt) = tσ, where t is time. 
Since the standard deviation depends on time, a random walk is nonsta-
tionary.

Nonstationary time series often contain a unit root. The unit root 
reflects the coefficient of the Xt−1 term in an autoregressive relationship of 
order one. In higher-order autoregressive models, the condition of nonsta-
tionarity is more complex. Consider the p-order autoregressive model

 (1 − a1L1 −  .  .  .  − apLp)Xt = et + a0  (10.1)

where ai terms are coefficients 
 Li is the lag operator

If the sum of polynomial coefficients equals 1, then the Xt series are non-
stationary.

If all the variables under consideration are stationary, then there is 
no spurious regression problem and the standard OLS estimation method 
can be used. If some of the variables are stationary, and some are nonsta-
tionary, then no economically significant relationships exist. Since non-
stationary variables contain a stochastic trend, they will not exhibit any 
relationship with the stationary variables that lack this trend. The spurious 
regression problem occurs only when all the variables in the system are 
nonstationary.

If the variables share a common stochastic trend, we may overcome 
the spurious regression problem. In this case, cointegration analysis may be 
used to uncover the long-term relationship and the short-term dynamics. 
Two or more nonstationary variables are cointegrated if there exists a linear 
combination of the variables that is stationary. This suggests cointegrated 
variables share long-run links. They may deviate in the short run but are 
likely to get back to some sort of equilibrium in the long run. It is impor-
tant to note that, here, the term “equilibrium” is not the same as used in 
economics. To economists, equilibrium means the desired amount equals 
the actual amount and there is no inherent tendency to change. In contrast, 

5 Similarly L2Xt = L(LXt) = Xt−2 and more generally, LpXt = Xt−p, for p = 0,1,2,  .  .  .  



196 The Basics of financial economeTrics

 equilibrium in cointegration analysis means that if variables are apart, they 
show a greater likelihood to move closer together than further apart. 

More formally, consider two time series xt and yt. Assume that both 
series are nonstationary and integrated order one. (Integrated order one 
means that if we difference the variable one time, the resultant series is sta-
tionary.) These series are cointegrated if 

zt = xt − ayt

zt is stationary for some value of a. 
In the multivariate case, the definition is similar but vector notation 

must be used. Let A and Y be vectors (a1, a2,  .  .  .  , an) and (y1t, y2t,  .  .  .  , 
ynt)′. Then the variables in Y are cointegrated if each of the y1t,  .  .  .  , ynt are 
nonstationary and, Z = AY, Z is stationary. A represents a cointegrating 
vector. 

Finding cointegration between two variables represents a special 
case. We should not expect most nonstationary variables to be cointe-
grated. If two variables lack cointegration, then they do not share a long-
run relationship or a common stochastic trend because they can move 
arbitrarily far away from each other. In terms of the present value model 
of stock prices, suppose stock prices and dividends lack cointegration, 
then stock prices could rise arbitrarily far above the level of their divi-
dends. Using a U.S. stock index and dividend data from 1887 through 
2003, Gurkaynak illustrated that whenever stock prices are not cointe-
grated with dividends, stock prices rose far above the level justified by 
the level of dividends.6 This would be consistent with a stock market 
bubble. Even if it is not a bubble, it is still inconsistent with the efficient 
market theory. 

In terms of stock market linkages, if the stock price indices of  different 
countries lack cointegration, then stock prices can wander arbitrarily far 
apart from each other. This possibility lends support to proponents who argue 
that investors would benefit from international portfolio  diversification.

teSting For Cointegration 

There are two popular methods of testing for cointegration: the Engle-
Granger tests and the Johansen-Juselius tests. We illustrate both in the 
remainder of this chapter.

6 Refet Gurkaynak, “Econometric Tests of Asset Price Bubbles: Taking Stock,” 
 Journal of Economic Surveys 22 (2008): 166−186.
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engle-granger Cointegration tests

The Engle-Granger conintegration test, developed by Engle and Granger,7 

involves the following four-step process:

Step 1. Determine whether the time series variables under investigation 
are stationary. We may consider both informal and formal meth-
ods for investigating stationarity of a time series variable. Informal 
methods entail an examination of a graph of the variable over time 
and an examination of the autocorrelation function. The autocor-
relation function describes the autocorrelation of the series for vari-
ous lags. The correlation coefficient between xt and xt−i is called the 
lag i autocorrelation. For nonstationary variables, the lag 1 auto-
correlation coefficient should be very close to one and decay slowly 
as the lag length increases. Thus, examining the autocorrelation 
 function allows us to determine a variable’s stationarity. 

Unfortunately, the informal method has its limitations. For station-
ary series that are very close to unit root processes, the autocorrelation 
function may exhibit the slow-fading behavior as lag length increases. 
If more formal methods are desired, the Dickey-Fuller statistic, the 
Augmented Dickey-Fuller statistic,8 or the Phillips-Perron statistic9 

can be employed. These statistics test the hypothesis that the variables 
have a unit root, against the alternative that they do not. The Phillips-
Perron test makes weaker assumptions than the Dickey-Fuller and 
augmented Dickey-Fuller statistics and is generally considered more 
reliable. If it is determined that the variable is nonstationary and the 
differenced variable is stationary, proceed to Step 2. 

Step 2. Estimate the following regression:

 yt = c + dxt + zt  (10.2)

To make this concrete, let yt represent some U.S. stock market 
index, xt represents stock dividends on that stock market index, and 
zt the error term. Let c and d represent regression parameters. For 

7 Robert Engle and Clive Granger, “Cointegration and Error-Correction: Representa-
tion, Estimation, and Testing,” Econometrica 55 (1987): 251−276.
8 David Dickey and Wayne Fuller, “Distribution of the Estimates for Autoregressive 
Time Series with a Unit Root,” Journal of the American Statistical Association 74 
(1979): 427−431.
9 Peter Phillips and Pierre Perron, “Testing for a Unit Root in Time Series Regres-
sion,” Biometrica 75 (1988): 335−346.
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cointegration tests, the null hypothesis states that the variables lack 
cointegration and the alternative claims that they are cointegrated.

Step 3. To test for cointegration, test for the stationarity in zt. The most 
often used stationarity test is the Dickey-Fuller test. That is, the fol-
lowing autoregression of the error term should be considered:

 Δzt = p zt−1 + ut  (10.3)

where zt is the estimated residual from equation (10.2). The Dickey-
Fuller test focuses on the significance of the estimated p. If the esti-
mate of p is statistically negative, we conclude that the residuals, zt, 
are stationary and reject the hypothesis of no cointegration. 

The residuals of equation (10.3) should be checked to ensure the 
residuals are not autocorrelated. If they are, the augmented Dickey-
Fuller test should be employed. The augmented Dickey-Fuller test is 
analogous to the Dickey-Fuller test but includes additional lags of Δzt 
as shown in the following equation: 

 Δzt = p zt−1 + a1Δzt−1 +  .  .  .  +anΔzt−n + ut (10.4)

The augmented Dickey-Fuller test for stationarity, like the Dickey-
Fuller test, tests the hypothesis of p = 0 against the alternative 
hypothesis of p < 0 for equation (10.4).

Generally, the OLS-produced residuals tend to have as small a 
sample variance as possible, thereby making residuals look as sta-
tionary as possible. Thus, the standard t-statistic or augmented 
Dickey-Fuller test may reject the null hypothesis of nonstationarity 
too often. Hence, it is important to have correct statistics. Fortu-
nately, Engle and Yoo provide the correct statistics.10 Furthermore, 
if it is believed that the variable under investigation has a long-run 
growth component, it is appropriate to test the series for stationar-
ity around a deterministic time trend for both the Dickey-Fuller and 
augmented Dickey-Fuller tests. This is accomplished by adding a 
time trend to equations (10.3) or (10.4). 

Step 4. The final step for the Engle-Granger conintegration test involves 
estimating the error-correction model. Engle and Granger showed 
that if two variables are cointegrated, then these variables can be 

10 Robert Engle and Byung Yoo, “Forecasting and Testing in Co-integrated Systems,” 
Journal of Econometrics 35 (1987): 143−159.
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described in an error-correction format described in the following 
two equations: 
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Equation (10.5) tells us that the changes in yt depend on 

 ■ Its own past changes.
 ■ The past changes in xt.
 ■ The disequilibrium between xt−1 and yt−1,, (yt−1 − axt−1). 

The size of the error-correction term, d1 in equation (10.5), captures 
the speed of adjustment of xt and yt to the previous period’s disequi-
librium. Equation (10.6) has a corresponding interpretation for the 
error- correction term d2. 

The appropriate lag length is found by experimenting with dif-
ferent lag lengths. For each lag the Akaike information criterion 
(AIC) or the Bayesian (or Schwarz) information criterion (BIC) 
is calculated and the lag with the lowest value of the criteria is 
employed.11 

The value of (yt−1 – axt−1) is estimated using the residuals from 
the cointegrating equation (10.3), zt−1. This procedure is only legiti-
mate if the variables are cointegrated. The error-correction term, 
zt−1, will be stationary by definition if and only if the variables are 
cointegrated. The remaining terms in the equation (i.e., the lag dif-
ference of each variable) are also stationary because the levels were 
assumed nonstationary. This guarantees the stationarity of all the 
variables in equations (10.5) and (10.6) and justifies the use of the 
OLS estimation method. 

empirical illustration of the engle-granger procedure The dividend growth 
model of stock price valuation asserts that the fundamental value of a stock 

11 For a summary of these criteria, see Appendix E.
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is determined by the present value (discounted value) of its expected future 
dividend stream. This model may be represented as:

 P0 = ∑Di /(1+r) (10.7)

where P0 = the current stock price
 Di = a dividend in period i 
 r = the discount rate

If the discount rate exceeds the growth rate of dividends and the dis-
count rate remains constant over time, then one can test for cointegration 
between stock prices and dividends. In brief, if the present value relation-
ship as given by equation (10.7) holds, one does not expect stock prices and 
dividends to meander arbitrarily far from each other.

Before starting any analysis, it is useful to examine the plot of the underlying 
time series variables. Figure 10.1 presents a plot of stock prices and dividends 
for the years 1962 through 2006. Stock prices are represented by the S&P 500 
index and the dividends represent the dividend received by the owner of $1,000 
worth of the S&P 500 index. The plot shows that the variables move together 
until the early 1980s. As a result of this visual analysis, we will entertain the 
possibility that the variables were cointegrated until the 1980s. After that, the 
common stochastic trend may have dissipated. We will first test for cointegra-
tion in the 1962–1982 period and then for the whole 1962–2006 period. 

Figure 10.1 S&P 500 Index and Dividends 1962–2006
Note: Dividends are multiplied by 10 for a scale effect.
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In accordance with Step 1 of the four-step Engle-Granger conintegra-
tion test, it is necessary to establish the nonstationarity of the two vari-
ables—stock prices as proxied by the S&P 500 and dividends. To identify 
nonstationarity, we will use both formal and informal methods. The first 
informal test consists of analyzing the plot of the series shown in Figure 
10.1. Neither series appears to exhibit mean reversion. The dividend series 
wanders less from its mean than the stock price series. Nevertheless, neither 
series appears stationary. 

The second informal method involves examining the autocorrelation 
function. Table 10.1 shows the autocorrelation function for 36 lags of the 
S&P 500 index and the dividends for the 1962–2006 period using monthly 
data. The autocorrelations for the early lags are quite close to 1. Furthermore, 
the autocorrelation function exhibits a slow decay at higher lags. This provides 
sufficient evidence to conclude that stock prices and dividends are nonstation-
ary. When we inspect the autocorrelation function of their first differences 
(not shown in Table 10.1), the autocorrelation of the first lag is not close to 
one. A fair conclusion is that the series are stationary in the first differences. 

table 10.1 Autocorrelation Functions of the S&P 500 Index and Dividends 

Lag Autocorrelation 1 2 3 4 5 6 7 8

S&P 500 Index 0.993 0.986 0.979 0.973 0.967 0.961 0.954 0.948

Dividends 0.991 0.983 0.974 0.966 0.958 0.979 0.941 0.933

Lag Autocorrelation 9 10 11 12 13 14 15 16

S&P 500 Index 0.940 0.933 0.926 0.918 0.911 0.903 0.896 0.889

Dividends 0.925 0.916 0.908 0.900 0.891 0.883 0.876 0.868

Lag Autocorrelation 17 18 19 20 21 22 23 24

S&P 500 Index 0.881 0.874 0.866 0.858 0.851 0.843 0.835 0.827

Dividends 0.860 0.852 0.845 0.837 0.830 0.822 0.815 0.808

Lag Autocorrelation 25 26 27 28 29 30 31 32

S&P 500 Index 0.819 0.811 0.804 0.796 0.789 0.782 0.775 0.768

Dividends 0.801 0.794 0.788 0.781 0.775 0.769 0.763 0.758

Lag Autocorrelation 33 34 35 36

S&P 500 Index 0.761 0.754 0.748 0.741

Dividends 0.753 0.747 0.743 0.738
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In Table 10.2, we present the results of formal tests of nonstationarity. 
The lag length for the augmented Dickey-Fuller test was determined by the 
Bayesian criterion. The null hypothesis is that the S&P 500 stock index (div-
idends) contains a unit root; the alternative is that it does not. For both the 
augmented Dickey-Fuller and the Phillips-Perron tests, the results indicate 
that the S&P 500 index is nonstationary and the changes in that index are 
stationary. The results for the dividends are mixed. The augmented Dickey-
Fuller statistic supports the presence of a unit root in dividends, while the 
Phillips-Perron statistic does not. Since both the autocorrelation function 
and the augmented Dickey-Fuller statistic conclude there is a unit root pro-
cess, we shall presume that the dividend series is nonstationary. In sum, our 
analysis suggests that the S&P 500 index and dividend series each contain a 
stochastic trend in the levels, but not in their first differences.

In Step 2 of the Engle-Granger conintegration test, whether the S&P 
500 index and dividends are cointegrated is tested. This is accomplished 
by estimating the long-run equilibrium relation by regressing the loga-
rithm (log) of the S&P 500 index on the log of the dividends. We use the 
logarithms of both variables to help smooth the series. The results using 
monthly data are reported in Table 10.3 for both the 1962–1982 and 
1962–2006 periods. We pay little attention to the high t-statistic on the 

table 10.2 Stationarity Test for the S&P 500 Index and Dividends, 1962–2006 

Variable
Augumented 
Dickey-Fuller Phillips-Perron

Critical Value of Test 
Statistics at 1%, 5%, 

10% Significance

S&P 500 1.22 1.12 −3.44 (1%)

Δ S&P 500 −19.07 −19.35 −2.87 (5%)

Dividends 1.52 4.64 −2.56 (10%)

Δ Dividends −2.13 −31.68

Notes
 ■ Null hypothesis: Variable is nonstationary.
 ■ The lag length for the ADF test was determined by the Bayesian criterion. For the 
S&P 500 index and its first difference, the lag length was 1. For the dividends and 
its first difference, the lag lengths were 12 and 11, respectively.

table 10.3 Cointegration Regression: S&P 500 and Dividends Log S&P 
500 = a + b log dividends + zt 

Period Constant Coefficient of Dividends t-Stat Dividends

1962–1982 4.035 0.404 17.85

1962–2006 2.871 1.336 68.54
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table 10.4 Augmented Dickey-Fuller Tests of Residuals for Cointegration 
Panel A. 1962−1982 n = 248

Variable Coefficient t-Stat p-Value

zt −0.063 −3.23 0.001

Δzt−1 0.272 4.32 0.000

Δzt−2 −0.030 −0.46 0.642

Δzt−3 0.090 1.40 0.162

t-statistic of p = −3.23; critical values at 5% and 10% are −3.36 and −3.06 respectively.

Panel B. 1962−2006 n = 536

Variable Coefficient t-Stat p-Value

zt −0.008 −1.81 0.070

Δzt−1 0.265 6.13 0.000

Δzt−2 −0.048 −1.08 0.280

Δzt−3 0.031 0.71 0.477

t-statistic of p = −1.81; critical values at 5% and 10% are 3.35 and 3.05, respectively.

The critical values of the augumented Dickey-Fuller (ADF) statistic are from Engle 
and Yoo (1987). The cointegration equation errors used to perform the ADF test are 
based on the following regression:

Δzt = −pzt−1 + aΔzt−1 + bΔzt−2 + cΔzt−3 + et

where Δzt is the change in the error term from the cointegration regression and et is 
a random error. If p is positive and significantly different from zero, the z residuals 
from the equilibrium equation are stationary so we may accept the null hypothesis 
of cointegration. In both equations the error terms are white noise, so no further 
stationarity tests were performed.

dividends variable because the t-test is not appropriate unless the variables 
are cointegrated. This is, of course, the issue that we are investigating. 

Once we estimate the regression in Step 2, the next step involves testing 
the residuals of the regression, zt, for stationarity from equation (10.3). By 
definition, the residuals have a zero mean and lack a time trend. This sim-
plifies the test for stationarity. This is accomplished by estimating equation 
(10.4). The null hypothesis is that the variables lack cointegration. If we con-
clude that p in equation (10.4) is negative and statistically significant, then 
we reject the null hypothesis and conclude that the evidence is consistent 
with the presence of cointegration between the stock index and dividends. 
The appropriate lag lengths may be determined by the Akaike information 
criterion or theoretical and practical considerations. We decided to use a 
lag length of three periods representing one quarter. The results are pre-
sented in Table 10.4. For the 1962–1982 period, the null hypothesis of no 
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cointegration is rejected at the 10% level of statistical significance. For the 
entire period (1962–2006), the null hypothesis (p = 0) of no cointegration 
cannot be rejected. Apparently, the relationship between stock prices and 
dividends unraveled in the 1980s and the 1990s. This evidence is consistent 
with the existence of an Internet stock bubble in the 1990s.

Having established that the S&P 500 index and dividends are cointe-
grated from 1962–1982, the interaction between stock prices and dividends 
in the final step (Step 4) of the Engle-Granger cointegration test is exam-
ined by estimating the error-correction model given by equations (10.5) 
and (10.6). It is useful at this point to review our interpretation of equa-
tions (10.5) and (10.6). Equation (10.5) claims that changes in the S&P 500 
index depend upon past changes in the S&P 500 index and past changes in 
dividends and the extent of disequilibrium between the S&P 500 index and 
dividends. Equation (10.6) has a similar statistical interpretation. However, 
from a theoretical point of view, equation (10.6) is meaningless. Financial 
theory does not claim that changes in dividends are impacted either by past 
changes in stock prices or the extent of the disequilibrium between stock 
prices and dividends. As such, equation (10.6) degenerates into an autore-
gressive model of dividends.

We estimated the error-correction equations using three lags. The error 
term, zt−1, used in these error-correction regressions was obtained from OLS 
estimation of the cointegration equation reported in Table 10.3. Estimates of 
the error-correction equations are reported in Table 10.5. By construction, 
the error-correction term represents the degree to which the stock prices 

table 10.5 Error Correction Model: S&P 500 Index and Dividends, 1962−1982 

Equation (10.5) Equation (10.6)

Coefficient t-Stat Coefficient t-Stat

b01 −0.009 −2.42 b20 0.001 2.91

b11 0.251 4.00 b21 0.002 0.63

b12 −0.043 −0.66 b22 −0.003 −0.88

b13 0.081 1.27 b23 0.004 1.07

c11 0.130 0.11 c21 0.939 14.60

c12 −0.737 −0.46 c22 −0.005 −0.06

c13 −0.78 −0.65 c23 −0.006 0.87

d1 −0.07 −3.64 d2 0.000 0.30

The change in the S&P 500 index is denoted as ΔYt and the change in dividends is 
denoted as ΔXt.
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and dividends deviate from long-run equilibrium. The  error- correction 
term is included in both equations to guarantee that the variables do not 
drift too far apart. Engle and Granger showed that, if the variables are 
cointegrated, the coefficient on the error-correction term, (yt−1 − axt−1),  
in at least one of the equations must be nonzero.12 The t-value of the error- 
correction term in equation (10.5) is statistically different from zero. The 
coefficient of −0.07 is referred to as the speed of adjustment coefficient. The 
estimated value for the coefficient suggests that 7% of the previous month’s 
disequilibrium between the stock index and dividends is eliminated in the 
current month. In general, the higher the speed of adjustment coefficient, 
the faster the long-run equilibrium is restored. Since the speed of adjustment 
coefficient for the dividend equation is statistically indistinguishable from 
zero, all of the adjustment falls on the stock price. 

An interesting observation from Table 10.5 relates to the lag struc-
ture of equation (10.5). The first lag on past stock price changes is statisti-
cally significant. This means that the change in the stock index this month 
depends upon the change during the last month. This is inconsistent with the 
efficient market hypothesis. On the other hand, the change in dividend lags 
is not statistically different from zero. The efficient market theory suggests, 
and the estimated equation confirms, that past changes in dividends do not 
affect the current changes in stock prices. 

Johansen-Juselius Cointegration test

The Engle-Granger cointegration test has some problems. These problems 
are magnified in a multivariate (three or more variables) context. In  principle, 
when the cointegrating equation is estimated (even in a two-variable prob-
lem), any variable may be utilized as the dependent variable. In illustration 
of the application of the Engle-Granger cointegration test, this would entail 
placing dividends on the left-hand side of equation (10.2) and the S&P 500 
index on the right-hand side. As the sample size approaches infinity, Engle 
and Granger showed that the cointegration tests produce the same results 
irrespective of what variable is used as the dependent variable. The question 
is then: How large a sample is large enough? 

A second problem is that the errors we use to test for cointegration 
are only estimates and the not the true errors. Thus any mistakes made in 
estimating the error term, zt , in equation (10.2) are carried forward into the 
regression given by equation (10.3). Finally, the Engle-Granger cointegra-
tion test is unable to detect multiple cointegrating relationships.

12 Engle and Granger, “Cointegration and Error-Correction.”
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The Johansen-Juselius cointegration test13 avoids these problems. Con-
sider the following multivariate model: 

 yt = Ayt−1 + ut (10.8)

where yt = an n × 1 vector (y1t, y2t,  .  .  .  , y nt) of variables
 ut = an n-dimensional error term at t
 A = an n × n matrix of coefficients

If the variables display a time trend, we may wish to add the matrix 
A0 to equation (10.8). This matrix would reflect a deterministic time trend. 
(The same applies to equation (10.9) presented below.) It does not change 
the nature of our analysis.

The model (without the deterministic time trend) can then be repre-
sented as:

 Δyt = B yt−1 + ut (10.9)

where B = I − A, and I is the identity matrix of dimension n variables

The cointegration of the system is determined by the rank of B matrix. The 
highest rank of B that can be obtained is n, the number of variables under 
consideration. If B is zero, that means that there are no linear combinations 
of yt that are stationary and so there are no cointegrating vectors. 

If the rank of B is n, then each yit is an autoregressive process. This 
means each yit is stationary and the relationship can be tested using a vector 
autoregression model, which we cover in Chapter 9. For any rank between 
1 and n − 1, the system is cointegrated and the rank of the matrix is the 
number of cointegrating vectors.

The Johansen-Juselius cointegration test employs two statistics to test 
for cointegration:

 1. λ trace test statistic
 2. maximum eigenvalue test

The λ trace test statistic verifies the null hypothesis that there are no 
 cointegration relations. The alternative hypothesis is that there is at least one 

13 Soren Johansen and Katarina Juselius, “Maximum Likelihood Estimation and 
Inference on Cointegration with Application to the Demand for Money,” Oxford 
Bulletin of Economics and Statistics 52 (1990): 169–209.
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 cointegration vector. The maximum eigenvalue test, so-named because it is 
based on the largest eigenvalue, tests the null hypothesis that there are i cointe-
grating vectors against the alternative hypothesis of i + 1 cointegrating vectors.

Johansen and Juselius derive critical values for both test statistics. The criti-
cal values are different if there is a deterministic time trend A0 included. Enders 
provides tables for both critical statistics with and without the trend terms.14 
Software programs often provide critical values and the relevant p-values.

empirical illustration of Johansen-Juselius procedure Many financial advisors 
and portfolio managers argue that investors would be able to improve their 
risk/return profile by investing internationally rather than restricting their 
holding to domestic stocks (i.e., following a policy of international diversi-
fication). If stock market returns in different countries are not highly cor-
related, then investors could obtain risk reduction without significant loss 
of return by investing in different  countries. But with the advent of global-
ization and the simultaneous integration of capital markets throughout the 
world, the risk-diversifying benefits of international investing have been 
challenged. Here, we illustrate how cointegration can shed light on this 
issue and apply the Johansen-Juselius cointegration test.

The idea of a common currency for the European countries is to reduce 
transactions costs and more closely link the economies. We shall use cointe-
gration to examine whether the stock markets of France, Germany, and the 
Netherlands are linked following the introduction of the euro in 1999. We 
use monthly data for the period 1999–2006. 

Although testing for cointegration requires that the researcher test 
for stationarity in the series, Johansen states that testing for stationarity is 
redundant since stationarity is revealed through a cointegration vector.15 
However, it is important to establish the appropriate lag length for equation 
(10.9). This is typically done by estimating a traditional vector autoregres-
sive (VAR) model (see Chapter 9) and applying a multivariate version of 
the Akaike information criterion or Bayesian information criterion. For our 
model, we use one lag, and thus the model takes the form:

 yt = A0 + A1yt−1 + ut  (10.10)

where yt is the n × 3 vector (y1t, y2t,  .  .  .  , y3t)′ of the logs of the stock market 
index for France, Germany, and the Netherlands (i.e., element y1t is the log 

14 Enders, “ARIMA and Cointegration Tests of Purchasing Power Parity.”
15 Soren Johansen, Likelihood-Based Inference in Cointegrated Vector Autoregres-
sive Models (New York: Oxford University Press, 1995).
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of the French stock index at time t; y2t is the log of the German stock index 
at time t; and y3t is the log of the Netherlands stock index at time t). We use 
logs of the stock market indices to smooth the series. A0 and A1 are n × n 
matrices of parameters and ut is the n × n error matrix.

The next step is to estimate the model. This means fitting equation 
(10.9). We incorporated a linear time trend, hence the inclusion of the 
matrix A0. Since there are restrictions across the equations, the procedure 
uses a maximum likelihood estimation procedure and not OLS. (We explain 
the maximum likelihood estimation method in Chapter 13.) The focus of 
this estimation is not on the parameters of the A matrices. Few software 
programs present these estimates, rather the emphasis is on the matrix B 
which is estimated to determine the number of cointegrating vectors. 

The estimates are presented in Table 10.6. We want to establish whether 
i indices are cointegrated. Thus, we test the null hypothesis that the stock 
indices lack cointegration. To accomplish this, the λ trace test statistic, 
denoted by λtrace(0), is calculated (0 is included to indicate that there are 
zero cointegrating vectors). Table 10.6. also provides this statistic. To insure 
comprehension of this important statistic, we detail its calculation. 

We have 96 usable observations.

λtrace(0) = –T[ln(1− λi
*) + ln(1− λ2

*) + ln(1− λ3
*)]

= –96[ln(1 − 0.227) + ln(1 − 0.057) + ln(1 − 0.028)] = 33.05

As reported in Table 10.6, this exceeds the critical value for 5% significance 
of 29.8016 and has a p-value of 0.02. Thus, the null hypothesis at a 5% level 
of significance is rejected with the evidence consistent with at least one coin-
tegrating vector. Next we can examine λtrace (1) to test the null hypothesis of 
at most one cointegrating vector against the alternative of two cointegrating 
vectors. Table 10.6 shows that λ1 at 8.33 is less than the critical value of 

table 10.6 Cointegration Test 

Hypothesized No.
of Cointegrating
Vectors

Characteristic
Roots

Trace
Statistics

λtrace

5%
Critical
Value p-Value

Max-
Statistic

λmax

5%
Critical
Value p-Value

None 0.227 33.05 29.80 0.02 24.72 21.13 0.01

At most 1 0.057 8.32 15.49 0.43 5.61 14.26 0.66

At most 2 0.028 2.72 3.84 0.10 2.72 3.84 0.10

16 The critical values for this cointegration method are obtained from Johansen, 
 Likelihood-Based Inference in Cointegrated Vector Autoregressive Models.
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15.49 necessary to establish statistical significance at the 5% level. We do 
not reject the null hypothesis. We therefore conclude that there is at least 
one cointegrating vector. There is no need to evaluate λtrace (2).

The maximum eigenvalue statistic, denoted λmax, reinforces the con-
clusion from the λ trace test statistic. We can use λmax(0, 1) to test the null 
hypothesis that the variables lack (0) cointegration against the alternative 
that they are cointegrated with one (1) cointegrating vector. Table 10.6 pres-
ents the value of λmax(0, 1). Again, for pedagogic reasons, we outline the 
calculation of λmax(0, 1): 

λmax (0,1) = (−T ln(1 − λi
*)

= −96 ln (1 − 0.227) = 24.72 

The computed value of 24.72 exceeds the critical value of 21.13 at the 5% 
significance level and has a p-value of 0.01. Once again, this leads to rejec-
tion of the null hypothesis that the stock indices lack cointegration. The 
conclusion is that there exists at least one cointegrating vector. 

The next step requires a presentation of the cointegrating equation and 
an analysis of the error-correction model. Table 10.7 presents both. The 
cointegrating equation is a multivariate representation of zt−1 in the Engle-
Granger cointegration test. This is presented in Panel A of Table 10.7. The 
error-correction model takes the following representation:

 ∆ = + ∆ + ∆ + − +− − − −y b b y c x d y ax et i t i j t j t t10 1 1 1 1 1 1( ) tt
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The notation of equation (10.11) differs somewhat from the notation of 
equations (10.5) and (10.6). The notation used in equation (10.11) reflects 
the matrix notation adopted for the Johansen-Juselius cointegration test in 
equation (10.9). Nevertheless, for expositional convenience, we did not use 
the matrix notation for the error-correction term. The notation Δ means the 
first difference of the variable; thus Δy1t−1 means the change in the log of the 
French stock index in period t − 1, (y1t−1 − y1t−2). Equation (10.11) claims 
that changes in the log of the French stock index are due to changes in the 
French stock index during the last two periods; changes in the German stock 
index during the last two periods; changes in the Netherlands stock index 
during the last two periods; and finally deviations of the French stock index 
from its stochastic trend with Germany and the Netherlands.17 An analo-
gous equation could be written for both Germany and the Netherlands.

17 Lag length of two periods is determined on the basis of information criteria such as 
the Bayesian information criterion and it is provided in statistical software programs.
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Panel B of Table 10.7 presents the error-correction model estimates 
for each of the three countries. The error-correction term in each equation 
reflects the deviation from the long-run stochastic trend of that stock index 
in the last period. It should be noted that in contrast to the Engle-Granger 
cointegration test, the Johansen-Juselius cointegration test estimates the 
long-run and short-run dynamics in one step. The speed of adjustment 
coefficient provides insight into the short-run dynamics. This coefficient is 
insignificant (at the 5% level) for Germany. This means that stock prices in 
Germany do not change in response to deviations from their stochastic trend 
with France and the Netherlands. Because the variables are cointegrated, 
we are guaranteed that at least one speed of adjustment coefficient will 
be significant. In fact, the speed of adjustment coefficients of both France 

table 10.7 Cointegration Equation and Error Correction Equations, 1999−2007 

Panel A. Cointegrating Equation

France = 4.82 + 2.13 Germany − 1.71 Netherlands
 [8.41] [5.25]

Panel B. Error-Correction Equations

Country A(France) A(Germany) A(Netherlands)

Zt−1 −0.151477
[−2.21]

−0.057454
[−0.66]

−0.179129
[−2.52]

Δ(France(−1)) 0.087360
[0.27]

0.245750
[0.60]

0.225357
[0.67]

Δ(France(−2)) −0.200773
[−0.68]

−0.218331
[−0.58]

−0.324250
[−1.06]

Δ(Germany(−1)) −0.189419
[−0.82]

−0.024306
[−0.08]

−0.094891
[−0.39]

Δ(Germany(−2)) −0.155386
[−0.67]

−0.109070
[−0.37]

−0.127301
[−0.53]

Δ(Netherlands(−1)) 0.079881
[0.34]

−0.189775
[−0.64]

−0.188295
[−0.77]

Δ(Netherlands(−2)) 0.439569
[1.89]

0.446368
[1.52]

0.483929
[2.00]

C 0.005967
[1.02]

0.002575
[0.35]

0.002688
[0.44]

France(−1) represents the log return of the French stock index from the previous 
month. Germany(−1) and Netherlands(−1) have a similar interpretation. Numbers 
in brackets represent the t-statistic.
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and the Netherlands attain statistical significance (at the 5% level) and are 
about the same size. This shows that when the economies of France and 
the Netherlands deviate from the common stochastic trend, they adjust. In 
France about 15% and in Netherlands about 17% of the last period devia-
tion is corrected during this period.

Key pointS

 ■ Many of the variables of interest to finance professionals are non-
stationary. 

 ■ The relationships among nonstationary variables can be analyzed if 
they share a common stochastic trend. A way of capturing this common 
stochastic trend is the application of cointegration. 

 ■ Cointegration analysis can reveal interesting long-run relationships 
between variables.

 ■ When the variables have stochastic trends, there is a spurious regression 
problem and, as a result, the ordinary least squares estimation method 
may provide misleading results.

 ■ Cointegration analysis has been used in testing market price efficiency 
and international stock market linkages.

 ■ It is possible that cointegrating variables may deviate in the short run 
from their relationship, but the error-correction model shows how these 
variables adjust to the long-run equilibrium. 

 ■ There are two important methods of testing for cointegration: the 
Engle-Granger cointegration test and the Johansen-Juselius test.

 ■ The most often used method to test cointegration between two vari-
ables is the Engle-Granger cointegration test.

 ■ The Johansen-Juselius test is employed to test cointegration among 
multiple variables.
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A fter reading this chapter you will understand:

 ■ The concepts of homoscedasticity and heteroscedasticity.
 ■ The concept of conditional heteroscedasticity.
 ■ The empirical basis for conditional heteroscedasticity.
 ■ Autoregressive modeling of conditional heteroscedasticity.
 ■ Autoregressive conditional heteroscedasticity (ARCH) models.
 ■ Extensions of ARCH models: generalized autoregressive conditional 
heteroscedasticity (GARCH) models and multivariate ARCH models.

 ■ How to apply estimation software for ARCH models.

In Chapter 9, we described a time series tool, the autoregressive mov-
ing average (ARMA) model, that focuses on estimating and forecasting the 
mean. Now we turn to financial econometric tools that are used to estimate 
and forecast an important measure in finance: the variance of a financial 
time series. The variance is an important measure used in the quantification 
of risk for a portfolio or a trading position, strategies for controlling the risk 
of a portfolio or a trading position (i.e., determination of the hedge ratio), 
and as an input in an option pricing model.

Among the financial econometric tools used for forecasting the con-
ditional variance, the most widely used are the autoregressive conditional 
heteroscedasticity (ARCH) model and the generalized autoregressive condi-
tional heteroscedasticity (GARCH) model.1 These tools are described in this 
chapter along with a brief description of variants of these models. Estima-
tion of the forecasted correlation between major asset classes or any two 
financial assets in the same asset class is calculated based on the forecasted 

1 Other tools include stochastic volatility models and Markov switching models.

chApter 11
Autoregressive heteroscedasticity 

Model and Its Variants
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variance of each one and their covariances. Thus a time series tool for esti-
mating conditional covariances is needed in portfolio construction. Fore-
casts of conditional covariances can be done using multivariate ARCH and 
multivariate GARCH models which we very briefly describe at the end of 
this chapter. 

eStIMAtING AND FOrecAStING VOLAtILItY 

The simplest approach for measuring historical volatility involves using a 
sample of prices or returns observed over a recent, short time period to cal-
culate the variance and standard deviation. Variants of historical volatility 
depend on how much weight is given to each observation. Assigning each 
sample observation equal weight means that the most recent observations 
are given the same influence as the observations at the beginning of the 
time period. This approach is referred to as the equally weighted average 
approach. The drawback of this approach is that more recent observations 
may contain more information regarding future volatility than more distant 
observations. To overcome this drawback, the exponentially weighted mov-
ing average (EWMA) approach can be used. This approach assigns more 
weight to more recent observations. By assigning more weight to recent 
observations, extreme observations that occurred in the past are given less 
importance in the calculation of the variance. This approach involves the 
selection of a process for weighting observations so as to give more weight 
to recent observations and less weight to the more distant observations. An 
exponentially weighted scheme is used for this purpose and hence the use 
of the term in describing this approach. The user must specify the weight-
ing scheme (i.e., how much weight should be assigned to recent and distant 
observations).2

The drawbacks of the two approaches just described are that they are 
historical volatility or realized volatility measures and therefore not neces-
sarily a measure of expected future volatility. The use of a “realized” volatil-
ity measure for forecasting future volatility is based on the assumption that 
volatility will remain constant (unchanged) in the future from what it was 
during the sample time period. In addition, because it is a sample estimate, 
it is subject to sampling error. This means that historical volatility depends 
on the sample time period used. 

2 For a detailed explanation of how to apply estimate and forecast volatility using 
the equally weighted average and EWMA approaches, see Carol Alexander, “Mov-
ing Average Models for Volatility and Correlation, and Covariance Matrices,” in 
Handbook of Finance, ed. Frank J. Fabozzi, vol. 3 (Hoboken, NJ: John Wiley & 
Sons, 2008): 711–724.
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Although the EMWA approach for forecasting future volatility is supe-
rior to the equally weighted average, there is no model that provides a 
structure for the expected behavior of volatility. In looking for this type of 
structure for the variance in the case of the returns on financial assets, prac-
titioners can be guided by two stylized facts: (1) volatility tends to be time 
varying and (2) volatility exhibits clustering. By time varying volatility, it is 
meant that there are turbulent periods (i.e., periods of high volatility) and 
tranquil periods (i.e., periods of low volatility). By volatility clustering it is 
meant that when volatility is low it tends to remain low and when volatility 
is high it tends to remain high. 

The two statistical models described in this chapter, ARCH and GARCH 
models (and its variants), are derived by imposing a structure on volatility 
that is consistent with observations about the volatility observed in a mar-
ket. For example, a GARCH model asserts that the best predictor for future 
volatility for the next period is made up of three components: (1) a long-run 
variance which is constant, (2) a forecast of volatility in the prior period, 
and (3) new information not available when the prior forecast of volatility 
was made. (The last component is obtained in the square of the prior fore-
casts residual.) The many extensions of the GARCH model involve adapt-
ing models to the structure of the behavior of the variance that has been 
observed. For example, in the stock market it is observed that bad news 
tends to be more important than good news in terms of its influence on 
price. This is referred to as the leverage effect. An extension of the GARCH 
model to incorporate this is the threshold GARCH model.

With this understanding of the objective of forecasting future volatility 
by providing a structure for the variance, we now move on to describing 
ARCH and GARCH models. 

Arch BehAVIOr

Autoregressive conditional heteroscedasticity models, referred to as ARCH 
models, are used in financial econometrics to represent time-varying conditional 
volatility. Considered a major achievement of modern econometrics, ARCH 
models were first described by Robert Engle, who was awarded the 2003 Nobel 
Memorial Prize in Economic Sciences for his work in time series econometrics.3 

3 Robert F. Engle, “Autoregressive Conditional Heteroscedasticity with Estimates of 
the Variance of United Kingdom Inflation,” Econometrica 50, no. 4 (1982): 987–
1007. Engle’s development of the ARCH model was only one of his major contribu-
tions to time series econometrics. The corecipient of the award that year was Clive 
Granger who jointly with Robert Engle formulated the cointegration technique that 
we describe in Chapter 10.
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The key idea behind ARCH models is the following: 

Unpredictable fluctuations of asset prices as well as of economic 
time series do not have a constant average magnitude. Periods when 
unpredictable fluctuations are large alternate with periods when 
they are small.

This type of behavior of unpredictable fluctuations is almost universal in 
financial and economic time series data. 

ARCH modeling can be applied to a large class of financial and eco-
nomic variables. In order to gain an understanding of ARCH modeling, 
we will consider asset returns. Let’s first assume that returns behave as a 
sequence of independent and identically distributed random variables, com-
monly referred to as an i.i.d. sequence. As explained in Chapter 2, an i.i.d. 
sequence is the simplest model of returns. It implies that returns are unpre-
dictable: the returns at any given time are random values independent from 
previous returns; they are extracted from the same distribution. 

Figure 11.1 represents the plot of simulated returns of a hypothetical asset. 
Returns are assumed to be an i.i.d. sequence formed with 1,000 independent 
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FIGure 11.1 Plot of Simulated Returns as a Sequence of 1,000 i.i.d. Variables
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random draws from a standard normal distribution. Recall that a standard 
normal distribution has a mean equal to zero and a variance equal to one. 
The assumption of normal distribution of returns is an approximation which 
simplifies simulations. (We will examine this assumption later in this book.) 
The main points are (1) the magnitude of returns in the plot varies randomly 
and (2) the plot does not seem to follow any regular pattern. In particular, the 
magnitude of simulated returns oscillates from a minimum of approximately 
–0.3 (–30%) to a maximum of +0.3 (+30%) but we cannot recognize any 
extended periods when the absolute value of returns is larger or smaller.

The simulated plot in Figure 11.1 is only an approximation of what 
is observed in real-world financial markets. In fact, stock returns are only 
approximately i.i.d. variables. Empirically, researchers have found that 
although the direction of the fluctuations (i.e., the sign of the returns) is 
almost unpredictable, it is possible to predict the absolute value of returns. 
In other words, given past returns up to a given time t, we cannot predict 
the sign of the next return at time t + 1 but we can predict if the next return 
will be large or small in absolute value. This is due to the fact that the aver-
age magnitude of returns, that is, their average absolute value, alternates 
between periods of large and small average magnitude. 

Consider, for example, Figure 11.2, which represents the returns of 
the stock of Oracle Corporation in the period from January 12, 2008, to 
December 30, 2011. That period includes 1,000 trading days. The plot in 
Figure 11.2 has more structure than the plot in Figure 11.1. By looking at 
the plot in Figure 11.2, we can recognize that extended periods where fluc-
tuations are small alternate with extended periods where fluctuations are 
large. The average magnitude of unpredictable fluctuations is called volatil-
ity. Volatility is a measure of risk. Therefore we can say that periods of high 
risk alternate with periods of lower risk.

Let’s review a few terms that we introduced in our discussion of regres-
sion analysis in Chapter 4 regarding the assumptions of the general linear 
model. A sequence of random variables is said to be homoscedastic if all vari-
ables have the same measure of dispersion, in particular the same variance. An 
i.i.d. sequence is homoscedastic because it is formed with random variables 
that are identical and therefore have the same variance or any other measure 
of dispersion. A sequence of random variables is said to be heteroscedastic if 
different variables have different variance or other measures of dispersion. 

Recall that a time series, that is a sequence of random variables, is called 
covariance-stationary or weakly stationary4 if (1) all first- and second-order 

4 A covariance stationary series is often called simply “stationary.” A time series is 
called “strictly stationary” if all finite distributions are time independent. A strictly 
stationary series is not necessarily weakly stationary because the finite distributions 
might fail to have first and second moments.
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moments exist and (2) they are constant and not time-dependent. That is, a 
covariance-stationary series has a constant mean, a constant variance, and 
constant autocovariances. 

A time series is said to be homoscedastic if it has a constant variance. A 
homoscedastic time series is not necessarily stationary because its mean can 
be time dependent. A heteroscedastic sequence of random variables is not a 
stationary series because the variance of the sequence is not constant in time 
(i.e., the variance depends on time). 

Now, consider a sequence such as that represented in Figure 11.2. The 
sequence exhibits periods in which returns are large in absolute value and 
periods in which returns are small. Given that the magnitude of returns in 
absolute value is persistent, we can predict, albeit in a probabilistic sense, 
when returns will be large in absolute value and when they will be small. 
That is, we can predict if returns will be large or small in absolute value 
conditionally on previous returns. We say that the sequence is conditionally 
heteroscedastic, because the variance of returns at any moment depends 
on previous returns. A sequence is conditionally heteroscedastic if we can 

FIGure 11.2 Plot of 1,000 Returns of the Oracle Corporation Stock in the Period 
from January 12, 2008, to December 30, 2011
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predict the value of future variance of returns in function of past returns 
(i.e., conditional on previous returns).

However, it has been demonstrated that—and this is a key point—
a sequence can be conditionally heteroscedastic though it is stationary. 
Though it might seem counterintuitive, a sequence might be stationary, with 
constant unconditional variance, and still its observed values (referred to as 
realizations) might exhibit periods when fluctuations are larger and periods 
when fluctuations are smaller. That is, the variance changes in time condi-
tionally to previous values of the series.

Modeling Arch Behavior

Robert Engle first introduced a model of conditional heteroscedasticity 
in 1982. Engle’s choice was to model conditional heteroscedasticity as an 
autoregressive process, hence the model is called autoregressive conditional 
heteroscedasticity. 

To explain how to model ARCH behavior, we will use asset returns 
(although the modeling can be applied to any financial variable), denoting 
the return at time t by Rt. Assume that the behavior of asset returns Rt is 
described by the following process:

 Rt t t= σ ε  
(11.1)

where σt is the standard deviation of the return at time t and εt is a sequence 
of independent normal variables with mean zero and variance one. In equa-
tion (11.1) we assume that returns have mean zero or, realistically, that a 
constant mean has been subtracted from returns.

The simplest ARCH model requires that the following relationship 
holds: 

 σt tc a R2
1 1

2= + −  (11.2)

where σt
2  is the variance of the return at time t and c and a1 are constants 

to be determined via estimation. In plain English, this model states that the 
variance of an asset’s return at any time t depends on a constant term plus 
the product of a constant term and the square of the previous time period’s 
return. Because this model involves the return for one prior time period (i.e., 
one-period lag), it is referred to as an ARCH(1) model where (1) denotes a 
one-period lag.

We need to impose conditions on the parameters c and a1 to ensure that 
the variance σt

2  is greater than 0 and that the returns Rt are stationary. A 
process that assumes only values greater than 0 is called a positive process. 
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If we require that c > 0 and that 0 < a1 < 1, then the return process Rt is 
stationary with variance equal to σ2

11= −( )c a/  and the variance process 
is positive.

To illustrate the above, Figure 11.3 provides a plot of simulated returns 
that follow an ARCH(1) process assuming that c = 0.1 and a1 = 0.1. Fig-
ure 11.4 shows that the volatility of the series changes in time and oscillates 
between low and high values. 

To improve the ability of ARCH models to fit realistic time series, we 
can use a larger number of lags. We use the notation ARCH(m) model to 
denote a model with m lags and describe this form of the model as follows:

 Rt t t= σ ε  (11.3)

 σt t m t mc a R a R2
1 1

2 2= + + +− −�  (11.4)

In equation (11.3) a random error, εt, is multipled by the time-varying vola-
tility σt; equation (11.4) prescribes that current volatility is a weighted aver-
age of past squared returns plus a constant. In order to ensure that σt

2  is 
nonnegative and the model stationary, we require that 

 1. The parameters a1,  .  .  .  , am be nonnegative
 2. a1 +…+ am < 1
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FIGure 11.3 Simulated ARCH(1) Return Process with Parameters c = 0.1 and a1 = 0.1
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Figures 11.5 and 11.6 provide the plot of a simulated series of returns 
that follow an ARCH(3) process; that is, a process that follows an ARCH 
model with three lags. The model’s coefficients assumed in the plots are 
c = 0.1, a1 = 0.6, a2 = 0.2, and a3 = 0.1. Notice that the assumed values for 
the parameters satisfy the two conditions for the model to be positive sta-
tionary: (1) the assumed value for the three parameters for three lags are all 
positive and (2) their sum is 0.9 which is less than one. It can be shown that 
Rt

2  is an autoregressive process.5 By establishing that Rt
2  is an autoregressive 

process, if returns follow an ARCH process, we prove that squared returns 

5 Let’s substitute σt t m t mc a R a R2
1 1

2 2= + + +− −�  into Rt t t= σ ε  and take conditional 
expectations. As lagged values of Rt are known and εt has zero mean and unit vari-
ance, we obtain:

E R R R c a R a R Et t t m t m t m t
2

1
2 2

1 1
2 2 2

− − − −( ) = + + +( )� � ε(( ) = + + +− −c a R a Rt m t m1 1
2 2�

 This relationship shows that Rt
2 is an autoregressive process. The process Rt

2 repre-
sents squared returns and therefore must be positive. To ensure that Rt

2 be positive, 
we require that c a i mi> ≥ =0 0 1, , , ,… . It can be demonstrated that this condition 
guarantees stationarity. Taking expectations, we see that the unconditional variance is: 

c ai/ 1−( )∑
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FIGure 11.5 Simulated ARCH(3) Return Process with Parameters c = 0.1, a1 = 0.6, 
a2 = 0.2, and a3 = 0.1

FIGure 11.6 Plot of Volatility Relative to Figure 11.5

0 200 400 600 800 1,000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Time Steps

V
ol

at
ili

ty



Autoregressive Heteroscedasticity Model and Its Variants 223

are predictable and we can determine explicit formulas to make predictions. 
In particular, we can make predictions of volatility, which is a key measure 
of risk. 

Arch in the Mean Model

The ARCH in the mean model, denoted ARCH-M model, is a variant of the 
ARCH model suggested by the consideration that investors require higher 
returns to bear higher risk and, therefore, periods when the conditional 
variance is higher should be associated with higher returns.6 The ARCH-M 
model is written as follows:

 R d ut t t= +σ  (11.5)

 ut t t= σ ε  (11.6)

 σt t m t mc a u a u2
1 1

2 2= + + +− −�  (11.7)

Equation (11.5) states that returns at time t are the sum of two compo-
nents: d tσ , and ut. The first component d tσ  is proportional to volatility at 
time t while the second component ut has the same form of the ARCH(m) 
model. If we set d = 0 the ARCH in the mean model becomes the standard 
ARCH(m) model given by equations (11.3) and (11.4). 

Recall that standard ARCH models represent zero-mean returns; we 
assume that if returns have a constant mean, the mean has been subtracted. 
Because of the addition of the (always positive) term d tσ  in equation (11.5) 
in the ARCH-in-the-mean model the conditional mean of returns is not zero 
but is time varying. The conditional mean is bigger when volatility is high, 
smaller when volatility is low. 

GArch MODeL

Figures 11.5 and 11.6 show how adding lags allows one to reduce the fre-
quency of switching between low and high volatility. Of course, in a practi-
cal application, all constants need to be estimated. The need to estimate 
constants is the key weakness of models with many parameters: estimation 

6 Robert F. Engle, David V. Lilien, and Russell P. Robins, “Estimating Time Varying 
Risk Premia in the Term Structure: The ARCH-M Model,” Econometrica 55 (1987): 
391–407.
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is noisy and unreliable. To avoid too many lags, Tim Bollerslev introduced 
a variant of ARCH models called the generalized autoregressive conditional 
heteroscedasticity model or GARCH model.7 

In a GARCH model, volatility depends not only on the past values of 
the process as in ARCH models but also on the past values of volatility. The 
GARCH(p, q) model, where p is the number of lags or the past value of Rt

2  
and q the number of lags for the variance in the model, is described by the 
following pair of equations:

 R dt t t= +σ ε  (11.8)

 σ σ σt t p t p t q t qc a R a R b b2
1 1

2 2
1 1

2 2= + + + + + +− − − −� �  (11.9)

Conditions to ensure that σ is positive and that the process is stationary 
are the same as for ARCH models; that is 

 1. c > 0
 2. All parameters a1,  .  .  .  , ap, b1,  .  .  .  , bq must be nonnegative
 3. The sum of all parameters must be less than 1: 

a a b bp q1 1 1+ + + + + <� �

If these conditions are met, then the squared returns can be represented as 
an autoregressive process as follows:

 R c a b R a b R wt t m m t m t
2

1 1 1
2 2= + +( ) + + +( ) +− −�  (11.10)

To illustrate, let’s simulate a GARCH(1,1) process assuming that 
c = 0.1, a1 = 0.4, and b1= 0.4. Figure 11.7 shows 1,000 simulated returns 
obtained for this GARCH(1,1) process. Figure 11.8 represents the cor-
responding volatility. As can be seen, the conditional heteroscedasticity 
effect is quite strong. In fact, we can see from this figure that volatility 
periodically goes to a minimum of about 0.4 and then rises again to higher 
values. This periodic oscillation of the value of volatility is the essence of 
ARCH/GARCH models.

7 Tim Bollerslev, “Generalized Autoregressive Conditional Heteroscedasticity,” Jour-
nal of Econometrics 31 (1986): 307–327.
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FIGure 11.7 Simulated Returns Obtained with a GARCH(1,1) Process Assuming 
c = 0.1, a1 = 0.4, and b1 = 0.4
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FIGure 11.8 Plot of Volatility Relative to Figure 11.7
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WhAt DO Arch/GArch MODeLS repreSeNt?

Thus far we have described ARCH and GARCH models as models of returns 
or of financial time series. In these models, volatility coincides with the mag-
nitude of returns or of some other financial time series. This is because we 
assume that the series to be modeled is proportional to a zero-mean i.i.d. 
sequence as given by equation (11.5). 

However, in many applications this is not the case. In fact, ARCH/
GARCH models might describe the behavior of the errors of some more 
fundamental model of the conditional mean. In this case, volatility rep-
resents the magnitude of unpredictable residuals. In other words, we 
first model the conditional mean and then we model residuals as ARCH/
GARCH models. Note that because we are dealing with weakly stationary 
processes, both the unconditional mean and the unconditional volatility 
are constants.

For example, we might represent the returns of stocks with some fac-
tor model where returns are regressed over a number of predictors. In this 
case, forecasts of returns conditional to the predictors are obtained through 
the primary regressions over the factors; volatility is the magnitude of fluc-
tuations of the residuals of the factor model. The ARCH/GARCH model 
applies to the residuals from previous modeling of the conditional mean. 
The model would be written as follows:

 R f ut t t= + +α β  (11.11)

 u dt t t= +σ ε  (11.12)

 σ σ σt t p t p t q t qc a u a u b b2
1 1

2 2
1 1

2 2= + + + + + +− − − −� �  (11.13)

In this model, returns are determined by equation (11.11) in function 
of factors. A GARCH model then describes the residuals ut. That is, we first 
write a model of conditional mean as a regression of returns on a number 
of factors, given by the equation (11.11). The residuals of this model, which 
represent the unpredictable component, do not have a constant variance but 
are subject to GARCH modeling. 

uNIVArIAte eXteNSIONS OF GArch MODeLING

The principle of GARCH modeling consists of making residuals (or eco-
nomic variables) proportional to a volatility process that is modeled 
separately. Subsequent to the initial introduction of GARCH models, many 
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similar models have been proposed. Table 11.1 lists some of the most com-
mon variants of GARCH models and their general properties.

The first three models shown in Table 11.1 address the leverage 
effect—initially identified by Fischer Black—by which negative returns have 
a larger impact on volatility than positive returns.8 This asymmetric impact 
of returns on volatility has been subsequently confirmed in many studies.

These variants use various nonlinear specifications of the GARCH model. 
In the classical GARCH model, equation (11.9) shows that the squared 

8 Fischer Black,“Studies of Stock Price Volatility Changes,” in Proceedings of the 
1976 American Statistical Association, Business and Economical Statistics Section 
(1976), 177–181.

tABLe 11.1 Univariate Extensions of GARCH Models

Model About the Model

Normal GARCH 
(NGARCH)
Also called nonlinear 
GARCH

Introduced by Engle and Ng,a is a non linear 
asymmetric GARCH specification where negative 
and positive returns have different effects on future 
volatility. 

Exponential GARCH
(EGARCH)

Introduced by Nelson,b models the logarithm of the 
conditional variance. It addresses the same leverage 
effect as the NGARCH; that is, a negative return affects 
volatility more than a positive return.

GJR-GARCH/
Threshold GARCH
(TGARCH)

The GARCH model by Glosten, Jagannathan, and 
Runkle (and bearing their initials)c and by Zakoian,d 
models the asymmetries in the effects of positive and 
negative returns. 

Integrated GARCH
(IGARCH)

A specification of GARCH models in which conditional 
variance behaves like a random walk and in which 
shocks to the variance are therefore permanent.e

a Robert Engle and Victor K. Ng, “Measuring and Testing the Impact of News on 
Volatility,” Journal of Finance 48 (1993): 1749–78.
b Daniel B. Nelson, “Conditional Heteroscedasticity in Asset Returns: A New 
Approach,” Econometrica 59 (1991): 347–70.
c Lawrence R. Glosten, Ravi Jagannathan, and David E. Runkle, “On the Relation 
between the Expected Value and the Volatility of the Nominal Excess Return on 
Stocks,” Journal of Finance 48 (1993): 1779–1801.
d Jean-Michele Zakoian, “Threshold Heteroscedastic Models,” Journal of Economic 
Dynamics and Control 18 (1994): 931–55.
e Robert F. Engle and Tim Bollerslev, “Modeling the Persistence of Conditional Vari-
ances,” Econometric Reviews 5 (1986): 1–50.
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volatility at time t is a weighted average of past squared volatilities and past 
squared returns. Note that the square is a symmetric function while we have 
just remarked on asymmetric impact of returns on volatility. Therefore, the 
first three models in Table 11.1 replace the square with nonlinear asymmetric 
functions that give more weight to negative returns than to positive returns. 
Thus, returns at time t – 1 produce larger volatility at time t if they are nega-
tive than if they are positive even if their absolute value is the same.

In all models described thus far, volatility is mean reverting to a long-
term value. However, for some financial time series this property might not 
be applicable. In these cases, one might use the IGARCH model, which 
makes volatility shocks persistent. 

How different are volatility predictions in different GARCH models? 
To gain an understanding of the differences, let’s look at the predictions on 
Monday, December 17, 2012, for one-month average volatility and one-day 
return volatility for the return on the stock of Oracle Corporation, Coca 
Cola Corporations, and Caterpillar using the standard GARCH model, 
EGARCH model, and GJR-GARCH model. The estimated volatilities are 
shown in Table 11.2. The predictions for the three models reported in the 
table were obtained from the Web site of V-Lab at Stern School of Business 
of New York University.9 

9 We thank V-Lab for letting us show their predictions. The V-Lab site can be accessed 
at http://vlab.stern.nyu.edu/analysis/VOL.KO:US-R.EGARCH.

tABLe 11.2 Prediction of Monthly Volatility Using GARCH, EGARCH, and 
GJR-GARCH Models for Oracle Corporation, Coca Cola Corporations, 
and Caterpillar, Monday, December 17, 2012

Model 
GARCH

Model
EGARCH

Model
GJR-GARCH

ORACLE Corp
Average volatility (1 Month)
1-day forecast

19.56%
19.18%

18.49%
18.80%

20.60%
20.42%

Coca Cola Corp
Average volatility (1 Month)
1-day forecast

13.66%
14.87%

15.03%
14.04%

15.16%
14.05%

Caterpillar
Average volatility (1 Month)
1-day forecast

25.33%
23.89%

26.60%
24.23%

26.23%
24.62%

Predictions are from the site of V-Lab at Stern University The V-Lab site can be 
accessed at: http://vlab.stern.nyu.edu/analysis/VOL.KO:US-R.EGARCH

http://vlab.stern.nyu.edu/analysis/VOL.KO:US-R.EGARCH
http://vlab.stern.nyu.edu/analysis/VOL.KO:US-R.EGARCH
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eStIMAteS OF Arch/GArch MODeLS

ARCH/GARCH models can be estimated with the maximum likelihood 
estimation (MLE) method described in Chapter 13. To illustrate, consider 
the MLE method applied to the simplest ARCH(1) model described in 
equations (11.1) and (11.2). The MLE method seeks the values of the 
model’s parameters that maximize the probability computed on the data 
(likelihood). 

It is convenient to condition on the first observation and compute the 
conditional likelihood given the first observation. The assumptions of the 
ARCH(1) model imply that each return has the following normal condi-
tional distribution:

f R R R
R

t t

t

t

t
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If the ARCH model is correctly specified, all these conditional probabilities 
are mutually independent and therefore the likelihood is simply the product 
of the likelihoods:
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And the log-likelihood is
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 (11.14)

This expression contains the variable σt, which can be recovered for every t 
from equation (11.2):

σt tc a R= + −1 1
2

We have therefore the expression of the log-likelihood in function of the 
parameters c, a1. These parameters can be determined as those values that 
maximize the log-likelihood. Maximization is performed with numerical 
methods.

In practice, estimation is performed by most standard econometric 
packages such as E-Views and by software such as MATLAB. The user needs 
only to input the time series of residuals, the specification of the model (i.e., 
ARCH, GARCH, E-GARCH, or the other models described in this chapter), 
and the number of lags and the software performs the estimation and the 
volatility forecasts.



230 The Basics of financial economeTrics

AppLIcAtION OF GArch MODeLS tO OptION prIcING 

An option is a derivative instrument that grants the buyer of the option the 
right to buy (call) or sell (put) the underlying at the strike price at or before 
the option expiration date. Options are called European options if they can 
be exercised only at the expiration date, American options if they can be 
exercised at any time. The most well-known model for pricing European 
options is the Black-Scholes model.10 In this model, the return distribution 
is assumed to be a normal distribution and the price of a European call and 
put option is given by a closed form that depends on only one unknown 
parameter: the variance of the return. The assumption of the Black-Scholes 
model is that the volatility is constant. 

Instead of assuming a constant volatility (as in the case of the Black-
Scholes model) what has been proposed in the literature is the use of either a 
stochastic volatility model or a GARCH model. Stochastic volatility models 
were first proposed by Hull and White.11 The approach using a GARCH 
model has been proposed in a number of studies.12 

As we have seen, standard GARCH models assume residuals are nor-
mally distributed. When fitting GARCH models to a return series, it is 
often found that the residuals tend to be heavy tailed. One reason is that 
the normal distribution is insufficient to describe the residual of return 
distributions. In general, the skewness and leptokurtosis observed for 
financial data cannot be captured by a GARCH model assuming residu-
als are normally distributed. To allow for particularly heavy-tailed con-
ditional (and unconditional) return distributions, GARCH processes 
with non normal distribution have been considered.13 Although asset 

10 Fischer Black and Myron Scholes, “The Pricing of Options and Corporate Liabili-
ties,” Journal of Political Economy 81 (1973): 637–659.
11 John Hull and Alan White, “The Pricing of Options on Assets with Stochastic 
Volatilities,” Journal of Finance 42 (1987): 281–300.
12 See, for example, Jaesun Noh, Robert F. Engle, and Alex Kane, “Forecasting Volatility 
and Option Prices of the S&P 500 Index,” Journal of Derivatives 2, no. 1 (1994): 17–30; 
Jan Kallsen and Murad S. Taqqu, “Option Pricing in ARCH-Type Models,” Mathemat-
ical Finance 8 (1998): 13–26; Christian M. Hafner and Helmut Herwartz, “Option 
Pricing under Linear Autoregressive Dynamics Heteroscedasticity and Conditional 
Leptokurtosis,” Journal of Empirical Finance 8 (2001): 1–34; Christian M. Hafner and 
Arle Preminger, “Deciding between GARCH and Stochastic Volatility Using Strong 
Decision Rules,” Journal of Statistical Planning and Inference 140 (2010): 791–805; and 
Jeroen Rombouts and Lars Stentoft, “Multivariate Option Pricing with Time Varying 
Volatility and Correlations,” Journal of Banking and Finance 35 (2011): 2267–2281.
13 Stefan Mittnik, Marc S. Paolella, and Svetlozar T. Rachev, “Unconditional and 
Conditional Distributional Models for the Nikkei Index,” Asia-Pacific Financial 
Markets 5, no. 2 (1998): 99–128.
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return distributions are known to be conditionally leptokurtotic, only a 
few studies have investigated the option pricing problem with GARCH 
dynamics and non-Gaussian innovations using alternative assumptions 
about the residuals.14 

MuLtIVArIAte eXteNSIONS OF Arch/GArch MODeLING

Thus far we have applied ARCH and GARCH models to univariate time 
series. Let’s now consider multivariate time series, for example the returns 
of an ensemble of stocks or of stock indexes.

Let’s assume that returns are normally distributed. Although a univari-
ate normal distribution is completely characterized by two parameters—a 
mean and a variance—a multivariate normal is characterized by a vector of 
means and by a matrix of covariances. 

Empirical studies of time series of stock returns find that the con-
ditional covariance matrix is time-varying. Not only is the variance of 
each individual return time-varying, the strength of correlations between 
stock returns also time-varying. For example, Figure 11.9 illustrates the 
time-varying nature of correlations of the S&P 500 universe. We com-
puted correlations between daily returns of stocks that belong to the S&P 
500 universe over a 100-day moving window from May 25, 1989, to 
December 30, 2011. Between these dates there are 5,699 trading days. 
As correlations are symmetrical in the sense that correlation between 
returns of stocks A and B is the same as correlations between returns of 
stocks B and A, for each trading day there are 500 × 499/2 = 12,4750 
correlations. We average all these correlations to obtain an average daily 
correlation C. 

Figure 11.9 illustrates that correlations are not time constant. Aver-
age correlation ranges from a minimum of 0.1 to a maximum of 0.7 and 
exhibits an upward trend. In addition there are periodic fluctuations around 
the trend. These facts suggest modeling the covariance matrix with ARCH/
GARCH-like models. 

14 See Christian Menn and Svetlozar T. Rachev, “Smoothly Truncated Stable Distri-
butions, GARCH-Models, and Option Pricing,” Mathematical Methods of Opera-
tions Research 63, no. 3 (2009): 411–438; Peter Christoffersen, Redouane Elkamhi, 
Bruno Feunou, and Kris Jacobs, “Option Valuation with Conditional Heterosce-
dasticity and Nonnormality,” Review of Financial Studies 23 (2010): 2139–2183; 
and Young-Shin Kim, Svetlozar T. Rachev, Michele Bianchi, and Frank J. Fabozzi, 
“Tempered Stable and Tempered Infinitely Divisible GARCH Models,” Journal of 
Banking and Finance 34, no. 9 (2010): 2096–2109.
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It is possible to define theoretically a multivariate ARCH/GARCH 
model called the VEC-GARCH model.15 The model replaces the volatility 
parameter with the covariance matrix and models the covariance matrix. 
The problem is that in a multivariate GARCH model each individual ele-
ment of the covariance matrix is regressed over every other element and 
every other product between past returns. To see this, consider a simple 
bivariate return process: 

R

R
t t

t t

1 1

2 2

,

,

=

=

ε

ε

15 The VEC model in the ARCH framework was proposed in Robert F. Engle, Clive 
Granger, and Dennis Kraft, “Combining Competing Forecasts of Inflation Using a 
Bivariate ARCH Model,” Journal of Economic Dynamics and Control 8 (1984): 
151–165; and Dennis Kraft and Robert F. Engle, “Autoregressive Conditional Het-
eroscedasticity in Multiple Times Series,” (Unpublished manuscript, Department of 
Economics, University of California, San Diego, 1983). The first GARCH version 
was proposed in Tim Bollerslev, Robert F. Engle, and Jeffrey M. Wooldridge, “A 
Capital Asset Pricing Model with Time-Varying Covariances,” Journal of Political 
Economy 96 (1998): 116–131.
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FIGure 11.9 Plot of Average Correlations between Stocks in the S&P 500 Universe 
in the Period from May 25, 1989, to December 30, 2011
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The form of the process is similar to the univariate ARCH in equation 
(11.1) but the two residuals ε ε1 2t t,  are now characterized by different vari-
ances σ σ1

2
2
2

t t,  plus a covariance term σ12t. Analogous to the univariate ARCH, 
we assume that variances and covariances are time-dependent autoregressive 
processes. But in this case every term depends on all lagged squared returns 
and all products of lagged returns. For example, for one lag we can write:
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1 11 1 1
2

12 1 1 2 1 13 2t t t t tc a R a R R a R= + + +− − − −, , , , 11
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12 2 21 1 1
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22 1 1 2 1 23 2σ t t t tc a R a R R a R= + + +− − −, , , ,,
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 (11.15)

Hence, the simplest bivariate ARCH model with one lag implies estimat-
ing 12 parameters. For three time series and one lag it is necessary to esti-
mate 42 parameters. Clearly the number of parameters to estimate becomes 
prohibitive for any except bivariate processes.

In practice, the number of parameters to estimate is too large to allow 
models to be estimated with samples of the size available in financial 
time series, implying that the VEC model can be used only in the case 
of two series. Therefore simplifications are needed. Several simplify-
ing approaches have been proposed.16A popular approach proposed by 
Bollerslev assumes that conditional correlations are constant and models 
the variance of each series with a GARCH model.17 With this approach, 
we need to estimate a constant correlation matrix plus the GARCH 
parameters for each series. 

KeY pOINtS

 ■ Variance is a measure of volatility. Because in many financial appli-
cations variance is commonly used as a proxy measure for risk, an 
important application of financial econometrics is the forecasting of the 
variance. 

16 Other approaches are described in Luc Bauwens, Sébastien Laurent, and Jeroen V. 
K. Rombouts, “Multivariate GARCH Models: A Survey,” Journal of Applied Econo-
metrics 21 (2006): 79–109; and Robert F. Engle, Sergio M. Focardi, and Frank J. 
Fabozzi, “ARCH/GARCH Models in Applied Financial Econometrics,” in Hand-
book of Finance, ed. Frank J. Fabozzi, vol. 3 (Hoboken, NJ: John Wiley & Sons, 
2008): 689–700.
17 Tim Bollerslev, “Modeling the Coherence in Short-Run Nominal Exchange Rates: 
A Multivariate Generalized ARCH Approach,” Review of Economics and Statistics 
72 (1990): 498–505.
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 ■ The simplest approach for measuring historical volatility involves cal-
culating the variance from a sample of prices or returns observed over 
a recent short-time period.  

 ■ Historical volatility can be computed by assigning an equal weight to 
each observation or assigning different weights such that more recent 
observations are given a greater weight than more distant observations.

 ■ The drawback of  using historical volatility as a forecast of future vola-
tility is that it is based on the assumption that volatility will remain 
unchanged in the future from what it was during the sample time period 
used to calculate the variance.

 ■ The approach commonly used in financial econometrics for predicting 
future volatility is to impose a structure on the conditional variance based 
on stylized facts observed about the variance in the market: (1) volatility 
tends to be time varying and (2) volatility exhibits clustering.

 ■ A time series is called conditionally heteroscedastic if its variance can be 
predicted based on past values of the series.

 ■ The autoregressive conditional heteroscedasticity (ARCH) model pre-
dicts the conditional variance as a linear combination of past squared 
returns.

 ■ The generalized autoregressive conditional heteroscedasticity (GARCH) 
model extends ARCH to include past squared returns and past vari-
ances.

 ■ Several extensions of ARCH/GARCH models have been proposed, in 
particular to account for asymmetries in the effect of positive and nega-
tive returns on future variance.

 ■ Multivariate extensions of ARCH/GARCH models have been proposed 
but drastic simplifications are needed to reduce the number of param-
eters of the model that must be estimated.
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Chapter 12
Factor analysis and  

principal Components analysis

a fter reading this chapter you will understand:

 ■ What factor analysis is.
 ■ What a factor model is.
 ■ How a factor model might or might not be the result of factor 
analysis.

 ■ The difference between a factor model and a multiple regression.
 ■ How to estimate the parameters of a factor model.
 ■ How to estimate factor scores.
 ■ What principal components analysis is.
 ■ How to construct principal components.
 ■ The difference between a factor model and principal components 
analysis.

In this chapter we describe factor models and principal components analysis 
(PCA). Both techniques are used to “simplify” complex data sets composed 
of multiple time series as a function of a smaller number of time series. 
Factor models and PCA find many applications in portfolio management, 
risk management, performance measurement, corporate finance, and many 
other areas of financial analytics.

In Chapter 3 we described multiple regression analysis, a statistical 
model that assumes a simple linear relationship between an observed 
dependent variable and one or more explanatory variables. Although fac-
tor models and PCA share many similarities with linear regression analysis, 
there are also significant differences. In this chapter, we will distinguish 
between linear regressions, factor models, factor analysis, and PCA. We 
begin with a review of the fundamental properties and assumptions about 
linear regressions. 
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aSSUMptIONS OF LINear reGreSSION

First recall from Chapter 3 that all variables in a linear regression are observ-
able. In general, the explanatory variables, denoted by xi, are assumed to be 
either deterministic or random variables while the dependent variable, denoted 
by y, is assumed to be a random variable. This implies that the observed val-
ues of the explanatory variables xi are assumed to be the true values of the 
variables while the dependent variable y is only known with some error. 

Note that assuming that regressors are random variables is not the same 
as assuming that there are errors in the regressors. Assuming random regres-
sors simply means assuming that the sample regressors data are not fixed 
but can change with a given distribution. This fact leaves estimation tech-
niques unchanged but impacts the accuracy of estimates. Regression models 
with errors in the regressors cannot be handled with the same estimation 
techniques as models without errors. 

A fundamental assumption of linear regression analysis is that the 
residuals, denoted by ε, carry no information: residuals are assumed to be 
independent draws from the same distribution. A critical assumption is that 
residuals and regressors are uncorrelated. Under this assumption, the same 
methods can be used to estimate deterministic or random regressors.

The estimation framework for linear regression assumes that we have 
a sample formed by S observations ys, s = 1,  .  .  .  , S of the scalar dependent 
variable y and by S observations [ , . . . , ]', , . . . ,x x i Si pi1 1=  of the p-vector of 
explanatory variables [ , . . . , ]'x xp1 . The regression equation is:

y a b x b xp p= + + +1 1 � ε

Linear regression does not place constraints on the number of observations 
that are required. Estimation follows the usual rules of statistics according 
to which we make better estimates if we have larger samples. As we will see 
later in this chapter, some factor models can be defined only in the limit of 
infinite samples.

We can look at a regression equation as a static relationship between 
variables without any temporal ordering involved. For example, suppose we 
want to investigate whether there is a relationship between the earnings of 
a firm as the dependent variable, and its level of capitalization and debt as 
independent variables. We collect observations of earnings, capitalization, 
and debt of N firms and estimate a regression. There is no temporal order 
involved in our observations.

However, in many financial applications there is a temporal order-
ing of observations. Suppose we have a sample formed by T observations 
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yt, t = 1,  .  .  .  , T of the scalar dependent variable and by T observations 
[ , . . . , ]', , . . . ,x x t Tt pt1 1=  of the p-vector of independent variables indexed 
by time. As explained in Chapter 5, variables indexed by time are called time 
series. In this setting, a linear regression is a relationship between time series. 
For example, if we want to investigate whether there is a linear relationship 
between the returns RIt of a stock index I, the rate of inflation INt, and the 
economic growth rate GRt, we might write a linear regression equation as 
follows:

RI IN GRt t t t= + + +α α α ε0 1 2

The theory of regression can be generalized to multiple regressions 
formed by N regression equations with the same regressors and with error 
terms that are serially uncorrelated but can be cross correlated 

 y a b x b x i Ni i ip p i= + + + =1 1 1� ε , , . . . ,  (12.1)

Assuming that all the error terms are uncorrelated with the regressors and 
that no equation is a linear combination of the others, it can be demon-
strated that the usual ordinary least squares (OLS) estimators are efficient 
estimators of the equations given by (12.1). 

BaSIC CONCeptS OF FaCtOr MOdeLS

Suppose now that instead of the full set of dependent and indepen-
dent variables yt, x1t,  .  .  .  , xqt we are given only a multivariate time series 
y y yt t Nt= ( )1 , . . . , '. For example, suppose we are given a set of stock returns. 
The question that leads to factor analysis (the process of estimating factor 
models) and to factor models is whether the structure of the data, in par-
ticular the correlation structure of the data, can be simplified. With factor 
analysis we try to understand if and how we can explain our variables as 
a multiple linear regression on a reduced number of independent variables. 
We will start by defining factor models and factor analysis and then look at 
some other ways of creating factor models.

Linear factor models assume that the observed variables yt can be rep-
resented as a multiple linear regression on a number q of unobserved, or 
hidden variables fit, i = 1,  .  .  .  , q called factors.

We can write a factor model in various forms. Here are three common 
forms for representing a factor model.
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Explicit form. We can write a factor model explicitly as a set of N 
equations:
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 (12.2)

The ai are the constant terms, the coefficients bjt are called factor load-
ings, the fjt are the hidden factors, and the εit are the error terms or the 
residuals. 

Vector form. We can write a factor model more compactly in vector 
form as follows:

 y a Bf t Tt t t= + + =ε , , . . . ,1  (12.3)

where y y yt t Nt= [ ]1 � ' is the N × 1 vector of observed variables at time t 

a a aN= [ ]1� ' is the N × 1 vector of constant terms

f f ft t qt=  1 � ' is the q × 1 vector of factors at time t
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 is the N × q matrix of factor loadings

and ε ε εt t Nt= [ ]1 �  ' is the N × 1 vector of residuals

Matrix form. Equations (12.2) and (12.3) represent a factor model in 
terms of variables. However, we can also represent a factor model in 
terms of realizations of sample data in the following matrix form which 
is analogous to the matrix form of regression, equation (12.2):

 Y = FC + E (12.4)
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is the matrix of the data, in which every row corresponds to an observa-
tion of all N variables, and each column corresponds to all T observa-
tions of each variable; and where
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is the matrix of factors where we add a column of ones to include the 
constant terms a (note that the terms of this matrix are not observable)
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is the matrix of error terms, which are not observable.
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Alternatively, we could subtract the mean from the data and write fac-
tor models in terms of de-meaned data x yt t= − µ µwhere  is the mean of y. 
In this case, the constant terms ai are all equal to zero. 

In terms of de-meaned data xt, the factor model in vector form, equa-
tion (12.3), becomes

 x Bf t Tt t t= + =ε , , . . . ,1  (12.5)

The vector model written in matrix form, equation (12.4), Y = FB + E 
becomes:

 X = FB′ + E (12.6)

where
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is the matrix of demeaned data;
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f f

f f
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is the matrix of factors without a column of ones.

aSSUMptIONS aNd CateGOrIZatION OF FaCtOr MOdeLS

As is the case with a linear regression, specific assumptions about factors and 
error terms need to be made, otherwise factor models are void of empirical 
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content. We will define different categories of factor models, but common to 
all factor models are the following two assumptions:

 1. Both factors and residuals are zero-mean variables 
 2. Residuals are uncorrelated with factors, that is:

 E f E E ft t t t( ) = ( ) = ( ) =0 0 0, , '' 'ε ε  for any t (12.7)

A factor model is called a strict factor model if the residuals are uncorre-
lated; that is, if the covariance matrix of the residuals is a diagonal matrix.1 
A factor model is called a scalar factor model if, in addition, all variances of 
residuals are identical. 

Strict and scalar factor models with a finite number of samples and time 
series are called classical factor models. Later in this chapter we will define a 
different type of factor models called approximate factor models. 

SIMILarItIeS aNd dIFFereNCeS BetWeeN  
FaCtOr MOdeLS aNd LINear reGreSSION

Factor models have the same form as a multiple linear regression. How-
ever, there are two major differences between factor models and multiple 
regressions:

Difference 1. Factors are unobserved variables, determined by the data, 
while in multiple regressions regressors are given observed vari-
ables. 

Difference 2. Although in both multiple regressions and factor models 
the error terms are assumed to be serially uncorrelated, residuals of 
multiple regressions can be mutually correlated while residuals of 
strict factor models are assumed to be uncorrelated.

To understand the difference between the two models, consider the 
monthly returns of the 500 stocks comprising the S&P 500 index over the 
past 30 years. A factor model would try to reveal if the monthly returns of 
these 500 stocks can be explained in terms of a smaller number of hidden 
factors, say two. In this case, both the model parameters and the factors 
have to be estimated from the monthly return series for the 500 stocks. 
Now suppose that the objective is to try to see if there is a linear relationship 

1 For an explanation of the different types of matrices, see Appendix D.
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between the monthly returns series for the 500 stocks and some macroeco-
nomic variables such as the change in gross domestic product, the rate of 
inflation, and the yield spread between high-grade and low-grade corporate 
bonds. This is a multiple regression.

prOpertIeS OF FaCtOr MOdeLS

Let’s now discuss some properties of factor models. Consider a factor model 
as defined in equation (12.3) with the assumptions given by equation (12.7). 
We will adopt the following notation:

 1. Ω denotes the covariance matrix of factors, Ω = ( ) = ( )cov 'f E f ft t t .
 2. Σ = −( ) −( )( )E y a y at t '  denotes the covariance matrix of the observed 

variables. 
 3. Ψ = ( )E t tε ε '  denotes the covariance matrix of the residuals. 

The three covariance matrices of factors, observed variables, and residu-
als are supposed to be constant matrices, independent of t. From the defini-
tion of covariance we can write:

Σ = −( ) −( )( ) = ( )( )( ) + ( )E y a y a E Bf Bf E ft t t t t t' ' '2 ε ++ ( )E t tε ε'

Because we assume that factors and residuals are uncorrelated (i.e., 
E ft t'ε( ) = 0), we can write: 

 Σ Ω Ψ= +B B'  (12.8)

Equation (12.8) is the fundamental relationship that links the covari-
ance matrix of the observed variables to the covariance matrices of factors 
and residuals. It is sometimes referred to as the fundamental theorem of 
factor models. 

From equation (12.3) we can see that a factor model is not identified. 
This means that observed variables do not univocally determine factors and 
model parameters. To see this, consider any nonsingular q × q matrix T. 
From matrix algebra we know that a nonsingular matrix T is a matrix that 
admits an inverse matrix T–1 such that T–1T = I. Given that multiplication 
by the identity matrix leaves any matrix unchanged and given that matrix 
multiplication is associative, we can write

y a Bf a BIf a BT Tf a BTt t t t t t t= + + = + + = + + = +− −ε ε ε1 1( )(( )Tft t+ ε

Hence, given any set of factors ft, if we multiply them by any nonsingu-
lar q × q matrix T, we obtain a new set of factors gt = Tft. If we multiply the 
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N × q matrix of factor loadings B by the matrix inverse of T, we obtain a 
new N × q loading matrix L = BT–1, such that the new factor model 

y a Lgt t t= + + ε

is observationally equivalent to the original model. 
Given any set of factors ft, we can always find a nonsingular matrix T 

such that the new factors gt = Tft are uncorrelated and have unit variance; 
that is, E g g It t( ') = . Uncorrelated factors are often called orthogonal factors. 
Therefore, we can always choose factors such that their covariance matrix 
is the identity matrix Ω = I so that equation (12.8) becomes

 cov , 'Ω Σ Ψ( ) = = +I BB  (12.9)

This is a counterintuitive conclusion. Given a set of observable vari-
ables, if they admit a factor representation, we can always choose factors 
that are mutually uncorrelated variables with unit variance. 

In a strict factor model, the correlation structure of observed variables is 
due uniquely to factors; there is no residual correlation. For a large covari-
ance matrix, this is a significant simplification. For example, in order to esti-
mate the covariance matrix of 500 stock return processes as in the S&P 500 
universe, we have to estimate (500 × 501)/2 = 125,250 different entries 
(covariances). However, if we can represent the same return processes with 
10 factors, from equation (12.9) we see that we would need to estimate only 
the 500 × 10 = 5,000 factor loadings plus 500 diagonal terms of the matrix Ψ.

This is a significant advantage for estimation. For example, if our sam-
ple includes four years of daily return data (250 trading days per year or 
1,000 observations for four years), we would have approximately 500 × 
1,000 = 500,000 individual return data. If we have to estimate the entire 
covariance matrix we have only 500,000/125,250 ≈ 4 data per estimated 
parameter, while in the case of a 10-factor model we have 500,000/5,500 ≈ 
90 data per parameter.

We can now compare the application of regression models and factor 
models. If we want to apply a multiple regression model we have to make 
sure that (1) regressors are not collinear and (2) that residuals are serially 
uncorrelated and uncorrelated with all the observed variables. If we want 
to apply a multiple regression model, we assume that residuals are serially 
uncorrelated but we accept that residuals are cross correlated.

However, if we want to investigate the strict factor structure of a set of 
observed variables, we have to make sure that residuals are not only serially 
uncorrelated but also mutually uncorrelated. In fact, a strict factor model explains 
the correlation between variables in terms of regression on a set of common fac-
tors. We will see later in this chapter how this requirement can be relaxed. 
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eStIMatION OF FaCtOr MOdeLS

After defining the two fundamental classical factor models—that is, strict 
and scalar factor models—we can now ask three important questions:

 1. Given the data, how do we determine the number of factors?
 2. Given the data, how do we estimate parameters and factors?
 3. Are parameters and factors uniquely determined by our data?

problem of Factor Indeterminacy

Suppose for a moment we know the number of factors. Can we estimate 
parameters and factors? The somewhat surprising conclusion is that we can 
determine the model’s parameters but we cannot uniquely determine fac-
tors. This is the well-known problem of factor indeterminacy. 

Historically, factor indeterminacy provoked much debate in the litera-
ture on statistics. The reason is that factor models were initially proposed in 
the area of psychometrics, with factors being the determinant of personal-
ity. Based on factor analysis, psychologists claimed that personality can be 
explained almost deterministically in terms of a number of basic factors. 
The discovery of factor indeterminacy weakened this proposition.

Finite and Infinite Factor Models In practice, every quantity we deal with in 
our personal and professional lives is finite, that is, it can be measured with 
an ordinary number. For example, the universe of potential stocks from 
which a portfolio can be constructed consists of a finite number of stocks. 
The number of candidate stocks can be very large, say in the range of thou-
sands, but still it is finite. The number of dates, or even instants of trading, 
is finite. 

However, many mathematical properties can be better stated in the limit 
of an infinite number of time series or an infinite number of dates and time 
points. Mathematicians distinguish many different types of infinity, and 
many different types of infinite processes. We cannot go into the details of 
the mathematics of infinite quantities. However, the intuition behind infinite 
numbers can be stated as follows. To be concrete, let’s define what is meant 
by an infinite market formed by infinitely many stock return processes.

Essentially an infinite market means that whatever large number we 
choose, as large as we want, the market will have more stocks. A market is 
infinite if no ordinary number, regardless of how big we choose it, will be 
able to count the market. The same concept can be applied to the concept 
of an infinitely long time series: whatever number we choose, the series will 
have more points.
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Obviously this is a mathematical abstraction because no real market is 
infinite. However, it is a useful abstraction because it simplifies the statement 
of many properties. In practice, we use the concept of both infinite mar-
kets and infinite factor models to approximate the behavior of very large 
markets. If a market is very large, say, thousands of stocks, we assume that 
its properties can be well approximated by the properties of the abstract 
infinite market. We will see in the following sections a number of properties 
that apply to infinite markets.

estimating the Number of Factors

There are several criteria for determining the number of factors but there 
is no rigorous method that allows one to identify the number of factors 
of classical factor models. Rigorous criteria exist in the limit of an infinite 
number of series formed by an infinite number of time points.

For finite models, a widely used criterion is the Cattell scree plot, which 
can be described as follows. In general, there are as many eigenvalues as 
stocks. Therefore, we can make a plot of these eigenvalues in descending 
order. An example is in Table 12.1. In general, we empirically observe that 
the plot of eigenvalues exhibits an elbow, that is, it goes down rapidly, but 
it slows down at a certain point. Heuristically, we can assume there are as 
many factors as eigenvalues to the right of the elbow, assuming eigenvalues 
grow from left to right. However, the scree plot is a heuristic criterion, not 
a formal criterion. The Akaike information criterion and the Bayesian infor-
mation criterion are also used, especially to determine the number of factors 
for large models. We describe these two information criteria in Appendix E.

estimating the Model’s parameters

Let’s start by estimating the model’s parameters. The usual estimation 
method for factor models is maximum likelihood estimation (MLE) which 
we explain in Chapter 13. However, MLE requires that we know, or that we 
make an assumption on the probability distribution of the observed vari-
ables. We will therefore make the additional assumption that variables are 
normally distributed. Other distributional assumptions can be used but the 
assumption of normal distribution simplifies calculations.

As explained in Chapter 13, the likelihood is defined as the probability 
distribution computed on the data. MLE seeks those values of the param-
eters that maximize the likelihood. As we assume that data are normally 
distributed, the likelihood depends on the covariance matrix. From equa-
tion (12.9) we know that Σ Ψ= +BB'  and we can therefore determine the 
parameters B,Ψ maximizing the likelihood with respect to these parameters. 
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taBLe 12.1 A Sample of Stock Daily Returns for the Period December 2, 2011, to 
December 30, 2011

Dates ORCL MSFT TROW HON EMC FO LLTC ADM

02-Dec-2011 –0.01 0.00 0.02 0.00 0.00 0.00 0.00 –0.01

05-Dec-2011 0.02 0.02 0.01 0.01 0.01 0.01 0.02 0.00

06-Dec-2011 –0.01 0.00 0.00 0.00 0.00 0.00 0.00 –0.01

07-Dec-2011 –0.01 0.00 0.03 –0.01 0.00 0.00 0.00 0.00

08-Dec-2011 –0.03 –0.01 –0.04 –0.02 –0.02 –0.01 –0.03 –0.03

09-Dec-2011 0.03 0.01 0.02 0.02 0.01 0.02 0.00 0.01

12-Dec-2011 –0.01 –0.01 –0.02 –0.02 –0.02 –0.02 –0.02 –0.03

13-Dec-2011 –0.02 0.01 –0.02 –0.01 –0.02 –0.02 –0.02 –0.02

14-Dec-2011 –0.03 –0.01 –0.02 –0.01 –0.02 –0.01 –0.02 –0.01

15-Dec-2011 –0.03 0.00 0.00 0.02 0.00 0.00 0.00 0.02

16-Dec-2011 0.01 0.02 0.01 0.01 0.00 –0.01 0.01 –0.01

19-Dec-2011 –0.02 –0.02 –0.01 –0.02 –0.02 –0.01 –0.02 –0.02

20-Dec-2011 0.02 0.02 0.05 0.04 0.02 0.02 0.05 0.04

21-Dec-2011 –0.12 –0.01 0.00 0.00 –0.04 0.01 –0.01 0.01

22-Dec-2011 0.00 0.00 0.00 0.01 0.01 0.00 0.02 0.00

23-Dec-2011 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

27-Dec-2011 –0.02 0.00 0.00 0.00 –0.01 0.01 0.00 0.00

28-Dec-2011 0.00 –0.01 –0.02 –0.02 –0.01 0.00 –0.01 –0.02

29-Dec-2011 0.01 0.01 0.02 0.01 0.01 0.01 0.00 0.01

30-Dec-2011 –0.01 0.00 –0.01 –0.01 0.00 0.00 0.00 0.00

Ticker Company

ORCL Oracle Corp.

MSFT Microsoft Corp

TROW T. Rowe Price Group

HON Honeywell International

EMC EMC/MA

FO Fortune Brands Inc.

LLTC Linear Technology Corp

ADM Archer-Daniels Midland Co.
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We can thus estimate the factor loadings and the residual variances under 
the assumptions that factors are uncorrelated with unitary variances.

While we can estimate the factor loadings and the residuals’ variances 
with MLE methods, we cannot estimate factors with maximum likelihood. 
There is a fundamental factor indeterminacy so that, in finite models, factors 
cannot be uniquely determined. The usual solution consists in estimating a 
set of factor scores. This is done by interpreting equation (12.2) as a regres-
sion equation, which allows one to determine factor scores f. 

Before proceeding to illustrate other factor models it is useful to illus-
trate the above with an example. Table 12.1 lists eight series of 20 daily 
stock returns R t iti , , . . . , , , . . . ,= =1 20 1 8. The first row reports the stock 
symbols, the rows that follow give stock daily returns from December 2, 
2011, to December 30, 2011.

Let’s begin by standardizing the data. The matrix X of standardized 
data is obtained by subtracting the means and dividing by the standard 
deviations as follows: 
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 (12.10)

The empirical covariance matrix ΣX  of the standardized data, which 
is the same as the correlation matrix of the original data, is the following 
8 × 8 matrix:

Σ =

































1.0000 0.6162 0.3418 0.3991 0.8284 0.2040 0.4461 0.1273

0.6162 1.0000 0.5800 0.7651 0.6932 0.4072 0.7145 0.5209

0.3418 0.5800 1.0000 0.7925 0.6807 0.7864 0.8715 0.8312

0.3991 0.7651 0.7925 1.0000 0.7410 0.7449 0.8656 0.8771

0.8284 0.6932 0.6807 0.7410 1.0000 0.5630 0.7577 0.5496

0.2040 0.4072 0.7864 0.7449 0.5630 1.0000 0.7480 0.8420

0.4461 0.7145 0.8715 0.8656 0.7577 0.7480 1.0000 0.7952

0.1273 0.5209 0.8312 0.8771 0.5496 0.8420 0.7952 1.0000

X
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Assume that the standardized data X can be represented with four fac-
tors. Hence, we can use equation (12.9) to represent the above covariance 
matrix as Σ ΨX B B= +'  where B is a 4 × 8 matrix of factor loadings and 
Ψ  is an 8 × 8 diagonal matrix of variances. Using the function factoran of 
MATLAB, we estimate B and Ψ : 
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− − −
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−

−
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

B

0.7411 0.5245 0.1871 0.1707

0.9035 0.0440 0.4202 0.0107

0.7614 0.5634 0.2033 0.2069

0.8630 0.3504 0.0092 0.2900

0.9215 0.1575 0.3477 0.0137

0.6028 0.5476 0.2658 0.1600

0.8503 0.3637 0.0898 0.0025

0.6616 0.6449 0.1086 0.2814
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0.1115 0 0 0 0 0 0 0

0 0.0050 0 0 0 0 0 0

0 0 0.0188 0 0 0 0 0

0 0 0 0.0482 0 0 0 0

0 0 0 0 0.0050 0 0 0

0 0 0 0 0 0.2405 0 0

0 0 0 0 0 0 0.1367 0
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We can see that

+ Ψ =













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




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




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BB'

1.0000 0.6159 0.3421 0.4046 0.8283 0.1819 0.4566 0.1244

0.6159 1.0000 0.5800 0.7651 0.6932 0.4072 0.7145 0.5208

0.3421 0.5800 1.0000 0.7926 0.6806 0.7884 0.8710 0.8309

0.4046 0.7651 0.7926 1.0000 0.7408 0.7561 0.8597 0.8776

0.8283 0.6932 0.6806 0.7408 1.0000 0.5638 0.7574 0.5497

0.1819 0.4072 0.7884 0.7561 0.5638 1.0000 0.7352 0.8259

0.4566 0.7145 0.8710 0.8597 0.7574 0.7352 1.0000 0.8061

0.1244 0.5208 0.8309 0.8776 0.5497 0.8259 0.8061 1.0000

is a good estimate of the covariance matrix of the standardized data. To see 
this point, in order to make a quantitative evaluation of how well the matrix 
B B' + Ψ  approximates the covariance matrix of the standardized data, we 
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introduce the concept of the Frobenius norm of a matrix. Given any matrix 
A aij= { }, the Frobenius norm of A, written as A

F
, is the square root of the 

sum of the squares of the absolute value of its terms:

A a
F ij

i j

= ∑ 2

,

The Frobenius norm is a measure of the average magnitude of the terms of 
a matrix. 

We can now compute the ratio between the Frobenius norm of the dif-
ference Σ ΨX BB− +( ' )  and that of ΣX. We obtain the value

Σ Ψ
Σ

X F

X F

BB− +
=

( ' )
.0 0089

which shows that the magnitude of the difference Σ ΨX BB− +( ' ) is less than 
1% of the magnitude of ΣX itself; hence, it is a good approximation. 

estimation of Factors

Having determined the factor loadings with MLE, we can now estimate the 
factors. As observed above, factors are not unique and cannot be estimated 
with MLE methods. The estimated factors are called factor scores or simply 
scores. In the literature and in statistical software, estimates of factor scores 
might be referred to as predictions so that estimated factors are called pre-
dicted scores. There are several methods to estimate factor scores. 

The most commonly used method is to look at equation (12.5) as a mul-
tiple regression equation with x as regressors. After estimating the matrix B 
in equation (12.5), we can look at the variables xt, ft as variables with a joint 
normal distribution. Recall that from equation (12.7),
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while from equation (12.9),
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and therefore cov , cov ,x f Bf f Bt t t t t( ) = +( ) =ε .
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Because x Bft t t= + ε , the vector [ ]x ft t  has a normal distribution with 
mean zero and the following covariance matrix:
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From this it can be demonstrated that an estimate of factor scores is 
given by

 ˆ 'f B B B xt t= +( )Ψ  (12.11)

Scores are only an estimate of factors and, in general, do not have the prop-
erties of factors; that is, scores do not have unit variance and are not orthogo-
nal. For example, using the MATLAB function factoran, in our illustration, we 
obtain the following 20 × 4 matrix estimate of the matrix of scores F: 
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If we compute the covariance matrix of F, we obtain:

ΣF =

−

0.9975

0.0000

0.0000

0.0000

0.0

0 0000

0 9737

.

.

0000

0.0000

0.0000−

−
−

0 0000

0 0000
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0 0000

.

.

.

.

00 0000

0 8548

.

.

0.0000



















To summarize, our illustration demonstrates what is done in practice. 
We started with a matrix of eight series of 20 standardized daily return data 
series and tried to find a smaller set of four series of factors that explain the 
data as a multiple regression. To do so, we first determine with MLE, B, and 
Ψ, and then estimate factors. 

Factors are not observed; they are reconstructed from data and are 
abstract. For example, in the factor model that we have estimated, it would 
be difficult to interpret factors. We can say that the original returns are 
exposed to four risk factors but we cannot easily interpret these factors. As 
we have remarked, we cannot say that our risk factors are unique. We will 
see later how we can partially modify this proposition.

Other types of Factor Models

In financial modeling, there are factor models that are not obtained through 
factor analysis. These models are multiple regressions on specific families of 
regressors. Widely used regressors include macroeconomic variables, funda-
mental information on companies such as market capitalization and book-
to-value ratio, as well as countries and sectors. In factor models based on 
countries and sectors, stock return time series are partitioned into countries 
and/or industrial sectors. The factor loadings are equal to unity if a stock 
belongs to a country or a sector, zero in all other cases (just as when using 
categorical variables in regression analysis as explained in Chapter 6) and 
factor scores are obtained through regressions.

prINCIpaL COMpONeNtS aNaLYSIS

Let’s now look at principal components analysis (PCA). PCA is used to par-
simoniously represent data. There are similarities and differences between 
PCA and factor analysis. The main difference is that PCA is a data-reduction 
technique: PCA can be applied to any set of data without assuming any 
statistical model while factor analysis assumes a statistical model for the 
data. In addition, principal components are linear combinations of the data 
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and therefore are observable while factors are generally non observable 
variables. There are other differences that will be made clear after describ-
ing PCA.

Step-by-Step pCa

The key idea of PCA is to find linear combinations of the data, called prin-
cipal components, that are mutually orthogonal and have maximum vari-
ance. The use of the term “orthogonal” requires explanation. Earlier in this 
chapter we defined orthogonal factors as uncorrelated factors. But in defin-
ing PCA we do not, as mentioned, assume a statistical model for the data; 
principal components are vectors of data without any associated probability 
distribution. We say that two different principal components are orthogonal 
if their scalar product as vectors is equal to zero. 

Given two vectors x x xN= [ ]1, . . . , ' and y y yN= [ ]1, . . . , ', of the same 
length N and such that the average of their components is zero, their scalar 
product is defined as:

 ∑[ ]=

















=
=

… �x y x x

y

y

x y( ', ) , , N

N

i i
i

N

1

1

1

 (12.12)

The reason we want to find principal components that are orthogonal 
and have maximum variance is that, as will become clearer later in this sec-
tion, we want to represent data as linear combinations of a small number of 
principal components. This objective is better reached if principal compo-
nents are orthogonal and have maximum variance.

Perhaps the simplest way to describe this process is to illustrate it 
through a step-by-step example using the same data that were used to illus-
trate factor analysis. Let’s therefore consider the standardized data X and its 
covariance matrix ΣX  in equation (12.9). 

Step 1: Compute eigenvalues and eigenvectors of the Covariance Matrix of data In 
Appendix D we review the basics of matrix algebra. There we explain that 
the eigenvalues and eigenvectors of the matrix ΣX  are those vectors V and 
those numbers λ i  that satisfy the condition ΣX i iV V= λ . In general, an N × N 
covariance matrix has N distinct, real-valued eigenvalues and eigenvectors. 
We can therefore form a matrix V whose columns are the eigenvectors and 
a diagonal matrix D with the eigenvalues on the main diagonal. 

Eigenvalues and eigenvectors are computed using a statistical or math-
ematical package. Let’s compute the eigenvalues and eigenvectors of the 
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matrix ΣX using the eig function of MATLAB. We obtain the following 
matrices:

=

































V

–0.3563 0.4623 –0.1593 0.0885 –0.0951 –0.3155 –0.6800 0.2347

0.2721 –0.0733 –0.1822 0.4334 –0.0359 0.7056 –0.3014 0.3311

–0.1703 –0.2009 –0.5150 0.0241 0.6772 –0.1653 0.1890 0.3784

–0.6236 –0.3148 0.0961 –0.3693 –0.3385 0.2945 0.0895 0.3963

0.5319 –0.4428 0.0909 –0.3693 –0.0972 –0.3284 –0.3586 0.3611

–0.0088 –0.1331 0.0672 0.6355 –0.4031 –0.4157 0.3484 0.3422

0.0075 0.2697 0.7580 0.0421 0.4326 0.0557 0.0579 0.3966

0.3131 0.5957 –0.2823 –0.3540 –0.2395 0.0693 0.3869 0.3610

and 

=

































D

0.0381 0 0 0 0 0 0 0

0 0.0541 0 0 0 0 0 0

0 0 0.1131 0 0 0 0 0

0 0 0 0.1563 0 0 0 0

0 0 0 0 0.2221 0 0 0

0 0 0 0 0 0.4529 0 0

0 0 0 0 0 0 1.3474 0

0 0 0 0 0 0 0 5.6160

Note that the product VV' is a diagonal matrix with ones on the main diag-
onal. This means that the eigenvectors are mutually orthogonal vectors; that is, 
their scalar product is 0 if the vectors are different, with length equal to 1. 

Step 2: Construct principal Components by Multiplying data by the eigenvectors If 
we multiply the data X by any of the eigenvectors (i.e., any of the columns 
of the matrix V), we obtain a new time series formed by a linear combina-
tion of the data. For example, suppose we multiply the data X by the first 
eigenvector; we obtain our first principal component (denoted by PC1):

PC XV

X X X X
1 1

1 2 3 4

=
= − × + × − × − ×0.3563 0.2721 0.1703 0..6236

0.5319 0.0088 0.0075 0.3+ × − × + × + ×X X X X5 6 7 8 1131

We can therefore construct a new 20 × 8 matrix 

 PC XV=  (12.13)
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where each column is the product of the data X and the corresponding 
eigenvector. The columns of the matrix PC are what we referred to earlier as 
the principal components. Table 12.2 shows the eight principal components.

Principal components are linear combinations of the original data. 
Because the original data are a series of stock returns, we can think of prin-
cipal components as portfolios formed with those same stocks. The values 
of principal components are therefore the returns of these portfolios. 

Step 3: Getting the data Back exactly from principal Components Thus far we have 
transformed the original time series into a new set of mutually uncorrelated 
time series are called principal components. We can now ask if and how we 
can reconstruct data from principal components. Since VV' = I, we can write 
the following:

 X XVV XV V PCV= = ( ) =' ' '  (12.14)

taBLe 12.2 The Set of All Principal Components of the Sample Standardized Data 

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

0.03 –0.61 –0.25 –0.13 0.48 –0.60 0.09 0.19

0.23 –0.19 0.24 0.67 –0.11 0.39 –1.11 2.28

–0.04 –0.30 0.13 –0.18 0.07 –0.28 –0.51 –0.43

0.31 0.06 –0.49 0.00 1.18 –0.78 0.08 0.27

0.19 –0.20 0.07 –0.05 –0.71 0.04 –0.72 –3.60

–0.27 –0.11 –0.50 0.28 –0.86 –0.33 –0.42 2.82

–0.17 0.32 0.23 –0.17 0.42 0.15 –0.91 –3.10

0.12 0.17 –0.44 –0.04 0.11 1.60 –1.14 –2.23

–0.13 0.14 –0.14 0.21 –0.07 0.08 0.34 –2.41

0.22 0.00 0.10 –1.14 –0.73 0.20 0.86 0.90

–0.28 –0.23 0.17 –0.07 0.46 1.38 –1.21 0.96

–0.36 0.12 –0.10 –0.38 0.11 –1.01 0.30 –2.50

–0.12 0.24 0.28 –0.04 0.30 0.12 0.76 6.03

0.00 –0.11 0.04 0.34 0.11 0.83 4.19 –1.77

0.05 –0.01 0.76 –0.36 0.25 –0.14 –0.16 1.20

0.21 0.40 –0.20 0.11 –0.15 –0.12 –0.24 1.77

–0.06 0.06 0.07 0.54 –0.34 –0.21 0.59 0.06

–0.04 0.06 0.48 0.50 –0.12 –0.83 –0.52 –1.90

–0.13 0.04 –0.50 –0.24 –0.16 –0.03 –0.11 1.98

0.24 0.14 0.07 0.14 –0.22 –0.50 –0.15 –0.48



Factor Analysis and Principal Components Analysis  255

That is, we can exactly obtain the data multiplying principal components 
by the transpose of the matrix of eigenvectors. Let’s write it down explicitly:

 

X PC V PC V PC V PC V

X PC Vi

1 1 1 11 2 12 8 18= = + + +

=

( ')

( ')

�

�

ii i i iPC V PC V PC V

X PC V PC V

= + + +

= =

1 1 2 2 8 8

8 8 1 81

�

�
( ') ++ + +PC V PC V2 82 8 88�

 (12.15)

That is, the ith data time series is a weighted sum of principal components, 
with the jth weight equal to the ith component of the jth eigenvector. Con-
trast these weights with those of the representation of PCs in terms of data:

PC X V XV X V X V

PC X V XVi i

1 1 1 11 2 21 8 81

1

= = + + +

= =

( )

( )

�

�

11 2 2 8 8

8 8 1 18 2 28

i i iX V X V

PC X V XV X V X

+ + +

= = + + +

�

�
�( ) 88 88V

where the ith principal component is a weighted sum of data, with the jth 
weight equal to the jth component of the ith eigenvector.

If we compute the variance of each principal component, we obtain the 
following vector:

[ ]=var 0.0381 0.0541 0.1131 0.1563 0.2221 0.4529 1.3474 5.6160 '  (12.16)

We can immediately see that the variance of each principal component is 
equal to the corresponding eigenvalue: var PC Di ii i( ) = = λ . This is a general 
property: variance of a principal component is equal to the corresponding 
eigenvalue of the covariance matrix of data.

Step 4: Look at the decay of the Variances of principal Components The magni-
tude of the variances of principal components differs greatly across differ-
ent principal components. The smallest variance, corresponding to PC1, is 
0.0381 while the largest, corresponding to PC8, is 5.6. Panels A and B of 
Figure 12.1 show the plots of the first and last principal components and a 
plot of the eigenvalues.

We now understand why it is important that principal components be 
orthogonal vectors. Because principal components are orthogonal vectors, 
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FIGUre 12.1 Plot of Principal Components and Eigenvalues
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we can represent the variance of the ith data time series Xi as a weighted 
sum of the eigenvalues (each eigenvalue is equal to the variance of the rela-
tive principal component) as follows:

 

var( )

var( )

X V V V

X Vi i

1 1 11 2 12 8 18

1 1

= + + +

= +

λ λ λ

λ λ

�

�

22 2 8 8

8 1 81 2 82 8 88

V V

X V V V

i i+ +

= + + +

�

�
�

λ

λ λ λvar( )

 (12.17)

Step 5: Using Only principal Components with Largest Variances From equation 
(12.16), we see that in our illustration there are more than two orders of 
magnitude (>100) between the smallest and the largest eigenvalues, and that 
there is a rapid decay of the magnitude of eigenvalues after the first three 
eigenvalues. Therefore, we can represent data approximately using only a 
reduced number of principal components that have the largest variance. 
Equivalently, this means using only those principal components that cor-
respond to the largest eigenvalues.

Suppose we use only four principal components. We can write the fol-
lowing approximate representation:

 

X PC V PC V

X PC V PC V

X PC

i i i

1 5 15 8 18

5 5 8 8

8

≈ + +

≈ + +

≈

�

�
�

�

55 85 8 88V PC V+ +�

 (12.18)

or 

 

X PC V PC V e

X PC V PC V ei i i i

1 5 15 8 18 1

5 5 8 8

= + + +

= + + +

�

�
�

��
�X PC V PC V e8 5 85 8 88 8= + + +

 (12.19)

where e represents the approximation error. The error terms are linear 
combinations of the first four principal components. Therefore, they are 
orthogonal to the last four principal components but, in general, they will 
be mutually correlated. To see this point, consider, for example, 

X PC V PC V e1 5 15 8 18 1= + + +�  and X PC V PC V e8 5 85 8 88 8= + + +�
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From equation (12.12):

X PCV PC V PC V1 1 11 2 12 8 18= + + +�  and X PCV PC V PC V8 1 81 2 82 8 88= + + +�  

Therefore,

e PC V PC V PC V1 1 11 2 12 4 14= + + +�  and e PC V PC V PC V8 1 81 2 82 4 84= + + +�

Consider, for example, the scalar product 

e V PC V V PC V V1 15 1 11 15 4 14 15' ' '( ) = + +�

Each of the products V V V V' , . . . , '11 15 14 15 is equal to zero because the eigen-
vectors are orthogonal. The same reasoning can be repeated for any prod-
uct e V i ji j' , , , , , , , ,1 1 2 3 4 5 6 7 8( ) = = , which shows that the error terms are 
orthogonal to the last four principal components.

Consider now the scalar product e e1 8'( ). This scalar product is a 
weighted sum of products V V i ji j' , , , , , , , ,1 1 1 2 3 4 1 2 3 4= = . These products 
are zero if i j≠  but they are different from zero when i j= . Hence the cova-
riance and the correlations between residuals are not zero. For example, in 
our illustration, the covariance of the residuals is:

Σ =

































0.0205 0.0038 0.0069 –0.0062 –0.0250 0.0044 –0.0064 0.0108

0.0038 0.0362 0.0113 –0.0322 –0.0196 0.0421 –0.0138 –0.0173

0.0069 0.0113 0.0334 0.0005 –0.0053 –0.0000 –0.0470 0.0066

–0.0062 –0.0322 0.0005 0.0425 0.0172 –0.0335 0.0010 –0.0002

–0.0250 –0.0196 –0.0053 0.0172 0.0436 –0.0330 –0.0009 0.0096

0.0044 0.0421 –0.0000 –0.0335 –0.0330 0.0646 0.0080 –0.0417

–0.0064 –0.0138 –0.0470 0.0010 –0.0009 0.0080 0.0692 –0.0178

0.0108 –0.0173 0.0066 –0.0002 0.0096 –0.0417 –0.0178 0.0515

e

which is not a diagonal matrix. Hence the fundamental equation of factor 
models Σ Ψ= +B B'  (equation (12.7)) does not, in general, hold for princi-
pal components.

It can be demonstrated that the weights of the last four principal compo-
nents in equation (12.14) minimize the sum of squared residuals. Therefore, 
the weights in equation (12.14) are the same as those one would obtain esti-
mating a linear regression of the data on the last four principal components. 
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For example, if we estimate a linear regression using MATLAB’s regress 
function

X PC PC PC PC1 1 5 2 5 3 5 4 8= + + + +α α α α ε

we obtain the following estimate for the regression coefficients:

α
α
α
α





















=



















–0.0951

–0.3155

–0.6800

0.2347

1

2

3

4

If we look at the matrix V, we see that the estimated regression coefficients 
are equal to V V V V15 16 17 18, , ,  as in equation (12.15).

The eight panels in Figure 12.2 illustrate the approximation obtained 
with four principal components.

the process of pCa

The example we have provided in this section can be generalized to any set 
of data. We can therefore establish the following general process for PCA. 
Given a set of data formed by time series of the same length, with nonsingu-
lar covariance matrix, PCA involves the following steps:

 1. Compute the covariance matrix ΣX of the data.
 2. Compute the eigenvalues D and eigenvectors V of the covariance matrix ΣX.
 3. Compute the principal components PC multiplying data by the eigen-

vectors: PC = XV.
 4. Look at how eigenvalues decay (i.e., look at the plot of their magnitude).
 5. Choose a (small) number of PCs corresponding to the largest eigenvalues.
 6. Represent data approximately as weighted sums of these PCs.

dIFFereNCeS BetWeeN FaCtOr aNaLYSIS aNd pCa

There are clearly similarities between factor analysis and PCA. In both 
cases, data are parsimoniously represented as a weighted sum of a (generally 
small) number of factors or principal components. But there are also three 
important differences that we can summarize as follows:

 1. PCA is a data-reduction technique; that is, it is a parsimonious represen-
tation that can be applied to any data set with a nonsingular covariance 
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FIGUre 12.2 Approximation to the True Data Obtained with Four Principal 
Components
Note: Data go from X1 top left to X8 bottom right.
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matrix. PCA per se does not assume any probabilistic model for the 
data. Factor models, in contrast, assume a statistical model for the data. 
To appreciate the difference, suppose we split our data into two parts, 
one to estimate data and one to test the model. If data follow a factor 
model, then the same model applies to both estimation and sample data. 
There is, however, no reason to assume that PCA works with similar 
parameters for both sets of data. 

 2. Principal components are observable time series. In our example, they 
are portfolios, while factors might be nonobservable. 

 3. Residuals of PCA will not, in general, be uncorrelated and therefore 
equation (12.7) does not hold for PCA.

We might ask if principal components are an estimate of the factors of 
factor models. Recall that thus far we have considered data sets that are 
finite in both the time dimension (i.e., time series are formed by a finite num-
ber of time points) and the number of time series. Under these assumptions, 
it has been demonstrated that principal components are a consistent esti-
mate of factors only in the case of scalar models (i.e., only if the variance of 
residuals is the same for all residuals).2 If the variances of residuals are not 
all equal, then principal components are not a consistent estimate of factors. 

Scalar models are the only case where finite factor models and PCA 
coincide; in this case, we can estimate factors with principal components. 
In all other cases (1) principal components analysis gives results similar to 
but not identical with factor analysis and (2) principal components are not 
consistent estimates of factors, though they might approximate factors quite 
well. In the next section, we will see that principal components do approxi-
mate factors well in large factor models.

apprOxIMate (LarGe) FaCtOr MOdeLS

Thus far we have considered factor models where residuals are uncorre-
lated, and therefore the covariance between the data is due only to factors. 
In this case, equation (12.7) Σ Ψ= +B B'  (where Ψ  is a diagonal matrix) 
holds. We can now ask if we can relax this assumption and accept that Ψ  
is a nondiagonal matrix. This question is suggested by the fact that, in prac-
tice, large factor models, for example factor models of returns of realistic 
data sets, do not yield a diagonal matrix of residuals. After estimating any 
reasonable number of factors, residuals still exhibit cross correlations.

2 See Hans Schneeweiss and Hans Mathes, “Factor Analysis and Principal Compo-
nents,” Journal of Multivariate Analysis 55 (1995): 105–124.
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If we look at the fundamental relationship Σ Ψ= +B B' , it is easy to 
see that there is no simple solution to this question. In fact, if Ψ  is not a 
diagonal matrix, we could nest another factor structure that might yield 
Ψ Ω= +HH ' . But nesting another factor structure would increase the num-
ber of factors. That is, if we accept that residuals be correlated, then the 
original factors cannot be the only factors given that residuals will also 
exhibit a factor structure.

Intuitively, we could split the eigenvalues into two groups, “large” and 
“small” eigenvalues so that Σ Ψ= +B B'  is the sum of two parts, one B B'  
due to large eigenvalues and the other Ψ due to small eigenvalues. However, 
this is not a theoretically satisfactory solution because the splitting into large 
and small eigenvalues is ultimately arbitrary. 

In order to find a theoretically rigorous solution, the setting of factor 
models was modified by assuming that both the number of time points T 
and the number of time series are infinite. This solution was developed by 
Stephen Ross, whose arbitrage pricing theory (APT) published in the mid 
1970s makes use of infinite factor models.3 Factor models with correlated 
residuals are called approximate factor models. The theory of approximate 
factor models was developed in the early 1980s, again in the setting of an 
infinite number of both time points and time series.4 Approximate factor 
models allow residuals to be correlated but they are defined for infinite 
markets.

The assumption of infinite markets is essential for defining approximate 
factor models. This is because the assumption of infinite markets allows for 
the distinction between those eigenvalues that grow without bounds from 
those eigenvalues that remain bounded. Roughly speaking, in an infinite 
market, true global factors are those that correspond to infinite eigenvalues 
while local factors are those that correspond to bounded eigenvalues.

Of course this distinction requires a carefully defined limit structure. In 
order to define approximate factor models, Chamberlain and Rothschild 
first defined an infinite sequence of factor models with an increasing num-
ber of series and data points.5 It is assumed that as the size of the model 
increases, only a finite and fixed number of eigenvalues grow without lim-
its while the others remain bounded. This assumption allows one to define 
an approximate factor model as a sequence of factor models such that a 

3 Stephen Ross, “The Arbitrage Theory of Capital Asset Pricing,” Journal of Eco-
nomic Theory 13 (1976): 341–360.
4 Gary Chamberlain and Michael Rothschild, “Arbitrage, Factor Structure, and Mean-
Variance Analysis in Large Asset Markets,” Econometrica 51 (1983): 1305–1324.
5 See Chamberlain and Rothschild, “Arbitrage, Factor Structure, and Mean-Variance 
Analysis.”
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finite number of eigenvalues grows without bounds, all other eigenvalues 
are bounded and residuals are correlated.

Note that APT can be rigorously defined only for an infinite market. 
The theory of approximate factor models has been extended to allow a 
more general setting where residuals and factors can be autocorrelated.6

apprOxIMate FaCtOr MOdeLS aNd pCa

A key finding of the theory of approximate factor models is that factors of 
approximate factor models are unique and can be estimated and identified 
with principal components. Of course, a limit structure has to be defined. 
In fact, per se, it does not make sense to define principal components of an 
infinite market. However, one can define a limit process so that the limit of 
principal components of growing markets coincides, in some sense, with 
the limit of factors. Hence we can say that, in infinite approximate factor 
models, factors are unique and can be estimated with principal components.

How can we realistically apply the theory of approximate factor 
models? For example, how can we apply the theory of approximate factor 
models to stock returns given that any market is finite? The answer is that 
the theory of approximate factor models is a good approximation for large 
factor models with a large number of long time series. For example, it is not 
unusual at major investment management firms to work with a universe of 
stocks that might include more than 1,000 return processes, each with more 
than 1,000 daily returns. 

When working with large models, global factors are associated with large 
eigenvalues and local factors with small eigenvalues. The separation between 
large and small eigenvalues is not as clear cut as the theoretical separation 
between infinite and bounded eigenvalues. However, criteria have been pro-
posed to make the distinction highly reasonable. Some criteria are essentially 
model selection criteria. Model selection criteria choose the optimal number 
of factors as the optimal compromise between reducing the magnitude of the 
residuals and the complexity of the model, that is, the number of parameters 
to estimate. This is the strategy adopted in Bai and Ng.7 Other criteria are 
based on the distribution of the eigenvalues of large matrices, as in Onatsky.8

6 Jushan Bai, “Inferential Theory for Factor Models of Large Dimensions,” Econo-
metrica 71 (2003): 135–171.
7 Jushan Bai and Serena Ng, “Determining the Number of Factors in Approximate 
Factor Models,” Econometrica 70 (2002): 191–221.
8 Alexei Onatski, “Determining the Number of Factors from Empirical Distribution 
of Eigenvalues,” Review of Economics and Statistics 92 (2010): 1004–1016. 
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To summarize, both factor models and principal components analysis 
try to find a parsimonious representation of data. Factor models assume a 
statistical model for data while PCA is a pure data-reduction technique. The 
two techniques are essentially equivalent in large models but there might be 
significant differences in small models.

KeY pOINtS

 ■ The statistical techniques of factor analysis and principal component 
analysis are used to reduce a large number of observed variables to a 
smaller number of factors or principal components. 

 ■ Principal component analysis involves creating a linear combination of 
a set of explanatory variables to form a set of principal components.

 ■ Classical factor models assume that there are a finite number of series 
and a finite number of observations.

 ■ Classical factor models assume that residuals are uncorrelated. In this 
case, the variance of the data is due only to factors.

 ■ Factor analysis is the process of estimating factor models.
 ■ Although maximum likelihood estimation methods can be employed to 
estimate the parameters of a model, factors are not uniquely determined 
and cannot be estimated with these methods.

 ■ Factor scores can be used to approximate factors.
 ■ Factor models are similar to multiple regressions but factors are gener-
ally nonobservable and residuals are uncorrelated.

 ■ In addition to factor analysis, the parsimonious representation of data 
can be done using principal components analysis.

 ■ PCA is a data-reduction technique, not a statistical model.
 ■ To perform PCA, (1) the eigenvectors and eigenvalues of the covariance 
matrix are computed, (2) principal components are then computed by 
multiplying data and eigenvectors, and (3) a small number of principal 
components corresponding to the largest eigenvectors are chosen and 
data as regressions on the chosen principal components are represented.

 ■ Principal components estimate factors only in the limit of very large 
models.

 ■ The main differences between factor analysis and PCA are (1) residuals 
of PCA are correlated and (2) PCA is not a statistical model.

 ■ In large factor models, factors can be estimated with good approxima-
tion with principal components.
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Chapter 13
Model estimation

a fter reading this chapter you will understand:

 ■ The concept of estimation and estimators.
 ■ The properties of estimators.
 ■ The least-squares estimation method.
 ■ How to apply the least-squares method.
 ■ The use of ordinary least squares, weighted least squares, and general-
ized least squares.

 ■ The maximum likelihood estimation method.
 ■ How to apply the maximum likelihood method.
 ■ The instrumental variables approach to estimation.
 ■ The method of moments and its generalizations.
 ■ How to apply the method of moments.

In the previous chapters of this book, we have described the most com-
monly used financial econometric techniques. However, with the exception 
of our discussion of the simple linear regression in Chapter 2, we purposely 
did not focus on methods for estimating parameters of the model. As we 
mentioned in the preface, we did not do so because most users of financial 
econometric techniques utilize commercial software where the vendor uti-
lizes the latest estimation techniques. Nevertheless, it is still important to 
understand the various estimation methods that can be applied to specific 
models. In this chapter, we discuss these methods. We begin by discussing 
the concept of estimation and the concept of sampling distributions. 

StatiStiCal eStiMation and teSting

All of the financial econometric models that we have described in this book 
have parameters that must be estimated. Statistical estimation is a set of 
criteria and methodologies for determining the best estimates of parameters. 
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Testing is complementary to estimation. Critical parameters are often tested 
before the estimation process starts in earnest, although some tests of the 
adequacy of models can be performed after estimation.

In general terms, statistics is a way to make inferences from a sample 
to the entire population from which the sample is taken. This area within 
the field of statistics is called inferential statistics (or inductive statistics) 
and is explained in more detail in Appendix C. In financial economet-
rics, the sample is typically an empirical time series. Data may be returns, 
prices, interest rates, credit spreads, default rates, company-specific finan-
cial data, or macroeconomic data. The objective of estimation techniques 
is to estimate the parameters of models that describe the empirical data.

The key concept in estimation is that of estimators. An estimator is a 
function of sample data whose value is close to the true value of a parameter 
in a distribution. For example, the empirical average (i.e., the sum of the 
sample’s values for a variable divided by the number of samples) is an esti-
mator of the mean; that is, it is a function of the empirical data that approxi-
mates the true mean. Estimators can be simple algebraic expressions; they 
can also be the result of complex calculations. 

Estimators must satisfy a number of properties. In particular, estimators

 ■ Should get progressively closer to the true value of the parameter to be 
estimated as the sample size becomes larger.

 ■ Should not carry any systematic error.
 ■ Should approach the true values of the parameter to be estimated as 
rapidly as possible.

The question related to each estimation problem should be what estimator 
would be best suited for the problem at hand. Estimators suitable for the 
very same parameters can vary quite remarkably when it comes to quality 
of their estimation. In Appendix C we explain some of the most commonly 
employed quality criteria for evaluating estimators. 

Being a function of sample data, an estimator is a random (i.e., stochas-
tic) variable. Therefore, the estimator has a probability distribution referred 
to as the sampling distribution. In general, the probability distribution of 
an estimator is difficult to compute accurately from small samples but is 
simpler for large samples.1

The sampling distribution is important. Decisions such as determining 
whether a process is integrated must often be made on the basis of esti-
mators. Because estimators are random variables, decisions are based on 

1 See Appendix C for a discussion of how the behavior of estimators changes as the 
size of the sample varies.
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comparing empirical estimators with test statistics or critical values com-
puted from the sampling distribution.2 A test statistic is used in hypothesis 
testing to decide whether to accept or reject a hypothesis.3

eStiMation MethodS

Because estimation methods involve criteria that cannot be justified by 
themselves, they are subject to some arbitrariness. The crucial point is that, 
whereas an estimation process must “fit” a distribution to empirical data, 
any distribution can, with a few restrictions, be fitted to any empirical data. 
The choice of distributions thus includes an element of arbitrariness. Sup-
pose we want to determine the probability distribution of the faces of a 
tossed coin, and in 1,000 experiments, heads comes out 950 times. We prob-
ably would conclude that the coin is highly biased and that heads has a 95% 
probability of coming up. We have no objective way, however, to rule out 
the possibility that the coin is fair and that we are experiencing an unlikely 
event. Ultimately, whatever conclusion we draw is arbitrary.

Four estimation methods are commonly used in financial econometrics: 

 ■ Least squares method
 ■ Maximum likelihood method
 ■ Method of moments method
 ■ Bayesian method

The four methods listed above are the fundamental estimation methods. 
These methods have been generalized in broad estimation frameworks that, 
however, overlap, making it difficult to create a simple taxonomy of estima-
tion methods. In fact, the least squares method and the maximum likelihood 
method are instances of a more general approach called the M-estimator 
method. The method of moments has been generalized into the generalized 
method of moments. The least squares method and the maximum likeli-
hood method are also instances of the generalized method of moments. The 
Bayesian estimation method is based on a different interpretation of statis-
tics and will not be discussed in this chapter.4 The instrumental variables 

2 Hypothesis testing is explained in Appendix C.
3 Test statistics or critical values of the autoregressive parameters are tabulated and 
are available in all major time-series software packages.
4 For readers interested in learning more about Bayesian estimation, see Svetlozar T. 
Rachev, John S. J. Hsu, Biliana Bagasheva, and Frank J. Fabozzi, Bayesian Methods 
in Finance (Hoboken, NJ: John Wiley & Sons, 2008).
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method is an approach to estimation that is essentially based on changing 
the observed variables when the original ones cannot be estimated with any 
of the above methods. The instrumental variables method is also an instance 
of the generalized method of moments.

As will be explained in this chapter, there are variants of the methods 
that are used when assumptions of a model fail. The choice between differ-
ent estimation methods depends on the data and the modeling assumptions 
we make. More specifically, when the assumptions of the general linear 
regression model that were described in Chapter 4 hold, the ordinary least 
squares method—a type of least squareds method—and the maximum 
likelihood method are appropriate. An additional consideration in select-
ing an estimation method is the computational cost that might favor one 
or another method. 

leaSt-SQUareS eStiMation Method

The least-squares (LS) estimation method is a best-fit technique adapted 
to a statistical environment. As a data-fitting technique, LS methods can 
always be used. When LS methods are applied to linear regressions they are 
called ordinary least squares (OLS). OLS methods require that the standard 
assumptions of regressions are satisfied. As we will see, when some assump-
tions of standard regression are violated, two alternative methods described 
in this chapter—weighted least squares or generalized least squares—are 
applicable.

Let’s begin with the basic task of fitting data. Suppose we observe a set of 
data and we want to find the straight line that best approximates these points. 
A sensible criterion in this case is to compute the distance of each point from 
a generic straight line, compute the sum of the squares of these distances, and 
choose the line that minimizes this sum—in short, the LS method.

To illustrate, suppose that we are given the set of 10 data points listed 
in Table 13.1. We can think of these data as 10 simultaneous observations 
of two variables. Figure 13.1 represents the scatterplot of the data, which is 
a figure with a point corresponding to each coordinate. 

Suppose we want to draw the optimal straight line that minimizes the 
sum of squared distances. A straight line is represented by all points that 
satisfy a linear relationship 

y = a + bx

After choosing a and b, a straight line will take the values yi = a + bi, i =  
1,  .  .  .  , 10 in correspondence with our sample data. For example, Figure 13.2 
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table 13.1 Sample Data for Illustration

Observation Y X

 1 0.8 0.7

 2 1.8 1.3

 3 1.1 2.9

 4 1.7 4.2

 5 1.6 5.5

 6 1.4 6.7

 7 1.6 7.4

 8 1.7 8.1

 9 2.1 9.2

10 2.4 10.6
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FigUre 13.1 Scatterplot of the 10 Sample Data in Table 13.1

represents the sample data in Table 13.1 and a straight line corresponding 
to a = 0.05, b = 0.1. 

It is evident that this straight line is not the closest possible to the 
sample points because it remains entirely on one side of the points. To 
find the optimal line we have to find a and b that minimize the sum of 
the squared distances between the sample points and the corresponding 
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points on the line. In this case, the sum for a generic a and b can be writ-
ten as:

( ) ( ) ( )
( ) ( ) ( )
( ) ( )
( ) ( )

= − − × + − − × + − − ×

+ − − × + − − × + − − ×

+ − − × + − − ×

+ − − × + − − ×

S . a b . a b . a b

. a b . a b . a b

. a b . a b

. a b . a b

0 7 0.8 1 3 1.8 1 1 2.9

1 7 4.2 1 6 5.5 1 4 6.7

1 6 7.4 1 7 8.1

2 1 9.2 2 4 10.6

2 2 2

2 2 2

2 2

2 2

It is possible to find the value that minimizes the above expression ana-
lytically by equating to zero the partial derivatives of S:

∂
∂

=
∂
∂

=
S
a

S
b

0 0

However, commercial econometric software uses iterative programs 
that find the minimum of S by an iterative searching procedure. For 
example, we can perform the above operation in MATLAB using the polyfit 
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FigUre 13.2 Scatterplot of Sample Data and the Plot of the Straight Line  
y = 0.05 + 0.1x
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function. With the function polyfit (X,Y,1) we obtain the following solution: 
a = 0.1317, b = 0.8065. Figure 13.3 represents the scatterplot of data and 
the best fitting straight line 

y = 0.1317 + 0.8065x

We can measure how accurately the straight line represents the sample 
data with the square root of sum of squared residuals, which is the sum 
S evaluated for a = 0.1317, b = 0.8065. For our sample data, we obtain 

S = 0 6566. .
Looking at the scatterplot of sample data shown in Figure 13.3, we 

might ask if a polynomial of second degree could better approximate the 
data. We can repeat the above process but using 

y a bx cx= + + 2
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FigUre 13.3 Scatterplot of Sample Data and Plot of the Best Fitting Straight Line
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instead of y = a + bx. We therefore compute the sum S as follows:

( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )

= − − × − × + − − × − ×

+ − − × − × + − − × − ×

+ − − × − × + − − × − ×

+ − − × − × + − − × − ×

+ − − × − × + − − × − ×

S . a b c . a b c

. a b c . a b c

. a b c . a b c

. a b c . a b b

. a b c . a b c

0 7 0.8 0.8 1 3 1.8 1.8

1 1 2.9 2.9 1 7 4.2 4.2

1 6 5.5 5.5 1 4 6.7 6.7

1 6 7.4 7.4 1 7 8.1 8.1

2 1 9.2 9.2 2 4 10.6 10.6

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

As in the previous case, we can find the minimum of the sum S by equat-
ing to zero the partial derivatives of the above equation. However, commer-
cial software generally uses iterative optimizers. For example, if we again 
use the function polyfit of MATLAB, specifying a polynomial of second 
degree, we obtain the polynomial 

y x x= + +0 0038 0 0889 0 8893 2. . .

Figure 13.4 represents the scatterplot of sample data and the optimal poly-
nomial.

As in the previous case, we can evaluate the square root of sum of 
squared residuals. We obtain S = 0 6483. . A second-degree polynomial offers 
a slightly better approximation to sample data than a straight line. However, 
we are now estimating three parameters, a, b, and c, instead of two as in 
the case of the straight line. Obtaining a better precision on sample data by 
increasing the order of the best fitting polynomial is not necessarily advanta-
geous. This is because a model with many parameters might fit unpredictable 
fluctuations of the data and have poor forecasting performance.

In general, a polynomial can approximate any set of data with arbitrary 
precision provided that we choose a sufficiently high degree for the approxi-
mating polynomial. For example, Figure 13.5 illustrates the approximation 
to our sample data obtained with a polynomial of degree 10. As the number 
of parameters of the polynomial is equal to the number of data points in our 
sample, the fit is perfect and the residuals are zero. 

However, Figure 13.5 well illustrates that the best fitting polynomial 
of degree 10 will not be good at approximating new data as it moves far 
from the data immediately after the rightmost point in the sample data. This 
is a fundamental aspect of estimation methods. Using models with many 
parameters, for instance approximating with polynomials of high degree, 
we can fit sample data very well. However, performance in representing or 
forecasting out-of-sample data will be poor. Model estimation is always a 
compromise between accuracy of estimates in-sample and model parsimony. 
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In order to decide what approximation is the best, we could use AIC or BIC 
criteria as discussed in Appendix E.

In the preceding illustration we used two different functional forms, a 
straight line, which is a polynomial of degree one, and a polynomial of degree 
two. The LS method can be adapted to any set of data points and to different 
functional forms (straight lines, polynomial functions, and so on). The choice 
of the functional form depends on both theoretical and statistical consider-
ations. Theoretical considerations might suggest a specific functional form 
to approximate the data. For example, suppose our objective is to model a 
series of market capitalization data of some firm. Theoretical considerations 
on firm growth will probably suggest that we try an exponential function. 

ordinary least Squares Method

Thus far we have illustrated LS methods as a technique to find an optimal 
approximation to data and we have not made any statistical assumptions. 
However, the LS method also applies to statistical models, in particular 
to regressions, as we have seen in Chapter 3. As explained above, the LS 
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FigUre 13.4 Scatterplot of Sample Data and Plot of the Best Fitting Polynomial of 
Second Degree
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method applied to simple or multiple regressions under standard assump-
tions is the OLS method to distinguish it from weighted and generalized 
least squares that we will describe shortly. 

Standard assumptions of simple and multiple regression require that 
residuals have the same variances and that they are mutually uncorrelated 
and uncorrelated with the regressors. Under these assumptions, the OLS 
method estimates the regression parameters by minimizing the sum of 
squared residuals. We have seen in Chapter 3 that the regression equation 
(3.8), which is reproduced as equation (13.1):

 y X e= +β  (13.1)

This can be estimated by finding the value of b that minimizes the sum of 
squared residuals:

 S ei
i

n

=
=
∑ 2

1

 (13.2)
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FigUre 13.5 Scatterplot of Sample Data and Plot of the Best Fitting Polynomial of 
Degree 10



Model Estimation 275

We have also seen that the estimated regression parameters can be repre-
sented in terms of the sample data by expression (3.10) in Chapter 3, which 
is reproduced here as equation (13.3):

 b X X X y= ( )−
' '

1
 (13.3)
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n = the number of samples
k = the number of regressors

The column of 1s in matrix X corresponds to the constant intercept term.
To illustrate, let’s use the data in Table 13.1. In this case, the matrix 

X has two columns, one column of 1s and the data in Table 13.1 The esti-
mated regression coefficients can be computed from equation (13.3). If we 
compute this expression (or if we perform the regression estimation with 
commercial software, for example using the MATLAB regress function) we 
obtain the following estimate for the regression coefficients: 

b =










0.8065

0.1317

which are the same coefficients we obtained above as the best fitting 
straight line.

Recall from Chapter 3 that the regressors X are assumed to be deter-
ministic while the dependent variable y is a random variable. This means 
that in different samples, only the y change while the X remain fixed. Note 
that, if there are k regressors plus a constant term, then X X X' '( )−1

 is a 
k × n matrix and y is an n × 1 vector in equation (13.3). Hence the vector 
b is the product of a k × n matrix and an n × 1 vector. Each component of 
b is therefore a linear combination of sample data y given that the X are 
fixed. Hence equation (13.3) shows that the OLS estimator of b is a linear 
estimator. 

The estimator b is a function of sample data y given that the X remain 
fixed. The sample data y are random data and therefore b is a random vari-
able. Recall from Chapter 3 that we assume that the regression variables are 
normally distributed and therefore b is a linear combination of normal vari-
ables and is therefore a normal variable. Suppose that the true regression 
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model is the expression shown in equation (3.1) in Chapter 3 reproduced 
here as equation (13.4):

 = β +β + + β +εy x x... k k0 1 1  (13.4) 

Then the difference b − β, where β β β β= ( )0 1, , . . . , 'k  is the vector of true 
parameters, is a normally distributed random variable. 

It can be demonstrated that E b −( ) =β 0; that is, the expectation of 
the estimated regression coefficients is equal to the true parameters and 
the variance-covariance of the difference b − β is cov 'b X X−( ) = ( )−β σ1 2 
where σ2 is the variance of the data. If the regression variables are normally 
distributed, the above can be concisely stated by saying that the estimator b 
is distributed as a normal multivariate variable with mean β and covariance 
matrix X X'( )−1 2σ . 

The variance of an estimator is a measure of its accuracy. The Gauss-
Markov theorem states that the OLS regression estimator is the best linear 
unbiased estimator (generally referred to by the acronym BLUE) in the 
sense that it has the lowest possible variance among all linear unbiased 
estimators.

Weighted least Squares Method
The OLS method can be generalized in different ways. The first important 
generalization is when all variables, X and y, are assumed to be random 
variables. In this case, the computation of the regression coefficients from 
the observed data remains unchanged. In fact, with OLS we compute the 
coefficients b given the data. Hence, we estimate b with the same formula as 
in equation (13.4):

 b X X X X y= ( )−
' '

1
 (13.5)

This formula is numerically identical to that of equation (13.4) but the data 
X are now a realization of the random variables X. 

Assuming that residuals and regressors are independent, the OLS esti-
mator given by equation (13.5) is still an unbiased estimator even when 
regressors are stochastic. However, the covariance of the estimator is no lon-
ger X X'( )−1 2σ . This expression represents the regressors’ covariance matrix 
under the assumption that regressors X are fixed. However, if regressors are 
stochastic, X X'( )−1 2σ  is the conditional variance given X. To obtain the final 
covariance we have to multiply X X'( )−1 2σ  by the distribution of the regres-
sors. In general, even if data are normally distributed, this is not a normal 
distribution.
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Another generalization involves the case when regressors are determin-
istic but we relax the assumption that all errors e have the same variance. 
As explained in Chapter 4, this is the homoscedasticity property. In prac-
tice, many financial time series are not homoscedastic, but have different 
variance. Time series with different variances are said to heteroscedastic. 
In Chapter 11 we explained time series whose heteroscedasticity can be 
described through an autoregressive process. Here we consider the case 
where the variances of each residual are perfectly known.

Consider the regression equation given by equation (13.4) and consider 
the covariance matrix of residuals: 

 W E= = ( )cov( ) 'ε εε  (13.6)

W is an n n×  matrix. Under the standard assumptions of regression given 
in Chapter 3, W is proportional to the identity matrix C where σ2 is the 
constant variance of the residuals. Let’s relax this assumption and assume 
that W is a diagonal matrix but with different diagonal terms: 
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In the above case, the usual OLS formula does not work. It has been 
demonstrated, however, that a modified version of OLS called weighted 
least squares (WLS) works. WLS seeks the minimum of the sum of squared 
weighted residuals. Instead of minimizing the sum of squared residu-
als given by equation (13.2), it minimizes the sum of weighted squared 
residuals:

 WS w ei i
i

n

=
=
∑ 2

1

 (13.8)

Given the regression equation y x xk k= + + + +β β β ε0 1 1 � , if the variance of 
each residual term is known exactly and is given by the matrix in equation 
(13.7), then WLS seeks to minimize
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 (13.9)
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It can be demonstrated that the estimator of the regression coefficients 
becomes

 b X V X X V y= ( )− − −' '1 1 1  (13.10)

and that this WLS estimator is unbiased and BLUE. If the residuals are 
homoscedastic, the matrix V becomes the identity matrix and the estimator 
b becomes the usual expression given by equation (13.5).

generalized least Squares Method

The WLS estimator can be generalized to the generalized least squares (GLS) 
estimator. The GLS estimator applies when residuals are both heteroscedas-
tic and autocorrelated. In this case, equation (13.7) becomes
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where V is now a full symmetric covariance matrix. The GLS estimator 
of the regression parameters, conditional on the realization X, is given by 
the same expression as in equation (13.10) but where now V is a full cova-
riance matrix. The GLS estimator is linear, unbiased, and has minimum 
variance among the linear estimators.

The theory of WLS and that of GLS assume that the covariance matrix of 
residuals is perfectly known. This is the key limitation in applying WLS and GLS 
in practice. In practice, we have to estimate the covariance matrix of residuals. 
In an ad hoc iterative procedure, we first estimate a regression and residuals 
with OLS, then estimate the covariance matrix of residuals, and lastly estimate 
a new regression and relative residuals with GLS, and proceed iteratively.

the MaXiMUM liKelihood eStiMation Method

The maximum likelihood (ML) estimation method involves maximizing the 
likelihood of the sample given an assumption of the underlying distribu-
tion (for example, that it is a normal distribution or a uniform distribu-
tion). Likelihood is the distribution computed for the sample. In order to 
apply ML estimation methods we must know the functional form of the 
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distributions of the data. If we do not know the distribution, we cannot 
compute the likelihood function. ML methods can be difficult to apply in 
practice in models that include hidden variables.5 We will first give an intu-
ition for the method and then illustrate how MLE works for regressions.

The intuition of choosing those parameters that maximize the likeli-
hood of the sample is simple. For example, suppose we toss a coin 1,000 
times and get 950 heads and 50 tails. What can we conclude about the 
probability of obtaining heads or tails in tossing that coin? Although every 
sequence is theoretically possible, intuition tells us that the coin is biased 
and that it is reasonable to assume that the probability of a head is 95% and 
the probability of a tail is only 5%. 

The MLE principle formalizes this intuition. If we let p denote the prob-
ability of heads and q the probability of tails, then any particular sequence 
that contains 950 heads and 50 tails has probability

L p p= −( )950 50
1

This probability L is the likelihood of the sequence. To maximize likelihood, 
we equate to zero the derivatives of the likelihood with respect to p:

 
dL
dp

p p p p p= −( ) − −( ) =− −
950 1 50 1 1950 1 50 950 50 1 950 −−( ) −

−




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=p
p p

50 950 50
1

0

This equation has three solutions:

 

( )

=
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−
−







= ⇒ − = ⇒ = ⇒ =

p

p

p p
p p p p

0

1

950 50
1

0 950 1 50 950 1000 0.95

The first two solutions are not feasible and therefore the maximum likeli-
hood is obtained for p = 0 95.  as suggested by intuition. 

application of Mle to regression Models 

Let’s now discuss how to apply the MLE principle to regressions, as well as 
factor models described in the previous chapter. Let’s first see how the MLE 

5 A hidden variable is a variable that is not observed but can be computed in function 
of the data. For example, in ARCH/GARCH models described in Chapter 11, volatil-
ity is a hidden variable computed through the ARCH/GARCH model.
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principle is applied to determine the parameters of a distribution. We will 
again use our sample in Table 13.1 and assume that sample data y are random 
draws from a normal distribution with mean µ  and variance σ2. Therefore, 
the normal distribution computed on the sample data will have the form: 

 P y
y

ii
i( ) = −
−( )







 =1

2 2
1 10
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2σ π
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exp , . . . ,  (13.12)

As the data are assumed to be independent random draws, their likeli-
hood is the product
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We can simplify the expression for the likelihood by taking its loga-
rithm. Because the logarithm is a monotonically growing function, those 
parameters that maximize the likelihood also maximize the logarithm of 
the likelihood and vice versa. The logarithm of the likelihood is called the 
log-likelihood. Given that the logarithm of a product is the sum of the loga-
rithms, we can write
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We can explicitly compute the log-likelihood of the sample data: 

log log logL

. .
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−
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This is the expression that needs to be maximized in order to determine the 
parameters of the normal distribution that fit our sample data y. Maximiza-
tion can be achieved either analytically by equating to zero the derivatives 
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of logL with respect to the mean µ and variance σ2 or using commercial 
software. We obtain the following estimates:

µ =
σ =

σ =

1.5600

0.4565

0.20842

application of Mle to regression Models

We can now discuss how to apply the MLE principle to the estimation of 
regression parameters. Consider first the regression equation (13.4). Assum-
ing samples are independent, the likelihood of the regression is the product 
of the joint probabilities computed on each observation: 

 L P y x xi i ik
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Let’s assume that the regressors are deterministic. In this case, regressors 
are known (probability equal to 1) and we can write
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If we assume that all variables are normally distributed we can write
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We can write this expression explicitly as 
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and
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The first term is a constant, the second and the third terms are negative; 
therefore, maximizing the log-likelihood is equivalent to finding the solution 
of the following minimization problem:

 β σ σ
σ

β β β, argmin log( ) = ( ) + − − − −( )n y x xi k k
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The analytic solution to this problem requires equating to zero the par-
tial derivatives with respect to the arguments. Computing the derivatives of 
equation (13.15) yields the following expressions:
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The first condition is exactly the same condition as that obtained with the 
OLS method. The second expression states that the variance σ2  is estimated 
by the empirical variance of the sample residuals. We find the important 
result that, if variables are normally distributed, OLS and MLE estimation 
methods yield exactly the same estimators.

application of Mle to Factor Models 

The same reasoning applies to factor models. Consider the factor model 
equation (12.3) from Chapter 12:

y a Bf t Tt t t= + + =ε ,  , . . . ,1

The variables y are the only observable terms. If we assume that the vari-
ables yt are normally distributed, we can write

P y N at( ) = ( ),Σ  

where a is the vector of averages and Σ is the covariance matrix of the yt. 
Because the logarithm is a monotone function, maximizing the likelihood is 
equivalent to maximizing the log-likelihood 

log logL P yt
t

T

( ) = ( )( )
=
∑

1
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A normal distribution has the following multivariate probability distri-
bution function: 
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From equation (13.9), we know that Σ Ψ= +B B' ; we can therefore 
determine the parameters B,Ψ by maximizing the log-likelihood with 
respect to these parameters. 

ML is a widely used estimation method. Note, however, that the ML 
method implies that one knows the form of the distribution, otherwise, one 
cannot compute the likelihood. 

inStrUMental VariableS

The instrumental variables (IV) estimation approach is a strategy for chang-
ing the variables of an estimation problem that cannot be solved with any 
of the above methods. To understand this approach, consider that in all 
regression models discussed thus far, it is imperative that regressors and 
errors are uncorrelated. This condition ensures that the dependent variable 
is influenced independently by the regressors and the error terms. Regres-
sors are said to be exogenous in the regression model. If this condition is not 
satisfied, the OLS estimator of regression parameters is biased. 

In practice, in regressions commonly used in financial modeling the con-
dition of independence of errors and regressors is often violated. This hap-
pens primarily because errors include all influences that are not explicitly 
accounted for by regressors and therefore some of these influences might 
still be correlated with regressors. OLS estimation is no longer suitable 
because the regression problem is not correctly specified. 

A possible solution to this problem is given by the IV approach, which 
solves a different regression problem. Consider the usual regression equa-
tion (13.4) where we allow some regressors x to be correlated with the 
errors. Suppose there is a vector of variables z of size equal to k such that 
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the variables z are independent from the errors ε and are correlated with x. 
The variables z are referred to as instruments.

Instruments lead to a consistent estimator of the regression parameters. 
In fact, it can be demonstrated that the following (k + 1)-vector is a consis-
tent IV estimator of the regression parameters:

 b Z X Z y b k= ( ) = ( )' ' , . . . , 'β β0  (13.20)

In general, the IV estimator is not efficient. Efficiency of the IV estimators 
improves if the instruments are highly correlated with the regressors. In prac-
tice, it might be very difficult to find instruments for a given regression model.

Method oF MoMentS 

The method of moments (MOM) estimation approach is the oldest estima-
tion method for estimating the parameters of a population. The intuition 
behind the MOM is simple: MOM estimates the parameters of a probability 
distribution by equating its moments with the empirical moments computed 
for the sample. The MOM assumes that (1) we know the form of the dis-
tribution of the population from which the sample has been extracted and 
(2) moments can be expressed in terms of the parameters of the distribution. 
In general, this latter condition is satisfied for all usual distributions.6 

Given a random variable X with a given distribution P P= ( )ϑ , where ϑ 
is a k-vector of parameters, the jth moment of P is defined as 

µ µ ϑj j
jE X= ( ) = ( )

Suppose now that we have a sample of n variables independently extracted 
from the same distribution P. The jth empirical moment of P, defined as

m
X

nj

i
j

i

n

= =
∑

1

is a function of the data. It is known that empirical moments are consistent 
estimators of moments.

6 However, theoretically it might be difficult to define a distribution in terms of 
parameters. For example, a distribution could be defined as the solution of a differ-
ential equation. This could make it very difficult to establish a relationship between 
moments and parameters.
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If we have to estimate k parameters, we can compute the first k empiri-
cal moments and equate them to the corresponding first k moments. We 
obtain k equations the solutions for which yield the desired parameters: 
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For example, suppose we know that the Y data in our sample given by 
equation (13.1) are a random extraction from a normal distribution. A nor-
mal distribution is fully characterized by two parameters, the mean and the 
variance. The first moment is equal to the mean; the second moment is equal 
to the variance plus the square of the first moment. In fact: 
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 (13.22)

Computing the first two empirical moments for the sample data given 
by equation (13.1), we obtain

m

m
1

2

1 56

2 642

=
=

.

.

and solving for σ µ,  from equation (13.22) we obtain

µ =

σ = − =

1.56

2.642 1.56 0.20842 2

Therefore, the MOM estimates that our sample data are drawn from the 
following normal distribution: N(1.56, 0.2084). This is the same result 
obtained above using the MLE method.

generalized Method of Moments

MOM is a parametric method insofar as it assumes that the functional form 
of the distribution is known. MOM has been generalized to the generalized 
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method of moments (GMM).7 GMM does not assume complete knowledge 
of the distribution but seeks to optimize a number of parameters of the 
distribution. 

To understand how the GMM works, let’s first go back to the previous 
example and compute both the third empirical moment and the third theo-
retical moment in function of µ σ, . The theoretical moment is obtained by 
expanding the basic definition of moment as follows:
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Let’s compare theoretical and empirical moments:

µ = =
µ = =
µ = =

m

m

m

1.5600 1.5600

2.6420 2.6420

4.7717 4.7718

1 1

2 2

3 3

The theoretical and empirical values of the first two moments are obviously 
identical because of equation (13.21). Note also that the theoretical and 
empirical values of the third moment also almost coincide. If we compute 
the differences,

 g
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we obtain g ≈ 0. 
In order to illustrate the GMM, let’s use the sample of data shown in 

Table 13.2. Notice that the values for X are the same as in Table 13.1 but the 

7 The GMM framework was proposed in 1982 by Lars Hansen, the 2013 corecipient 
of the Nobel Prize in Economic Sciences. See Lars P. Hansen, “Large Sample Prop-
erties of Generalized Methods of Moments Estimators,” Econometrica 50 (1982): 
1029–1054.
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values for Y for some of the observations are different. If we repeat the same 
calculations as above, we find the following empirical moments:

m

m

m

1.8600

4.5220

13.9608

1

2

3

=
=
=

If we apply the MOM and equate the first two theoretical and empirical 
moments, using equation (13.21) we obtain

µ
σ

=
= − =
1 86

1 862 2

.

.4.5220 1.0624

Using these parameters we can now compute the first three theoretical 
moments:
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3 3

µ = =
µ = =
µ = =

While the first two theoretical and empirical moments coincide by con-
struction as in the previous case, there is a significant difference between the 
theoretical and empirical values of the third moment. The vector g in equa-
tion (13.22) assumes the following values:

g

0

0

–1.5978
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table 13.2 Sample Data to Illustrate the GMM

Observation Y X

 1 0.7 0.7

 2 1.3 1.3

 3 1.1 2.9

 4 1.7 4.2

 5 1.6 5.5

 6 1.4 6.7

 7 1.6 7.4

 8 1.7 8.1

 9 3.1 9.2

10 4.4 10.6
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Now, given that a normal distribution has only two parameters, there 
is no way we can fit exactly the three first moments obtaining g = 0. How-
ever, we can try to estimate the parameters of the normal distribution with 
some optimization criterion that involves the first three (or eventually more) 
moments. This is the essence of the GMM: optimizing using more moments 
than parameters. How can we define an optimization criterion? It is rea-
sonable to base an optimization criterion on some linear combination of 
the products of the differences between theoretical and empirical moments. 
Therefore, if we write the vector of these differences as in equation (13.22), 
an optimization criterion could minimize the expression

 Q Y g Wgµ σ, , '( ) =  (13.24)

where W is a positive definite symmetric weighting matrix. An expression of 
the form in equation (13.24) is called a quadratic form. 

The choice of the matrix W is a critical point. Each choice of W appor-
tions the weights to each of the three moments. To illustrate, let’s assume 
that we give the same weight to each moment and therefore we choose W 
equal to the identity matrix. Hence, Q Y g gµ σ, , '( ) = . If we minimize this 
expression, for example using the MATLAB function fminsearch, we obtain 
the following estimates for the model’s parameters:

µ
σ

σ

=
=

=

1 7354

2

.

1.2930

1.6718

If we compute the theoretical moments, we obtain the following com-
parison:

m
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3 3

µ = =
µ = =
µ = =

and therefore the vector g becomes:
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and the objective function Q assumes the value Q = 0.0425, while its initial 
value was Q = 2.5528.

The above illustration includes the key elements of the GMM. The GMM 
is based on identifying a number of independent conditions that involve both 
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the data and the parameters. These conditions typically take the form of 
equations where the expectation of given functions is equated to zero: 

E h Xi t ,β( )  = 0  

In our illustrations, these conditions were the conditions that defined the 
first three moments of a normal variable. 

The GMM replaces these conditions with averages and constructs the 
vector:

∑ ( )= β
=

g
T

h X
1

,i i t
t

T

1

where T is the number of available samples and determines β minimizing the 
quadratic form: Q Y g Wgµ σ, , '( ) = . 

the M-eStiMation Method and M-eStiMatorS

Both LS and ML methods are based on minimizing/maximizing a function of 
the data. This approach has been generalized. The M-estimators are estimators 
obtained by maximizing given functions of the data and parameters. This gen-
eralization proved fruitful in the field of robust statistics, which is described in 
Appendix F and in Chapter 8 on robust regressions. In fact, by choosing appro-
priate functions to be minimized, estimation can give less weight to observa-
tions that fall very far from the mean, thereby making estimators robust.

KeY pointS

 ■ Inferential statistics infer the properties of a population from a sample.
 ■ Estimation is a set of methods to determine population parameters from 
a sample. An estimator is a function of sample data. 

 ■ The estimation methods commonly used in financial econometrics are 
the least squares method, maximum likelihood method, method of 
moments, and Bayesian method.

 ■ The least squares estimation method estimates parameters by minimiz-
ing the sum of squared residuals.

 ■ Least squares estimators of standard regressions, called ordinary least 
squares (OLS) estimators, are linear functions of the sample data.

 ■ Least squares estimators of regressions are the best linear unbiased 
estimators.
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 ■ The weighted least squares (WLS) estimator, used when residuals have 
different variance, minimizes a weighted sum of squared residuals.

 ■ The generalized least squares (GLS) estimator, used when residuals 
have different variance and are correlated, minimizes a weighted sum of 
squared residuals.

 ■ The maximum likelihood method estimates parameters by maximizing 
the probability of the distribution on the data. 

 ■ The maximum likelihood method assumes the form of the distribution 
is known.

 ■ If variables are normally distributed, the maximum likelihood and least 
squares methods give the same results.

 ■ When residuals are correlated with regressors, we cannot use the OLS 
method and instead we might use the instrumental variables (IV) 
approach.

 ■ The IV approach replaces regressors correlated with the residuals with 
new variables that are correlated with the regressors but uncorrelated 
with the residuals.

 ■ The method of moments equates empirical and theoretical moments.
 ■ The generalized method of moments uses more conditions than param-
eters and replaces exact determination of parameters with optimization.
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CHAPTER 14
Model Selection 

A fter reading this chapter you will understand:

 ■ The notion of machine learning.
 ■ The difference between an approach based on theory and an approach 
based on learning.

 ■ The relationship between the size of samples and the complexity of 
models that can be learned.

 ■ The concept of overfitting.
 ■ The use of penalty functions in learning.
 ■ The concept of data snooping.
 ■ The concept of survivorship bias.
 ■ The concept of model risk.
 ■ Methods for mitigating model risk.
 ■ Model averaging.

In the previous chapters in this book, we described the most important 
financial econometric tools. We have not addressed how a financial modeler 
deals with the critical problem of selecting or perhaps building the optimal 
financial econometric model to represent the phenomena they seek to study. 
The task calls for a combination of personal creativity, theory, and machine 
learning. In this chapter and the one to follow we discuss methods for model 
selection and analyze the many pitfalls of the model selection process.

PHYSICS AND ECONOMICS: TWO WAYS OF MAKING SCIENCE 

In his book, Complexity, Mitchell Waldrop describes the 1987 Global Econ-
omy Workshop held at The Santa Fe Institute, a research center dedicated 
to the study of complex phenomena and related issues.1 Attended by 

1 M. Mitchell Waldrop, Complexity (New York: Simon & Schuster, 1992).
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distinguished economists and physicists, the seminar introduced the idea that 
economic laws might be better understood by applying the principles of phys-
ics and, in particular, the newly developed theory of complex systems. An 
anecdote from the book is revealing of the issues specific to economics as a 
scientific endeavor. According to Waldrop, physicists attending the seminar 
were surprised to learn that economists used highly sophisticated mathemat-
ics. A physicist attending the seminar reportedly asked Kenneth Arrow, the 
corecipient of the 1972 Nobel Memorial Prize in Economics, why, given the 
lack of data to support theories, economists use such sophisticated mathemat-
ics. Arrow replied, “It is just because we do not have enough data that we use 
sophisticated mathematics. We have to ensure the logical consistency of our 
arguments.” For physicists, in contrast, explaining empirical data is the best 
guarantee of the logical consistency of theories. If theories work empirically, 
then mathematical details are not so important and will be amended later; if 
theories do not work empirically, no logical subtlety will improve them.

This anecdote is revealing of one of the key problems that any modeler 
of economic phenomena has to confront. On the one side, as with econom-
ics, the field of financial economics is an empirical science based on empiri-
cal facts. However, as data are scarce, many theories and models fit the 
same data.

Given the importance of model selection, let us discuss this issue before 
actually discussing estimation issues. It is perhaps useful to compare again 
the methods of financial economics and of physics. In physics, the process of 
model choice is largely based on human creativity. Facts and partial theories 
are accumulated until scientists make a major leap forward. Physicists are 
not concerned with problems such as fitting the data to the same sample 
that one wants to predict—referred to as data snooping and explained later 
in this chapter. In general, data are overabundant and models are not deter-
mined through a process of fitting and adaptation.

Now consider financial economics, where the conceptual framework 
is totally different. First, though apparently many data are available, these 
data come in vastly different patterns. For example, the details of develop-
ment of a financial system and instruments are very different from year to 
year and from country to country. Asset prices seem to wander about in 
random ways. Introducing a concept that plays a fundamental role in for-
mulating investment strategies explained in the next chapter, we can state: 
From the point of view of statistical estimation, financial economic data are 
always scarce given the complexity of their patterns.

Attempts to discover simple deterministic laws that accurately fit empiri-
cal financial data have proved futile. Furthermore, as financial data are the 
product of human artifacts, it is reasonable to believe that they will not 
follow the same laws for very long periods of time. Simply put, the structure 
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of any financial system and economy change too much over time to confirm 
that laws in financial economics are time-invariant laws of nature. One is, 
therefore, inclined to believe that only approximate laws can be discovered. 
The attention of the modeler has therefore to switch from discovering deter-
ministic paths to determining the time evolution of probability distributions.2

The adoption of probability as a descriptive framework is not with-
out a cost: discovering probabilistic laws with confidence requires working 
with very large populations (or samples). In physics, this is not a problem 
as physicists have very large populations of particles.3 In finance, however, 
populations are typically too small to allow for a safe estimate of prob-
ability laws; small changes in the sample induce changes in the laws. We 
can, therefore, make the following general statement: Financial data are too 
scarce to allow one to make probability estimates with complete certainty. 
(The exception is the ultra high-frequency intraday data, five seconds or 
faster trading.)

As a result of the scarcity of financial data, many statistical models, even 
simple ones, can be compatible with the same data with roughly the same 
level of statistical confidence. For example, if we consider stock price pro-
cesses, many statistical models—including the random walk—compete to 
describe each process with the same level of significance. Before discussing 
the many issues surrounding model selection and estimation, we will briefly 
discuss the subject of machine learning and the machine learning approach 
to modeling.

MODEL COMPLEXITY AND SAMPLE SIZE 

Let’s now discuss three basic approaches to financial modeling, namely the

 1. Machine learning approach
 2. Theoretical approach
 3. Machine learning theoretical approach

The machine learning theoretical approach is a hybrid of the two former 
approaches.

2 In physics, this switch was made at the end of the nineteenth century, with the intro-
duction of statistical physics. It later became an article of scientific faith that one can 
arrive at no better than a probabilistic description of nature.
3 Although this statement needs some qualification because physics has now reached 
the stage where it is possible to experiment with small numbers of elementary par-
ticles, it is sufficient for our discussion here.
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The machine learning approach to financial modeling is in principle a 
consequence of the diffusion of low-cost high-performance computers.4 It is 
based on using a family of very flexible models that can approximate sam-
ple data with unlimited precision.5 Consider that some “machine learning” 
appears in most financial econometric endeavors. For example, determining 
the number of lags in an autoregressive model is a problem typically faced in 
financial econometric modeling (see Chapter 9). 

However, practice has shown that if we represent sample data with very 
high precision, we typically obtain poor forecasting performance. Here is 
why. In general, the main features of the data can be described by a sim-
ple structural model plus unpredictable noise. As the noise is unpredict-
able, the goal of a model is to capture the structural components. A very 
precise model of sample data (in-sample) will also try to match the unpre-
dictable noise. This phenomenon, called overfitting (discussed later in this 
chapter), leads to poor (out-of-sample) forecasting abilities. Obviously there 
is no guarantee that data are truly described by a simple structural model 
plus noise. Data might be entirely random or might be described by a truly 
complex model.

To address the problem of overfitting, the machine learning theory sug-
gests criteria to constrain the complexity of the model so that it fits sample 
data only partially but, as a trade-off, retains some forecasting power. The 
intuitive meaning is the following: The structure of the data and the sample 
size dictate the complexity of the laws that can be learned by computer 
algorithms. This is typically accomplished by introducing what is called a 
penalty function. For example, determining the number of lags in an autore-
gressive model is typically solved with methods of machine learning theory 
by selecting the number of lags that minimize the sum of the loss function of 
the model plus a penalty function.

This is a fundamental point. If we have only a small sample data set, we 
can learn only simple patterns, provided that these patterns indeed exist. 

4 In the 1970s, a full-fledged quantitative theory of machine learning was developed 
in V. N. Vapnik and Y. A. Chervonenkis, Theory of Pattern Recognition (Moscow: 
Nauka, 1974). While this theory goes well beyond the scope of this chapter, the prac-
tical implication of the theory is what is important here: model complexity must be 
constrained in function of the sample.
5 Neural networks are a classical example. With an unrestricted number of layers and 
nodes, a neural network can approximate any function with arbitrary precision. We 
express this fact by saying that a neural network is a universal function approxima-
tor. The idea of universal function approximators is well known in calculus. The 
Taylor series and Fourier series are universal approximators for broad classes of 
functions.
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Learning theory constrains the dimensionality of models to make them 
adapt to the sample size and structure. A central idea in machine learn-
ing theory is to add a penalty term to the objective function wherein the 
penalty terms increases with the number of parameters but gets smaller if 
the number of sample points increases.6 That is, the penalty function is a 
function of the size of the sample and of the complexity of the model. One 
compares models by adding the penalty function to the likelihood func-
tion (a definition of the likelihood function is provided in Chapter 13). In 
this way, one can obtain an ideal trade-off between model complexity and 
forecasting ability.

At the other end of the landscape, the theoretical approach is based on 
human creativity. In this approach, models are the result of new scientific 
insights that have been embodied in theories. The theoretical approach is 
typical of the physical sciences. Perhaps the most well-known example of a 
theoretical model in financial economics is the capital asset pricing model 
(CAPM).

The hybrid approach retains characteristics of both the theoretical and 
machine learning approaches. It uses a theoretical foundation to identify 
families of models but uses a learning approach to choose the correct model 
within the family. For example, the ARCH/GARCH family of models (see 
Chapter 11) is suggested by theoretical considerations while, in its prac-
tical application, the right model is selected through a learning approach 
that identifies the model parameters. Thus, ultimately, in modern computer-
based financial econometrics, there is no clear-cut distinction between a 
learning approach versus a theory-based a priori approach.

At this point, the four key conclusions regarding model complexity and 
sample size are:

 1. Financial data are generally scarce for statistical estimation given the 
complexity of their patterns.

 2. Financial data are too scarce for sure statistical estimates.
 3. The scarcity of financial data means that the data might be compatible 

with many different models.
 4. There is a trade-off between model complexity and the size of the data 

sample.

The last two conclusions are critical.

6 Several proposals have been made as regards the shape of the penalty func-
tion. Three criteria in general use are (1) the Akaike information criterion (AIC), 
(2) Bayesian information criterion (BIC), and (3) maximum description length prin-
ciple. The first two are described in Appendix E.



296 The Basics of financial economeTrics

DATA SNOOPING

One of the most serious mistakes that a financial econometrician seeking 
to formulate an investment strategy can make is to look for rare or unique 
patterns that look profitable in-sample but produce losses out-of-sample. 
This mistake is made easy by the availability of powerful computers that can 
explore large amounts of data: any large data set contains a huge number 
of patterns, many of which look very profitable. Otherwise expressed, any 
large set of data, even if randomly generated, can be represented by models 
that appear to produce large profits.

Given the scarcity of data and the basically uncertain nature of any 
financial econometric model, it is generally necessary to calibrate models 
on some data set, the so-called training set, and test them on another data 
set, the test set. In other words, it is necessary to perform an out-of-sample 
validation on a separate test set. The rationale for this procedure is that 
any machine learning process—or even the calibration mechanism itself—is 
a heuristic methodology, not a true discovery process. Models determined 
through a machine learning process must be checked against the reality of 
out-of-sample validation. Failure to do so is referred to as data snooping, 
that is, performing training and tests on the same data set.

Out-of-sample validation is typical of machine learning methods. 
Learning entails models with unbounded capabilities of approximation 
constrained by somewhat artificial mechanisms such as a penalty function. 
This learning mechanism is often effective but there is no guarantee that it 
will produce a good model. Therefore, the learning process is considered 
an example of discovery heuristics. The true validation test, say the experi-
ments, has to be performed on the test set. Needless to say, the test set must 
be large and cover all possible patterns, at least in some approximate sense.

Data snooping is not always easy to understand or detect. It is a result 
of a defect of training processes which must be controlled but which is very 
difficult to avoid given the size of data samples currently available. Suppose 
samples in the range of 10 years are available.7 One can partition these data 
and perform a single test free from data snooping biases. However, if the test 
fails, one has to start all over again and design a new strategy. The process 
of redesigning the modeling strategy might have to be repeated several times 
over before an acceptable solution is found. Inevitably, repeating the process 
on the same data includes the risk of data snooping.

7 Technically much longer data sets on financial markets, up to 50 years of price data, 
are available. While useful for some applications, these data may be of limited use 
for many financial econometric applications due to problems faced by asset manag-
ers given the changes in the structure of the economy.
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The real danger in data snooping is the possibility that by trial and 
error, one hits upon a model that casually performs well both in-sample and 
out-of sample but that will perform poorly in real-world forecasts. In the 
next chapter, we explore at length different ways in which data snooping 
and other biases might enter the model discovery process and we propose a 
methodology to minimize the risk of biases, as will be explained in the last 
section of this chapter.

SURVIVORSHIP BIASES AND OTHER SAMPLE DEFECTS

Let us now see how samples might be subject to biases that reduce our ability 
to correctly estimate model parameters. In addition to errors and missing data, 
a well-known type of bias in financial econometrics is survivorship bias, a bias 
exhibited by samples selected on the basis of criteria valid at the last date in the 
sample time series. In the presence of survivorship biases in our data, return 
processes relative to firms that ceased to exist prior to that date are ignored. 
For example, in the study of the performance of mutual funds, poorly per-
forming mutual funds often close down (and therefore drop out of the sample) 
while better performing mutual funds continue to exist (and therefore remain 
in the sample). In this situation, estimating past returns from the full sample 
would result in overestimation due to survivorship bias. As another example, 
suppose a sample contains 10 years of price data for all stocks that are in the 
S&P 500 today and that existed for the last 10 years. This sample, apparently 
well formed, is, however, biased. The selection, in fact, is made on the stocks of 
companies that are in the S&P 500 today, that is, those companies that have 
“survived” in sufficiently good shape to still be in the S&P 500 aggregate. 

Survivorship bias arises from the fact that many of the surviving entities 
(mutual funds or individual stocks) successfully passed through some dif-
ficult period. Surviving the difficulty is a form of reversion to the mean. An 
asset manager may indeed produce trading profits buying cheap when the 
company is facing difficulty and exploiting the subsequent recovery. At the 
end of the period, we know what firms recovered.

Survivorship bias is a consequence of selecting time series, asset price 
time series in particular, based on criteria that apply at the end of the period. 
Avoiding the survivorship bias seems simple in principle. It might seem suf-
ficient to base any sample selection at the moment where the forecast begins, 
so that no invalid information enters the strategy prior to trading. However, 
the fact that companies are founded, merged, and closed plays havoc with 
simple models. In fact, calibrating a simple model requires data for assets 
that exist over the entire training period. This in itself introduces a poten-
tially substantial training bias.
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A simple model cannot handle processes that start or end in the middle 
of the training period. On the other hand, models that take into account 
the founding or closing of firms cannot be simple. Consider, for example, a 
simple linear autoregressive model (see Chapter 9). Any addition or deletion 
of companies introduces a nonlinearity effect into the model and precludes 
using standard tools such as the ordinary least squares method.

There is no ideal solution. Care is required in estimating possible perfor-
mance biases consequent to sample biases. Suppose that we make a forecast 
of return processes based on models trained on the past three or four years 
of returns data on the same processes that we want to forecast. Clearly 
there is no data snooping because we use only information available prior 
to forecasting. However, it should be understood that we are estimating our 
models on data that contain biases. If the selection of companies to forecast 
is subject to strong criteria, for example companies that are included in a 
major stock index such as the S&P 500, it is likely that the model will suffer 
a loss of performance. This is due to the fact that models will be trained on 
spurious past performance. If the modeler is constrained to work on a spe-
cific stock selection, for example, in order to create an active strategy against 
a selected benchmark, the modeler might want to reduce the biases applying 
his or her own judgment.

The survivorship bias is not the only possible bias of sample data. More 
in general, any selection of data contains some bias. Some of these biases 
are intentional. For example, selecting large market capitalization compa-
nies or small market capitalization companies introduces special behavioral 
biases that are intentional. However, other selection biases are more difficult 
to appreciate. In general, any selection based on stock indexes introduces 
index-specific biases in addition to the survivorship bias. Consider that pres-
ently thousands of indexes are in use. Institutional investors and their con-
sultants use these indexes to create asset allocation strategies and then give 
the indexes to asset managers for active management.

Anyone using financial econometrics to create active management strate-
gies based on these stock indexes should be aware of the biases inherent in 
the indexes when building their strategies. Data snooping applied to carefully 
crafted stock selection can result in poor performance because the asset selec-
tion process inherent in the index formation process can produce very good 
results in sample; these results vanish out-of-sample as “snow under the sun.”

Moving Training Windows

Thus far we have assumed that the data generating process (DGP) discussed 
in Chapter 1 exists as a time-invariant model. Can we also assume that 
the DGP varies and that it can be estimated on a moving window? If yes, 
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how can it be tested? These are complex questions that do not admit an 
easy answer. It is often assumed that financial markets undergo “structural 
breaks” or “regime shifts” (i.e., that financial markets undergo discrete 
changes at fixed or random time points).

If financial markets are indeed subject to breaks or shifts and the time 
between breaks is long, models would perform well for a while and then, 
at the point of the break, performance would degrade until a new model 
is learned. If regime changes are frequent and the interval between the 
changes short, one could use a model that includes the changes. The result 
is typically a nonlinear model. Estimating models of this type is very oner-
ous given the nonlinearities inherent in the model and the long training 
period required.

There is, however, another possibility that is common in modeling. 
Consider a model that has a defined structure, for example a linear vec-
tor autoregressive (VAR) model (see Chapter 9), but whose coefficients are 
allowed to change in time with the moving of the training window. In prac-
tice, most models work in this way as they are periodically recalibrated. The 
rationale of this strategy is that models are assumed to be approximate and 
sufficiently stable for only short periods of time. Clearly there is a trade-off 
between the advantage of using long training sets and the disadvantage that 
a long training set includes too much change.

Intuitively, if model coefficients change rapidly, this means that the 
model coefficients are noisy and do not carry genuine information. There-
fore, it is not sufficient to simply reestimate the model: one must determine 
how to separate the noise from the information in the coefficients. For exam-
ple, a large VAR model used to represent prices or returns will generally be 
unstable. It would not make sense to reestimate the model frequently; one 
should first reduce model dimensionality with, for example, factor analy-
sis (see Chapter 12). Once model dimensionality has been reduced, coef-
ficients should change slowly. If they continue to change rapidly, the model 
structure cannot be considered appropriate. One might, for example, have 
ignored fat tails or essential nonlinearities.

How can we quantitatively estimate an acceptable rate of change for 
model coefficients? Are we introducing a special form of data snooping in 
calibrating the training window? 

Calibrating a training window is clearly an empirical question. How-
ever, it is easy to see that calibration can introduce a subtle form of data 
snooping. Suppose a rather long set of time series is given, say six to eight 
years, and that one selects a family of models to capture using financial 
econometrics the DGP of the series and to build an investment strategy. 
Testing the strategy calls for calibrating a moving window. Different moving 
windows are tested. Even if training and test data are kept separate so that 
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forecasts are never performed on the training data, clearly the methodology 
is tested on the same data on which the models are learned.

Other problems with data snooping stem from the psychology of mod-
eling. A key precept that helps to avoid biases is the following: Modeling 
hunches should be based on theoretical reasoning and not on looking at 
the data. This statement might seem inimical to an empirical enterprise, an 
example of the danger of “clear reasoning” mentioned above. Still, it is true 
that by looking at data too long one might develop hunches that are sample-
specific. There is some tension between looking at empirical data to discover 
how they behave and avoiding capturing the idiosyncratic behavior of the 
available data.

Clearly simplicity (i.e., having only a small number of parameters to 
calibrate) is a virtue in modeling. A simple model that works well should 
be favored over a complex model that might produce unpredictable results. 
Nonlinear models in particular are always subject to the danger of unpre-
dictable chaotic behavior. 

MODEL RISK

As we have seen, any model choice might result in biases and poor perfor-
mance. In other words, any model selection process is subject to model risk. 
One might well ask if it is possible to mitigate model risk. In statistics, there 
is a long tradition, initiated by the eighteenth-century English mathematician 
Thomas Bayes, of considering uncertain not only individual outcomes but the 
probability distribution itself. It is therefore natural to see if ideas from Bayes-
ian statistics and related concepts could be applied to mitigate model risk.

A simple idea that is widely used in practice is to take the average of 
different models. This idea can take different forms. There are two principal 
reasons for applying model risk mitigation. First, we might be uncertain 
as to which model is best, and so mitigate risk by diversification. Second, 
perhaps more cogent, we might believe that different models will perform 
differently under different circumstances. By averaging, the modeler hopes 
to reduce the volatility of the model’s forecasts. It should be clear that aver-
aging model results or working to produce an average model (i.e., averaging 
coefficients) are two different techniques. The level of difficulty involved is 
also different.

Averaging results is a simple matter. One estimates different models with 
different techniques, makes forecasts, and then averages the forecasts. This 
simple idea can be extended to different contexts. For example, in a financial 
econometric model developed for rating stocks, the modeler might want to 
do an exponential averaging over past ratings, so that the proposed rating 
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today is an exponential average of the model rating today and model ratings 
in the past. Obviously parameters must be set correctly, which again forces 
a careful analysis of possible data snooping biases. Whatever the averaging 
process one uses, the methodology should be carefully checked for statistical 
consistency. The key principle is that averaging is used to eliminate noise, 
not genuine information.

Averaging models is more difficult than averaging results. In this case, 
the final result is a single model, which is, in a sense, the average of other 
models.8

MODEL SELECTION IN A NUTSHELL

It is now time to turn all the caveats into some positive approach to model 
selection. As explained in the next chapter, any process of model selection 
must start with strong economic intuition. Machine learning alone is unlikely 
to identify investment strategies that yield significant positive results.

Intuition applied to financial decisions clearly entails an element of 
human creativity. As in any other scientific and technological endeavor, it is 
inherently dependent on individual abilities. Is there a body of true, shared 
science that any modeler can use? Or do modelers have to content them-
selves with only partial and uncertain findings reported in the literature? At 
this time, the answer is probably a bit of both.

One would have a hard time identifying laws in financial economics 
that have the status of true scientific laws. Principles such as the absence of 
arbitrage are probably what comes closest to a true scientific law but are 
not, per se, very useful in finding, say, profitable trading strategies.9 Most 
empirical findings in finance are of an uncertain nature and are conditional 
on the structure of the financial market and financial system. It is fair to say 
that intuition in finance is based on a number of broad financial principles 
plus a set of findings of an uncertain and local nature. Empirical findings 
in finance are statistically validated on a limited sample and probably hold 
only for a finite time span. Consider, for example, findings such as volatility 
clustering in asset returns. One might claim that volatility clustering is ubiq-
uitous and that it holds for every financial market. In a broad sense this is 

8 Shrinkage of the covariance matrix used in computing portfolio variance is a simple 
example of averaging models.
9 In finance there is arbitrage if the same financial product can be traded at different 
prices in different locations at the same moment. Arbitrage, if it exists, allows one to 
make unlimited profit, as unlimited quantity of the product can be bought where it 
is cheap and sold where it is expensive.
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true. However, no volatility clustering model can claim the status of a law of 
nature as all volatility clustering models fail to explain some essential fact.

It is often argued that profitable investment strategies can be based only 
on secret proprietary discoveries. This is probably true but its importance 
should not be exaggerated. Secrecy is typically inimical to knowledge build-
ing. Secrets are also difficult to keep. Industrial projects of a non military 
nature are rarely based on a truly scientific breakthrough. They typically 
exploit existing knowledge.

Financial econometrics is probably no exception. Proprietary tech-
niques are, in most cases, the application of more or less shared knowledge. 
There is no record of major breakthroughs in finance made in secrecy by 
investment teams of asset management firms. Some firms have advantages 
in terms of data. Until the recent past, availability of computing power was 
also a major advantage, reserved for only the biggest Wall Street firms; how-
ever, computing power is now a commodity. As a consequence, it is fair to 
say that intuition in finance can be based on a vast amount of shared knowl-
edge plus some proprietary discovery or interpretation. 

After using intuition to develop an ex ante hypothesis, the process of 
model selection and calibration begins in earnest. This implies selecting a 
sample free from biases and determining a quality-control methodology. In 
the production phase, an independent risk control mechanism will be essen-
tial. A key point is that the discovery process should be linear. If at any point 
the development process does not meet the quality standards, one should 
resist the temptation of adjusting parameters and revert to developing new 
intuition.

This process implies that there is plenty of intuition to work on when 
dealing with the various issues in finance. The modeler must have many 
ideas to develop. Ideas might range from the intuition that certain segments 
of the financial market have some specific behavior to the discovery that 
there are specific patterns of behavior with unexploited opportunities. In 
some cases it will be the application of ideas that are well known but have 
never been applied on a large scale.

A special feature of the model selection process is the level of uncer-
tainty and noise. Models capture small amounts of information in a vast 
“sea of noise.” Models are always uncertain, and so is their potential lon-
gevity. The psychology of discovery plays an important role. These consider-
ations suggest the adoption of a rigorous objective research methodology. In 
the next chapter we illustrate the work flow for a sound process of discovery 
of profitable strategies.

A modeler working in financial econometrics is always confronted with 
the risk of finding an artifact that does not, in reality, exist. And, as we 
have seen, paradoxically one cannot look too hard at the data; this risks 
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introducing biases formed by available but insufficient data sets. Even trying 
too many possible solutions, one risks falling into the trap of data snooping.

KEY POINTS

 ■ Model selection in financial econometrics requires a blend of theory, 
creativity, and machine learning.

 ■ The machine learning approach starts with a set of empirical data that 
we want to explain.

 ■ There is a trade-off between model complexity and the size of the data 
sample. To implement this trade-off, ensuring that models have forecast-
ing power, the fitting of sample data is constrained to avoid fitting noise.

 ■ Financial data are generally scarce given the complexity of their pat-
terns. This scarcity introduces uncertainty as regards statistical esti-
mates. It means that the data might be compatible with many different 
models with the same level of statistical confidence.

 ■ A serious mistake in model selection is to look for models that fit rare 
or unique patterns; such patterns are purely random and lack predictive 
power.

 ■ Another mistake in model selection is data snooping; that is, fitting 
models to the same data that we want to explain. A sound model selec-
tion approach calls for a separation of sample data and test data: mod-
els are fitted to sample data and tested on test data.

 ■ Because data are scarce, techniques have been devised to make optimal 
use of data; perhaps the most widely used of such techniques is boot-
strapping.

 ■ Financial data are also subject to survivorship bias; that is, data are 
selected using criteria known only at the end of the period. Survivorship 
bias induces biases in models and results in forecasting errors.

 ■ Model risk is the risk that models are subject to forecasting errors in 
real data.

 ■ A simple idea that is widely used in practice to mitigate model risk is to 
take the average of different models.

 ■ A sound model selection methodology includes strong theoretical con-
siderations, the rigorous separation of sample and testing data, and dis-
cipline to avoid data snooping.
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Chapter 15
Formulating and Implementing  

Investment Strategies Using  
Financial econometrics

a fter reading this chapter you will understand:

 ■ The financial econometrics research aspect of the quantitative research 
process.

 ■ The purpose of using financial econometric tools is to identify any 
persistent pattern in financial data and convert that information into 
implementable and profitable investment strategies.

 ■ The three phases of the quantitative research process: (1) develop an 
ex ante justification based on financial economic theory, (2) select a 
survivorship-free sample, and (3) estimate a parameter-free model.

 ■ Common fallacies in the use of financial econometrics to develop invest-
ment strategies.

 ■ Considerations in deciding on which and how many explanatory vari-
ables should be included in a financial econometrics model. 

 ■ Why in attempting to identify profitable investment strategies there is 
concern with overmining of data.

 ■ The pitfalls of using insufficient data.
 ■ Why a safeguard against data snooping is to scrutinize the model once 
through time.

 ■ Why after developing a strategy based on some financial econometric 
model it is always prudent to test the model against an artificial data set. 

 This chapter is coauthored with Christopher K. Ma of KCM Asset Management, and 
Professor of Finance and Director of the George Investments Institute and Roland 
George Investments Program at Stetson University.
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In Chapters 3 and 4, we explained how to build, diagnose, and test a 
multiple linear regression model. In this chapter, we provide a blueprint as to 
how to apply financial econometrics to quantitative asset management. The 
objective of quantitative asset management is to identify any persistent pat-
tern in financial data and convert that information into implementable and 
profitable investment strategies. We discuss the general process for converting 
statistical information obtained from the application of financial economet-
ric tools into implementable investment strategies that can be employed by 
asset managers. Generally, this process includes developing underlying finan-
cial theories, explaining actual asset returns, and estimating expected asset 
returns that can be used in constructing a portfolio or a trading position. In 
addition, we identify some of the commonly induced biases in this process.

In Figure 15.1, we provide a flowchart that shows the process of how 
quantitative research is performed and converted into implementable 

Quantitative Research

Develop an Ex Ante Hypothesis

Select a Survivorship-Free Sample

Select a Methodology to Estimate
the Model

No Yes

Investment Strategy

Estimate Expected Returns

No Yes

YesNo

Independent Risk Control

FIgUre 15.1 Process of Quantitative Research and Investment Strategy
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trading strategies. The process involves two phases. The first is quantita-
tive research utilizing financial econometrics. The second involves using 
the results obtained from a financial econometrics study to develop an 
investment strategy.

the QUaNtItatIVe reSearCh prOCeSS

As can be seen in Figure 15.1, the financial econometrics research aspect of 
the quantitative research process involves three phases:

 1. Develop an ex ante justification based on financial economic theory.
 2. Select a survivorship-free sample.
 3. Select a methodology to estimate the model.

We discuss each phase in this section.

Develop an ex ante Justification Based on Financial 
economic theory 

A sound hypothesis is a necessary condition for the successful formulation 
of an implementable and replicable investment strategy. Financial econom-
ics, however, can only be motivated with creative intuitions and scrutinized 
by strict logical reasoning, but it does not come from hindsight or prior 
experience. This requirement is critical since scientific conclusions can easily 
be contaminated by the process of data snooping, especially when a truly 
independent financial economic theory is not established first. 

As explained in the previous chapter, data snooping is identifying seem-
ingly significant but in fact spurious patterns in the data.1 All empirical tests 
are at risk for this problem, especially if a large number of studies have been 
performed on the same data sets. Given enough time and trials, people who 
are convinced of the existence of a pattern will eventually manage to find 
that pattern, real or imagined. Furthermore, there is an identical life cycle of 
experience in data snooping. Researchers are often confronted with exactly 
the same issues and will have to make the same types of choices in the process.

The process of data snooping comes in several forms. At some basic but 
subtle level, a hypothesis based on financial economics is founded by the 
knowledge of past patterns in data. Researchers may establish their “prior” 

1 See, for example, Stephen A. Ross, “Survivorship Bias in Performance Studies,” and 
Andrew Lo, “Data-Snooping Biases in Financial Analysis,” both appearing in Pro-
ceedings of Blending Quantitative and Traditional Equity Analysis (Charlottesville, 
VA: Association for Investment Management and Research, 1994).
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from their knowledge, learning, experience, or simply what others have said. 
A good example for a classic yet wrong way to model the excess return in 
equity analysis is “market capitalization should be included in the model 
because there is evidence of a size effect.” 

From then on, the problem can only get worse as long as there is more 
room for choices. A researcher may choose to design the same statistical 
tests because of what others have done using similar data. The choices in 
these tests include, but are not limited to, the selection of explanatory vari-
ables, how to measure them, the functional form of the model, the length of 
the time period, the underlying probability distribution, and test statistics. 
The difference in each of these artificial choices by itself may be small, but 
its resulting investment performance impact is often significant.

Ideally, there should be no need to make artificial selections since all of 
the tests should have been dictated by the underlying theories. However, even 
the best financial concept, being abstract and simplified, does not always fully 
specify its application in reality. There are many opportunities for which deci-
sion makers have to find proxies and instruments to complete the process.

A common fallacy, however, is that researchers tend to go back to the 
most immediate prior step in searching for solutions when the result is not 
what they expect to see. Of course, this attitude reflects the general human 
tendency to overweight the information in the most recent period in their 
decision making. This could easily lead to the mindless trial of numerous 
alternatives, which are most likely not justified.

Therefore, a direct way to control for data snooping at all levels is that 
the entire process will have to be reconstructed right from the beginning 
whenever the output at any phase of the process cannot pass the quality 
test. If the estimated model cannot explain the variation of excess returns to 
some satisfactory degree, the process needs to be stopped and abandoned. 
We need to go back and develop a new theory. If the predicted model does 
not produce acceptable excess returns, go back to the beginning. Finally, if 
the level of the actual risk-adjusted excess return found from following the 
strategy “does not cut the muster”—go back to the beginning. This “trial-
and-error” process may correct for most, but not all, of the data snooping 
problem. As we throw away the obvious, “bad” models through testing, we 
learn from the experience of trial and error. This experience itself inevitably 
affects the seemingly independent creation of the next generation of models.

Of course, most researchers would agree that there is almost no way to 
completely eliminate some form of data snooping since even the most rigor-
ous scientific process is no more than a sequence of choices, subjective or 
not. As suggested by Lo,2 like someone suffering from substance addiction, 

2 Lo, “Data-Snooping Biases in Financial Analysis.”
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the first step toward recovery is the recognition of the problem. The next 
step is to facilitate a research environment that avoids the temptations of 
making choices.3 What this conclusion also means is that researchers should 
be extremely disciplined at every step of the process in making choices, with 
the explicit understanding of the bias induced from data snooping.

Select a Sample Free from Survivorship Bias

Since all backtest research is performed on a data set that looks back in 
time, the entire history of an observation will not be available if it does 
not survive the present. The sample that researchers can work with is a set 
of observations that have been preselected through time by some common 
denominators. A sample of a sample should not pose a problem if the subset 
is selected randomly. But this is not the case for most samples, which suffer 
from survivorship bias as we described in the previous chapter. The bias 
becomes relevant if the common bond to survive the observation is related 
to the pattern for which we are looking. A finding of a statistically signifi-
cant pattern merely reflects the underlying common bond that was used to 
construct the testing sample.

One typical point of interest, which is severely affected by the survivor-
ship bias, is performance comparison. By only looking at the portfolios cur-
rently outstanding, it is obvious that portfolios that did not survive through 
time due to poor performance are excluded from the sample. By design, the 
sample only contains good portfolios. How can the true factors that have 
caused bad performance ever be identified?

Commercial data vendors are not helping on this issue. Due to cost 
consideration, most data sets are only provided on a live basis. That is, for a 
currently non existent sample observation, the common practice is to delete 
its entire history from the data set. To simulate the true historical situation, 
it is the researchers’ responsibility to bring these observations back to the 
sample. The sample collection procedure should be reversed in time. Cases 
that existed at the beginning of the sample period should be included and 
tracked through time. 

Select a Methodology to estimate the Model

The selection of a certain methodology should pass the same quality tests 
as developing financial economic theories and selecting samples. Without 
strong intuition, researchers should choose the methodology that needs the 

3 This reluctance is probably the single most important reason for the recently devel-
oped machine learning techniques discussed in the previous chapter.
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least amount of human inputs. A good example is the machine learning 
method that uses computerized algorithms to discover the knowledge (pat-
tern or rule) inherent in data. Advances in modeling technology such as 
artificial intelligence, neural network, and genetic algorithms fit into this 
category. The beauty of this approach is its vast degree of freedom. As 
explained in the previous chapter, there are none of the restrictions that are 
often explicitly specified in traditional, linear, stationary models. 

Of course, researchers should not rely excessively on the power of the 
method itself. Learning is impossible without knowledge. Even if a researcher 
wants to simply throw data into a financial econometric model and expect it 
to spit out the answer, he or she needs to provide some background knowl-
edge, such as the justification and types of input variables. There are still 
numerous occasions that require researchers to make justifiable decisions. 
For example, a typical way of modeling stock returns is using the following 
linear form:

 Rit = a + b1tF1it + b2tF2it +  .  .  .  + bntFnit + εit (15.1)

where Rit = excess return (over a benchmark return) for the ith security 
in period t

Fjit = jth factor return value for the ith security in period t
bnt = the market-wide payoff for factor k in period t
εit = error (idiosyncratic) term in period t

trade-Off between Better estimations and prediction errors
Undoubtedly, in testing and estimating equation (15.1), the first task is to 
decide which and how many explanatory variables should be included. This 
decision should not be a question whether the test is justified by an ex ante 
hypothesis based on financial economics. Theories, in financial economics, 
however, are often developed with abstract concepts that need to be mea-
sured by alternative proxies. The choice of proper proxies, while getting 
dangerously close to data snooping, makes the determination of both the 
type and the number of explanatory variables an art rather than a science. 
The choice of a particular proxy based on the rationale “Because it works!” 
is not sufficient unless it is first backed up by the theory. 

One rule of thumb is to be parsimonious. A big model is not necessarily 
better, especially in the context of predictable risk-adjusted excess return. 
While the total power of explanation increases with the number of vari-
ables (size) in the model, the marginal increase of explanatory power drops 
quickly after some threshold. Whenever a new variable is introduced, what 
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comes with the benefit of the additional description is the increase of estima-
tion error of an additional parameter. 

In Table 15.1, we demonstrate the explanatory power of a typical mul-
tifactor model for stock returns by including one additional variable at a 
time.4 The second and third columns clearly show that, although by design 
the R2 increases with the number of variables, the adjusted R2, which also 
reflects the impact of the additional estimation error, levels off and starts 
decreasing after some point. This illustration suggests that in the process of 
estimation, the cost of estimation error is even compounded when a new 
prediction is further extended into the forecast period.

In Table 15.2, we also perform an out-of-sample prediction based on the 
estimated multifactor model in each stage. The fourth and fifth columns in 
the table show a more striking pattern that the risk-adjusted excess return, 
in the form of information ratio,5 deteriorates even more quickly when the 
model becomes large.

4 This is based on Christopher K. Ma, “How Many Factors Do You Need?” (Research 
Paper #96-4, KCM Asset Management, Inc., 2005 and 2010).
5 The information ratio is a reward-risk ratio. The reward is the average of the active 
return, which is the portfolio return reduced by the return on a benchmark. This is 
popularly referred to in finance as “alpha.” The risk is the standard deviation of the 
active return, which is known as the tracking error. The higher the information ratio, 
the better the portfolio manager performed relative to the risk assumed. 

taBle 15.1 Marginal Contribution of Additional Explanatory Variables

In Sample Out of Sample

Additional
Explanatory
Variable 

Explanatory
Power
(R2)

Explanatory
Power

(Adj. R2)

Annualized
Excess 

Return (%)

Annualized
Standard 

Deviation (%)
Information

Ratio

 1st 0.086 0.082 2.52 7.15 0.352

 2nd 0.132 0.105 2.98 7.10 0.420

 3rd 0.175 0.117 3.61 6.97 0.518

 4th 0.188 0.165 3.82 6.82 0.560

 5th 0.202 0.174 4.05 6.12 0.662

 6th 0.251 0.239 3.99 6.08 0.656

 7th 0.272 0.221 3.76 6.19 0.607

 8th 0.282 0.217 3.71 6.22 0.596

 9th 0.291 0.209 3.64 6.37 0.571

10th 0.292 0.177 3.53 6.58 0.536



312 The Basics of financial economeTrics

Influence of emotions

It is the exact same objectivity that researchers are proud of regarding their 
procedures that often leads to the question, “If everyone has the financial 
econometric models, will they not get the same answers?” The “overmining” 
on the same data set using simple linear models almost eliminates the pos-
sibility of gaining excess risk-adjusted returns (or alpha in the parlance of 
the financial profession).

Pessimism resulting from the competition of quantitative research also 
justifies the need to include some form of what the economist John Maynard 
Keynes called “animal spirit” in the decision process—how emotions influ-
ence human behavior.6 Being able to do so is also probably the single most 
important advantage that traditional security analysis can claim over quan-
titative approach. Casual observations provide ample examples that investor 
behavior determining market pricing follows neither symmetric nor linear 
patterns: investors tend to react to bad news much differently than to good 
news;7 information in more recent periods is overweighted in the decision 
process;8 investors ignore the probability of the event but emphasize the 

6 John Maynard Keynes, The General Theory of Employment, Interest, and Money 
(New York: Harcourt, Brace and Company, 1936).
7 See Keith Brown, W. Van Harlow, and Seha M. Tinic, “Risk Aversion, Uncertain 
Information, and Market Efficiency,” Journal of Financial Economics 22 (1988):  
355–386.
8 See Werner F. DeBondt and Richard Thaler, “Does the Stock Market Overreact?” 
Journal of Finance 40 (1985): 793–805.

taBle 15.2 Statistical Significance and Economic Profits

Correlation
Coefficienta t-Valueb

Annual Excess
Return (%)

Annual Standard
Deviation (%)

Information
Ratio

0.10 2.10b 0.50 2.17 0.230

0.25 3.78b 1.82 4.06 0.448

0.50 7.15b 3.71 4.25 0.873

0.15 1.20 0.58 1.10 0.527

0.35 2.93b 1.98 4.55 0.435

0.60 2.75b 3.80 4.55 0.835

a Significant at the 1% level.
b t-value is for the significance of correlation coefficient.
Source: Christopher K. Ma, “How Many Factors Do You Need?” Research Paper 
#96-4, KCM Asset Management, Inc., 2010.
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magnitude of the event;9 stocks are purchased for their glamour but not 
for intrinsic value;10 and, low price-earnings stocks paying high returns do 
not imply that high price–earnings stocks pay low returns.11 We are not 
proposing that a statistical model should include all these phenomena, but 
the modeling methodology should be flexible enough to entertain such pos-
sibilities if they are warranted by the theory.

Statistical Significance Does Not guarantee alpha

Staunch defenders of quantitative research argue that profitable investment 
strategies cannot be commercialized by quantitative analysis using tools 
such as those available to financial econometricians;12 the production of 
excess returns will stay idiosyncratic and proprietary. Alpha will originate 
in those proprietary algorithms that outperform commercially standardized 
packages for data analysis. In other words, researchers will have to learn to 
gain confidence even if there is no statistical significance, while statistical 
significance does not guarantee alpha. 

Since quantitative market strategists often start with the identification of 
a pattern that is defined by financial econometric tools, it is easy to assume 
alpha from conventional statistical significance. To show that there is not nec-
essarily a link, we perform a typical momentum trading strategy that is solely 
based on the predictability of future returns from past returns. A simplified 
version of the return-generating process under this framework follows: 

 Et–1(Rt) = a + bt–1Rt–1

where Et–1(Rt) is the conditional expected return for the period t, evaluated 
at point t – 1, a is time-invariant return, and bt–1 is the momentum coefficient 
observed at time t – 1. When bt–1 is (statistically) significantly positive, the 
time-series returns are said to exhibit “persistence and positive momentum.” 
To implement the trading strategy using the information in correlations, 
stocks with at least a certain level of correlation are included in portfolios 
at the beginning of each month, and their returns are tracked. The perfor-
mance of these portfolios apparently reflects the statistical significance (or 
lack thereof) in correlation between successive returns. In Table 15.3, we 

9 See Christopher K. Ma, “Preference Reversal in Futures Markets,” working paper, 
Stetson University, 2010.
10 See Josef Lakonishok, Andrei Shleifer, and Robert W. Vishny, “Contrarian Invest-
ment, Extrapolation, and Risk,” Journal of Finance 49, no. 5 (1994): 1541–1578.
11 See Ma, “How Many Factors Do You Need?”
12 See, for example, Russell H. Fogler, “Investment Analysis and New Quantitative 
Tools,” Journal of Portfolio Management (1995): 39–47.
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summarize the performance of some of the representative portfolios from a 
study conducted and updated by Ma in 2005 and 2010.13

It is not surprising that higher excess returns are generally associated 
with higher correlation between successive returns. More importantly, 
higher risk seems to be also related to higher statistical significance of the 
relationship (correlation). The bottom line is that an acceptable level of risk-
adjusted excess return, in the form of information ratio (e.g., 1), cannot 
always be achieved by statistical significance alone. A more striking obser-
vation, however, is that, sometime without conventional statistical signifi-
cance, the portfolio was able to deliver superior risk-adjusted returns. While 
the driving force may yet be known, evidence is provided for the discon-
nection between statistical significance and abnormal risk-adjusted returns. 

INVeStMeNt StrategY prOCeSS

Once the quantitative research process is completed, implementing financial 
econometric results involves the investment strategy process. As can be seen 
in Figure 15.1, this involves two phases:

 1. Estimating expected returns
 2. Independent risk control.

We describe each below.

13 Ma, “How Many Factors Do You Need?”

taBle 15.3 Statistical Significance and Economic Profits

Correlation
Coefficienta t-Valueb

Annual
Excess

Return (%)

Annual
Standard

Deviation (%)
Information

Ratio

0.10 2.10b 0.50 2.17 0.230

0.25 3.78b 1.82 4.06 0.448

0.50 7.15b 3.71 4.25 0.873

0.15 1.20 0.58 1.10 0.527

0.35 2.93b 1.98 4.55 0.435

0.60 2.75b 3.80 4.55 0.835
aSignificant at the 1% level.
bt-value is for the significance of correlation coefficient.
Source: Christopher K. Ma, “How Many Factors Do You Need?” Research Paper 
#96-4, KCM Asset Management, Inc., 2010.
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a Model to estimate expected returns

The estimation for the model to explain past returns from Step 3, by itself, is 
not enough, since the objective of the process is to predict future returns. A 
good model for expected return is much harder to come by since we simply 
don’t have enough data. As pointed out by Fischer Black, people are often 
confused between a model to explain average returns and a model to pre-
dict expected returns.14 While the former can be tested on a large number 
of historical data points, the latter requires a long time period (sometimes 
decades) to cover various conditions to predict the expected return. Since we 
do not have that time to wait, one common shortcut is to simply assume that 
the model to explain average returns will be the model to predict expected 
returns. Of course, such predictions are highly inaccurate, given the assump-
tion of constant expected returns.

We can easily find evidence to show it is a bad assumption. For example, 
if one can look at the actual model that explains the cross sections of short-
term stock returns, even the most naive researcher can easily conclude that 
there is little resemblance between the models from one period to the next. 
This would in turn suggest, at least in the short term, the model to explain 
past returns cannot be used to predict expected returns. 

This calls for brand new efforts to establish an ex ante expected return 
model. The process has to pass the same strict tests for quality that are 
required for any good modeling, as discussed earlier in this chapter and in 
the previous chapter. These tests would include the independent formulation 
of the hypothesis for expected return and a methodology and sample period 
free from data snooping and survivorship bias. While they are not necessar-
ily related, the process of developing hypotheses for conditional expected 
return models can greatly benefit from the insights from numerous models 
of past returns estimated over a long time period. 

largest Value added Apparently, the final risk-adjusted returns from a strat-
egy can be attributed to the proper execution of each step described in 
Figure 15.1. The entire process can be generally described in a three-step 
procedure consisting of economic hypothesis, model estimation, and predic-
tion. It is only natural for researchers to ask how to allocate their efforts 
among the three steps to maximize the return contribution.

To answer this question, let’s examine the return contribution from model 
estimation and prediction. For this purpose, we use a typical multifactor 
model to explain the return for all stocks in the Standard & Poor’s 500 

14 Fischer Black, “Estimating Expected Return,” Financial Analysts Journal 49 
(1993): 36–38.
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Index. Assume that at the beginning of each period the best model actu-
ally describing the return in the period is known to the portfolio manager. 
Using this information, a portfolio consisting of the predicted top quartile is 
formed. The excess return from this portfolio generated with perfect infor-
mation would suggest the extent of return contribution from model estima-
tion. Accordingly, based on the results of a 2010 study15 shown in Table 
15.3, the annual mean excess return of the top predicted quartile is between 
12% and 26%, depending on the length of the investment horizon.

In contrast, the annual mean excess return of the actual top quartile in 
the S&P 500 is between 42% and 121%. The difference in excess return 
between the actual top quartile portfolio and the predicted top quartile 
portfolio, between 30% and 95%, would suggest the extent of the return 
contribution from model prediction. It is clear then that for all investment 
horizons, the return contribution from model prediction is on average two 
to five times the excess returns from model estimation. 

Therefore, for all practical purposes, the step of identifying a predict-
able model is responsible for the largest potential value added in generating 
predictable excess returns. The implication is that resources allocated to 
research should be placed disproportionally toward the effort of out-of-
sample prediction.

test the prediction again Another safeguard against data snooping is to scru-
tinize the model once more through time. That is, the conditional model to 
estimate expected return needs to be tested again in a “fresh” data period. 
As it requires multiple time periods to observe the conditional model for 
expected returns, the prediction model derived under a single condition has 
to be confirmed again. In the following figure, we specify the relationship in 
time periods among estimation, testing, and confirmation.

The sample period:

Estimation Testing Forecast Testing Forecast

Period I Period I Period II Period II Period II Now

The sequential testing of the prediction model in the forecast period 
would affirm that the condition that converts the model of actual returns 
to the model of expected returns still produces an acceptable level of 
performance. As the conditioning factor varies from one period to another, 

15 Christopher K. Ma, “Nonlinear Factor Payoffs?” (Research Paper #97-5, KCM 
Asset Management, Inc., 2010).
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the consistent performance of the three-period process suggests that it is not 
driven by a constant set of artificial rules introduced by data snooping.

test against a random Walk hypothesis After completing the modeling exer-
cise it is always wise to test the model against an artificial data set formed 
from independent and identically distributed returns. Any trading strat-
egy applied to purely random data should yield no average excess return. 
Of course, purely random fluctuations will produce positive and negative 
excess returns. However, because we can simulate very long sequences of 
data, we can test with high accuracy that our models do not actually intro-
duce artifacts that will not live up to a real-life test.

Independent risk Control

Even if the expected return is modeled properly at the individual stock level, 
the bottom line of implementable investment strategies is evaluated by an 
acceptable level of risk-adjusted portfolio excess returns. As most institu-
tional portfolios are benchmarked, the goal is to minimize tracking error 
(standard deviation of active returns), given some level of portfolio excess 
return. Consequently, risk control becomes technically much more complex 
than the conventional efficient portfolio concept. As shown by Richard 
Roll, an optimal portfolio which minimizes tracking error subject to a level 
of excess return is not a mean-variance efficient portfolio.16 It should be 
noted that, due to the objective and competitive nature of the quantita-
tive approach in its strong form, most models produce similar rankings in 
expected returns. The variation in performance among quantitative portfo-
lios is mainly attributed to a superior risk control technology. 

One commonly used but less preferred practice in risk management is 
often performed right at the stage of identifying the model for expected 
returns. It involves revising the estimates from the model to explain the 
actual return. The purpose is to control the risk by attempting to reduce 
the estimation error for the model of expected returns. This approach has 
several flaws. First, in most cases, the procedure of revising the parameter 
estimates (from the model of actual returns) so they can be used in the 
model of expected returns is often performed on an ad hoc basis, and vul-
nerable to data snooping. Second, in revising the parameter estimates, the 
task of building a relevant expected model with low prediction errors is 
mistaken for risk control on portfolio returns. Finally, there is a lesser degree 

16 Richard R. Roll, “A Mean/Variance Analysis of Tracking Error,” Journal of Portfo-
lio Management (Summer 1992): 13–23.
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of freedom in that estimates are made based on the estimates of previous 
steps. The “risk control” procedure becomes dependent to the process of 
estimating expected returns. Consequently, an independent risk control pro-
cedure, usually through an optimization process, should be performed as an 
overlay on the stock selections that are determined initially by the predicted 
expected returns. 

For computing efficiency, the iterations can be significantly reduced if 
several other conditions are simultaneously imposed. For example, it has 
been shown that the largest source of tracking error is the deviation of port-
folio sector weights from its benchmark sector weights.17 Consequently, 
most optimal benchmarked portfolios are “sector neutral,” that is, port-
folios do not make sector bets against the benchmark. This consideration 
would indicate the need to include a constraint that sets maximum accept-
able deviations of portfolio sector weights from benchmark sector weights.

Along the same line, tracking error can be further controlled when 
the individual stock weight is constrained to conform to its corresponding 
weight in the benchmark. It is also accomplished by setting a maximum 
allowed deviation of stock weight in the portfolio from the weight in the 
benchmark.

Additional realistic portfolio constraints may be considered. Examples 
would include specification of a (1) minimum level of market liquidity 
for individual stocks, (2) maximum absolute weight in which any stock is 
allowed to invest, (3) minimum total number of stocks held, (4) minimum 
number of stocks held in each sector, and (5) maximum level of portfolio 
turnover allowed. 

KeY pOINtS

 ■ In evaluating financial econometric models for potential implementa-
tion of investment strategies, two guiding principles are model simplic-
ity and out-of-sample validation. 

 ■ A higher level of confidence can be placed on a simple model validated 
on data different from those on which it has been built. 

 ■ In the quantitative process the identification of any persistent pattern in 
the data is sought and must then be converted into implementable and 
profitable investment strategies. How this is done requires the develop-
ment of underlying economic theories, an explanation of actual returns, 
estimation of expected returns, and construction of corresponding 
portfolios.

17 See Ma, “Nonlinear Factor Payoffs?”



Formulating and Implementing Investment Strategies Using Financial Econometrics   319

 ■ For backtesting proposed strategies, the sample used can be a set of 
observations that have been preselected through time by some common 
denominators. 

 ■ Although a sample of a sample should not pose a problem in back-
testing if the subset is selected randomly, this is not the case for most 
samples that suffer from survivorship bias. 

 ■ A statistically significant pattern found for a strategy may merely reflect 
the underlying common bond that was used to construct the testing 
sample.

 ■ The selection of a methodology for estimating a financial economet-
ric model should satisfy the same quality tests as developing economic 
theories and selecting samples. In the absence of strong intuition, the 
methodology that needs the least amount of human inputs should be 
employed for estimating a model.

 ■ For both testing and model estimation, the first task is to decide which 
and how many explanatory variables should be included. 

 ■ Economic theories underlying a model typically involve abstract con-
cepts that need to be measured by alternative proxies. 

 ■ Selection of the appropriate proxies, while getting dangerously close to 
data snooping, makes the determination of both the type and the num-
ber of explanatory variables an art rather than a science. One rule of 
thumb is to be parsimonious. 

 ■ To safeguard against data snooping there should be a sequential testing 
of the prediction model in the forecast period in order to affirm that 
the condition that converts the model of actual returns to the model of 
expected returns still produces an acceptable level of performance. 

 ■ Even if the expected return is modeled properly at the individual stock 
level, the bottom line of implementable investment strategies is evalu-
ated by an acceptable level of risk-adjusted portfolio excess returns. 

 ■ Because most institutional portfolios are benchmarked, the objective is 
to minimize tracking error given some level of portfolio excess return. 
For this purpose, risk control becomes technically much more complex 
than the conventional efficient portfolio concept.
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Appendix A
descriptive Statistics

in this appendix, we review descriptive statistics. In contrast to inferential 
statistics that we describe in Appendix C, the objective in descriptive sta-

tistics is to quantitatively describe data. In inferential statistics, the objective 
is to draw conclusions and make predictions based on the data.

BASic dAtA AnAlySiS

Determining the objective of the analysis is the most important task before 
getting started in investigating the data using financial econometric methods. 
Data are gathered by several methods. In the financial industry, we have mar-
ket data based on regular trades recorded by the exchanges. These data are 
directly observable. Aside from the regular trading process, there is so-called 
over-the-counter (OTC) trading, for which data may be less accessible. 
Annual reports and quarterly reports are published by companies in print or 
electronically. These data are available also in the business and finance sec-
tions of most major business-oriented print media and the Internet. 

If one does research on certain financial quantities of interest, one might 
find the data available from either free or commercial databases. Hence, one 
must be concerned with the quality of the data. Unfortunately, very often 
databases of unrestricted access such as those available on the Internet may 
be of limited credibility. In contrast, there are many commercial purvey-
ors of financial data who are generally acknowledged as providing accurate 
data. But, as always, quality has its price.

Once the data are gathered, it is the objective of descriptive statistics to 
visually and computationally convert the information collected into quanti-
ties that reveal the essentials in which we are interested. Usually in this con-
text, visual support is added since very often that allows for a much easier 
grasp of the information. 



322 The Basics of financial economeTrics

The field of descriptive statistics discerns different types of data. Very 
generally, there are two types: nonquantitative (i.e., qualitative and ordinal) 
and quantitative data. 

If certain attributes of an item can only be assigned to categories, these 
data are referred to as qualitative data. For example, stocks listed on the 
New York Stock Exchange (NYSE) as items can be categorized as belong-
ing to a specific industry sector such as “banking,” “energy,” “media and 
telecommunications,” and so on. That way, we assign each item (i.e., stock) 
as its attribute sector one or possibly more values from the set containing 
“banking,” “energy,” “media and telecommunications,” and so on.1 Another 
example would be the credit ratings assigned to debt obligations by credit 
rating agencies such as Standard & Poor’s, Moody’s, and Fitch Ratings. 
Except for retrieving the value of an attribute, nothing more can be done 
with qualitative data. One may use a numerical code to indicate the differ-
ent sectors, for example 1 = “banking,” 2 = “energy,” and so on. However, 
we cannot perform any computation with these figures since they are simply 
names of the underlying attribute sector. 

On the other hand, if an item is assigned a quantitative variable, the 
value of this variable is numerical. Generally, all real numbers are eligible. 
Depending on the case, however, one will use discrete values only, such as 
integers. Stock prices or dividends, for example, are quantitative data draw-
ing from—up to some digits—positive real numbers. Quantitative data can 
be used to perform transformations and computations. One can easily think 
of the market capitalization of all companies comprising some index on a 
certain day while it would make absolutely no sense to do the same with 
qualitative data.2 

cross-Sectional data and time Series data

There is another way of classifying data. Imagine collecting data from 
one and the same quantity of interest or variable. A variable is some 
quantity that can assume values from a value set. For example, the vari-
able “stock price” can technically assume any nonnegative real number 
of currency but only one value at a time. Each day, it assumes a certain 
value that is the day’s stock price. As another example, a variable could 
be the dividend payments from a specific company over some period of 
time. In the case of dividends, the observations are made each quarter. 

1 Most of the time, we will use the term “variable” instead of “attribute.”
2 Market capitalization is the total market value of the common stock of a company. 
It is obtained by multiplying the number of shares outstanding by the market price 
per share.
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The set of data then form what is called time series data. In contrast, one 
could pick a particular time period of interest such as the first quarter 
of the current year and observe the dividend payments of all companies 
comprising the Standard & Poor’s 500 index. By doing so, one would 
obtain cross-sectional data of the universe of stocks in the S&P 500 
index at that particular time.

Frequency distributions 

One of the most important aspects of dealing with data is that they are effec-
tively organized and transformed in order to convey the essential informa-
tion contained in them. This processing of the original data helps to display 
the inherent meaning in a way that is more accessible to intuition. 

Relative Frequency Suppose that we are interested in a particular variable 
that can assume a set of either finite or infinitely many values. These values 
may be qualitative or quantitative in nature. In either case, the initial step 
when obtaining a data sample for some variable is to sort the values of each 
observation and then to determine the frequency distribution of the data 
set. This is done simply by counting the number of observations for each 
possible value of the variable. This is referred to as the absolute frequency. 
Alternatively, if the variable can assume values on all or part of the real line, 
the frequency can be determined by counting the number of observations 
that fall into nonoverlapping intervals partitioning the real line.

In our illustration, we begin with qualitative data first and then move on 
to the quantitative aspects. For example, suppose we want to compare the 
industry composition of the component stocks in the Dow Jones Industrial 
Average (DJIA), an index comprised of 30 U.S. stocks, the Dow Jones Global 
total 50 Index (DJGTI), and the S&P 500. A problem arises because the num-
ber of stocks contained in the three indices is not the same. Hence, we can-
not compare the respective absolute frequencies. Instead, we have to resort 
to something that creates comparability of the two data sets. This is done  
by expressing the number of observations of a particular value as the propor-
tion of the total number of observations in a specific data set. That means we 
have to compute the relative frequency. 

Let’s denote the (absolute) frequency by a and, in particular, by ai for the 
ith value of the variable. Formally, the relative frequency fi of the ith value 
is then defined by

 =f
a
n

i
i  
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where n is the total number of observations. With k being the number of the 
different values, the following holds:

 ∑=
=
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i
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empirical cumulative Frequency distribution

In addition to the frequency distribution, there is another quantity of inter-
est for comparing data that are closely related to the absolute or relative 
frequency distribution. 

Suppose that one is interested in the percentage of stocks in the DJIA 
with closing prices of less than US$50 on a specific day. One can sort 
the observed closing prices by their numerical values in ascending order 
to obtain something like the array shown in Table A.1 for market prices 
as of December 15, 2006. Note that since each value occurs only once, 
we have to assign each value an absolute frequency of 1 or a relative 
frequency of 1/30, respectively, since there are 30 component stocks in 
the DJIA. 

We start with the lowest entry ($20.77) and advance up to the larg-
est price still less than $50, which is $49 (Coca-Cola). Each time we 
observe less than $50, we added 1/30, accounting for the frequency of 
each company, to obtain an accumulated frequency of 18/30 represent-
ing the total share of closing prices below $50. This accumulated fre-
quency is called the empirical cumulative frequency at the value $50. If 
one computes this for all values, one obtains the empirical cumulative 
frequency distribution. The word “empirical” is used because we only 
consider values that are actually observed. The theoretical equivalent 
of the cumulative distribution function where all theoretically possible 
values are considered will be introduced in the context of probability 
theory in Appendix B. 

Formally, the empirical cumulative frequency distribution Femp is 
defined as 

 ∑=
=
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where k is the index of the largest value observed that is still less than x. In 
our example, k is 18. 

When we use relative frequencies, we obtain the empirical relative 
cumulative frequency distribution defined analogously to the empirical 
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tABle A.1 DJIA Stocks by Share Price in Ascending Order as of December 15, 2006

Company Share Price 

Intel Corp. $20.77

Pfizer Inc. 25.56

General Motors Corp. 29.77

Microsoft Corp. 30.07

Alcoa Inc. 30.76

Walt Disney Co. 34.72

AT&T Inc. 35.66

Verizon Communications Inc. 36.09

General Electric Co. 36.21

Hewlett-Packard Co. 39.91

Home Depot Inc. 39.97

Honeywell International Inc. 42.69

Merck & Co. Inc. 43.60

McDonald’s Corp. 43.69

Wal-Mart Stores Inc. 46.52

JPMorgan Chase & Co. 47.95

E.I. DuPont de Nemours & Co. 48.40

Coca-Cola Co. 49.00

Citigroup Inc. 53.11

American Express Co. 61.90

United Technologies Corp. 62.06

Caterpillar Inc. 62.12

Procter & Gamble Co. 63.35

Johnson & Johnson 66.25

American International Group Inc. 72.03

Exxon Mobil Corp. 78.73

3M Co. 78.77

Altria Group Inc. 84.97

Boeing Co. 89.93

International Business Machines Corp. 95.36

Source: www.dj.com/TheCompany/FactSheets.htm, December 15, 2006. 

http://www.dj.com/TheCompany/FactSheets.htm
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cumulative frequency distribution, this time using relative frequencies. 
Hence, we have

 ∑=
=

F x f( )emp
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k
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In our example, = = =F ($50) 18/30 0.6 60%.emp
f  

Note that the empirical cumulative frequency distribution can be evalu-
ated at any real x even though x need not be an observation. For any value x 
between two successive observations x(i) and x(i+1), the empirical cumulative 
frequency distribution as well as the empirical cumulative relative frequency 
distribution remain at their respective levels at x(i); that is, they are of con-
stant level F x( )emp i( )  and F x( )emp

f
i( ) , respectively. For example, consider the 

empirical relative cumulative frequency distribution for the data shown in 
Table A.1. 

The computation of either form of empirical cumulative distribution 
function is obviously not intuitive for categorical data unless we assign some 
meaningless numerical proxy to each value such as “Sector A” = 1, “Sector 
B” = 2, and so on. 

continuous versus discrete Variables

When quantitative variables are such that the set of values—whether 
observed or theoretically possible—includes intervals or the entire real num-
bers, then the variable is said to be a continuous variable. This is in contrast 
to discrete variables, which assume values only from a finite or countable 
set. Variables on a nominal scale cannot be considered in this context. And 
because of the difficulties with interpreting the results, we will not attempt 
to explain the issue of classes for rank data either. 

When one counts the frequency of observed values of a continuous vari-
able, one notices that hardly any value occurs more than once.3 Theoreti-
cally, with 100% chance, all observations will yield different values. Thus, 
the method of counting the frequency of each value is not feasible. Instead, 
the continuous set of values is divided into mutually exclusive intervals. 
Then for each such interval, the number of values falling within that interval 
can be counted again. In other words, one groups the data into classes for 
which the frequencies can be computed. Classes should be such that their 
respective lower and upper bounds are real numbers. 

3 Naturally, the precision given by the number of digits rounded may result in higher 
occurrences of certain values.
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Moreover, whether the class bounds are elements of the classes or not 
must be specified. The class bounds of a class have to be bounds of the 
respective adjacent classes as well, such that the classes seamlessly cover the 
entire data. The width should be the same for all classes. However, if there 
are areas where the data are very intensely dense in contrast to areas of 
lesser density, then the class width can vary according to significant changes 
in value density. In certain cases, most of the data are relatively evenly scat-
tered within some range while there are extreme values that are located in 
isolated areas on either end of the data array. Then, it is sometimes advis-
able to specify no lower bound to the lowest class and no upper bound to 
the uppermost class. Classes of this sort are called open classes. Moreover, 
one should consider the precision of the data as they are given. If values are 
rounded to the first decimal place but there is the chance that the exact value 
might vary within half a decimal about the value given, class bounds have 
to consider this lack of certainty by admitting half a decimal on either end 
of the class.

cumulative Frequency distributions

In contrast to the empirical cumulative frequency distributions, in this sec-
tion we will introduce functions that convey basically the same information, 
that is, the frequency distribution, but rely on a few more assumptions. These 
cumulative frequency distributions introduced here, however, should not be 
confused with the theoretical definitions given in probability theory in the next 
appendix, even though one will clearly notice that the notion is akin to both. 

The absolute cumulative frequency at each class bound states how many 
observations have been counted up to this particular class bound. However, 
we do not exactly know how the data are distributed within the classes. On 
the other hand, when relative frequencies are used, the cumulative relative 
frequency distribution states the overall proportion of all values up to a 
certain lower or upper bound of some class. 

So far, things are not much different from the definition of the empirical 
cumulative frequency distribution and empirical cumulative relative fre-
quency distribution. At each bound, the empirical cumulative frequency 
distribution and cumulative frequency coincide. However, an additional 
assumption is made regarding the distribution of the values between bounds 
of each class when computing the cumulative frequency distribution. The 
data are thought of as being continuously distributed and equally spread 
between the particular bounds. Hence, both forms of the cumulative fre-
quency distributions increase in a linear fashion between the two class 
bounds. So for both forms of cumulative distribution functions, one can 
compute the accumulated frequencies at values inside of classes. 
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For a more thorough analysis of this, let’s use a more formal presenta-
tion. Let I denote the set of all class indexes i with i being some integer 
value between 1 and =n II  (i.e., the number of classes). Moreover, let aj 
and fj denote the (absolute) frequency and relative frequency of some class 
j, respectively. The cumulative frequency distribution at some upper bound, 
xui , of a given class i is computed as

 ∑ ∑= = +
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In words, this means that we sum up the frequencies of all classes in which 
the upper bound is less than xui  plus the frequency of class i itself. The cor-
responding cumulative relative frequency distribution at the same value is 
then, 
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This describes the same procedure as in equation (A.1) using relative 
frequencies instead of frequencies. For any value x in between the boundar-
ies of, say, class i, xl

i and xui , the cumulative relative frequency distribution 
is defined by
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In words, this means that we compute the cumulative relative frequency dis-
tribution at value x as the sum of two things. First, we take the cumulative 
relative frequency distribution at the lower bound of class i. Second, we add 
that share of the relative frequency of class i that is determined by the part 
of the whole interval of class i that is covered by x. 

MeASuReS oF locAtion And SpReAd

Once we have the data at our disposal, we now want to retrieve key num-
bers conveying specific information about the data. As key numbers we will 
introduce measures for the center and location of the data as well as mea-
sures for the spread of the data. 

parameters versus Statistics

Before we go further, we have to introduce a distinction that is valid for any 
type of data. We have to be aware of whether we are analyzing the entire 
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population or just a sample from that population. The key numbers when 
dealing with populations are called parameters, while we refer to statis-
tics when we observe only a sample. Parameters are commonly denoted by 
Greek letters while statistics are usually assigned Roman letters.

The difference between these two measures is that parameters are valid 
values for the entire population or universe of data and, hence, remain con-
stant throughout whereas statistics may vary with every different sample 
even though they each are selected from the very same population. This is 
easily understood using the following example. Consider the average return 
of all stocks listed in the S&P 500 index during a particular year. This quan-
tity is a parameter µ, for example, since it represents all these stocks. If one 
randomly selects 10 stocks included in the S&P 500, however, one may end 
up with an average return for this sample that deviates from the popula-
tion average, µ. The reason would be that by chance one has picked stocks 
that do not represent the population very well. For example, one might by 
chance select the top 10 performing stocks included in the S&P 500. Their 
returns will yield an average (statistic) that is above the average of all 500 
stocks (parameter). The opposite analog arises if one had picked the 10 
worst performers. In general, deviations of the statistics from the parameters 
are the result of one selecting the sample. 

center and location

The measures we present first are those revealing the center and the location 
of the data. The center and location are expressed by three different mea-
sures: mean, mode, and median. 

The mean is the quantity given by the sum of all values divided by the 
size of the data set. The size is the number of values or observations. The 
mode is the value that occurs most often in a data set. If the distribution of 
some population or the empirical distribution of some sample are known, 
the mode can be determined to be the value corresponding to the highest 
frequency. Roughly speaking, the median divides data by value into a lower 
half and an upper half. A more rigorous definition for the median is that we 
require that at least half of the data are no greater and at least half of the 
data are no smaller than the median itself.

The interpretation of the mean is as follows: the mean gives an indica-
tion as to which value the data are scattered about. Moreover, on average, 
one has to expect a data value equal to the mean when selecting an observa-
tion at random. However, one incurs some loss of information that is not 
insignificant. Given a certain data size, a particular mean can be obtained 
from different values. One extreme would be that all values are equal to 
the mean. The other extreme could be that half of the observations are 
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extremely to the left and half of the observations are extremely to the right 
of the mean, thus, leveling out, on average. 

Of the three measures of central tendency, the mode is the measure with 
the greatest loss of information. It simply states which value occurs most 
often and reveals no further insight. This is the reason why the mean and 
median enjoy greater use in descriptive statistics. While the mean is sensitive 
to changes in the data set, the mode is absolutely invariant as long as the 
maximum frequency is obtained by the same value. The mode, however, is 
of importance, as will be seen, in the context of the shape of the distribu-
tion of data. A positive feature of the mode is that it is applicable to all data 
levels. 

Variation

Rather than measures of the center or one single location, we now discuss 
measures that capture the way the data are spread either in absolute terms 
or relative terms to some reference value such as, for example, a measure 
of location. Hence, the measures introduced here are measures of varia-
tion. We may be given the average return, for example, of a selection of 
stocks during some period. However, the average value alone is incapable 
of providing us with information about the variation in returns. Hence, 
it is insufficient for a more profound insight into the data. Like almost 
everything in real life, the individual returns will most likely deviate from 
this reference value, at least to some extent. This is due to the fact that the 
driving force behind each individual object will cause it to assume a value 
for some respective attribute that is inclined more or less in some direction 
away from the standard. 

While there are a great number of measures of variation that have been 
proposed in the finance literature, we limit our coverage to those that are 
more commonly used in financial econometrics—absolute deviation, stan-
dard deviation (variance), and skewness. 

Absolute deviation The mean absolute deviation (MAD) is the average devia-
tion of all data from some reference value (which is usually a measure of 
the center). The deviation is usually measured from the mean. The MAD 
measure takes into consideration every data value.

Variance and Standard deviation The variance is the measure of variation used 
most often. It is an extension of the MAD in that it averages not only the 
absolute but the squared deviations. The deviations are measured from the 
mean. The square has the effect that larger deviations contribute even more 
to the measure than smaller deviations as would be the case with the MAD. 
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This is of particular interest if deviations from the mean are more harmful 
the larger they are. In the conext of the variance, one often speaks of the 
averaged squared deviations as a risk measure. 

The sample variance is defined by

 ∑= −
=

s
n

x x
1

( )i
i

n
2 2

1

 (A.4)

using the sample mean. If, in equation (A.4) we use the divisor n – 1 rather 
than just n, we obtain the corrected sample variance. 

Related to the variance is the even more commonly stated measure of 
variation, the standard deviation. The reason is that the units of the stan-
dard deviation correspond to the original units of the data whereas the units 
are squared in the case of the variance. The standard deviation is defined to 
be the positive square root of the variance. Formally, the sample standard 
deviation is
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Skewness The last measure of variation we describe is skewness. There 
exist several definitions for this measure. The Pearson skewness is defined as 
three times the difference between the median and the mean divided by the 
standard deviation.4 Formally, the Pearson skewness for a sample is

 = −
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d  

where m denotes the median.
As can be easily seen, for symmetrically distributed data, skewness is 

zero. For data with the mean being different from the median and, hence, 
located in either the left or the right half of the data, the data are skewed. 
If the mean is in the left half, the data are skewed to the left (or left skewe) 
since there are more extreme values on the left side compared to the right 
side. The opposite (i.e., skewed to the right, or right skewed), is true for data 
whose mean is further to the right than the median. In contrast to the MAD 
and variance, the skewness can obtain positive as well as negative values. 

4 To be more precise, this is only one of Pearson’s skewness coefficients. Another one 
not presented here employs the mode instead of the mean.
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This is because, not only is some absolute deviation of interest, but the direc-
tion is as well. 

MultiVARiAte VARiABleS And diStRiButionS

Thus far in this appendix, we examined one variable only. However, for 
applications of financial econometrics, there is typically less of a need to 
analyze one variable in isolation. Instead, a typical problem is to investigate 
the common behavior of several variables and joint occurrences of events. In 
other words, there is the need to establish joint frequency distributions and 
introduce measures determining the extent of dependence between variables. 

Frequencies

As in the single variable case, we first gather all joint observations of our 
variables of interest. For a better overview of occurrences of the variables, 
it might be helpful to set up a table with rows indicating observations and 
columns representing the different variables. This table is called the table of 
observations. Thus, the cell of, say, row i and column j contains the value 
that observation i has with respect to variable j. Let us express this rela-
tionship between observations and variables a little more formally by some 
functional representation. 

In the following, we will restrict ourselves to observations of pairs, that 
is, k = 2. In this case, the observations are bivariate variables of the form x = 
(x1,x2). The first component x1 assumes values in the set V of possible values 
while the second component x2 takes values in W, that is, the set of possible 
values for the second component.

Consider the Dow Jones Industrial Average over some period, say one 
month (roughly 22 trading days). The index includes the stock of 30 com-
panies. The corresponding table of observations could then, for example, 
list the roughly 22 observation dates in the columns and the individual com-
pany names row-wise. So, in each column, we have the stock prices of all 
constituent stocks at a specific date. If we single out a particular row, we 
have narrowed the observation down to one component of the joint obser-
vation at that specific day. 

Since we are not so much interested in each particular observation’s 
value with respect to the different variables, we condense the information to 
the degree where we can just tell how often certain variables have occurred.5 
In other words, we are interested in the frequencies of all possible pairs with 

5 This is reasonable whenever the components assume certain values more than once.
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all possible combinations of first and second components. The task is to set 
up the so-called joint frequency distribution. The absolute joint frequency 
of the components x and y is the number of occurrences counted of the pair 
(v,w). The relative joint frequency distribution is obtained by dividing the 
absolute frequency by the number of observations.

While joint frequency distributions exist for all data levels, one distin-
guishes between qualitative data, on the one hand, and rank and quantita-
tive data, on the other hand, when referring to the table displaying the joint 
frequency distribution. For qualitative (nominal scale) data, the correspond-
ing table is called a contingency table whereas the table for rank (ordinal) 
scale and quantitative data is called a correlation table. 

Marginal distributions

Observing bivariate data, one might be interested in only one particular 
component. In this case, the joint frequency in the contingency or correla-
tion table can be aggregated to produce the univariate distribution of the 
one variable of interest. In other words, the joint frequencies are projected 
into the frequency dimension of that particular component. This distribu-
tion so obtained is called the marginal distribution. The marginal distri-
bution treats the data as if only the one component was observed while 
a detailed joint distribution in connection with the other component is of 
no interest. 

The frequency of certain values of the component of interest is meas-
ured by the marginal frequency. For example, to obtain the marginal fre-
quency of the first component whose values v are represented by the rows of 
the contingency or correlation table, we add up all joint frequencies in that 
particular row, say i. Thus, we obtain the row sum as the marginal frequency 
of this component vi. That is, for each value vi, we sum the joint frequencies 
over all pairs (vi, wj) where vi is held fixed.

To obtain the marginal frequency of the second component whose val-
ues w are represented by the columns, for each value wj, we add up the joint 
frequencies of that particular column j to obtain the column sum. This time 
we sum over all pairs (vi, wj) keeping wj fixed. 

Graphical Representation

A common graphical tool used with bivariate data arrays is given by the 
so-called scatter diagram or scatter plot. In this diagram, the values of each 
pair are displayed. Along the horizontal axis, usually the values of the first 
component are displayed while along the vertical axis, the values of the 
second component are displayed. The scatter plot is helpful in visualizing 
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FiGuRe A.1 Scatter Plot: Extreme 1—No Relationship of Component Variables x and y

x

y

whether the variation of one component variable somehow affects the vari-
ation of the other. If, for example, the points in the scatter plot are dispersed 
all over in no discernible pattern, the variability of each component may be 
unaffected by the other. This is visualized in Figure A.1. 

The other extreme is given if there is a functional relationship between 
the two variables. Here, two cases are depicted. In Figure A.2, the relation-
ship is linear whereas in Figure A.3, the relationship is of some higher order.6 
When two (or more) variables are observed at a certain point in time, one 
speaks of cross-sectional analysis. In contrast, analyzing one and the same 
variable at different points in time, one refers to it as time series analysis. We 
will come back to the analysis of various aspects of joint behavior in more 
detail later. 

Figure A.4 shows bivariate monthly return data of the S&P 500 stock 
index and the GE stock for the period January 1996 to December 2003 (96 
observation pairs). We plot the pairs of returns such that the GE returns 
are the horizontal components while the index returns are the vertical com-
ponents. By observing the plot, we can roughly assess, at first, that there 

6 As a matter of fact, in Figure A.2, we have y = 0.3 + 1.2x. In Figure A.3, we have 
y = 0.2 + x3.
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FiGuRe A.2 Scatter Plot: Extreme 2—Perfect Linear Relationship between 
Component Variables x and y
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FiGuRe A.3 Scatter Plot: Extreme 3 —Perfect Cubic Functional Relationship between 
Component Variables x and y
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FiGuRe A.4 Scatter Plot of Monthly S&P 500 Stock Index Returns versus Monthly 
GE Stock Returns

appears to be no distinct structure in the joint behavior of the data. How-
ever, by looking a little bit more thoroughly, one might detect a slight lin-
ear relationship underlying the two returns series. That is, the observations 
appear to move around some invisible line starting from the bottom left 
corner and advancing to the top right corner. This would appear quite rea-
sonable since one might expect some link between the GE stock and the 
overall index.

conditional distribution

With the marginal distribution as previously defined, we obtain the fre-
quency of component x at a certain value v, for example. We treat variable 
x as if variable y did not exist and we only observed x. Hence, the sum of 
the marginal frequencies of x has to be equal to one. The same is true in the 
converse case for variable y. Looking at the contingency or correlation table, 
the joint frequency at the fixed value v of the component x may vary in the 
values w of component y. Then, there appears to be some kind of influence 
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of component y on the occurrence of value v of component x. The influence, 
as will be shown later, is mutual. Hence, one is interested in the distribution 
of one component given a certain value for the other component. This dis-
tribution is called the conditional frequency distribution. The conditional 
relative frequency of x conditional on w is defined by 
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The conditional relative frequency of y on v is defined analogously. 
In equation (A.6), both commonly used versions of the notations for the 
conditional frequency are given on the left side. The right side, that is, the 
definition of the conditional relative frequency, uses the joint frequency at v 
and w divided by the marginal frequency of y at w. The use of conditional 
distributions reduces the original space to a subset determined by the value 
of the conditioning variable. If in equation (A.6) we sum over all possible 
values v, we obtain the marginal distribution of y at the value w, fy(w), 
in the numerator of the expression on the right side. This is equal to the 
denominator. Thus, the sum over all conditional relative frequencies of x 
conditional on w is one. Hence, the cumulative relative frequency of x at 
the largest value x can obtain, conditional on some value w of y, has to be 
equal to one. The equivalence for values of y conditional on some value of 
x is true as well.

Analogous to univariate distributions, it is possible to compute mea-
sures of center and location for conditional distributions. 

independence

The previous discussion raised the issue that a component may have influ-
ence on the occurrence of values of the other component. This can be ana-
lyzed by comparing the joint frequencies of x and y with the value in one 
component fixed, say x = v. If these frequencies vary for different values of 
y, then the occurrence of values x is not independent of the value of y. It 
is equivalent to check whether a certain value of x occurs more frequently 
given a certain value of y, that is, check the conditional frequency of x con-
ditional on y, and compare this conditional frequency with the marginal 
frequency at this particular value of x. 

The formal definition of independence is if for all v,w

 f v w f v f wx y x y, ( , ) ( ) ( )= ⋅   (A.7)
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That is, for any pair (v, w), the joint frequency is the mathematical product 
of their respective marginals. By the definition of the conditional frequen-
cies, we can state an equivalent definition as in the following:

 = =f v f v w
f v w

f w
( ) ( | )

( , )

( )
x

x y

y

,   (A.8)

which, in the case of independence of x and y, has to hold for all values v 
and w. Conversely, an equation equivalent to (A.8) has to be true for the 
marginal frequency of y, fy(w), at any value w. In general, if one can find 
one pair (v, w) where either equations (A.7) or (A.8) and, hence, both do not 
hold, then x and y are dependent. So, it is fairly easy to show that x and y 
are dependent by simply finding a pair violating equations (A.7) and (A.8). 

Now we show that the concept of influence of x on values of y is analo-
gous. Thus, the feature of statistical dependence of two variables is mutual. 
This will be shown in a brief formal way by the following. Suppose that the 
frequency of the values of x depends on the values of y, in particular,7 

 ≠ =f v
f v w

f w
f v w( )

( , )

( )
( | )x

x y

y

,  (A.9)

Multiplying each side of equation (A.9) by fy(w) yields

 ≠ ⋅f v w f v f w( , ) ( ) ( )x y x y,  (A.10)

which is just the definition of dependence. Dividing each side of equation 
(A.10) by >f v( ) 0x  gives 

 = ≠
f v w

f v
f w v f w

( , )

( )
( | ) ( )x y

x
y

,   

showing that the values of y depend on x. Conversely, one can demonstrate 
the mutuality of the dependence of the components. 

covariance 

In this bivariate context, there is a measure of joint variation for quantita-
tive data. It is the (sample) covariance defined by

 ∑= = − −
=

s x y
n

x x y ycov( , )
1

( )( )x y i i
i

n

,
1

 (A.11)

7 This holds provided that fy(w) > 0.
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In equation (A.11), for each observation, the deviation of the first com-
ponent from its mean is multiplied by the deviation of the second compo-
nent from its mean. The sample covariance is then the average of all joint 
deviations. Some tedious calculations lead to an equivalent representation 
of equation (A.11) 

∑= = −
=

s x y
n

v w xycov( , )
1

x y i i
i

n

,
1

which is a transformation analogous to the one already presented for 
variances.

The covariance of independent variables is equal to zero. The converse, 
however, is not generally true; that is, one cannot automatically conclude 
independence from zero covariance. This statement is one of the most 
important results in statistics and probability theory. Technically, if the 
covariance of x and y is zero, the two variables are said to be uncorrelated. 
For any value of cov(x,y) different from zero, the variables are correlated. 
Since two variables with zero covariance are uncorrelated but not automati-
cally independent, it is obvious that independence is a stricter criterion than 
no correlation.8

This concept is exhibited in Figure A.5. In the plot, the two sets repre-
senting correlated and uncorrelated variables are separated by the dashed 
line. Inside of the dashed line, we have uncorrelated variables while the 
correlated variables are outside. Now, as we can see by the dotted line, the 
set of independent variables is completely contained within the dashed oval 
of uncorrelated variables. The complementary set outside the dotted circle 
(i.e., the dependent variables) contains all of the correlated as well as part 
of the uncorrelated variables. Since the dotted circle is completely inside 
of the dashed oval, we see that independence is a stricter requirement than 
uncorrelatedness. 

The concept behind Figure A.5 of zero covariance with dependence can 
be demonstrated by a simple example. Consider two hypothetical securities, 
x and y, with the payoff pattern given in Table A.2. In the left column below 
y, we have the payoff values of security y while in the top row we have the 
payoff values of security x. Inside of the table are the joint frequencies of the 
pairs (x,y). As we can see, each particular value of x occurs in combination 
with only one particular value of y. Thus, the two variables (i.e., the payoffs 
of x and y) are dependent. We compute the means of the two variables to be 

8 The reason is founded in the fact that the terms in the sum of the covariance can 
cancel out each other even though the variables are not independent. 
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=x 0 and =y 0, respectively. The resulting sample covariance according to 
equation (A.11) is then 

 sX Y, . . .= −





−( ) + + − −



⋅ ⋅1

3
7
6

0 1 0
1
3

11
6

0 11 0 0−( ) =   

which indicates zero correlation. Note that despite the fact that the two vari-
ables are obviously dependent, the joint occurrence of the individual values 
is such that, according to the covariance, there is no relationship apparent. 

correlation

If the covariance of two variables is non-zero we know that, formally, the 
variables are dependent. However, the degree of correlation is not uniquely 
determined.

FiGuRe A.5 Relationship between Correlation and Dependence of Bivariate Variables

cov(x,y) = 0

x,y
Dependent

cov(x,y) ≠ 0

x,y
Independent

tABle A.2 Payoff Table of the Hypothetical Variables x and y with Joint Frequencies

x

y 7/6 13/6 –5/6 –11/6

1 1/3

–2 1/6

2 1/6

–1 1/3
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This problem is apparent from the following illustration. Suppose we 
have two variables, x and y, with a cov(x, y) of a certain value. A linear trans-
formation of, at least, one variable, say ax + b, will generally lead to a change 
in value of the covariance due to the following property of the covariance:

 + =ax b y a x ycov( , ) cov( , )   

This does not mean, however, that the transformed variable is more or less 
correlated with y than x was. Since the covariance is obviously sensitive to 
transformation, it is not a reasonable measure to express the degree of cor-
relation.

This shortcoming of the covariance can be circumvented by dividing the 
joint variation as defined by equation (A.11) by the product of the respective 
variations of the component variables. The resulting measure is the Pearson 
correlation coefficient or simply the correlation coefficient defined by

 r
x y

s sx y
x y

,
cov( , )= ⋅   (A.12)

where the covariance is divided by the product of the standard deviations of 
x and y. By definition, rx,y can take on any value from –1 to 1 for any bivari-
ate quantitative data. Hence, we can compare different data with respect to 
the correlation coefficient equation (A.12). Generally, we make the distinc-
tion rx,y < 0, negative correlation; rx,y = 0, no correlation; and rx,y > 0, posi-
tive correlation to indicate the possible direction of joint behavior. 

In contrast to the covariance, the correlation coefficient is invariant with 
respect to linear transformation. That is, it is said to be scaling invariant. For 
example, if we translate x to ax + b, we still have

 r ax b y s s a x y asax b y ax b y+ += + =⋅, cov( , ) / ( ) cov( , ) / xx y x ys r⋅ = ,  

contingency coefficient

So far, we could only determine the correlation of quantitative data. To 
extend this analysis to any type of data, we introduce another measure, the 
so-called chi-square test statistic denoted by χ2. Using relative frequencies, 
the chi-square test statistic is defined by

 ∑∑χ =
−

==

n
f v w f v f w

f v f w

( ( , ) ( ) ( ))

( ) ( )
x y i j x i y j

x i y jj

s

i

r
2 ,

2

11
  (A.13)

An analogous formula can be used for absolute frequencies.
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The intuition behind equation (A.13) is to measure the average squared 
deviations of the joint frequencies from what they would be in case of inde-
pendence. When the components are, in fact, independent, then the chi-square 
test statistic is zero. However, in any other case, we have the problem that, 
again, we cannot make an unambiguous statement to compare different 
data sets. The values of the chi-square test statistic depend on the data size n. 
For increasing n, the statistic can grow beyond any bound such that there is 
no theoretical maximum. The solution to this problem is given by the Pearson 
contingency coefficient or simply contingency coefficient defined by

 = χ
+ χ

C
n

2

2
 (A.14)

The contingency coefficient by the definition given in equation (A.14) is 
such that 0 ≤ C < 1. Consequently, it assumes values that are strictly less 
than one but may become arbitrarily close to one. This is still not satisfac-
tory for our purpose to design a measure that can uniquely determine the 
respective degrees of dependence of different data sets. 

There is another coefficient that can be used based on the following. Sup-
pose we have bivariate data in which the value set of the first component 
variable contains r different values and the value set of the second component 
variable contains s different values. In the extreme case of total dependence of 
x and y, each variable will assume a certain value if and only if the other vari-
able assumes a particular corresponding value. Hence, we have k = min{r,s} 
unique pairs that occur with positive frequency whereas any other combina-
tion does not occur at all (i.e., has zero frequency). Then one can show that 

 = −
C

k
k

1  

such that, generally, ≤ ≤ − <C k k0 ( 1) / 1. Now, the standardized coefficient 
can be given by 

 =
−

C
k

k
C

1
corr   (A.15)

which is called the corrected contingency coefficient with 0 ≤ C ≤ 1. With the 
measures given in equations (A.13), (A.14), and (A.15), and the corrected 
contingency coefficient, we can determine the degree of dependence for any 
type of data.
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Appendix B
Continuous probability distributions 

Commonly Used  
in Financial econometrics

in this appendix, we discuss the more commonly used continuous 
probability distributions are used in financial econometrics. The four 

distributions discussed are the normal distribution, the chi-square distri-
bution, the Student’s t-distribution, the Fisher’s F-distribution. It should 
be emphasized that although many of these distributions enjoy wide-
spread attention in financial econometrics as well as financial theory 
(e.g., the normal distribution), due to their well-known characteristics 
or mathematical simplicity, the use of some of them might be ill-suited 
to replicate the real-world behavior of financial returns. In particular, 
the four distributions just mentioned are appealing in nature because 
of their mathematical simplicity, due to the observed behavior of many 
quantities in finance, there is a need for more flexible distributions com-
pared to keeping models mathematically simple. For example, although 
the Student’s t-distribution that will be discussed in this appendix is able 
to mimic some behavior inherent in financial data such as so-called fat 
tails or heavy tails (which means that a lot of the probability mass is 
attributed to extreme values),1 it fails to capture other observed behavior 
such as skewness. For this reason, there has been increased interest in a 
continuous probability distribution in finance and financial econometrics 
known as the α-stable distribution. We will describe this distribution at 
the end of this appendix.

1 There are various characterizations of fat tails in the literature. In finance, typically 
the tails that are heavier than those of the exponential distribution are considered 
“heavy.”
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nORMAL diSTRiBUTiOn

The first distribution we discuss is the normal distribution. It is the distri-
bution most commonly used in finance despite its many limitations. This 
distribution, also referred to as the Gaussian distribution, is characterized by 
the two parameters: mean (μ) and standard deviation (σ). The distribution 
is denoted by N(μ, σ2). When μ = 0 and σ2 = 1, then we obtain the standard 
normal distribution. 

The density function for the normal distribution is given by

 f x e
x

( ) = ⋅ −
−( )1

2

2

22

πσ

µ
σ  (B.1)

The density function is symmetric about μ. A plot of the density function 
for several parameter values is given in Figure B.1. As can be seen, the 
value of μ results in a horizontal shift from 0 while σ inflates or deflates 
the graph. A characteristic of the normal distribution is that the densities 
are bell shaped. 

FigURe B.1 Normal Density Function for Various Parameter Values
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A problem is that the distribution function cannot be solved for analyti-
cally and therefore has to be approximated numerically. In the particular 
case of the standard normal distribution, the values are tabulated. Standard 
statistical software provides the values for the standard normal distribution 
as well as most of the distributions presented in this chapter. The standard 
normal distribution is commonly denoted by the Greek letter Φ such that 
we have Φ = = ≤x F x P X x( ) ( ) ( ), for some standard normal random variable 
X. In Figure B.2, graphs of the distribution function are given for three dif-
ferent sets of parameters.

properties of the normal distribution

The normal distribution provides one of the most important classes of prob-
ability distributions due to two appealing properties:

Property 1. The distribution is location-scale invariant. That is, if X has 
a normal distribution, then for every constant a and b, aX + b is 
again a normal random variable.

FigURe B.2 Normal Distribution Function for Various Parameter Values
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Property 2. The distribution is stable under summation. That is, if X has 
a normal distribution F, and X1,  .  .  .  ,Xn are n independent random 
variables with distribution F, then X1 +  .  .  .  + Xn is again a normal 
distributed random variable.

In fact, if a random variable X has a distribution satisfying Properties 1 and 
2 and X has a finite variance, then X has a normal distribution.

Property 1, the location-scale invariance property, guarantees that 
we may multiply X by b and add a where a and b are any real numbers. 
Then, the resulting a + b ⋅ X is, again, normally distributed, more pre-
cisely, N (a + μ, bσ). Consequently, a normal random variable will still be 
normally distributed if we change the units of measurement. The change 
into a + b ⋅ X can be interpreted as observing the same X, however, mea-
sured in a different scale. In particular, if a and b are such that the mean and 
variance of the resulting a + b ⋅ X are 0 and 1, respectively, then a + b ⋅ X is 
called the standardization of X. 

Property 2, stability under summation, ensures that the sum of an arbi-
trary number n of normal random variables, X1, X2,  .  .  .  , Xn is, again, nor-
mally distributed provided that the random variables behave independently 
of each other. This is important for aggregating quantities. 

Furthermore, the normal distribution is often mentioned in the context 
of the central limit theorem. It states that a sum of n random variables with 
finite variance and identical distributions and being independent of each 
other, converges in distribution to a normal random variable.2 We restate 
this formally as follows: 

Let X1, X2,  .  .  .  , Xn be identically distributed random variables with 
mean E(Xi) = μ and var(Xi) = σ2 and do not influence the outcome of each 
other (i.e., are independent). Then, we have

 

X n

n
N

i
i

n

D
−

 →
⋅

=
∑ µ

σ
1 0 1( , )  (B.2)

as the number n approaches infinity. The D above the convergence arrow in 
equation (B.2) indicates that the distribution function of the left expression 
convergences to the standard normal distribution. 

Generally, for n = 30 in equation (B.2), we consider equality of the dis-
tributions; that is, the left-hand side is N(0,1) distributed. In certain cases, 
depending on the distribution of the Xi and the corresponding parameter 

2 There exist generalizations such that the distributions need no longer be identical. 
However, this is beyond the scope of this appendix. 
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values, n < 30 justifies the use of the standard normal distribution for the 
left-hand side of equation (B.2). 

These properties make the normal distribution the most popular dis-
tribution in finance. This popularity is somewhat contentious, however, for 
reasons that will be given when we describe the α-stable distribution.

The last property we will discuss of the normal distribution that is 
shared with some other distributions is the bell shape of the density func-
tion. This particular shape helps in roughly assessing the dispersion of the 
distribution due to a rule of thumb commonly referred to as the empirical 
rule. Due to this rule, we have

∈ µ ± σ = µ + σ − µ − σ ≈P X F F( [ ]) ( ) ( ) 68%

∈ µ ± σ = µ + σ − µ − σ ≈P X F F( [ 2 ]) ( 2 ) ( 2 ) 95%

∈ µ ± σ = µ + σ − µ − σ ≈P X F F( [ 3 ]) ( 3 ) ( 3 ) 100%

The above states that approximately 68% of the probability is given 
to values that lie in an interval one standard deviation σ about the mean 
μ. About 95% probability is given to values within 2σ to the mean, while 
nearly all probability is assigned to values within 3σ from the mean. 

CHi-SQUARe diSTRiBUTiOn

Our next distribution is the chi-square distribution. Let Z be a standard 
normal random variable, in brief Z ~ N (0,1), and let X = Z2. Then X is 
distributed chi-square with one degree of freedom. We denote this as X ~ 
χ2(1). The degrees of freedom indicate how many independently behaving 
standard normal random variables the resulting variable is composed of. 
Here X is just composed of one, namely Z, and therefore has one degree 
of freedom.

Because Z is squared, the chi-square distributed random variable 
assumes only nonnegative values; that is, the support is on the nonnegative 
real numbers. It has mean E(X) = 1 and variance var(X) = 2. 

In general, the chi-square distribution is characterized by the degrees 
of freedom n, which assume the values 1, 2,  .  .  .  , and so on. Let X1, X2,  .  .  .  , 
Xn be n χ2(1) distributed random variables that are all independent of each 
other. Then their sum, S, is

 ∑= χ
=

S X n~ ( )i
i

n
2

1

 (B.3)
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In words, the sum is again distributed chi-square but this time with n 
degrees of freedom. The corresponding mean is E(X) = n, and the variance 
equals var(X) = 2 · n. So, the mean and variance are directly related to the 
degrees of freedom.

From the relationship in equation (B.3), we see that the degrees of free-
dom equal the number of independent χ2(1) distributed Xi in the sum. If 
we have two independent random variables X1 ~ χ2(n1) and X2 ~ χ2(n2), it 
follows that 

 + χ +X X n n~ ( )1 2
2

1 2  (B.4)

From equation (B.4), we have that chi-square distributions have Prop-
erty 2; that is, they are stable under summation in the sense that the sum 
of any two independent chi-squared distributed random variables is itself 
chi-square distributed.

We won’t present the chi-squared distribution’s density function here. 
However, Figure B.3 shows a few examples of the plot of the chi-square 
density function with varying degrees of freedom. As can be observed, the 
chi-square distribution is skewed to the right. 

FigURe B.3 Density Functions of Chi-Square Distributions for Various Degrees of 
Freedom n
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STUdenT’S t-diSTRiBUTiOn

An important continuous probability distribution when the population 
variance of a distribution is unknown is the Student’s t-distribution (also 
referred to as the t-distribution and Student’s distribution).

To derive the distribution, let X be distributed standard normal, that is, 
X ~ N(0,1), and S be chi-square distributed with n degrees of freedom, that 
is, S ~ χ2(n). Furthermore, if X and S are independent of each other, then 

 Z
X

S n
t n=

/
~ ( )  (B.5)

In words, equation (B.5) states that the resulting random variable Z is Stu-
dent’s t-distributed with n degrees of freedom. The degrees of freedom are 
inherited from the chi-square distribution of S. 

Here is how we can interpret equation (B.5). Suppose we have a popula-
tion of normally distributed values with zero mean. The corresponding nor-
mal random variable may be denoted as X. If one also knows the standard 
deviation of X, 

σ = var( )X

with X/σ, we obtain a standard normal random variable. 
However, if σ is not known, we instead have to use, for example,

= ⋅ + +…S n n X X/ 1 / ( )n1
2 2  

where X X, , n1
2 2…  are n random variables identically distributed as X. 

Moreover, X1,  .  .  .  , Xn have to assume values independently of each other. 
Then, the distribution of

X S n/ /  

is the t-distribution with n degrees of freedom, that is,

X S n t n/ / ~ ( )  

By dividing by σ or S/n, we generate rescaled random variables that 
follow a standardized distribution. Quantities similar to X S n/ /  play an 
important role in parameter estimation. 

It is unnecessary to provide the complicated formula for the Student’s 
t-distribution’s density function here. Basically, the density function of the 
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Student’s t-distribution has a similar shape to the normal distribution, but 
with thicker tails. For large degrees of freedom n, the Student’s t-distribution 
does not significantly differ from the standard normal distribution. As a 
matter of fact, for n ≥ 50, it is practically indistinguishable from N(0,1). 

Figure B.4 shows the Student’s t-density function for various degrees of 
freedom plotted against the standard normal density function. The same is 
done for the distribution function in Figure B.5.

In general, the lower the degrees of freedom, the heavier the tails of the 
distribution, making extreme outcomes much more likely than for greater 
degrees of freedom or, in the limit, the normal distribution. This can be seen 
by the distribution function that we depicted in Figure B.5 for n = 1 and 
n = 5 against the standard normal cumulative distribution function (cdf). 
For lower degrees of freedom such as n = 1, the solid curve starts to rise 
earlier and approach 1 later than for higher degrees of freedom such as n = 5 
or the N(0,1) case.

This can be understood as follows. When we rescale X by dividing by 
S n/  as in equation (B.5), the resulting X S n/ /  obviously inherits ran-

domness from both X and S. Now, when S is composed of few Xi, only, say 
n = 3, such that X S n/ /  has three degrees of freedom, there is a lot of 

FigURe B.4 Density Function of the t-Distribution for Various Degrees of Freedom 
n Compared to the Standard Normal Density Function N(0,1)
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dispersion from S relative to the standard normal distribution. By includ-
ing more independent N(0,1) random variables Xi such that the degrees 
of freedom increase, S becomes less dispersed. Thus, much uncertainty 
relative to the standard normal distribution stemming from the denomina-
tor in X S n/ /  vanishes. The share of randomness in X S n/ /  originating 
from X alone prevails such that the normal characteristics preponderate. 
Finally, as n goes to infinity, we have something that is nearly standard nor-
mally distributed.

The mean of the Student’s t random variable is zero, that is E(X) = 0, 
while the variance is a function of the degrees of freedom n as follows 

σ2

2
= =

−
var( )X

n
n

For n = 1 and 2, there is no finite variance. Distributions with such small 
degrees of freedom generate extreme movements quite frequently relative to 
higher degrees of freedom. Precisely for this reason, stock price returns are 
often found to be modeled quite well using distributions with small degrees 
of freedom, or alternatively, distributions with heavy tails with power decay, 
with power parameter less than 6. 

FigURe B.5 Distribution Function of the t-Distribution for Various Degrees of Free-
dom n Compared to the Standard Normal Density Function N(0,1)
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F -diSTRiBUTiOn

Our next distribution is the F-distribution. It is defined as follows. Let 
χX n~ ( )2

1  and χY n~ ( ).2
2

Furthermore, assuming X and Y to be independent, then the ratio

 =F n n

X
n

Y
n

( , )1 2
1

2

 (B.6)

has an F-distribution with n1 and n2 degrees of freedom inherited from the 
underlying chi-square distributions of X and Y, respectively. We see that the 
random variable in equation (B.6) assumes nonnegative values only because 
neither X nor Y are ever negative. Hence, the support is on the nonnega-
tive real numbers. Also like the chi-square distribution, the F-distribution is 
skewed to the right. 

Once again, it is unnecessary to present the formula for the density 
function. Figure B.6 displays the density function for various degrees of 
freedom. As the degrees of freedom n1 and n2 increase, the function graph 
becomes more peaked and less asymmetric while the tails lose mass.

FigURe B.6 Density Function of the F-Distribution for Various Degrees of Freedom 
n1 and n2
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The mean is given by

 =
−

>E X
n

n
n( )

2
for 22

2
2  (B.7)

while the variance equals

 σ2 2
2

1 2

1 2
2

2

2 2
2 4

= =
+ −

− −
var( )X

n n n
n n n

( )
( ) ( )

for nn2 4>  (B.8)

Note that according to equation (B.7), the mean is not affected by the 
degrees of freedom n1 of the first chi-square random variable, while the 
variance in equation (B.8) is influenced by the degrees of freedom of both 
random variables. 

α-STABLe diSTRiBUTiOn

While many models in finance have been modeled historically using the nor-
mal distribution based on its pleasant tractability, concerns have been raised 
that this distribution underestimates the danger of downturns of extreme 
magnitude in stock markets that have been observed in financial markets. 
Many distributional alternatives providing more realistic chances to severe 
price movements have been presented earlier, such as the Student’s t. In the 
early 1960s, Benoit Mandelbrot suggested as a distribution for commodity 
price changes the class of Lévy stable distributions (simply referred to as the 
stable distributions).3 The reason is that, through their particular param-
eterization, they are capable of modeling moderate scenarios, as supported 
by the normal distribution, as well as extreme ones. 

The stable distribution is characterized by the four parameters α, β, σ, 
and μ. In brief, we denote the stable distribution by S(α, β, σ, μ). Parameter α 
is the so called tail index or characteristic exponent. It determines how much 
probability is assigned around the center and the tails of the distribution. 
The lower the value α, the more pointed about the center is the density and 
the heavier are the tails. These two features are referred to as excess kurtosis 
relative to the normal distribution. This can be visualized graphically as we 
have done in Figure B.7 where we compare the normal density to an α-stable 

3 Benoit B. Mandelbrot, “The Variation of Certain Speculative Prices,” Journal of 
Business 36 (1963): 394–419.
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density with a low α = 1.5.4 The density graphs are obtained by fitting the 
distributions to the same sample data of arbitrarily generated numbers. The 
parameter α is related to the parameter ξ of the Pareto distribution resulting 
in the tails of the density functions of α-stable random variables to vanish at 
a rate proportional to the Pareto tail. 

The tails of the Pareto as well as the α-stable distribution decay at a rate 
with fixed power α, Cx–α (i.e., power law) where C is a positive constant, 
which is in contrast to the normal distribution whose tails decay at an expo-
nential rate (i.e., roughly − −x e x1 /22

). 
The parameter β indicates skewness where negative values represent left 

skewness while positive values indicate right skewness. The scale parameter 
σ has a similar interpretation to the standard deviation. Finally, the param-
eter μ indicates location of the distribution. Its interpretability depends on 
the parameter α. If the latter is between 1 and 2, then μ is equal to the mean.

4 In the figure, the parameters for the normal distribution are μ = 0.14 and σ = 4.23. 
The parameters for the stable distribution are α = 1.5, β = 0, σ = 1, and μ = 0. Note 
that symbols common to both distributions have different meanings.

FigURe B.7 Comparison of the Normal (Dash-Dotted) and α-Stable (Solid) 
Density Functions
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Possible values of the parameters are listed below:

α (0,2]
β [–1,1]
σ (0,∞)
μ any real number

Depending on the parameters α and β, the distribution has either support on 
the entire real line or only the part extending to the right of some location. 

In general, the density function is not explicitly presentable. Instead, 
the distribution of the α-stable random variable is given by its characteristic 
function which we do not present here.5 

Figure B.8 shows the effect of α on tail thickness of the density as well 
as peakedness at the origin relative to the normal distribution (collectively 

5 There are three possible ways to uniquely define a probability distribution: the 
cumulative distribution function, the probability density function, and the char-
acteristic function. The precise definition of a characteristics function needs some 
advanced mathematical concepts and is not of major interest for this book. At this 
point, we just state the fact that knowing the characteristic function is mathemati-
cally equivalent to knowing the probability density or the cumulative distribution 
function. In only three cases does the density of a stable distribution have a closed-
form expression.

FigURe B.8 Influence of α on the Resulting Stable Distribution
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the “kurtosis”of the density), for the case of β = 0, μ = 0, and σ = 1. As the 
values of α decrease, the distribution exhibits fatter tails and more peaked-
ness at the origin. Figure B.9 illustrates the influence of β on the skewness 
of the density function for α = 1.5, μ = 0, and σ = 1. Increasing (decreasing) 
values of β result in skewness to the right (left).

Only in the case of an α of 0.5, 1, or 2 can the functional form of the 
density be stated. For our purpose here, only the case α = 2 is of interest 
because, for this special case, the stable distribution represents the normal 
distribution. Then, the parameter β ceases to have any meaning since the 
normal distribution is not asymmetric. 

A feature of the stable distributions is that moments such as the mean, 
for example, exist only up to the power α. So, except for the normal case 
(where α = 2), there exists no finite variance. It becomes even more extreme 
when α is equal to 1 or less such that not even the mean exists any more. 
The non existence of the variance is a major drawback when applying stable 
distributions to financial data. This is one reason that the use of this family 
of distribution in finance is still disputed. 

This class of distributions owes its name to the stability property that we 
described earlier for the normal distribution (Property 2): The weighted sum 
of an arbitrary number of independent α-stable random variables with the 
same parameters is, again, α-stable distributed. More formally, let X1,  .  .  .  , 

FigURe B.9 Influence of β on the Resulting Stable Distribution
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Xn be identically distributed and independent of each other. Then, assume 
that for large n ∈ N, there exists a positive constant an and a real constant 
bn such that the normalized sum Y(n)

 = + + + + α β σ µY n a X X X b S( ) ( ) ~ ( , , , )n n n1 2 …  (B.9)

converges in distribution to a random variable X, then this random variable 
X must be stable with some parameters α, β, σ, and μ. The convergence in dis-
tribution means that the distribution function of Y(n) in equation (B.9) con-
verges to the distribution function on the right-hand side of equation (B.9).

In the context of financial returns, this means that α-stable monthly 
returns can be treated as the sum of weekly independent returns and, again, 
α-stable weekly returns themselves can be understood as the sum of daily 
independent returns. According to equation (B.9), they are equally distributed 
up to rescaling by the parameters an and bn.

From the presentation of the normal distribution, we know that it 
serves as a limit distribution of a sum of identically distributed random 
variables that are independent and have finite variance. In particular, the 
sum converges in distribution to the standard normal distribution once the 
random variables have been summed and transformed appropriately. The 
prerequisite, however, was that the variance exists. Now, we can drop the 
requirement for finite variance and only ask for independent and identical 
distributions to arrive at the generalized central limit theorem expressed by 
equation (B.9). The data transformed in a similar fashion as on the left-hand 
side of equation (B.2) will have a distribution that follows a stable distri-
bution law as the number n becomes very large. Thus, the class of α-stable 
distributions provides a greater set of limit distributions than the normal 
distribution containing the latter as a special case. Theoretically, this justi-
fies the use of α-stable distributions as the choice for modeling asset returns 
when we consider the returns to be the resulting sum of many independent 
shocks with identical distributions. 
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Appendix C
inferential Statistics

in Appendix A, we provided the basics of descriptive statistics. Our focus in 
this appendix is on inferential statistics, covering the three major topics of 

point estimators, confidence intervals, and hypothesis testing.

pOinT eSTiMATORS

Since it is generally infeasible or simply too involved to analyze an entire 
population in order to obtain full certainty as to the true environment, we 
need to rely on a small sample to retrieve information about the population 
parameters. To obtain insight about the true but unknown parameter value, 
we draw a sample from which we compute statistics or estimates for the 
parameter.

In this section, we will learn about samples, statistics, and estimators. 
In particular, we present the linear estimator, explain quality criteria (such 
as the bias, mean squared error, and standard error) and the large-sample 
criteria. In the context of large-sample criteria, we present the idea behind 
consistency, for which we need the definition of convergence in probability 
and the law of large numbers. As another large-sample criterion, we intro-
duce the unbiased efficiency, explaining the best linear unbiased estimator or, 
alternatively, the minimum-variance linear unbiased estimator. 

Sample, Statistic, and estimator

The probability distributions typically used in financial econometrics depend 
on one or more parameters. Here we will refer to simply the parameter θ, 
which will have one or several components, such as the parameters for the 
mean and variance. The set of parameters is given by Θ, which will be called 
the parameter space. 
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The general problem that we address is the process of gaining informa-
tion on the true population parameter such as, for example, the mean of 
some portfolio returns. Since we do not actually know the true value of 
θ, we merely are aware of the fact that it has to be in Θ. For example, the 
normal distribution has the parameter θ = (μ, σ2) where the first component, 
the mean, denoted by µ, can technically be any real number between minus 
and plus infinity. The second component, the variance, denoted by σ2, is any 
positive real number. 

Sample Let Y be some random variable with a probability distribution that 
is characterized by parameter θ. To obtain the information about this popu-
lation parameter, we draw a sample from the population of Y. A sample 
is the total of n drawings X1, X2,  .  .  .  , Xn from the entire population. Note 
that until the drawings from the population have been made, the Xi are still 
random. The actually observed values (i.e., realizations) of the n drawings 
are denoted by x1, x2,  .  .  .  , xn. Whenever no ambiguity will arise, we denote 
the vectors (X1, X2,  .  .  .  , Xn) and (x1, x2,  .  .  .  , xn) by the short hand notation 
X and x, respectively.

To facilitate the reasoning behind this, let us consider the value of the 
Dow Jones Industrial Average (DJIA) as some random variable. To obtain a 
sample of the DJIA, we will “draw” two values. More specifically, we plan 
to observe its closing value on two days in the future, say June 12, 2009, 
and January 8, 2010. Prior to these two dates, say on January 2, 2009, we 
are still uncertain as to value of the DJIA on June 12, 2009, and January 8, 
2010. So, the value on each of these two future dates is random. Then, on 
June 12, 2009, we observe that the DJIA’s closing value is 8,799.26, while 
on January 8, 2010, it is 10,618.19. Now, after January 8, 2010, these two 
values are realizations of the DJIA and not random any more. 

Let us return to the theory. Once we have realizations of the sample, any 
further decision will then be based solely on the sample. However, we have 
to bear in mind that a sample provides only incomplete information since it 
will be impractical or impossible to analyze the entire population. This pro-
cess of deriving a conclusion concerning information about a population’s 
parameters from a sample is referred to as statistical inference or, simply, 
inference. 

Formally, we denote the set of all possible sample values for samples of 
given length n (which is also called the sample size) by X. 

Sampling Techniques There are two types of sampling methods: with 
replacement and without replacement. Sampling with replacement is pre-
ferred because this corresponds to independent draws such that the Xi are 
independent and identically distributed (i.i.d.). 
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In our discussion, we will assume that individual draws are performed 
independently and under identical conditions (i.e., the X1, X2,  .  .  .  , Xn 
are i.i.d.). 

We know that the joint probability distribution of independent random 
variables is obtained by multiplication of the marginal distributions. 

Consider the daily stock returns of General Electric (GE) modeled by 
the continuous random variable X. The returns on 10 different days (X1, 
X2,  .  .  .  , X10) can be considered a sample of i.i.d. draws. In reality, however, 
stock returns are seldom independent. If, on the other hand, the observa-
tions are not made on 10 consecutive days but with larger gaps between 
them, it is fairly reasonable to assume independence. Furthermore, the stock 
returns are modeled as normal (or Gaussian) random variables. 

Statistic What is the distinction between a statistic and a population 
parameter? In the context of estimation, the population parameter is 
inferred with the aid of the statistic. A statistic assumes some value that 
holds for a specific sample only, while the parameter prevails in the entire 
population. 

The statistic, in most cases, provides a single number as an estimate of the 
population parameter generated from the sample. If the true but unknown 
parameter consists of, say, k components, the statistic will provide at least k 
numbers, that is at least one for each component. We need to be aware of the 
fact that the statistic will most likely not equal the population parameter due 
to the random nature of the sample from which its value originates.

Technically, the statistic is a function of the sample (X1, X2,  .  .  .  , Xn). 
We denote this function by t. Since the sample is random, so is t and, conse-
quently, any quantity that is derived from it. 

We need to postulate measurability so that we can assign a probability 
to any values of the function t(x1, x2,  .  .  .  , xn). Whenever it is necessary to 
express the dependence of statistic t on the outcome of the sample (x), we 
write the statistic as the function t(x). Otherwise, we simply refer to the 
function t without explicit argument.

The statistic t as a random variable inherits its theoretical distribution 
from the underlying random variables (i.e., the random draws X1, X2,  .  .  .  , 
Xn). If we vary the sample size n, the distribution of the statistics will, in 
most cases, change as well. This distribution expressing in particular the 
dependence on n is called the sampling distribution of t. Naturally, the sam-
pling distribution exhibits features of the underlying population distribu-
tion of the random variable.

estimator The easiest way to obtain a number for the population parameter 
would be to simply guess. But this method lacks any foundation since it is 
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based on nothing but luck; in the best case, a guess might be justified by 
some experience. However, this approach is hardly analytical. Instead, we 
should use the information obtained from the sample, or better, the statistic. 

When we are interested in the estimation of a particular parameter θ, 
we typically do not refer to the estimation function as a statistic but rather 
as an estimator and denote it by θ → ΘXˆ : . This means that the estimator 
is a function from the sample space X mapping into the parameter space 
Θ. The estimator can be understood as some instruction of how to process 
the sample to obtain a valid representative of the parameter θ. The exact 
structure of the estimator is determined before the sample is realized. After 
the estimator has been defined, we simply need to enter the sample values 
accordingly. 

Due to the estimator’s dependence on the random sample, the estimator 
is itself random. A particular value of the estimator based on the realization 
of some sample is called an estimate. For example, if we realize 1,000 samples 
of given length n, we obtain 1,000 individual estimates θ̂i , i = 1, 2,  .  .  .  , 1,000. 
Sorting them by value, we can compute the distribution function of these 
realizations, which is similar to the empirical cumulative distribution func-
tion explained in Appendix A. Technically, this distribution function is not 
the same as the theoretical sampling distribution for this estimator for given 
sample length n introduced earlier. For increasing n, however, the distribu-
tion of the realized estimates will gradually become more and more similar in 
appearance to the sampling distribution. 

Linear estimators We turn to a special type of estimator, the linear estima-
tor. Suppose we have a sample of size n such that X = (X1, X2,  .  .  .  , Xn). The 
linear estimator then has the following form:

∑θ =
=

a Xˆ
i i

i

n

1

where each draw Xi is weighted by some real ai, for i = 1, 2,  .  .  .  , n. By con-
struction, the linear estimator weights each draw Xi by some weight ai. The 
usual constraints on the ai is that they sum to 1, that is,

∑ =
=
a 1ii

n

1

A particular version of the linear estimator is the sample mean where all ai = 1/n. 
Let’s look at a particular distribution of the Xi, the normal distribution. 

As we know from Appendix B, this distribution can be expressed in closed 
form under linear affine transformation by Properties 1 and 2. That is, by 
adding several Xi and multiplying the resulting sum by some constant, we 
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once again obtain a normal random variable. Thus, any linear estimator will 
be normal. This is an extremely attractive feature of the linear estimator. 

Even if the underlying distribution is not the normal distribution, 
according to the central limit theorem as explained in Appendix B, the sam-
ple mean (i.e., when ai = 1/n) will be approximately normally distributed 
as the sample size increases. This result facilitates parameter estimation for 
most distributions. 

What sample size n is sufficient? If the population distribution is sym-
metric, it will not require a large sample size, often less than 10. If, however, 
the population distribution is not symmetric, we will need larger samples. 
In general, an n between 25 and 30 suffices. One is on the safe side when n 
exceeds 30. 

The central limit theorem requires that certain conditions on the popu-
lation distribution are met, such as finiteness of the variance. If the variance 
or even mean do not exist, another theorem, the so-called generalized cen-
tral limit theorem, can be applied under certain conditions. However, these 
conditions are beyond the scope of this book. But we will give one example. 
The class of α-stable distributions provides such a limiting distribution, that 
is, one that certain estimators of the form 

∑ =
a Xi ii

n

1

will approximately follow as n increases. We note this distribution because 
it is one that has been suggested by financial economists as a more general 
alternative to the Gaussian distribution to describe returns on financial assets.

Quality Criteria of estimators

The question related to each estimation problem should be what estimator 
would be best suited for the problem at hand. Estimators suitable for the 
very same parameters can vary quite remarkably when it comes to qual-
ity of their estimation. Here we will explain some of the most commonly 
employed quality criteria. 

Bias An important consideration in the selection of an estimator is the 
average behavior of that estimator over all possible scenarios. Depending 
on the sample outcome, the estimator may not equal the parameter value 
and, instead, be quite remote from it. This is a natural consequence of the 
variability of the underlying sample. However, the average value of the esti-
mator is something we can control. 

Let us begin by considering the sampling error that is the difference 
between the estimate and the population parameter. This distance is random 
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due to the uncertainty associated with each individual draw. For the param-
eter θ and the estimator θ̂, we define the sample error as ( )θ − θˆ . Now, a most 
often preferred estimator should yield an expected sample error of zero. 
This expected value is defined as 

 θ − θθE (ˆ )   (C.1)

and referred to as bias.1 If the expression in equation (C.1) is different from 
zero, the estimator is said to be a biased estimator while it is an unbiased 
estimator if the expected value in equation (C.1) is zero. 

The subscript θ in equation (C.1) indicates that the expected value is com-
puted based on the distribution with parameter θ whose value is unknown. 
Technically, however, the computation of the expected value is feasible for a 
general θ.

Mean Squared error Bias as a quality criterion tells us about the expected 
deviation of the estimator from the parameter. However, the bias fails to 
inform us about the variability or spread of the estimator. For a reliable 
inference for the parameter value, we should prefer an estimator with rather 
small variability or, in other words, high precision. 

Assume that we repeatedly, say m times, draw samples of given size 
n. Using estimator θ̂  for each of these samples, we compute the respec-
tive estimate θ̂t  of parameter θ, where t = 1, 2,  .  .  .  , m. From these m esti-
mates, we then obtain an empirical distribution of the estimates including 
an empirical spread given by the sample distribution of the estimates. We 
know that with increasing sample length n, the empirical distribution will 
eventually look like the normal distribution for most estimators. However, 
regardless of any empirical distribution of estimates, an estimator has a 
theoretical sampling distribution for each sample size n. So, the random 
estimator is, as a random variable, distributed by the law of the sampling 
distribution. The empirical and the sampling distribution will look more 
alike the larger is n. The sampling distribution provides us with a theoreti-
cal measure of spread of the estimator which is called the standard error 
(SE). This is a measure that can often be found listed together with the 
observed estimate. 

To completely eliminate the variance, one could simply take a constant 
θ = cˆ  as the estimator for some parameter. However, this not reasonable 
since it is insensitive to sample information and thus remains unchanged 

1 We assume in this chapter that the estimators and the elements of the sample have 
finite variance, and in particular the expression in equation (C.1) is well-defined.
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for whatever the true parameter value θ may be. Hence, we stated the bias 
as an ultimately preferable quality criterion. Yet, a bias of zero may be 
too restrictive a criterion if an estimator θ̂ is only slightly biased but has 
a favorably small variance compared to all possible alternatives, biased 
or unbiased. So, we need some quality criterion accounting for both bias 
and variance. 

That criterion can be satisfied by using the mean squared error (MSE). 
Taking squares rather than the loss itself incurred by the deviation, the MSE 
is defined as the expected square loss

θ = θ − θθEMSE(ˆ) [(ˆ )]2

where the subscript θ indicates that the mean depends on the true but  
unknown parameter value. The mean squared error can be decomposed into 
the variance of the estimator and a transform (i.e., square) of the bias. If the 
transform is zero (i.e., the estimator is unbiased), the mean squared error 
equals the estimator variance. 

It is interesting to note that MSE-minimal estimators are not available 
for all parameters. That is, we may have to face a trade-off between reduc-
ing either the bias or the variance over a set of possible estimators. As a 
consequence, we simply try to find a minimum-variance estimator of all 
unbiased estimators, which is called the minimum-variance unbiased esti-
mator. We do this because in many applications, unbiasedness has priority 
over precision. 

Large-Sample Criteria

The treatment of the estimators thus far has not included their possible 
change in behavior as the sample size n varies. This is an important aspect 
of estimation, however. For example, it is possible that an estimator that is 
biased for any given finite n gradually loses its bias as n increases. Here we 
will analyze the estimators as the sample size approaches infinity. In techni-
cal terms, we focus on the so-called large-sample or asymptotic properties 
of estimators. 

Consistency Some estimators display stochastic behavior that changes as 
we increase the sample size. It may be that their exact distribution including 
parameters is unknown as long as the number of draws n is small or, to be 
precise, finite. This renders the evaluation of the quality of certain estimators 
difficult. For example, it may be impossible to give the exact bias of some 
estimator for finite n, in contrast to when n approaches infinity. 
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If we are concerned about some estimator’s properties, we may reason-
ably have to remain undecided about the selection of the most suitable esti-
mator for the estimation problem we are facing. In the fortunate cases, the 
uncertainty regarding an estimator’s quality may vanish as n goes to infinity, 
so that we can base conclusions concerning its applicability for certain esti-
mation tasks on its large-sample properties. 

The central limit theorem plays a crucial role in assessing the properties 
of estimators. This is because normalized sums turn into standard normal 
random variables, which provide us with tractable quantities. The asymp-
totic properties of normalized sums may facilitate deriving the large-sample 
behavior of more complicated estimators.

At this point, we need to think about a rather technical concept that 
involves controlling the behavior of estimators in the limit. Here we will 
analyze an estimator’s convergence characteristics. That means we consider 
whether the distribution of an estimator approaches some particular prob-
ability distribution as the sample sizes increase. To do so, we state the fol-
lowing definition:

Convergence in probability. We say that a random variable such as an 
estimator built on a sample of size n, θ̂n, is a convergence in prob-
ability to some constant c if 

 θ − > ε =
→∞

P clim (| ˆ | ) 0
n

n   (C.2)

holds for any ε > 0. 

Equation (C.2) states that as the sample size becomes arbitrarily large, 
the probability that our estimator will assume a value that is more than ε 
away from c will become increasingly negligible, even as ε becomes smaller. 
Instead of the rather lengthy form of equation (C.2), we usually state that 
θ̂n  converges in probability to c more briefly as

 θ = cplimˆ
n   (C.3)

Here, we introduce the index n to the estimator θ̂n to indicate that it depends 
on the sample size n. Convergence in probability does not mean that an esti-
mator will eventually be equal to c, and hence constant itself, but the chance 
of a deviation from it will become increasingly unlikely. 

Suppose now that we draw several samples of size n. Let the num-
ber of these different samples be N. Consequently, we obtain N estimates 
θ θ θ…ˆ , ˆ , , ˆn n n

N(1) (2) ( ) where θ̂n
(1) is estimated on the first sample, θ̂n

(2)  on the sec-
ond, and so on. Utilizing the prior definition, we formulate the following law.
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Law of large numbers. Let = =( ) ( ) ( ) ( ) ( ) ( )X X X X X X( , , , ) , ( ,n
1

1
1

2
1 1 2

1
2…  

( ) ( )…X X, , )n2
2 2 , and =( ) ( )X X X X( , , , )N N N

n
N

1 2 …  be a series of N inde-
pendent samples of size n. For each of these samples, we apply the 
estimator θ̂n such that we obtain N independent and identically dis-
tributed as θ̂n random variables θ θ θ…ˆ , ˆ , , ˆn n n

N(1) (2) ( ). Further, let θE(ˆ )n  
denote the expected value of θ̂n  and θ θ θ…ˆ , ˆ , , ˆn n n

N(1) (2) ( ). Because they 
are identically distributed, it holds that2 

 ∑θ = θ
=N

Eplim
1 ˆ (ˆ )n

k

k

N

n
( )

1

  (C.4)

The law of large numbers given by equation (C.4) states that the average 
over all estimates obtained from the different samples (i.e., their sample mean) 
will eventually approach their expected value or population mean. According 
to equation (C.2), large deviations from θE(ˆ )n  will become ever less likely the 
more samples we draw. So, we can say with a high probability that if N is 
large, the sample mean

∑ θ
=

N1 ˆ
n
k

k

N ( )
1

 

will be near its expected value. This is a valuable property since when we 
have drawn many samples, we can assert that it will be highly unlikely that 
the average of the observed estimates such as 

∑ =
N x1 kk

N

1

for example, will be a realization of some distribution with very remote 
parameter = µE X( ) . 

An important aspect of the convergence in probability becomes obvious 
now. Even if the expected value of θ̂n  is not equal to θ (i.e., θ̂n  is biased for 
finite sample lengths n), it can still be that θ = θplim ˆ

n . That is, the expected 
value θE(ˆ )n  may gradually become closer to and eventually indistinguish-
able from θ, as the sample size n increases. To account for these and all 
unbiased estimators, we introduce the next definition.

2 Formally, equation (C.4) is referred to as the weak law of large numbers. Moreover, 
for the law to hold, we need to assure that the θ̂nk( ) have identical finite variance. 
Then by virtue of the Chebychev inequality we can derive equation (C.4). Chebyshev’s 
inequality states that at least a certain amount of data should fall within a stated num-
ber of standard deviations from the mean.
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Consistency. An estimator θ̂n
 is a consistent estimator for θ if it converges 

in probability to θ, as given by equation (C.3), that is, θ = θplimˆ
n . 

The consistency of an estimator is an important property since we 
can rely on the consistent estimator to systematically give sound 
results with respect to the true parameter. This means that if we 
increase the sample size n, we will obtain estimates that will deviate 
from the parameter θ only in rare cases.

Unbiased efficiency In the previous discussions, we tried to determine where 
the estimator tends to. This analysis, however, left unanswered the question 
of how fast the estimator gets there. For this purpose, we introduce the 
notion of unbiased efficiency. 

Let us suppose that two estimators θ̂ and θ̂* are unbiased for some 
parameter θ. Then, we say that θ̂ is a more efficient estimator than θ̂* if it 
has a smaller variance; that is, 

 var varθ θθ θ(ˆ) (ˆ )*<   (C.5)

for any value of the parameter θ. Consequently, no matter what the true 
parameter value is, the standard error of θ̂  is always smaller than that of θ̂*.  
Since they are assumed to be both unbiased, the first should be preferred.3 

Linear Unbiased estimators A particular sort of estimators are linear unbiased 
estimators. We introduce them separately from the linear estimators here 
because they often display appealing statistical features. 

In general, linear unbiased estimators are of the form

 ∑θ =
=
a Xˆ
i ii

n

1
 

To meet the condition of zero bias, the weights ai have to add to one. Due 
to their lack of bias, the MSE will only consist of the variance part. With 
sample size n, their variances can be easily computed as 

varθ θ σ(ˆ) =
=∑ ai Xi

n 2 2
1

 

3 If the parameter consists of more than one component, then the definition of effi-
ciency in equation (C.5) needs to be extended to an expression that uses the covari-
ance matrix of the estimators rather than only the variances. 



Inferential Statistics 369

where σX
2  denotes the common variance of each drawing. This variance can 

be minimized with respect to the coefficients ai  and we obtain the best lin-
ear unbiased estimator (BLUE) or minimum-variance linear unbiased esti-
mator (MVLUE). We have to be aware, however, that we are not always able 
to find such an estimator for each parameter. 

An example of a BLUE is given by the sample mean x. We know that 
=a n1i . This not only guarantees that the sample mean is unbiased for the 

population mean µ, but it also provides for the smallest variance of all unbi-
ased linear estimators. Therefore, the sample mean is efficient among all 
linear estimators. By comparison, the first draw is also unbiased. However, 
its variance is n times greater than that of the sample mean.

COnfidenCe inTeRvALS

In making financial decisions, the population parameters characteriz-
ing the respective random variable’s probability distribution needs to be 
known. However, in most realistic situations, this information will not 
be available. In this section, we deal with this problem by estimating the 
unknown parameter with a point estimator to obtain a single number from 
the information provided by a sample. It will be highly unlikely, however, 
that this estimate—obtained from a finite sample—will be exactly equal to 
the population parameter value even if the estimator is consistent—a notion 
introduced in the previous section. The reason is that estimates most likely 
vary from sample to sample. However, for any realization, we do not know 
by how much the estimate will be off. 

To overcome this uncertainty, one might think of computing an interval 
or, depending on the dimensionality of the parameter, an area that contains 
the true parameter with high probability. That is, we concentrate in this sec-
tion on the construction of confidence intervals. We begin with the presenta-
tion of the confidence level. This will be essential in order to understand the 
confidence interval that will be introduced subsequently. We then present the 
probability of error in the context of confidence intervals, which is related to 
the confidence level. 

Confidence Level and Confidence interval

In the previous section, we inferred the unknown parameter with a single 
estimate. The likelihood of the estimate exactly reproducing the true param-
eter value may be negligible. Instead, by estimating an interval, which we 
may denote by Iθ, we use a greater portion of the parameter space and not 
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just a single number. This may increase the likelihood that the true param-
eter is one of the many values included in the interval. 

If, in one extreme case, we select as an interval the entire parameter 
space, the true parameter will definitely lie inside of it. Instead, if we choose 
our interval to consist of one value only, the probability of this interval 
containing the true value approaches zero and we end up with the same 
situation as with the point estimator. So, there is a trade-off between a high 
probability of the interval Iθ containing the true parameter value, achieved 
through increasing the interval’s width, and the precision gained by a very 
narrow interval.

As in our discussion of point estimates in the previous section, we 
should use the information provided by the sample. Hence, it should be rea-
sonable that the interval bounds depend on the sample in some way. Then 
technically each interval bound is a function that maps the sample space, 
denoted by X, into the parameter space since the sample is some outcome in 
the sample space and the interval bound transforms the sample into a value 
in the parameter space representing the minimum or maximum parameter 
value suggested by the interval. Because the interval depends on the sample 
X = (X1, X2,  .  .  .  , Xn), and since the sample is random, the interval [l(X), 
u(X)] is also random. We can derive the probability of the interval lying 
beyond the true parameter (i.e., either completely below or above) from the 
sample distribution. These two possible errors occur exactly if either u(x) < 
θ or θ < l(x). 

Our objective is then to construct an interval so as to minimize the 
probability of these errors occurring. Suppose we want this probability 
of error to be equal to α. For example, we may select α = 0.05 such that 
in 5% of all outcomes, the true parameter will not be covered by the 
interval. Let 

= θ <p P l X( ( ))l  and = < θp P u X( ( ) )u

Then, it must be that

θ ∉ = + = αP l X u X p p( [ ( ), ( )]) l u

Now let’s provide two important definitions: a confidence level and con-
fidence interval.

definition of a Confidence Level For some parameter θ, let the probability of the 
interval not containing the true parameter value be given by the probability 
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of error α. Then, with probability 1 – α, the true parameter is covered by the 
interval [l(X), u(X)]. The probability 

θ ∈ = − αP l X u X( [ ( ), ( )]) 1

is called confidence level.
It may not be possible to find bounds to obtain a confidence level exactly. 

We, then, simply postulate for the confidence level 1 – α that 

θ ∈ = − αP l X u X( [ ( ), ( )]) 1

is satisfied, no matter what the value θ may be.

definition and interpretation of a Confidence interval Given the definition of the 
confidence level, we can refer to an interval [l(X), u(X)] as 1 – α confidence 
interval if 

θ ∈ = − αP l X u X( [ ( ), ( )]) 1

holds no matter what is the true but unknown parameter value θ.4

The interpretation of the confidence interval is that if we draw an 
increasing number of samples of constant size n and compute an interval, 
from each sample, 1 – α of all intervals will eventually contain the true 
parameter value θ. 

The bounds of the confidence interval are often determined by some stan-
dardized random variable composed of both the parameter and point estima-
tor, and whose distribution is known. Furthermore, for a symmetric density 
function such as that of the normal distribution, it can be shown that with 
given α, the confidence interval is the tightest if we have pl = α/2 and pu = α/2 
with pl and pu as defined before. That corresponds to bounds l and u with dis-
tributions that are symmetric to each other with respect to the the true param-
eter θ. This is an important property of a confidence interval since we seek 
to obtain the maximum precision possible for a particular confidence level. 

Often in discussions of confidence intervals the statement is made that 
with probability 1 – α, the parameter falls inside of the confidence inter-
val and is outside with probability α. This interpretation can be misleading 
in that one may assume that the parameter is a random variable. Recall 
that only the confidence interval bounds are random. The position of the 

4 Note that if equality cannot be exactly achieved, we take the smallest interval for 
which the probability is greater than 1 – α.
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confidence interval depends on the outcome x. By design, as we have just 
shown, the interval is such that in (1 – α) × 100% of all outcomes, the inter-
val contains the true parameter and in α × 100%, it does not cover the true 
parameter value. 

Note that the parameter is invariant, only the interval is random.

HypOTHeSiS TeSTing

Thus far in this appendix, inference on some unknown parameter meant 
that we had no knowledge of its value and therefore we had to obtain an 
estimate. This could either be a single point estimate or an entire confi-
dence interval. However, sometimes, one already has some idea of the value 
a parameter might have or used to have. Thus, it might not be important 
to obtain a particular single value or range of values for the parameter, but 
instead to gain sufficient information to conclude that the parameter more 
likely either belongs to a particular part of the parameter space or not. So, 
instead we need to obtain information to verify whether some assumption 
concerning the parameter can be supported or has to be rejected. This brings 
us to the field of hypothesis testing. 

To perform hypothesis testing it is essential to express the competing 
statements about the value of a parameter as hypotheses. To test for these, 
we develop a test statistic for which we set up a decision rule. For a spe-
cific sample, this test statistic then either assumes a value in the acceptance 
region or the rejection region, regions that we describe in this chapter. Fur-
thermore, we see the two error types one can incur when testing. We see that 
the hypothesis test structure allows one to control the probability of error 
through what we see to be the test size or significance level. We discover 
that each observation has a certain p-value expressing its significance. As a 
quality criterion of a test, we introduce the power from which the uniformly 
most powerful test can be defined. Furthermore, we explain what is meant 
by an unbiased test—unbiasedness provides another important quality cri-
terion—as well as whether a test is consistent.

Hypotheses

Before being able to test anything, we need to express clearly what we 
intend to achieve with the help of the test. For this task, it is essential that 
we unambiguously formulate the possible outcomes of the test. In the realm 
of hypothesis testing, we have two competing statements to decide upon. 
These statements are the hypotheses of the test. 
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Setting Up the Hypotheses Since in statistical inference we intend to gain 
information about some unknown parameter θ, the possible results of the 
test should refer to the parameter space Θ containing all possible values 
that θ can assume. More precisely, to form the hypotheses, we divide the 
parameter space into two disjoint sets Θ0 and Θ1 such that Θ = Θ0 ∪ Θ1. 
We assume that the unknown parameter is either in Θ0 or Θ1 since it cannot 
simultaneously be in both. Usually, the two alternative parameter sets either 
divide the parameter space into two disjoint intervals or regions (depending 
on the dimensionality of the parameter), or they contrast a single value with 
any other value from the parameter space. 

Now, with each of the two subsets Θ0 and Θ1, we associate a hypothesis. 
In the following two definitions, we present the most commonly applied 
denominations for the hypotheses. 

Null hypothesis. The null hypothesis, denoted by H0, states that the 
parameter θ is in Θ0. 

The null hypothesis may be interpreted as the assumption to be maintained 
if we do not find ample evidence against it. 

Alternative hypothesis. The alternative hypothesis, denoted by H1, is the 
statement that the parameter θ is in Θ1. 

We have to be aware that only one hypothesis can hold and, hence, the out-
come of our test should only support one. 

When we test for a parameter or a single parameter component, we 
usually encounter the following two constructions of hypothesis tests. In 
the first construction, we split the parameter space Θ into a lower half up to 
some boundary value θ�  and an upper half extending beyond this boundary 
value. Then, we set the lower half either equal to Θ0 or Θ1. Consequently, 
the upper half becomes the counterpart Θ1 or Θ0, respectively. The bound-
ary value θ�  is usually added to Θ0; that is, it is the set valid under the null 
hypothesis. Such a test is referred to as a one-tailed test.

In the second construction, we test whether some parameter is equal 
to a particular value or not. Accordingly, the parameter space is once 
again divided into two sets Θ0 and Θ1. But this time, Θ0 consists of only 
one value (i.e., Θ = θ�0 ) while the set Θ1, corresponding to the alternative 
hypothesis, is equal to the parameter space less the value belonging to the 
null hypothesis (i.e., Θ = Θ θ�\1 ). This version of a hypothesis test is termed 
a two-tailed test.
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decision Rule The object of hypothesis testing is to make a decision about 
these hypotheses. So, we either have to accept the null hypothesis and, 
consequently, must reject the alternative hypothesis, or we reject the null 
hypothesis and decide in favor of the alternative hypothesis. 

A hypothesis test is designed such that the null hypothesis is maintained 
until evidence provided by the sample is so strong that we have to decide 
against it. This leads us to the two common ways of using the test. 

With the first application, we simply want to find out whether a situa-
tion that we deemed correct actually is true. Thus, the situation under the 
null hypothesis is considered the status quo or the experience that is held on 
to until the support given by the sample in favor of the alternative hypoth-
esis is too strong to sustain the null hypothesis any longer. 

The alternative use of the hypothesis test is to try to promote a concept 
formulated by the alternative hypothesis by finding sufficient evidence in 
favor of it, rendering it the more credible of the two hypotheses. In this sec-
ond approach, the aim of the tester is to reject the null hypothesis because 
the situation under the alternative hypothesis is more favorable. 

In the realm of hypothesis testing, the decision is generally regarded 
as the process of following certain rules. We denote our decision rule by δ. 
The decision δ is designed to either assume value d0 or value d1. Depending 
on which way we are using the test, the meaning of these two values is as 
follows. In the first case, the value d0 expresses that we hold on to H0 while 
the contrarian value d1 expresses that we reject H0. In the second case, we 
interpret d0 as being undecided with respect to H0 and H1 and that proof is 
not strong enough in favor of H1. On the other hand, by d1, we indicate that 
we reject H0 in favor of H1.

In general, d1 can be interpreted as the result we obtain from the deci-
sion rule when the sample outcome is highly unreasonable under the null 
hypothesis. 

So, what makes us come up with either d0 or d1? As discussed earlier in 
this chapter, we infer by first drawing a sample of some size n, X = (X1, X2,  .  .  .  , 
Xn). Our decision then should be based on this sample. That is, it would be wise 
to include in our decision rule the sample X such that the decision becomes a 
function of the sample, (i.e., δ(X)). Then, δ(X) is a random variable due to the 
randomness of X. A reasonable step would be to link our test δ(X) to a statistic, 
denoted by t(X), that itself is related or equal to an estimator θ̂  for the param-
eter of interest θ. Such estimators were introduced earlier in this chapter. 

From now on, we will assume that our test rule δ is synonymous with 
checking whether the statistic t(X) is assuming certain values or not from 
which we derive decision d0 or d1.

As we know from point estimates, by drawing a sample X, we select a 
particular value x from the sample space X. Depending on this realization x, 
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the statistic t(x) either leads to rejection of the null hypothesis (i.e., δ(x) = d0), 
or not (i.e., δ(x) = d1). 

To determine when we have to make a decision d0 or, alternatively, d1, 
we split the state space Δ of t(X) into two disjoint sets that we denote by 
ΔA and ΔC. The set ΔA is referred to as the acceptance region while ΔC is the 
critical region or rejection region.

When the outcome of the sample x is in ΔA, we do not reject the null 
hypothesis (i.e., the result of the test is δ(x) = d0). If, on the other hand, x 
should be some value in ΔC, the result of the test is now the contrary (i.e., 
δ(x) = d1), such that we decide in favor of the alternative hypothesis. 

error Types

We have to be aware that no matter how we design our test, we are at risk of 
committing an error by making the wrong decision. Given the two hypoth-
eses, H0 and H1, and the two possible decisions, d0 and d1, we can commit 
two possible errors. These errors are discussed next.

Type i and Type ii error The two possible errors we can incur are charac-
terized by unintentionally deciding against the true hypothesis. Each error 
related to a particular hypothesis is referred to using the following standard 
terminology. 

Type I error. The error resulting from rejection of the null hypothesis 
(H0) (i.e., δ(X) = d1) given that it is actually true (i.e., θ ∈ Θ0) is 
referred to as a type I error.

Type II error. The error resulting from not rejecting the null hypothesis 
(H0) (i.e., δ(X) = d0) even though the alternative hypothesis (H1) 
holds (i.e., θ ∈ Θ1) is referred to as a type II error.

In the following table, we show all four possible outcomes from a 
hypothesis test depending on the respective hypothesis:

H0: θ in Θ0 H1: θ in Θ1

Decision
d0 Correct Type II error

d1 Type I error Correct 

So, we see that in two cases, we make the correct decision. The first case 
occurs if we do not reject the null hypothesis (i.e., δ(X) = d0) when it actually 
holds. The second case occurs if we correctly decide against the null hypoth-
esis (i.e., δ(X) = d1), when it is not true and, consequently, the alternative 
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hypothesis holds. Unfortunately, however, we do not know whether we com-
mit an error or not when we are testing. We do have some control, though, 
as to the probability of error given a certain hypothesis as we explain next. 

Test Size

We just learned that, depending on which hypothesis is true, we can com-
mit either a type I or a type II error. Now, we will concentrate on the cor-
responding probabilities of incurring these errors. 

Test size. The test size is the probability of committing a type I error. 
This probability is denoted by PI(δ) for test δ.5

We illustrate this in Figure C.1, where we display the density function 
Θf t X( ( ), )0  of the test statistic t(X) under the null hypothesis. The horizontal axis 

along which t(X) assumes values is subdivided into the acceptance ΔA and the 

figURe C.1 Determining the Size PI(δ) of Some Test δ via the Density Function of 
the Test Statistic t(X)

t(X)Δ
A

Δ
C

P
I
(δ)

f(t(X),θ0)

5 The probability PI(δ) could alternatively be written as P dΘ0 1( ) to indicate that we  
erroneously reject the null hypothesis even though H0 holds.
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critical region ΔC. The probability of this statistic having a value in the critical 
region is indicated by the shaded area.

Since, in general, the set Θ0 belonging to the null hypothesis consists 
of several values (e.g., Θ0 ⊂ Θ) the probability of committing a type I error, 
PI(δ), may vary for each parameter value θ in Θ0. By convention, we set 
the test size equal to the PI(δ) computed at that value θ in Θ0 for which 
this probability is maximal.6 We illustrate this for some arbitrary test in 
Figure C.2, where we depict the graph of the probability of rejection of the 
null hypothesis depending on the parameter value θ. Over the set Θ0, as 
indicated by the solid line in the figure, this is equal to the probability of a 
type I error while, over Θ1, this is the probability of a correct decision (i.e., 
d1). The latter is given by the dashed line.

Analogously to the probability PI(δ), we denote the probability of com-
mitting a type II error as PII(δ). 

Deriving the wrong decision can lead to undesirable results. That is, the 
errors related to a test may come at some cost. To handle the problem, the 
hypotheses are generally chosen such that the type I error is more harmful 

figURe C.2 Determining the Test Size α by Maximizing the Probability of a Type I 
Error over the Set Θ0 of Possible Parameter Values under the Null Hypothesis

P(δ(X) = d
1
)

Θ
0

θ

max P
I
(δ)

Θ
1

6 Theoretically, this may not be possible for any test.
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to us, no matter what we use the test for. Consequently, we attempt to avoid 
this type of error by trying to reduce the associated probability or, equiva-
lently, the test size. 

Fortunately, the test size is something we have control over. We can 
simply reduce PI(δ) through selection of an arbitrarily large acceptance 
region ΔA. In the most extreme case, we set ΔA equal to the entire state 
space of δ so that, virtually, we never reject the null hypothesis. However, 
by inflating ΔA, we have to reduce ΔC, which generally results in an increase 
in the probability PII(d0) of a type II error because now it becomes more 
likely for X to fall into ΔA also when θ is in Θ1 (i.e., under the alternative 
hypothesis). Thus, we are facing a trade-off between the probability of a 
type I error and a type II error. A common agreement is to limit the prob-
ability of occurrence of a type I error to some real number between zero 
and one. This α is referred to as the significance level. Frequently, values of 
α = 0.01 or α = 0.05 are found.

Formally, the postulate for the test is PI(δ) ≤ α. So, when the null hypoth-
esis is true, in at most α of all outcomes, we will obtain a sample value x in 
ΔC. Consequently, in at most α of the test runs, the test result will errone-
ously be d1 (i.e., we decide against the null hypothesis). 

The p-value

Suppose we had drawn some sample x and computed the value t(x) of the 
statistic from it. It might be of interest to find out how significant this test 
result is or, in other words, at which significance level this value t(x) would 
still lead to decision d0 (i.e., no rejection of the null hypothesis), while any 
value greater than t(x) would result in its rejection (i.e., d1). This concept 
brings us to the next definition. 

p-value. Suppose we have a sample realization given by x = (x1, 
x2,  .  .  .  , xn). Furthermore, let δ(X) be any test with test statistic t(X) 
such that the test statistic evaluated at x, t(x), is the value of the ac-
ceptance region ΔA closest to the rejection region ΔC. The p-value 
determines the probability, under the null hypothesis, that in any 
trial X the test statistic t(X) assumes a value in the rejection region 
ΔC; that is,

= ∈ ∆ = δ =θ θp P t X P X d( ( ) ) ( ( ) )C 10 0

We can interpret the p-value as follows. Suppose we obtained a sample 
outcome x such that the test statistics assumed the corresponding value t(x). 
Now, we want to know the probability, given that the null hypothesis holds, 
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that the test statistic might become even more extreme than t(x). This prob-
ability is equal to the p-value.

If t(x) is a value pretty close to the median of the distribution of t(X), 
then the chance of obtaining a more extreme value, which refutes the null 
hypothesis more strongly, might be fairly feasible. Then, the p-value will 
be large. However, if, instead, the value t(x) is so extreme that the chances 
will be minimal under the null hypothesis that, in some other test run we 
obtain a value t(X) even more in favor of the alternative hypothesis, this 
will correspond to a very low p-value. If p is less than some given signifi-
cance level α, we reject the null hypothesis and we say that the test result 
is significant.

We demonstrate the meaning of the p-value in Figure C.3. The hori-
zontal axis provides the state space of possible values for the statistic t(X). 
The figure displays the probability, given that the null hypothesis holds, 
of this t(X) assuming a value greater than c, for each c of the state space, 
and in particular also at t(x) (i.e., the statistic evaluated at the observation 
x). We can see that, by definition, the value t(x) is the boundary between 
the accept ance region and the critical region, with t(x) itself belonging to the  
acceptance region. In that particular instance, we happened to choose a test 
with ΔA = (–∞, t(x)] and ΔC = (t(x), ∞). 

figURe C.3 Illustration of the p-Value for Some Test δ with Acceptance Region ΔA = 
(–∞, t(x)] and Critical Region ΔC = (t(x), ∞)
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Quality Criteria of a Test
So far, we have learned how to construct a test for a given problem. In gen-
eral, we formulate the two competing hypotheses and look for an appropri-
ate test statistic to base our decision rule on and we are then done. However, 
in general, there is no unique test for any given pair of hypotheses. That is, 
we may find tests that are more suitable than others for our endeavor. How 
can we define what we mean by “suitable”? To answer this question, we will 
discuss the following quality criteria.

power of a Test Previously, we were introduced to the size of a test that 
may be equal to α. As we know, this value controls the probability of com-
mitting a type I error. So far, however, we may have several tests meeting a 
required test size α. The criterion selecting the most suitable ones among 
them involves the type II error. Recall that the type II error describes the 
failure of rejection of the null hypothesis when it actually is wrong. So, for 
parameter values θ ∈ Θ1, our test should produce decision d1 with as high 
a probability as possible in order to yield as small as possible a probability 
of a type II error, PII(d0). In the following definition, we present a criterion 
that accounts for this ability of a test.

Power of a test. The power of a test is the probability of rejecting the 
null hypothesis when it is actually wrong (i.e., when the alternative 
hypothesis holds). Formally, this is written as δ =θP X d( ( ) )11

.7

For illustrational purposes, we focus on Figure C.4 where we depict the 
parameter-dependent probability P(δ(X) = d1) of some arbitrary test δ, over 
the parameter space Θ. The solid part of the figure, computed over the set 
Θ1, represents the power of the test. As we can see, here, the power increases 
for parameter values further away from Θ0 (i.e., increasing θ). If the power 
were rising more steeply, the test would become more powerful. This brings 
us to the next concept.

Uniformly Most powerful Test In the following illustration, let us only con-
sider tests of size α. That is, none of these tests incurs a type I error with 
greater probability than α. For each of these tests, we determine the respec-
tive power function (i.e., the probability of rejecting the null hypothesis, 

7 The index θ1 of the probability measure P indicates that the alternative hypothesis 
holds (i.e., the true parameter is a value in Θ1).
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P(δ(X) = d1), computed for all values θ in the set Θ1 corresponding to the 
alternative hypothesis.

Recall that we can either obtain d0 or d1 as a test result, no matter what 
the value of the parameter may truly be. Since d0 and d1 are mutually exclu-
sive, we have the relation 

P(δ(X) = d0) + P(δ(X) = d1) = 1

Now, for any parameter value θ from Θ1, this means that the power of 
the test and the probability of committing a type II error, PII(δ(X)), add up 
to one. We illustrate this in Figure C.5. The dashed lines indicate the prob-
ability PII(δ(X)), respectively, at the corresponding parameter values θ, while 
the dash-dotted lines represent the power for given θ ∈ Θ1. As we can see, 
the power gradually takes over much of the probability mass from the type 
II error probability the greater the parameter values. 

Suppose of all the tests with significance level α, we had one δ*, which 
always had greater power than any of the others. Then it would be reason-
able to prefer this test to all the others since we have the smallest chance of 
incurring a type II error. This leads to the following concept.

figURe C.4 The Solid Line of the Probability P(δ(X) = d1), over the Set Θ1,  
Indicates the Power of the Test δ

Θ
0 Θ
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Uniformly most powerful (UMP) test of size α. A test δ* of size α is 
uniformly most powerful, if of all the tests δ of size α, this test δ* 
has greatest power for any θ ∈ Θ1.

Unbiased Test We know that when a test is of size α, the probability of it 
causing a type I error is never greater than α. And when the design of the 
test is reasonable, the power of the test should increase quickly once we 
are considering parameter values in Θ1. In both cases (i.e., when we compute 
the probability of a type I error for θ ∈ Θ0, as well as when we compute 
the power for θ ∈ Θ1), we are dealing with the probability to reject the null 
hypothesis (i.e., P(δ(X) = d1)). In case P(δ(X) = d1) should be smaller than 
α, then for certain parameter values θ ∈ Θ1 it is more likely to accept the 
null hypothesis when it is wrong than when it holds. This certainly does not 
appear useful and we should try to avoid it when designing our test. This 
concept is treated in the following definition. 

Unbiased test. A test of size α is unbiased if the probability of a type II 
error is never greater than 1 – α; formally,

figURe C.5 Decomposition = δ + δ =θP P X d1 ( ) ( ( ) )II 11
, over Θ1

Θ0 Θ1 θ

1

PII(δ)

Power



Inferential Statistics 383

PII(δ(X)) ≤ 1 – α for any θ ∈ Θ1

So if a test is unbiased, we reject the null hypothesis when it is in fact false 
in at least α of the cases. Consequently, the power of this test is at least α for 
all θ ∈ Θ1. The probability of rejecting the null hypothesis falls below the 
significance level α for the highest parameter values.

Consistent Test Up to this point, the requirement of a good test is to produce 
as few errors as possible. We attempt to produce this ability by first limiting 
its test size by some level α and then looking for the highest power available 
given that significance level α.

By construction, each of our tests δ(X) is based on some test statistic 
t(X). For this test statistic, we construct an acceptance as well as a critical 
region such that, given certain parameter values, the test statistic would fall 
into either one of these critical regions with limited probability. It may be 
possible that the behavior of these test statistics changes as we increase the 
sample size n. For example, it may be desirable to have a test of size α that 
has vanishing probability for a type II error. 

From now on, we will consider certain tests that are based on test sta-
tistics that fall into their respective critical regions ΔC with increasing prob-
ability, under the alternative hypothesis, as the number of sample drawings 
n tends to infinity. That is, these tests reject the null hypothesis more and 
more reliably when they actually should (i.e., θ ∈ Θ1) for ever larger samples. 
In the optimal situation, these tests reject the null hypothesis (i.e., δ(X) = d1) 
with 100% certainty when the alternative hypothesis holds. This brings us 
to the next definition.

Consistent test. A test of size α is consistent if its power grows to one 
for increasing sample size.

Recall that in our coverage of point estimates we introduced the consistent 
estimator that had the positive feature that it varied about its expected value 
with vanishing probability. So, with increasing probability, it assumed values 
arbitrarily close to this expected value such that eventually it would become 
virtually indistinguishable from it. The use of such a statistic for the test 
leads to the following desirable characteristic: The test statistic will cease to 
assume values that are extreme under the respective hypothesis such that it 
will basically always end up in the acceptance region when the null hypoth-
esis holds, and in the rejection region under the alternative hypothesis. 
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Appendix d
Fundamentals of Matrix Algebra

in financial econometrics, it is useful to consider operations performed on 
ordered arrays of numbers. Ordered arrays of numbers are called vectors 

and matrices while individual numbers are called scalars. In this appendix, 
we will discuss concepts, operations, and results of matrix algebra. 

VeCTORS And MATRiCeS deFined 

Let’s now define precisely the concepts of vector and matrix. Though vectors 
can be thought of as particular matrices, in many cases it is useful to keep 
the two concepts—vectors and matrices—distinct. In particular, a number 
of important concepts and properties can be defined for vectors but do not 
generalize easily to matrices.1

Vectors

An n-dimensional vector is an ordered array of n numbers. Vectors are gener-
ally indicated with boldface lowercase letters, although we do not always fol-
low that convention in the textbook. Thus a vector x is an array of the form:

[ ]= x xx , . . . , n1

The numbers ai are called the components of the vector x. 
A vector is identified by the set of its components. Vectors can be row 

vectors or column vectors. If the vector components appear in a horizontal 
row, then the vector is called a row vector, as, for instance, the vector:

x = [1,2,8,7]

1 Vectors can be thought as the elements of an abstract linear space while matrices 
are operators that operate on linear spaces. 
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Here are two examples. Suppose that we let wn be a risky asset’s weight 
in a portfolio. Assume that there are N risky assets. Then the following vec-
tor, w, is a row vector that represents a portfolio’s holdings of the N risky 
assets:

w = [w1 w2  .  .  .   wN]

As a second example of a row vector, suppose that we let rn be the 
excess return for a risky asset. (The excess return is the difference between 
the return on a risky asset and the risk-free rate.) Then the following row 
vector is the excess return vector:

r = [r1 r2  .  .  .   rN]

If the vector components are arranged in a column, then the vector is 
called a column vector. 

For example, we know that a portfolio’s excess return will be affected 
by what can be different characteristics or attributes that affect all asset 
prices. A few examples would be the price-earnings ratio, market capitaliza-
tion, and industry. Let us denote for a particular attribute a column vector, 
a, that shows the exposure of each risky asset to that attribute, denoted ai: 

=
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Matrices

An n × m matrix is a bi-dimensional ordered array of n × m numbers. Matri-
ces are usually indicated with boldface uppercase letters. Thus, the generic 
matrix A is an n × m array of the form

=

⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅
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Note that the first subscript indicates rows while the second subscript 
indicates columns. The entries aij—called the elements of the matrix A—are 
the numbers at the crossing of the ith row and the jth column. The commas 
between the subscripts of the matrix entries are omitted when there is no 
risk of confusion: ≡a ai j ij, . A matrix A is often indicated by its generic ele-
ment between brackets: 

{ }= aA ij nm
 or =  aA ij nm

where the subscripts nm are the dimensions of the matrix. 
There are several types of matrices. First there is a broad classification 

of square and rectangular matrices. A rectangular matrix can have differ-
ent numbers of rows and columns; a square matrix is a rectangular matrix 
with the same number n of rows as of columns. Because of the important 
role that they play in applications, we focus on square matrices in the next 
section

SQUARe MATRiCeS

The n × n identity matrix, indicated as the matrix In, is a square matrix in 
which diagonal elements (i.e., the entries with the same row and column 
suffix) are equal to one while all other entries are zero:

=

⋅ ⋅ ⋅
⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅


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
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

















I

1 0 0
0 1 0

0 0 1

n

A matrix in which entries are all zero is called a zero matrix.
A diagonal matrix is a square matrix in which elements are all zero 

except the ones on the diagonal:

=

⋅ ⋅ ⋅
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
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Given a square n × n matrix A, the matrix dgA is the diagonal matrix 
extracted from A. The diagonal matrix dgA is a matrix whose elements are 
all zero except the elements on the diagonal which coincide with those of 
the matrix A:

=

⋅ ⋅ ⋅
⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅
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The trace of a square matrix A is the sum of its diagonal elements:

∑=
=

aAtr ii
i

n

1

A square matrix is called symmetric if the elements above the diago-
nal are equal to the corresponding elements below the diagonal: aij = aji. A 
matrix is said to be a skew-symmetric if the diagonal elements are zero and 
the elements above the diagonal are the opposite of the corresponding ele-
ments below the diagonal: aij = –aji.

The most commonly used symmetric matrix in financial econometrics 
and econometrics is the covariance matrix, also referred to as the variance-
covariance matrix. For example, suppose that there are N risky assets and 
that the variance of the excess return for each risky asset and the covari-
ances between each pair of risky assets are estimated. As the number of 
risky assets is N, there are N2 elements, consisting of N variances (along the 
diagonal) and N2 − N covariances. Symmetry restrictions reduce the number 
of independent elements. In fact the covariance between risky asset i and 
risky asset j will be equal to the covariance between risky asset j and risky 
asset i. Hence, the variance-covariance matrix is a symmetric matrix.

deTeRMinAnTS

Consider a square, n × n, matrix A. The determinant of A, denoted A , is 
defined as follows:

A = −( ) ( )

=
∏∑ 1 1

1

t j j
ij

i

n
n a,...,
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where the sum is extended over all permutations (j1,  .  .  .  , jn) of the set (1,2,  .  .  .  , 
n) and t(j1,  .  .  .  , jn) is the number of transpositions (or inversions of positions) 
required to go from (1,2,  .  .  .  ,n) to (j1,  .  .  .  , jn). Otherwise stated, a determi-
nant is the sum of all products formed taking exactly one element from each 
row with each product multiplied by ( ) ( ,..., )−1 1t j jn . Consider, for instance, the 
case n = 2, where there is only one possible transposition: ⇒1,2 2,1 . The 
determinant of a 2 × 2 matrix is therefore computed as follows:

( ) ( )= − + − = −a a a a a a a aA 1 10
11 22

1
12 21 11 22 12 21

Consider a square matrix A of order n. Consider the matrix Mij obtained by 
removing the ith row and the jth column. The matrix Mij is a square matrix 
of order (n – 1). The determinant Mij  of the matrix Mij is called the minor 
of aij. The signed minor ( )− ( )+ M1 i j

ij  is called the cofactor of aij and is gener-
ally denoted as αij.

A square matrix A is said to be singular if its determinant is equal to 
zero. A n × m matrix A is of rank r if at least one of its (square) r-minors is 
different from zero while all (r + 1)-minors, if any, are zero. A nonsingular 
square matrix is said to be of full rank if its rank r is equal to its order n. 

SYSTeMS OF LineAR eQUATiOnS

A system of n linear equations in m unknown variables is a set of n simulta-
neous equations of the following form:

+ + =

+ + =

a x a x b

a x a x b

...
...................................

...

m m

n m m m

11 1 1 1

1 1 1

The n × m matrix:
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formed with the coefficients of the variables is called the coefficient matrix. 
The terms bi are called the constant terms. The augmented matrix [ ]A b — 
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formed by adding to the coefficient matrix a column formed with the con-
stant term—is represented as follows: 

[ ] =

⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅
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⋅ ⋅ ⋅ ⋅ ⋅
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⋅

⋅
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If the constant terms on the right side of the equations are all zero, the 
system is called homogeneous. If at least one of the constant terms is differ-
ent from zero, the system is said to be nonhomogeneous. A system is said to 
be consistent if it admits a solution, that is, if there is a set of values of the 
variables that simultaneously satisfy all the equations. A system is referred to 
as inconsistent if there is no set of numbers that satisfy the system equations.

Let’s first consider the case of nonhomogeneous linear systems. The fun-
damental theorems of linear systems are listed as follows: 

Theorem 1. A system of n linear equations in m unknown is consis-
tent (i.e., it admits a solution) if and only if the coefficient matrix 
and the augmented matrix have the same rank. 

Theorem 2. If a consistent system of n equations in m variables is 
of rank r < m, it is possible to choose n − r unknowns so that the 
coefficient matrix of the remaining r unknowns is of rank r. When 
these m − r variables are assigned any arbitrary value, the value of 
the remaining variables is uniquely determined.

The immediate consequences of the two fundamental theorems are that 
(1) a system of n equations in n unknown variables admits a solution and 
(2) the solution is unique if and only if both the coefficient matrix and the 
augmented matrix are of rank n.

Let’s now examine homogeneous systems. The coefficient matrix and 
the augmented matrix of a homogeneous system always have the same rank 
and thus a homogeneous system is always consistent. In fact, the trivial solu-
tion x1 =  .  .  .  = xm = 0 always satisfies a homogeneous system. 

Consider now a homogeneous system of n equations in n unknowns. If 
the rank of the coefficient matrix is n, the system has only the trivial solu-
tion. If the rank of the coefficient matrix is r < n, then Theorem 2 ensures 
that the system has a solution other than the trivial solution.
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LineAR independenCe And RAnK

Consider an n × m matrix A. A set of p columns extracted from the matrix A

⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
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
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are said to be linearly independent if it is not possible to find p constants 
β =s p, 1, . . . ,s  such that the following n equations are simultaneously 
satisfied:

β β1 1 11
0a ai p ip, ,...

......................
+ + =

..............
..., ,β β1 1

0a an i p n ip+ + =

Analogously, a set of q rows extracted from the matrix A are said to be 
linearly independent if it is not possible to find q constants λ =s q, 1, . . . ,s  
such that the following m equations are simultaneously satisfied:

λ λ1 1 11
0a ai q iq, ,...

......................
+ + =

..............
..., ,λ λ1 1

0a ai m q i mq
+ + =

It can be demonstrated that in any matrix the number p of linearly inde-
pendent columns is the same as the number q of linearly independent rows. 
This number is equal, in turn, to the rank r of the matrix. Recall that an 
n × m matrix A is said to be of rank r if at least one of its (square) r-minors 
is different from zero while all (r + 1)-minors, if any, are zero. The constant 
p, is the same for rows and for columns. We can now give an alternative 
definition of the rank of a matrix: Given a n × m matrix A, its rank, denoted 
rank(A), is the number r of linearly independent rows or columns as the row 
rank is always equal to the column rank.

VeCTOR And MATRix OpeRATiOnS 

Let’s now introduce the most common operations performed on vec-
tors and matrices. An operation is a mapping that operates on scalars, 
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vectors, and matrices to produce new scalars, vectors, or matrices. The 
notion of operations performed on a set of objects to produce another 
object of the same set is the key concept of algebra. Let’s start with vec-
tor operations. 

Vector Operations

The following three operations are usually defined on vectors: transpose, 
addition, and multiplication.

Transpose The transpose operation transforms a row vector into a column 
vector and vice versa. Given the row vector [ ]= x xx , . . . , n1  its transpose, 
denoted as xT  or x' , is the column vector:
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Clearly the transpose of the transpose is the original vector: ( ) =x xT T
.

Addition Two-row (or two-column) vectors x = [x1,  .  .  .  , xn], y = [y1,  .  .  .  , yn] 
with the same number n of components can be added. The addition of two 
vectors is a new vector whose components are the sums of the components: 

[ ]+ = + +x y x yx y , . . . , n n1 1

This definition can be generalized to any number N of summands:

∑ ∑ ∑=
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The summands must be both column or row vectors; it is not possible to add 
row vectors to column vectors. 

It is clear from the definition of addition that addition is a commuta-
tive operation in the sense that the order of the summands does not matter: 
x + y = y + x. Addition is also an associative operation in the sense that 
x + (y + z) = (x + y) + z. 
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Multiplication We define two types of multiplication: (1) multiplication of 
a scalar and a vector and (2) scalar multiplication of two vectors (inner 
product).2

The multiplication of a scalar a and a row (or column) vector x, denoted 
as ax, is defined as the multiplication of each component of the vector by 
the scalar:

[ ]=a ax axx , . . . , n1

A similar definition holds for column vectors. It is clear from this definition 
that multiplication by a scalar is associative as

( )+ = +a a ax y x y

The scalar product (also called the inner product) of two vectors x, y, 
denoted as ⋅x y, is defined between a row vector and a column vector. The 
scalar product between two vectors produces a scalar according to the fol-
lowing rule: 

x y⋅ =
=
∑x yi i
i

n

1

Two vectors x, y are said to be orthogonal if their scalar product is zero. 

Matrix Operations 

Let’s now define operations on matrices. The following five operations on 
matrices are usually defined: transpose, addition, multiplication, inverse, 
and adjoint.

Transpose The definition of the transpose of a matrix is an extension of the 
transpose of a vector. The transpose operation consists in exchanging rows 
with columns. Consider the n × m matrix

{ }= aA ij nm

2 A third type of product between vectors—the vector (or outer) product between 
vectors—produces a third vector. We do not define it here as it is not typically used 
in economics though widely used in the physical sciences.
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The transpose of A, denoted AT or A'  is the m × n matrix whose ith row is 
the ith column of A:

{ }= aAT
ji mn

The following should be clear from this definition:

( ) =A AT T

and that a matrix is symmetric if and only if

=A AT

Addition Consider two n × m matrices:

{ }= aA ij nm
 and { }= bB ij nm

The sum of the matrices A and B is defined as the n × m matrix obtained by 
adding the respective elements:

{ }+ = +a bA B ij ij nm

Note that it is essential for the definition of addition that the two matrices 
have the same order n × m. 

The operation of addition can be extended to any number N of sum-
mands as follows:

Ai
s

N

s
s

N

nm

a
ij

= =
∑ ∑=











1 1

where asij is the generic i,j element of the sth summand.

Multiplication Consider a scalar c and a matrix

{ }= aA ij nm

The product cA = Ac is the n × m matrix obtained by multiplying each ele-
ment of the matrix by c:

{ }= =c c caA A ij nm
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Multiplication of a matrix by a scalar is associative with respect to 
matrix addition:

( )+ = +c c cA B A B

Let’s now define the product of two matrices. Consider two matrices:

{ }= aA it np
 and { }= bB sj pm

The product C = AB is defined as follows:

∑{ }= = =










=

c a bC AB ij it tj
t

p

1

The product C = AB is therefore a matrix whose generic element {cij} 
is the scalar product of the ith row of the matrix A and the jth column 
of the matrix B. This definition generalizes the definition of scalar prod-
uct of vectors: the scalar product of two n-dimensional vectors is the 
product of an n × 1 matrix (a row vector) for a 1 × n matrix (the column 
vector). 

inverse and Adjoint Consider two square matrices of order n A and B. If AB = 
BA = I, then the matrix B is called the inverse of A and is denoted as A–1. It 
can be demonstrated that the two following properties hold:

Property 1. A square matrix A admits an inverse A–1 if and only if 
it is nonsingular, that is, if and only if its determinant is different 
from zero. Otherwise stated, a matrix A admits an inverse if and 
only if it is of full rank.

Property 2. The inverse of a square matrix, if it exists, is unique. 
This property is a consequence of the property that, if A is nonsin-
gular, then AB = AC implies B = C. 

Consider now a square matrix of order n, A = {aij} and consider its 
cofactors αij. Recall that the cofactors αij  are the signed minors

( )− ( )+ M1 i j
ij
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of the matrix A. The adjoint of the matrix A, denoted as Adj(A), is the fol-
lowing matrix:

( ) =

α ⋅ α ⋅ α

⋅ ⋅ ⋅ ⋅ ⋅
α ⋅ α ⋅ α

⋅ ⋅ ⋅ ⋅ ⋅
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1, 2, ,

The adjoint of a matrix A is therefore the transpose of the matrix obtained 
by replacing the elements of A with their cofactors.

If the matrix A is nonsingular, and therefore admits an inverse, it can be 
demonstrated that

( )=−A
A

A
Adj1

A square matrix of order n, A, is said to be orthogonal if the following 
property holds:

= =AA A A I' ' n

Because in this case A must be of full rank, the transpose of an orthogonal 
matrix coincides with its inverse: =−A A'1 .

eiGenVALUeS And eiGenVeCTORS

Consider a square matrix A of order n and the set of all n-dimensional vec-
tors. The matrix A is a linear operator on the space of vectors. This means 
that A operates on each vector producing another vector subject to the fol-
lowing restriction:

( )+ = +a b a bA x y Ax Ay

Consider now the set of vectors x such that the following property holds: 

= λAx x

Any vector such that the above property holds is called an eigenvector of the 
matrix A and the corresponding value of λ  is called an eigenvalue. 
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To determine the eigenvectors of a matrix and the relative eigenvalues, 
consider that the equation = λAx x  can be written as

( )− λ =A I x 0

which can, in turn, be written as a system of linear equations:
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This system of equations has nontrivial solutions only if the matrix 
− λA I is singular. To determine the eigenvectors and the eigenvalues of the 

matrix A we must therefore solve the following equation:

− λ =

− λ ⋅ ⋅
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The expansion of this determinant yields a polynomial ( )φ λ  of degree 
n known as the characteristic polynomial of the matrix A. The equation 

( )φ λ = 0  is known as the characteristic equation of the matrix A. In general, 
this equation will have n roots λs  which are the eigenvalues of the matrix A. 
To each of these eigenvalues corresponds a solution of the system of linear 
equations, illustrated as follows:
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Each solution represents the eigenvector xs corresponding to the eigenvalue 
λs. As explained in Chapter 12, the determination of eigenvalues and eigen-
vectors is the basis for principal component analysis.
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APPENDIX E
Model Selection Criterion:  

AIC and BIC

In several chapters we have discussed goodness-of-fit tests to assess the 
performance of a model with respect to how well it explains the data. 

However, suppose we want to select from among several candidate models. 
What criterion can be used to select the best model? In choosing a criterion 
for model selection, one accepts the fact that models only approximate real-
ity. Given a set of data, the objective is to determine which of the candidate 
models best approximates the data. This involves trying to minimize the 
loss of information. Because the field of information theory is used to quan-
tify or measure the expected value of information, the information-theoretic 
approach is used to derive the two most commonly used criteria in model 
selection—the Akaike information criterion and the Bayesian information 
criterion.1 These two criteria, as described in this appendix, can be used for 
the selection of econometric models.2 

1 There are other approaches that have been developed. One approach is based 
on the theory of learning, the Vapnik-Chervonenkis (VC) theory of learning. This 
approach offers a complex theoretical framework for learning that, when appli-
cable, is able to give precise theoretical bounds to the learning abilities of models. 
Though its theoretical foundation is solid, the practical applicability of the VC 
theory is complex. It has not yet found a broad following in financial economet-
rics. See Vladimir N. Vapnik, Statistical Learning Theory (New York: John Wiley 
& Sons, 1998).
2 For a further discussion of these applications of AIC and BIC, see Herman J. 
Bierens, “Information Criteria and Model Selection,” Pennsylvania State University, 
March 12, 2006, working paper. In addition to the AIC and BIC, Bierens discusses 
another criterion, the Hannan-Quinn criterion, in E. J. Hannan and B. G. Quinn, 
“The Determination of the Order of an Autoregression,” Journal of the Royal Statis-
tical Society B, no. 41 (1979): 190–195.
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AKAIKE INFORMATION CRITERION

In 1951, Kullback and Leibler developed a measure to capture the infor-
mation that is lost when approximating reality; that is, the Kullback and 
Leibler measure is a criterion for a good model that minimizes the loss 
of information.3 Two decades later, Akaike established a relationship 
between the Kullback-Leibler measure and maximum likelihood estima-
tion method—an estimation method used in many statistical analyses as 
described in Chapter 13—to derive a criterion (i.e., formula) for model 
selection.4 This criterion, referred to as the Akaike information criterion 
(AIC), is generally considered the first model selection criterion that should 
be used in practice. The AIC is

= − θ +L kAIC 2log (ˆ) 2

where  θ = the set (vector) of model parameters
θL(ˆ) =  the likelihood of the candidate model given the data when 

evaluated at the maximum likelihood estimate of θ
k = the number of estimated parameters in the candidate model

The AIC in isolation is meaningless. Rather, this value is calculated for 
every candidate model and the “best” model is the candidate model with the 
smallest AIC. Let’s look at the two components of the AIC. The first compo-
nent, − θL2log (ˆ), is the value of the likelihood function, log θL(ˆ), which is the 
probability of obtaining the data given the candidate model. Since the like-
lihood function’s value is multiplied by –2, ignoring the second component, 
the model with the minimum AIC is the one with the highest value for the 
likelihood function. However, to this first component we add an adjustment 
based on the number of estimated parameters. The more parameters, the 
greater the amount added to the first component, increasing the value for 
the AIC and penalizing the model. Hence, there is a trade-off: the better fit, 
created by making a model more complex by requiring more parameters, 
must be considered in light of the penalty imposed by adding more parame-
ters. This is why the second component of the AIC is thought of in terms of 
a penalty. 

3 S. Kullback and R. A. Leibler, “On Information and Sufficiency,” Annals of Mathe-
matical Statistics 22, no. 1 (1951): 79–86.
4 Hirotugu Akaike, “Information Theory and an Extension of the Maximum Likeli-
hood Principle,” in Second International Symposium on Information Theory, ed. B. 
N. Petrov and F. Csake (Budapest: Akademiai Kiado, 1973), 267–281; and Hirotugu 
Akaike, “A New Look at the Statistical Model Identification,” I.E.E.E. Transactions 
on Automatic Control, AC 19, (1974): 716–723. 
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For small sample sizes, the second-order Akaike information criterion 
(AICc) should be used in lieu of the AIC described earlier. The AICc is

= − θ + + + − −L k k n kAIC 2log (ˆ) 2 (2 1) / ( 1)c

where n is the number of observations.5 A small sample size is when n/k is 
less than 40. Notice as the n increases, the third term in AICc approaches 
zero and will therefore give the same result as AIC. AICc has also been sug-
gested to be used instead of AIC when n is small or k is large.6 It has been 
suggested, for example, that in selecting the orders of an ARMA, as we des-
cribed in Chapter 9, the AICc be used.7 

Typically, to assess the strength of evidence for the each candidate 
model, two measures can be used:

 1. The delta AIC
 2. The Akaike weights

Consider first the delta AIC measure assuming there are M candidate 
models. An AIC can be calculated for each candidate model, denoted by 
AICm (m = 1,  .  .  .  , M). The AIC with the minimum value, denoted by AIC*, 
is then the best model. The delta AIC for the mth candidate model, denoted 
by Δm, is simply the difference between the AICm and AIC*. This difference 
is then used as follows to determine the level of support for each candidate 
model. If the delta AIC is 

 ■ Less than 2, this indicates there is substantial evidence to support the candi-
date model (i.e., the candidate model is almost as good as the best model).

 ■ Between 4 and 7, this indicates that the candidate model has consider-
ably less support.

 ■ Greater than 10, this indicates that there is essentially no support for the 
candidate model (i.e., it is unlikely to be the best model).8 

The above values for the computed delta AICs are merely general rules of 
thumb.

Because the magnitude of the delta AIC is not meaningful in itself, to 
measure the strength of evidence for a candidate model we are interested 

5 Clifford M. Hurvich and Chih-Ling Tsai, “Regression and Time Series Model Selec-
tion in Small Samples,” Biometrika 76, no. 2 ( June 1989): 297–307. 
6 Kenneth P. Burnham and David R. Anderson, Model Selection and Multimodel Infe-
rence: A Practical Information-Theoretic Approach, 2nd ed. (New York: Springer-
Verlag, 2002).
7 Peter J. Brockwell and Richard A. Davis, Time Series: Theory and Methods, 2nd ed. 
(New York: Springer-Verlag, 2009), 273.
8 Burnham and Anderson, Model Selection and Multimodel Inference, 70.
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in the relative value of the delta AIC. The Akaike weights, denoted by wm, 
are obtained by normalizing the relative likelihood values. That is, they are 
the ratios of a candidate model’s delta AIC relative to the sum of the delta 
AICs for all candidate models, shown as follows:

∑
= − ∆

− ∆
=

w
exp( 0.5 )

exp( 0.5 )
m

m

j
j

M

1

The interpretation of this measure of strength of each candidate model given 
the data is the following: the Akaike weights are the probability that the 
candidate model is the best among the set of candidate models. For example, 
if a candidate model has an Akaike weight of 0.60, this means that given 
the data, the candidate model has a 60% probability of being the best one.

Further information can be obtained by calculating the ratio of Akaike 
weights for different candidate models to determine to what extent one can-
didate model is better than another candidate model. These measures, called 
evidence ratios, can be used to compare, for example, the best model versus 
a candidate model. For example, if the evidence ratio computed as the ratio 
of the best model to some candidate model is 1.8, then this can be inter-
preted as the best model being 1.8 times more likely than that candidate 
model of being the best model. 

What is the difference between the AIC and hypothesis tests in model 
selection described in Chapters 3 and 4 where we described statistical tests 
for various regression models and the use of stepwise regressions? The dif-
ference is that in those earlier chapters, the tests used for model selection 
are hypothesis tests where at a certain level of confidence an independent 
variable would be included or excluded from the model. In contrast, model 
selection applying AIC is based on the strength of the evidence and provides 
for each of the candidate models a measure of uncertainty. What is impor-
tant to emphasize is that the AIC might identify which model is best among 
the candidate models but that does not mean that any of the candidate 
models do a good job of explaining the data.

BAyESIAN INFORMATION CRITERION

The Bayesian information criterion (BIC), proposed by Schwarz9 and hence 
also referred to as the Schwarz information criterion and Schwarz Bayesian 

9 Gideon Schwarz, “Estimating the Dimension of a Model,” Annals of Statistics 6 
(1978): 461–464. The purpose of the BIC is to provide an asymptotic approximation 
to a transformation of the candidate model’s Bayesian posterior probability. 
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information criterion, is another model selection criterion based on infor-
mation theory but set within a Bayesian context. The difference between the 
BIC and the AIC is the greater penalty imposed for the number of param-
eters by the former than the latter. Burnham and Anderson provide theo-
retical arguments in favor of the AIC, particularly the AICc over the BIC.10 
Moreover, in the case of multivariate regression analysis, Yang explains why 
AIC is better than BIC in model selection.11

The BIC is computed as follows:

= − θ +L k nBIC 2log (ˆ) log

where the terms above are the same as described in our description of the AIC.
The best model is the one that provides the minimum BIC, denoted 

by BIC*. Like delta AIC for each candidate model, we can compute delta 
BIC = BICm – BIC*. Given M models, the magnitude of the delta BIC can be 
interpreted as evidence against a candidate model being the best model. The 
rules of thumb are12 

 ■ Less than 2, it is not worth more than a bare mention.
 ■ Between 2 and 6, the evidence against the candidate model is positive.
 ■ Between 6 and 10, the evidence against the candidate model is strong.
 ■ Greater than 10, the evidence is very strong.

10 Burnham and Anderson, Model Selection and Multimodel Inference.
11 Ying Yang, “Can the Strengths of AIC and BIC Be Shared?” Biometrika 92, no. 4 
(December 2005): 937–950.
12 Robert E. Kass and Adrian E. Raftery, “Bayes Factors,” Journal of the American 
Statistical Association 90, no. 430 (June 1995): 773–795. The rules of thumb pro-
vided here are those modified in a presentation by Joseph E. Cavanaugh, “171:290 
Model Selection: Lecture VI: The Bayesian Information Criterion” (PowerPoint pre-
sentation, The University of Iowa, September 29, 2009).
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Appendix F
Robust Statistics

Robust statistics addresses the problem of making estimates that are insen-
sitive to small changes in the basic assumptions of the statistical models 

employed. In this appendix we discuss the general concepts and methods of 
robust statistics. The reason for doing so is to provide background informa-
tion for the discussion of robust estimation covered in Chapter 8.

RobuSt StAtiSticS deFined

Statistical models are based on a set of assumptions; the most important include 
(1) the distribution of key variables, for example, the normal distribution of 
errors, and (2) the model specification, for example, model linearity or nonlin-
earity. Some of these assumptions are critical to the estimation process: if they 
are violated, the estimates become unreliable. Robust statistics (1) assesses the 
changes in estimates due to small changes in the basic assumptions and (2) cre-
ates new estimates that are insensitive to small changes in some of the assump-
tions. The focus of our exposition is to make estimates robust to small changes 
in the distribution of errors and, in particular, to the presence of outliers.

Robust statistics is also useful to separate the contribution of the tails 
from the contribution of the body of the data. We can say that robust statistics 
and classical nonrobust statistics are complementary. By conducting a robust 
analysis, one can better articulate important financial econometric findings.

As observed by Peter Huber, robust, distribution-free, and nonparamet-
rical seem to be closely related properties but actually are not.1 For example, 
the sample mean and the sample median are nonparametric estimates of the 
mean and the median but the mean is not robust to outliers. In fact, changes 

1 Huber’s book is a standard reference on robust statistics: Peter J. Huber, Robust 
Statistics (New York: John Wiley & Sons, 1981). See also R. A. Maronna, R. D. 
Martin, and V. J. Yohai, Robust Statistics: Theory and Methods (Hoboken, NJ: John 
Wiley & Sons, 2006).



406 The Basics of financial economeTrics

of one single observation might have unbounded effects on the mean, while 
the median is insensitive to changes of up to half the sample. Robust meth-
ods assume that there are indeed parameters in the distributions under study 
and attempt to minimize the effects of outliers as well as erroneous assump-
tions on the shape of the distribution.

A general definition of robustness is, by nature, quite technical. The 
reason is that we need to define robustness with respect to changes in distri-
butions. That is, we need to make precise the concept that small changes in 
the distribution, which is a function, result in small changes in the estimate, 
which is a number. Therefore, we give only an intuitive, nontechnical over-
view of the modern concept of robustness and how to measure robustness.

QuAlitAtive And QuAntitAtive RobuStneSS

Let’s begin by introducing the concepts of qualitative and quantitative 
robustness of estimators. Estimators are functions of the sample data. Given 
an N-sample of data X = (x1 ,  .  .  .  , xN)′ from a population with a cumulative 
distribution function (cdf) F(x), depending on parameter θ∞, an estimator 
for θ∞ is a function of the data. Consider those estimators that can be writ-
ten as functions of the empirical distribution defined as FN(x) = percentage 
of samples whose value is less than x.

For these estimators we can write

ϑ = ϑ Fˆ ( )N N

Most estimators can be written in this way with probability 1. In general, 
when N → ∞ then FN(x) → F(x) almost surely and ϑ → ϑ∞ˆ

N  in probability 
and almost surely. The estimator ϑ̂N  is a random variable that depends on 
the sample. Under the distribution F, it will have a probability distribution 
LF(ϑN). Intuitively, statistics defined as functionals of a distribution are robust 
if they are continuous with respect to the distribution. This means that small 
changes in the statistics are associated with small changes in the cdf.

ReSiStAnt eStimAtoRS

An estimator is called resistant if it is insensitive to changes in one single 
observation.2 Given an estimator ϑ = ϑ Fˆ ( )N N , we want to understand what 
happens if we add a new observation of value x to a large sample. To this 

2 For an application to the estimation of a stock’s beta, see R. Douglas Martin and 
Timothy T. Simin, “Outlier Resistant Estimates of Beta,” Financial Analysts Journal 
(September–October 2003): 56–58. We discuss this application in Chapter 8.



Robust Statistics 407

end we define the influence curve (IC), also called influence function, which 
measures the influence of a single observation x on a statistic ϑ for a given 
distribution F. In practice, the influence curve is generated by plotting the 
value of the computed statistic with a single point of X added to Y against 
that X value. For example, the IC of the mean is a straight line. 

Several aspects of the influence curve are of particular interest:

 ■ Is the curve “bounded” as the X-values become extreme? Robust statis-
tics should be bounded. That is, a robust statistic should not be unduly 
influenced by a single extreme point.

 ■ What is the general behavior as the X observation becomes extreme? 
For example, does it becomes smoothly down-weighted as the values 
become extreme?

 ■ What is the influence if the X point is in the “center” of the Y points?

Let’s now introduce concepts that are important in applied work, after 
which we introduce the robust estimators.

breakdown bound

The breakdown (BD) bound or point is the largest possible fraction of 
observations for which there is a bound on the change of the estimate when 
that fraction of the sample is altered without restrictions. For example, we 
can change up to 50% of the sample points without provoking unbounded 
changes of the median. On the contrary, changes of one single observation 
might have unbounded effects on the mean.

Rejection point

The rejection point is defined as the point beyond which the IC becomes 
zero. Note that observations beyond the rejection point make no contribu-
tion to the final estimate except, possibly, through the auxiliary scale esti-
mate. Estimators that have a finite rejection point are said to be redescending 
and are well protected against very large outliers. However, a finite rejection 
point usually results in the underestimation of scale. This is because when 
the samples near the tails of a distribution are ignored, an insufficient frac-
tion of the observations may remain for the estimation process. This in turn 
adversely affects the efficiency of the estimator.

Gross error Sensitivity

The gross error sensitivity expresses asymptotically the maximum effect that 
a contaminated observation can have on the estimator. It is the maximum 
absolute value of the IC.
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local Shift Sensitivity

The local shift sensitivity measures the effect of the removal of a mass at y 
and its reintroduction at x. For continuous and differentiable IC, the local 
shift sensitivity is given by the maximum absolute value of the slope of IC 
at any point.

Winsor’s principle

Winsor’s principle states that all distributions are normal in the middle.

m-eStimAtoRS

M-estimators are those estimators that are obtained by minimizing a 
function of the sample data. As explained in Chapter 13, ordinary least 
squares estimators and maximum likelihood estimators are examples of 
M-estimators. Suppose that we are given an N-sample of data X = (x1,  .  .  .  , 
xN)′. The estimator T(x1,  .  .  .  , xN) is called an M-estimator if it is obtained by

∑= = ρ










=

T J x targmin ( , )t i
i

N

1

where ρ(xi, t) is a function that depends on the estimator and “argmint” 
means to minimize the expression in the brackets with respect to the 
parameters t.

ML estimators are M-estimators with ρ = –log f, where f is the probabil-
ity density. (Actually, the name M-estimators means maximum likelihood-
type estimators.) LS estimators are also M-estimators.

the leASt mediAn oF SQuAReS eStimAtoR

Instead of minimizing the sum of squared residuals, as in LS, to estimate the 
parameter vector, Rousseuw3 proposed minimizing the median of squared 
residuals, referred to as the least median of squares (LMedS) estimator. This 
estimator effectively trims the N/2 observations having the largest residuals, 
and uses the maximal residual value in the remaining set as the criterion to be 
minimized. It is hence equivalent to assuming that the noise proportion is 50%.

3 P. Rousseuw, “Least Median of Squares Regression,” Journal of the American Sta-
tistical Association 79 (1984): 871–890.
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LMedS is unwieldy from a computational point of view because of its 
nondifferentiable form. This means that a quasi-exhaustive search on all 
possible parameter values needs to be done to find the global minimum.

the leASt tRimmed oF SQuAReS eStimAtoR

The least trimmed of squares (LTS) estimator offers an efficient way to find 
robust estimates by minimizing the objective function given by

∑=










=

J r i
i

h

( )
2

1

where r i( )
2  is the ith smallest residual or distance when the residuals are 

ordered in ascending order, that is, ≤ ≤r r rN(1)
2

(2)
2

( )
2  and h is the number of 

data points the residuals of which we want to include in the sum. This 
estimator basically finds a robust estimate by identifying the N – h points 
having the largest residuals as outliers, and discarding (trimming) them 
from the data set. The resulting estimates are essentially LS estimates of the 
trimmed data set. Note that h should be as close as possible to the number 
of points in the data set that we do not consider outliers.

RobuSt eStimAtoRS oF the centeR

The mean estimates the center of a distribution but it is not resistant. Resis-
tant estimators of the center are the following:

 ■ Trimmed mean. Suppose x(1) ≤ x(2) ≤  .  .  .  ≤ x(N) are the sample order sta-
tistics (that is, the sample sorted). The trimmed mean TN(δ, 1 – γ) is 
defined as follows:
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 ■ Winsorized mean. The Winsorized mean XW  is the mean of Winsorized 
data:
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 ■ Median. The median Med(X) is defined as that value that occupies a 
central position in sample order statistics:

= +
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
+

+

x
x x

N
N
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(( ) / 2)

if is odd
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N

N N

(( 1)/2)

( /2) ( /2 1)

RobuSt eStimAtoRS oF the SpReAd

The variance is a classical estimator of the spread but it is not robust. Robust 
estimators of the spread are the following:

 ■ Median absolute deviation. The median absolute deviation (MAD) is 
defined as the median of the absolute value of the difference between a 
variable and its median, that is,

MAD = MED|X – MED(X)|

 ■ Interquartile range. The interquartile range (IQR) is defined as the dif-
ference between the highest and lowest quartile:

IQR = Q(0.75) – Q(0.25)

where Q(0.75) and Q(0.25) are the 75th and 25th percentiles of the 
data.

 ■ Mean absolute deviation. The mean absolute deviation (MeanAD) is 
defined as follows:

∑ −
=N
x X

1
MED( )j

j

N

1

 ■ Winsorized standard deviation. The Winsorized standard deviation is 
the standard deviation of Winsorized data, that is,

σ = σ
−U L N( ) /

W
N

N N

illuStRAtion oF RobuSt StAtiSticS

To illustrate the effect of robust statistics, consider the series of daily returns 
of Nippon Oil in the period 1986 through 2005 depicted in Figure F.1. If 



Robust Statistics 411

we compute the mean, the trimmed mean, and the median, we obtain the 
following results:

Mean = 3.8396e–005
Trimmed mean (20%)4 = –4.5636e–004
Median = 0

In order to show the robustness properties of these estimators, let’s multiply 
the 10% highest/lowest returns by 2. If we compute again the same quanti-
ties we obtain:

Mean = 4.4756e–004
Trimmed mean (20%) = –4.4936e–004
Median = 0

4 Trimmed mean (20%) means that we exclude the 20%/2 = 10% highest and lowest 
observations.
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While the mean is largely affected, the median is not affected and the 
trimmed mean is only marginally affected by doubling the value of 20% of 
the points.

We can perform the same exercise for measures of the spread. If we 
compute the standard deviation, the IQR, and the MAD, we obtain the fol-
lowing results:

Standard deviation = 0.0229
IQR = 0.0237
MAD = 0.0164

Let’s multiply the 10% highest/lowest returns by 2. The new values are:

Standard deviation = 0.0415
IQR = 0.0237
MAD = 0.0248

The MAD are less affected by the change than the standard deviation while 
the IQR is not affected. If we multiply the 25% highest/lowest returns by 2 
we obtain the following results:

Standard deviation = 0.0450
IQR =  0.0237 (but suddenly changes if we add/subtract 

one element)
MAD = 0.0299
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Index

Absolute cumulative frequency, 327
Absolute deviation, 330
Absolute frequency, 323
Absolute joint frequency distribution, 333
Acceptance region, 375
Active portfolio strategy, 8
Active return, 9
Addition, 392, 394

defined, 394
of vectors, 392

Adjoint, 395–396
Adjusted R squared (R2), 24, 49
AIC (Akaike information criterion). See 

Akaike information criterion (AIC)
Aitken’s generalized least squares (GLS) 

estimator, 99
Akaike information criterion (AIC), 173, 

399–402
second order, 401

Akaike weights, 402
Alternative hypotheses, 373
Analysis of variance (ANOVA) test, 47
Anderson, David R., 401, 403
Application to S&P 500 Index returns, 

106–108
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